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xi

Many students in the behavioral sciences view the required statistics course as an intimi-
dating obstacle that has been placed in the middle of an otherwise interesting curriculum. 
They want to learn about human behavior—not about math and science. As a result, the 
statistics course is seen as irrelevant to their education and career goals. However, as long 
as the behavioral sciences are founded in science, a knowledge of statistics will be neces-
sary. Statistical procedures provide researchers with objective and systematic methods 
for describing and interpreting their research results. Scientific research is the system that 
we use to gather information, and statistics are the tools that we use to distill the informa-
tion into sensible and justified conclusions. The goal of this book is not only to teach the 
methods of statistics but also to convey the basic principles of objectivity and logic that are 
essential for science and valuable for decision making in everyday life.

Those of you who are familiar with previous editions of Essentials of Statistics for 
the Behavioral Sciences will notice that some changes have been made. These changes 
are summarized in the section titled “To the Instructor.” In revising this text, our stu-
dents have been foremost in our minds. Over the years, they have provided honest and 
useful feedback. Their hard work and perseverance has made our writing and teaching 
most rewarding. We sincerely thank them. Students who are using this edition should 
please read the section of the preface titled “To the Student.”

The book chapters are organized in the sequence that we use for our own statistics 
courses. We begin with descriptive statistics, and then examine a variety of statistical pro-
cedures focused on sample means and variance before moving on to correlational methods 
and nonparametric statistics. Information about modifying this sequence is presented in 
the “To the Instructor” section for individuals who prefer a different organization. Each 
chapter contains numerous examples—many based on actual research studies—along with 
learning checks, a summary and list of key terms, and a set of 20 to 30 problems.

Those of you familiar with the previous edition of Essentials of Statistics for the 
Behavioral Sciences will notice a number of changes in the eighth edition. Throughout 
the book, research examples have been updated, real-world examples have been 
added, and the end-of-chapter problems have been extensively revised. The book 
has been separated into five sections to emphasize the similarities among groups of 
statistical methods. Each section contains two to four chapters and begins with an 
introduction and concludes with a review, including review exercises. Major revisions 
for this edition include:

•  The former Chapter 12 on estimation has been eliminated. In its place, sec-
tions on confidence intervals have been added to the three chapters presenting 
t statistics.

•  A new appendix titled Statistics Organizer: Finding the Right Statistics for 
Your Data, discusses the process of selecting the correct statistics to be used 
with different categories of data and replaces the Statistics Organizer that  
appeared as an appendix in earlier editions.

Preface

TO THE INSTRUCTOR
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Other specific and noteworthy revisions include:

Chapter 1  A separate section explains how statistical methods can be classified using 
the same categories that are used to group data structures and research methods.

Chapter 2  The discussion of histograms has been modified to differentiate discrete 
and continuous variables.

Chapter 3  A modified definition of the median acknowledges that this value is not 
algebraically defined and that determining the median, especially for discrete variables, 
can be somewhat subjective.

Chapter 4  Relatively minor editing for clarity. The section on variance and inferen-
tial statistics has been simplified.

Chapter 5  Relatively minor editing for clarity.

Chapter 6  The concepts of random sample and independent random sample have 
been clarified with separate definitions. A new figure helps demonstrate the process of 
using the unit normal table to find proportions for negative z-scores.

Chapter 7  Relatively minor editing for clarity.

Chapter 8  The chapter has been shortened by substantial editing that eliminated 
several pages of unnecessary text, particularly in the sections on errors (Type I and II) 
and power.

Chapter 9  The section describing how sample size and sample variance influence the 
outcome of a hypothesis test has been moved so that it appears immediately after the 
hypothesis test example. A new section introduces confidence intervals in the context 
of describing effect size, describes how confidence intervals are reported in the litera-
ture, and discusses factors affecting the width of a confidence interval.

Chapter 10  An expanded section discusses how sample variance and sample size influ-
ence the outcome of an independent-measures hypothesis test and measures of effect size. 
A new section introduces confidence intervals as an alternative for describing effect size. 
The relationship between a confidence interval and a hypothesis test is also discussed.

Chapter 11  The description of repeated-measures and matched-subjects designs has 
been clarified and we increased emphasis on the concept that all calculations for the 
related-samples test are done with the difference scores. A new section introduces con-
fidence intervals as an alternative for describing effect size and discusses the relation-
ship between a confidence interval and a hypothesis test.

The former Chapter 12 has been deleted. The content from this chapter discussing con-
fidence intervals has been added to Chapters 9, 10, and 11.

Chapter 12  (former Chapter 13, introducing ANOVA) The discussion of testwise 
alpha levels versus experimentwise alpha levels has been moved from a box into the 
text, and definitions of the two terms have been added. To emphasize the concepts 
of ANOVA rather than the formulas, SS

between treatments
 is routinely found by subtraction 

instead of being computed directly. Two alternative equations for SS
between treatments

 have 
been moved from the text into a box.

xii PREFACE
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Chapter 13  (former Chapter 14, introducing repeated-measures and two-factor 
ANOVA) A new section demonstrates the relationship between ANOVA and the t test 
when a repeated-measures study is comparing only two treatments. Extensive editing 
has shortened the chapter and simplified the presentation.

Chapter 14  (formerly Chapter 15, introducing correlation and regression) New sec-
tions present the t statistic for testing hypotheses about the Pearson correlation and 
demonstrate how the t test for significance of a correlation is equivalent to the F-ratio 
used for analysis of regression.

Chapter 15  (formerly Chapter 16, introducing chi-square tests) Relatively minor 
editing has shortened and clarified the chapter.

Matching the Text to Your Syllabus  We have tried to make separate chapters, and 
even sections of chapters, completely self-contained so that they can be deleted or 
reorganized to fit the syllabus for nearly any instructor. Some common examples are 
as follows:

•  It is common for instructors to choose between emphasizing analysis of variance 
(Chapters 12 and 13) or emphasizing correlation/regression (Chapter 14). It is 
rare for a one-semester course to provide complete coverage of both topics.

•  Although we choose to complete all the hypothesis tests for means and mean 
differences before introducing correlation (Chapter 14), many instructors 
prefer to place correlation much earlier in the sequence of course topics. To 
accommodate this, sections 14.1, 14.2, and 14.3 present the calculation and 
interpretation of the Pearson correlation and can be introduced immediately 
following Chapter 4 (variability). Other sections of Chapter 14 refer to  
hypothesis testing and should be delayed until the process of hypothesis  
testing (Chapter 8) has been introduced.

•  It is also possible for instructors to present the chi-square tests (Chapter 15) 
much earlier in the sequence of course topics. Chapter 15, which presents 
hypothesis tests for proportions, can be presented immediately after Chapter 8, 
which introduces the process of hypothesis testing. If this is done, we also 
recommend that the Pearson correlation (Sections 14.1, 14.2, and 14.3) be pre-
sented early to provide a foundation for the chi-square test for independence.

A primary goal of this book is to make the task of learning statistics as easy and pain-
less as possible. Among other things, you will notice that the book provides you with 
a number of opportunities to practice the techniques you will be learning in the form 
of learning checks, examples, demonstrations, and end-of-chapter problems. We en-
courage you to take advantage of these opportunities. Read the text rather than just 
memorize the formulas. We have taken care to present each statistical procedure in a 
conceptual context that explains why the procedure was developed and when it should 
be used. If you read this material and gain an understanding of the basic concepts un-
derlying a statistical formula, you will find that learning the formula and how to use it 
will be much easier. In the following section, “Study Hints,” we provide advice that we 
give our own students. Ask your instructor for advice as well; we are sure that other 
instructors will have ideas of their own.

Over the years, the students in our classes and other students using our book have 
given us valuable feedback. If you have any suggestions or comments about this book, 
you can write to either Professor Emeritus Frederick Gravetter or Professor Emeritus 

PREFACE    xiii

TO THE STUDENT
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Larry Wallnau at the Department of Psychology, SUNY College at Brockport, 350 
New Campus Drive, Brockport, New York 14420. You can also contact Professor 
Emeritus Gravetter directly at fgravett@brockport.edu.

Study Hints  You may find some of these tips helpful, as our own students have  
reported.

•  The key to success in a statistics course is to keep up with the material. Each 
new topic builds on previous topics. If you have learned the previous mate-
rial, then the new topic is just one small step forward. Without the proper 
background, however, the new topic can be a complete mystery. If you find 
that you are falling behind, get help immediately.

•  You will learn (and remember) much more if you study for short periods sev-
eral times per week rather than try to condense all of your studying into one 
long session. For example, it is far more effective to study half an hour every 
night than to have a single 3}

1
2}-hour study session once a week. We cannot 

even work on writing this book without frequent rest breaks.

•  Do some work before class. Keep a little ahead of the instructor by reading 
the appropriate sections before they are presented in class. Although you may 
not fully understand what you read, you will have a general idea of the topic, 
which will make the lecture easier to follow. Also, you can identify material 
that is particularly confusing and then be sure the topic is clarified in class.

•  Pay attention and think during class. Although this advice seems obvious, 
often it is not practiced. Many students spend so much time trying to write 
down every example presented or every word spoken by the instructor that 
they do not actually understand and process what is being said. Check with 
your instructor—there may not be a need to copy every example presented 
in class, especially if there are many examples like it in the text. Sometimes, 
we tell our students to put their pens and pencils down for a moment and just 
listen.

•  Test yourself regularly. Do not wait until the end of the chapter or the end of 
the week to check your knowledge. After each lecture, work some of the end-
of-chapter problems and do the Learning Checks. Review the Demonstration 
Problems, and be sure you can define the Key Terms. If you are having trou-
ble, get your questions answered immediately (reread the section, go to your 
instructor, or ask questions in class). By doing so, you will be able to move 
ahead to new material.

•  Do not kid yourself! Avoid denial. Many students watch their instructor solve 
problems in class and think to themselves, “This looks easy—I understand 
it.” Do you really understand it? Can you really do the problem on your own 
without having to leaf through the pages of a chapter? Although there is noth-
ing wrong with using examples in the text as models for solving problems, 
you should try working a problem with your book closed to test your level of 
mastery.

•  We realize that many students are embarrassed to ask for help. It is our big-
gest challenge as instructors. You must find a way to overcome this aversion. 
Perhaps contacting the instructor directly would be a good starting point, if 
asking questions in class is too anxiety-provoking. You could be pleasantly 
surprised to find that your instructor does not yell, scold, or bite! Also, your 
instructor might know of another student who can offer assistance. Peer tutor-
ing can be very helpful.

xiv    PREFACE
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Ancillaries for this edition include the following:

•  Aplia Statistics for Psychology and the Behavioral Sciences: An online inter-
active learning solution that ensures students stay involved with their course-
work and master the basic tools and concepts of statistical analysis. Created 
by a research psychologist to help students excel, Aplia’s content engages 
students with questions based on real-world scenarios that help students un-
derstand how statistics applies to everyday life. At the same time, all chapter 
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explanations, making sure they learn from and improve with every question.

•  Instructor’s Manual with Test Bank: Contains chapter outlines, annotated 
learning objectives, lecture suggestions, test items, and solutions to all end-of-
chapter problems in the text. Test items are also available as a Word down-
load or for ExamView computerized test bank software.

•  PowerLecture with ExamView®: This CD includes the instructor’s manual, test 
bank, lecture slides with book figures, and more. Featuring automatic grading, 
ExamView, also available within PowerLecture, allows you to create, de-
liver, and customize tests and study guides (both print and online) in minutes. 
Assessments appear onscreen exactly as they will print or display online; you 
can build tests of up to 250 questions using up to 12 question types, and you 
can enter an unlimited number of new questions or edit existing questions.

•  WebTutor on Blackboard and WebCT: Jump-start your course with customiz-
able, text-specific content within your Course Management System.

•  Psychology CourseMate: Cengage Learning’s Psychology CourseMate brings 
course concepts to life with interactive learning, study, and exam prepara-
tion tools that support the printed textbook. Go to www.cengagebrain.com. 
Psychology CourseMate includes:

• An interactive eBook;

• Interactive teaching and learning tools, including

• quizzes,

• flashcards,

• videos,

• and more; plus
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We have divided this book into five sections, each cover-
ing a general topic area of statistics. The first section, 
consisting of Chapters 1 to 4, provides a broad over-

view of statistical methods and a more focused presentation of 
those methods that are classified as descriptive statistics.

By the time you finish the four chapters in this part, you should 
have a good understanding of the general goals of statistics and 
you should be familiar with the basic terminology and notation 
used in statistics. In addition, you should be familiar with the tech-
niques of descriptive statistics that help researchers organize and 
summarize the results they obtain from their research. Specifically, 
you should be able to take a set of scores and present them in a 
table or in a graph that provides an overall picture of the complete 
set. Also, you should be able to summarize a set of scores by cal-
culating one or two values (such as the average) that describe the 
entire set.

At the end of this section, there is a brief summary and a set of 
review problems that should help to integrate the elements from 
the separate chapters.

Introduction  
and Descriptive 
Statistics

   1
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1
Introduction  
to Statistics

1.1     Statistics, Science, and 
Observations

1.2     Populations and Samples

1.3     Data Structures, Research 
Methods, and Statistics

1.4     Variables and Measurement

1.5     Statistical Notation

Summary

Focus on Problem Solving

Demonstration 1.1 

Problems

Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.
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4     CHAPTER 1  InTRoDuCTIon To STATISTICS

STATISTICS, SCIEnCE, AnD obSERvATIonS

Before we begin our discussion of statistics, we ask you to read the following paragraph 
taken from the philosophy of Wrong Shui (Candappa, 2000).

The Journey to Enlightenment

In Wrong Shui, life is seen as a cosmic journey, a struggle to overcome unseen and 
unexpected obstacles at the end of which the traveler will find illumination and  
enlightenment. Replicate this quest in your home by moving light switches away from 
doors and over to the far side of each room.*

Why did we begin a statistics book with a bit of twisted philosophy? Actually, the 
paragraph is an excellent (and humorous) counterexample for the purpose of this book. 
Specifically, our goal is to help you avoid stumbling around in the dark by providing 
lots of easily available light switches and plenty of illumination as you journey through 
the world of statistics. To accomplish this, we try to present sufficient background and 
a clear statement of purpose as we introduce each new statistical procedure. Remember 
that all statistical procedures were developed to serve a purpose. If you understand why 
a new procedure is needed, you will find it much easier to learn.

As you read through the following chapters, keep in mind that the general topic of 
statistics follows a well-organized, logically developed progression that leads from 
basic concepts and definitions to increasingly sophisticated techniques. Thus, the mate-
rial presented in the early chapters of this book serves as a foundation for the material 
that follows. The content of the first nine chapters, for example, provides an essential 
background and context for the statistical methods presented in Chapter 10. If you turn 
directly to Chapter 10 without reading the first nine chapters, you will find the material 
confusing and incomprehensible. However, we should reassure you that the progression 
from basic concepts to complex statistical techniques is a slow, step-by-step process. 
As you learn the basic background material, you will develop a good frame of refer-
ence for understanding and incorporating new, more sophisticated concepts as they are 
presented.

The objectives for this first chapter are to provide an introduction to the topic of 
statistics and to give you some background for the rest of the book. We discuss the role 
of statistics within the general field of scientific inquiry, and we introduce some of the 
vocabulary and notation that are necessary for the statistical methods that follow.

Statistics are often defined as facts and figures, such as average income, crime rate, 
birth rate, baseball batting averages, and so on. These statistics are usually informa-
tive and time saving because they condense large quantities of information into a few 
simple figures. Later in this chapter we return to the notion of calculating statistics 
(facts and figures) but, for now, we concentrate on a much broader definition of sta-
tistics. Specifically, we use the term statistics to refer to a set of mathematical proce-
dures. In this case, we are using the term statistics as a shortened version of statistical 
procedures. For example, you are probably using this book for a statistics course in 
which you will learn about the statistical techniques that are used for research in the 
behavioral sciences.

1.1

Overview

DefinitiOns Of 
statistics

*Candappa, R. (2000). The little book of wrong shui. Kansas City: Andrews McMeel Publishing. Reprinted 
by permission.
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Research in the behavioral sciences (and other fields) involves gathering informa-
tion. To determine, for example, whether college students learn better by reading mate-
rial on printed pages or on a computer screen, you would need to gather information 
about students’ study habits and their academic performance. When researchers finish 
the task of gathering information, they typically find themselves with pages and pages 
of measurements such as IQ scores, personality scores, exam scores, and so on. In this 
book, we present the statistics that researchers use to analyze and interpret the informa-
tion that they gather. Specifically, statistics serve two general purposes:

 1. Statistics are used to organize and summarize the information so that the re-
searcher can see what happened in the research study and can communicate the 
results to others.

 2. Statistics help the researcher to answer the questions that initiated the research 
by determining exactly what general conclusions are justified based on the 
specific results that were obtained.

The term statistics refers to a set of mathematical procedures for organizing, 
summarizing, and interpreting information.

Statistical procedures help to ensure that the information or observations are  
presented and interpreted in an accurate and informative way. In somewhat gran-
diose terms, statistics help researchers bring order out of chaos. Statistics also 
provide researchers with a set of standardized techniques that are recognized and 
understood throughout the scientific community. Thus, the statistical methods used 
by one researcher are familiar to other researchers, who can accurately interpret the 
statistical analyses with a full understanding of how the analysis was done and what 
the results signify.

PoPulATIonS AnD SAmPlES

Research in the behavioral sciences typically begins with a general question about a 
specific group (or groups) of individuals. For example, a researcher may want to know 
what factors are associated with academic dishonesty among college students. Or a  
researcher may want to examine the amount of time spent in the bathroom for men 
compared to women. In the first example, the researcher is interested in the group of 
college students. In the second example, the researcher wants to compare the group 
of men with the group of women. In statistical terminology, the entire group that a  
researcher wishes to study is called a population.

A population is the entire set of the individuals of interest for a particular  
research question.

As you can well imagine, a population can be quite large—for example, the entire 
set of men on the planet Earth. A researcher might be more specific, limiting the popu-
lation for study to retired men who live in the United States. Perhaps the investigator 
would like to study the population consisting of men who are professional basketball 
players. Populations can obviously vary in size from extremely large to very small, 
depending on how the researcher defines the population. The population being studied 
should always be identified by the researcher. In addition, the population need not 

D e f i n i t i o n

1.2

D e f i n i t i o n
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6     CHAPTER 1  InTRoDuCTIon To STATISTICS

consist of people—it could be a population of rats, corporations, parts produced in a 
factory, or anything else a researcher wants to study. In practice, populations are typi-
cally very large, such as the population of college sophomores in the United States or 
the population of small businesses.

Because populations tend to be very large, it usually is impossible for a researcher to 
examine every individual in the population of interest. Therefore, researchers typically 
select a smaller, more manageable group from the population and limit their studies to 
the individuals in the selected group. In statistical terms, a set of individuals selected 
from a population is called a sample. A sample is intended to be representative of its 
population, and a sample should always be identified in terms of the population from 
which it was selected.

A sample is a set of individuals selected from a population, usually intended to 
represent the population in a research study.

Just as we saw with populations, samples can vary in size. For example, one study 
might examine a sample of only 10 autistic children, and another study might use a 
sample of more than 10,000 people who take a specific cholesterol medication.

So far we have talked about a sample being selected from a population. However, 
this is actually only half of the full relationship between a sample and its population. 
Specifically, when a researcher finishes examining the sample, the goal is to general-
ize the results back to the entire population. Remember that the research started with 
a general question about the population. To answer the question, a researcher studies 
a sample and then generalizes the results from the sample to the population. The full 
relationship between a sample and a population is shown in Figure 1.1.

Typically, researchers are interested in specific characteristics of the individuals in 
the population (and in the sample), or they are interested in outside factors that may 
influence the individuals. For example, a researcher may be interested in the influence 

D e f i n i t i o n

variables anD Data

THE POPULATION
All of the individuals of interest

THE SAMPLE
The individuals selected to

participate in the research study

The results
from the sample
are generalized

to the population

The sample
is selected from
the population

Figure 1.1

The relationship between 
a population and a sample.
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of the weather on people’s moods. As the weather changes, do people’s moods also 
change? Something that can change or have different values is called a variable.

A variable is a characteristic or condition that changes or has different values for 
different individuals.

Once again, variables can be characteristics that differ from one individual to an-
other, such as height, weight, gender, or personality. Also, variables can be environmen-
tal conditions that change such as temperature, time of day, or the size of the room in 
which the research is being conducted.

To demonstrate changes in variables, it is necessary to make measurements of the 
variables being examined. The measurement obtained for each individual is called a 
datum or, more commonly, a score or raw score. The complete set of scores is called 
the data set, or simply the data.

Data (plural) are measurements or observations. A data set is a collection of 
measurements or observations. A datum (singular) is a single measurement or 
observation and is commonly called a score or raw score.

Before we move on, we should make one more point about samples, populations, and 
data. Earlier, we defined populations and samples in terms of individuals. For example, 
we discussed a population of college students and a sample of autistic children. Be fore-
warned, however, that we will also refer to populations or samples of scores. Because 
research typically involves measuring each individual to obtain a score, every sample (or 
population) of individuals produces a corresponding sample (or population) of scores.

When describing data, it is necessary to distinguish whether the data come from a popula-
tion or a sample. A characteristic that describes a population—for example, the average 
score for the population—is called a parameter. A characteristic that describes a sample 
is called a statistic. Thus, the average score for a sample is an example of a statistic. 
Typically, the research process begins with a question about a population parameter. 
However, the actual data come from a sample and are used to compute sample statistics.

A parameter is a value, usually a numerical value, that describes a population. A 
parameter is usually derived from measurements of the individuals in the population.

A statistic is a value, usually a numerical value, that describes a sample. A statistic 
is usually derived from measurements of the individuals in the sample.

Every population parameter has a corresponding sample statistic, and most research 
studies involve using statistics from samples as the basis for answering questions about 
population parameters. As a result, much of this book is concerned with the relationship 
between sample statistics and the corresponding population parameters. In Chapter 7, 
for example, we examine the relationship between the mean obtained for a sample and 
the mean for the population from which the sample was obtained.

Although researchers have developed a variety of different statistical procedures to or-
ganize and interpret data, these different procedures can be classified into two general 
categories. The first category, descriptive statistics, consists of statistical procedures 
that are used to simplify and summarize data.

D e f i n i t i o n

D e f i n i t i o n s

Parameters  
anD statistics

D e f i n i t i o n s

DescriPtive 
anD inferential 

statistical methODs
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8     CHAPTER 1  InTRoDuCTIon To STATISTICS

BOX
1.1

THE mARgIn of ERRoR bETwEEn STATISTICS AnD PARAmETERS

The margin of error is the sampling error. In this 
case, the percentages that are reported were obtained 
from a sample and are being generalized to the whole 
population. As always, you do not expect the statistics 
from a sample to be perfect. There is always some 
margin of error when sample statistics are used to 
represent population parameters.

One common example of sampling error is the error 
associated with a sample proportion. For example, 
in newspaper articles reporting results from political 
polls, you frequently find statements such as this:

Candidate Brown leads the poll with 51% of the 
vote. Candidate Jones has 42% approval, and the 
remaining 7% are undecided. This poll was taken 
from a sample of registered voters and has a margin 
of error of plus-or-minus 4 percentage points.

Descriptive statistics are statistical procedures used to summarize, organize, and 
simplify data.

Descriptive statistics are techniques that take raw scores and organize or summarize 
them in a form that is more manageable. Often the scores are organized in a table or a 
graph so that it is possible to see the entire set of scores. Another common technique 
is to summarize a set of scores by computing an average. Note that even if the data set 
has hundreds of scores, the average provides a single descriptive value for the entire set.

The second general category of statistical techniques is called inferential statistics. 
Inferential statistics are methods that use sample data to make general statements about 
a population.

Inferential statistics consist of techniques that allow us to study samples and 
then make generalizations about the populations from which they were selected.

Because populations are typically very large, it usually is not possible to measure 
everyone in the population. Therefore, a sample is selected to represent the population. 
By analyzing the results from the sample, we hope to answer general questions about 
the population. Typically, researchers use sample statistics as the basis for drawing 
conclusions about population parameters.

One problem with using samples, however, is that a sample provides only limited 
information about the population. Although samples are generally representative of their 
populations, a sample is not expected to give a perfectly accurate picture of the whole 
population. Thus, there typically is some discrepancy between a sample statistic and the 
corresponding population parameter. This discrepancy is called sampling error, and it 
creates the fundamental problem that inferential statistics must always address (Box 1.1).

Sampling error is the naturally occurring discrepancy, or error, that exists  
between a sample statistic and the corresponding population parameter.

The concept of sampling error is illustrated in Figure 1.2. The figure shows a 
population of 1,000 college students and two samples, each with 5 students, who 
have been selected from the population. Notice that each sample contains differ-
ent individuals who have different characteristics. Because the characteristics of 
each sample depend on the specific people in the sample, statistics vary from one 

D e f i n i t i o n

D e f i n i t i o n

D e f i n i t i o n
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sample to another. For example, the five students in sample 1 have an average age of  
19.8 years and the students in sample 2 have an average age of 20.4 years.

Also note that the statistics obtained for a sample are not identical to the parameters 
for the entire population. In Figure 1.2, for example, neither sample has statistics that 
are exactly the same as the population parameters. You should also realize that Figure 
1.2 shows only two of the hundreds of possible samples. Each sample would contain 
different individuals and would produce different statistics. This is the basic concept 
of sampling error: sample statistics vary from one sample to another and typically are 
different from the corresponding population parameters.

As a further demonstration of sampling error, imagine that your statistics class is 
separated into two groups by drawing a line from front to back through the middle of 
the room. Now imagine that you compute the average age (or height, or IQ) for each 
group. Will the two groups have exactly the same average? Almost certainly they will 
not. No matter what you chose to measure, you will probably find some difference 
between the two groups. However, the difference you obtain does not necessarily mean 
that there is a systematic difference between the two groups. For example, if the average 
age for students on the right-hand side of the room is higher than the average for stu-
dents on the left, it is unlikely that some mysterious force has caused the older people 
to gravitate to the right side of the room. Instead, the difference is probably the result of 
random factors such as chance. The unpredictable, unsystematic differences that exist 
from one sample to another are an example of sampling error.

fIguRE 1.2

A demonstration of sam-
pling error. Two samples 
are selected from the 
same population. Notice 
that the sample statistics 
are different from one 
sample to another, and all 
of the sample statistics 
are different from the 
corresponding population 
parameters. The natural 
differences that exist, by 
chance, between a sample 
statistic and a population 
parameter are called  
sampling error.

Population
of 1000 college students

Population Parameters
Average Age � 21.3 years

Average IQ � 112.5
65% Female, 35% Male

Sample #1

Eric
Jessica
Laura
Karen
Brian

Sample Statistics
Average Age � 19.8
Average IQ � 104.6

60% Female, 40% Male

Sample #2

Tom
Kristen
Sara

Andrew
John

Sample Statistics
Average Age � 20.4
Average IQ � 114.2

40% Female, 60% Male
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10     CHAPTER 1  InTRoDuCTIon To STATISTICS

The following example shows the general stages of a research study and demonstrates 
how descriptive statistics and inferential statistics are used to organize and interpret the 
data. At the end of the example, note how sampling error can affect the interpretation 
of experimental results, and consider why inferential statistical methods are needed to 
deal with this problem.

Figure 1.3 shows an overview of a general research situation and demonstrates the roles 
that descriptive and inferential statistics play. The purpose of the research study is to ad-
dress a question that we posed earlier: Do college students learn better by studying text 
on printed pages or on a computer screen? Two samples are selected from the population 
of college students. The students in sample A are given printed pages of text to study 
for 30 minutes and the students in sample B study the same text on a computer screen. 

statistics  
in the cOntext  

Of research

E x A m P l E  1 . 1

Step 1

Step 2

Step 3

Experiment:

Descriptive statistics:

Inferential statistics:

Compare two
studying methods

Test scores for the
students in each
sample

Organize and simplify

Interpret results

Sample A
Read from printed

pages

25
27
30
19
29

26
21
28
23
26

28
27
24
26
22

20
23
25
22
18

22
17
28
19
24

27
23
21
22
19

Sample B
Read from computer

screen

Data

Average
Score = 26

The sample data show a 4-point difference
between the two methods of studying. However,
there are two ways to interpret the results.
1.   There actually is no difference between
      the two studying methods, and the sample
      difference is due to chance (sampling error).
2.   There really is a difference between
      the two methods, and the sample data
      accurately reflect this difference.
The goal of inferential statistics is to help researchers
decide between the two interpretations.

Population of
College
Students

Average
Score = 22

20 25 30 20 25 30

Figure 1.3

The role of statistics in research.
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Next, all of the students are given a multiple-choice test to evaluate their knowledge of 
the material. At this point, the researcher has two sets of data: the scores for sample A 
and the scores for sample B (see Figure 1.3). Now is the time to begin using statistics.

First, descriptive statistics are used to simplify the pages of data. For example, the  
researcher could draw a graph showing the scores for each sample or compute the aver-
age score for each sample. Note that descriptive methods provide a simplified, organized  
description of the scores. In this example, the students who studied printed pages had an aver-
age score of 26 on the test, and the students who studied text on the computer averaged 22.

Once the researcher has described the results, the next step is to interpret the 
outcome. This is the role of inferential statistics. In this example, the researcher 
has found a difference of 4 points between the two samples (sample A averaged 26 
and sample B averaged 22). The problem for inferential statistics is to differentiate  
between the following two interpretations:

 1. There is no real difference between the two study methods, and the 4-point 
difference between the samples is just an example of sampling error (like the 
samples in Figure 1.2).

 2. There really is a difference between the two study methods, and the 4-point differ-
ence between the samples was caused by the different methods of studying.

In simple English, does the 4-point difference between samples provide convincing 
evidence of a difference between the two studying methods, or is the 4-point difference 
just chance? The purpose of inferential statistics is to answer this question.

 1. A researcher is interested in the texting habits of high school students in the  
United States. If the researcher measures the number of text messages that each 
individual sends each day and calculates the average number for the entire group of 
high school students, the average number would be an example of a ___________.

 2. A researcher is interested in how watching a reality television show featuring  
fashion models influences the eating behavior of 13-year-old girls.

 a. A group of 30 13-year-old girls is selected to participate in a research study. 
The group of 30 13-year-old girls is an example of a ___________.

 b. In the same study, the amount of food eaten in one day is measured for each 
girl and the researcher computes the average score for the 30 13-year-old girls. 
The average score is an example of a __________.

 3. Statistical techniques are classified into two general categories. What are the two cat-
egories called, and what is the general purpose for the techniques in each category?

 4. Briefly define the concept of sampling error.

 1. parameter

 2. a. sample 

  b. statistic

 3. The two categories are descriptive statistics and inferential statistics. Descriptive techniques 
are intended to organize, simplify, and summarize data. Inferential techniques use sample 
data to reach general conclusions about populations.

 4. Sampling error is the error, or discrepancy, between the value obtained for a sample statistic 
and the value for the corresponding population parameter.

l E A R n I n g  C H E C k
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DATA STRuCTuRES, RESEARCH mETHoDS,  
AnD STATISTICS

Some research studies are conducted simply to describe individual variables as they 
exist naturally. For example, a college official may conduct a survey to describe the 
eating, sleeping, and studying habits of a group of college students. When the results 
consist of numerical scores, such as the number of hours spent studying each day, they 
are typically described by the statistical techniques that are presented in Chapters 3 
and 4. Non-numerical scores are typically described by computing the proportion or 
percentage in each category. For example, a recent newspaper article reported that 61% 
of the adults in the United States drink alcohol.

Most research, however, is intended to examine relationships between two or more 
variables. For example, is there a relationship between the amount of violence that 
children see on television and the amount of aggressive behavior they display? Is there a 
relationship between the quality of breakfast and level of academic performance for el-
ementary school children? Is there a relationship between the number of hours of sleep 
and grade point average for college students? To establish the existence of a relation-
ship, researchers must make observations—that is, measurements of the two variables. 
The resulting measurements can be classified into two distinct data structures that also 
help to classify different research methods and different statistical techniques. In the 
following section we identify and discuss these two data structures.

Data structure I. Measuring two variables for each individual: The correlational 
method One method for examining the relationship between variables is to observe 
the two variables as they exist naturally for a set of individuals. That is, simply mea-
sure the two variables for each individual. For example, research has demonstrated a 
relationship between sleep habits, especially wake-up time, and academic performance 
for college students (Trockel, Barnes, and Egget, 2000). The researchers used a survey 
to measure wake-up time and school records to measure academic performance for 
each student. Figure 1.4 shows an example of the kind of data obtained in the study. 
The researchers then look for consistent patterns in the data to provide evidence for a 
relationship between variables. For example, as wake-up time changes from one student 
to another, is there also a tendency for academic performance to change?

Patterns in the data are often easier to see if the scores are presented in a graph. 
Figure 1.4 also shows the scores for the eight students in a graph called a scatter plot. In 
the scatter plot, each individual is represented by a point so that the horizontal position 
corresponds to the student’s wake-up time and the vertical position corresponds to the 
student’s academic performance score. The scatter plot shows a clear relationship be-
tween wake-up time and academic performance: as wake-up time increases, academic 
performance decreases.

A research study that simply measures two different variables for each individual 
and produces the kind of data shown in Figure 1.4 is an example of the correlational 
method, or the correlational research strategy.

In the correlational method, two different variables are observed to determine 
whether there is a relationship between them.

1.3

inDiviDual variables

relatiOnshiPs 
between variables

D e f i n i t i o n
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Limitations of the correlational method The results from a correlational study 
can demonstrate the existence of a relationship between two variables, but they do not 
provide an explanation for the relationship. In particular, a correlational study cannot 
demonstrate a cause-and-effect relationship. For example, the data in Figure 1.4 show 
a systematic relationship between wake-up time and academic performance for a group 
of college students; those who sleep late tend to have lower performance scores than 
those who wake early. However, there are many possible explanations for the relation-
ship and we do not know exactly what factor (or factors) is responsible for late sleepers 
having lower grades. In particular, we cannot conclude that waking students up earlier 
would cause their academic performance to improve, or that studying more would cause 
students to wake up earlier. To demonstrate a cause-and-effect relationship between 
two variables, researchers must use the experimental method, which is discussed next.

Data structure II. Comparing two (or more) groups of scores: Experimental and 
nonexperimental methods The second method for examining the relationship between 
two variables involves the comparison of two or more groups of scores. In this situation, 
the relationship between variables is examined by using one of the variables to define 
the groups, and then measuring the second variable to obtain scores for each group. For 
example, one group of elementary school children is shown a 30-minute action/adven-
ture television program involving numerous instances of violence, and a second group is 
shown a 30-minute comedy that includes no violence. Both groups are then observed on 
the playground and a researcher records the number of aggressive acts committed by each 
child. An example of the resulting data is shown in Figure 1.5. The researcher compares 
the scores for the violence group with the scores for the no-violence group. A systematic 
difference between the two groups provides evidence for a relationship between viewing 
television violence and aggressive behavior for elementary school children.

One specific research method that involves comparing groups of scores is known as 
the experimental method or the experimental research strategy. The goal of an experi-
mental study is to demonstrate a cause-and-effect relationship between two variables. 

the exPerimental 
methOD
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One of two data structures for studies evaluating the 
relationship between variables. Note that there are  
two separate measurements for each individual 
(wake-up time and academic performance). The  
same scores are shown in a table (a) and a graph (b).
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Specifically, an experiment attempts to show that changing the value of one variable 
causes changes to occur in the second variable. To accomplish this goal, the experi-
mental method has two characteristics that differentiate experiments from other types 
of research studies:

 1. Manipulation The researcher manipulates one variable by changing its value 
from one level to another. A second variable is observed (measured) to deter-
mine whether the manipulation causes changes to occur.

 2. Control The researcher must exercise control over the research situation to 
ensure that other, extraneous variables do not influence the relationship being 
examined.

To demonstrate these two characteristics, consider an experiment in which researchers 
demonstrate the pain-killing effects of handling money (Zhou & Vohs, 2009). In the  
experiment, a group of college students was told that they were participating in a  
manual dexterity study. The researchers then created two treatment conditions by  
manipulating the kind of material that each participant would be handling. Half of 
the students were given a stack of money to count and the other half got a stack of 
blank pieces of paper. After the counting task, the participants were asked to dip their 
hands into bowls of painfully hot water (122° F) and rate how uncomfortable it was. 
Participants who had counted money rated the pain significantly lower than those who 
had counted paper. The structure of the experiment is shown in Figure 1.6.

To be able to say that the difference in pain perception is caused by the money, the 
researcher must rule out any other possible explanation for the difference. That is, the 
researchers must control any other variables that might affect pain tolerance. There are 
two general categories of variables that researchers must consider:

 1. Participant Variables These are characteristics such as age, gender, and 
intelligence that vary from one individual to another.

  In the money-counting experiment, for example, suppose that the participants 
in the money condition were primarily females and those in the paper condition 
were primarily males. In this case, there is an alternative explanation for any 
difference in the pain ratings that exists between the two groups. Specifically, it 
is possible that the difference was caused by the money, but it also is possible 
that the difference was caused by the participants’ gender (females can tolerate 

One variable (violence/no violence)
is used to define groups

A second variable (aggressive behavior)
is measured to obtain scores within each group
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Figure 1.5

The second data structure 
for studies evaluating 
the relationship between 
variables. Note that one 
variable is used to define 
the groups and the second 
variable is measured to 
obtain scores within each 
group.

In more complex experi-
ments, a researcher may 
systematically manipulate 
more than one variable  
and may observe more than  
one variable. Here we are 
considering the simplest  
case, in which only one  
variable is manipulated and 
only one variable is observed.
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more pain than males can). Whenever a research study allows more than one 
explanation for the results, the study is said to be confounded because it is im-
possible to reach an unambiguous conclusion.

 2. Environmental Variables These are characteristics of the environment such 
as lighting, time of day, and weather conditions. Using the money-counting 
experiment (see Figure 1.6) as an example, suppose that the individuals in the 
money condition were all tested in the morning and the individuals in the paper 
condition were all tested in the evening. Again, this would produce a confounded 
experiment because the researcher could not determine whether the differences 
in the pain ratings were caused by the money or caused by the time of day.

Researchers typically use three basic techniques to control other variables. First, 
the researcher could use random assignment, which means that each participant has an 
equal chance of being assigned to each of the treatment conditions. The goal of random 
assignment is to distribute the participant characteristics evenly between the two groups 
so that neither group is noticeably smarter (or older, or faster) than the other. Random 
assignment can also be used to control environmental variables. For example, partici-
pants could be assigned randomly for testing either in the morning or in the afternoon. 
Second, the researcher can use matching to ensure equivalent groups or equivalent envi-
ronments. For example, the researcher could match groups by ensuring that every group 
has exactly 60% females and 40% males. Finally, the researcher can control variables 
by holding them constant. For example, if an experiment uses only 10-year-old children 
as participants (holding age constant), then the researcher can be certain that one group 
is not noticeably older than another.

In the experimental method, one variable is manipulated while another variable 
is observed and measured. To establish a cause-and-effect relationship between 
the two variables, an experiment attempts to control all other variables to prevent 
them from influencing the results.

Terminology in the experimental method Specific names are used for the two 
variables that are studied by the experimental method. The variable that is manipulated  

D e f i n i t i o n

Variable #1: Counting money or
blank paper (the independent
variable) Manipulated to create
two treatment conditions.

Variable #2: Pain rating
(the dependent variable)
Measured in each of the
treatment conditions.
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Figure 1.6

The structure of an  
experiment. Participants  
are randomly assigned  
to one of two treatment 
conditions: counting 
money or counting blank 
pieces of paper. Later, 
each participant is tested 
by placing one hand in 
a bowl of hot (122º F) 
water and rating the level 
of pain. A difference be-
tween the ratings for the 
two groups is attributed 
to the treatment (paper 
versus money).
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by the experimenter is called the independent variable. It can be identified as the  
treatment conditions to which participants are assigned. For the example in Figure 1.6, 
money versus blank paper is the independent variable. The variable that is observed and  
measured to obtain scores within each condition is the dependent variable. For the 
example in Figure 1.6, the level of pain is the dependent variable.

The independent variable is the variable that is manipulated by the researcher. 
In behavioral research, the independent variable usually consists of the two (or 
more) treatment conditions to which subjects are exposed. The independent vari-
able consists of the antecedent conditions that are manipulated prior to observing 
the dependent variable.

The dependent variable is the variable that is observed to assess the effect of the 
treatment.

An experimental study evaluates the relationship between two variables by manipu-
lating one variable (the independent variable) and measuring one variable (the depen-
dent variable). Note that in an experiment only one variable is actually measured. You 
should realize that this is different from a correlational study, in which both variables 
are measured and the data consist of two separate scores for each individual.

Control Conditions in an Experiment Often an experiment will include a condition 
in which the participants do not receive any treatment. The scores from these individu-
als are then compared with scores from participants who do receive the treatment. The 
goal of this type of study is to demonstrate that the treatment has an effect by showing 
that the scores in the treatment condition are substantially different from the scores in 
the no-treatment condition. In this kind of research, the no-treatment condition is called 
the control condition, and the treatment condition is called the experimental condition.

Individuals in a control condition do not receive the experimental treatment. 
Instead, they either receive no treatment or they receive a neutral, placebo treat-
ment. The purpose of a control condition is to provide a baseline for comparison 
with the experimental condition. The individuals in the control condition are 
often called the control group.

Individuals in the experimental condition do receive the experimental treatment 
and are often called the experimental group.

Note that the independent variable always consists of at least two values. (Something 
must have at least two different values before you can say that it is “variable.”) For the 
money-counting experiment (see Figure 1.6), the independent variable is money versus 
plain paper. For an experiment with an experimental group and a control group, the 
independent variable is treatment versus no treatment.

In informal conversation, there is a tendency for people to use the term experiment to 
refer to any kind of research study. You should realize, however, that the term only ap-
plies to studies that satisfy the specific requirements outlined earlier. In particular, a real 
experiment must include manipulation of an independent variable and rigorous control 
of other, extraneous variables. As a result, there are a number of other research designs 
that compare groups of scores but are not true experiments. Two examples are shown 
in Figure 1.7 and are discussed in the following paragraphs. This type of research study 
is classified as nonexperimental.

D e f i n i t i o n s

D e f i n i t i o n s
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Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTIon 1.3  /  DATA STRuCTuRES, RESEARCH mETHoDS, AnD STATISTICS    17

The top part of Figure 1.7 shows an example of a nonequivalent groups study com-
paring boys and girls. Notice that this study involves comparing two groups of scores 
(like an experiment). However, the researcher has no ability to control the assignment 
of participants to groups—the males automatically go in the boy group and the females 
go in the girl group. Because this type of research compares preexisting groups, the 
researcher cannot control the assignment of participants to groups and cannot ensure 
equivalent groups. Other examples of nonequivalent group studies include comparing 
8-year-old children and 10-year-old children or comparing people with an eating disor-
der and those with no disorder. Because it is impossible to use techniques like random 
assignment to control participant variables and ensure equivalent groups, this type of 
research is not a true experiment.

The bottom part of Figure 1.7 shows an example of a pre–post study comparing 
depression scores before therapy and after therapy. The two groups of scores are  
obtained by measuring the same variable (depression) twice for each participant; once 
before therapy and again after therapy. In a pre–post study, however, the researcher has 
no control over the passage of time. The “before” scores are always measured earlier 
than the “after” scores. Although a difference between the two groups of scores may be 
caused by the treatment, it is always possible that the scores simply change as time goes 
by. For example, the depression scores may decrease over time in the same way that the 
symptoms of a cold disappear over time. In a pre–post study, the researcher also has 

Variable #1: Subject gender
(the quasi-independent variable)
Not manipulated, but used
to create two groups of subjects

Variable #2: Verbal test scores
(the dependent variable)
Measured in each of the
two groups
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Variable #1: Time
(the quasi-independent variable)
Not manipulated, but used
to create two groups of scores

Variable #2: Depression scores
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Measured at each of the two 
different times
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Figure 1.7

Two examples of nonex-
perimental studies that 
involve comparing  
two groups of scores. In  
(a), a participant variable 
(gender) is used to  
create groups, and then 
the dependent variable 
(verbal score) is measured 
in each group. In  
(b), time is the variable 
used to define the two 
groups, and the dependent  
variable (depression) is 
measured at each of the 
two times.

Correlational studies are 
also examples of nonex-
perimental research. In this 
section, however, we are 
discussing nonexperimental 
studies that compare two or 
more groups of scores.
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no control over other variables that change with time. For example, the weather could 
change from dark and gloomy before therapy to bright and sunny after therapy. In this 
case, the depression scores could improve because of the weather and not because of 
the therapy. Because the researcher cannot control the passage of time or other variables 
related to time, this study is not a true experiment.

Terminology in nonexperimental research Although the two research studies 
shown in Figure 1.7 are not true experiments, you should notice that they produce the 
same kind of data that are found in an experiment (see Figure 1.6). In each case, one 
variable is used to create groups, and a second variable is measured to obtain scores 
within each group. In an experiment, the groups are created by manipulation of the 
independent variable, and the participants’ scores are the dependent variable. The same 
terminology is often used to identify the two variables in nonexperimental studies. That 
is, the variable that is used to create groups is the independent variable and the scores 
are the dependent variable. For example, the top part of Figure 1.7, gender (boy/girl), is 
the independent variable and the verbal test scores are the dependent variable. However, 
you should realize that gender (boy/girl) is not a true independent variable because it is 
not manipulated. For this reason, the “independent variable” in a nonexperimental study 
is often called a quasi-independent variable.

In a nonexperimental study, the “independent” variable that is used to create the 
different groups of scores is often called the quasi-independent variable.

The two general data structures that we used to classify research methods can also be 
used to classify statistical methods.

I. One group with two variables measured for each individual Recall that the data 
from a correlational study consist of two scores, representing two different variables, 
for each individual. The scores can be listed in a table or displayed in a scatter plot as 
in Figure 1.5. The relationship between the two variables is usually measured and de-
scribed using a statistic called a correlation. Correlations and the correlational method 
are discussed in detail in Chapter 14.

Occasionally, the measurement process used for a correlational study simply clas-
sifies individuals into categories that do not correspond to numerical values. For 
example, Greitemeyer and Osswald (2010) examine the effect of prosocial video 
games on prosocial behavior. One group of participants played a prosocial game and 
a second group played a neutral game. After the game was finished, the experimenter 
accidentally knocked a cup of pencils onto the floor and recorded whether the par-
ticipants helped to pick them up. Note that the researcher has two scores for each 
individual (type of game and helping behavior) but neither of the scores is a numerical 
value. This type of data is typically summarized in a table showing how many indi-
viduals are classified into each of the possible categories. Table 1.1 is an example  
of this kind of summary table showing results similar to those obtained in the study. 
The table shows, for example, that 12 of the 18 participants playing the prosocial  
game helped to pick up pencils. This type of data can be coded with numbers (for  
example, neutral 5 0 and prosocial 5 1) so that it is possible to compute a correlation. 
However, the relationship between variables for non-numerical data, such as the data 
in Table 1.1, is usually evaluated using a statistical technique known as a chi-square 
test. Chi-square tests are presented in Chapter 15.

D e f i n i t i o n
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II. Comparing two or more groups of scores Most of the statistical procedures 
presented in this book are designed for research studies that compare groups of scores, 
like the experimental study in Figure 1.6 and the nonexperimental studies in Figure 1.7. 
Specifically, we examine descriptive statistics that summarize and describe the scores 
in each group, and we examine inferential statistics that allow us to use the groups, or 
samples, to generalize to the entire population.

When the measurement procedure produces numerical scores, the statistical evalu-
ation typically involves computing the average score for each group and then compar-
ing the averages. The process of computing averages is presented in Chapter 3, and a 
variety of statistical techniques for comparing averages are presented in Chapters 8–13. 
If the measurement process simply classifies individuals into non-numerical categories, 
the statistical evaluation usually consists of computing proportions for each group and 
then comparing proportions. Previously, in Table 1.1, we presented an example of non-
numerical data examining the relationship between type of video game and helping 
behavior. The same data can be used to compare the proportions for prosocial game 
players with the proportions for neutral game players. For example, 67% of those who 
played the prosocial game helped the researcher compared to 33% of those who played 
the neutral game. As mentioned before, these data are evaluated using a chi-square test, 
which is presented in Chapter 15.

Type of Video Game

Prosocial Neutral

Helped 12 6

Did not Help 6 12

TAblE 1.1

Correlational data consisting of 
non-numerical scores. Note that 
there are two measurements for 
each individual: type of game 
played and helping behavior. 
The numbers indicate how many 
people are in each category. For 
example, out of the 18 partici-
pants who played a prosocial 
game, 12 helped the researcher.

 1. A research study comparing alcohol use for college students in the United States 
and Canada reports that more Canadian students drink but American students drink 
more (Kuo, Adlaf, Lee, Gliksman, Demers, and Wechsler, 2002). Is this study an 
example of an experiment? Explain why or why not.

 2. What two elements are necessary for a research study to be an experiment?

 3. Stephens, Atkins, and Kingston (2009) conducted an experiment in which  
participants were able to tolerate more pain when they shouted their favorite 
swear words over and over than when they shouted neutral words. Identify the 
independent and dependent variables for this study.

 1. This study is nonexperimental. The researcher is simply observing, not manipulating, two 
nonequivalent groups of participants.

 2. First, the researcher must manipulate one of the two variables being studied. Second, all 
other variables that might influence the results must be controlled.

 3. The independent variable is the type of word being shouted and the dependent variable is 
the amount of pain tolerated by each participant.

l E A R n I n g  C H E C k
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vARIAblES AnD mEASuREmEnT

The scores that are obtained in a research study are the result of observing and mea-
suring variables. For example, a researcher may finish a study with a set of IQ scores, 
personality scores, or reaction-time scores. In this section, we take a closer look at the 
variables that are being measured and the process of measurement.

Some variables, such as height, weight, and eye color are well-defined, concrete entities 
that can be observed and measured directly. On the other hand, many variables studied 
by behavioral scientists are internal characteristics that cannot be observed or measured 
directly. However, we all assume that these variables exist and we use them to help 
describe and explain behavior. For example, we say that a student does well in school 
because he or she is intelligent. Or we say that someone is anxious in social situations, 
or that someone seems to be hungry. Variables like intelligence, anxiety, and hunger are 
called constructs, and because they are intangible and cannot be directly observed, they 
are often called hypothetical constructs.

Although constructs such as intelligence are internal characteristics that cannot be 
directly observed, it is possible to observe and measure behaviors that are representative 
of the construct. For example, we cannot “see” intelligence but we can see examples of 
intelligent behavior. The external behaviors can then be used to create an operational 
definition for the construct. An operational definition measures and defines a construct 
in terms of external behaviors. For example, we can measure performance on an IQ test 
and then use the test scores as a definition of intelligence. Or hunger can be measured 
and defined by the number of hours since last eating.

Constructs, also known as hypothetical constructs, are internal attributes or 
characteristics that cannot be directly observed but are useful for describing and 
explaining behavior.

An operational definition identifies a measurement procedure (a set of operations) 
for measuring an external behavior and uses the resulting measurements as a  
definition and a measurement of an internal construct. Note that an operational  
definition has two components: First, it describes a set of operations for measuring 
a construct. Second, it defines the construct in terms of the resulting measurements.

The variables in a study can be characterized by the type of values that can be assigned 
to them. A discrete variable consists of separate, indivisible categories. For this type 
of variable, there are no intermediate values between two adjacent categories. Consider 
the values displayed when dice are rolled. Between neighboring values—for example, 
five dots and six dots—no other values can ever be observed.

A discrete variable consists of separate, indivisible categories. No values can 
exist between two neighboring categories.

Discrete variables are commonly restricted to whole, countable numbers—for  
example, the number of children in a family or the number of students attending class. 
If you observe class attendance from day to day, you may count 18 students one day 
and 19 students the next day. However, it is impossible ever to observe a value between 
18 and 19. A discrete variable may also consist of observations that differ qualitatively. 
For example, people can be classified by gender (male or female), by occupation (nurse, 
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teacher, lawyer, and so on), and college students can be classified by academic major 
(art, biology, chemistry, and so on). In each case, the variable is discrete because it 
consists of separate, indivisible categories.

On the other hand, many variables are not discrete. Variables such as time, height, and 
weight are not limited to a fixed set of separate, indivisible categories. You can measure 
time, for example, in hours, minutes, seconds, or fractions of seconds. These variables are 
called continuous because they can be divided into an infinite number of fractional parts.

For a continuous variable, there are an infinite number of possible values that 
fall between any two observed values. A continuous variable is divisible into an 
infinite number of fractional parts.

Note that the terms continuous and discrete apply to the variables that are being 
measured and not to the scores that are obtained from the measurement. For example, 
people’s heights can be measured by simply classifying individuals into three broad 
categories: tall, average, and short. Note that there is no measurement category be-
tween tall and average. Thus, it may appear that we are measuring a discrete variable. 
However, the underlying variable, height, is continuous. In this example, we chose to 
limit the measurement scale to three categories. We could have decided to measure 
height to the nearest inch, or the nearest half inch, and so on. The key to determin-
ing whether a variable is continuous or discrete is that a continuous variable can be 
divided into any number of fractional parts. Height can be measured to the nearest 
inch, the nearest 0.1 inch, or the nearest 0.01 inch. Similarly, a professor evaluating 
students’ knowledge could use a pass/fail system that classifies students into two broad 
categories. However, the professor could choose to use a 10-point quiz that divides 
student knowledge into 11 categories corresponding to quiz scores from 0 to 10. Or the 
professor could use a 100-point exam that potentially divides student knowledge into 
101 categories from 0 to 100. Whenever you are free to choose the degree of precision 
or the number of categories for measuring a variable, the variable must be continuous.

Measuring a continuous variable Any continuous variable, for example, weight, 
can be pictured as a continuous line (Figure 1.8). Note that there are an infinite number 
of possible points on the line without any gaps or separations between neighboring 
points. For any two different points on the line, it is always possible to find a third value 
that is between the two points.
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When measuring weight 
to the nearest whole 
pound, 149.6 and 150.3 
are assigned the value 
of 150 (top). Any value 
in the interval between 
149.5 and 150.5 is given 
the value of 150.
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Two other factors apply to continuous variables:

 1. When measuring a continuous variable, it should be very rare to obtain identical 
measurements for two different individuals. Because a continuous variable  
has an infinite number of possible values, it should be almost impossible for 
two people to have exactly the same score. If the data show a substantial  
number of tied scores, then you should suspect that the measurement procedure 
is relatively crude or that the variable is not really continuous.

 2. When measuring a continuous variable, each measurement category is actually  
an interval that must be defined by boundaries. For example, two people who 
both claim to weigh 150 pounds are probably not exactly the same weight. 
However, they are both around 150 pounds. One person may actually weigh 
149.6 and the other 150.3. Thus, a score of 150 is not a specific point on the  
scale but instead is an interval (see Figure 1.8). To differentiate a score of  
150 from a score of 149 or 151, we must set up boundaries on the scale of  
measurement. These boundaries are called real limits and are positioned exactly 
halfway between adjacent scores. Thus, a score of X 5 150 pounds is actually  
an interval bounded by a lower real limit of 149.5 at the bottom and an upper  
real limit of 150.5 at the top. Any individual whose weight falls between these 
real limits is assigned a score of X 5 150.

Real limits are the boundaries of intervals for scores that are represented on a 
continuous number line. The real limit separating two adjacent scores is located 
exactly halfway between the scores. Each score has two real limits. The upper 
real limit is at the top of the interval, and the lower real limit is at the bottom.

The concept of real limits applies to any measurement of a continuous variable, even 
when the score categories are not whole numbers. For example, if you were measur-
ing time to the nearest tenth of a second, the measurement categories would be 31.0, 
31.1, 31.2, and so on. Each of these categories represents an interval on the scale that 
is bounded by real limits. For example, a score of X 5 31.1 seconds indicates that the 
actual measurement is in an interval bounded by a lower real limit of 31.05 and an 
upper real limit of 31.15. Remember that the real limits are always halfway between 
adjacent categories.

Later in this book, real limits are used for constructing graphs and for various calcu-
lations with continuous scales. For now, however, you should realize that real limits are 
a necessity whenever you make measurements of a continuous variable.

It should be obvious by now that data collection requires that we make measurements of 
our observations. Measurement involves assigning individuals or events to categories. 
The categories can simply be names such as male/female or employed/unemployed, 
or they can be numerical values such as 68 inches or 175 pounds. The set of catego-
ries makes up a scale of measurement, and the relationships between the categories 
determine different types of scales. The distinctions among the scales are important 
because they identify the limitations of certain types of measurements and because 
certain statistical procedures are appropriate for scores that have been measured on 
some scales but not on others. If you were interested in people’s heights, for example, 
you could measure a group of individuals by simply classifying them into three cat-
egories: tall, medium, and short. However, this simple classification would not tell you 
much about the actual heights of the individuals, and these measurements would not 
give you enough information to calculate an average height for the group. Although 
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the simple classification would be adequate for some purposes, you would need more 
sophisticated measurements before you could answer more detailed questions. In this 
section, we examine four different scales of measurement, beginning with the simplest 
and moving to the most sophisticated.

The word nominal means “having to do with names.” Measurement on a nominal scale  
involves classifying individuals into categories that have different names but are not 
related to each other in any systematic way. For example, if you were measuring the  
academic majors for a group of college students, the categories would be art, biology, 
business, chemistry, and so on. Each student would be classified in one category accord-
ing to his or her major. The measurements from a nominal scale allow us to determine 
whether two individuals are different, but they do not identify either the direction or the 
size of the difference. If one student is an art major and another is a biology major, we can 
say that they are different, but we cannot say that art is “more than” or “less than” biology  
and we cannot specify how much difference there is between art and biology. Other  
examples of nominal scales include classifying people by race, gender, or occupation.

A nominal scale consists of a set of categories that have different names. 
Measurements on a nominal scale label and categorize observations, but do not 
make any quantitative distinctions between observations.

Although the categories on a nominal scale are not quantitative values, they are oc-
casionally represented by numbers. For example, the rooms or offices in a building may 
be identified by numbers. You should realize that the room numbers are simply names 
and do not reflect any quantitative information. Room 109 is not necessarily bigger than 
Room 100 and certainly not 9 points bigger. It also is fairly common to use numerical 
values as a code for nominal categories when data are entered into computer programs. 
For example, the data from a survey may code males with a 0 and females with a 1. 
Again, the numerical values are simply names and do not represent any quantitative dif-
ference. The scales that follow do reflect an attempt to make quantitative distinctions.

The categories that make up an ordinal scale not only have different names (as in a 
nominal scale) but also are organized in a fixed order corresponding to differences of 
magnitude.

An ordinal scale consists of a set of categories that are organized in an ordered 
sequence. Measurements on an ordinal scale rank observations in terms of size 
or magnitude.

Often, an ordinal scale consists of a series of ranks (first, second, third, and so on) 
like the order of finish in a horse race. Occasionally, the categories are identified by 
verbal labels like small, medium, and large drink sizes at a fast-food restaurant. In 
either case, the fact that the categories form an ordered sequence means that there is a 
directional relationship between categories. With measurements from an ordinal scale, 
you can determine whether two individuals are different and you can determine the 
direction of difference. However, ordinal measurements do not allow you to determine 
the size of the difference between two individuals. In a NASCAR race, for example, 
the first-place car finished faster than the second-place car, but the ranks don’t tell you 
how much faster. Other examples of ordinal scales include socioeconomic class (upper, 
middle, lower) and T-shirt sizes (small, medium, large). In addition, ordinal scales are 
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often used to measure variables for which it is difficult to assign numerical scores. For 
example, people can rank their food preferences but might have trouble explaining 
“how much” they prefer chocolate ice cream to steak.

Both an interval scale and a ratio scale consist of a series of ordered categories (like an 
ordinal scale) with the additional requirement that the categories form a series of intervals 
that are all exactly the same size. Thus, the scale of measurement consists of a series  
of equal intervals, such as inches on a ruler. Other examples of interval and ratio scales 
are the measurement of time in seconds, weight in pounds, and temperature in degrees 
Fahrenheit. Note that, in each case, one interval (1 inch, 1 second, 1 pound, 1 degree) is the 
same size, no matter where it is located on the scale. The fact that the intervals are all the 
same size makes it possible to determine both the size and the direction of the difference 
between two measurements. For example, you know that a measurement of 80° Fahrenheit 
is higher than a measure of 60°, and you know that it is exactly 20° higher.

The factor that differentiates an interval scale from a ratio scale is the nature of the 
zero point. An interval scale has an arbitrary zero point. That is, the value 0 is assigned 
to a particular location on the scale simply as a matter of convenience or reference. In 
particular, a value of zero does not indicate a total absence of the variable being mea-
sured. For example, a temperature of 0 degrees Fahrenheit does not mean that there is 
no temperature, and it does not prohibit the temperature from going even lower. Interval 
scales with an arbitrary zero point are relatively rare. The two most common examples 
are the Fahrenheit and Celsius temperature scales. Other examples include golf scores 
(above and below par) and relative measures such as above and below average rainfall.

A ratio scale is anchored by a zero point that is not arbitrary but rather is a meaning-
ful value representing none (a complete absence) of the variable being measured. The 
existence of an absolute, nonarbitrary zero point means that we can measure the abso-
lute amount of the variable; that is, we can measure the distance from 0. This makes  
it possible to compare measurements in terms of ratios. For example, a gas tank with 
10 gallons (10 more than 0) has twice as much gas as a tank with only 5 gallons  
(5 more than 0). Also note that a completely empty tank has 0 gallons. With a ratio 
scale, we can measure the direction and the size of the difference between two  
measurements and we can describe the difference in terms of a ratio. Ratio scales  
are quite common and include physical measures such as height and weight, as well 
as variables such as reaction time or the number of errors on a test. The distinction 
between an interval scale and a ratio scale is demonstrated in Example 1.2.

An interval scale consists of ordered categories that are all intervals of exactly 
the same size. Equal differences between numbers on the scale reflect equal  
differences in magnitude. However, the zero point on an interval scale is arbitrary 
and does not indicate a zero amount of the variable being measured.

A ratio scale is an interval scale with the additional feature of an absolute zero 
point. With a ratio scale, ratios of numbers do reflect ratios of magnitude.

A researcher obtains measurements of height for a group of 8-year-old boys. Initially, 
the researcher simply records each child’s height in inches, obtaining values such as 
44, 51, 49, and so on. These initial measurements constitute a ratio scale. A value of 
zero represents no height (absolute zero). Also, it is possible to use these measurements 
to form ratios. For example, a child who is 60 inches tall is one-and-a-half times taller 
than a child who is 40 inches tall.
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Now suppose that the researcher converts the initial measurement into a new scale by 
calculating the difference between each child’s actual height and the average height for 
this age group. A child who is 1 inch taller than average now gets a score of 11; a child 
who is 4 inches taller than average gets a score of 14. Similarly, a child who is 2 inches 
shorter than average gets a score of –2. On this scale, a score of zero is a convenient 
reference point corresponding to the average height. Because zero no longer indicates a 
complete absence of height, the new scores constitute an interval scale of measurement.

Notice that original scores and the converted scores both involve measurement in 
inches, and you can compute differences, or distances, on either scale. For example, 
there is a 6-inch difference in height between two boys who measure 57 and 51 inches 
tall on the first scale. Likewise, there is a 6-inch difference between two boys who 
measure 19 and 13 on the second scale. However, you should also notice that ratio 
comparisons are not possible on the second scale. For example, a boy who measures 
19 is not three times taller than a boy who measures 13.

For our purposes, scales of measurement are important because they influence the kind 
of statistics that can and cannot be used. For example, if you measure IQ scores for a 
group of students, it is possible to add the scores together and calculate a mean score for 
the group. On the other hand, if you measure the academic major for each student, you 
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 1. A tax form asks people to identify their annual income, number of dependents, and 
social security number. For each of these three variables, identify the scale of measure-
ment that probably is used and identify whether the variable is continuous or discrete.

 2. An English professor uses letter grades (A, B, C, D, and F) to evaluate a set of student 
essays. What kind of scale is being used to measure the quality of the essays?

 3. The teacher in a communications class asks students to identify their favorite  
reality television show. The different television shows make up a ______ scale  
of measurement.

 4. A researcher studies the factors that determine the number of children that couples 
decide to have. The variable, number of children, is a ______________ (discrete/
continuous) variable.

 5. a.  When measuring height to the nearest inch, what are the real limits for a score 
of 68 inches?

  b.  When measuring height to the nearest half inch, what are the real limits for a 
score of 68 inches?

 1. Annual income and number of dependents are measured on ratio scales, and income is a 
continuous variable. Social security number is measured on a nominal scale and is a discrete 
variable. The number of dependents is also discrete.

 2. ordinal

 3. nominal

 4. discrete

 5. a. 67.5 and 68.5

  b. 67.75 and 68.25
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cannot compute the mean. (What is the mean of three psychology majors, an English 
major, and two chemistry majors?) The vast majority of the statistical techniques pre-
sented in this book are designed for numerical scores from an interval or a ratio scale. 
For most statistical applications, the distinction between an interval scale and a ratio 
scale is not important because both scales produce numerical values that permit us to 
compute differences between scores, to add scores, and to calculate mean scores. On 
the other hand, measurements from nominal or ordinal scales are typically not numeri-
cal values and are not compatible with many basic arithmetic operations. Therefore, 
alternative statistical techniques are necessary for data from nominal or ordinal scales 
of measurement (for example, the median and the mode in Chapter 3, the Spearman 
correlation in Chapter 14, and the chi-square tests in Chapter 15).

STATISTICAl noTATIon

The measurements obtained in research studies provide the data for statistical analysis. 
Most statistical techniques use the same general mathematical operations, notation, 
and basic arithmetic that you have learned during previous years of school. In case you  
are unsure of your mathematical skills, there is a mathematics review section in  
Appendix A at the back of this book. The appendix also includes a skills-assessment 
exam (p. 550) to help you determine whether you need the basic mathematics review. In 
this section, we introduce some of the specialized notation that is used for statistical cal-
culations. In later chapters, additional statistical notation is introduced as it is needed.

Measuring a variable in a research study typically yields a value or a score for each 
individual. Raw scores are the original, unchanged scores obtained in the study. Scores 
for a particular variable are represented by the letter X. For example, if performance in 
your statistics course is measured by tests and you obtain a 35 on the first test, then we 
could state that X 5 35. A set of scores can be presented in a column that is headed by 
X. For example, a list of quiz scores from your class might be presented as shown in 
the margin (the single column on the left).

When two variables are measured for each individual, the data can be presented as two 
lists labeled X and Y. For example, measurements of people’s height in inches (variable X) 
and weight in pounds (variable Y) can be presented as shown in the double column in the 
margin. Each pair X, Y represents the observations made of a single participant.

The letter N is used to specify how many scores are in a set. An uppercase letter N 
identifies the number of scores in a population and a lowercase letter n identifies the 
number of scores in a sample. Throughout the remainder of the book you will notice 
that we often use notational differences to distinguish between samples and populations. 
For the height and weight data in the preceding table, n 5 7 for both variables. Note that 
by using a lowercase letter n, we are indicating that these scores come from a sample.

Many of the computations required in statistics involve adding a set of scores. Because 
this procedure is used so frequently, a special notation is used to refer to the sum of a set 
of scores. The Greek letter sigma, or o, is used to stand for summation. The expression 
oX means to add all the scores for variable X. The summation sign, o, can be read as “the 
sum of.” Thus, oX is read “the sum of the scores.” For the following set of quiz scores,

10, 6, 7, 4

oX 5 27 and N 5 4.

1.5

scOres

summatiOn nOtatiOn

Score

X X Y

37 72 165
35 68 151
35 67 160
30 67 160
25 68 146
17 70 160
16 66 133
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To use summation notation correctly, keep in mind the following two points:

 1. The summation sign, o, is always followed by a symbol or mathematical ex-
pression. The symbol or expression identifies exactly which values are to be 
added. To compute oX, for example, the symbol following the summation sign 
is X, and the task is to find the sum of the X values. On the other hand, to com-
pute o(X – 1)2, the summation sign is followed by a relatively complex math-
ematical expression, so your first task is to calculate all of the (X – 1)2 values 
and then add the results.

 2. The summation process is often included with several other mathematical 
operations, such as multiplication or squaring. To obtain the correct answer, 
it is essential that the different operations be done in the correct sequence. 
Following is a list showing the correct order of operations for performing 
mathematical operations. Most of this list should be familiar, but you should 
note that we have inserted the summation process as the fourth operation in 
the list.

Order of Mathematical Operations

 1. Any calculation contained within parentheses is done first.

 2. Squaring (or raising to other exponents) is done second.

 3. Multiplying and/or dividing is done third. A series of multiplication and/or  
division operations should be done in order from left to right.

 4. Summation using the o notation is done next.

 5. Finally, any other addition and/or subtraction is done.

The following examples demonstrate how summation notation is used in most of the 
calculations and formulas we present in this book.

A set of four scores consists of values 3, 1, 7, and 4. We will compute oX, oX2, and 
(oX)2 for these scores. To help demonstrate the calculations, we will use a computa-
tional table showing the original scores (the X values) in the first column. Additional 
columns can then be added to show additional steps in the series of operations.  
You should notice that the first three operations in the list (parentheses, squaring, and 
multiplying) all create a new column of values. The last two operations, however,  
produce a single value corresponding to the sum.

The table to the left shows the original scores (the X values) and the squared scores 
(the X2 values) that are needed to compute oX2.

The first calculation, oX, does not include any parentheses, squaring, or multiplica-
tion, so we go directly to the summation operation. The X values are listed in the first 
column of the table, and we simply add the values in this column:

oX 5 3 1 1 1 7 1 4 5 15

To compute oX2, the correct order of operations is to square each score and then 
find the sum of the squared values. The computational table shows the original scores 
and the results obtained from squaring (the first step in the calculation). The second 
step is to find the sum of the squared values, so we simply add the numbers in the 
X2 column.

oX2 5 9 1 1 1 49 1 16 5 75

E x A m P l E  1 . 3

More information on the 
order of operations for  
mathematics is available in 
the Math Review appendix, 
page 551.

X X2

3 9
1 1
7 49
4 16
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The final calculation, (oX)2, includes parentheses, so the first step is to perform the 
calculation inside the parentheses. Thus, we first find oX and then square this sum. 
Earlier, we computed oX 5 15, so

(oX)2 5 (15)2 5 225

Next, we use the same set of four scores from Example 1.3 and compute o(X – 1) and 
o(X – 1)2. The following computational table will help demonstrate the calculations.

E x A m P l E  1 . 4

X (X 2 1) (X 2 1)2 The first column lists the 
original scores. A second 
column lists the (X – 1) 
values, and a third column 
shows the (X – 1)2 values.

3 2  4
1 0  0
7 6 36
4 3  9

To compute o(X – 1), the first step is to perform the operation inside the parentheses. 
Thus, we begin by subtracting one point from each of the X values. The resulting values 
are listed in the middle column of the table. The next step is to add the (X – 1) values.

o(X – 1) 5 2 1 0 1 6 1 3 1 5 11

The calculation of o(X – 1)2 requires three steps. The first step (inside parentheses) 
is to subtract 1 point from each X value. The results from this step are shown in the 
middle column of the computational table. The second step is to square each of the  
(X – 1) values. The results from this step are shown in the third column of the table.  
The final step is to add the (X – 1)2 values to obtain

o(X – 1)2 5 4 1 0 1 36 1 9 5 49

Notice that this calculation requires squaring before adding. A common mistake is 
to add the (X – 1) values and then square the total. Be careful!

In both of the preceding examples, and in many other situations, the summation opera-
tion is the last step in the calculation. According to the order of operations, parentheses, 
exponents, and multiplication all come before summation. However, there are situations 
in which extra addition and subtraction are completed after the summation. For this 
example, use the same scores that appeared in the previous two examples, and compute 
oX – 1.

With no parentheses, exponents, or multiplication, the first step is the summation. 
Thus, we begin by computing oX. Earlier we found oX 5 15. The next step is to sub-
tract one point from the total. For these data,

oX – 1 5 15 – 1 5 14

E x A m P l E  1 . 5
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For this example, each individual has two scores. The first score is identified as X, and 
the second score is Y. With the help of the following computational table, we compute 
oX, oY, and oXY.

To find oX, simply add the values in the X column.

oX 5 3 1 1 1 7 1 4 5 15

Similarly, oY is the sum of the Y values.

oY 5 5 1 3 1 4 1 2 5 14

To compute oXY, the first step is to multiply X by Y for each individual. The result-
ing products (XY values) are listed in the third column of the table. Finally, we add the 
products to obtain

oXY 5 15 1 3 1 28 1 8 5 54

E x A m P l E  1 . 6

Person X Y XY

A 3 5 15
B 1 3  3
C 7 4 28
D 4 2  8

 1. Calculate each value requested for the following scores: 4, 3, 7, 1.

  a. oX d. oX – 1

  b. oX2 e. o(X – 1)

  c. (oX)2 f. o(X – 1)2

 2. Identify the first step in each of the following calculations.

  a. oX2 c. o(X – 2)2

  b. (oX)2

 3. Use summation notation to express each of the following.

  a. Subtract 2 points from each score and then add the resulting values.

  b.  Subtract 2 points from each score, square the resulting values, and then add the 
squared numbers.

  c. Add the scores and then square the total.

 1. a. 15 d. 14

  b. 75 e. 11

  c. 225 f. 49

 2. a. Square each score.

  b. Add the scores.

  c. Subtract 2 points from each score.

 3. a. o(X – 2) c. (oX)2

  b. o(X – 2)2

l E A R n I n g  C H E C k

AnSwERS
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Summary

 1. The term statistics is used to refer to methods for  
organizing, summarizing, and interpreting data.

 2. Scientific questions usually concern a population, 
which is the entire set of individuals one wishes to 
study. Usually, populations are so large that it is  
impossible to examine every individual, so most  
research is conducted with samples. A sample is a 
group selected from a population, usually for purposes 
of a research study.

 3. A characteristic that describes a sample is called a 
statistic, and a characteristic that describes a popula-
tion is called a parameter. Although sample statistics 
are usually representative of corresponding population 
parameters, there is typically some discrepancy  
between a statistic and a parameter. The naturally  
occurring difference between a statistic and a  
parameter is called sampling error.

 4. Statistical methods can be classified into two broad 
categories: descriptive statistics, which organize and 
summarize data, and inferential statistics, which use 
sample data to draw inferences about populations.

 5. The correlational method examines relationships  
between variables by measuring two different variables 
for each individual. This method allows researchers to 
measure and describe relationships, but cannot produce 
a cause-and-effect explanation for the relationship.

 6. The experimental method examines relationships  
between variables by manipulating an independent  
variable to create different treatment conditions and  
then measuring a dependent variable to obtain a group 
of scores in each condition. The groups of scores are 
then compared. A systematic difference between groups 
provides evidence that changing the independent variable 
from one condition to another also caused a change in 
the dependent variable. All other variables are controlled 
to prevent them from influencing the relationship. The 
intent of the experimental method is to demonstrate a 
cause-and-effect relationship between variables.

 7. Nonexperimental studies also examine relationships 
between variables by comparing groups of scores,  

but they do not have the rigor of true experiments  
and cannot produce cause-and-effect explanations. 
Instead of manipulating a variable to create different 
groups, a nonexperimental study uses a preexisting 
participant characteristic (such as male/female) or the 
passage of time (before/after) to create the groups being 
compared.

 8. A discrete variable consists of indivisible categories, 
often whole numbers that vary in countable steps. 
A continuous variable consists of categories that are 
infinitely divisible and each score corresponds to an 
interval on the scale. The boundaries that separate 
intervals are called real limits and are located exactly 
halfway between adjacent scores.

 9. A measurement scale consists of a set of categories 
that are used to classify individuals. A nominal scale 
consists of categories that differ only in name and are 
not differentiated in terms of magnitude or direction. 
In an ordinal scale, the categories are differentiated  
in terms of direction, forming an ordered series.  
An interval scale consists of an ordered series of 
categories that are all equal-sized intervals. With  
an interval scale, it is possible to differentiate direc-
tion and magnitude (or distance) between categories. 
Finally, a ratio scale is an interval scale for which 
the zero point indicates none of the variable being 
measured. With a ratio scale, ratios of measurements 
reflect ratios of magnitude.

 10. The letter X is used to represent scores for a variable. 
If a second variable is used, Y represents its scores. 
The letter N is used as the symbol for the number of 
scores in a population; n is the symbol for the number 
of scores in a sample.

 11. The Greek letter sigma (o) is used to stand for  
summation. Therefore, the expression oX is read  
“the sum of the scores.” Summation is a mathematical 
operation (like addition or multiplication) and must  
be performed in its proper place in the order of  
operations; summation occurs after operations in  
parentheses, exponents, and multiplication/division 
have been completed.
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Key terms

statistics (5)

population (5)

sample (6)

variable (7)

datum (7)

raw score (7)

data (7)

data set (7)

parameter (7)

statistic (7)

descriptive statistics (8)

inferential statistics (8)

sampling error (8)

correlational method (12)

correlational research strategy (12)

experimental method (15)

confounded (15)

random assignment (15)

matching (15)

independent variable (16)

dependent variable (16)

control condition or control  
group (16)

experimental condition or 
experimental group (16)

nonequivalent groups study (17)

pre–post study (17)

quasi-independent variable (18)

construct or hypothetical  
construct (20)

operational definition (20)

discrete variable (20)

continuous variable (21)

real limits (22)

lower real limit (22)

upper real limit (22)

nominal scale (23)

ordinal scale (23)

interval scale (24)

ratio scale (24)

sigma (26)

order of operations (27)

resOurces

Go to CengageBrain.com to access Psychology CourseMate, where you will find an 
interactive eBook, glossaries, flashcards, quizzes, statistics workshops, and more.

If your professor has assigned Aplia:

1. Sign in to your account.
2. Complete the corresponding exercises as required by your professor.
3. When finished, click “Grade It Now” to see which areas you have mastered, which 

areas need more work, and detailed explanations of every answer.

The Statistical Package for the Social Sciences, known as SPSS, is a computer program 
that performs most of the statistical calculations that are presented in this book, and is 
commonly available on college and university computer systems. Appendix D contains 
a general introduction to SPSS. In the Resources section at the end of each chapter for 
which SPSS is applicable, there are step-by-step instructions for using SPSS to perform 
the statistical operations presented in the chapter.
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fOcus On PrOblem sOlvinG

It may help to simplify summation notation if you observe that the summation sign is 
always followed by a symbol or symbolic expression—for example, oX or o(X 1 3). 
This symbol specifies which values you are to add. If you use the symbol as a column 
heading and list all the appropriate values in the column, your task is simply to add up 
the numbers in the column. To find o(X 1 3) for example, start a column headed with 
(X 1 3) next to the column of Xs. List all the (X 1 3) values; then find the total for  
the column.

Often, summation notation is part of a relatively complex mathematical expres-
sion that requires several steps of calculation. The series of steps must be performed  
according to the order of mathematical operations (see page 27). The best procedure 
is to use a computational table that begins with the original X values listed in the first 
column. Except for summation, each step in the calculation creates a new column  
of values. For example, computing o(X 1 1)2 involves three steps and produces a  
computational table with three columns. The final step is to add the values in the  
third column (see Example 1.4).

DemOnstratiOn 1.1

summatiOn nOtatiOn

A set of scores consists of the following values:

7 3 9 5 4

For these scores, compute each of the following:

oX
(oX)2

oX2

oX 1 5
o(X – 2)

Compute oX To compute oX, we simply add all of the scores in the group.

oX 5 7 1 3 1 9 1 5 1 4 5 28

Compute (oX)2 The first step, inside the parentheses, is to compute oX. The second step 
is to square the value for oX.

oX 5 28 and (oX)2 5 (28)2 5 784

Compute oX2 The first step is to square each score. The second step is to add the squared 
scores. The computational table shows the scores and squared scores. To compute oX2 we 
add the values in the X2 column.

oX2 5 49 1 9 1 81 1 25 1 16 5 180

X X2

7 49
3  9
9 81
5 25
4 16
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Compute oX 1 5 The first step is to compute oX. The second step is to add 5 points to 
the total.

oX 5 28 and oX 1 5 5 28 1 5 5 33

Compute o(X – 2) The first step, inside parentheses, is to subtract 2 points from each 
score. The second step is to add the resulting values. The computational table shows the 
scores and the (X – 2) values. To compute o(X – 2), add the values in the (X – 2) column

o(X – 2) 5 5 1 1 1 7 1 3 1 2 5 18

X X – 2

7 5
3 1
9 7
5 3
4 2

PrOblems

 *1. A researcher is investigating the effectiveness of a 
treatment for adolescent boys who are taking medi-
cation for depression. A group of 30 boys is selected 
and half receive the new treatment in addition to their 
medication and the other half continue to take their 
medication without any treatment. For this study,

 a. Identify the population.
 b. Identify the sample.

 2. Define the terms population, sample, parameter, and 
statistic.

 3. Statistical methods are classified into two major 
categories: descriptive and inferential. Describe the 
general purpose for the statistical methods in each 
category.

 4. Define the concept of sampling error and explain 
why this phenomenon creates a problem to be ad-
dressed by inferential statistics.

 5. Describe the data for a correlational research study. 
Explain how these data are different from the data 
obtained in experimental and nonexperimental  
studies, which also evaluate relationships between 
two variables.

 6. What is the goal for an experimental research study? 
Identify the two elements that are necessary for an 
experiment to achieve its goal.

 7. Knight and Haslam (2010) found that office workers 
who had some input into the design of their office 
space were more productive and had higher well- 
being compared to workers for whom the office  
design was completely controlled by an office  
manager. For this study, identify the independent 
variable and the dependent variable.

 8. Judge and Cable (2010) found that thin women had 
higher incomes than heavier women. Is this an exam-
ple of an experimental or a nonexperimental study?

 9. Two researchers are both interested in determining 
whether large doses of vitamin C can help prevent 

the common cold. Each obtains a sample of n 5 20 
college students.

 a. The first researcher interviews each student to 
determine whether they routinely take a vitamin C 
supplement. The researcher then records the number 
of colds each individual gets during the winter. Is 
this an experimental or a nonexperimental study? 
Explain your answer.

 b. The second researcher separates the students into 
two roughly equivalent groups. The students in 
one group are given a daily multivitamin contain-
ing a large amount of vitamin C, and the other 
group gets a multivitamin with no vitamin C. The 
researcher then records the number of colds each 
individual gets during the winter. Is this an experi-
mental or a nonexperimental study? Explain your 
answer.

 10. Weinstein, McDermott, and Roediger (2010) con-
ducted an experiment to evaluate the effectiveness 
of different study strategies. One part of the study 
asked students to prepare for a test by reading a 
passage. In one condition, students generated and 
answered questions after reading the passage. In a 
second condition, students simply read the passage 
a second time. All students were then given a test on 
the passage material and the researchers recorded 
the number of correct answers.

 a. Identify the dependent variable for this study.
 b. Is the dependent variable discrete or continuous?
 c. What scale of measurement (nominal, ordinal,  

interval, or ratio) is used to measure the dependent 
variable?

 11. A research study reports that alcohol consumption is 
significantly higher for students at a state university 
than for students at a religious college (Wells, 2010). 
Is this study an example of an experiment? Explain 
why or why not.

 12. Oxytocin is a naturally occurring brain chemical that 
is nicknamed the “love hormone” because it seems 
to play a role in the formation of social relationships 
such as mating pairs and parent–child bonding. A 
recent study demonstrated that oxytocin appears to 

*Solutions for odd-numbered problems are provided in Appendix C.
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increase people’s tendency to trust others (Kosfeld, 
Heinrichs, Zak, Fischbacher, and Fehr, 2005). Using 
an investment game, the study demonstrated that 
people who inhaled oxytocin were more likely to 
give their money to a trustee compared to people 
who inhaled an inactive placebo. For this experimen-
tal study, identify the independent variable and the 
dependent variable.

 13. For each of the following, determine whether the 
variable being measured is discrete or continuous and 
explain your answer.

 a. Social networking (number of daily minutes on 
Facebook)

 b. Family size (number of siblings)
 c. Preference between digital or analog watch
 d. Number of correct answers on a statistics quiz

 14. Four scales of measurement were introduced in this 
chapter: nominal, ordinal, interval, and ratio.

 a. What additional information is obtained from 
measurements on an ordinal scale compared to 
measurements on a nominal scale?

 b. What additional information is obtained from 
measurements on an interval scale compared to 
measurements on an ordinal scale?

 c. What additional information is obtained from 
measurements on a ratio scale compared to  
measurements on an interval scale?

 15. In an experiment examining the effects Tai Chi on  
arthritis pain, Callahan (2009) selected a large 
sample of individuals with doctor-diagnosed arthritis. 
Half of the participants immediately began a Tai Chi 
course and the other half (the control group) waited  
8 weeks before beginning the program. At the end  
of 8 weeks, the individuals who had experienced  
Tai Chi had less arthritis pain that those who had not 
participated in the course.

 a. Identify the independent variable for this study.
 b. What scale of measurement is used for the inde-

pendent variable?
 c. Identify the dependent variable for this study.
 d. What scale of measurement is used for the  

dependent variable?

 16. Explain why shyness is a hypothetical construct instead 
of a concrete variable. Describe how shyness might be 
measured and defined using an operational definition.

 17. Ford and Torok (2008) found that motivational signs 
were effective in increasing physical activity on a 
college campus. Signs such as “Step up to a healthier 
lifestyle” and “An average person burns 10 calories 
a minute walking up the stairs” were posted by the 
elevators and stairs in a college building. Students 
and faculty increased their use of the stairs during 

times that the signs were posted compared to times 
when there were no signs.

 a. Identify the independent and dependent variables 
for this study.

 b. What scale of measurement is used for the inde-
pendent variable?

 18. For the following scores, find the value of each 
expression:

 a. oX
 b. oX2

 c.  oX 1 1
 d. o(X 1 1)

 19. For the following set of scores, find the value of each 
expression:

 a. oX2

 b. (oX)2

 c. o(X – 1)
 d. o(X – 1)2

 20. For the following set of scores, find the value of each 
expression:

 a. oX
 b. oX2

 c. o(X 1 3)

 21. Two scores, X and Y, are recorded for each of n 5 4 
subjects. For these scores, find the value of each  
expression.

 a. oX
 b. oY
 c. oXY

Subject X Y

A  3 4
B  0 7
C –1 5
D  2 2

 22. Use summation notation to express each of the  
following calculations:

 a. Add 1 point to each score, and then add the result-
ing values.

X

3
2
5
1
3

  X

  6

22
  0

23

21

X

3
5
0
2
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 b. Add 1 point to each score and square the result. 
Then add the squared values.

 c. Add the scores and square the sum. Then subtract 
3 points from the squared value.

 23. For the set of scores at the right, find the value of 
each expression:

 a. oX2

 b. (oX)2

 c. o(X – 3)
 d. o(X – 3)2

X

1
6
2
3
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Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.

Frequency 
Distributions

2.1     Introduction to Frequency 
Distributions

2.2    Frequency Distribution Tables

2.3    Frequency Distribution Graphs

2.4     The Shape of a Frequency 
Distribution

Summary

Focus on Problem Solving

Demonstration 2.1

Problems

C h a p t e r 

2
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 Proportions	(math	review,	 
Appendix A)
•	Fractions
•	Decimals
•	Percentages

•	 Scales	of	measurement	(Chapter	1):	
Nominal, ordinal, interval,  
and ratio

•	 Continuous	and	discrete	variables	
(Chapter	1)

•	 Real	limits	(Chapter	1)
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inTRoDuCTion To FREquEnCy DisTRibuTions

The results from a research study usually consist of pages of numbers corresponding to 
the measurements, or scores, collected during the study. The immediate problem for the 
researcher is to organize the scores into some comprehensible form so that any patterns 
in the data can be seen easily and communicated to others. This is the job of descrip-
tive statistics: to simplify the organization and presentation of data. One of the most 
common procedures for organizing a set of data is to place the scores in a frequency 
distribution.

A frequency distribution is an organized tabulation of the number of individuals 
located in each category on the scale of measurement.

A frequency distribution takes a disorganized set of scores and places them in order 
from highest to lowest, grouping together individuals who all have the same score. If 
the highest score is X 5 10, for example, the frequency distribution groups together all 
the 10s, then all the 9s, then the 8s, and so on. Thus, a frequency distribution allows the 
researcher to see “at a glance” the entire set of scores. It shows whether the scores are 
generally high or low, whether they are concentrated in one area or spread out across 
the entire scale, and generally provides an organized picture of the data. In addition 
to providing a picture of the entire set of scores, a frequency distribution allows you 
to see the location of any individual score relative to all of the other scores in the set.

A frequency distribution can be structured either as a table or as a graph, but in either 
case, the distribution presents the same two elements:

 1. The set of categories that make up the original measurement scale.

 2. A record of the frequency, or number of individuals in each category.

Thus, a frequency distribution presents a picture of how the individual scores are 
distributed on the measurement scale—hence the name frequency distribution.

FREquEnCy DisTRibuTion TAblEs

The simplest frequency distribution table presents the measurement scale by listing the 
different measurement categories (X values) in a column from highest to lowest. Beside 
each X value, we indicate the frequency, or the number of times that particular measure-
ment occurred in the data. It is customary to use an X as the column heading for the 
scores and an f as the column heading for the frequencies. An example of a frequency 
distribution table follows.

The following set of N 5 20 scores was obtained from a 10-point statistics quiz. We 
organize these scores by constructing a frequency distribution table. Scores:

8 9 8 7 10 9 6 4 9 8

7 8 10 9 8 6 9 7 8 9

 1. The highest score is X 5 10, and the lowest score is X 5 4. Therefore, the first 
column of the table lists the categories that make up the scale of measurement  

2.1

D e f i n i t i o n

2.2

E x A m P l E  2 . 1

It is customary to list  
categories from highest to 
lowest, but this is an arbitrary  
arrangement. Many computer 
programs list categories from 
lowest to highest.
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(X values) from 10 down to 4. Notice that all of the possible values are listed in 
the table. For example, no one had a score of X 5 5, but this value is included. 
With an ordinal, interval, or ratio scale, the categories are listed in order (usually 
highest to lowest). For a nominal scale, the categories can be listed in any order.

 2. The frequency associated with each score is recorded in the second column.  
For example, two people had scores of X 5 10, so there is a 2 in the f column 
beside X 5 10.

Because the table organizes the scores, it is possible to see the general quiz results 
very quickly. For example, there were only two perfect scores, but most of the class 
had high grades (8s and 9s). With one exception (the score of X 5 4), it appears that 
the class has learned the material fairly well.

Notice that the X values in a frequency distribution table represent the scale  
of measurement, not the actual set of scores. For example, the X column lists the value  
10 only one time, but the frequency column indicates that there are actually two values 
of X 5 10. Also, the X column lists a value of X 5 5, but the frequency column indicates 
that no one actually had a score of X 5 5.

You also should notice that the frequencies can be used to find the total number of 
scores in the distribution. By adding up the frequencies, you obtain the total number 
of individuals:

of 5 N

There may be times when you need to compute the sum of the scores, oX, or perform 
other computations for a set of scores that has been organized into a frequency distribu-
tion table. To complete these calculations correctly, you must use all of the information 
presented in the table. That is, it is essential to use the information in the f column as 
well as that in the X column to obtain the full set of scores.

When it is necessary to perform calculations for scores that have been organized 
into a frequency distribution table, the safest procedure is to take the individual scores 
out of the table before you begin any computations. This process is demonstrated in the 
following example.

Consider the frequency distribution table shown in the margin. The table shows that the 
distribution has one 5, two 4s, three 3s, three 2s, and one 1, for a total of 10 scores. If 
you simply list all 10 scores, you can safely proceed with calculations such as finding 
oX or oX2. For example, to compute oX you must add all 10 scores:

oX 5 5 1 4 1 4 1 3 1 3 1 3 1 2 1 2 1 2 1 1

For the distribution in this table, you should obtain oX 5 29. Try it yourself. Similarly, 
to compute oX2 you square each of the 10 scores and then add the squared values.

oX2 5 52 1 42 1 42 1 32 1 32 1 32 1 22 1 22 1 22 1 12

This time you should obtain oX2 5 97.

An alternative way to get oX from a frequency distribution table is to multi-
ply each X value by its frequency and then add these products. This sum may be  

Obtaining X 
frOm a frequency 
DistributiOn table

E x A m P l E  2 . 2

X f

10 2
9 5
8 7
7 3
6 2
5 0
4 1

X f

5 1
4 2
3 3
2 3
1 1
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expressed in symbols as ofX. The computation is summarized as follows for the data 
in Example 2.2:

X f fX

5 1 5 (the one 5 totals 5)
4 2 8 (the two 4s total 8)
3 3 9 (the three 3s total 9)
2 3 6 (the three 2s total 6)
1 1 1 (the one 1 totals 1)

oX 5 29

Caution: Doing calculations 
within the table works well 
for oX but can lead to errors 
for more complex formulas.

No matter which method you use to find oX, the important point is that you must 
use the information given in the frequency column as well as the information in the  
X column.

In addition to the two basic columns of a frequency distribution table, there are other 
measures that describe the distribution of scores and can be incorporated into the table. 
The two most common are proportion and percentage.

Proportion measures the fraction of the total group that is associated with each score. 
In Example 2.2, there were two individuals with X 5 4. Thus, 2 out of 10 people had  
X 5 4, so the proportion would be 2

10 5 0.20. In general, the proportion associated with 
each score is

proportion      5 5p
f

N

Because proportions describe the frequency (f) in relation to the total number (N), 
they often are called relative frequencies. Although proportions can be expressed as 
fractions (for example, 2

10 ), they more commonly appear as decimals. A column of 
proportions, headed with a p, can be added to the basic frequency distribution table 
(see Example 2.3).

In addition to using frequencies (f) and proportions (p), researchers often describe a 
distribution of scores with percentages. For example, an instructor might describe the 
results of an exam by saying that 15% of the class earned As, 23% earned Bs, and so 
on. To compute the percentage associated with each score, you first find the proportion 
(p) and then multiply by 100:

percentage (100) (100) 5 5p
f

N
   

Percentages can be included in a frequency distribution table by adding a column 
headed with % (see Example 2.3).

The frequency distribution table from Example 2.2 is repeated here. This time we have 
added columns showing the proportion (p) and the percentage (%) associated with each 
score.

PrOPOrtiOns  
anD Percentages

E x A m P l E  2 . 3
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When a set of data covers a wide range of values, it is unreasonable to list all of the 
individual scores in a frequency distribution table. Consider, for example, a set of exam 
scores that range from a low of X 5 41 to a high of X 5 96. These scores cover a range 
of more than 50 points.

If we were to list all of the individual scores from X 5 96 down to X 5 41, it would 
take 56 rows to complete the frequency distribution table. Although this would orga-
nize the data, the table would be long and cumbersome. Remember: The purpose for 
constructing a table is to obtain a relatively simple, organized picture of the data. This 
can be accomplished by grouping the scores into intervals and then listing the intervals 
in the table instead of listing each individual score. For example, we could construct 
a table showing the number of students who had scores in the 90s, the number with 
scores in the 80s, and so on. The result is called a grouped frequency distribution table 
because we are presenting groups of scores rather than individual values. The groups, 
or intervals, are called class intervals.

There are several guidelines that help guide you in the construction of a grouped 
frequency distribution table. Note that these are simply guidelines, rather than absolute 
requirements, but they do help to produce a simple, well-organized, and easily under-
stood table.

grOuPeD frequency 
DistributiOn tables

X f p 5 f/N % 5 p(100)

5 1 1/10 5 0.10 10%

4 2 2/10 5 0.20 20%

3 3 3/10 5 0.30 30%

2 3 3/10 5 0.30 30%

1 1 1/10 5 0.10 10%

X f

5 1
4 1
3 4
2 2
1 1

 1. Construct a frequency distribution table for the following set of scores.

  Scores: 3, 2, 3, 2, 4, 1, 3, 3, 5

 2. Find each of the following values for the sample in the following frequency  
distribution table.

 a. n

 b. oX

 c. oX2

1.

 2. a. n 5 10  b. oX 5 28  c. oX2 5 92 (square then add all 10 scores)

l E A R n i n g  C H E C k

AnswERs

X f

5 1
4 2
3 2
2 4
1 1

When the scores are whole 
numbers, the total number 
of rows for a regular table 
can be obtained by find-
ing the difference between 
the highest and the lowest 
scores and adding 1:

rows 5 highest – lowest 1 1
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Guideline 1 The grouped frequency distribution table should have about 10 class inter-
vals. If a table has many more than 10 intervals, it becomes cumbersome and defeats the 
purpose of a frequency distribution table. On the other hand, if you have too few intervals, 
you begin to lose information about the distribution of the scores. At the extreme, with only 
one interval, the table would not tell you anything about how the scores are distributed. 
Remember that the purpose of a frequency distribution is to help a researcher see the data. 
With too few or too many intervals, the table will not provide a clear picture. You should 
note that 10 intervals is a general guide. If you are constructing a table on a blackboard, for 
example, you probably want only 5 or 6 intervals. If the table is to be printed in a scientific 
report, you may want 12 or 15 intervals. In each case, your goal is to present a table that is 
relatively easy to see and understand.

Guideline 2 The width of each interval should be a relatively simple number. For 
example, 2, 5, 10, or 20 would be a good choice for the interval width. Notice that it is 
easy to count by 5s or 10s. These numbers are easy to understand and make it possible 
for someone to see quickly how you have divided the range of scores.

Guideline 3 The bottom score in each class interval should be a multiple of the width. 
If you are using a width of 10 points, for example, the intervals should start with 10, 
20, 30, 40, and so on. Again, this makes it easier for someone to understand how the 
table has been constructed.

Guideline 4 All intervals should be the same width. They should cover the range of 
scores completely with no gaps and no overlaps, so that any particular score belongs in 
exactly one interval.

The application of these rules is demonstrated in Example 2.4.

An instructor has obtained the set of N 5 25 exam scores shown here. To help organize 
these scores, we will place them in a frequency distribution table. The scores are:

82 75 88 93 53 84 87 58 72 94 69 84 61
91 64 87 84 70 76 89 75 80 73 78 60

The first step is to determine the range of scores. For these data, the smallest score 
is X 5 53 and the largest score is X 5 94, so a total of 42 rows would be needed for a 
table that lists each individual score. Because 42 rows would not provide a simple table, 
we have to group the scores into class intervals.

The best method for finding a good interval width is a systematic trial-and-error ap-
proach that uses guidelines 1 and 2 simultaneously. The goal is to find an interval width 
that is an easy number and produces a table with around 10 intervals. For this example, 
the scores cover a range of 42 points, so we will try several different interval widths to 
see how many intervals are needed to cover the range. For example, if each interval is  
2 points wide, it would take 21 intervals to cover a range of 42 points. This is too many, 
so we move on to an interval width of 5 or 10 points. The following table shows how 
many intervals would be needed for these possible widths:

E x A m P l E  2 . 4

Remember, when the  
scores are whole numbers, 
the number of rows is  
determined by

highest – lowest 1 1

Width
Number of Intervals Needed 
to Cover a Range of 42 Points

 2 21 (too many)
 5  9 (OK)
10  5 (too few)
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Note that the computed number of intervals is just an estimate of the actual number 
needed for the final table. Because the bottom interval usually extends below the lowest 
score and the top interval extends above the highest score, you may need slightly more 
than the computed number of intervals. Also notice that an interval width of 5 points 
will produce a table with about 10 intervals, which is exactly what we want.

The next step is to identify the actual intervals. The lowest score for these data is 
X 5 53, so the lowest interval should contain this value. Because the interval should 
have a multiple of 5 as its bottom score, the interval should begin at 50. The interval 
has a width of 5, so it should contain 5 values: 50, 51, 52, 53, and 54. Thus, the bottom 
interval is 50–54. The next interval would start at 55 and go to 59. Note that this interval 
also has a bottom score that is a multiple of 5, and contains exactly 5 scores (55, 56,  
57, 58, and 59). The complete frequency distribution table showing all of the class 
intervals is presented in Table 2.1.

Once the class intervals are listed, you complete the table by adding a column of  
frequencies. The values in the frequency column indicate the number of individu-
als who have scores located in that class interval. For this example, there were three 
students with scores in the 60–64 interval, so the frequency for this class interval is  
f 5 3 (see Table 2.1). The basic table can be extended by adding columns showing the 
proportion and percentage associated with each class interval.

Finally, you should note that, after the scores have been placed in a grouped table, 
you lose information about the specific value for any individual score. For example, 
Table 2.1 shows that one person had a score between 65 and 69, but the table does 
not identify the exact value for the score. In general, the wider the class intervals 
are, the more information is lost. In Table 2.1, the interval width is 5 points, and the 
table shows that there are three people with scores in the lower 60s and one person 
with a score in the upper 60s. This information would be lost if the interval width  
were increased to 10 points. With an interval width of 10, all of the 60s would be 
grouped together into one interval labeled 60–69. The table would show a frequency 
of four people in the 60–69 interval, but it would not tell whether the scores were  
in the upper 60s or the lower 60s.

Recall from Chapter 1 that a continuous variable has an infinite number of possible 
values and can be represented by a number line that is continuous and contains an infi-
nite number of points. However, when a continuous variable is measured, the resulting 
measurements correspond to intervals on the number line rather than single points. If 
you are measuring time in seconds, for example, a score of X 5 8 seconds actually 
represents an interval bounded by the real limits 7.5 seconds and 8.5 seconds. Thus, 

real limits 
anD frequency 

DistributiOns

X f

90–94 3
85–89 4
80–84 5
75–79 4
70–74 3
65–69 1
60–64 3
55–59 1
50–54 1

TAblE 2.1

This grouped frequency distribu-
tion table shows the data from 
Example 2.4. The original scores 
range from a high of X 5 94 
to a low of X 5 53. This range 
has been divided into 9 inter-
vals with each interval exactly 
5 points wide. The frequency 
column ( f ) lists the number of 
individuals with scores in each 
of the class intervals.
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a frequency distribution table showing a frequency of f 5 3 individuals all assigned a 
score of X 5 8 does not mean that all three individuals had exactly the same measure-
ment. Instead, you should realize that the three measurements are simply located in the 
same interval between 7.5 and 8.5.

The concept of real limits also applies to the class intervals of a grouped frequency 
distribution table. For example, a class interval of 40–49 contains scores from X 5 40  
to X 5 49. These values are called the apparent limits of the interval because it  
appears that they form the upper and lower boundaries for the class interval. If you are 
measuring a continuous variable, however, a score of X 5 40 is actually an interval 
from 39.5 to 40.5. Similarly, X 5 49 is an interval from 48.5 to 49.5. Therefore, the 
real limits of the interval are 39.5 (the lower real limit) and 49.5 (the upper real limit). 
Notice that the next higher class interval is 50–59, which has a lower real limit of  
49.5. Thus, the two intervals meet at the real limit 49.5, so there are no gaps in the 
scale. You also should notice that the width of each class interval becomes easier  
to understand when you consider the real limits of an interval. For example, the interval 
50–59 has real limits of 49.5 and 59.5. The distance between these two real limits is  
10 points, which is the width of the interval.

 1. Place the following scores in a grouped frequency distribution table using an  
interval width of 10 points.

Scores: 39 41 37 16 44 20 34 39 42
24 51 22 35 18 46 53 19 26

 2. If the scores in the previous question were placed in a grouped table with an  
interval width of 5 points, what are the apparent limits and the real limits for the 
bottom interval?

 3. Using only the frequency distribution table you constructed for Exercise 1, how 
many individuals had a score of X 5 53?

1.

X f

50–59 2
40–49 4
30–39 5
20–29 4
10–19 3

 2. The apparent limits are 15–19 and the real limits are 14.5–19.5.

 3. After a set of scores has been summarized in a grouped table, you cannot determine the 
frequency for any specific score. There is no way to determine how many individuals had  
X 5 53 from the table alone. (You can say that at most two people had X 5 53.)

l E A R n i n g  C H E C k

AnswERs

FREquEnCy DisTRibuTion gRAPHs

A frequency distribution graph is basically a picture of the information available in 
a frequency distribution table. We consider several different types of graphs, but all 
start with two perpendicular lines called axes. The horizontal line is the X-axis, or the 
abscissa (ab-SIS-uh). The vertical line is the Y-axis, or the ordinate. The measurement 

2.3
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scale (set of X values) is listed along the X-axis with values increasing from left to right. 
The frequencies are listed on the Y-axis with values increasing from bottom to top. As 
a general rule, the point where the two axes intersect should have a value of zero for 
both the scores and the frequencies. A final general rule is that the graph should be 
constructed so that its height (Y-axis) is approximately two-thirds to three-quarters of 
its length (X-axis). Violating these guidelines can result in graphs that give a misleading 
picture of the data (see Box 2.1).

When the data consist of numerical scores that have been measured on an interval or a 
ratio scale, there are two options for constructing a frequency distribution graph. The 
two types of graphs are called histograms and polygons.

Histograms To construct a histogram, you first list the numerical scores (the catego-
ries of measurement) along the X-axis. Then you draw a bar above each X value so that

 a. The height of the bar corresponds to the frequency for that category.

 b. For continuous variables, the width of the bar extends to the real limits of the 
category. For discrete variables, each bar extends exactly half the distance to the 
adjacent category on each side.

For both continuous and discrete variables, each bar in a histogram extends to the 
midpoint between adjacent categories. As a result, adjacent bars touch and there are no 
spaces or gaps between bars. An example of a histogram is shown in Figure 2.1.

When data have been grouped into class intervals, you can construct a frequency 
distribution histogram by drawing a bar above each interval so that the width of the bar 
extends exactly half the distance to the adjacent category on each side. This process is 
demonstrated in Figure 2.2.

For the two histograms shown in Figures 2.1 and 2.2, notice that the values on both 
the vertical and horizontal axes are clearly marked and that both axes are labeled. Also 
note that, whenever possible, the units of measurement are specified; for example, 
Figure 2.2 shows a distribution of heights measured in inches. Finally, notice that the 
horizontal axis in Figure 2.2 does not list all of the possible heights starting from zero 
and going up to 48 inches. Instead, the graph clearly shows a break between zero and 
30, indicating that some scores have been omitted.

A modified histogram A slight modification to the traditional histogram produces a 
very easy to draw and simple to understand sketch of a frequency distribution. Instead 

graPhs fOr interval 
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An example of a frequency 
distribution histogram. The 
same set of quiz scores is 
presented in a frequency 
distribution table and in a 
histogram.
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of drawing a bar above each score, the modification consists of drawing a stack of 
blocks. Each block represents one individual, so the number of blocks above each score  
corresponds to the frequency for that score. An example is shown in Figure 2.3.

Note that the number of blocks in each stack makes it very easy to see the abso-
lute frequency for each category. In addition, it is easy to see the exact difference in  
frequency from one category to another. In Figure 2.3, for example, there are exactly  
two more people with scores of X 5 2 than with scores of X 5 1. Because the frequencies 
are clearly displayed by the number of blocks, this type of display eliminates the need for 
a vertical line (the Y-axis) showing frequencies. In general, this kind of graph provides a 
simple and concrete picture of the distribution for a sample of scores. Note that we often 
use this kind of graph to show sample data throughout the rest of the book. You should 
also note, however, that this kind of display simply provides a sketch of the distribution 
and is not a substitute for an accurately drawn histogram with two labeled axes.

Polygons The second option for graphing a distribution of numerical scores from an 
interval or a ratio scale of measurement is called a polygon. To construct a polygon, 
you begin by listing the numerical scores (the categories of measurement) along the 
X-axis. Then,

 a. A dot is centered above each score so that the vertical position of the dot  
corresponds to the frequency for the category.

 b. A continuous line is drawn from dot to dot to connect the series of dots.

 c. The graph is completed by drawing a line down to the X-axis (zero frequency) 
at each end of the range of scores. The final lines are usually drawn so that they 
reach the X-axis at a point that is one category below the lowest score on the 
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An example of a fre-
quency distribution 
histogram for grouped 
data. The same set of 
children’s heights is 
presented in a frequency 
distribution table and in  
a histogram.

1 2 3 4 5 6 7
x

Figure 2.3

A frequency distribution 
in which each individual 
is represented by a block 
placed directly above the 
individual’s score. For 
example, three people had 
scores of X 5 2.
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left side and one category above the highest score on the right side. An example 
of a polygon is shown in Figure 2.4.

A polygon also can be used with data that have been grouped into class intervals. 
For a grouped distribution, you position each dot directly above the midpoint of the 
class interval. The midpoint can be found by averaging the highest and the lowest 
scores in the interval. For example, a class interval that is listed as 20–29 would have 
a midpoint of 24.5.

midpoint5
1

5 5          .
20 29

2

49

2
24 5

An example of a frequency distribution polygon with grouped data is shown in 
Figure 2.5.
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An example of a  
frequency distribution 
polygon. The same set  
of data is presented in 
a frequency distribution 
table and in a polygon.

5 

4 

3 

2 

1 

10 1 2 3 4 5 6 7 8 9 11 12 13 14 
Scores 

Fr
e

q
u

e
n

c
y X f 

12–13 
10–11 

4 
5 
3 
3 
2 

8–9 
6–7 
4–5 

Figure 2.5

An example of a fre-
quency distribution  
polygon for grouped data. 
The same set of data is 
presented in a grouped 
frequency distribution 
table and in a polygon.
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When the scores are measured on a nominal or ordinal scale (usually non-numerical 
values), the frequency distribution can be displayed in a bar graph.

Bar graphs A bar graph is essentially the same as a histogram, except that spaces are 
left between adjacent bars. For a nominal scale, the space between bars emphasizes that 
the scale consists of separate, distinct categories. For ordinal scales, separate bars are 
used because you cannot assume that the categories are all the same size.

To construct a bar graph, list the categories of measurement along the X-axis and 
then draw a bar above each category so that the height of the bar equals the frequency 
for the category. An example of a bar graph is shown in Figure 2.6.

When you can obtain an exact frequency for each score in a population, you can 
construct frequency distribution graphs that are exactly the same as the histograms, 
polygons, and bar graphs that are typically used for samples. For example, if a popu-
lation is defined as a specific group of N 5 50 people, we could easily determine how 
many have IQs of X 5 110. However, if we are interested in the entire population 
of adults in the United States, it would be impossible to obtain an exact count of the 
number of people with an IQ of 110. Although it is still possible to construct graphs 
showing frequency distributions for extremely large populations, the graphs usually 
involve two special features: relative frequencies and smooth curves.

Relative frequencies Although you usually cannot find the absolute frequency 
for each score in a population, you very often can obtain relative frequencies. For 
example, you may not know exactly how many fish are in the lake, but after years of 
fishing you do know that there are twice as many bluegill as there are bass. You can 
represent these relative frequencies in a bar graph by making the bar above bluegill 
two times taller than the bar above bass (Figure 2.7). Notice that the graph does not 
show the absolute number of fish. Instead, it shows the relative number of bluegill 
and bass.

Smooth curves When a population consists of numerical scores from an interval or a 
ratio scale, it is customary to draw the distribution with a smooth curve instead of the jag-
ged, step-wise shapes that occur with histograms and polygons. The smooth curve indi-
cates that you are not connecting a series of dots (real frequencies) but instead are showing  
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A bar graph showing the 
distribution of personality  
types in a sample of  
college students. Because 
personality type is a 
discrete variable measured 
on a nominal scale, the 
graph is drawn with space 
between the bars.
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the relative changes that occur from one score to the next. One commonly occurring 
population distribution is the normal curve. The word normal refers to a specific shape 
that can be precisely defined by an equation. Less precisely, we can describe a nor-
mal distribution as being symmetrical, with the greatest frequency in the middle and 
relatively smaller frequencies as you move toward either extreme. A good example of 
a normal distribution is the population distribution for IQ scores shown in Figure 2.8. 
Because normal-shaped distributions occur commonly and because this shape is math-
ematically guaranteed in certain situations, we give it extensive attention throughout 
this book.

In the future, we will be referring to distributions of scores. Whenever the term 
distribution appears, you should conjure up an image of a frequency distribution graph. 
The graph provides a picture showing exactly where the individual scores are located. 
To make this concept more concrete, you might find it useful to think of the graph as 
showing a pile of individuals just like we showed a pile of blocks in Figure 2.3. For the 
population of IQ scores shown in Figure 2.8, the pile is highest at an IQ score around 
100 because most people have average IQs. There are only a few individuals piled up 
at an IQ of 130; it must be lonely at the top.

R
e

la
tiv

e
 f

re
q

u
e

n
c

y 
 

Type of fish 

Bass Bluegill 

Figure 2.7

A frequency distribu-
tion showing the relative 
frequency for two types 
of fish. Notice that the 
exact number of fish is 
not reported; the graph 
simply says that there are 
twice as many bluegill as 
there are bass.
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The population distribution 
of IQ scores: an example 
of a normal distribution.
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BOX
2.1

THE usE AnD misusE oF gRAPHs

Although graphs are intended to provide an accurate 
picture of a set of data, they can be used to exagger-
ate or misrepresent a set of scores. These misrep-
resentations generally result from failing to follow 
the basic rules for graph construction. The following 
example demonstrates how the same set of data can 
be presented in two entirely different ways by  
manipulating the structure of a graph.

For the past several years, the city has kept records 
of the number of homicides. The data are summarized 
as follows:

Year Number of Homicides

2007 42
2008 44
2009 47
2010 49

These data are shown in two different graphs in 
Figure 2.9. In the first graph, we have exaggerated the 
height and started numbering the Y-axis at 40 rather 
than at zero. As a result, the graph seems to indicate a 
rapid rise in the number of homicides over the 4-year 
period. In the second graph, we have stretched out 
the X-axis and used zero as the starting point for the 
Y-axis. The result is a graph that shows little change 
in the homicide rate over the 4-year period.

Which graph is correct? The answer is that neither 
one is very good. Remember that the purpose of a 
graph is to provide an accurate display of the data.  
The first graph in Figure 2.9 exaggerates the differ-
ences between years, and the second graph conceals 
the differences. Some compromise is needed. Also 
note that in some cases a graph may not be the best 
way to display information. For these data, for  
example, showing the numbers in a table would be 
better than either graph.

07 08 09 10
Year

N
u

m
b

e
r o

f 
h

o
m

ic
id

e
s

50

48

46

44

42

2007
Year

N
u

m
b

e
r o

f
h

o
m

ic
id

e
s

60

40

20

2008 2009 2010

Figure 2.9

Two graphs showing the number of homicides in a 
city over a 4-year period. Both graphs show exactly 
the same data. However, the first graph gives the 
appearance that the homicide rate is high and rising 
rapidly. The second graph gives the impression that 
the homicide rate is low and has not changed over 
the 4-year period.

THE sHAPE oF A FREquEnCy DisTRibuTion

Rather than drawing a complete frequency distribution graph, researchers often sim-
ply describe a distribution by listing its characteristics. There are three characteristics 
that completely describe any distribution: shape, central tendency, and variability. In 
simple terms, central tendency measures where the center of the distribution is located. 
Variability tells whether the scores are spread over a wide range or are clustered together. 

2.4
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Central tendency and variability will be covered in detail in Chapters 3 and 4. Technically, 
the shape of a distribution is defined by an equation that prescribes the exact relationship 
between each X and Y value on the graph. However, we rely on a few less-precise terms 
that serve to describe the shape of most distributions.

Nearly all distributions can be classified as being either symmetrical or skewed.

In a symmetrical distribution, it is possible to draw a vertical line through  
the middle so that one side of the distribution is a mirror image of the other  
(Figure 2.10).

In a skewed distribution, the scores tend to pile up toward one end of the scale 
and taper off gradually at the other end (see Figure 2.10).

The section where the scores taper off is called the tail of the distribution.

A skewed distribution with the tail on the right-hand side is positively skewed 
because the tail points toward the positive (above-zero) end of the X-axis. If the 
tail points to the left, the distribution is negatively skewed (see Figure 2.10).

For a very difficult exam, most scores tend to be low, with only a few individuals 
earning high scores. This produces a positively skewed distribution. Similarly, a very 
easy exam tends to produce a negatively skewed distribution, with most of the students 
earning high scores and only a few with low values.

D e f i n i t i o n s

Symmetrical distributions 

Skewed distributions 

Positive skew Negative skew 

Figure 2.10

Examples of different 
shapes for distributions.

 1. Sketch a frequency distribution histogram and a frequency distribution polygon for 
the data in the following table:

X f

5 4
4 6
3 3
2 1
1 1

l E A R n i n g  C H E C k
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Exercise 1: histogram Exercise 1: polygon 
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Figure 2.11

Answers to Learning 
Check Exercise 1.

 2. Describe the shape of the distribution in Exercise 1.

 3. A researcher records the gender and academic major for each student at a college 
basketball game. If the distribution of majors is shown in a frequency distribution 
graph, what type of graph should be used?

 4. If the results from a research study are presented in a frequency distribution histo-
gram, would it also be appropriate to show the same results in a polygon? Explain 
your answer.

 5. A college reports that the youngest registered student is 17 years old, the major-
ity of students are between 18 and 25, and only 10% of the registered students are 
older than 30. What is the shape of the distribution of ages for registered students?

 1. The graphs are shown in Figure 2.11.

 2. The distribution is negatively skewed.

 3. A bar graph is used for nominal data.

 4. Yes. Histograms and polygons are both used for data from interval or ratio scales.

 5. It is positively skewed with most of the distribution around 17–25 and a few scores scattered 
at 30 and higher.

AnswERs

Summary

 1. The goal of descriptive statistics is to simplify the 
organization and presentation of data. One descriptive 
technique is to place the data in a frequency distribu-
tion table or graph that shows exactly how many indi-
viduals (or scores) are located in each category on the 
scale of measurement.

 2. A frequency distribution table lists the categories that 
make up the scale of measurement (the X values) in 
one column. Beside each X value, in a second column, 
is the frequency of, or number of individuals in, that 
category. The table may include a proportion column 
showing the relative frequency for each category:

proportion5 5p
f
n

  The table may include a percentage column showing 
the percentage associated with each X value:

percentage (100) (100)5 5p
f
n

 3. It is recommended that a frequency distribution  
table have a maximum of 15 rows to keep it simple. 
If the scores cover a range that is wider than this  
suggested maximum, it is customary to divide the 
range into sections called class intervals. These  
intervals are then listed in the frequency distribution 
table along with the frequency, or number of individ-
uals with scores in each interval. The result is called 
a grouped frequency distribution. The guidelines for 
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constructing a grouped frequency distribution table 
are as follows:

 a. There should be about 10 intervals.
 b. The width of each interval should be a simple num-

ber (e.g., 2, 5, or 10).
 c. The bottom score in each interval should be a mul-

tiple of the width.
 d. All intervals should be the same width, and they 

should cover the range of scores with no gaps.

 4. A frequency distribution graph lists scores on the hori-
zontal axis and frequencies on the vertical axis. The 
type of graph used to display a distribution depends 
on the scale of measurement used. For interval or ratio 
scales, you should use a histogram or a polygon. For 
a histogram, a bar is drawn above each score so that 

the height of the bar corresponds to the frequency. 
Each bar extends to the real limits of the score, so that 
adjacent bars touch. For a polygon, a dot is placed 
above the midpoint of each score or class interval so 
that the height of the dot corresponds to the frequency; 
then lines are drawn to connect the dots. Bar graphs 
are used with nominal or ordinal scales. Bar graphs are 
similar to histograms except that gaps are left between 
adjacent bars.

 5. Shape is one of the basic characteristics used to de-
scribe a distribution of scores. Most distributions 
can be classified as either symmetrical or skewed. A 
skewed distribution with the tail on the right is said to 
be positively skewed. If it has the tail on the left, it is 
negatively skewed.

Key terms

frequency distribution (38)

range (41)

grouped frequency distribution (41)

class interval (41)

apparent limits (44)

axes (44)

histogram (45)

polygon (46)

bar graph (48)

relative frequency (48)

distribution of scores (49)

symmetrical distribution (51)

tail(s) of a distribution (51)

positively skewed distribution (51)

negatively skewed distribution (51)

If your professor has assigned Aplia:

1. Sign in to your account.
2. Complete the corresponding exercises as required by your professor.
3. When finished, click “Grade It Now” to see which areas you have mastered, which 

areas need more work, and detailed explanations of every answer.

General instructions for using SPSS are presented in Appendix D. Following are detailed 
instructions for using SPSS to produce Frequency Distribution Tables or Graphs.
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Frequency Distribution Tables

Data Entry

Enter all the scores in one column of the data editor, probably VAR00001.

Data Analysis

 1. Click Analyze on the tool bar, select Descriptive Statistics, and click on 
Frequencies.

 2. Highlight the column label for the set of scores (VAR00001) in the left box and 
click the arrow to move it into the Variable box.

 3. Be sure that the option to Display Frequency Table is selected.

 4. Click OK.

SPSS Output

The frequency distribution table lists the score values in a column from smallest to largest, 
with the percentage and cumulative percentage also listed for each score. Score values that 
do not occur (zero frequencies) are not included in the table, and the program does not 
group scores into class intervals (all values are listed).

Frequency Distribution Histograms or Bar Graphs

Data Entry

Enter all the scores in one column of the data editor, probably VAR00001.

Data Analysis

 1. Click Analyze on the tool bar, select Descriptive Statistics, and click on 
Frequencies.

 2. Highlight the column label for the set of scores (VAR00001) in the left box and 
click the arrow to move it into the Variable box.

 3. Click Charts.

 4. Select either Bar Graphs or Histogram.

 5. Click Continue.

 6. Click OK.

SPSS Output

SPSS displays a frequency distribution table and a graph. Note that SPSS often produces a 
histogram that groups the scores in unpredictable intervals. A bar graph usually produces a 
clearer picture of the actual frequency associated with each score.

fOcus On PrOblem sOlving

 1. The reason for constructing frequency distributions is to put a disorganized set 
of raw data into a comprehensible, organized format. Because several different 
types of frequency distribution tables and graphs are available, one problem  
is deciding which type to use. Tables have the advantage of being easier to  
construct, but graphs generally give a better picture of the data and are easier to 
understand.
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  To help you decide which type of frequency distribution is best, consider the 
following points:

 a. What is the range of scores? With a wide range, you need to group the scores 
into class intervals.

 b. What is the scale of measurement? With an interval or a ratio scale, you can 
use a polygon or a histogram. With a nominal or an ordinal scale, you must 
use a bar graph.

 2. When using a grouped frequency distribution table, a common mistake is to 
calculate the interval width by using the highest and lowest values that define 
each interval. For example, some students are tricked into thinking that an  
interval identified as 20–24 is only 4 points wide. To determine the correct 
interval width, you can:

 a. Count the individual scores in the interval. For this example, the scores are 20, 
21, 22, 23, and 24, for a total of 5 values. Thus, the interval width is 5 points.

 b. Use the real limits to determine the real width of the interval. For example, an 
interval identified as 20–24 has a lower real limit of 19.5 and an upper real limit 
of 24.5 (halfway to the next score). Using the real limits, the interval width is

24.5 – 19.5 5 5 points

DemOnstratiOn 2.1

a grOuPeD frequency DistributiOn table

For the following set of N 5 20 scores, construct a grouped frequency distribution 
table using an interval width of 5 points. The scores are:

14 8 27 16 10 22 9 13 16 12
10 9 15 17 6 14 11 18 14 11

Set up the class intervals.

The largest score in this distribution is X 5 27, and the lowest is X 5 6. Therefore, 
a frequency distribution table for these data would have 22 rows and would be too 
large. A grouped frequency distribution table would be better. We have asked  
specifically for an interval width of 5 points, and the resulting table has five rows.

X

25–29
20–24
15–19
10–14
5–9

Remember that the interval width is determined by the real limits of the interval.  
For example, the class interval 25–29 has an upper real limit of 29.5 and a lower  
real limit of 24.5. The difference between these two values is the width of the  
interval—namely, 5.

S t e p  1
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Determine the frequencies for each interval.

Examine the scores, and count how many fall into the class interval of 25–29. Cross out 
each score that you have already counted. Record the frequency for this class interval. 
Now repeat this process for the remaining intervals. The result is the following table:

X f

25–29 1 (the score X 5 27)
20–24 1 (X 5 22)
15–19 5 (the scores X 5 16, 16, 15, 17, and 18)
10–14 9 (X 5 14, 10, 13, 12, 10, 14, 11, 14, and 11)
5–9 4 (X 5 8, 9, 9, and 6)

S t e p  2

PrOblems

 1. Place the following set of n 5 20 scores in a  
frequency distribution table.

6 2 2 1 3 2 4 7 1 2
5 3 1 6 2 6 3 3 7 2

 2. Construct a frequency distribution table for the fol-
lowing set of scores. Include columns for proportion 
and percentage in your tables.

Scores: 5 7 8 4 7 9 6 6 5 3
9 6 4 7 7 8 6 7 8 5

 3. Find each value requested for the distribution of 
scores in the following table.

 a. n
 b. oX
 c. oX2

X f

5 2
4 3
3 5
2 1
1 1

 4. Find each value requested for the distribution of 
scores in the following table.

 a. n
 b. oX
 c. oX2

X f

5 1
4 2
3 3
2 5
1 3

 5. For the following scores, the smallest value is X 5 
17 and the largest value is X 5 53. Place the scores 
in a grouped frequency distribution table

 a. using an interval width of 5 points.
 b. using an interval width of 10 points.

44 19 23 17 25 47 32 26
25 30 18 24 49 51 24 19
43 27 34 18 52 18 36 25

 6. The following scores are the ages for a random 
sample of n 5 30 drivers who were issued speeding 
tickets in New York during 2008. Determine the best 
interval width and place the scores in a grouped fre-
quency distribution table. From looking at your table, 
does it appear that tickets are issued equally across 
age groups?

17 30 45 20 39 53 28 19
24 21 34 38 22 29 64
22 44 36 16 56 20 23 58
32 25 28 22 51 26 43

 7. For each of the following samples, determine the 
interval width that is most appropriate for a grouped 
frequency distribution and identify the approximate 
number of intervals needed to cover the range of 
scores.

 a. Sample scores range from X 5 8 to X 5 41.
 b. Sample scores range from X 5 16 to X 5 33.
 c. Sample scores range from X 5 26 to X 5 98.

 8. What information can you obtain about the scores 
in a regular frequency distribution table that is not 
available from a grouped table?

 9. Describe the difference in appearance between a bar 
graph and a histogram and identify the circumstances 
in which each type of graph is used.

 10. For the following set of scores:

8 5 9 6 8 7 4 10 6 7
9 7 9 9 5 8 8 6 7 10
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 a. Construct a frequency distribution table to orga-
nize the scores.

 b. Draw a frequency distribution histogram for these 
data.

 11. Sketch a histogram and a polygon showing the distri-
bution of scores presented in the following table:

X f

7 1
6 1
5 3
4 6
3 4
2 1

 12. Sketch a histogram showing the distribution of scores 
shown in the following table:

X f

45–49 4
40–44 6
35–39 10
30–34 5
25–29 3
20–24 2

 13. A survey given to a sample of college students con-
tained questions about the following variables. For 
each variable, identify the kind of graph that should 
be used to display the distribution of scores (histo-
gram, polygon, or bar graph).

 a. number of brothers and sisters
 b. birth-order position among siblings (oldest 5 1st)
 c. gender (male/female)
 d. favorite television show during the previous year

 14. Each year the college gives away T-shirts to new 
students during freshman orientation. The students 
are allowed to pick the shirt sizes that they want. To 
determine how many of each size shirt they should 
order, college officials look at the distribution from 
last year. The following table shows the distribution 
of shirt sizes selected last year.

Size f

S 27
M 48
L 136

XL 120
XXL 39

 a. What kind of graph would be appropriate for 
showing this distribution?

 b. Sketch the frequency distribution graph.

 15. Gaucher, Friesen, and Kay (2011) found that 
masculine-themed words (such as competitive, inde-
pendent, analyze, strong) are commonly used in job 
recruitment materials, especially for job advertise-
ments in male-dominated areas. In a similar study, a 
researcher counted the number of masculine-themed 
words in job advertisements for job areas, and ob-
tained the following data.

Area Number of Masculine Words

Plumber 14
Electrician 12
Security guard 17
Bookkeeper  9
Nurse  6
Early-childhood 
educator

 7

  Determine what kind of graph would be appropri-
ate for showing this distribution and sketch the fre-
quency distribution graph.

 16. Find each of the following values for the distribution 
shown in the following polygon.

 a. n
 b. oX
 c. oX2

 17. For the following set of scores:

Scores: 5 8 5 7 6 6 5 7 4 6
6 9 5 5 4 6 7 5 7 5

 a. Place the scores in a frequency distribution table.
 b. Identify the shape of the distribution.

 18. Place the following scores in a frequency distribution 
table. Based on the frequencies, what is the shape of 
the distribution?

13 14 12 15 15 14 15 11 13 14
11 13 15 12 14 14 10 14 13 15

 19. For the following set of scores:

8 6 7 5 4 10 8 9 5 7 2 9
9 10 7 8 8 7 4 6 3 8 9 6

f

7

6

5

4

3

2

1

1 2 3 4 5 6
  X
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 a. Construct a frequency distribution table.
 b. Sketch a histogram showing the distribution.
 c. Describe the distribution using the following 

characteristics:
 (1) What is the shape of the distribution?
 (2) What score best identifies the center (average) 

for the distribution?
 (3) Are the scores clustered together, or are they 

spread out across the scale?

 20. Fowler and Christakis (2008) report that personal  
happiness tends to be associated with having a social 
network including many other happy friends. To test 
this claim, a researcher obtains a sample of n 5 16 
adults who claim to be happy people and a similar 
sample of n 5 16 adults who describe themselves  
as neutral or unhappy. Each individual is then asked  
to identify the number of their close friends whom 
they consider to be happy people. The scores are  
as follows:

Happy: 8 7 4 10 6 6 8 9 8 8
7 5 6 9 8 9

Unhappy: 5 8 4 6 6 7 9 6 2 8
5 6 4 7 5 6

  Sketch a polygon showing the frequency distribu-
tion for the happy people. In the same graph, sketch 
a polygon for the unhappy people. (Use two differ-
ent colors, or use a solid line for one polygon and a 
dashed line for the other.) Does one group seem to 
have more happy friends?

 21. Recent research suggests that the amount of time 
that parents spend talking about numbers can have a 
big effect on the mathematical development of their 
children (Levine, Suriyakham, Rowe, Huttenlocher, 
& Gunderson, 2010). In the study, the researchers 
visited the children’s homes between the ages of 14 
and 30 months and recorded the amount of “number 
talk” they heard from the children’s parents. The 
researchers then tested the children’s knowledge of 
the meaning of numbers at 46 months. The following 
data are similar to the results obtained in the study.

Children’s Knowledge-of-Numbers Scores for  
Two Groups of Parents

Low Number-Talk  
Parents

High Number-Talk 
Parents

2, 1, 2, 3, 4 3, 4, 5, 4, 5
3, 3, 2, 2, 1 4, 2, 3, 5, 4
5, 3, 4, 1, 2 5, 3, 4, 5, 4

  Sketch a polygon showing the frequency distribution 
for children with low number-talk parents. In the 
same graph, sketch a polygon showing the scores for 
the children with high number-talk parents. (Use two 
different colors or use a solid line for one polygon 
and a dashed line for the other.) Does it appear that 
there is a difference between the two groups?
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3.1     Defining Central Tendency

3.2     The Mean

3.3     The Median

3.4     The Mode

3.5     Selecting a Measure of Central 
Tendency

3.6     Central Tendency and the Shape 
of the Distribution

Summary

Focus on Problem Solving

Demonstration 3.1

Problems

Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.

Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 Summation	notation	(Chapter	1)
•	 Frequency	distributions	(Chapter	2)
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dEfining CEnTRAl TEndEnCy

The general purpose of descriptive statistical methods is to organize and summarize 
a set of scores. Perhaps the most common method for summarizing and describing a 
distribution is to find a single value that defines the average score and can serve as a 
representative for the entire distribution. In statistics, the concept of an average, or rep-
resentative, score is called central tendency. The goal in measuring central tendency 
is to describe a distribution of scores by determining a single value that identifies  
the center of the distribution. Ideally, this central value is the score that is the best  
representative value for all of the individuals in the distribution.

Central tendency is a statistical measure that attempts to determine the single 
value, usually located in the center of a distribution, that is most typical or most 
representative of the entire set of scores.

In everyday language, central tendency attempts to identify the “average,” or “typi-
cal,” individual. This average value can then be used to provide a simple description of 
an entire population or a sample. In addition to describing an entire distribution, mea-
sures of central tendency are also useful for making comparisons between groups of  
individuals or between sets of figures. For example, weather data indicate that for Seattle, 
Washington, the average yearly temperature is 53° and the average annual precipitation is  
34 inches. By comparison, the average temperature in Phoenix, Arizona, is 71° and the 
average precipitation is 7.4 inches. The point of these examples is to demonstrate the great 
advantage of being able to describe a large set of data with a single, representative number. 
Central tendency characterizes what is typical for a large population and, in doing so, makes 
large amounts of data more digestible. Statisticians sometimes use the expression number 
crunching to illustrate this aspect of data description. That is, we take a distribution consist-
ing of many scores and “crunch” them down to a single value that describes them all.

Unfortunately, there is no single, standard procedure for determining central ten-
dency. The problem is that no single measure produces a central, representative value 
in every situation. The three distributions shown in Figure 3.1 should help demonstrate 
this fact. Before we discuss the three distributions, take a moment to look at the figure 
and try to identify the center or the most representative score for each distribution.

 1. The first distribution [Figure 3.1(a)] is symmetrical, with the scores forming  
a distinct pile centered around X 5 5. For this type of distribution, it is easy to 
identify the center, and most people would agree that the value X 5 5 is an  
appropriate measure of central tendency.

 2. In the second distribution [Figure 3.1(b)], however, problems begin to appear. 
Now the scores form a negatively skewed distribution, piling up at the high 
end of the scale around X 5 8, but tapering off to the left all the way down to 
X 5 1. Where is the center in this case? Some people might select X 5 8 as 
the center because more individuals had this score than any other single value. 
However, X 5 8 is clearly not in the middle of the distribution. In fact, the 
majority of the scores (10 out of 16) have values less than 8, so it seems  
reasonable that the center should be defined by a value that is less than 8.

 3. Now consider the third distribution [Figure 3.1(c)]. Again, the distribution is 
symmetrical, but now there are two distinct piles of scores. Because the distri-
bution is symmetrical with X 5 5 as the midpoint, you may choose X 5 5 as 
the center. However, none of the scores is located at X 5 5 (or even close), so 
this value is not particularly good as a representative score. On the other hand, 

3.1

D e f i n i t i o n
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because there are two separate piles of scores with one group centered at X 5 2 
and the other centered at X 5 8, it is tempting to say that this distribution has 
two centers. But can one distribution have two centers?

Clearly, there can be problems defining the center of a distribution. Occasionally, you 
will find a nice, neat distribution like the one shown in Figure 3.1(a), for which every-
one agrees on the center. But you should realize that other distributions are possible 
and that there may be different opinions concerning the definition of the center. To deal 
with these problems, statisticians have developed three different methods for measuring 
central tendency: the mean, the median, and the mode. They are computed differently 
and have different characteristics. To decide which of the three measures is best for 
any particular distribution, you should keep in mind that the general purpose of central 
tendency is to find the single most representative score. Each of the three measures we 
present has been developed to work best in a specific situation. We examine this issue 
in more detail after we introduce the three measures.

THE MEAn

The mean, also known as the arithmetic average, is computed by adding all the scores 
in the distribution and dividing by the number of scores. The mean for a population is 
identified by the Greek letter mu, m (pronounced “mew”), and the mean for a sample is 
identified by M or 

–
X (read “x-bar”).

The convention in many statistics textbooks is to use 
–
X to represent the mean for a 

sample. However, in manuscripts and in published research reports the letter M is the 
standard notation for a sample mean. Because you will encounter the letter M when 
reading research reports and because you should use the letter M when writing research 
reports, we have decided to use the same notation in this text. Keep in mind that the 

–
X 

notation is still appropriate for identifying a sample mean, and you may find it used on 
occasion, especially in textbooks.

Three Measures of 
CenTral TendenCy

3.2

1 2 3 4 5 6 7 8 9 X

f

1 2 3 4 5 6 7 8 9 X

f

1 2 3 4 5 6 7 8 9 X

f

(b)

(c)

(a)

Figure 3.1

Three distributions demonstrating the 
difficulty of defining central tendency. 
In each case, try to locate the “center” 
of the distribution.
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 The mean for a distribution is the sum of the scores divided by the number of 
scores.

The formula for the population mean is

m 5
X
N

 (3.1)

First, add all of the scores in the population, and then divide by N. For a sample, the 
computation is exactly the same, but the formula for the sample mean uses symbols  
(M and n) that signify sample values:

Sample mean 5 5     M
X

N


 (3.2)

In general, we use Greek letters to identify characteristics of a population (param-
eters) and letters of our own alphabet to stand for sample values (statistics). If a mean 
is identified with the symbol M, you should realize that we are dealing with a sample. 
Also note that the equation for the sample mean uses a lowercase n as the symbol for 
the number of scores in the sample.

For a population of N 5 4 scores,

3 7 4 6

the mean is

m


5 5 5
X

N
20
4

5

Although the procedure of adding the scores and dividing by the number of scores pro-
vides a useful definition of the mean, there are two alternative definitions that may give 
you a better understanding of this important measure of central tendency.

Dividing the total equally The first alternative is to think of the mean as the amount 
each individual receives when the total (oX) is divided equally among all of the in-
dividuals (N) in the distribution. This somewhat socialistic viewpoint is particularly 
useful in problems for which you know the mean and must find the total. Consider the 
following example.

A group of n 5 6 boys buys a box of baseball cards at a garage sale and discovers 
that the box contains a total of 180 cards. If the boys divide the cards equally among 
themselves, how many cards will each boy get? You should recognize that this problem 
represents the standard procedure for computing the mean. Specifically, the total (oX) 
is divided by the number (n) to produce the mean, 180

6  5 30 cards for each boy.

The previous example demonstrates that it is possible to define the mean as the 
amount that each individual gets when the total is distributed equally. This new definition 
can be useful for some problems involving the mean. Consider the following example.

D e f i n i t i o n

E x A M P l E  3 . 1

alTernaTive 
definiTions  

for The Mean

E x A M P l E  3 . 2
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Now suppose that the 6 boys from Example 3.2 decide to sell their baseball cards on 
eBay. If they make an average of M 5 $5 per boy, what is the total amount of money 
for the whole group? Although you do not know exactly how much money each boy 
has, the new definition of the mean tells you that if they pool their money together and 
then distribute the total equally, each boy will get $5. For each of n 5 6 boys to get 
$5, the total must be 6($5) 5 $30. To check this answer, use the formula for the mean:

M
X
n

5 5 5
 $

$
30

6
5

The mean as a balance point The second alternative definition of the mean describes 
the mean as a balance point for the distribution. Consider a population consisting of  
N 5 5 scores (1, 2, 6, 6, 10). For this population, oX 5 25 and m 5 525

5
5 . Figure 3.2 

shows this population drawn as a histogram, with each score represented as a box that 
is sitting on a seesaw. If the seesaw is positioned so that it pivots at a point equal to the 
mean, then it will be balanced and will rest level.

The reason that the seesaw is balanced over the mean becomes clear when we mea-
sure the distance of each box (score) from the mean:

Score Distance from the Mean

X 5 1 4 points below the mean

X 5 2 3 points below the mean

X 5 6 1 point above the mean

X 5 6 1 point above the mean

X 5 10 5 points above the mean

Notice that the mean balances the distances. That is, the total distance below the 
mean is the same as the total distance above the mean:

below the mean: 4 1 3 5 7 points

above the mean: 1 1 1 1 5 5 7 points

Because the mean serves as a balance point, the value of the mean is always located 
somewhere between the highest score and the lowest score; that is, the mean can never 
be outside the range of scores. If the lowest score in a distribution is X 5 8 and the 

E x A M P l E  3 . 3
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Figure 3.2

The frequency distribution 
shown as a seesaw balanced 
at the mean.

Based on Weinberg, G. A., Schumaker, J. A., & Oltman, D. (1981). Statistics: An Intuitive Approach (p. 14). Belmont, CA: Wadsworth.
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highest is X 5 15, then the mean must be between 8 and 15. If you calculate a value 
that is outside this range, then you have made an error.

The image of a seesaw with the mean at the balance point is also useful for deter-
mining how a distribution is affected if a new score is added or if an existing score is 
removed. For the distribution in Figure 3.2, for example, what would happen to the 
mean (balance point) if a new score were added at X 5 10?

Often it is necessary to combine two sets of scores and then find the overall mean for 
the combined group. Suppose that we begin with two separate samples. The first sample 
has n 5 12 scores and a mean of M 5 6. The second sample has n 5 8 and M 5 7. If 
the two samples are combined, what is the mean for the total group?

To calculate the overall mean, we need two values:

 1. the overall sum of the scores for the combined group (oX), and

 2. the total number of scores in the combined group (n).

The total number of scores in the combined group can be found easily by adding the 
number of scores in the first sample (n

1
) and the number in the second sample (n

2
). In 

this case, there are 12 1 8 5 20 scores in the combined group. Similarly, the overall 
sum for the combined group can be found by adding the sum for the first sample (oX

1
) 

and the sum for the second sample (oX
2
). With these two values, we can compute the 

mean using the basic equation

overall mean
(overall sum for the combi

5 5M
X nned group)

(total number in the combined group)n

5
1 

1

X X

n n
1 2

1 2

To find the sum of the scores for each sample, remember that the mean can be de-
fined as the amount each person receives when the total (oX) is distributed equally. The 
first sample has n 5 12 and M 5 6. (Expressed in dollars instead of scores, this sample 
has n 5 12 people and each person gets $6 when the total is divided equally.) For each 
of 12 people to get M 5 6, the total must be oX 5 12 3 6 5 72. In the same way, the 
second sample has n 5 8 and M 5 7 so the total must be oX 5 8 3 7 5 56. Using 
these values, we obtain an overall mean of

overall mean 5 5
1

1
5

1

1
5M

n n

 X X1 2

1 2

72 56

12 8

1288

20
6 45 .

The following table summarizes the calculations.

First Sample Second Sample Combined Sample

n 5 12 n 5 8 n 5 20 (12 1 8)

oX 5 72 oX 5 56 oX 5 128 (72 1 56)

M 5 6 M 5 7 M 5 6.4

Note that the overall mean is not halfway between the original two sample means. 
Because the samples are not the same size, one makes a larger contribution to the total 
group and, therefore, carries more weight in determining the overall mean. For this rea-
son, the overall mean we have calculated is called the weighted mean. In this example, 
the overall mean of M 5 6.4 is closer to the value of M 5 6 (the larger sample) than it 
is to M 5 7 (the smaller sample).

The WeighTed Mean
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When a set of scores has been organized in a frequency distribution table, the calculation of 
the mean is usually easier if you first remove the individual scores from the table. Table 3.1 
shows a distribution of scores organized in a frequency distribution table. To compute the 
mean for this distribution you must be careful to use both the X values in the first column 
and the frequencies in the second column. The values in the table show that the distribution 
consists of one 10, two 9s, four 8s, and one 6, for a total of n 5 8 scores. Remember that 
you can determine the number of scores by adding the frequencies, n 5 of. To find the sum 
of the scores, you must be careful to add all eight scores:

CoMpuTing The Mean 
froM a frequenCy 
disTribuTion Table

 1. Find the mean for the following sample of n 5 5 scores: 1, 8, 7, 5, 9.

 2. A sample of n 5 6 scores has a mean of M 5 8. What is the value of oX for this 
sample?

3. One sample has n 5 5 scores with a mean of M 5 4. A second sample has n 5 3 
scores with a mean of M 5 10. If the two samples are combined, what is the mean 
for the combined sample?

4. A sample of n 5 6 scores has a mean of M 5 40. One new score is added to the 
sample and the new mean is found to be M 5 35. What can you conclude about 
the value of the new score?

 a. It must be greater 40.
 b. It must be less than 40.

5. Find the values for n, oX, and M for the sample that is summarized in the follow-
ing frequency distribution table.

X f

5 1

4 2

3 3

2 5

1 1

l E A R n i n g  C H E C k

Quiz Score (X) f fX

10 1 10
9 2 18
8 4 32
7 0 0
6 1 6

TAblE 3.1

Statistics quiz scores for a sam-
ple of n 5 8 students.

oX 5 10 1 9 1 9 1 8 1 8 1 8 1 8 1 6 5 66

Note that you can also find the sum of the scores by computing ofX as we demon-
strated in Chapter 2 (pp. 39–40). Once you have found oX and n, you compute the mean 
as usual. For these data,

M
X

n
5 5 5

 66

8
8 25.
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The mean has many characteristics that will be important in future discussions. In 
general, these characteristics result from the fact that every score in the distribution 
contributes to the value of the mean. Specifically, every score adds to the total (oX) 
and every score contributes one point to the number of scores (n). These two values 
(oX and n) determine the value of the mean. Also note that any factor that influences a 
population mean will have exactly the same influence on a sample mean. Therefore, the 
characteristics of the sample mean are the same as the characteristics of the population 
mean. We now discuss four of the more important characteristics of the mean.

Changing a score Changing the value of any score changes the mean. For example, 
a sample of quiz scores for a psychology lab section consists of 9, 8, 7, 5, and 1. Note 
that the sample consists of n 5 5 scores with oX 5 30. The mean for this sample is

M
X

n
5 5 5

 30

5
6 00.

Now suppose that the score of X 5 1 is changed to X 5 8. Note that we have added 
7 points to this individual’s score, which also adds 7 points to the total (oX). After 
changing the score, the new distribution consists of

9  8  7  5  8

There are still n 5 5 scores, but now the total is oX 5 37. Thus, the new mean is

M
X

n
5 5 5

 37

5
7 40.

Notice that changing a single score in the sample has produced a new mean. You 
should recognize that changing any score also changes the value of oX (the sum of the 
scores), and, thus, always changes the value of the mean.

Introducing a new score or removing a score Adding a new score to a distribution, 
or removing an existing score, usually changes the mean. The exception is when the 
new score (or the removed score) is exactly equal to the mean. It is easy to visualize  
the effect of adding or removing a score if you remember that the mean is defined as the 
balance point for the distribution. Figure 3.3 shows a distribution of scores represented 
as boxes on a seesaw that is balanced at the mean, µ 5 7. Imagine what would happen if 
we added a new score (a new box) at X 5 10. Clearly, the seesaw would tip to the right 
and we would need to move the pivot point (the mean) to the right to restore balance.

Now imagine what would happen if we removed the score (the box) at X 5 9. This 
time the seesaw would tip to the left and, once again, we would need to change the 
mean to restore balance.

Finally, consider what would happen if we added a new score of X 5 7, exactly 
equal to the mean. It should be clear that the seesaw would not tilt in either direction, 
so the mean would stay in exactly the same place. Also note that if we removed the new 

CharaCTerisTiCs  
of The Mean

1. oX 5 30 and M 5 6

2. oX 5 48

3. The combined sample has n 5 8 scores that total oX 5 50. The mean is M 5 6.25.

4. b

5. For this sample n 5 12, oX 5 33, and M 5 33/12 5 2.75.

AnswERs
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score at X 5 7, the seesaw would remain balanced and the mean would not change. In 
general, adding a new score or removing an existing score causes the mean to change 
unless that score is located exactly at the mean.

The following example demonstrates exactly how the new mean is computed when 
a new score is added to an existing sample.

Adding a score (or removing a score) has the same effect on the mean whether the 
original set of scores is a sample or a population. To demonstrate the calculation of 
the new mean, we will use the set of scores that is shown in Figure 3.3. This time, 
however, we will treat the scores as a sample with n 5 5 and M 5 7. Note that this 
sample must have oX 5 35. What happens to the mean if a new score of X 5 13 is 
added to the sample?

To find the new sample mean, we must determine how the values for n and oX are 
changed by a new score. We begin with the original sample and then consider the effect  
of adding the new score. The original sample had n 5 5 scores, so adding one new score 
produces n 5 6. Similarly, the original sample had oX 5 35. Adding a score of X 5 13 
increases the sum by 13 points, producing a new sum of oX 5 35 1 13 5 48. Finally, 
the new mean is computed using the new values for n and oX.

M
X

n
5 5 5

 48

6
8

The entire process can be summarized as follows:

Original Sample
New Sample, 

Adding X 5 13

n 5 5 n 5 6

X 5 35 X 5 48

M 5 
35
5  5 7 M 5 

48

6 5 8

Adding or subtracting a constant from each score If a constant value is added to 
every score in a distribution, the same constant is added to the mean. Similarly, if you 
subtract a constant from every score, the same constant is subtracted from the mean.

To demonstrate this characteristic of the mean, we use a study that confirms what 
you already suspected to be true—alcohol consumption increases the attractiveness 
of opposite-sex individuals (Jones, Jones, Thomas, & Piper, 2003). Participants in 
the study were shown photographs of male and female faces and asked to rate the 
attractiveness of each face. Table 3.2 shows results for a sample of n 5 6 male par-
ticipants who are rating a specific female face. The first column shows the ratings 

E x A M P l E  3 . 4

2 3 54 6 7 8 9 10 11 12

µ

Figure 3.3

A distribution of N 5 5 scores that is 
balanced with a mean of µ 5 7.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



68     CHAPTER 3  MEAsuREs of CEnTRAl TEndEnCy

when the participants are sober. Note that the total for this column is oX 5 17 for a 
sample of n 5 6 participants, so the mean is M 5 17

6
 5 2.83. Now suppose that the  

effect of alcohol is to add a constant amount (2 points) to each individual’s rating 
score. The resulting scores, after moderate alcohol consumption, are shown in the 
second column of the table. For these scores, the total is oX 5 29, so the mean is  
M 5 

29

6  5 4.83. Adding 2 points to each rating score has also added 2 points to the 

mean, from M 5 2.83 to M 5 4.83. (It is important to note that treatment effects are 
usually not as simple as adding or subtracting a constant amount. Nonetheless, the 
concept of adding a constant to every score is important and will be addressed in later 
chapters when we are using statistics to evaluate mean differences.)

Multiplying or dividing each score by a constant If every score in a distribution 
is multiplied by (or divided by) a constant value, the mean changes in the same way.

Multiplying (or dividing) each score by a constant value is a common method for 
changing the unit of measurement. To change a set of measurements from minutes  
to seconds, for example, you multiply by 60; to change from inches to feet, you divide 
by 12. One common task for researchers is converting measurements into metric units to 
conform to international standards. For example, publication guidelines of the American 
Psychological Association call for metric equivalents to be reported in parentheses when 
most nonmetric units are used. Table 3.3 shows how a sample of n 5 5 scores measured in 
inches would be transformed to a set of scores measured in centimeters. (Note that 1 inch 
equals 2.54 centimeters.) The first column shows the original scores that total oX 5 50, 
with M 5 10 inches. In the second column, each of the original scores has been multiplied 
by 2.54 (to convert from inches to centimeters) and the resulting values total oX 5 127, 
with M 5 25.4. Multiplying each score by 2.54 has also caused the mean to be multiplied 
by 2.54. You should realize, however, that although the numerical values for the individual 
scores and the sample mean have changed, the actual measurements have not changed.

TAblE 3.2

Attractiveness ratings of a  
female face for a sample of  
n 5 6 males.

Participant Sober Moderate Alcohol

A 4 6

B 2 4

C 3 5

D 3 5

E 2 4

F 3 5

	 oX 5 17 oX 5 29
 M 5 2.83 M 5 4.83

TAblE 3.3

Measurements converted from 
inches to centimeters.

Original Measurement 
in Inches

Conversion to 
Centimeters 

(Multiply by 2.54)

10 25.40

9 22.86

12 30.48

8 20.32

11 27.94

	 oX 5 50 oX 5 127.00
 M 510 M 5 25.40
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THE MEdiAn

The second measure of central tendency we consider is called the median. The goal 
of the median is to locate the midpoint of the distribution. Unlike the mean, there are 
no specific symbols or notation to identify the median. Instead, the median is simply 
identified by the word median. In addition, the definition and the computations for the 
median are identical for a sample and for a population.

If the scores in a distribution are listed in order from smallest to largest, the median 
is the midpoint of the list. More specifically, the median is the point on the mea-
surement scale below which 50% of the scores in the distribution are located.

Defining the median as the midpoint of a distribution means that the scores are divided 
into two equal-sized groups. We are not locating the midpoint between the highest and 
lowest X values. To find the median, list the scores in order from smallest to largest. 
Begin with the smallest score and count the scores as you move up the list. The median 
is the first point you reach that is greater than 50% of the scores in the distribution. 
The median can be equal to a score in the list or it can be a point between two scores. 
Notice that the median is not algebraically defined (there is no equation for computing 
the median), which means that there is a degree of subjectivity in determining the exact 
value. However, the following two examples demonstrate the process of finding the 
median for most distributions.

This example demonstrates the calculation of the median when n is an odd number. 
With an odd number of scores, you list the scores in order (lowest to highest), and the 
median is the middle score in the list. Consider the following set of N 5 5 scores, which 
have been listed in order:

3  5  8  10  11

3.3

D e f i n i t i o n

finding The 
Median for MosT 

disTribuTions

E x A M P l E  3 . 5

 1. Adding a new score to a distribution always changes the mean. (True or false?)

 2. Changing the value of a score in a distribution always changes the mean. (True or 
false?)

 3. A population has a mean of µ 5 40.

 a.  If 5 points were added to every score, what would be the value for the new mean?

 b.  If every score were multiplied by 3, what would be the value for the new mean?

 4. A sample of n 5 4 scores has a mean of 9. If one person with a score of X 5 3 is 
removed from the sample, what is the value for the new sample mean?

 1. False. If the score is equal to the mean, it does not change the mean.

 2. True.

 3. a. The new mean would be 45.

 b. The new mean would be 120.

 4. The original sample has n 5 4 and oX 5 36. The new sample has n 5 3 scores that total 
oX 5 33. The new mean is M 5 11.

l E A R n i n g  C H E C k

AnswERs
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The middle score is X 5 8, so the median is equal to 8. Using the counting method, 
with N 5 5 scores, the 50% point would be 2 1

2
 scores. Starting with the smallest scores, 

we must count the 3, the 5, and the 8 before we reach the target of at least 50%. Again, 
for this distribution, the median is the middle score, X 5 8.

This example demonstrates the calculation of the median when n is an even number. 
With an even number of scores in the distribution, you list the scores in order (lowest 
to highest) and then locate the median by finding the average of the middle two scores. 
Consider the following population:

1  1  4  5  7  8

Now we select the middle pair of scores (4 and 5), add them together, and divide 
by 2:

median 5
1

5 5
4 5

2

9

2
4 5.

Using the counting procedure, with N 5 6 scores, the 50% point is 3 scores. Starting 
with the smallest scores, we must count the first 1, the second 1, and the 4 before we 
reach the target of at least 50%. Again, the median for this distribution is 4.5, which is 
the first point on the scale beyond X 5 4. For this distribution, exactly 3 scores (50%) 
are located below 4.5. Note: If there is a gap between the middle two scores, the conven-
tion is to define the median as the midpoint between the two scores. For example, if the 
middle two scores are X 5 4 and X 5 6, the median would be defined as 5.

The simple technique of listing and counting scores is sufficient to determine the 
median for most distributions and is always appropriate for discrete variables. Notice 
that this technique always produces a median that either is a whole number or is half-
way between two whole numbers. With a continuous variable, however, it is possible to 
divide a distribution precisely in half so that exactly 50% of the distribution is located 
below (and above) a specific point. The procedure for locating the precise median is 
discussed in the following section.

Recall from Chapter 1 that a continuous variable consists of categories that can be split 
into an infinite number of fractional parts. For example, time can be measured in seconds, 
tenths of a second, hundredths of a second, and so on. When the scores in a distribution are 
measurements of a continuous variable, it is possible to split one of the categories into frac-
tional parts and find the median by locating the precise point that separates the bottom 50% 
of the distribution from the top 50%. The following example demonstrates this process.

For this example, we will find the precise median for the following sample of n 5 8 
scores: 1, 2, 3, 4, 4, 4, 4, 6

The frequency distribution for this sample is shown in Figure 3.4(a). With an even 
number of scores, you normally would compute the average of the middle two scores to 
find the median. This process produces a median of X 5 4. For a discrete variable, X 5 4 
is the correct value for the median. Recall from Chapter 1 that a discrete variable consists 
of indivisible categories, such as the number of children in a family. Some families have 
4 children and some have 5, but none have 4.31 children. For a discrete variable, the 
category X 5 4 cannot be divided and the whole number 4 is the median.

E x A M P l E  3 . 6

finding The preCise 
Median for a 

ConTinuous variable

E x A M P l E  3 . 7
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However, if you look at the distribution histogram, the value X 5 4 does not appear 
to be the exact midpoint. The problem comes from the tendency to interpret a score of X 
5 4 as meaning exactly 4.00. However, if the scores are measurements of a continuous 
variable, then the score X 5 4 actually corresponds to an interval from 3.5 to 4.5, and 
the median corresponds to a point within this interval.

To find the precise median, we first observe that the distribution contains n 5 8 
scores represented by 8 boxes in the graph. The median is the point that has exactly 
4 boxes (50%) on each side. Starting at the left-hand side and moving up the scale of 
measurement, we accumulate a total of 3 boxes when we reach a value of 3.5 on the 
X-axis [see Figure 3.4(a)]. What is needed is 1 more box to reach the goal of 4 boxes 
(50%). The problem is that the next interval contains four boxes. The solution is to 
take a fraction of each box so that the fractions combine to give you one box. For this 
example, if we take 1

4  of each box, the four quarters will combine to make one whole 
box. This solution is shown in Figure 3.4(b). The fraction is determined by the number 
of boxes needed to reach 50% and the number of boxes in the interval.

fraction
number needed to reach 50%

number i
5

nn the interval

For this example, we needed 1 out of the 4 boxes in the interval, so the fraction  
is 1

4
. To obtain one-fourth of each box, the median is the point that is located exactly 

one-fourth of the way into the interval. The interval for X 5 4 extends from 3.5 to 4.5. 
The interval width is 1 point, so one-fourth of the interval corresponds to 0.25 points. 
Starting at the bottom of the interval and moving up 0.25 points produces a value of 
3.50 1 0.25 5 3.75. This is the median, with exactly 50% of the distribution (4 boxes) 
on each side.

Remember, finding the precise midpoint by dividing scores into fractional parts is 
sensible for a continuous variable, however; it is not appropriate for a discrete variable. 
For example, a median time of 3.75 seconds is reasonable, but a median family size of 
3.75 children is not.

1 2

1

2

3

4

3 4 5 6 7
X

1
4

3
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Median = 3.75
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Figure 3.4

A distribution with several scores clustered at the median. The median for this distribution is positioned 
so that each of the four boxes above X 5 4 is divided into two sections, with 

1
4  of each box below the 

median (to the left) and 3
4  of each box above the median (to the right). As a result, there are exactly four 

boxes, 50% of the distribution, on each side of the median.
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Earlier, we defined the mean as the “balance point” for a distribution because the 
distances above the mean must have the same total as the distances below the mean. 
You should notice, however, that the concept of a balance point focuses on distances 
rather than scores. In particular, it is possible to have a distribution in which the vast 
majority of the scores are located on one side of the mean. Figure 3.5 shows a dis-
tribution of N 5 6 scores in which 5 out of 6 scores have values less than the mean. 
In this figure, the total of the distances above the mean is 8 points and the total of 
the distances below the mean is 8 points. Thus, the mean is located in the middle 
of the distribution if you use the concept of distance to define the middle. However, 
you should realize that the mean is not necessarily located at the exact center of the 
group of scores.

The median, on the other hand, defines the middle of the distribution in terms 
of scores. In particular, the median is located so that half of the scores are on one 
side and half are on the other side. For the distribution in Figure 3.5, for example,  
the median is located at X 5 2.5, with exactly 3 scores above this value and  
exactly 3 scores below. Thus, it is possible to claim that the median is located in the 
middle of the distribution, provided that the term middle is defined by the number 
of scores.

In summary, the mean and the median are both methods for defining and measur-
ing central tendency. Although they both define the middle of the distribution, they use  
different definitions of the term middle.

The Median, The 
Mean, and The Middle
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A population of N 5 6 scores with a 
mean of µ 5 4. Notice that the mean 
does not necessarily divide the scores 
into two equal groups. In this example, 
5 out of the 6 scores have values less 
than the mean.

 1. Find the median for each distribution of scores:

 a.  3, 4, 6, 7, 9, 10, 11

 b.  8, 10, 11, 12, 14, 15

 2. If you have a score of 52 on an 80-point exam, then you definitely scored above 
the median. (True or false?)

 3. The following is a distribution of measurements for a continuous variable. Find the 
precise median that divides the distribution exactly in half.

Scores: 1, 2, 2, 3, 4, 4, 4, 4, 4, 5

  1. a. The median is X 5 7. b. The median is X 5 11.5.

2. False. The value of the median would depend on where all of the scores are located.

 3. The median is 3.70 (one-fifth of the way into the interval from 3.5 to 4.5).

l E A R n i n g  C H E C k

AnswERs
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THE ModE

The final measure of central tendency that we consider is called the mode. In its com-
mon usage, the word mode means “the customary fashion” or “a popular style.” The 
statistical definition is similar in that the mode is the most common observation among 
a group of scores.

In a frequency distribution, the mode is the score or category that has the greatest 
frequency.

As with the median, there are no symbols or special notation used to identify the 
mode or to differentiate between a sample mode and a population mode. In addition, 
the definition of the mode is the same for a population and for a sample distribution.

The mode is a useful measure of central tendency because it can be used to deter-
mine the typical or average value for any scale of measurement, including a nominal 
scale (see Chapter 1). Consider, for example, the data shown in Table 3.4. These data 
were obtained by asking a sample of 100 students to name their favorite restaurants in 
town. The result is a sample of n 5 100 scores with each score corresponding to the 
restaurant that the student named.

For these data, the mode is Luigi’s, the restaurant (score) that was named most fre-
quently as a favorite place. Although we can identify a modal response for these data, you 

3.4

D e f i n i t i o n

TAblE 3.4

Favorite restaurants named by a 
sample of n 5 100 students.
Caution: The mode is a score 
or category, not a frequency. 
For this example, the mode is 
Luigi’s, not f 5 42.

Restaurant f

College Grill 5

George & Harry’s 16

Luigi’s 42

Oasis Diner 18

Roxbury Inn 7
Sutter’s Mill 12

should notice that it would be impossible to compute a mean or a median. For example, 
you cannot add the scores to determine a mean (How much is 5 College Grills plus 42 
Luigi’s?). Also, it is impossible to list the scores in order because the restaurants do not 
form any natural order. For example, the College Grill is not “more than” or “less than” 
the Oasis Diner, they are simply two different restaurants. Thus, it is impossible to obtain 
the median by finding the midpoint of the list. In general, the mode is the only measure of 
central tendency that can be used with data from a nominal scale of measurement.

The mode also can be useful because it is the only measure of central tendency that 
corresponds to an actual score in the data; by definition, the mode is the most frequently 
occurring score. The mean and the median, on the other hand, are both calculated val-
ues and often produce an answer that does not equal any score in the distribution. For 
example, in Figure 3.5 on the previous page we presented a distribution with a mean of 
4 and a median of 2.5. Note that none of the scores is equal to 4 and none of the scores 
is equal to 2.5. However, the mode for this distribution is X 5 2 and there are three 
individuals who actually have scores of X 5 2.

In a frequency distribution graph, the greatest frequency appears as the tallest part 
of the figure. To find the mode, you simply identify the score located directly beneath 
the highest point in the distribution.
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Although a distribution has only one mean and only one median, it is possible 
to have more than one mode. Specifically, it is possible to have two or more scores 
that have the same highest frequency. In a frequency distribution graph, the different 
modes correspond to distinct, equally high peaks. A distribution with two modes is 
said to be bimodal, and a distribution with more than two modes is called multimodal. 
Occasionally, a distribution with several equally high points is said to have no mode.

Incidentally, a bimodal distribution is often an indication that two separate and dis-
tinct groups of individuals exist within the same population (or sample). For example, 
if you measured height for each person in a set of 100 college students, the resulting 
distribution would probably have two modes, one corresponding primarily to the males 
in the group and one corresponding primarily to the females.

Technically, the mode is the score with the absolute highest frequency. However, the 
term mode is often used more casually to refer to scores with relatively high frequencies—
that is, scores that correspond to peaks in a distribution even though the peaks are not the 
absolute highest points. For example, Athos, et al. (2007) asked people to identify the 
pitch for both pure tones and piano tones. Participants were presented with a series of 
tones and had to name the note corresponding to each tone. Nearly half the participants 
(44%) had extraordinary pitch-naming ability (absolute pitch), and were able to identify 
most of the tones correctly. Most of the other participants performed around chance level, 
apparently guessing the pitch names randomly. Figure 3.6 shows a distribution of scores 
that is consistent with the results of the study. There are two distinct peaks in the distribu-
tion, one located at X 5 2 (chance performance) and the other located at X 5 10 (perfect 
performance). Each of these values is a mode in the distribution. Note, however, that the 
two modes do not have identical frequencies. Eight people scored at X 5 2 and only seven 
had scores of X 5 10. Nonetheless, both of these points are called modes. When two 
modes have unequal frequencies, researchers occasionally differentiate the two values by 
calling the taller peak the major mode, and the shorter one the minor mode.

sElECTing A MEAsuRE of CEnTRAl TEndEnCy

Deciding which measure of central tendency is best to use depends on several factors. 
Before we discuss these factors, however, note that the mean is usually the preferred 
measure of central tendency whenever the data consist of numerical scores. Because 
the mean uses every score in the distribution, it typically produces a good representa-
tive value. Remember that the goal of central tendency is to find the single value that 
best represents the entire distribution. Besides being a good representative, the mean 
has the added advantage of being closely related to variance and standard deviation, 
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A frequency distribution for tone  
identification scores. An example of a 
bimodal distribution.
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the most common measures of variability (see Chapter 4). This relationship makes the 
mean a valuable measure for purposes of inferential statistics. For these reasons, and 
others, the mean generally is considered to be the best of the three measures of central 
tendency. But there are specific situations in which it is impossible to compute a mean 
or in which the mean is not particularly representative. It is in these situations that the 
mode and the median are used.

We consider four situations in which the median serves as a valuable alternative to the 
mean. In the first three cases, the data consist of numerical values (interval or ratio 
scales) for which you would normally compute the mean. However, each case also 
involves a special problem so that either it is impossible to compute the mean, or the 
calculation of the mean produces a value that is not central or not representative. The 
fourth situation involves measuring central tendency for ordinal data.

Extreme scores or skewed distributions When a distribution has a few extreme 
scores, scores that are very different in value from most of the others, then the mean 
may not be a good representative of the majority of the distribution. The problem comes 
from the fact that one or two extreme values can have a large influence and cause the 
mean to be displaced. In this situation, the fact that the mean uses all of the scores 
equally can be a disadvantage. Consider, for example, the distribution of n 5 10 scores 
in Figure 3.7. For this sample, the mean is

M
X

n
5 5 5

 203

10
20 3.

Notice that the mean is not very representative of any score in this distribution. 
Although most of the scores are clustered between 10 and 13, the extreme score of 
X 5 100 inflates the value of oX and distorts the mean.

The median, on the other hand, usually is not affected by extreme scores. For this 
sample, n 5 10, so there should be five scores on either side of the median. The median 
is 11.50. Notice that this is a very representative value. Also note that the median would 

When To use The 
Median

 1. During the month of October, an instructor recorded the number of absences for 
each student in a class of n 5 20 and obtained the following distribution.

Number of 
Absences f

5 1

4 2

3 7

2 5

1 3
0 2

a. Using the mean, what is the average number of absences for the class?
b. Using the median, what is the average number of absences for the class?
c. Using the mode, what is the average number of absences for the class?

 1.

a. The mean is 47
20

5 2.35.

b. The median is 2.5.

c. The mode is 3.

l E A R n i n g  C H E C k

AnswERs
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be unchanged even if the extreme score were 1000 instead of only 100. Because it is 
relatively unaffected by extreme scores, the median commonly is used when reporting 
the average value for a skewed distribution. For example, the distribution of personal 
incomes is very skewed, with a small segment of the population earning incomes that 
are astronomical. These extreme values distort the mean, so that it is not very represen-
tative of the salaries that most of us earn. The median is the preferred measure of central 
tendency when extreme scores exist.

Undetermined values Occasionally, you encounter a situation in which an individual 
has an unknown or undetermined score. This often occurs when you are measuring the 
number of errors or the amount of time required for an individual to complete a task. 
For example, suppose that preschool children are asked to assemble a wooden puzzle 
as quickly as possible. The experimenter records how long (in minutes) it takes each 
child to arrange all of the pieces to complete the puzzle. Table 3.5 presents results for 
a sample of n 5 6 children.

Notice that one child never completed the puzzle. After an hour, this child still 
showed no sign of solving the puzzle, so the experimenter stopped him or her. This par-
ticipant has an undetermined score. (There are two important points to be noted. First, 
the experimenter should not throw out this individual’s score. The whole purpose for 
using a sample is to gain a picture of the population, and this child tells us that part of 
the population cannot solve the puzzle. Second, this child should not be given a score of 
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Frequency distribution of er-
rors committed before reach-
ing learning criterion.
Notice that the graph shows 
two breaks in the X-axis. 
Rather than listing all of the 
scores from 0 to 100, the 
graph jumps directly to the 
first score, which is X 5 
10, and then jumps directly 
from X 5 15 to X 5 100. 
The breaks shown in the 
X-axis are the conventional 
way of notifying the reader 
that some values have been 
omitted.

TAblE 3.5

Number of minutes needed to 
assemble a wooden puzzle.

Child Time (Min.)

1 8

2 11

3 12

4 13

5 17
6 Never finished
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X 5 60 minutes. Even though the experimenter stopped the individual after 1 hour, the 
child did not finish the puzzle. The score that is recorded is the amount of time needed 
to finish. For this individual, we do not know how long this is.)

It is impossible to compute the mean for these data because of the undetermined 
value. We cannot calculate the oX part of the formula for the mean. However, it is possi-
ble to determine the median. For these data, the median is 12.5. Three scores are below 
the median, and three scores (including the undetermined value) are above the median.

Open-ended distributions A distribution is said to be open-ended when there is no 
upper limit (or lower limit) for one of the categories. The table in the margin provides 
an example of an open-ended distribution, showing the number of pizzas eaten during 
a 1-month period for a sample of n 5 20 high school students. The top category in 
this distribution shows that three of the students consumed “5 or more” pizzas. This is 
an open-ended category. Notice that it is impossible to compute a mean for these data 
because you cannot find oX (the total number of pizzas for all 20 students). However, 
you can find the median. Listing the 20 scores in order produces X 5 1 and X 5 2 as 
the middle two scores. For these data, the median is 1.5.

Ordinal scale Many researchers believe that it is not appropriate to use the mean to 
describe central tendency for ordinal data. When scores are measured on an ordinal scale, 
the median is always appropriate and is usually the preferred measure of central tendency.

You should recall that ordinal measurements allow you to determine direction (greater 
than or less than) but do not allow you to determine distance. The median is compatible 
with this type of measurement because it is defined by direction: half of the scores are above 
the median and half are below the median. The mean, on the other hand, defines central 
tendency in terms of distance. Remember that the mean is the balance point for the distribu-
tion, so that the distances above the mean are exactly balanced by the distances below the 
mean. Because the mean is defined in terms of distances, and because ordinal scales do not 
measure distance, it is not appropriate to compute a mean for scores from an ordinal scale.

We consider three situations in which the mode is commonly used as an alternative to 
the mean, or is used in conjunction with the mean to describe central tendency.

Nominal scales The primary advantage of the mode is that it can be used to measure 
and describe central tendency for data that are measured on a nominal scale. Recall that 
the categories that make up a nominal scale are differentiated only by name. Because 
nominal scales do not measure quantity (distance or direction), it is impossible to com-
pute a mean or a median for data from a nominal scale. Therefore, the mode is the only 
option for describing central tendency for nominal data.

Discrete variables Recall that discrete variables are those that exist only in whole, 
indivisible categories. Often, discrete variables are numerical values, such as the 
number of children in a family or the number of rooms in a house. When these 
variables produce numerical scores, it is possible to calculate means. In this situ-
ation, the calculated means are usually fractional values that cannot actually exist. 
For example, computing means generates results such as “the average family has 
2.4 children and a house with 5.33 rooms.” On the other hand, the mode always 
identifies the most typical case and, therefore, it produces more sensible measures 
of central tendency. Using the mode, our conclusion would be “the typical, or modal, 
family has 2 children and a house with 5 rooms.” In many situations, especially with 
discrete variables, people are more comfortable using the realistic, whole-number 
values produced by the mode.

When To use The 
Mode

Number of 
Pizzas (X) f

5 or more 3
4 2
3 2
2 3
1 6
0 4
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Describing shape Because the mode requires little or no calculation, it is often in-
cluded as a supplementary measure along with the mean or median as a no-cost extra. 
The value of the mode (or modes) in this situation is that it gives an indication of the 
shape of the distribution as well as a measure of central tendency. Remember that the 
mode identifies the location of the peak (or peaks) in the frequency distribution graph. 
For example, if you are told that a set of exam scores has a mean of 72 and a mode of 
80, you should have a better picture of the distribution than would be available from the 
mean alone (see Section 3.6).

in THE liTERATuRE
REPoRTing MEAsuREs of CEnTRAl TEndEnCy

Measures of central tendency are commonly used in the behavioral sciences to sum-
marize and describe the results of a research study. For example, a researcher may 
report the sample means from two different treatments or the median score for a large 
sample. These values may be reported in verbal descriptions of the results, in tables, 
or in graphs.

In reporting results, many behavioral science journals use guidelines adopted by 
the American Psychological Association (APA), as outlined in the Publication Manual 
of the American Psychological Association (2010). We refer to the APA manual from 
time to time in describing how data and research results are reported in the scientific 
literature. The APA style uses the letter M as the symbol for the sample mean. Thus, a 
study might state:

The treatment group showed fewer errors (M 5 2.56) on the task than the control 
group (M 5 11.76).

When there are many means to report, tables with headings provide an organized and 
more easily understood presentation. Table 3.6 illustrates this point.

The median can be reported using the abbreviation Mdn, as in “Mdn 5 8.5 errors,” 
or it can simply be reported in narrative text, as follows:

The median number of errors for the treatment group was 8.5, compared to a 
median of 13 for the control group.

There is no special symbol or convention for reporting the mode. If mentioned at all, 
the mode is usually just reported in narrative text.

PREsEnTing MEAns And MEdiAns in gRAPHs

Graphs also can be used to report and compare measures of central tendency. Usually, 
graphs are used to display values obtained for sample means, but occasionally sample 
medians are reported in graphs (modes are rarely, if ever, shown in a graph). The value 
of a graph is that it allows several means (or medians) to be shown simultaneously, so 
it is possible to make quick comparisons between groups or treatment conditions. When 
preparing a graph, it is customary to list the different groups or treatment conditions  
on the horizontal axis. Typically, these are the different values that make up the  

TAblE 3.6

The mean number of errors 
made on the task for treatment 
and control groups, divided by 
gender.

Treatment Control

Females 1.45 8.36
Males 3.83 14.77
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independent variable or the quasi-independent variable. Values for the dependent 
variable (the scores) are listed on the vertical axis. The means (or medians) are then 
displayed using a line graph, a histogram, or a bar graph, depending on the scale of 
measurement used for the independent variable.

Figure 3.8 shows an example of a line graph displaying the relationship be-
tween drug dose (the independent variable) and food consumption (the dependent 
variable). In this study, there were five different drug doses (treatment conditions) 
and they are listed along the horizontal axis. The five means appear as points in 
the graph. To construct this graph, a point was placed above each treatment con-
dition so that the vertical position of the point corresponds to the mean score for 
the treatment condition. The points are then connected with straight lines. A line 
graph is used when the values on the horizontal axis are measured on an interval or 
a ratio scale. An alternative to the line graph is a histogram. For this example, the 
histogram would show a bar above each drug dose so that the height of each bar 
corresponds to the mean food consumption for that group, with no space between 
adjacent bars.

Figure 3.9 shows a bar graph displaying the median selling price for single-family 
homes in different regions of the United States. Bar graphs are used to present means 
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The relationship between 
an independent variable 
(drug dose) and a  
dependent variable (food 
consumption). Because 
drug dose is a continuous 
variable, a continuous line 
is used to connect the  
different dose levels.
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Median cost of a new, 
single-family home by 
region.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



80     CHAPTER 3  MEAsuREs of CEnTRAl TEndEnCy

(or medians) when the groups or treatments shown on the horizontal axis are measured 
on a nominal or an ordinal scale. To construct a bar graph, you simply draw a bar  
directly above each group or treatment so that the height of the bar corresponds to the 
mean (or median) for that group or treatment. For a bar graph, a space is left between 
adjacent bars to indicate that the scale of measurement is nominal or ordinal.

When constructing graphs of any type, you should recall the basic rules that we 
introduced in Chapter 2:

 1. The height of a graph should be approximately two-thirds to three-quarters of 
its length.

 2. Normally, you start numbering both the X-axis and the Y-axis with zero at the 
point where the two axes intersect. However, when a value of zero is part of the 
data, it is common to move the zero point away from the intersection so that the 
graph does not overlap the axes (see Figure 3.8).

Following these rules helps to produce a graph that provides an accurate presentation of 
the information in a set of data. Although it is possible to construct graphs that distort 
the results of a study (see Box 2.1), researchers have an ethical responsibility to present 
an honest and accurate report of their research results.

CEnTRAl TEndEnCy And THE sHAPE  
of THE disTRibuTion

We have identified three different measures of central tendency, and often a researcher 
calculates all three for a single set of data. Because the mean, the median, and the mode 
are all trying to measure the same thing, it is reasonable to expect that these three val-
ues should be related. In fact, there are some consistent and predictable relationships 
among the three measures of central tendency. Specifically, there are situations in which 
all three measures have exactly the same value. On the other hand, there are situations 
in which the three measures are guaranteed to be different. In part, the relationships 
among the mean, median, and mode are determined by the shape of the distribution. 
We consider two general types of distributions.

For a symmetrical distribution, the right-hand side of the graph is a mirror image of 
the left-hand side. If a distribution is perfectly symmetrical, the median is exactly 
at the center because exactly half of the area in the graph is on either side of the 
center. The mean also is exactly at the center of a perfectly symmetrical distribution 
because each score on the left side of the distribution is balanced by a correspond-
ing score (the mirror image) on the right side. As a result, the mean (the balance 
point) is located at the center of the distribution. Thus, for a perfectly symmetrical 
distribution, the mean and the median are the same (Figure 3.10). If a distribution is 
roughly symmetrical, but not perfect, the mean and median are close together in the 
center of the distribution.

If a symmetrical distribution has only one mode, then it is also in the center of the 
distribution. Thus, for a perfectly symmetrical distribution with one mode, all three 
measures of central tendency—the mean, the median, and the mode—have the same 
value. For a roughly symmetrical distribution, the three measures are clustered together 
in the center of the distribution. On the other hand, a bimodal distribution that is sym-
metrical [see Figure 3.10(b)] has the mean and median together in the center with  
the modes on each side. A rectangular distribution [see Figure 3.10(c)] has no mode 

3.6

syMMeTriCal 
disTribuTions
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because all X values occur with the same frequency. Still, the mean and the median are 
in the center of the distribution.

In skewed distributions, especially distributions for continuous variables, there is a 
strong tendency for the mean, median, and mode to be located in predictably differ-
ent positions. Figure 3.11(a), for example, shows a positively skewed distribution with 
the peak (highest frequency) on the left-hand side. This is the position of the mode. 
However, it should be clear that the vertical line drawn at the mode does not divide the 
distribution into two equal parts. To have exactly 50% of the distribution on each side, 
the median must be located to the right of the mode. Finally, the mean is located to 
the right of the median because it is the measure of central tendency that is influenced 
most by the extreme scores in the tail and, therefore, tends to be displaced toward the 
tail of the distribution. Thus, in a positively skewed distribution, the typical order of the 
three measures of central tendency from smallest to largest (left to right) is the mode, 
the median, and the mean.

Negatively skewed distributions are lopsided in the opposite direction, with the scores 
piling up on the right-hand side and the tail tapering off to the left. The grades on an easy 
exam, for example, tend to form a negatively skewed distribution [see Figure 3.11(b)]. For a 
distribution with negative skew, the mode is on the right-hand side (with the peak), whereas 
the mean is displaced toward the left by the extreme scores in the tail. As before, the median 
is usually located between the mean and the mode. Therefore, in a negatively skewed dis-
tribution, the most probable order for the three measures of central tendency from smallest 
value to largest value (left to right), is the mean, the median, and the mode.

skeWed 
disTribuTions

The positions of the mean, 
median, and mode are not as 
consistently predictable in  
distributions of discrete vari-
ables (see Von Hippel, 2005).

Mean
Median
Mode Mean

Median

Mode Mode Mean
Median

No mode

Figure 3.10

Measures of central 
tendency for three sym-
metrical distributions: 
normal, bimodal, and 
rectangular.

Figure 3.11

Measures of central tendency for skewed distributions.
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Summary

1. The goal of central tendency is to determine the single 
value that identifies the center of the distribution and 
best represents the entire set of scores. The three stan-
dard measures of central tendency are the mode, the 
median, and the mean.

2. The mean is the arithmetic average. It is computed 
by adding all of the scores and then dividing by the 
number of scores. Conceptually, the mean is obtained 
by dividing the total (oX) equally among the number 
of individuals (N or n). The mean can also be defined 
as the balance point for the distribution. The distances 
above the mean are exactly balanced by the distances 
below the mean. Although the calculation is the same 
for a population or a sample mean, a population mean 
is identified by the symbol m, and a sample mean is 
identified by M. In most situations with numerical 
scores from an interval or a ratio scale, the mean is the 
preferred measure of central tendency.

3. Changing any score in the distribution causes the mean 
to be changed. When a constant value is added to (or 
subtracted from) every score in a distribution, the same 
constant value is added to (or subtracted from) the 
mean. If every score is multiplied by a constant, the 
mean is multiplied by the same constant.

4. The median is the midpoint of a distribution of scores. 
The median is the preferred measure of central ten-
dency when a distribution has a few extreme scores 
that displace the value of the mean. The median also 
is used for open-ended distributions or when there 
are undetermined (infinite) scores that make it impos-
sible to compute a mean. Finally, the median is the 
preferred measure of central tendency for data from an 
ordinal scale.

5. The mode is the most frequently occurring score in a 
distribution. It is easily located by finding the peak in 
a frequency distribution graph. For data measured on 
a nominal scale, the mode is the appropriate measure 
of central tendency. It is possible for a distribution to 
have more than one mode.

6. For symmetrical distributions, the mean is equal to the 
median. If there is only one mode, then it has the same 
value, too.

7. For skewed distributions, the mode is located toward 
the side where the scores pile up, and the mean tends 
to be pulled toward the extreme scores in the tail. 
The median is usually located between these two 
values.

 1. Which measure of central tendency is most affected if one extremely large score is 
added to a distribution? (mean, median, mode)

 2. Why is it usually considered inappropriate to compute a mean for scores measured 
on an ordinal scale?

3. In a perfectly symmetrical distribution, the mean, the median, and the mode will 
all have the same value. (True or false?)

4. A distribution with a mean of 70 and a median of 75 is probably positively 
skewed. (True or false?)

1. mean

2. The definition of the mean is based on distances (the mean balances the distances) and 
ordinal scales do not measure distance.

3. False, if the distribution is bimodal.

4. False. The mean is displaced toward the tail on the left-hand side.

l E A R n i n g  C H E C k

AnswERs
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key TerMs

central tendency (60) mode (73) line graph (79)

population mean (m) (62) bimodal (74) symmetrical distribution (80)

sample mean (M) (62) multimodal (74) skewed distribution (81)

weighted mean (64) major mode (74) positively skewed (81)

median (69) minor mode (74) negatively skewed (81)

resourCes

 
Go to CengageBrain.com to access Psychology CourseMate, where you will find an 
interactive eBook, glossaries, flashcards, quizzes, statistics workshops, and more.

If your professor has assigned Aplia:

1. Sign in to your account.

2. Complete the corresponding exercises as required by your professor.

3. When finished, click “Grade It Now” to see which areas you have mastered, which 
areas need more work, and detailed explanations of every answer.

General instructions for using SPSS are presented in Appendix D. Following are  
detailed instructions for using SPSS to compute the Mean and oX for a set of scores.

Data Entry

Enter all of the scores in one column of the data editor, probably VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on 
Descriptives.

2. Highlight the column label for the set of scores (VAR00001) in the left box and 
click the arrow to move it into the Variable box.

3. If you want oX as well as the mean, click on the Options box, select Sum, then 
click Continue.

4. Click OK.

SPSS Output

SPSS produces a summary table listing the number of scores (N), the maximum and 
minimum scores, the sum of the scores (if you selected this option), the mean, and 
the standard deviation. Note: The standard deviation is a measure of variability that is 
presented in Chapter 4.
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foCus on probleM solving

1. Although the three measures of central tendency appear to be very simple to 
calculate, there is always a chance for errors. The most common sources of 
error are listed next.

 a.  Many students find it very difficult to compute the mean for data presented in 
a frequency distribution table. They tend to ignore the frequencies in the table 
and simply average the score values listed in the X column. You must use the 
frequencies and the scores! Remember that the number of scores is found 
by N 5 of, and the sum of all N scores is found by ofX. For the distribution 
shown in the margin, the mean is 24

10 5 2.40.

 b.  The median is the midpoint of the distribution of scores, not the midpoint of 
the scale of measurement. For a 100-point test, for example, many students 
incorrectly assume that the median must be X 5 50. To find the median, you 
must have the complete set of individual scores. The median separates the 
individuals into two equal-sized groups.

 c.  The most common error with the mode is for students to report the highest 
frequency in a distribution rather than the score with the highest frequency. 
Remember that the purpose of central tendency is to find the most represen-
tative score. For the distribution in the margin, the mode is X 5 3, not f 5 4.

deMonsTraTion 3.1

CoMpuTing Measures of CenTral TendenCy

For the following sample, find the mean, the median, and the mode. The scores are:

5  6  9  11  5  11  8  14  2  11

Compute the mean The calculation of the mean requires two pieces of information; 
the sum of the scores, oX; and the number of scores, n. For this sample, n 5 10 and

oX	5 5 1 6 1 9 1 111 5 1 11 1 8 1 14 1 2 1 11 5 82

Therefore, the sample mean is

M
X

n
  .5 5 5

 82

10
8 2

Find the median To find the median, first list the scores in order from smallest to 
largest. With an even number of scores, the median is the average of the middle two 
scores in the list. Listed in order, the scores are:

2  5  5  6  8  9  11  11  11  14

The middle two scores are 8 and 9, and the median is 8.5.

Find the mode For this sample, X 5 11 is the score that occurs most frequently. The 
mode is X 5 11.

X f

4 1
3 4
2 3
1 2
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probleMs

1. Why is it necessary to have more than one method 
for measuring central tendency?

2. Find the mean, median, and mode for the following 
sample of scores:

5  4  5  2  7  1  3  5

3. Find the mean, median, and mode for the following 
sample of scores:

3  6  7  3  9  8  3  7  5

4. Find the mean, median, and mode for the scores in 
the following frequency distribution table:

X f

6 1
5 2
4 2
3 2
2 2
1 5

5. Find the mean, median, and mode for the scores in 
the following frequency distribution table:

X f

8 1
7 1
6 2
5 5
4 2
3 2

6. For the following sample:

 a.  Assume that the scores are measurements of a 
continuous variable and find the median by locating 
the precise midpoint of the distribution.

 b.  Assume that the scores are measurements of a 
discrete variable and find the median.

Scores: 1  2  3  3  3  4

7. A population of N 5 15 scores has oX 5 120. What 
is the population mean?

8. A sample of n 5 8 scores has a mean of M 5 12. 
What is the value of oX for this sample?

9. A population with a mean of m 5 8 has oX 5 40. 
How many scores are in the population?

10. A sample of n 5 7 scores has a mean of M 5 9. If 
one new person with a score of X 5 1 is added to the 
sample, what is the value for the new mean?

11. A sample of n 5 6 scores has a mean of M 5 13. If 
one person with a score of X 5 3 is removed from 
the sample, what is the value for the new mean?

12. A sample of n 5 15 scores has a mean of M 5 6. 
One person with a score of X 5 22 is added to the 
sample. What is the value for the new sample mean?

13. A sample of n 5 10 scores has a mean of M 5 9. One 
person with a score of X 5 0 is removed from the 
sample. What is the value for the new sample mean?

14. A population of N 5 15 scores has a mean of m 5 8. 
One score in the population is changed from X 5 20 to 
X 5 5. What is the value for the new population mean?

15. A sample of n 5 7 scores has a mean of M 5 16. 
One score in the sample is changed from X 5 6 to  
X 5 20. What is the value for the new sample mean?

16. A sample of n 5 7 scores has a mean of M 5 5. 
After one new score is added to the sample, the new 
mean is found to be M 5 6. What is the value of the 
new score? (Hint: Compare the values for oX before 
and after the score was added.)

17. A population of N 5 8 scores has a mean of m 5 16. 
After one score is removed from the population,  
the new mean is found to be m 5 15. What is 
the value of the score that was removed? (Hint: 
Compare the values for oX before and after the 
score was removed.)

18. A sample of n 5 9 scores has a mean of M 5 13. 
After one score is added to the sample, the mean is 
found to be M 5 12. What is the value of the score 
that was added?

19. A sample of n 5 9 scores has a mean of M 5 20. 
One of the scores is changed and the new mean is 
found to be M 5 22. If the changed score was  
originally X 5 7, what is its new value?

20. One sample of n 5 12 scores has a mean of M 5 7 
and a second sample of n 5 8 scores has a mean of 
M 5 12. If the two samples are combined, what is 
the mean for the combined sample?

21. One sample has a mean of M 5 8 and a second 
sample has a mean of M 5 16. The two samples are 
combined into a single set of scores.

 a.  What is the mean for the combined set if both of 
the original samples have n 5 4 scores?

 b.  What is the mean for the combined set if the 
first sample has n 5 3 and the second sample 
has n 5 5?
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 c.  What is the mean for the combined set if the 
first sample has n 5 5 and the second sample 
has n 5 3?

22. One sample has a mean of M 5 5 and a second 
sample has a mean of M 5 10. The two samples are 
combined into a single set of scores.

 a.  What is the mean for the combined set if both of 
the original samples have n 5 5 scores?

 b.  What is the mean for the combined set if the first 
sample has n 5 4 scores and the second sample 
has n 5 6?

 c.  What is the mean for the combined set if the first 
sample has n 5 6 scores and the second sample 
has n 5 4?

23. Explain why the mean is often not a good measure of 
central tendency for a skewed distribution.

24. A researcher conducts a study comparing two dif-
ferent treatments with a sample of n 5 16 partici-
pants in each treatment. The study produced the 
following data:

Treatment 1:  6  7  11  4  19  17  2  5  
9  13  6  23  11  4  6  1

Treatment 2:  10  9  6  6  1  11  8  6  3  
2  11  1  12  7  10  9

 a.  Calculate the mean for each treatment. Based 
on the two means, which treatment produces the 
higher scores?

 b.  Calculate the median for each treatment. Based 
on the two medians, which treatment produces 
the higher scores?

 c.  Calculate the mode for each treatment. Based 
on the two modes, which treatment produces the 
higher scores?

25. Schmidt (1994) conducted a series of experiments 
examining the effects of humor on memory. In one 
study, participants were shown a list of sentences, 
of which half were humorous and half were non-
humorous. A humorous example is, “If at first you 
don’t succeed, you are probably not related to the 
boss.” Other participants would see a nonhumorous 
version of this sentence, such as “People who  
are related to the boss often succeed the very  
first time.”

 Schmidt then measured the number of each type of  
sentence recalled by each participant. The follow-
ing scores are similar to the results obtained in  
the study.

Number of Sentences Recalled

Humorous Sentences Nonhumorous Sentences

4 5 2 4 5 2 4 2
6 7 6 6 2 3 1 6
2 5 4 3 3 2 3 3
1 3 5 5 4 1 5 3

Calculate the mean number of sentences recalled for 
each of the two conditions. Do the data suggest that 
humor helps memory?

 26. Stephens, Atkins, and Kingston (2009) conducted 
a research study demonstrating that swearing can 
help reduce pain. In the study, each participant was 
asked to plunge a hand into icy water and keep it 
there as long as the pain would allow. In one condi-
tion, the participants repeatedly yelled their favorite 
curse words while their hands were in the water. In 
the other condition the participants repeated a neu-
tral word. Data similar to the results obtained in the 
study are shown in the following table. Calculate the 
mean number of seconds that the participants could 
tolerate the pain for each of the two treatment condi-
tions. Does it appear that swearing helped with pain 
tolerance?

Amount of Time (in seconds)

Participant Swear Words Neutral Words

1 94 59
2 70 61
3 52 47
4 83 60
5 46 35
6 117 92
7 69 53
8 39 30
9 51 56

10 73 61

 27. Earlier in this chapter (p. 67), we mentioned a research 
study demonstrating that alcohol consumption in-
creases attractiveness ratings for members of the oppo-
site sex (Jones, Jones, Thomas, & Piper, 2003). In the 
actual study, college-age participants were recruited 
from bars and restaurants near campus and asked to 
participate in a “market research” study. During the 
introductory conversation, they were asked to report 
their alcohol consumption for the day and were told 
that moderate consumption would not prevent them 
from taking part in the study. Participants were then 
shown a series of photographs of male and female 
faces and asked to rate the attractiveness of each face 
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on a 1–7 scale. The following data duplicate the  
general pattern of results obtained in the study. The 
two sets of scores are attractiveness ratings for one 
female obtained from two groups of males: those who 
had no alcohol and those with moderate alcohol con-
sumption. Calculate the mean for each group. Does it 
appear from these data that alcohol has an effect on 
judgments of attractiveness?

Group 1
No Alcohol

Group 2
Moderate Alcohol

3 4 5 1 2 5 3 5 2 4
4 2 3 4 4 6 5 6 5 4
5 6 3 4 3 7 5 6 5 6
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4
Measures  
of Variability

4.1     Defining Variability

4.2     The Range

4.3     Standard Deviation and Variance 
for a Population

4.4     Standard Deviation and Variance 
for a Sample

4.5     More About Variance and 
Standard Deviation

Summary

Focus on Problem Solving

Demonstration 4.1

Problems

Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.

Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter or  
section before proceeding.

•	 Summation	notation	(Chapter	1)
•	 Central	tendency	(Chapter	3)
	 •	 Mean
	 •	 Median
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DEfining VARiAbiliTy

The term variability has much the same meaning in statistics as it has in everyday 
language; to say that things are variable means that they are not all the same. In sta-
tistics, our goal is to measure the amount of variability for a particular set of scores: 
a distribution. In simple terms, if the scores in a distribution are all the same, then 
there is no variability. If there are small differences between scores, then the vari-
ability is small, and if there are large differences between scores, then the variability 
is large.

Variability provides a quantitative measure of the differences between scores in 
a distribution and describes the degree to which the scores are spread out or clus-
tered together.

Figure 4.1 shows two distributions of familiar values for the population of adult 
males: Part (a) shows the distribution of men’s heights (in inches), and part (b) shows 
the distribution of men’s weights (in pounds). Notice that the two distributions differ in 
terms of central tendency. The mean height is 70 inches (5 feet, 10 inches) and the mean 
weight is 170 pounds. In addition, notice that the distributions differ in terms of vari-
ability. For example, most heights are clustered close together, within 5 or 6 inches of 
the mean. On the other hand, weights are spread over a much wider range. In the weight 
distribution it is not unusual to find individuals who are located more than 30 pounds 
away from the mean, and it would not be surprising to find two individuals whose 
weights differ by more than 30 or 40 pounds. The purpose for measuring variability 
is to obtain an objective measure of how the scores are spread out in a distribution. In 
general, a good measure of variability serves two purposes:

 1. Variability describes the distribution. Specifically, it tells whether the scores 
are clustered close together or are spread out over a large distance. Usually, 
variability is defined in terms of distance. It tells how much distance to expect 
between one score and another, or how much distance to expect between an 
individual score and the mean. For example, we know that the heights for most 
adult males are clustered close together, within 5 or 6 inches of the average. 
Although more extreme heights exist, they are relatively rare.

4.1

D e f i n i t i o n

Figure 4.1

Population distribution of adult heights and adult weights.
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 2. Variability measures how well an individual score (or group of scores) rep-
resents the entire distribution. This aspect of variability is very important for 
inferential statistics, in which relatively small samples are used to answer ques-
tions about populations. For example, suppose that you selected one person to 
represent the entire population. Because most adult males have heights that are 
within a few inches of the population average (the distances are small), there 
is a very good chance that you would select someone whose height is within 
6 inches of the population mean. On the other hand, the scores are much more 
spread out (greater distances) in the distribution of weights. In this case, you 
probably would not obtain someone whose weight was within 6 pounds of the 
population mean. Thus, variability provides information about how much error 
to expect if you are using a sample to represent a population.

In this chapter, we consider three different measures of variability: the range, stan-
dard deviation, and the variance. Of these three, the standard deviation and the related 
measure of variance are by far the most important.

THE RAngE

The range is the distance covered by the scores in a distribution, from the smallest score 
to the largest score. When the scores are measurements of a continuous variable, the 
range can be defined as the difference between the upper real limit (URL) for the largest 
score (Xmax) and the lower real limit (LRL) for the smallest score (Xmin).

range 5 URL for Xmax 2 LRL for Xmin

If the scores have values from 1 to 5, for example, the range is 5.5 2 0.5 5 5 points. 
When the scores are whole numbers, this definition of the range is also a measure of the 
number of measurement categories. If every individual is classified as either 1, 2, 3, 4, 
or 5, then there are five measurement categories and the range is 5 points.

Defining the range as the number of measurement categories also works for discrete 
variables that are measured with numerical scores. For example, if you are measuring 
the number of children in a family and the data produce values from 0 to 4, then there 
are five measurement categories (0, 1, 2, 3, and 4) and the range is 5 points. By this 
definition, when the scores are all whole numbers, the range can be obtained by

X
max

 2 X
min

 1 1.

A commonly used alternative definition of the range simply measures the distance 
between the largest score (X

max
) and the smallest score (X

min
), without any reference to 

real limits.

range 5 Xmax 2 Xmax

By this definition, scores having values from 1 to 5 cover a range of only 4 points. 
Many computer programs, such as SPSS, use this definition. For discrete variables, 
which do not have real limits, this definition is often considered more appropriate. Also, 
this definition works well for variables with precisely defined upper and lower boundar-
ies. For example, if you are measuring proportions of an object, like pieces of a pizza, 
you can obtain values such as 1

8 , 1
4 , 1

2 , 3
4 , and so on. Expressed as decimal values, the 

proportions range from 0 to 1. You can never have a value less than 0 (none of the pizza) 
and you can never have a value greater than 1 (all of the pizza). Thus, the complete set 

4.2

Continuous and discrete 
variables were discussed in 
Chapter 1 on pages 20-22.
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of proportions is bounded by 0 at one end and by 1 at the other. As a result, the propor-
tions cover a range of 1 point.

Using either definition, the range is probably the most obvious way to describe how 
spread out the scores are—simply find the distance between the maximum and the 
minimum scores. The problem with using the range as a measure of variability is that it 
is completely determined by the two extreme values and ignores the other scores in the 
distribution. Thus, a distribution with one unusually large (or small) score has a large 
range even if the other scores are all clustered close together.

Because the range does not consider all of the scores in the distribution, it often does not 
give an accurate description of the variability for the entire distribution. For this reason, the 
range is considered to be a crude and unreliable measure of variability. Therefore, in most 
situations, it does not matter which definition you use to determine the range.

sTAnDARD DEViATion AnD VARiAnCE  
foR A PoPulATion

The standard deviation is the most commonly used and the most important measure 
of variability. Standard deviation uses the mean of the distribution as a reference point 
and measures variability by considering the distance between each score and the mean.

In simple terms, the standard deviation provides a measure of the standard, or aver-
age, distance from the mean, and describes whether the scores are clustered closely 
around the mean or are widely scattered. The fundamental definition of the standard 
deviation is the same for both samples and populations, but the calculations differ 
slightly. We look first at the standard deviation as it is computed for a population, and 
then turn our attention to samples in Section 4.4.

Although the concept of standard deviation is straightforward, the actual equations  
appear complex. Therefore, we begin by looking at the logic that leads to these equa-
tions. If you remember that our goal is to measure the standard, or typical, distance from 
the mean, then this logic and the equations that follow should be easier to remember.

Step 1 The first step in finding the standard distance from the mean is to determine 
the deviation, or distance from the mean, for each individual score. By definition, the 
deviation for each score is the difference between the score and the mean.

Deviation is distance from the mean: 

 deviation score 5 X 2 m

For a distribution of scores with m 5 50, if your score is X 5 53, then your  
deviation score is

X 2 m 5 53 2 50 5 3

If your score is X 5 45, then your deviation score is

X 2 m 5 45 2 50 5 25

Notice that there are two parts to a deviation score: the sign (1 or 2) and the num-
ber. The sign tells the direction from the mean—that is, whether the score is located 
above (1) or below (2) the mean. The number gives the actual distance from the mean. 

4.3

The Process of 
comPuTing sTandard 

deviaTion

D e f i n i t i o n

A deviation score is often 
represented by a lowercase 
letter x.
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For example, a deviation score of 26 corresponds to a score that is below the mean by 
a distance of 6 points.

Step 2 Because our goal is to compute a measure of the standard distance from the 
mean, the obvious next step is to calculate the mean of the deviation scores. To compute 
this mean, you first add up the deviation scores and then divide by N. This process is 
demonstrated in the following example.

We start with the following set of N 5 4 scores. These scores add up to oX 5 12, so the 
mean is m 5 12

4 5 3. For each score, we have computed the deviation. 

X X 2 m

8 15
1 22
3   0
0 23

0 5 o(X 2 m)

Note that the deviation scores add up to zero. This should not be surprising if you 
remember that the mean serves as a balance point for the distribution. The total of the 
distances above the mean is exactly equal to the total of the distances below the mean 
(see page 63). Thus, the total for the positive deviations is exactly equal to the total 
for the negative deviations, and the complete set of deviations always adds up to zero.

Because the sum of the deviations is always zero, the mean of the deviations is also 
zero and is of no value as a measure of variability. Specifically, it is zero if the scores 
are closely clustered and it is zero if the scores are widely scattered. You should note, 
however, that the constant value of zero can be useful in other ways. Whenever you are 
working with deviation scores, you can check your calculations by making sure that the 
deviation scores add up to zero.

Step 3 The average of the deviation scores does not work as a measure of variability  
because it is always zero. Clearly, this problem results from the positive and negative values 
canceling each other out. The solution is to get rid of the signs (1 and 2). The standard 
procedure for accomplishing this is to square each deviation score. Using the squared  
values, you then compute the mean squared deviation, which is called population variance.

Population variance equals the mean squared deviation. Variance is the average 
squared distance from the mean.

Note that the process of squaring deviation scores does more than simply get rid 
of plus and minus signs. It results in a measure of variability based on squared dis-
tances. Although variance is valuable for some of the inferential statistical methods 
covered later, the concept of squared distance is not an intuitive or easy to understand 
descriptive measure. For example, it is not particularly useful to know that the squared 
distance from New York City to Boston is 26,244 miles squared. The squared value 
becomes meaningful, however, if you take the square root. For example, the distance 
from New York City to Boston is 26,244 5 162 miles. Therefore, we continue the 
process with one more step.

E x A M P l E  4 . 1

D e f i n i t i o n
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Step 4 Remember that our goal is to compute a measure of the standard distance 
from the mean. Variance, which measures the average squared distance from the mean, 
is not exactly what we want. The final step simply takes the square root of the variance 
to obtain the standard deviation, which measures the standard distance from the mean.

Standard deviation is the square root of the variance and provides a measure of 
the standard, or average, distance from the mean.

Standard deviation variance=

Figure 4.2 shows the overall process of computing variance and standard deviation. 
Remember that our goal is to measure variability by finding the standard distance from 
the mean. However, we cannot simply calculate the average of the distances because 
this value will always be zero. Therefore, we begin by squaring each distance, then we 
find the average of the squared distances, and finally we take the square root to obtain 
a measure of the standard distance. Technically, the standard deviation is the square 
root of the average squared deviation. Conceptually, however, the standard deviation 
provides a measure of the average distance from the mean.

Because the standard deviation and variance are defined in terms of distance from the 
mean, these measures of variability are used only with numerical scores that are obtained 
from measurements on an interval or a ratio scale. Recall from Chapter 1 (page 24) that 
these two scales are the only ones that provide information about distance; nominal and 
ordinal scales do not. Also, recall from Chapter 3 (page 77) that it is inappropriate to 
compute the mean for ordinal data and impossible to compute the mean for nominal data. 
Because the mean is a critical component in the calculation of standard deviation and 

D e f i n i t i o n

Square each
deviation

DEAD END
This value is always zero.

Take the square
root of the variance. This
is the standard deviation
(the standard distance

from the mean).

Find the average of 
the squared deviations.

This is the variance.

Find the deviation
(distance from the mean)

for each score.

Add the deviations and 
compute the average.

Figure 4.2

The calculation of variance 
and standard deviation.
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variance, the same restrictions that apply to the mean also apply to these two measures of 
variability. Specifically, the mean, the standard deviation, and the variance should be used 
only with numerical scores from interval or ordinal scales of measurement.

Although we still have not presented any formulas for variance or standard devia-
tion, you should be able to compute these two statistical values from their definitions. 
The following example demonstrates this process.

We will calculate the variance and standard deviation for the following population of 
N 5 5 scores:

 1  9  5  8  7

Remember that the purpose of standard deviation is to measure the standard distance 
from the mean, so we begin by computing the population mean. These five scores add up 
to oX 5 30 so the mean is m 5 30

5
5 6. Next, we find the deviation (distance from the 

mean) for each score and then square the deviations. Using the population mean m 5 6, 
these calculations are shown in the following table. 

Score X
Deviation  

X 2 m

Squared 
Deviation 
(X 2 m)2

1 25 25

9 3 9
5 21 1

8 2 4
7 1 1

40 5 the sum of the squared deviations

For this set of N 5 5 scores, the squared deviations add up to 40. The mean of the 
squared deviations, the variance, is 40

5 5 8, and the standard deviation is 8  5 2.83.

You should note that a standard deviation of 2.83 is a sensible answer for this distri-
bution. The five scores in the population are shown in a histogram in Figure 4.3 so that 
you can see the distances more clearly. Note that the scores closest to the mean are only  
1 point away. Also, the score farthest from the mean is 5 points away. For this distribution, 

E x A M P l E  4 . 2
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Figure 4.3

A frequency distribution 
histogram for a population 
of N 5 5 scores. The mean 
for this population is µ 5 6. 
The smallest distance from 
the mean is 1 point, and the 
largest distance is 5 points. 
The standard distance (or 
standard deviation) should be 
between 1 and 5 points.
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the largest distance from the mean is 5 points and the smallest distance is 1 point. Thus, 
the standard distance should be somewhere between 1 and 5. By looking at a distribution 
in this way, you should be able to make a rough estimate of the standard deviation. In this 
case, the standard deviation should be between 1 and 5, probably around 3 points. The 
value we calculated for the standard deviation is in excellent agreement with this estimate.

Making a quick estimate of the standard deviation can help you avoid errors in calcula-
tion. For example, if you calculated the standard deviation for the scores in Figure 4.3 and 
obtained a value of 12, you should realize immediately that you have made an error. If the 
biggest deviation is only 5 points, then it is impossible for the standard deviation to be 12.

 1. Briefly explain what is measured by the standard deviation and what is measured 
by the variance.

 2. The deviation scores are calculated for each individual in a population of N 5 4. The 
first three individuals have deviations of 12, 14, and 21. What is the deviation for 
the fourth individual?

 3. What is the standard deviation for the following set of N 5 5 scores: 10, 10, 10, 
10, and 10? (Note: You should be able to answer this question directly from the 
definition of standard deviation, without doing any calculations.)

 4. Calculate the variance for the following population of N 5 5 scores: 4, 0, 7, 1, 3.

 1. Standard deviation measures the standard distance from the mean, and variance measures 
the average squared distance from the mean.

 2. The deviation scores for the entire set must add up to zero. The first three deviations add to 
15 so the fourth deviation must be 25.

 3. Because there is no variability (the scores are all the same), the standard deviation is zero.

 4. For these scores, the sum of the squared deviations is 30 and the variance is 30
5

 5 6.

l E A R n i n g  C H E C k

AnswERs

The concepts of standard deviation and variance are the same for both samples and 
populations. However, the details of the calculations differ slightly, depending on 
whether you have data from a sample or from a complete population. We first consider 
the formulas for populations and then look at samples in Section 4.4.

Recall that variance is defined as the mean of the squared deviations. This mean is 
computed in exactly the same way you compute any mean: First find the sum, and then 
divide by the number of scores.

variance mean squared deviation
sum of squa

5 5
rred deviations

number of scores

The sum of squared deviations (SS) The value in the numerator of this equation, the 
sum of the squared deviations, is a basic component of variability, and we focus on it. 
To simplify things, it is identified by the notation SS (for sum of squared deviations), 
and it generally is referred to as the sum of squares.

SS, or sum of squares, is the sum of the squared deviation scores.

You need to know two formulas to compute SS. These formulas are algebraically 
equivalent (they always produce the same answer), but they look different and are used 
in different situations.

formulas for 
PoPulaTion variance 

and sTandard 
deviaTion

D e f i n i t i o n
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The Definitional Formula for SS The first of these formulas is called the defini-
tional formula because the symbols in the formula literally define the process of adding 
up the squared deviations:

Definitional Formula: SS 5 o(X – m)2 (4.1)

To find the sum of the squared deviations, the formula instructs you to perform the 
following sequence of calculations:

 1. Find each deviation score (X 2 m).

 2. Square each deviation score (X 2 m)2.

 3. Add the squared deviations.

The result is SS, the sum of the squared deviations. Note that this is the process we 
used (without a formula) to compute the sum of the squared deviations in Example 4.2. 
The following example demonstrates the formula.

We compute SS for the following set of N 5 4 scores. These scores have a sum of 
oX 5 8, so the mean is m 5 8

4 5 2. The following table shows the deviation and the 
squared deviation for each score. The sum of the squared deviation is SS 5 22.

Score X
Deviation  

X 2 m

Squared 
Deviation 
(X 2 m)2

1 21 1 oX 5 8
0 22 4 m 5 2
6 14 16 o(X 2 m)2 5 22
1 21 1

The Computational Formula for SS Although the definitional formula is the 
most direct method for computing SS, it can be awkward to use. In particular, when 
the mean is not a whole number, the deviations all contain decimals or fractions, 
and the calculations become difficult. In addition, calculations with decimal values 
introduce the opportunity for rounding error, which can make the result less accu-
rate. For these reasons, an alternative formula has been developed for computing SS. 
The alternative, known as the computational formula, performs calculations with the 
scores (not the deviations) and therefore minimizes the complications of decimals 
and fractions.

Computational formula: SS X
X

N
=

( )


2

2

2  (4.2)

The first part of this formula directs you to square each score and then add the 
squared values, oX2. In the second part of the formula, you find the sum of the scores, 
oX, then square this total and divide the result by N. Finally, subtract the second part 
from the first. The use of this formula is shown in Example 4.4 with the same scores 
that we used to demonstrate the definitional formula.

E x A M P l E  4 . 3
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The computational formula can be used to calculate SS for the same set of N 5 4 scores 
we used in Example 4.3. Note that the formula requires the calculation of two sums: 
first, compute oX, and then square each score and compute oX2. These calculations 
are shown in the following table. The two sums are used in the formula to compute SS.

X X2

1 1
0 0
6 36
1 1

  

SS X
X

N
5 2

5 2

5 2

5 2

5


2

2

2

38
8

4

38
64

4
38 16

22

( )

( )

oX 5 8 oX2 5 38

Note that the two formulas produce exactly the same value for SS. Although the for-
mulas look different, they are in fact equivalent. The definitional formula provides the 
most direct representation of the concept of SS; however, this formula can be awkward 
to use, especially if the mean includes a fraction or decimal value. If you have a small 
group of scores and the mean is a whole number, then the definitional formula is fine; 
otherwise the computational formula is usually easier to use.

With the definition and calculation of SS behind you, the equations for variance and 
standard deviation become relatively simple. Remember that variance is defined as the 
mean squared deviation. The mean is the sum of the squared deviations divided by N, 
so the equation for the population variance is

variance 5
SS

N

Standard deviation is the square root of variance, so the equation for the population 
standard deviation is

standard deviation 5
SS

N

There is one final bit of notation before we work completely through an example 
computing SS, variance, and standard deviation. Like the mean (m), variance and standard 
deviation are parameters of a population and are identified by Greek letters. To identify the 
standard deviation, we use the Greek letter sigma (the Greek letter s, standing for standard 
deviation). The capital letter sigma (o) has been used already, so we now use the lowercase 
sigma, s, as the symbol for the population standard deviation. To emphasize the relation-
ship between standard deviation and variance, we use s2 as the symbol for population 
variance (standard deviation is the square root of the variance). Thus,

population standard deviation 5 s 5 s 52 SS

N
 (4.3)

population variance 5 s 52 SS

N  (4.4)

E x A M P l E  4 . 4

final formulas  
and noTaTion

In the same way that sum 
of squares, or SS, is used to 
refer to the sum of squared 
deviations, the term mean 
square, or MS, is often used 
to refer to variance, which is 
the mean squared deviation.
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Earlier, in Examples 4.3 and 4.4, we computed the sum of squared deviations for a popu-
lation of N 5 4 scores (1, 0, 6, 1) and obtained SS 5 22. For this population, the variance is

s 5 5 52 22

4
5 50

SS

N
.

and the standard deviation is s 5 55 50 2 345. .

 1. Find the sum of the squared deviations, SS, for each of the following populations. 
Note that the definitional formula works well for one population but the computa-
tional formula is better for the other.

 Population 1:  3  1  5  1
 Population 2:  6  4  2  0  9  3

 2. a.  Sketch a histogram showing the frequency distribution for the following popu-
lation of N 5 6 scores: 12, 0, 1, 7, 4, 6. Locate the mean in your sketch, and 
estimate the value of the standard deviation.

 b.  Calculate SS, variance, and the standard deviation for these scores. How well 
does your estimate compare with the actual standard deviation?

 1. For population 1, the mean is not a whole number (M 5 2.5) and the computational formula 
is better and produces SS 5 11. The mean is a whole number (M 5 4) and definitional 
formula works well for population 2, which has SS 5 50.

 2. a.  Your sketch should show a mean of m 5 5. The scores closest to the mean are X 5 4 and 
X 5 6, both of which are only 1 point away. The score farthest from the mean is X 5 12, 
which is 7 points away. The standard deviation should have a value between 1 and 7, prob-
ably around 4 points.

   b. For these scores, SS 5 96, the variance is 
96
6 5 16, and the standard deviation is s 5 4.

l E A R n i n g  C H E C k

AnswERs

sTAnDARD DEViATion AnD VARiAnCE foR A sAMPlE

The goal of inferential statistics is to use the limited information from samples to 
draw general conclusions about populations. The basic assumption of this process 
is that samples should be representative of the populations from which they come. 
This assumption poses a special problem for variability because samples consistently 
tend to be less variable than their populations. An example of this general tendency 
is shown in Figure 4.4. Notice that a few extreme scores in the population tend to 
make the population variability relatively large. However, these extreme values are 
unlikely to be obtained when you are selecting a sample, which means that the sample 
variability is relatively small. The fact that a sample tends to be less variable than its 
population means that sample variability gives a biased estimate of population vari-
ability. This bias is in the direction of underestimating the population value rather 
than being right on the mark. (The concept of a biased statistic is discussed in more 
detail in Section 4.5.)

Fortunately, the bias in sample variability is consistent and predictable, which 
means it can be corrected. For example, if the speedometer in your car consistently 
shows speeds that are 5 mph slower than you are actually going, it does not mean that 

4.4
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the speedometer is useless. It simply means that you must make an adjustment to the 
speedometer reading to get an accurate speed. In the same way, we make an adjust-
ment in the calculation of sample variance. The purpose of the adjustment is to make 
the resulting value for sample variance an accurate and unbiased representative of the 
population variance.

The calculations of variance and standard deviation for a sample follow the same 
steps that were used to find population variance and standard deviation. First, calculate 
the sum of squared deviations (SS). Second, calculate the variance. Third, find the 
square root of the variance, which is the standard deviation.

The sum of squared deviations for a sample Except for minor changes in notation, 
calculating the sum of the squared deviations, SS, is the same for a sample as it is for 
a population. The changes in notation involve using M for the sample mean instead of 
m, and using n (instead of N) for the number of scores. For example, the definitional 
formula for SS for a sample is

Definitional formula: SS X M= ( ) 2
2  (4.5)

Note that the sample formula has exactly the same structure as the population for-
mula (Equation 4.1 on p. 97) and instructs you to find the sum of the squared deviations 
using the following sequence of three steps:

 1. Find the deviation from the mean for each score: deviation 5 X 2 M

2. Square each deviation: squared deviation 5 (X 2 M)2

3. Add the squared deviations: SS 5 o(X 2 M)2

Population
variability

Population
distribution

SampleX X X X XX XX

Sample
variability

X X

Figure 4.4

The population of adult heights forms a 
normal distribution. If you select a sample 
from this population, you are most likely 
to obtain individuals who are near aver-
age in height. As a result, the scores in the 
sample will be less variable (spread out) 
than the scores in the population.

A sample statistic is said to 
be biased if, on average, it 
consistently overestimates or 
underestimates the  
corresponding population 
parameter.
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The value of SS also can be obtained using a computational formula. Except for one 
minor difference in notation (using n in place of N), the computational formula for SS 
is the same for a sample as it was for a population (see Equation 4.2). Using sample 
notation, this formula is:

Computational formula: SS X
X

n
=

( )


2

2

2
 (4.6)

Formulas for sample variance and sample standard deviation Again, calcu-
lating SS for a sample is exactly the same as for a population, except for minor 
changes in notation. After you compute SS, however, it becomes critical to differen-
tiate between samples and populations. To correct for the bias in sample variability,  
it is necessary to make an adjustment in the formulas for sample variance and  
standard deviation. With this in mind, sample variance (identified by the symbol s2) 
is defined as

sample variance 5 5
2

s
SS

n
2

1
 (4.7)

Sample standard deviation (identified by the symbol s) is simply the square root of 
the variance.

sample standard deviation 5 5 5
2

s s
SS

n
2

1
 (4.8)

Notice that the sample formulas divide by n 2 1, unlike the population formulas, 
which divide by N (see Equations 4.3 and 4.4). This is the adjustment that is necessary 
to correct for the bias in sample variability. The effect of the adjustment is to increase 
the value that you obtain. Dividing by a smaller number (n 2 1 instead of n) produces 
a larger result and makes sample variance an accurate and unbiased estimator of popu-
lation variance. The following example demonstrates the calculation of variance and 
standard deviation for a sample.

We have selected a sample of n 5 8 scores from a population. The scores are 4, 6,  
5, 11, 7, 9, 7, 3. The frequency distribution histogram for this sample is shown in 
Figure 4.5. Before we begin any calculations, you should be able to look at the sample 
distribution and make a preliminary estimate of the outcome. Remember that standard 
deviation measures the standard distance from the mean. For this sample the mean is 
M 5 

52
8 5 6.5. The scores closest to the mean are X 5 6 and X 5 7, both of which 

are exactly 0.5 points away. The score farthest from the mean is X 5 2, which is  
4.5 points away. With the smallest distance from the mean equal to 0.5 and the larg-
est distance equal to 4.5, we should obtain a standard distance somewhere between  
0.5 and 4.5, probably around 2.5.

We begin the calculations by finding the value of SS for this sample. Because 
the mean is not a whole number (M 5 6.5), the computational formula is easier to 
use. The scores, and the squared scores, needed for this formula are shown in the 
following table.

E x A M P l E  4 . 5

Remember, sample variabil-
ity tends to underestimate 
population variability unless 
some correction is made.
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Scores X Squared Scores X2

4 16
6 36
5 25
11 121
7 49
9 81
7 49
3 9

oX 5 52 oX2 5 386

Using the two sums,

SS X
X

n
5 2 5 2

5 2

5


2

2 2

386
52

8
386 338

48

( ) ( )

The sum of squared deviations for this sample is SS 5 48. Continuing the  
calculations,

sample variance 5 5
2

5
2

5s
SS

n
2

1

48

8 1
6 86.

Finally, the standard deviation is

s 5 s2 5 6 86.  5 2.62

Note that the value we obtained is in excellent agreement with our preliminary pre-
diction (see Figure 4.5).

Remember that the formulas for sample variance and standard deviation were con-
structed so that the sample variability would provide a good estimate of population 
variability. For this reason, the sample variance is often called estimated population 

1 2 3 4 5 6 7 8 9 10 11
X

 = 6.5M

f

4.5

1

2

3 1
2/

Figure 4.5

The frequency distribution 
histogram for a sample  
of n 5 8 scores. The 
sample mean is M 5 6.5. 
The smallest distance 
from the mean is  
0.5 points, and the largest 
distance from the mean is 
4.5 points. The standard 
distance (standard devia-
tion) should be between 
0.5 and 4.5 points, or 
about 2.5.
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variance, and the sample standard deviation is called estimated population standard 
deviation. When you have only a sample to work with, the variance and standard de-
viation for the sample provide the best possible estimates of the population variability.

Although the concept of a deviation score and the calculation of SS are almost exactly 
the same for samples and populations, the minor differences in notation are really very 
important. Specifically, with a population, you find the deviation for each score by mea-
suring its distance from the population mean, m. With a sample, on the other hand, the 
value of m is unknown and you must measure distances from the sample mean. Because 
the value of the sample mean varies from one sample to another, you must first compute 
the sample mean before you can begin to compute deviations. However, calculating 
the value of M places a restriction on the variability of the scores in the sample. This 
restriction is demonstrated in the following example.

Suppose we select a sample of n 5 3 scores and compute a mean of M 5 5. The first 
two scores in the sample have no restrictions; they are independent of each other and 
they can have any values. For this demonstration, we assume that we obtained X 5 2 
for the first score and X 5 9 for the second. At this point, however, the third score in 
the sample is restricted.

X A sample of n 5 3 scores with a mean of M 5 5.

2
9
— ← What is the third score?

For this example, the third score must be X 5 4. The reason that the third score is 
restricted to X 5 4 is that the sample has a mean of M 5 5. For n 5 3 scores to have 
a mean of 5, the scores must have a total of oX 5 15. Because the first two scores add 
up to 11 (9 1 2), the third score must be X 5 4.

In Example 4.6, the first two out of three scores were free to have any values, but 
the final score was dependent on the values chosen for the first two. In general, with a 
sample of n scores, the first n 2 1 scores are free to vary, but the final score is restricted. 
As a result, the sample is said to have n 2 1 degrees of freedom.

For a sample of n scores, the degrees of freedom, or df, for the sample variance 
are defined as df 5 n 2 1. The degrees of freedom determine the number of 
scores in the sample that are independent and free to vary.

The n 2 1 degrees of freedom for a sample is the same n 2 1 that is used in the for-
mulas for sample variance and standard deviation. Remember that variance is defined 
as the mean squared deviation. As always, this mean is computed by finding the sum 
and dividing by the number of scores:

mean
sum

number
5

To calculate sample variance (mean squared deviation), we find the sum of the 
squared deviations (SS) and divide by the number of scores that are free to vary. This 
number is n 2 1 5 df. Thus, the formula for sample variance is

samPle variabiliTy 
and degrees of 

freedom

E x A M P l E  4 . 6

D e f i n i t i o n
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s2 5
sum of squared deviations

number of scoress free to vary
5 5

2

SS

df

SS

n 1

Later in this book, we use the concept of degrees of freedom in other situations. For 
now, remember that knowing the sample mean places a restriction on sample variability. 
Only n 2 1 of the scores are free to vary; df 5 n 2 1.

 1. a.  Sketch a histogram showing the frequency distribution for the following sample 
of n 5 5 scores: 3, 1, 9, 4, 3. Locate the mean in your sketch, and estimate the 
value of the sample standard deviation.

 b.  Calculate SS, variance, and standard deviation for this sample. How well does 
your estimate from part a compare with the real standard deviation?

 2. For the following set of scores: 1, 5, 7, 3, 4

 a.  Assume that this is a population of N 5 5 scores and compute SS and variance 
for the population.

 b.  Assume that this is a sample of n 5 5 scores and compute SS and variance for 
the sample.

 3. Explain why the formula for sample variance divides SS by n 2 1 instead of dividing 
by n.

 1. a.  Your graph should show a sample mean of M 5 4. The score farthest from the mean is 
X 5 9 (which is 5 points away), and the closest score is X 5 3 (which is 1 point away). 
You should estimate the standard deviation to be between 1 and 5 points, probably 
around 3 points.

 b.  For this sample, SS 5 36; the sample variance is 
36
4 5 9; the sample standard deviation is 

9  5 3.

 2. a. SS 5 20 and the population variance is 20
5

5 4.

 b.  SS 5 20 and the sample variance is 
20
4 5 5.

 3. Without some correction, sample variability consistently underestimates the population vari-
ability. Dividing by a smaller number (n 2 1 instead of n) increases the value of the sample 
variance and makes it an unbiased estimate of the population variance.

l E A R n i n g  C H E C k

AnswERs

MoRE AbouT VARiAnCE AnD sTAnDARD DEViATion

In frequency distribution graphs, we identify the position of the mean by drawing a ver-
tical line and labeling it with m or M. Because the standard deviation measures distance 
from the mean, it is represented by a line or an arrow drawn from the mean outward 
for a distance equal to the standard deviation and labeled with a s or an s. Figure 4.6(a) 
shows an example of a population distribution with a mean of m 5 80 and a standard 
deviation of s 5 8, and Figure 4.6(b) shows the frequency distribution for a sample 
with a mean of M 5 16 and a standard deviation of s 5 2. For rough sketches, you can 
identify the mean with a vertical line in the middle of the distribution. The standard 
deviation line should extend approximately halfway from the mean to the most extreme 
score. [Note: In Figure 4.6(a) we show the standard deviation as a line to the right of the 

4.5

PresenTing 
The mean and 

sTandard deviaTion 
in a frequency 

disTribuTion graPh
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mean. You should realize that we could have drawn the line pointing to the left, or we 
could have drawn two lines (or arrows), with one pointing to the right and one pointing 
to the left, as in Figure 4.6(b). In each case, the goal is to show the standard distance 
from the mean.]

Earlier we noted that sample variability tends to underestimate the variability in the cor-
responding population. To correct for this problem we adjusted the formula for sample 
variance by dividing by n 2 1 instead of dividing by n. The result of the adjustment is 
that sample variance provides a much more accurate representation of the population 
variance. Specifically, dividing by n 2 1 produces a sample variance that provides an 
unbiased estimate of the corresponding population variance. This does not mean that 
each individual sample variance is exactly equal to its population variance. In fact, 
some sample variances overestimate the population value and some underestimate it. 
However, the average of all the sample variances produces an accurate estimate of the 
population variance. This is the idea behind the concept of an unbiased statistic.

A sample statistic is unbiased if the average value of the statistic is equal to the 
population parameter. (The average value of the statistic is obtained from all the 
possible samples for a specific sample size, n.)

A sample statistic is biased if the average value of the statistic either underesti-
mates or overestimates the corresponding population parameter.

The following example demonstrates the concept of biased and unbiased statistics.

We begin with a population that consists of exactly N 5 6 scores: 0, 0, 3, 3, 9, 9. With a 
few calculations you should be able to verify that this population has a mean of m 5 4 
and a variance of s2 5 14.

Next, we select samples of n 5 2 scores from this population. In fact, we obtain every 
single possible sample with n 5 2. The complete set of samples is listed in Table 4.1. 
Notice that the samples are listed systematically to ensure that every possible sample is 
included. We begin by listing all the samples that have X 5 0 as the first score, then all 

samPle variance 
as an unbiased 

sTaTisTic

D e f i n i t i o n s

E x A M P l E  4 . 7

3

2

1

13 14

(b)

σ � 8

µ � 80

(a)

15 16 17 18 19

f

M � 16

s � 2 s � 2

x

We have structured this 
example to mimic “sampling 
with replacement,” which is 
covered in Chapter 6.

Figure 4.6

Showing means and standard deviations in frequency distribution graphs. (a) A population 
distribution with a mean of µ 5 80 and a standard deviation of s 5 8. (b) A sample with a 
mean of M 5 16 and a standard deviation of s 5 2.
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the samples with X 5 3 as the first score, and so on. Notice that the table shows a total 
of 9 samples.

Finally, we have computed the mean and the variance for each sample. Note that 
the sample variance has been computed two different ways. First, we examine what 
happens if the sample variance is computed as the mean squared deviation (SS divided  
by n) without any correction for bias. Second, we examine the correct sample variance 
for which SS is divided by n 2 1 to produce an unbiased measure of variance. You 
should verify our calculations by computing one or two of the values for yourself. The 
complete set of sample means and sample variances is presented in Table 4.1.

First, consider the column of biased sample variances, which were calculated by 
dividing by n. These 9 sample variances add up to a total of 63, which produces an 
average value of 63

9 5 7. The original population variance, however, is s2 5 14. Note 
that the average of the sample variances is not equal to the population variance. If the 
sample variance is computed by dividing by n, the resulting values do not produce an 
accurate estimate of the population variance. On average, these sample variances under-
estimate the population variance and, therefore, are biased statistics.

Next, consider the column of sample variances that are computed using n 2 1. Although 
the population has a variance of s2 5 14, you should notice that none of the samples has 
a variance exactly equal to 14. However, if you consider the complete set of sample vari-
ances, you will find that the 9 values add up to a total of 126, which produces an average 
value of 126

9 5 14. Thus, the average of the sample variances is exactly equal to the original 
population variance. On average, the sample variance (computed using n 2 1) produces an 
accurate, unbiased estimate of the population variance.

Finally, direct your attention to the column of sample means. For this example, the 
original population has a mean of m 5 4. Although none of the samples has a mean  
exactly equal to 4, if you consider the complete set of sample means, you will find that 
the 9 sample means add up to a total of 36, so the average of the sample means is 36

9
 5 4. 

Note that the average of the sample means is exactly equal to the population mean. Again, 
this is what is meant by the concept of an unbiased statistic. On average, the sample values 
provide an accurate representation of the population. In this example, the average of the 
9 sample means is exactly equal to the population mean.

In summary, both the sample mean and the sample variance (using n 2 1) are  
examples of unbiased statistics. This fact makes the sample mean and sample variance 
extremely valuable for use as inferential statistics. Although no individual sample is 
likely to have a mean and variance exactly equal to the population values, both the 

TAblE 4.1

The set of all the possible  
samples for n 5 2 selected from 
the population described in 
Example 4.7. The mean is com-
puted for each sample, and the  
variance is computed two dif-
ferent ways: (1) dividing by n, 
which is incorrect and produces 
a biased statistic; and (2) divid-
ing by n 2 1, which is correct 
and produces an unbiased sta-
tistic.

Sample Statistics

Sample
First 
Score

Second 
Score

Mean 
M

Biased  
Variance  
(Using n)

Unbiased 
Variance 

(Using n 2 1)

1 0 0 0.00  0.00  0.00
2 0 3 1.50  2.25  4.50
3 0 9 4.50 20.25 40.50
4 3 0 1.50  2.25  4.50
5 3 3 3.00  0.00  0.00
6 3 9 6.00  9.00 18.00
7 9 0 4.50 20.25 40.50
8 9 3 6.00  9.00 18.00
9 9 9 9.00  0.00  0.00

 Totals 36.00 63.00 126.00
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sample mean and the sample variance, on average, do provide accurate estimates of the 
corresponding population values.

Because standard deviation requires extensive calculations, there is a tendency to get lost 
in the arithmetic and forget what standard deviation is and why it is important. Standard 
deviation is primarily a descriptive measure; it describes how variable, or how spread out, 
the scores are in a distribution. Behavioral scientists must deal with the variability that 
comes from studying people and animals. People are not all the same; they have different 
attitudes, opinions, talents, IQs, and personalities. Although we can calculate the average 
value for any of these variables, it is equally important to describe the variability. Standard 
deviation describes variability by measuring distance from the mean. In any distribu-
tion, some individuals are close to the mean, and others are relatively far from the mean. 
Standard deviation provides a measure of the typical, or standard, distance from the mean.

Describing an entire distribution Rather than listing all of the individual scores in a dis-
tribution, research reports typically summarize the data by reporting only the mean and the 
standard deviation. When you are given these two descriptive statistics, however, you should 
be able to visualize the entire set of data. For example, consider a sample with a mean of  
M 5 36 and a standard deviation of s 5 4. Although there are several different ways to 
picture the data, one simple technique is to imagine (or sketch) a histogram in which each 
score is represented by a box in the graph. For this sample, the data can be pictured as a pile 
of boxes (scores) with the center of the pile located at a value of M 5 36. The individual 
scores, or boxes, are scattered on both sides of the mean with some of the boxes relatively 
close to the mean and some farther away. As a rule of thumb, roughly 70% of the scores in 
a distribution are located within a distance of one standard deviation from the mean, and 
almost all of the scores (roughly 95%) are within two standard deviations of the mean. In 
this example, the standard distance from the mean is s 5 4 points, so your image should 
have most of the boxes within 4 points of the mean, and nearly all of the boxes within  
8 points. One possibility for the resulting image is shown in Figure 4.7.

Describing the location of individual scores Notice that Figure 4.7 not only shows 
the mean and the standard deviation, but also uses these two values to reconstruct the 
underlying scale of measurement (the X values along the horizontal line). The scale of 

sTandard deviaTion 
and descriPTive 

sTaTisTics

28 30 32 34 36 38 40 42 44 46

s � 4 s � 4

M � 36

Figure 4.7

A sample of n 5 20 scores with a mean of M 5 36 and a standard deviation of s 5 4.
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measurement helps to complete the picture of the entire distribution and relate each 
individual score to the rest of the group. In this example, you should realize that a score 
of X 5 34 is located near the center of the distribution, only slightly below the mean. 
On the other hand, a score of X 5 45 is an extremely high score, located far out in the 
right-hand tail of the distribution.

Notice that the relative position of a score depends in part on the size of the standard 
deviation. In Figure 4.6 (p. 105), for example, we show a population distribution with a 
mean of m 5 80 and a standard deviation of s 5 8, and a sample distribution with a mean 
of M 5 16 and a standard deviation of s 5 2. In the population distribution, a score that is  
4 points above the mean is slightly above average but is certainly not an extreme value. In 
the sample distribution, however, a score that is 4 points above the mean is an extremely 
high score. In each case, the relative position of the score depends on the size of the stan-
dard deviation. For the population, a deviation of 4 points from the mean is relatively small, 
corresponding to only half of the standard deviation. For the sample, on the other hand, a 
4-point deviation is very large, twice the size of the standard deviation.

The general point of this discussion is that the mean and standard deviation are not 
simply abstract concepts or mathematical equations. Instead, these two values should 
be concrete and meaningful, especially in the context of a set of scores. The mean and 
standard deviation are central concepts for most of the statistics that are presented in 
the following chapters. A good understanding of these two statistics will help you with 
the more complex procedures that follow (see Box 4.1).

Occasionally a set of scores is transformed by adding a constant to each score or by mul-
tiplying each score by a constant value. This happens, for example, when exposure to a 
treatment adds a fixed amount to each participant’s score or when you want to change 
the unit of measurement (to convert from minutes to seconds, multiply each score by 60). 
What happens to the standard deviation when the scores are transformed in this manner?

The easiest way to determine the effect of a transformation is to remember that the stan-
dard deviation is a measure of distance. If you select any two scores and see what happens 
to the distance between them, you also find out what happens to the standard deviation.

1. Adding a constant to each score does not change the standard deviation If you 
begin with a distribution that has a mean of m 5 40 and a standard deviation of s 5 10, what 

TransformaTions  
of scale

BOX
4.1

An AnAlogy foR THE MEAn AnD THE sTAnDARD DEViATion

Although the basic concepts of the mean and the stan-
dard deviation are not overly complex, the following 
analogy often helps students gain a more complete 
understanding of these two statistical measures.

In our local community, the site for a new high 
school was selected because it provides a central 
location. An alternative site on the western edge of 
the community was considered, but this site was re-
jected because it would require extensive busing for 
students living on the east side. In this example, the 
location of the high school is analogous to the con-
cept of the mean; just as the high school is located 

in the center of the community, the mean is located 
in the center of the distribution of scores. For each 
student in the community, it is possible to mea-
sure the distance between home and the new high 
school. Some students live only a few blocks from 
the new school and others live as much as 3 miles 
away. The average distance that a student must 
travel to school was calculated to be 0.80 miles. The 
average distance from the school is analogous to the 
concept of the standard deviation; that is, the stan-
dard deviation measures the standard distance from 
an individual score to the mean.
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happens to s if you add 5 points to every score? Consider any two scores in this distribution: 
Suppose, for example, that these are exam scores and that you had a score of X 5 41 and your 
friend had X 5 43. The distance between these two scores is 43 2 41 5 2 points. After add-
ing the constant, 5 points, to each score, your score would be X 5 46, and your friend would 
have X 5 48. The distance between scores is still 2 points. Adding a constant to every score 
does not affect any of the distances and, therefore, does not change the standard deviation. 
This fact can be seen clearly if you imagine a frequency distribution graph. If, for example, 
you add 5 points to each score, then every score in the graph is moved 5 points to the right. 
The result is that the entire distribution is shifted to a new position 5 points up the scale. 
Note that the mean moves along with the scores and is increased by 5 points. However, the  
variability does not change because each of the deviation scores (X 2 m) does not change.

2. Multiplying each score by a constant causes the standard deviation to be multi-
plied by the same constant Consider the same distribution of exam scores we looked 
at earlier. If m 5 40 and s 5 10, what would happen to s if each score were multiplied 
by 2? Again, we look at two scores, X 5 41 and X 5 43, with a distance between them 
equal to 2 points. After the scores have been multiplied by 2, these two scores become 
X 5 82 and X 5 86. Now the distance between scores is 4 points, twice the original 
distance. Multiplying each score causes each distance to be multiplied, so the standard 
deviation also is multiplied by the same amount.

in THE liTERATuRE
REPoRTing THE sTAnDARD DEViATion

In reporting the results of a study, the researcher often provides descriptive informa-
tion for both central tendency and variability. The dependent variables in psychology 
research are often numerical values obtained from measurements on interval or ratio 
scales. With numerical scores, the most common descriptive statistics are the mean 
(central tendency) and the standard deviation (variability), which are usually reported 
together. In many journals, especially those following APA style, the symbol SD is 
used for the sample standard deviation. For example, the results might state:

Children who viewed the violent cartoon displayed more aggressive responses  
(M 5 12.45, SD 5 3.7) than those who viewed the control cartoon (M 5 4.22, SD 5 1.04).

When reporting the descriptive measures for several groups, the findings may be 
summarized in a table. Table 4.2 illustrates the results of hypothetical data.

Sometimes the table also indicates the sample size, n, for each group. You should 
remember that the purpose of the table is to present the data in an organized, concise, 
and accurate manner.

TAblE 4.2

The number of aggressive  
responses in male and female 
children after viewing cartoons.

Type of Cartoon

Violent Control

Males M 5 15.72 M 5 6.94

SD 5 4.43 SD 5 2.26

Females M 5 3.47 M 5 2.61

SD 5 1.12 SD 5 0.98
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In very general terms, the goal of inferential statistics is to detect meaningful and sig-
nificant patterns in research results. The basic question is whether the patterns observed 
in the sample data reflect corresponding patterns that exist in the population, or are 
simply random fluctuations that occur by chance. Variability plays an important role 
in the inferential process because the variability in the data influences how easy it is to 
see patterns. In general, low variability means that existing patterns can be seen clearly, 
whereas high variability tends to obscure any patterns that might exist. The following 
example provides a simple demonstration of how variance can influence the perception 
of patterns.

In most research studies the goal is to compare means for two (or more) sets of data. 
For example:

Is the mean level of depression lower after therapy than it was before therapy?

Is the mean attitude score for men different from the mean score for women?

 Is the mean reading achievement score higher for students in a special program than 
for students in regular classrooms?

In each of these situations, the goal is to find a clear difference between two means 
that would demonstrate a significant, meaningful pattern in the results. Variability plays 
an important role in determining whether a clear pattern exists. Consider the follow-
ing data representing hypothetical results from two experiments, each comparing two 
treatment conditions. For both experiments, your task is to determine whether there 
appears to be any consistent difference between the scores in treatment 1 and the scores 
in treatment 2.

Experiment A

Treatment 1 Treatment 2

35 39
34 40
36 41
35 40

variance and 
inferenTial 

sTaTisTics
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Experiment B

Treatment 1 Treatment 2

31 46
15 21
57 61
37 32

For each experiment, the data have been constructed so that there is a 5-point mean 
difference between the two treatments: On average, the scores in treatment 2 are  
5 points higher than the scores in treatment 1. The 5-point difference is relatively easy 
to see in experiment A, where the variability is low, but the same 5-point difference is 
difficult to see in experiment B, where the variability is large. Again, high variability 
tends to obscure any patterns in the data. This general fact is perhaps even more con-
vincing when the data are presented in a graph. Figure 4.8 shows the two sets of data 
from experiments A and B. Notice that the results from experiment A clearly show the 
5-point difference between treatments. One group of scores piles up around 35 and 
the second group piles up around 40. On the other hand, the scores from experiment B 
[Figure 4.8(b)] seem to be mixed together randomly with no clear difference between 
the two treatments.
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In the context of inferential statistics, the variance that exists in a set of sample 
data is often classified as error variance. This term is used to indicate that the sample 
variance represents unexplained and uncontrolled differences between scores. As the 
error variance increases, it becomes more difficult to see any systematic differences or 
patterns that might exist in the data. An analogy is to think of variance as the static that 
appears on a radio station or a cell phone when you enter an area of poor reception. In 
general, variance makes it difficult to get a clear signal from the data. High variance can 
make it difficult or impossible to see a mean difference between two sets of scores, or 
to see any other meaningful patterns in the results from a research study.

Sample 1

Data from Experiment A

34 35 36

f

1

2

3

33 37 39 40 4138 42
X

Sample 2

Sample 1

Data from Experiment B

f

1

2

3

10 20
X

Sample 2

30 40 50 60

M � 35 M � 35

M � 40M � 40

(b)(a)

Figure 4.8

Graphs showing the results from two experiments. In experiment A, the variability is small and it is easy to see the 
5-point mean difference between the two treatments. In experiment B, however, the 5-point mean difference between 
treatments is obscured by the large variability.

 1. Explain the difference between a biased and an unbiased statistic.

 2. In a population with a mean of m 5 50 and a standard deviation of s 5 10, would 
a score of X 5 58 be considered an extreme value (far out in the tail of the distri-
bution)? What if the standard deviation were s 5 3?

3. A population has a mean of m 5 70 and a standard deviation of s 5 5.

 a.  If 10 points were added to every score in the population, what would be the 
new values for the population mean and standard deviation?

 b.  If every score in the population were multiplied by 2, what would be the new 
values for the population mean and standard deviation?

 1. If a statistic is biased, it means that the average value of the statistic does not accurately represent 
the corresponding population parameter. Instead, the average value of the statistic either overes-
timates or underestimates the parameter. If a statistic is unbiased, it means that the average value 
of the statistic is an accurate representation of the corresponding population parameter.

 2. With s 5 10, a score of X 5 58 would be located in the central section of the distribution 
(within one standard deviation). With s 5 3, a score of X 5 58 would be an extreme value, 
located more than two standard deviations above the mean.

3. a. The new mean would be m 5 80 but the standard deviation would still be s 5 5.

   b. The new mean would be m 5 140 and the new standard deviation would be s 5 10.

l E A R n i n g  C H E C k

AnswERs
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Summary

 1. The purpose of variability is to measure and describe 
the degree to which the scores in a distribution are 
spread out or clustered together. There are three basic 
measures of variability: the range, the variance, and 
the standard deviation.

  The range is the distance covered by the set of scores, 
from the smallest score to the largest score. The range 
is completely determined by the two extreme scores 
and is considered to be a relatively crude measure of 
variability.

  Standard deviation and variance are the most  
commonly used measures of variability. Both of these 
measures are based on the idea that each score can be 
described in terms of its deviation, or distance, from 
the mean. The variance is the mean of the squared 
deviations. The standard deviation is the square root 
of the variance and provides a measure of the standard 
distance from the mean.

 2. To calculate variance or standard deviation, you first 
need to find the sum of the squared deviations, SS. 
Except for minor changes in notation, the calculation 
of SS is identical for samples and populations. There 
are two methods for calculating SS:

 I. By definition, you can find SS using the following 
steps:
 a. Find the deviation (X 2 m) for each score.
 b. Square each deviation.
 c. Add the squared deviations.

 This process can be summarized in a formula as  
follows:

 Definitional Formula: SS 5 o(X 2 m)2

 II. The sum of the squared deviations can also be 
found using a computational formula, which is 
especially useful when the mean is not a whole 
number:

Computational formula: SS X
X

N
5 2

2

2( )

 3. Variance is the mean squared deviation and is obtained 
by finding the sum of the squared deviations and then 

dividing by the number of scores. For a population, 
variance is

s 52 SS

N

For a sample, only n 2 1 of the scores are free to 
vary (degrees of freedom or df 5 n 2 1), so sample 
variance is

s
SS

n

SS

df
2

1
5

2
5

Using n 2 1 in the sample formula makes the sample 
variance an accurate and unbiased estimate of the 
population variance.

 4. Standard deviation is the square root of the variance. 
For a population, this is

s 5
SS

N

  Sample standard deviation is

s
SS

n

SS

df
5

2
5

1

 5. Adding a constant value to every score in a distribution 
does not change the standard deviation. Multiplying 
every score by a constant, however, causes the stan-
dard deviation to be multiplied by the same constant.
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If your professor has assigned Aplia:

1. Sign in to your account.
2. Complete the corresponding exercises as required by your professor.
3. When finished, click “Grade It Now” to see which areas you have mastered, which 

areas need more work, and detailed explanations of every answer.

General instructions for using SPSS are presented in Appendix D. Following are  
detailed instructions for using SPSS to compute the Range, Standard Deviation, and 
Variance for a sample of scores.

Data Entry

Enter all of the scores in one column of the data editor, probably VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on 
Descriptives.

2. Highlight the column label for the set of scores (VAR00001) in the left box and 
click the arrow to move it into the Variable box.

3. If you want the variance and/or the range reported along with the standard devia-
tion, click on the Options box, select Variance and/or Range, then click Continue.

4. Click OK.

resources

Go to CengageBrain.com to access Psychology CourseMate, where you will find an 
interactive eBook, glossaries, flashcards, quizzes, statistics workshops, and more.
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SPSS Output

We used SPSS to find the variance and standard deviation for the sample of n 5 8 
scores from Example 4.5 (p. 101), and the SPSS output is shown in Figure 4.9. The 
summary table lists the number of scores, the maximum and minimum scores, the 
mean, the range, the standard deviation, and the variance. Note that the range and 
variance are included because these values were selected using the Options box dur-
ing data analysis. Caution: SPSS computes the sample standard deviation and sample 
variance using n 2 1. If your scores are intended to be a population, you can multiply 
the sample standard deviation by the square root of (n 2 1)/n to obtain the population 
standard deviation.

Note: You can also obtain the mean and standard deviation for a sample if you 
use SPSS to display the scores in a frequency distribution histogram (see the SPSS 
section at the end of Chapter 2). The mean and standard deviation are displayed 
beside the graph.

focus on Problem solving

 1. The purpose of variability is to provide a measure of how spread out the scores 
in a distribution are. Usually this is described by the standard deviation. Because 
the calculations are relatively complicated, it is wise to make a preliminary 
estimate of the standard deviation before you begin. Remember that standard 
deviation provides a measure of the typical, or standard, distance from the mean. 
Therefore, the standard deviation must have a value somewhere between the 
largest and the smallest deviation scores. As a rule of thumb, the standard devia-
tion should be about one-fourth of the range.

 2. Rather than trying to memorize all of the formulas for SS, variance, and stan-
dard deviation, you should focus on the definitions of these values and the logic 
that relates them to each other:

SS is the sum of squared deviations.

Variance is the mean squared deviation.

Standard deviation is the square root of variance.

The only formula you should need to memorize is the computational formula for SS.

 3. A common error is to use n – 1 in the computational formula for SS when you 
have scores from a sample. Remember that the SS formula always uses n (or N). 
After you compute SS for a sample, you must correct for the sample bias by using 
n – 1 in the formulas for variance and standard deviation.

VAR00001
Valid N (listwise)

 8 8.00 3.00 11.00 6.5000 2.61861 6.85714
 8

 N Range Minimum Maximum Mean Std. Deviation Variance

Figure 4.9

The SPSS summary table showing descriptive statistics for the sample of n 5 8 scores from Example 4.5.
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demonsTraTion 4.1

comPuTing measures of variabiliTy

For the following sample data, compute the variance and standard deviation. The 
scores are:

10  7  6  10  6  15

Compute SS, the sum of squared deviations

We use the computational formula. For this sample, n 5 6 and

oX 5 10 1 7 1 6 1 10 1 6 1 15 5 54

oX2 5 102 1 72 1 62 1 102 1 62 1 152 5 546

SS X
X

N
5 2 5 2

2

2 2

546
54

6
( ) ( )

5 546 2 486

5 60

Compute the sample variance

For sample variance, SS is divided by the degrees of freedom, df 5 n – 1.

s
SS

n
2

1

60

5
125

2
5 5

Compute the sample standard deviation

Standard deviation is simply the square root of the variance.

s 5 512 3 46.

S t e p  1

S t e p  2

S t e p  3

Problems

 1. In words, explain what is measured by each of the 
following:

 a. SS
 b. Variance
 c. Standard deviation

 2. Can SS ever have a value less than zero? Explain 
your answer.

 3. Is it possible to obtain a negative value for the  
variance or the standard deviation?

 4. What does it mean for a sample to have a standard 
deviation of zero? Describe the scores in such a sample.

 5. Explain why the formulas for sample variance and 
population variance are different.

 6. A population has a mean of m 5 80 and a standard 
deviation of s 5 20.

 a.  Would a score of X 5 70 be considered an  
extreme value (out in the tail) in this sample?

 b.  If the standard deviation were s 5 5, would a 
score of X 5 70 be considered an extreme value?
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 7. On an exam with a mean of M 5 78, you obtain a 
score of X 5 84.

 a.  Would you prefer a standard deviation of s 5 2 or 
s 5 10? (Hint: Sketch each distribution and find 
the location of your score.)

 b.  If your score were X 5 72, would you prefer s 5 2 
or s 5 10? Explain your answer.

 8. Calculate the mean and SS (sum of squared devia-
tions) for each of the following samples. Based on 
the value for the mean, you should be able to decide 
which SS formula is better to use.

Sample A:  1  4  8  5

Sample B:  3  0  9  4

 9. For the following population of N 5 6 scores:

3  1  4  3  3  4

 a.  Sketch a histogram showing the population  
distribution.

 b.  Locate the value of the population mean in your 
sketch, and make an estimate of the standard 
deviation (as done in Example 4.2).

 c.  Compute SS, variance, and standard deviation 
for the population. (How well does your estimate 
compare with the actual value of s?)

 10. For the following sample of n 5 7 scores:

8  6  5  2  6  3  5

 a. Sketch a histogram showing the sample distribution.
 b.  Locate the value of the sample mean in your 

sketch, and make an estimate of the standard 
deviation (as done in Example 4.5).

 c.  Compute SS, variance, and standard deviation  
for the sample. (How well does your estimate 
compare with the actual value of s?)

 11. For the following population of N 5 6 scores:

11  0  2  9  9  5

 a. Calculate the range and the standard deviation. 
(Use either definition for the range.)

 b. Add 2 points to each score and compute the range 
and standard deviation again. Describe how  
adding a constant to each score influences  
measures of variability.

 12. The range is completely determined by the two  
extreme scores in a distribution. The standard devia-
tion, on the other hand, uses every score.

 a. Compute the range (choose either definition) and  
the standard deviation for the following sample 
of n 5 5 scores. Note that there are three scores 
clustered around the mean in the center of the 
distribution, and two extreme values.

Scores:  0  6  7  8  14

 b. Now we break up the cluster in the center of the 
distribution by moving two of the central scores 
out to the extremes. Once again compute the 
range and the standard deviation.

New scores:  0  0  7  14  14

 c. According to the range, how do the two distribu-
tions compare in variability? How do they com-
pare according to the standard deviation?

 13. A population has a mean of m 5 30 and a standard 
deviation of s 5 5.

 a. If 5 points were added to every score in the popu-
lation, what would be the new values for the mean 
and standard deviation?

 b. If every score in the population were multiplied 
by 3, what would be the new values for the mean 
and standard deviation?

 14. a.  After 3 points have been added to every score in 
a sample, the mean is found to be M 5 83 and 
the standard deviation is s 5 8. What were the 
values for the mean and standard deviation for 
the original sample?

 b. After every score in a sample has been multiplied 
by 4, the mean is found to be M 5 48 and the 
standard deviation is s 5 12. What were the  
values for the mean and standard deviation for  
the original sample?

 15. For the following sample of n 5 4 scores: 82, 88, 82, 
and 86:

 a. Simplify the arithmetic by first subtracting 80 points 
from each score to obtain a new sample of 2, 8, 2, 
and 6. Then, compute the mean and standard  
deviation for the new sample.

 b. Using the values you obtained in part a, what are 
the values for the mean and standard deviation for 
the original sample?

 16. For the following sample of n 5 8 scores: 0, 1, 
1
2 , 

0, 3, 1
2

, 0, and 1:
 a. Simplify the arithmetic by first multiplying each 

score by 2 to obtain a new sample of 0, 2, 1, 0, 6, 
1, 0, and 2. Then, compute the mean and standard 
deviation for the new sample.

 b. Using the values you obtained in part a, what are 
the values for the mean and standard deviation for 
the original sample?

 17. For the data in the following sample:

8  1  5  1  5

 a. Find the mean and the standard deviation.
 b. Now change the score of X 5 8 to X 5 18, and 

find the new mean and standard deviation.
 c. Describe how one extreme score influences the 

mean and standard deviation.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    PRoblEMs    117

 18. Calculate SS, variance, and standard deviation for the 
following sample of n 5 4 scores: 7, 4, 2, 1. (Note: 
The computational formula for SS works well with 
these scores.)

 19. Calculate SS, variance, and standard deviation for the 
following population of N 5 8 scores: 0, 0, 5, 0, 3, 0, 
0, 4. (Note: The computational formula for SS works 
well with these scores.)

 20. Calculate SS, variance, and standard deviation for the 
following population of N 5 6 scores: 1, 6, 10, 9, 4, 
6. (Note: The definitional formula for SS works well 
with these scores.)

 21. Calculate SS, variance, and standard deviation for 
the following sample of n 5 5 scores: 10, 4, 8, 5, 8. 
(Note: The definitional formula for SS works well 
with these scores.)

 22. In an extensive study involving thousands of 
British children, Arden and Plomin (2006) found 
significantly higher variance in the intelligence 
scores for males than for females. Following are 
hypothetical data, similar to the results obtained 
in the study. Note that the scores are not regular 
IQ scores but have been standardized so that  
the entire sample has a mean of M 5 10 and  
a standard deviation of s 5 2.

 a. Calculate the mean and the standard deviation for 
the sample of n 5 8 females and for the sample of 
n 5 8 males.

 b. Based on the means and the standard deviations,  
describe the differences in intelligence scores for 
males and females.

Female Male

9 8
11 10
10 11
13 12
8 6
9 10

11 14
9 9

 23. Within a population, the differences that exist from 
one person to another are often called diversity. 
Researchers comparing cognitive skills for younger 

adults and older adults, typically find greater  
differences (greater diversity) in the older popula-
tion (Morse, 1993). Following are typical data 
showing problem-solving scores for two groups of 
participants.

Older Adults  
(average age 72)

Younger Adults  
(average age 31)

9 4 7 3 8 7 9 6 7 8
6 2 8 4 5 6 7 6 6 8
7 5 2 6 6 9 7 8 6 9

 a. Compute the mean, the variance, and the standard 
deviation for each group.

 b. Is one group of scores noticeably more variable 
(more diverse) than the other?

 24. In the previous problem we noted that the differ-
ences in cognitive skills tend to be bigger among 
older people than among younger people. These 
differences are often called diversity. Similarly, the 
differences in performance from trial to trial for the 
same person are often called consistency. Research 
in this area suggests that consistency of perfor-
mance seems to decline as people age. A study by 
Wegesin and Stern (2004) found lower consistency 
(more variability) in the memory performance 
scores for older women than for younger women. 
The following data represent memory scores  
obtained for two women, one older and one 
younger, over a series of memory trials.

 a. Calculate the variance of the scores for each 
woman.

 b. Are the scores for the younger woman more con-
sistent (less variable)?

Younger Older

8 7
6 5
6 8
7 5
8 7
7 6
8 8
8 5
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 1.  Familiarity with statistical terminology and notation 
(Chapter 1).

 2.  The ability to organize a set of scores in a frequency 
distribution table or a frequency distribution graph 
(Chapter 2).

 3.  The ability to summarize and describe a distribution 
of scores by computing a measure of central tendency 
(Chapter 3).

 4.  The ability to summarize and describe a distribution  
of scores by computing a measure of variability 
(Chapter 4).

The general goal of descriptive statistics is to simplify a set 
of data by organizing or summarizing a large set of scores. 
A frequency distribution table or graph organizes the entire 
set of scores so that it is possible to see the complete distri-
bution all at once. Measures of central tendency describe the 
distribution by identifying its center. They also summarize 
the distribution by condensing all of the individual scores 
into one value that represents the entire group. Measures of 
variability describe whether the scores in a distribution are 
widely scattered or closely clustered. Variability also pro-
vides an indication of how accurately a measure of central 
tendency represents the entire group.

Of the basic skills presented in this part, the most com-
monly used are calculating the mean and standard deviation 
for a sample of numerical scores. The following exercises 
should provide an opportunity to use and reinforce these 
statistical skills.

revieW eXercises

1. a. What is the general goal for descriptive statistics?
 b. How is the goal served by putting scores in a fre-

quency distribution?
 c. How is the goal served by computing a measure of 

central tendency?
 d. How is the goal served by computing a measure of 

variability?

 2. In Example 1.1, we proposed an experiment in which 
one group of students prepared for an exam by studying 
text on printed pages and a second group studied the 
same text on a computer screen. The goal is to determine 
whether one study technique leads to better exam scores 
than the other. This same experiment was actually con-
ducted by Ackerman and Goldsmith (2011). In one part 
of the experiment, the students were allowed to control 
the amount of time that they spent studying. Data similar 
to the results obtained from this condition are presented 
in the following table. The data are the test scores ob-
tained from the students in the two conditions. 

Number Correct on a 20-Question Multiple-Choice Exam

Text Studied on  
Printed Pages

Text Studied on a  
Computer Screen

16 17 18 16 14 17
18 19 15 13 18 17
19 14 18 10 17 12
18 18 19 16 15 18
14 17 17 15 19 16
20 15 19 14 12 15
16 17 13 11 13 17

 a. Sketch a polygon showing the distribution of test 
scores for the students who read printed pages. On 
the same graph, sketch a polygon for the students 
who read the computer screen. (Use two different 
colors or use a dashed line for one group and a 
solid line for the other.) Based on the appearance 
of your graph, describe the differences between 
the two groups.

 b. Calculate the mean test score for each sample. 
Does the mean difference support your description 
from part a?

 c. Calculate the variance and standard deviation for 
each sample. Based on the measures of variability, 
is one group of scores more widely scattered than 
the other?

revieW

By completing this part, you should understand and be able to perform basic descriptive statisti-
cal procedures. These include:

119
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You should recall from Chapter 1 that statistical methods are 
classified into two general categories: descriptive statistics, 
which attempt to organize and summarize data, and infer-

ential statistics, which use the limited information from samples 
to answer general questions about populations. In most research 
situations, both kinds of statistics are used to gain a complete 
understanding of the research results. In Part I of this book we in-
troduced the techniques of descriptive statistics. We now are ready 
to turn our attention to inferential statistics.

Before we proceed with inferential statistics, however, it is 
necessary to present some additional information about samples. 
We know that it is possible to obtain hundreds or even thousands of 
different samples from the same population. We need to determine 
how all the different samples are related to each other and how 
individual samples are related to the population from which they 
were obtained. Finally, we need a system for designating which 
samples are representative of their populations and which are not.

In the next four chapters we develop the concepts and skills 
that form the foundation for inferential statistics. In general, these 
chapters establish formal, quantitative relationships between sam-
ples and populations and introduce a standardized procedure for 
determining whether the data from a sample justify a conclusion 
about the population. After we have developed this foundation, 
we can begin inferential statistics. That is, we can begin to look at 
statistical techniques that use the sample data obtained in research 
studies as the basis for answering questions about populations.

Foundations 
of Inferential 
Statistics
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Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.

z-Scores: 
Location of 
Scores and 
Standardized 
Distributions
5.1    Introduction to z-Scores

5.2     z-Scores and Location in a 
Distribution

5.3     Using z-Scores to Standardize a 
Distribution

5.4     Other Standardized Distributions 
Based on z-Scores

5.5    Computing z-Scores for a Sample

5.6     Looking Ahead to Inferential 
Statistics

Summary

Focus on Problem Solving

Demonstrations 5.1 and 5.2

Problems

C h a p t e r 

5
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 The	mean	(Chapter	3)
•	 The	standard	deviation	(Chapter	4)
•	 Basic	algebra	(math	review,	 

Appendix	A)
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InTRoDuCTIon To z-SCoRES

In the previous two chapters, we introduced the concepts of the mean and the standard 
deviation as methods for describing an entire distribution of scores. Now we shift at-
tention to the individual scores within a distribution. In this chapter, we introduce a sta-
tistical technique that uses the mean and the standard deviation to transform each score  
(X value) into a z-score, or a standard score. The purpose of z-scores, or standard 
scores, is to identify and describe the exact location of each score in a distribution.

The following example demonstrates why z-scores are useful and introduces the 
general concept of transforming X values into z-scores.

Suppose you received a score of X 5 76 on a statistics exam. How did you do? It 
should be clear that you need more information to predict your grade. Your score of  
X 5 76 could be one of the best scores in the class, or it might be the lowest score in 
the distribution. To find the location of your score, you must have information about the 
other scores in the distribution. It would be useful, for example, to know the mean for 
the class. If the mean were µ 5 70, you would be in a much better position than if the 
mean were µ 5 85. Obviously, your position relative to the rest of the class depends on 
the mean. However, the mean by itself is not sufficient to tell you the exact location of 
your score. Suppose you know that the mean for the statistics exam is µ 5 70 and your 
score is X 5 76. At this point, you know that your score is 6 points above the mean, 
but you still do not know exactly where it is located. Six points may be a relatively big 
distance and you may have one of the highest scores in the class, or 6 points may be 
a relatively small distance and you may be only slightly above the average. Figure 5.1 
shows two possible distributions of exam scores. Both distributions have a mean of  
µ 5 70, but for one distribution, the standard deviation is s 5 3, and for the other,  
s 5 12. The location of X 5 76 is highlighted in each of the two distributions. When the 
standard deviation is s 5 3, your score of X 5 76 is in the extreme right-hand tail, the 
highest score in the distribution. However, in the other distribution, where s 5 12, your 
score is only slightly above average. Thus, the relative location of your score within the 
distribution depends on the standard deviation as well as the mean.

5.1

E x A m P L E  5 . 1

X

X = 76

7370

σ = 3

X

X = 76

8270

σ = 12

Figure 5.1

Two distributions of exam scores. For both distributions, µ 5 70, but for one distribution, s 5 3, and for the other,  
s 5 12. The relative position of X 5 76 is very different for the two distributions.

(a) (b)
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The purpose of the preceding example is to demonstrate that a score by itself does 
not necessarily provide much information about its position within a distribution. These 
original, unchanged scores that are the direct result of measurement are called raw 
scores. To make raw scores more meaningful, they are often transformed into new val-
ues that contain more information. This transformation is one purpose for z-scores. In 
particular, we transform X values into z-scores so that the resulting z-scores tell exactly 
where the original scores are located.

A second purpose for z-scores is to standardize an entire distribution. A common ex-
ample of a standardized distribution is the distribution of IQ scores. Although there are 
several different tests for measuring IQ, the tests usually are standardized so that they 
have a mean of 100 and a standard deviation of 15. Because all the different tests are 
standardized, it is possible to understand and compare IQ scores even though they come 
from different tests. For example, we all understand that an IQ score of 95 is a little 
below average, no matter which IQ test was used. Similarly, an IQ of 145 is extremely 
high, no matter which IQ test was used. In general terms, the process of standardizing 
takes different distributions and makes them equivalent. The advantage of this process 
is that it is possible to compare distributions even though they may have been quite  
different before standardization.

In summary, the process of transforming X values into z-scores serves two useful 
purposes:

 1. Each z-score tells the exact location of the original X value within the distribution.

 2. The z-scores form a standardized distribution that can be directly compared to 
other distributions that also have been transformed into z-scores.

Each of these purposes is discussed in the following sections.

z-SCoRES AnD LoCATIon In A DISTRIbuTIon

One of the primary purposes of a z-score is to describe the exact location of a score 
within a distribution. The z-score accomplishes this goal by transforming each X value 
into a signed number (1 or –) so that

 1. The sign tells whether the score is located above (1) or below (–) the  
mean, and

 2. The number tells the distance between the score and the mean in terms of the 
number of standard deviations.

In Figure 5.1(a), for example, we show a distribution with a mean of µ 5 70 and s 
5 3. In this distribution, a score of X 5 76 would be transformed into z 5 12.00. The 
z value indicates that the score is located above the mean (1) by a distance equal to  
2 standard deviations (6 points). For the distribution in Figure 5.1(b), µ 5 70 and  
s 5 12. In this distribution, a score of X 5 76 would be transformed into z 5 1 1

2  or 
z 5 10.50. In this case, the score is above the mean (1) by a distance of only 1

2  of a 
standard deviation (6 points).

A z-score specifies the precise location of each X value within a distribution. The sign 
of the z-score (1 or –) signifies whether the score is above the mean (positive) or 
below the mean (negative). The numerical value of the z-score specifies the distance 
from the mean by counting the number of standard deviations between X and µ.

5.2
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Notice that a z-score always consists of two parts: a sign (1 or –) and a magnitude. 
Both parts are necessary to describe completely where a raw score is located within a 
distribution.

Figure 5.2 shows a population distribution with various positions identified by their 
z-score values. Notice that all z-scores above the mean are positive and all z-scores below 
the mean are negative. The sign of a z-score tells you immediately whether the score is 
located above or below the mean. Also, note that a z-score of z 5 11.00 corresponds to 
a position exactly 1 standard deviation above the mean. A z-score of z 5 12.00 is always 
located exactly 2 standard deviations above the mean. The numerical value of the z-score 
tells you the number of standard deviations it is from the mean. Finally, you should 
notice that Figure 5.2 does not give any specific values for the population mean or the 
standard deviation. The locations identified by z-scores are the same for all distributions, 
no matter what mean or standard deviation the distributions may have.

Whenever you are working 
with z-scores, you should 
imagine or draw a picture  
similar to Figure 5.2. Although 
you should realize that not all 
distributions are normal, we 
use the normal shape as an  
example when showing  
z-scores for populations.

 1. Identify the z-score value corresponding to each of the following locations in a 
distribution.

 a. Below the mean by 2 standard deviations.

 b. Above the mean by 1
2  standard deviation.

 c. Below the mean by 1.50 standard deviations.

 2. Describe the location in the distribution for each of the following z-scores. (For 
example, z 5 11.00 is located above the mean by 1 standard deviation.)

 a. z 5 21.50  b. z 5 0.25  c. z 5 22.50  d. z 5 0.50

 3. For a population with µ 5 30 and s 5 8, find the z-score for each of the following 
scores:

 a. X 5 32  b. X 5 26  c. X 5 42

 4. For a population with µ 5 50 and s 5 12, find the X value corresponding to each 
of the following z-scores:

 a. z 5 20.25  b. z 5 2.00  c. z 5 0.50

 1. a. z 5 22.00  b. z 5 10.50  c. z 5 21.50

 2. a. Below the mean by 1 1
2

 standard deviations.

 b. Above the mean by 1
4

 standard deviation.

 c. Below the mean by 2 1
2  standard deviations.

 d. Above the mean by 1
2

 standard deviation.

 3. a. z 5 10.25 b. z 5 20.50 c. z 5 11.50

 4. a. X 5 47 b. X 5 74 c. X 5 56

L E A R n I n g  C H E C k

AnSwERS

The z-score definition is adequate for transforming back and forth from X values to  
z-scores as long as the arithmetic is easy to do in your head. For more complicated 
values, it is best to have an equation to help structure the calculations. Fortunately,  
the relationship between X values and z-scores is easily expressed in a formula. The 
formula for transforming scores into z-scores is

z 5
2m

s

X  (5.1)

The z -Score Formula
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The numerator of the equation, X – µ, is a deviation score (Chapter 4, page 92), 
which measures the distance in points between X and µ and indicates whether X is 
located above or below the mean. The deviation score is then divided by s because we 
want the z-score to measure distance in terms of standard deviation units. The formula 
performs exactly the same arithmetic that is used with the z-score definition, and it 
provides a structured equation to organize the calculations when the numbers are more 
difficult. The following examples demonstrate the use of the z-score formula.

A distribution of scores has a mean of µ 5 100 and a standard deviation of s 5 10.

What z-score corresponds to a score of X 5 130 in this distribution?

According to the definition, the z-score has a value of 13 because the score is located 
above the mean by exactly 3 standard deviations. Using the z-score formula, we obtain

z
X

5
2m

s
5

2
5 5

130 100

10

30

10
3 00.

The formula produces exactly the same result that is obtained using the z-score 
definition.

A distribution of scores has a mean of µ 5 86 and a standard deviation of s 5 7. What 
z-score corresponds to a score of X 5 95 in this distribution?

Note that this problem is not particularly easy, especially if you try to use the z-score 
definition and perform the calculations in your head. However, the z-score formula 
organizes the numbers and allows you to finish the final arithmetic with a calculator. 
Using the formula, we obtain

z
X

5
2m

s
5

2
5 5

95 86

7

9

7
1 29.

According to the formula, a score of X 5 95 corresponds to z 5 1.29. The z-score 
indicates a location that is above the mean (positive) by slightly more than 1 standard 
deviation.

E x A m P L E  5 . 2

E x A m P L E  5 . 3

z
+1 +2

µ

–1–2

X

σ

0

Figure 5.2

The relationship between  
z-score values and locations 
in a population distribution.
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When you use the z-score formula, it can be useful to pay attention to the definition 
of a z-score as well. For example, we used the formula in Example 5.3 to calculate the 
z-score corresponding to X 5 95, and obtained z 5 1.29. Using the z-score definition, 
we note that X 5 95 is located above the mean by 9 points, which is slightly more than 
one standard deviation (s 5 7). Therefore, the z-score should be positive and have a 
value slightly greater than 1.00. In this case, the answer predicted by the definition is in 
perfect agreement with the calculation. However, if the calculations produce a different 
value, for example z 5 0.78, you should realize that this answer is not consistent with 
the definition of a z-score. In this case, an error has been made and you should double 
check the calculations.

Although the z-score equation (Equation 5.1) works well for transforming X val-
ues into z-scores, it can be awkward when you are trying to work in the opposite 
direction and change z-scores back into X values. In general, it is easier to use the 
definition of a z-score, rather than a formula, when you are changing z-scores into  
X values. Remember, the z-score describes exactly where the score is located by 
identifying the direction and distance from the mean. It is possible, however, to  
express this definition as a formula, and we use a sample problem to demonstrate 
how the formula can be created.

For a distribution with a mean of µ 5 60 and s 5 5, what X value corresponds to a 
z-score of z 5 23.00?

To solve this problem, we use the z-score definition and carefully monitor the step-
by-step process. The value of the z-score indicates that X is located below the mean 
by a distance equal to 3 standard deviations. Thus, the first step in the calculation is to 
determine the distance corresponding to 3 standard deviations. For this problem, the 
standard deviation is s 5 5 points, so 3 standard deviations is 3(5) 5 15 points. The 
next step is to find the value of X that is located below the mean by 15 points. With a 
mean of µ 5 60, the score is

X 5 µ 2 15 5 60 2 15 5 45

The two steps can be combined to form a single formula:

X 5 µ 1 zs (5.2)

In the formula, the value of zs is the deviation of X and determines both the direction 
and the size of the distance from the mean. In this problem, zs 5 (–3)(5) 5 –15, or  
15 points below the mean. Equation 5.2 simply combines the mean and the deviation 
from the mean to determine the exact value of X.

Finally, you should realize that Equation 5.1 and Equation 5.2 are actually two dif-
ferent versions of the same equation. If you begin with either formula and use algebra 
to shuffle the terms around, you soon end up with the other formula. We leave this as 
an exercise for those who want to try it.

In most cases, we simply transform scores (X values) into z-scores, or change  
z-scores back into X values. However, you should realize that a z-score establishes 
a relationship between the score, the mean, and the standard deviation. This rela-
tionship can be used to answer a variety of different questions about scores and the 
distributions in which they are located. The following examples demonstrate some 
possibilities.

DeTermining  
a raw Score  

(x) From a z-Score

oTher relaTionShipS 
BeTween z, x, µ,  

anD 
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In a population with a mean of µ 5 65, a score of X 5 59 corresponds to z 5 22.00. 
What is the standard deviation for the population?

To answer the question, we begin with the z-score value. A z-score of 22.00 
indicates that the corresponding score is located below the mean by a distance of 
2 standard deviations. You also can determine that the score (X 5 59) is located 
below the mean (µ 5 65) by a distance of 6 points. Thus, 2 standard deviations 
correspond to a distance of 6 points, which means that 1 standard deviation must 
be s 5 3 points.

In a population with a standard deviation of s 5 6, a score of X 5 33 corresponds to  
z 5 11.50. What is the mean for the population?

Again, we begin with the z-score value. In this case, a z-score of 11.50 indicates 
that the score is located above the mean by a distance corresponding to 1.50 standard 
deviations. With a standard deviation of s 5 6, this distance is (1.50)(6) 5 9 points. 
Thus, the score is located 6 points above the mean. The score is X 5 33, so the mean 
must be µ 5 24.

Many students find problems like those in Examples 5.4 and 5.5 easier to under-
stand if they draw a picture showing all of the information presented in the problem. 
For the problem in Example 5.4, the picture would begin with a distribution that has 
a mean of µ 5 65 (we use a normal distribution, which is shown in Figure 5.3). The 
value of the standard deviation is unknown, but you can add arrows to the sketch 
pointing outward from the mean for a distance corresponding to 1 standard devia-
tion. Finally, use standard deviation arrows to identify the location of z 5 22.00  
(2 standard deviations below the mean) and add X 5 59 at that location. All of these 
factors are shown in Figure 5.3. In the figure, it is easy to see that X 5 59 is located  
6 points below the mean, and that the 6-point distance corresponds to exactly  
2 standard deviations. Again, if 2 standard deviations equal 6 points, then 1 standard 
deviation must be s 5 3 points.

A slight variation on Examples 5.4 and 5.5 is demonstrated in the following example. 
This time you must use the z-score information to find both the population mean and the 
standard deviation.

E x A m P L E  5 . 4

E x A m P L E  5 . 5

σ

59

σ

65

6 points

Figure 5.3

A visual presentation  
of the question in 
Example 5.4. If 2 standard 
deviations correspond to a 
6-point distance, then one 
standard deviation must 
equal 3 points.
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In a population distribution, a score of X 5 54 corresponds to z 5 12.00 and a score of 
X 5 42 corresponds to z 5 21.00. What are the values for the mean and the standard 
deviation for the population?

The key to solving this kind of problem is to focus on the distance between the 
two scores. By subtraction, the distance between X 5 54 and X 5 42 is 12 points. 
The two z-scores also provide information about the distance between the scores. 
A z-score of 12.00 indicates that X 5 52 is above the mean by 2.00 standard  
deviations, and z 5 21.00 indicates that X 5 44 is below the mean by 1.00 standard 
deviation. Thus, the total distance between the scores is equal to 2.00 1 1.00 5 3 
standard deviations. At this point, you know that the distance between the scores 
is 12 points and the distance is equal to 3 standard deviations. If a distance of  
12 points is equal to 3 standard deviations, then the standard deviation must be  
s 5 4. Now, you can pick either score and use the standard deviation to find the 
value of the mean. For example, X 5 42 is below the mean by 1.00 standard devia-
tion. One standard deviation is 4 points, so the mean must be m 5 46. Thus, the 
population has m 5 46 and s 5 4.

Once again, solving problems like the one is Example 5.6 can be easier if you sketch 
a picture showing the information. Figure 5.4 shows a generic distribution (similar to 
the one in Figure 5.2), for which the mean and the standard deviation are shown with 
lines and arrows but are not assigned specific values. Next, we locate the two scores in 
the distribution; X 5 42 is placed one standard deviation below the mean (z 5 21.00)  
and X 5 54 is located two standard deviations above the mean (z 5 12.00). At this 
point, you can see that the distance between the scores is 12 points, and that this  
12-point distance corresponds to 3 standard deviations. Therefore, one standard devia-
tion is s 5 4. With a standard deviation of 4 points, you can see that X 5 42 is below the 
mean by 4 points, so the mean must be µ 5 46. Again, we conclude that the population 
has µ 5 46 and s 5 4.

E x A m P L E  5 . 6

 1. For a distribution with µ 5 40 and s 5 12, find the z-score for each of the following 
scores.

 a. X 5 36 b. X 5 46 c. X 5 56

 2. For a distribution with µ 5 40 and s 5 12, find the X value corresponding to each 
of the following z-scores.

 a. z 5 1.50 b. z 5 21.25 c. z 5 1
3

 3. In a distribution with µ 5 50, a score of X 5 42 corresponds to z 5 22.00. What 
is the standard deviation for this distribution?

 4. In a distribution with s 5 12, a score of X 5 56 corresponds to z 5 20.25. What 
is the mean for this distribution?

 1. a. z 5 20.33 (or 2 1
3

)  b. z 5 0.50 c. z 5 1.33 ( 11 1
3

)

 2. a. X 5 58 b. X 5 25 c. X 5 44

 3. s 5 4

 4. µ 5 59

L E A R n I n g  C H E C k
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z

54µ42 X

σ

1 2–1–2 0

12 points

Figure 5.4

A visual presentation  
of the question in 
Example 5.6. The  
12-point distance from 
42 to 54 corresponds to 
3 standard deviations. 
Therefore, the standard 
deviation must be s 5 4. 
Also, the score X 5 42 is 
below the mean by one 
standard deviation, so the 
mean must be µ 5 46.

uSIng z-SCoRES To STAnDARDIzE A DISTRIbuTIon

It is possible to transform every X value in a distribution into a corresponding z-score. The 
result of this process is that the entire distribution of X values is transformed into a dis-
tribution of z-scores (Figure 5.5). The new distribution of z-scores has characteristics that 
make the z-score transformation a very useful tool. Specifically, if every X value is trans-
formed into a z-score, then the distribution of z-scores will have the following properties:

1. Shape The distribution of z-scores will have exactly the same shape as the original  
distribution of scores. If the original distribution is negatively skewed, for example, 
then the z-score distribution will also be negatively skewed. If the original distribution  
is normal, the distribution of z-scores will also be normal. Transforming raw scores into 

5.3

X

Transform X to z

Population of scores
(X values)

110 1201009080
µ

σ � 10

z

Population of z-scores
(z values)

+1 +20−1−2
µ

σ � 1

Figure 5.5

An entire population of scores is transformed into z-scores. The transformation does not change the shape of the popula-
tion, but the mean is transformed into a value of 0 and the standard deviation is transformed to a value of 1.
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z-scores does not change anyone’s position in the distribution. For example, any raw 
score that is above the mean by 1 standard deviation will be transformed to a z-score of 
11.00, which is still above the mean by 1 standard deviation. Transforming a distribu-
tion from X values to z values does not move scores from one position to another; the 
procedure simply relabels each score (see Figure 5.5). Because each individual score 
stays in its same position within the distribution, the overall shape of the distribution 
does not change.

2. The mean The z-score distribution will always have a mean of zero. In Figure 5.5, 
the original distribution of X values has a mean of µ 5 100. When this value, X 5 100, 
is transformed into a z-score, the result is

z
X

5
2m

s
5

2
5

100 100

10
0

Thus, the original population mean is transformed into a value of zero in the z-score 
distribution. The fact that the z-score distribution has a mean of zero makes the mean 
a convenient reference point. Recall from the definition of z-scores that all positive  
z-scores are above the mean and all negative z-scores are below the mean. In other 
words, for z-scores, µ 5 0.

3. The standard deviation The distribution of z-scores will always have a standard 
deviation of 1. In Figure 5.5, the original distribution of X values has µ 5 100 and  
s 5 10. In this distribution, a value of X 5 110 is above the mean by exactly 10 points 
or 1 standard deviation. When X 5 110 is transformed, it becomes z 5 11.00, which 
is above the mean by exactly 1 point in the z-score distribution. Thus, the standard 
deviation corresponds to a 10-point distance in the X distribution and is transformed 
into a 1-point distance in the z-score distribution. The advantage of having a standard 
deviation of 1 is that the numerical value of a z-score is exactly the same as the number 
of standard deviations from the mean. For example, a z-score of z 5 1.50 is exactly 
1.50 standard deviations from the mean.

In Figure 5.5, we showed the z-score transformation as a process that changed a 
distribution of X values into a new distribution of z-scores. In fact, there is no need to 
create a whole new distribution. Instead, you can think of the z-score transformation as 
simply relabeling the values along the X-axis. That is, after a z-score transformation, 
you still have the same distribution, but now each individual is labeled with a z-score 
instead of an X value. Figure 5.6 demonstrates this concept with a single distribution 
that has two sets of labels: the X values along one line and the corresponding z-scores 
along another line. Notice that the mean for the distribution of z-scores is zero and the 
standard deviation is 1.

When any distribution (with any mean or standard deviation) is transformed into 
z-scores, the resulting distribution will always have a mean of µ 5 0 and a standard 
deviation of s 5 1. Because all z-score distributions have the same mean and the same 
standard deviation, the z-score distribution is called a standardized distribution.

A standardized distribution is composed of scores that have been transformed 
to create predetermined values for µ and s. Standardized distributions are used to 
make dissimilar distributions comparable.

A z-score distribution is an example of a standardized distribution with µ 5 0 and 
s 5 1. That is, when any distribution (with any mean or standard deviation) is trans-
formed into z-scores, the transformed distribution will always have µ 5 0 and s 5 1.

D e f i n i t i o n
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Although the basic characteristics of a z-score distribution have been explained logi-
cally, the following example provides a concrete demonstration that a z-score transfor-
mation creates a new distribution with a mean of zero, a standard deviation of 1, and 
the same shape as the original population.

We begin with a population of N 5 6 scores consisting of the following values: 0, 6, 5, 
2, 3, 2. This population has a mean of m 5 18

6  5 3 and a standard deviation of s 5 2 
(check the calculations for yourself).

Each of the X values in the original population is then transformed into a z-score as 
summarized in the following table.

X 5 0 Below the mean by 1
1
2  standard deviations z 5 21.50

X 5 6 Above the mean by 1 1
2

 standard deviations z 5 11.50
X 5 5 Above the mean by 1 standard deviation z 5 11.00
X 5 2 Below the mean by 1

2  standard deviation z 5 20.50
X 5 3 Exactly equal to the mean—zero deviation z 5 0
X 5 2 Below the mean by 1

2  standard deviation z 5 20.50

The frequency distribution for the original population of X values is shown in  
Figure 5.7(a) and the corresponding distribution for the z-scores is shown in  
Figure 5.7(b). A simple comparison of the two distributions demonstrates the results of 
a z-score transformation.

 1. The two distributions have exactly the same shape. Each individual has exactly 
the same relative position in the X distribution and in the z-score distribution.

 2. After the transformation to z-scores, the mean of the distribution becomes  
µ 5 0. For these z-scores values, N 5 6 and oz 5 –1.50 1 1.50 1 1.00 1 
20.50 1 0 1 20.50 5 0. Thus, the mean for the z-scores is µ 5 o z

N
 5 0

6  5 0.

DemonSTraTion 
oF a z-Score 

TranSFormaTion

E x A m P L E  5 . 7

µ

µ

X

z
0

100 110 1209080

−1−2 +1 +2

σ

Figure 5.6

Following a z-score trans-
formation, the X-axis is 
relabeled in z-score units. 
The distance that is  
equivalent to 1 standard  
deviation on the X-axis  
(s 5 10 points in this 
example) corresponds to  
1 point on the z-score 
scale.
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  Note that the individual with a score of X 5 3 is located exactly at the mean in 
the X distribution and this individual is transformed into z 5 0, exactly at the 
mean in the z-distribution.

 3. After the transformation, the standard deviation becomes s 5 1. For these  
z-scores, oz 5 0 and

oz2 5 (21.50)2 1 (1.50)2 1 (1.00)2 1 (20.50)2 1 (0)2 1 (20.50)2

5 2.25 1 2.25 1 1.00 1 0.25 1 0 1 0.25

5 6.00

Using the computational formula for SS, substituting z in place of X, we obtain

SS
N

5 2 5 2 5o
o

z
z2 ( ) ( )2 2

6
0

6
6 00.

For these z-scores, the variance is s 5 5 52 SS

N

6

6
1.00  and the standard deviation is

s 5 51.00 1.00

Note that the individual with X 5 5 is located above the mean by 2 points, which 
is exactly one standard deviation in the X distribution. After transformation, this indi-
vidual has a z-score that is located above the mean by 1 point, which is exactly one 
standard deviation in the z-score distribution.

One advantage of standardizing distributions is that it makes it possible to compare dif-
ferent scores or different individuals even though they come from completely different 
distributions. Normally, if two scores come from different distributions, it is impossible 
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Figure 5.7

Transforming a distribu-
tion of raw scores  
(a) into z-scores (b) will 
not change the shape of 
the distribution.

(a)

(b)
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to make any direct comparison between them. Suppose, for example, Dave received a 
score of X 5 60 on a psychology exam and a score of X 5 56 on a biology test. For 
which course should Dave expect the better grade?

Because the scores come from two different distributions, you cannot make any direct 
comparison. Without additional information, it is even impossible to determine whether 
Dave is above or below the mean in either distribution. Before you can begin to make 
comparisons, you must know the values for the mean and standard deviation for each dis-
tribution. Suppose the psychology scores had µ 5 50 and s 5 10, and the biology scores 
had µ 5 48 and s 5 4. With this new information, you could sketch the two distributions, 
locate Dave’s score in each distribution, and compare the two locations.

Instead of drawing the two distributions to compare Dave’s two scores, we simply 
can compute the corresponding z-scores to determine the two locations. For psychology, 
Dave’s z-score is

z 5
2m

s
5

2
5 51

X 60 50

10

10

10
1.0

For biology, Dave’s z-score is

z 5
2

5 51
56 48

4

8

4
2.0

Note that Dave’s z-score for biology is 12.0, which means that his test score is  
2 standard deviations above the class mean. On the other hand, his z-score is 11.0 for 
psychology, or 1 standard deviation above the mean. In terms of relative class standing, 
Dave is doing much better in the biology class.

Notice that we cannot compare Dave’s two exam scores (X 5 60 and X 5 56)  
because the scores come from different distributions with different means and standard 
deviations. However, we can compare the two z-scores because all distributions of  
z-scores have the same mean (µ 5 0) and the same standard deviation (s 5 1).

Be sure to use the µ and  
s values for the distribution 
to which X belongs.

 1. A normal-shaped distribution with µ 5 40 and s 5 8 is transformed into z-scores. 
Describe the shape, the mean, and the standard deviation for the resulting distribution 
of z-scores.

 2. What is the advantage of having a mean of µ 5 0 for a distribution of z-scores?

 3. A distribution of English exam scores has µ 5 70 and s 5 4. A distribution of  
history exam scores has µ 5 60 and s 5 20. For which exam would a score of  
X 5 78 have a higher standing? Explain your answer.

 4. A distribution of English exam scores has µ 5 50 and s 5 12. A distribution of 
history exam scores has µ 5 58 and s 5 4. For which exam would a score of  
X 5 62 have a higher standing? Explain your answer.

 1. The z-score distribution would be normal with a mean of 0 and a standard deviation of 1.

 2. With a mean of zero, all positive scores are above the mean and all negative scores are 
below the mean.

 3. For the English exam, X 5 78 corresponds to z 5 2.00, which is a higher standing than  
z 5 0.90 for the history exam.

 4. The score X 5 62 corresponds to z 5 11.00 in both distributions. The score has exactly the 
same standing for both exams.

L E A R n I n g  C H E C k
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oTHER STAnDARDIzED DISTRIbuTIonS bASED on z-SCoRES

Although z-score distributions have distinct advantages, many people find them cum-
bersome because they contain negative values and decimals. For this reason, it is com-
mon to standardize a distribution by transforming the scores into a new distribution 
with a predetermined mean and standard deviation that are whole round numbers. 
The goal is to create a new (standardized) distribution that has “simple” values for the 
mean and standard deviation but does not change any individual’s location within the 
distribution. Standardized scores of this type are frequently used in psychological or 
educational testing. For example, raw scores of the Scholastic Aptitude Test (SAT) are 
transformed to a standardized distribution that has µ 5 500 and s 5 100. For intelli-
gence tests, raw scores are frequently converted to standard scores that have a mean of 
100 and a standard deviation of 15. Because most IQ tests are standardized so that they 
have the same mean and standard deviation, it is possible to compare IQ scores even 
though they may come from different tests.

The procedure for standardizing a distribution to create new values for µ and s 
involves two steps:

 1. The original raw scores are transformed into z-scores.

 2. The z-scores are then transformed into new X values so that the specific µ and s 
are attained.

This procedure ensures that each individual has exactly the same z-score location in 
the new distribution as in the original distribution. The following example demonstrates 
the standardization procedure.

A distribution of exam scores has a mean of µ 5 57 with s 5 14. The instructor would 
like to simplify the distribution by transforming all scores into a new, standardized 
distribution with µ 5 50 and s 5 10. To demonstrate this process, we consider what 
happens to two specific students: Maria, who has a score of X 5 64 in the original 
distribution; and Joe, whose original score is X 5 43.

Step 1 Transform each of the original scores into z-scores. Maria started with  
X 5 64, so her z-score is

z
X

5
2m

s
5

2
51

64 57

14
0.5

For Joe, X 5 43, and his z-score is

z
X

5
2m

s
5

2
52

43 57

14
1.0

Remember: The values of µ and s are for the distribution from which X was taken.

Step 2 Change each z-score into an X value in the new standardized distribution that 
has a mean of µ 5 50 and a standard deviation of s 5 10.

Maria’s z-score, z 5 10.50, indicates that she is located above the mean by  
1
2

 standard deviation. In the new, standardized distribution, this location corresponds  
to X 5 55 (above the mean by 5 points).

5.4

TranSForming 
z-ScoreS To  

a DiSTriBuTion wiTh 
a preDeTermineD  

m  anD 

E x A m P L E  5 . 8
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Joe’s z-score, z 5 –1.00, indicates that he is located below the mean by exactly  
1 standard deviation. In the new distribution, this location corresponds to X 5 40 
(below the mean by 10 points).

The results of this two-step transformation process are summarized in Table 5.1. 
Note that Joe, for example, has exactly the same z-score (z 5 –1.00) in both the original 
distribution and the new standardized distribution. This means that Joe’s position rela-
tive to the other students in the class has not changed.

Figure 5.8 provides another demonstration of the concept that standardizing a distribu-
tion does not change the individual positions within the distribution. The figure shows the 
original exam scores from Example 5.7, with a mean of µ 5 57 and a standard deviation 
of s 5 14. In the original distribution, Joe is located at a score of X 5 43. In addition to 
the original scores, we have included a second scale showing the z-score value for each 
location in the distribution. In terms of z-scores, Joe is located at a value of z 5 –1.00. 
Finally, we have added a third scale showing the standardized scores, for which the mean 
is µ 5 50 and the standard deviation is s 5 10. For the standardized scores, Joe is located 
at X 5 40. Note that Joe is always in the same place in the distribution. The only thing 
that changes is the number that is assigned to Joe: For the original scores, Joe is at 43; for 
the z-scores, Joe is at –1.00; and for the standardized scores, Joe is at 40.

TAbLE 5.1

A demonstration of how two  
individual scores are changed 
when a distribution is standard-
ized. See Example 5.8.

Original Scores  
µ 5 57 and s 5 14

z-Score 
Location

Standardized Scores  
µ 5 50 and s 5 10

Maria X 5 64 → z 5 10.50 → X 5 55

Joe X 5 43 → z 5 21.00 → X 5 40

29

�2

30

43

�1 �1 �2

40

Joe

X

z

X

57

0

50

71

60

85

70

�� Original scores (� � 57 and � � 14)

�� z-Scores (� � 0 and � � 1)

�� Standardized scores (� � 50 and � � 10)

Figure 5.8

The distribution of exam scores from Example 5.7. The original distribution was standardized to 
produce a new distribution with µ 5 50 and s 5 10. Note that each individual is identified by an 
original score, a z-score, and a new, standardized score. For example, Joe has an original score of 
43, a z-score of –100, and a standardized score of 40.
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ComPuTIng z-SCoRES FoR A SAmPLE

Although z-scores have been presented in the context of a population, the same prin-
ciples can be used to compute z-scores within a sample. The definition of a z-score is 
the same for a sample as for a population, provided that you use the sample mean and 
the sample standard deviation to specify each z-score location. Thus, for a sample, each 
X value is transformed into a z-score so that

 1. The sign of the z-score indicates whether the X value is above (1) or below (–) 
the sample mean, and

 2. The numerical value of the z-score identifies the distance from the sample mean 
by measuring the number of sample standard deviations between the score (X) 
and the sample mean (M).

Expressed as a formula, each X value in a sample can be transformed into a z-score 
as follows:

z
X M

s
5

2

 (5.3)

Similarly, each z-score can be transformed back into an X value, as follows:

X 5 M 1 zs (5.4)

In a sample with a mean of M 5 40 and a standard deviation of s 5 10, what is the 
z-score corresponding to X 5 35 and what is the X value corresponding to z 5 12.00?

The score, X 5 35, is located below the mean by 5 points, which is exactly half of 
the standard deviation. Therefore, the corresponding z-score is z 5 20.50. The z-score, 
z 5 12.00, corresponds to a location above the mean by 2 standard deviations. With a 

5.5

E x A m P L E  5 . 9

 1. A population of scores has µ 5 73 and s 5 8. If the distribution is standardized 
to create a new distribution with µ 5 100 and s 5 20, what are the new values for 
each of the following scores from the original distribution?

 a. X 5 65 b. X 5 71 c. X 5 81 d. X 5 83

 2. A population with a mean of µ 5 44 and a standard deviation of s 5 6 is  
standardized to create a new distribution with µ 5 50 and s 5 10.

 a. What is the new standardized value for a score of X 5 47 from the original 
distribution?

 b. One individual has a new standardized score of X 5 65. What was this person’s 
score in the original distribution?

 1. a. z 5 21.00, X 5 80 b. z 5 20.25, X 5 95

 c. z 5 1.00, X 5 120 d. z 5 1.25, X 5 125

 2. a.  X 5 47 corresponds to z 5 10.50 in the original distribution. In the new distribution, the 
corresponding score is X 5 55.

 b. In the new distribution, X 5 65 corresponds to z 5 11.50. The corresponding score in 
the original distribution is X 5 53.

L E A R n I n g  C H E C k

AnSwERS

See the population equations 
(5.1 and 5.2) on pages 126 
and 128 for comparison.
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standard deviation of s 5 10, this is a distance of 20 points. The score that is located 
20 points above the mean is X 5 60. Note that it is possible to find these answers using 
either the z-score definition or one of the equations (5.3 or 5.4).

If all the scores in a sample are transformed into z-scores, the result is a sample of  
z-scores. The transformed distribution of z-scores will have the same properties that 
exist when a population of X values is transformed into z-scores. Specifically,

 1. The sample of z-scores will have the same shape as the original sample of 
scores.

 2. The sample of z-scores will have a mean of M
z
 5 0.

 3. The sample of z-scores will have a standard deviation of s
z
 5 1.

Note that the set of z-scores is still considered to be a sample (just like the set of  
X values) and the sample formulas must be used to compute variance and standard 
deviation. The following example demonstrates the process of transforming the scores 
from a sample into z-scores.

We begin with a sample of n 5 5 scores: 0, 2, 4, 4, 5. With a few simple calculations, 
you should be able to verify that the sample mean is M 5 3, the sample variance is  
s2 5 4, and the sample standard deviation is s 5 2. Using the sample mean and sample 
standard deviation, we can convert each X value into a z-score. For example, X 5 5  
is located above the mean by 2 points. Thus, X 5 5 is above the mean by exactly  
1 standard deviation and has a z-score of z 5 11.00. The z-scores for the entire sample 
are shown in the following table.

X z

0 21.50

2 20.50

4 10.50

4 10.50

5 11.00

Again, a few simple calculations demonstrate that the sum of the z-score values is 
oz 5 0, so the mean is M

z
 5 0.

Because the mean is zero, each z-score value is its own deviation from the mean. 
Therefore, the sum of the squared z-scores is also the sum of the squared deviations. 
For this sample of z-scores,

SS 5 oz2 5 (–1.50)2 1 (20.50)2 1 (10.50)2 1 (0.50)2 1 (11.00)2

5 2.25 1 0.25 1 0.25 1 0.25 1 1.00

5 4.00

STanDarDizing  
a Sample 

DiSTriBuTion

E x A m P L E  5 . 1 0
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The variance for the sample of z-scores is

s
SS

nz
2

1

4

4
1.005

2
5 5

Finally, the standard deviation for the sample of z-scores is s
z
 5 1 00.  5 1.00. As 

always, the distribution of z-scores has a mean of 0 and a standard deviation of 1.

LookIng AHEAD To InFEREnTIAL STATISTICS

Recall that inferential statistics are techniques that use the information from samples to 
answer questions about populations. In later chapters, we use inferential statistics to help 
interpret the results from research studies. A typical research study begins with a question 
about how a treatment will affect the individuals in a population. Because it is usually 
impossible to study an entire population, the researcher selects a sample and administers 
the treatment to the individuals in the sample. This general research situation is shown 
in Figure 5.9. To evaluate the effect of the treatment, the researcher simply compares the 
treated sample with the original population. If the individuals in the sample are noticeably 
different from the individuals in the original population, the researcher has evidence that 
the treatment has had an effect. On the other hand, if the sample is not noticeably different 
from the original population, it would appear that the treatment has had no effect.

Notice that the interpretation of the research results depends on whether the sample is 
noticeably different from the population. One technique for deciding whether a sample 
is noticeably different is to use z-scores. For example, an individual with a z-score near 
0 is located in the center of the population and would be considered to be a fairly typical 
or representative individual. However, an individual with an extreme z-score, beyond 

5.6

Original
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(Without treatment)

Sample
Treated
sample

T
r
e
a
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m
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Figure 5.9

A diagram of a research 
study. The goal of the 
study is to evaluate the 
effect of a treatment. A 
sample is selected from 
the population, and the 
treatment is administered 
to the sample. If, after 
treatment, the individuals 
in the sample are  
noticeably different  
from the individuals in 
the original population, 
then we have evidence 
that the treatment does 
have an effect.

Notice that the set of z-scores 
is considered to be a sample 
and the variance is computed 
using the sample formula 
with df 5 n – 1.
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12.00 or 22.00 for example, would be considered noticeably different from most of the 
individuals in the population. Thus, we can use z-scores to help decide whether the treat-
ment has caused a change. Specifically, if the individuals who receive the treatment in 
a research study tend to have extreme z-scores, we can conclude that the treatment does 
appear to have an effect. The following example demonstrates this process.

A researcher is evaluating the effect of a new growth hormone. It is known that regular 
adult rats weigh an average of µ 5 400 grams. The weights vary from rat to rat, and the 
distribution of weights is normal with a standard deviation of s 5 20 grams. The popu-
lation distribution is shown in Figure 5.10. The researcher selects one newborn rat and 
injects the rat with the growth hormone. When the rat reaches maturity, it is weighed to 
determine whether there is any evidence that the hormone has an effect.

First, assume that the hormone-injected rat weighs X 5 418 grams. Although this is 
more than the average nontreated rat (µ 5 400 grams), is it convincing evidence that the 
hormone has an effect? If you look at the distribution in Figure 5.10, you should realize 
that a rat weighing 418 grams is not noticeably different from the regular rats that did 
not receive any hormone injection. Specifically, our injected rat would be located near 
the center of the distribution for regular rats with a z-score of

z
X

5
2m

s
5

2
5 5

418 400

20

18

20
0.90

Because the injected rat still looks the same as a regular, nontreated rat, the conclu-
sion is that the hormone does not appear to have an effect.

Now, assume that our injected rat weighs X 5 450 grams. In the distribution of 
regular rats (see Figure 5.10), this animal would have a z-score of

z
X

5
2m

s
5

2
5 5

450 400

20

50

20
2.50

E x A m P L E  5 . 1 1

X

X � 450

� � 400 440420380360

z
0

Population
of

nontreated rats

Representative
individuals
(z near 0)

Extreme
individuals

(z beyond �2.00)

Extreme
individuals

(z beyond �2.00)

1.00 2.00�1.00�2.00

X � 418

Figure 5.10

The distribution of weights 
for the population of adult 
rats. Note that individuals 
with z-scores near 0 are 
typical or representative. 
However, individuals with 
z-scores beyond 12.00 
or –2.00 are extreme and 
noticeably different from 
most of the others in the 
distribution.
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In this case, the hormone-injected rat is substantially bigger than most ordinary rats, 
and it would be reasonable to conclude that the hormone does have an effect on weight.

In the preceding example, we used z-scores to help interpret the results obtained 
from a sample. Specifically, if the individuals who receive the treatment in a research 
study have extreme z-scores compared to those who do not receive the treatment, we 
can conclude that the treatment does appear to have an effect. The example, however, 
used an arbitrary definition to determine which z-score values are noticeably differ-
ent. Although it is reasonable to describe individuals with z-scores near 0 as “highly 
representative” of the population, and individuals with z-scores beyond 62.00 as 
“extreme,” you should realize that these z-score boundaries were not determined 
by any mathematical rule. In the following chapter we introduce probability, which 
gives us a rationale for deciding exactly where to set the boundaries.

 1. For a sample with a mean of M 5 40 and a standard deviation of s 5 12, find the 
z-score corresponding to each of the following X values.

X 5 43 X 5 58 X 5 49

X 5 34 X 5 28 X 5 16

 2. For a sample with a mean of M 5 80 and a standard deviation of s 5 20, find the 
X value corresponding to each of the following z-scores.

z 5 21.00 z 5 20.50 z 5 20.20

z 5 1.50 z 5 0.80 z 5 1.40

 3. For a sample with a mean of M 5 85, a score of X 5 80 corresponds to  
z 5 20.50. What is the standard deviation for the sample?

 4. For a sample with a standard deviation of s 5 12, a score of X 5 83 corresponds 
to z 5 0.50. What is the mean for the sample?

 5. A sample has a mean of M 5 30 and a standard deviation of s 5 8.

 a. Would a score of X 5 36 be considered a central score or an extreme score in 
the sample?

 b. If the standard deviation were s 5 2, would X 5 36 be central or extreme?

 1. z 5 0.25 z 5 1.50 z 5 0.75

z 5 20.50 z 5 21.00 z 5 22.00

 2. X 5 60 X 5 70 X 5 76

X 5 110 X 5 96 X 5 108

3. s 5 10

 4. M 5 77

 5. a. X 5 36 is a central score corresponding to z 5 0.75.

 b. X 5 36 would be an extreme score corresponding to z 5 3.00.

L E A R n I n g  C H E C k
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Summary

 1. Each X value can be transformed into a z-score that 
specifies the exact location of X within the distribu-
tion. The sign of the z-score indicates whether the lo-
cation is above the mean (positive) or below the mean 
(negative). The numerical value of the z-score specifies 
the number of standard deviations between X and µ.

 2. The z-score formula is used to transform X values into 
z-scores. For a population:

z 5
2m

s

X

  For a sample:

z
X M

s
5

2

 3. To transform z-scores back into X values, it usually 
is easier to use the z-score definition rather than a 
formula. However, the z-score formula can be trans-
formed into a new equation.

  For a population: X 5 µ 1 zs

  For a sample: X 5 M 1 zs

 4. When an entire distribution of X values is transformed 
into z-scores, the result is a distribution of z-scores. 

The z-score distribution will have the same shape as 
the distribution of raw scores, and it always will have a 
mean of 0 and a standard deviation of 1.

 5. One method for comparing scores from different  
distributions is to standardize the distributions with  
a z-score transformation. The distributions will  
then be comparable because they will have the  
same parameters (µ 5 0, s 5 1). In practice, it  
is necessary to transform only those raw scores that 
are being compared.

 6. A distribution also can be standardized by converting 
the original X values into z-scores and then convert-
ing the z-scores into a new distribution of scores with 
predetermined values for the mean and the standard 
deviation.

 7. In inferential statistics, z-scores provide an objective 
method for determining how well a specific score 
represents its population. A z-score near 0 indicates 
that the score is close to the population mean  
and, therefore, is representative. A z-score beyond  
12.00 (or 22.00) indicates that the score is extreme 
and is noticeably different from the other scores in 
the distribution.

key TermS

raw score (125)

z-score (125)

deviation score (127)

z-score transformation (131)

standardized distribution (132)

standardized score (137)
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General instructions for using SPSS are presented in Appendix D. Following are 
detailed instructions for using SPSS to Transform X Values into z-Scores for a 
Sample.

Data Entry

Enter all of the scores in one column of the data editor, probably VAR00001.

Data Analysis

 1. Click Analyze on the tool bar, select Descriptive Statistics, and click on 
Descriptives.

 2. Highlight the column label for the set of scores (VAR0001) in the left box and click 
the arrow to move it into the Variable box.

 3. Click the box to Save standardized values as variables at the bottom of the 
Descriptives screen.

 4. Click OK.

SPSS Output

The program produces the usual output display listing the number of scores (N), the 
maximum and minimum scores, the mean, and the standard deviation. However, if you 
go back to the Data Editor (use the tool bar at the bottom of the screen), you can see 
that SPSS has produced a new column showing the z-score corresponding to each of 
the original X values.

Caution: The SPSS program computes the z-scores using the sample standard devia-
tion instead of the population standard deviation. If your set of scores is intended to be 
a population, SPSS does not produce the correct z-score values. You can convert the 
SPSS values into population z-scores by multiplying each z-score value by the square 
root of n

n( 21) .

FocuS on proBlem Solving

 1. When you are converting an X value to a z-score (or vice versa), do not rely 
entirely on the formula. You can avoid careless mistakes if you use the defini-
tion of a z-score (sign and numerical value) to make a preliminary estimate  
of the answer before you begin computations. For example, a z-score of  
z 5 20.85 identifies a score located below the mean by almost 1 standard 
deviation. When computing the X value for this z-score, be sure that your 
answer is smaller than the mean, and check that the distance between X and  
µ is slightly less than the standard deviation.

 2. When comparing scores from distributions that have different standard devia-
tions, it is important to be sure that you use the correct values for µ and s in 
the z-score formula. Use the values for the distribution from which the score 
was taken.

 3. Remember that a z-score specifies a relative position within the context of a 
specific distribution. A z-score is a relative value, not an absolute value. For 
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example, a z-score of z 5 22.0 does not necessarily suggest a very low raw 
score—it simply means that the raw score is among the lowest within that 
specific group.

DemonSTraTion 5.1

TranSForming x valueS inTo z-ScoreS

A distribution of scores has a mean of µ 5 60 with s 5 12. Find the z-score for X 5 75.

Determine the sign of the z-score.

First, determine whether X is above or below the mean. This determines the sign of the 
z-score. For this demonstration, X is larger than (above) µ, so the z-score is positive.

Convert the distance between X and µ into standard deviation units.

For X 5 75 and µ 5 60, the distance between X and µ is 15 points. With s 5 12 
points, this distance corresponds to 15

12
 5 1.25 standard deviations.

Combine the sign from step 1 with the numerical value from step 2.

The score is above the mean (1) by a distance of 1.25 standard deviations. Thus,

z 5 11.25.

Confirm the answer using the z-score formula.

For this example, X 5 75, µ 5 60, and s 5 12.

z
X

5
2m

s
5

2
5

1
51

75 60

12

15

12
1.25

DemonSTraTion 5.2

converTing z-ScoreS To x valueS

For a population with µ 5 60 and s 5 12, what is the X value corresponding to  
z 5 20.50?

Locate X in relation to the mean.

A z-score of 20.50 indicates a location below the mean by half of a standard deviation.

Convert the distance from standard deviation units to points.

With s 5 12, half of a standard deviation is 6 points.

Identify the X value.

The value we want is located below the mean by 6 points. The mean is µ 5 60, so the 
score must be X 5 54.

S t e p  1

S t e p  2

S t e p  3

S t e p  4

S t e p  1

S t e p  2

S t e p  3
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proBlemS

 1. What information is provided by the sign (1/–) of  
a z-score? What information is provided by the  
numerical value of the z-score?

 2. A distribution has a standard deviation of s 5 10. 
Find the z-score for each of the following locations 
in the distribution.

 a. Above the mean by 5 points.
 b. Above the mean by 2 points.
 c. Below the mean by 20 points.
 d. Below the mean by 15 points.

 3. For a distribution with a standard deviation of s 5 20, 
describe the location of each of the following z-scores 
in terms of its position relative to the mean. For  
example, z 5 11.00 is a location that is 20 points 
above the mean.

 a. z 5 12.00
 b. z 5 10.50
 c. z 5 21.00
 d. z 5 20.25

 4. For a population with µ 5 80 and s 5 10,
 a. Find the z-score for each of the following X values. 

(Note: You should be able to find these values using 
the definition of a z-score. You should not need to 
use a formula or do any serious calculations.)

X 5 75 X 5 100 X 5 60

X 5 95 X 5 50 X 5 85
 b. Find the score (X value) that corresponds to each 

of the following z-scores. (Again, you should not 
need a formula or any serious calculations.)

z 5 1.00 z 5 0.20 z 5 1.50

z 5 20.50 z 5 22.00 z 5 21.50

 5. For a population with µ 5 40 and s 5 11, find the 
z-score for each of the following X values. (Note: You 
probably will need to use a formula and a calculator to 
find these values.)

X 5 45 X 5 52 X 5 41
X 5 30 X 5 25 X 5 38

 6. For a population with a mean of µ 5 100 and a  
standard deviation of s 5 20,

 a. Find the z-score for each of the following X values.

X 5 108 X 5 115 X 5 130

X 5 90 X 5 88 X 5 95
 b. Find the score (X value) that corresponds to each 

of the following z-scores.

z 5 20.40 z 5 20.50 z 5 1.80

z 5 0.75 z 5 1.50 z 5 21.25

 7. A population has a mean of µ 5 60 and a standard 
deviation of s 5 12.

 a. For this population, find the z-score for each of 
the following X values.

X 5 69 X 5 84 X 5 63

X 5 54 X 5 48 X 5 45

 b. For the same population, find the score (X value) 
that corresponds to each of the following z-scores.

z 5 0.50 z 5 1.50 z 5 22.50
z 5 20.25 z 5 20.50 z 5 1.25

 8. A sample has a mean of M 5 30 and a standard 
deviation of s 5 8. Find the z-score for each of the 
following X values from this sample.

X 5 32 X 5 34 X 5 36

X 5 28 X 5 20 X 5 18

 9. A sample has a mean of M 5 25 and a standard 
deviation of s 5 5. For this sample, find the X value 
corresponding to each of the following z-scores.

z 5 0.40 z 5 1.20 z 5 2.00

z 5 20.80 z 5 20.60 z 5 21.40

 10. Find the z-score corresponding to a score of X 5 45 
for each of the following distributions.

 a. µ 5 40 and s 5 20
 b. µ 5 40 and s 5 10
 c. µ 5 40 and s 5 5
 d. µ 5 40 and s 5 2

 11. Find the X value corresponding to z 5 0.25 for each 
of the following distributions.

 a. µ 5 40 and s 5 4
 b. µ 5 40 and s 5 8
 c. µ 5 40 and s 5 16
 d. µ 5 40 and s 5 32

 12. A score that is 6 points below the mean corresponds 
to a z-score of z 5 22.00. What is the population 
standard deviation?

 13. A score that is 9 points above the mean corresponds 
to a z-score of z 5 1.50. What is the population  
standard deviation?

 14. For a population with a standard deviation of  
s 5 12, a score of X 5 44 corresponds to z 5 20.50. 
What is the population mean?

 15. For a sample with a standard deviation of s 5 8,  
a score of X 5 65 corresponds to z 5 1.50. What is 
the sample mean?

 16. For a sample with a mean of M 5 51, a score of  
X 5 59 corresponds to z 5 2.00. What is the sample 
standard deviation?
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 17. For a population with a mean of µ 5 70, a score of  
X 5 64 corresponds to z 5 21.50. What is the  
population standard deviation?

 18. In a population distribution, a score of X 5 28 cor-
responds to z 5 21.00 and a score of X 5 34 cor-
responds to z 5 20.50. Find the mean and standard 
deviation for the population. (Hint: Sketch the distri-
bution and locate the two scores on your sketch.)

 19. In a sample distribution, X 5 56 corresponds to  
z 5 1.00, and X 5 47 corresponds to z 5 20.50.  
Find the mean and standard deviation for the sample.

 20. For each of the following populations, would a score 
of X 5 50 be considered a central score (near the 
middle of the distribution) or an extreme score (far 
out in the tail of the distribution)?

 a. µ 5 45 and s 5 10
 b. µ 5 45 and s 5 2
 c. µ 5 90 and s 5 20
 d. µ 5 60 and s 5 20

 21. A distribution of exam scores has a mean of µ 5 78.
 a. If your score is X 5 70, which standard deviation 

would give you a better grade: s 5 4 or s 5 8?
 b. If your score is X 5 80, which standard deviation 

would give you a better grade: s 5 4 or s 5 8?

 22. For each of the following, identify the exam score 
that should lead to the better grade. In each case, 
explain your answer.

 a. A score of X 5 74 on an exam with M 5 82 and 
s 5 8; or a score of X 5 40 on an exam with  
µ 5 50 and s 5 20.

 b. A score of X 5 51 on an exam with µ 5 45 and  
s 5 2; or a score of X 5 90 on an exam with  
µ 5 70 and s 5 20.

 c. A score of X 5 62 on an exam with µ 5 50 and  
s 5 8; or a score of X 5 23 on an exam with  
µ 5 20 and s 5 2.

 23. A distribution with a mean of µ 5 38 and a standard 
deviation of s 5 5 is transformed into a standardized 
distribution with µ 5 50 and s 5 10. Find the new, 
standardized score for each of the following values 
from the original population.

 a. X 5 39
 b. X 5 43
 c. X 5 35
 d. X 5 28

 24. A distribution with a mean of µ 5 76 and a standard 
deviation of s 5 12 is transformed into a standard-
ized distribution with µ 5 100 and s 5 20. Find the 
new, standardized score for each of the following 
values from the original population.

 a. X 5 61
 b. X 5 70
 c. X 5 85
 d. X 5 94

 25. A population consists of the following N 5 5 scores: 
0, 6, 4, 3, and 12.

 a. Compute µ and s for the population.
 b. Find the z-score for each score in the population.
 c. Transform the original population into a new 

population of N 5 5 scores with a mean of  
µ 5 100 and a standard deviation of s 5 20.

 26. A sample consists of the following n 5 7 scores: 5, 
0, 4, 5, 1, 2, and 4.

 a. Compute the mean and standard deviation for the 
sample.

 b. Find the z-score for each score in the sample.
 c. Transform the original sample into a new sample 

with a mean of M 5 50 and s 5 10.
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Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.

Probability

6.1    Introduction to Probability

6.2     Probability and the Normal 
Distribution

6.3     Probabilities and Proportions for 
Scores from a Normal Distribution

6.4     Looking Ahead to Inferential 
Statistics

Summary

Focus on Problem Solving

Demonstration 6.1

Problems

C h a p t e r 

6
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter or  
section before proceeding.

•	 Proportions	(math	review,	 
Appendix A)

•	 Fractions
•	 Decimals
•	 Percentages
•	 Basic	algebra	(math	review,	 

Appendix A)
•	 z-Scores	(Chapter	5)
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inTRoduCTion To PRobAbiliTy

In Chapter 1, we introduced the idea that research studies begin with a general question 
about an entire population, but the actual research is conducted using a sample. In this 
situation, the role of inferential statistics is to use the sample data as the basis for an-
swering questions about the population. To accomplish this goal, inferential procedures 
are typically built around the concept of probability. Specifically, the relationships be-
tween samples and populations are usually defined in terms of probability.

Suppose, for example, that you are selecting a single marble from a jar that contains 
50 black and 50 white marbles. (In this example, the jar of marbles is the population 
and the single marble to be selected is the sample.) Although you cannot guarantee the 
exact outcome of your sample, it is possible to talk about the potential outcomes in 
terms of probabilities. In this case, you have a 50-50 chance of getting either color. Now 
consider another jar (population) that has 90 black and only 10 white marbles. Again, 
you cannot predict the exact outcome of a sample, but now you know that the sample 
probably will be a black marble. By knowing the makeup of a population, we can de-
termine the probability of obtaining specific samples. In this way, probability gives us 
a connection between populations and samples, and this connection is the foundation 
for the inferential statistics that are presented in the chapters that follow.

You may have noticed that the preceding examples begin with a population and 
then use probability to describe the samples that could be obtained. This is exactly 
backward from what we want to do with inferential statistics. Remember that the 
goal of inferential statistics is to begin with a sample and then answer a general 
question about the population. We reach this goal in a two-stage process. In the 
first stage, we develop probability as a bridge from populations to samples. This 
stage involves identifying the types of samples that probably would be obtained 
from a specific population. Once this bridge is established, we simply reverse the 
probability rules to allow us to move from samples to populations (Figure 6.1). The 
process of reversing the probability relationship can be demonstrated by considering 
again the two jars of marbles we looked at earlier. (Jar 1 has 50 black and 50 white 
marbles; jar 2 has 90 black and only 10 white marbles.) This time, suppose you are 
blindfolded when the sample is selected, so you do not know which jar is being used. 

6.1

SamplePopulation

INFERENTIAL STATISTICS

PROBABILITY

Figure 6.1

The role of probability 
in inferential statistics. 
Probability is used to pre-
dict what kind of samples 
are likely to be obtained 
from a population. Thus, 
probability establishes 
a connection between 
samples and populations. 
Inferential statistics rely 
on this connection when 
they use sample data as the 
basis for making conclu-
sions about populations.
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Your task is to look at the sample that you obtain and then decide which jar is most 
likely. If you select a sample of n 5 4 marbles and all are black, which jar would you 
choose? It should be clear that it would be relatively unlikely (low probability) to 
obtain this sample from jar 1; in four draws, you almost certainly would get at least 1 
white marble. On the other hand, this sample would have a high probability of com-
ing from jar 2, where nearly all of the marbles are black. Your decision, therefore, is 
that the sample probably came from jar 2. Note that you now are using the sample 
to make an inference about the population.

Probability is a huge topic that extends far beyond the limits of introductory statistics, 
and we do not attempt to examine it all here. Instead, we concentrate on the few con-
cepts and definitions that are needed for an introduction to inferential statistics. We 
begin with a relatively simple definition of probability.

For a situation in which several different outcomes are possible, the probability 
for any specific outcome is defined as a fraction or a proportion of all the possible 
outcomes. If the possible outcomes are identified as A, B, C, D, and so on, then

probability of
number of outcomes classif

A 5
iied as

total number of possible outcomes

A

For example, if you are selecting a card from a complete deck, there are 52 possible 
outcomes. The probability of selecting the king of hearts is p 5 1

52 . The probability of 
selecting an ace is p 5 4

52  because there are 4 aces in the deck.
To simplify the discussion of probability, we use a notation system that eliminates 

a lot of the words. The probability of a specific outcome is expressed with a p (for 
probability) followed by the specific outcome in parentheses. For example, the prob-
ability of selecting a king from a deck of cards is written as p(king). The probability 
of obtaining heads for a coin toss is written as p(heads).

Note that probability is defined as a proportion, or a part of the whole. This defini-
tion makes it possible to restate any probability problem as a proportion problem. For 
example, the probability problem “What is the probability of selecting a king from 
a deck of cards?” can be restated as “What proportion of the whole deck consists of 
kings?” In each case, the answer is 4

52 , or “4 out of 52.” This translation from probability 
to proportion may seem trivial now, but it is a great aid when the probability problems 
become more complex. In most situations, we are concerned with the probability of 
obtaining a particular sample from a population. The terminology of sample and popu-
lation do change the basic definition of probability. For example, the whole deck of 
cards can be considered as a population, and the single card we select is the sample.

Probability values The definition we are using identifies probability as a fraction or 
a proportion. If you work directly from this definition, the probability values you obtain 
are expressed as fractions. For example, if you are selecting a card at random,

p(spade)
13

52

1

4
5 5

Or, if you are tossing a coin,

p(heads)
1

2
5

Defining Probability

D e f i n i t i o n
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You should be aware that these fractions can be expressed equally well as either 
decimals or percentages:

p

p

5 5 5

5 5 5

1

4
0.25 25%

1

2
0.50 50%

By convention, probability values most often are expressed as decimal values. But 
you should realize that any of these three forms is acceptable.

You also should note that all of the possible probability values are contained in a 
limited range. At one extreme, when an event never occurs, the probability is zero, or 
0%. At the other extreme, when an event always occurs, the probability is 1, or 100%. 
Thus, all probability values are contained in a range from 0 to 1. For example, suppose 
that you have a jar containing 10 white marbles. The probability of randomly selecting 
a black marble is

p(black)
0

10
05 5

The probability of selecting a white marble is

p(white)
10

10
15 5

For the preceding definition of probability to be accurate, it is necessary that the out-
comes be obtained by a process called random sampling.

A simple random sample requires that each individual in the population has an 
equal chance of being selected.

A second requirement, necessary for many statistical applications, states that if more 
than one individual is being selected, the probabilities must stay constant from one se-
lection to the next. Adding this second requirement produces what technically is called 
independent random sampling. The term independent refers to the fact that the probability 
of selecting any particular individual is independent of those individuals who have already 
been selected for the sample. For example, the probability that you will be selected is 
constant and does not change even when other individuals are selected before you are.

Because independent random sampling is a fundamental requirement for many sta-
tistical applications, we always assume that this is the sampling method being used. To 
simplify discussion, we typically omit the word “independent” and simply refer to this 
sampling technique as random sampling.

Random sampling requires that each individual has an equal chance of being 
selected and that the probability of being selected stays constant from one selec-
tion to the next if more than one individual is selected. A sample produced by 
this technique is known as a random sample.

Each of the two requirements for random sampling has some interesting conse-
quences. The first ensures that there is no bias in the selection process. For a population 

ranDom SamPling

D e f i n i t i o n

D e f i n i t i o n s

If you are unsure of how to 
convert from fractions to 
decimals or percentages, you 
should review the section 
on proportions in the math 
review, Appendix A.
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with N individuals, each individual must have the same probability, p 5 1
N , of being 

selected. This means, for example, that you would not get a random sample of people 
in your city by selecting names from a yacht-club membership list. Similarly, you 
would not get a random sample of college students by selecting individuals from your 
psychology classes. You also should note that the first requirement of random sampling 
prohibits you from applying the definition of probability to situations in which the pos-
sible outcomes are not equally likely. Consider, for example, the question of whether 
you will win a million dollars in the lottery tomorrow. There are only two possible 
alternatives.

 1. You will win.

 2. You will not win.

According to our simple definition, the probability of winning would be one out of 
two, or p 5 1

2
. However, the two alternatives are not equally likely, so the simple defini-

tion of probability does not apply.
The second requirement also is more interesting than may be apparent at first glance. 

Consider, for example, the selection of n 5 2 cards from a complete deck. For the first 
draw, the probability of obtaining the jack of diamonds is

p(jack of diamonds)
1

52
5

After selecting one card for the sample, you are ready to draw the second card. What 
is the probability of obtaining the jack of diamonds this time? Assuming that you still 
are holding the first card, there are two possibilities:

p(jack of diamonds)
1

51
if the first card w5 aas not the jack of diamonds

or

p(jack of diamonds) 5 0 if the first card was the jack of diamonds

In either case, the probability is different from its value for the first draw. This 
contradicts the requirement for random sampling, which says that the probability 
must stay constant. To keep the probabilities from changing from one selection to 
the next, it is necessary to return each individual to the population before you make 
the next selection. This process is called sampling with replacement. The second re-
quirement for random samples (constant probability) demands that you sample with 
replacement.

(Note: We are using a definition of random sampling that requires equal chance 
of selection and constant probabilities. This kind of sampling often is called random 
sampling with replacement. Many of the statistics we encounter later are founded on 
this kind of sampling. However, you should realize that other definitions exist for 
the concept of random sampling. In particular, it is very common to define random 
sampling without the requirement of constant probabilities—that is, random sampling 
without replacement. In addition, there are many different sampling techniques that 
are used when researchers are selecting individuals to participate in research studies.)

The situations in which we are concerned with probability usually involve a popula-
tion of scores that can be displayed in a frequency distribution graph. If you think 
of the graph as representing the entire population, then different proportions of the 

Probability 
anD frequency 

DiStributionS
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graph represent different proportions of the population. Because probabilities and 
proportions are equivalent, a particular proportion of the graph corresponds to a 
particular probability in the population. Thus, whenever a population is presented in 
a frequency distribution graph, it is possible to represent probabilities as proportions 
of the graph. The relationship between graphs and probabilities is demonstrated in 
the following example.

We use a very simple population that contains only N 5 10 scores with values 1, 1, 
2, 3, 3, 4, 4, 4, 5, 6. This population is shown in the frequency distribution graph in 
Figure 6.2. If you take a random sample of n 5 1 score from this population, what is 
the probability of obtaining an individual with a score greater than 4? In probability 
notation,

p(X . 4) 5 ?

Using the definition of probability, there are 2 scores that meet this criterion out 
of the total group of N 5 10 scores, so the answer would be p 5 2

10 . This answer can 
be obtained directly from the frequency distribution graph if you recall that prob-
ability and proportion measure the same thing. Looking at the graph (see Figure 6.2), 
what proportion of the population consists of scores greater than 4? The answer is 
the shaded part of the distribution—that is, 2 squares out of the total of 10 squares in 
the distribution. Notice that we now are defining probability as a proportion of area 
in the frequency distribution graph. This provides a very concrete and graphic way of 
representing probability.

Using the same population once again, what is the probability of selecting an  
individual with a score less than 5? In symbols,

p(X , 5) 5 ?

Going directly to the distribution in Figure 6.2, we now want to know what part  
of the graph is not shaded. The unshaded portion consists of 8 out of the 10 blocks 
(eight-tenths of the area of the graph), so the answer is p 5 8

10 .
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Figure 6.2

A frequency distribution 
histogram for a population 
that consists of N 5 10 
scores. The shaded part  
of the figure indicates  
the portion of the whole 
population that corre-
sponds to scores greater 
than X 5 4. The shaded 
portion is two-tenths  
(p 5 2

10 ) of the whole 
distribution.
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PRobAbiliTy And THE noRmAl diSTRibuTion

The normal distribution was first introduced in Chapter 2 as an example of a commonly 
occurring shape for population distributions. An example of a normal distribution is 
shown in Figure 6.3.

Note that the normal distribution is symmetrical, with the highest frequency in  
the middle and frequencies tapering off as you move toward either extreme. Although 
the exact shape for the normal distribution is defined by an equation (see Figure 6.3), the 
normal shape can also be described by the proportions of area contained in each section 
of the distribution. Statisticians often identify sections of a normal distribution by using 
z-scores. Figure 6.4 shows a normal distribution with several sections marked in z-score 
units. You should recall that z-scores identify locations in a distribution in terms of standard 
deviations from the mean. For example, z 5 11 is 1 standard deviation above the mean,  
z 5 12 is 2 standard deviations above the mean, and so on. Figure 6.4 shows the percent-
age of scores that fall in each of these sections for a normal distribution. For example, the 
section between the mean (z 5 0) and the point that is 1 standard deviation above the mean 
(z 5 1) contains 34.13% of the scores. Similarly, 13.59% of the scores are located in the 
section between 1 and 2 standard deviations above the mean. In this way it is possible to 
define a normal distribution in terms of its proportions; that is, a distribution is normal if 
and only if it has all the right proportions.

There are two additional points to be made about the distribution shown in  
Figure 6.4. First, you should realize that the sections on the left side of the distribution 

6.2

 1. A survey of the students in a psychology class revealed that there were 19 females 
and 8 males. Of the 19 females, only 4 had no brothers or sisters, and 3 of the 
males were also the only child in the household. If a student is randomly selected 
from this class,

 a. What is the probability of obtaining a male?

 b. What is the probability of selecting a student who has at least one brother or sister?

 c. What is the probability of selecting a female who has no siblings?

 2. A jar contains 10 red marbles and 30 blue marbles.

 a. If you randomly select 1 marble from the jar, what is the probability of  
obtaining a red marble?

 b. If you take a random sample of n 5 3 marbles from the jar and the first two 
marbles are both blue, what is the probability that the third marble will be red?

 3. Suppose that you are going to select a random sample of n 5 1 score from the 
distribution in Figure 6.2. Find the following probabilities:

 a. p(X . 2)  b. p(X . 5)  c. p(X , 3)

 1. a. p 5 8
27   b. p 5 20

27   c. p 5 4
27

2. a. p 5 10
40 5 0.25

 b. p 5 10
40 5 0.25. Remember that random sampling requires sampling with replacement.

 3. a. p 5 7
10 5 0.70  b. p 5 1

10 5 0.10  c. p 5 3
10 5 0.30

l E A R n i n g  C H E C k
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have exactly the same areas as the corresponding sections on the right side because the 
normal distribution is symmetrical. Second, because the locations in the distribution are 
identified by z-scores, the percentages shown in the figure apply to any normal distribu-
tion regardless of the values for the mean and the standard deviation. Remember: When 
any distribution is transformed into z-scores, the mean becomes zero and the standard 
deviation becomes one.

Because the normal distribution is a good model for many naturally occurring  
distributions and because this shape is guaranteed in some circumstances (as we see in 
Chapter 7), we devote considerable attention to this particular distribution. The process 
of answering probability questions about a normal distribution is introduced in the  
following example.

µ
X

σ

Figure 6.3

The normal distribution. 
The exact shape of the nor-
mal distribution is specified 
by an equation relating to 
each X value (score) with 
each Y value (frequency). 
The equation is

Y e X5
s

2 2m s1

2

2 22

 2

( ) /

(π and e are mathemati-
cal constants.) In simpler 
terms, the normal distribu-
tion is symmetrical with a 
single mode in the middle. 
The frequency tapers off as 
you move farther from the 
middle in either direction.

–2 –1 0

µ

+1 +2

z

34.13%

13.59%

2.28%

Figure 6.4

The normal distribution 
following a z-score  
transformation.
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The population distribution of SAT scores is normal with a mean of m 5 500 and a 
standard deviation of s 5 100. Given this information about the population and the 
known proportions for a normal distribution (see Figure 6.4), we can determine the 
probabilities associated with specific samples. For example, what is the probability 
of randomly selecting an individual from this population who has an SAT score 
greater than 700?

Restating this question in probability notation, we get

p(X . 700) 5 ?

We follow a step-by-step process to find the answer to this question.

 1. First, the probability question is translated into a proportion question: Out 
of all possible SAT scores, what proportion corresponds to scores greater 
than 700?

 2. The set of “all possible SAT scores” is simply the population distribution. This 
population is shown in Figure 6.5. The mean is m 5 500, so the score X 5 700 
is to the right of the mean. Because we are interested in all scores greater than 
700, we shade in the area to the right of 700. This area represents the propor-
tion we are trying to determine.

 3. Identify the exact position of X 5 700 by computing a z-score. For this  
example,

z
X

5
2m

s
5

700 500

100

200

100
2 00

2
5 5 .

  That is, an SAT score of X 5 700 is exactly 2 standard deviations above the 
mean and corresponds to a z-score of z 5 12.00. We have also located this  
z-score in Figure 6.5.

 4. The proportion we are trying to determine may now be expressed in terms of its 
z-score:

p(z . 2.00) 5 ?

E x A m P l E  6 . 2

X
µ = 500 X = 700

σ =100

0
z

2.00

Figure 6.5

The distribution of SAT 
scores described in 
Example 6.2.
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  According to the proportions shown in Figure 6.4, all normal distributions, 
regardless of the values for µ and s, have 2.28% of the scores in the tail beyond 
z 5 12.00. Thus, for the population of SAT scores,

p(X . 700) 5 p(z . 12.00) 5 2.28%

Before we attempt any more probability questions, we must introduce a more useful 
tool than the graph of the normal distribution shown in Figure 6.4. The graph shows 
proportions for only a few selected z-score values. A more complete listing of z-scores 
and proportions is provided in the unit normal table. This table lists proportions of the 
normal distribution for a full range of possible z-score values.

The complete unit normal table is provided in Appendix B Table B.1, and part of the 
table is reproduced in Figure 6.6. Notice that the table is structured in a four-column 
format. The first column (A) lists z-score values corresponding to different locations in a 

the unit  
normal table

Mean z

B

Mean z

C

(A)
z

(B)
Proportion

in body

(C) (D)
Proportion
between

mean and z

Proportion
in tail

0.00
0.01
0.02
0.03
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34

.5000

.5040

.5080

.5120
0.5793
.5832
.5871
.5910
.5948
.5987
.6026
.6064
.6103
.6141
.6179
.6217
.6255
.6293
.6331

.5000 .0000
.0040
.0080
.0120
.0120
.0832
.0871
.0910
.0948
.0987
.1026
.1064
.1103
.1141
.1179
.1217
.1255
.1293
.1331

.4960

.4920

.4880
0.4207
.4168
.4129
.4090
.4052
.4013
.3974
.3936
.3897
.3859
.3821
.3783
.3745
.3707
.3669

Mean z

D

Figure 6.6

A portion of the unit normal table. This table lists proportions of the normal distribution  
corresponding to each z-score value. Column A of the table lists z-scores. Column B lists the 
proportion in the body of the normal distribution up to the z-score value. Column C lists the 
proportion of the normal distribution that is located in the tail of the distribution beyond  
the z-score value. Column D lists the proportion between the mean and the z-score value.
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normal distribution. If you imagine a vertical line drawn through a normal distribution, 
then the exact location of the line can be described by one of the z-score values listed in 
column A. You should also realize that a vertical line separates the distribution into two 
sections: a larger section called the body and a smaller section called the tail. Columns B 
and C in the table identify the proportion of the distribution in each of the two sections. 
Column B presents the proportion in the body (the larger portion), and column C presents 
the proportion in the tail. Finally, we have added a fourth column, column D, that identi-
fies the proportion of the distribution that is located between the mean and the z-score.

We use the distribution in Figure 6.7(a) to demonstrate how the unit normal table 
can be used to find specific proportions of a normal distribution. The figure shows a 
normal distribution with a vertical line drawn at z 5 10.25. Using the portion of the 
table shown in Figure 6.6, find the row in the table that contains z 5 0.25 in column A. 
Reading across the row, you should find that the line drawn at z 5 1 0.25 separates the 
distribution into two sections with the larger section containing 0.5987 (59.87%) of the 
distribution and the smaller section containing 0.4013 (40.13%) of the distribution. Also, 
there is exactly 0.0987 (9.87%) of the distribution between the mean and z 5 10.25.

To make full use of the unit normal table, there are a few facts to keep in mind:

 1. The body always corresponds to the larger part of the distribution whether it 
is on the right-hand side or the left-hand side. Similarly, the tail is always the 
smaller section whether it is on the right or the left.

 2. Because the normal distribution is symmetrical, the proportions on the right-
hand side are exactly the same as the corresponding proportions on the left-hand 
side. Earlier, for example, we used the unit normal table to obtain proportions  
for z 5 10.25. Figure 6.7(b) shows the same proportions for z 5 20.25. For a 
negative z-score, however, notice that the tail of the distribution is on the left side 
and the body is on the right. For a positive z-score [Figure 6.7(a)], the positions 
are reversed. However, the proportions in each section are exactly the same, with 
0.55987 in the body and 0.4013 in the tail. Once again, the table does not list 
negative z-score values. To find proportions for negative z-scores, you must look 
up the corresponding proportions for the positive value of z.

 3. Although the z-score values change signs (1 and 2) from one side to the other, 
the proportions are always positive. Thus, column C in the table always lists the 
proportion in the tail whether it is the right-hand tail or the left-hand tail.

0 �0.25

Tail
0.4013

Body
0.5987

z

0�0.25

Tail
0.4013

Body
0.5987

z

Figure 6.7

Proportions of a normal distribution corresponding to z 5 10.25 (a) and 20.25 (b).

(a) (b)
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The unit normal table lists relationships between z-score locations and proportions in a 
normal distribution. For any z-score location, you can use the table to look up the cor-
responding proportions. Similarly, if you know the proportions, you can use the table 
to find the specific z-score location. Because we have defined probability as equivalent 
to proportion, you can also use the unit normal table to look up probabilities for normal 
distributions. The following examples demonstrate a variety of different ways that the 
unit normal table can be used.

Finding proportions or probabilities for specific z-score values For each of the 
following examples, we begin with a specific z-score value and then use the unit normal 
table to find probabilities or proportions associated with the z-score.

What proportion of the normal distribution corresponds to z-score values greater than 
z 5 1.00? First, you should sketch the distribution and shade in the area you are try-
ing to determine. This is shown in Figure 6.8(a). In this case, the shaded portion is the  
tail of the distribution beyond z 5 1.00. To find this shaded area, you simply look for 
z 5 1.00 in column A to find the appropriate row in the unit normal table. Then scan 
across the row to column C (tail) to find the proportion. Using the table in Appendix B, 
you should find that the answer is 0.1587.

You also should notice that this same problem could have been phrased as a prob-
ability question. Specifically, we could have asked, “For a normal distribution, what is 
the probability of selecting a z-score value greater than z 5 11.00?” Again, the answer 
is p(z . 1.00) 5 0.1587 (or 15.87%).

For a normal distribution, what is the probability of selecting a z-score less than z 5 1.50? 
In symbols, p(z , 1.50) 5 ? Our goal is to determine what proportion of the normal dis-
tribution corresponds to z-scores less than 1.50. A normal distribution is shown in Figure 
6.8(b) and z 5 1.50 is marked in the distribution. Notice that we have shaded all of the 
values to the left of (less than) z 5 1.50. This is the portion we are trying to find. Clearly 
the shaded portion is more than 50%, so it corresponds to the body of the distribution. 
Therefore, find z 5 1.50 in column A of the unit normal table and read across the row to 
obtain the proportion from column B. The answer is p(z , 1.50) 5 0.9332 (or 93.32%).

Many problems require that you find proportions for negative z-scores. For example, 
what proportion of the normal distribution is contained in the tail beyond z 5 20.50? 

ProbabilitieS, 
ProPortionS, anD 

z-ScoreS

E x A m P l E  6 . 3 A

E x A m P l E  6 . 3 b

E x A m P l E  6 . 3 C

0 1.00
µ

0 1.50
µ

0−0.5
µ

Figure 6.8

The distribution for Example 6.3A26.3C.

(a) (b) (c)
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That is, p(z , 20.50). This portion has been shaded in Figure 6.8(c). To answer ques-
tions with negative z-scores, simply remember that the normal distribution is symmetri-
cal with a z-score of zero at the mean, positive values to the right, and negative values to 
the left. The proportion in the left tail beyond z 5 20.50 is identical to the proportion 
in the right tail beyond z 5 10.50. To find this proportion, look up z 5 0.50 in column 
A, and read across the row to find the proportion in column C (tail). You should get an 
answer of 0.3085 (30.85%).

Finding the z-score location that corresponds to specific proportions The preced-
ing examples all involved using a z-score value in column A to look up proportions in 
column B or C. You should realize, however, that the table also allows you to begin 
with a known proportion and then look up the corresponding z-score. The following 
examples demonstrate this process.

For a normal distribution, what z-score separates the top 10% from the remainder of the 
distribution? To answer this question, we have sketched a normal distribution [Figure 
6.9(a)] and drawn a vertical line that separates the highest 10% (approximately) from 
the rest. The problem is to find the exact location of this line. For this distribution, we 
know that the tail contains 0.1000 (10%) and the body contains 0.9000 (90%). To find 
the z-score value, you simply locate the row in the unit normal table that has 0.1000 in 
column C or 0.9000 in column B. For example, you can scan down the values in column 
C (tail) until you find a proportion of 0.1000. Note that you probably will not find the 
exact proportion, but you can use the closest value listed in the table. For this example, 
a proportion of 0.1000 is not listed in column C but you can use 0.1003, which is listed. 
Once you have found the correct proportion in the table, simply read across the row to 
find the corresponding z-score value in column A.

For this example, the z-score that separates the extreme 10% in the tail is z 5 1.28. 
At this point you must be careful because the table does not differentiate between the 
right-hand tail and the left-hand tail of the distribution. Specifically, the final answer 
could be either z 5 11.28, which separates 10% in the right-hand tail, or z 5 21.28, 
which separates 10% in the left-hand tail. For this problem, we want the right-hand tail 
(the highest 10%), so the z-score value is z 5 11.28.

For a normal distribution, what z-score values form the boundaries that separate the 
middle 60% of the distribution from the rest of the scores?

Again, we have sketched a normal distribution [Figure 6.9(b)] and drawn vertical 
lines so that roughly 60% of the distribution in the central section, with the remainder 

E x A m P l E  6 . 4 A

E x A m P l E  6 . 4 b

Moving to the left on the 
X-axis results in smaller  
X values and smaller  
z-scores. Thus, a z-score  
of 23.00 reflects a smaller 
value than a z-score of 21.

z � ? z � ?z � ?

10%
(.1000)

90%
(.9000) 60%

(.6000)

Figure 6.9

The distributions for 
Examples 6.4A and 6.4B.

(a) (b)
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split equally between the two tails. The problem is to find the z-score values that define 
the exact locations for the lines. To find the z-score values, we begin with the known 
proportions: 0.6000 in the center and 0.4000 divided equally between the two tails. 
Although these proportions can be used in several different ways, this example provides 
an opportunity to demonstrate how column D in the table can be used to solve problems. 
For this problem, the 0.6000 in the center can be divided in half with exactly 0.3000 to 
the right of the mean and exactly 0.3000 to the left. Each of these sections corresponds 
to the proportion listed in column D. Begin by scanning down column D, looking for 
a value of 0.3000. Again, this exact proportion is not in the table, but the closest value 
is 0.2995. Reading across the row to column A, you should find a z-score value of  
z 5 0.84. Looking again at the sketch [see Figure 6.9(b)], the right-hand line is located 
at z 5 10.84 and the left-hand line is located at z 5 20.84.

You may have noticed that we sketched distributions for each of the preceding prob-
lems. As a general rule, you should always sketch a distribution, locate the mean with 
a vertical line, and shade in the portion that you are trying to determine. Look at your 
sketch. It will help you to determine which columns to use in the unit normal table. If you 
make a habit of drawing sketches, you will avoid careless errors when using the table.

 1. Find the proportion of a normal distribution that corresponds to each of the follow-
ing sections:

 a. z , 0.25  b. z . 0.80  c. z , 21.50  d. z . 20.75

 2. For a normal distribution, find the z-score location that divides the distribution as 
follows:

 a. Separate the top 20% from the rest.

 b. Separate the top 60% from the rest.

 c. Separate the middle 70% from the rest.

 3. The tail will be on the right-hand side of a normal distribution for any positive  
z-score. (True or false?)

 1. a. p 5 0.5987 b. p 5 0.2119 c. p 5 0.0668 d. p 5 0.7734

 2. a. z 5 0.84 b. z 5 20.25 c. z 5 21.04 and 11.04.

 3. True

l E A R n i n g  C H E C k
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PRobAbiliTiES And PRoPoRTionS foR SCoRES fRom  
A noRmAl diSTRibuTion

In the preceding section, we used the unit normal table to find probabilities and propor-
tions corresponding to specific z-score values. In most situations, however, it is necessary 
to find probabilities for specific X values. Consider the following example:

It is known that IQ scores form a normal distribution with m 5 100 and s 5 15. Given 
this information, what is the probability of randomly selecting an individual with an 
IQ score that is less than 120?

6.3
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This problem is asking for a specific probability or proportion of a normal distribu-
tion. However, before we can look up the answer in the unit normal table, we must 
first transform the IQ scores (X values) into z-scores. Thus, to solve this new kind of 
probability problem, we must add one new step to the process. Specifically, to answer 
probability questions about scores (X values) from a normal distribution, you must use 
the following two-step procedure:

 1. Transform the X values into z-scores.

 2. Use the unit normal table to look up the proportions corresponding to the  
z-score values.

This process is demonstrated in the following examples. Once again, we suggest 
that you sketch the distribution and shade the portion you are trying to find to avoid 
careless mistakes.

We now answer the probability question about IQ scores that we presented earlier. 
Specifically, what is the probability of randomly selecting an individual with an IQ 
score that is less than 120? Restated in terms of proportions, we want to find the propor-
tion of the IQ distribution that corresponds to scores less than 120. The distribution is 
drawn in Figure 6.10, and the portion we want has been shaded.

The first step is to change the X values into z-scores. In particular, the score of  
X 5 120 is changed to

z
X

5
2m

s
5

2
5 5

120 100

15

20

15
1 33.

Thus, an IQ score of X 5 120 corresponds to a z-score of z 5 1.33, and IQ scores 
less than 120 correspond to z-scores less than 1.33.

Next, look up the z-score value in the unit normal table. Because we want the propor-
tion of the distribution in the body to the left of X 5 120 (see Figure 6.10), the answer 
is in column B. First, locate z 5 1.33 in column A, and then read across the row to find 
p 5 0.9082 in column B. Thus, the probability of randomly selecting an individual with 
an IQ less than 120 is p 5 0.9082. In symbols,

p(X , 120) 5 p(z , 1.33) 5 0.9082 (or 90.82%)

E x A m P l E  6 . 5

Caution: The unit normal 
table can be used only with 
normal-shaped distributions. 
If a distribution is not normal, 
transforming raw scores to 
z-scores does not make it 
normal.

� � 100

� � 15

z

120

1.330

Figure 6.10

The distribution of IQ 
scores. The problem is 
to find the probability or 
proportion of the distri-
bution corresponding to 
scores less than 120.
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Finally, notice that we phrased this question in terms of a probability. Specifically, 
we asked, “What is the probability of selecting an individual with an IQ less than 120?” 
However, the same question can be phrased in terms of a proportion: “What proportion 
of all of the individuals in the population have IQ scores that are less than 120?” Both 
versions ask exactly the same question and produce exactly the same answer. A third 
alternative for presenting the same question is introduced in Box 6.1.

Finding proportions/probabilities located between two scores The next example 
demonstrates the process of finding the probability of selecting a score that is located 
between two specific values. Although these problems can be solved using the pro-
portions of columns B and C (body and tail), they are often easier to solve with the 
proportions listed in column D.

The highway department conducted a study measuring driving speeds on a local section 
of interstate highway. They found an average speed of m 5 58 miles per hour with a 
standard deviation of s 5 10. The distribution was approximately normal. Given this 
information, what proportion of the cars are traveling between 55 and 65 miles per hour? 
Using probability notation, we can express the problem as

p(55 , X , 65) 5 ?

The distribution of driving speeds is shown in Figure 6.11 with the appropriate area 
shaded. The first step is to determine the z-score corresponding to the X value at each 
end of the interval.

For :
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BOX
6.1

PRobAbiliTiES, PRoPoRTionS, And PERCEnTilE RAnkS

working. In Example 6.5, the problem is presented as 
“What is the probability of randomly selecting an  
individual with an IQ of less than 120?” Exactly the 
same question could be phrased as “What is the  
percentile rank for an IQ score of 120?” In each case, 
we are drawing a line at X 5 120 and looking for the 
proportion of the distribution on the left-hand side of 
the line. Similarly, Example 6.8 asks “How much time 
do you have to spend commuting each day to be in the 
highest 10% nationwide?” Because this score separates 
the top 10% from the bottom 90%, the same question 
could be rephrased as “What is the 90th percentile for 
the distribution of commuting times?”

Thus far we have discussed parts of distributions in 
terms of proportions and probabilities. However, there 
is another set of terminology that deals with many of 
the same concepts. Specifically, the percentile rank 
for a specific score is defined as the percentage of the 
individuals in the distribution who have scores that are 
less than or equal to the specific score. For example, 
if 70% of the individuals have scores of X 5 45 or 
lower, then X 5 45 has a percentile rank of 70%. 
When a score is referred to by its percentile rank, the 
score is called a percentile. For example, a score with 
a percentile rank of 70% is called the 70th percentile.

Using this terminology, it is possible to rephrase 
some of the probability problems that we have been 
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Looking again at Figure 6.11, we see that the proportion we are seeking can be di-
vided into two sections: (1) the area left of the mean, and (2) the area right of the mean. 
The first area is the proportion between the mean and z 5 20.30, and the second is 
the proportion between the mean and z 5 10.70. Using column D of the unit normal 
table, these two proportions are 0.1179 and 0.2580. The total proportion is obtained by 
adding these two sections:

p(55 , X , 65) 5 p(20.30 , z , 10.70) 5 0.1179 1 0.2580 5 0.3759

Using the same distribution of driving speeds from the previous example, what  
proportion of cars are traveling between 65 and 75 miles per hour?

p(65 , X , 75) 5 ?

The distribution is shown in Figure 6.12 with the appropriate area shaded. Again, we 
start by determining the z-score corresponding to each end of the interval.
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Figure 6.11

The distribution for  
Example 6.6.
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Figure 6.12

The distribution for 
Example 6.7.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



166     CHAPTER 6 PRobAbiliTy

There are several different ways to use the unit normal table to find the proportion 
between these two z-scores. For this example, we use the proportions in the tail of the 
distribution (column C). According to column C in the unit normal table, the proportion 
in the tail beyond z 5 0.70 is p 5 0.2420. Note that this proportion includes the section 
that we want, but it also includes an extra, unwanted section located in the tail beyond 
z 5 1.70. Locating z 5 1.70 in the table, and reading across the row to column C, we 
see that the unwanted section is p 5 0.0446. To obtain the correct answer, we subtract 
the unwanted portion from the total proportion in the tail beyond z 5 0.70.

p(65 , X , 75) 5 p(0.70 , z , 1.70) 5 0.2420 2 0.0446 5 0.1974

Finding scores corresponding to specific proportions or probabilities In the pre-
vious three examples, the problem was to find the proportion or probability correspond-
ing to specific X values. The two-step process for finding these proportions is shown 
in Figure 6.13. Thus far, we have only considered examples that move in a clockwise 
direction around the triangle shown in the figure; that is, we start with an X value that 
is transformed into a z-score, and then we use the unit normal table to look up the 
appropriate proportion. You should realize, however, that it is possible to reverse this 
two-step process so that we move counterclockwise around the triangle. This reverse 
process allows us to find the score (X value) corresponding to a specific proportion in 
the distribution. Following the lines in Figure 6.13, we begin with a specific proportion, 
use the unit normal table to look up the corresponding z-score, and then transform the 
z-score into an X value. The following example demonstrates this process.

The U.S. Census Bureau (2005) reports that Americans spend an average of m 5 24.3 minutes 
commuting to work each day. Assuming that the distribution of commuting times is normal 
with a standard deviation of s 5 10 minutes, how much time do you have to spend com-
muting each day to be in the highest 10% nationwide? (An alternative form of the same 
question is presented in Box 6.1.) The distribution is shown in Figure 6.14 with a portion 
representing approximately 10% shaded in the right-hand tail.

In this problem, we begin with a proportion (10% or 0.10), and we are looking 
for a score. According to the map in Figure 6.13, we can move from p (propor-
tion) to X (score) via z-scores. The first step is to use the unit normal table to 

E x A m P l E  6 . 8

X
z-score formula

z-score

Unit
normal
table

Proportions
or

probabilities

Figure 6.13

Determining probabilities 
or proportions for a normal 
distribution is shown as 
a two-step process with 
z-scores as an intermediate 
stop along the way.  
Note that you cannot  
move directly along the 
dashed line between  
X values and probabilities 
or proportions. Instead, 
you must follow the solid 
lines around the corner.
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find the z-score that corresponds to a proportion of 0.10 in the tail. First, scan the  
values in column C to locate the row that has a proportion of 0.10 in the tail of the  
distribution. Note that you will not find 0.1000 exactly, but locate the closest value 
possible. In this case, the closest value is 0.1003. Reading across the row, we find 
z 5 1.28 in column A.

The next step is to determine whether the z-score is positive or negative. Remember 
that the table does not specify the sign of the z-score. Looking at the distribution in 
Figure 6.14, you should realize that the score we want is above the mean, so the z-score 
is positive, z 5 11.28.

The final step is to transform the z-score into an X value. By definition, a z-score 
of 11.28 corresponds to a score that is located above the mean by 1.28 standard 
deviations. One standard deviation is equal to 10 points (s 5 10), so 1.28 standard 
deviations is

1.28s 5 1.28(10) 5 12.8 points

Thus, our score is located above the mean (µ 5 24.3) by a distance of 12.8 points. 
Therefore,

X 5 24.3 1 12.8 5 37.1

The answer for our original question is that you must commute at least 37.1 minutes 
a day to be in the top 10% of American commuters.

Again, the distribution of commuting time for American workers is normal with a mean 
of m 5 24.3 minutes and a standard deviation of s 5 10 minutes. For this example, 
we find the range of values that defines the middle 90% of the distribution. The entire 
distribution is shown in Figure 6.15 with the middle portion shaded.

The 90% (0.9000) in the middle of the distribution can be split in half with 45% 
(0.4500) on each side of the mean. Looking up 0.4500, in column D of the unit normal 
table, you will find that the exact proportion is not listed. However, you will find 0.4495 
and 0.4505, which are equally close. Technically, either value is acceptable, but we use 
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  10
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Figure 6.14

The distribution of  
commuting times for 
American workers. The 
problem is to find the score 
that separates the highest 
10% of commuting times 
from the rest.
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0.4505 so that the total area in the middle is at least 90%. Reading across the row, you 
should find a z-score of z 5 1.65 in column A. Thus, the z-score at the right boundary 
is z 5 11.65 and the z-score at the left boundary is z 5 21.65. In either case, a z-score 
of 1.65 indicates a location that is 1.65 standard deviations away from the mean. For 
the distribution of commuting times, one standard deviation is s 5 10, so 1.65 standard 
deviations is a distance of

1.65s 5 1.65(10) 5 16.5 points

Therefore, the score at the right-hand boundary is located above the mean by 
16.5 points and corresponds to X 5 24.3 1 16.5 5 40.8. Similarly, the score at the 
left-hand boundary is below the mean by 16.5 points and corresponds to X 5 24.3 
2 16.5 5 7.8. The middle 90% of the distribution corresponds to values between  
7.8 and 40.8. Thus, 90% of American commuters spend between 7.8 and 40.8 min-
utes commuting to work each day. Only 10% of commuters spend either more time 
or less time.

µ = 24.3

0 1.65

40.8

–1.65

7.8

σ = 10

Middle 90%Figure 6.15

The distribution of 
commuting times for 
American workers. The 
problem is to find the 
middle 90% of the  
distribution.

 1. For a normal distribution with a mean of m 5 60 and a standard deviation of  
s 5 12, find each probability value requested.

 a. p(X . 66)  b. p(X , 75)  c. p(X , 57)  d. p(48 , X , 72)

 2. Scores on the Mathematics section of the SAT Reasoning Test form a normal  
distribution with a mean of m 5 500 and a standard deviation of s 5 100.

 a. If the state college only accepts students who score in the top 60% on this test, 
what is the minimum score needed for admission?

 b. What is the minimum score necessary to be in the top 10% of the distribution?

 c. What scores form the boundaries for the middle 50% of the distribution?

 3. What is the probability of selecting a score greater than 45 from a positively 
skewed distribution with m 5 40 and s 5 10? (Be careful.)

l E A R n i n g  C H E C k
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looking AHEAd To infEREnTiAl STATiSTiCS

Probability forms a direct link between samples and the populations from which they 
come. As we noted at the beginning of this chapter, this link is the foundation for the 
inferential statistics in future chapters. The following example provides a brief preview 
of how probability is used in the context of inferential statistics.

We ended Chapter 5 with a demonstration of how inferential statistics are used 
to help interpret the results of a research study. A general research situation was 
shown in Figure 5.9 and is repeated here in Figure 6.16. The research begins with a 
population that forms a normal distribution with a mean of µ 5 400 and a standard 
deviation of s 5 20. A sample is selected from the population and a treatment is 
administered to the sample. The goal for the study is to evaluate the effect of the 
treatment.

To determine whether the treatment has an effect, the researcher simply com-
pares the treated sample with the original population. If the individuals in the 
sample have scores around 400 (the original population mean), then we must con-
clude that the treatment appears to have no effect. On the other hand, if the treated 
individuals have scores that are noticeably different from 400, then the researcher 
has evidence that the treatment does have an effect. Notice that the study is using 

6.4

 1. a. p 5 0.3085  b. p 5 0.8944  c. p 5 0.4013  d. p 5 0.6826

 2. a. z 5 20.25; X 5 475

  b. z 5 1.28; X 5 628

  c. z 5 60.67; X 5433 and X 5567

 3. You cannot obtain the answer. The unit normal table cannot be used to answer this question 
because the distribution is not normal.

AnSwERS

Population

Normal
� � 400
� � 20

Sample
Treated
sample

T
r
e
a
t

m
e
n
t

Figure 6.16

A diagram of a research 
study. A sample is selected 
from the population and 
receives a treatment. 
The goal is to determine 
whether the treatment has 
an effect.
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a sample to help answer a question about a population; this is the essence of infer-
ential statistics.

The problem for the researcher is determining exactly what is meant by “notice-
ably different” from 400. If a treated individual has a score of X 5 415, is that 
enough to say that the treatment has an effect? What about X 5 420 or X 5 450? 
In Chapter 5, we suggested that z-scores provide one method for solving this prob-
lem. Specifically, we suggested that a z-score value beyond z 5 2.00 (or 22.00) 
was an extreme value and, therefore, noticeably different. However, the choice of 
z 5 ±2.00 was purely arbitrary. Now we have another tool, probability, to help us 
decide exactly where to set the boundaries. Specifically, we can determine exactly 
which samples have a high probability of being selected and which are extremely 
unlikely. For example, we can set the boundaries to separate the most likely 95% 
of the samples in the middle of the distribution from the extremely unlikely 5% in 
the tails.

Figure 6.17 shows the original population from our hypothetical research study. 
Note that most of the scores are located close to µ 5 400. Also note that we have added 
boundaries separating the middle 95% of the distribution from the extreme 5%, or 
0.0500, in the two tails. Dividing the 0.0500 in half produces proportions of 0.0250 in 
the right-hand tail and 0.0250 in the left-hand tail. Using column C of the unit normal 
table, the z-score boundaries for the right and left tails are z 5 11.96 and z 5 21.96, 
respectively.

The boundaries set at z 5 ±1.96 provide objective criteria for deciding whether 
the treated sample is noticeably different from the original population. Specifically, 
any sample that is beyond the ±1.96 boundaries is an extreme value and is extremely 
unlikely to occur (p 5 0.05 or less) if the treatment has no effect. Therefore, this 
kind of sample provides convincing evidence that the treatment really does have an 
effect.

� � 400
z � �1.96 z � �1.96

Middle 95%

High probability values
(scores near � � 400)

indicating that the treatment
has no effect

Extreme 5%

Scores that are very unlikely
to be obtained from the original population

and therefore provide evidence of a treatment effect

Figure 6.17

Using probability to 
evaluate a treatment 
effect. Values that are 
extremely unlikely to be 
obtained from the original 
population are viewed as 
evidence of a treatment 
effect.
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Summary

 1. The probability of a particular event A is defined as a 
fraction or proportion:

p A
A

( ) 5
number of outcomes classified as

totall number of possible outcomes

 2. Our definition of probability is accurate only for  
random samples. There are two requirements that  
must be satisfied for a random sample:

 a. Every individual in the population has an equal 
chance of being selected.

 b. When more than one individual is being selected, 
the probabilities must stay constant. This means 
that there must be sampling with replacement.

 3. All probability problems can be restated as proportion 
problems. The “probability of selecting a king from 
a deck of cards” is equivalent to the “proportion of 
the deck that consists of kings.” For frequency dis-
tributions, probability questions can be answered by 
determining proportions of area. The “probability of 
selecting an individual with an IQ greater than 108” is 

equivalent to the “proportion of the whole population 
that consists of IQs greater than 108.”

 4. For normal distributions, probabilities (proportions) 
can be found in the unit normal table. The table pro-
vides a listing of the proportions of a normal distribu-
tion that correspond to each z-score value. With the 
table, it is possible to move between X values and 
probabilities using a two-step procedure:

 a. The z-score formula (Chapter 5) allows you to 
transform X to z or to change z back to X.

 b. The unit normal table allows you to look up the prob-
ability (proportion) corresponding to each z-score or 
the z-score corresponding to each probability.

 5. Percentiles and percentile ranks measure the relative 
standing of a score within a distribution (see Box 6.1). 
Percentile rank is the percentage of individuals with 
scores at or below a particular X value. A percentile is 
an X value that is identified by its rank. The percentile 
rank always corresponds to the proportion to the left of 
the score in question.

Key termS

probability (151)

random sample (152)

independent random sample (152)

sampling with replacement (153)

unit normal table (158)

percentile rank (164)

percentile (164)
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The statistics computer package SPSS is not structured to compute probabilities. 
However, the program does report probability values as part of the inferential statistics 
that we examine later in this book. In the context of inferential statistics, the probabilities 
are called significance levels, and they warn researchers about the probability of misinter-
preting their research results.

focuS on Problem Solving

 1. We have defined probability as being equivalent to a proportion, which means 
that you can restate every probability problem as a proportion problem.  
This definition is particularly useful when you are working with frequency 
distribution graphs in which the population is represented by the whole graph 
and probabilities (proportions) are represented by portions of the graph. When 
working problems with the normal distribution, you always should start with  
a sketch of the distribution. You should shade the portion of the graph that 
reflects the proportion you are looking for.

 2. Remember that the unit normal table shows only positive z-scores in column A. 
However, because the normal distribution is symmetrical, the proportions in the 
table apply to both positive and negative z-score values.

 3. A common error for students is to use negative values for proportions on the  
left-hand side of the normal distribution. Proportions (or probabilities) are always 
positive: 10% is 10% whether it is in the left or right tail of the distribution.

 4. The proportions in the unit normal table are accurate only for normal distribu-
tions. If a distribution is not normal, you cannot use the table.

DemonStration 6.1

finDing Probability from the unit normal table

A population is normally distributed with a mean of µ 5 45 and a standard devia-
tion of s 5 4. What is the probability of randomly selecting a score that is greater 
than 43? In other words, what proportion of the distribution consists of scores 
greater than 43?

Sketch the distribution. For this demonstration, the distribution is normal with µ 5 45 
and s 5 4. The score of X 5 43 is lower than the mean and therefore is placed to the 
left of the mean. The question asks for the proportion corresponding to scores greater 
than 43, so shade in the area to the right of this score. Figure 6.18 shows the sketch.

Transform the X value to a z-score.

z
X

5
2m

s
5

2
5

2
52

43 45

4

2

4
0 5.

S t e p  1

S t e p  2
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Find the appropriate proportion in the unit normal table. Ignoring the negative size, 
locate z 5 20.50 in column A. In this case, the proportion we want corresponds to the body 
of the distribution and the value is found in column B. For this example,

p(X . 43) 5 p(z . 20.50) 5 0.6915

S t e p  3

 = 4

45
43

Figure 6.18

A sketch of the distribution 
for Demonstration 6.1.

ProblemS

 1. A local hardware store has a “Savings Wheel” at the 
checkout. Customers get to spin the wheel and, when 
the wheel stops, a pointer indicates how much they will 
save. The wheel can stop in any one of 50 sections. Of 
the sections, 10 produce 0% off, 20 sections are for 
10% off, 10 sections for 20%, 5 for 30%, 3 for 40%,  
1 for 50%, and 1 for 100% off. Assuming that all  
50 sections are equally likely,

 a. What is the probability that a customer’s purchase 
will be free (100% off)?

 b. What is the probability that a customer will get no 
savings from the wheel (0% off)?

 c. What is the probability that a customer will get at 
least 20% off?

 2. A psychology class consists of 14 males and  
36 females. If the professor selects names from the 
class list using random sampling,

 a. What is the probability that the first student  
selected will be a female?

 b. If a random sample of n 5 3 students is selected 
and the first two are both females, what is the prob-
ability that the third student selected will be a male?

 3. What are the two requirements that must be satisfied 
for a random sample?

 4. Draw a vertical line through a normal distribution for 
each of the following z-score locations. Determine 
whether the tail is on the right or left side of the line 
and find the proportion in the tail.

 a. z 5 1.00
 b. z 5 0.50
 c. z 5 21.25
 d. z 5 20.40

 5. Draw a vertical line through a normal distribution for 
each of the following z-score locations. Determine 

whether the body is on the right or left side of the 
line and find the proportion in the body.

 a. z 5 2.50
 b. z 5 0.80
 c. z 5 20.50
 d. z 5 20.77

 6. Find each of the following probabilities for a normal 
distribution.

 a. p(z . 1.25)
 b. p(z . 20.60)
 c. p(z , 0.70)
 d. p(z , 21.30)

 7. What proportion of a normal distribution is located 
between each of the following z-score boundaries?

 a. z 5 20.25 and z 5 10.25
 b. z 5 20.67 and z 5 10.67
 c. z 5 21.20 and z 5 11.20

 8. Find each of the following probabilities for a normal 
distribution.

 a. p(20.80 , z , 0.80)
 b. p(20.50 , z , 1.00)
 c. p(0.20 , z , 1.50)
 d. p(21.20 , z , 20.80)

 9. Find the z-score location of a vertical line that sepa-
rates a normal distribution as described in each of the 
following.

 a. 5% in the tail on the left
 b. 30% in the tail on the right
 c. 65% in the body on the left
 d. 80% in the body on the right

 10. Find the z-score boundaries that separate a normal 
distribution as described in each of the following.

 a. The middle 30% from the 70% in the tails.
 b. The middle 40% from the 60% in the tails.
 c. The middle 50% from the 50% in the tails.
 d. The middle 60% from the 40% in the tails.
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 11. A normal distribution has a mean of µ 5 70 and a 
standard deviation of s 5 8. For each of the follow-
ing scores, indicate whether the tail is to the right or 
left of the score and find the proportion of the distri-
bution located in the tail.

 a. X 5 72
 b. X 5 76
 c. X 5 66
 d. X 5 60

 12. A normal distribution has a mean of µ 5 30 and a 
standard deviation of s 5 12. For each of the follow-
ing scores, indicate whether the body is to the right 
or left of the score and find the proportion of the 
distribution located in the body.

 a. X 5 33
 b. X 5 18
 c. X 5 24
 d. X 5 39

 13. For a normal distribution with a mean of µ 5 60  
and a standard deviation of s 5 10, find the propor-
tion of the population corresponding to each of the 
following.

 a. Scores greater than 65.
 b. Scores less than 68.
 c. Scores between 50 and 70.

 14. IQ test scores are standardized to produce a normal 
distribution with a mean of µ 5 100 and a standard 
deviation of s 515. Find the proportion of the  
population in each of the following IQ categories.

 a. Genius or near genius: IQ greater than 140
 b. Very superior intelligence: IQ between 120 and 140
 c. Average or normal intelligence: IQ between  

90 and 109

 15. The distribution of SAT scores is normal with  
µ 5 500 and s 5 100.

 a. What SAT score, X value, separates the top  
15% of the distribution from the rest?

 b. What SAT score, X value, separates the top  
10% of the distribution from the rest?

 c. What SAT score, X value, separates the top  
2% of the distribution from the rest?

 16. According to a recent report, people smile an average 
of µ 5 62 time per day. Assuming that the distribu-
tion of smiles is approximately normal with a standard 
deviation of s 5 18, find each of the following values.

 a. What proportion of people smile more than  
80 times a day?

 b. What proportion of people smile at least 50 times 
a day?

 17. A recent newspaper article reported the results of a 
survey of well-educated suburban parents. The re-
sponses to one question indicated that by age 2, chil-
dren were watching an average of µ 5 60 minutes of 

television each day. Assuming that the distribution of 
television-watching times is normal with a standard 
deviation of s 5 25 minutes, find each of the follow-
ing proportions.

 a. What proportion of 2-year-old children watch 
more than 90 minutes of television each day?

 b. What proportion of 2-year-old children watch less 
than 20 minutes a day?

 18. Information from the Department of Motor Vehicles 
indicates that the average age of licensed drivers is  
µ 5 45.7 years with a standard deviation of s 5 12.5 
years. Assuming that the distribution of drivers’ ages 
is approximately normal,

 a. What proportion of licensed drivers are older than 
50 years old?

 b. What proportion of licensed drivers are younger 
than 30 years old?

 19. A consumer survey indicates that the average house-
hold spends µ 5 $185 on groceries each week. The 
distribution of spending amounts is approximately 
normal with a standard deviation of s 5 $25. Based 
on this distribution,

 a. What proportion of the population spends more 
than $200 per week on groceries?

 b. What is the probability of randomly selecting a 
family that spends less than $150 per week on 
groceries?

 c. How much money do you need to spend on 
groceries each week to be in the top 20% of the 
distribution?

 20. A report in 2010 indicates that Americans between 
the ages of 8 and 18 spend an average of µ 5 7.5 
hours per day using some sort of electronic device 
such as smart phones, computers, or tablets. Assume 
that the distribution of times is normal with a stan-
dard deviation of s 5 2.5 hours and find the follow-
ing values.

 a. What is the probability of selecting an individual 
who uses electronic devices more than 12 hours a 
day?

 b. What proportion of 8- to 18-year-old Americans 
spend between 5 and 10 hours per day using elec-
tronic devices? In symbols, p(5 , X , 10) 5 ?

 21. Rochester, New York, averages µ 5 21.9 inches of 
snow for the month of December. The distribution 
of snowfall amounts is approximately normal with 
a standard deviation of s 5 6.5 inches. This year, 
a local jewelry store is advertising a refund of 50% 
off of all purchases made in December, if Rochester 
finishes the month with more than 3 feet (36 inches) 
of total snowfall. What is the probability that the 
jewelry store will have to pay off on its promise?
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Summary

Focus on Problem Solving

Demonstration 7.1

Problems
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7
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 Random	sampling	(Chapter	6)
•	 Probability	and	the	normal	distribu-

tion	(Chapter	6)
•	 z-Scores	(Chapter	5)
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SAMPlES AnD PoPulATionS

The preceding two chapters presented the topics of z-scores and probability. Whenever a 
score is selected from a population, you should be able to compute a z-score that describes 
exactly where the score is located in the distribution. If the population is normal, you also 
should be able to determine the probability value for obtaining any individual score. In a 
normal distribution, for example, any score located in the tail of the distribution beyond  
z 5 12.00 is an extreme value, and a score this large has a probability of only p 5 0.0228.

However, the z-scores and probabilities that we have considered so far are limited to 
situations in which the sample consists of a single score. Most research studies involve 
much larger samples, such as n 5 25 preschool children or n 5 100 American Idol 
contestants. In these situations, the sample mean, rather than a single score, is used 
to answer questions about the population. In this chapter, we extend the concepts of 
z-scores and probability to cover situations with larger samples. In particular, we intro-
duce a procedure for transforming a sample mean into a z-score. Thus, a researcher is 
able to compute a z-score that describes an entire sample. As always, a z-score near zero 
indicates a central, representative sample; a z-score beyond 12.00 or –2.00 indicates an 
extreme sample. Thus, it is possible to describe how any specific sample is related to all 
the other possible samples. In addition, we can use the z-scores to look up probabilities 
for obtaining certain samples, no matter how many scores the sample contains.

In general, the difficulty of working with samples is that a sample provides an in-
complete picture of the population. Suppose, for example, a researcher randomly selects 
a sample of n 5 25 students from the state college. Although the sample should be 
representative of the entire student population, there are almost certainly some segments 
of the population that are not included in the sample. In addition, any statistics that are 
computed for the sample are not identical to the corresponding parameters for the entire 
population. For example, the average IQ for the sample of 25 students is not the same as 
the overall mean IQ for the entire population. This difference, or error, between sample 
statistics and the corresponding population parameters is called sampling error and was 
illustrated in Figure 1.2 (p. 9).

Sampling error is the natural discrepancy, or amount of error, between a sample 
statistic and its corresponding population parameter.

Furthermore, samples are variable; they are not all the same. If you take two separate 
samples from the same population, the samples are different. They contain different 
individuals, they have different scores, and they have different sample means. How 
can you tell which sample gives the best description of the population? Can you even 
predict how well a sample describes its population? What is the probability of select-
ing a sample with specific characteristics? These questions can be answered once we 
establish the rules that relate samples and populations.

THE DiSTRibuTion of SAMPlE MEAnS

As noted, two separate samples probably are different even though they are taken from 
the same population. The samples have different individuals, different scores, different 
means, and so on. In most cases, it is possible to obtain thousands of different samples 
from one population. With all these different samples coming from the same population, 
it may seem hopeless to try to establish some simple rules for the relationships between 

7.1

D e f i n i t i o n

7.2
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samples and populations. Fortunately, however, the huge set of possible samples forms a 
relatively simple and orderly pattern that makes it possible to predict the characteristics 
of a sample with some accuracy. The ability to predict sample characteristics is based on 
the distribution of sample means.

The distribution of sample means is the collection of sample means for all of 
the possible random samples of a particular size (n) that can be obtained from a 
population.

Notice that the distribution of sample means contains all of the possible samples. It is 
necessary to have all of the possible values to compute probabilities. For example, if the 
entire set contains exactly 100 samples, then the probability of obtaining any specific 
sample is 1 out of 100: p 5 1

100  (Box 7.1).
Also, you should notice that the distribution of sample means is different from the 

distributions that we have considered before. Until now we always have discussed 
distributions of scores; now the values in the distribution are not scores, but statistics 
(sample means). Because statistics are obtained from samples, a distribution of statis-
tics is referred to as a sampling distribution.

A sampling distribution is a distribution of statistics obtained by selecting all of 
the possible samples of a specific size from a population.

Thus, the distribution of sample means is an example of a sampling distribution. In 
fact, it often is called the sampling distribution of M.

If you actually wanted to construct the distribution of sample means, you would first 
select a random sample of a specific size (n) from a population, calculate the sample 
mean, and place the sample mean in a frequency distribution. Then you would select 
another random sample with the same number of scores. Again, you would calculate 
the sample mean and add it to your distribution. You would continue selecting samples 
and calculating means, over and over, until you had the complete set of all the possible 

D e f i n i t i o n

D e f i n i t i o n

BOX
7.1

PRobAbiliTy AnD THE DiSTRibuTion of SAMPlE MEAnS

I have a bad habit of losing playing cards. This habit 
is compounded by the fact that I always save the old 
deck in the hope that someday I will find the missing 
cards. As a result, I have a drawer filled with partial 
decks of playing cards. Suppose that I take one of 
these almost-complete decks, shuffle the cards care-
fully, and then randomly select one card. What is the 
probability that I will draw a king?

You should realize that it is impossible to answer 
this probability question. To find the probability of 
selecting a king, you must know how many cards 
are in the deck and exactly which cards are miss-
ing. (It is crucial that you know whether any kings 
are missing.) The point of this simple example is 
that any probability question requires that you have 

complete information about the population from 
which the sample is being selected. In this case, 
you must know all of the possible cards in the deck 
before you can find the probability for selecting any 
specific card.

In this chapter, we are examining probability and 
sample means. To find the probability for any  
specific sample mean, you first must know all of the 
possible sample means. Therefore, we begin by  
defining and describing the set of all possible sample 
means that can be obtained from a particular popula-
tion. Once we have specified the complete set of all 
possible sample means (i.e., the distribution of sample 
means), we can find the probability of selecting any 
specific sample mean.
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random samples. At this point, your frequency distribution would show the distribution 

of sample means.
We demonstrate the process of constructing a distribution of sample means in 

Example 7.1, but first we use common sense and a little logic to predict the general 
characteristics of the distribution.

 1. The sample means should pile up around the population mean. Samples are not 
expected to be perfect but they are representative of the population. As a result, 
most of the sample means should be relatively close to the population mean.

 2. The pile of sample means should tend to form a normal-shaped distribution. 
Logically, most of the samples should have means close to m, and it should be 
relatively rare to find sample means that are substantially different from m. As a 
result, the sample means should pile up in the center of the distribution (around m) 
and the frequencies should taper off as the distance between M and m increases. 
This describes a normal-shaped distribution.

 3. In general, the larger the sample size, the closer the sample means should be to 
the population mean, m. Logically, a large sample should be a better representa-
tive than a small sample. Thus, the sample means obtained with a large sample 
size should cluster relatively close to the population mean; the means obtained 
from small samples should be more widely scattered.

As you will see, each of these three commonsense characteristics is an accurate 
description of the distribution of sample means. The following example demonstrates 
the process of constructing the distribution of sample means by repeatedly selecting 
samples from a population.

Consider a population that consists of only 4 scores: 2, 4, 6, 8. This population is pic-
tured in the frequency distribution histogram in Figure 7.1.

We are going to use this population as the basis for constructing the distribution of 
sample means for n 5 2. Remember: This distribution is the collection of sample means 
from all of the possible random samples of n 5 2 from this population. We begin by 
looking at all of the possible samples. For this example, there are 16 different samples, 
and they are all listed in Table 7.1. Notice that the samples are listed systematically. 
First, we list all of the possible samples with X 5 2 as the first score, then all of the 
possible samples with X 5 4 as the first score, and so on. In this way, we can be sure 
that we have all of the possible random samples.

Next, we compute the mean, M, for each of the 16 samples (see the last column of  
Table 7.1). The 16 means are then placed in a frequency distribution histogram in Figure 7.2.  

E x A M P l E  7 . 1
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Figure 7.1

Frequency distribution 
histogram for a popula-
tion of 4 scores: 2, 4, 6, 8.

Remember that random  
sampling requires sampling 
with replacement.
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This is the distribution of sample means. Note that the distribution in Figure 7.2 demon-
strates two of the characteristics that we predicted for the distribution of sample means.

 1. The sample means pile up around the population mean. For this example, the 
population mean is m 5 5, and the sample means are clustered around a value of 
5. It should not surprise you that the sample means tend to approximate the popu-
lation mean. After all, samples are supposed to be representative of the population.

 2. The distribution of sample means is roughly normal in shape. This is a character-
istic that is discussed in detail later and is extremely useful because we already 
know a great deal about probabilities and the normal distribution (Chapter 6).

Finally, you should notice that we can use the distribution of sample means to an-
swer probability questions about sample means. For example, if you take a sample of  
n 5 2 scores from the original population, what is the probability of obtaining a sample 
mean greater than 7? In symbols,

p(M . 7) 5 ?

TAblE 7.1

All the possible samples of  
n 5 2 scores that can be  
obtained from the population 
presented in Figure 7.1. Notice 
that the table lists random 
samples. This requires sampling 
with replacement, so it is pos-
sible to select the same score 
twice.

Scores Sample Mean

Sample First Second (M)

1 2 2 2
2 2 4 3
3 2 6 4
4 2 8 5
5 4 2 3
6 4 4 4
7 4 6 5
8 4 8 6
9 6 2 4

10 6 4 5
11 6 6 6
12 6 8 7
13 8 2 5
14 8 4 6
15 8 6 7
16 8 8 8

Remember that our goal 
in this chapter is to answer 
probability questions about 
samples with n . 1.
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Figure 7.2

The distribution of sam-
ple means for n 5 2. The 
distribution shows the 
16 sample means from 
Table 7.1.
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Because probability is equivalent to proportion, the probability question can be 
restated as follows: Of all of the possible sample means, what proportion have values 
greater than 7? In this form, the question is easily answered by looking at the distribu-
tion of sample means. All of the possible sample means are pictured (see Figure 7.2), 
and only 1 out of the 16 means has a value greater than 7. The answer, therefore, is 1 
out of 16, or p 5 1

16 .

Example 7.1 demonstrated the construction of the distribution of sample means for an 
overly simplified situation with a very small population and samples that each contain 
only n 5 2 scores. In more realistic circumstances, with larger populations and larger 
samples, the number of possible samples increases dramatically and it is virtually 
impossible to actually obtain every possible random sample. Fortunately, it is possible 
to determine exactly what the distribution of sample means looks like without taking 
hundreds or thousands of samples. Specifically, a mathematical proposition known as 
the central limit theorem provides a precise description of the distribution that would 
be obtained if you selected every possible sample, calculated every sample mean, and 
constructed the distribution of the sample mean. This important and useful theorem 
serves as a cornerstone for much of inferential statistics. Following is the essence of 
the theorem.

Central limit theorem: For any population with mean m and standard deviation 
s, the distribution of sample means for sample size n will have a mean of m and a 
standard deviation of s n  and will approach a normal distribution as n approaches 
infinity.

The value of this theorem comes from two simple facts. First, it describes the distri-
bution of sample means for any population, no matter what shape, mean, or standard 
deviation. Second, the distribution of sample means “approaches” a normal distribution 
very rapidly. By the time the sample size reaches n 5 30, the distribution is almost 
perfectly normal.

Note that the central limit theorem describes the distribution of sample means by 
identifying the three basic characteristics that describe any distribution: shape, central 
tendency, and variability. We examine each of these.

It has been observed that the distribution of sample means tends to be a normal distribu-
tion. In fact, this distribution is almost perfectly normal if either of the following two 
conditions is satisfied:

 1. The population from which the samples are selected is a normal distribution.

 2. The number of scores (n) in each sample is relatively large, around 30 or more.

(As n gets larger, the distribution of sample means more closely approximates a 
normal distribution. When n . 30, the distribution is almost normal, regardless of the 
shape of the original population.)

As we noted earlier, the fact that the distribution of sample means tends to be 
normal is not surprising. Whenever you take a sample from a population, you expect 
the sample mean to be near to the population mean. When you take lots of differ-
ent samples, you expect the sample means to “pile up” around m, resulting in a 
normal-shaped distribution. You can see this tendency emerging (although it is not 
yet normal) in Figure 7.2.

The CenTral limiT 
Theorem

The Shape of The 
DiSTribuTion of 

Sample meanS
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In Example 7.1, the distribution of sample means is centered around the mean of the 
population from which the samples were obtained. In fact, the average value of all of 
the sample means is exactly equal to the value of the population mean. This fact should 
be intuitively reasonable; the sample means are expected to be close to the population 
mean, and they do tend to pile up around µ. The formal statement of this phenomenon 
is that the mean of the distribution of sample means always is identical to the popula-
tion mean. This mean value is called the expected value of M. In commonsense terms, 
a sample mean is “expected” to be near its population mean. When all of the possible 
sample means are obtained, the average value is identical to m.

The fact that the average value of M is equal to µ was first introduced in Chapter 4  
(p. 106) in the context of biased versus unbiased statistics. The sample mean is an 
example of an unbiased statistic, which means that, on average, the sample statistic 
produces a value that is exactly equal to the corresponding population parameter. In this 
case, the average value of all of the sample means is exactly equal to m.

The mean of the distribution of sample means is equal to the mean of the popula-
tion of scores, m, and is called the expected value of M.

So far, we have considered the shape and the central tendency of the distribution of 
sample means. To completely describe this distribution, we need one more character-
istic: variability. The value we will be working with is the standard deviation for the 
distribution of sample means. This standard deviation is identified by the symbol s

M
 

and is called the standard error of M.
When the standard deviation was first introduced in Chapter 4, we noted that 

this measure of variability serves two general purposes. First, the standard deviation 
describes the distribution by telling whether the individual scores are clustered close 
together or scattered over a wide range. Second, the standard deviation measures 
how well any individual score represents the population by providing a measure 
of how much distance is reasonable to expect between a score and the population 
mean. The standard error serves the same two purposes for the distribution of sample 
means.

 1. The standard error describes the distribution of sample means. It provides a 
measure of how much difference is expected from one sample to another. When 
the standard error is small, then all of the sample means are close together and 
have similar values. If the standard error is large, then the sample means are 
scattered over a wide range and there are big differences from one sample to 
another.

 2. Standard error measures how well an individual sample mean represents the 
entire distribution. Specifically, it provides a measure of how much distance is 
reasonable to expect between a sample mean and the overall mean for the dis-
tribution of sample means. However, because the overall mean is equal to m, the 
standard error also provides a measure of how much distance to expect between 
a sample mean (M) and the population mean (m).

Remember that a sample is not expected to provide a perfectly accurate reflection 
of its population. Although a sample mean should be representative of the population 
mean, there typically is some error between the sample and the population. The stan-
dard error measures exactly how much difference is expected on average between a 
sample mean, M, and the population mean, m.

The mean of The 
DiSTribuTion of 

Sample meanS: The 
expeCTeD Value of m

D e f i n i t i o n

The STanDarD error 
of m
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The standard deviation of the distribution of sample means, s
M
, is called the stan-

dard error of M. The standard error provides a measure of how much distance is 
expected on average between a sample mean (M) and the population mean (m).

Once again, the symbol for the standard error is s
M
. The s indicates that this value is 

a standard deviation, and the subscript M indicates that it is the standard deviation for the 
distribution of sample means. Similarly, it is common to use the symbol m

M
 to represent 

the mean of the distribution of sample means. However, m
M
 is always equal to µ and 

our primary interest in inferential statistics is to compare sample means (M) with their 
population means (m). Therefore, we simply use the symbol µ to refer to the mean of the 
distribution of sample means.

The standard error is an extremely valuable measure because it specifies precisely 
how well a sample mean estimates its population mean—that is, how much error you 
should expect, on the average, between M and m. Remember that one basic reason for 
taking samples is to use the sample data to answer questions about the population. 
However, you do not expect a sample to provide a perfectly accurate picture of the 
population. There always is some discrepancy, or error, between a sample statistic and 
the corresponding population parameter. Now we are able to calculate exactly how 
much error to expect. For any sample size (n), we can compute the standard error, which 
measures the average distance between a sample mean and the population mean.

The magnitude of the standard error is determined by two factors: (1) the size of 
the sample and (2) the standard deviation of the population from which the sample is 
selected. We examine each of these factors.

The sample size Earlier we predicted, based on common sense, that the size of a sam-
ple should influence how accurately the sample represents its population. Specifically, 
a large sample should be more accurate than a small sample. In general, as the sample 
size increases, the error between the sample mean and the population mean should 
decrease. This rule is also known as the law of large numbers.

The law of large numbers states that the larger the sample size (n), the more 
probable it is that the sample mean is close to the population mean.

The population standard deviation As we noted earlier, there is an inverse relationship 
between the sample size and the standard error: bigger samples have smaller error, and 
smaller samples have bigger error. At the extreme, the smallest possible sample (and the 
largest standard error) occurs when the sample consists of n 5 1 score. At this extreme, 
each sample is a single score and the distribution of sample means is identical to the origi-
nal distribution of scores. In this case, the standard deviation for the distribution of sample 
means, which is the standard error, is identical to the standard deviation for the distribution 
of scores. In other words, when n 5 1, the standard error 5 s

M
 is identical to the standard 

deviation 5 s.

When n 5 1, s
M
 5 s (standard error 5 standard deviation).

You can think of the standard deviation as the “starting point” for standard error. 
When n 5 1, the standard error and the standard deviation are the same: s

M
 5 s. As 

sample size increases beyond n 5 1, the sample becomes a more accurate representa-
tive of the population, and the standard error decreases. The formula for standard error 
expresses this relationship between standard deviation and sample size (n).

standard error 5 s 5
s

M n  (7.1)

D e f i n i t i o n

D e f i n i t i o n

This formula is contained in 
the central limit theorem.
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Note that the formula satisfies all of the requirements for the standard error. 
Specifically,

 a. As sample size (n) increases, the size of the standard error decreases. (Larger 
samples are more accurate.)

 b. When the sample consists of a single score (n 5 1), the standard error is the 
same as the standard deviation (s

M
 5 s).

In Equation 7.1 and in most of the preceding discussion, we defined standard error 
in terms of the population standard deviation. However, the population standard devia-
tion (s) and the population variance (s2) are directly related, and it is easy to substitute 
variance into the equation for standard error. Using the simple equality s 5 s2 , the 
equation for standard error can be rewritten as follows:

standard error 5 s 5
s

5
s

5
s

M n n n

2 2

 (7.2)

Throughout the rest of this chapter (and in Chapter 8), we continue to define 
standard error in terms of the standard deviation (Equation 7.1). However, in later 
chapters (starting in Chapter 9), the formula based on variance (Equation 7.2) will 
become more useful.

Figure 7.3 illustrates the general relationship between standard error and sample 
size. (The calculations for the data points in Figure 7.3 are presented in Table 7.2.) 
Again, the basic concept is that the larger a sample is, the more accurately it rep-
resents its population. Also note that the standard error decreases in relation to the 
square root of the sample size. As a result, researchers can substantially reduce 
error by increasing sample size up to around n 5 30. However, increasing sample 
size beyond n 5 30 does not produce much additional improvement in how well the 
sample represents the population.

1

Standard distance
between a sample

mean and
the population

mean

Standard Error
(based on � � 10)

4 9 16 25 36 49 64 100

Number of scores in the sample (n)

9
8
7
6
5
4
3
2
1

10

0

Figure 7.3

The relationship between standard error and sample size. As the sample size is increased, there 
is less error between the sample mean and the population mean.
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Before we move forward with our discussion of the distribution of sample means, we 
pause for a moment to emphasize the idea that we are now dealing with three different 
but interrelated distributions.

 1. First, we have the original population of scores. This population contains the 
scores for thousands or millions of individual people, and it has its own shape, 
mean, and standard deviation. For example, the population of IQ scores consists 
of millions of individual IQ scores that form a normal distribution with a mean 
of m 5 100 and a standard deviation of s 5 15. An example of a population is 
shown in Figure 7.4(a).

 2. Next, we have a sample that is selected from the population. The sample 
consists of a small set of scores for a few people who have been selected to 
represent the entire population. For example, we could select a sample of  
n 5 25 people and measure each individual’s IQ score. The 25 scores could 
be organized in a frequency distribution and we could calculate the sample 
mean and the sample standard deviation. Note that the sample also has its 
own shape, mean, and standard deviation. An example of a sample is shown 
in Figure 7.4(b).

 3. The third distribution is the distribution of sample means. This is a theoretical 
distribution consisting of the sample means obtained from all of the possible 
random samples of a specific size. For example, the distribution of sample 
means for samples of n 5 25 IQ scores would be normal with a mean  
(expected value) of m 5 100 and a standard deviation (standard error) of  
s

M
 5 15

25 5 3. This distribution, shown in Figure 7.4(c), also has its own shape, 
mean, and standard deviation.

Three DifferenT 
DiSTribuTionS

TAblE 7.2

Calculations for the points 
shown in Figure 7.3. Again,  
notice that the size of the stan-
dard error decreases as the size 
of the sample increases.

Sample Size (n) Standard Error

1 s 5M

10

1
5 10.00

4 s 5M

10

4
5 5.00

9 s 5M

10

9
5 3.33

16 s 5M

10

16
5 2.50

25 s 5M

10

25
5 2.00

49 s 5M

10

49
5 1.43

64 s 5M

10

64
5 1.25

100 s 5M

10

100
5 1.00
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µ � 100

� � 15

(a) Original population of IQ scores.

80 90 100 110 120 130

s � 11.5

M � 101.2

(b) A sample of n � 25 IQ scores.

µ � 100

�M � 3

(c) The distribution of sample means. Sample means for
 all the possible random samples of n � 25 IQ scores.

Figure 7.4

Three distributions. Part 
(a) shows the population 
of IQ scores. Part (b) 
shows a sample of n 5 25 
IQ scores. Part (c) shows 
the distribution of sample 
means for samples of  
n 5 100 scores. Note that 
the sample mean from 
part (b) is one of the thou-
sands of sample means in 
the part (c) distribution.

Note that the scores for the sample [Figure 7.4(b)] were taken from the original 
population [Figure 7.4(a)] and that the mean for the sample is one of the values con-
tained in the distribution of sample means [Figure 7.4(c)]. Thus, the three distributions 
are all connected, but they are all distinct.
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l E A R n i n g  C H E C k PRobAbiliTy AnD THE DiSTRibuTion of SAMPlE MEAnS
The primary use of the distribution of sample means is to find the probability associated 
with any specific sample. Recall that probability is equivalent to proportion. Because 
the distribution of sample means presents the entire set of all possible sample means, 
we can use proportions of this distribution to determine probabilities. The following 
example demonstrates this process.

The population of scores on the SAT forms a normal distribution with m 5 500 and  
s 5 100. If you take a random sample of n 5 25 students, what is the probability that 
the sample mean will be greater than M 5 540?

First, you can restate this probability question as a proportion question: Out of all of 
the possible sample means, what proportion have values greater than 540? You know 
about “all of the possible sample means”; this is the distribution of sample means. The 
problem is to find a specific portion of this distribution.

Although we cannot construct the distribution of sample means by repeatedly taking 
samples and calculating means (as in Example 7.1), we know exactly what the distribu-
tion looks like based on the information from the central limit theorem. Specifically, the 
distribution of sample means has the following characteristics:

 a. The distribution is normal because the population of SAT scores is normal.

 b. The distribution has a mean of 500 because the population mean is m 5 500.

 c. For n 5 25, the distribution has a standard error of s
M
 5 20:

s 5
s

5 5 5M n

100

25

100

5
20

7.3

E x A M P l E  7 . 2

 1. A population has a mean of m 5 65 and a standard deviation of s 5 16.

 a. Describe the distribution of sample means (shape, central tendency, and vari-
ability) for samples of size n 5 4 selected from this population.

 b. Describe the distribution of sample means (shape, central tendency, and vari-
ability) for samples of size n 5 64 selected from this population.

 2. Describe the relationship between the sample size and the standard error of M.

 3. For a population with of m 5 40 and a standard deviation of s 5 8, the standard 
error for a sample mean can never be larger than 8. (True or false.)

1. a  The distribution of sample means has an expected value of m 5 65 and a standard error of 
s

M
 5 16

4��  5 8. The shape of the distribution is unknown because the sample is not large 
enough to guarantee a normal distribution and the population shape is not known.

 b.  The distribution of sample means has an expected value of m 5 65 and a standard error 
of s

M
 5

16
��64

 5 2. The shape of the distribution is normal because the sample is large 
enough to guarantee a normal distribution.

 2. The standard error decreases as sample size increases.

 3. True. If each sample has n 5 1 score, then the standard error is 8. For any other sample size, 
the standard error is smaller than 8.

l E A R n i n g  C H E C k

AnSwERS

Caution: Whenever you 
have a probability question 
about a sample mean, you 
must use the distribution of 
sample means.
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This distribution of sample means is shown in Figure 7.5.
We are interested in sample means greater than 540 (the shaded area in Figure 

7.5), so the next step is to use a z-score to locate the exact position of M 5 540 in the 
distribution. The value 540 is located above the mean by 40 points, which is exactly  
2 standard deviations (in this case, exactly 2 standard errors). Thus, the z-score for  
M 5 540 is z 5 12.00.

Because this distribution of sample means is normal, you can use the unit normal 
table to find the probability associated with z 5 12.00. The table indicates that 0.0228 
of the distribution is located in the tail of the distribution beyond z 5 12.00. Our con-
clusion is that it is very unlikely, p 5 0.0228 (2.28%), to obtain a random sample of  
n 5 25 students with an average SAT score greater than 540.

As demonstrated in Example 7.2, it is possible to use a z-score to describe the exact 
location of any specific sample mean within the distribution of sample means. The  
z-score tells exactly where the sample mean is located in relation to all of the other pos-
sible sample means that could have been obtained. As defined in Chapter 5, a z-score 
identifies the location with a signed number so that

 1. The sign tells whether the location is above (1) or below (–) the mean.

 2. The number tells the distance between the location and the mean in terms of the 
number of standard deviations.

However, we are now finding a location within the distribution of sample means. 
Therefore, we must use the notation and terminology appropriate for this distribution. 
First, we are finding the location for a sample mean (M) rather than a score (X). Second, 
the standard deviation for the distribution of sample means is the standard error, s

M
. 

With these changes, the z-score formula for locating a sample mean is

z
M

M

5
2m

s
 (7.3)

a z-SCore for 
Sample meanS

M

z

500

0 21

540

M  20

Figure 7.5

The distribution of 
sample means for n 5 25. 
Samples were selected 
from a normal population 
with µ 5 500 and  
s 5 100.
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Just as every score (X) has a z-score that describes its position in the distribution of 
scores, every sample mean (M) has a z-score that describes its position in the distribu-
tion of sample means. When the distribution of sample means is normal, it is possible 
to use z-scores and the unit normal table to find the probability associated with any 
specific sample mean (as in Example 7.2). The following example demonstrates that it 
also is possible to make quantitative predictions about the kinds of samples that should 
be obtained from any population.

Once again, the distribution of SAT scores forms a normal distribution with a mean 
of m 5 500 and a standard deviation of s 5 100. For this example, we are going to 
determine what kind of sample mean is likely to be obtained as the average SAT score 
for a random sample of n 5 25 students. Specifically, we determine the exact range of 
values that is expected for the sample mean 80% of the time.

We begin with the distribution of sample means for n 5 25. As demonstrated in 
Example 7.2, this distribution is normal with an expected value of m 5 500 and a stan-
dard error of s

M
 5 20 (Figure 7.6). Our goal is to find the range of values that make 

up the middle 80% of the distribution. Because the distribution is normal, we can use 
the unit normal table. First, the 80% in the middle is split in half, with 40% (0.4000) 
on each side of the mean. Looking up 0.4000 in column D (the proportion between the 
mean and z), we find a corresponding z-score of z 5 1.28. Thus, the z-score boundar-
ies for the middle 80% are z 5 11.28 and z 5 –1.28. By definition, a z-score of 1.28 
represents a location that is 1.28 standard deviations (or standard errors) from the 
mean. With a standard error of 20 points, the distance from the mean is 1.28(20) 5 
25.6 points. The mean is m 5 500, so a distance of 25.6 in both directions produces a 
range of values from 474.4 to 525.6.

Thus, 80% of all the possible sample means are contained in a range between 474.4 
and 525.6. If we select a sample of n 5 25 students, we can be 80% confident that the 
mean SAT score for the sample will be in this range.

E x A M P l E  7 . 3

M

z

500

40% 40% 10%10%

0 +1.28−1.28

525.6474.4
µ

20

Figure 7.6

The middle 80% of the 
distribution of sample 
means for n 5 25. 
Samples were selected 
from a normal population 
with µ 5 500 and  
s 5 100.

Caution: When computing 
z for a single score, use the 
standard deviation, s. When 
computing z for a sample 
mean, you must use the stan-
dard error, s

M
 (see Box 7.2).
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The point of Example 7.3 is that the distribution of sample means makes it possible 
to predict the value that ought to be obtained for a sample mean. We know, for example, 
that a sample of n 5 25 students ought to have a mean SAT score around 500. More 
specifically, we are 80% confident that the value of the sample mean will be between 
474.4 and 525.6. The ability to predict sample means in this way is a valuable tool for 
the inferential statistics that follow.

BOX
7.2

THE DiffEREnCE bETwEEn STAnDARD DEviATion AnD STAnDARD ERRoR

standard error 5 s 5
s

M n

If you are working with a single score, then n 5 1, 
and the standard error becomes

standard error standard deviatio5 s 5
s

5
s

5 s 5M n 1
nn

Thus, standard error always measures the standard 
distance from the population mean for any sample 
size, including n 5 1.

A constant source of confusion for many students is 
the difference between standard deviation and standard 
error. Remember that standard deviation measures the 
standard distance between a score and the population 
mean, X – m. If you are working with a distribution of 
scores, the standard deviation is the appropriate mea-
sure of variability. Standard error, on the other hand, 
measures the standard distance between a sample 
mean and the population mean, M – m. Whenever you 
have a question concerning a sample, the standard 
error is the appropriate measure of variability.

If you still find the distinction confusing, there is 
a simple solution. Namely, if you always use stan-
dard error, you always will be right. Consider the 
formula for standard error:

 1. A sample is selected from a population with a mean of m 5 90 and a standard  
deviation of s 5 15. Find the z-score for the sample mean for each of the follow-
ing samples.

  a.  n 5 9 scores with M 5 100

  b.  n 5 25 scores with M 5 89

 2. What is the probability of obtaining a sample mean greater than M 5 60 for a ran-
dom sample of n 5 16 scores selected from a normal population with a mean of  
m 5 65 and a standard deviation of s 5 20?

 3. What are the boundaries for the middle 50% of all possible random samples of  
n 5 25 scores selected from a normal population with m 5 80 and s 5 10?

 1. a. The standard error is s
M
 5 5, and z 5 2.00.

  b. The standard error is s
M
 5 3, and z 5 –0.33.

 2. The standard error is s
M
 5 5, and M 5 60 corresponds to z 5 –1.00, p(M . 60) 5  

p(z . –1.00) 5 0.8413 (or 84.13%).

 3. The standard error is s
M
 5 2, and the z-score boundaries for the middle 50% are z 5 –0.67 

and z 5 10.67. The boundaries are 78.66 and 81.34.

l E A R n i n g  C H E C k

AnSwERS
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MoRE AbouT STAnDARD ERRoR

At the beginning of this chapter, we introduced the idea that it is possible to obtain 
thousands of different samples from a single population. Each sample has its own in-
dividuals, its own scores, and its own sample mean. The distribution of sample means 
provides a method for organizing all of the different sample means into a single picture. 
Figure 7.7 shows a prototypical distribution of sample means. To emphasize the fact 
that the distribution contains many different samples, we have constructed this figure 
so that the distribution is made up of hundreds of small boxes, each box representing 
a single sample mean. Also notice that the sample means tend to pile up around the 
population mean (µ), forming a normal-shaped distribution as predicted by the central 
limit theorem.

The distribution shown in Figure 7.7 provides a concrete example for reviewing the 
general concepts of sampling error and standard error. Although the following points 
may seem obvious, they are intended to provide you with a better understanding of 
these two statistical concepts.

 1. Sampling Error. The general concept of sampling error is that a sample typi-
cally does not provide a perfectly accurate representation of its population. 
More specifically, there typically is some discrepancy (or error) between a 
statistic computed for a sample and the corresponding parameter for the popula-
tion. As you look at Figure 7.7, notice that the individual sample means are not 
exactly equal to the population mean. In fact, 50% of the samples have means 
that are smaller than µ (the entire left-hand side of the distribution). Similarly, 
50% of the samples produce means that overestimate the true population mean. 
In general, there is some discrepancy, or sampling error, between the mean for 
a sample and the mean for the population from which the sample was obtained.

 2. Standard Error. Again looking at Figure 7.7, notice that most of the sample 
means are relatively close to the population mean (those in the center of the distri-
bution). These samples provide a fairly accurate representation of the population. 

7.4

M
µ

Figure 7.7

An example of a typical 
distribution of sample 
means. Each of the small 
boxes represents the mean 
obtained for one sample.
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On the other hand, some samples produce means that are out in the tails of the 
distribution, relatively far from the population mean. These extreme sample means 
do not accurately represent the population. For each individual sample, you can 
measure the error (or distance) between the sample mean and the population mean. 
For some samples, the error is relatively small, but for other samples, the error is 
relatively large. The standard error provides a way to measure the “average,” or 
standard, distance between a sample mean and the population mean.

Thus, the standard error provides a method for defining and measuring sampling 
error. Knowing the standard error gives researchers a good indication of how accurately 
their sample data represent the populations that they are studying. In most research 
situations, for example, the population mean is unknown, and the researcher selects 
a sample to help obtain information about the unknown population. Specifically, the 
sample mean provides information about the value of the unknown population mean. 
The sample mean is not expected to give a perfectly accurate representation of the 
population mean; there will be some error, and the standard error tells exactly how much 
error, on average, should exist between the sample mean and the unknown population 
mean. The following example demonstrates the use of standard error and provides addi-
tional information about the relationship between standard error and standard deviation.

A recent survey of students at a local college included the following question: How 
many minutes do you spend each day watching electronic video (e.g., online, TV, cell 
phone, iPad, etc.). The average response was m 5 80 minutes, and the distribution of 
viewing times was approximately normal with a standard deviation of s 5 20 minutes. 
Next, we take a sample from this population and examine how accurately the sample 
mean represents the population mean. More specifically, we will examine how sample 
size affects accuracy by considering three different samples: one with n 5 1 student, 
one with n 5 4 students, and one with n 5 100 students.

Figure 7.8 shows the distributions of sample means based on samples of n 5 1,  
n 5 4, and n 5 100. Each distribution shows the collection of all possible sample means  
that could be obtained for that particular sample size. Notice that all three sampling 

E x A M P l E  7 . 4

80

20

80

10

80

2

Distribution of M 
for n � 100

σM � 2

Distribution of M 
for n � 4
σM � 10

Distribution of M 
for n � 1

σM � σ � 20

Figure 7.8

The distribution of sample means for random samples of size (a) n 5 1, (b) n 5 4, and  
(c) n 5 100 obtained from a normal population with (µ 5 80) and (s 5 20). Notice that 
the size of the standard error decreases as the sample size increases.

(a) (b) (c)
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distributions are normal (because the original population is normal), and all three have 
the same mean, m 5 80, which is the expected value of M. However, the three distribu-
tions differ greatly with respect to variability. We will consider each one separately.

The smallest sample size is n 5 1. When a sample consists of a single student,  the 
mean for the sample equals the score for the student, M 5 X. Thus, when n 5 1, the 
distribution of sample means is identical to the original population of scores. In this 
case, the standard error for the distribution of sample means is equal to the standard 
deviation for the original population. Equation 7.1 confirms this observation.

s 5
s

5 5M n

20

1
20

When the sample consists of a single student, you expect, on average, a 20-point dif-
ference between the sample mean and the mean for the population. As we noted earlier, 
the population standard deviation is the “starting point” for the standard error. With the 
smallest possible sample, n 5 1, the standard error is equal to the standard deviation 
[see Figure 7.8(a)].

As the sample size increases, however, the standard error gets smaller. For a sample 
of n 5 4 students, the standard error is

s 5
s

5 5 5M n

20

4

20

2
10

That is, the typical (or standard) distance between M and m is 10 points. Figure 7.8(b) 
illustrates this distribution. Notice that the sample means in this distribution approximate 
the population mean more closely than in the previous distribution where n 5 1.

With a sample of n 5 100, the standard error is still smaller.

s 5
s

5 5 5M n

20

100

20

10
2

A sample of n 5 100 students should produce a sample mean that represents the popu-
lation much more accurately than a sample of n 5 4 or n 5 1. As shown in Figure 7.8(c), 
there is very little error between M and µ when n 5 100. Specifically, you would expect, 
on average, only a 2-point difference between the population mean and the sample mean.

In summary, this example illustrates that with the smallest possible sample (n 5 1), 
the standard error and the population standard deviation are the same. When sample 
size is increased, the standard error gets smaller, and the sample means tend to approxi-
mate µ more closely. Thus, standard error defines the relationship between sample size 
and the accuracy with which M represents µ.

in THE liTERATuRE
REPoRTing STAnDARD ERRoR

As we will see later, standard error plays a very important role in inferential  
statistics. Because of its crucial role, the standard error for a sample mean, rather 
than the sample standard deviation, is often reported in scientific papers. Scientific 
journals vary in how they refer to the standard error, but frequently the symbols  
SE and SEM (for standard error of the mean) are used. The standard error is reported in 
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TAblE 7.3

The mean self-consciousness 
scores for participants who were 
working in front of a video 
camera and those who were not 
(controls).

n Mean SE

Control 17 32.23 2.31
Camera 15 45.17 2.78

two ways. Much like the standard deviation, it may be reported in a table along with the 
sample means (Table 7.3). Alternatively, the standard error may be reported in graphs.

Figure 7.9 illustrates the use of a bar graph to display information about the sample 
mean and the standard error. In this experiment, two samples (groups A and B) are 
given different treatments, and then the subjects’ scores on a dependent variable are 
recorded. The mean for group A is M 5 15, and for group B, it is M 5 30. For both 
samples, the standard error of M is s

M
 5 5. Note that the mean is represented by the 

height of the bar, and the standard error is depicted by brackets at the top of each bar. 
Each bracket extends 1 standard error above and 1 standard error below the sample 
mean. Thus, the graph illustrates the mean for each group plus or minus 1 standard error 
(M ± SE). When you glance at Figure 7.9, not only do you get a “picture” of the sample 
means, but you also get an idea of how much error you should expect for those means.

Figure 7.10 shows how sample means and standard error are displayed in a line 
graph. In this study, two samples representing different age groups are tested on a 
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The mean (± SE) score for 
treatment groups A and B.
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Figure 7.10

The mean (± SE) number 
of mistakes made for 
groups A and B on  
each trial.
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task for four trials. The number of errors committed on each trial is recorded for 
all participants. The graph shows the mean (M) number of errors committed for  
each group on each trial. The brackets show the size of the standard error for each sample 
mean. Again, the brackets extend 1 standard error above and below the value of the mean.

 1. If a sample is selected from a population with a mean of m 5 120 and a standard 
deviation of s 5 20, then, on average, how much difference should there be be-
tween the sample mean and the population mean

  a. for a sample of n 5 25 scores?

  b. for a sample of n 5 100 scores?

 2. Can the value of the standard error ever be larger than the value of the population 
standard deviation? Explain your answer.

 3. If a random sample is selected from a population with a standard deviation of s 5 40, 
then how large a sample is needed to have a standard error of 2 points or less?

 4. A sample of n 5 25 scores is selected from a population. If the sample mean has a 
standard error of 4 points, then what is the population standard deviation?

 1. a. s
M
 5 4 points

  b. s
M
 5 2 points

 2. No. The standard error is computed by dividing the standard deviation by the square root of 
n. The standard error is always less than or equal to the standard deviation.

 3. A sample of n 5 400 or larger.

 4. s 5 20

l E A R n i n g  C H E C k

AnSwERS

looking AHEAD To infEREnTiAl STATiSTiCS

Inferential statistics are methods that use sample data as the basis for drawing general con-
clusions about populations. However, we have noted that a sample is not expected to give 
a perfectly accurate reflection of its population. In particular, there will be some error or 
discrepancy between a sample statistic and the corresponding population parameter. In this 
chapter, we have observed that a sample mean is not exactly equal to the population mean. 
The standard error of M specifies how much difference is expected on average between the 
mean for a sample and the mean for the population.

The natural differences that exist between samples and populations introduce a de-
gree of uncertainty and error into all inferential processes. Specifically, there is always 
a margin of error that must be considered whenever a researcher uses a sample mean as 
the basis for drawing a conclusion about a population mean. Remember that the sample 
mean is not perfect. In the next seven chapters we introduce a variety of statistical meth-
ods that all use sample means to draw inferences about population means.

In each case, the distribution of sample means and the standard error are critical 
elements in the inferential process. Before we begin this series of chapters, we pause 
briefly to demonstrate how the distribution of sample means, along with z-scores and 
probability, can help us use sample means to draw inferences about population means.

We ended Chapters 5 and 6 with a demonstration of how inferential statistics are used 
to help interpret the results of a research study. A general research situation was shown 

7.5

E x A M P l E  7 . 5
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in Figures 5.9 and 6.16, and is repeated here in Figure 7.11. The research begins with 
a population that forms a normal distribution with a mean of µ 5 400 and a standard 
deviation of s 5 20. A sample is selected from the population and a treatment is admin-
istered to the sample. The goal for the study is to evaluate the effect of the treatment. 
In the previous two chapters, however, we were limited to using a sample of n 5 1 
individual. Now, we can use any sample size and have selected n 5 25 for this example.

The psychologist makes a decision about the effect of the treatment by comparing 
the treated sample with the original population. If the scores in the sample are notice-
ably different from the scores in the population, then the researcher has evidence that 
the treatment has an effect. The problem is to determine exactly how much difference 
is necessary before we can say that the sample is noticeably different.

The distribution of sample means and the standard error can help researchers make 
this decision. In particular, the distribution of sample means can be used to show ex-
actly what would be expected for samples that do not receive any treatment. This allows 
researchers to make a simple comparison between

 a. The treated sample (from the research study)

 b. Untreated samples (from the distribution of sample means)

If our treated sample is noticeably different from the untreated samples, then we have 
evidence that the treatment has an effect. On the other hand, if our treated sample still 
looks like one of the untreated samples, then we must conclude that the treatment does 
not appear to have any effect.

We begin with the original population and consider the distribution of sample means 
for all of the possible samples of n 5 25. The distribution of sample means has the fol-
lowing characteristics:

 1. It is a normal distribution, because the original population is normal.

 2. It has an expected value of 400, because the population mean is m 5 400.

 3. It has a standard error of sM = = =
20

25

20

5
4, because the population standard 

deviation is s 5 20 and the sample size is n 5 25.

T
r
e
a
t

m
e
n
t

Treated 
sample
n = 25

Sample
n = 25

Population

Normal

µ = 400
σ = 20

Figure 7.11

The structure of the  
research study described 
in Example 7.5. The 
purpose of the study is 
to determine whether the 
treatment has an effect.
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The distribution of sample means is shown in Figure 7.12. Notice that an untreated 
sample of n 5 25 should have a mean around m 5 400. To be more precise, we can 
use z-scores to determine the middle 95% of all the possible sample means. As dem-
onstrated in Chapter 6 (p. 170), the middle 95% of a normal distribution is located 
between z-score boundaries of z 5 11.96 and z 5 –1.96 (check the unit normal table). 
These z-score boundaries are shown in Figure 7.12. With a standard error of s 5 4 
points, a z-score of 1.96 corresponds to a distance of 1.96(4) 5 7.84 points from the 
mean. Thus, the z-score boundaries of ±1.96 correspond to sample means of 392.16 
and 407.84.

We have demonstrated that an untreated sample is almost guaranteed (95% prob-
ability) to have a sample mean between 392.16 and 407.84. If our sample has a mean 
within this range, then we must conclude that our sample of is not noticeably different 
from untreated samples. In this case, we conclude that the treatment does not appear 
to have any effect.

On the other hand, if the mean for the treated sample is outside the 95% range, then 
we can conclude that our sample is noticeably different from the samples that would be 
obtained without any treatment. In this case, the research results provide evidence that 
the treatment has an effect.

In Example 7.5 we used the distribution of sample means, together with z-
scores and probability, to provide a description of what is reasonable to expect for 
an untreated sample. Then, we evaluated the effect of a treatment by determining 
whether the treated sample was noticeably different from an untreated sample. This 
procedure forms the foundation for the inferential technique known as hypothesis 
testing, which is introduced in Chapter 8 and repeated throughout the remainder of 
this book.

z

µ = 400392.16

−1.96 +1.96

407.84

σM = 4

Figure 7.12

The distribution of sam-
ple means for samples 
of n 5 25 untreated rats 
(from Example 7.5).
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 1. A population forms a normal distribution with a mean of m 5 80 and a standard 
deviation of s 5 20.

  a.  If single score is selected from this population, how much distance would you 
expect, on average, between the score and the population mean?

  b.  If a sample of n 5 100 scores is selected from this population, how much dis-
tance would you expect, on average, between the sample mean and the popula-
tion mean?

 2. A population forms a normal shaped distribution with m 5 40 and s 5 8.

  a.  A sample of n 5 16 scores from this population has a mean of M 5 36. Would 
you describe this as a relatively typical sample, or is the sample mean an  
extreme value? Explain your answer.

  b.  If the sample from part a had n 5 4 scores, would it be considered typical or 
extreme?

 3. The SAT scores for the entering freshman class at a local college form a normal 
distribution with a mean of m 5 530 and a standard deviation of s 5 80.

  a.  For a random sample of n 5 16 students, what range of values for the sample 
mean would be expected 95% of the time?

  b.  What range of values would be expected 95% of the time if the sample size 
were n 5 100?

 4. A sample of n 516 individuals is selected from a normal population with a mean 
of m 5 50 with s 5 12. After a treatment is administered to the sample, the sam-
ple mean is found to be M 5 57. Is this sample mean likely to occur if the treat-
ment has no effect? Specifically, is the sample mean within the range of values 
that would be expected 95% of the time?

 1. a. For a single score, the standard distance from the mean is the standard deviation, s 5 20.

  b.  For a sample of n 5 100 scores, the average distance between the sample mean and the 
population mean is the standard error, s

M
 5 20

100
 5 2.

 2. a.  With n 5 16, the standard error is 2, and the sample mean corresponds to z 5 22.00. 
This is an extreme value.

  b.  With n 5 4, the standard error is 4, and the sample mean corresponds to z 5 21.00. This 
is a relatively typical value.

 3. a.  With n 5 16, the standard error is s
M
 5 20 points. Using z 5 ±1.96, the 95% range 

extends from 490.8 to 569.2.

  b.  With n 5 100, the standard error is only 8 points and the range extends from 514.32 to 
545.68.

 4. With n 5 16, the standard error is s
M
 5 3. If the treatment has no effect, then the population 

mean is still m 5 50 and 95% of all the possible sample means should be within 1.96(3) 5 
5.88 points of m 5 50. This is a range of values from 44.12 to 55.88. Our sample mean is 
outside this range, so it is not the kind of sample that ought to be obtained if the treatment 
has no effect.

l E A R n i n g  C H E C k

AnSwERS
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Summary

 1. The distribution of sample means is defined as the set 
of Ms for all of the possible random samples for a spe-
cific sample size (n) that can be obtained from a given 
population. According to the central limit theorem, the 
parameters of the distribution of sample means are as 
follows:

 a. Shape. The distribution of sample means is normal 
if either one of the following two conditions is 
satisfied:

 (1) The population from which the samples are 
selected is normal.

 (2) The size of the samples is relatively large  
(n 5 30 or more).

 b. Central Tendency. The mean of the distribution of 
sample means is identical to the mean of the popu-
lation from which the samples are selected. The 
mean of the distribution of sample means is called 
the expected value of M.

 c. Variability. The standard deviation of the distribu-
tion of sample means is called the standard error of 
M and is defined by the formula

s 5
s

s 5
s

M Mn n
or

2

  Standard error measures the standard distance between 
a sample mean (M) and the population mean (m).

 2. One of the most important concepts in this chapter  
is standard error. The standard error is the standard 

deviation of the distribution of sample means. It mea-
sures the standard distance between a sample mean 
(M) and the population mean (m). The standard error 
tells how much error to expect if you are using a sam-
ple mean to represent a population mean.

 3. The location of each M in the distribution of sample 
means can be specified by a z-score:

z
M

M

5
2m

s

  Because the distribution of sample means tends to be 
normal, we can use these z-scores and the unit normal 
table to find probabilities for specific sample means. 
In particular, we can identify which sample means are 
likely and which are very unlikely to be obtained from 
any given population. This ability to find probabilities 
for samples is the basis for the inferential statistics in 
the chapters ahead.

 4. In general terms, the standard error measures how 
much discrepancy you should expect between 
a sample statistic and a population parameter. 
Statistical inference involves using sample statistics 
to make a general conclusion about a population 
parameter. Thus, standard error plays a crucial role 
in inferential statistics.

Key TermS

sampling error (176)

distribution of sample means (177)

sampling distribution (177)

central limit theorem (180)

expected value of M (181)

standard error of M (181)

law of large numbers (182)
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If your professor has assigned Aplia:

1. Sign in to your account.

2. Complete the corresponding exercises as required by your professor.

3. When finished, click “Grade It Now” to see which areas you have mastered, which 
areas need more work, and detailed explanations of every answer.

The statistical computer package SPSS is not structured to compute the standard error 
or a z-score for a sample mean. In later chapters, however, we introduce new inferential 
statistics that are included in SPSS. When these new statistics are computed, SPSS typi-
cally includes a report of standard error that describes how accurately, on average, the 
sample represents its population.

foCuS on problem SolVing

 1. Whenever you are working probability questions about sample means,  
you must use the distribution of sample means. Remember that every  
probability question can be restated as a proportion question. Probabilities  
for sample means are equivalent to proportions of the distribution of  
sample means.

 2. When computing probabilities for sample means, the most common error 
is to use standard deviation (s) instead of standard error (s

M
) in the z-score 

formula. Standard deviation measures the typical deviation (or error) for a 
single score. Standard error measures the typical deviation (or error) for a 
sample. Remember: The larger the sample is, the more accurately the sample 
represents the population. Thus, sample size (n) is a critical part of the stan-
dard error.

Standard error 5 s 5
s

M n

 3. Although the distribution of sample means is often normal, it is not always 
a normal distribution. Check the criteria to be certain that the distribution is 
normal before you use the unit normal table to find probabilities (see item 1a 
of the Summary). Remember that all probability problems with a normal dis-
tribution are easier to solve if you sketch the distribution and shade in the area 
of interest.
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DemonSTraTion 7.1

probabiliTy anD The DiSTribuTion of Sample meanS

A population forms a normal distribution with a mean of m 5 60 and a standard 
deviation of s 5 12. For a sample of n 5 36 scores from this population, what is the 
probability of obtaining a sample mean greater than 64?

p(M . 64) 5 ?

Rephrase the probability question as a proportion question. Out of all of the possible 
sample means for n 5 36, what proportion has values greater than 64? All of the possible 
sample means is simply the distribution of sample means, which is normal, with a mean of 
m 5 60 and a standard error of

s 5
s

5 5 5M n

12

36

12

6
2

The distribution is shown in Figure 7.13(a). Because the problem is asking for the pro-
portion greater than M 5 64, this portion of the distribution is shaded in Figure 7.13(b).

Compute the z-score for the sample mean. A sample mean of M 5 64 corresponds to 
a z-score of

z
M

M

5
2m

s
5

2
5 5

64 60

2

4

2
2 00.

Therefore, p(M . 64) 5 p(z . 2.00)

Look up the proportion in the unit normal table. Find z 5 2.00 in column A and  
read across the row to find p 5 0.0228 in column C. This is the answer as shown in  
Figure 7.13(c).

p(M . 64) 5 p(z . 2.00) 5 0.0228 (or 2.28%)

S t e p  1

S t e p  2

S t e p  3

60

64

60

64 64

Column C 
p = 0.0228

Column B 
p = 0.9772

µ
60
µµ

σM = 2 σM = 2

M M M

Figure 7.13

Sketches of the distribution for Demonstration 7.1.

(a) (b) (c)
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problemS

 1. Describe the distribution of sample means (shape, 
expected value, and standard error) for samples of  
n 5 100 selected from a population with a mean of 
m 5 40 and a standard deviation of s 5 10.

 2. A sample is selected from a population with a mean 
of m 5 40 and a standard deviation of s 5 8.

 a. If the sample has n 5 4 scores, what is the  
expected value of M and the standard error of M?

 b. If the sample has n 5 16 scores, what is the  
expected value of M and the standard error of M?

 3. The distribution of sample means is not always a 
normal distribution. Under what circumstances is the 
distribution of sample means not normal?

 4. A population has a standard deviation of s 5 24.
 a. On average, how much difference should exist be-

tween the population mean and the sample mean for 
n 5 4 scores randomly selected from the population?

 b. On average, how much difference should exist for 
a sample of n 5 9 scores?

 c. On average, how much difference should exist for 
a sample of n 5 16 scores?

 5. For a population with a mean of m 5 70 and a standard 
deviation of s 5 20, how much error, on average, would 
you expect between the sample mean (M) and the popu-
lation mean for each of the following sample sizes?

 a. n 5 4 scores
 b. n 5 16 scores
 c. n 5 25 scores

 6. For a population with a standard deviation of s 5 20, 
how large a sample is necessary to have a standard 
error that is:

 a. less than or equal to 5 points?
 b. less than or equal to 2 points?
 c. less than or equal to 1 point?

 7. For a population with s 5 12, how large a sample is 
necessary to have a standard error that is:

 a. less than 4 points?
 b. less than 3 points?
 c. less than 2 point?

 8. For a sample of n 5 25 scores, what is the value of the 
population standard deviation (s) necessary to produce 
each of the following a standard error values?

 a. s
M
 5 10 points?

 b. s
M
 5 5 points?

 c. s
M
 5 2 points?

 9. For a population with a mean of m 5 80 and a 
standard deviation of s 5 12, find the z-score corre-
sponding to each of the following samples.

 a. M 5 83 for a sample of n 5 4 scores
 b. M 5 83 for a sample of n 5 16 scores
 c. M 5 83 for a sample of n 5 36 scores

 10. A sample of n 5 4 scores has a mean of M 5 75. 
Find the z-score for this sample:

 a. If it was obtained from a population with m 5 80 
and s 5 10.

 b. If it was obtained from a population with m 5 80 
and s 5 20.

 c. If it was obtained from a population with m 5 80 
and s 5 40.

 11. A normal distribution has a mean of m 5 60 and a 
standard deviation of s 5 18. For each of the fol-
lowing samples, compute the z-score for the sample 
mean and determine whether the sample mean is a 
typical, representative value or an extreme value for  
a sample of this size.

 a. M 5 67 for n 5 4 scores
 b. M 5 67 for n 5 36 scores

 12. A random sample is obtained from a normal popula-
tion with a mean of m 5 95 and a standard deviation 
of s 5 40. The sample mean is M 5 86.

 a. Is this a representative sample mean or an extreme 
value for a sample of n 5 16 scores?

 b. Is this a representative sample mean or an extreme 
value for a sample of n 5 100 scores?

 13. The population of IQ scores forms a normal distribu-
tion with a mean of m 5 100 and a standard deviation 
of s 5 15. What is the probability of obtaining a 
sample mean greater than M 5 97,

 a. for a random sample of n 5 9 people?
 b. for a random sample of n 5 25 people?

 14. The scores on a standardized mathematics test for 
8th-grade children in New York State form a normal 
distribution with a mean of m 5 70 and a standard 
deviation of s 5 10.

 a. What proportion of the students in the state have 
scores less than X 5 75?

 b. If samples of n 5 4 are selected from the popula-
tion, what proportion of the samples will have 
means less than M 5 75?

 c. If samples of n 5 25 are selected from the popu-
lation, what proportion of the samples will have 
means less than M 5 75?

 15. A normal distribution has a mean of m 5 54 and a 
standard deviation of s 5 6.

 a. What is the probability of randomly selecting a 
score less than X 5 51?

 b. What is the probability of selecting a sample of  
n 5 4 scores with a mean less than M 5 51?

 c. What is the probability of selecting a sample of  
n 5 36 scores with a mean less than M 5 51?

 16. A population of scores forms a normal distribution with 
a mean of m 5 80 and a standard deviation of s 5 10.

 a. What proportion of the scores have values between 
75 and 85?

 b. For samples of n 5 4, what proportion of the 
samples will have means between 75 and 85?
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 c. For samples of n 5 16, what proportion of  
the samples will have means between 75  
and 85?

 17. For random samples of size n 5 25 selected from  
a normal distribution with a mean of m 5 50 and  
a standard deviation of s 5 20, find each of the  
following:

 a. The range of sample means that defines the  
middle 95% of the distribution of sample means.

 b. The range of sample means that defines the  
middle 99% of the distribution of sample means.

 18. The distribution ages for students at the state college 
is positively skewed with a mean of m 5 21.5 and a 
standard deviation of s 5 3.

 a. What is the probability of selecting a random sam-
ple of n 5 4 students with an average age greater 
than 23? (Careful: This is a trick question.)

 b. What is the probability of selecting a random 
sample of n 5 36 students with an average age 
greater than 23?

 c. For a sample of n 5 36 students, what is the prob-
ability that the average age is between 21 and 22?

 19. At the end of the spring semester, the Dean of 
Students sent a survey to the entire freshman class. 
One question asked the students how much weight 
they had gained or lost since the beginning of the 
school year. The average was a gain of m 5 9 pounds 
with a standard deviation of s 5 6. The distribution 
of scores was approximately normal. A sample of 
n 5 4 students is selected and the average weight 
change is computed for the sample.

 a. What is the probability that the sample mean will 
be greater than M 5 10 pounds? In symbols, what 
is p(M . 10)?

 b. Of all of the possible samples, what proportion 
will show an average weight loss? In symbols, 
what is p(M , 0)?

 c. What is the probability that the sample mean will 
be a gain of between M 5 9 and M 5 12 pounds? 
In symbols, what is p(9 , M , 12)?

 20. Jumbo shrimp are those that require 10 to 15 shrimp 
to make a pound. Suppose that the number of jumbo 
shrimp in a 1-pound bag averages m 5 12.5 with 
a standard deviation of s 5 1, and forms a normal 
distribution. What is the probability of randomly 
picking a sample of n 5 25 1-pound bags that  
average more than M 5 13 shrimp per bag?

 21. The average age for licensed drivers in the county is 
m 5 40.3 years with a standard deviation of  
s 5 13.2 years.

 a. A researcher obtained a random sample of n 5 16 
parking tickets and computed an average age of  
M 5 38.9 years for the drivers. Compute the  
z-score for the sample mean and find the probability 

of obtaining an average age this young  
or younger for a random sample of licensed  
drivers. Is it reasonable to conclude that this set 
of n 5 16 people is a representative sample of 
licensed drivers?

 b. The same researcher obtained a random sample of 
n 5 36 speeding tickets and computed an average 
age of M 5 36.2 years for the drivers. Compute the 
z-score for the sample mean and find the probability 
of obtaining an average age this young or younger 
for a random sample of licensed drivers. Is it  
reasonable to conclude that this set of n 5 36 people 
is a representative sample of licensed drivers?

 22. Callahan (2009) conducted a study to evaluate the 
effectiveness of physical exercise programs for in-
dividuals with chronic arthritis. Participants with 
doctor-diagnosed arthritis either received a Tai Chi 
course immediately or were placed in a control group 
to begin the course 8 weeks later. At the end of the 
8-week period, self-reports of pain were obtained for 
both groups. Data similar to the results obtained in 
the study are shown in the following table.

Self-Reported Level of Pain

Mean SE

Tai Chi course 3.7 1.2
No Tai Chi course 7.6 1.7

 a. Construct a bar graph that incorporates all of the 
information in the table.

 b. Looking at your graph, do you think that partici-
pation in the Tai Chi course reduces arthritis pain?

 23. Xu and Garcia (2008) conducted a research study 
demonstrating that 8-month-old infants appear to 
recognize which samples are likely to be obtained 
from a population and which are not. In the study, 
the infants watched as a sample of n 5 5 ping-pong 
balls was selected from a large box. In one condition, 
the sample consisted of 1 red ball and 4 white balls. 
After the sample was selected, the front panel of the 
box was removed to reveal the contents. In the ex-
pected condition, the box contained primarily white 
balls like the sample, and the infants looked at it for 
an average of M 5 7.5 seconds. In the unexpected 
condition, the box had primarily red balls, unlike 
the sample, and the infants looked at it for M 5 9.9 
seconds. The researchers interpreted the results as 
demonstrating that the infants found the unexpected 
result surprising and, therefore, more interesting than 
the expected result. Assuming that the standard error 
for both means is s

M
 5 1 second, draw a bar graph 

showing the two sample means using brackets to 
show the size of the standard error for each mean.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
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8.1    The Logic of Hypothesis Testing

8.2     Uncertainty and Errors in 
Hypothesis Testing

8.3    More About Hypothesis Tests

8.4     Directional (One-Tailed) 
Hypothesis Tests

8.5     Concerns About Hypothesis 
Testing: Measuring Effect Size

8.6    Statistical Power

Summary

Focus on Problem Solving

Demonstrations 8.1 and 8.2

Problems

C h a p t e r 

8
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 z-Scores (Chapter 5)
•	 Distribution	of	sample	means	

(Chapter 7)
•	 Expected	value
•	 Standard	error
•	 Probability	and	sample	means
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THE LogIC of HyPoTHEsIs TEsTIng

It usually is impossible or impractical for a researcher to observe every individual in 
a population. Therefore, researchers usually collect data from a sample and then use 
the sample data to help answer questions about the population. Hypothesis testing is a 
statistical procedure that allows researchers to use sample data to draw inferences about 
the population of interest.

Hypothesis testing is one of the most commonly used inferential procedures. In fact, 
most of the remainder of this book examines hypothesis testing in a variety of different 
situations and applications. Although the details of a hypothesis test change from one 
situation to another, the general process remains constant. In this chapter, we introduce 
the general procedure for a hypothesis test. You should notice that we use the statisti-
cal techniques that have been developed in the preceding three chapters—that is, we 
combine the concepts of z-scores, probability, and the distribution of sample means to 
create a new statistical procedure known as a hypothesis test.

A hypothesis test is a statistical method that uses sample data to evaluate a  
hypothesis about a population.

In very simple terms, the logic underlying the hypothesis-testing procedure is as 
follows:

 1. First, we state a hypothesis about a population. Usually the hypothesis concerns 
the value of a population parameter. For example, we might hypothesize that 
American adults gain an average of m 5 7 pounds between Thanksgiving and 
New Year’s Day each year.

 2. Before we select a sample, we use the hypothesis to predict the characteristics 
that the sample should have. For example, if we predict that the average weight 
gain for the population is m 5 7 pounds, then we would predict that our sample 
should have a mean around 7 pounds. Remember: The sample should be similar 
to the population, but you always expect a certain amount of error.

 3. Next, we obtain a random sample from the population. For example, we might 
select a sample of n 5 200 American adults and measure the average weight 
change for the sample between Thanksgiving and New Year’s Day.

 4. Finally, we compare the obtained sample data with the prediction that was made 
from the hypothesis. If the sample mean is consistent with the prediction, then 
we conclude that the hypothesis is reasonable. But if there is a big discrepancy 
between the data and the prediction, then we decide that the hypothesis is wrong.

A hypothesis test is typically used in the context of a research study. That is, a 
researcher completes a research study and then uses a hypothesis test to evaluate the 
results. Depending on the type of research and the type of data, the details of the hy-
pothesis test change from one research situation to another. In later chapters, we exam-
ine different versions of hypothesis testing that are used for different kinds of research. 
For now, however, we focus on the basic elements that are common to all hypothesis 
tests. To accomplish this general goal, we examine a hypothesis test as it applies to the 
simplest possible situation—using a sample mean to test a hypothesis about a popula-
tion mean.

In the five chapters that follow, we consider hypothesis testing in more complex 
research situations involving sample means and mean differences. In Chapter 14, 

8.1

D e f i n i t i o n
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we look at correlational research and examine how the relationships obtained for  
sample data are used to evaluate hypotheses about relationships in the population. In 
Chapter 15, we examine how the proportions that exist in a sample are used to test 
hypotheses about the corresponding proportions in the population.

Once again, we introduce hypothesis testing with a situation in which a researcher is 
using one sample mean to evaluate a hypothesis about one unknown population mean.

The unknown population Figure 8.1 shows the general research situation that we 
use to introduce the process of hypothesis testing. Notice that the researcher begins with 
a known population. This is the set of individuals as they exist before treatment. For this 
example, we are assuming that the original set of scores forms a normal distribution 
with m 5 80 and s 5 20. The purpose of the research is to determine the effect of a 
treatment on the individuals in the population.

To simplify the hypothesis-testing situation, one basic assumption is made about the 
effect of the treatment: If the treatment has any effect, it is simply to add a constant 
amount to (or subtract a constant amount from) each individual’s score. You should re-
call from Chapters 3 and 4 that adding (or subtracting) a constant to each score causes 
the mean to change but does not change the shape of the distribution, nor does it change 
the standard deviation. Thus, we assume that the population after treatment has the 
same shape as the original population and the same standard deviation as the original 
population. This assumption is incorporated into the situation shown in Figure 8.1.

Note that the unknown population, after treatment, is the focus of the research ques-
tion. Specifically, the purpose of the research is to determine what would happen if the 
treatment were administered to every individual in the population.

The sample in the research study The goal of the hypothesis test is to deter-
mine whether the treatment has any effect on the individuals in the population (see  
Figure 8.1). Usually, however, we cannot administer the treatment to the entire popula-
tion, so the actual research study is conducted using a sample. Figure 8.2 shows the 
structure of the research study from the point of view of the hypothesis test. The origi-
nal population, before treatment, is shown on the left-hand side. The unknown popula-
tion, after treatment, is shown on the right-hand side. Note that the unknown population 
is actually hypothetical (the treatment is never administered to the entire population). 
Instead, we are asking what would happen if the treatment were administered to the 
entire population. The research study involves selecting a sample from the original 
population, administering the treatment to the sample, and then recording scores for 
the individuals in the treated sample. Notice that the research study produces a treated 

µ = 80

Known population
before treatment

σ =   20

µ = ?

Unknown population
after treatment

σ =       20

T
r
e
a
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n
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Figure 8.1

The basic experimental 
situation for hypothesis 
testing. It is assumed that 
the parameter µ is known 
for the population before 
treatment. The purpose 
of the experiment is to 
determine whether the 
treatment has an effect on 
the population mean.
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sample. Although this sample was obtained indirectly, it is equivalent to a sample that 
is obtained directly from the unknown treated population. The hypothesis test uses the 
treated sample on the right-hand side of Figure 8.2 to evaluate a hypothesis about the 
unknown treated population on the right side of the figure.

A hypothesis test is a formalized procedure that follows a standard series of opera-
tions. In this way, researchers have a standardized method for evaluating the results of 
their research studies. Other researchers recognize and understand exactly how the data 
were evaluated and how conclusions were reached. To emphasize the formal structure 
of a hypothesis test, we present hypothesis testing as a four-step process that is used 
throughout the rest of the book. The following example provides a concrete foundation 
for introducing the hypothesis-testing procedure.

Researchers have demonstrated that it is possible to improve mathematics skills using 
mild electrical brain stimulation (Kadosh, Soskic, Iuculano, Kanai, & Walsh, 2010). In 
the study, participants were taught artificial number symbols while researchers applied 
mild electrical current across their skulls near the parietal lobes, a part of the brain 
that is important for mathematical skill. Other participants learned the same number 
symbols with current applied in a different brain location. After six study sessions, the 
parietal-lobe group performed significantly better on a test evaluating their knowledge 
of the number symbols.

Suppose that a researcher is testing the same kind of brain stimulation on students 
who are studying for a standardized mathematics exam. For the general population, 
scores on this exam form a normal distribution with a mean of m 5 80 and a standard 
deviation of s 5 20. The researcher’s plan is to obtain a sample of n 5 25 students 
who are scheduled to take the exam, and have each student study for 30 minutes each 
day while current is applied near the parietal lobe. After 4 weeks, the participants are 
given the standardized exam. If the mean score for the sample is noticeably different 
from the mean for the general population of students, then the researcher can conclude 
that the electric stimulation does appear to have an effect on mathematical skill. On the 
other hand, if the sample mean is around 80 (the same as the general population mean), 
the researcher must conclude that the stimulation does not appear to have any effect.

E x A m P L E  8 . 1
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µ = 80
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sampleSample
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treated

population
µ = ?

Figure 8.2

From the point of view 
of the hypothesis test, the 
entire population receives 
the treatment and then a 
sample is selected from 
the treated population. In 
the actual research study, 
a sample is selected from 
the original population and 
the treatment is adminis-
tered to the sample. From 
either perspective, the 
result is a treated sample 
that represents the treated 
population.
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Figure 8.2 depicts the research situation that was described in the preceding ex-
ample. Notice that the population after treatment is unknown. Specifically, we do 
not know what will happen to the mean score if the entire population of students is 
given the brain stimulation while studying. However, we do have a sample of n 5 25 
participants who have received the stimulation and we can use this sample to help 
draw inferences about the unknown population. The following four steps outline the 
hypothesis-testing procedure that allows us to use sample data to answer questions 
about an unknown population.

As the name implies, the process of hypothesis testing begins by stating a hypothesis 
about the unknown population. Actually, we state two opposing hypotheses. Notice that 
both hypotheses are stated in terms of population parameters.

The first, and most important, of the two hypotheses is called the null hypothesis. 
The null hypothesis states that the treatment has no effect. In general, the null hypoth-
esis states that there is no change, no effect, no difference—nothing happened, hence 
the name null. The null hypothesis is identified by the symbol H

0
. (The H stands for 

hypothesis, and the zero subscript indicates that this is the zero-effect hypothesis.) For 
the study in Example 8.1, the null hypothesis states that the brain stimulation has no ef-
fect on mathematical skill for the population of students. In symbols, this hypothesis is

H
0
 : m

with stimulation
 5 80 (Even with the stimulation,  

 the mean test score is still 80.)

The null hypothesis (H
0
) states that in the general population there is no change, 

no difference, or no relationship. In the context of an experiment, H
0
 predicts 

that the independent variable (treatment) has no effect on the dependent variable 
(scores) for the population.

The second hypothesis is the opposite of the null hypothesis, and it is called the 
scientific, or alternative, hypothesis (H

1
). This hypothesis states that the treatment has 

an effect on the dependent variable.

The alternative hypothesis (H
1
) states that there is a change, a difference,  

or a relationship for the general population. In the context of an experiment,  
H

1
 predicts that the independent variable (treatment) does have an effect on  

the dependent variable.

For this example, the alternative hypothesis states that the stimulation does have an 
effect on mathematical skill for the population and will cause a change in the mean 
score. In symbols, the alternative hypothesis is represented as

H
1
 : m

with stimulation
  80 (With the stimulation,  

 the mean test score is different from 80.)

Notice that the alternative hypothesis simply states that there will be some type of 
change. It does not specify whether the effect will be increased or decreased test scores. 
In some circumstances, it is appropriate for the alternative hypothesis to specify the 
direction of the effect. For example, the researcher might hypothesize that the stimula-
tion will increase test scores (m . 80). This type of hypothesis results in a directional 
hypothesis test, which is examined in detail later in this chapter. For now we concentrate 

The Four STepS oF a 
hypoTheSiS TeST

STep 1: STaTe  
The hypoTheSiS

D e f i n i t i o n

D e f i n i t i o n

The goal of inferential statis-
tics is to make general state-
ments about the population by 
using sample data. Therefore, 
when testing hypotheses, we 
make our predictions about 
the population parameters.

The null hypothesis and the 
alternative hypothesis are 
mutually exclusive and  
exhaustive. They cannot  
both be true, and one of  
them must be true. The data 
determine which one should 
be rejected.
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on nondirectional tests, for which the hypotheses simply state that the treatment has no 
effect (H

0
) or has some effect (H

1
).

Eventually the researcher uses the data from the sample to evaluate the credibility of the 
null hypothesis. The data either provide support for the null hypothesis or tend to refute 
the null hypothesis. In particular, if there is a big discrepancy between the data and the 
null hypothesis, then we conclude that the null hypothesis is wrong.

To formalize the decision process, we use the null hypothesis to predict the kind 
of sample mean that ought to be obtained. Specifically, we determine exactly which 
sample means are consistent with the null hypothesis and which sample means are at 
odds with the null hypothesis.

For our example, the null hypothesis states that the brain stimulation has no effect 
and the population mean is still m 5 80. If this is true, then the sample mean should 
have a value around 80. Therefore, a sample mean near 80 is consistent with the null 
hypothesis. On the other hand, a sample mean that is very different from 80 is not con-
sistent with the null hypothesis. To determine exactly which values are “near” 80 and 
which values are “very different from” 80, we examine all of the possible sample means 
that could be obtained if the null hypothesis is true. For our example, this is the distribu-
tion of sample means for n 5 25. According to the null hypothesis, this distribution is 
centered at m 5 80. The distribution of sample means is then divided into two sections:

 1. Sample means that are likely to be obtained if H
0
 is true; that is, sample means 

that are close to the null hypothesis

 2. Sample means that are very unlikely to be obtained if H
0
 is true; that is, sample 

means that are very different from the null hypothesis

Figure 8.3 shows the distribution of sample means divided into these two sections. 
Notice that the high-probability samples are located in the center of the distribution 

STep 2: SeT  
The CriTeria  

For a DeCiSion

The distribution of sample means
if the null hypothesis is true
(all the possible outcomes)

Sample means
close to H0:

 high-probability values
if H0 is true

Extreme, low-
probability values

if H0 is true

Extreme, low-
probability values

if H0 is true

 from H0

Figure 8.3

The set of potential 
samples is divided into 
those that are likely to be 
obtained and those that 
are very unlikely to be 
obtained if the null  
hypothesis is true.
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and have sample means close to the value specified in the null hypothesis. On the other 
hand, the low-probability samples are located in the extreme tails of the distribution. 
After the distribution has been divided in this way, we can compare our sample data 
with the values in the distribution. Specifically, we can determine whether our sample 
mean is consistent with the null hypothesis (like the values in the center of the distribu-
tion) or whether our sample mean is very different from the null hypothesis (like the 
values in the extreme tails).

The alpha level To find the boundaries that separate the high-probability samples 
from the low-probability samples, we must define exactly what is meant by “low” 
probability and “high” probability. This is accomplished by selecting a specific prob-
ability value, which is known as the level of significance, or the alpha level, for the 
hypothesis test. The alpha (a) value is a small probability that is used to identify the 
low-probability samples. By convention, commonly used alpha levels are a 5 .05 (5%), 
a 5 .01 (1%), and a 5 .001 (0.1%). For example, with a 5 .05, we separate the most 
unlikely 5% of the sample means (the extreme values) from the most likely 95% of the 
sample means (the central values).

The extremely unlikely values, as defined by the alpha level, make up what is called 
the critical region. These extreme values in the tails of the distribution define outcomes 
that are not consistent with the null hypothesis; that is, they are very unlikely to occur 
if the null hypothesis is true. Whenever the data from a research study produce a sample 
mean that is located in the critical region, we conclude that the data are not consistent 
with the null hypothesis, and we reject the null hypothesis.

The alpha level, or the level of significance, is a probability value that is used to 
define the concept of “very unlikely” in a hypothesis test.

The critical region is composed of the extreme sample values that are very un-
likely (as defined by the alpha level) to be obtained if the null hypothesis is true. 
The boundaries for the critical region are determined by the alpha level. If sample 
data fall in the critical region, the null hypothesis is rejected.

Technically, the critical region is defined by sample outcomes that are very  
unlikely to occur if the treatment has no effect (that is, if the null hypothesis is true). 
Reversing the point of view, we can also define the critical region as sample values 
that provide convincing evidence that the treatment really does have an effect. For 
our example, the regular population of students has a mean test score of m 5 80.  
We selected a sample from this population and administered a treatment (the brain 
stimulation) to the individuals in the sample. What kind of sample mean would 
convince you that the treatment has an effect? It should be obvious that the most 
convincing evidence would be a sample mean that is really different from m 5 80. In 
a hypothesis test, the critical region is determined by sample values that are “really 
different” from the original population.

The boundaries for the critical region To determine the exact location for the 
boundaries that define the critical region, we use the alpha-level probability and the unit 
normal table. In most cases, the distribution of sample means is normal, and the unit nor-
mal table provides the precise z-score location for the critical region boundaries. With 
a 5 .05, for example, the boundaries separate the extreme 5% from the middle 95%. 
Because the extreme 5% is split between two tails of the distribution, there is exactly 
2.5% (or 0.0250) in each tail. In the unit normal table, you can look up a proportion 
of 0.0250 in column C (the tail) and find that the z-score boundary is z 5 1.96. Thus, 

D e f i n i t i o n s

With rare exceptions, an 
alpha level is never larger 
than .05.
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for any normal distribution, the extreme 5% is in the tails of the distribution beyond  
z 5 11.96 and z 5 –1.96. These values define the boundaries of the critical region for 
a hypothesis test using a 5 .05 (Figure 8.4).

Similarly, an alpha level of a 5 .01 means that 1%, or .0100, is split between the 
two tails. In this case, the proportion in each tail is .0050, and the corresponding z-score 
boundaries are z 5 62.58 (62.57 is equally good). For a 5 .001, the boundaries are 
located at z 5 63.30. You should verify these values in the unit normal table and be 
sure that you understand exactly how they are obtained.

Middle 95%:
High-probability values

if H0 is true

z 1.96 z  1.96

Critical region:
Extreme 5%

 from H0

Reject H0 Reject H0

0

80

Figure 8.4

The critical region (very 
unlikely outcomes) for  
a 5 .05.

 1. The city school district is considering increasing class size in the elementary 
schools. However, some members of the school board are concerned that larger 
classes may have a negative effect on student learning. In words, what would the 
null hypothesis say about the effect of class size on student learning?

 2. If the alpha level is increased from a 5 .01 to a 5 .05, then the boundaries  
for the critical region move farther away from the center of the distribution.  
(True or false?)

 3. If a researcher conducted a hypothesis test with an alpha level of a 5 .02, what 
z-score values would form the boundaries for the critical region?

 1. The null hypothesis would say that class size has no effect on student learning.

 2. False. A larger alpha means that the boundaries for the critical region move closer to the 
center of the distribution.

 3. The .02 would be split between the two tails, with .01 in each tail. The z-score boundaries 
would be z 5 12.33 and z 5 –2.33.

L E A R n I n g  C H E C k

AnswERs
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At this time, we select a sample of students and give them 30 minutes of brain stimula-
tion each day while they study for the mathematics exam. After 4 weeks, the students 
take the standardized mathematics test. Notice that the data are collected after the 
researcher has stated the hypotheses and established the criteria for a decision. This 
sequence of events helps to ensure that a researcher makes an honest, objective evalu-
ation of the data and does not tamper with the decision criteria after the experimental 
outcome is known.

Next, the raw data from the sample are summarized with the appropriate statistics: 
For this example, the researcher would compute the sample mean. Now it is possible 
for the researcher to compare the sample mean (the data) with the null hypothesis. This 
is the heart of the hypothesis test: comparing the data with the hypothesis.

The comparison is accomplished by computing a z-score that describes exactly 
where the sample mean is located relative to the hypothesized population mean from 
H

0
. In step 2, we constructed the distribution of sample means that would be expected 

if the null hypothesis were true—that is, the entire set of sample means that could be 
obtained if the treatment has no effect (see Figure 8.4). Now we calculate a z-score 
that identifies where our sample mean is located in this hypothesized distribution. The 
z-score formula for a sample mean is

z
M

M

5
m

s

In the formula, the value of the sample mean (M) is obtained from the sample data, 
and the value of m is obtained from the null hypothesis. Thus, the z-score formula can 
be expressed in words as follows:

z 5
sample mean hypothesized population mean

s



ttandard error between andM m

Notice that the top of the z-score formula measures how much difference there is 
between the data and the hypothesis. The bottom of the formula measures the standard 
distance that ought to exist between a sample mean and the population mean.

In the final step, the researcher uses the z-score value obtained in step 3 to make a deci-
sion about the null hypothesis according to the criteria established in step 2. There are 
two possible outcomes:

 1. The sample data are located in the critical region. By definition, a sample value 
in the critical region is very unlikely to occur if the null hypothesis is true. 
Therefore, we conclude that the sample is not consistent with H

0
 and our deci-

sion is to reject the null hypothesis. Remember, the null hypothesis states that 
there is no treatment effect, so rejecting H

0
 means that we are concluding that 

the treatment did have an effect.

  For the example we have been considering, suppose that the sample produced 
a mean of M 5 89 after receiving brain stimulation while studying. The null 
hypothesis states that the population mean is m 5 80 and, with n 5 25 and  
s 5 20, the standard error for the sample mean is

s 5
s

5 5 5M n

20

25

20

5
4

STep 3: ColleCT DaTa 
anD CompuTe Sample 

STaTiSTiCS

STep 4: make  
a DeCiSion
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  Thus, a sample mean of M 5 89 produces a z-score of

z
M

M

5
m

s
5


5 5

89 80

4

9

4
2.25

  With an alpha level of a 5 .05, this z-score is beyond the boundary of 1.96. 
Because the sample z-score is in the critical region, we reject the null hypothesis 
and conclude that the brain stimulation did have an effect on mathematics skill.

 2. The second possibility is that the sample data are not in the critical region. In 
this case, the sample mean is reasonably close to the population mean specified 
in the null hypothesis (in the center of the distribution). Because the data do not 
provide strong evidence that the null hypothesis is wrong, our conclusion is to 
fail to reject the null hypothesis. This conclusion means that the treatment does 
not appear to have an effect.

  For the research study examining the brain stimulation, if our sample produced 
a mean test score of M 5 84, then we would obtain a z-score of

z
M

M

5
m

s
5


5 5

84 80

4

4

4
1 00.

  The z-score of 1.00 is not in the critical region. Therefore, we would fail to re-
ject the null hypothesis and conclude that the brain stimulation does not appear 
to have an effect on mathematical skill.

In general, the final decision is made by comparing our treated sample with the dis-
tribution of sample means that would be obtained for untreated samples. If our treated 
sample looks much the same as samples that do not receive the brain stimulation, then 
we conclude that the treatment does not appear to have any effect. On the other hand, if 
the treated sample is noticeably different from the majority of untreated samples, then 
we conclude that the treatment does have an effect.

An analogy for hypothesis testing It may seem awkward to phrase both of the two 
possible decisions in terms of rejecting the null hypothesis; either we reject H

0
 or we 

fail to reject H
0
. These two decisions may be easier to understand if you think of a 

research study as an attempt to gather evidence to prove that a treatment works. From 
this perspective, the process of conducting a hypothesis test is similar to the process that 
takes place during a jury trial. For example,

 1. The test begins with a null hypothesis stating that there is no treatment effect. 
The trial begins with a null hypothesis that the defendant did not commit a 
crime (innocent until proven guilty).

 2. The research study gathers evidence to show that the treatment actually does 
have an effect, and the police gather evidence to show that the defendant really 
did commit a crime. Note that both are trying to refute the null hypothesis.

 3. If there is enough evidence, the researcher rejects the null hypothesis and con-
cludes that there really is a treatment effect. If there is enough evidence, the 
jury rejects the hypothesis and concludes that the defendant is guilty of a crime.

 4. If there is not enough evidence, the researcher fails to reject the null hypothesis. 
Note that the researcher does not conclude that there is no treatment effect, 
simply that there is not enough evidence to conclude that there is an effect. 
Similarly, if there is not enough evidence, the jury fails to find the defendant 
guilty. Note that the jury does not conclude that the defendant is innocent,  
simply that there is not enough evidence for a guilty verdict.
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unCERTAInTy And ERRoRs In HyPoTHEsIs TEsTIng

Hypothesis testing is an inferential process, which means that it uses limited informa-
tion as the basis for reaching a general conclusion. Specifically, a sample provides only 
limited or incomplete information about the whole population, and yet a hypothesis 
test uses a sample to draw a conclusion about the population. In this situation, there is 
always the possibility that an incorrect conclusion will be made. Although sample data 
are usually representative of the population, there is always a chance that the sample is 
misleading and will cause a researcher to make the wrong decision about the research 
results. In a hypothesis test, there are two different kinds of errors that can be made.

It is possible that the data will lead you to reject the null hypothesis when in fact the 
treatment has no effect. Remember: Samples are not expected to be identical to their 
populations, and some extreme samples can be very different from the populations that 
they are supposed to represent. If a researcher selects one of these extreme samples by 
chance, then the data from the sample may give the appearance of a strong treatment 
effect, even though there is no real effect. In the previous section, for example, we  
discussed a research study examining how brain stimulation near the parietal lobe  
affects the learning of new mathematical skills. Suppose that the researcher selects a 
sample of n 5 25 students who already have mathematical skills that are well above 
average. Even if the stimulation (the treatment) has no effect at all, these people will 
still score higher than average on the standardized test. In this case, the researcher is 
likely to conclude that the treatment does have an effect, when in fact it really does not. 
This is an example of what is called a Type I error.

A Type I error occurs when a researcher rejects a null hypothesis that is actually 
true. In a typical research situation, a Type I error means that the researcher con-
cludes that a treatment does have an effect when, in fact, it has no effect.

You should realize that a Type I error is not a stupid mistake in the sense that a 
researcher is overlooking something that should be perfectly obvious. On the contrary, 
the researcher is looking at sample data that appear to show a clear treatment effect. 
The researcher then makes a careful decision based on the available information. The 
problem is that the information from the sample is misleading.

8.2

Type i errorS

D e f i n i t i o n

 1. A researcher selects a sample of n 5 16 individuals from a normal population with 
a mean of m 5 40 and s 5 8. A treatment is administered to the sample and, after 
treatment, the sample mean is M 5 43. If the researcher uses a hypothesis test to 
evaluate the treatment effect, what z-score would be obtained for this sample?

 2. A small value (near zero) for the z-score statistic is evidence that the sample data 
are consistent with the null hypothesis. (True or false?)

 3. A z-score value in the critical region means that you should reject the null  
hypothesis. (True or false?)

 1. The standard error is 2 points and z 5 
3
2  5 1.50.

 2. True. A z-score near zero indicates that the data support the null hypothesis.

 3. True. A z-score value in the critical region means that the sample is not consistent with the 
null hypothesis.

L E A R n I n g  C H E C k

AnswERs
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In most research situations, the consequences of a Type I error can be very serious. 
Because the researcher has rejected the null hypothesis and believes that the treatment 
has a real effect, it is likely that the researcher will report or even publish the research 
results. A Type I error, however, means that this is a false report. Thus, Type I errors 
lead to false reports in the scientific literature. Other researchers may try to build theo-
ries or develop other experiments based on the false results. A lot of precious time and 
resources may be wasted.

The probability of a Type I error A Type I error occurs when a researcher unknow-
ingly obtains an extreme, nonrepresentative sample. Fortunately, the hypothesis test is 
structured to minimize the risk that this will occur. Figure 8.4 shows the distribution of 
sample means and the critical region for the research study we have been discussing. 
This distribution contains all of the possible sample means for samples of n 5 25 if the 
null hypothesis is true. Notice that most of the sample means are near the hypothesized 
population mean, m 5 80, and that means in the critical region are very unlikely to 
occur.

With an alpha level of a 5 .05, only 5% of the samples have means in the critical 
region. Therefore, there is only a 5% probability (p 5 .05) that one of these samples 
will be obtained. Thus, the alpha level determines the probability of obtaining a sample 
mean in the critical region when the null hypothesis is true. In other words, the alpha 
level determines the probability of a Type I error.

The alpha level for a hypothesis test is the probability that the test will lead to a 
Type I error if the null hypothesis is true. That is, the alpha level determines the 
probability of obtaining sample data in the critical region even though there is no 
treatment effect.

In summary, whenever the sample data are in the critical region, the appropriate  
decision for a hypothesis test is to reject the null hypothesis. Normally this is the correct 
decision because the treatment has caused the sample to be different from the original 
population. In this case, the hypothesis test has correctly identified a real treatment  
effect. Occasionally, however, sample data are in the critical region just by chance, without 
any treatment effect. When this occurs, the researcher makes a Type I error; that is, the 
researcher concludes that a treatment effect exists when in fact it does not. Fortunately, 
the risk of a Type I error is small and is under the control of the researcher. Specifically,  
the probability of a Type I error is equal to the alpha level.

Whenever a researcher rejects the null hypothesis, there is a risk of a Type I error. 
Similarly, whenever a researcher fails to reject the null hypothesis, there is a risk of a 
Type II error. By definition, a Type II error is the failure to reject a false null hypothesis. 
In more straightforward English, a Type II error means that a treatment effect really 
exists, but the hypothesis test fails to detect it.

A Type II error occurs when a researcher fails to reject a null hypothesis that is 
really false. In a typical research situation, a Type II error means that the hypoth-
esis test has failed to detect a real treatment effect.

A Type II error occurs when the sample mean is not in the critical region even though 
the treatment has had an effect on the sample. Often this happens when the effect of the 
treatment is relatively small. In this case, the treatment does influence the sample, but 

D e f i n i t i o n

Type ii errorS

D e f i n i t i o n
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the magnitude of the effect is not big enough to move the sample mean into the critical 
region. Because the sample is not substantially different from the original population (it 
is not in the critical region), the statistical decision is to fail to reject the null hypothesis 
and to conclude that there is not enough evidence to say that there is a treatment effect.

The consequences of a Type II error are usually not as serious as those of a  
Type I error. In general terms, a Type II error means that the research data do not show 
the results that the researcher had hoped to obtain. The researcher can accept this  
outcome and conclude that the treatment either has no effect or has only a small effect 
that is not worth pursuing, or the researcher can repeat the experiment (usually with 
some improvement, such as a larger sample) and try to demonstrate that the treatment 
really does work.

Unlike a Type I error, it is impossible to determine a single, exact probability for a 
Type II error. Instead, the probability of a Type II error depends on a variety of factors 
and therefore is a function, rather than a specific number. Nonetheless, the probability 
of a Type II error is represented by the symbol b, the Greek letter beta.

In summary, a hypothesis test always leads to one of two decisions:

 1. The sample data provide sufficient evidence to reject the null hypothesis and 
conclude that the treatment has an effect.

 2. The sample data do not provide enough evidence to reject the null hypothesis. 
In this case, you fail to reject H

0
 and conclude that the treatment does not  

appear to have an effect.

In either case, there is a chance that the data are misleading and the decision is 
wrong. The complete set of decisions and outcomes is shown in Table 8.1. The risk 
of an error is especially important in the case of a Type I error, which can lead to a 
false report. Fortunately, the alpha level, which is completely under the control of the 
researcher, defines the probability of a Type I error if the null hypothesis is true. At the 
beginning of a hypothesis test, the researcher states the hypotheses and selects the alpha 
level, which immediately determines the risk that a Type I error will be made.

As you have seen, the alpha level for a hypothesis test serves two very important func-
tions. First, the alpha level helps to determine the boundaries for the critical region by 
defining the concept of “very unlikely” outcomes. At the same time, the alpha level 
determines the probability of a Type I error if the null hypothesis is true. When you 
select a value for alpha at the beginning of a hypothesis test, your decision influences 
both of these functions.

The primary concern when selecting an alpha level is to minimize the risk of a  
Type I error. Thus, alpha levels tend to be very small probability values. By convention, 
the largest permissible value is a 5 .05. When there is no treatment effect, an alpha 
level of .05 means that there is a 5% risk, or a 1-in-20 probability, of rejecting the null 
hypothesis and committing a Type I error. Because the consequences of a Type I error 
can be relatively serious, many individual researchers and many scientific publications 

SeleCTing  
an alpha level

Actual Situation

No Effect, H0 True Effect Exists, H0 False

Experimenter’s Decision
Reject H0

Type I error Decision correct

Retain H0 Decision correct Type II error

TAbLE 8.1

Possible outcomes  
of a statistical decision.
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prefer to use a more conservative alpha level such as .01 or .001 to reduce the risk 
that a false report is published and becomes part of the scientific literature. (For more  
information on the origins of the .05 level of significance, see the excellent short  
article by Cowles and Davis, 1982.)

At this point, it may appear that the best strategy for selecting an alpha level is to 
choose the smallest possible value to minimize the risk of a Type I error. However, there 
is a different kind of risk that develops as the alpha level is lowered. Specifically, a 
lower alpha level means less risk of a Type I error, but it also means that the hypothesis 
test demands more evidence from the research results.

The trade-off between the demands of the test and the risk of a Type I error is con-
trolled by the boundaries of the critical region. For the hypothesis test to conclude that 
the treatment does have an effect, the sample data must be in the critical region. If the 
treatment really has an effect, it should cause the sample to be different from the origi-
nal population; essentially, the treatment should push the sample into the critical region. 
However, as the alpha level is lowered, the boundaries for the critical region move far-
ther out and become more difficult to reach. Figure 8.5 shows how the boundaries for 
the critical region move farther into the tails as the alpha level decreases. Notice that 
z 5 0, in the center of the distribution, corresponds to the value of m specified in the 
null hypothesis. The boundaries for the critical region determine how much distance 
between the sample mean and m is needed to reject the null hypothesis. As the alpha 
level gets smaller, this distance gets larger.

Thus, an extremely small alpha level, such as .000001 (one in a million), would 
mean almost no risk of a Type I error but would push the critical region so far out that 
it would become essentially impossible to ever reject the null hypothesis; that is, it 
would require an enormous treatment effect before the sample data would reach the 
critical boundaries.

In general, researchers try to maintain a balance between the risk of a Type I error 
and the demands of the hypothesis test. Alpha levels of .05, .01, and .001 are considered 
reasonably good values because they provide a low risk of error without placing exces-
sive demands on the research results.

1.96
z

α = .05

0

α = .01

α = .001

−1.96
2.58−2.58

3.30−3.30
µ from H0 

Figure 8.5

The locations of the criti-
cal region boundaries for 
three different levels of 
significance: a 5 .05,  
a5 .01, and a 5 .001.
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moRE AbouT HyPoTHEsIs TEsTs

In section 8.1, we presented a complete example of a hypothesis test evaluating the  
effect of brain stimulation on students’ mathematical test scores. The 4-step process  
for that hypothesis test is summarized as follows:

State the hypotheses and select an alpha level. For this example, the general population,  
without treatment, has an average test score of m 5 80 with s 5 20. Therefore, the  
hypotheses are:

H
0
: m

with stimulation
 5 80 (the brain stimulation has no effect)

H
1
: m

with stimulation
  80 (the brain stimulation does have an effect)

We set a 5 .05.

Locate the critical region. For a normal distribution with a 5 .05, the critical region 
consists of sample means that produce z-scores in the extreme tails of the distribution 
beyond z 5 61.96.

Compute the test statistic (the z-score). We obtained a sample mean of M 5 89 for  
n 5 25 participants. With a standard error of s

M
 5 4, we obtain

z
M

M

5
m

s
5


5 5

89 80

4

9

4
2.25

8.3

a Summary oF The 
hypoTheSiS TeST

S t e p  1

S t e p  2

S t e p  3

 1. Define a Type I error.

 2. Define a Type II error.

 3. Under what circumstances is a Type II error likely to occur?

 4. If a sample mean is in the critical region with a 5 .05, it would still (always) be  
in the critical region if alpha were changed to a 5 .01. (True or false?)

 5. If a sample mean is in the critical region with a 5 .01, it would still (always) be  
in the critical region if alpha were changed to a 5 .05. (True or false?)

 1. A Type I error is rejecting a true null hypothesis—that is, saying that the treatment has  
an effect when, in fact, it does not.

 2. A Type II error is the failure to reject a false null hypothesis. In terms of a research study,  
a Type II error occurs when a study fails to detect a treatment effect that really exists.

 3. A Type II error is likely to occur when the treatment effect is very small. In this case,  
a research study is more likely to fail to detect the effect.

 4. False. With a 5 .01, the boundaries for the critical region move farther out into the tails of 
the distribution. It is possible that a sample mean could be beyond the .05 boundary but not 
beyond the .01 boundary.

 5. True. With a 5 .01, the boundaries for the critical region are farther out into the tails of the 
distribution than for a 5 .05. If a sample mean is beyond the .01 boundary it is definitely 
beyond the .05 boundary.

L E A R n I n g  C H E C k

AnswERs
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Make a decision. The z-score is in the critical region, which means that this sample mean 
is very unlikely if the null hypothesis is true. Therefore, we reject the null hypothesis 
and conclude that the brain stimulation did have an effect on the students’ test scores.

In THE LITERATuRE
REPoRTIng THE REsuLTs of THE sTATIsTICAL TEsT

A special jargon and notational system are used in published reports of hypothesis 
tests. When you are reading a scientific journal, for example, you typically are not told 
explicitly that the researcher evaluated the data using a z-score as a test statistic with an 
alpha level of .05. Nor are you told that “the null hypothesis is rejected.” Instead, you 
see a statement such as:

Electrical stimulation of the scalp near the parietal lobe had a significant effect 
on the mathematics test scores for the students, z 5 2.25, p , .05.

Let us examine this statement, piece by piece. First, what is meant by the word 
significant? In statistical tests, a significant result means that the null hypothesis has 
been rejected, which means that the result is very unlikely to have occurred merely by 
chance. For this example, the null hypothesis stated that the brain stimulation has no 
effect; however, the data clearly indicate that it did have an effect. Specifically, it is very 
unlikely that the sample mean, M 5 89, would have been obtained if the stimulation 
did not have an effect.

A result is said to be significant, or statistically significant, if it is very unlikely 
to occur when the null hypothesis is true. That is, the result is sufficient to reject 
the null hypothesis. Thus, a treatment has a significant effect if the decision from 
the hypothesis test is to reject H

0
.

Next, what is the meaning of z 5 2.25? The z indicates that a z-score was used as 
the test statistic to evaluate the sample data and that its value is 2.25. Finally, what is 
meant by p , .05? This part of the statement is a conventional way of specifying the 
alpha level that was used for the hypothesis test. It also acknowledges the possibility 
(and the probability) of a Type I error. Specifically, the researcher is reporting that the 
treatment had an effect but admits that this could be a false report. That is, it is possible 
that the sample mean was in the critical region even though the brain stimulation had 
no effect. However, the probability (p) of obtaining a sample mean in the critical region 
is extremely small (less than .05) if there is no treatment effect.

In circumstances in which the statistical decision is to fail to reject H
0
, the report 

might state that.

The sample did not provide sufficient evidence to conclude that the brain stimulation 
had an effect on mathematics test scores, z 5 1.30, p . .05.

In that case, we would be saying that the obtained result, z 5 1.30, is not unusual 
(not in the critical region) and that it has a relatively high probability of occurring 
(greater than .05) even if the null hypothesis is true.

Sometimes students become confused trying to differentiate between p , .05 and 
p . .05. Remember that you reject the null hypothesis with extreme, low-probability 
values, located in the critical region in the tails of the distribution. Thus, a significant 
result that rejects the null hypothesis corresponds to p , .05 (Figure 8.6).

When a hypothesis test is conducted using a computer program, the printout 
often includes not only a z-score value but also an exact value for p, the probability 

S t e p  4

D e f i n i t i o n

The APA style does not use a 
leading zero in a probability 
value that refers to a level of 
significance.
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that the result occurred without any treatment effect. In this case, researchers are 
encouraged to report the exact p value instead of using the less-than or greater-than 
notation. For example, a research report might state that the treatment effect was 
significant, with z 5 2.45, p 5 .0142. When using exact values for p, however, you 
must still satisfy the traditional criterion for significance; specifically, the p value 
must be smaller than .05 to be considered statistically significant. Remember: The  
p value is the probability that the result would occur if H

0
 were true (there is no 

treatment effect), which is also the probability of a Type I error. It is essential that 
this probability be very small.

The mathematics used for a hypothesis test are based on a set of assumptions. When 
these assumptions are satisfied, you can be confident that the test produces a justi-
fied conclusion. However, if the assumptions are not satisfied, then the hypothesis 
test may be compromised. In practice, researchers are not overly concerned with the 
assumptions underlying a hypothesis test because the tests usually work well even 
when the assumptions are violated. However, you should be aware of the fundamental 
conditions that are associated with each type of statistical test to ensure that the test 
is being used appropriately. The assumptions for hypothesis tests with z-scores are 
summarized as follows.

Random sampling It is assumed that the participants used in the study were selected 
randomly. Remember, we wish to generalize our findings from the sample to the popu-
lation. Therefore, the sample must be representative of the population from which it has 
been drawn. Random sampling helps to ensure that it is representative.

Independent observations The values in the sample must consist of independent 
observations. In everyday terms, two observations are independent if there is no consis-
tent, predictable relationship between the first observation and the second. More pre-
cisely, two events (or observations) are independent if the occurrence of the first event 
has no effect on the probability of the second event. Specific examples of independence 
and non-independence are examined in Box 8.1. Usually, this assumption is satisfied by 
using a random sample, which also helps to ensure that the sample is representative of 
the population and that the results can be generalized to the population.

The value of s is unchanged by the treatment A critical part of the z-score  
formula in a hypothesis test is the standard error, s

M
. To compute the value for the 

aSSumpTionS  
For hypoTheSiS  

TeSTS wiTh z-SCoreS

p  

p  p  Fail to reject H0

Reject H0 Reject H0

Figure 8.6

Sample means that fall in 
the critical region (shaded 
areas) have a probability 
less than alpha (p , a). 
In this case, H

0
 should be 

rejected. Sample means 
that do not fall in the 
critical region have a 
probability greater than 
alpha (p . a).
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standard error, we must know the sample size (n) and the population standard devia-
tion (s). In a hypothesis test, however, the sample comes from an unknown popula-
tion (see Figure 8.2). If the population is really unknown, it would suggest that we 
do not know the standard deviation and, therefore, we cannot calculate the standard 
error. To solve this dilemma, we have made an assumption. Specifically, we assume 
that the standard deviation for the unknown population (after treatment) is the same 
as it was for the population before treatment.

Actually, this assumption is the consequence of a more general assumption that 
is part of many statistical procedures. This general assumption states that the effect 
of the treatment is to add a constant amount to (or subtract a constant amount from) 
every score in the population. You should recall that adding (or subtracting) a constant 
changes the mean but has no effect on the standard deviation. You also should note that 
this assumption is a theoretical ideal. In actual experiments, a treatment generally does 
not show a perfect and consistent additive effect.

Normal sampling distribution To evaluate hypotheses with z-scores, we have used 
the unit normal table to identify the critical region. This table can be used only if the 
distribution of sample means is normal.

BOX
8.1

IndEPEndEnT obsERvATIons

Independent observations are a basic requirement for 
nearly all hypothesis tests. The critical concern is that 
each observation or measurement is not influenced by 
any other observation or measurement. An example 
of independent observations is the set of outcomes 
obtained in a series of coin tosses. Assuming that the 
coin is balanced, each toss has a 50–50 chance of 
coming up either heads or tails. More important, each 
toss is independent of the tosses that came before. On 
the fifth toss, for example, there is a 50% chance of 
heads no matter what happened on the previous four 
tosses; the coin does not remember what happened 
earlier and is not influenced by the past. (Note: Many 
people fail to believe in the independence of events. 
For example, after a series of four tails in a row, it is 
tempting to think that the probability of heads must 
increase because the coin is overdue to come up 
heads. This is a mistake, called the “gambler’s  
fallacy.” Remember that the coin does not know  
what happened on the preceding tosses and cannot  
be influenced by previous outcomes.)

In most research situations, the requirement for  
independent observations is satisfied by using a ran-
dom sample of separate, unrelated individuals. Thus, 
the measurement obtained for each individual is not 
influenced by other participants in the study. The  

following two situations demonstrate circumstances in 
which the observations are not independent.

 1. A researcher is interested in examining television 
preferences for children. To obtain a sample of  
n 5 20 children, the researcher selects 4 children 
from family A, 3 children from family B, 5 children 
from family C, 2 children from family D, and  
6 children from family E.

It should be obvious that the researcher does 
not have 20 independent observations. Within each 
family, the children probably share television  
preference (at least, they watch the same shows). 
Thus, the response for each child is likely to be 
related to the responses of his or her siblings.

 2. The principle of independent observations is  
violated if the sample is obtained using sampling 
without replacement. For example, if you are  
selecting from a group of 20 potential participants, 
each individual has a 1 in 20 chance of being  
selected first. After the first person is selected, 
however, there are only 19 people remaining  
and the probability of being selected changes to  
1 in 19. Because the probability of the second  
selection depends on the first, the two selections 
are not independent.
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The z-score statistic that is used in the hypothesis test is the first specific example of 
what is called a test statistic. The term test statistic simply indicates that the sample data 
are converted into a single, specific statistic that is used to test the hypotheses. In the 
chapters that follow, we introduce several other test statistics that are used in a variety 
of different research situations. However, most of the new test statistics have the same 
basic structure and serve the same purpose as the z-score. We have already described the 
z-score equation as a formal method for comparing the sample data and the population 
hypothesis. In this section, we discuss the z-score from two other perspectives that may 
give you a better understanding of hypothesis testing and the role that z-scores play in 
this inferential technique. In each case, keep in mind that the z-score serves as a general 
model for other test statistics that come in future chapters.

The z-score formula as a recipe The z-score formula, like any formula, can be 
viewed as a recipe. If you follow instructions and use all of the right ingredients, the 
formula produces a z-score. In the hypothesis-testing situation, however, you do not 
have all of the necessary ingredients. Specifically, you do not know the value for the 
population mean (m), which is one component, or ingredient, in the formula.

This situation is similar to trying to follow a cake recipe in which one of the ingredi-
ents is not clearly listed. For example, the recipe may call for flour but there is a grease 
stain that makes it impossible to read how much flour. Faced with this situation, you 
might try the following steps:

 1. Make a hypothesis about the amount of flour. For example, hypothesize that the 
correct amount is 2 cups.

 2. To test your hypothesis, add the rest of the ingredients along with the  
hypothesized amount of flour and bake the cake.

 3. If the cake turns out to be good, you can reasonably conclude that your  
hypothesis was correct. But if the cake is terrible, you conclude that your  
hypothesis was wrong.

In a hypothesis test with z-scores, we do essentially the same thing. We have a 
formula (recipe) for z-scores, but one ingredient (the population mean) is missing. 
Therefore, we try the following steps:

 1. Make a hypothesis about the value of m. This is the null hypothesis.

 2. Plug the hypothesized value in the formula along with the other values  
(ingredients).

 3. If the formula produces a z-score near zero (which is where z-scores are  
supposed to be), we conclude that the hypothesis was correct. On the other 
hand, if the formula produces an extreme value (a very unlikely result), we 
conclude that the hypothesis was wrong.

The z-score formula as a ratio In the context of a hypothesis test, the z-score  
formula has the following structure:

z
M

M

5
m

s
5

sample mean hypothesized population mean

standard error between andM m

Notice that the numerator of the formula measures the obtained difference  
between the sample mean and the hypothesized population mean. The standard 
error in the denominator measures the standard amount of distance that exists  

a CloSer look  
aT The z-SCore  

in a hypoTheSiS TeST
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naturally between a sample mean and the population mean without any treatment 
effect causing the sample to be different. Thus, the z-score formula (and most other 
test statistics) forms a ratio

z
M

5
actual difference between the sample ( ) aand the hypothesis ( )

standard difference

m

bbetween and with no treatment effectM m

Thus, for example, a z-score of z 5 3.00 means that the obtained difference between 
the sample and the hypothesis is 3 times bigger than would be expected if the treat-
ment had no effect. A discrepancy this large is a strong indication that the hypothesis 
is probably wrong.

The final decision in a hypothesis test is determined by the value obtained for the  
z-score statistic. If the z-score is large enough to be in the critical region, then we reject 
the null hypothesis and conclude that there is a significant treatment effect. Otherwise, 
we fail to reject H

0 
and conclude that the treatment does not have a significant effect. 

The most obvious factor influencing the size of the z-score is the difference between 
the sample mean and the hypothesized population mean from H

0
. A big mean difference 

indicates that the treated sample is noticeably different from the untreated population 
and usually supports a conclusion that the treatment effect is significant. In addition to 
the mean difference, however, there are other factors that help determine whether the 
z-score is large enough to reject H

0
. In this section, we examine two factors that can 

influence the outcome of a hypothesis test.

 1. The variability of the scores, which is measured by either the standard deviation 
or the variance. The variability influences the size of the standard error in the 
denominator of the z-score.

 2. The number of scores in the sample. This value also influences the size of the 
standard error in the denominator.

We use the research study from Example 8.1 to examine each of these factors. 
The study used a sample of n 5 25 students and produced a mean test score of 
M 5 89. Based on these results, the hypothesis test concluded that brain stimu-
lation near the parietal lobe has a significant effect on the ability to learn new 
mathematical skills.

The variability of the scores In Chapter 4 (p. 110), we noted that high variabil-
ity can make it very difficult to see any clear patterns in the results from a research 
study. In a hypothesis test, higher variability can reduce the chances of finding a 
significant treatment effect. For the study in Example 8.1, the standard deviation is  
s 5 20. With a sample of n 5 25, this produced a standard error of s

M
 5 4 points and 

a significant z-score of z 5 2.25. Now consider what happens if the standard devia-
tion is increased to s 5 30. With the increased variability, the standard error becomes  
s

M
 5 

30
���25

 5 6 points. Using the same sample mean from the original example, the 
new z-score becomes

z
M

M

5
m

s
5


5 5

89 80

6

9

6
1 50.

The z-score is no longer beyond the critical boundary of 1.96, so the statistical de-
cision is to fail to reject the null hypothesis. The increased variability means that the 
sample data are no longer sufficient to conclude that the treatment has a significant 

FaCTorS ThaT 
inFluenCe a 

hypoTheSiS TeST
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effect. In general, increasing the variability of the scores produces a larger standard 
error and a smaller value (closer to zero) for the z-score. If other factors are held con-
stant, then the larger the variability, the lower the likelihood of finding a significant 
treatment effect.

The number of scores in the sample The second factor that influences the outcome 
of a hypothesis test is the number of scores in the sample. The study in Example 8.1 
used a sample of n 5 25 students obtained a standard error of s

M
 5 20

���25
 5 4 points 

and a significant z-score of z 5 2.25. Now consider what happens if we increase  
the sample size to n 5 100 students. With n 5 100, the standard error becomes  

s
M
 5 20

���100  5 2 points, and the z-score becomes

z
M

M

5
m

s
5


5 5

89 80

2

9

2
4.50

Increasing the sample size from n 5 25 to n 5 100 has doubled the size of the  
z-score. In general, increasing the number of scores in the sample produces a smaller 
standard error and a larger value for the z-score. If all other factors are held constant, 
the larger the sample size, the greater the likelihood of finding a significant treatment 
effect. In simple terms, finding a 9-point treatment effect with a large sample is more 
convincing than finding a 9-point effect with a small sample.

 1. A researcher conducts a hypothesis test with a 5 .05 to evaluate the effectiveness 
of a treatment. Assume that the sample mean produces a z-score of z 5 2.17.

 a. Do the data indicate that the treatment has a significant effect?

 b. Write a sentence describing the outcome of the hypothesis test as it would  
appear in a research report.

 2. In a research report, the term significant is used when the null hypothesis is  
rejected. (True or false?)

 3. In a research report, the results of a hypothesis test include the phrase “z 5 1.63,  
p . .05.” This means that the test failed to reject the null hypothesis. (True or false?)

 4. If other factors are held constant, increasing the size of the sample increases the 
likelihood of rejecting the null hypothesis. (True or false?)

 5. If other factors are held constant, are you more likely to reject the null hypothesis 
with a standard deviation of s 5 2 or with s 5 10?

 1. a.  With a 5 .05, the critical region consists of z-scores in the tails beyond z 5 61.96. 
Reject the null hypothesis.

 b. The data indicate that the treatment had a significant effect, z 5 2.17, p , .05.

 2. True.

 3. True. The probability is greater than .05, which means there is a reasonable likelihood that 
the result occurred without any treatment effect.

 4. True. A larger sample produces a smaller standard error, which leads to a larger z-score.

 5. s 5 2. A smaller standard deviation produces a smaller standard error, which leads to a 
larger z-score.

L E A R n I n g  C H E C k

AnswERs
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dIRECTIonAL (onE-TAILEd) HyPoTHEsIs TEsTs

The hypothesis-testing procedure presented in Section 8.1 is the standard, or two-tailed, 
test format. The term two-tailed comes from the fact that the critical region is divided 
between the two tails of the distribution. This format is by far the most widely accepted 
procedure for hypothesis testing. Nonetheless, there is an alternative that is discussed 
in this section.

Usually a researcher begins an experiment with a specific prediction about the 
direction of the treatment effect. For example, a special training program is expected 
to increase student performance, or alcohol consumption is expected to slow reaction 
times. In these situations, it is possible to state the statistical hypotheses in a manner 
that incorporates the directional prediction into the statement of H

0
 and H

1
. The result 

is a directional test, or what commonly is called a one-tailed test.

In a directional hypothesis test, or a one-tailed test, the statistical hypotheses 
(H

0
 and H

1
) specify either an increase or a decrease in the population mean. That 

is, they make a statement about the direction of the effect.

The following example demonstrates the elements of a one-tailed hypothesis test.

Earlier, in Example 8.1, we discussed a research study that examined the effect of 
electrical stimulation near the parietal lobe on the mathematical skills of students. In 
the study, each participant in a sample of n 5 25 received electrical current near the 
parietal lobe for 30 minutes each day while studying for a standardized mathematics 
exam. For the general population of students (without any brain stimulation), the test 
scores form a normal distribution with a mean of m 5 80 and a standard deviation of 
s 5 20. For this example, the expected effect is that the parietal lobe stimulation will 
improve test performance. If the researcher obtains a sample mean of M 5 87 for the  
n 5 25 participants, is the result sufficient to conclude that the stimulation really works?

Because a specific direction is expected for the treatment effect, it is possible for the 
researcher to perform a directional test. The first step (and the most critical step) is to 
incorporate the directional prediction into the statement of the statistical hypotheses. 
Remember that the null hypothesis states that there is no treatment effect and that the alter-
native hypothesis says that there is an effect. For this example, the predicted effect is that 
the electrical stimulation will increase test scores. Thus, the two hypotheses would state:

H
0
: Test scores are not increased. (The treatment does not work.)

H
1
: Test scores are increased. (The treatment works as predicted.)

To express directional hypotheses in symbols, it usually is easier to begin with 
the alternative hypothesis (H

1
). Again, we know that the general population has an  

average test score of m 5 80, and H
1
 states that test scores will be increased by the  

brain stimulation. Therefore, expressed in symbols, H
1
 states,

H
1
: m . 80 (With the stimulation, the average score is greater than 80.)

The null hypothesis states that the stimulation does not increase scores. In symbols,

H
0
: m  80 (With the stimulation, the average score is not greater than 80.)

8.4

D e f i n i t i o n

E x A m P L E  8 . 2

The hypoTheSiS  
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Note again that the two hypotheses are mutually exclusive and cover all of the  
possibilities.

The critical region is defined by sample outcomes that are very unlikely to occur if the 
null hypothesis is true (that is, if the treatment has no effect). Earlier (p. 209), we noted 
that the critical region can also be defined in terms of sample values that provide con-
vincing evidence that the treatment really does have an effect. For a directional test, the 
concept of “convincing evidence” is the simplest way to determine the location of the 
critical region. We begin with all of the possible sample means that could be obtained 
if the null hypothesis is true. This is the distribution of sample means, and it is normal 
(because the population of test scores is normal), has an expected value of m 5 80 (from 

H
0
), and, for a sample of n 5 25, has a standard error of m 5 5 M

20
25

4. The distribution 
is shown in Figure 8.7.

For this example, the treatment is expected to increase test scores. If untreated stu-
dents average m 5 80 on the test, then a sample mean that is substantially more than 
80 would provide convincing evidence that the treatment worked. Thus, the critical 
region is located entirely in the right-hand tail of the distribution corresponding to 
sample means much greater than m 5 80 (see Figure 8.7). Because the critical region is  
contained in one tail of the distribution, a directional test is commonly called a  
one-tailed test. Also note that the proportion specified by the alpha level is not  
divided between two tails, but rather is contained entirely in one tail. Using a 5 .05, for  
example, the whole 5% is located in one tail. In this case, the z-score boundary for  
the critical region is z 5 1.65, which is obtained by looking up a proportion of .05 in 
column C (the tail) of the unit normal table.

Notice that a directional (one-tailed) test requires changes in the first two steps of 
the step-by-step hypothesis-testing procedure.

 1. In the first step, the directional prediction is included in the statement of the 
hypotheses.

 2. In the second step of the process, the critical region is located entirely in one tail 
of the distribution.

After these two changes, the remainder of a one-tailed test proceeds exactly  
the same as a regular two-tailed test. Specifically, you calculate the z-score statistic  
and then make a decision about H

0
 depending on whether the z-score is in the  

critical region.

The CriTiCal region 
For DireCTional 

TeSTS

z

80
M

0 1.65

M � 4
Reject H0
Data indicate
that H0 is wrong

Figure 8.7

Critical region for 
Example 8.3.

If the prediction is that the 
treatment will produce a 
decrease in scores, then the 
critical region is located 
entirely in the left-hand tail 
of the distribution.
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For this example, the researcher obtained a mean of M 5 87 for the 25 participants 
who received the brain stimulation. This sample mean corresponds to a z-score of

z
M

M

5
m

s
5


5 5

87 80

4

7

4
1 75.

A z-score of z 5 1.75 is in the critical region for a one-tailed test (see Figure 8.7). 
This is a very unlikely outcome if H

0
 is true. Therefore, we reject the null hypothesis 

and conclude that the electrical stimulation produces a significant increase in math-
ematics test scores. In the literature, this result would be reported as follows:

The stimulation produced a significant increase in scores, z 5 1.75, p , .05,  
one tailed.

Note that the report clearly acknowledges that a one-tailed test was used.

The general goal of hypothesis testing is to determine whether a particular treatment has 
any effect on a population. The test is performed by selecting a sample, administering 
the treatment to the sample, and then comparing the result with the original popula-
tion. If the treated sample is noticeably different from the original population, then we 
conclude that the treatment has an effect, and we reject H

0
. On the other hand, if the 

treated sample is still similar to the original population, then we conclude that there 
is no convincing evidence for a treatment effect, and we fail to reject H

0
. The critical 

factor in this decision is the size of the difference between the treated sample and the 
original population. A large difference is evidence that the treatment worked; a small 
difference is not sufficient to say that the treatment had any effect.

The major distinction between one-tailed and two-tailed tests is the criteria that they 
use for rejecting H

0
. A one-tailed test allows you to reject the null hypothesis when the 

difference between the sample and the population is relatively small, provided that the 
difference is in the specified direction. A two-tailed test, on the other hand, requires  
a relatively large difference independent of direction. This point is illustrated in the 
following example.

Consider again the one-tailed test evaluating the effect of parietal lobe stimulation. If 
we had used a standard two-tailed test, the hypotheses would be

H
0
: m 5 80 (The stimulation has no effect on test scores.)

H
1
: m  80 (The stimulation does have an effect on test scores.)

For a two-tailed test with a 5 .05, the critical region consists of z-scores beyond 
61.96. The data from Example 8.3 produced a sample mean of M 5 87 and z 5 1.75. 
For the two-tailed test, this z-score is not in the critical region, and we conclude that the 
supplement does not have a significant effect.

With the two-tailed test in Example 8.3, the 7-point difference between the sample 
mean and the hypothesized population mean (M 5 87 and m 5 80) is not big enough to 
reject the null hypothesis. However, with the one-tailed test, the same 7-point difference 
is large enough to reject H

0
 and conclude that the treatment had a significant effect.

All researchers agree that one-tailed tests are different from two-tailed tests. 
However, there are several ways to interpret the difference. One group of researchers 

CompariSon  
oF one-TaileD verSuS 

Two-TaileD TeSTS

E x A m P L E  8 . 3

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



sECTIon 8.5  /  ConCERns AbouT HyPoTHEsIs TEsTIng: mEAsuRIng EffECT sIzE    227

contends that a two-tailed test is more rigorous and, therefore, more convincing than a 
one-tailed test. Remember that the two-tailed test demands more evidence to reject H

0
 

and thus provides a stronger demonstration that a treatment effect has occurred.
Other researchers feel that one-tailed tests are preferable because they are more sen-

sitive. That is, a relatively small treatment effect may be significant with a one-tailed 
test but fail to reach significance with a two-tailed test. Also, there is the argument that 
one-tailed tests are more precise because they test hypotheses about a specific direc-
tional effect instead of an indefinite hypothesis about a general effect.

In general, two-tailed tests should be used in research situations when there is no 
strong directional expectation or when there are two competing predictions. For ex-
ample, a two-tailed test would be appropriate for a study in which one theory predicts 
an increase in scores but another theory predicts a decrease. One-tailed tests should be 
used only in situations in which the directional prediction is made before the research 
is conducted and there is a strong justification for making the directional prediction. In 
particular, if a two-tailed test fails to reach significance, you should never follow up with 
a one-tailed test as a second attempt to salvage a significant result for the same data.

 1. A researcher selects a sample from a population with a mean of m 5 60 and  
administers a treatment to the individuals in the sample. If the researcher predicts 
that the treatment will increase scores, then

 a. Using symbols, state the hypotheses for a one-tailed test.

 b. For the one-tailed test, would the critical region be located in the right-hand tail 
or the left-hand tail of the distribution?

 2. If a sample is sufficient to reject the null hypothesis for a one-tailed test, then the 
same sample would also reject H

0
 for a two-tailed test. (True or false?)

 3. A researcher obtains z 5 2.43 for a hypothesis test. Using a 5 .01, the researcher 
should reject the null hypothesis for a one-tailed test but fail to reject for a two-tailed 
test. (True or false?)

 1. a. H
0
: m  60 and H

1
: m . 60

 b. A large sample mean, in the right-hand tail, would indicate that the treatment worked as 
predicted.

 2. False. Because a two-tailed test requires a larger mean difference, it is possible for a sample 
to be significant for a one-tailed test but not for a two-tailed test.

 3. True. The one-tailed critical value is z 5 2.33 and the two-tailed value is z 5 2.58.

L E A R n I n g  C H E C k

AnswERs

ConCERns AbouT HyPoTHEsIs TEsTIng: mEAsuRIng 
EffECT sIzE

Although hypothesis testing is the most commonly used technique for evaluating and 
interpreting research data, a number of scientists have expressed a variety of concerns 
about the hypothesis testing procedure (for example, see Loftus, 1996; Hunter, 1997; 
and Killeen, 2005).

There are two serious limitations with using a hypothesis test to establish the sig-
nificance of a treatment effect. The first concern is that the focus of a hypothesis test 

8.5
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is on the data rather than the hypothesis. Specifically, when the null hypothesis is  
rejected, we are actually making a strong probability statement about the sample data, not 
about the null hypothesis. A significant result permits the following conclusion: “This  
specific sample mean is very unlikely (p , .05) if the null hypothesis is true.” Note that 
the conclusion does not make any definite statement about the probability of the null 
hypothesis being true or false. The fact that the sample is very unlikely suggests that the 
null hypothesis is also very unlikely, but we do not have any solid grounds for making a 
probability statement about the null hypothesis. Specifically, you cannot conclude that 
the probability of the null hypothesis being true is less than 5% simply because you 
rejected the null hypothesis with a 5 .05 (see Box 8.2).

A second concern is that demonstrating a significant treatment effect does not neces-
sarily indicate a substantial treatment effect. In particular, statistical significance does 

BOX
8.2

A fLAw In THE LogIC of HyPoTHEsIs TEsTIng

Suppose that you do a hypothesis test and reject the null 
hypothesis with a 5 .05. Can you conclude that there 
is a 5% probability that you are making a Type I error? 
Can you also conclude that there is a 95% probability 
that your decision is correct and the treatment does have 
an effect? For both questions, the answer is no.

The problem is that the probabilities for a  
hypothesis test are well defined only when the null 
hypothesis is true. Specifically, a hypothesis test using  
a 5 .05 is structured so that the error rate is p , .05 
and the accuracy rate is p  .95 if the null hypothesis 
is true. If H

0
 is false, however, these probabilities start 

to fall apart. When there is a treatment effect (H
0
 is 

false), the probability that a hypothesis test will detect 
it and reject H

0
 depends on a variety of factors. For 

example, if the treatment effect is very small, then a 
hypothesis test is unlikely to detect it. With a large 
treatment effect, the hypothesis test is more likely to 
detect it and the probability of rejecting H

0
 increases. 

Thus, whenever there is a treatment effect (H
0
 is 

false), it becomes impossible to define precisely the 
probability of rejecting the null hypothesis.

Most researchers begin research studies believing 
that there is a good likelihood that the null hypothesis is 
false and there really is a treatment effect. They are hop-
ing that the study will provide evidence of the effect so 
they can convince their colleagues. Thus, most research 
begins with some probability that the null hypothesis is 
false. For the sake of argument, let’s assume that there is 
an 80% probability that the null hypothesis is true.

p(there is no treatment effect— H
0
 is true) 5 0.80 and

p(there is a treatment effect— H
0
 is false) 5 0.20

In this situation, suppose that 125 researchers are 
all doing hypothesis tests with a 5 .05. Of these 
researchers, 80% (n 5 100) are testing a true H

0
. For 

these researchers, the probability of rejecting the null 
hypothesis (and making a Type I error) is a 5 .05. 
Therefore, the 100 hypothesis tests for this group 
should produce, on average, 5 tests that reject H

0
.

Meanwhile, the other 20% of the researchers  
(n 5 25) are testing a false null hypothesis. For this 
group, the probability of rejecting the null hypothesis 
is unknown. For the sake of argument, however, let’s 
assume that the probability of detecting the treatment 
effect and correctly rejecting H

0
 is 60%. This means 

that the 25 hypothesis tests should result in 15 tests 
(60%) that reject H

0
 and 10 that fail to reject H

0
.

Notice that there should be 20 hypothesis tests that 
reject the null hypothesis (5 from the first group  
and 15 from the second group). Thus, a total of  
20 researchers will find a statistically significant effect. 
Of these 20 “significant” results, however, the 5 from 
the first group are making a Type I error. Thus, when 
the null hypothesis is rejected, the actually likelihood 
of a Type I error is 5 out of 20, or p 5 5

20 5 .25, which 
is five times greater than the alpha level of .05.

Based on this kind of argument, many scientists 
suspect that a large number of the results and  
conclusions published in research journals are simply 
wrong. Specifically, the Type I error rate in published 
research is almost certainly higher than the alpha  
levels used in the hypothesis tests that support the 
results (Siegfried, 2010).
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not provide any real information about the absolute size of a treatment effect. Instead, 
the hypothesis test has simply established that the results obtained in the research study 
are very unlikely to have occurred if there is no treatment effect. The hypothesis test 
reaches this conclusion by (1) calculating the standard error, which measures how much 
difference is reasonable to expect between M and m, and (2) demonstrating that the 
obtained mean difference is substantially bigger than the standard error.

Notice that the test is making a relative comparison: the size of the treatment effect 
is being evaluated relative to the standard error. If the standard error is very small, then 
the treatment effect can also be very small and still be large enough to be significant. 
Thus, a significant effect does not necessarily mean a big effect. The idea that a hypoth-
esis test evaluates the relative size of a treatment effect, rather than the absolute size, is 
illustrated in the following example.

We begin with a population of scores that forms a normal distribution with m 5 50 and 
s 5 10. A sample is selected from the population and a treatment is administered to 
the sample. After treatment, the sample mean is found to be M 5 51. Does this sample 
provide evidence of a statistically significant treatment effect?

Although there is only a 1-point difference between the sample mean and the origi-
nal population mean, the difference may be enough to be significant. In particular, the 
outcome of the hypothesis test depends on the sample size.
For example, with a sample of n 5 25 the standard error is

s 5
s

5 5 5M n

10

25

10

5
2 00.

and the z-score for M 5 51 is

z
M

M

5
m

s
5


5 5

51 50

2

1

2
0 50.

This z-score fails to reach the critical boundary of z 5 1.96, so we fail to reject the 
null hypothesis. In this case, the 1-point difference between M and m is not significant 
because it is being evaluated relative to a standard error of 2 points.

Now consider the outcome with a sample of n 5 400. With a larger sample, the 
standard error is

s 5
s

5 5 5M n

10

400

10

20
0 50.

and the z-score for M 5 51 is

z
M

M

5
m

s
5


5 5

51 50

0 5

1

0 5
2 00

. .
.

Now the z-score is beyond the 1.96 boundary, so we reject the null hypothesis and 
conclude that there is a significant effect. In this case, the 1-point difference between 
M and m is considered statistically significant because it is being evaluated relative to a 
standard error of only 0.5 points.

The purpose of Example 8.4 is to demonstrate that a small treatment effect can still 
be statistically significant. If the sample size is large enough, any treatment effect, no 
matter how small, can be large enough to reject the null hypothesis.

E x A m P L E  8 . 4
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As noted in the previous section, one concern with hypothesis testing is that a hypothesis 
test does not really evaluate the absolute size of a treatment effect. To correct this problem, 
it is recommended that whenever researchers report a statistically significant effect, they 
also provide a report of the effect size (see the guidelines presented by L. Wilkinson and 
the APA Task Force on Statistical Inference, 1999). Therefore, as we present different 
hypothesis tests, we also present different options for measuring and reporting effect size.

A measure of effect size is intended to provide a measurement of the absolute 
magnitude of a treatment effect, independent of the size of the sample(s)  
being used.

One of the simplest and most direct methods for measuring effect size is Cohen’s 
d. Cohen (1988) recommended that effect size can be standardized by measuring the 
mean difference in terms of the standard deviation. The resulting measure of effect size 
is computed as

Cohen's
mean difference

standard deviation
d 5 55

m m

s
treatment no treatment

 
(8.1)

For the z-score hypothesis test, the mean difference is determined by the difference 
between the population mean before treatment and the population mean after treatment. 
However, the population mean after treatment is unknown. Therefore, we must use the 
mean for the treated sample in its place. Remember, the sample mean is expected to be 
representative of the population mean and provides the best measure of the treatment ef-
fect. Thus, the actual calculations are really estimating the value of Cohen’s d as follows

estimated Cohen's
mean difference

standard
d 5

deviation
treatment no treatment5

m

s

M

 
(8.2)

The standard deviation is included in the calculation to standardize the size of the 
mean difference in much the same way that z-scores standardize locations in a distribu-
tion. For example, a 15-point mean difference can be a relatively large treatment effect 
or a relatively small effect depending on the size of the standard deviation. This phe-
nomenon is demonstrated in Figure 8.8. The top portion of the figure [part (a)] shows 
the results of a treatment that produces a 15-point mean difference in SAT scores; 
before treatment, the average SAT score is m 5 500, and after treatment the average 
is 515. Notice that the standard deviation for SAT scores is s 5 100, so the 15-point 
difference appears to be small. For this example, Cohen’s d is

Cohen's
mean difference

standard deviation
d 5 55 5

15

100
0 15.

Now consider the treatment effect shown in Figure 8.8(b). This time, the treatment pro-
duces a 15-point mean difference in IQ scores; before treatment the average IQ is 100, and 
after treatment the average is 115. Because IQ scores have a standard deviation of s 5 15, 
the 15-point mean difference now appears to be large. For this example, Cohen’s d is

Cohen's
mean difference

standard deviation
d 5 55 5

15

15
1 00.

Notice that Cohen’s d measures the size of the treatment effect in terms of the stan-
dard deviation. For example, a value of d 5 0.50 indicates that the treatment changed 
the mean by half of a standard deviation; similarly, a value of d 5 1.00 indicates that the 

meaSuring  
eFFeCT Size

D e f i n i t i o n

Cohen’s d measures the 
distance between two means 
and is typically reported as  
a positive number even when 
the formula produces a  
negative value.
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size of the treatment effect is equal to one whole standard deviation. Cohen (1988) also 
suggested criteria for evaluating the size of a treatment effect as shown in Table 8.2.

As one final demonstration of Cohen’s d, consider the two hypothesis tests in 
Example 8.4. For each test, the original population had a mean of m 5 50 with a stan-
dard deviation of s 5 10. For each test, the mean for the treated sample was M 5 51. 
Although one test used a sample of n 5 25 and the other test used a sample of n 5 400, 
the sample size is not considered when computing Cohen’s d. Therefore, both of the 
hypothesis tests would produce the same value:

Cohen's
mean difference

standard deviation
d 5 55 5

1

10
0 10.

Notice that Cohen’s d simply describes the size of the treatment effect and is not 
influenced by the number of scores in the sample. For both hypothesis tests, the original 
population mean was m 5 50 and, after treatment, the sample mean was M 5 51. Thus, 
treatment appears to have increased the scores by 1 point, which is equal to one-tenth 
of a standard deviation (Cohen’s d 5 0.1).

� � 500

� � 100

Distribution of SAT
scores before treatment
� � 500 and � � 100

 
d � 0.15

� � 100

� � 15

Distribution of IQ
scores before treatment
� � 100 and � � 15

Distribution of SAT
scores after treatment
� � 515 and � � 100

Distribution of IQ
scores after treatment
� � 115 and � � 15

 
d � 1.00

(a)

(b)

Figure 8.8

The appearance of a 15-point treatment effect in two different situations. In part (a), the standard 
deviation is s 5 100 and the 15-point effect is relatively small. In part (b), the standard deviation 
is s 5 15 and the 15-point effect is relatively large. Cohen’s d uses the standard deviation to help 
measure effect size.
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sTATIsTICAL PowER

Instead of measuring effect size directly, an alternative approach to determining the 
size or strength of a treatment effect is to measure the power of the statistical test. The 
power of a test is defined as the probability that the test will reject the null hypothesis 
if the treatment really has an effect.

The power of a statistical test is the probability that the test will correctly reject a 
false null hypothesis. That is, power is the probability that the test will identify a 
treatment effect if one really exists.

Whenever a treatment has an effect, there are only two possible outcomes for a hy-
pothesis test: either fail to reject H

0
 or reject H

0
. Because there are only two possible 

outcomes, the probability for the first and the probability for the second must add up 
to 1.00. The first outcome, failing to reject H

0
 when there is a real effect, was defined 

earlier (p. 214) as a Type II error with a probability identified as p 5 b. Therefore, 
the second outcome must have a probability of 1 – b. However, the second outcome, 
rejecting H

0
 when there is a real effect, is the power of the test. Thus, the power of a 

hypothesis test is equal to 1 – b. In the examples that follow, we demonstrate the calcu-
lation of power for a hypothesis test; that is, the probability that the test will correctly 
reject the null hypothesis. At the same time, however, we are computing the probability 
that the test will result in a Type II error. For example, if the power of the test is 70% 
(1 – b), then the probability of a Type II error must be 30% (b).

Researchers typically calculate power as a means of determining whether a research 
study is likely to be successful. Thus, researchers usually calculate the power of a 

8.6

D e f i n i t i o n

Magnitude of d Evaluation of Effect Size

d 5 0.2 Small effect (mean difference around 0.2 standard deviation)

d 5 0.5 Medium effect (mean difference around 0.5 standard deviation)

d 5 0.8 Large effect (mean difference around 0.8 standard deviation)

TAbLE 8.2

Evaluating effect size with 
Cohen’s d.

 1. Explain how increasing the sample size influences the outcome of a hypothesis test 
and how it influences the value of Cohen’s d.

 2. A researcher selects a sample from a population with m 5 45 and s 5 8. A treat-
ment is administered to the sample and, after treatment, the sample mean is found 
to be M 5 47. Compute Cohen’s d to measure the size of the treatment effect.

 3. A researcher selects a sample from a population with m 5 70 and s 5 12. After 
administering a treatment to the individuals in the sample, the researcher computes 
Cohen’s d 5 0.25. What is the mean for the sample?

 1. Increasing sample size increases the likelihood of rejecting the null hypothesis but has no 
effect on Cohen’s d.

 2. d 5 2
8  5 0.25

 3.  There is a 3-point difference between the sample mean and m 5 70, so the sample mean is 
either 73 or 67.

L E A R n I n g  C H E C k

AnswERs
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hypothesis test before they actually conduct the research study. In this way, they can 
determine the probability that the results will be significant (reject H

0
) before investing 

time and effort in the actual research. To calculate power, however, it is first necessary 
to make assumptions about a variety of factors that influence the outcome of a hypoth-
esis test. Factors such as the sample size, the size of the treatment effect, and the value 
chosen for the alpha level can all influence a hypothesis test. The following example 
demonstrates the calculation of power for a specific research situation.

We start with a normal-shaped population with a mean of m 5 80 and a standard  
deviation of s 5 10. A researcher plans to select a sample of n 5 25 individuals from 
this population and administer a treatment to each individual. It is expected that the 
treatment will have an 8-point effect; that is, the treatment will add 8 points to each 
individual’s score.

Figure 8.9 shows the original population distribution and two possible outcomes:

 1. If the null hypothesis is true and there is no treatment effect.

 2. If the researcher’s expectation is correct and there is an 8-point effect.

E x A m P L E  8 . 5

With an 8-point
treatment effect

� � 88 and 
� � 10

�M � 2

If H0 is true (no
treatment effect)

� � 80 and 
� � 10

Reject
H0 

�1.96 0

80

�1.96
z

Reject
H0 

Distribution of sample means
for n � 25 if H0 is true

Distribution of sample means
for n � 25 with 8-point effect

Original
Population

Normal with
� � 80 and

� � 10

7876 868482 929088

�M � 2

Figure 8.9

A demonstration of mea-
suring power for a hypoth-
esis test. The left-hand 
side shows the distribution 
of sample means that 
would occur if the null 
hypothesis is true. The 
critical region is defined 
for this distribution. The 
right-hand side shows the 
distribution of sample 
means that would be 
obtained if there were an 
8-point treatment effect. 
Notice that, if there is an 
8-point effect, essentially 
all of the sample means 
would be in the critical 
region. Thus, the  
probability of rejecting 
H

0
 (the power of the test) 

would be nearly 100% 
for an 8-point treatment 
effect.
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The left-hand side of the figure shows what should happen according to the null 
hypothesis. In this case, the treatment has no effect and the population mean is still  
m 5 80. On the right-hand side of the figure we show what would happen if the treat-
ment has an 8-point effect. If the treatment adds 8 points to each person’s score, then 
the population mean after treatment increases to m 5 88.

Beneath each of the two populations, Figure 8.9 shows the distribution of sample 
means for n 5 25. According to the null hypothesis, the sample means are centered 
around m 5 80. With an 8-point treatment effect, the sample means are centered around 
m 5 88. Both distributions have a standard error of

s 5
s

5 5 5M n

10

25

10

5
2

Notice that the distribution on the left shows all of the possible sample means if the 
null hypothesis is true. This is the distribution we use to locate the critical region for 
the hypothesis test. Using a 5 .05, the critical region consists of extreme values in this 
distribution, specifically sample means beyond z 5 1.96 or z 5 –1.96. These values 
are shown in Figure 8.9, and we have shaded all of the sample means located in the 
critical region.

Now turn your attention to the distribution on the right, which shows all of the 
possible sample means if there is an 8-point treatment effect. Notice that most of 
these sample means are located beyond the z 5 1.96 boundary. This means that, if 
there is an 8-point treatment effect, you are almost guaranteed to obtain a sample 
mean in the critical region and reject the null hypothesis. Thus, the power of the 
test (the probability of rejecting H

0
) is close to 100% if there is an 8-point treat-

ment effect.
To calculate the exact value for the power of the test we must determine what por-

tion of the distribution on the right-hand side is shaded. Thus, we must locate the exact 
boundary for the critical region, then find the probability value in the unit normal table. 
For the distribution on the left-hand side, the critical boundary of z 5 11.96 corre-
sponds to a location that is above m 5 80 by a distance equal to

1.96s
M
 5 1.96(2) 5 3.92 points

Thus, the critical boundary of z 5 11.96 corresponds to a sample mean of M 5 80 
1 3.92 5 83.92. Any sample mean greater than M 5 83.92 is in the critical region and 
would lead to rejecting the null hypothesis. Next, we determine what proportion of the 
treated samples are greater than M 5 83.92. For the treated distribution (right-hand 
side), the population mean is m 5 88 and a sample mean of M 5 83.92 corresponds to 
a z-score of

z
M

M

5
m

s
5


5


5

83 92 88

2

4 08

2
2 04

. .
.

Finally, look up z 5 –2.04 in the unit normal table and determine that the shaded 
area (z . –2.04) corresponds to p 5 0.9793 (or 97.93%). Thus, if the treatment has an 
8-point effect, 97.93% of all the possible sample means will be in the critical region and 
we will reject the null hypothesis. In other words, the power of the test is 97.93%. In 
practical terms, this means that the research study is almost guaranteed to be success-
ful. If the researcher selects a sample of n 5 25 individuals, and if the treatment really 
does have an 8-point effect, then 97.93% of the time the hypothesis test will conclude 
that there is a significant effect.
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Logically, it should be clear that power and effect size are related. Figure 8.9 shows the 
calculation of power for an 8-point treatment effect. Now consider what would happen 
if the treatment effect were only 4 points. With a 4-point treatment effect, the distribu-
tion on the right-hand side would shift to the left so that it is centered at m 5 84. In 
this new position, only about 50% of the treated sample means would be beyond the  
z 5 1.96 boundary. Thus, with a 4-point treatment effect, there is only a 50% probabil-
ity of selecting a sample that leads to rejecting the null hypothesis. In other words, the 
power of the test is only about 50% for a 4-point effect compared to nearly 98% with an 
8-point effect (see Example 8.5). Again, it is possible to find the z-score corresponding 
to the exact location of the critical boundary and to look up the probability value for 
power in the unit normal table. In this case, you should obtain z 5 –0.04 and the exact 
power of the test is p 5 0.5160, or 51.60%.

In general, as the effect size increases, the distribution of sample means on the 
right-hand side moves even farther to the right so that more and more of the samples 
are beyond the z 5 1.96 boundary. Thus, as the effect size increases, the probability 
of rejecting H

0
 also increases, which means that the power of the test increases. Thus, 

measures of effect size such as Cohen’s d and measures of power both provide an indi-
cation of the strength or magnitude of a treatment effect.

Although the power of a hypothesis test is directly influenced by the size of the treat-
ment effect, power is not meant to be a pure measure of effect size. Instead, power is 
influenced by several factors, other than effect size, that are related to the hypothesis 
test. Some of these factors are considered in the following sections.

Sample size One factor that has a huge influence on power is the size of the sample. 
In Example 8.5, we demonstrated power for an 8-point treatment effect using a sample 
of n 5 25. If the researcher decided to conduct the study using a sample of n 5 4, then 
the power would be dramatically different. With n 5 4, the standard error for the sample 
means would be

s 5
s

5 5 5M n

10

4

10

2
5

Figure 8.10 shows the two distributions of sample means with n 5 4 and a standard 
error of s

M
 5 5 points. Again, the distribution on the left is centered at m 5 80 and 

shows all of the possible sample means if H
0
 is true. As always, this distribution is used 

to locate the critical boundaries for the hypothesis test, z 5 –1.96 and z 5 11.96. The 
distribution on the right is centered at m 5 88 and shows all of the possible sample 
means if there is an 8-point treatment effect. Note that less than half of the treated 
sample means in the right-hand distribution are now located beyond the 1.96 boundary. 
Thus, with a sample of n 5 4, there is less than a 50% probability that the hypoth-
esis test would reject H

0
, even though the treatment has an 8-point effect. Earlier, in 

Example 8.5, we found power equal to 97.93% for a sample of n 5 25. However, when 
the sample size is reduced to n 5 4, power decreases to less than 50%. In general, a 
larger sample produces greater power for a hypothesis test.

Because power is directly related to sample size, one of the primary reasons for 
computing power is to determine what sample size is necessary to achieve a reasonable 
probability for a successful research study. Before a study is conducted, researchers can 
compute power to determine the probability that their research will successfully reject 
the null hypothesis. If the probability (power) is too small, they always have the option 
of increasing sample size to increase power.

power  
anD eFFeCT Size

oTher FaCTorS ThaT 
aFFeCT power
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Alpha level Reducing the alpha level for a hypothesis test also reduces the 
power of the test. For example, lowering a from .05 to .01 lowers the power of the  
hypothesis test. The effect of reducing the alpha level can be seen by referring again 
to Figure 8.10. In this figure, the boundaries for the critical region are drawn using 
a 5 .05. Specifically, the critical region on the right-hand side begins at z 5 1.96.  
If a were changed to .01, the boundary would be moved farther to the right, out to  
z 5 2.58. It should be clear that moving the critical boundary to the right means that 
a smaller portion of the treatment distribution (the distribution on the right-hand 
side) will be in the critical region. Thus, there would be a lower probability of reject-
ing the null hypothesis and a lower value for the power of the test.

One-tailed versus two-tailed tests Changing from a regular two-tailed test to a one-tailed 
test increases the power of the hypothesis test. Again, this effect can be seen by referring to 
Figure 8.10. The figure shows the boundaries for the critical region using a two-tailed test 
with a 5 .05 so that the critical region on the right-hand side begins at z 5 1.96. Changing 
to a one-tailed test would move the critical boundary to the left to a value of z 5 1.65. 
Moving the boundary to the left would cause a larger proportion of the treatment distribution 
to be in the critical region and, therefore, would increase the power of the test.

With an 8-point
treatment effect

� � 88 and 
� � 10

If H0 is true (no
treatment effect)

� � 80 and 
� � 10

Reject
H0 

�1.96 0

80

�1.96
z

Reject H0 

Distribution of sample means
for n � 4 if H0 is true

Distribution of sample means
for n � 4 with 8-point effect

Original
Population

Normal with
� � 80 and

� � 10

82 84 86 88 90 92 94 9670 72 74 76 78 98

�M � 5�M � 5

Figure 8.10

A demonstration of how 
sample size affects the 
power of a hypothesis test. 
As in Figure 8.9, the left-
hand side shows the dis-
tribution of sample means 
if the null hypothesis were 
true. The critical region is 
defined for this distribu-
tion. The right-hand side 
shows the distribution of 
sample means that would 
be obtained if there were 
an 8-point treatment 
effect. Notice that reduc-
ing the size to n 5 4 has 
reduced the power of the 
test to less than 50% com-
pared to a power of nearly 
100% with a sample of  
n 5 25 in Figure 8.9.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    summARy    237

 1. As the power of a test increases, what happens to the probability of a Type II error?

 2. For a 5-point treatment effect, a researcher computes power of p 5 0.50 for a  
two-tailed hypothesis test with a 5 .05.

 a. Will the power increase or decrease for a 10-point treatment effect?

 b. Will the power increase or decrease if alpha is changed to a 5 .01?

 c. Will the power increase or decrease if the researcher changes to a one-tailed test?

 3. How does sample size influence the power of a hypothesis test?

 4. A researcher administers a treatment to a sample of n 5 16 individuals selected 
from a normal population with m 5 60 and s 5 12. If the treatment increases 
scores by 4 points, what is the power of a two-tailed hypothesis test with a 5 .05?

 1. As power increases, the probability of a Type II error decreases.

 2. a. The hypothesis test is more likely to detect a 10-point effect, so power will be greater.

 b. Decreasing the alpha level also decreases the power of the test.

 c. Switching to a one-tailed test will increase the power.

 3. Increasing sample size increases the power of a test

 4. With standard error of 3 points, the critical boundary of z 5 1.96 corresponds to a sample 
mean of M 5 65.88. With a 4-point effect, the distribution of sample means has m 5 64 and 
a sample mean of M 5 65.88 corresponds to z 5 0.63. Power 5 p(z . 0.63) 5 0.2643.

L E A R n I n g  C H E C k

AnswERs

Summary

 1. Hypothesis testing is an inferential procedure that uses 
the data from a sample to draw a general conclusion 
about a population. The procedure begins with a hy-
pothesis about an unknown population. Then a sample 
is selected, and the sample data provide evidence that 
either supports or refutes the hypothesis.

 2. In this chapter, we introduced hypothesis testing using 
the simple situation in which a sample mean is used to 
test a hypothesis about an unknown population mean; 
usually the mean for a population that has received a 
treatment. The question is to determine whether the 
treatment has an effect on the population mean (see 
Figure 8.1).

 3. Hypothesis testing is structured as a four-step process 
that is used throughout the remainder of the book.

 a. State the null hypothesis (H
0
), and select an alpha 

level. The null hypothesis states that there is no 
effect or no change. In this case, H

0
 states that the 

mean for the treated population is the same as the 
mean before treatment. The alpha level, usually  
a 5 .05 or a 5 .01, provides a definition of the 
term very unlikely and determines the risk of  
a Type I error when H

0
 is true. Also state an  

alternative hypothesis (H
1
), which is the exact  

opposite of the null hypothesis.
 b. Locate the critical region. The critical region is 

defined as extreme sample outcomes that would be 
very unlikely to occur if the null hypothesis is true. 
The alpha level defines “very unlikely.”

 c. Collect the data, and compute the test statistic. The 
sample mean is transformed into a z-score by the 
formula

z
M

M

5
m

s

  The value of m is obtained from the null hypothesis. 
The z-score test statistic identifies the location of the 
sample mean in the distribution of sample means. 

 d. Make a decision. If the obtained z-score is in the 
critical region, reject H

0
 because it is very un-

likely that these data would be obtained if H
0
 were 

true. In this case, conclude that the treatment has 
changed the population mean. If the z-score is not 
in the critical region, fail to reject H

0
 because the 

data are not significantly different from the null 
hypothesis. In this case, the data do not provide 

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



238     CHAPTER 8 InTRoduCTIon To HyPoTHEsIs TEsTIng

sufficient evidence to indicate that the treatment has 
had an effect.

 4. Whatever decision is reached in a hypothesis test, 
there is always a risk of making the incorrect decision. 
There are two types of errors that can be committed.

A Type I error is defined as rejecting a true H
0
. 

This is a serious error because it results in falsely 
reporting a treatment effect. The risk of a Type I 
error is determined by the alpha level and, therefore, 
is under the experimenter’s control.

A Type II error is defined as the failure to reject 
a false H

0
. In this case, the experiment fails to detect 

an effect that actually occurred. The probability of 
a Type II error cannot be specified as a single value 
and depends in part on the size of the treatment  
effect. It is identified by the symbol b (beta).

 5. When a researcher expects that a treatment will change 
scores in a particular direction (increase or decrease), 
it is possible to do a directional, or one-tailed, test. 
The first step in this procedure is to incorporate 
the directional prediction into the hypotheses. For 
example, if the prediction is that a treatment will in-
crease scores, the null hypothesis says that there is 
no increase and the alternative hypothesis states that 
there is an increase. To locate the critical region, you 
must determine what kind of data would refute the null 
hypothesis by demonstrating that the treatment worked 
as predicted. These outcomes are located entirely in 
one tail of the distribution, so the entire critical region 
(5%, 1%, or 0.1% depending on a) is in one tail.

 6. In addition to using a hypothesis test to evaluate the 
significance of a treatment effect, it is recommended that 
you also measure and report the effect size. One measure 
of effect size is Cohen’s d, which is a standardized mea-
sure of the mean difference. Cohen’s d is computed as

Cohen's
mean difference

standard deviation
d 5

 7. The power of a hypothesis test is defined as the probabil-
ity that the test will correctly reject the null hypothesis.

 8. To determine the power for a hypothesis test, you must 
first identify the treatment and null distributions. Also, 
you must specify the magnitude of the treatment ef-
fect. Next, you sketch the distribution of sample means 
predicted by the null hypothesis and the distribution 
predicted by the specified treatment effect. Locate the 
critical region in the null hypothesis distribution and 
then determine the proportion of the treated distribu-
tion that is beyond the critical boundaries. This propor-
tion is the power of the hypothesis test.

 9. As the size of the treatment effect increases, statistical 
power increases. Also, power is influenced by several 
factors that can be controlled by the experimenter:

 a. A large sample results in more power than a small 
sample.

 b. Increasing the alpha level increases power.
 c. A one-tailed test has greater power than a  

two-tailed test.
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If your professor has assigned Aplia:

1. Sign in to your account.
2. Complete the corresponding exercises as required by your professor.
3. When finished, click “Grade It Now” to see which areas you have mastered, which 

areas need more work, and detailed explanations of every answer.

The statistical computer package SPSS is not structured to conduct hypothesis  
tests using z-scores. In truth, the z-score test presented in this chapter is rarely  
used in actual research situations. The problem with the z-score test is that it  
requires that you know the value of the population standard deviation, and this 
information is usually not available. Researchers rarely have detailed information 
about the populations that they wish to study. Instead, they must obtain  
information entirely from samples. In the following chapters, we introduce  
new hypothesis-testing techniques that are based entirely on sample data. These  
new techniques are included in SPSS.

FoCuS on problem Solving

1. Hypothesis testing involves a set of logical procedures and rules that enable us to 
make general conclusions about a population based on data from a sample. This 
process is reflected in the four steps that have been used throughout this chapter.

S t e p  1  State the hypotheses and set the alpha level.

S t e p  2  Locate the critical region.

S t e p  3  Compute the test statistic (in this case, the z-score) for the sample.

S t e p  4  Make a decision about H
0
 based on the result of step 3.

2. Take time to consider the implications of your decision about the null hypothesis. 
The null hypothesis states that the treatment has no effect. If your decision is to 
reject H

0
, then you are concluding that the sample data provide evidence that a treat-

ment effect exists. However, when you fail to reject the null hypothesis, the results 
are inconclusive. In this case, all you can state is that there is not sufficient evidence 
to support the existence of a treatment effect.

3. When you are doing a directional hypothesis test, read the problem carefully, 
and watch for key words (such as increase or decrease, raise or lower, and more 
or less) that tell you which direction the researcher is predicting. The predicted 
direction determines the alternative hypothesis (H

1
) and the critical region.  

For example, if a treatment is expected to increase scores, H
1
 would contain  

a greater than symbol, and the critical region would be in the tail associated 
with high scores.
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DemonSTraTion 8.1

hypoTheSiS TeST wiTh z

A researcher begins with a known population—in this case, scores on a standardized 
test that are normally distributed with m 5 65 and s 5 15. The researcher suspects that 
special training in reading skills will produce a change in the scores for the individu-
als in the population. Because it is not feasible to administer the treatment (the special 
training) to everyone in the population, a sample of n 5 25 individuals is selected, and 
the treatment is given to this sample. Following treatment, the average score for this 
sample is M 5 70. Is there evidence that the training has an effect on test scores?

State the hypothesis and select an alpha level. The null hypothesis states that the spe-
cial training has no effect. In symbols,

H
0
: m 5 65 (After special training, the mean is still 65.)

The alternative hypothesis states that the treatment does have an effect.

H
1
: m  65 (After training, the mean is different from 65.)

At this time you also select the alpha level. For this demonstration, we will use a 5 .05. 
Thus, there is a 5% risk of committing a Type I error if we reject H

0
.

Locate the critical region. With a 5 .05, the critical region consists of sample means 
that correspond to z-scores beyond the critical boundaries of z 5 61.96.

Obtain the sample data, and compute the test statistic. For this example, the distribu-
tion of sample means, according to the null hypothesis, is normal with an expected 
value of m 5 65 and a standard error of

s 5
s

5 5 5M n

15

25

15

5
3

In this distribution, our sample mean of M 5 70 corresponds to a z-score of

z
M

M

5
m

s
5


5 51

70 65

3

5

3
1 67.

Make a decision about H
0
, and state the conclusion. The z-score we obtained is not 

in the critical region. This indicates that our sample mean of M 5 70 is not an extreme 
or unusual value to be obtained from a population with m 5 65. Therefore, our statisti-
cal decision is to fail to reject H

0
. Our conclusion for the study is that the data do not 

provide sufficient evidence that the special training changes test scores.

DemonSTraTion 8.2

eFFeCT Size uSing Cohen’S d

We will compute Cohen’s d using the research situation and the data from 
Demonstration 8.1. Again, the original population mean was m 5 65 and, after  

S t e p  1

S t e p  2

S t e p  3

S t e p  4
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treatment (special training), the sample mean was M 5 70. Thus, there is a 5-point 
mean difference. Using the population standard deviation, s 5 15, we obtain an effect 
size of

Cohen's
mean difference

standard deviation
d 5 55

5

15
0 335 .

According to Cohen’s evaluation standards (see Table 8.2), this is a medium treat-
ment effect.

problemS

 1. The value of the z-score in a hypothesis test is influ-
enced by a variety of factors. Assuming that all other 
variables are held constant, explain how the value  
of z is influenced by each of the following:

 a. An increase in the difference between the sample 
mean and the original population mean.

 b. An increase in the population standard deviation.
 c. An increase in the number of scores in the sample.

 2. Define the alpha level and the critical region, and 
explain how they are related.

 3. Although there is a popular belief that herbal rem-
edies such as Ginkgo biloba and Ginseng may im-
prove learning and memory in healthy adults, these 
effects are usually not supported by well-controlled 
research (Persson, Bringlov, Nilsson, & Nyberg, 
2004). In a typical study, a researcher obtains a sam-
ple of n 5 16 participants and has each person take 
the herbal supplements every day for 90 days. At the 
end of the 90 days, each person takes a standard-
ized memory test. For the general population, scores 
from the test form a normal distribution with a mean 
of m 5 50 and a standard deviation of s 5 12. The 
sample of research participants had an average of  
M 5 54.

 a. Assuming a two-tailed test, state the null hypoth-
esis in a sentence that includes the two variables 
being examined.

 b. Using the standard 4-step procedure, conduct a 
two-tailed hypothesis test with a 5 .05 to evalu-
ate the effect of the supplements.

 4. Childhood participation in sports, cultural groups, 
and youth groups appears to be related to improved 
self-esteem for adolescents (McGee, Williams, 
Howden-Chapman, Martin, & Kawachi, 2006). In 
a representative study, a sample of n 5 100 adoles-
cents with a history of group participation is given 
a standardized self-esteem questionnaire. For the 
general population of adolescents, scores on this 
questionnaire form a normal distribution with a mean 
of m 5 50 and a standard deviation of s 5 15. The 

sample of group-participation adolescents had an 
average of M 5 53.8.

 a. Does this sample provide enough evidence to con-
clude that self-esteem scores for these adolescents 
are significantly different from those of the general 
population? Use a two-tailed test with a 5 .05.

 b. Compute Cohen’s d to measure the size of the  
difference.

 c. Write a sentence describing the outcome of the 
hypothesis test and the measure of effect size as it 
would appear in a research report.

 5. A local college requires an English composition 
course for all freshmen. This year they are evaluating 
a new online version of the course. A random sample 
of n 5 16 freshmen is selected and the students are 
placed in the online course. At the end of the semes-
ter, all freshmen take the same English composition 
exam. The average score for the sample is M 5 76. 
For the general population of freshmen who took 
the traditional lecture class, the exam scores form a 
normal distribution with a mean of m 5 80.

 a. If the final exam scores for the population have 
a standard deviation of s 5 12, does the sample 
provide enough evidence to conclude that the 
new online course is significantly different from 
the traditional class? Assume a two-tailed test 
with a 5 .05.

 b. If the population standard deviation is s 5 6, is 
the sample sufficient to demonstrate a significant 
difference? Again, assume a two-tailed test with  
a 5 .05.

 c. Comparing your answers for parts a and b, ex-
plain how the magnitude of the standard deviation 
influences the outcome of a hypothesis test.

 6. A random sample is selected from a normal popula-
tion with a mean of m 5 30 and a standard deviation 
of s 5 8. After a treatment is administered to the 
individuals in the sample, the sample mean is found 
to be M 5 33.

 a. If the sample consists of n 5 16 scores, is the 
sample mean sufficient to conclude that the treat-
ment has a significant effect? Use a two-tailed test 
with a 5 .05.
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 b. If the sample consists of n 5 64 scores, is the 
sample mean sufficient to conclude that the treat-
ment has a significant effect? Use a two-tailed test 
with a 5 .05.

 c. Comparing your answers for parts a and b, ex-
plain how the size of the sample influences the 
outcome of a hypothesis test.

 7. A random sample of n 5 25 scores is selected from 
a normal population with a mean of m 5 40. After 
a treatment is administered to the individuals in the 
sample, the sample mean is found to be M 5 44.

 a. If the population standard deviation is s 5 5, is 
the sample mean sufficient to conclude that  
the treatment has a significant effect? Use a  
two-tailed test with a 5 .05.

 b. If the population standard deviation is s 5 15, is 
the sample mean sufficient to conclude that the 
treatment has a significant effect? Use a  
two-tailed test with a 5 .05.

 c. Comparing your answers for parts a and b, ex-
plain how the magnitude of the standard deviation 
influences the outcome of a hypothesis test.

 8. Brunt, Rhee, and Zhong (2008) surveyed 557 under-
graduate college students to examine their weight 
status, health behaviors, and diet. Using body mass 
index (BMI), they classified the students into four 
categories: underweight, healthy weight, overweight, 
and obese. They also measured dietary variety by 
counting the number of different foods each student 
ate from several food groups. Note that the research-
ers are not measuring the amount of food eaten, but 
rather the number of different foods eaten (variety, 
not quantity). Nonetheless, it was somewhat surpris-
ing that the results showed no differences among the 
four weight categories that were related to eating 
fatty and/or sugary snacks.

  Suppose a researcher conducting a follow up study 
obtains a sample of n 5 25 students classified as 
healthy weight and a sample of n 5 36 students 
classified as overweight. Each student completes the 
food variety questionnaire, and the healthy-weight 
group produces a mean of M 5 4.01 for the fatty, 
sugary snack category compared to a mean of M 5 
4.48 for the overweight group. The results from the 
Brunt, Rhee, and Zhong study showed an overall 
mean variety score of m 5 4.22 for the discretionary 
sweets or fats food group. Assume that the distribu-
tion of scores is approximately normal with a stan-
dard deviation of s 5 0.60.

 a. Does the sample of n 5 36 indicate that the num-
ber of fatty, sugary snacks eaten by overweight 
students is significantly different from the overall 
population mean? Use a two-tailed test with  
a 5 .05.

 b. Based on the sample of n 5 25 healthy-weight 
students, can you conclude that healthy-weight 
students eat significantly fewer fatty, sugary 
snacks than the overall population? Use a one-
tailed test with a 5 .05.

 9. A random sample is selected from a normal popula-
tion with a mean of m 5 100 and a standard devia-
tion of s 5 20. After a treatment is administered to 
the individuals in the sample, the sample mean is 
found to be M 5 96.

 a. How large a sample is necessary for this sample 
mean to be statistically significant? Assume a 
two-tailed test with a 5 .05.

 b. If the sample mean were M 5 98, what sample 
size would be needed to be significant for a two-
tailed test with a 5 .05?

 10. In a study examining the effect of alcohol on reaction 
time, Liguori and Robinson (2001) found that even 
moderate alcohol consumption significantly slowed 
response time to an emergency situation in a driving 
simulation. In a similar study, researchers measured 
reaction time 30 minutes after participants consumed 
one 6-ounce glass of wine. Again, they used a stan-
dardized driving simulation task for which the regular 
population averages m 5 400 msec. The distribution of 
reaction times is approximately normal with s 5 40. 
Assume that the researcher obtained a sample mean of 
M 5 422 for the n 5 25 participants in the study.

 a. Are the data sufficient to conclude that the alcohol 
has a significant effect on reaction time? Use a 
two-tailed test with a 5 .01.

 b. Do the data provide evidence that the alcohol  
significantly increased (slowed) reaction time? 
Use a one-tailed test with a 5 .05.

 c. Compute Cohen’s d to estimate the size of  
the effect.

 11. The researchers cited in the previous problem 
(Liguori & Robinson, 2001) also examined the effect 
of caffeine on response time in the driving simulator. 
In a similar study, researchers measured reaction time 
30 minutes after participants consumed one 6-ounce 
cup of coffee. Using the same driving simulation task, 
for which the distribution of reaction times is normal 
with m 5 400 msec. and s 5 40, they obtained  
a mean of M 5 392 for a sample of n 5 36  
participants.

 a.  Are the data sufficient to conclude that caffeine 
has a significant effect on reaction time? Use a 
two-tailed test with a 5 .05.

 b. Compute Cohen’s d to estimate the size of the effect.
 c. Write a sentence describing the outcome of the 

hypothesis test and the measure of effect size as it 
would appear in a research report.
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 12. There is some evidence indicating that people with 
visible tattoos are viewed more negatively than 
people without visible tattoos (Resenhoeft, Villa, 
& Wiseman, 2008). In a similar study, a researcher 
first obtained overall ratings of attractiveness for a 
woman with no tattoos shown in a color photograph. 
On a 7-point scale, the woman received an average 
rating of m 5 4.9, and the distribution of ratings was 
normal with a standard deviation of s 5 0.84. The 
researcher then modified the photo by adding a tattoo 
of a butterfly on the woman’s left arm. The modified 
photo was then shown to a sample of n 5 16 stu-
dents at a local community college and the students 
used the same 7-point scale to rate the attractiveness 
of the woman. The average score for the photo with 
the tattoo was M 5 4.2.

 a. Do the data indicate a significant difference in 
rated attractiveness when the woman appeared to 
have a tattoo? Use a two-tailed test with a 5 .05.

 b. Compute Cohen’s d to measure the size of the 
effect.

 c. Write a sentence describing the outcome of the 
hypothesis test and the measure of effect size as it 
would appear in a research report.

 13. Researchers at a National Weather Center in the north-
eastern United States recorded the number of 90° days 
each year since records first started in 1875. The num-
bers form a normal shaped distribution with a mean of 
m 5 9.6 and a standard deviation of s 5 1.9. To see  
if the data showed any evidence of global warming, 
they also computed the mean number of 90° days for 
the most recent n 5 4 years and obtained M 5 11.85. 
Do the data indicate that the past four years have had 
significantly more 90° days than would be expected 
for a random sample from this population? Use a  
one-tailed test with a 5 .05.

 14. Montarello and Martens (2005) found that fifth-grade 
students completed more mathematics problems cor-
rectly when simple problems were mixed in with 
their regular math assignments. To further explore this 
phenomenon, suppose that a researcher selects a stan-
dardized mathematics achievement test that produces  
a normal distribution of scores with a mean of  
m 5 100 and a standard deviation of s 5 18. The 
researcher modifies the test by inserting a set of very 
easy problems among the standardized questions, and 
gives the modified test to a sample of n 5 36 students. 
If the average test score for the sample is M 5 104,  
is this result sufficient to conclude that inserting the 
easy questions improves student performance? Use a 
one-tailed test with a 5 .01.

 15. Researchers have noted a decline in cognitive func-
tioning as people age (Bartus, 1990). However, the 
results from other research suggest that the antioxi-
dants in foods such as blueberries can reduce and 

even reverse these age-related declines, at least in 
laboratory rats (Joseph et al., 1999). Based on  
these results, one might theorize that the same  
antioxidants might also benefit elderly humans. 
Suppose a researcher is interested in testing this the-
ory. The researcher obtains a sample of n 5 16 adults 
who are older than 65, and gives each participant 
a daily dose of a blueberry supplement that is very 
high in antioxidants. After taking the supplement for 
6 months, the participants are given a standardized 
cognitive skills test and produce a mean score of  
M 5 50.2. For the general population of elderly 
adults, scores on the test average m 5 45 and form a 
normal distribution with s 5 9.

 a. Can the researcher conclude that the supplement 
has a significant effect on cognitive skill? Use a 
two-tailed test with a 5 .05.

 b. Compute Cohen’s d for this study.
 c. Write a sentence demonstrating how the outcome 

of the hypothesis test and the measure of effect 
size would appear in a research report.

 16. A researcher plans to conduct an experiment evalu-
ating the effect of a treatment. A sample of n 5 9 
participants is selected and each person receives the 
treatment before being tested on a standardized dex-
terity task. The treatment is expected to lower scores 
on the test by an average of 30 points. For the regular 
population, scores on the dexterity task form a nor-
mal distribution with m 5 240 and s 5 30.

 a. If the researcher uses a two-tailed test with  
a 5 .05, what is the power of the hypothesis test?

 b. Again assuming a two-tailed test with a 5 .05, 
what is the power of the hypothesis test if the 
sample size is increased to n 5 25?

 17. A sample of n 5 40 is selected from a normal popu-
lation with m 5 75 msec. and s 5 12, and a treat-
ment is administered to the sample. The treatment is 
expected to increase scores by an average of 4 msec.

 a. If the treatment effect is evaluated with a two-
tailed hypothesis test using a 5 .05, what is the 
power of the test?

 b. What is the power of the test if the researcher uses 
a one-tailed test with a 5 .05?

 18. Briefly explain how increasing sample size influ-
ences each of the following. Assume that all other 
factors are held constant.

 a. The size of the z-score in a hypothesis test.
 b. The size of Cohen’s d.
 c. The power of a hypothesis test.

 19. Explain how the power of a hypothesis test is influ-
enced by each of the following. Assume that all other 
factors are held constant.

 a. Increasing the alpha level from .01 to .05.
 b. Changing from a one-tailed test to a two-tailed test.
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 20. A researcher is investigating the effectiveness of a 
new medication for lowering blood pressure for  
individuals with systolic pressure greater than 140. 
For this population, systolic scores average m 5 160 
with a standard deviation of s 5 20, and the scores 
form a normal-shaped distribution. The researcher 
plans to select a sample of n 5 25 individuals, and 
measure their systolic blood pressure after they take 
the medication for 60 days. If the researcher uses a 
two-tailed test with a 5 .05,

 a. What is the power of the test if the medication has 
a 5-point effect?

 b. What is the power of the test if the medication has 
a 10-point effect?

 21. A researcher is evaluating the influence of a  
treatment using a sample selected from a normally 
distributed population with a mean of m 5 80 and  
a standard deviation of s 5 20. The researcher  
expects a 12-point treatment effect and plans to use  
a two-tailed hypothesis test with a 5 .05.

 a. Compute the power of the test if the researcher 
uses a sample of n 5 16 individuals.

 b. Compute the power of the test if the researcher 
uses a sample of n 5 25 individuals.
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 1. The ability to transform scores into z-scores to describe 
locations within a distribution and to standardize entire 
distributions (Chapter 5).

 2. The ability to determine probabilities associated with 
individual scores selected from a distribution, especially 
for scores from normal distributions (Chapter 6).

 3. The ability to transform sample means into z-scores and 
to determine the probabilities associated with sample 
means (Chapter 7).

 4. The ability to use a sample mean to evaluate a hypoth-
esis about an unknown population mean (Chapter 8).

The general goal of inferential statistics is to use the limited 
information from a sample to answer general questions about 
an unknown population. In Chapter 8, we introduced hy-
pothesis testing, one of the most commonly used inferential 
procedures. The hypothesis test presented in Chapter 8 inte-
grates z-scores from Chapter 5, probability from Chapter 6,  
and the distribution of sample means from Chapter 7 into 
a single procedure that allows researchers to use a sample 
from an unknown population to evaluate a hypothesis about 
the population mean. The researcher first obtains a sample 
from the unknown population and computes the sample 
mean. The sample mean and a hypothesized value for the 
population mean are then used to compute a z-score. If the 
resulting z-score is a high-probability value, near the center 
of the distribution of sample means, then the researcher 
concludes that the sample data fit the hypothesis and the 
decision is to fail to reject the hypothesis. On the other hand, 
if the resulting z-score is a low-probability value, out in the 
tails of the distribution of sample means, then the researcher 
concludes that the sample data do not fit the hypothesis and 
the decision is to reject the hypothesis.

review exerCiSeS

 1. Find each of the requested values for a population with 
a mean of m 5 50 and a standard deviation of s 5 20.

 a. What is the z-score corresponding to X 5 52?
 b. What is the X value corresponding to z 5 –0.50?

 c. If all of the scores in the population are trans-
formed into z-scores, what will be the values for 
the mean and standard deviation for the complete 
set of z-scores?

 d. What is the z-score corresponding to a sample 
mean of M 5 42 for a sample of n 5 4 scores?

 e. What is the z-score corresponding to a sample 
mean of M 5 42 for a sample of n 5 16 scores?

 2. A survey of high school seniors shows that the aver-
age wake-up time the previous Saturday morning was  
m 5 9:45. Assume that the distribution of times is  
approximately normal with a standard deviation of  
s 5 65 minutes, and find each of the requested values.

 a. What proportion of high school seniors wake up 
later than 11:00?

 b. What is the probability of randomly selecting a 
high school senior who woke up before 9:00?

 c. What is the probability of obtaining a mean wake-
up time earlier than M 5 9:30 for a sample of  
n 5 25 high school students?

 3. Miller (2008) examined the energy drink consumption of 
college undergraduates and found that males use energy 
drinks significantly more often than females. To further 
investigate this phenomenon, suppose that a researcher 
selects a random sample of n 5 36 male undergraduates 
and a sample of n 5 25 females. On average, the males 
reported consuming M 5 2.45 drinks per month and 
females had an average of M 5 1.28. Assume that the 
overall level of consumption for college undergraduates 
averages m 5 1.85 energy drinks per month, and that the 
distribution of monthly consumption scores is approxi-
mately normal with a standard deviation of s 5 1.2.

 a. Did this sample of males consume significantly 
more energy drinks than the overall population 
average? Use a one-tailed test with a 5 .01.

 b. Did this sample of females consume significantly 
fewer energy drinks than the overall population 
average? Use a one-tailed test with a 5 .01.

review

After completing this part, you should understand the basic procedures that form the foundation 
of inferential statistics. These include:
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P A R T II
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In Part II, we presented the foundation for inferential statistics. In 
this part, we begin to introduce some of the inferential procedures 
that are actually used in behavioral science research. Specifically, 

we look at a family of t statistics that use sample means and mean 
differences to draw inferences about the corresponding population 
means and mean differences. The t statistics are all modeled after the 
z-score for sample means that was introduced in Chapter 7 and used 
for hypothesis testing in Chapter 8. However, the t statistics do not 
require any prior knowledge about the population being evaluated. 
The three t statistics introduced in this part apply to three distinct 
research situations:

 1. Using a single sample to draw an inference about the un-
known mean for a single population.

 2. Using two separate samples to draw an inference about the 
mean difference between two unknown populations.

 3. Using one sample, with each individual tested in two different 
treatment conditions, to draw an inference about the popula-
tion mean difference between the two conditions.

In addition to the hypothesis testing procedure introduced in 
Chapter 8, this part introduces a new inferential technique known 
as confidence intervals. Confidence intervals allow researchers to 
use sample data to estimate population means or mean differences 
by computing a range of values that is highly likely to contain the 
unknown parameter.

Using t Statistics 
for Inferences 
About Population 
Means and Mean 
Differences

P A R T 

III
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Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.

Introduction to 
the t Statistic

9.1    The t Statistic: An Alternative to z

9.2     Hypothesis Tests with the  
t Statistic

9.3     Measuring Effect Size for the  
t Statistic

9.4     Directional Hypotheses and  
One-Tailed Tests

Summary

Focus on Problem Solving

Demonstrations 9.1 and 9.2

Problems

C h A P T e R 

9
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 Sample	variance	and	standard	devia-
tion (Chapter 4)

•	 Standard	error	(Chapter	7)
•	 Hypothesis	testing	(Chapter	8)
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THE t STATISTIC: An AlTERnATIvE To z

In the previous chapter, we presented the statistical procedures that permit researchers 
to use a sample mean to test hypotheses about an unknown population mean. These 
statistical procedures were based on a few basic concepts, which we summarize as 
follows:

 1. A sample mean (M) is expected to approximate its population mean (m). This 
permits us to use the sample mean to test a hypothesis about the population mean.

 2. The standard error provides a measure of how well a sample mean approxi-
mates the population mean. Specifically, the standard error determines how 
much difference is reasonable to expect between a sample mean (M) and the 
population mean (m).

s 5
s

s 5
s

M Mn n
or

2

 3. To quantify our inferences about the population, we compare the obtained 
sample mean (M) with the hypothesized population mean (m) by computing a 
z-score test statistic.

z
M

M

5
2m

s
5

obtained difference between data andd hypothesis

standard distance between anM dd m

The goal of the hypothesis test is to determine whether the obtained difference 
between the data and the hypothesis is significantly greater than would be expected 
by chance. When the z-scores form a normal distribution, we are able to use the unit 
normal table (in Appendix B) to find the critical region for the hypothesis test.

The shortcoming of using a z-score for hypothesis testing is that the z-score formula 
requires more information than is usually available. Specifically, a z-score requires that 
we know the value of the population standard deviation (or variance), which is needed 
to compute the standard error. In most situations, however, the standard deviation for 
the population is not known. In fact, the whole reason for conducting a hypothesis test 
is to gain knowledge about an unknown population. This situation appears to create a 
paradox: You want to use a z-score to find out about an unknown population, but you 
must know about the population before you can compute a z-score. Fortunately, there 
is a relatively simple solution to this problem. When the variance for the population is 
not known, we use the corresponding sample value in its place.

In Chapter 4, the sample variance was developed specifically to provide an unbiased 
estimate of the corresponding population variance. Recall that the formulas for sample 
variance and sample standard deviation are as follows:

sample variance 5 5
2

5s
SS

n

SS

df
2

1

sample standard deviation 5 5
2

5s
SS

n

SS

df1

9.1

The Problem  
wiTh z-ScoreS

inTroducing  
The t STaTiSTic

Remember that the expected 
value of the distribution  
of sample means is m, the 
population mean.
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Using the sample values, we can now estimate the standard error. Recall from 
Chapters 7 and 8 that the value of the standard error can be computed using either 
standard deviation or variance:

standard error or5 s 5
s

s 5
s

M Mn n

2

Now we estimate the standard error by simply substituting the sample variance or 
standard deviation in place of the unknown population value:

estimated standard error or5 5s
s

nM s
s

nM 5
2

 
(9.1)

Notice that the symbol for the estimated standard error of M is s
M
 instead of s

M
, 

indicating that the estimated value is computed from sample data rather than from the 
actual population parameter.

The estimated standard error (s
M
) is used as an estimate of the real standard 

error, s
M
, when the value of s is unknown. It is computed using the sample  

variance or sample standard deviation and provides an estimate of the standard 
distance between a sample mean, M, and the population mean, m.

Finally, you should recognize that we have shown formulas for standard error 
(actual or estimated) using both the standard deviation and the variance. In the past 
(Chapters 7 and 8), we concentrated on the formula using the standard deviation. 
At this point, however, we shift our focus to the formula based on variance. Thus, 
throughout the remainder of this chapter, and in following chapters, the estimated 
standard error of M typically is presented and computed using

s
s

nM 5
2

There are two reasons for making this shift from standard deviation to variance:

 1. In Chapter 4 (p. 105), we saw that the sample variance is an unbiased statistic; 
on average, the sample variance (s2) provides an accurate and unbiased  
estimate of the population variance (s2). Therefore, the most accurate way  
to estimate the standard error is to use the sample variance to estimate the 
population variance.

 2. In future chapters, we encounter other versions of the t statistic that require  
variance (instead of standard deviation) in the formulas for estimated standard 
error. To maximize the similarity from one version to another, we use variance 
in the formula for all of the different t statistics. Thus, whenever we present a  
t statistic, the estimated standard error is computed as

estimated standard error
sample variance

sam
5

pple size

Now we can substitute the estimated standard error in the denominator of the z-score 
formula. The result is a new test statistic called a t statistic:

t
M

sM

5
2m

 
(9.2)

D e f i n i t i o n

The concept of degrees of 
freedom, df 5 n – 1, was 
introduced in Chapter 4  
(p. 103) and is discussed 
later in this chapter (p. 252).
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The t statistic is used to test hypotheses about an unknown population mean, 
m, when the value of s is unknown. The formula for the t statistic has the same 
structure as the z-score formula, except that the t statistic uses the estimated stan-
dard error in the denominator.

The only difference between the t formula and the z-score formula is that the z-score 
uses the actual population variance, s2 (or the standard deviation), and the t formula 
uses the corresponding sample variance (or standard deviation) when the population 
value is not known.

z
M M

n
t

M

s

M

sM M

5
2m

s
5

2m

s
5

2m
5

2m
2 2/ // n

In this chapter, we have introduced the t statistic as a substitute for a z-score. The basic 
difference between these two is that the t statistic uses sample variance (s2) and the 
z-score uses the population variance (s2). To determine how well a t statistic approxi-
mates a z-score, we must determine how well the sample variance approximates the 
population variance.

In Chapter 4, we introduced the concept of degrees of freedom (p. 103). Reviewing 
briefly, you must know the sample mean before you can compute sample variance. This 
places a restriction on sample variability such that only n – 1 scores in a sample are 
independent and free to vary. The value n – 1 is called the degrees of freedom (or df) 
for the sample variance.

degrees of freedom 5 df 5 n – 1 (9.3)

Degrees of freedom describe the number of scores in a sample that are indepen-
dent and free to vary. Because the sample mean places a restriction on the value 
of one score in the sample, there are n – 1 degrees of freedom for a sample with 
n scores (see Chapter 4).

As the value of df for a sample increases, the better the sample variance, s2, represents 
the population variance, s2, and the better the t statistic approximates the z-score. This 
should make sense because the larger the sample (n) is, the better the sample represents 
its population. Thus, the degrees of freedom associated with s2 also describe how well 
t represents z.

Every sample from a population can be used to compute a z-score or a t statistic. If 
you select all of the possible samples of a particular size (n), and compute the z-score 
for each sample mean, then the entire set of z-scores form a z-score distribution. In 
the same way, you can compute the t statistic for every sample and the entire set of  
t values form a t distribution. As we saw in Chapter 7, the distribution of z-scores for 
sample means tends to be a normal distribution. Specifically, if the sample size is large 
(around n 5 30 or more) or if the sample is selected from a normal population, then 
the distribution of sample means is a nearly perfect normal distribution. In these same 
situations, the t distribution approximates a normal distribution, just as a t statistic 
approximates a z-score. How well a t distribution approximates a normal distribution 
is determined by degrees of freedom. In general, as the sample size (n) increases, the 
degrees of freedom (n – 1) also increase, and the better the t distribution approximates 
the normal distribution (Figure 9.1).

D e f i n i t i o n

degreeS of freedom 
and The t STaTiSTic

D e f i n i t i o n

The t diSTribuTion
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A t distribution is the complete set of t values computed for every possible  
random sample for a specific sample size (n) or a specific degrees of freedom 
(df). The t distribution approximates the shape of a normal distribution,  
especially for large samples or samples from a normal population.

The exact shape of a t distribution changes with degrees of freedom. In fact, statisti-
cians speak of a “family” of t distributions. That is, there is a different sampling distri-
bution of t for each possible number of degrees of freedom. As df gets very large, the  
t distribution gets closer in shape to a normal z-score distribution. Figure 9.1 shows that 
distributions of t are bell-shaped and symmetrical and have a mean of zero. However, 
the t distribution has more variability than a normal z distribution, especially when  
df values are small (see Figure 9.1). The t distribution tends to be flatter and more 
spread out, whereas the normal z distribution has more of a central peak.

The reason that the t distribution is flatter and more variable than the normal 
z-score distribution becomes clear if you look at the structure of the formulas for 
z and t. For both formulas, z and t, the top of the formula, M – m, can take on dif-
ferent values because the sample mean (M) varies from one sample to another. For 
z-scores, however, the bottom of the formula does not vary, provided that all of the 
samples are the same size and are selected from the same population. Specifically, 
all of the z-scores have the same standard error in the denominator, s 5 sM

2 / n , 
because the population variance and the sample size are the same for every sample. 
For t statistics, on the other hand, the bottom of the formula varies from one sample 
to another. Specifically, the sample variance (s2) changes from one sample to the 
next, so the estimated standard error also varies, s sM 5 2 / n .Thus, only the numer-
ator of the z-score formula varies, but both the numerator and the denominator of the  
t statistic vary. As a result, t statistics are more variable than are z-scores, and the 
t distribution is flatter and more spread out. As sample size and df increase, how-
ever, the variability in the t distribution decreases, and it more closely resembles 
a normal distribution.

D e f i n i t i o n

The ShaPe  
of The t diSTribuTion

0

Normal distribution
t distribution, df � 20 
t distribution, df � 5  

Figure 9.1

Distributions of the  
t statistic for different val-
ues of degrees of freedom 
are compared to a normal 
z-score distribution. Like 
the normal distribution, 
t distributions are bell-
shaped and symmetrical 
and have a mean of zero. 
However, t distributions 
have more variability, 
indicated by the flatter and 
more spread-out shape. 
The larger the value of  
df is, the more closely the  
t distribution approximates 
a normal distribution.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



254     CHAPTER 9 InTRoDUCTIon To THE t STATISTIC

Just as we used the unit normal table to locate proportions associated with z-scores, we use 
a t distribution table to find proportions for t statistics. The complete t distribution table is 
presented in Appendix B, page 575, and a portion of this table is reproduced in Table 9.1. 
The two rows at the top of the table show proportions of the t distribution contained in 
either one or two tails, depending on which row is used. The first column of the table lists 
degrees of freedom for the t statistic. Finally, the numbers in the body of the table are the  
t values that mark the boundary between the tails and the rest of the t distribution.

For example, to find proportions for the t distribution with df 5 3, you begin by 
locating df 5 3 in the first column. Then, use the top two rows of the table to identify a 
proportion in either one tail or two tails. For example, to find the t value that separates 
5% in the tail from the rest of the distribution, locate a proportion of 0.05 in the one-tail 
row at the top of the table. When you line up the 0.05 proportion in the top row with 
df 5 3 in the first column, you find a value of t 5 2.352 in the body of the table (see 
highlight in Table 9.1). Because the t distribution is symmetrical, 5% of the distribution 
is also located in the tail beyond t 5 –2.353 (see Figure 9.2). Finally, notice that a total 
of 10% (or 0.10) is contained in the two tails beyond t 5 62.353 (check the proportion 
value in the “two-tails combined” row at the top of the table).

A close inspection of the t distribution table in Appendix B demonstrates a point 
we made earlier: As the value for df increases, the t distribution becomes more similar  
to a normal distribution. For example, examine the column containing t values for a 
0.05 proportion in two tails. You will find that when df 5 1, the t values that separate 
the extreme 5% (0.05) from the rest of the distribution are t 5 612.706. As you read 
down the column, however, you will find that the critical t values become smaller and 
smaller, ultimately reaching 61.96. You should recognize 61.96 as the z-score values 
that separate the extreme 5% in a normal distribution. Thus, as df increases, the propor-
tions in a t distribution become more like the proportions in a normal distribution. When 
the sample size (and degrees of freedom) is sufficiently large, the difference between a 
t distribution and the normal distribution becomes negligible.

Caution: The t distribution table printed in this book has been abridged and does 
not include entries for every possible df value. For example, the table lists t values for 
df 5 40 and for df 5 60, but does not list any entries for df values between 40 and 
60. Occasionally, you will encounter a situation in which your t statistic has a df value 
that is not listed in the table. In these situations, you should look up the critical t for 
both of the surrounding df values listed and then use the larger value for t. If, for ex-
ample, you have df 5 53 (not listed), look up the critical t value for both df 5 40 and  
df 5 60 and then use the larger t value. If your sample t statistic is greater than the 
larger value listed, then you can be certain that the data are in the critical region, and 
you can confidently reject the null hypothesis.

deTermining 
ProPorTionS  

and ProbabiliTieS 
for t diSTribuTionS

Proportion in One Tail

0.25 0.10 0.05 0.025 0.01 0.005

Proportion in Two Tails Combined

df 0.50 0.20 0.10 0.05 0.02 0.01

1 1.000 3.078 6.314 12.706 31.821 63.657
2 0.816 1.886 2.920  4.303  6.965  9.925
3 0.765 1.638 2.353  3.182  4.541  5.841
4 0.741 1.533 2.132  2.776  3.747  4.604
5 0.727 1.476 2.015  2.571  3.365  4.032
6 0.718 1.440 1.943  2.447  3.143  3.707

TAblE 9.1

A portion of the t-distribution 
table. The numbers in the table 
are the values of t that separate 
the tail from the main body of the 
distribution. Proportions for one 
or two tails are listed at the top of 
the table, and df values for t are 
listed in the first column.
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–2.353 0 2.3530
t

5% 5%

Figure 9.2

The t distribution with  
df 5 3. Note that 5%  
of the distribution is 
located in the tail  
beyond t 5 2.353. Also, 
5% is in the tail beyond 
t 5 –2.353. Thus, a total 
proportion of 10% (0.10) 
is in the two tails beyond 
t 5 62.353.

 1. Under what circumstances is a t statistic used instead of a z-score for a hypothesis 
test?

 2. A sample of n 5 9 scores has SS 5 288.

 a. Compute the variance for the sample.

 b. Compute the estimated standard error for the sample mean.

 3. In general, a distribution of t statistics is flatter and more spread out than the stan-
dard normal distribution. (True or false?)

 4. A researcher reports a t statistic with df 5 20. How many individuals participated 
in the study?

 5. For df 5 15, find the value(s) of t associated with each of the following:

 a. The top 5% of the distribution.

 b. The middle 95% of the distribution.

 c. The middle 99% of the distribution.

 1. A t statistic is used instead of a z-score when the population standard deviation and variance 
are not known.

 2. a. s2 5 36  b. s
M
 5 2

 3. True.

 4. n 5 21

 5. a. t 5 11.753  b. t 5 62.131  c. t 5 62.947

l E A R n I n g  C H E C k

AnSwERS

HyPoTHESIS TESTS wITH THE t STATISTIC

In the hypothesis-testing situation, we begin with a population with an unknown 
mean and an unknown variance, often a population that has received some treat-
ment (Figure 9.3). The goal is to use a sample from the treated population (a treated 
sample) as the basis for determining whether the treatment has any effect.

9.2
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As always, the null hypothesis states that the treatment has no effect; specifically, 
H

0
 states that the population mean is unchanged. Thus, the null hypothesis provides a 

specific value for the unknown population mean. The sample data provide a value for 
the sample mean. Finally, the variance and estimated standard error are computed from 
the sample data. When these values are used in the t formula, the result becomes

t 5

2sample mean population mean

(from the daata) (hypothesized from

estimated

H0 )

standard error

(computed from the sample daata)

As with the z-score formula, the t statistic forms a ratio. The numerator measures the 
actual difference between the sample data (M) and the population hypothesis (m). The 
estimated standard error in the denominator measures how much difference is reason-
able to expect between a sample mean and the population mean. When the obtained  
difference between the data and the hypothesis (numerator) is much greater than  
expected (denominator), we obtain a large value for t (either large positive or large 
negative). In this case, we conclude that the data are not consistent with the hypothesis, 
and our decision is to “reject H

0
.” On the other hand, when the difference between the 

data and the hypothesis is small relative to the standard error, we obtain a t statistic near 
zero, and our decision is “fail to reject H

0
.”

The unknown population As mentioned earlier, the hypothesis test often concerns 
a population that has received a treatment. This situation is shown in Figure 9.3. Note 
that the value of the mean is known for the population before treatment. The question 
is whether the treatment influences the scores and causes the mean to change. In this 
case, the unknown population is the one that exists after the treatment is administered, 
and the null hypothesis simply states that the value of the mean is not changed by the 
treatment.

Although the t statistic can be used in the “before and after” type of research shown 
in Figure 9.3, it also permits hypothesis testing in situations for which you do not have 

µ = 30 µ = ?

Known population
before treatment

Unknown population
after treatment

T
r
e
a
t

m
e
n
t

Figure 9.3

The basic experimental 
situation for using the  
t statistic or the z-score is 
presented. It is assumed 
that the parameter m is 
known for the population 
before treatment. The 
purpose of the experiment 
is to determine whether 
the treatment has an  
effect. Note that the  
population after treatment 
has unknown values for 
the mean and the variance. 
We will use a sample to 
test a hypothesis about  
the population mean.
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a known population mean to serve as a standard. Specifically, the t test does not require 
any prior knowledge about the population mean or the population variance. All you 
need to compute a t statistic is a null hypothesis and a sample from the unknown popu-
lation. Thus, a t test can be used in situations for which the null hypothesis is obtained 
from a theory, a logical prediction, or just wishful thinking. For example, many surveys 
contain rating-scale questions to determine how people feel about controversial issues. 
Participants are presented with a statement and asked to express their opinion on a scale 
from 1 to 7, with 1 indicating “strongly agree” and 7 indicating “strongly disagree.” A 
score of 4 indicates a neutral position, with no strong opinion one way or the other. In 
this situation, the null hypothesis would state that there is no preference in the popula-
tion, H

0
: m 5 4. The data from a sample are then used to evaluate the hypothesis. Note 

that the researcher has no prior knowledge about the population mean and states a 
hypothesis that is based on logic.

The following research situation demonstrates the procedures of hypothesis testing with 
the t statistic. Note that this is another example of a null hypothesis that is founded in 
logic rather than prior knowledge of a population mean.

Infants, even newborns, prefer to look at attractive faces compared to less attractive 
faces (Slater, et al., 1998). In the study, infants from 1 to 6 days old were shown two 
photographs of women’s faces. Previously, a group of adults had rated one of the faces 
as significantly more attractive than the other. The babies were positioned in front of 
a screen on which the photographs were presented. The pair of faces remained on the 
screen until the baby accumulated a total of 20 seconds of looking at one or the other. 
The number of seconds looking at the attractive face was recorded for each infant. 
Suppose that the study used a sample of n 5 9 infants and the data produced an average 
of M 5 13 seconds for the attractive face with SS 5 72. Note that all of the available 
information comes from the sample. Specifically, we do not know the population mean 
or the population standard deviation.

Step 1 State the hypotheses and select an alpha level. Although we have no informa-
tion about the population of scores, it is possible to form a logical hypothesis about the 
value of m. In this case, the null hypothesis states that the infants have no preference 
for either face. That is, they should average half of the 20 seconds looking at each of 
the two faces. In symbols, the null hypothesis states

H
0
: m

attractive
 5 10 seconds

The alternative hypothesis states that there is a preference and one of the faces is 
preferred over the other. A directional, one-tailed test would specify which of the two 
faces is preferred, but the nondirectional alternative hypothesis is expressed as follows:

H
1
: m

attractive
  10 seconds

We set the level of significance at a 5 .05 for two tails.

Step 2 Locate the critical region. The test statistic is a t statistic because the popu-
lation variance is not known. Therefore, the value for degrees of freedom must be 
determined before the critical region can be located. For this sample

df 5 n – 1 5 9 – 1 5 8

hyPoTheSiS  
TeSTing examPle

E x A M P l E  9 . 1
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Consulting the t distribution table or a two-tailed test with a 5 .05 and df 5 8, 
you should find that the critical region consists of t values greater than 12.306 or 
less than 22.306. Figure 9.4 depicts the critical region in this t distribution.

Step 3 Calculate the test statistic. The t statistic typically requires much more com-
putation than is necessary for a z-score. Therefore, we recommend that you divide the 
calculations into a three-stage process as follows:

 a. First, calculate the sample variance. Remember that the population variance is 
unknown, and you must use the sample value in its place. (This is why we are 
using a t statistic instead of a z-score.)

s
SS

n

SS

df
2

1

72

8
95

2
5 5 5

 b. Next, use the sample variance (s2) and the sample size (n) to compute the 
estimated standard error. This value is the denominator of the t statistic  
and measures how much difference is reasonable to expect by chance  
between a sample mean and the corresponding population mean if there is  
no treatment effect.

s
s

nM 5 5 5 5
2 9

9
1 1

Finally, compute the t statistic for the sample data.

t
M

sM

5
2m

5
2

5
13 10

1
3 00.

Step 4 Make a decision regarding H
0
. The obtained t statistic of 3.00 falls into the critical 

region on the right-hand side of the t distribution (see Figure 9.4). Our statistical decision is 
to reject H

0
 and conclude that babies do show a preference when given a choice between an 

attractive and an unattractive face. Specifically, the average amount of time that the babies 
spent looking at the attractive face was significantly different from the 10 seconds that 
would be expected if there were no preference. As indicated by the sample mean, there is 
a tendency for the babies to spend more time looking at the attractive face.

Reject H0 Reject H0

df = 8

Fail to reject H0

+2.306–2.306
t

Figure 9.4

The critical region in the 
t distribution for a 5 .05 
and df 5 8.
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Two basic assumptions are necessary for hypothesis tests with the t statistic.

 1. The values in the sample must consist of independent observations.

In everyday terms, two observations are independent if there is no consis-
tent, predictable relationship between the first observation and the second. 
More precisely, two events (or observations) are independent if the occur-
rence of the first event has no effect on the probability of the second event. 
We examined specific examples of independence and non-independence in 
Box 8.1 (p. 220).

 2. The population that is sampled must be normal.

This assumption is a necessary part of the mathematics underlying the de-
velopment of the t statistic and the t distribution table. However, violating this 
assumption has little practical effect on the results obtained for a t statistic, 
especially when the sample size is relatively large. With very small samples, a 
normal population distribution is important. With larger samples, this assump-
tion can be violated without affecting the validity of the hypothesis test. If you 
have reason to suspect that the population distribution is not normal, use a large 
sample to be safe.

As we noted in Chapter 8 (p. 222), a variety of factors can influence the outcome of 
a hypothesis test. In particular, the number of scores in the sample and the magnitude 
of the sample variance both have a large effect on the t statistic and, thereby, influence 
the statistical decision. The structure of the t formula makes these factors easier to 
understand.

t
M

s
s

s

nM
M5

2m
5where

2

Because the estimated standard error, s
M
, appears in the denominator of the 

formula, a larger value for s
M
 produces a smaller value (closer to zero) for t. Thus, 

any factor that influences the standard error also affects the likelihood of reject-
ing the null hypothesis and finding a significant treatment effect. The two factors  
that determine the size of the standard error are the sample variance, s2, and the 
sample size, n.

The estimated standard error is directly related to the sample variance so that the 
larger the variance, the larger the error. Thus, large variance means that you are less 
likely to obtain a significant treatment effect. In general, large variance is bad for infer-
ential statistics. Large variance means that the scores are widely scattered, which makes 
it difficult to see any consistent patterns or trends in the data. In general, high variance 
reduces the likelihood of rejecting the null hypothesis.

On the other hand, the estimated standard error is inversely related to the num-
ber of scores in the sample. The larger the sample is, the smaller the error is. If all 
other factors are held constant, large samples tend to produce bigger t statistics and 
therefore are more likely to produce significant results. For example, a 2-point mean 
difference with a sample of n 5 4 may not be convincing evidence of a treatment 
effect. However, the same 2-point difference with a sample of n 5 100 is much more 
compelling.

aSSumPTionS  
of The t TeST

The influence  
of SamPle Size  

and SamPle 
Variance
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MEASURIng EffECT SIzE foR THE t STATISTIC

In Chapter 8, we noted that one criticism of a hypothesis test is that it does not really 
evaluate the size of the treatment effect. Instead, a hypothesis test simply determines 
whether the treatment effect is greater than chance, where “chance” is determined by 
the standard error and the alpha level. In particular, it is possible for a very small treat-
ment effect to be “statistically significant,” especially when the sample size is very 
large. To correct for this problem, it is recommended that the results from a hypothesis 
test be accompanied by a report of effect size, such as Cohen’s d.

When Cohen’s d was originally introduced (p. 230), the formula was presented as

Cohen's
mean difference

standard deviation
d 5 55

m 2m

s
treatment no treatment

Cohen defined this measure of effect size in terms of the population mean differ-
ence and the population standard deviation. However, in most situations the population 
values are not known and you must substitute the corresponding sample values in their 
place. When this is done, many researchers prefer to identify the calculated value as 
an “estimated d” or name the value after one of the statisticians who first substituted 
sample statistics into Cohen’s formula (e.g., Glass’s g or Hedges’s g). For hypothesis 
tests using the t statistic, the population mean with no treatment is the value specified 
by the null hypothesis. However, the population mean with treatment and the standard 
deviation are both unknown. Therefore, we use the mean for the treated sample and the 
standard deviation for the sample after treatment as estimates of the unknown param-
eters. With these substitutions, the formula for estimating Cohen’s d becomes

estimated
mean difference

sample standard
d 5

ddeviation
5

2mM

s  
(9.4)

The numerator measures that magnitude of the treatment effect by finding the differ-
ence between the mean for the treated sample and the mean for the untreated population 
(m from H

0
). The sample standard deviation in the denominator standardizes the mean 

9.3

eSTimaTed cohen’S d

 1. A sample of n 5 4 individuals is selected from a population with a mean of  
m 5 40. A treatment is administered to the individuals in the sample and, after 
treatment, the sample has a mean of M 5 44 and a variance of s2 5 16.

 a. Is this sample sufficient to conclude that the treatment has a significant effect? 
Use a two-tailed test with a 5 .05.

 b. If all other factors are held constant and the sample size is increased to n 5 16, 
is the sample sufficient to conclude that the treatment has a significant effect? 
Again, use a two-tailed test with a 5 .05.

 1. a.  H
0
: m 5 40 even after the treatment. With n 5 4, the estimated standard error is 2, and  

t 5 4
2  5 2.00. With df 5 3, the critical boundaries are set at t 5 63.182. Fail to reject  

H
0
 and conclude that the treatment does not have a significant effect.

 b. With n 5 16, the estimated standard error is 1 and t 5 4.00. With df 5 15, the critical 
boundary is 62.131. The t value is beyond the critical boundary, so we reject H

0
 and 

conclude that the treatment does have a significant effect.

l E A R n I n g  C H E C k

AnSwERS

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTIon 9.3  /  MEASURIng EffECT SIzE foR THE t STATISTIC    261

difference into standard deviation units. Thus, an estimated d of 1.00 indicates that the 
size of the treatment effect is equivalent to one standard deviation. The following ex-
ample demonstrates how the estimated d is used to measure effect size for a hypothesis 
test using a t statistic.

For the infant face-preference study in Example 9.1, the babies averaged M 5 13 out 
of 20 seconds looking at the attractive face. If there were no preference (as stated by 
the null hypothesis), the population mean would be m 5 10 seconds. Thus, the results 
show a 3-second difference between the mean for the sample (M 5 13) and the mean 
that would be expected if there were no preference between the two faces (m 5 10). 
Also, for this study the sample standard deviation is

s
SS

df
5 5 5 5

72

8
9 3

Thus, Cohen’s d for this example is estimated to be

Cohen's d
M

s
5

2m
5

2
5

13 10

3
1 00.

According to the standards suggested by Cohen (Table 8.2, p. 232), this is a large 
treatment effect.

To help you visualize what is measured by Cohen’s d, we have constructed a set of  
n 5 9 scores with a mean of M 5 13 and a standard deviation of s 5 3 (the same values 
as in Examples 9.1 and 9.2). The set of scores is shown in Figure 9.5. Notice that the 
figure also includes an arrow that locates m 5 10. Recall that m 5 10 is the value speci-
fied by the null hypothesis and identifies what the mean ought to be if the treatment has 
no effect. Clearly, our sample is not centered around m 5 10. Instead, the scores have 
been shifted to the right so that the sample mean is M 5 13. This shift, from 10 to 13, 
is the 3-point mean difference that was caused by the treatment effect. Also notice that 

E x A M P l E  9 . 2

Time spent looking at the attractive face (in seconds)

Fr
e

q
u

e
n

c
y

1

11 12 14 16 17 188 10 13 159

M � 13

s � 3

� � 10
(from H0)

s � 3

2

3

Figure 9.5

The sample distribution 
for the scores that were 
used in Examples 9.1 and 
9.2. The population mean, 
m 5 10 seconds, is  
the value that would be 
expected if attractive-
ness has no effect on the 
infants’ behavior. Note 
that the sample mean is 
displaced away from  
m 5 10 by a distance 
equal to one standard 
deviation.
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the 3-point mean difference is exactly equal to the standard deviation. Thus, the size of 
the treatment effect is equal to 1 standard deviation. In other words, Cohen’s d 5 1.00.

An alternative method for measuring effect size is to determine how much of the variability 
in the scores is explained by the treatment effect. The concept behind this measure is that 
the treatment causes the scores to increase (or decrease), which means that the treatment is 
causing the scores to vary. If we can measure how much of the variability is explained by 
the treatment, we can obtain a measure of the size of the treatment effect.

To demonstrate this concept, we use the data from the hypothesis test in Example 9.1. 
Recall that the null hypothesis stated that the treatment (the attractiveness of the faces) 
has no effect on the infants’ behavior. According to the null hypothesis, the infants 
should show no preference between the two photographs, and therefore should spend 
an average of m 5 10 out of 20 seconds looking at the attractive face.

However, if you look at the data in Figure 9.5, the scores are not centered around 
m 5 10. Instead, the scores are shifted to the right so that they are centered around 
the sample mean, M 5 13. This shift is the treatment effect. To measure the size of  
the treatment effect, we calculate deviations from the mean and the sum of squared 
deviations, SS, in two different ways.

Figure 9.6(a) shows the original set of scores. For each score, the deviation from  
m 5 10 is shown as a colored line. Recall that m 5 10 comes from the null hypothesis 
and represents the population mean if the treatment has no effect. Note that almost all 
of the scores are located on the right-hand side of m 5 10. This shift to the right is 
the treatment effect. Specifically, the preference for the attractive face has caused the 
infants to spend more time looking at the attractive photograph, which means that their 

meaSuring  
The PercenTage  

of Variance 
exPlained, r2

 8 9 10 11 12 13 14 15 16   17  18

 No effect
µ � 10

 5 6 7 8 9  10  11 12 13   14  15 

No effect 
µ � 10

Original scores, including the treatment effect

Adjusted scores with the treatment effect removed

(a)

(b)

Figure 9.6

Deviations from m 5 10 
(no treatment effect) for 
the scores in Example 9.1. 
The colored lines in part 
(a) show the deviations 
for the original scores, 
including the treatment 
effect. In part (b) the 
colored lines show the 
deviations for the adjusted 
scores after the treatment 
effect has been removed.
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scores are generally greater than 10. Thus, the treatment has pushed the scores away 
from m 5 10 and has increased the size of the deviations.

Next, we see what happens if the treatment effect is removed. In this example, the 
treatment has a 3-point effect (the average increases from m 5 10 to M 5 13). To  
remove the treatment effect, we simply subtract 3 points from each score. The adjusted 
scores are shown in Figure 9.6(b) and, once again, the deviations from m 5 10 are 
shown as colored lines. First, notice that the adjusted scores are centered at m 5 10, 
indicating that there is no treatment effect. Also notice that the deviations, the colored 
lines, are noticeably smaller when the treatment effect is removed.

To measure how much the variability is reduced when the treatment effect is  
removed, we compute the sum of squared deviations, SS, for each set of scores.  
The left-hand columns of Table 9.2 show the calculations for the original scores  
[Figure 9.6(a)], and the right-hand columns show the calculations for the adjusted 
scores [Figure 9.6(b)]. Note that the total variability, including the treatment effect, is 
SS 5 153. However, when the treatment effect is removed, the variability is reduced to 
SS 5 72. The difference between these two values, 153 – 72 5 81 points, is the amount 
of variability that is accounted for by the treatment effect. This value is usually reported 
as a proportion or percentage of the total variability:

variability accounted for

total variability
5

881

153
0 5294 52 945 . . %( )

Thus, removing the treatment effect reduces the variability by 52.94%. This value is 
called the percentage of variance accounted for by the treatment and is identified as r2.

Rather than computing r2 directly by comparing two different calculations for SS, the 
value can be found from a single equation based on the outcome of the t test.

r
t

t df
2

2

2
5

1  
(9.5)

The letter r is the traditional symbol used for a correlation, and the concept of r2 is 
discussed again when we consider correlations in Chapter 14. Also, in the context of 
t statistics, the percentage of variance that we are calling r2 is often identified by the 
Greek letter omega, squared (2).

Calculation of SS including  
the treatment effect

Calculation of SS after the  
treatment effect is removed

Score
Deviation 

from m 5 10
Squared 

Deviation
Adjusted 

Score
Deviation 

from m 5 10
Squared 

Deviation

 8 22 4  8 2 3 5  5 25 25

10 0 0 10 2 3 5  7 23 9

12 2 4 12 2 3 5  9 21 1

12 2 4 12 2 3 5  9 21 1

13 3 9 13 2 3 5 10 0 0

13 3 9 13 2 3 5 10 0 0

15 5 25 15 2 3 5 12 2 4

17 7 49 17 2 3 5 14 4 16

17 7 49 17 2 3 5 14 4 16

SS 5 153 SS 5 72

TAblE 9.2

Calculation of SS, the sum of 
squared deviations, for the data 
in Figure 9.6. The first three  
columns show the calculations 
for the original scores, includ-
ing the treatment effect. The last 
three columns show the calcu-
lations for the adjusted scores 
after the treatment effect has 
been removed.
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For the hypothesis test in Example 9.1, we obtained t 5 3.00 with df 5 8. These 
values produce

r 2
2

2

3

3 8

9

17
0 5294 52 945

1
5 5 . . %( )

Note that this is exactly the same as the value we obtained with the direct calculation 
of the percentage of variability accounted for by the treatment.

Interpreting r2 In addition to developing the Cohen’s d measure of effect size, 
Cohen (1988) also proposed criteria for evaluating the size of a treatment effect that  
is measured by r2. The criteria were actually suggested for evaluating the size of a  
correlation, r, but are easily extended to apply to r2. Cohen’s standards for interpreting 
r2 are shown in Table 9.3.

According to these standards, the data we constructed for Examples 9.1 and 9.2 
show a very large effect size with r2 5 0.5294.

As a final note, we should remind you that, although sample size affects the hy-
pothesis test, this factor has little or no effect on measures of effect size. In particular, 
estimates of Cohen’s d are not influenced at all by sample size, and measures of r2 are 
only slightly affected by changes in the size of the sample. The sample variance, on the 
other hand, influences hypothesis tests and measures of effect size. Specifically, high 
variance reduces both the likelihood of rejecting the null hypothesis and measures of 
effect size.

An alternative technique for describing the size of a treatment effect is to compute an 
estimate of the population mean after treatment. For example, if the mean before treat-
ment is known to be m 5 80 and the mean after treatment is estimated to be m 5 86, 
then we can conclude that the size of the treatment effect is around 6 points.

Estimating an unknown population mean involves constructing a confidence  
interval. A confidence interval is based on the observation that a sample mean tends 
to provide a reasonably accurate estimate of the population mean. The fact that a 
sample mean tends to be near to the population mean implies that the population 
mean should be near to the sample mean. For example, if we obtain a sample mean 
of M 5 86, we can be reasonably confident that the population mean is around 86. 
Thus, a confidence interval consists of an interval of values around a sample mean, 
and we can be reasonably confident that the unknown population mean is located 
somewhere in the interval.

A confidence interval is an interval, or range of values, centered around a 
sample statistic. The logic behind a confidence interval is that a sample statistic, 
such as a sample mean, should be relatively near to the corresponding population 
parameter. Therefore, we can confidently estimate that the value of the parameter 
should be located in the interval.

confidence 
inTerValS for 

eSTimaTing 

D e f i n i t i o n

Percentage of Variance Explained, r2

r2 5 0.01 Small effect

r2 5 0.09 Medium effect

r2 5 0.25 Large effect

Table 9.3

Criteria for interpreting the 
value of r2 as proposed by 
Cohen (1988).
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The construction of a confidence interval begins with the observation that every sample 
mean has a corresponding t value defined by the equation

t
M

sM

5
2m

Although the values for M and s
M

 are available from the sample data, we cannot use 
the equation to calculate t because the value for m is unknown. Instead of calculating the 
t value, for a confidence interval we estimate the t value. For example, if the sample has 
n 5 9 scores, then the t statistic has df 5 8, and the distribution of all possible t values 
can be pictured as in Figure 9.7. Notice that the t values pile up around t 5 0, so we can 
estimate that the t value for our sample should have a value around 0. Furthermore, the 
t distribution table lists a variety of different t values that correspond to specific propor-
tions of the t distribution. With df 5 8, for example, 80% of the t values are located 
between t 5 11.397 and t 5 –1.397. To obtain these values, simply look up a two-tailed 
proportion of 0.20 (20%) for df 5 8. Because 80% of all of the possible t values are 
located between 61.397, we can be 80% confident that our sample mean corresponds to 
a t value in this interval. Similarly, we can be 95% confident that the mean for a sample 
of n 5 9 scores corresponds to a t value between 12.306 and –2.306. Notice that we  
are able to estimate the value of t with a specific level of confidence. To construct a 
confidence interval for m, we plug the estimated t value into the t equation, and then we 
can calculate the value of m.

Before we demonstrate the process of constructing a confidence interval for an  
unknown population mean, we simplify the calculations by regrouping the terms in the  
t equation. Because the goal is to compute the value of m, we use simple algebra to 
solve the equation for m. The result is

m 5 M 6 ts
M

 (9.5)

The process of using this equation to construct a confidence interval is demonstrated 
in the following example.

Example 9.1 describes a study in which infants displayed a preference for the more 
attractive face by looking at it, instead of the less attractive face, for the majority of 
a 20-second viewing period. Specifically, a sample of n 5 9 infants spent an average 

conSTrucTing  
a confidence 

inTerVal

E x A M P l E  9 . 3

t distribution
df = 8

t = �1.397t = �1.397
t = 0

Middle 80%
of t distribution

Figure 9.7

The distribution of t statis-
tics with df 5 8. The  
t values pile up around  
t 5 0 and 80% of all of the 
possible values are located 
between t 5 –1.397 and  
t 5 11.397.
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of M 5 13 seconds out of a 20-second period looking at the more attractive face. The 
data produced an estimated standard error of s

M
 5 1. We use this sample to construct a 

confidence interval to estimate the mean amount of time that the population of infants 
spends looking at the more attractive face. That is, we construct an interval of values 
that is likely to contain the unknown population mean.

Again, the estimation formula is

m 5 M 6 t(s
M
)

In the equation, the value of M 5 13 and s
M
 5 1 are obtained from the sample data. 

The next step is to select a level of confidence that determines the value of t in the 
equation. The most commonly used confidence level is probably 95%, but values of 
80%, 90%, and 99% are also common. For this example, we use a confidence level 
of 80%, which means that we construct the confidence interval so that we are 80% 
confident that the population mean is actually contained in the interval. Because we 
are using a confidence level of 80%, the resulting interval is called the 80% confidence 
interval for m.

To obtain the value for t in the equation, we simply estimate that the t statistic  
for our sample is located somewhere in the middle 80% of the t distribution. With df 
5 n – 1 5 8, the middle 80% of the distribution is bounded by t values of 11.397 
and –1.397 (see Figure 9.7). Using the sample data and the estimated range of  
t values, we obtain

m 5 M 6 t(s
M
) 5 13 6 1.397(1.00) 5 13 6 1.397

At one end of the interval, we obtain m 5 13 1 1.397 5 14.397, and at the other end 
we obtain m 5 13 – 1.397 5 11.603. Our conclusion is that the average time looking 
at the more attractive face for the population of infants is between m 511.603 seconds 
and m 5 14.397 seconds, and we are 80% confident that the true population mean is 
located within this interval. The confidence comes from the fact that the calculation was 
based on only one assumption. Specifically, we assumed that the t statistic was located 
between 11.397 and –1.397, and we are 80% confident that this assumption is correct 
because 80% of all of the possible t values are located in this interval. Finally, note that 
the confidence interval is constructed around the sample mean. As a result, the sample 
mean, M 5 13, is located exactly in the center of the interval.

Two characteristics of the confidence interval should be mentioned. First, notice what 
happens to the width of the interval when you change the level of confidence (the 
percent confidence). To gain more confidence in your estimate, you must increase the 
width of the interval. Conversely, to have a smaller, more precise interval, you must give 
up confidence. In the estimation formula, the percentage of confidence influences the 
value of t. A larger level of confidence (the percentage) produces a larger t value and a 
wider interval. This relationship can be seen in Figure 9.7. In the figure, we identified 
the middle 80% of the t distribution to find an 80% confidence interval. It should be 
obvious that if we were to increase the confidence level to 95%, it would be necessary 
to increase the range of t values, and thereby increase the width of the interval.

Second, note what happens to the width of the interval if you change the sample size. 
This time the basic rule is as follows: The bigger the sample (n), the smaller the inter-
val. This relationship is straightforward if you consider the sample size as a measure 
of the amount of information. A bigger sample gives you more information about the 
population and allows you to make a more precise estimate (a narrower interval). The 
sample size controls the magnitude of the standard error in the estimation formula. As 

facTorS affecTing 
The widTh  

of a confidence 
inTerVal

To have 80% in the middle, 
there must be 20% (or .20) in 
the tails. To find the t values, 
look under two tails, .20 in 
the t table.
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the sample size increases, the standard error decreases, and the interval gets smaller. 
Finally, we should also note that the width of the confidence interval is also related to 
the sample variance. The variance contributes directly to the magnitude of the standard 
error so that an increase in variance produces an increase in the standard error and, 
thereby, increases the width of the confidence interval.

Because confidence intervals are influenced by sample size, they do not provide 
an unqualified measure of absolute effect size and are not an adequate substitute for 
Cohen’s d or r2. Nonetheless, they can be used in a research report to provide a descrip-
tion of the size of the treatment effect.

 1. If all other factors are held constant, an 80% confidence interval is wider than a 
90% confidence interval. (True or false?)

 2. If all other factors are held constant, a confidence interval computed from a sample 
of n 5 25 is wider than a confidence interval computed from a sample of n 5 100. 
(True or false?)

 1. False. Greater confidence requires a wider interval.

 2. True. The smaller sample produces a wider interval.

l E A R n I n g  C H E C k

AnSwERS

In THE lITERATURE
REPoRTIng THE RESUlTS of A t TEST

In Chapter 8, we noted the conventional style for reporting the results of a hypoth-
esis test, according to APA format. First, recall that a scientific report typically 
uses the term significant to indicate that the null hypothesis has been rejected and 
the term not significant to indicate failure to reject H

0
. Additionally, there is a 

prescribed format for reporting the calculated value of the test statistic, degrees of 
freedom, and alpha level for a t test. This format parallels the style introduced in 
Chapter 8 (p. 218).

In Example 9.1 we calculated a t statistic of 3.00 with df 5 8, and we decided to 
reject H

0
 with alpha set at .05. Using the same data, we obtained r2 5 0.5294 (52.94%) 

for the percentage of variance explained by the treatment effect. In a scientific report, 
this information is conveyed in a concise statement, as follows:

The infants spent an average of M 5 13 out of 20 seconds looking at the attractive 
face, with SD 5 3.00. Statistical analysis indicates that the time spent looking at  
the attractive face was significantly greater than would be expected if there were no 
preference, t(8) 5 3.00, p , .05, r2 5 0.5294.

The first statement reports the descriptive statistics, the mean (M 5 13) and 
the standard deviation (SD 5 3), as previously described (Chapter 4, p. 109). The 
next statement provides the results of the inferential statistical analysis. Note that 
the degrees of freedom are reported in parentheses immediately after the symbol 
t. The value for the obtained t statistic follows (3.00), and next is the probability 
of committing a Type I error (less than 5%). Finally, the effect size is reported,  
r2 5 52.94%. If the 80% confidence interval from Example 9.3 were included in 
the report as a description of effect size, it would be added after the results of the 
hypothesis test as follows:

t(8) 5 3.00, p , .05, 80% CI [11.603, 14.397].
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Often, researchers use a computer to perform a hypothesis test like the one in 
Example 9.1. In addition to calculating the mean, standard deviation, and the t statis-
tic for the data, the computer usually calculates and reports the exact probability (or 
a level) associated with the t value. In Example 9.1, we determined that any t value 
beyond 62.306 has a probability of less than .05 (see Figure 9.4). Thus, the obtained  
t value, t 5 3.00, is reported as being very unlikely, p , .05. A computer printout, how-
ever, would have included an exact probability for our specific t value.

Whenever a specific probability value is available, you are encouraged to use  
it in a research report. For example, the computer analysis of these data reports  
an exact p value of p 5 .017, and the research report would state “t(8) 5 3.00,  
p 5 .017” instead of using the less specific “p , .05.” As one final caution, we 
note that occasionally a t value is so extreme that the computer reports p 5 0.000. 
The zero value does not mean that the probability is literally zero; instead, it means 
that the computer has rounded off the probability value to three decimal places and 
obtained a result of 0.000. In this situation, you do not know the exact probability 
value, but you can report p , .001.

 1. A sample of n 5 16 individuals is selected from a population with a mean of  
m 5 80. A treatment is administered to the sample and, after treatment, the sample 
mean is found to be M 5 86 with a standard deviation of s 5 8.

 a. Does the sample provide sufficient evidence to conclude that the treatment has 
a significant effect? Test with a 5 .05.

 b. Compute Cohen’s d and r2 to measure the effect size.

 c. Find the 95% confidence interval for the population mean after treatment.

 2. How does sample size influence the outcome of a hypothesis test and measures of 
effect size? How does the standard deviation influence the outcome of a hypothesis 
test and measures of effect size?

 1. a.  The estimated standard error is 2 points and the data produce t 5 6
2  5 3.00. With  

df 5 15, the critical values are t 5 62.131, so the decision is to reject H
0
 and conclude 

that there is a significant treatment effect.

 b. For these data, d 5 6
8  5 0.75 and r2 5 9

24  5 0.375 or 37.5%.

 c. For 95% confidence and df 5 15, use t 5 62.131. The confidence interval is m 5 86 
62.131(2) and extends from 81.738 to 90.262.

 2. Increasing sample size increases the likelihood of rejecting the null hypothesis but has little 
or no effect on measures of effect size. Increasing the sample variance reduces the likeli-
hood of rejecting the null hypothesis and reduces measures of effect size.

l E A R n I n g  C H E C k

AnSwERS

The statement p , .05 was 
explained in Chapter 8,  
page 218.

DIRECTIonAl HyPoTHESES AnD onE-TAIlED TESTS

As noted in Chapter 8, the nondirectional (two-tailed) test is more commonly used than 
the directional (one-tailed) alternative. On the other hand, a directional test may be used 
in some research situations, such as exploratory investigations or pilot studies or when 
there is a priori justification (for example, a theory or previous findings). The follow-
ing example demonstrates a directional hypothesis test with a t statistic, using the same 
experimental situation presented in Example 9.1.

9.4
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The research question is whether attractiveness affects the behavior of infants looking 
at photographs of women’s faces. The researcher is expecting the infants to prefer the 
more attractive face. Therefore, the researcher predicts that the infants will spend more 
than half of the 20-second period looking at the attractive face. For this example, we 
use the same sample data that were used in the original hypothesis test in Example 9.1. 
Specifically, the researcher tested a sample of n 5 9 infants and obtained a mean of  
M 5 13 seconds looking at the attractive face with SS 5 72.

Step 1 State the hypotheses, and select an alpha level. With most directional tests, it is 
usually easier to state the hypothesis in words, including the directional prediction, and 
then convert the words into symbols. For this example, the researcher is predicting that 
attractiveness will cause the infants to increase the amount of time they spend looking 
at the attractive face; that is, more than half of the 20 seconds should be spent looking 
at the attractive face. In general, the null hypothesis states that the predicted effect will 
not happen. For this study, the null hypothesis states that the infants will not spend more 
than half of the 20 seconds looking at the attractive face. In symbols,

H
0
: m

attractive
  10 seconds  (Not more than half of the 20 seconds looking 

at the attractive face)

Similarly, the alternative states that the treatment will work. In this case, H
1
 states that 

the infants will spend more than half of the time looking at the attractive face. In symbols,

H
1
: m

attractive
 . 10 seconds  (More than half of the 20 seconds looking at 

the attractive face)

This time, we set the level of significance at a 5 .01.

Step 2 Locate the critical region. In this example, the researcher is predicting that the 
sample mean (M) will be greater than 10 seconds. Thus, if the infants average more than 
10 seconds looking at the attractive face, the data will provide support for the researcher’s 
prediction and will tend to refute the null hypothesis. Also note that a sample mean greater 
than 10 will produce a positive value for the t statistic. Thus, the critical region for the 
one-tailed test will consist of positive t values located in the right-hand tail of the distribu-
tion. To find the critical value, you must look in the t distribution table using the one-tail 
proportions. With a sample of n 5 9, the t statistic has df 5 8; using a 5 .01, you should 
find a critical value of t 5 2.896. Therefore, if we obtain a t statistic greater than 2.896, 
we will reject the null hypothesis and conclude that the infants show a significant prefer-
ence for the attractive face. Figure 9.8 shows the one-tailed critical region for this test.

Step 3 Calculate the test statistic. The computation of the t statistic is the same for 
either a one-tailed or a two-tailed test. Earlier (in Example 9.1), we found that the data 
for this experiment produce a test statistic of t 5 3.00.

Step 4 Make a decision. The test statistic is in the critical region, so we reject H
0
. In 

terms of the experimental variables, we have decided that the infants show a preference 
and spend significantly more time looking at the attractive face than they do looking 
at the unattractive face. In a research report, the results would be presented as follows:

The time spent looking at the attractive face was significantly greater than would be 
expected if there were no preference, t(8) 5 3.00, p , .01, one tailed.

Note that the report clearly acknowledges that a one-tailed test was used.

E x A M P l E  9 . 4
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In step 2 of Example 9.4, we determined that the critical region is in the right-hand tail of the 
distribution. However, it is possible to divide this step into two stages that eliminate the need 
to determine which tail (right or left) should contain the critical region. The first stage in this 
process is simply to determine whether the sample mean is in the direction predicted by the 
original research question. For this example, the researcher predicted that the infants would 
prefer the attractive face and spend more time looking at it. Specifically, the researcher 
expects the infants to spend more than 10 out of 20 seconds focused on the attractive face. 
The obtained sample mean, M 5 13 seconds, is in the correct direction. This first stage 
eliminates the need to determine whether the critical region is in the left- or right-hand tail. 
Because we already have determined that the effect is in the correct direction, the sign of 
the t statistic (1 or –) no longer matters. The second stage of the process is to determine 
whether the effect is large enough to be significant. For this example, the requirement is 
that the sample produces a t statistic greater than 2.896. If the magnitude of the t statistic, 
independent of its sign, is greater than 2.896, then the result is significant and H

0
 is rejected.

The criTical region 
for a one-Tailed TeST

t distribution
df = 8

t = �2.896
t = 0

Reject H0

Figure 9.8

The one-tailed critical 
region for the hypothesis 
test in Example 9.4 with 
df 5 8 and a 5 .01.

 1. A new over-the-counter cold medication includes a warning label stating that 
it “may cause drowsiness.” A researcher would like to evaluate this effect. It is 
known that under regular circumstances the distribution of reaction times is normal 
with m 5 200. A sample of n 5 9 participants is obtained. Each person is given 
the new cold medication, and, 1 hour later, reaction time is measured for each  
individual. The average reaction time for this sample is M 5 206 with SS 5 648. 
The researcher would like to use a hypothesis test with a 5 .05 to evaluate the 
effect of the medication.

 a. Use a two-tailed test with a 5 .05 to determine whether the medication has  
a significant effect on reaction time.

 b. Write a sentence that demonstrates how the outcome of the hypothesis test 
would appear in a research report.

 c. Use a one-tailed test with a 5 .05 to determine whether the medication  
produces a significant increase in reaction time.

 d. Write a sentence that demonstrates how the outcome of the one-tailed  
hypothesis test would appear in a research report.

l E A R n I n g  C H E C k
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 1. a.  For the two-tailed test, H
0
: m 5 200. The sample variance is 81, the estimated standard 

error is 3, and t 5 6
3  5 2.00. With df 5 8, the critical boundaries are 6 2.306. Fail to 

reject the null hypothesis.

 b. The result indicates that the medication does not have a significant effect on reaction 
time, t(8) 5 2.00, p . .05.

 c. For a one-tailed test, H
0
: m  200 (no increase). The data produce t 5 6

3  5 2.00. With  
df 5 8, the critical boundary is 1.860. Reject the null hypothesis.

 d. The results indicate that the medication produces a significant increase in reaction time, 
t(8) 5 2.00, p , .05, one tailed.

AnSwERS

Summary

 1. The t statistic is used instead of a z-score for hypoth-
esis testing when the population standard deviation (or 
variance) is unknown.

 2. To compute the t statistic, you must first calculate the 
sample variance (or standard deviation) as a substitute 
for the unknown population value.

sample variance 5 5s
SS

df
2

  Next, the standard error is estimated by using s2, 
instead of s2, in the formula for standard error. The 
estimated standard error is calculated in the following 
manner:

estimated standard error 5 5s
s

nM

2

  Finally, a t statistic is computed using the estimated 
standard error. The t statistic is used as a substitute for 
a z-score, which cannot be computed when the popu-
lation variance or standard deviation is unknown.

t
M

sM

5
2m

 3. The structure of the t formula is similar to that of the 
z-score in that

z tor
sample mean population mean

(estimate
5

2

dd) standard error

  For a hypothesis test, you hypothesize a value for 
the unknown population mean and plug the hypoth-
esized value into the equation along with the sample 
mean and the estimated standard error, which are 
computed from the sample data. If the hypothesized 

mean produces an extreme value for t, then you con-
clude that the hypothesis was wrong.

 4. There is a family of t distributions, with the exact 
shape of a particular distribution of t values depending 
on degrees of freedom (n – 1). Therefore, the critical  
t values depend on the value for df associated with the 
t test. As df increases, the shape of the t distribution 
approaches a normal distribution.

 5. When a t statistic is used for a hypothesis test,  
Cohen’s d can be computed to measure effect size. In 
this situation, the sample standard deviation is used in 
the formula to obtain an estimated value for d:

estimated
mean difference

standard deviati
d 5

oon
5

2mM

s

 6. A second measure of effect size is r2, which measures 
the percentage of the variability that is accounted  
for by the treatment effect. This value is computed  
as follows:

r
t

t df
2

2

2
5

1

 7. An alternative method for describing the size of a 
treatment effect is to use a confidence interval for m. 
A confidence interval is a range of values that  
estimates the unknown population mean. The  
confidence interval uses the t equation, solved for  
the unknown mean:

m 5 M 6 t(s
M
)

  First, select a level of confidence and then look  
up the corresponding t values to use in the equation.  
For example, for 95% confidence, use the range  
of t values that determine the middle 95% of the 
distribution.
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Key TermS
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degrees of freedom (252)

t distribution (252)

estimated d (260)

percentage of variance accounted  
for by the treatment (r2) (263)

confidence interval (264)

reSourceS

Go to CengageBrain.com to access Psychology CourseMate, where you will find an 
interactive eBook, glossaries, flashcards, quizzes, statistics workshops, and more.

If your professor has assigned Aplia:

1. Sign in to your account.
2. Complete the corresponding exercises as required by your professor.
3. When finished, click “Grade It Now” to see which areas you have mastered, which 

areas need more work, and detailed explanations of every answer.

General instructions for using SPSS are presented in Appendix D. Following are de-
tailed instructions for using SPSS to perform the t Test presented in this chapter.

Data Entry

Enter all of the scores from the sample in one column of the data editor, probably 
VAR00001.

Data Analysis

 1. Click Analyze on the tool bar, select Compare Means, and click on  
One-Sample t Test.

 2. Highlight the column label for the set of scores (VAR0001) in the left box and 
click the arrow to move it into the Test Variable(s) box.

 3. In the Test Value box at the bottom of the One-Sample t Test window, enter the 
hypothesized value for the population mean from the null hypothesis. Note: The 
value is automatically set at zero until you type in a new value.

 4. In addition to performing the hypothesis test, the program computes a confidence 
interval for the population mean difference. The confidence level is automatically 
set at 95%, but you can select Options and change the percentage.

 5. Click OK.
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SPSS Output

We used the SPSS program to analyze the data from the infants-and-attractive-faces 
study in Example 9.1, and the program output is shown in Figure 9.9. The output  
includes a table of sample statistics with the mean, standard deviation, and standard 
error for the sample mean. A second table shows the results of the hypothesis test,  
including the values for t, df, and the level of significance (the p value for the test),  
as well as the mean difference from the hypothesized value of m 5 10 and a 95%  
confidence interval for the mean difference. To obtain a 95% confidence interval for the 
mean, simply add m 5 10 points to the values in the table.

focuS on Problem SolVing

 1. The first problem we confront in analyzing data is determining the appropriate 
statistical test. Remember that you can use a z-score for the test statistic only 
when the value for s is known. If the value for s is not provided, then you must 
use the t statistic.

 2. For the t test, the sample variance is used to find the value for the estimated 
standard error. Remember to use n – 1 in the denominator when computing the 
sample variance (see Chapter 4). When computing estimated standard error,  
use n in the denominator.

demonSTraTion 9.1

a hyPoTheSiS TeST wiTh The t STaTiSTic

A psychologist has prepared an “Optimism Test” that is administered yearly to 
graduating college seniors. The test measures how each graduating class feels about 

One-Sample Statistics

VAR00001 9 13.0000

3.000 8 .017 3.00000 .6940 5.3060

1.00000

N

t df Sig. (2-tailed)
Mean

Difference Lower Upper

95% Confidence Interval of the
Difference

Mean

3.00000

Std. Deviation
Std. Error

Mean

One-Sample Test

VAR00001

Test Value = 10

Figure 9.9

The SPSS output for the hypothesis test presented in Example 9.1.
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its future—the higher the score, the more optimistic the class. Last year’s class 
had a mean score of m 5 15. A sample of n 5 9 seniors from this year’s class was 
selected and tested. The scores for these seniors are 7, 12, 11, 15, 7, 8, 15, 9, and 6, 
which produce a sample mean of M 5 10 with SS 5 94.

On the basis of this sample, can the psychologist conclude that this year’s class 
has a different level of optimism than last year’s class?

Note that this hypothesis test uses a t statistic because the population variance (s2) 
is not known.

State the hypotheses, and select an alpha level. The null hypothesis states that the 
mean optimism score for this year’s class is the same as the mean for last year’s class.

H
0
: m 5 15 (There is no change.)

H
1
: m  15 (This year’s mean is different.)

For this demonstration, we use a 5 .05, two tails.

Locate the critical region. With a sample of n 5 9 students, the t statistic has  
df 5 n – 1 5 8. For a two-tailed test with a 5 .05 and df 5 8, the critical t values are  
t 5 62.306. These critical t values define the boundaries of the critical region.

Compute the test statistic. As we have noted, it is easier to separate the calculation of 
the t statistic into three stages.

Sample variance.

s
SS

n
2

1

94

8
11 755

2
5 5 .

Estimated standard error. The estimated standard error for these data is

s
s

nM 5 5 5
2 11 75

9
1 14

.
.

The t statistic. Now that we have the estimated standard error and the sample mean, 
we can compute the t statistic. For this demonstration,

t
M

sM

5
2m

5
2

5
2

52
10 15

1 14

5

1 14
4 39

. .
.

Make a decision about H
0
, and state a conclusion. The t statistic we obtained  

(t 5 –4.39) is in the critical region. Thus, our sample data are unusual enough to 
reject the null hypothesis at the .05 level of significance. We can conclude that there 
is a significant difference in level of optimism between this year’s and last year’s 
graduating classes, t(8) 5 –4.39, p , .05, two-tailed.

demonSTraTion 9.2 

effecT Size: eSTimaTing cohen’S d and comPuTing r2

We estimate Cohen’s d for the same data used for the hypothesis test in 
Demonstration 9.1. The mean optimism score for the sample from this year’s  
class was 5 points lower than the mean from last year (M 5 10 versus m 5 15).  

S t e p  1

S t e p  2

S t e p  3

S t e p  4
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In Demonstration 9.1, we computed a sample variance of s2 5 11.75, so the standard 
deviation is 11 75. 53.43.  With these values,

estimated
mean difference

standard deviati
d 5

oon
5 5

5

3 43
1 46

.
.

To calculate the percentage of variance explained by the treatment effect, r2, we need 
the value of t and the df value from the hypothesis test. In Demonstration 9.1, we 
obtained t 5 –4.39 with df 5 8. Using these values in Equation 9.5, we obtain

r
t

t df
2

2

2

2

2

4 39

4 39 8

19 27

27 27
05

1
5

2

2 1
5 5

.

.

.

.
.

( )
( )

771

ProblemS

 1. Under what circumstances is a t statistic used instead 
of a z-score for a hypothesis test?

 2. A sample of n 5 25 scores has a mean of M 5 83 
and a standard deviation of s 5 15.

 a. Explain what is measured by the sample standard 
deviation.

 b. Compute the estimated standard error for the 
sample mean and explain what is measured by the 
standard error.

 3. Find the estimated standard error for the sample 
mean for each of the following samples.

 a. n 5 4 with SS 5 48
 b. n 5 6 with SS 5 270
 c. n 5 12 with SS 5 132

 4. Explain why t distributions tend to be flatter and 
more spread out than the normal distribution.

 5. Find the t values that form the boundaries of the 
critical region for a two-tailed test with a 5 .05 for 
each of the following sample sizes:

 a. n 5 6
 b. n 5 12
 c. n 5 24

 6. The following sample of n 5 6 scores was obtained 
from a population with unknown parameters.

Scores: 7, 1, 6, 3, 6, 7

 a. Compute the sample mean and standard deviation. 
(Note that these are descriptive values that sum-
marize the sample data.)

 b. Compute the estimated standard error for M. 
(Note that this is an inferential value that  
describes how accurately the sample mean  
represents the unknown population mean.)

 7. The following sample was obtained from a population 
with unknown parameters.

Scores: 6, 12, 0, 13, 4, 7

 a. Compute the sample mean and standard deviation. 
(Note that these are descriptive values that  
summarize the sample data.)

 b. Compute the estimated standard error for M. (Note 
that this is an inferential value that describes how 
accurately the sample mean represents the unknown 
population mean.)

 8. A random sample of n 5 25 individuals is selected 
from a population with m 5 20, and a treatment is 
administered to each individual in the sample. After 
treatment, the sample mean is found to be M 5 22.2 
with SS 5 384.

 a. How much difference is there between the mean 
for the treated sample and the mean for the origi-
nal population? (Note: In a hypothesis test, this 
value forms the numerator of the t statistic.)

 b. If there is no treatment effect, how much difference 
is expected between the sample mean and its popu-
lation mean? That is, find the standard error for M. 
(Note: In a hypothesis test, this value is the denomi-
nator of the t statistic.)

 c. Based on the sample data, does the treatment have 
a significant effect? Use a two-tailed test with  
a 5 .05.

 9. To evaluate the effect of a treatment, a sample is  
obtained from a population with a mean of m 5 30, 
and the treatment is administered to the individuals 
in the sample. After treatment, the sample mean is 
found to be M 5 31.3 with a standard deviation of  
s 5 3.

 a. If the sample consists of n 5 16 individuals, are 
the data sufficient to conclude that the treatment 
has a significant effect using a two-tailed test  
with a 5 .05?

 b. If the sample consists of n 5 36 individuals, are 
the data sufficient to conclude that the treatment 
has a significant effect using a two-tailed test  
with a 5 .05?

 c. Comparing your answer for parts a and b, how 
does the size of the sample influence the outcome 
of a hypothesis test?
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 10. To evaluate the effect of a treatment, a sample of  
n 5 8 is obtained from a population with a mean 
of m 5 40, and the treatment is administered to the 
individuals in the sample. After treatment, the sample 
mean is found to be M 5 35.

 a. If the sample variance is s2 5 32, are the data suf-
ficient to conclude that the treatment has a signifi-
cant effect using a two-tailed test with a 5 .05?

 b. If the sample variance is s2 5 72, are the data suffi-
cient to conclude that the treatment has a significant 
effect using a two-tailed test with a 5 .05?

 c. Comparing your answer for parts a and b, how 
does the variability of the scores in the sample 
influence the outcome of a hypothesis test?

 11. The spotlight effect refers to overestimating the 
extent to which others notice your appearance or 
behavior, especially when you commit a social faux 
pas. Effectively, you feel as if you are suddenly 
standing in a spotlight with everyone looking. In 
one demonstration of this phenomenon, Gilovich, 
Medvec, and Savitsky (2000) asked college students 
to put on a Barry Manilow T-shirt that fellow  
students had previously judged to be embarrassing. 
The participants were then led into a room in which 
other students were already participating in an  
experiment. After a few minutes, the participant  
was led back out of the room and was allowed to 
remove the shirt. Later, each participant was asked to 
estimate how many people in the room had noticed 
the shirt. The individuals who were in the room were 
also asked whether they noticed the shirt. In the 
study, the participants significantly overestimated the 
actual number of people who had noticed.

 a. In a similar study using a sample of n 5 9 partici-
pants, the individuals who wore the shirt produced 
an average estimate of M 5 6.4 with SS 5 162. The 
average number who said they noticed was 3.1. Is the 
estimate from the participants significantly different 
from the actual number? Test the null hypothesis that 
the true mean is m 5 3.1 using a two-tailed test with 
a 5 .05.

 b. Is the estimate from the participants significantly 
higher than the actual number (m 5 3.1)? Use a  
one-tailed test with a 5 .05.

 12. Many animals, including humans, tend to avoid direct 
eye contact and even patterns that look like eyes. 
Some insects, including moths, have evolved eye-spot 
patterns on their wings to help ward off predators. 
Scaife (1976) reports a study examining how eye-spot 
patterns affect the behavior of birds. In the study, the 
birds were tested in a box with two chambers and 
were free to move from one chamber to another. In 
one chamber, two large eye-spots were painted on  
one wall. The other chamber had plain walls. The  
researcher recorded the amount of time each bird 

spent in the plain chamber during a 60-minute  
session. Suppose the study produced a mean of  
M 5 37 minutes in the plain chamber with SS 5 288 
for a sample of n 5 9 birds. (Note: If the eye spots 
have no effect, then the birds should spend an average 
of m 5 30 minutes in each chamber.)

 a. Is this sample sufficient to conclude that the  
eye-spots have a significant influence on the birds’ 
behavior? Use a two-tailed test with a 5 .05.

 b. Compute the estimated Cohen’s d to measure the 
size of the treatment effect.

 c. Construct the 95% confidence interval to estimate 
the mean amount of time spent on the plain side 
for the population of birds.

 13. Standardized measures seem to indicate that the aver-
age level of anxiety has increased gradually over the 
past 50 years (Twenge, 2000). In the 1950s, the aver-
age score on the Child Manifest Anxiety Scale was 
m 5 15.1. A sample of n 5 16 of today’s children 
produces a mean score of M 5 23.3 with SS 5 240.

 a. Based on the sample, has there been a significant 
change in the average level of anxiety since the 
1950s? Use a two-tailed test with a 5 .01.

 b. Make a 90% confidence interval estimate of  
today’s population mean level of anxiety.

 c. Write a sentence that demonstrates how the  
outcome of the hypothesis test and the confidence 
interval would appear in a research report.

 14. The librarian at the local elementary school claims 
that, on average, the books in the library are more 
than 20 years old. To test this claim, a student takes 
a sample of n 5 30 books and records the publica-
tion date for each. The sample produces an average 
age of M 5 23.8 years with a variance of s2 5 67.5. 
Use this sample to conduct a one-tailed test with a 
5 .01 to determine whether the average age of the 
library books is significantly greater than 20 years 
(m . 20).

 15. For several years researchers have noticed that there 
appears to be a regular, year-by-year increase in the 
average IQ for the general population. This phenom-
enon is called the Flynn effect after the researcher 
who first reported it (Flynn, 1984, 1999), and it 
means that psychologists must continuously update 
IQ tests to keep the population mean at m 5 100. To 
evaluate the size of the effect, a researcher obtained a 
10-year-old IQ test that was standardized to produce 
a mean IQ of m 5 100 for the population 10 years 
ago. The test was then given to a sample of n 5 64 
of today’s 20-year-old adults. The average score for 
the sample was M 5 107 with a standard deviation 
of s 5 12.

 a. Based on the sample, is the average IQ for today’s 
population significantly different from the average 
10 years ago, when the test would have produced 
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a mean of m 5 100? Use a two-tailed test with  
a 5 .01.

 b. Make an 80% confidence interval estimate of to-
day’s population mean IQ for the 10-year-old test.

 16. Weinstein, McDermott, and Roediger (2010)  
report that students who were given questions to  
be answered while studying new material had better 
scores when tested on the material compared to  
students who were simply given an opportunity  
to reread the material. In a similar study, an instruc-
tor in a large psychology class gave one group  
of students questions to be answered while study-
ing for the final exam. The overall average for the 
exam was m 5 73.4, but the n 5 16 students who 
answered questions had a mean of M 5 78.3  
with a standard deviation of s 5 8.4. For this  
study, did answering questions while studying  
produce significantly higher exam scores? Use a 
one-tailed test with a 5 .01.

 17. Ackerman and Goldsmith (2011) found that students 
who studied text from printed hardcopy had bet-
ter test scores than students who studied from text 
presented on a screen. In a related study, a profes-
sor noticed that several students in a large class had 
purchased the e-book version of the course textbook. 
For the final exam, the overall average for the entire 
class was m 5 81.7, but the n 5 9 students who used 
e-books had a mean of M 5 77.2 with a standard 
deviation of s 5 5.7.

 a. Is the sample sufficient to conclude that scores for 
students using e-books were significantly different 
from scores for the regular class? Use a two-tailed 
test with a 5 .05.

 b. Construct the 90% confidence interval to estimate 
the mean exam score if the entire population used 
e-books.

 c. Write a sentence demonstrating how the results 
from the hypothesis test and the confidence inter-
val would appear in a research report.

 18. A random sample of n 5 16 scores is obtained from 
a population with a mean of m 5 45. After a treat-
ment is administered to the individuals in the sample, 
the sample mean is found to be M 5 49.2.

 a. Assuming that the sample standard deviation is  
s 5 8, compute r2 and the estimated Cohen’s d to 
measure the size of the treatment effect.

 b. Assuming that the sample standard deviation is  
s 5 20, compute r2 and the estimated Cohen’s d 
to measure the size of the treatment effect.

 c. Comparing your answers from parts a and b, how 
does the variability of the scores in the sample 
influence the measures of effect size?

 19. A random sample is obtained from a population with 
a mean of m 5 45. After a treatment is administered 

to the individuals in the sample, the sample mean is 
M 5 49 with a standard deviation of s 5 12.

 a. Assuming that the sample consists of n 5 9 
scores, compute r2 and the estimated Cohen’s d  
to measure the size of treatment effect.

 b. Assuming that the sample consists of n 5 16 
scores, compute r2 and the estimated Cohen’s d  
to measure the size of treatment effect.

 c. Comparing your answers from parts a and b, how 
does the number of scores in the sample influence 
the measures of effect size?

 20. An example of the vertical-horizontal illusion is 
shown in the figure. Although the two lines are 
exactly the same length, the vertical line appears 
to be much longer. To examine the strength of this 
illusion, a researcher prepared an example in which 
both lines were exactly 10 inches long. The example 
was shown to individual participants who were told 
that the horizontal line was 10 inches long and then 
were asked to estimate the length of the vertical line. 
For a sample of n 5 25 participants, the average 
estimate was M 5 12.2 inches with a standard  
deviation of s 5 1.00.

An example of the vertical-
horizontal illusion

 a. Use a one-tailed hypothesis test with a 5 .01 to 
demonstrate that the individuals in the sample 
significantly overestimate the true length of the 
line. (Note: Accurate estimation would produce a 
mean of m 5 10 inches.)

 b. Calculate the estimated d and r2, the percentage of 
variance accounted for, to measure the size of this 
effect.

 c. Construct a 95% confidence interval for the  
population mean estimated length of the  
vertical line.

 21. In studies examining the effect of humor on interper-
sonal attractions, McGee and Shevlin (2009) found 
that an individual’s sense of humor had a significant 
effect on how the individual was perceived by oth-
ers. In one part of the study, female college students 
were given brief descriptions of a potential romantic 
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partner. The fictitious male was described positively 
as being single, ambitious, and having good job 
prospects. For one group of participants, the descrip-
tion also said that he had a great sense of humor. 
For another group, it said that he had no sense of 
humor. After reading the description, each participant 
was asked to rate the attractiveness of the man on a 
seven-point scale from 1 (very attractive) to 7 (very 
unattractive). A score of 4 indicates a neutral rating.

 a. The females who read the “great sense of humor” 
description gave the potential partner an average 
attractiveness score of M 5 4.53 with a standard 
deviation of s 5 1.04. If the sample consisted of 
n 5 16 participants, is the average rating signifi-
cantly higher than neutral (m 5 4)? Use a one-
tailed test with a 5 .05.

 b. The females who read the description saying “no 
sense of humor” gave the potential partner an 
average attractiveness score of M 5 3.30 with a 
standard deviation of s 5 1.18. If the sample con-
sisted of n 5 16 participants, is the average rating 
significantly lower than neutral (m 5 4)? Use a 
one-tailed test with a 5 .05.

 22. Oishi and Shigehiro (2010) report that people who 
move from home to home frequently as children 
tend to have lower than average levels of well-being 
as adults. To further examine this relationship, a 
psychologist obtains a sample of n 5 12 young 
adults who each experienced 5 or more different 
homes before they were 16 years old. These  
participants were given a standardized well-being 
questionnaire for which the general population has 

an average score of m 5 40. The well-being scores 
for this sample are as follows: 38, 37, 41, 35, 42, 
40, 33, 33, 36, 38, 32, 39.

 a. On the basis of this sample, is well-being for 
frequent movers significantly different from well-
being in the general population? Use a two-tailed 
test with a 5 .05.

 b. Compute the estimated Cohen’s d to measure the 
size of the difference.

 c. Write a sentence showing how the outcome of 
the hypothesis test and the measure of effect size 
would appear in a research report.

 23. Research examining the effects of preschool child-
care has found that children who spent time in day 
care, especially high-quality day care, perform better 
on math and language tests than children who stay 
home with their mothers (Broberg, Wessels, Lamb, & 
Hwang, 1997). In a typical study, a researcher ob-
tains a sample of n 5 10 children who attended day 
care before starting school. The children are given a 
standardized math test for which the population mean 
is m 5 50. The scores for the sample are as follows: 
53, 57, 61, 49, 52, 56, 58, 62, 51, 56.

 a. Is this sample sufficient to conclude that the 
children with a history of preschool day care are 
significantly different from the general popula-
tion? Use a two-tailed test with a 5 .01.

 b. Compute Cohen’s d to measure the size of the 
preschool effect.

 c. Write a sentence showing how the outcome of 
the hypothesis test and the measure of effect size 
would appear in a research report.
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Independent 
Samples

10.1     Introduction to the 
Independent-Measures Design

10.2     The t Statistic for an 
Independent-Measures Research 
Design

10.3     Hypothesis Tests and Effect Size 
with the Independent-Measures 
t Statistic

10.4     Assumptions Underlying the 
Independent-Measures t Formula

Summary

Focus on Problem Solving

Demonstrations 10.1 and 10.2

Problems

C h a p t e r 

10
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 Sample	variance	(Chapter	4)
•	 Standard	error	formulas	(Chapter	7)
•	 The	t	statistic	(Chapter	9)

•	 Distribution	of	t values
•	 df for the t statistic
•	 Estimated	standard	error
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InTRoduCTIon To THE IndEPEndEnT-mEASuRES dESIgn

Until this point, all of the inferential statistics we have considered involve using one 
sample as the basis for drawing conclusions about one population. Although these 
single-sample techniques are used occasionally in real research, most research studies 
require the comparison of two (or more) sets of data. For example, a social psychologist 
may want to compare men and women in terms of their political attitudes, an educa-
tional psychologist may want to compare two methods for teaching mathematics, or a 
clinical psychologist may want to evaluate a therapy technique by comparing depres-
sion scores for patients before therapy with their scores after therapy. In each case, the 
research question concerns a mean difference between two sets of data.

There are two general research designs that can be used to obtain the two sets of 
data to be compared:

 1. The two sets of data could come from two completely separate groups of par-
ticipants. For example, the study could involve a sample of men compared with 
a sample of women. Or the study could compare grades for one group of fresh-
men who are given laptop computers with grades for a second group who are 
not given computers.

 2. The two sets of data could come from the same group of participants. For ex-
ample, the researcher could obtain one set of scores by measuring depression 
for a sample of patients before they begin therapy and then obtain a second set 
of data by measuring the same individuals after 6 weeks of therapy.

The first research strategy, using completely separate groups, is called an independent-
measures research design or a between-subjects design. These terms emphasize the fact 
that the design involves separate and independent samples and makes a comparison 
between two groups of individuals. The structure of an independent-measures research 
design is shown in Figure 10.1. Notice that the research study uses two separate samples 
to represent the two different populations (or two different treatments) being compared.

10.1

Unknown
µ  =  ? 

Sample A

Unknown
µ  =  ? 

Sample B

Population A
Taught by method A

Population B
Taught by method B

Figure 10.1

Do the achievement 
scores for children taught 
by method A differ from 
the scores for children 
taught by method B? In 
statistical terms, are the 
two population means the 
same or different? Because 
neither of the two popula-
tion means is known, it 
will be necessary to take 
two samples, one from 
each population. The first 
sample provides informa-
tion about the mean for the 
first population, and the 
second sample provides 
information about the 
second population.
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A research design that uses a separate group of participants for each treatment 
condition (or for each population) is called an independent-measures research 
design or a between-subjects research design.

In this chapter, we examine the statistical techniques used to evaluate the data from 
an independent-measures design. More precisely, we introduce the hypothesis test that 
allows researchers to use the data from two separate samples to evaluate the mean dif-
ference between two populations or between two treatment conditions.

The second research strategy, in which the two sets of data are obtained from the same 
group of participants, is called a repeated-measures research design or a within-subjects 
design. The statistics for evaluating the results from a repeated-measures design are intro-
duced in Chapter 11. Also, at the end of Chapter 11, we discuss some of the advantages 
and disadvantages of independent-measures and repeated-measures designs.

THE t STATISTIC foR An IndEPEndEnT-mEASuRES 
RESEARCH dESIgn

Because an independent-measures study involves two separate samples, we need some 
special notation to help specify which data go with which sample. This notation in-
volves the use of subscripts, which are small numbers written beside a sample statistic. 
For example, the number of scores in the first sample is identified by n

1
; for the second 

sample, the number of scores is n
2
. The sample means are identified by M

1
 and M

2
. The 

sums of squares are SS
1
 and SS

2
.

The goal of an independent-measures research study is to evaluate the mean difference 
between two populations (or between two treatment conditions). Using subscripts to 
differentiate the two populations, the mean for the first population is µ

1
, and the second 

population mean is µ
2
. The difference between means is simply µ

1
 2 µ

2
. As always, the 

null hypothesis states that there is no change, no effect, or, in this case, no difference. 
Thus, in symbols, the null hypothesis for the independent-measures test is

H
0
: µ

1
 2 µ

2
 5 0 (No difference between the population means)

You should notice that the null hypothesis could also be stated as µ
1
 5 µ

2
. However, 

the first version of H
0
 produces a specific numerical value (zero) that is used in the 

calculation of the t statistic. Therefore, we prefer to phrase the null hypothesis in terms 
of the difference between the two population means.

The alternative hypothesis states that there is a mean difference between the two 
populations,

H
1
: µ

1
 2 µ

2
 ≠ 0 (There is a mean difference.)

Equivalently, the alternative hypothesis can simply state that the two population 
means are not equal: µ

1
 ≠ µ

2
.

The independent-measures hypothesis test uses another version of the t statistic. The 
formula for this new t statistic has the same general structure as the t statistic formula 
that was introduced in Chapter 9. To help distinguish between the two t formulas, we 
refer to the original formula (Chapter 9) as the single-sample t statistic and we refer to 

D e f i n i t i o n

10.2

The hypoThesis for 
an independenT-

Measures TesT

The forMulas for 
an independenT-

Measures 
hypoThesis TesT
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the new formula as the independent-measures t statistic. Because the new independent-
measures t includes data from two separate samples and hypotheses about two popula-
tions, the formulas may appear to be a bit overpowering. However, the new formulas are 
easier to understand if you view them in relation to the single-sample t formulas from 
Chapter 9. In particular, there are two points to remember:

 1. The basic structure of the t statistic is the same for both the independent- 
measures and the single-sample hypothesis tests. In both cases,

t 5
2sample statistic hypothesized population pparameter

estimated standard error

 2. The independent-measures t is basically a two-sample t that doubles all the 
elements of the single-sample t formulas.

To demonstrate the second point, we examine the two t formulas piece by piece.

The overall t formula The single-sample t uses one sample mean to test a hypothesis 
about one population mean. The sample mean and the population mean appear in the 
numerator of the t formula, which measures how much difference there is between the 
sample data and the population hypothesis.

t 5
2sample mean population mean

estimated standdard error
5

mM

sM

2

The independent-measures t uses the difference between two sample means to 
evaluate a hypothesis about the difference between two population means. Thus, the 
independent-measures t formula is

t 5

2sample mean population mean

difference difference

estimated standard errror
5

2 2 m 2m

2

M M

s M M

1 2 1 2

1 2

( ) ( )
( )

In this formula, the value of M
1
 2  M

2
 is obtained from the sample data and the value 

for µ
1
 2 µ

2
 comes from the null hypothesis.

The estimated standard error In each of the t-score formulas, the standard error 
in the denominator measures how accurately the sample statistic represents the 
population parameter. In the single-sample t formula, the standard error measures 
the amount of error expected for a sample mean and is represented by the symbol s

M
. 

For the independent-measures t formula, the standard error measures the amount of 
error that is expected when you use a sample mean difference (M

1
 2 M

2
) to represent 

a population mean difference (µ
1
 2 µ

2
). The standard error for the sample mean dif-

ference is represented by the symbol s M M1 22( ) .
Caution: Do not let the notation for standard error confuse you. In general, standard 

error measures how accurately a statistic represents a parameter. The symbol for stan-
dard error takes the form s

statistic
. When the statistic is a sample mean, M, the symbol for 

standard error is s
M
. For the independent-measures test, the statistic is a sample mean 

difference (M
1
 2 M

2
), and the symbol for standard error is s M M1 22( ) . In each case, the 

standard error tells how much discrepancy is reasonable to expect between the sample 
statistic and the corresponding population parameter.
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Interpreting the estimated standard error The estimated standard error of M
1
 – M

2
 

that appears in the bottom of the independent-measures t statistic can be interpreted in 
two ways. First, the standard error is defined as a measure of the standard, or average, 
distance between a sample statistic (M

1
 2 M

2
) and the corresponding population pa-

rameter (µ
1
 2 µ

2
). As always, samples are not expected to be perfectly accurate and the 

standard error measures how much difference is reasonable to expect between a sample 
statistic and the population parameter.

Sample mean   
estimated standard error

   Population mean
   difference  ← →       difference
  (M

1
 2 M

2
)    

(average distance)
         (m

1
 2 m

2
)

When the null hypothesis is true, however, the population mean difference is zero.

Sample mean    
estimated standard error

    
   difference   ← →  0 (If H

0
 is true)

  (M
1
 2 M

2
)     

(average distance)
      

The standard error is measuring how close the sample mean difference is to zero, 
which is equivalent to measuring how much difference there is between the two sample 
means.

     
estimated standard error

  
M

1
 ← →  M

2

    
(average distance)

This produces a second interpretation for the estimated standard error. Specifically, 
the standard error can be viewed as a measure of how much difference is reasonable to 
expect between two sample means if the null hypothesis is true.

The second interpretation of the estimated standard error produces a simplified ver-
sion of the independent-measures t statistic.

t 5
sample mean difference

estimated standard eerror
actual difference between and

s
5

M M1 2

ttandard difference (If is true) betweenH0 andM M1 2

In this version, the numerator of the t statistic measures how much difference ac-
tually exists between the two sample means, including any difference that is caused 
by the different treatments. The denominator measures how much difference should 
exist between the two sample means if there is no treatment effect that causes them 
to be different. A large value for the t statistic is evidence for the existence of a 
treatment effect.

To develop the formula for s M M1 22( )  we consider the following three points:

 1. Each of the two sample means represents it own population mean, but in each 
case there is some error.

M
1
 approximates µ

1
 with some error

M
2
 approximates µ

2
 with some error

CalCulaTing The 
esTiMaTed sTandard 

error
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Thus, there are two sources of error.

 2. The amount of error associated with each sample mean is measured by the esti-
mated standard error of M. Using Equation 9.1 (p. 251), the estimated standard 
error for each sample mean is computed as follows:

For ForM s
s

n
M s

s

nM M1
1
2

1
2

2
2

5 5
22

 3. For the independent-measures t statistic, we want to know the total amount 
of error involved in using two sample means to approximate two population 
means. To do this, we find the error from each sample separately and then add 
the two errors together. The resulting formula for standard error is

s
s

n

s

nM M1 2

1
2

1

2
2

2
2 5 1( )

 
(10.1)

Because the independent-measures t statistic uses two sample means, the formula for 
the estimated standard error simply combines the error for the first sample mean and the 
error for the second sample mean (Box 10.1).

Although Equation 10.1 accurately presents the concept of standard error for  
the independent-measures t statistic, this formula is limited to situations in which 
the two samples are exactly the same size (that is, n

1
 5 n

2
). For situations in  

which the two sample sizes are different, the formula is biased and, therefore, inap-
propriate. The bias comes from the fact that Equation 10.1 treats the two sample 

pooled VarianCe

BOX
10.1

THE VARIAbIlITy of dIffEREnCE SCoRES

It may seem odd that the independent-measures  
t statistic adds together the two sample errors when it 
subtracts to find the difference between the two sam-
ple means. The logic behind this apparently unusual 
procedure is demonstrated here.

We begin with two populations, I and II (Figure 
10.2). The scores in population I range from a high of 
70 to a low of 50. The scores in population II range 
from 30 to 20. We use the range as a measure of how 
spread out (variable) each population is:

For population I, the scores cover a range of  
20 points.

For population II, the scores cover a range of  
10 points.

If we randomly select one score from population I 
and one score from population II and compute the differ-
ence between these two scores (X

1
 2 X

2
), what range of 

values is possible for these differences? To answer this 

question, we need to find the biggest possible difference 
and the smallest possible difference. As seen in Figure 
10.2, the biggest difference occurs when X

1
 5 70 and  

X
2
 5 20. This is a difference of X

1
 2 X

2
 5 50 points. 

The smallest difference occurs when X
1
 5 50 and  

X
2
 5 30. This is a difference of X

1
 2 X

2
 5 20 points. 

Notice that the differences go from a high of 50 to a low 
of 20. This is a range of 30 points:

range for population I (X
1
 scores) 5 20 points

range for population II (X
2
 scores) 5 10 points

range for the differences (X
1
 2 X

2
) 5 30 points

The variability for the difference scores is found 
by adding together the variability for each of the two 
populations.

In the independent-measures t statistics, we com-
pute the variability (standard error) for a sample mean 
difference. To compute this value, we add together the 
variability for each of the two sample means.
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variances equally. However, when the sample sizes are different, the two sample 
variances are not equally good and should not be treated equally. In Chapter 7, we 
introduced the law of large numbers, which states that statistics obtained from large 
samples tend to be better (more accurate) estimates of population parameters than 
statistics obtained from small samples. This same fact holds for sample variances: 
The variance obtained from a large sample is a more accurate estimate of s2 than 
the variance obtained from a small sample.

One method for correcting the bias in the standard error is to combine the two 
sample variances into a single value called the pooled variance. The pooled vari-
ance is obtained by averaging, or “pooling,” the two sample variances using a 
procedure that allows the bigger sample to carry more weight in determining the 
final value.

You should recall that when there is only one sample, the sample variance is computed as

s
SS

df
2 5

For the independent-measures t statistic, there are two SS values and two df values 
(one from each sample). The values from the two samples are combined to compute 
what is called the pooled variance. The pooled variance is identified by the symbol  and 
is computed as

pooled variance 5 5
1

1
s

SS SS

df dfp
2 1 2

1 2  
(10.2)

With one sample, the variance is computed as SS divided by df. With two samples, 
the pooled variance is computed by combining the two SS values and then dividing by 
the combination of the two df values.

As we mentioned earlier, the pooled variance is actually an average of the two 
sample variances, but the average is computed so that the larger sample carries 
more weight in determining the final value. The following examples demonstrate 
this point.

20

Population II Population I

10 30 40 50 60 70 80

Smallest difference
20 points

Biggest difference
50 points

Figure 10.2

Two population distribu-
tions. The scores in popu-
lation I vary from 50 to 70 
(a 20-point spread), and 
the scores in population 
II range from 20 to 30 (a 
10-point spread). If you 
select one score from each 
of these two populations, 
the closest two values are 
X

1
 5 50 and X

2
 5 30. 

The two values that are 
farthest apart are X

1
 5 70 

and X
2
 5 20.

An alternative to computing 
pooled variance is presented 
in Box 10.2, p. 302.
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Equal sample sizes We begin with two samples that are exactly the same size. The 
first sample has n 5 6 scores with SS 5 50, and the second sample has n 5 6 scores 
with SS 5 30. Individually, the two sample variances are

Variance for sample 1: s
SS

df
2 50

5
105 5 5

Variance for sample 2: s
SS

df
2 30

5
65 5 5

The pooled variance for these two samples is

s
SS SS

df dfp
2 1 2

1 2

50 30

5 5

80

10
8 005

1

1
5

1

1
5 5 .

Note that the pooled variance is exactly halfway between the two sample variances. 
Because the two samples are exactly the same size, the pooled variance is simply the 
average of the two sample variances.

Unequal sample sizes Now consider what happens when the samples are not the 
same size. This time the first sample has n 5 3 scores with SS 5 20, and the second 
sample has n 5 9 scores with SS 5 48. Individually, the two sample variances are

Variance for sample 1: s
SS

df
2 20

2
105 5 5

Variance for sample 2: s
SS

df
2 48

8
65 5 5

The pooled variance for these two samples is

s
SS SS

df dfp
2 1 2

1 2

20 48

2 8

68

10
6 805

1

1
5

1

1
5 5 .

This time the pooled variance is not located halfway between the two sample vari-
ances. Instead, the pooled value is closer to the variance for the larger sample (n 5 9 
and s2 5 6) than to the variance for the smaller sample (n 5 3 and s2 5 10). The larger 
sample carries more weight when the pooled variance is computed.

When computing the pooled variance, the weight for each of the individual sample 
variances is determined by its degrees of freedom. Because the larger sample has a 
larger df value, it carries more weight when averaging the two variances. This produces 
an alternative formula for computing pooled variance.

pooled variance 5 5
1

1
s

df s df s

df dfp
2 1 1

2
2 2

2

1 2  
(10.3)

For example, if the first sample has df
1
 5 3 and the second sample has df

2
 5 7, then 

the formula instructs you to take 3 of the first sample variance and 7 of the second 
sample variance for a total of 10 variances. You then divide by 10 to obtain the average. 
The alternative formula is especially useful if the sample data are summarized as means 
and variances. Finally, you should note that because the pooled variance is an average of 
the two sample variances, the value obtained for the pooled variance is always located 
between the two sample variances.
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Using the pooled variance in place of the individual sample variances, we can now 
obtain an unbiased measure of the standard error for a sample mean difference. The 
resulting formula for the independent-measures estimated standard error is

estimated standard error of M M s M M1 2 1 2
2 5 52( )

ss

n

s

n
p p
2

1

2

2

1

 
(10.4)

Conceptually, this standard error measures how accurately the difference between 
two sample means represents the difference between the two population means. In a 
hypothesis test, H

0
 specifies that m

1
 2 m

2
 5 0, and the standard error also measures 

how much difference is expected, on average, between the two sample means. In either 
case, the formula combines the error for the first sample mean with the error for the 
second sample mean. Also note that the pooled variance from the two samples is used 
to compute the standard error for the sample mean difference.

The complete formula for the independent-measures t statistic is as follows:

t
M M

s M M

5
2 2 m 2  m

2

1 2 1 2

1 2

( ) ( )
( )

5
2sample mean difference population mean diffference

estimated standard error  
(10.5)

In the formula, the estimated standard error in the denominator is calculated  
using Equation 10.4, and requires calculation of the pooled variance using either 
Equation 10.2 or 10.3.

The degrees of freedom for the independent-measures t statistic are determined by 
the df values for the two separate samples:

df for the t statistic 5 df for the first sample 1 df for the second sample
 5 df

1
 1 df

2

 5 (n
1
 2 1) 1 (n

2
 2 1) (10.6)

Equivalently, the df value for the independent-measures t statistic can be expressed as

df 5 n
1
 1 n

2
 2 2 (10.7)

Note that the df formula subtracts 2 points from the total number of scores; 1 point 
for the first sample and 1 for the second.

The independent-measures t statistic is used for hypothesis testing. Specifically, we use 
the difference between two sample means (M

1
 2 M

2
) as the basis for testing hypotheses 

about the difference between two population means (µ
1
 2 µ

2
). In this context, the overall 

structure of the t statistic can be reduced to the following:

t 5
2data hypothesis

error

This same structure is used for both the single-sample t from Chapter 9 and the new 
independent-measures t that was introduced in the preceding pages. Table 10.1 identi-
fies each component of these two t statistics and should help reinforce the point that we 
made earlier in the chapter; that is, the independent-measures t statistic simply doubles 
each aspect of the single-sample t statistic.

esTiMaTed sTandard 
error

The final forMula 
and degrees of 

freedoM
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HyPoTHESIS TESTS And EffECT SIzE wITH THE 
IndEPEndEnT-mEASuRES t STATISTIC

The independent-measures t statistic uses the data from two separate samples to help 
decide whether there is a significant mean difference between two populations or 
between two treatment conditions. A complete example of a hypothesis test with two 
independent samples follows.

10.3

Sample  
Data

Hypothesized 
Population 
Parameter

Estimated 
Standard 

Error
Sample  

Variance

Single-sample  
t statistic

M µ
s

n

2
s

SS

df
2 5

Independent-  
measures  
t statistic

(M
1
 2 M

2
) (µ

1
 2 µ

2
) s

n

s

n
p p
2

1

2

2

1 s
SS SS

df dfp
2 1 2

1 2

5
1

1

TAblE 10.1

The basic elements of a t statis-
tic for the single-sample t and 
the independent-measures t.

 1. What is the defining characteristic of an independent-measures research study?

 2. Explain what is measured by the estimated standard error in the denominator of 
the independent-measures t statistic.

 3. One sample from an independent-measures study has n 5 4 with SS 5 100. The 
other sample has n 5 8 and SS 5 140.

 a. Compute the pooled variance. (Note: Equation 10.2 works well with these data.)

 b. Compute the estimated standard error for the mean difference.

 4. One sample from an independent-measures study has n 5 9 with a variance of 
s2 5 35. The other sample has n 5 3 and s2 5 40.

 a. Compute the pooled variance. (Note: Equation 10.3 works well with these data.)

 b. Compute the estimated standard error for the mean difference.

 5. An independent-measures t statistic is used to evaluate the mean difference between 
two treatments with n 5 8 in one treatment and n 5 12 in the other. What is the df 
value for the t statistic?

 1. An independent-measures study uses a separate group of participants to represent each of 
the populations or treatment conditions being compared.

 2. The estimated standard error measures how much difference is expected, on average, between 
a sample mean difference and the population mean difference. In a hypothesis test, m

1
 – m

2
 is 

set to zero and the standard error measures how much difference is expected between the two 
sample means.

3. a. The pooled variance is 240
10

 5 24.

 b. The estimated standard error is 3.

4. a. The pooled variance is 36.

 b. The estimated standard error is 4.

 5. df 5 df
1
 1 df

2
 5 7 1 11 5 18.

l E A R n I n g  C H E C k

AnSwERS
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Research results suggest a relationship between the TV viewing habits of 5-year-old 
children and their future performance in high school. For example, Anderson, Huston, 
Wright, and Collins (1998) report that high school students who had regularly watched 
Sesame Street as children had better grades in high school than their peers who had not 
watched Sesame Street. Suppose that a researcher intends to examine this phenomenon 
using a sample of 20 high school students.

The researcher first surveys the students’ parents to obtain information on the family’s 
TV-viewing habits during the time that the students were 5 years old. Based on the sur-
vey results, the researcher selects a sample of n 5 10 students with a history of watching 
Sesame Street and a sample of n 5 10 students who did not watch the program. The aver-
age high school grade is recorded for each student and the data are as follows:

Average High School Grade

Watched  
Sesame Street

Did Not Watch  
Sesame Street

86 99 90 79
87 97 89 83
91 94 82 86
97 89 83 81
98 92 85 92

n 5 10 n 5 10

M 5 93 M 5 85

SS 5 200 SS 5 160

Note that this is an independent-measures study using two separate samples represent-
ing two distinct populations of high school students. The researcher would like to know 
whether there is a significant difference between the two types of high school student.

State the hypotheses and select the alpha level.

H
0
: µ

1
 2 µ

2
 5 0 (No difference.)

H
1
: µ

1
 2 µ

2
 ≠ 0 (There is a difference.)

We set a 5 .01.
Directional hypotheses could be used and would specify whether the students who 

watched Sesame Street should have higher or lower grades.

This is an independent-measures design. The t statistic for these data has degrees of 
freedom determined by

df 5 df
1
 1 df

2

5 (n
1
 2 1) 1 (n

2
 2 1)

5 9 1 9

5 18

The t distribution for df 5 18 is presented in Figure 10.3. For a 5 .01, the critical 
region consists of the extreme 1% of the distribution and has boundaries of t 5 12.878 
and t 5 –2.878.

E x A m P l E  1 0 . 1

S t e p  1

S t e p  2
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Obtain the data and compute the test statistic. The data are given, so all that remains is 
to compute the t statistic. As with the single-sample t test in Chapter 9, we recommend 
that the calculations be divided into three parts.

First, find the pooled variance for the two samples:

s
SS SS

df dfp
2 1 2

1 2

5
1

1

5
1

1

200 160

9 9

5
360

18

5 20

Second, use the pooled variance to compute the estimated standard error:

s
s

n

s

nM M
p p

1 2

2

1

2

2

20

10

20

102 5 1 5 1( )

5 12 2

5 4

5 2

Third, compute the t statistic:

t
M M

s M M

5
2 2 m 2m

5
2 2

2

1 2 1 2

1 2

93 85 0

2
( ) ( ) ( )

( )

5
8

2

5 4

S t e p  3

t = �2.878 t = 0 t = �2.878

Reject H0 Reject H0

t distribution
df = 18

Figure 10.3

The critical region for the 
independent-measures  
hypothesis test in 
Example 10.1 with  
df 5 18 and a 5 .01.

Caution: The pooled variance 
combines the two samples to 
obtain a single estimate of 
variance. In the formula, the 
two samples are combined in 
a single fraction.

Caution: The standard error 
adds the errors from two sep-
arate samples. In the formula, 
these two errors are added as 
two separate fractions. In this 
case, the two errors are equal 
because the sample sizes are 
the same.
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Make a decision. The obtained value (t 5 4.00) is in the critical region. In this example, 
the obtained sample mean difference is four times greater than would be expected if 
there were no difference between the two populations. In other words, this result is very 
unlikely if H

0
 is true. Therefore, we reject H

0
 and conclude that there is a significant 

difference between the high school grades for students who watched Sesame Street and 
those who did not. Specifically, the students who watched Sesame Street had signifi-
cantly higher grades than those who did not watch the program.

Note that the Sesame Street study in Example 10.1 is an example of nonexperimental 
research (see Chapter 1, p. 16). Specifically, the researcher did not manipulate the TV 
programs watched by the children and did not control a variety of variables that could 
influence high school grades. As a result, we cannot conclude that watching Sesame Street 
causes higher high school grades. In particular, many other, uncontrolled factors, such as 
the parents’ level of education or family economic status, might explain the difference be-
tween the two groups. Thus, we do not know exactly why there is a relationship between 
watching Sesame Street and high school grades, but we do know that a relationship exists.

As noted in Chapters 8 and 9, a hypothesis test is usually accompanied by a report of 
effect size to provide an indication of the absolute magnitude of the treatment effect. 
One technique for measuring effect size is Cohen’s d, which produces a standardized 
measure of mean difference. In its general form, Cohen’s d is defined as

d 5 5
m 2mmean difference

standard deviation
1 2

s

In the context of an independent-measures research study, the difference between the 
two sample means (M

1
 – M

2
) is used as the best estimate of the mean difference between 

the two populations, and the pooled standard deviation (the square root of the pooled 
variance) is used to estimate the population standard deviation. Thus, the formula for 
estimating Cohen’s d becomes

estimated
estimated mean difference

estima
d 5

tted standard deviation
5

2M M

sp

1 2

2

 
(10.8)

For the data from Example 10.1, the two sample means are 93 and 85, and the pooled 
variance is 20. The estimated d for these data is

d
M M

sp

5
2

5
2

5 51 2

2

93 85

20

8

4 7
1 79

.
.

Using the criteria established to evaluate Cohen’s d (see Table 8.2 on p. 232), this 
value indicates a very large treatment effect.

The independent-measures t test also allows for measuring effect size by comput-
ing the percentage of variance accounted for, r2. As we saw in Chapter 9, r2 measures 
how much of the variability in the scores can be explained by the treatment effects. 
For example, some of the variability in the high school grades from the Sesame Street 
study can be explained by knowing whether a particular student watched the program; 
students who watched Sesame Street tend to have higher grades and students who did 
not watch the show tend to have lower grades. By measuring exactly how much of the 
variability can be explained, we can obtain a measure of how big the treatment effect 

S t e p  4

Measuring 
effeCT size for 

The independenT-
Measures t  TesT
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actually is. The calculation of r2 for the independent-measures t test is exactly the same 
as it was for the single-sample t test in Chapter 9.

r
t

t df
2

2

2
5

1  
(10.9)

For the data in Example 10.1, we obtained t 5 4.00 with df 5 18. These values 
produce an r2 of

r 2
2

2

4

4 18

16

16 18

16

34
0 475

1
5

1
5 5 .

According to the standards used to evaluate r2 (see Table 9.3 on p. 264), this value 
also indicates a very large treatment effect.

Although the value of r2 is usually obtained by using Equation 10.9, it is possible 
to determine the percentage of variability directly by computing SS values for the set 
of scores. The following example demonstrates this process using the data from the 
Sesame Street study in Example 10.1.

Figure 10.4(a) shows the two samples from Example 10.1 combined into a single fre-
quency distribution of n 5 20 scores. The overall mean for the distribution is M 5 89 
and the scores have SS 5 680. However, it is clear that the scores for the students who 
watched Sesame Street tend to be clustered at the high end of the distribution. The mean 
for these 10 students is M 5 93, which is 4 points higher than the overall mean for the 
entire group. Also, the scores for the students who did not watch the program are clustered 
at the low end of the distribution. For these 10 students the mean is M 5 85, which is 4 
points below the overall mean. The difference between the two types of student (M 5 85 
versus M 5 93) is the treatment effect produced by the relationship between TV viewing 
and high school grades.

Now consider the distribution shown in Figure 10.4(b). To create this distribution, we 
started with the original scores and then eliminated the treatment effect. Specifically, we 
subtracted 4 points from each score in the Sesame Street group and we added 4 points to 
each score for students who did not watch Sesame Street. As a result, both groups now 
have the same mean, M 5 89, and the treatment effect is eliminated. One consequence of 
removing the treatment effect is that the resulting scores are much less variable that the 
original scores. Recall that the original scores in Figure 10.4(a) have SS 5 680. When 
the treatment effect is removed, in Figure 10.4(b), the variability is reduced to SS 5 360. 
The difference between these two values is 320 points. Thus, the treatment effect accounts 
for 320 point of the total variability in the original scores. When expressed as a proportion 
of the total variability, we obtain

variability explained by the treatment

total variability
5 5 5

320

680
0 47 47. %

You should recognize that this is exactly the same value we obtained for r2 using 
Equation 10.9.

As noted in Chapter 9, it is possible to compute a confidence interval as an alternative 
method for measuring and describing the size of the treatment effect. For the single-
sample t, we used a single sample mean, M, to estimate a single population mean. For the  

E x A m P l E  1 0 . 2

ConfidenCe 
inTerVals for 

esTiMaTing m1 2 m2
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independent-measures t, we use a sample mean difference, M
1
 2 M

2
, to estimate the popu-

lation mean difference, m
1
 2 m

2
. In this case, the confidence interval literally estimates the 

size of the population mean difference between the two populations or treatment conditions.
As with the single-sample t, the first step is to solve the t equation for the unknown 

parameter. For the independent-measures t statistic, we obtain

m 2m 5 2  21 2 1 2 1 2
M M ts M M( )  

(10.10)

In the equation, the values for M
1
 2 M

2
 and for s M M1 22( )  are obtained from the 

sample data. Although the value for the t statistic is unknown, we can use the degrees 
of freedom for the t statistic and the t distribution table to estimate the t value. Using the 
estimated t and the known values from the sample, we can then compute the estimated 
value for m

1
 2 m

2
. The following example demonstrates the process of constructing a 

confidence interval for a population mean difference.

Earlier we presented a research study comparing high school grades for students 
who had watched Sesame Street as children with the grades for students who had not 
watched the program (p. 289). The results of the hypothesis test indicated a significant 
mean difference between the two populations of students. Now, we construct a 95% 
confidence interval to estimate the size of the population mean difference.

E x A m P l E  1 0 . 3

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

M � 89

Average High School Grade

Sesame Street

No Sesame Street

Original scores including the treatment effect

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

M � 89

Average High School Grade 

Adjusted scores after the treatment effect is removed

(a)

(b)

Figure 10.4

The two groups of scores from Example 10.1 combined into a single distribution. The original scores, including the treat-
ment effect, are shown in part (a). Part (b) shows the adjusted scores, after the treatment effect has been removed.
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The data from the study produced a mean grade of M 5 93 for the Sesame Street 
group and a mean of M 5 85 for the no–Sesame Street group, and the estimated standard 
error for the mean difference was s M M1 22( )  5 2. With n 5 10 scores in each sample, the 
independent-measures t statistic has df 5 18. To have 95% confidence, we simply esti-
mate that the t statistic for the sample mean difference is located somewhere in the middle 
95% of all the possible t values. According to the t distribution table, with df 5 18, 95% 
of the t values are located between t 5 12.101 and t 5 22.101. Using these values in the 
estimation equation, we obtain

m 2  m 5  2   

5  2 

21 2 1 2 1 2

93 85 2 101 2

M M ts M M( )

(. ))
5  8 4 202.

This produces an interval of values ranging from 8 2 4.202 5 3.798 to 8 1 4.202 
5 12.202. Thus, our conclusion is that students who watched Sesame Street have 
higher grades that those who did not, and the mean difference between the two 
populations is somewhere between 3.798 points and 12.202 points. Furthermore, 
we are 95% confident that the true mean difference is in this interval because the 
only value estimated during the calculations was the t statistic, and we are 95% 
confident that the t value is located in the middle 95% of the distribution. Finally, 
note that the confidence interval is constructed around the sample mean difference. 
As a result, the sample mean difference, M

1
 2 M

2
 5 93 2 83 5 8 points, is located 

exactly in the center of the interval.

As with the confidence interval for the single-sample t (p. 264), the confidence in-
terval for an independent-measures t is influenced by a variety of factors other than the 
actual size of the treatment effect. In particular, the width of the interval depends on 
the percentage of confidence used, so that a larger percentage produces a wider inter-
val. Also, the width of the interval depends on the sample size, so that a larger sample 
produces a narrower interval. Because the interval width is related to sample size, the 
confidence interval is not a pure measure of effect size like Cohen’s d or r2.

In addition to describing the size of a treatment effect, estimation can be used 
to get an indication of the significance of the effect. Example 10.3 presented an 
independent-measures research study examining the effect on high school grades 
of having watched Sesame Street as a child. Based on the results of the study, the 
95% confidence interval estimated that the population mean difference for the two 
groups of students was between 3.798 and 12.202 points. The confidence interval 
estimate is shown in Figure 10.5. In addition to the confidence interval for m

1
 2 m

2
, 

we have marked the spot where the mean difference is equal to zero. You should 
recognize that a mean difference of zero is exactly what would be predicted by the 
null hypothesis if we were doing a hypothesis test. You also should realize that a 
zero difference (m

1
 2 m

2
 5 0) is outside of the 95% confidence interval. In other 

words, m
1
 2 m

2
 5 0 is not an acceptable value if we want 95% confidence in our 

estimate. To conclude that a value of zero is not acceptable with 95% confidence 
is equivalent to concluding that a value of zero is rejected with 95% confidence. 
This conclusion is equivalent to rejecting H

0
 with a 5 .05. On the other hand, if a 

mean difference of zero were included within the 95% confidence interval, then we 
would have to conclude that m

1
 2 m

2
 5 0 is an acceptable value, which is the same 

as failing to reject H
0
.

ConfidenCe 
inTerVals and 

hypoThesis TesTs

The hypothesis test for 
these data was conducted in 
Example 10.1 (p. 289) and 
the decision was to reject H

0
.
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In THE lITERATuRE:
REPoRTIng THE RESulTS of An IndEPEndEnT-mEASuRES t TEST

A research report typically presents the descriptive statistics followed by the results of the 
hypothesis test and measures of effect size (inferential statistics). In Chapter 4 (p. 109), 
we demonstrated how the mean and the standard deviation are reported in APA format. In 
Chapter 9 (p. 267), we illustrated the APA style for reporting the results of a t test. Now 
we use the APA format to report the results of Example 10.1, an independent-measures t 
test. A concise statement might read as follows:

The students who watched Sesame Street as children had higher high school 
grades (M 5 93, SD 5 4.71) than the students who did not watch the program 
(M 5 85, SD 5 4.22). The mean difference was significant, t(18) 5 4.00,  
p , .01, d 5 1.79.

You should note that standard deviation is not a step in the computations for  
the independent-measures t test, yet it is useful when providing descriptive statis-
tics for each treatment group. It is easily computed when doing the t test because 
you need SS and df for both groups to determine the pooled variance. Note that the 
format for reporting t is exactly the same as that described in Chapter 9 (p. 267) 
and that the measure of effect size is reported immediately after the results of the 
hypothesis test.

Also, as we noted in Chapter 9, if an exact probability is available from a computer 
analysis, it should be reported. For the data in Example 10.1, the computer analysis re-
ports a probability value of p 5 .001 for t 5 4.00 with df 5 18. In the research report, 
this value would be included as follows:

The difference was significant, t(18) 5 4.00, p 5 .001, d 5 1.79.

Finally, if a confidence interval is reported to describe effect size, it appears im-
mediately after the results from the hypothesis test. For the Sesame Street examples 
(Example 10.1 and Example 10.3), the report would be as follows:

The difference was significant, t(18) 5 4.00, p 5 .001, 95% CI [3.798, 
12.202].

3.798 12.202

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

95% confidence interval
estimate for �1 � �2

�1 � �2

according to H0

(                                                                )

Figure 10.5

The 95% confidence interval for the population mean difference (µ
1 
– µ

2
) from Example 10.3. Note that µ

1 
– µ

2
 5 0 is 

excluded from the confidence interval, indicating that a zero difference is not an acceptable value (H
0
 would be rejected 

in a hypothesis test with a 5 .05).
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When planning an independent-measures study, a researcher usually has some 
expectation or specific prediction for the outcome. For the Sesame Street study 
in Example 10.1, the researcher clearly expects the students who watched Sesame 
Street to have higher grades than the students who did not watch it. This kind of 
directional prediction can be incorporated into the statement of the hypotheses, 
resulting in a directional, or one-tailed, test. Recall from Chapter 8 that one-tailed 
tests can lead to rejecting H

0
 when the mean difference is relatively small compared 

to the magnitude required by a two-tailed test. As a result, one-tailed tests should be 

direCTional 
hypoTheses and one-

Tailed TesTs

 1. An educational psychologist would like to determine whether access to computers 
has an effect on grades for high school students. One group of n 5 16 students has 
home room each day in a computer classroom in which each student has a com-
puter. A comparison group of n 5 16 students has home room in a traditional  
classroom. At the end of the school year, the average grade is recorded for each 
student. The data are as follows:

Computer Traditional

M 5 86 M 5 82.5

SS 5 1005 SS 5 1155

 a. Is there a significant difference between the two groups? Use a two-tailed test 
with a 5 .05.

 b. Compute Cohen’s d to measure the size of the difference.

 c.  Write a sentence that demonstrates how the outcome of the hypothesis test and 
the measure of effect size would appear in a research report.

 d.  Compute the 90% confidence interval for the population mean difference between 
a computer classroom and a regular classroom.

 2. A research report states that there is a significant difference between treatments for 
an independent-measures design with t(28) 5 2.27.

 a.  How many individuals participated in the research study? (Hint: Start with the 
df value.)

 b. Should the report state that p . .05 or p , .05?

 1. a.  The pooled variance is 72, the standard error is 3, and t 5 1.17. With a critical value of 
t 5 2.042, fail to reject the null hypothesis.

 b. Cohen’s d 5 
3 5

72

.
 5 0.412

 c.  The results show no significant difference in grades for students with computers compared 
to students without computers, t(30) 5 1.17, p . .05, d 5 0.412.

 d.  With df 5 30 and 90% confidence, the t values for the confidence interval are ±1.697. 
The interval is m

1
 2 m

2
 5 3.5 ± 1.697(3). Thus, the population mean difference is esti-

mated to be between 21.591 and 8.591. The fact that zero is an acceptable value (inside 
the interval) is consistent with the decision that there is no significant difference between 
the two population means.

 2. a. The df 5 28, so the total number of participants is 30.

 b. A significant result is indicated by p , .05.

l E A R n I n g  C H E C k

AnSwERS
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used when clearly justified by theory or previous findings. The following example 
demonstrates the procedure for stating hypotheses and locating the critical region for 
a one-tailed test using the independent-measures t statistic.

We use the same research situation that was described in Example 10.1. The researcher 
is using an independent-measures design to examine the relationship between watching 
educational TV as a child and academic performance as a high school student. The pre-
diction is that high school students who watched Sesame Street regularly as 5-year-old 
children have higher grades.

State the hypotheses and select the alpha level. As always, the null hypothesis says that 
there is no effect, and the alternative hypothesis says that there is an effect. For this ex-
ample, the predicted effect is that the students who watched Sesame Street have higher 
grades. Thus, the two hypotheses are as follows.

H
0
: µ

Sesame Street
  µ

No Sesame Street
 (Grades are not higher with Sesame Street.)

H
1
: µ

Sesame Street
 . µ

No Sesame Street
 (Grades are higher with Sesame Street.)

Note that it is usually easier to state the hypotheses in words before you try to 
write them in symbols. Also, it usually is easier to begin with the alternative hypoth-
esis (H

1
), which states that the treatment works as predicted. Also note that the equal 

sign goes in the null hypothesis, indicating no difference between the two treatment 
conditions. The idea of zero difference is the essence of the null hypothesis, and the 
numerical value of zero is used for (µ

1
 2 µ

2
) during the calculation of the t statistic. 

For this test we use a 5 .01.

Locate the critical region. For a directional test, the critical region is located entirely 
in one tail of the distribution. Rather than trying to determine which tail, positive 
or negative, is the correct location, we suggest that you identify the criteria for the 
critical region in a two-step process as follows. First, look at the data and determine 
whether the sample mean difference is in the direction that was predicted. If the 
answer is no, then the data obviously do not support the predicted treatment effect, 
and you can stop the analysis. On the other hand, if the difference is in the predicted 
direction, then the second step is to determine whether the difference is large enough 
to be significant. To test for significance, simply find the one-tailed critical value in 
the t distribution table. If the calculated t statistic is more extreme (either positive or 
negative) than the critical value, then the difference is significant.

For this example, the students who watched Sesame Street had higher grades, as 
predicted. With df 5 18, the one-tailed critical value for a 5 .01 is t 5 2.552.

Collect the data and calculate the test statistic. The details of the calculations were 
shown in Example 10.1. The data produce a t statistic of t 5 4.00.

Make a decision. The t statistic of t 5 4.00 is well beyond the critical boundary of t 5 
2.552. Therefore, we reject the null hypothesis and conclude that grades for students 
who watched Sesame Street are significantly higher than grades for students who did 
not watch the program. In a research report, the one-tailed test would be clearly noted:

Grades were significantly higher for students who watched Sesame Street, t(18) 5 4.00, 
p , .01, one tailed.

E x A m P l E  1 0 . 4

S t e p  1

S t e p  2

S t e p  3

S t e p  4
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In Chapter 9 (p. 259), we identified several factors that can influence the outcome 
of a hypothesis test. For the independent-measures t, the most obvious factor is 
the size of the difference between the two sample means. A larger mean difference 
increases the likelihood of rejecting the null hypothesis and increases measures 
of effect size. Two other factors that play important roles are the variability of the 
scores and the size of the samples. Both influence the magnitude of the estimated 
standard error in the denominator of the t statistic. Specifically, the standard error is 
directly related to sample variance (larger variance leads to larger error) and is in-
versely related to sample size (larger size leads to smaller error). As a result, larger 
variance produces a smaller value for the t statistic (closer to zero) and reduces the 
likelihood of finding a significant result. By contrast, a larger sample produces a 
larger value for the t statistic (farther from zero) and increases the likelihood of 
rejecting H

0
.

Although variance and sample size both influence the hypothesis test, only 
variance has a large influence on measures of effect size such as Cohen’s d and  
r2; larger variance produces smaller measures of effect size. Sample size, on  
the other hand, has no effect on the value of Cohen’s d and only a small influence 
on r2.

The following example provides a visual demonstration of how large sample vari-
ance can obscure a mean difference between samples and lower the likelihood of reject-
ing H

0
 for an independent-measures study.

We use the data in Figure 10.6 to demonstrate the influence of sample variance. The 
figure shows the results from a research study comparing two treatments. Notice 
that the study uses two separate samples, each with n 5 9, and there is a 5-point 
mean difference between the two samples: M 5 8 for treatment 1 and M 5 13 for 
treatment 2. The frequency distribution in Figure 10.6 also shows a clear difference 
between the two distributions; the scores for treatment 2 are clearly higher than the 
scores for treatment 1.

The role of saMple 
VarianCe and 

saMple size in 
The independenT-

Measures t  TesT

E x A m P l E  1 0 . 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Treatment 1

n  � 9
M  � 8
s  � 1.22

Treatment 2

n  � 9
M  � 13
s  � 1.22

Figure 10.6

Two sample distributions representing two different treatments. These data show a significant difference between treatments, 
t(16) 5 8.62, p , .01, and both measures of effect size indicate a very large treatment effect, d 5 4.10 and r2 5 0.82.
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For the hypothesis test, the data produce a pooled variance of 1.50 and an estimated 
standard error of 0.58. The t statistic is

t 5 5
mean difference

estimated standard error

5

00 58
8 62

.
.5

With df 5 16, this value is far into the critical region (for a 5 .05 or a 5 .01), so we 
reject the null hypothesis and conclude that there is a significant difference between the 
two treatments. These data also produce Cohen’s d 5 4.10 and r2 5 0.82, both indicat-
ing a very large treatment effect.

Now consider the effect of increasing sample variance. Figure 10.7 shows the results 
from a second research study comparing two treatments. Notice that there are still n 5 9 
scores in each sample, and the two sample means are still M 5 8 and M 5 13. However, 
the sample variances have been greatly increased: Each sample now has s2 5 44.25 as 
compared with s2 5 1.5 for the data in Figure 10.7. Notice that the increased variance 
means that the scores are now spread out over a wider range, with the result that the two 
samples are mixed together without any clear distinction between them.

The absence of a clear difference between the two samples is supported by the hy-
pothesis test. The pooled variance is 44.25, the estimated standard error is 3.14, and the 
independent-measures t statistic is

t 5 5
mean difference

estimated standard error

5

33 14
1 59

.
.5

With df 5 16 and a 5 .05, this value is not in the critical region. Therefore, we fail 
to reject the null hypothesis and conclude that there is no significant difference between 
the two treatments. Although there is still a 5-point difference between sample means 
(as in Figure 10.7), the 5-point difference is not significant with the increased variance. 
The measures of effect size are also substantially smaller. With the increased variance, 
Cohen’s d is now 0.75 and r2 5 0.136.

In general, large sample variance can obscure any mean differences that exist in the 
data, which reduces the likelihood of obtaining a significant difference in a hypothesis 
test and lowers measures of effect size.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Treatment 1

n  � 9
M  � 8
s  � 6.65

Treatment 2

n  � 9
M  � 13
s  � 6.65

Figure 10.7

Two sample distributions representing two different treatments. These data show exactly the same mean difference as the 
scores in Figure 10.6; however, the variance has been greatly increased. With the increased variance, there is no longer a 
significant difference between treatments, t(16) 5 1.59, p . .05, and both measures of effect size are substantially reduced, 
d 5 0.75 and r2 5 0.14.
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ASSumPTIonS undERlyIng THE IndEPEndEnT-
mEASuRES t foRmulA

There are three assumptions that should be satisfied before you use the independent-
measures t formula for hypothesis testing:

 1. The observations within each sample must be independent (see p. 220).

 2. The two populations from which the samples are selected must be normal.

 3. To justify using the pooled variance, the two populations from which the sam-
ples are selected must have equal variances.

The first two assumptions should be familiar from the single-sample t hypothesis test 
presented in Chapter 9. As before, the normality assumption is the less important of the 
two, especially with large samples. When there is reason to suspect that the populations are 
far from normal, you should compensate by ensuring that the samples are relatively large.

The third assumption is referred to as homogeneity of variance and states  
that the two populations being compared must have the same variance. You may recall 
a similar assumption for the z-score hypothesis test in Chapter 8. For that test, we as-
sumed that the effect of the treatment was to add a constant amount to (or subtract a 
constant amount from) each individual score. As a result, the population standard devia-
tion after treatment was the same as it had been before treatment. We now are making 
essentially the same assumption, but phrasing it in terms of variances.

Recall that the pooled variance in the t-statistic formula is obtained by averaging 
together the two sample variances. It makes sense to average these two values only if 
they both are estimating the same population variance—that is, if the homogeneity of 
variance assumption is satisfied. If the two sample variances are estimating different 
population variances, then the average is meaningless. (Note: If two people are asked 
to estimate the same thing—for example, what you weigh—it is reasonable to average 
the two estimates. However, it is not meaningful to average estimates of two different 
things. If one person estimates your weight and another estimates the number of grapes 
in a pound, it is meaningless to average the two numbers.)

Homogeneity of variance is most important when there is a large discrepancy be-
tween the sample sizes. With equal (or nearly equal) sample sizes, this assumption is 
less critical, but still important. Violating the homogeneity of variance assumption can 
prevent any meaningful interpretation of the data from an independent-measures ex-
periment. Specifically, when you compute the t statistic in a hypothesis test, all of the 
numbers in the formula come from the data except for the population mean difference, 
which you get from H

0
. Thus, you are sure of all of the numbers in the formula except 

one. If you obtain an extreme result for the t statistic (a value in the critical region), then 
you conclude that the hypothesized value was wrong. But consider what happens when 
the homogeneity assumption is violated. In this case, you have two questionable values 
in the formula (the hypothesized population value and the meaningless average of the 
two variances). Now if you obtain an extreme t statistic, you do not know which of these 
two values is responsible. Specifically, you cannot reject the hypothesis because it may 
have been the pooled variance that produced the extreme t statistic. Without satisfying 
the homogeneity of variance requirement, you cannot accurately interpret a t statistic, 
and the hypothesis test becomes meaningless.

How do you know whether the homogeneity of variance assumption is satisfied? One 
simple test involves just looking at the two sample variances. Logically, if the two popula-
tion variances are equal, then the two sample variances should be very similar. When the 

10.4

harTley’s F-Max TesT

Remember: Adding a constant 
to (or subtracting a constant 
from) each score does not 
change the standard deviation.
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two sample variances are reasonably close, you can be reasonably confident that the homo-
geneity assumption has been satisfied and proceed with the test. However, if one sample 
variance is more than three or four times larger than the other, then there is reason for 
concern. A more objective procedure involves a statistical test to evaluate the homogeneity 
assumption. Although there are many different statistical methods for determining whether 
the homogeneity of variance assumption has been satisfied, Hartley’s F-max test is one of 
the simplest to compute and to understand. An additional advantage is that this test can also 
be used to check homogeneity of variance with more than two independent samples. Later, 
in Chapter 12, we examine statistical methods for comparing several different samples, and 
Hartley’s test is useful again. The following example demonstrates the F-max test for two 
independent samples.

The F-max test is based on the principle that a sample variance provides an unbiased 
estimate of the population variance. The null hypothesis for this test states that the 
population variances are equal, therefore, the sample variances should be very similar. 
The procedure for using the F-max test is as follows:

 1. Compute the sample variance, s
SS

df
2 5 , for each of the separate samples.

 2. Select the largest and the smallest of these sample variances and compute

F
s

s
-max

largest

smallest
5

2

2

( )
( )

A relatively large value for F-max indicates a large difference between the 
sample variances. In this case, the data suggest that the population variances are 
different and that the homogeneity assumption has been violated. On the other 
hand, a small value of F-max (near 1.00) indicates that the sample variances are 
similar and that the homogeneity assumption is reasonable.

 3. The F-max value computed for the sample data is compared with the critical 
value found in Table B.3 (Appendix B). If the sample value is larger than the 
table value, then you conclude that the variances are different and that the ho-
mogeneity assumption is not valid.

To locate the critical value in the table, you need to know:

 a. k 5 number of separate samples. (For the independent-measures t test, k 5 2.)

 b.  df 5 n 2 1 for each sample variance. The Hartley test assumes that all 
samples are the same size.

 c.  The alpha level. The table provides critical values for a 5 .05 and a 5 .01. 
Generally a test for homogeneity would use the larger alpha level.

Suppose, for example, that two independent samples each have n 5 10 with sample 
variances of 12.34 and 9.15. For these data,

F
s

s
-max

largest

smallest
5 5 5

2

2

12 34

9 15
1 3

( )
( )

.

.
. 55

With a 5 .05, k 5 2, and df 5 n – 1 5 9, the critical value from the table is 4.03. 
Because the obtained F-max is smaller than this critical value, you conclude that the data 
do not provide evidence that the homogeneity of variance assumption has been violated.

E x A m P l E  1 0 . 6
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The goal for most hypothesis tests is to reject the null hypothesis to demonstrate a 
significant difference or a significant treatment effect. However, when testing for homo-
geneity of variance, the preferred outcome is to fail to reject H

0
. Failing to reject H

0
 with 

the F-max test means that there is no significant difference between the two population 
variances and the homogeneity assumption is satisfied. In this case, you may proceed with 
the independent-measures t test using pooled variance.

If the F-max test rejects the hypothesis of equal variances, or if you simply suspect 
that the homogeneity of variance assumption is not justified, you should not compute an 
independent-measures t statistic using pooled variance. However, there is an alternative 
procedure that does not pool the two sample variances and does not require the homogeneity 
assumption. The alternative is presented in Box 10.2.

BOX
10.2

An AlTERnATIVE To PoolEd VARIAnCE

Computing the independent-measures t statis-
tic using pooled variance requires that the data 
satisfy the homogeneity of variance assumption. 
Specifically, the two distributions from which  
the samples are obtained must have equal vari-
ances. To avoid this assumption, many statisticians 
recommend an alternative formula for computing 
the independent-measures t statistic that does not 
require pooled variance or the homogeneity as-
sumption. The alternative procedure consists of  
two steps.

 1.  The standard error is computed using the  
two separate sample variances as in  
Equation 10.1.

 2.  The value of degrees of freedom for the t statis-
tic is adjusted using the following equation:

df
V V

V
n

V
n

V
s

n
5

1

2
1

2

51 2

2

1
2

1

2
2

2

1
1
2

1

1 1

( )
where annd V

s

n2
2
2

2

5

Decimal values for df should be rounded down to 
the next lower integer.

The adjustment to degrees of freedom lowers the 
value of df, which pushes the boundaries for the critical 
region farther out. Thus, the adjustment makes the test 
more demanding and therefore corrects for the same 
bias problem that the pooled variance attempts to avoid.

Note: Many computer programs that perform sta-
tistical analysis (such as SPSS) report two versions 
of the independent-measures t statistic; one using 
pooled variance (with equal variances assumed) and 
one using the adjustment shown here (without the as-
sumption of equal variances).

 1. A researcher is using an independent-measures design to evaluate the difference 
between two treatment conditions with n 5 8 in each treatment. The first treatment 
produces M 5 63 with a variance of s2 5 18, and the second treatment has M 5 58 
with s2 5 14.

 a.  Use a one-tailed test with a 5 .05 to determine whether the scores in the first 
treatment are significantly greater than the scores in the second. (Note: Because 
the two samples are the same size, the pooled variance is simply the average of 
the two sample variances.)

 b. Predict how the value for the t statistic would be affected if the two sample 
variances were increased to s2 5 68 and s2 5 60. Compute the new t to confirm 
your answer.

 c. Predict how the value for the t statistic for the original samples would be  
affected if each sample had n 5 32 scores (instead of n 5 8). Compute the  
new t to confirm your answer.

l E A R n I n g  C H E C k
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 1. The independent-measures t statistic uses the data 
from two separate samples to draw inferences about 
the mean difference between two populations or be-
tween two different treatment conditions.

 2. The formula for the independent-measures t statistic 
has the same structure as the original z-score or the 
single-sample t:

t 5
2sample statistic population parameter

estimmated standard error

For the independent-measures t, the sample statistic is 
the sample mean difference (M

1
 2 M

2
). The population 

parameter is the population mean difference (µ
1
 2 µ

2
). 

The estimated standard error for the sample mean dif-
ference is computed by combining the errors for the two 
sample means. The resulting formula is

t
M M

s M M

5
2 2 m 2  m

2

1 2 1 2

1 2

( ) ( )
( )

where the estimated standard error is

s
s

n

s

nM M
p p

1 2

2

1

2

2
2

5 1( )

The pooled variance in the formula, sp
2 , is the 

weighted mean of the two sample variances:

s
SS SS

df dfp
2 1 2

1 2

5
1

1

 2. The homogeneity of variance assumption requires that the two sample variances be 
equal. (True or false?)

 3. When you are using an F-max test to evaluate the homogeneity of variance as-
sumption, you usually do not want to find a significant difference between the 
variances. (True or false?)

1. a.  The pooled variance is 16, the estimated standard error is 2, and t(14) 5 2.50. With a 
one-tailed critical value of 1.761, reject the null hypothesis. Scores in the first treatment 
are significantly higher than scores in the second.

 b.  Increasing the variance should lower the value of t. The new pooled variance is 64, the 
estimated standard error is 4, and t(14) 5 1.25.

 c.  Increasing the sample sizes should increase the value of t. The pooled variance is still 
16, but the new standard error is 1, and t(62) 5 5.00.

 2. False. The assumption is that the two population variances are equal.

 3. True. If there is a significant difference between the two variances, you cannot do the t test 
with pooled variance.

AnSwERS

Summary

This t statistic has degrees of freedom determined by 
the sum of the df values for the two samples:

df 5 df
1
 1 df

2

5 (n
1
 2 1) 1 (n

2
 2 1)

 3. For hypothesis testing, the null hypothesis states that 
there is no difference between the two population 
means:

H
0
: m

1
 5 m

2
 or m

1
 2 m

2
 5 0

 4. When a hypothesis test with an independent-measures 
t statistic indicates a significant difference, you 
should also compute a measure of the effect size. 
One measure of effect size is Cohen’s d, which is a 
standardized measure of the mean difference. For the 
independent-measures t statistic, Cohen’s d is esti-
mated as follows:

estimated d
M M

sp

5
21 2

2

A second common measure of effect size is the percent-
age of variance accounted for by the treatment effect. 
This measure is identified by r2 and is computed as

r
t

t df
2

2

2
5

1
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 5. An alternative method for describing the size of the 
treatment effect is to construct a confidence interval 
for the population mean difference, m

1
 – m

2
. The con-

fidence interval uses the independent-measures t equa-
tion, solved for the unknown mean difference:

m 2m 5 2  21 2 1 2 1 2
M M ts M M( )

First, select a level of confidence and then look up 
the corresponding t values. For example, for 95% 
confidence, use the range of t values that determine 
the middle 95% of the distribution. The t values are 
then used in the equation along with the values for the 

sample mean difference and the standard error, which 
are computed from the sample data.

 6. Appropriate use and interpretation of the t statistic 
using pooled variance require that the data satisfy the 
homogeneity of variance assumption. This assumption 
stipulates that the two populations have equal variances. 
An informal test of the assumption can be made by 
verifying that the two sample variances are approxi-
mately equal. Hartley’s F-max test provides a statistical 
technique for determining whether the data satisfy the 
homogeneity assumption. An alternative technique that 
avoids pooling variances and eliminates the need for the 
homogeneity assumption is presented in Box 10.2.
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2. Complete the corresponding exercises as required by your professor.
3. When finished, click “Grade It Now” to see which areas you have mastered, which 

areas need more work, and detailed explanations of every answer.

General instructions for using SPSS are presented in Appendix D. Following are 
detailed instructions for using SPSS to perform The Independent-Measures t Test 
presented in this chapter.

Data Entry

1. The scores are entered in what is called stacked format, which means that all of the 
scores from both samples are entered in one column of the data editor (probably 
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VAR00001). Enter the scores for sample #2 directly beneath the scores from sample #1 
with no gaps or extra spaces.

2. Values are then entered into a second column (VAR00002) to identify the sample or 
treatment condition corresponding to each of the scores. For example, enter a 1 be-
side each score from sample #1 and enter a 2 beside each score from sample #2.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on Independent-
Samples t Test.

2. Highlight the column label for the set of scores (VAR0001) in the left box and click 
the arrow to move it into the Test Variable(s) box.

3. Highlight the label from the column containing the sample numbers (VAR0002) in 
the left box and click the arrow to move it into the Group Variable box.

4. Click on Define Groups.

5. Assuming that you used the numbers 1 and 2 to identify the two sets of scores, enter 
the values 1 and 2 into the appropriate group boxes.

6. Click Continue.

7. In addition to performing the hypothesis test, the program computes a confidence 
interval for the population mean difference. The confidence level is automatically 
set at 95%, but you can select Options to change the percentage.

8. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the Sesame Street study in Example 
10.1 and the program output is shown in Figure 10.8. The output includes a table of sam-
ple statistics with the mean, standard deviation, and standard error of the mean for each 
group. A second table, which is split into two sections in Figure 10.8, begins with the 
results of Levene’s test for homogeneity of variance. This test should not be significant 
(you do not want the two variances to be different), so you want the reported Sig. value 
to be greater than .05. Next, the results of the independent-measures t test are presented 
using two different assumptions. The top row shows the outcome assuming equal vari-
ances, using the pooled variance to compute t. The second row does not assume equal 
variances and computes the t statistic using the alternative method presented in Box 10.2. 
Each row reports the calculated t value, the degrees of freedom, the level of significance 
(the p value for the test), the size of the mean difference, and the standard error for the 
mean difference (the denominator of the t statistic). Finally, the output includes a 95% 
confidence interval for the mean difference.

foCus on probleM solVing

 1. As you learn more about different statistical methods, one basic problem is 
deciding which method is appropriate for a particular set of data. Fortunately, 
it is easy to identify situations in which the independent-measures t statistic is 
used. First, the data always consist of two separate samples (two ns, two Ms, 
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two SSs, and so on). Second, this t statistic is always used to answer questions 
about a mean difference: On the average, is one group different (better, faster, 
smarter) than the other group? If you examine the data and identify the type of 
question that a researcher is asking, you should be able to decide whether an 
independent-measures t is appropriate.

 2. When computing an independent-measures t statistic from sample data, we sug-
gest that you routinely divide the formula into separate stages rather than trying 
to do all of the calculations at once. First, find the pooled variance. Second, 
compute the standard error. Third, compute the t statistic.

 3. One of the most common errors for students involves confusing the formulas  
for pooled variance and standard error. When computing pooled variance, 
you are “pooling” the two samples together into a single variance. This vari-
ance is computed as a single fraction, with two SS values in the numerator 
and two df values in the denominator. When computing the standard error, 
you are adding the error from the first sample and the error from the second 
sample. These two separate errors are added as two separate fractions under 
the square root symbol.

Group Statistics

Independent Samples Test

Independent Samples Test

VAR00001

VAR00001

VAR00002

1.00

2.00

Equal variances assumed

Equal variances not
assumed

VAR00001 Equal variances assumed

Equal variances not
assumed

.001

.001

8.00000

8.00000

2.00000

2.00000

3.79816

3.79443

12.20184

12.20557

4.000

4.000

18

17.780

.543.384

Sig. (2-tailed)
Mean

Difference
Std. Error
Difference

10

10

93.0000

85.0000

4.71405

4.21637

1.49071

1.33333

Sig.F

Levene’s Test for Equality of
Variances t-test for Equality of Means

t-test for Equality of Means

t df

Lower Upper

95%
Confidence

Interval of the
Difference

MeanN Std. Deviation
Std. Error

Mean

Figure 10.8

The SPSS output for the independent-measures hypothesis test in Example 10.1.
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deMonsTraTion 10.1

The independenT-Measures t TesT

In a study of jury behavior, two samples of participants were provided details about 
a trial in which the defendant was obviously guilty. Although group 2 received the 
same details as group 1, the second group was also told that some evidence had been 
withheld from the jury by the judge. Later, the participants were asked to recommend 
a jail sentence. The length of term suggested by each participant is presented here. Is 
there a significant difference between the two groups in their responses?

Group 1 Group 2

4 3
4 7
3 8 For Group 1: M 5 3 and SS 5 16
2 5
5 4 For Group 2: M 5 6 and SS 5 24
1 7
1 6
4 8

There are two separate samples in this study. Therefore, the analysis uses the inde-
pendent-measures t test.

State the hypothesis, and select an alpha level.

H
0
: m

1
 2 m

2
 5 0  (For the population, knowing that evidence has been 

withheld has no effect on the suggested sentence.)

H
1
: m

1
 2 m

2
 ≠ 0  (For the population, knowing that evidence has been 

withheld has an effect on the jury’s response.)

We set the level of significance to a 5 .05, two tails.

Identify the critical region. For the independent-measures t statistic, degrees of free-
dom are determined by

df 5 df
1
 1 df

2

5 7 1 7
5 14

The t distribution table is consulted, for a two-tailed test with a 5 .05 and df 5 14. 
The critical t values are 12.145 and –2.145.

Compute the test statistic. As usual, we recommend that the calculation of the t sta-
tistic be separated into three stages.

Pooled variance: For these data, the pooled variance equals

s
SS SS

df dfp
2 1 2

1 2

16 24

7 7

40

14
2 865

1

1
5

1

1
5 5 .

S t e p  1

S t e p  2

S t e p  3
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Estimated standard error: Now we can calculate the estimated standard error for 
mean differences.

s
s

n

s

nM M
p p

1 2

2

1

2

2

2 86

8

2 86

8
0 358 0 352 5 1 5 1 5 1( )

. .
. . 88 0 716 0 855 5. .

The t statistic: Finally, the t statistic can be computed.

t
M M

s M M

5
2 2 m 2m

5
2 2

5
2

2

1 2 1 2

1 2

3 6 0

0 85

3

0 8

( ) ( ) ( )

( ) . . 55
3 5352 .

Make a decision about H
0
, and state a conclusion. The obtained t value of 23.53 falls 

in the critical region of the left tail (critical t 5 ±2.145). Therefore, the null hypothesis 
is rejected. The participants who were informed about the withheld evidence gave sig-
nificantly longer sentences, t(14)5 23.53, p , .05, two tails.

deMonsTraTion 10.2

effeCT size for The independenT-Measures t

We compute Cohen’s d and r2 for the jury decision data in Demonstration 10.1. For 
these data, the two sample means are M

1
 5 3 and M

2
 5 6, and the pooled variance is 

2.86. Therefore, our estimate of Cohen’s d is

estimated d
M M

sp

5
2

5
2

5 51 2

2

3 6

2 86

3

1 69
1 78

. .
.

With a t value of t 5 3.53 and df 5 14, the percentage of variance accounted for is

r
t

t df
2

2

2

2

2

3 53

3 53 14

12 46

26 46
0 45

1
5

1
5 5

.

.

.

.
.

( )
( )

77 47or %( )

S t e p  4

probleMs

 1. Describe the basic characteristics of an independent-
measures, or a between-subjects, research study.

 2. Describe what is measured by the estimated standard 
error in the bottom of the independent-measures  
t statistic.

 3. If other factors are held constant, explain how each of 
the following influences the value of the independent-
measures t statistic and the likelihood of rejecting the 
null hypothesis:

 a.   An increase in the mean difference between the 
samples.

 b. An increase in the number of scores in each sample.
 c. An increase in the variance for each sample.

 4. Describe the homogeneity of variance assumption 
and explain why it is important for the independent-
measures t test.

 5. One sample has SS 5 36 and a second sample has 
SS 5 18.

 a.  If n 5 4 for both samples, find each of the  
sample variances and compute the pooled  
variance. Because the samples are the same  
size, you should find that the pooled variance  
is exactly halfway between the two sample  
variances.

 b.  Now assume that n 5 4 for the first sample and 
n 5 7 for the second. Again, calculate the two 
sample variances and the pooled variance. You 
should find that the pooled variance is closer to the 
variance for the larger sample.
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 6. One sample has SS 5 70 and a second sample has 
SS 5 42.

 a.  If n 5 8 for both samples, find each of the sample 
variances, and calculate the pooled variance. 
Because the samples are the same size, you should 
find that the pooled variance is exactly halfway 
between the two sample variances.

 b.  Now assume that n 5 8 for the first sample and n 
5 4 for the second. Again, calculate the two sam-
ple variances and the pooled variance. You should 
find that the pooled variance is closer to the vari-
ance for the larger sample.

 7. As noted on page 283, when the two population 
means are equal, the estimated standard error for the 
independent-measures t test provides a measure of 
how much difference to expect between two sample 
means. For each of the following situations, assume 
that µ

1
 5 µ

2
 and calculate how much difference should 

be expected between the two sample means.
 a.  One sample has n 5 6 scores with SS 5 75, and the 

second sample has n 5 10 scores with SS 5 135.
 b.  One sample has n 5 6 scores with SS 5 310, and the 

second sample has n 5 10 scores with SS 5 530.
 c.  In part b, the samples have larger variability (big-

ger SS values) than in part a, but the sample sizes 
are unchanged. How does larger variability affect 
the magnitude of the standard error for the sample 
mean difference?

 8. Two samples are selected from the same population. 
For each of the following, calculate how much dif-
ference is expected, on average, between the two 
sample means.

 a.  One sample has n 5 4, the second has n 5 6, and 
the pooled variance is 60.

 b.  One sample has n 5 12, the second has n 5 15, 
and the pooled variance is 60.

 c.  In part b, the sample sizes are larger, but the 
pooled variance is unchanged. How does larger 
sample size affect the magnitude of the standard 
error for the sample mean difference?

 9. Two separate samples, each with n 5 15 individuals, 
receive different treatments. After treatment, the first 
sample has SS 5 1740 and the second has SS 5 1620.

 a. Find the pooled variance for the two samples.
 b.  Compute the estimated standard error for the sample 

mean difference.
 c.  If the sample mean difference is 8 points, is this 

enough to reject the null hypothesis and conclude 
that there is a significant difference for a two-
tailed test at the .05 level?

 10. Two separate samples receive different treatments. 
After treatment, the first sample has n 5 9 with  
SS 5 462, and the second has n 5 7 with SS 5 420.

 a. Compute the pooled variance for the two samples.

 b.  Calculate the estimated standard error for the 
sample mean difference.

 c.  If the sample mean difference is 10 points, is this 
enough to reject the null hypothesis using a two-
tailed test with a 5 .05?

 11. For each of the following, assume that the two 
samples are obtained from populations with the same 
mean, and calculate how much difference should 
be expected, on average, between the two sample 
means.

 a.  Each sample has n 5 4 scores with s2 5 68 for 
the first sample and s2 5 76 for the second. (Note: 
Because the two samples are the same size, the 
pooled variance is equal to the average of the two 
sample variances.)

 b.  Each sample has n 5 16 scores with s2 5 68 for 
the first sample and s2 5 76 for the second.

 c.  In part b, the two samples are bigger than in part 
a, but the variances are unchanged. How does 
sample size affect the size of the standard error for 
the sample mean difference?

 12. For each of the following, calculate the pooled vari-
ance and the estimated standard error for the sample 
mean difference.

 a.  The first sample has n 5 4 scores and a variance 
of s2 5 55, and the second sample has n 5 6 
scores and a variance of s2 5 63.

 b.  Now the sample variances are increased so that 
the first sample has n 5 4 scores and a variance of 
s2 5 220, and the second sample has n 5 6 scores 
and a variance of s2 5 252.

 c.  Comparing your answers for parts a and b, how 
does increased variance influence the size of the 
estimated standard error?

 13. A researcher conducts an independent-measures 
study comparing two treatments and reports the t 
statistic as t(25) 5 2.071.

 a.  How many individuals participated in the entire 
study?

 b.  Using a two-tailed test with a 5 .05, is there a 
significant difference between the two treatments?

 c.  Compute r2 to measure the percentage of variance 
accounted for by the treatment effect.

 14. In a recent study, Piff, Kraus, Côté, Cheng, and Keitner 
(2010) found that people from lower social economic 
classes tend to display greater prosocial behavior than 
their higher class counterparts. In one part of the study, 
participants played a game with an anonymous part-
ner. Part of the game involved sharing points with the 
partner. The lower economic class participants were 
significantly more generous with their points compared 
with the upper class individuals. Results similar to 
those found in the study, show that n 5 12 lower class 
participants shared an average of M 5 5.2 points with 
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SS 5 11.91, compared to an average of M 5 4.3 with 
SS 5 9.21 for the n 5 12 upper class participants.

 a.  Are the data sufficient to conclude that there is a sig-
nificant mean difference between the two economic 
populations? Use a two-tailed test with a 5 .05.

 b.  Construct an 80% confidence interval to estimate 
the size of the population mean difference.

 15. Hallam, Price, and Katsarou (2002) investigated the  
influence of background noise on classroom perfor-
mance for children aged 10 to 12. In one part of the 
study, calming music led to better performance on an 
arithmetic task compared to a no-music condition. 
Suppose that a researcher selects one class of n 5 18 
students who listen to calming music each day while 
working on arithmetic problems. A second class of  
n 5 18 serves as a control group with no music. 
Accuracy scores are measured for each child and  
the average for students in the music condition is  
M 5 86.4 with SS 5 1550 compared to an average 
of M 5 78.8 with SS 5 1204 for students in the no-
music condition.

 a.  Is there a significant difference between the two 
music conditions? Use a two-tailed test with a 5 .05.

 b.  Compute the 90% confidence interval for the 
population mean difference.

 c.  Write a sentence demonstrating how the results 
from the hypothesis test and the confidence interval 
would appear in a research report.

 16. It appears that there is some truth to the old adage 
“That which doesn’t kill us makes us stronger.” Seery, 
Holman, and Silver (2010) found that individuals with 
some history of adversity report better mental health 
and higher well-being compared to people with little 
or no history of adversity. In an attempt to examine 
this phenomenon, a researcher surveys a group of col-
lege students to determine the negative life events that 
they experienced in the past 5 years and their current 
feeling of well-being. For n 5 18 participants with 2 
or fewer negative experiences, the average well-being 
score is M 5 42 with SS 5 398, and for n 5 16 par-
ticipants with 5 to 10 negative experiences the average 
score is M 5 48.6 with SS 5 370.

 a.  Is there a significant difference between the two 
populations represented by these two samples? 
Use a two-tailed test with a 5 .01.

 b. Compute Cohen’s d to measure the size of the effect.
 c.  Write a sentence demonstrating how the outcome 

of the hypothesis test and the measure of effect 
size would appear in a research report.

 17. Does posting calorie content for menu items affect 
people’s choices in fast food restaurants? According 
to results obtained by Elbel, Gyamfi, and Kersh 
(2011), the answer is no. The researchers monitored 
the calorie content of food purchases for children and 
adolescents in four large fast food chains before and 

after mandatory labeling began in New York City. 
Although most of the adolescents reported noticing 
the calorie labels, apparently the labels had no effect 
on their choices. Data similar to the results obtained 
show an average of M 5 786 calories per meal with 
s 5 85 for n 5 100 children and adolescents before 
the labeling, compared to an average of M 5 772 
calories with s 5 91 for a similar sample of n 5 100 
after the mandatory posting.

 a.  Use a two-tailed test with a 5 .05 to determine 
whether the mean number of calories after the 
posting is significantly different than before  
calorie content was posted.

 b.  Calculate r2 to measure effect size for the mean 
difference.

 18. In 1974, Loftus and Palmer conducted a classic 
study demonstrating how the language used to ask 
a question can influence eyewitness memory. In 
the study, college students watched a film of an 
automobile accident and then were asked questions 
about what they saw. One group was asked, “About 
how fast were the cars going when they smashed 
into each other?” Another group was asked the same 
question except the verb was changed to “hit” in-
stead of “smashed into.” The “smashed into” group 
reported significantly higher estimates of speed than 
the “hit” group. Suppose a researcher repeats this 
study with a sample of today’s college students and 
obtains the following results.

Estimated Speed

Smashed into Hit

n 5 15 n 5 15

M 5 40.8 M 5 34.0

SS 5 510 SS 5 414

 a.  Do the results indicate a significantly higher esti-
mated speed for the “smashed into” group? Use a 
one-tailed test with a 5 .01.

 b.  Compute the estimated value for Cohen’s d to 
measure the size of the effect.

 c.  Write a sentence demonstrating how the results of 
the hypothesis test and the measure of effect size 
would appear in a research report.

 19. Numerous studies have found that males report higher 
self-esteem than females, especially for adolescents 
(Kling, Hyde, Showers, & Buswell, 1999). Typical 
results show a mean self-esteem score of M 5 39.0 
with SS 5 60.2 for a sample of n 5 10 male adoles-
cents and a mean of M 5 35.4 with SS 5 69.4 for a 
sample of n 5 10 female adolescents.

 a.  Do the results indicate that self-esteem is signifi-
cantly higher for males? Use a one-tailed test with 
a 5 .01.
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 b.  Use the data to make a 95% confidence interval 
estimate of the mean difference in self-esteem 
between male and female adolescents.

 c.  Write a sentence demonstrating how the results 
from the hypothesis test and the confidence  
interval would appear in a research report.

 20. Recent research has shown that creative people 
are more likely to cheat than their less creative 
counterparts (Gino & Ariely, 2010). Participants 
in the study first completed creativity assessment 
questionnaires and then returned to the lab several 
days later for a series of tasks. One task was a 
multiple-choice general knowledge test for which 
the participants circled their answers on the test 
sheet. Afterward, they were asked to transfer their 
answers to a bubble sheets for computer scoring. 
However, the experimenter admitted that the wrong 
bubble sheet had been copied so that the correct 
answers were still faintly visible. Thus, the partici-
pants had an opportunity to cheat and inflate their 
test scores. Higher scores were valuable because 
participants were paid based on the number of cor-
rect answers. However, the researchers had secretly 
coded the original tests and the bubble sheets so 
that they could measure the degree of cheating for 
each participant. Assuming that the participants 
were divided into two groups based on their cre-
ativity scores, the following data are similar to the 
cheating scores obtained in the study.

High Creativity 
Participants

Low Creativity 
Participants

N 5 27 N 5 27

M 5 7.41 M 5 4.78
SS 5 749.5 SS 5 830

 a.  Use a one-tailed test with a 5 .05 to determine 
whether these data are sufficient to conclude that 
high creativity people are more likely to cheat 
than people with lower levels of creativity.

 b.  Compute Cohen’s d to measure the size of the  
effect.

 c.  Write a sentence demonstrating how the results 
from the hypothesis test and the measure of effect 
size would appear in a research report.

 21. When people learn a new task, their performance 
usually improves when they are tested the next 
day, but only if they get at least 6 hours of sleep 
(Stickgold, Whidbee, Schirmer, Patel, & Hobson, 
2000). The following data demonstrate this phe-
nomenon. The participants learned a visual discrim-
ination task on one day, and then were tested on 
the task the following day. Half of the participants 
were allowed to have at least 6 hours of sleep and 

the other half were kept awake all night. Is there a 
significant difference between the two conditions? 
Use a two-tailed test with a 5 .05.

Performance Scores

6 Hours Sleep No Sleep

n 5 14 n 5 14

M 5 72 M 5 65

SS 5 932 SS 5 706

 22. Recent research has demonstrated that music-based 
physical training for elderly people can improve 
balance and walking efficiency and reduce the risk  
of falls (Trombetti et al., 2011). As part of the 
training, participants walked in time to music  
and responded to changes in the music’s rhythm 
during a 1-hour per week exercise program.  
After 6 months, participants in the training group 
increased their walking speed and their stride 
length compared to individuals in the control 
group. The following data are similar to the  
results obtained in the study.

Exercise Group
Stride Length

Control Group
Stride Length

24 25 22 24 26 23 20 23
26 17 21 22 20 16 21 17
22 19 24 23 18 23 16 20
23 28 25 23 25 19 17 16

  Do the results indicate a significant difference in the 
stride length for the two groups? Use a two-tailed 
test with a 5 .05.

 23. Downs and Abwender (2002) evaluated soccer  
players and swimmers to determine whether the 
routine blows to the head experienced by soccer 
players produced long-term neurological deficits.  
In the study, neurological tests were administered  
to mature soccer players and swimmers and the 
results indicated significant differences. In a  
similar study, a researcher obtained the  
following data.

Swimmers Soccer players

10 7
8 4
7 9
9 3

13 7
7
6

12
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Well-Lit Room Dimly-Lit Room

7 9
8 11

10 13
6 10
8 11
5 9
7 15

12 14
5 10

 a.  Is there a significant difference in reported perfor-
mance between the two conditions? Use a two-
tailed test with a 5 .01.

 b.  Compute Cohen’s d to estimate the size of the 
treatment effect.

 a.  Are the neurological test scores significantly lower 
for the soccer players than for the swimmers in the 
control group? Use a one-tailed test with a 5 .05.

 b.  Compute the value of r2 (percentage of variance 
accounted for) for these data.

 24. Research has shown that people are more likely to 
show dishonest and self-interested behaviors in dark-
ness than in a well-lit environment (Zhong, Bohns, 
& Gino, 2010). In one experiment, participants were 
given a set of 20 puzzles and were paid $0.50 for 
each one solved in a 5-minute period. However, the 
participants reported their own performance and 
there was no obvious method for checking their hon-
esty. Thus, the task provided a clear opportunity to 
cheat and receive undeserved money. One group of 
participants was tested in a room with dimmed light-
ing and a second group was tested in a well-lit room. 
The reported number of solved puzzles was recorded 
for each individual. The following data represent 
results similar to those obtained in the study.
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After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.
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11.1     Introduction to Repeated-
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11.2     The t Statistic for a Repeated-
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11.3     Hypothesis Tests and Effect Size 
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Design

11.4     Uses and Assumptions for 
Repeated-Measures t Tests

Summary

Focus on Problem Solving

Demonstrations 11.1 and 11.2

Problems

C h a p t e r 

11
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 Introduction	to	the	t statistic  
(Chapter 9)
•	 Estimated	standard	error
•	 Degrees	of	freedom
•	 t	Distribution
•	 Hypothesis	tests	with	the	t statistic

•	 	Independent-measures	design	 
(Chapter 10)
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InTRoduCTIon To REPEATEd-mEASuRES dESIgnS

In the previous chapter, we introduced the independent-measures research design as one 
strategy for comparing two treatment conditions or two populations. The independent-
measures design is characterized by the fact that two separate samples are used to obtain 
the two sets of scores that are to be compared. In this chapter, we examine an alterna-
tive strategy known as a repeated-measures design, or a within-subjects design. With a 
repeated-measures design, two separate scores are obtained for each individual in the sam-
ple. For example, a group of patients could be measured before therapy and then measured 
again after therapy. Or, response time could be measured in a driving simulation task for 
a group of individuals who are first tested when they are sober and then tested again after 
two alcoholic drinks. In each case, the same variable is being measured twice for the same 
set of individuals; that is, we are literally repeating measurements on the same sample.

A repeated-measures design, or a within-subject design, is one in which the 
dependent variable is measured two or more times for each individual in a single 
sample. The same group of subjects is used in all of the treatment conditions.

The main advantage of a repeated-measures study is that it uses exactly the same 
individuals in all treatment conditions. Thus, there is no risk that the participants in one 
treatment are substantially different from the participants in another. With an independent-
measures design, on the other hand, there is always a risk that the results are biased 
because the individuals in one sample are systematically different (smarter, faster, more 
extroverted, and so on) than the individuals in the other sample. At the end of this chapter, 
we present a more detailed comparison of repeated-measures studies and independent-
measures studies, considering the advantages and disadvantages of both types of research.

Occasionally, researchers try to approximate the advantages of a repeated-measures 
design by using a technique known as matched subjects. A matched-subjects design 
involves two separate samples, but each individual in one sample is matched one-to-
one with an individual in the other sample. Typically, the individuals are matched on 
one or more variables that are considered to be especially important for the study. For 
example, a researcher studying verbal learning might want to be certain that the two 
samples are matched in terms of IQ and gender. In this case, a male participant with 
an IQ of 120 in one sample would be matched with another male with an IQ of 120 in 
the other sample. Although the participants in one sample are not identical to the par-
ticipants in the other sample, the matched-subjects design at least ensures that the two 
samples are equivalent (or matched) with respect to some specific variables.

In a matched-subjects design, each individual in one sample is matched with an 
individual in the other sample. The matching is done so that the two individuals 
are equivalent (or nearly equivalent) with respect to a specific variable that the 
researcher would like to control.

Of course, it is possible to match participants on more than one variable. For example, 
a researcher could match pairs of subjects on age, gender, race, and IQ. In this case, for 
example, a 22-year-old white female with an IQ of 115 who was in one sample would be 
matched with another 22-year-old white female with an IQ of 115 in the second sample. 
The more variables that are used, however, the more difficult it is to find matching pairs. 
The goal of the matching process is to simulate a repeated-measures design as closely as 

11.1

D e f i n i t i o n

The MaTched-
SubjecTS deSign

D e f i n i t i o n
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possible. In a repeated-measures design, the matching is perfect because the same individ-
ual is used in both conditions. In a matched-subjects design, however, the best you can get 
is a degree of match that is limited to the variable(s) that are used for the matching process.

In a repeated-measures design or a matched-subjects design comparing two treatment 
conditions, the data consist of two sets of scores, which are grouped into sets of two, cor-
responding to the two scores obtained for each individual or each matched pair of subjects 
(Table 11.1). Because the scores in one set are directly related, one-to-one, with the scores 
in the second set, the two research designs are statistically equivalent and share the com-
mon name related-samples designs (or correlated-samples designs). In this chapter, we 
focus our discussion on repeated-measures designs because they are overwhelmingly the 
more common example of related-samples designs. However, you should realize that the 
statistical techniques used for repeated-measures studies also can be applied directly to 
data from matched-subjects studies. We should also note that a matched-subjects study 
occasionally is called a matched samples design, but the subjects in the samples must be 
matched one-to-one before you can use the statistical techniques in this chapter.

Now we examine the statistical techniques that allow a researcher to use the sample 
data from a repeated-measures study to draw inferences about the general population.

Participant or 
Matched Pair First Score Second Score

#1 12 15 ←The 2 scores for 
one participant or 
one matched pair

#2 10 14
#3 15 17
#4 17 17
#5 12 18

TAblE 11.1

An example of the data from 
a repeated-measures or a 
matched-subjects study  
using n 5 5 participants  
(or matched pairs).

THE t STATISTIC foR A REPEATEd-mEASuRES  
RESEARCH dESIgn

The t statistic for a repeated-measures design is structurally similar to the other t statis-
tics we have examined. As we shall see, it is essentially the same as the single-sample t 
statistic covered in Chapter 9. The major distinction of the related-samples t is that it is 
based on difference scores rather than raw scores (X values). In this section, we examine 
difference scores and develop the t statistic for related samples.

Many over-the-counter cold medications include the warning “may cause drowsiness.” 
Table 11.2 shows an example of data from a study that examines this phenomenon. 
Note that there is one sample of n 5 4 participants, and that each individual is measured 
twice. The first score for each person (X

1
) is a measurement of reaction time before the 

medication was administered. The second score (X
2
) measures reaction time 1 hour after 

taking the medication. Because we are interested in how the medication affects reaction 
time, we have computed the difference between the first score and the second score for 
each individual. The difference scores, or D values, are shown in the last column of the 
table. Notice that the difference scores measure the amount of change in reaction time 
for each person. Typically, the difference scores are obtained by subtracting the first 
score (before treatment) from the second score (after treatment) for each person:

difference score 5 D 5 X
2
 – X

1
 (11.1)

11.2

difference ScoreS: 
The daTa for  

a repeaTed-
MeaSureS STudy
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Note that the sign of each D score tells you the direction of the change. Person A, 
for example, shows a decrease in reaction time after taking the medication (a negative 
change), but person B shows an increase (a positive change).

The sample of difference scores (D values) serves as the sample data for the hypoth-
esis test and all calculations are done using the D scores. To compute the t statistic, for 
example, we use the number of D scores (n) as well as the sample mean (M

D
) and the 

value of SS for the sample of D scores.

The researcher’s goal is to use the sample of difference scores to answer questions 
about the general population. In particular, the researcher would like to know whether 
there is any difference between the two treatment conditions for the general popu-
lation. Note that we are interested in a population of difference scores. That is, we 
would like to know what would happen if every individual in the population were 
measured in two treatment conditions (X

1
 and X

2
) and a difference score (D) were 

computed for everyone. Specifically, we are interested in the mean for the population 
of difference scores. We identify this population mean difference with the symbol m

D
 

(using the subscript letter D to indicate that we are dealing with D values rather than 
X scores).

As always, the null hypothesis states that, for the general population, there is no 
effect, no change, or no difference. For a repeated-measures study, the null hypothesis 
states that the mean difference for the general population is zero. In symbols,

H
0
: m

D
 5 0

Again, this hypothesis refers to the mean for the entire population of difference 
scores. Figure 11.1(a) shows an example of a population of difference scores with a 
mean of m

D
 5 0. Although the population mean is zero, the individual scores in the 

population are not all equal to zero. Thus, even when the null hypothesis is true, we 
still expect some individuals to have positive difference scores and some to have nega-
tive difference scores. However, the positives and negatives are unsystematic and in the 
long run balance out to m

D
 5 0. Also note that a sample selected from this population 

probably will not have a mean exactly equal to zero. As always, there will be some error 
between a sample mean and the population mean, so even if m

D
 5 0 (H

0
 is true), we do 

not expect M
D
 to be exactly equal to zero.

The alternative hypothesis states that there is a treatment effect that causes the scores 
in one treatment condition to be systematically higher (or lower) than the scores in the 
other condition. In symbols,

H
1
: m

D
 ≠ 0

The hypoTheSeS  
for a relaTed-

SaMpleS STudy

Person Before Medication (X1) After Medication (X2) Difference D

A 215 210 25
B 221 242 21
C 196 219 23
D 203 228 25

∑D 5 64

MD 5 5 5
� D

n

64

4
16

TAblE 11.2

Reaction-time measurements 
taken before and after  
taking an over-the-counter 
cold medication.

Note that M
D
 is the mean for the 

sample of D scores.
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According to H
1
, the difference scores for the individuals in the population tend to 

be systematically positive (or negative), indicating a consistent, predictable difference 
between the two treatments.

Figure 11.1(b) shows an example of a population of difference scores with a posi-
tive mean difference, m

D
 . 0. This time, most of the individuals in the population have 

difference scores that are greater than zero. A sample selected from this population will 
contain primarily positive difference scores and will probably have a mean difference 
that is greater than zero, M

D
 . 0. See Box 11.1 for further discussion of H

0
 and H

1
.

0 +5–5

D = 0

0 +5 +10

D > 0(a) (b)

Figure 11.1

(a) A population of difference scores for which the mean is µ
D
 5 0. Note that the typical difference 

score (D value) is not equal to zero. (b) A population of difference scores for which the mean is 
greater than zero. Note that most of the difference scores are also greater than zero.

BOX
11.1

AnAlogIES foR H0 And H1 In THE REPEATEd-mEASuRES TEST

An Analogy for H
0
: Intelligence is a fairly stable 

characteristic; that is, you do not get notice-
ably smarter or dumber from one day to the next. 
However, if we gave you an IQ test every day for a 
week, we probably would get seven different num-
bers. The day-to-day changes in your IQ score are 
caused by random factors such as your health, your 
mood, and your luck at guessing answers you do not 
know. Some days your IQ score is slightly higher, 
and some days it is slightly lower. On average, the 
day-to-day changes in IQ should balance out to zero. 
This is the situation that is predicted by the null 
hypothesis for a repeated-measures test. According to 
H

0
, any changes that occur either for an individual or 

for a sample are just due to chance, and in the long 
run, they will average out to zero.

An Analogy for H
1
: On the other hand, suppose 

that we evaluate your performance on a new video 
game by measuring your score every day for a week. 
Again, we probably will find small differences in 
your scores from one day to the next, just as we did 
with the IQ scores. However, the day-to-day changes 
in your game score will not be random. Instead, 
there should be a general trend toward higher scores 
as you gain more experience with the new game. 
Thus, most of the day-to-day changes should show 
an increase. This is the situation that is predicted by 
the alternative hypothesis for the repeated-measures 
test. According to H

1
, the changes that occur are 

systematic and predictable and will not average  
out to zero.
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Figure 11.2 shows the general situation that exists for a repeated-measures hypoth-
esis test. You may recognize that we are facing essentially the same situation that we 
encountered in Chapter 9. In particular, we have a population for which the mean 
and the standard deviation are unknown, and we have a sample that will be used to 
test a hypothesis about the unknown population. In Chapter 9, we introduced the 
single-sample t statistic, which allowed us to use a sample mean as a basis for testing 
hypotheses about an unknown population mean. This t-statistic formula is used again 
here to develop the repeated-measures t test. To refresh your memory, the single-
sample t statistic (Chapter 9) is defined by the formula

t
M

sM

5
2m

In this formula, the sample mean, M, is calculated from the data, and the value for the 
population mean, m, is obtained from the null hypothesis. The estimated standard error, 
s

M
, is also calculated from the data and provides a measure of how much difference it 

is reasonable to expect between a sample mean and the population mean if there is no 
treatment effect.

For the repeated-measures design, the sample data are difference scores and 
are identified by the letter D, rather than X. Therefore, we modify the t formula 
by adding Ds to emphasize that we are dealing with difference scores instead  
of X values. Specifically, we are using the mean for a sample of difference  
scores, M

D
, to test a hypothesis about the mean for the population of difference 

The t STaTiSTic for 
relaTed SaMpleS

As noted earlier, the repeated-
measures t formula is also 
used for matched-subjects 
designs.

Figure 11.2

A sample of n 5 4 people 
is selected from the popu-
lation. Each individual is 
measured twice, once in 
treatment I and once in 
treatment II, and a differ-
ence score, D, is computed 
for each individual. This 
sample of difference scores 
is intended to represent the 
population. Note that we are 
using a sample of difference 
scores to represent a popu-
lation of difference scores. 
Also note that the mean for 
the population of difference 
scores is unknown. The 
null hypothesis states that, 
for the general population, 
there is no consistent or sys-
tematic difference between 
the two treatments, so the 
population mean difference 
is µ

D
 5 0.

µD

Population of
difference scores

= ?

Sample of
difference scores

Subject

A
B
C
D

I II

10
15
12
11

14
13
15
12

D

4
−2  
3
1
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 1. For the following data from a repeated-measures study, find the difference scores 
and compute the sample mean difference, the variance for the difference scores, 
and the standard error for the sample mean difference.

Participant Treatment 1 Treatment 2

A 5  8
B 6 13
C 7 10
D 9 12

 2. If the sample in the previous problem were being used to test for a significant differ-
ence between the two treatments, state the null hypothesis in words and in symbols.

 1. The difference scores are 3, 7, 3, and 3. The mean difference is M
D
 5 4 with SS 5 12,  

s2 5 4 and the standard error for the sample mean difference is 1 point.

 2. The null hypothesis states that, for the general population, the average difference between 
the two treatments is zero. In symbols, m

D
 5 0.

l E A R n I n g  C H E C k

AnSwERS

scores m
D
. With this simple change, the t formula for the repeated-measures  

design becomes

t
M

s
D D

MD

5
2m

 
(11.2)

In this formula, the estimated standard error for M
D
, sMD

, is computed in exactly the 
same way as it is computed for the single-sample t statistic. The first step is to compute 
the variance (or the standard deviation) for the sample of D scores.

s
SS

n

SS

df
s

SS

df
2

1
5

2
5 5or

The estimated standard error is then computed using the sample variance (or sample 
standard deviation) and the sample size, n.

s
s

n
s

s

nM MD D
5 5

2

or
 

(11.3)

Notice that all of the calculations are done using the difference scores (the D scores) 
and that there is only one D score for each subject. With a sample of n subjects, there 
are exactly n D scores, and the t statistic has df 5 n – 1. Remember that n refers to the 
number of D scores, not the number of X scores in the original data.

You should also note that the repeated-measures t statistic is conceptually similar to 
the t statistics that we have previously examined:

t 5
2sample statistic population parameter

estimmated standard error

In this case, the sample data are represented by the sample mean of the difference 
scores (M

D
), the population parameter is the value predicted by H

0
 (m

D
 5 0), and the 

estimated standard error is computed from the sample data using Equation 11.3.
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HyPoTHESIS TESTS And EffECT SIzE foR  
THE REPEATEd-mEASuRES dESIgn

In a repeated-measures study, each individual is measured in two different treatment 
conditions and we are interested in whether there is a systematic difference between the 
scores in the first treatment condition and the scores in the second treatment condition. 
A difference score (D value) is computed for each person and the hypothesis test uses 
the difference scores from the sample to evaluate the overall mean difference, m

D
, for 

the entire population. The hypothesis test with the repeated-measures t statistic follows 
the same four-step process that we have used for other tests. The complete hypothesis-
testing procedure is demonstrated in Example 11.1.

Swearing is a common, almost reflexive, response to pain. Whether you knock your shin 
into the edge of a coffee table or smash your thumb with a hammer, most of us respond 
with a streak of obscenities. One question, however, is whether swearing focuses attention 
on the pain and, thereby, increases its intensity, or serves as a distraction that reduces pain. 
To address this issue, Stephens, Atkins, and Kingston (2009) conducted an experiment 
comparing swearing with other responses to pain. In the study, participants were asked to 
place one hand in icy cold water for as long as they could bear the pain. Half of the partici-
pants were told to repeat their favorite swear word over and over for as long as their hands 
were in the water. The other half repeated a neutral word. The researchers recorded how 
long each participant was able to tolerate the ice water. After a brief rest, the two groups 
switched words and repeated the ice water plunge. Thus, all the participants experienced 
both conditions (swearing and neutral) with half swearing on their first plunge and half on 
their second. The results clearly showed that swearing significantly increased pain tolerance 
and decreased the perceived level of pain. The data in Table 11.3 are representative of the 
results obtained in the study and represented the reports of pain level of n 5 9 participants.

State the hypotheses, and select the alpha level.

H
0
: m

D
 5 0 (There is no difference between the two conditions.)

H
1
: m

D
  0 (There is a difference.)

For this test, we use a 5 .05.

11.3

E x A m P l E  1 1 . 1

S t e p  1

Participant Neutral Word Swearing D D2

A 9 7 –2 4
B 8 7 –1 1
C 7 3 –4 16
D 7 8 11 1

E 8 6 –2 4
F 9 4 –5 25
G 7 6 –1 1
H 7 7  0 0
I 8 4 –4 16

D 5 –18 D2 5 68

M SS
D

ND 5
2

5 2 5 2 5 2
2

5 2
18

9
68

18

9
68 36

2

2 2�
�

D
( ) ( )

5532

TAblE 11.3

Ratings of pain level on a 
scale from 1 to 10 for partici-
pants who were swearing or 
repeating a neutral word.
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Locate the critical region. For this example, n 5 9, so the t statistic has df 5 n – 1 5 
8. For a 5 .01, the critical value listed in the t distribution table is 62.306. The critical 
region is shown in Figure 11.3.

Calculate the t statistic. Table 11.3 shows the sample data and the calculations of  
M

D
 5 –2 and SS 5 32. Note that all calculations are done with the difference scores. 

As we have done with the other t statistics, we present the calculation of the t statistic 
as a three-step process.

First, compute the sample variance

s
SS

n
2

1

32

8
45

2
5=

Next, use the sample variance to compute the estimated standard error.

s
s

nMD
5 5 5

2 4

9
0 667.

Finally, use the sample mean (M
D
) and the hypothesized population mean (m

D
) along 

with the estimated standard error to compute the value for the t statistic.

t
M

s
D D

MD

5
2m

5
2 2

52
2 0

0 667
3 00

.
.

Make a decision. The t value we obtained falls in the critical region (see Figure 11.3). 
The researcher rejects the null hypothesis and concludes that cursing, as opposed to 
repeating a neutral work, has a significant effect on pain perception.

As we noted with other hypothesis tests, whenever a treatment effect is found to be sta-
tistically significant, it is recommended that you also report a measure of the absolute 
magnitude of the effect. The most commonly used measures of effect size are Cohen’s 
d and r2, the percentage of variance accounted for. The size of the treatment effect also 
can be described with a confidence interval estimating the population mean difference, 
m

D
. Using the data from Example 11.1, we demonstrate how these values are calculated 

to measure and describe effect size.

S t e p  2

S t e p  3

S t e p  4

MeaSuring  
effecT Size for  

The repeaTed-
MeaSureS t

2.306 2.3060

Reject
H0

Reject
H0

Figure 11.3

The critical region for the 
t distribution with df 5 8 
and a 5 .05.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



322     CHAPTER 11 THE t TEST foR Two RElATEd SAmPlES

Cohen’s d In Chapters 8 and 9, we introduced Cohen’s d as a standardized measure 
of the mean difference between treatments. The standardization simply divides the 
population mean difference by the standard deviation. For a repeated-measures study, 
Cohen’s d is defined as

d 5
population mean difference

standard deviatiion
5

m

m
D

D

Because the population mean and standard deviation are unknown, we use the sample 
values instead. The sample mean, M

D
, is the best estimate of the actual mean difference, and 

the sample standard deviation (square root of sample variance) provides the best estimate 
of the actual standard deviation. Thus, we are able to estimate the value of d as follows:

estimated
sample mean difference

sample me
d 5

aan deviation
5

M

s
D

 
(11.4)

For the repeated-measures study in Example 11.1, M
D
 5 22 and the sample variance 

is s2 5 4.00, so the data produce

estimated d
M

s
D5 5

2
5

2
5  2

2

4 00

2

2
1 00

.
.

Any value greater than 0.8 is considered to be a large effect, and these data are 
clearly in that category (see Table 8.2 on p. 232).

The percentage of variance accounted for, r2 Percentage of variance is computed 
using the obtained t value and the df value from the hypothesis test, exactly as was done 
for the single-sample t (see p. 263) and for the independent-measures t (see p. 292). For 
the data in Example 11.1, we obtain

r
t

t df
2

2

2

2

2

3 00

3 00 8

9

17
0 5295

1
5

1
5 5

.

.
.

( )
( )

or 552 9. %

For these data, 52.9% of the variance in the scores is explained by the effect of curs-
ing. More specifically, swearing caused the estimated pain ratings to be consistently 
negative. Thus, the deviations from zero are largely explained by the treatment.

Confidence intervals for estimating m
D
 As noted in the previous two chapters, it is 

possible to compute a confidence interval as an alternative method for measuring and 
describing the size of the treatment effect. For the repeated-measures t, we use a sample 
mean difference, M

D
, to estimate the population mean difference, m

D
. In this case, the 

confidence interval literally estimates the size of the treatment effect by estimating the 
population mean difference between the two treatment conditions.

As with the other t statistics, the first step is to solve the t equation for the unknown 
parameter. For the repeated-measures t statistic, we obtain

m 5 6D D MM ts
D  

(11.5)

In the equation, the values for M
D
 and for sMD

 are obtained from the sample data. 
Although the value for the t statistic is unknown, we can use the degrees of freedom 
for the t statistic and the t distribution table to estimate the t value. Using the estimated 
t and the known values from the sample, we can then compute the value of m

D
. The 

following example demonstrates the process of constructing a confidence interval for a 
population mean difference.

Because we are measuring 
the size of the effect and not 
the direction, it is customary 
to ignore the minus sign and 
report Cohen’s d as a positive 
value.
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In Example 11.1, we presented a research study demonstrating how swearing influenced 
the perception of pain. In the study, a sample of n 5 9 participants rated their level of 
pain significantly lower when they were repeating a swear word than when they repeated 
a neutral word. The mean difference between treatments was M

D 
5 22 points and the 

estimated standard error for the mean difference was sMD
 5 0.667. Now, we construct a 

95% confidence interval to estimate the size of the population mean difference.
With a sample of n 5 9 participants, the repeated-measures t statistic has df 5 8. To 

have 95% confidence, we simply estimate that the t statistic for the sample mean differ-
ence is located somewhere in the middle 95% of all the possible t values. According to 
the t distribution table, with df 5 8, 95% of the t values are located between t 5 12.306 
and t 5 22.306. Using these values in the estimation equation, together with the values 
for the sample mean and the standard error, we obtain

m 5 6D D MM ts
D

5 22 6 2.306(0.667)

5 22 6 1.538

This produces an interval of values ranging from 22 – 1.538 5 23.538 to 22 1 
1.538 5 20.462. Our conclusion is that for the general population, swearing instead of 
repeating a neutral word decreases the perceived pain between 0.462 and 3.538 points. 
We are 95% confident that the true mean difference is in this interval because the only 
value estimated during the calculations was the t statistic, and we are 95% confident 
that the t value is located in the middle 95% of the distribution. Finally, note that the 
confidence interval is constructed around the sample mean difference. As a result, the 
sample mean difference, M

D
 5 22 points, is located exactly in the center of the interval.

As with the other confidence intervals presented in Chapters 9 and 10, the confi-
dence interval for a repeated-measures t is influenced by a variety of factors other than 
the actual size of the treatment effect. In particular, the width of the interval depends 
on the percentage of confidence used, so that a larger percentage produces a wider 
interval. Also, the width of the interval depends on the sample size, so that a larger 
sample produces a narrower interval. Because the interval width is related to sample 
size, the confidence interval is not a pure measure of effect size like Cohen’s d or r2.

Finally, we should note that the 95% confidence interval computed in Example 11.2 
does not include the value m

D 
5 0. In other words, we are 95% confident that the popula-

tion mean difference is not m
D
 5 0. This is equivalent to concluding that a null hypoth-

esis specifying that m
D
 5 0 would be rejected with a test using a 5 .05. If m

D
 5 0 were  

included in the 95% confidence interval, it would indicate that a hypothesis test would 
fail to reject H

0
 with a 5 .05.

E x A m P l E  1 1 . 2

 1. A researcher is investigating the effect of a treatment by measuring performance 
for a sample of n 5 9 participants before and after they receive the treatment.  
For this sample, performance scores increased after treatment by an average of  
M 5 1.9 points with SS 5 200.

 a. Are the data sufficient to conclude that treatment has a significant effect on 
performance? Use a two-tailed test with a 5 .05.

 b. Compute the effect size for the treatment using both Cohen’s d and r2.

 c. Compute the 90% confidence for the population mean difference.

l E A R n I n g  C H E C k
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In THE lITERATuRE
REPoRTIng THE RESulTS of A REPEATEd-mEASuRES t TEST

As we have seen in Chapters 9 and 10, the APA format for reporting the results of t tests 
consists of a concise statement that incorporates the t value, degrees of freedom, and 
alpha level. One typically includes values for means and standard deviations, either in a 
statement or a table (Chapter 4). For Example 11.1, we observed a mean difference of 
M

D
 5 22.00 with s 5 2.00. Also, we obtained a t statistic of t 5 23.00 with df 5 8, and 

our decision was to reject the null hypothesis at the .05 level of significance. Finally, we 
measured effect size by computing the percentage of variance explained and obtained  
r2 5 0.529. A published report of this study might summarize the results as follows:

Changing from a neutral word to a swear word reduced the perceived level of pain by 
an average of M 5 2.00 points with SD 5 2.00. The treatment effect was statistically 
significant, t(8) 5 23.00, p , .05, r2 5 0.529.

When the hypothesis test is conducted with a computer program, the printout typi-
cally includes an exact probability for the level of significance. The p-value from the 
printout is then stated as the level of significance in the research report. For example, 
the data from Example 11.1 produced a significance level of p 5 .017, and the results 
would be reported as “statistically significant, t(8) 5 23.00, p 5 .017, r2 5 0.529.” 
Occasionally, a probability is so small that the computer rounds it off to 3 decimal 
points and produces a value of zero. In this situation you do not know the exact prob-
ability value and should report p , .001.

If the confidence interval from Example 11.2 is reported as a description of effect 
size together with the results from the hypothesis test, it would appear as follows:

Changing from a neutral word to a swear word reduced the perceived level of pain, 
t(8) 5 –3.00, p , .05, 95% CI [–0.462, –3.538].

Often, a close look at the sample data from a research study makes it easier to see the size 
of the treatment effect and to understand the outcome of the hypothesis test. In Example 
11.1, we obtained a sample of n 5 9 participants who produce a mean difference of  
M

D
 5 –2.00 with a standard deviation of s 5 2.00 points. The sample mean and standard 

deviation describe a set of scores centered at M
D
 5 –2.00 with most of the scores located 

within 2.00 points of the mean. Figure 11.4 shows the actual set of difference scores that 
were obtained in Example 11.1. In addition to showing the scores in the sample, we have 
highlighted the position of m

D
 5 0; that is, the value specified in the null hypothesis. 

Notice that the scores in the sample are displaced away from zero. Specifically, the data 
are not consistent with a population mean of m

D
 5 0, which is why we rejected the null 

hypothesis. In addition, note that the sample mean is located 1 standard deviation below 
zero. This distance corresponds to the effect size measured by Cohen’s d 5 –1.00. For 
these data, the picture of the sample distribution (see Figure 11.4) should help you to 
understand the measure of effect size and the outcome of the hypothesis test.

deScripTive 
STaTiSTicS and  

The hypoTheSiS TeST

 1. a.  The null hypothesis states that the treatment has no effect, m
D
 5 0. The sample variance is 

25, the standard error is 1.67 and t(8) 5 1.14. With df 5 24, the critical value is t 5 2.064. 
Reject the null hypothesis and conclude that the treatment has a significant effect.

 b. Cohen’s d 5 1 9
5
.  5 0.38 and r2 5 10 05

34 10
.
.  5 0.295.

 c. For 90% confidence, use t 5 61.711. The interval is m
D
 5 1.9 61.711(0.6) and extends 

from 0.87 to 2.93.

AnSwERS
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In Chapters 9 and 10 (p. 259 and 298), we identified several factors that can influ-
ence the outcome of a hypothesis test with the t statistic. The same factors apply 
to the repeated-measures t. The most obvious factor is the size of the sample 
mean difference. A larger mean difference increases the likelihood of rejecting the  
null hypothesis and increases measures of effect size. The two other factors are the 
variability of the scores and the size of the sample, which both influence the magni-
tude of the estimated standard error in the denominator of the t statistic. Specifically, 
the standard error is inversely related to sample size (larger size leads to smaller 
error) and is directly related to sample variance (larger variance leads to larger 
error). As a result, a larger sample produces a larger value for the t statistic (farther 
from zero) and increases the likelihood of rejecting H

0
. Larger variance, on the other 

hand, produces a smaller value for the t statistic (closer to zero) and reduces the 
likelihood of finding a significant result.

Although variance and sample size both influence the hypothesis test, only variance 
has a large influence on measures of effect size such as Cohen’s d and r2; larger variance 
produces smaller measures of effect size. Sample size, on the other hand, has no effect 
on the value of Cohen’s d and only a small influence on r2.

In a repeated-measures study, the variability of the difference scores becomes a rela-
tively concrete and easy-to-understand concept. In particular, the sample variability 
describes the consistency of the treatment effect. For example, if a treatment consis-
tently adds a few points to each individual’s score, then the set of difference scores are 
clustered together with relatively small variability. This is the situation that we observed 
in Example 11.1 (see Figure 11.4) in which nearly all of the participants had lower rat-
ings of pain in the swearing condition. In this situation, with small variability, it is easy 
to see the treatment effect and it is likely to be significant.

Now consider what happens when the variability is large. Suppose that the swear-
ing study in Example 11.1 produced a sample of n 5 9 difference scores consisting of 
–11, –10, –7, –2, 0, 0, 13, 14, and 15. These difference scores also have a mean of 
M

D
 5 –2.00, but now the variability is substantially increased so that SS 5 288 and 

the standard deviation is s 5 6.00. Figure 11.5 shows the new set of difference scores. 
Again, we have highlighted the position of m

D
 5 0, which is the value specified in 

the null hypothesis. Notice that the high variability means that there is no consistent 

SaMple variance 
and SaMple Size 
in The repeaTed-
MeaSureS t TeST

variabiliTy aS 
a MeaSure of 

conSiSTency for The 
TreaTMenT effecT

–4 –3 –2 –1 0 +1–5   D

MD � –2

s � 2

 �D � 0

Figure 11.4

The sample of difference 
scores from Example 11.1. 
The mean is M

D
 5 –2 and 

the standard deviation is  
s 5 2. The difference 
scores are consistently 
negative, indicating a 
decrease in perceived pain, 
suggest that m

D
 5 0 (no 

effect) is not a reasonable 
hypothesis.
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treatment effect. Some participants rate the pain higher while swearing (the positive 
differences) and some rate it lower (the negative differences). In the hypothesis test, 
the high variability increases the size of the estimated standard error and results in a 
hypothesis test that produces t 5 1.50, which is not in the critical region. With these 
data, we would fail to reject the null hypothesis and conclude that swearing has no 
effect on the perceived level of pain.

With small variability (see Figure 11.4), the 2-point treatment effect is easy to see 
and is statistically significant. With large variability (see Figure 11.5), the 2-point  
effect is not easy to see and is not significant. As we have noted several times in the 
past, large variability can obscure patterns in the data and reduces the likelihood of 
finding a significant treatment effect.

In many repeated-measures and matched-subjects studies, the researcher has a specific 
prediction concerning the direction of the treatment effect. For example, in the study 
described in Example 11.1, the researcher expects the level of perceived pain to be rated 
lower when the participant is cursing. This kind of directional prediction can be incor-
porated into the statement of the hypotheses, resulting in a directional, or one-tailed, 
hypothesis test. The following example demonstrates how the hypotheses and critical 
region are determined for a directional test.

We reexamine the experiment presented in Example 11.1. The researcher is using  
a repeated-measures design to investigate the effect of swearing on perceived pain. 
The researcher predicts that the pain ratings for the ice water will decrease when the 
participants are swearing compared to repeating a neutral word.

State the hypotheses and select the alpha level. For this example, the  researcher  
predicts that pain ratings will decrease when the participants are swearing. The null 

direcTional 
hypoTheSiS and one-

Tailed TeSTS

E x A m P l E  1 1 . 3

S t e p  1

0–10 –9 –8 –7 –6 –5 –4 –3 –2 –1–11 +5+4+3+2+1 D

MD � –2

s � 6

 �D � 0

Figure 11.5

A sample of difference scores with a mean of M
D
 5 –2 and a standard deviation of s 5 6. The data 

do not show a consistent increase or decrease in scores. Because there is no consistent treatment 
effect, m

D
 5 0 is a reasonable hypothesis.
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hypothesis, on the other hand, says that the pain ratings will not decrease but rather will 
be unchanged or even increased with the swearing. In symbols,

H
0
: m

D
 $ 0 (There is no decrease with swearing.)

The alternative hypothesis says that the treatment does work. For this example,  
H

1
 says that swearing will decrease the pain ratings.

H
1
: m

D
 , 0 (The ratings are decreased.)

We use a 5 .01.

Locate the critical region. As we demonstrated with the independent-measures t sta-
tistic (p. 297), the critical region for a one-tailed test can be located using a two-stage 
process. Rather than trying to determine which tail of the distribution contains the 
critical region, you first look at the sample mean difference to verify that it is in the 
predicted direction. If not, then the treatment clearly did not work as expected and you 
can stop the test. If the change is in the correct direction, then the question is whether 
it is large enough to be significant. For this example, change is in the predicted direc-
tion (the researcher predicted lower ratings and the sample mean shows a decrease). 
With n 5 9, we obtain  df 5 8 and a critical value of t 5 2.896 for a one-tailed test 
with a 5 .01. Thus, any t statistic beyond 2.896 (positive or negative) is sufficient to 
reject the null hypothesis.

Compute the t statistic. We calculated the t statistic in Example 11.1 and obtained  
t 5 23.00.

Make a decision. The obtained t statistic is beyond the critical boundary. Therefore, we 
reject the null hypothesis and conclude that swearing significantly  reduced the pain rat-
ings. In a research report, the use of a one-tailed test would be clearly noted as follows:

Swearing, compared to repeating a neutral word, significantly decreased the pain ratings, 
t(8) 5 23.00, p , .01, one tailed.

S t e p  2

S t e p  3

S t e p  4

 1. A researcher is investigating the effectiveness of acupuncture treatment for chronic 
back pain. A sample of n 5 4 participants is obtained from a pain clinic. Each 
individual ranks the current level of pain and then begins a 6-week program of 
acupuncture treatment. At the end of the program, the pain level is rated again and 
the researcher records the amount of difference between the two ratings. For this 
sample, pain level decreased by an average of M 5 4.5 points with SS 5 27.

 a. Are the data sufficient to conclude that acupuncture has a significant effect on 
back pain? Use a two-tailed test with a 5 .05.

 b. Can you conclude that acupuncture significantly reduces back pain? Use a  
one-tailed test with a 5 .05.

 2. Compute the effect size using both Cohen’s d and r2 acupuncture study in the  
previous question.

 3. A computer printout for a repeated-measures t test reports a p value of p 5 .021.

 a. Can the researcher claim a significant effect with a 5 .01?

 b. Is the effect significant with a 5 .05?

l E A R n I n g  C H E C k
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uSES And ASSumPTIonS foR REPEATEd-mEASuRES  
t TESTS

In many research situations, it is possible to use either a repeated-measures design or an 
independent-measures design to compare two treatment conditions. The independent-
measures design would use two separate samples (one in each treatment condition) and 
the repeated-measures design would use only one sample with the same individuals 
participating in both treatments. The decision about which design to use is often made 
by considering the advantages and disadvantages of the two designs. In general, the 
repeated-measures design has most of the advantages.

Number of subjects A repeated-measures design typically requires fewer subjects 
than an independent-measures design. The repeated-measures design uses the subjects 
more efficiently because each individual is measured in both of the treatment condi-
tions. This can be especially important when there are relatively few subjects available 
(for example, when you are studying a rare species or individuals in a rare profession).

Study changes over time The repeated-measures design is especially well suited for 
studying learning, development, or other changes that take place over time. Remember 
that this design involves measuring individuals at one time and then returning to mea-
sure the same individuals at a later time. In this way, a researcher can observe behaviors 
that change or develop over time.

Individual differences The primary advantage of a repeated-measures design is that it 
reduces or eliminates problems caused by individual differences. Individual differences 
are characteristics such as age, IQ, gender, and personality that vary from one individual 
to another. These individual differences can influence the scores obtained in a research 
study, and they can affect the outcome of a hypothesis test. Consider the data in Table 11.4. 
The first set of data represents the results from a typical independent-measures study, and 
the second set represents a repeated-measures study. Note that we have identified each 
participant by name to help demonstrate the effects of individual differences.

For the independent-measures data, note that every score represents a different 
person. For the repeated-measures study, on the other hand, the same participants are 
measured in both of the treatment conditions. This difference between the two designs 
has some important consequences.

 1. We have constructed the data so that both research studies have exactly the same 
scores and they both show the same 5-point mean difference between treatments. 
In each case, the researcher would like to conclude that the 5-point difference 

11.4

repeaTed-MeaSureS 
verSuS independenT-

MeaSureS deSignS

 1. a.  For these data, the sample variance is 9, the standard error is 1.50, and t 5 3.00. With  
df 5 3, the critical values are t 5 63.182. Fail to reject the null hypothesis.

 b. For a one-tailed test, the critical value is t 5 2.353. Reject the null hypothesis and con-
clude that acupuncture treatment significantly reduces pain.

 2. d 5 4.5/3 5 1.50 and r2 5 9/12 5 0.75.

 3. a.  The exact p value, p 5 .021, is not less than a 5 .01. Therefore, the effect is not signifi-
cant for a 5 .01 (p . .01).

 b. The p value is less than .05, so the effect is significant with a 5 .05.

AnSwERS
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was caused by the treatments. However, with the independent-measures design, 
there is always the possibility that the participants in treatment 1 have different 
characteristics than those in treatment 2. For example, the three participants in 
treatment 1 may be more intelligent than those in treatment 2 and their higher in-
telligence caused them to have higher scores. Note that this problem disappears 
with the repeated-measures design. Specifically, with repeated measures there 
is no possibility that the participants in one treatment are different from those in 
another treatment because the same participants are used in all of the treatments.

 2. Although the two sets of data contain exactly the same scores and have exactly 
the same 5-point mean difference, you should realize that they are very different 
in terms of the variance used to compute standard error. For the independent-
measures study, you calculate the SS or variance for the scores in each of the 
two separate samples. Note that in each sample there are big differences between 
participants. In treatment 1, for example, Bill has a score of 33 and John’s score 
is only 18. These individual differences produce a relatively large sample variance 
and a large standard error. For the independent-measures study, the standard error 
is 5.77, which produces a t statistic of t 5 0.87. For these data, the hypothesis test 
concludes that there is no significant difference between treatments.

In the repeated-measures study, the SS and variance are computed for the 
difference scores. If you examine the repeated-measures data in Table 11.4, 
you will see that the big differences between John and Bill that exist in treat-
ment 1 and in treatment 2 are eliminated when you get to the difference scores. 
Because the individual differences are eliminated, the variance and standard 
error are dramatically reduced. For the repeated-measures study, the standard 
error is 1.15 and the t statistic is t 5 –4.35. With the repeated-measures t, the 
data show a significant difference between treatments. Thus, one big advantage 
of a repeated-measures study is that it reduces variance by removing individual 
differences, which increases the chances of finding a significant result.

The primary disadvantage of a repeated-measures design is that the structure of the design 
allows for factors other than the treatment effect to cause a participant’s score to change 
from one treatment to the next. Specifically, in a repeated-measures design, each indi-
vidual is measured in two different treatment conditions, usually at two different times. In 
this situation, outside factors that change over time may be responsible for changes in the  
participants’ scores. For example, a participant’s health or mood may change over time and 
cause a difference in the participant’s scores. Outside factors such as the weather can also 
change and may have an influence on participants’ scores. Because a repeated-measures 
study typically takes place over time, it is possible that time-related factors (other than the 
two treatments) are responsible for causing changes in the participants’ scores.

TiMe-relaTed 
facTorS and order 

effecTS

Independent-Measures Study  
(2 Separate Samples)

Repeated-Measures Study  
(Same Sample in Both Treatments)

Treatment 1 Treatment 2 Treatment 1 Treatment 2 D

(John) X 5 18 (Sue) X 5 15 (John) X 5 18 (John) X 5 15 –3

(Mary) X 5 27 (Tom) X 5 20 (Mary) X 5 27 (Mary) X 5 20 –7

(Bill) X 5 33 (Dave) X 5 28 (Bill) X 5 33 (Bill) X 5 28 –5

M 5 26 M 5 21 M
D
 5 –5

SS 5 114 SS 5 86 SS 5 8

TAblE 11.4

Hypothetical data showing the 
results from an independent-
measures study and a repeated-
measures study. The two sets 
of data use exactly the same 
numerical scores and they both 
show the same 5-point mean 
difference between treatments.
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Also, it is possible that participation in the first treatment influences the individual’s 
score in the second treatment. If the researcher is measuring individual performance, for 
example, the participants may gain experience during the first treatment condition, and this 
extra practice may help their performance in the second condition. In this situation, the 
researcher would find a mean difference between the two conditions; however, the differ-
ence would not be caused by the treatments, instead it would be caused by practice effects. 
Changes in scores that are caused by participation in an earlier treatment are called order 
effects and can distort the mean differences found in repeated-measures research studies.

Counterbalancing One way to deal with time-related factors and order effects is 
to counterbalance the order of presentation of treatments. That is, the participants are 
randomly divided into two groups, with one group receiving treatment 1 followed by 
treatment 2, and the other group receiving treatment 2 followed by treatment 1. The 
goal of counterbalancing is to distribute any outside effects evenly over the two treat-
ments. For example, if practice effects are a problem, then half of the participants 
gain experience in treatment 1, which then helps their performance in treatment 2. 
However, the other half gain experience in treatment 2, which helps their performance 
in treatment 1. Thus, prior experience helps the two treatments equally.

Finally, if there is reason to expect strong time-related effects or strong order effects, 
your best strategy is not to use a repeated-measures design. Instead, use independent-
measures (or a matched-subjects design) so that each individual participates in only one 
treatment and is measured only one time.

The related-samples t statistic requires two basic assumptions:

 1. The observations within each treatment condition must be independent  
(see p. 220). Notice that the assumption of independence refers to the scores 
within each treatment. Inside each treatment, the scores are obtained from  
different individuals and should be independent of one another.

 2. The population distribution of difference scores (D values) must be normal. As 
before, the normality assumption is not a cause for concern unless the sample 
size is relatively small. In the case of severe departures from normality, the 
validity of the t test may be compromised with small samples. However, with 
relatively large samples (n . 30), this assumption can be ignored.

aSSuMpTionS  
of The relaTed-
SaMpleS t TeST

 1. What are the basic assumptions underlying a hypothesis test with the repeated-
measures t?

 2. A repeated-measures study and an independent-measures study are used to  
compare two treatments and both use a total of 20 participants. What are the  
df values for the two t tests?

 3. Compared to an independent-measures study, a repeated-measures study tends  
to have less variance and a greater likelihood of detecting a treatment effect.  
(True or false?)

 1. The observations within a treatment are independent. The population distribution of  
D scores is assumed to be normal.

 2. The repeated-measures t has df 5 19 and the independent-measures t has df 5 18.

 3. True

l E A R n I n g  C H E C k
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Summary

 1. In a related-samples research study, the individuals  
in one treatment condition are directly related,  
one-to-one, with the individuals in the other treatment 
condition(s). The most common related-samples study 
is a repeated-measures design, in which the same 
sample of individuals is tested in all of the treatment 
conditions. This design literally repeats measurements 
on the same subjects. An alternative is a matched-
subjects design, in which the individuals in one sample 
are matched one-to-one with individuals in another 
sample. The matching is based on a variable relevant 
to the study.

 2. The repeated-measures t test begins by computing a dif-
ference between the first and second measurements for 
each subject (or the difference for each matched pair). 
The difference scores, or D scores, are obtained by

D 5 X
2
 – X

1

  The sample mean, M
D
, and sample variance, s2, are 

used to summarize and describe the set of difference 
scores.

 3. The formula for the repeated-measures t statistic is

t
M

s
D D

MD

5
2m

  In the formula, the null hypothesis specifies m
D
 5 0, 

and the estimated standard error is computed by

s
s

nMD
5

2

 4. A repeated-measures design may be preferred to  
an independent-measures study when one wants to  
observe changes in behavior in the same subjects, as  
in learning or developmental studies. An important 

advantage of the repeated-measures design is that it  
removes or reduces individual differences, which 
lowers sample variability and tends to increase the 
chances for obtaining a significant result.

 5. For a repeated-measures design, effect size can be 
measured using either r2 (the percentage of variance 
accounted for) or Cohen’s d (the standardized mean 
difference). The value of r2 is computed the same way 
for both independent- and repeated-measures designs.

r
t

t df
2

2

2
5

1

  Cohen’s d is defined as the sample mean difference 
divided by standard deviation for both repeated- and 
independent-measures designs. For repeated-measures 
studies, Cohen’s d is estimated as

estimated d
M

s
D5

 6. An alternative method for describing the size of the 
treatment effect is to construct a confidence interval 
for the population mean difference, m

D
. The confi-

dence interval uses the repeated-measures t equation, 
solved for the unknown mean difference:

m 5 6D D MM ts
D

  First, select a level of confidence and then look up 
the corresponding t values. For example, for 95% 
confidence, use the range of t values that determine 
the middle 95% of the distribution. The t values are 
then used in the equation along with the values for the 
sample mean difference and the standard error, which 
are computed from the sample data.

Key TerMS

repeated-measures design (314)

within-subjects design (314)

matched-subjects design (314)

related-samples design (315)

difference scores (315)

estimated standard error for M
D
 (319)

repeated-measures t statistic (319)

individual differences (328)

order effects (330)
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reSourceS

Go to CengageBrain.com to access Psychology CourseMate, where you will find an 
interactive eBook, glossaries, flashcards, quizzes, statistics workshops, and more.

If your professor has assigned Aplia:

1. Sign in to your account.
2. Complete the corresponding exercises as required by your professor.
3. When finished, click “Grade It Now” to see which areas you have mastered, which 

areas need more work, and detailed explanations of every answer.

General instructions for using SPSS are presented in Appendix D. Following are  
detailed instructions for using SPSS to perform The Repeated-Measures t Test  
presented in this chapter.

Data Entry

Enter the data into two columns (VAR0001 and VAR0002) in the data editor with the first 
score for each participant in the first column and the second score in the second column. 
The two scores for each participant must be in the same row.

Data Analysis

 1. Click Analyze on the tool bar, select Compare Means, and click on Paired-
Samples T Test.

 2. One at a time, highlight the column labels for the two data columns and click 
the arrow to move them into the Paired Variables box.

 3. In addition to performing the hypothesis test, the program computes a confi-
dence interval for the population mean difference. The confidence level is auto-
matically set at 95%, but you can select Options and change the percentage.

 4. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the swearing experiment in  
Example 11.1 and the program output is shown in Figure 11.6. The output includes a table 
of sample statistics with the mean and standard deviation for each treatment. A second  
table shows the correlation between the two sets of scores (correlations are presented in 
Chapter 14). The final table, which is split into two sections in Figure 11.6, shows the  
results of the hypothesis test, including the mean and standard deviation for the difference 
scores, the standard error for the mean, a 95% confidence interval for the mean difference, 
and the values for t, df, and the level of significance (the p value for the test).

focuS on probleM Solving

 1. Once data have been collected, we must then select the appropriate statistical 
analysis. How can you tell whether the data call for a repeated-measures  

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    dEmonSTRATIon 11.1    333

t test? Look at the experiment carefully. Is there only one sample of subjects? 
Are the same subjects tested a second time? If your answers are yes to both of 
these questions, then a repeated-measures t test should be done. There is only 
one situation in which the repeated-measures t can be used for data from two 
samples, and that is for matched-subjects studies (p. 314).

 2. The repeated-measures t test is based on difference scores. In finding difference 
scores, be sure that you are consistent with your method. That is, you may use 
either X

2
 – X

1
 or X

1
 – X

2
 to find D scores, but you must use the same method for 

all subjects.

deMonSTraTion 11.1

a repeaTed-MeaSureS t TeST

A major oil company would like to improve its tarnished image following a large oil 
spill. Its marketing department develops a short television commercial and tests it on 

Paired Samples Statistics

Paired Samples Correlations

Paired Samples Test

VAR00001

VAR00002

VAR00001 & VAR00002

Pair 1

Pair 1

Pair 1 VAR00001 - VAR00002 .46266 3.53734 3.000 8 .017

.746–.1269

9

9

.83333

1.71594

.27778

.57198

CorrelationN

Paired Differences

Sig.

Lower Upper t df Sig. (2-tailed)

95% Confidence Interval
of the Difference

N

7.7778

5.7778

Mean Std. Deviation
Std. Error

Mean

Paired Samples Test

VAR00001 - VAR00002Pair 1 .666672.000002.00000

Std. Deviation

Paired Differences

Mean
Std. Error

Mean

Figure 11.6

The SPSS output for the repeated-measures hypothesis test in Example 11.1.
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a sample of n 5 7 participants. People’s attitudes about the company are measured 
with a short questionnaire, both before and after viewing the commercial. The data 
are as follows:

Person X1 (Before) X2 (After) D (Difference)

A 15 15 0
B 11 13 12 ∑D 5 21
C 10 18 18
D 11 12 11 M

D
 5 21

7  5 3.00
E 14 16 12
F 10 10 0 SS 5 74
G 11 19 18

Was there a significant change? Note that participants are being tested twice—once 
before and once after viewing the commercial. Therefore, we have a repeated- 
measures design.

State the hypotheses, and select an alpha level. The null hypothesis states that the 
commercial has no effect on people’s attitude, or, in symbols,

H
0
: m

D
 5 0 (The mean difference is zero.)

The alternative hypothesis states that the commercial does alter attitudes about the 
company, or

H
1
: m

D
 ≠ 0 (There is a mean change in attitudes.)

For this demonstration, we use an alpha level of .05 for a two-tailed test.

Locate the critical region. Degrees of freedom for the repeated-measures t test are 
obtained by the formula

df 5 n – 1

For these data, degrees of freedom equal

df 5 7 – 1 5 6

The t distribution table is consulted for a two-tailed test with a 5 .05 for df 5 6. The 
critical t values for the critical region are t 5 62.447.

Compute the test statistic. Once again, we suggest that the calculation of the t statistic 
be divided into a three-part process.

Variance for the D scores: The variance for the sample of D scores is

s
SS

n
2

1

74

6
12 335

2
5 5 .

Estimated standard error for M
D
: The estimated standard error for the sample mean 

difference is computed as follows:

s
s

nMD
5 5 5 5

2 12 33

7
1 76 1 33

.
. .

S t e p  1

S t e p  2

S t e p  3
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The repeated-measures t statistic: Now we have the information required to calculate 
the t statistic.

t
M

s
D D

MD

5
2m

5
2

5
3 0

1 33
2 26

.
.

Make a decision about H
0
, and state the conclusion. The obtained t value is not ex-

treme enough to fall in the critical region. Therefore, we fail to reject the null hypoth-
esis. We conclude that there is not enough evidence to conclude that the commercial 
changes people’s attitudes, t(6) 5 2.26, p . .05, two-tailed. (Note that we state that  
p is greater than .05 because we failed to reject H

0
.)

deMonSTraTion 11.2

effecT Size for The repeaTed-MeaSureS t

We estimate Cohen’s d and calculate r2 for the data in Demonstration 11.1. The  
data produced a sample mean difference of M

D
 5 3.00 with a sample variance of  

s2 5 12.33. Based on these values, Cohen’s d is

estimated
mean difference

standard deviati
d 5

oon
5 5 5 5

M

s
D 3 00

12 33

3 00

3 51
0 86

.

.

.

.
.

The hypothesis test produced t 5 2.26 with df 5 6. Based on these values,

r
t

t df
2

2

2

2

2

2 26

2 26 6

5 11

11 11
0 465

1
5

1
5 5

.

.

.

.
.

( )
( )

or 46%( )

S t e p  4

probleMS

 1. What is the defining characteristic of a repeated-
measures or within-subjects research design?

 2. Participants enter a research study with unique charac-
teristics that produce different scores from one person 
to another. For an independent-measures study, these 
individual differences can cause problems. Identify the 
problems and briefly explain how they are eliminated 
or reduced with a repeated-measures study.

 3. Explain the difference between a matched-subjects 
design and a repeated-measures design.

 4. A researcher conducts an experiment comparing two 
treatment conditions with 20 scores in each treatment 
condition.

 a. If an independent-measures design is used, how 
many subjects are needed for the experiment?

 b. If a repeated-measures design is used, how many 
subjects are needed for the experiment?

 c. If a matched-subjects design is used, how many 
subjects are needed for the experiment?

 5. A sample of n 5 9 individuals participates in a  
repeated-measures study that produces a sample 
mean difference of M

D
 5 4.25 with SS 5 128 for  

the difference scores.
 a. Calculate the standard deviation for the sample  

of difference scores. Briefly explain what is  
measured by the standard deviation.

 b. Calculate the estimated standard error for  
the sample mean difference. Briefly explain 
what is measured by the estimated standard 
error.

 6. a.  A repeated-measures study with a sample of  
n 5 16 participants produces a mean difference  
of M

D
 5 3 with a standard deviation of s 5 4.  

Use a two-tailed hypothesis test with a 5 .05 to  
determine whether this sample provides evidence 
of a significant treatment effect.

 b. Now assume that the sample standard deviation  
is s 5 12 and repeat the hypothesis test.

 c. Explain how the size of the sample standard 
deviation influences the likelihood of finding a 
significant mean difference.
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 7. a.  A repeated-measures study with a sample of  
n 5 9 participants produces a mean difference  
of M

D
 5 3 with a standard deviation of s 5 6.  

Use a two-tailed hypothesis test with a 5 .05 to 
determine whether it is likely that this sample 
came from a population with m

D
 5 0.

 b. Now assume that the sample mean difference is 
M

D
 5 12, and once again visualize the sample 

distribution. Use a two-tailed hypothesis test with 
a 5 .05 to determine whether it is likely that this 
sample came from a population with m

D
 5 0.

 c. Explain how the size of the sample mean  
difference influences the likelihood of finding  
a significant mean difference.

 8. A sample of difference scores from a repeated- 
measures experiment has a mean of M

D
 5 4 with  

a standard deviation of s 5 6.
 a. If n 5 4, is this sample sufficient to reject the null 

hypothesis using a two-tailed test with a 5 .05?
 b. Would you reject H

0
 if n 5 16? Again, assume a 

two-tailed test with a 5 .05.
 c. Explain how the size of the sample influences the 

likelihood of finding a significant mean difference.

 9. When you get a surprisingly low price on a product 
do you assume that you got a really good deal or that 
you bought a low-quality product? Research indi-
cates that you are more likely to associate low price 
and low quality if someone else makes the purchase 
rather than yourself (Yan & Sengupta, 2011). In a 
similar study, n 5 16 participants were asked to rate 
the quality of low-priced items under two scenarios: 
purchased by a friend or purchased yourself. The 
results produced a mean difference of M

D
 5 2.6 and 

SS 5 135, with self-purchases rated higher.
 a. Is the judged quality of objects significantly different 

for self-purchases than for purchases made by  
others? Use a two-tailed test with a 5 .05.

 b. Compute Cohen’s d to measure the size of the 
treatment effect.

 10. Research has shown that losing even one night’s 
sleep can have a significant effect on performance  
of complex tasks, such as problem solving (Linde  
& Bergstroem, 1992). To demonstrate this phenom-
enon, a sample of n 5 25 college students was given 
a problem-solving task at noon on one day and again 
at noon on the following day. The students were not 
permitted any sleep between the two tests. For each 
student, the difference between the first and second 
score was recorded. For this sample, the students 
averaged M

D
 5 4.7 points better on the first test with 

a variance of s2 5 64 for the difference scores.
 a. Do the data indicate a significant change in  

problem-solving ability? Use a two-tailed test 
with a 5 .05.

 b. Compute an estimated Cohen’s d to measure the 
size of the effect.

 11. Strack, Martin, and Stepper (1988) reported that 
people rate cartoons as funnier when holding a pen 
in their teeth (which forced them to smile) than when 
holding a pen in their lips (which forced them to 
frown). A researcher attempted to replicate this result 
using a sample of n 5 25 adults between the ages of 
40 and 45. For each person, the researcher recorded 
the difference between the rating obtained while 
smiling and the rating obtained while frowning. On 
average the cartoons were rated as funnier when the 
participants were smiling, with an average difference 
of M

D
 5 1.6 with SS 5 150.

 a. Do the data indicate that the cartoons are rated 
significantly funnier when the participants are 
smiling? Use a one-tailed test with a 5 .01.

 b. Compute r2 to measure the size of the treatment 
effect.

 c. Write a sentence describing the outcome of the 
hypothesis test and the measure of effect size as it 
would appear in a research report.

 12. Masculine-themed words (such as competitive,  
independent, analyze, strong) are commonly used in 
job recruitment materials, especially for job adver-
tisements in male-dominated areas (Gaucher, Friesen, 
& Kay, 2011). The same study found that these 
words also make the jobs less appealing to women. 
In a similar study, female participants were asked to 
read a series of job advertisements and then rate how 
interesting or appealing the job appeared to be. Half 
of the advertisements were constructed to include 
several masculine-themed words and the others were 
worded neutrally. The average rating for each type 
of advertisement was obtained for each participant. 
For n 5 25 participants, the mean difference between 
the two types of advertisements is M

D
 5 1.32 points 

(neutral ads rated higher) with SS 5 150 for the  
difference scores.

 a. Is this result sufficient to conclude that there is  
a significant difference in the ratings for two types 
of advertisements? Use a two-tailed test with  
a 5 .05.

 b. Compute r2 to measure the size of the treatment 
effect.

 c. Write a sentence describing the outcome of the 
hypothesis test and the measure of effect size as it 
would appear in a research report.

 13. Research results indicate that physically attractive 
people are also perceived as being more intelligent 
(Eagly, Ashmore, Makhijani, & Longo, 1991). As 
a demonstration of this phenomenon, a researcher 
obtained a set of 10 photographs, 5 showing men 
who were judged to be attractive and 5 showing men 
who were judged to be unattractive. The photographs 
were shown to a sample of n 5 25 college students 
and the students were asked to rate the intelligence  
of the person in the photo on a scale from 1 to 10. 
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For each student, the researcher determined the  
average rating for the 5 attractive photos and the 
average for the 5 unattractive photos, and then com-
puted the difference between the two scores. For the 
entire sample, the average difference was M

D
 5 2.7 

(attractive photos rated higher) with s 5 2.00.  
Are the data sufficient to conclude that there was a 
significant difference in perceived intelligence for  
the two sets of photos? Use a two-tailed test at  
the .05 level of significance.

 14. Researchers have noted a decline in cognitive func-
tioning as people age (Bartus, 1990). However, the 
results from other research suggest that the antioxi-
dants in foods such as blueberries may reduce and 
even reverse these age-related declines (Joseph et al., 
1999). To examine this phenomenon, suppose that a 
researcher obtains a sample of n 5 16 adults who are 
between the ages of 65 and 75. The researcher uses 
a standardized test to measure cognitive performance 
for each individual. The participants then begin a 
2-month program in which they receive daily doses 
of a blueberry supplement. At the end of the 2-month 
period, the researcher again measures cognitive per-
formance for each participant. The results show an 
average increase in performance of M

D
 5 7.4 with  

SS 5 1215.
 a. Does this result support the conclusion that the 

antioxidant supplement has a significant effect on 
cognitive performance? Use a two-tailed test with 
a 5 .05.

 b. Construct a 95% confidence interval to estimate 
the average cognitive performance improvement 
for the population of older adults.

 15. The following data are from a repeated-measures 
study examining the effect of a treatment by measur-
ing a group of n 5 6 participants before and after 
they receive the treatment.

 a. Calculate the difference scores and M
D
.

 b. Compute SS, sample variance, and estimated 
standard error.

 c. Is there a significant treatment effect? Use  
a 5 .05, two tails.

Participant
Before 

Treatment
After 

Treatment

A 7 8
B 2 9
C 4 6
D 5 7
E 5 6
F 3 8

 16. A researcher for a cereal company wanted to demon-
strate the health benefits of eating oatmeal. A sample 
of 9 volunteers was obtained and each participant 

ate a fixed diet without any oatmeal for 30 days. 
At the end of the 30-day period, cholesterol was 
measured for each individual. Then the participants 
began a second 30-day period in which they repeated 
exactly the same diet except that they added 2 cups 
of oatmeal each day. After the second 30-day pe-
riod, cholesterol levels were measured again and the 
researcher recorded the difference between the two 
scores for each participant. For this sample, choles-
terol scores averaged M

D
 5 16 points lower with the 

oatmeal diet with SS 5 538 for the difference scores.
 a. Are the data sufficient to indicate a significant 

change in cholesterol level? Use a two-tailed test 
with a 5 .01.

 b. Compute r2, the percentage of variance accounted 
for by the treatment, to measure the size of the 
treatment effect.

 c. Write a sentence describing the outcome of the 
hypothesis test and the measure of effect size as it 
would appear in a research report.

 17. Research indicates that the color red increases men’s 
attraction to women (Elliot & Niesta, 2008). In the 
original study, men were shown women’s photographs 
presented on either a white or a red background. 
Photographs presented on red were rated significantly 
more attractive than the same photographs mounted 
on white. In a similar study, a researcher prepares a 
set of 30 women’s photographs, with 15 mounted  
on a white background and 15 mounted on red.  
One picture is identified as the test photograph and 
appears twice in the set, once on white and once on 
red. Each male participant looks through the entire  
set of photographs and rates the attractiveness of  
each woman on a 10-point scale. The following table 
summarizes the ratings of the test photograph for  
a sample of n 5 9 men. Are the ratings for the  
test photograph significantly different when it is  
presented on a red background compared to a white 
background? Use a two-tailed test with a 5 .01.

Participant
White 

Background
Red 

Background

A 4 7
B 6 7
C 5 8
D 5 9
E 6 9
F 4 7
G 3 9
H 8 9
I 6 9

 18. One of the primary advantages of a repeated- 
measures design, compared to independent-measures, 
is that it reduces the overall variability by removing 
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variance caused by individual differences. The  
following data are from a research study comparing 
two treatment conditions.

 a. Assume that the data are from an independent-
measures study using two separate samples, each 
with n 5 6 participants. Compute the pooled 
variance and the estimated standard error for the 
mean difference.

 b. Now assume that the data are from a repeated-
measures study using the same sample  
of n 5 6 participants in both treatment  
conditions. Compute the variance for the  
sample of difference scores and the estimated 
standard error for the mean difference.  
(You should find that the repeated-measures 
design substantially reduces the variance and  
the standard error.)

Treatment 1 Treatment 2 Difference

10 13 3
12 12 0
8 10 2
6 10 4
5 6 1
7 9 2

M 5 8 M 5 10 M
D
 5 2

SS 5 34 SS 5 30 SS 5 10

 19. Problem 18 shows that removing individual differ-
ences can substantially reduce variance and lower 
the standard error. However, this benefit only occurs 
if the individual differences are consistent across 
treatment conditions. In problem 18, for example, 
the first two participants (top two rows) consistently 
had the highest scores in both treatment conditions. 
Similarly, the last two participants consistently had 
the lowest scores in both treatments. To construct 
the following data, we started with the scores in 
problem 18 and scrambled the scores in treatment 1 
to eliminate the consistency of the individual  
differences.

 a. Assume that the data are from an independent-
measures study using two separate samples, each 
with n 5 6 participants. Compute the pooled 
variance and the estimated standard error for the 
mean difference.

 b. Now assume that the data are from a repeated-
measures study using the same sample of  
n 5 6 participants in both treatment conditions. 
Compute the variance for the sample of differ-
ence scores and the estimated standard error for 
the mean difference. (This time you should find 
that removing the individual differences does not 
reduce the variance or the standard error.)

Treatment 1 Treatment 2 Difference

6 13 7
7 12 5
8 10 2

10 10 0
5 6 1

12 9 23

M 5  8 M 5 10 M
D
 5  2

SS 5 34 SS 5 30 SS 5 64

 20. A researcher uses a matched-subjects design to in-
vestigate whether single people with pets are happier 
than singles without pets. A mood inventory survey 
is given to a group of 20- to 29-year-old non–pet 
owners and a similar age group of pet owners. The 
pet owners are matched one to one with the non–pet 
owners for income, number of close friendships, and 
general health. The data follow:

Matched Pair Non–Pet Owner Pet Owner

A 12 14
B 8 7
C 10 13
D 9 9
E 7 13
F 10 12

 a. Is there a significant difference in the mood scores 
for non–pet owners versus pet owners? Test with 
a 5 .05 for two tails.

 b. Construct the 95% confidence interval to estimate 
the size of the mean difference in mood between 
the population of pet owners and the population of 
non–pet owners. (You should find that a mean  
difference of m

D
 5 0 is an acceptable value, which 

is consistent with the conclusion from the hypoth-
esis test.)

 21. Some evidence suggests that you are likely to improve 
your test score if you rethink and change answers on 
a multiple-choice exam (Johnston, 1975). To examine 
this phenomenon, a teacher gave the same final exam 
to two sections of a course. Students in one section 
were told to turn in their exams immediately after 
finishing, without changing any answers. In the other 
section, students were encouraged to reconsider each 
question and to change answers when they felt it was 
appropriate. Before the final, the teacher matched 9 
students in the first section with 9 students in the sec-
ond section based on their midterm grades. For exam-
ple, a student in the no-change section with an 89 on 
the midterm was matched with a student in the change 
section who also had an 89 on the midterm. The final 

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    PRoblEmS    339

exam grades for the 9 matched pairs of students are 
presented in the table below.

 a. Do the data indicate a significant difference be-
tween the two conditions? Use a two-tailed test 
with a 5 .05.

 b. Construct a 95% confidence interval to estimate 
the size of the population mean difference.

 c. Write a sentence demonstrating how the results 
of the hypothesis test and the confidence interval 
would appear in a research report.

Matched 
Pair

No-Change 
Section

Change 
Section

#1 71 86
#2 68 80
#3 91 88
#4 65 74
#5 73 82
#6 81 89
#7 85 85
#8 86 88
#9 65 76

 22. The teacher from Problem 21 also tried a different ap-
proach to determining whether changing answers helps 
or hurts exam grades. In another class, students were 
told to review their final exams and change any answers 
they wanted to before turning them in. However, the 
students had to indicate both the original answer and the 
changed answer for each question. The teacher graded 
each exam twice, once using the set of original answers 
and once with the changes. In the class of n 5 22 stu-
dents, the exam scores improved by an average of M

D
 

5 2.5 points with the changed answers. The standard 
deviation for the difference scores was s 5 3.1. Are the 
data sufficient to conclude that rethinking and changing 
answers can significantly improve scores? Use a one-
tailed test at the .01 level of significance.

 23. At the Olympic level of competition, even the small-
est factors can make the difference between winning 
and losing. For example, Pelton (1983) has shown 
that Olympic marksmen shoot much better if they 
fire between heartbeats, rather than squeezing the 
trigger during a heartbeat. The small vibration caused 
by a heartbeat seems to be sufficient to affect the 
marksman’s aim. The following hypothetical data 
demonstrate this phenomenon. A sample of n 5 8 
Olympic marksmen fires a series of rounds while a 
researcher records heartbeats. For each marksman, 
a score is recorded for shots fired during heartbeats 

and for shots fired between heartbeats. Do these data 
indicate a significant difference? Test with a 5 .05.

Participant
During 

Heartbeats
Between 

Heartbeats

A 93 98
B 90 94
C 95 96
D 92 91
E 95 97
F 91 97
G 92 95
H 93 97

 24. Example 11.1 in this chapter presented a repeated-
measures research study demonstrating that swearing 
can help reduce ratings of pain (Stephens, Atkins, & 
Kingston, 2009). In the study, each participant was 
asked to plunge a hand into icy water and keep it there 
as long as the pain would allow. In one condition, the 
participants repeated their favorite curse words while 
their hands were in the water. In the other condition, 
the participants repeated a neutral word. In addition to 
lowering the participants’ perception of pain, swearing 
also increased the amount of time that they were able to 
tolerate the pain. Data similar to the results obtained in 
the study are shown in the following table.

 a. Do these data indicate a significant difference in 
pain tolerance between the two conditions? Use a 
two-tailed test with a 5 .05.

 b. Compute r2, the percentage of variance accounted 
for, to measure the size of the treatment effect.

 c. Write a sentence demonstrating how the results of 
the hypothesis test and the measure of effect size 
would appear in a research report.

Amount of Time (in Seconds)

Participant Swear words Neutral words

1 94 59
2 70 61
3 52 47
4 83 60
5 46 35
6 117 92
7 69 53
8 39 30
9 51 56

10 73 61
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 1. The single-sample t introduced in Chapter 9.
 2. The independent-measures t introduced in Chapter 10.
 3. The repeated-measures t introduced in Chapter 11.

In this part, we considered a set of three t statistics that 
are used to draw inferences about the means and mean 
differences for unknown populations. Because the popula-
tions are completely unknown, we rely on sample data to 
provide all of the necessary information. In particular, each 
inferential procedure begins by computing sample means 
and sample variances (or the corresponding SS values or 
standard deviations). Therefore, a good understanding of 
the definitions and formulas from Chapters 3 and 4 is a 
critical foundation for this section.

With three different t statistics available, the first prob-
lem is often deciding which one is appropriate for a specific 
research situation. Perhaps the best approach is to begin 
with a close look at the sample data.

 1. For the single-sample t (Chapter 9), there is only one 
group of participants and only one score for each 
individual. With a single sample mean and a single 
sample variance, the t statistic can be used to test a 
hypothesis about a single unknown population mean 
or construct a confidence interval to estimate the 
population mean.

 2. For the independent-measures t, there are two separate 
groups of participants who produce two groups of 
scores. The mean and variance are computed for each 
group, producing two sample means and two sample 
variances. After pooling the two variances, the t statis-
tic uses the difference between the two sample means 
to test a hypothesis about the corresponding differ-
ence between the two unknown population means 
or estimate the population mean difference with a 
confidence interval. The null hypothesis always states 
that there is no difference between the two population 
means; m

1
 – m

2
 5 0.

 3. For the repeated-measures t, there is only one group 
of participants but each individual is measured twice, 
at two different times and/or under two different treat-
ment conditions. The two scores are then used to find 
a difference score for each person, and the mean and 
variance are computed for the sample of difference 
scores. The t statistic uses the sample mean difference 
to test a hypothesis about the corresponding population 
mean difference or estimate the population mean dif-
ference with a confidence interval. The null hypothesis 
always states that the mean for the population of differ-
ence scores is zero; m

D
 5 0.

review exerciSeS

 1. Belsky, Weinraub, Owen, and Kelly (2001) reported on 
the effects of preschool childcare on the development 
of young children. One result suggests that children 
who spend more time away from their mothers are 
more likely to show behavioral problems in kinder-
garten. Using a standardized scale, the average rating  
of behavioral problems for kindergarten children is  
m 5 35. A sample of n 5 16 kindergarten children who 
had spent at least 20 hours per week in child care during 
the previous year produced a mean score of M 5 42.7 
with a standard deviation of s 5 6.

 a. Are the data sufficient to conclude that children 
with a history of childcare show significantly more 
behavioral problems than the average kindergarten 
child? Use a one-tailed test with a 5 .01.

 b. Compute the 90% confidence interval for the 
mean rating of behavioral problems for the popu-
lation of kindergarten children who have a history 
of daycare.

 c. Write a sentence showing how the outcome of the 
hypothesis test and the confidence interval would 
appear in a research report.

 2. Do you view a chocolate bar as delicious or as fattening? 
Your attitude may depend on your gender. In a study of 
American college students, Rozin, Bauer, and Catanese 
(2003) examined the importance of food as a source of 
pleasure versus concerns about food associated with 
weight gain and health. The following results are similar 
to those obtained in the study. The scores are a measure 
of concern about the negative aspects of eating.

Males Females

n 5 9 n 5 15
M 5 33 M 5 42
SS 5 740 SS 5 1240

 a. Based on these results, is there a significant dif-
ference between the attitudes for males and for 
females? Use a two-tailed test with a 5 .05.

 b. Compute r2, the percentage of variance accounted 
for by the gender difference, to measure effect size 
for this study.

 c. Write a sentence demonstrating how the result of 
the hypothesis test and the measure of effect size 
would appear in a research report.

review

After completing this part, you should be able to perform hypothesis tests and compute confi-
dence intervals using t statistics. These include:

341

P A R T III
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 3. The stimulant Ritalin has been shown to increase at-
tention span and improve academic performance in 
children with ADHD (Evans et al., 2001). To demon-
strate the effectiveness of the drug, a researcher selects 
a sample of n 5 20 children diagnosed with the disorder 
and measures each child’s attention span before and 
after taking the drug. The data show an average increase 

of attention span of M
D
 5 4.8 minutes with a variance 

of s2 5 125 for the sample of difference scores.
 a. Is this result sufficient to conclude that Ritalin 

significantly improves attention span? Use a one-
tailed test with a 5 .05.

 b. Compute the 80% confidence interval for the 
mean change in attention span for the population.
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In Part III, we presented a set of t statistics that use sample means 
and mean differences to draw inferences about the corresponding 
population means and mean differences. However, the t statistics 

are limited to situations that compare no more than two population 
means. Often, a research question involves the differences among 
more than two means and, in these situations, t tests are not appro-
priate. In this part, we introduce a new hypothesis testing technique 
known as analysis of variance (ANOVA). ANOVA permits research-
ers to evaluate the mean differences among two or more populations 
using sample data. We present three different applications of ANOVA 
that apply to three distinct research situations:

 1. Independent-measures designs: Using two or more separate 
samples to draw an inference about the mean differences 
between two or more unknown populations.

 2. Repeated-measures designs: Using one sample, with each in-
dividual tested in two or more different treatment conditions, 
to draw an inference about the population mean differences 
among the conditions.

 3. Two-factor designs: Allowing two independent variables to 
change simultaneously within one study to create combinations 
of treatment conditions involving both variables. The ANOVA 
then evaluates the mean differences attributed to each variable 
acting independently and to combinations of the two variables 
interacting together.

In the next two chapters, we continue to examine statistical meth-
ods that use sample means as the foundation for drawing inferences 
about population means. The primary application of these inferential 

Analysis of 
Variance: Tests for 
Differences Among 
Two or More 
Population Means

P A R T 

IV

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



methods is to help researchers interpret the outcome of their 
research studies. In a typical study, the goal is to demonstrate 
a difference between two or more treatment conditions. For 
example, a researcher hopes to demonstrate that a group of 
children who are exposed to violent TV programs behave 
more aggressively than children who are shown nonviolent 
TV programs. In this situation, the data consist of one sample 
mean representing the scores in one treatment condition and 
another sample mean representing the scores from a different 
treatment. The researcher hopes to find a difference between 
the sample means and would like to generalize the mean dif-
ference to the entire population.

The problem is that sample means can be different even 
when there are no differences whatsoever among the popu-
lation means. As you saw in Chapter 1 (see Figure 1.2), 
two samples can have different means even when they are 
selected from the same population. Thus, even though a re-
searcher may obtain a sample mean difference in a research 
study, it does not necessarily indicate that there is a mean 
difference in the population. As with the t tests presented 
in Part III, a hypothesis test is needed to determine whether 
the mean differences found in sample data are statistically 
significant. With more than two sample means, the appro-
priate hypothesis test is ANOVA.

344
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Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.

Introduction 
to Analysis of 
Variance

12.1    Introduction

12.2    The Logic of ANOVA

12.3    ANOVA Notation and Formulas

12.4    The Distribution of F-Ratios

12.5     Examples of Hypothesis Testing 
and Effect Size with ANOVA

12.6    Post Hoc Tests

12.7     The Relationship Between 
ANOVA and t Tests

Summary

Focus on Problem Solving

Demonstrations 12.1 and 12.2

Problems

C h A P T e R 

12
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 Variability	(Chapter	4)
•	 Sum	of	squares
•	 Sample	variance
•	 Degrees	of	freedom

•	 Introduction	to	hypothesis	testing	
(Chapter	8)
•	 The	logic	of	hypothesis	testing

•	 Independent-measures	t statistic 
(Chapter	10)
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InTRoDuCTIon

Analysis of variance (ANOVA) is a hypothesis-testing procedure that is used to evaluate 
mean differences between two or more treatments (or populations). As with all inferential 
procedures, ANOVA uses sample data as the basis for drawing general conclusions about 
populations. It may appear that ANOVA and t tests are simply two different ways of doing 
exactly the same job: testing for mean differences. In some respects, this is true—both 
tests use sample data to test hypotheses about population means. However, ANOVA has 
a tremendous advantage over t tests. Specifically, t tests are limited to situations in which 
there are only two treatments to compare. The major advantage of ANOVA is that it can be 
used to compare two or more treatments. Thus, ANOVA provides researchers with much 
greater flexibility in designing experiments and interpreting results.

Figure 12.1 shows a typical research situation for which ANOVA would be used. 
Note that the study involves three samples representing three populations. The goal of 
the analysis is to determine whether the mean differences observed among the samples 
provide enough evidence to conclude that there are mean differences among the three 
populations. Specifically, we must decide between two interpretations:

 1. There really are no differences between the populations (or treatments). The 
observed differences between the sample means are caused by random, unsys-
tematic factors (sampling error) that differentiate one sample from another.

 2. The populations (or treatments) really do have different means, and these popula-
tion mean differences are responsible for causing systematic differences between 
the sample means.

You should recognize that these two interpretations correspond to the two hypotheses 
(null and alternative) that are part of the general hypothesis-testing procedure.

Before we continue, it is necessary to introduce some of the terminology that is used to 
describe the research situation shown in Figure 12.1. Recall (from Chapter 1) that when a 
researcher manipulates a variable to create the treatment conditions in an experiment, the 
variable is called an independent variable. For example, Figure 12.1 could represent a study 

12.1

Terminology in 
AnoVA

Population 2
(Treatment 2)

Population 1
(Treatment 1)

Population 3
(Treatment 3)

µ
3

= ?µ
2

= ?µ1 = ?

Sample 3Sample 2Sample 1
 n � 15
 M � 23.1
 SS � 114

 n � 15
 M � 28.5
 SS � 130

 n � 15
 M � 20.8
 SS � 101

Figure 12.1

A typical situation in 
which ANOVA would 
be used. Three separate 
samples are obtained to 
evaluate the mean differ-
ences among three popu-
lations (or treatments) 
with unknown means.
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examining driving performance under three different telephone conditions: driving with 
no phone, talking on a hands-free phone, and talking on a hand-held phone. Note that the 
three conditions are created by the researcher. On the other hand, when a researcher uses 
a nonmanipulated variable to designate groups, the variable is called a quasi-independent 
variable. For example, the three groups in Figure 12.1 could represent 6-year-old, 8-year-
old, and 10-year-old children. In the context of ANOVA, an independent variable or a quasi-
independent variable is called a factor. Thus, Figure 12.1 could represent an experimental 
study in which the telephone condition is the factor being evaluated or it could represent a 
nonexperimental study in which age is the factor being examined.

In ANOVA, the variable (independent or quasi-independent) that designates the 
groups being compared is called a factor.

The individual groups or treatment conditions that are used to make up a factor are 
called the levels of the factor. For example, a study that examined performance under 
three different telephone conditions would have three levels of the factor.

The individual conditions or values that make up a factor are called the levels of 
the factor.

Like the t tests presented in Chapters 10 and 11, ANOVA can be used with either an in-
dependent-measures or a repeated-measures design. Recall that an independent-measures 
design means that there is a separate group of participants for each of the treatments (or 
populations) being compared. In a repeated-measures design, on the other hand, the same 
group is tested in all of the different treatment conditions. In addition, ANOVA can be 
used to evaluate the mean differences from a research study that involves more than one 
factor. For example, a researcher may want to compare two different therapy techniques, 
examining their immediate effectiveness as well as the persistence of their effectiveness 
over time. In this situation, the research study could involve two different groups of par-
ticipants, one for each therapy, and measure each group at several different points in time. 
The structure of this design is shown in Figure 12.2. Notice that the study uses two factors, 
one independent-measures factor and one repeated-measures factor:

 1. Factor 1: Therapy technique. A separate group is used for each technique (inde-
pendent measures).

 2. Factor 2: Time. Each group is tested at three different times (repeated measures).

In this case, the ANOVA would evaluate mean differences between the two therapies 
as well as mean differences between the scores obtained at different times. A study that 
combines two factors, like the one in Figure 12.2, is called a two-factor design or a 
factorial design.

The ability to combine different factors and to mix different designs within one study 
provides researchers with the flexibility to develop studies that address scientific ques-
tions that could not be answered by a single design using a single factor.

Although ANOVA can be used in a wide variety of research situations, this chapter 
introduces ANOVA in its simplest form. Specifically, we consider only single-factor de-
signs. That is, we examine studies that have only one independent variable (or only one 
quasi-independent variable). Second, we consider only independent-measures designs; 
that is, studies that use a separate group of participants for each treatment condition. 
The basic logic and procedures that are presented in this chapter form the foundation 
for more complex applications of ANOVA. For example, in Chapter 13, we extend the 

D e f i n i t i o n

D e f i n i t i o n
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analysis to single-factor, repeated-measures designs and we introduce two-factor de-
signs. But for now, in this chapter, we limit our discussion of ANOVA to single-factor, 
independent-measures research studies.

The following example introduces the statistical hypotheses for ANOVA. Suppose 
that a researcher examined driving performance under three different telephone 
conditions: no phone, a hands-free phone, and a hand-held phone. Three samples 
of participants are selected, one sample for each treatment condition. The purpose 
of the study is to determine whether using a telephone affects driving performance. 
In statistical terms, we want to decide between two hypotheses: the null hypothesis 
(H

0
), which states that the telephone condition has no effect, and the alternative 

hypothesis (H
1
), which states that the telephone condition does affect driving. In 

symbols, the null hypothesis states

H
0
: m

1
 5 m

2
 5 m

3

In words, the null hypothesis states that the telephone condition has no effect on 
driving performance. That is, the population means for the three telephone conditions 
are all the same. In general, H

0
 states that there is no treatment effect.

The alternative hypothesis states that the population means are not all the same:

H
1
: There is at least one mean difference among the populations.

In general, H
1
 states that there is a real treatment effect. As always, the hypotheses are 

stated in terms of population parameters, even though we use sample data to test them.

STATiSTicAl 
HypoTHeSeS for 

AnoVA

Scores for
group 1

measured
before

Therapy I

Before
Therapy

Therapy I
(Group 1)

THERAPY
TECHNIQUE

Therapy II
(Group 2)

TIME

After
Therapy

6 Months
After Therapy

Scores for
group 1

measured
after

Therapy I

Scores for
group 1

measured
6 months after

Therapy I

Scores for
group 2

measured
before

Therapy II

Scores for
group 2

measured
after

Therapy II

Scores for
group 2

measured
6 months after

Therapy II

Figure 12.2

A research design with two factors. The research study uses two factors: One factor uses two levels of therapy technique 
(I versus II), and the second factor uses three levels of time (before, after, and 6 months after). Also notice that the ther-
apy factor uses two separate groups (independent measures) and the time factor uses the same group for all three levels 
(repeated measures).
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Notice that we are not stating a specific alternative hypothesis. This is because many 
different alternatives are possible, and it would be tedious to list them all. One alterna-
tive, for example, is that the first two populations are identical, but that the third is dif-
ferent. Another alternative states that the last two means are the same, but that the first 
is different. Other alternatives might be

H
1
: m

1
 ≠ m

2
 ≠ m

3
 (All three means are different.)

H
1
: m

1
 5 m

3
, but m

2
 is different.

We should point out that a researcher typically entertains only one (or at most a few) of 
these alternative hypotheses. Usually a theory or the outcomes of previous studies dictate 
a specific prediction concerning the treatment effect. For the sake of simplicity, we state a 
general alternative hypothesis rather than try to list all of the possible specific alternatives.

The test statistic for ANOVA is very similar to the independent-measures t statistic used in 
Chapter 10. For the t statistic, we first computed the standard error, which measures how 
much difference is expected between two sample means if there is no treatment effect (that 
is, if H

0
 is true). Then we computed the t statistic with the following structure:

t 5
obtained difference between two sample meaans

standard error (the difference expected with no treatment effect)

For ANOVA, however, we want to compare differences among two or more sample 
means. With more than two samples, the concept of “difference between sample means” 
becomes difficult to define or measure. For example, if there are only two samples and they 
have means of M 5 20 and M 5 30, then there is a 10-point difference between the sample 
means. Suppose, however, that we add a third sample with a mean of M 5 35. Now how 
much difference is there between the sample means? It should be clear that we have a prob-
lem. The solution to this problem is to use variance to define and measure the size of the 
differences among the sample means. Consider the following two sets of sample means:

Set 1 Set 2

M
1
 5 20 M

1
 5 28

M
2
 5 30 M

2
 5 30

M
3
 5 35 M

3
 5 31

If you compute the variance for the three numbers in each set, then the variance for 
set 1 is s2 5 58.33 and the variance for set 2 is s2 5 2.33. Notice that the two variances 
provide an accurate representation of the size of the differences. In set 1, there are rela-
tively large differences between sample means and the variance is relatively large. In 
set 2, the mean differences are small and the variance is small.

Thus, we can use variance to measure sample mean differences when there are two 
or more samples. The test statistic for ANOVA uses this fact to compute an F-ratio with 
the following structure:

F 5
variance (differences) between sample meanns

variance (differences) expected with no ttreatment effect

Note that the F-ratio has the same basic structure as the t statistic but is based on variance 
instead of sample mean difference. The variance in the numerator of the F-ratio provides a 

THe TeST STATiSTic 
for AnoVA
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single number that measures the differences among all of the sample means. The variance 
in the denominator of the F-ratio, like the standard error in the denominator of the t statistic, 
measures the mean differences that would be expected if there were no treatment effect. 
Thus, the t statistic and the F-ratio provide the same basic information. In each case, a large 
value for the test statistic provides evidence that the sample mean differences (numerator) 
are larger than would be expected if there were no treatment effects (denominator).

If we already have t tests for comparing mean differences, you might wonder why 
ANOVA is necessary. Why create a whole new hypothesis-testing procedure that sim-
ply duplicates what the t tests can already do? The answer to this question is based in 
a concern about Type I errors.

Remember that each time you do a hypothesis test, you select an alpha level that 
determines the risk of a Type I error. With a 5 .05, for example, there is a 5%, or a 
1-in-20, risk of a Type I error. Often a single experiment requires several hypothesis 
tests to evaluate all of the mean differences. However, each test has a risk of a Type I 
error, and the more tests you do, the more risk there is.

For this reason, researchers often make a distinction between the testwise alpha level 
and the experimentwise alpha level. The testwise alpha level is simply the alpha level that 
you select for each individual hypothesis test. The experimentwise alpha level is the total 
probability of a Type I error accumulated from all of the separate tests in the experiment. 
As the number of separate tests increases, so does the experimentwise alpha level.

The testwise alpha level is the risk of a Type I error, or alpha level, for an individual 
hypothesis test.

When an experiment involves several different hypothesis tests, the experimentwise 
alpha level is the total probability of a Type I error that is accumulated from all of 
the individual tests in the experiment. Typically, the experimentwise alpha level is 
substantially greater than the value of alpha used for any one of the individual tests.

For example, an experiment involving three treatments would require three separate 
t tests to compare all of the mean differences:

Test 1 compares treatment I with treatment II.

Test 2 compares treatment I with treatment III.

Test 3 compares treatment II with treatment III.

If all tests use a 5 .05, then there is a 5% risk of a Type I error for the first test, a 5% 
risk for the second test, and another 5% risk for the third test. The three separate tests 
accumulate to produce a relatively large experimentwise alpha level. The advantage of 
ANOVA is that it performs all three comparisons simultaneously in one hypothesis test. 
Thus, no matter how many different means are being compared, ANOVA uses one test 
with one alpha level to evaluate the mean differences, and thereby avoids the problem of 
an inflated experimentwise alpha level.

THE logIC of AnoVA

The formulas and calculations required in ANOVA are somewhat complicated, but 
the logic that underlies the whole procedure is fairly straightforward. Therefore, this 
section gives a general picture of ANOVA before we start looking at the details. We 
introduce the logic of ANOVA with the help of the hypothetical data in Table 12.1. 

Type i errorS And 
mulTiple-HypoTHeSiS 

TeSTS

D e f i n i t i o n s

12.2
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These data represent the results of an independent-measures experiment comparing 
performance in a driving simulator under three telephone conditions.

One obvious characteristic of the data in Table 12.1 is that the scores are not all the 
same. In everyday language, the scores are different; in statistical terms, the scores are 
variable. Our goal is to measure the amount of variability (the size of the differences) 
and to explain why the scores are different.

The first step is to determine the total variability for the entire set of data. To com-
pute the total variability, we combine all of the scores from all of the separate samples 
to obtain one general measure of variability for the complete experiment. Once we have 
measured the total variability, we can begin to break it apart into separate components. 
The word analysis means dividing into smaller parts. Because we are going to analyze 
variability, the process is called analysis of variance. This analysis process divides the 
total variability into two basic components.

 1. Between-Treatments Variance. Looking at the data in Table 12.1, we 
clearly see that much of the variability in the scores results from general 
differences between treatment conditions. For example, the scores in the 
no-phone condition tend to be much higher (M 5 4) than the scores in the 
hand-held condition (M 5 1). We calculate the variance between treatments 
to provide a measure of the overall differences between treatment conditions. 
Notice that the variance between treatments is really measuring the differ-
ences between sample means.

 2. Within-Treatment Variance. In addition to the general differences between 
treatment conditions, there is variability within each sample. Looking again 
at Table 12.1, we see that the scores in the no-phone condition are not all the 
same; they are variable. The within-treatments variance provides a measure of 
the variability inside each treatment condition.

Analyzing the total variability into these two components is the heart of ANOVA. 
We now examine each of the components in more detail.

Remember that calculating variance is simply a method for measuring how big 
the differences are for a set of numbers. When you see the term variance, you  
can automatically translate it into the term differences. Thus, the between-treat-
ments variance simply measures how much difference exists between the treatment  
conditions. There are two possible explanations for these between-treatment  
differences:

 1. The differences between treatments are not caused by any treatment effect but 
are simply the naturally occurring, random, and unsystematic differences that 

BeTween-TreATmenTS 
VAriAnce

TAblE 12.1

Hypothetical data from an 
experiment examining driv-
ing performance under three 
telephone conditions.*

Treatment 1:  
No Phone 
(Sample 1)

Treatment 2:  
Hand-Held Phone 

(Sample 2)

Treatment 3:  
Hands-Free Phone 

(Sample 3)

4 0 1
3 1 2
6 3 2
3 1 0
4 0 0

M 5 4 M 5 1 M 5 1

*Note that there are three separate samples, with n 5 5 in each sample. The depen-
dent variable is a measure of performance in a driving simulator.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



352     CHAPTER 12 InTRoDuCTIon To AnAlysIs of VARIAnCE

exist between one sample and another. That is, the differences are the result of 
sampling error.

 2. The differences between treatments have been caused by the treatment effects. 
For example, if using a telephone really does interfere with driving performance, 
then scores in the telephone conditions should be systematically lower than 
scores in the no-phone condition.

Thus, when we compute the between-treatments variance, we are measuring differences 
that could be caused by a systematic treatment effect or could simply be random and un-
systematic mean differences caused by sampling error. To demonstrate that there really is a 
treatment effect, we must establish that the differences between treatments are bigger than 
would be expected by sampling error alone. To accomplish this goal, we determine how 
big the differences are when there is no systematic treatment effect; that is, we measure 
how much difference (or variance) can be explained by random and unsystematic factors. 
To measure these differences, we compute the variance within treatments.

Inside each treatment condition, we have a set of individuals who all receive exactly the same 
treatment; that is, the researcher does not do anything that would cause these individuals to 
have different scores. In Table 12.1, for example, the data show that five individuals were 
tested while talking on a hand-held phone (sample 2). Although these five individuals all 
received exactly the same treatment, their scores are different. Why are the scores different? 
The answer is that there is no specific cause for the differences. Instead, the differences that 
exist within a treatment represent random and unsystematic differences that occur when there 
are no treatment effects causing the scores to be different. Thus, the within-treatments vari-
ance provides a measure of how big the differences are when H

0
 is true.

Figure 12.3 shows the overall ANOVA and identifies the sources of variability that 
are measured by each of the two basic components.

Once we have analyzed the total variability into two basic components (between treat-
ments and within treatments), we simply compare them. The comparison is made by 

wiTHin-TreATmenTS 
VAriAnce

THe F -rATio: THe TeST 
STATiSTic for AnoVA

Total
variability

Measures differences
caused by
1. Systematic treatment effects
2. Random, unsystematic factors

Between-
treatments
variance

Measures differences
caused by
1. Random, unsystematic factors

Within-
treatments
variance

Figure 12.3

The independent- 
measures ANOVA parti-
tions, or analyzes, the 
total variability into two 
components: variance 
between treatments  
and variance within 
treatments.
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computing an F-ratio. For the independent-measures ANOVA, the F-ratio has the  
following structure:

F 5
variance between treatments

variance withinn treatments

differences including any tre
5

aatment effects

differences with no treatmentt effects  
(12.1)

When we express each component of variability in terms of its sources (see Figure 12.3), 
the structure of the F-ratio is

F 5
1systematic treatment effects random, unsysstematic differences

random, unsystematic diifferences  
(12.2)

The value obtained for the F-ratio helps to determine whether any treatment effects 
exist. Consider the following two possibilities:

 1. When there are no systematic treatment effects, the differences between treat-
ments (numerator) are entirely caused by random, unsystematic factors. In this 
case, the numerator and the denominator of the F-ratio are both measuring 
random differences and should be roughly the same size. With the numerator 
and denominator roughly equal, the F-ratio should have a value around 1.00. In 
terms of the formula, when the treatment effect is zero, we obtain

F =
+0 random, unsystematic differences

random,, unsystematic differences

  Thus, an F-ratio near 1.00 indicates that the differences between treatments 
(numerator) are random and unsystematic, just like the differences in the de-
nominator. With an F-ratio near 1.00, we conclude that there is no evidence to 
suggest that the treatment has any effect.

 2. When the treatment does have an effect, causing systematic differences  
between samples, then the combination of systematic and random differ-
ences in the numerator should be larger than the random differences alone 
in the denominator. In this case, the numerator of the F-ratio should be 
noticeably larger than the denominator, and we should obtain an F-ratio  
that is substantially larger than 1.00. Thus, a large F-ratio is evidence for 
the existence of systematic treatment effects; that is, there are consistent  
differences between treatments.

Because the denominator of the F-ratio measures only random and unsystematic 
variability, it is called the error term. The numerator of the F-ratio always includes the 
same unsystematic variability as in the error term, but it also includes any systematic 
differences caused by the treatment effect. The goal of ANOVA is to find out whether 
a treatment effect exists.

For ANOVA, the denominator of the F-ratio is called the error term. The 
error term provides a measure of the variance caused by random, unsystem-
atic differences. When the treatment effect is zero (H

0
 is true), the error term 

measures the same sources of variance as the numerator of the F-ratio, so the 
value of the F-ratio is expected to be nearly equal to 1.00.

D e f i n i t i o n
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AnoVA noTATIon AnD foRMulAs

Because ANOVA typically is used to examine data from more than two treatment con-
ditions (and more than two samples), we need a notational system to keep track of all 
of the individual scores and totals. To help introduce this notational system, we use the 
hypothetical data from Table 12.1 again. The data are reproduced in Table 12.2 along 
with some of the notation and statistics that are described in the following list.

 1. The letter k is used to identify the number of treatment conditions—that is, the 
number of levels of the factor. For an independent-measures study, k also speci-
fies the number of separate samples. For the data in Table 12.2, there are three 
treatments, so k 5 3.

 2. The number of scores in each treatment is identified by a lowercase letter n. 
For the example in Table 12.2, n 5 5 for all the treatments. If the samples are 
of different sizes, you can identify a specific sample by using a subscript. For 
example, n

2
 is the number of scores in treatment 2.

 3. The total number of scores in the entire study is specified by a capital letter N. 
When all of the samples are the same size (n is constant), N 5 kn. For the data 
in Table 12.2, there are n 5 5 scores in each of the k 5 3 treatments, so we 
have a total of N 5 3(5) 5 15 scores in the entire study.

 4. The sum of the scores (oX) for each treatment condition is identified by the 
capital letter T (for treatment total). The total for a specific treatment can be 
identified by adding a numerical subscript to the T. For example, the total for 
the second treatment in Table 12.2 is T

2
 5 5.

 5. The sum of all of the scores in the research study (the grand total) is identified by 
G. You can compute G by adding up all N scores or by adding up the treatment 
totals: G 5 oT.

12.3

 1. Explain the difference between the testwise alpha level and the experimentwise 
alpha level.

 2. The term “analysis” means separating or breaking a whole into parts. What is the 
basic analysis that takes place in analysis of variance?

 3. If there is no systematic treatment effect, then what value is expected, on average, 
for the F-ratio in an ANOVA?

 4. What is the implication when an ANOVA produces a very large value for the F-ratio?

 1. When a single research study involves several hypothesis tests, the testwise alpha level is the 
value selected for each individual test and the experimentwise alpha level is the total risk of 
a Type I error that is accumulated for all of the separate tests.

 2. In ANOVA, the total variability for a set of scores is separated into two components: between-
treatments variability and within-treatments variability.

 3.  When H
0
 is true, the expected value for the F-ratio is 1.00 because the top and bottom of the 

ratio are both measuring the same variance.

 4. A large F-ratio indicates the existence of a treatment effect because the differences between 
treatments (numerator) are much bigger than the differences that would be expected if there 
were no effect (denominator).

l E A R n I n g  C H E C k

AnswERs
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 6. Although there is no new notation involved, we also have computed SS and 
M for each sample, and we have calculated oX2 for the entire set of N 5 15 
scores. These values are given in Table 12.2 and are important in the formulas 
and calculations for ANOVA.

Finally, we should note that there is no universally accepted notation for ANOVA. 
Although we are using Gs and Ts, for example, you may find that other sources use 
other symbols.

Because ANOVA requires extensive calculations and many formulas, one common 
problem for students is simply keeping track of the different formulas and numbers. 
Therefore, we examine the general structure of the procedure and look at the organiza-
tion of the calculations before we introduce the individual formulas.

 1. The final calculation for ANOVA is the F-ratio, which is composed of  
two variances:

F 5
variance between treatments

variance withinn treatments

 2. Each of the two variances in the F-ratio is calculated using the basic formula 
for sample variance.

sample variance 5 5s
SS

df
2

  Therefore, we need to compute an SS and a df for the variance between treat-
ments (numerator of F), and we need another SS and df for the variance within 
treatments (denominator of F). To obtain these SS and df values, we must go 
through two separate analyses: First, compute SS for the total study, and analyze 
it in two components (between and within). Then compute df for the total study, 
and analyze it in two components (between and within).

Thus, the entire process of ANOVA requires nine calculations: three values for SS, 
three values for df, two variances (between and within), and a final F-ratio. However, 
these nine calculations are all logically related and are all directed toward finding the 
final F-ratio. Figure 12.4 shows the logical structure of ANOVA calculations.

AnoVA formulAS

Telephone Conditions

Treatment 1  
No Phone 
(Sample 1)

Treatment 2 
Hand-Held Phone 

(Sample 2)

Treatment 3 
Hands-Free Phone 

(Sample 3)

4 0 1 oX2 5 106
3 1 2 G 5 30
6 3 2 N 5 15
3 1 0 k 5 3
4 0 0

T
1
 5 20 T

2
 5 5 T

3
 5 5

SS
1
 5 6 SS

2
 5 6 SS

3
 5 4

n
1
 5 5 n

2
 5 5 n

3
 5 5

M
1
 5 4 M

2
 5 1 M

3
 5 1

TAblE 12.2

The same data that appeared 
in Table 12.1 with summary 
values and notation appropri-
ate for an ANOVA.

Because ANOVA formulas 
require oX for each treatment 
and oX for the entire set of 
scores, we have introduced 
new notation (T and G) to 
help identify which oX is 
being used. Remember: T 
stands for treatment total, 
and G stands for grand total.
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The ANOVA requires that we first compute a total sum of squares and then partition this 
value into two components: between treatments and within treatments. This analysis is 
outlined in Figure 12.5. We examine each of the three components separately.

 1. Total Sum of Squares, SStotal. As the name implies, SS
total

 is the sum of squares 
for the entire set of N scores. As described in Chapter 4 (pp. 96–98), this SS value 
can be computed using either a definitional or a computational formula. However, 
ANOVA typically involves a large number of scores and the mean is often not a 
whole number. Therefore, it is usually much easier to calculate SS

total
 using the 

computational formula:

SS
N

5 2o o
X

X2
2( )

AnAlySiS of THe  
Sum of SquAreS (SS)

To obtain each of
the SS and df values,
the total variability
is analyzed into the
two components

Each variance in
the F-ratio is
computed as SS/df

The final goal for the
ANOVA is an F-ratio F �

Variance between treatments
Variance within treatments

�
Variance
between

treatments

SS between

SS between SS within

SS total

df between
�

Variance
within

treatments

SS within
df within

df between df within

df total

Figure 12.4

The structure and sequence 
of calculations for the 
ANOVA.

SS within treatments

 ΣSS inside each treatment

SS between treatments
n (SS for the treatment means)

or

 Σ 
G2

N

T 2

n

SS Total

N
 G2

 Σ X 2  �

�

Figure 12.5

Partitioning the sum 
of squares (SS) for the 
independent-measures 
ANOVA.
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To make this formula consistent with the ANOVA notation, we substitute the letter G 
in place of oX and obtain

SS
G

Ntotal 5 2o X 2
2

 
(12.3)

Applying this formula to the set of data in Table 12.2, we obtain

SStotal 5 2106
30

15

2

5 106 2 60

5 46

 2. Within-Treatments Sum of Squares, SSwithin treatments. Now we are looking at the 
variability inside each of the treatment conditions. We already have computed the 
SS within each of the three treatment conditions (Table 12.2): SS

1
 5 6, SS

2
 5 6, 

and SS
3
 5 4. To find the overall within-treatment sum of squares, we simply add 

these values together:

SS
within treatments

 5 oSS
inside each treatment

 (12.4)

For the data in Table 12.2, this formula gives

SS
within treatments

 5 6 1 6 1 4

5 16

 3. Between-Treatments Sum of Squares, SSwithin treatments. Before we introduce any 
equations for SS

between treatments
, consider what we have found so far. The total vari-

ability for the data in Table 12.2 is SS
total

 5 46. We intend to partition this total 
into two parts (see Figure 12.5). One part, SS

within treatments
, has been found to be 

equal to 16. This means that SS
between treatments

 must be equal to 30 so that the two 
parts (16 and 30) add up to the total (46). Thus, the value for SS

between treatments
 can 

be found simply by subtraction:

SS
between

 5 SS
total

 2 SS
within

 (12.5)

Computing SSbetween Instead of finding SS
between

 by subtraction, you can compute 
SS

between
 independently, and then check your calculations by ensuring that the two com-

ponents, between and within, add up to the total. We present two different formulas for 
calculating SS

between
 directly from the data.

Recall that the variability between treatments is measuring the differences between 
treatment means. Conceptually, the most direct way of measuring the amount of variability 
among the treatment means is to compute the sum of squares for the set of sample means, 
SS

means
. For the data in Table 12.2, the sample means are 4, 1, and 1. These three values 

produce SS
means

 5 6. However, each of the three means represents a group of n 5 5 scores. 
Therefore, the final value for SS

between
 is obtained by multiplying SS

means
 by n.

SS
between

 5 n(SS
means

) (12.6)

For the data in Table 12.2, we obtain

SS
between

 5 n(SS
means

) 5 5(6) 5 30

To simplify the notation we 
use the subscripts between 
and within in place of be-
tween treatments and within 
treatments.
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Unfortunately, Equation 12.6 can only be used when all of the samples are exactly 
the same size (equal ns), and the equation can be very awkward, especially when the 
treatment means are not whole numbers. Therefore, we also present a computational 
formula for SS

between
 that uses the treatment totals (T) instead of the treatment means.

SS
G

Nbetween

2

5   2  o T

n

2

 
(12.7)

For the data in Table 12.2, this formula produces:

SSbetween 5 1 1 2
20

5

5

5

5

5

30

15

2 2 2 2

5 80 1 5 1 5 2 60

5 90 2 60

5 30

Note that all three techniques (Equations 12.5, 12.6, and 12.7) produce the same 
result, SS

between
 5 30.

We have presented three different equations for computing SS
between

. Rather than mem-
orizing all three, however, we suggest that you pick one formula and use it consistently. 
There are two reasonable alternatives to use. The simplest is Equation 12.5, which finds 
SS

between
 simply by subtraction: First you compute SS

total
 and SS

within
, then subtract:

SS
between

 5 SS
total

 2 SS
within

The second alternative is to use Equation 12.7, which computes SS
between

 using the 
treatment totals (the T values). The advantage of this alternative is that it provides a way 
to check your arithmetic: Calculate SS

total
, SS

between
, and SS

within
 separately, and then check 

to be sure that the two components add up to equal SS
total

.
Using Equation 12.6, which computes SS for the set of sample means, is usually 

not a good choice. Unless the sample means are all whole numbers, this equation can 
produce very tedious calculations. In most situations, one of the other two equations is 
a better alternative.

The analysis of degrees of freedom (df) follows the same pattern as the analysis of SS. 
First, we find df for the total set of N scores, and then we partition this value into two 
components: degrees of freedom between treatments and degrees of freedom within 
treatments. In computing degrees of freedom, there are two important considerations 
to keep in mind:

 1. Each df value is associated with a specific SS value.

 2. Normally, the value of df is obtained by counting the number of items that were 
used to calculate SS and then subtracting 1. For example, if you compute SS for 
a set of n scores, then df 5 n 2 1.

With this in mind, we examine the degrees of freedom for each part of the analysis.

 1. Total Degrees of Freedom, dftotal. To find the df associated with SS
total

, you must 
first recall that this SS value measures variability for the entire set of N scores. 
Therefore, the df value is

df
total

 5 N 2 1 (12.8)

THe AnAlySiS of 
degreeS of freedom 

(df )
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For the data in Table 12.2, the total number of scores is N 5 15, so the total 
degrees of freedom are

df
total

 5 15 2 1

5 14

 2. Within-Treatments Degrees of Freedom, dfwithin. To find the df associated with 
SS

within
, we must look at how this SS value is computed. Remember, we first find 

SS inside of each of the treatments and then add these values together. Each of 
the treatment SS values measures variability for the n scores in the treatment, 
so each SS has df 5 n 2 1. When all of these individual treatment values are 
added together, we obtain

df
within

 5 o(n 2 1) 5 odf
in each treatment

 (12.9)

For the experiment we have been considering, each treatment has n 5 5 scores. 
This means there are n 2 1 5 4 degrees of freedom inside each treatment. 
Because there are three different treatment conditions, this gives a total of 12 
for the within-treatments degrees of freedom.

Notice that this formula for df simply adds up the number of scores in each 
treatment (the n values) and subtracts 1 for each treatment. If these two stages 
are done separately, you obtain

df
within

 5 N 2 k (12.10)

(Adding up all the n values gives N. If you subtract 1 for each treatment, then 
altogether you have subtracted k because there are k treatments.) For the data in 
Table 12.2, N 5 15 and k 5 3, so

df
within

 5 15 2 3

5 12

 3. Between-Treatments Degrees of Freedom, dfbetween. The df associated with 
SS

between
 can be found by considering how the SS value is obtained. This SS 

formula measure the variability for the set of treatments (totals or means). To 
find df

between
, simply count the number of treatments and subtract 1. Because the 

number of treatments is specified by the letter k, the formula for df is

df
between

 5 k 2 1 (12.11)

For the data in Table 12.2, there are three different treatment conditions and

df
between

 5 3 2 1

5 2

Notice that the two parts we obtained from this analysis of degrees of freedom 
add up to equal the total degrees of freedom:

df
total

 5 df
within

 1 df
between

14 5 12 1 2

The complete analysis of degrees of freedom is shown in Figure 12.6.
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As you are computing the SS and df values for ANOVA, keep in mind that the labels 
that are used for each value can help you understand the formulas. Specifically,

 1. The term total refers to the entire set of scores. We compute SS for the whole 
set of N scores, and the df value is simply N 2 1.

 2. The term within treatments refers to differences that exist inside of the  
individual treatment conditions. Thus, we compute SS and df inside each of  
the separate treatments.

 3. The term between treatments refers to differences from one treatment to another. 
With three treatments, for example, we are comparing three different means (or 
totals) and have df 5 3 2 1 5 2.

The next step in the ANOVA procedure is to compute the variance between treatments and 
the variance within treatments, which are used to calculate the F-ratio (see Figure 12.4).

In ANOVA, it is customary to use the term mean square, or simply MS, in place of 
the term variance. Recall (from Chapter 4) that variance is defined as the mean of the 
squared deviations. In the same way that we use SS to stand for the sum of the squared 
deviations, we now use MS to stand for the mean of the squared deviations. For the 
final F-ratio, we need an MS (variance) between treatments for the numerator and an 
MS (variance) within treatments for the denominator. In each case

MS s
SS

df
variance( ) 5 52

 
(12.12)

For the data we have been considering,

MS s
SS

dfbetween between
between

between

5 5 5 52 30

2
115

and

MS s
SS

dfwithin within
within

within

5 5 5 52 16

12
1 3. 33

cAlculATion of 
VAriAnceS (MS )  And 

THe F -rATio

N��1

df within treatmentsdf between treatments

k  Σ(n �1) = k

df total

N�1

Figure 12.6

Partitioning degrees 
of freedom (df) for the 
independent-measures 
ANOVA.
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We now have a measure of the variance (or differences) between the treatments and 
a measure of the variance within the treatments. The F-ratio simply compares these 
two variances:

F
s

s

MS

MS
5 5between

within

between

within

2

2

 
(12.13)

For the experiment we have been examining, the data give an F-ratio of

F 5 5
15

1 33
11 28

.
.

For this example, the obtained value of F 5 11.28 indicates that the numerator of the 
F-ratio is substantially bigger than the denominator. If you recall the conceptual structure 
of the F-ratio as presented in Equations 12.1 and 12.2, the F value we obtained indicates 
that the differences between treatments are more than 11 times bigger than what would be 
expected if there were no treatment effect. Stated in terms of the experimental variables: 
using a telephone while driving does appear to have an effect on driving performance. 
However, to properly evaluate the F-ratio, we must select an a level and consult the 
F-distribution table that is discussed in the next section.

ANOVA summary tables It is useful to organize the results of the analysis in one 
table called an ANOVA summary table. The table shows the source of variability (between 
treatments, within treatments, and total variability), SS, df, MS, and F. For the previous 
computations, the ANOVA summary table is constructed as follows:

Source SS df MS

Between treatments 30 2 15 F 5 11.28
Within treatments 16 12 1.33

Total 46 14

Although these tables are no longer used in published reports, they are a common 
part of computer printouts, and they do provide a concise method for presenting the 
results of an analysis. (Note that you can conveniently check your work: Adding the 
first two entries in the SS column, 30 1 16, produces SS

total
. The same applies to the df 

column.) When using ANOVA, you might start with a blank ANOVA summary table 
and then fill in the values as they are calculated. With this method, you are less likely 
to “get lost” in the analysis, wondering what to do next.

 1. Calculate SS
total

, SS
between

, and SS
within

 for the following set of data:

Treatment 1 Treatment 2 Treatment 3

n 5 5 n 5 5 n 5 5 N 5 15

T 5 10 T 5 15 T 5 35 G 5 60

SS 5 21 SS 5 16 SS 5 23 oX2 5 370

 2. A researcher reports an F-ratio with df
between

 5 3 and df
within

 5 28 for an independent-
measures ANOVA. How many treatment conditions were compared in the experi-
ment? If all the treatments have the same number of participants, then how many  
are in each treatment?

l E A R n I n g  C H E C k
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THE DIsTRIbuTIon of F-RATIos

In ANOVA, the F-ratio is constructed so that the numerator and denominator of the 
ratio are measuring exactly the same variance when the null hypothesis is true (see 
Equation 12.2). In this situation, we expect the value of F to be around 1.00. If we 
obtain an F-ratio that is much greater than 1.00, then it is evidence that a treatment 
effect exists and the null hypothesis is false. The problem now is to define precisely 
which values are “around 1.00” and which are “much greater than 1.00.” To answer this 
question, we need to look at all of the possible F values when H

0
 is true—that is, the 

distribution of F-ratios.
Before we examine this distribution in detail, you should note two obvious  

characteristics:

 1. Because F-ratios are computed from two variances (the numerator and denomi-
nator of the ratio), F values always are positive numbers. Remember that  
variance is always positive.

 2. When H
0
 is true, the numerator and denominator of the F-ratio are measur-

ing the same variance. In this case, the two sample variances should be about 
the same size, so the ratio should be near 1. In other words, the distribution of 
F-ratios should pile up around 1.00.

With these two factors in mind, we can sketch the distribution of F-ratios. The 
distribution is cut off at zero (all positive values), piles up around 1.00, and then 
tapers off to the right (Figure 12.7). The exact shape of the F distribution depends 
on the degrees of freedom for the two variances in the F-ratio. You should recall that 
the precision of a sample variance depends on the number of scores or the degrees 
of freedom. In general, the variance for a large sample (large df) provides a more 
accurate estimate of the population variance. Because the precision of the MS values 

12.4

 3. A researcher conducts an experiment comparing three treatment conditions with 
a separate sample of n 5 8 in each treatment. An ANOVA is used to evaluate the 
data, and the results of the ANOVA are presented in the following table. Complete 
all missing values in the table. Hint: Begin with the values in the df column.

Source SS df MS

Between treatments __ __ ___ F 5 ____
Within treatments __ __ 2

Total 62 __

 1. SS
total

 5 130; SS
between

 5 70; SS
within

 5 60

 2. There were 4 treatment conditions (df
between

 5 k 2 1 5 3). A total of N 5 32 individuals 
participated (df

within
 5 30 5 N 2 k) with n 5 8 in each treatment.

 3. 

AnswERs

Source SS df MS

Between treatments 20 2 10 F 5 5.00
Within treatments 42 21 2

Total 62 23
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depends on df, the shape of the F distribution also depends on the df values for the 
numerator and denominator of the F-ratio. With very large df values, nearly all of the 
F-ratios are clustered very near to 1.00. With the smaller df values, the F distribution 
is more spread out.

For ANOVA, we expect F near 1.00 if H
0
 is true, and we expect a large value for 

F if H
0
 is not true. In the F distribution, we need to separate those values that are 

reasonably near 1.00 from the values that are significantly greater than 1.00. These 
critical values are presented in an F distribution table in Appendix B. A portion of 
the F distribution table is shown in Table 12.3. To use the table, you must know the 
df values for the F-ratio (numerator and denominator), and you must know the alpha 
level for the hypothesis test. It is customary for an F table to have the df values for 
the numerator of the F-ratio printed across the top of the table. The df values for 
the denominator of F are printed in a column on the left-hand side. For the experi-
ment we have been considering, the numerator of the F-ratio (between treatments) 
has df 5 2, and the denominator of the F-ratio (within treatments) has df 5 12. 
This F-ratio is said to have “degrees of freedom equal to 2 and 12.” The degrees 
of freedom would be written as df 5 2, 12. To use the table, you would first find  
df 5 2 across the top of the table and df 5 12 in the first column. When you line up 
these two values, they point to a pair of numbers in the middle of the table. These 
numbers give the critical cutoffs for a 5 .05 and a 5 .01. With df 5 2, 12, for  
example, the numbers in the table are 3.88 and 6.93. Thus, only 5% of the distribu-
tion (a 5 .05) corresponds to values greater than 3.88 and only1% of the distribution 
(a 5 .01) corresponds to values greater than 6.93 (see Figure 12.7).

In the experiment comparing driving performance under different telephone condi-
tions, we obtained an F-ratio of 11.28. According to the critical cutoffs in Figure 12.7, 
this value is extremely unlikely (it is in the most extreme 1%). Therefore, we would 
reject H

0
 with an a level of either .05 or .01 and conclude that the different telephone 

conditions significantly affect driving performance.

THe F  diSTriBuTion 
TABle

F
0 1 2 3 4 5 6 7

5%

1%

3.88 6.93

Figure 12.7

The distribution of F-ratios 
with df 5 2, 12. Of all the 
values in the distribution, 
only 5% are larger than F 
5 3.88, and only 1% are 
larger than F 5 6.93.
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ExAMPlEs of HyPoTHEsIs TEsTIng AnD EffECT sIzE 
wITH AnoVA

Although we have now seen all the individual components of ANOVA, the following 
example demonstrates the complete ANOVA process using the standard four-step pro-
cedure for hypothesis testing.

What is the best strategy for studying before a quiz or exam? A partial answer to this 
question comes from a research study comparing three different strategies (Weinstein, 
McDermott, & Roediger, 2010). In the study, students read a passage knowing that they 
would be tested on the material. In one condition, participants simply reread the passage. 
In a second condition, the students answered prepared comprehension questions about the 
material, and in a third condition, the students generated and answered their own questions. 
The results showed that answering comprehension questions significantly improved exam 
performance but it did not matter whether the students had to generate their own questions.

The data in Table 12.4 are similar to those obtained in the study but use four separate 
groups of students and add a fourth condition in which the passage is read only once. 
We use an ANOVA to determine whether there are any significant differences among 
the four study strategies.

Before we begin the hypothesis test, note that we have already computed several 
summary statistics for the data in Table 12.4. Specifically, the treatment totals (T) and 
SS values are shown for each sample, and the grand total (G) as well as N and oX2 are 
shown for the entire set of data. Having these summary values simplifies the computa-
tions in the hypothesis test, and we suggest that you always compute these summary 
statistics before you begin an ANOVA.

12.5

E x A M P l E  1 2 . 1

TAblE 12.3

A portion of the F distribu-
tion table. Entries in roman 
type are critical values for 
the .05 level of significance, 
and entries in bold type are 
for the .01 level of signifi-
cance. The critical values 
for df 5 2, 12 have been 
highlighted (see text).

Degrees of Freedom: Numerator

Degrees of Freedom: Denominator 1 2 3 4 5 6

10 4.96 4.10 3.71 3.48 3.33 3.22
10.04 7.56 6.55 5.99 5.64 5.39

11 4.84 3.98 3.59 3.36 3.20 3.09
9.65 7.20 6.22 5.67 5.32 5.07

12 4.75 3.88 3.49 3.26 3.11 3.00
9.33 6.93 5.95 5.41 5.06 4.82

13 4.67 3.80 3.41 3.18 3.02 2.92
9.07 6.70 5.74 5.20 4.86 4.62

14 4.60 3.74 3.34 3.11 2.96 2.85
8.86 6.51 5.56 5.03 4.69 4.46

 1. A researcher obtains F 5 4.10 with df 5 2, 14. Is this value sufficient to reject H
0
 

with a 5 .05? Is it big enough to reject H
0
 if a 5 .01?

 2. For an ANOVA evaluating the mean differences among three treatment conditions 
with n 5 10 in each treatment, what is the critical value for the F-ratio with a 5 .05?

1. For a 5 .05, the critical value is 3.74 and you should reject H
0
. For a 5 .01, the critical 

value is 6.51 and you should fail to reject H
0
.

 2. The F-ratio has df 5 2, 27 and the critical value is 3.35.

l E A R n I n g  C H E C k

AnswERs
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State the hypotheses and select an alpha level.

H
0
: m

1
 5 m

2
 5 m

3
 5 m

4
 (There is no treatment effect.)

H
1
: At least one of the treatment means is different.

We use a 5 .01.

Locate the critical region.
We first must determine degrees of freedom for MS

between treatments
 and MS

within treatments
 

(the numerator and denominator of the F-ratio), so we begin by analyzing the degrees 
of freedom. For these data, the total degrees of freedom are

df
total

 5 N 2 1

5 24 2 1

5 23

Analyzing this total into two components, we obtain

df
between

 5 k 2 1 5 4 2 1 5 3

df
within

 5 odf
inside each treatment

 5 5 1 5 1 5 1 5 5 20

The F-ratio for these data has df 5 3, 20. The distribution of all the possible 
F-ratios with df 5 3, 20 is presented in Figure 12.8. Note that F-ratios larger than 
4.94 are extremely rare (p , .01) if H

0
 is true and, therefore, form the critical region 

for the test.

Compute the F-ratio.
The series of calculations for computing F is presented in Figure 12.4 and can be 

summarized as follows:

 a. Analyze the SS to obtain SS
between

 and SS
within

.

 b. Use the SS values and the df values (from step 2) to calculate the two variances, 
MS

between
 and MS

within
.

 c. Finally, use the two MS values (variances) to compute the F-ratio.

S t e p  1 :

S t e p  1 :S t e p  2 :

S t e p  3 :

TAblE 12.4

Quiz scores for students 
using four different study 
strategies.

Read  
Once

Read and 
Reread

Answer Prepared 
Questions

Create and Answer 
Questions

3 5 8 8
3 3 5 9 N 5 24
4 5 8 7 G 5 168
6 7 9 10 oX2 5 1298
6 8 8 10
8 8 10 10

T 5 30 T 5 36 T 5 48 T 5 54

M 5 5 M 5 6 M 5 8 M 5 9

SS 5 20 SS 5 20 SS 5 14 SS 5 8

Often it is easier to postpone 
finding the critical region 
until after step 3, where you 
compute the df values as part 
of the calculations for the 
F-ratio.
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Analysis of SS. First, we compute the total SS and then the two components, as 
indicated in Figure 12.5.

SS
total

 is simply the SS for the total set of N 5 24 scores.

SS
G

Ntotal 5 2  o X 2
2

5 21298
168

24

2

5 1298 2 1176

5 122

SS
within

 combines the SS values from inside each of the treatment conditions.

SS
within

 5 oSS
inside each treatment

 5 20 1 20 1 14 1 85 62

SS
between

 measures the differences among the four treatment means (or treatment  
totals). Because we have already calculated SS

total
 and SS

within
, the simplest way to obtain 

SS
between

 is by subtraction (see Equation 12.5).

SS
between

 5 SS
total

 2 SS
within

5 122 2 62

5 60

Calculation of mean squares. Because we already found df
between

 5 3 and df
within

 5 16 
(Step 2), we now can compute the variance or MS value for each of the two components.

MS
SS

df
Mbetween

between

between

5 5 5
60

3
20 SS

SS

dfwithin
within

within

5 5 5
62

20
3 1.

Calculation of F. We compute the F-ratio:

F
MS

MS
5 5 5between

within

20

3 1
6 45

.
.

4.94

1%

1 2 3 4 5 6

df = 3, 20

Figure 12.8

The distribution of F-ratios 
with df 5 3, 20. The 
critical value for a 5 .01 
is 4.94.
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Make a decision.
The F value we obtained, F 5 6.45, is in the critical region (see Figure 12.8). It is 

very unlikely (p , .01) that we would obtain a value this large if H
0
 is true. Therefore, 

we reject H
0
 and conclude that there is a significant treatment effect.

Example 12.1 demonstrated the complete, step-by-step application of the ANOVA 
procedure. There are two additional points that can be made using this example.

First, you should look carefully at the statistical decision. We have rejected H
0
 and 

concluded that not all the treatments are the same. But we have not determined which 
ones are different. Is generating your own questions different from using prepared ques-
tions? Is rereading different from reading only once? Unfortunately, these questions 
remain unanswered. We do know that at least one difference exists (we rejected H

0
), but 

additional analysis is necessary to find out exactly where this difference is. We address 
this problem in Section 12.6.

Second, as noted earlier, all of the components of the analysis (the SS, df, MS, and F) 
can be presented together in one summary table. The summary table for the analysis in 
Example 12.1 is as follows:

Source SS df MS

Between treatments 60 3 20.00 F 5 6.45
Within treatments 62 20  3.10

Total 122 23

Although these tables are very useful for organizing the components of an ANOVA, 
they are not commonly used in published reports. The current method for reporting the 
results from an ANOVA is presented on page 368.

As we noted previously, a significant mean difference simply indicates that the difference 
observed in the sample data is very unlikely to have occurred just by chance. Thus, the 
term significant does not necessarily mean large, it simply means larger than expected by 
chance. To provide an indication of how large the effect actually is, researchers should 
report a measure of effect size in addition to the measure of significance.

For ANOVA, the simplest and most direct way to measure effect size is to compute 
the percentage of variance accounted for by the treatment conditions. Like the r2 value 
used to measure effect size for the t tests in Chapters 9, 10, and 11, this percentage 
measures how much of the variability in the scores is accounted for by the differences 
between treatments. For ANOVA, the calculation and the concept of the percentage of 
variance is extremely straightforward. Specifically, we determine how much of the total 
SS is accounted for by the SS

between treatments
.

The percentage of variance accounted for 5
SSbbetween treatments

totalSS  
(12.14)

For the data in Example 12.1, we obtain

The percentage of variance accounted for 5
60

1122
0 4925 .

In published reports of ANOVA results, the percentage of variance accounted for by 
the treatment effect is usually called h2 (the Greek letter eta squared) instead of using r2. 
Thus, for the study in Example 12.1, h2 5 0.492.

S t e p  4 :

meASuring effecT 
Size for AnoVA
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In THE lITERATuRE
REPoRTIng THE REsulTs of AnoVA

The APA format for reporting the results of ANOVA begins with a presentation of the 
treatment means and standard deviations in the narrative of the article, a table, or a 
graph. These descriptive statistics are not part of the calculations for the ANOVA, but 

you can easily determine the treatment means from n and T (M = T/n)  and the standard 

deviations from the SS and n – 1 values for each treatment. Next, report the results  
of the ANOVA. For the study described in Example 12.1, the report might state the 
following:

The means and standard deviations are presented in Table 1. The analysis of 
variance indicates that there are significant differences among the four study 
strategies, F(3, 20) 5 6.45, p , .01, h2 5 0.492.

TAblE 1

Quiz scores for students using four different study strategies

Read Once Read and Reread
Answer Prepared 

Questions
Create and 

Answer Questions

M 5.00 6.00 8.00 9.00

SD 2.00 2.00 1.67 1.26

Note how the F-ratio is reported. In this example, degrees of freedom for between 
and within treatments are df 5 3, 20, respectively. These values are placed in parenthe-
ses immediately following the symbol F. Next, the calculated value for F is reported, 
followed by the probability of committing a Type I error (the alpha level) and the 
measure of effect size.

When an ANOVA is done using a computer program, the F-ratio is usually accompa-
nied by an exact value for p. The data from Example 12.1 were analyzed using the SPSS 
program (see Resources at the end of this chapter) and the computer output included a sig-
nificance level of p 5 .003. Using the exact p value from the computer output, the research 
report would conclude, “The analysis of variance revealed significant differences among 
the four viewing distances, F(3, 20) 5 6.45, p 5 .003, h2 5 0.492.”

Because ANOVA requires relatively complex calculations, students encountering this 
statistical technique for the first time often tend to be overwhelmed by the formulas 
and arithmetic and lose sight of the general purpose for the analysis. The following two 
examples are intended to minimize the role of the formulas and shift attention back to 
the conceptual goal of the ANOVA process.

The following data represent the outcome of an experiment using two separate samples 
to evaluate the mean difference between two treatment conditions. Take a minute to 
look at the data and, without doing any calculations, try to predict the outcome of an 

A concepTuAl View 
of AnoVA

E x A M P l E  1 2 . 2
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ANOVA for these values. Specifically, predict what values should be obtained for the 
between-treatments variance (MS) and the F-ratio. If you do not “see” the answer after 
20 or 30 seconds, try reading the hints that follow the data.

Treatment I Treatment II

4 2 N 5 8
0 1 G 5 16
1 0 oX2 5 56
3 5

T 5 8 T 5 8

SS 5 10 SS 5 14

If you are having trouble predicting the outcome of the ANOVA, read the following 
hints, and then go back and look at the data.

Hint 1:  Remember: SS
between

 and MS
between

 provide a measure of how much differ-
ence there is between treatment conditions.

Hint 2:  Find the mean or total (T) for each treatment, and determine how much 
difference there is between the two treatments.

You should realize by now that the data have been constructed so that there is zero 
difference between treatments. The two sample means (and totals) are identical, so 
SS

between
 5 0, MS

between
 5 0, and the F-ratio is zero.

Conceptually, the numerator of the F-ratio always measures how much difference 
exists between treatments. In Example 12.2, we constructed an extreme set of scores 
with zero difference. However, you should be able to look at any set of data and quickly 
compare the means (or totals) to determine whether there are big differences or small dif-
ferences between treatments. We should also note that the size of the differences between 
treatments also directly influences measures of effect size. The data in example 12.2 have 
SS

between
 5 0, which means that h2 5 0. As the difference between treatments increases, 

h2 also increases.
Being able to estimate the magnitude of between-treatment differences is a good 

first step in understanding ANOVA and should help you to predict the outcome of an 
ANOVA. However, the between-treatment differences are only one part of the analysis. 
You must also understand the within-treatment differences that form the denominator of 
the F-ratio. The following example is intended to demonstrate the concepts underlying 
SS

within
 and MS

within
. In addition, the example should give you a better understanding of 

how the between-treatment differences and the within-treatment differences act together 
within the ANOVA.

The purpose of this example is to present a visual image for the concepts of between-
treatments variability and within-treatments variability. In this example, we compare 
two hypothetical outcomes for the same experiment. In each case, the experiment 
uses two separate samples to evaluate the mean difference between two treatments. 
The following data represent the two outcomes, which we call experiment A and 
experiment B.

E x A M P l E  1 2 . 3
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Experiment A Experiment B

Treatment Treatment

I II I II

8 12 4 12
8 13 11 9
7 12 2 20
9 11 17 6
8 13 0 16
9 12 8 18
7 11 14 3

M 5 8 M 5 12 M 5 8 M 5 12

s 5 0.82 s 5 0.82 s 5 6.35 s 5 6.35

The data from experiment A are displayed in a frequency distribution graph in 
Figure 12.9(a). Notice that there is a 4-point difference between the treatment means 
(M

1
 5 8 and M

2
 5 12). This is the between-treatments difference that contributes to 

the numerator of the F-ratio. Also notice that the scores in each treatment are clustered 
closely around the mean, indicating that the variance inside each treatment is relatively 
small. This is the within-treatments variance that contributes to the denominator of the 
F-ratio. Finally, you should realize that it is easy to see the mean difference between the 

Between
treatments

Treatment 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Treatment 2

18 19 20

Fr
e

q
u

e
n

c
y

1

2

3

Between
treatments

Treatment 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Treatment 2

18 19 20

Fr
e

q
u

e
n

c
y

1

2

3

M1 � 8
SS1 � 4

M2 � 12
SS2 � 4

M2 � 12
SS2 � 242

M1 � 8
SS1 � 242

Experiment B

Experiment A

Figure 12.9

A visual representation of 
the between-treatments 
variability and the within-
treatments variability that 
form the numerator and 
denominator, respectively, 
of the F-ratio. In (a), the 
difference between treat-
ments is relatively large 
and easy to see. In (b), 
the same 4-point differ-
ence between treatments 
is relatively small and 
is overwhelmed by the 
within-treatments vari-
ability.

(a)

(b)
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two samples. The fact that there is a clear mean difference between the two treatments 
is confirmed by computing the F-ratio for experiment A.

F 5
between-treatments difference

within-treatmments differences
between

within

5 5
MS

MS

56

0 66. 77
83 965 .

An F-ratio of F 5 83.96 is sufficient to reject the null hypothesis, so we conclude 
that there is a significant difference between the two treatments.

Now consider the data from experiment B, which are shown in Figure 12.9(b) and 
present a very different picture. This experiment has the same 4-point difference be-
tween treatment means that we found in experiment A (M

1
 5 8 and M

2
 5 12). However, 

for these data, the scores in each treatment are scattered across the entire scale, indicat-
ing relatively large variance inside each treatment. In this case, the large variance within 
treatments overwhelms the relatively small mean difference between treatments. In the 
figure, it is almost impossible to see the mean difference between treatments. For these 
data, the F-ratio confirms that there is no clear mean difference between treatments.

F 5
between-treatments difference

within-treatmments differences
between

within

5 5
MS

MS

56

40 3. 33
1 395 .

For experiment B, the F-ratio is not large enough to reject the null hypothesis, so 
we conclude that there is no significant difference between the two treatments. Once 
again, the statistical conclusion is consistent with the appearance of the data in Figure 
12.9(b). Looking at the figure, we see that the scores from the two samples appear to 
be intermixed randomly with no clear distinction between treatments.

Sample variance also influences measures of effect size. The two samples in Figure 
12.9(a), with small variance, produce h2 5 56/64 5 0.875. When the variance is in-
creased in Figure 12.9(b), the measure of effect size is reduced to h2 5 

56

540
5 0.104.

As we have noted in previous chapters, high variability makes it difficult to see any 
patterns in the data. In Figure 12.9(a), the 4-point mean difference between treatments 
is easy to see because the sample variance is small. In Figure 12.9(b), the 4-point differ-
ence gets lost because the sample variance is large. In general, you can think of variance 
as measuring the amount of “noise” or “confusion” in the data. With large variance 
there is a lot of noise and confusion and it is difficult to see any clear patterns.

Although Examples 12.2 and 12.3 present somewhat simplified demonstrations with 
exaggerated data, the general point of the examples is to help you see what happens 
when you perform an ANOVA. Specifically:

 1. The numerator of the F-ratio (MS
between

) measures how much difference exists 
between the treatment means. Bigger mean differences produce larger F-ratios 
and larger measures of effect size.

 2. The denominator of the F-ratio (MS
within

) measures the variance of the scores 
inside each treatment; that is, the variance for each of the separate samples. In 
general, larger sample variance produces smaller F-ratios and smaller measures 
of effect size.

We should note that the number of scores in the samples also can influence the 
outcome of an ANOVA. As with most other hypothesis tests, if other factors are held 
constant, increasing the sample size tends to increase the likelihood of rejecting the 
null hypothesis. However, changes in sample size have little or no effect on measures 
of effect size such as h2.
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You may have recognized that the two research outcomes presented in Example 12.3 
are similar to those presented earlier in Example 10.5 in Chapter 10. Both examples are 
intended to demonstrate the role of variance in a hypothesis test. Both examples show 
that large values for sample variance can obscure any patterns in the data and reduce 
the potential for finding significant differences between means.

For the independent-measures t statistic in Chapter 10, the sample variance con-
tributed directly to the standard error in the bottom of the t formula. Now, the sample 
variance contributes directly to the value of MS

within
 in the bottom of the F-ratio. In the 

t-statistic and in the F-ratio, the variances from the separate samples are pooled together 
to create one average value for sample variance. For the independent-measures t statis-
tic, we pooled two samples together to compute

pooled variance 5 5
1

1
s

SS SS

df dfp
2 1 2

1 2

Now, in ANOVA, we are combining two or more samples to calculate

MS
SS

df

SS SS SS
within

within

within

5 5 5
1 1o

o
SS

df
1 2 33

1 2 3

1 

1 1 1 

. . .

. . .df df df

Notice that the concept of pooled variance is the same whether you have exactly 
two samples or more than two samples. In either case, you simply add the SS values 
and divide by the sum of the df values. The result is an average of all of the different 
sample variances.

When the samples are all the same size, MS
within

 is literally the average of the sample 
variances. In Example, 12.1, the four samples all have n 5 6 scores. The four SS values 
are 20, 20, 14, and 8, and each has df 5 5. Therefore, the four sample variances are 
20
5

 5 4.00, 20
5  5 4.00, 14

5
 5 2.80 and 

8
5 5 1.60. The average of the four variances is 

(4.0 1 4.0 1 2.8 11.6)/4 5 12.4/4 5 3.10, which is exactly the value we obtained for 
MS

within
. If the samples are not all the same size, MS

within
 is still the average of the sample 

variances, however, the average is computed so each sample variance is weighted by 
its sample size.

In the previous examples, all of the samples were exactly the same size (equal ns). 
However, the formulas for ANOVA can be used when the sample size varies within a re-
search study. You also should note, however, that the general ANOVA procedure is most 
accurate when used to examine data with equal sample sizes. Therefore, researchers 
generally try to plan research studies with equal ns. However, there are circumstances 
in which it is impossible or impractical to have an equal number of subjects in every 
treatment condition. In these situations, ANOVA still provides a valid test, especially 
when the samples are relatively large and when the discrepancy between sample sizes 
is not extreme.

The following example demonstrates an ANOVA with samples of different sizes.

A researcher is interested in the amount of homework required by different academic 
majors. Students are recruited from Biology, English, and Psychology to participate in 
the study. The researcher randomly selects one course that each student is currently tak-
ing and asks the student to record the amount of out-of-class work required each week 
for the course. The researcher used all of the volunteer participants, which resulted in 
unequal sample sizes. The data are summarized in Table 12.5.

MSwiTHin And pooled 
VAriAnce

An exAmple wiTH 
unequAl SAmple 

SizeS

E x A M P l E  1 2 . 4
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State the hypotheses, and select the alpha level.

H
0
: m

1
 5 m

2
 5 m

3

H
1
: At least one population is different.

a 5 .05

Locate the critical region.
To find the critical region, we first must determine the df values for the F-ratio:

df
total

 5 N – 1 5 20 2 1 5 19

df
between

 5 k 2 1 5 3 2 1 5 2

df
within

 5 N 2 k 5 20 2 3 5 17

The F-ratio for these data has df 5 2, 17. With a 5 .05, the critical value for the 
F-ratio is 3.59.

Compute the F-ratio.
First, compute the three SS values. As usual, SS

total
 is the SS for the total set of N 5 20 

scores, and SS
within

 combines the SS values from inside each of the treatment conditions.

SS
G

Ntotal 5 2  o X 2
2

 
SS

within
 5 oSS

inside each treatment

5 3377 2 3125 5 37 1 90 1 60

5 252  5 187

SS
between

 can be found by subtraction (Equation 12.5).

SS
between

 5 SS
total

 2 SS
within

5 252 2 187

5 65

Or, SS
between

 can be calculated using the computation formula (see Equation 12.7). If 
you use the computational formula, be careful to match each treatment total (T) with 
the appropriate sample size (n) as follows:

SS
T

n

G

Nbetween 5 2

5 1 1 2


2 2

2 2 2 236

4

130

10

84

6

250

220
324 1690 1176 3125

65

5 1 1 2 

5

     

S t e p  1 :

S t e p  2 :

S t e p  3 :

TAblE 12.5

Average hours of homework 
per week for one course for 
students in three academic 
majors.

Biology English Psychology

n 5 4 n 5 10 n 5 6 N 5 20

M 5 9 M 5 13 M 5 14 G 5 250

T 5 36 T 5 130 T 5 84 oX2 5 3377

SS 5 37 SS 5 90 SS 5 60
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Finally, compute the MS values and the F-ratio:

MS
SS

df

MS
SS

df

between

within

5 5 5

5 5 5

65

2
32 5

187

17

.

111

32 5

11
2 95F

MS

MS
 

.
.5 5 5between

within

Make a decision.
Because the obtained F-ratio is not in the critical region, we fail to reject the  

null hypothesis and conclude that there are no significant differences among  
the three populations of students in terms of the average amount of homework each 
week.

S t e p  4 :

 1. A researcher used ANOVA and computed F 5 4.25 for the following data.

Treatments

I II III

n 5 10 n 5 10 n 5 10

M 5 20 M 5 28 M 5 35

SS 5 1005 SS 5 1391 SS 5 1180

 a.  If the mean for treatment III were changed to M 5 25, what would happen to 
the size of the F-ratio (increase or decrease)?

 b.  If the SS for treatment I were changed to SS 5 1400, what would happen to the 
size of the F-ratio (increase or decrease)?

 c.  If the sample means and variances were held constant but each sample size were 
increased to n 5 20, then what would happen to the size of the F-ratio (increase 
or decrease)?

 2. A research study comparing three treatment conditions produces M 5 5 with n 5 4 for 
the first treatment, M 5 2 with n 5 5 for the second treatment, and M 5 5 with n 5 6 
for the third treatment. Calculate SS

between treatments
 for these data.

 1. a.  If the mean for treatment III were changed to M 5 25, it would reduce the size of the 
mean differences (the three means would be closer together). This would reduce the size 
of MS

between
 and would reduce the size of the F-ratio.

 b.  If the SS in treatment I were increased to SS 5 1400, it would increase the size of the 
variability within treatments. This would increase MS

within
 and would reduce the size of the 

F-ratio.

 c.  If other factors are held constant, increasing the size of the samples increases the F-ratio 
and increases the likelihood of rejecting the null hypothesis.

 2. The three sample totals are T
1
 5 20, T

2
 5 10, and T

3
 5 30, which produces G 5 60 and 

N 5 15. SS
between

 5 30.

l E A R n I n g  C H E C k

AnswERs
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PosT HoC TEsTs

As noted earlier, the primary advantage of ANOVA (compared to t tests) is that it allows 
researchers to test for significant mean differences when there are more than two treat-
ment conditions. ANOVA accomplishes this feat by comparing all of the individual mean 
differences simultaneously within a single test. Unfortunately, the process of combining 
several mean differences into a single test statistic creates some difficulty when it is time 
to interpret the outcome of the test. Specifically, when you obtain a significant F-ratio 
(reject H

0
), it simply indicates that somewhere among the entire set of mean differences 

there is at least one that is statistically significant. In other words, the overall F-ratio 
only tells you that a significant difference exists; it does not tell exactly which means are  
significantly different and which are not.

Consider, for example, a research study that uses three samples to compare three treat-
ment conditions. Suppose that the three sample means are M

1
 5 3, M

2
 5 5, and M

3
 5 10. 

In this hypothetical study, there are three mean differences:

 1. There is a 2-point difference between M
1
 and M

2
.

 2. There is a 5-point difference between M
2
 and M

3
.

 3. There is a 7-point difference between M
1
 and M

3
.

If an ANOVA were used to evaluate these data, a significant F-ratio would indi-
cate that at least one of the sample mean differences is large enough to satisfy the 
criterion of statistical significance. In this example, the 7-point difference is the 
biggest of the three and, therefore, it must indicate a significant difference between 
the first treatment and the third treatment (m

1
 ≠ m

3
). But what about the 5-point 

difference? Is it also large enough to be significant? And what about the 2-point 
difference between M

1
 and M

2
? Is it also significant? The purpose of post hoc tests 

is to answer these questions.

Post hoc tests (or posttests) are additional hypothesis tests that are done after  
an ANOVA to determine exactly which mean differences are significant and 
which are not.

As the name implies, post hoc tests are done after an ANOVA. More specifically, 
these tests are done after ANOVA when

 1. You reject H
0
 and

 2. There are three or more treatments (k ≥ 3).

Rejecting H
0
 indicates that at least one difference exists among the treatments.  

If there are only two treatments, then there is no question about which means are 
different and, therefore, no need for posttests. However, with three or more treat-
ments (k ≥ 3), the problem is to determine exactly which means are significantly 
different.

In general, a post hoc test enables you to go back through the data and compare the 
individual treatments two at a time. In statistical terms, this is called making pairwise 
comparisons. For example, with k 5 3, we would compare m

1
 versus m

2
, then m

2
 versus 

m
3
, and then m

1
 versus m

3
. In each case, we are looking for a significant mean difference. 

12.6

D e f i n i t i o n

poSTTeSTS And Type i 
errorS
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The process of conducting pairwise comparisons involves performing a series of sepa-
rate hypothesis tests, and each of these tests includes the risk of a Type I error. As you 
do more and more separate tests, the risk of a Type I error accumulates and is called the 
experimentwise alpha level (see p. 350).

Whenever you are conducting posttests, you must be concerned about the experi-
mentwise alpha level. Statisticians have worked with this problem and have developed 
several methods for trying to control Type I errors in the context of post hoc tests. We 
consider two alternatives.

The first post hoc test we consider is Tukey’s HSD test. We selected Tukey’s HSD 
test because it is a commonly used test in psychological research. Tukey’s test 
allows you to compute a single value that determines the minimum difference 
between treatment means that is necessary for significance. This value, called  
the honestly significant difference, or HSD, is then used to compare any two treat-
ment conditions. If the mean difference exceeds Tukey’s HSD, then you conclude 
that there is a significant difference between the treatments. Otherwise, you cannot 
conclude that the treatments are significantly different. The formula for Tukey’s 
HSD is

HSD q
MS

n
 5 within

 
(12.15)

where the value of q is found in Table B.5 (Appendix B, p. 580), MS
within

 is the 
within-treatments variance from the ANOVA, and n is the number of scores in each 
treatment. Tukey’s test requires that the sample size, n, be the same for all treat-
ments. To locate the appropriate value of q, you must know the number of treat-
ments in the overall experiment (k), the degrees of freedom for MS

within 
(the error 

term in the F-ratio), and you must select an alpha level (generally the same a used 
for the ANOVA).

To demonstrate the procedure for conducting post hoc tests with Tukey’s HSD, we use the 
hypothetical data shown in Table 12.6. The data represent the results of a study compar-
ing scores in three different treatment conditions. Note that the table displays summary 
statistics for each sample and the results from the overall ANOVA. With k 5 3 treatments, 
df

within
 5 24, and a 5 .05, you should find that the value of q for the test is q 5 3.53 (see 

Table B.5). Therefore, Tukey’s HSD is

HSD q
MS

n
  .

.
.5  5 5within 3 53

4 00

9
2 36

Tukey’S HoneSTly 
SignificAnT 

difference (HSd) TeST

E x A M P l E  1 2 . 5

The q value used in Tukey’s 
HSD test is called a 
Studentized range statistic.

TAblE 12.6

Hypothetical results from a 
research study comparing 
three treatment conditions. 
Summary statistics are pre-
sented for each treatment 
along with the outcome from 
the ANOVA.

Source SS df MS

Between 73.19 2 36.60
Within 96.00 24 4.00
Total 169.19 26

Overall F(2, 24) 5 9.15

Treatment 
A

Treatment 
B

Treatment 
C

n 5 9 n 5 9 n 5 9

T 5 27 T 5 49 T 5 63

M 5 3.00 M 5 5.44 M 5 7.00
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Thus, the mean difference between any two samples must be at least 2.36 to be sig-
nificant. Using this value, we can make the following conclusions:

 1. Treatment A is significantly different from treatment B (M
A
 2 M

B
 5 2.44).

 2. Treatment A is also significantly different from treatment C (M
A
 – M

C
 5 4.00).

3. Treatment B is not significantly different from treatment C (M
B
 – M

C
 5 1.56).

Because it uses an extremely cautious method for reducing the risk of a Type I error, 
the Scheffé test has the distinction of being one of the safest of all possible post hoc 
tests (smallest risk of a Type I error). The Scheffé test uses an F-ratio to evaluate the 
significance of the difference between any two treatment conditions. The numerator of 
the F-ratio is an MS

between
 that is calculated using only the two treatments you want to 

compare. The denominator is the same MS
within

 that was used for the overall ANOVA. 
The “safety factor” for the Scheffé test comes from the following two considerations:

 1. Although you are comparing only two treatments, the Scheffé test uses the 
value of k from the original experiment to compute df between treatments. 
Thus, df for the numerator of the F-ratio is k – 1.

 2. The critical value for the Scheffé F-ratio is the same as was used to evaluate 
the F-ratio from the overall ANOVA. Thus, Scheffé requires that every posttest 
satisfy the same criterion that was used for the complete ANOVA. The follow-
ing example uses the data from Table 12.6 to demonstrate the Scheffé posttest 
procedure.

Remember that the Scheffé procedure requires a separate SS
between

, MS
between

, and F-ratio 
for each comparison being made. Although Scheffé computes SS

between
 using the regular 

computational formula (Equation 12.7), you must remember that the numbers in the 
formula are entirely determined by the two treatment conditions being compared. We 
begin by comparing treatment A (with T 5 27 and n 5 9) and treatment B (with T 5 49 
and n 5 9). The first step is to compute SS

between
 for these two groups. In the formula for 

SS, notice that the grand total for the two groups is G 5 27 1 49 5 76, and the total 
number of scores for the two groups is N 5 9 1 9 5 18.

SS
T

n

G

Nbetween 5 2

5 1 2

5 1 


2 2

2 2 227

9

49

9

76

18
81 266  ..   .

.

78 320 89

26 89

2 

5

Although we are comparing only two groups, these two were selected from a study 
consisting of k 5 3 samples. The Scheffé test uses the overall study to determine 
the degrees of freedom between treatments. Therefore, df

between
 5 3 – 1 5 2, and the 

MS
between

 is

MS
SS

dfbetween
between

between

5 5 5
26 89

2
1

.
33 45.

THe ScHeffé TeST

E x A M P l E  1 2 . 6
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Finally, the Scheffé procedure uses the error term from the overall ANOVA to com-
pute the F-ratio. In this case, MS

within
 5 4.00 with df

within
 5 24. Thus, the Scheffé test 

produces an F-ratio of

F
MS

MSA Bversus
between

within

5 5 5
13 45

4 00
3 3

.

.
. 66

With df 5 2, 24 and a 5 .05, the critical value for F is 3.40 (see Table B.4). 
Therefore, our obtained F-ratio is not in the critical region, and we must conclude that 
these data show no significant difference between treatment A and treatment B.

The second comparison involves treatment B (T 5 49) and treatment C (T 5 63). This 
time the data produce SS

between
 5 10.89, MS

between
 5 5.45, and F(2, 24) 5 1.36 (check the 

calculations for yourself). Once again the critical value for F is 3.40, so we must conclude 
that the data show no significant difference between treatment B and treatment C.

The final comparison is treatment A (T 5 27) and treatment C (T 5 63). This time 
the data produce SS

between
 5 72, MS

between
 5 36, and F(2, 24) 5 9.00 (check the calcula-

tions for yourself). Once again the critical value for F is 3.40, and this time we conclude 
that the data show a significant difference.

Thus, the Scheffé posttest indicates that the only significant difference is between 
treatment A and treatment C.

There are two interesting points to be made from the posttest outcomes presented 
in the preceding two examples. First, the Scheffé test was introduced as being one 
of the safest of the posttest techniques because it provides the greatest protection 
from Type I errors. To provide this protection, the Scheffé test simply requires a 
larger difference between sample means before you may conclude that the differ-
ence is significant. For example, using Tukey’s test in Example 12.5, we found 
that the difference between treatment A and treatment B was large enough to be 
significant. However, this same difference failed to reach significance according to 
the Scheffé test (Example 12.6). The discrepancy between the results is an example 
of the Scheffé test’s extra demands: The Scheffé test simply requires more evidence 
and, therefore, it is less likely to lead to a Type I error.

The second point concerns the pattern of results from the three Scheffé tests in 
Example 12.6. You may have noticed that the posttests produce what are apparently 
contradictory results. Specifically, the tests show no significant difference between 
A and B and they show no significant difference between B and C. This combina-
tion of outcomes might lead you to suspect that there is no significant difference 
between A and C. However, the test did show a significant difference. The answer 
to this apparent contradiction lies in the criterion of statistical significance. The dif-
ferences between A and B and between B and C are too small to satisfy the criterion 
of significance. However, when these differences are combined, the total difference 
between A and C is large enough to meet the criterion for significance.

 1. With k 5 2 treatments, are post hoc tests necessary when the null hypothesis is 
rejected? Explain why or why not.

 2. Three treatments, each with a sample of n 5 8 participants, have treatment totals 
of T

1
 5 16, T

2
 5 32, and T

3
 5 40, and produce MS

within
 5 2.5.

 a. Use Tukey’s HSD test with a 5 .05 to evaluate the significance of the mean 
difference between treatments 1 and 2.

l E A R n I n g  C H E C k
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THE RElATIonsHIP bETwEEn AnoVA AnD t TEsTs

When you are evaluating the mean difference from an independent-measures study 
comparing only two treatments (two separate samples), you can use either an 
independent-measures t test (Chapter 10) or the ANOVA presented in this chapter. 
In practical terms, it makes no difference which you choose. These two statistical 
techniques always result in the same statistical decision. In fact, the two methods 
use many of the same calculations and are very closely related in several other 
respects. The basic relationship between t statistics and F-ratios can be stated in 
an equation:

F 5 t2

This relationship can be explained by first looking at the structure of the formulas 
for F and t. The t statistic compares distances: the distance between two sample means 
(numerator) and the distance computed for the standard error (denominator). The F-ratio, 
on the other hand, compares variances. You should recall that variance is a measure of 
squared distance. Hence, the relationship: F 5 t2.

There are several other points to consider in comparing the t statistic to the 
F-ratio.

 1. It should be obvious that you are testing the same hypotheses whether you 
choose a t test or an ANOVA. With only two treatments, the hypotheses for 
either test are

H
0
: m

1
 5 m

2

H
1
: m

1
 ≠ m

2

 2. The degrees of freedom for the t statistic and the df for the denominator 
of the F-ratio (df

within
) are identical. For example, if you have two samples, 

each with six scores, the independent-measures t statistic has df 5 10,  
and the F-ratio has df 5 1, 10. In each case, you are adding the df  
from the first sample (n 2 1) and the df from the second sample  
(n 2 1).

 3. The distribution of t and the distribution of F-ratios match perfectly if you take 
into consideration the relationship F 5 t2. Consider the t distribution with df 5 18 

12.7

 b. Use the Scheffé test with a 5 .05 to evaluate the significance of the mean  
difference between treatments 1 and 2.

 1. No. Post hoc tests are used to determine which treatments are different. With only two treat-
ment conditions, there is no uncertainty as to which two treatments are different.

 2. a.  For this test, q 5 3.53 and HSD 5 1.97. There is a 2-point mean difference between 
treatments 1 and 2, which is large enough to be significant.

 b.  For these two treatments, Scheffé produces SS
between

 5 16, MS
between

 5 8, and F 5 3.2. With 
df 5 2, 21 the critical value is 3.47. Conclude that the mean difference between treatments 
1 and 2 is not significant.

AnswERs
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and the corresponding F distribution with df 5 1, 18 that are presented in Figure 
12.10. Notice the following relationships:

a. If each of the t values is squared, then all of the negative values become posi-
tive. As a result, the whole left-hand side of the t distribution (below zero) 
is flipped over to the positive side. This creates an asymmetrical, positively 
skewed distribution—that is, the F distribution.

 b. For a 5 .05, the critical region for t is determined by values greater than 
12.101 or less than 22.101. When these boundaries are squared, you get 
±2.1012 5 4.41.

Notice that 4.41 is the critical value for a 5 .05 in the F distribution. Any value that 
is in the critical region for t ends up in the critical region for F-ratios after it is squared.

The independent-measures ANOVA requires the same three assumptions that were 
necessary for the independent-measures t hypothesis test:

 1. The observations within each sample must be independent (see p. 220).

 2. The populations from which the samples are selected must be normal.

 3. The populations from which the samples are selected must have equal variances 
(homogeneity of variance).

Ordinarily, researchers are not overly concerned with the assumption of normality, 
especially when large samples are used, unless there are strong reasons to suspect that 
the assumption has not been satisfied. The assumption of homogeneity of variance is 
an important one. If a researcher suspects that it has been violated, it can be tested by 
Hartley’s F-max test for homogeneity of variance (Chapter 10, p. 300).

ASSumpTionS for 
THe independenT-
meASureS AnoVA

Figure 12.10

The distribution of t  
statistics with df 5 18  
and the corresponding 
distribution of F-ratios 
with df 5 1, 18. Notice 
that the critical values for 
a 5 .05 are t 5 ±2.101 
and F 5 2.1012 5 4.41.

0 1 2 3 4 5

4.41
(2.1012)

95 %

95 %

–2.101 0 2.101
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 1. Analysis of variance (ANOVA) is a statistical tech-
nique that is used to test the significance of mean dif-
ferences among two or more treatment conditions. The 
null hypothesis for this test states that, in the general 
population, there are no mean differences among the 
treatments. The alternative states that at least one mean 
is different from another.

 2. The test statistic for ANOVA is a ratio of two vari-
ances called an F-ratio. The variances in the F-ratio 
are called mean squares, or MS values. Each MS is 
computed by

MS
SS

df
5

 3. For the independent-measures ANOVA, the F-ratio is

F
MS

MS
5 between

within

  The MS
between

 measures differences between the treat-
ments by computing the variance for the treatment 
means or totals. These differences are assumed to be 
produced by

 a. Treatment effects (if they exist)

 b. Random, unsystematic differences (chance)

  The MS
within

 measures variance inside each of the 
treatment conditions. Because individuals inside a 
treatment condition are all treated exactly the same, 
any differences within treatments cannot be caused 
by treatment effects. Thus, the within-treatments 
MS is produced only by random, unsystematic dif-
ferences. With these factors in mind, the F-ratio has 
the following structure:

 1. A researcher uses an independent-measures t test to evaluate the mean difference 
obtained in a research study, and obtains a t statistic of t 5 3.00. If the researcher 
used an ANOVA to evaluate the results, then what F-ratio would be obtained?

 2. An ANOVA produces an F-ratio with df 5 1, 34. Could the data have been analyzed 
with a t test? What would be the degrees of freedom for the t statistic?

 1. F 5 9 because F 5 t2

 2. If the F-ratio has df 5 1, 34, then the experiment compared only two treatments, and you 
could use a t statistic to evaluate the data. The t statistic would have df 5 34.

l E A R n I n g  C H E C k

AnswERs

Summary

F 5
1treatment effect random, unsystematic diffferences

random, unsystematic differences

  When there is no treatment effect (H
0
 is true), the 

numerator and the denominator of the F-ratio are 
measuring the same variance, and the obtained ratio 
should be near 1.00. If there is a significant treatment 
effect, then the numerator of the ratio should be larger 
than the denominator, and the obtained F value should 
be much greater than 1.00.

 4. The formulas for computing each SS, df, and MS value 
are presented in Figure 12.11, which also shows the 
general structure for the ANOVA.

 5. The F-ratio has two values for degrees of freedom, one 
associated with the MS in the numerator and one asso-
ciated with the MS in the denominator. These df values 
are used to find the critical value for the F-ratio in the 
F distribution table.

 6. Effect size for the independent-measures ANOVA  
is measured by computing eta squared, the  
percentage of variance accounted for by the  
treatment effect.

h2 5
1

5
SS

SS SS

SS

S
between

between within

between

SStotal

 7. When the decision from an ANOVA is to reject  
the null hypothesis and when the experiment  
contains more than two treatment conditions, it is 
necessary to continue the analysis with a post hoc 
test, such as Tukey’s HSD test or the Scheffé test. 
The purpose of these tests is to determine exactly 
which treatments are significantly different and 
which are not.
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Within treatments

SS = ΣSSeach treatment

Between treatments
SS = n(SS for the means)

          or SS =

                 df = k � 1

    MS = 

Total

df = N � 1  
N

 G2

SS = Σ X 2  �

 Σ 
G2

N

T 2

n
�

SS
df

                 df = N � k

    MS = 
SS
df

MS between treatments

MS within treatments
F-ratio = 

Figure 12.11

Formulas for ANOVA.
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General instructions for using SPSS are presented in Appendix D. Following are 
detailed instructions for using SPSS to perform The Single-Factor, Independent-
Measures Analysis of Variance (ANOVA) presented in this chapter.

Data Entry

 1. The scores are entered in a stacked format in the data editor, which means that 
all of the scores from all of the different treatments are entered in a single col-
umn (VAR00001). Enter the scores for treatment #2 directly beneath the scores 
from treatment #1 with no gaps or extra spaces. Continue in the same column 
with the scores from treatment #3, and so on.

 2. In the second column (VAR00002), enter a number to identify the treatment 
condition for each score. For example, enter a 1 beside each score from  
the first treatment, enter a 2 beside each score from the second treatment,  
and so on.

Data Analysis

 1. Click Analyze on the tool bar, select Compare Means, and click on One-Way 
ANOVA.

 2. Highlight the column label for the set of scores (VAR0001) in the left box and 
click the arrow to move it into the Dependent List box.

 3. Highlight the label for the column containing the treatment numbers 
(VAR0002) in the left box and click the arrow to move it into the  
Factor box.

 4. If you want descriptive statistics for each treatment, click on the Options box, 
select Descriptives, and click Continue.

 5. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the studying strategy experiment 
in Example 12.1, and the program output is shown in Figure 12.12. The output begins 
with a table showing descriptive statistics (number of scores, mean, standard deviation, 
standard error for the mean, a 95% confidence interval for the mean, maximum, and 
minimum scores) for each sample. The second part of the output presents a summary 
table showing the results from the ANOVA.

focuS on proBlem SolVing

 1. It can be helpful to compute all three SS values separately, and then check 
to verify that the two components (between and within) add up to the total. 
However, you can greatly simplify the calculations if you simply find SS

total
 and 

SS
within

, then obtain SS
between

 by subtraction.
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 2. Remember that an F-ratio has two separate values for df: a value for the numer-
ator and one for the denominator. Properly reported, the df

between
 value is stated 

first. You will need both df values when consulting the F distribution table for 
the critical F value.

 3. When you encounter an F-ratio and its df values reported in the literature, you 
should be able to reconstruct much of the original experiment. For example, if you 
see “F(2, 36) 5 4.80,” you should realize that the experiment compared k 5 3 
treatment groups (because df

between
 5 k 2 1 5 2), with a total of N 5 39 subjects 

participating in the experiment (because df
within

 5 N 2 k 5 36).

demonSTrATion 12.1

AnAlySiS of VAriAnce

A human-factors psychologist studied three computer keyboard designs. Three 
samples of individuals were given material to type on a particular keyboard, and 

VAR00001

Descriptives

1.00

2.00

3.00

4.00

Total

Between Groups

Within Groups

Total

60.000

62.000

122.000

3

20

23

20.000

3.100

6.452 .003

6

6

6

6

24

5.0000

6.0000

8.0000

9.0000

7.0000

2.00000

2.00000

1.67332

1.26491

2.30312

.81650

.81650

.68313

.51640

.47012

2.9011

3.9011

6.2440

7.6726

6.0275

7.0989

8.0989

9.7560

10.3274

7.9725

3.00

3.00

5.00

7.00

3.00

8.00

8.00

10.00

10.00

10.00

N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum

95% Confidence Interval
for Mean

VAR00001

ANOVA

df
Sum of
Squares Mean Square F Sig.

Figure 12.12

SPSS output of the ANOVA for the studying strategy experiment in Example 12.1.
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the number of errors committed by each participant was recorded. The data are as 
follows:

Keyboard A Keyboard B Keyboard C

0 6 6 N 5 15
4 8 5 G 5 60
0 5 9 oX2 5 356
1 4 4
0 2 6

T 5 5 T 5 25 T 5 30

SS 5 12 SS 5 20 SS 5 14

Are these data sufficient to conclude that there are significant differences in typing 
performance among the three keyboard designs?

State the hypotheses, and specify the alpha level. The null hypothesis states that there 
are no differences among the keyboards in terms of number of errors committed. In 
symbols, we would state

H
0
: m

1
 5 m

2
 5 m

3 
(Type of keyboard used has no effect.)

As noted previously in this chapter, there are a number of possible statements for the 
alternative hypothesis. Here we state the general alternative hypothesis:

H
1
: At least one of the treatment means is different.

We set alpha at a 5 .05.

Locate the critical region. To locate the critical region, we must obtain the values for 
df

between
 and df

within
.

df
between

 5 k – 1 5 3 – 1 5 2
df

within
 5 N – k 5 15 – 3 5 12

The F-ratio for this problem has df 5 2, 12, and the critical F value for a 5 .05 is 
F 5 3.88.

Perform the analysis. The analysis involves the following steps:

 1. Perform the analysis of SS.

 2. Perform the analysis of df.

 3. Calculate mean squares.

 4. Calculate the F-ratio.

Perform the analysis of SS. We compute SS
total

 followed by its two components.

SS X
G

Ntotal  5 2 5 2 5 2 2
2 2

356
60

15
356

36
   

000

15
356 240 116  5 2 5   

S t e p  1

S t e p  2

S t e p  3

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



386     CHAPTER 12 InTRoDuCTIon To AnAlysIs of VARIAnCE

SS SSwithin inside each treatment5 

  5 1 1 

  5 

12 20 14

46

   

By subtraction, SS
between

 5 SS
total

 2 SS
within

 5 116 2 46 5 70

Analyze degrees of freedom. We compute df
total

. Its components, df
between

 and df
within

, 
were previously calculated (see step 2).

df
total

 5 N 2 1 5 15 2 1 5 14
df

between
 5 2

df
within

 5 12

Calculate the MS values. We determine the values for MS
between

 and MS
within

.

MS
SS

df

MS

between
between

between

within

5 5 5
70

2
35

55 5 5
SS

df
within

within

46

12
3 83.

Compute the F-ratio. Finally, we can compute F.

F
MS

MS
5 5 5between

within

35

3 83
9 14

.
.

Make a decision about H
0
, and state a conclusion. The obtained F of 9.14 exceeds the 

critical value of 3.88. Therefore, we can reject the null hypothesis. The type of keyboard 
used has a significant effect on the number of errors committed, F(2, 12) 5 9.14, p , .05. 
The following table summarizes the results of the analysis:

Source SS df MS

Between treatments 70 2 35 F 5 9.14
Within treatments 46 12 3.83

Total 116 14

demonSTrATion 12.2

compuTing effecT Size for AnoVA

We compute eta squared (h2), the percentage of variance explained, for the data that 
were analyzed in Demonstration 12.1. The data produced a between-treatments SS of 
70 and a total SS of 116. Thus,

h2 70

116
0 60 605 5 5

SS

SS
between

total

(or ). %

S t e p  4
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proBlemS

 1. Explain why the F-ratio is expected to be near 1.00 
when the null hypothesis is true.

 2. Several factors influence the size of the F-ratio. For 
each of the following, indicate whether it influences 
the numerator or the denominator of the F-ratio, and 
indicate whether the size of the F-ratio would increase 
or decrease. In each case, assume that all other factors 
are held constant.

 a. An increase in the differences between the sample 
means.

 b. An increase in the size of the sample variances.

 3. Why should you use ANOVA instead of several t 
tests to evaluate mean differences when an experi-
ment consists of three or more treatment conditions?

 4. Posttests are done after an ANOVA.
 a. What is the purpose of posttests?
 b. Explain why you do not need posttests if the 

analysis is comparing only two treatments.
 c. Explain why you do not need posttests if the  

decision from the ANOVA is to fail to reject the 
null hypothesis.

 5. An independent-measures study comparing four 
treatment conditions with a sample of n 5 8 in each 
condition produces sample means of M

1
 5 2, M

2
 5 3, 

M
3
 5 1, and M

1
 5 6.

 a. Compute SS for the set of 4 treatment means. (Treat 
the means as a set of n 5 4 scores and compute SS.)

 b. Using the result from part a, compute n(SS
means

). Note 
that this value is equal to SS

between
 (see Equation 12.6).

 c. Now, find the 4 treatment totals and compute 
SS

between
 with the computational formula using the 

T values (see Equation 12.7). You should obtain 
the same result as in part b.

 6. The following data summarize the results from  
an independent-measures study comparing three 
treatment conditions.

Treatment

I II III

3 5 6 N 5 12
5 5 10 G 5 60
3 1 10 oX2 5 392
1 5 6

M 5 3 M 5 4 M 5 8

T 5 12 T 5 16 T 5 32

SS 5 8 SS 5 12 SS 5 16

 a. Use an ANOVA with a 5 .05 to determine 
whether there are any significant differences 
among the three treatment means.

 b. Calculate h2 to measure the effect size for this study.
 c. Write a sentence demonstrating how a research 

report would present the results of the hypothesis 
test and the measure of effect size.

 7. For the preceding problem you should find that there 
are significant differences among the three treatments. 
The primary reason for the significance is that the mean 
for treatment III is substantially larger than the means 
for the other two treatments. To create the following 
data, we started with the values from problem 6 and 
subtracted 3 points to each score in treatment III. Notice 
that subtracting a constant causes the mean to change 
but has no influence on the variability of the sample. 
In the resulting data, the mean differences are much 
smaller than those in problem 6.

Treatment

I II III

3 5 3 N 5 12
5 5 7 G 5 48
3 1 7 oX2 5 236
1 5 3

M 5 3 M 5 4 M 5 5

T 5 12 T 5 16 T 5 20

SS 5 8 SS 5 12 SS 5 16

 a. Before you begin any calculations, predict how 
the change in the data should influence the out-
come of the analysis. That is, how will the F-ratio 
and the value of h2 for these data compare with 
the values obtained in problem 6?

 b. Use an ANOVA with a 5 .05 to determine 
whether there are any significant differences 
among the three treatment means. (Does your 
answer agree with your prediction in part a?)

 c. Calculate h2 to measure the effect size for  
this study. (Does your answer agree with your 
prediction in part a?)

 8. The following data summarize the results from  
an independent-measures study comparing three 
treatment conditions.

Treatment

I II III

4 3 8 N 5 12
3 1 4 G 5 48
5 3 6 oX2 5 238
4 1 6

M 5 4 M 5 2 M 5 6

T 5 16 T 5 8 T 5 24

SS 5 2 SS 5 4 SS 5 8
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 a. Calculate the sample variance for each of the 
three samples.

 b. Use an ANOVA with a 5 .05 to determine 
whether there are any significant differences 
among the three treatment means.

 9. For the preceding problem you should find that there 
are significant differences among the three treat-
ments. One reason for the significance is that the 
sample variances are relatively small. To create the 
following data, we kept the same sample means that 
appeared in problem 8 but increased the SS values 
within each sample. 

Treatment

I II III

4 4 9 N 5 12
2 0 3 G 5 48
6 3 6 oX2 5 260
4 1 6

M 5 4 M 5 2 M 5 6

T 5 16 T 5 8 T 5 24

SS 5 8 SS 5 10 SS 5 18

 a. Calculate the sample variance for each of the 
three samples. Describe how these sample vari-
ances compare with those from problem 8.

 b. Predict how the increase in sample variance 
should influence the outcome of the analysis. That 
is, how will the F-ratio for these data compare 
with the value obtained in problem 8?

 c. Use an ANOVA with a 5 .05 to determine 
whether there are any significant differences 
among the three treatment means. (Does your 
answer agree with your prediction in part b?)

 10. The following data summarize the results from an 
independent-measures study comparing three treat-
ment conditions.

M 5 2 M 5 3 M 5 4
n 5 10 n 5 10 n 5 10
T 5 20 T 5 30 T 5 40

s2 5 2.67 s2 5 2.00 s2 5 1.33

 a. Use an ANOVA with a 5 .05 to determine 
whether there are any significant differences 
among the three treatment means. Note: Because 
the samples are all the same size, MS

within
 is the 

average of the three sample variances.
 b. Calculate h2 to measure the effect size for this study.

 11. To create the following data we started with the 
same sample means and variances that appeared in 
problem 10 but increased the sample size to n 5 25.

M 5 2 M 5 3 M 5 4
n 5 25 n 5 25 n 5 25
T 5 50 T 5 75 T 5 100

s2 5 2.67 s2 5 2.00 s2 5 1.33

 a. Predict how the increase in sample size should 
affect the F-ratio for these data compared to the 
F-ratio in problem 10. Use an ANOVA to check 
your prediction. Note: Because the samples are all 
the same size, MS

within
 is the average of the three 

sample variances.
 b. Predict how the increase in sample size should 

affect the value of h2 for these data compared to 
the h2 in problem 10. Calculate h2 to check your 
prediction.

 12. The following values are from an independent-measures 
study comparing three treatment conditions.

Treatment

I II III

n 5 10 n 5 10 n 5 10

SS 5 63 SS 5 66 SS 5 87

 a. Compute the variance for each sample.
 b. Compute MS

within
, which would be the denomina-

tor of the F-ratio for an ANOVA. Because the 
samples are all the same size, you should find that 
MS

within
 is equal to the average of the three sample 

variances.

 13. There is some evidence that high school students 
justify cheating in class on the basis of poor teacher 
skills or low levels of teacher caring (Murdock, Miller, 
& Kohlhardt, 2004). Students appear to rationalize 
their illicit behavior based on perceptions of how their 
teachers view cheating. Poor teachers are thought not 
to know or care whether students cheat, so cheating in 
their classes is okay. Good teachers, on the other hand, 
do care and are alert to cheating, so students tend not 
to cheat in their classes. Following are hypothetical 
data similar to the actual research results. The scores 
represent judgments of the acceptability of cheating for 
the students in each sample.

Poor 
Teacher

Average 
Teacher

Good 
Teacher

n 5 6 n 5 8 n 5 10 N 5 24

M 5 6 M 5 2 M 5 2 G 5 72

SS 5 30 SS 5 33 SS 5 42 oX2 5 393

 a. Use an ANOVA with a 5 .05 to determine whether 
there are significant differences in student judg-
ments depending on how they see their teachers.
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 b. Calculate h2 to measure the effect size for this 
study.

 c. Write a sentence demonstrating how a research 
report would present the results of the hypothesis 
test and the measure of effect size.

 14. A researcher reports an F-ratio with df 5 2, 27 from 
an independent-measures research study.

 a. How many treatment conditions were compared 
in the study?

 b. What was the total number of participants in the 
study?

 15. A research report from an independent-measures 
study states that there are significant differences 
between treatments, F(3, 48) 5 2.95, p , .05.

 a. How many treatment conditions were compared 
in the study?

 b. What was the total number of participants in the 
study?

 16. The following summary table presents the results 
from an ANOVA comparing three treatment condi-
tions with n 5 8 participants in each condition. 
Complete all missing values. (Hint: Start with the df 
column.)

Source SS df MS

Between treatments _____ _____ 15 F 5 _____
Within treatments _____ _____ _____

Total 93 ____

 17. A pharmaceutical company has developed a drug 
that is expected to reduce hunger. To test the drug, 
two samples of rats are selected with n 5 20 in 
each sample. The rats in the first sample receive 
the drug every day and those in the second sample 
are given a placebo. The dependent variable is the 
amount of food eaten by each rat over a 1-month 
period. An ANOVA is used to evaluate the differ-
ence between the two sample means and the results 
are reported in the following summary table. Fill in 
all missing values in the table. (Hint: Start with the 
df column.)

Source SS df MS

Between treatments ____ ____ 20 F 5 4.00
Within treatments ____ ____ ____

Total ____ ____

 18. A developmental psychologist is examining the 
development of language skills from age 2 to age 4. 
Three different groups of children are obtained, one 
for each age, with n 5 16 children in each group. 

Each child is given a language-skills assessment test. 
The resulting data were analyzed with an ANOVA to 
test for mean differences between age groups. The 
results of the ANOVA are presented in the following 
table. Fill in all missing values.

Source SS df MS

Between treatments 20 ____ ____ F 5 ____
Within treatments ____ ____ ____

Total 200 ____

 19. The following data were obtained from an independent-
measures research study comparing three treatment 
conditions. Use an ANOVA with a 5 .05 to determine 
whether there are any significant mean differences 
among the treatments.

Treatment

I II III

n 5 8 n 5 6 n 5 4 N 5 18

T 5 16 T 5 24 T 5 32 G 5 72

SS 5 40 SS 5 24 SS 5 16 oX2 5 464

 20. The following values summarize the results from an 
independent-measures study comparing two treat-
ment conditions.

 a. Use an independent-measures t test with a 5 .05 
to determine whether there is a significant mean 
difference between the two treatments. You should 
find that F 5 t2.

 b. Use an ANOVA with a 5 .05 to determine 
whether there is a significant mean difference 
between the two treatments.

Treatment

I II

n 5 8 n 5 4

M 5 4 M 5 10 N 5 12

T 5 32 T 5 40 G 5 72

SS 5 45 SS 5 15 oX2 5 588

 21. The following data are from an independent-measures 
study comparing two treatment conditions.

 a. Use an independent-measures t test with a 5 .05 
to determine whether there is a significant mean 
difference between the two treatments.

 b. Use an ANOVA with a 5 .05 to determine 
whether there is a significant mean difference 
between the two treatments. You should find  
that F 5 t2.
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Treatment

I II

8 2 N 5 10

7 3 G 5 50

6 3 oX2 5 306

5 5
9 2

M 5 7 M 5 3

T 5 35 T 5 15

SS 5 10 SS 5 6

 22. One possible explanation for why some birds mi-
grate and others maintain year round residency 
in a single location is intelligence. Specifically, 
birds with small brains, relative to their body size, 
are simply not smart enough to find food during 
the winter and must migrate to warmer climates 
where food is easily available (Sol, Lefebvre, 
& Rodriguez-Teijeiro, 2005). Birds with bigger 
brains, on the other hand, are more creative and 
can find food even when the weather turns harsh. 
Following are hypothetical data similar to the 
actual research results. The numbers represent 
relative brain size for the individual birds in each 
sample.

Non-
Migrating

Short-
Distance 
Migrants

Long 
Distance 
Migrants

18 6 4 N 5 18
13 11 9 G 5 180
19 7 5 oX2 5 2150
12 9 6
16 8 5
12 13 7

M 5 15 M 5 9 M 5 6

T 5 90 T 5 54 T 5 36

SS 5 48 SS 5 34 SS 5 16

 a. Use an ANOVA with a 5 .05 to determine 
whether there are any significant mean differences 
among the three groups of birds.

 b. Compute h2, the percentage of variance explained 
by the group differences, for these data.

 c. Write a sentence demonstrating how a research 
report would present the results of the hypothesis 
test and the measure of effect size.

 d. Use the Tukey HSD posttest to determine which 
groups are significantly different.

 23. There is some research indicating that college 
students who use Facebook while studying tend 
to have lower grades than non-users (Kirschner & 
Karpinski, 2010). A representative study surveys 
students to determine the amount of Facebook use 
during the time they are studying or doing home-
work. Based on the amount of time spent  
on Facebook, students are classified into three 
groups and their grade point averages are recorded. 
The following data show the typical pattern of 
results.

Facebook Use While Studying

Non-User Rarely Use Regularly Use

3.70 3.51 3.02
3.45 3.42 2.84
2.98 3.81 3.42
3.94 3.15 3.10
3.82 3.64 2.74
3.68 3.20 3.22
3.90 2.95 2.58
4.00 3.55 3.07
3.75 3.92 3.31
3.88 3.45 2.80

 a. Use an ANOVA with a 5 .05 to determine 
whether there are significant mean differences 
among the three groups.

 b. Compute h2 to measure the size of the effect.
 c. Write a sentence demonstrating how the result 

from the hypothesis test and the measure of effect 
size would appear in a research report.

 24 New research suggests that watching television, 
especially medical shows such as Grey’s Anatomy 
and House, can result in increased concern about 
personal health (Ye, 2010). Surveys administered to 
college students measure television viewing habits 
and health concerns such as fear of developing the 
diseases and disorders seen on television. For the 
following data, students are classified into three 
categories based on their television viewing patterns 
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and health concerns are measured on a 10-point scale 
with 0 indicating “none.”

Television Viewing

Little or None Moderate Substantial

4 5 5
2 7 7
5 3 6
1 4 6
3 8 8
7 6 9
4 2 6
4 7 4
8 3 6
2 5 8

 a. Use an ANOVA with a 5 .05 to determine 
whether there are significant mean differences 
among the three groups.

 b. Compute h2 to measure the size of the effect.
 c. Use Tukey’s HSD test with a 5 .05 to determine 

which groups are significantly different.
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Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.

Repeated-
Measures and 
Two-Factor 
Analysis of 
Variance
13.1    Overview

13.2    Repeated-Measures ANOVA

13.3     Two-Factor ANOVA (Independent 
Measures)

Summary

Focus on Problem Solving

Demonstrations 13.1 and 13.2

Problems

C h a p t e r 

13
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 Independent-measures	analysis	of	
variance (Chapter 12)

•	 Repeated-measures	designs	 
(Chapter 11)

•	 Individual	differences
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oVERViEw

In the preceding chapter, we introduced ANOVA as a hypothesis-testing procedure 
for evaluating differences among two or more sample means. The specific advantage 
of ANOVA, especially in contrast to t tests, is that ANOVA can be used to evaluate 
the significance of mean differences in situations in which there are more than two 
sample means being compared. However, the presentation of ANOVA in Chapter 12 
was limited to single-factor, independent-measures research designs. Recall that single 
factor indicates that the research study involves only one independent variable (or only 
one quasi-independent variable), and the term independent-measures indicates that the 
study uses a separate sample for each of the different treatment conditions being com-
pared. In fact, ANOVA is an extremely flexible technique, with applications far beyond 
this single research design. In this chapter, we begin to explore some more sophisticated 
research situations in which ANOVA is used. Specifically, we introduce the following 
ANOVA topics:

 1. Repeated-Measures ANOVA. It is possible to compare several different treat-
ment conditions using a repeated-measures research design in which the same 
group of individuals participates in every treatment. We demonstrate how the 
ANOVA procedure can be adapted to test for mean differences from a repeated-
measures study.

 2. Two-Factor ANOVA. Often, research questions are concerned with how  
behavior is influenced by several different variables acting simultaneously.  
For example, a researcher may want to examine how weight loss is related to 
different combinations of diet and exercise. In this situation, two variables are 
manipulated (diet and exercise) while a third variable is observed (weight loss). 
In statistical terminology, the research study has two independent variables, 
or two factors. In the final section of this chapter, we show how the general 
ANOVA procedure from Chapter 12 can be used to test for mean differences  
in a two-factor research study.

REPEATEd-MEAsuREs AnoVA

Chapter 12 introduced the general logic underlying ANOVA and presented the equa-
tions used for analyzing data from a single-factor, independent-measures research 
study. As we noted, the defining characteristic of an independent-measures research 
design is that the study uses a separate sample for each of the different treatment 
conditions. One concern with an independent-measures design is that the partici-
pants in one treatment condition may have characteristics that are noticeably differ-
ent from participants in another condition. For example, the individuals in treatment 
1 may be smarter than the individuals in treatment 2. In this case, it is impossible 
to explain any differences that are found between the two treatments. For example: 
(1) It could be that treatment 1 causes people to have higher scores, or (2) It could 
be that smarter people have higher scores. To avoid this problem, researchers often 
chose to use a repeated-measures design. You should recall (Chapter 11) that a 
repeated-measures design uses the same group of participants in all of the treatment 
conditions. In a repeated-measures study, it is impossible for the participants in one 
group to be different from those in another, because exactly the same group is in 
every treatment condition.

13.1

13.2

An independent variable 
is a manipulated variable 
in an experiment. A quasi-
independent variable is not 
manipulated but defines the 
groups of scores in a nonex-
perimental design.
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In this section we extend the ANOVA procedure to single-factor, repeated-measures de-
signs. The analysis is used to evaluate mean differences in two general research situations:

 1. An experimental study, in which the researcher manipulates an independent 
variable to create two or more treatment conditions, with the same group of 
individuals tested in all of the conditions.

 2. A nonexperimental study, in which the same group of individuals is simply 
observed at two or more different times.

Examples of these two research situations are presented in Table 13.1. Table 13.1(a) 
shows data from a study in which the researcher changes the type of distraction to 
create three treatment conditions. One group of participants is then tested in all three 
conditions. In this study, the factor being examined is the type of distraction.

Table 13.1(b) shows a study in which a researcher observes depression scores for the 
same group of individuals at three different times. In this study, the time of measure-
ment is the factor being examined. Another common example of this type of design 
is found in developmental psychology when the participants’ age is the factor being 
studied. For example, a researcher could study the development of vocabulary skill by 
measuring vocabulary for a sample of 3-year-old children, then measuring the same 
children again at ages 4 and 5.

The hypotheses for the repeated-measures ANOVA are exactly the same as those for 
the independent-measures ANOVA presented in Chapter 12. Specifically, the null  
hypothesis states that, for the general population, there are no mean differences among 
the treatment conditions being compared. In symbols,

H
0
: m

1
 5 m

2
 5 m

3
 5 …

HypotHeses for  
tHe repeated-

Measures aNoVa

(a) Data from an experimental study evaluating the effects of different types of 
distraction on the performance of a visual detection task.

Visual Detection Scores

Participant No Distraction Visual Distraction
Auditory 

Distraction

A 47 22 41
B 57 31 52
C 38 18 40
D 45 32 43

(b) Data from a nonexperimental design evaluating the effectiveness of a clinical 
therapy for treating depression.

Depression Scores

Participant Before Therapy After Therapy
6-Month 

Follow-Up

A 71 53 55
B 62 45 44
C 82 56 61
D 77 50 46
E 81 54 55

TAblE 13.1

Two sets of data representing 
typical examples of single-
factor, repeated-measures 
research designs.
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The null hypothesis states that, on average, all of the treatments have exactly the 
same effect. According to the null hypothesis, any differences that may exist among the 
sample means are not caused by systematic treatment effects but rather are the result of 
random and unsystematic factors.

The alternative hypothesis states that there are mean differences among the treat-
ment conditions. Rather than specifying exactly which treatments are different, we use 
a generic version of H

1
, which simply states that differences exist:

H
1
: At least one treatment mean (m) is different from another.

Notice that the alternative says that, on average, the treatments do have different ef-
fects. Thus, the treatment conditions may be responsible for causing mean differences 
among the samples. As always, the goal of the ANOVA is to use the sample data to 
determine which of the two hypotheses is more likely to be correct.

The F-ratio for the repeated-measures ANOVA has the same structure that was used 
for the independent-measures ANOVA in Chapter 12. In each case, the F-ratio com-
pares the actual mean differences between treatments with the amount of difference 
that would be expected if there were no treatment effect. The numerator of the F-ratio 
measures the actual mean differences between treatments. The denominator measures 
how big the differences should be if there is no treatment effect. As always, the F-ratio 
uses variance to measure the size of the differences. Thus, the F-ratio for both ANOVAs 
has the general structure

F 5
variance (differences) between treatments

vvariance (differences) expected if there iss no treatment effect

A large value for the F-ratio indicates that the differences between treatments are 
greater than would be expected without any treatment effect. If the F-ratio is larger than 
the critical value in the F distribution table, then we can conclude that the differences 
between treatments are significantly larger than would be caused by chance.

Individual differences in the F-ratio Although the structure of the F-ratio is the 
same for independent-measures and repeated-measures designs, there is a fundamental 
difference between the two designs that produces a corresponding difference in the two 
F-ratios. Specifically, individual differences are a part of one ratio but are eliminated 
from the other.

You should recall that the term individual differences refers to participant char-
acteristics such as age, personality, and gender that vary from one person to another 
and may influence the measurements that you obtain for each person. Suppose, for 
example, that you are measuring reaction time. The first participant in your study is 
a 19-year-old female with an IQ of 136 who is on the college varsity volleyball team. 
The next participant is a 42-year-old male with an IQ of 111 who returned to college 
after losing his job and comes to the research study with a head cold. Would you 
expect to obtain the same reaction time score for these two individuals even if they 
receive the same treatment?

Individual differences are a part of the variance in the numerator and in the  
denominator of the F-ratio for the independent-measures ANOVA. However, individual 
difference are eliminated or removed from the variances in the F-ratio for the repeated 
measures ANOVA. The idea of removing individual differences was first presented in 
Chapter 11 when we introduced the repeated-measures design (p. 329), but we review 
it briefly now.

tHe f-ratio for 
repeated-Measures 

aNoVa
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In a repeated-measures study, exactly the same individuals participate in all of the 
treatment conditions. Therefore, if there are any mean differences between treatments, 
they cannot be explained by individual differences. Thus, individual differences are 
automatically eliminated from the numerator of the repeated-measures F-ratio.

A repeated-measures design also allows you to remove individual differences from 
the variance in the denominator of the F-ratio. Because the same individuals are mea-
sured in every treatment condition, it is possible to measure the size of the individual 
differences. In Table 13.1(a), for example, participant A has scores that are consistently 
around 10 points lower than the scores for participant B. Because the individual dif-
ferences are systematic and predictable, they can be measured and separated from the 
random, unsystematic differences in the denominator of the F-ratio.

Thus, individual differences are automatically eliminated from the numerator of the 
repeated-measures F-ratio. In addition, they can be measured and removed from the 
denominator. As a result, the structure of the final F-ratio is as follows:

F 5

variance between treatments

(without indiviidual differences)

variance with no treatmennt effect

(individual differences removed)

The process of removing the variance caused individual differences is an important 
part of the procedure for a repeated-measures ANOVA.

In summary, the F-ratio for a repeated-measures ANOVA has the same basic struc-
ture as the F-ratio for independent measures (Chapter 12) except that it includes no 
variance caused by individual differences. The individual differences are automatically 
eliminated from the variance between treatments (numerator) because the repeated-
measures design uses the same individuals in all treatments. In the denominator, the 
individual differences are subtracted during the analysis. As a result, the repeated-
measures F-ratio has the following structure:

F 5
between-treatments variance

error variance

55
1treatment effects random, unsystematic diffferences

random, unsystematic differences  

(13.1)

 When there is no treatment effect, the F-ratio is balanced because the numerator and 
denominator are both measuring exactly the same variance. In this case, the F-ratio should 
have a value near 1.00. When research results produce an F-ratio near 1.00, we conclude 
that there is no evidence of a treatment effect and we fail to reject the null hypothesis. On 
the other hand, when a treatment effect does exist, it contributes only to the numerator and 
should produce a large value for the F-ratio. Thus, a large value for F indicates that there 
is a real treatment effect and, therefore, we should reject the null hypothesis.

 1. The F-ratio for the repeated-measures ANOVA is structured so that variance 
caused by individual differences is eliminated.

 a. Explain why individual differences are not part of the between-treatments  
variance in the numerator of the F-ratio.

 b. Explain why individual differences are not part of the error variance in the 
denominator of the F-ratio.

l E A R n i n g  C H E C k
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The overall structure of the repeated-measures ANOVA is shown in Figure 13.1. Note 
that the ANOVA can be viewed as a two-stage process. In the first stage, the total 
variance is partitioned into two components: between-treatments variance and within-
treatments variance. This stage is identical to the analysis that we conducted for an 
independent-measures design in Chapter 12.

The second stage of the analysis is intended to remove the individual differences from 
the denominator of the F-ratio. In the second stage, we begin with the variance within 
treatments and then measure and subtract out the between-subject variance, which 
measures the size of the individual differences. The remaining variance, often called 
the residual variance, or error variance, provides a measure of how much variance is 
reasonable to expect after the treatment effects and individual differences have been 
removed. The second stage of the analysis is what differentiates the repeated-measures 
ANOVA from the independent-measures ANOVA. Specifically, the repeated-measures 
design requires that the individual differences be removed.

tHe structure  
of tHe repeated-
Measures aNoVa

 1. a.  Because the individuals in one treatment are exactly the same as the individuals in every 
other treatment, there are no individual differences between treatments.

 b. Variance caused by individual differences is measured and subtracted from the within-
treatments variance to produce a measure of error variance that does not include any 
treatment effects or individual differences.

AnswERs

Stage 2

Stage 1

Between-treatments
variance

Numerator of
F -ratio

Denominator of
F -ratio

1. Treatment effect
2. Error or chance
    (excluding individual
    differences)

Between-subjects
variance

1. Individual 
    differences

Error
variance

1. Error (excluding
    individual
    differences)

Total
variance

Within-treatments
variance

1. Individual 
    differences
2. Other error

Figure 13.1

The partitioning of  
variance for a repeated-
measures experiment.
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In a repeated-measures ANOVA, the denominator of the F-ratio is called the 
residual variance, or the error variance, and measures how much variance is 
expected if there are no systematic treatment effects and no individual differences 
contributing to the variability of the scores.

We use the data in Table 13.2 to introduce the notation for the repeated-measures 
ANOVA. The data represent the results of a study similar to one reported by Weinstein, 
McDermott, and Roediger (2010), comparing different strategies for studying text pas-
sages in preparation for a quiz or exam. Four strategies were evaluated—reading once, 
rereading, answering prepared comprehension questions, creating and answering your 
own comprehension questions. After studying a passage, each participant was given a 
10-point quiz on the material. After a short break, the participant moved on to a new 
passage and a new studying strategy. This process continued until all participants had 
completed all four strategies. You may notice that this research study and the numerical 
values in the table are identical to those used to demonstrate the independent-measures 
ANOVA in the previous chapter (Example 12.1, page 364). In this case, however, the 
data represent a repeated-measures study in which the same group of n 5 6 individuals 
is tested in all four treatment conditions.

You should recognize that most of the notation in Table 13.2 is identical to the no-
tation used in an independent-measures analysis (Chapter 12) For example, there are  
n 5 6 participants who are tested in k 5 4 treatment conditions, producing a total of  
N 5 24 scores that add up to a grand total of G 5 168. Note, however, that N 5 24 now 
refers to the total number of scores in the study, not the number of participants.

The repeated-measures ANOVA introduces only one new notational symbol. 
The letter P is used to represent the total of all of the scores for each individual in 
the study. You can think of the P values as “Person totals” or “Participant totals.” 
In Table 13.2, for example, participant A had scores of 3, 5, 8, and 8 for a total of  
P 5 24. The P values are used to define and measure the magnitude of the individual 
differences in the second stage of the analysis.

We use the data in Table 13.2 to demonstrate the repeated-measures ANOVA. Again, 
the goal of the test is to determine whether there are any significant differences among 
the four strategies being compared. Specifically, are any of the mean differences in the 

D e f i n i t i o n

NotatioN for  
tHe repeated-

Measures aNoVa

E x A M P l E  1 3 . 1

Strategies for Studying Text Passages

Student
Read 
Once

Read 
and 

Reread

Answer 
Prepared 
Questions

Create and 
Answer 

Questions
Person 
Totals

A 3 5 8 8 P 5 24 n 5  6
B 3 3 5 9 P 5 20 k 5  4
C 4 5 8 7 P 5 24 N 5 24
D 6 7 9 10 P 5 32 G 5 168
E 6 8 8 10 P 5 32 oX2 5 1298
F 8 8 10 10 P 5 36

T 5 30 T 5 36 T 5 48 T 5 54

M 5 5 M 5 6 M 5 8 M 5 9

SS 5 20 SS 5 20 SS 5 14 SS 5 8

TAblE 13.2

Quiz scores for students 
using four different strategies 
for studying text passages.
Note: For comparison, the 
scores are identical to the 
values in Example 12.1.
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data greater than would be expected if there were no systematic differences among the 
four strategies?

The first stage of the repeated-measures analysis is identical to the independent-
measures ANOVA that was presented in Chapter 12. Specially, the SS and df for 
the total set of scores are analyzed into within-treatments and between-treatments 
components.

Because the numerical values in Table 13.2 are the same as the values used in 
Example 12.1 (p. 364), the computations for the first stage of the repeated-measures 
analysis are identical to those in Example 12.1. Rather than repeating the same arith-
metic, the results of the first stage of the repeated-measures analysis can be summarized 
as follows:

Total:

SS
G

Ntotal
25  2 5 2 5 2 5o X

2 2

1298
168

24
1298 1176 122

ddf Ntotal 5 2 51 23

Within treatments: 

SS
within treatments

 5 oSS
inside each treatment

 5 20 1 20 1 14 1 8 5 62

df
within treatments

 5 odf
inside each treatment

 5 5 1 5 1 5 1 5 5 20

Between treatments:
For this example we find SS

between treatments
 by subtraction.

SS
between treatments 

5 SS
total

 – SS
within treatments

5 122 – 62 5 60

df
between treatments

 5 k – 1 5 3

For more details on the formulas and calculations, see Example 12.1, pages 364–366.
This completes the first stage of the repeated-measures ANOVA. Note that the two 

components, between and within, add up to the total for the SS values and for the df 
values. Also note that the between-treatments SS and df values provide a measure of 
the mean differences between treatments and are used to compute the variance in the 
numerator of the final F-ratio.

The second stage of the analysis involves removing the individual differences from the 
denominator of the F-ratio. Because the same individuals are used in every treatment, it 
is possible to measure the size of the individual differences. For the data in Table 13.2, 
for example, participants A, B, and C tend to have the lowest scores and participants D, 
E, and F tend to have the highest scores. These individual differences are reflected in 
the P values, or person totals, in the right-hand column. We use these P values to create 
a computational formula for SS

between subjects
 in much the same way that we used the treat-

ment totals, the T values, in the computational formula for SS
between treatments

. Specifically, 
the formula for the between-subjects SS is

SS
G

Nbetween subjects

2

5 2o P
k

2

 
(13.2)

stage 1  
of tHe repeated-
Measures aNoVa

stage 2  
of tHe repeated-
Measures aNoVa
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Notice that the formula for the between-subjects SS has exactly the same struc-
ture as the computational formula for the between-treatments SS (see the calcula-
tion on p. 358). In this case, we use the person totals (P values) instead of the 
treatment totals (T values). Each P value is squared and divided by the number of 
scores that were added to obtain the total. In this case, each person has k scores, 
one for each treatment. Box 13.1 presents another demonstration of the similarity 
of the formulas for SS between subjects and SS between treatments. For the data 
in Table 13.2,

SSbetween subjects 5 1 1 1 1
24

4

20

4

24

4

32

4

32

4

2 2 2 2 2

11 2

5 1 1

36

4

168

24

2 2

144 100 1144 256 256 324 11761 1 1 2

5 448

The value of SS
between subjects

 provides a measure of the size of the individual  
differences—that is, the differences between subjects. In the second stage of the 
analysis, we simply subtract the individual differences to obtain the measure of error 
that forms the denominator of the F-ratio. Thus, the final step in the analysis of SS is

SS
error

 5 SS
within treatments

 – SS
between subjects

 (13.3)

We have already computed SS
within treatments

 5 62 and SS
between subjects

 5 48, therefore

SS
error

 5 62 – 48 5 14

BOX
13.1

SSbetween subjects And SSbetween treatments

The data for a repeated-measures study are normally 
presented in a matrix, with the treatment conditions 
determining the columns and the participants defining 
the rows. The data in Table 13.2 demonstrate  
this normal presentation. The calculation of  
SS

between treatments
 provides a measure of the differences 

between treatment conditions—that is, a measure of 
the mean differences between the columns in the data 
matrix. For the data in Table 13.2, the column totals 
are 30, 36, 48, and 54. These values are variable,  
and SS

between treatments
 measures the amount of variability.

The following table reproduces the data from  
Table 13.2, but now we have turned the data matrix 
on its side so that the participants define the columns 
and the treatment conditions define the rows.

In this new format, the differences between the  
columns represent the between-subjects variance. The 
column totals are now P values (instead of T values) 
and the number of scores in each column is now  

identified by k (instead of n). With these changes in no-
tation, the formula for SS

between subjects
 has exactly the same 

structure as the formula for SS
between treatments

. If you exam-
ine the two equations, the similarity should be clear.

Participant

A B C D E F

Read 
Once

3 3 4 6 6 8 T 5 30

Read and 
Reread

5 3 5 7 8 8 T 5 36

Answer 
Prepared 
Questions

8 5 8 9 8 10 T 5 48

Create 
and 
Answer 
Questions

8 9 7 10 10 10 T 5 54

P 5 24 P 5 20 P 5 24 P 5 32 P 5 32 P 5 36
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The analysis of degrees of freedom follows exactly the same pattern that was used to 
analyze SS. Remember that we are using the P values to measure the magnitude of the 
individual differences. The number of P values corresponds to the number of subjects, 
n, so the corresponding df is

df
between subjects

 5 n – 1 (13.4)

For the data in Table 13.2, there are n 5 6 subjects and

df
between subjects

 5 6 – 1 5 5

Next, we subtract the individual differences from the within-subjects component to 
obtain a measure of error. In terms of degrees of freedom,

df
error

 5 df
within treatments

 – df
between subjects

 (13.5)

For the data in Table 13.2,

df
error

 5 20 – 5 5 15

An algebraically equivalent formula for df
error

 uses only the number of treatment 
conditions (k) and the number of participants (n):

df
error

 5 (k – 1)(n – 1) (13.6)

The usefulness of equation 13.6 is discussed in Box 13.2.
Remember: The purpose for the second stage of the analysis is to measure the 

individual differences and then remove the individual differences from the denomi-
nator of the F-ratio. This goal is accomplished by computing SS and df between 
subjects (the individual differences) and then subtracting these values from the 
within-treatments values. The result is a measure of variability resulting from error 
with the individual differences removed. This error variance (SS and df) is used in the 
denominator of the F-ratio.

BOX
13.2

using THE AlTERnATiVE FoRMulA FoR dferror

The statistics presented in a research report not only 
describe the significance of the results but typically 
provide enough information to reconstruct the research 
design. The alternative formula for df

error
 is particularly 

useful for this purpose. Suppose, for example, that a 
research report for a repeated-measures study includes 
an F-ratio with df 5 2, 10. How many treatment  
conditions were compared in the study and how many 
individuals participated?

To answer these question, begin with the first df 
value, which is df

between treatments
 5 2 5 k – 1. From this 

value, it is clear that k 5 3 treatments. Next, use the 

second df value, which is df
error

 5 10. Using this value 
and the fact that k – 1 5 2, use equation 13.6 to find 
the number of participants.

df
error

 5 10 5 (k – 1)(n – 1) 5 2(n – 1)

If 2(n – 1) 5 10, then n – 1 must equal 5. 
Therefore, n 5 6.

Therefore, we conclude that a repeated-measures 
study producing an F-ratio with df 5 2, 10 must have 
compared 3 treatment conditions using a sample of  
6 participants.
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The final calculation in the analysis is the F-ratio, which is a ratio of two variances. 
Each variance is called a mean square, or MS, and is obtained by dividing the appropri-
ate SS by its corresponding df value. The MS in the numerator of the F-ratio measures 
the size of the differences between treatments and is calculated as

MS
SS

dfbetween treatments
between treatments5
bbetween treatments  

(13.7)

For the data in Table 13.2,

MS
SS

dfbetween treatments
between treatments5
bbetween treatments

5 5
60

3
20

The denominator of the F-ratio measures how much difference is reasonable to 
expect if there are no systematic treatment effects and the individual differences have 
been removed. This is the error variance, or the residual variance, obtained in stage 2 
of the analysis.

MS
SS

dferror
error

error

5

 
(13.8)

For the data in Table 13.2,

MS
SS

dferror
error

error

14

15
0.9335 5 5 

Finally, the F-ratio is computed as

F
MS

MS
5 between treatments

error  
(13.9)

For the data in Table 13.2,

F
MS

MS
5 5 5between treatments

error

20

0 933
21 43

.
.

Once again, notice that the repeated-measures ANOVA uses MS
error

 in the denomina-
tor of the F-ratio. This MS value is obtained in the second stage of the analysis, after the 
individual differences have been removed. As a result, individual differences are com-
pletely eliminated from the repeated-measures F-ratio, so that the general structure is

F 5
1treatment effects unsystematic differencess (without individual diffs)

unsystematic diifferences (without individual diffs)

For the data we have been examining, the F-ratio is F 5 21.43, indicating that the 
differences between treatments (numerator) are 22 times bigger than you would expect 
without any treatment effects (denominator). A ratio this large provides clear evidence that 
there is a real treatment effect. To verify this conclusion you must consult the F distribution 

calculatioN  
of tHe VariaNces  

(Ms Values)  
aNd tHe f-ratio
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table to determine the appropriate critical value for the test. The degrees of freedom for the 
F-ratio are determined by the two variances that form the numerator and the denominator. 
For a repeated-measures ANOVA, the df values for the F-ratio are reported as

df 5 df
between treatments

, df
error

For the example we are considering, the F-ratio has df 5 3, 15 (“degrees of freedom 
equal three and fifteen”). Using the F distribution table (p. 577) with a 5 .05, the criti-
cal value is F 5 3.29, and with a 5 .01 the critical value is F 5 5.42. Our obtained 
F-ratio, F 5 21.43, is well beyond either of the critical values, so we can conclude that 
the differences between treatments are significantly greater than expected by chance 
using either a 5 .05 or a 5 .01.

The summary table for the repeated-measures ANOVA from Example 13.1 is 
presented in Table 13.3. Although these tables are no longer commonly used in 
research reports, they provide a concise format for displaying all of the elements 
of the analysis.

The most common method for measuring effect size with ANOVA is to compute the 
percentage of variance that is explained by the treatment differences. In the context 
of ANOVA, the percentage of variance is commonly identified as h2 (eta squared). In 
Chapter 12, for the independent-measures analysis, we computed h2 as

h 52 SS

SS
between treatments

between treatments 11
5

SS

SS

Swithin treatments

between treatments

SStotal

The intent is to measure how much of the total variability is explained by the 
differences between treatments. With a repeated-measures design, however, there is 
another component that can explain some of the variability in the data. Specifically, 
part of the variability is caused by differences between individuals. In Table 13.2, 
for example, person A consistently scored lower than person F. This consistent dif-
ference explains some of the variability in the data. When computing the size of the 
treatment effect, it is customary to remove any variability that can be explained by 
other factors, and then compute the percentage of the remaining variability that can 
be explained by the treatment effects. Thus, for a repeated-measures ANOVA, the 
variability from the individual differences is removed before computing h2. As a 
result, h2 is computed as

h2 5
2

SS

SS SS
between treatments

total between subbjects  
(13.10)

MeasuriNg effect 
size for  

tHe repeated-
Measures aNoVa

Source SS df MS F

Between treatments 60 3 20.00 F(3,15) 5 21.43
Within treatments 62 20
Between subjects 48 5
Error 14 15 0.933
Total 122 23

TAblE 13.3

A summary table for  
the repeated-measures 
ANOVA for the data  
from Example 13.1.
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Because Equation 13.10 computes a percentage that is not based on the total  
variability of the scores (one part, SS

between subjects
, is removed), the result is often called 

a partial eta squared.
The general goal of Equation 13.10 is to calculate a percentage of the variabil-

ity that has not already been explained by other factors. Thus, the denominator of 
Equation 13.10 is limited to variability from the treatment differences and variability 
that is exclusively from random, unsystematic factors. With this in mind, an equivalent 
version of the h2 formula is

h 52 SS

SS
between treatments

between treatments 11SSerror  
(13.11)

In this new version of the eta-squared formula, the denominator consists of the  
variability that is explained by the treatment differences plus the other unexplained  
variability. Using either formula, the data from Example 13.1 produce

h 5 52 60

74
0 811 81 1. . %or( )

This result means that 81.1% of the variability in the data (except for the individual 
differences) is accounted for by the differences between treatments.

in THE liTERATuRE
REPoRTing THE REsulTs oF A REPEATEd-MEAsuREs AnoVA

As described in Chapter 12 (p. 368), the format for reporting ANOVA results in journal 
articles consists of

 1. A summary of descriptive statistics (at least treatment means and standard  
deviations, and tables or graphs as needed)

 2. A concise statement of the outcome of the ANOVA

For the study in Example 13.1, the report could state:

The means and variances of the quiz scores for the four strategies are shown in 
Table 1. A repeated-measures analysis of variance indicated significant mean 
differences in the four methods for studying text passages, F (3, 15) 5 21.43,  
p , .01, h2 5 0.811.

TAblE 1

Quiz scores for students using four different study strategies

Read Once Read and Reread
Answer Prepared 

Questions
Create and 

Answer Questions

M 5.00 6.00 8.00 9.00

SD 2.00 2.00 1.67 1.26
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Recall that ANOVA provides an overall test of significance for the mean differences 
between treatments. When the null hypothesis is rejected, it indicates only that there is 
a difference between at least two of the treatment means. If k 5 2, it is obvious which 
two treatments are different. However, when k is greater than 2, the situation becomes 
more complex. To determine exactly where significant differences exist, the researcher 
must follow the ANOVA with post hoc tests. In Chapter 12, we used Tukey’s HSD and 
the Scheffé test to make these multiple comparisons among treatment means. These 
two procedures attempt to control the overall alpha level by making adjustments for the 
number of potential comparisons.

For a repeated-measures ANOVA, Tukey’s HSD and the Scheffé test can be used in 
the exact same manner as was done for the independent-measures ANOVA, provided 
that you substitute MS

error
 in place of MS

within treatments
 in the formulas and use df

error
 in place 

of df
within treatments

 when locating the critical value in a statistical table. For example, the 
study in Example 13.1 compared four treatments and produced MS

error
 5 0.933 with 

df
error

 5 15 and n 5 6. Using Tukey’s HSD posttest, we find q 5 4.08 and obtain

HSD 4.08
0.933

6
4.08(0.394) 1error5  5 5 5q

MS

n
..61 

Thus, any mean difference greater than 1.61 points is significant with a 5 .05. For 
this study, reading once is not significantly different from rereading, and answering 
prepared questions is not significantly different from creating and answering your 
own questions. However, answering either type of comprehension questions produces 
significantly better performance than simply reading. Note: This is the same pattern of 
results that was obtained in the original study.

The basic assumptions for the repeated-measures ANOVA are identical to those  
required for the independent-measures ANOVA.

 1. The observations within each treatment condition must be independent (see p. 220).

 2. The population distribution within each treatment must be normal. (As before, 
the assumption of normality is important only with small samples.)

 3. The variances of the population distributions for each treatment should be 
equivalent.

For the repeated-measures ANOVA, there is an additional assumption, called homo-
geneity of covariance. Basically, it refers to the requirement that the relative standing of 
each subject be maintained in each treatment condition. This assumption is violated if 
the effect of the treatment is not consistent for all of the subjects or if order effects exist 
for some, but not other, subjects. This issue is very complex and is beyond the scope 
of this book. However, methods do exist for dealing with violations of this assumption 
(for a discussion, see Keppel, 1973).

As we noted in Chapter 11 (p. 328), a repeated-measures design has some distinct ad-
vantages and some disadvantages compared to an independent-measures design. On the 
positive side, a repeated-measures design typically requires fewer subjects than an inde-
pendent-measures design. The repeated-measures design uses only one group of subjects, 
which can be an asset if relatively few subjects are available. The primary advantage of 
repeated-measures designs, however, is that they remove variance caused by individual dif-
ferences from the analysis. If individual differences are relatively large, they may obscure a 
treatment effect in an independent-measures design. In this situation, a repeated-measures 
design is more likely to detect the treatment effect and produce a significant result.

post Hoc tests  
witH repeated-

Measures aNoVa

assuMptioNs  
of tHe repeated-
Measures aNoVa

adVaNtages  
aNd disadVaNtages 

of tHe repeated-
Measures desigN
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The primary disadvantage of a repeated-measures design is that it often creates the  
opportunity for factors other than the treatment effect to cause a participant’s score to 
change from one treatment to the next. Specifically, when participants are measured in 
different treatment conditions at different times, outside factors that change over time, 
such as the weather, may cause changes in the participants’ scores. It also is possible that 
experience gained in one treatment condition may influence performance in later treat-
ments. For example, practicing a task in one condition may lead to improved performance 
in a later treatment. In this case, the participant’s scores are changing from one treatment 
to another but the changes are not being caused by the treatments.

 1. A repeated-measures study is used to evaluate the mean differences among four 
treatment conditions using a sample of n 5 10 participants. What are the df values 
for the F-ratio?

 2. A research report includes a repeated-measures F-ratio with df 5 3, 24. How many 
treatment conditions were compared and how many individuals participated in the 
study? (See Box 13.2.)

 3. For the following data, compute SS
within treatments

, SS
between subjects

 and SS
error

.

Treatment

Subject 1 2 3 4

A 2 2 2 2 G 5 32
B 4 0 0 4 oX2 5 96
C 2 0 2 0
D 4 2 2 4

T 5 12 T 5 4 T 5 6 T 5 10

SS 5 4 SS 5 4 SS 5 3 SS 5 11

 1. df 5 3, 27

 2. There were 4 treatment conditions (k – 1 5 3) and 9 participants (n – 1 5 8).

 3. SS
within treatments

 5 22, SS
between subjects

 5 8, and SS
error

 5 22 – 8 5 14.

l E A R n i n g  C H E C k

AnswERs

As we noted in Chapter 12 (pp. 379–380), whenever you are evaluating the difference 
between two sample means, you can use either a t test or ANOVA. In Chapter 12 we 
demonstrated that the two tests are related in many respects, including:

 1. The two tests always reach the same conclusion about the null hypothesis.

 2. The basic relationship between the two test statistics is F 5 t2.

 3. The df value for the t statistic is identical to the df value for the denominator of 
the F-ratio.

 4. If you square the critical value for the two-tailed t test, you obtain the critical 
value for the F-ratio. Again, the basic relationship is F 5 t2.

In Chapter 12, these relationships were demonstrated for the independent-measures 
tests, but they are also true for repeated-measures designs comparing two treatment 
conditions. The following example demonstrates the relationships.

repeated-Measures 
aNoVa aNd  

tHe repeated-
Measures t test
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The following table shows the data from a repeated-measures study comparing two 
treatment conditions. We have structured the data in a format that is compatible with 
the repeated-measures t test. Note that the calculations for the t test are based on the 
difference scores (D values) in the final column.

Treatment

Participant I II D

A 3 5 2
B 4 14 10
C 5 7 2
D 4 6 2

M
D
 5 4

SS
D
 5 48

The repeated-measures t test The null hypothesis for the t test states that, for the 
general population, there is no mean difference between the two treatment conditions.

H
0
: m

D
 5 0

With n 5 4 participants, the test has df 5 3 and the critical boundaries for a two-
tailed test with a 5 .05 are t 5 ±3.182.

For these data, the sample mean difference is M
D
 5 4, the variance for the differ-

ence scores is s2 5 16, and the standard error is sMD
5 2 points. These values produce a  

t statistic of

t
sMD

5 
2 m

5
2 

5
MD D 4

2 00
0

2
.

The t value is not in the critical region, so we fail to reject H
0
 and conclude that there 

is no significant difference between the two treatments.

The repeated-measures ANOVA Now we reorganize the data into a format that 
is compatible with a repeated-measures ANOVA. Notice that the ANOVA uses the 
original scores (not the difference scores) and requires the P totals for each participant.

Treatment

Participant I II P

A 3 5 8 G 5 48
B 4 14 18 oX 2 5 372
C 5 7 12 N 5 8
D 4 6 10

Again, the null hypothesis states that, for the general population, there is no mean 
difference between the two treatment conditions.

H
0
: m

1
 5 m

2

For this study, df
between treatments

 5 1, df
within treatments

 5 6, df
between subjects

 5 3, which produce 
df

error
 5 (6 – 3) 5 3. Thus, the F-ratio has df 5 1, 3 and the critical value for a 5 .05 

is F 5 10.13. Note that the denominator of the F-ratio has the same df value as the t 
statistic (df 5 3) and that the critical value for F is equal to the squared critical value 
for t (10.13 5 3.1822).

E x A M P l E  1 3 . 2
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For these data,

SS
total

 5 84

SS
within

 5 52

SS
between treatments

 5 (84 – 52) 5 32

SS
between subjects

 5 28

SS
error

 5 (52 – 28) 5 24

The two variances in the F-ratio are

MSbetween treatments
between treatments5 

SS

dffbetween treatments

32

1
325  5 

and
24

3
8error

error

error

MS 5 5  5 
SS

df

and the -ratio is between treatmentsF F
MS

MS
5

eerror

32

8
4.005  5 

Notice that the F-ratio and the t statistic are related by the equation F 5 t2 (4 5 22). 
The F-ratio (like the t statistic) is not in the critical region so, once again, we fail to reject 
H

0
 and conclude that there is no significant difference between the two treatments.

 1. A repeated-measures study is used to evaluate the mean differences between  
two treatment conditions using a sample of n 5 20 participants.

 a. If a repeated-measures t is used for the hypothesis test, what are the df values 
for the t statistic?

 b. If a repeated-measures ANOVA is used for the hypothesis test, what are the  
df values for the F-ratio?

 2. A research report includes a repeated-measures F-ratio of F 5 4.00 with df 5 1, 24.

 a. Could the researchers have used a t statistic instead of an F-ratio to evaluate the 
mean difference? Explain your answer.

 b. If a t statistic were used, then what value would be obtained for t?

 1. a. df 5 19

 b. df 51, 19

 2. a. The study compared only 2 treatments (df
between treatments 

5 1), so a t statistic could be used.

 b. t 5 54 2

l E A R n i n g  C H E C k

AnswERs

Two-FACToR AnoVA (indEPEndEnT MEAsuREs)

In most research situations, the goal is to examine the relationship between two  
variables. Typically, the research study attempts to isolate the two variables to eliminate 
or reduce the influence of any outside variables that may distort the relationship being 

13.3
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studied. A typical experiment, for example, focuses on one independent variable (which 
is expected to influence behavior) and one dependent variable (which is a measure of 
the behavior). In real life, however, variables rarely exist in isolation. That is, behavior 
usually is influenced by a variety of different variables acting and interacting simulta-
neously. To examine these more complex, real-life situations, researchers often design 
research studies that include more than one independent variable. Thus, researchers 
systematically change two (or more) variables and then observe how the changes influ-
ence another (dependent) variable.

In Chapter 12 and earlier in this chapter, we examined ANOVA for single-factor 
research designs—that is, designs that included only one independent variable or only 
one quasi-independent variable. When a research study involves more than one factor, 
it is called a factorial design. In this chapter, we consider the simplest version of a 
factorial design. Specifically, we examine ANOVA as it applies to research studies with 
exactly two factors. In addition, we limit our discussion to studies that use a separate 
sample for each treatment condition—that is, independent-measures designs. Finally, 
we consider only research designs for which the sample size (n) is the same for all 
treatment conditions. In the terminology of ANOVA, this chapter examines two-factor, 
independent-measures, equal n designs. The following example demonstrates the  
general elements of this kind of research design.

Imagine that you are seated at your desk, ready to take the final exam in statistics. Just 
before the exams are handed out, a television crew appears and sets up a camera and 
lights aimed directly at you. They explain they are filming students during exams for 
a television special. You are told to ignore the camera and go ahead with your exam.

Would the presence of a TV camera affect your performance on an exam? For some 
of you, the answer to this question is “definitely yes,” and for others, “probably not.” In 
fact, both answers are right; whether or not the TV camera affects performance depends 
on your personality. Some of you would become terribly distressed and self-conscious, 
while others really could ignore the camera and go on as if everything were normal.

In an experiment that duplicates the situation we have described, Shrauger (1972) 
tested participants on a concept formation task. Half the participants worked alone 
(no audience), and half worked with an audience of people who claimed to be  
interested in observing the experiment. Shrauger also divided the participants into 
two groups on the basis of personality: those high in self-esteem and those low in 
self-esteem. Table 13.4 shows the structure of Shrauger’s study. Note that the study 

E x A M P l E  1 3 . 3

An independent variable 
is a manipulated variable 
in an experiment. A quasi-
independent variable is not 
manipulated but defines  
the groups of scores in a 
nonexperimental study.

Factor B: Audience Condition

No Audience Audience

Factor A: Self-Esteem

Low

Scores for a group  
of participants who  
are classified as low  
self-esteem and are  
tested with no audience.

Scores for a group  
of participants who  
are classified as low  
self-esteem and are 
tested with an audience.

High

Scores for a group  
of participants who  
are classified as high  
self-esteem and are  
tested with no audience.

Scores for a group  
of participants who  
are classified as high 
self-esteem and are 
tested with an audience.

TAblE 13.4

The structure of a two-factor 
experiment presented as a 
matrix. The two factors are 
self-esteem and presence/
absence of an audience, with 
two levels for each factor.
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involves two separate factors: One factor is manipulated by the researcher, changing 
from no-audience to audience, and the second factor is self-esteem, which varies 
from high to low. The two factors are used to create a matrix with the different levels 
of self-esteem defining the rows and the different audience conditions defining the 
columns. The resulting two-by-two matrix shows four different combinations of the 
variables, producing four different conditions. Thus, the research study would require 
four separate samples, one for each cell, or box, in the matrix. The dependent vari-
able for the study is the number of errors on the concept formation task for people 
observed in each of the four conditions.

The two-factor ANOVA tests for mean differences in research studies that are struc-
tured like the audience-and-self-esteem example in Table 13.4. For this example, the 
two-factor ANOVA evaluates three separate sets of mean differences:

 1. What happens to the mean number of errors when the audience is added or 
taken away?

 2. Is there a difference in the mean number of errors for participants with high 
self-esteem compared to those with low self-esteem?

 3. Is the mean number of errors affected by specific combinations of self-
esteem and audience? (For example, an audience may have a large effect on 
participants with low self-esteem but only a small effect for those with high 
self-esteem.)

Thus, the two-factor ANOVA allows us to examine three types of mean differences 
within one analysis. In particular, we conduct three separate hypotheses tests for the 
same data, with a separate F-ratio for each test. The three F-ratios have the same basic 
structure:

F 5
variance (differences) between treatments

vvariance (differences) expected if there iss no treatment effect

In each case, the numerator of the F-ratio measures the actual mean differences in 
the data, and the denominator measures the differences that would be expected if there 
is no treatment effect. As always, a large value for the F-ratio indicates that the sample 
mean differences are greater than would be expected by chance alone, and, therefore, 
provides evidence of a treatment effect. To determine whether the obtained F-ratios 
are significant, we need to compare each F-ratio with the critical values found in the 
F-distribution table in Appendix B.

As noted in the previous section, a two-factor ANOVA actually involves three distinct 
hypothesis tests. In this section, we examine these three tests in more detail.

Traditionally, the two independent variables in a two-factor experiment are identified 
as factor A and factor B. For the study presented in Table 13.4, self-esteem is factor A,  
and the presence or absence of an audience is factor B. The goal of the study is to evaluate 
the mean differences that may be produced by either of these factors acting independently 
or by the two factors acting together.

Main effects One purpose of the study is to determine whether differences in self-
esteem (factor A) result in differences in performance. To answer this question, we 
compare the mean score for all of the participants with low self-esteem with the mean 

MaiN effects  
aNd iNteractioNs
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for those with high self-esteem. Note that this process evaluates the mean difference 
between the top row and the bottom row in Table 13.4.

To make this process more concrete, we present a set of hypothetical data in  
Table 13.5. The table shows the mean score for each of the treatment conditions (cells) 
as well as the overall mean for each column (each audience condition) and the overall 
mean for each row (each self-esteem group). These data indicate that the low self- 
esteem participants (the top row) had an overall mean of M 5 8 errors. This overall 
mean was obtained by computing the average of the two means in the top row. In con-
trast, the high self-esteem participants had an overall mean of M 5 4 errors (the mean 
for the bottom row). The difference between these means constitutes what is called the 
main effect for self-esteem, or the main effect for factor A.

Similarly, the main effect for factor B (audience condition) is defined by the mean 
difference between the columns of the matrix. For the data in Table 13.5, the two groups 
of participants tested with no audience had an overall mean score of M 5 5 errors. 
Participants tested with an audience committed an overall average of M 5 7 errors. The 
difference between these means constitutes the main effect for the audience conditions, 
or the main effect for factor B.

The mean differences among the levels of one factor are referred to as the main 
effect of that factor. When the design of the research study is represented as a 
matrix with one factor determining the rows and the second factor determining 
the columns, then the mean differences among the rows describe the main effect 
of one factor, and the mean differences among the columns describe the main 
effect for the second factor.

The mean differences between columns or rows simply describe the main effects for a 
two-factor study. As we have observed in earlier chapters, the existence of sample mean 
differences does not necessarily imply that the differences are statistically significant. 
In general, two samples are not expected to have exactly the same means. There will al-
ways be small differences from one sample to another, and you should not automatically 
assume that these differences are an indication of a systematic treatment effect. In the 
case of a two-factor study, any main effects that are observed in the data must be evalu-
ated with a hypothesis test to determine whether they are statistically significant effects. 
Unless the hypothesis test demonstrates that the main effects are significant, you must 
conclude that the observed mean differences are simply the result of sampling error.

The evaluation of main effects accounts for two of the three hypothesis tests in a two-
factor ANOVA. We state hypotheses concerning the main effect of factor A and the main 
effect of factor B and then calculate two separate F-ratios to evaluate the hypotheses.

For the example we are considering, factor A involves the comparison of two dif-
ferent levels of self-esteem. The null hypothesis would state that there is no difference 
between the two levels; that is, self-esteem has no effect on performance. In symbols,

H0 1 2
: m 5mA A

D e f i n i t i o n

No Audience Audience

Low Self-Esteem M 5 7 M 5 9 M 5 8

High Self-Esteem M 5 3 M 5 5 M 5 4

M 5 5 M 5 7

TAblE 13.5

Hypothetical data for an 
experiment examining the 
effect of an audience on  
participants with different 
levels of self-esteem.
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The alternative hypothesis is that the two different levels of self-esteem do produce 
different scores:

H1 1 2
: m mA A

To evaluate these hypotheses, we compute an F-ratio that compares the actual mean 
differences between the two self-esteem levels versus the amount of difference that 
would be expected without any systematic treatment effects.

F 5
variance for (differences between) the meaans for factor

variance (differences) exp

A

eected if there is no treatment effect
var

F 5
iiance for (differences between) the row meaans

variance (differences) expected if theree is no treatment effect

Similarly, factor B involves the comparison of the two different audience conditions. 
The null hypothesis states that there is no difference in the mean number of errors  
between the two conditions. In symbols,

H0 1 2
: m mB B5

As always, the alternative hypothesis states that the means are different:

H1 1 2
: m mB B

Again, the F-ratio compares the obtained mean difference between the two audi-
ence conditions versus the amount of difference that would be expected if there is no 
systematic treatment effect.

F 5
variance for (differences between) the meaans for factor

variance (differences) exp

B

eected if there is no treatment effect
var

F 5
iiance for (differences between) the column means

variance (differences) expected if thhere is no treatment effect

Interactions In addition to evaluating the main effect of each factor individually, 
the two-factor ANOVA allows you to evaluate other mean differences that may result 
from unique combinations of the two factors. For example, specific combinations of 
self-esteem and an audience acting together may have effects that are different from the  
effects of self-esteem or an audience acting alone. Any “extra” mean differences 
that are not explained by the main effects are called an interaction, or an interaction  
between factors. The real advantage of combining two factors within the same study is 
the ability to examine the unique effects caused by an interaction.

An interaction between two factors occurs whenever the mean differences  
between individual treatment conditions, or cells, are different from what would 
be predicted from the overall main effects of the factors.

To make the concept of an interaction more concrete, we reexamine the data shown 
in Table 13.5. For these data, there is no interaction; that is, there are no extra mean 
differences that are not explained by the main effects. For example, within each audi-
ence condition (each column of the matrix), the average number of errors for the low 
self-esteem participants is 4 points higher than the average for the high self-esteem 
participants. This 4-point mean difference is exactly what is predicted by the overall 
main effect for self-esteem.

D e f i n i t i o n
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Now consider a different set of data shown in Table 13.6. These new data show 
exactly the same main effects that existed in Table 13.5 (the column means and the 
row means have not been changed). But now there is an interaction between the two 
factors. For example, for the low self-esteem participants (top row), there is a 4-point 
difference in the number of errors committed with an audience and without an audi-
ence. This 4-point difference cannot be explained by the 2-point main effect for the 
audience factor. Also, for the high self-esteem participants (bottom row), the data show 
no difference between the two audience conditions. Again, the zero difference is not 
what would be expected based on the 2-point main effect for the audience factor. Mean 
differences that are not explained by the main effects are an indication of an interaction 
between the two factors.

To evaluate the interaction, the two-factor ANOVA first identifies mean differences 
that are not explained by the main effects. The extra mean differences are then evaluated 
by an F-ratio with the following structure:

F 5
variance (mean differences) not explained by the main effects

variance (mean differennces) expected if there are no treatment efffects

The null hypothesis for this F-ratio simply states that there is no interaction:

H
0
: There is no interaction between factors A and B. All of the mean differences 

between treatment conditions are explained by the main effects of the two factors.

The alternative hypothesis states that there is an interaction between the two factors:

H
1
: There is an interaction between factors. The mean differences between treat-

ment conditions are not what would be predicted from the overall main effects of 
the two factors.

More about interactions In the previous section, we introduced the concept of an 
interaction as the unique effect produced by two factors working together. This section 
presents two alternative definitions of an interaction. These alternatives are intended to 
help you understand the concept of an interaction and to help you identify an interaction 
when you encounter one in a set of data. You should realize that the new definitions 
are equivalent to the original and simply present slightly different perspectives on the 
same concept.

The first new perspective on the concept of an interaction focuses on the notion 
of independence for the two factors. More specifically, if the two factors are inde-
pendent, so that one factor does not influence the effect of the other, then there is no 
interaction. On the other hand, when the two factors are not independent, so that the 
effect of one factor depends on the other, then there is an interaction. The notion of 
dependence between factors is consistent with our earlier discussion of interactions. 
If one factor influences the effect of the other, then unique combinations of the factors 
produce unique effects.

The data in Table 13.6 
show the same pattern of 
results that was obtained in 
Shrauger’s research study.

No Audience Audience

Low Self-Esteem M 5 6 M 5 10 M 5 8

High Self-Esteem M 5 4 M 5 4 M 5 4

M 5 5 M 5 7

TAblE 13.6

Hypothetical data for an 
experiment examining the ef-
fect of an audience on partic-
ipants with different levels of 
self-esteem. The data show 
the same main effects as the 
values in Table 13.5, but the 
individual treatment means 
have been modified to create 
an interaction.
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When the effect of one factor depends on the different levels of a second factor, 
then there is an interaction between the factors.

This definition of an interaction should be familiar in the context of a “drug interac-
tion.” Your doctor and pharmacist are always concerned that the effect of one medica-
tion may be altered or distorted by a second medication that is being taken at the same 
time. Thus, the effect of one drug (factor A) depends on a second drug (factor B), and 
you have an interaction between the two drugs.

Returning to Table 13.5, you will notice that the size of the audience effect (first 
column versus second column) does not depend on the self-esteem of the participants. 
For these data, adding an audience produces the same 2-point increase in errors for 
both groups of participants. Thus, the audience effect does not depend on self-esteem, 
and there is no interaction. Now consider the data in Table 13.6. This time, the effect of 
adding an audience depends on the self-esteem of the participants. For example, there 
is a 4-point increase in errors for the low self-esteem participants but adding an audi-
ence has no effect on the errors for the high self-esteem participants. Thus, the audience 
effect depends on the level of self-esteem, which means that there is an interaction 
between the two factors.

The second alternative definition of an interaction is obtained when the results of a 
two-factor study are presented in a graph. In this case, the concept of an interaction can 
be defined in terms of the pattern displayed in the graph. Figure 13.2 shows the two 
sets of data we have been considering. The original data from Table 13.5, where there 
is no interaction, are presented in Figure 13.2(a). To construct this figure, we selected 
one of the factors to be displayed on the horizontal axis; in this case, the different levels 
of the audience factor are displayed. The dependent variable, the number of errors, is 
shown on the vertical axis. Note that the figure actually contains two separate graphs: 
The top line shows the relationship between the audience factor and errors for the low 
self-esteem participants, and the bottom line shows the relationship for the high self-
esteem participants. In general, the picture in the graph matches the structure of the data 

D e f i n i t i o n
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Figure 13.2

(a) Graph showing the treatment means from Table 13.5, for which there is no interaction.  
(b) Graph for Table 13.6, for which there is an interaction.

(a) (b)
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matrix; the columns of the matrix appear as values along the X-axis, and the rows of the 
matrix appear as separate lines in the graph.

For the original set of data, Figure 13.2(a), note that the two lines are parallel; that is, 
the distance between lines is constant. In this case, the distance between lines reflects 
the 2-point difference in mean errors between low and high self-esteem participants, 
and this 2-point difference is the same for both audience conditions.

Now look at a graph that is obtained when there is an interaction in the data. 
Figure 13.2(b) shows the data from Table 13.6. This time, note that the lines in the 
graph are not parallel. The distance between the lines changes as you scan from 
left to right. For these data, the distance between the lines corresponds to the self-
esteem effect—that is, the mean difference in errors for low versus high self-esteem 
participants. The fact that this difference depends on the audience condition is an 
indication of an interaction between the two factors.

When the results of a two-factor study are presented in a graph, the existence of 
nonparallel lines (lines that cross or diverge) indicates an interaction between 
the two factors.

For many students, the concept of an interaction is easiest to understand using the 
perspective of interdependency; that is, an interaction exists when the effects of one 
variable depend on another factor. However, the easiest way to identify an interaction 
within a set of data is to draw a graph showing the treatment means. The presence of 
nonparallel lines is an easy way to spot an interaction.

The two-factor ANOVA consists of three hypothesis tests, each evaluating specific 
mean differences: the A effect, the B effect, and the A 3 B interaction. As we have 
noted, these are three separate tests, but you should also realize that the three tests are 
independent. That is, the outcome for any one of the three tests is totally unrelated to the 
outcome for either of the other two. Thus, it is possible for data from a two-factor study 
to display any possible combination of significant and/or not significant main effects 
and interactions. The data sets in Table 13.7 show several possibilities.

Table 13.7(a) shows data with mean differences between levels of factor A (an  
A effect) but no mean differences for factor B and no interaction. To identify the  
A effect, notice that the overall mean for A

1
 (the top row) is 10 points higher than the 

overall mean for A
2
 (the bottom row). This 10-point difference is the main effect for 

factor A. To evaluate the B effect, notice that both columns have exactly the same 
overall mean, indicating no difference between levels of factor B; hence, there is no 
B effect. Finally, the absence of an interaction is indicated by the fact that the overall 
A effect (the 10-point difference) is constant within each column; that is, the A effect 
does not depend on the levels of factor B. (Alternatively, the data indicate that the 
overall B effect is constant within each row.)

Table 13.7(b) shows data with an A effect and a B effect but no interaction. For these 
data, the A effect is indicated by the 10-point mean difference between rows, and the  
B effect is indicated by the 20-point mean difference between columns. The fact that the 
10-point A effect is constant within each column indicates no interaction.

Finally, Table 13.7(c) shows data that display an interaction but no main effect 
for factor A or for factor B. For these data, there is no mean difference between rows  
(no A effect) and no mean difference between columns (no B effect). However, within 
each row (or within each column), there are mean differences. The “extra” mean differ-
ences within the rows and columns cannot be explained by the overall main effects and  
therefore indicate an interaction.

D e f i n i t i o n

iNdepeNdeNce  
of MaiN effects  

aNd iNteractioNs

The A 3 B interaction 
typically is called “A by B” 
interaction. If there is an 
interaction between an  
audience and self-esteem, it 
may be called the “audience 
by self-esteem” interaction.
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 1. The following matrix shows the results from a two-factor experiment.

 a. What means are compared to evaluate the main effect for factor A?

 b. What means are compared to evaluate the main effect for factor B?

 c. Does there appear to be an interaction between the two factors? Explain your 
answer.

B1 B2

A1 M 5 20 M 5 30 M 5 25

A2 M 5 10 M 5 10 M 5 10

M 5 15 M 5 25

 2. It is impossible to have an interaction unless you also have main effects for at least 
one of the two factors. (True or false?)

l E A R n i n g  C H E C k

a. Data showing a main effect for factor A but no B effect and no interaction

B1 B2

A1 20 20 A
1
 mean 5 20

m
n 10-point difference

A2 10 10 A
2
 mean 5 10

B
1
 mean 

5 15
B

2
 mean 

5 15
m888n

No difference

b. Data showing main effects for both factor A and factor B but no interaction

B1 B2

A1 10 30 A
1
 mean 5 20

m
n 10-point difference

A2 20 40 A
2
 mean 5 30

B
1
 mean 

5 15
B

2
 mean 

5 35
m888n

20-point difference

c. Data showing no main effect for either factor but an interaction

B1 B2

A1 10 20 A
1
 mean 5 15

m
n No difference

A2 20 10 A
2
 mean 5 15

B
1
 mean 

5 15
B

2
 mean 

5 15
m888n

No difference

TAblE 13.7

Three sets of data showing 
different combinations of 
main effects and interaction 
for a two-factor study. (The 
numerical value in each cell 
of the matrices represents 
the mean value obtained for 
the sample in that treatment 
condition.)
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 1. a. The main effect for factor A compares M 5 25 and M 5 10.

 b. The main effect for factor B compares M 5 15 and M 5 25.

 c. Yes, there is an interaction. In A
1
 there is a 10-point difference between the two levels  

of factor B, but in A
2
 there is no mean difference. Thus, the B effect depends on the levels 

of factor A.

 2. False. The existence of an interaction is completely independent of the main effects.

AnswERs

The two-factor ANOVA is composed of three distinct hypothesis tests:

 1. The main effect of factor A (often called the A-effect). Assuming that factor A is 
used to define the rows of the matrix, the main effect of factor A evaluates the 
mean differences between rows.

 2. The main effect of factor B (called the B-effect). Assuming that factor B is used 
to define the columns of the matrix, the main effect of factor B evaluates the 
mean differences between columns.

 3. The interaction (called the A 3 B interaction). The interaction evaluates mean 
differences between treatment conditions that are not predicted from the overall 
main effects from factor A or factor B.

For each of these three tests, we are looking for mean differences between treatments 
that are larger than would be expected if there were no treatment effects. In each case, 
the significance of the treatment effect is evaluated by an F-ratio. All three F-ratios have 
the same basic structure:

F 5
variance (mean differences) between treatmments

variance (mean differences) expected iif there is no treatment effect  
(13.12)

The general structure of the two-factor ANOVA is shown in Figure 13.3. Note that 
the overall analysis is divided into two stages. In the first stage, the total variability is 
separated into two components: between-treatments variability and within-treatments 
variability. This first stage is identical to the single-factor ANOVA introduced in 
Chapter 12 with each cell in the two-factor matrix viewed as a separate treatment condi-
tion. The within-treatments variability that is obtained in stage 1 of the analysis is used 
to compute the denominator for the F-ratios. As we noted in Chapter 12, within each 
treatment, all of the participants are treated exactly the same. Thus, any differences 
that exist within the treatments cannot be caused by treatment effects. As a result, the 
within-treatments variability provides a measure of the differences that exist when there 
are no systematic treatment effects influencing the scores (see Equation 13.12).

The between-treatments variability obtained in stage 1 of the analysis combines all 
the mean differences produced by factor A, factor B, and the interaction. The purpose 
of the second stage is to partition the differences into three separate components: differ-
ences attributed to factor A, differences attributed to factor B, and any remaining mean 
differences that define the interaction. These three components form the numerators for 
the three F-ratios in the analysis.

The goal of this analysis is to compute the variance values needed for the three F-ratios. 
We need three between-treatments variances (one for factor A, one for factor B, and one for 
the interaction), and we need a within-treatments variance. Each of these variances (or mean 
squares) is determined by a sum of squares value (SS) and a degrees of freedom value (df):

mean square 5 5MS
SS

df

tHe structure  
of tHe two-factor 

aNoVa

Remember that in ANOVA 
a variance is called a mean 
square, or MS.
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To demonstrate the two-factor ANOVA, we will use a research study based on previous 
work by Ackerman and Goldsmith (2011). Their study compared learning performance 
by students who studied text either from printed pages or from a computer screen. The 
results from the study indicate that students do much better studying from printed pages 
if their study time is self-regulated. However, when the researchers fixed the time spent 
studying, there was no difference between the two conditions. Apparently, students are 
less accurate predicting their learning performance or have trouble regulating study 
time when working with a computer screen compared to working with paper. Table 13.8 
shows data from a two-factor study replicating the Ackerman and Goldsmith experi-
ment. The two factors are mode of presentation (paper or computer screen) and time 
control (self-regulated or fixed). A separate group of n 5 5 students was tested in each 
of the four conditions. The dependent variable is student performance on a 10-point 
quiz covering the text that was studied.

The data are displayed in a matrix with the two levels of time control (factor A) 
making up the rows and the two levels of presentation mode (factor B) making up the 
columns. Note that the data matrix has a total of four cells or treatment conditions with 
a separate sample of n 5 5 participants in each condition. Most of the notation should 
be familiar from the single-factor ANOVA presented in Chapter 12. Specifically, the 
treatment totals are identified by T values, the total number of scores in the entire 
study is N 5 20, and the grand total (sum) of all 20 scores is G 5 155. In addition to 
these familiar values, we have included the totals for each row and for each column 
in the matrix. The goal of the ANOVA is to determine whether the mean differences 
observed in the data are significantly greater than would be expected if there were no 
treatment effects.

The first stage of the two-factor analysis separates the total variability into two compo-
nents: between-treatments and within-treatments. The formulas for this stage are identi-
cal to the formulas used in the single-factor ANOVA in Chapter 12 with the provision 

E x A M P l E  1 3 . 4

stage 1 of tHe two-
factor aNalysis

Stage 1

Stage 2

Between-treatments
variance

Factor A
variance

Factor B
variance

Interaction
variance

Total
variance

Within-treatments
variance

Figure 13.3

Structure for the analysis 
for a two-factor ANOVA.
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that each cell in the two-factor matrix is treated as a separate treatment condition. The 
formulas and the calculations for the data in Table 13.8 are as follows:

Total variability

SS
G

Ntotal
25  2o X

2

 
(13.13)

For these data,

SStotal

1303 1201.2

5 2

         5 2 

1303
155

20

2

55

101.75        5 

This SS value measures the variability for all N 5 20 scores and has degrees of 
freedom given by

df
total

 5 N – 1  (13.14)

For the data in Table 13.8, df
total

 5 19.

Within-treatments variability To compute the variance within treatments, we first 
compute SS and df 5 n – 1 for each of the individual treatment conditions. Then the 
within-treatments SS is defined as

SS
within treatments

 5 oSS
each treatment

 (13.15)

Factor B: Text 
Presentation Mode

Paper
Computer 

Screen

11 4
8 4
9 8

Self-regulated 10 5 T
row

 5 70
7 4

M 5 9 M 5 5

T 5 45 T 5 25 N 5 20
Factor A:  
Time Control

SS 5 10 SS 5 12 G 5 155

10 10 oX2 5 1303
7 6
10 10
6 10

Fixed 7 9 T
row

 5 85

M 5 8 M 5 9

T 5 40 T 5 45

SS 5 14 SS 5 12

T
col

 5 85 T
col

 5 70

TAblE 13.8

Data for a two-factor study 
comparing two levels of time 
control (self-regulated or 
fixed by the researchers) and 
two levels of text presenta-
tion (paper and computer 
screen). The dependent vari-
able is performance on a quiz 
covering the text that was 
presented. The study involves 
four treatment conditions 
with n 5 5 participants in 
each treatment.
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And the within-treatments df is defined as

df
within treatments

 5 odf
each treatment

 (13.16)

For the four treatment conditions in Table 13.8,

SS
within treatments

 5 10 1 12 1 14 1 12

5 48

df
within treatments

 5 4 1 4 1 4 1 4

5 16

Between-treatments variability Because the two components in stage 1 must add up 
to the total, the easiest way to find SS

between treatments
 is by subtraction.

SS
between treatments

 5 SS
total

 – SS
within

 (13.17)

For the data in Table 13.8, we obtain

SS
between treatments

 5 101.75 – 48 5 53.75

However, you can also use the computational formula to calculate SS
between treatments

 
directly.

SS
T

nbetween treatments

2

5  2o G

N

2

 
(13.18)

For the data in Table 13.8, there are four treatments (four T values), each with  
n 5 5 scores, and the between-treatments SS is

SSbetween treatments  5  1 1 1
45

5

25

5

40

5

45

5

2 2 2 2

11

                        5 1 1

155

20

2

405 125 3200 405 1201.25

53.

1 2

                        5 775

The between-treatments df value is determined by the number of treatments (or the 
number of T values) minus one. For a two-factor study, the number of treatments is 
equal to the number of cells in the matrix. Thus,

df
between treatments

 5 number of cells 2 1 (13.19)

For these data, df
between

 
treatments

 5 3.
This completes the first stage of the analysis. Note that the two components add to 

equal the total for both SS values and df values.

SS
between treatments

 1 SS
within treatments

 5 SS
total

53.75 1 48 5 101.75

df
between treatments

 1 df
within treatments

 5 df
total

3 1 16 5 19
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The second stage of the analysis determines the numerators for the three F-ratios. 
Specifically, this stage determines the between-treatments variance for factor A,  
factor B, and the interaction.

 1. Factor A. The main effect for factor A evaluates the mean differences between 
the levels of factor A. For this example, factor A defines the rows of the matrix, 
so we are evaluating the mean differences between rows. To compute the SS for 
factor A, we calculate a between-treatment SS using the row totals in exactly the 
same way as we computed SS

between treatments
 using the treatment totals (T values) 

earlier. For factor A, the row totals are 70 and 85, and each total was obtained 
by adding 10 scores.

  Therefore,

SS
T

n

G

NA
ROW

ROW

5 2o 
2 2

 
(13.20)

  For our data,

SSA 5 1 2

5 1 2

70

10

85

10

155

20

2 2 2

490 722.5 12011.25

11.25       5 

  Factor A involves two treatments (or two rows), easy and difficult, so the  
df value is

df
A
 5 number of rows – 1 (13.21)

5 2 – 1

5 1

 2. Factor B. The calculations for factor B follow exactly the same pattern that was 
used for factor A, except for substituting columns in place of rows. The main 
effect for factor B evaluates the mean differences between the levels of factor B, 
which define the columns of the matrix.

SS
T

n

G

NB
COL

COL

5 2o 
2 2

 
(13.22)

For our data, the column totals are 85 and 70, and each total was obtained by adding 
10 scores. Thus,

SSB 5  1 1

       5 1 2

85

10

70

10

155

10

2 2 2

725.5 490 11201.25

11.25       5 

df
B
 5 number of columns – 1 (13.23)

5 2 – 1

5 1

stage 2 of tHe  
two-factor aNalysis
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3. The A 3 B Interaction. The A 3 B interaction is defined as the “extra” mean 
differences not accounted for by the main effects of the two factors. We use this 
definition to find the SS and df values for the interaction by simple subtraction. 
Specifically, the between-treatments variability is partitioned into three parts: 
the A effect, the B effect, and the interaction (see Figure 13.3). We have already 
computed the SS and df values for A and B, so we can find the interaction  
values by subtracting to find out how much is left. Thus,

SS
A 3 B

 5 SS
between treatments

 – SS
A
 – SS

B
 (13.24)

  For our data,

SS
A 3 B

 5 53.75 – 11.25 – 11.25

5 31.25

  Similarly,

df
A 3 B

 5 df
between treatments

 – df
A
 – df

B
 (13.25)

5 3 – 1 – 1

5 1

  An easy to remember alternative formula for df
A 3 B

 is

 df
A 3 B

 5 df
A
 3 df

B
 (13.26)

5 131 5 1

The two-factor ANOVA consists of three separate hypothesis tests with three sepa-
rate F-ratios. The denominator for each F-ratio is intended to measure the variance 
(differences) that would be expected if there are no treatment effects. As we saw  
in Chapter 12, the within-treatments variance is the appropriate denominator for an  
independent-measures design (see page 352). The within-treatments variance is 
called a mean square, or MS, and is computed as follows:

MS
SS

dfwithin treatments
within treatments

wi

5
tthin treatments

For the data in Table 13.8,

MSwithin treatments 5 5
48

16
3

This value forms the denominator for all three F-ratios.
The numerators of the three F-ratios all measured variance or differences between 

treatments: differences between levels of factor A, differences between levels of factor 
B, and extra differences that are attributed to the A 3 B interaction. These three vari-
ances are computed as follows:

MS
SS

df
MS

SS

df
MS

SS

dfA
A

A
B

B

B
A B

A B5 5 53
3

AA B3

For the data in Table 13.9, the three MS values are

MS MSA B5 5 5 5
11 25

1
11 25

11 25

1
11 25

.
.

.
. MMSA B3 5 5

31 25

1
31 25

.
.

MeaN squares  
aNd f-ratios for  

tHe two-factor 
aNoVa
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Finally, the three F-ratios are

F
MS

MS

F
MS

A
A

B
B

5 5 5

5

within treatments

11 25

3
3 75

.
.

MMS

F
MS

MA B
A B

within treatments

5 5

53
3

11 25

3
3 75

.
.

SSwithin treatments

5 5
31 25

3
10 41

.
.

To determine the significance of each F-ratio, we must consult the F distribution 
table using the df values for each of the individual F-ratios. For this example, all three 
F-ratios have df 5 1 for the numerator and df 5 16 for the denominator. Checking the 
table with df 5 1, 16, we find a critical value of 4.49 for a 5 .05 and a critical value of 
8.53 for a 5 .01. For both main effects, we obtained F 5 3.75, so neither of the main 
effects is significant. For the interaction, we obtained F 5 10.41, which exceeds both 
of the critical values, so we conclude that there is a significant interaction between the 
two factors. That is, the difference between the two modes of presentation depends on 
how studying time is controlled.

Table 13.9 is a summary table for the complete two-factor ANOVA from Example 
13.4. Although these tables are no longer commonly used in research reports, they pro-
vide a concise format for displaying all of the elements of the analysis.

Source SS df MS F

Between treatments  53.75 3

Factor A (time control)  11.25 1 11.25 F(1, 16) 5 3.75
Factor B (presentation)  11.25 1 11.25 F(1, 16) 5 3.75

A 3 B  31.25 1 31.25 F(1, 16) 5 10.42
Within treatments  48 16  3
Total 101.75 19

TAblE 13.9

A summary table for the  
two-factor ANOVA for the 
data from Example 13.4.

 1. Explain why the within-treatment variability is the appropriate denominator for the 
two-factor independent-measures F-ratios.

 2. The following data summarize the results from a two-factor independent-measures 
experiment:

l E A R n i n g  C H E C k

Factor B

B1 B2 B3

Factor A

n 5 5 n 5 5 n 5 5
A1 T 5 0  T 5 10  T 5 20

SS 5 30 SS 5 40 SS 5 50

n 5 5 n 5 5 n 5 5
A2  T 5 10  T 5 10  T 5 10

SS 5 60 SS 5 50 SS 5 40
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 a. Calculate SS for factor A.

 b. Calculate SS for factor B.

 c. Given that the between-treatments (or between-cells) SS is equal to 40, what is 
the SS for the interaction?

 3. The following table summarizes the results from a two-factor ANOVA with 2 
levels of factor A, 3 levels of factor B, and n = 6 in each treatment condition. Fill 
in all of the blank cells.

Source SS df MS

Between Treat. 75 __
Factor A __ __ __ F 5 __
Factor B __ __ 15 F 5 __

A 3 B __ __ __ F 5 6.00
Within Treat. __ __ __
Total 165 __

 1. Within each treatment condition, all individuals are treated in exactly the same way. 
Therefore, the within-treatment variability measures the differences that exist between one 
score and another when there is no treatment effect causing the scores to be different. This is 
exactly the variance that is needed for the denominator of the F-ratios.

 2. a. The totals for factor A are 30 and 30, and each total is obtained by adding 15 scores. SS
A
 5 0.

 b. The totals for factor B are 10, 20, and 30, and each total is obtained by adding 10 scores. 
SS

B
 5 20.

 c. The interaction is determined by differences that remain after the main effects have been 
accounted for. For these data,

SS
A 3 B

 5 SS
between treatments

 – SS
A
 – SS

B

5 40 – 0 – 20

5 20

 3. 

AnswERs

Source SS df MS

Between Treat. 75 5
Factor A 9 1 9 F 5 3.00
Factor B 30 2 15 F 5 5.00

A 3 B 36 2 18 F 5 6.00
Within Treat. 90 30 3
Total 165 35

The general technique for measuring effect size with an ANOVA is to compute a value 
for h2, the percentage of variance that is explained by the treatment effects. For a two-
factor ANOVA, we compute three separate values for h2: one measuring how much of 
the variance is explained by the main effect for factor A, one for factor B, and a third 
for the interaction. As we did with the repeated-measures ANOVA (page 404), we 
remove any variability that can be explained by other sources before we calculate the 

MeasuriNg effect 
size for tHe  

two-factor aNoVa
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percentage for each of the three specific treatment effects. Thus, for example, before we 
compute the h2 for factor A, we remove the variability that is explained by factor B and 
the variability explained by the interaction. The resulting equation is,

for factor
total

A
SS

SS SS SS
A

B A B

, h 5
2 2 3

2

 
(13.27)

Note that the denominator of Equation 13.27 consists of the variability that is ex-
plained by factor A and the other unexplained variability. Thus, an equivalent version 
of the equation is,

for factor
within treatments

A
SS

SS SS
A

A

, h 5
1

2

 
(13.28)

Similarly, the h2 formulas for factor B and for the interaction are as follows:

for factor
total

B
SS

SS SS SS

SS

SS
B

A A B

B, h 5
2 2

5
3

2

BB SS1 within treatments  
(13.29)

for ,
total

A B
SS

SS SS SS

SS

SS
A B

A B

A B

A B

3 h 5
2 2

53 3

3

2

11SSwithin treatments  
(13.30)

Because each of the h2 equations computes a percentage that is not based on the total 
variability of the scores, the results are often called partial eta squares. For the data in 
Example 13.4, the equations produce the following values:

         h 52 11
for factor time control)A (

..

.
.

(

25

11 25 48
0 190

2

1
5

h for factor presentaB ttion mode)
11.25

11.25 48
5

1
5

         h

0 190

2

.

ffor factor interation
31.25

31.25 48
A B3 5

1
5 00 394.

in THE liTERATuRE
REPoRTing THE REsulTs oF A Two-FACToR AnoVA

The APA format for reporting the results of a two-factor ANOVA follows the same 
basic guidelines as the single-factor report. First, the means and standard deviations 
are reported. Because a two-factor design typically involves several treatment condi-
tions, these descriptive statistics often are presented in a table or a graph. Next, the 
results of all three hypothesis tests (F-ratios) are reported. The results for the study in 
Example 13.4 could be reported as follows:

The means and standard deviations for all treatment conditions are shown in 
Table 1. The two-factor analysis of variance showed no significant main effect 
for time control, F(1, 16) 5 3.75, p . .05, h2 5 0.190, or for presentation mode, 
F(1, 16) 5 3.75, p . .05, h2 5 0.190. However, the interaction between factors 
was significant, F(1, 16) 5 10.41, p , .01, h2 5 0.394.
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Because the two-factor ANOVA involves three separate tests, you must consider the 
overall pattern of results rather than focusing on the individual main effects or the 
interaction. In particular, whenever there is a significant interaction, you should be 
cautious about accepting the main effects at face value (whether they are significant or 
not). Remember, an interaction means that the effect of one factor depends on the level 
of the second factor. Because the effect changes from one level to the next, there is no 
consistent “main effect.”

Figure 13.4 shows the sample means obtained from the paper versus computer 
screen study. Recall that the analysis showed that both main effects were not signifi-
cant but the interaction was significant. Although both main effects were too small to 
be significant, it would be incorrect to conclude that neither factor influenced behavior. 
For this example, the difference between studying text presented on paper versus on a 
computer screen depends on how studying time is controlled. Specifically, there is little 
or no difference between paper and a computer screen when the time spent studying is 
fixed by the researchers. However, studying text from paper produces much higher quiz 
scores when participants regulate their own study time. Thus, the difference between 
studying from paper and studying from a computer screen depends on how the time 
spent studying is controlled. This interdependence between factors is the source of the 
significant interaction.

The validity of the ANOVA presented in this chapter depends on the same three 
assumptions that we have encountered with other hypothesis tests for independent-
measures designs (the t test in Chapter 10 and the single-factor ANOVA in Chapter 12):

 1. The observations within each sample must be independent (see page 220).

 2. The populations from which the samples are selected must be normal.

 3. The populations from which the samples are selected must have equal variances 
(homogeneity of variance).

As before, the assumption of normality generally is not a cause for concern, 
especially when the sample size is relatively large. The homogeneity of variance 

iNterpretiNg  
tHe results froM  

a two-factor aNoVa

assuMptioNs for  
tHe two-factor 

aNoVa

10

9

8

7

6

5

4

3

2

1

Paper

Mode of Text Presentation

Computer
Screen

fixed time

self-regulated time

Mean

Quiz

Score

Figure 13.4

Sample means for the 
data in Example 13.4.  
The data are quiz scores 
from a two-factor study 
examining the effect of 
studying text on paper 
versus on a computer 
screen for either a  
fixed time or a self- 
regulated time.
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assumption is more important, and if it appears that your data fail to satisfy this 
requirement, you should conduct a test for homogeneity before you attempt the 
ANOVA. Hartley’s F-max test (see page 301) allows you to use the sample variances 
from your data to determine whether there is evidence for any differences among 
the population variances. Remember, for the two-factor ANOVA, there is a separate 
sample for each cell in the data matrix. The test for homogeneity applies to all these 
samples and the populations they represent.

Summary

 1. The repeated-measures ANOVA is used to evaluate 
the mean differences obtained in a research study 
comparing two or more treatment conditions using 
the same sample of individuals in each condition. 
The test statistic is an F-ratio, in which the numerator 
measures the variance (differences) between treat-
ments and the denominator measures the variance 
(differences) that is expected without any treatment 
effects or individual differences.

F
MS

MS
5 between treatments

error

 2. The first stage of the repeated-measures ANOVA is 
identical to the independent-measures ANOVA and 
separates the total variability into two components: 
between-treatments and within-treatments. Because 
a repeated-measures design uses the same subjects 
in every treatment condition, the differences between 
treatments cannot be caused by individual differences. 
Thus, individual differences are automatically  
eliminated from the between-treatments variance  
in the numerator of the F-ratio.

 3. In the second stage of the repeated-measures analysis, 
individual differences are computed and removed 
from the denominator of the F-ratio. To remove  
the individual differences, you first compute the 
variability between subjects (SS and df) and then 
subtract these values from the corresponding  
within-treatments values. The residual provides a 
measure of error excluding individual differences, 
which is the appropriate denominator for the  
repeated-measures F-ratio.

 4. Effect size for the repeated-measures ANOVA is  
measured by computing eta squared, the percentage of 
variance accounted for by the treatment effect. For the 
repeated-measures ANOVA

h 5
2

2 SS

SS SS
between treatments

total between subbjects

5
1

SS

SS S
between treatments

between treatments SSerror

  Because part of the variability (the SS caused by 
individual differences) is removed before computing 
h2, this measure of effect size is often called a partial 
eta squared.

 5. A research study with two independent variables is 
called a two-factor design. Such a design can be  
diagramed as a matrix with the levels of one factor  
defining the rows and the levels of the other factor  
defining the columns. Each cell in the matrix corre-
sponds to a specific combination of the two factors.

 6. Traditionally, the two factors are identified as factor A  
and factor B. The purpose of the ANOVA is to deter-
mine whether there are any significant mean differ-
ences among the treatment conditions or cells in  
the experimental matrix. These treatment effects are 
classified as follows:

 a. The A-effect: Overall mean differences among the 
levels of factor A.

 b. The B-effect: Overall mean differences among the 
levels of factor B.

 c. The A 3 B interaction: Extra mean differences that 
are not accounted for by the main effects.

 7. The two-factor ANOVA produces three F-ratios: one for 
factor A, one for factor B, and one for the A 3 B inter-
action. Each F-ratio has the same basic structure:

F
MS A B A B

M
5

3treatment effect either or or( )
SSwithin treatments

  The formulas for the SS, df, and MS values for the 
two-factor ANOVA are presented in Figure 13.5.
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Key terMs

Total

SS = ΣX 2 – G
2

—
N

df = N – 1

Between treatments

SS = Σ T 2
– G2

— —
n N

df = (number of cell)  – 1

Factor A (rows)

SS = Σ
T 2

ROW

ROW

– G2
—
Nn

df = (levels of A) – 1

Factor B (columns)

SS = Σ
T 2

COL

COL

– G2
—
Nn

df = (levels of B)  – 1

SS
Interaction
    is found by
subtraction

df    is found by
subtration

Within treatments

SS = ΣSSeach cell

Σdfeach celldf = 

= SS  for the factor
 for the factordf

MS factor = SS  within treatments
 within treatmentsdf

MS within

Figure 13.5

The ANOVA for an 
independent-measures 
two-factor design.

individual differences (396)

between-treatments variance (398)

error variance (398)

between-subjects variance (398)

two-factor design (410)

matrix (411)

cell (411)

main effect (411)

interaction (413)
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General instructions for using SPSS are presented in Appendix D. Following are  
detailed instructions for using SPSS to perform the Single-Factor, Repeated-Measures 
Analysis of Variance (ANOVA) presented in this chapter.

Data Entry

Enter the scores for each treatment condition in a separate column, with the scores 
for each individual in the same row. All of the scores for the first treatment go in the 
VAR00001 column, the second treatment scores go in the VAR00002 column, and 
so on.

Data Analysis

 1. Click Analyze on the tool bar, select General Linear Model, and click on 
Repeated-Measures.

 2. SPSS presents a box entitled Repeated-Measures Define Factors. Within the 
box, the Within-Subjects Factor Name should already contain Factor 1. If not, 
type in Factor 1.

 3. Enter the Number of levels (number of different treatment conditions) in the 
next box.

 4. Click Add.

 5. Click Define.

 6. One by one, move the column labels for your treatment conditions into the 
Within Subjects Variables box. (Highlight the column label on the left and 
click the arrow to move it into the box.)

 7. If you want descriptive statistics for each treatment, click on the Options box, 
select Descriptives, and click Continue.

 8. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the study comparing different 
strategies for studying that was presented in Example 13.1. Portions of the program 
output are shown in Figure 13.6. Note that large portions of the SPSS output are not 
relevant for our purposes and are not included in Figure 13.6. The first item of interest 
is the table of Descriptive Statistics, which presents the mean, standard deviation, 
and number of scores for each treatment. Next, we skip to the table showing Tests 
of Within-Subjects Effects. The top line of the factor1 box (Sphericity Assumed) 
shows the between-treatments sum of squares, degrees of freedom, and mean square 
that form the numerator of the F-ratio. The same line reports the value of the F-ratio 
and the level of significance (the p value or alpha level). Similarly, the top line of 
the Error (factor1) box shows the sum of squares, the degrees of freedom, and the 
mean square for the error term (the denominator of the F-ratio). The final box in 
the output (not shown in Figure 13.6) is labeled Tests of Between-Subjects Effects  
and the bottom line (Error) reports the between-subjects sum of squares and degrees 
of freedom (ignore the mean square and F-ratio, which are not part of the repeated-
measures ANOVA).

Following are detailed instructions for using SPSS to perform the Two-Factor, 
Independent-Measures Analysis of Variance (ANOVA) presented in this chapter.
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Data Entry

 1. The scores are entered into the SPSS data editor in a stacked format, which 
means that all of the scores from all of the different treatment conditions are 
entered in a single column (VAR00001).

 2. In a second column (VAR00002) enter a code number to identify the level of 
factor A for each score. If factor A defines the rows of the data matrix, enter a 1 
beside each score from the first row, enter a 2 beside each score from the sec-
ond row, and so on.

 3. In a third column (VAR00003) enter a code number to identify the level of fac-
tor B for each score. If factor B defines the columns of the data matrix, enter a 
1 beside each score from the first column, enter a 2 beside each score from the 
second column, and so on.

Descriptive Statistics

Tests of Within-Subjects Effects

Measure:MEASURE_1

Source

factor 1

Type III Sum
of Squares df Mean

Square F Sig.

Mean

VAR00001

VAR00002

VAR00003

VAR00004

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

60.000

60.000

60.000

60.000

3

2.178

3.000

1.000

20.000

27.551

20.000

60.000

14.000

14.000

14.000

14.000

15

10.889

15.000

5.000

.933

1.286

.933

2.800

21.429

21.429

21.429

21.429

.000

.000

.000

.006

Error (factor 1) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

5.0000

6.0000

8.0000

9.0000

2.00000

2.00000

1.67332

1.26491

6

6

6

6

Std. Deviation N

Figure 13.6

Portions of the SPSS output for the repeated-measures ANOVA for the study evaluating different 
strategies for studying in Example 13.1.
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Thus, each row of the SPSS data editor will have one score and two code numbers, 
with the score in the first column, the code for factor A in the second column, and the 
code for factor B in the third column.

Data Analysis

 1. Click Analyze on the tool bar, select General Linear Model, and click on 
Univariant.

 2. Highlight the column label for the set of scores (VAR0001) in the left box and 
click the arrow to move it into the Dependent Variable box.

 3. One by one, highlight the column labels for the two factor codes and click the 
arrow to move them into the Fixed Factors box.

 4. If you want descriptive statistics for each treatment, click on the Options box, 
select Descriptives, and click Continue.

 5. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the study in Example 13.4, and part 
of the program output is shown in Figure 13.7. The output begins with a table listing the 
factors (not shown in Figure 13.7), followed by a table showing descriptive statistics, 
including the mean and standard deviation for each cell or treatment condition. The  
results of the ANOVA are shown in the table labeled Tests of Between-Subjects 
Effects. The top row (Corrected Model) presents the between-treatments SS and  
df values. The second row (Intercept) is not relevant for our purposes. The next three 
rows present the two main effects and the interaction (the SS, df, and MS values,  
as well as the F-ratio and the level of significance), with each factor identified by its 
column number from the SPSS data editor. The next row (Error) describes the error 
term (denominator of the F-ratio), and the final row (Corrected Total) describes the 
total variability for the entire set of scores. (Ignore the row labeled Total.)

focus oN probleM solViNg

 1. Before you begin a repeated-measures ANOVA, complete all of the prelimi-
nary calculations needed for the ANOVA formulas. This requires that you  
find the total for each treatment (Ts), the total for each person (Ps), the grand 
total (G), the SS for each treatment condition, and oX2 for the entire set of  
N scores. As a partial check on these calculations, be sure that the T values 
add up to G and that the P values have a sum of G.

 2. To help remember the structure of repeated-measures ANOVA, keep in mind 
that a repeated-measures experiment eliminates the contribution of individual 
differences. There are no individual differences contributing to the numera-
tor of the F-ratio (MS

between treatments
) because the same individuals are used for 

all treatments. Therefore, you must also eliminate individual differences in 
the denominator. This is accomplished in the second stage of the analysis by 
subtracting the between-subjects variance from the within subjects variance 
to produce an error term for the F-ratio.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    FoCus on PRoblEM solVing    433

 3. Before you begin a two-factor ANOVA, take time to organize and  
summarize the data. It is best if you summarize the data in a matrix with 
rows corresponding to the levels of one factor and columns corresponding 
to the levels of the other factor. In each cell of the matrix, show the  
number of scores (n), the total and mean for the cell, and the SS within  
the cell. Also compute the row totals and column totals that are needed  
to calculate main effects.

 4. For a two-factor ANOVA, there are three separate F-ratios. Although the  
three F-ratios use the same error term in the denominator (MS

within
), they have 

different numerators, which may have different df values.

Descriptive Statistics

Dependent Variable: VAR00001

VAR00003VAR00002 Mean

1.00

2.00

Total

1.00

2.00

Total

1.00

2.00

Total

1.00

2.00

Total

9.0000

5.0000

7.0000

8.0000

9.0000

8.5000

8.5000

7.0000

7.7500

1.58114

1.73205

2.62467

1.87083

1.73205

1.77951

1.71594

2.66667

2.31414

5

5

10

5

5

10

10

10

20

Std. Deviation N

Tests of Between-Subjects Effects

Dependent Variable: VAR00001

Source

Corrected Model

Intercept

VAR00002

VAR00003

VAR00002 * VAR00003

Error

Total

Corrected Total

Type III Sum
of Squares df Mean

Square F Sig.

53.750
a

1201.250

11.250

11.250

31.250

48.000

1303.000

101.750

3

1

1

1

1

16

20

19

17.917

1201.250

11.250

11.250

31.250

3.000

5.972

400.417

3.750

3.750

10.417

.006

.000

.071

.071

.005

Figure 13.7

Portions of the SPSS 
output for the two-factor 
ANOVA for the study in 
Example 13.4.
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deMoNstratioN 13.1

repeated-Measures aNoVa

The following data were obtained from a research study examining the effect of sleep 
deprivation on motor-skills performance. A sample of five participants was tested on 
a motor-skills task after 24 hours of sleep deprivation, tested again after 36 hours, and 
tested once more after 48 hours. The dependent variable is the number of errors made 
on the motor-skills task. Do these data indicate that the number of hours of sleep 
deprivation has a significant effect on motor skills performance?

Participant 24 Hours 36 Hours 48 Hours P totals

A 0 0 6 6 N 5 15
B 1 3 5 9 G 5 45
C 0 1 5 6 oX2 5 245
D 4 5 9 18
E 0 1 5 6

T 5 5 T 5 10 T 5 30

SS 5 12 SS 5 16 SS 5 12

State the hypotheses, and specify alpha. The null hypothesis states that, for the gen-
eral population, there are no differences among the three deprivation conditions. Any 
differences that exist among the samples are simply the result of chance or error. In 
symbols,

H
0
: m

1
 5 m

2
 5 m

3

The alternative hypothesis states that there are differences among the conditions.

H
1
: At least one of the treatment means is different.

We use a 5 .05.

Locate the critical region. Rather than compute the df values and look for a critical 
value for F at this time, we proceed directly to the ANOVA.

The first stage of the analysis is identical to the independent-measures ANOVA presented 
in Chapter 12.

SS
G

Ntotal
25  2 5 2 5o X

2 2

245
45

15
110

SS
within

 5 ∑SS
inside each treatment

 5 12 1 16 1 12 5 40

SS
n

G

Nbetween 75 2 5 1 1 2 5o T
2 2 2 2 2 25

5

10

5

30

5

45

15
0

and the corresponding degrees of freedom are

df
total

 5 N –1 5 14

df
within

 5 odf 5 4 1 4 1 4 5 12

df
between

 5 k – 1 5 2

S t e p  1

S t e p  2

S t a g e  1
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The second stage of the repeated-measures analysis measures and removes the individual 
differences from the denominator of the F-ratio.

SS
k

G

Nbetween subjects 5 2

               

o P
2 2

       5 1 1 1 1 2

         

6

3

9

3

6

3

18

3

6

3

45

15

2 2 2 2 2 2

             5 36

SS
error

 5 SS
within

 5 SS
between subjects

5 40 – 36

5 4

and the corresponding df values are

df
between subjects

 5 n – 1 5 4

df
error

 5 df
within

 – df
between subjects

5 12 – 4

5 8

The mean square values that form the F-ratio are as follows:

MS
SS

df

MS

between
between

between

error

5 5 5

5

70

2
35

SSS

df
error

error

5 5
4

8
0 50.

Finally, the F-ratio is

F
MS

MS
5 5 5between

error

35

0 50
70 00

.
.

Make a decision and state a conclusion. With df 5 2, 8 and a 5 .05, the critical value 
is F 5 4.46. Our obtained F-ratio (F 5 70.00) is well into the critical region, so our 
decision is to reject the null hypothesis and conclude that there are significant differ-
ences among the three levels of sleep deprivation.

deMoNstratioN 13.2

two-factor aNoVa

The following data are from a two-factor study comparing performance in three 
treatment conditions for males and females. There is a separate sample of n 5 10 
participants in each of the six groups. We use a two-factor ANOVA to evaluate the 
significance of the mean differences.

S t a g e  2

S t e p  3
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State the hypotheses, and select alpha.

For a two-factor study, there are three separate hypotheses, the two main effects and 
the interaction.

For factor A, the null hypothesis states that there is no difference in performance for 
males versus females. In symbols,

H
0
: m

males
 5 m

females

For factor B, the null hypothesis states that there is no difference in performance 
among the three treatment conditions. In symbols,

H0 1 2 3
: m m mB B B5 5

For the A 3 B interaction, the null hypothesis states that the effect of either factor 
does not depend on the levels of the other factor.

We will use a 5 .05 for all tests.

Locate the critical region.

Rather than compute the df values and look up critical values for F at this time, we 
proceed directly to the ANOVA.

The first stage of the analysis is identical to the independent-measures ANOVA presented in 
Chapter 12, where each cell in the data matrix is considered a separate treatment condition.

SS X
G

Ntotal 5 2

         5 2 5

o 2
2

2

2312
240

60
1352

SS
within treatments

 5 oSS
each treatment

5 195 1 275 1 220 1 237 1 240 1 225 5 972

SS
T

n

G

Nbetween treatments 5 2

             

o 
2 2

          5 1 1 1 1 1
10

10

50

10

30

10

30

10

30

10

92 2 2 2 2 00

10

240

60

380

2 2

1

                      5

S t e p  1

S t e p  2

S t a g e  1

Factor B (Treatment Condition)

B1 B2 B3

T 5 10 T 5 50 T 5 30
Male M 5 1 M 5 5 M 5 3

Factor A SS 5 195 SS 5 235 SS 5 220

T 5 30 T 5 30 T 5 90
Female M 5 3 M 5 3 M 5 9

SS 5 237 SS 5 240 SS 5 225

N 5 60 G 5240 oX2 5 2312
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The corresponding degrees of freedom are

df
total

 5 N – 1 5 59

df
within treatments

 5 odf
each treatment

 5 9 1 9 1 9 1 9 1 9 1 9 5 54

df
between treatments

 5 number of cells – 1 5 5 

The second stage of the analysis partitions the between-treatments variability into  
three components: the main effect for factor A, the main effect for factor B, and the  
A 3 B interaction.

a. Factor A. The main effect for factor A evaluates the mean differences between the 
levels of factor A. For this example, factor A defines the rows of the matrix, so we 
are evaluating the mean differences between rows. To compute the SS for factor A, 
we calculate a between-treatment SS using the row totals exactly the same as we 
computed SS

between treatments
 using the treatment totals (T values) earlier. For factor A, 

the row totals are 90 and 150, and each total was obtained by adding 30 scores.

For factor A (male, female)

SS
T

n

G

N

ROW

ROW

A 5 2

       5 1 2

o 
2

2

2

90

30

150

30

2 2

  

       5 

240

60
60

2

For factor B (treatments)

SS
T

n

G

N

COL

COL

B 5 2

       5 1 2

o 
2

2

2

40

20

80

20

2 2

  2 

       5 

120

20

240

60
160

2 2

For the A 3 B interaction

SS
A3B

 5 SS
between treatments

 – SS
A
 – SS

B

5 380 – 60 – 160

5 160

The corresponding degrees of freedom are

df
A
 5 number of rows – 1 5 1

df
B
 5 number of columns – 1 5 2

df
A3B

 5 df
between treatments

 – df
A
 – df

B
 5 5 – 1 – 2 5 2

S t a g e  2
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The MS value needed for the F-ratios are

MS

MS

MS

MS

A

B

A B

5 5

5 5

5 53

60

1
60

160

2
80

160

2
80

within ttreatments 5 5
972

54
18

Finally, the three F-ratios are

F
MS

MS

F
MS

MS

A
A

B
B

5 5 5

5

within treatments

60

18
3 33.

wwithin treatments

wit

5 5

53
3

80

18
4 44.

F
MS

MSA B
A B

hhin treatments

5 5
80

18
4 44.

Make a decision and state a conclusion.

The F-ratio for factor A has df 5 1, 54. With a 5 .05, the critical F value is 4.03 
(using df 5 1, 50 from the table). For these data, factor A has no significant effect. 
Statistically, there is no difference in performance between males and females.

Factor B and the interaction both have df 5 2, 54. With a 5 .05, the critical  
F value is 3.18 (using df 5 1, 50 from the table). For these data, there are significant 
differences among the levels of factor B and there is a significant interaction. The in-
teraction indicates that the differences among treatments are not the same for males 
as they are for females.

S t e p  3

probleMs

 1. How does the denominator of the F-ratio (the error 
term) differ for a repeated-measures ANOVA com-
pared to an independent-measures ANOVA?

 2. The repeated-measures ANOVA can be viewed as  
a two-stage process. What is the purpose of the  
second stage?

 3. A researcher conducts an experiment comparing 
three treatment conditions with n 5 10 scores in each 
condition.

 a. If the researcher uses an independent-measures 
design, how many individuals are needed for the 
study and what are the df values for the F-ratio?

 b. If the researcher uses a repeated-measures design, 
how many individuals are needed for the study 
and what are the df values for the F-ratio?

 4. A researcher conducts a repeated-measures experi-
ment using a sample of n 5 8 subjects to evaluate 
the differences among four treatment conditions. If 

the results are examined with an ANOVA, what are 
the df values for the F-ratio?

 5. A researcher uses a repeated-measures ANOVA to 
evaluate the results from a research study and reports 
an F-ratio with df 5 2, 30.

 a. How many treatment conditions were compared 
in the study?

 b. How many individuals participated in the study?

 6. A published report of a repeated-measures research 
study includes the following description of the statisti-
cal analysis. “The results show significant differences 
among the treatment conditions, F(3, 21) 5 6.10,  
p , .01.”

 a. How many treatment conditions were compared 
in the study?

 b. How many individuals participated in the study?

 7. The following data were obtained from a repeated-
measures study comparing two treatment conditions.

 a. Use a repeated-measures t test with a 5 .05 to 
determine whether there are significant mean 
differences between the two treatments. Note that 
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you will need to find the difference score (D) for 
each person.

 b. Use a repeated-measures ANOVA with a 5 .05 
to determine whether there are significant mean 
differences between the two treatments. Within 
rounding error, you should find that F 5 t2.

Treatments

Person I II
Person 
Totals

A 3 5 P 5 8
B 5 9 P 5 14 N 5 16
C 1 5 P 5 6 G 5 80
D 1 7 P 5 8 oX2 5 500
E 5 9 P 5 14
F 3 7 P 5 10
G 2 6 P 5 8
H 4 8 P 5 12

M 5 3 M 5 7

T 5 24 T 5 56

SS 5 18 SS 5 18

 8. A recent study examined how applicants with a facial 
blemish such as a scar or birthmark fared in job inter-
views (Madera & Hebl, 2011). The results indicate that 
interviewers recalled less information and gave lower 
ratings to applicants with a blemish. In a similar study, 
participants conducted computer-simulated interviews 
with a series of applicants including one with a facial 
scar and one with a facial birthmark. The following 
data represent the ratings given to each applicant.

 a. Use a repeated-measures ANOVA with a 5 .05 
to determine whether there are significant mean 
differences among the three conditions.

 b. Compute h2, the percentage of variance accounted 
for by the mean differences, to measure the size 
of the treatment effects.

 c. Write a sentence demonstrating how a research 
report would present the results of the hypothesis 
test and the measure of effect size.

Applicant

Participant Scar Birthmark
No 

Blemish
Person 
Total

A 1 1 4 P 5 6
B 3 4 8 P 5 15 N 515
C 0 2 7 P 5 9 G 5 45
D 0 0 6 P 5 6 oX2 5 231
E 1 3 5 P 5 9

M 5 1 M 5 2 M 5 6

T 5 5 T 5 10 T 5 30

SS 5 6 SS 5 10 SS 5 10

 9. One of the primary advantages of a repeated-measures 
design, compared to an independent-measures design, 
is that it reduces the overall variability by removing 
variance caused by individual differences. The follow-
ing data are from a research study comparing three 
treatment conditions.

 a. Assume that the data are from an independent-
measures study using three separate samples, each 
with n 5 6 participants. Ignore the column of P 
totals and use an independent-measures ANOVA 
with a 5 .05 to test the significance of the mean 
differences.

 b. Now assume that the data are from a repeated-
measures study using the same sample of n 5 6 
participants in all three treatment conditions. Use 
a repeated-measures ANOVA with a 5 .05 to test 
the significance of the mean differences.

 c. Explain why the two analyses lead to different 
conclusions.

Treatment 1 Treatment 2  Treatment 3 P

6 9 12 27
8 8 8 24 N 5 18
5 7 9 21 G 5 108
0 4 8 12 oX2 5 800
2 3 4  9
3 5 7 15

M 5 4 M 5 6 M 5 8

T 5 24 T 5 36 T 5 48

SS 5 42 SS 5 28 SS 5 34

 10. The following data are from an experiment compar-
ing three different treatment conditions:

A B C

0 1 2 N 5 15
2 5 5 oX2 5 354
1 2 6
5 4 9
2 8 8

T 5 10 T 5 20 T 5 30

SS 5 14 SS 5 30 SS 5 30

 a. If the experiment uses an independent-measures 
design, can the researcher conclude that the treat-
ments are significantly different? Test at the .05 
level of significance.

 b. If the experiment is done with a repeated-measures 
design, should the researcher conclude that the 
treatments are significantly different? Set alpha  
at .05 again.

 c. Explain why the analyses in parts a and b lead to 
different conclusions.
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 11. A researcher is evaluating customer satisfaction 
with the service and coverage of two phone carri-
ers. Each individual in a sample of n 5 25 uses one 
carrier for two weeks and then switches to the other. 
Each participant then rates the two carriers. The  
following table presents the results from the 
repeated-measures ANOVA comparing the aver-
age ratings. Fill in the missing values in the table. 
(Hint: Start with the df values.)

Source SS df MS

Between treatments _____ _____ 2 F 5 _____
Within treatments _____ _____
Between subjects _____ _____
Error 12 _____ _____
Total 23 _____

 12. The following summary table presents the results 
from a repeated-measures ANOVA comparing three 
treatment conditions with a sample of n 5 11 sub-
jects. Fill in the missing values in the table. (Hint: 
Start with the df values.)

Source SS df MS

Between treatments _____ _____ _____ F 5 5.00
Within treatments 80 _____
Between subjects _____ _____
Error 60 _____ _____
Total _____ _____

 13. A recent study indicates that simply giving college 
students a pedometer can result in increased walking 
(Jackson & Howton, 2008). Students were given pe-
dometers for a 12-week period, and asked to record 
the average number of steps per day during weeks 1, 
6, and 12. The following data are similar to the re-
sults obtained in the study.

Number of steps (31000)

Week

Participant 1 6 12 P

A 6 8 10 24
B 4 5  6 15

C 5 5  5 15 G 5 72
D 1 2  3  6 oX2 5 400
E 0 1  2  3
F 2 3  4  9

T 5 18 T 5 24 T 5 30

SS 5 28 SS 5 32 SS 5 40

 a. Use a repeated-measures ANOVA with a 5 .05 
to determine whether the mean number of steps 
changes significantly from one week to another.

 b. Compute h2 to measure the size of the treatment 
effect.

 c. Write a sentence demonstrating how a research 
report would present the results of the hypothesis 
test and the measure of effect size.

 14. The following data represent the typical results from 
a delayed discounting study. The participants are 
asked how much they would take today instead of 
waiting for a specific delay period to receive $1000. 
Each participant responds to all 5 of the delay peri-
ods. Use a repeated-measures ANOVA with a 5 .01 
to determine whether there are significant differences 
among the 5 delay periods for the following data:

Participant
1 

month
6 

months
1 

year
2 

years
5 

years

A 950 850 800 700 550
B 800 800 750 700 600
C 850 750 650 600 500
D 750 700 700 650 550
E 950 900 850 800 650
F 900 900 850 750 650

 15. The endorphins released by the brain act as natural 
painkillers. For example, Gintzler (1980) monitored 
endorphin activity and pain thresholds in pregnant 
rats during the days before they gave birth. The data 
showed an increase in pain threshold as the preg-
nancy progressed. The change was gradual until 
1 or 2 days before birth, at which point there was 
an abrupt increase in pain threshold. Apparently a 
natural painkilling mechanism was preparing the 
animals for the stress of giving birth. The following 
data represent pain-threshold scores similar to the 
results obtained by Gintzler. Do these data indicate a 
significant change in pain threshold? Use a repeated-
measures ANOVA with a 5.01.

Days Before Giving Birth

Subject 7 5 3 1

A 39 40 49 52
B 38 39 44 55
C 44 46 50 60
D 40 42 46 56
E 34 33 41 52

 16. The structure of a two-factor study can be presented 
as a matrix with the levels of one factor determining 
the rows and the levels of the second factor deter-
mining the columns. With this structure in mind, 
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describe the mean differences that are evaluated by 
each of the three hypothesis tests that make up a 
two-factor ANOVA.

 17. Briefly explain what happens during the second stage 
of the two-factor ANOVA.

 18. The following matrix presents the results from an 
independent-measures, two-factor study with a sam-
ple of n 5 10 participants in each treatment condi-
tion. Note that one treatment mean is missing.

Factor B

B1 B2

Factor A
A1 M 5 20 M 5 30

A2 M 5 40

 a. What value for the missing mean would result in 
no main effect for factor A?

 b. What value for the missing mean would result in 
no main effect for factor B?

 c. What value for the missing mean would result in 
no interaction?

 19. The following matrix presents the results of a two-
factor study with n 5 10 scores in each of the six 
treatment conditions. Note that one of the treatment 
means is missing.

 

Factor B

B1 B2 B3

Factor A
A1 M 5 10 M 5 20 M 5 40

A2 M 5 20 M 5 30

 a. What value for the missing mean would result in 
no main effect for factor A?

 b. What value for the missing mean would result in 
no interaction?

 20. A researcher conducts an independent-measures, 
two-factor study using a separate sample of n 5 15 
participants in each treatment condition. The results 
are evaluated using an ANOVA and the researcher 
reports an F-ratio with df 5 1, 84 for factor A, and 
an F-ratio with df 5 2, 84 for factor B.

 a. How many levels of factor A were used in the 
study?

 b. How many levels of factor B were used in the 
study?

 c. What are the df values for the F-ratio evaluating 
the interaction?

 21. A researcher conducts an independent-measures, 
two-factor study with two levels of factor A and three 
levels of factor B, using a sample of n 5 12 partici-
pants in each treatment condition.

 a. What are the df values for the F-ratio evaluating 
the main effect of factor A?

 b. What are the df values for the F-ratio evaluating 
the main effect of factor B?

 c. What are the df values for the F-ratio evaluating 
the interaction?

 22. Some people like to pour beer gently down the side 
of the glass to preserve bubbles. Others, splash  
it down the center to release the bubbles into a foamy 
head and free the aromas. Champagne, however 
is best when the bubbles remain concentrated in 
the wine. According to an article in the Journal of 
Agricultural and Food Chemistry, a group of French 
scientists recently verified the difference between 
the two pouring methods by measuring the amount 
of bubbles in each glass of champagne poured two 
different ways and at three different temperatures 
(Journal of Agricultural and Food Chemistry, 2010). 
The following data present the pattern of results 
obtained in the study.

Champagne Temperature (°F)

40° 46° 52°

n 5 10 n 5 10 n 5 10
Gentle Pour M 5 7 M 5 3 M 5 2

SS 5 64 SS 5 57 SS 5 47

n 5 10 n 5 10 n 5 10
Splashing Pour M 5 5 M 5 1 M 5 0

SS 5 56 SS 5 54 SS 5 46

 a. Use a two-factor ANOVA with a 5 .05 to evalu-
ate the mean differences.

 b. Briefly explain how temperature and pouring 
influence the bubbles in champagne according to 
this pattern of results.

 23. Example 13.1 in this chapter described a two-
factor study examining performance under two 
audience conditions (factor B) for high and low 
self-esteem participants (factor A). The following 
summary table presents possible results from the 
analysis of that study. Assuming that the study 
used a separate sample of n 5 15 participants in 
each treatment condition (each cell), fill in the 
missing values in the table. (Hint: Start with the  
df values.)
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Source SS df MS

Between treatments 67 _____
Audience _____ _____ _____ F 5 ____
Self-esteem 29 _____ _____ F 5
Interaction _____ _____ _____ F 5 5.50

Within treatments _____ _____ 4
Total _____ _____

 24. The following table summarizes the results from a 
two-factor study with 2 levels of factor A and 3 levels 
of factor B using a separate sample of n 5 11 partici-
pants in each treatment condition. Fill in the missing 
values. (Hint: Start with the df values.)

Source SS df MS

Between treatments ___ ___
Factor A ___ ___ ___ F 5 7
Factor B ___ ___ ___ F 5 8

A 3 B Interaction ___ ___ ___ F 5 3
Within treatments 240 ___ ___
Total ___ ___

 25. The following data are from a two-factor study ex-
amining the effects of two treatment conditions on 
males and females.

 a. Use an ANOVA with a 5 .05 for all tests to 
evaluate the significance of the main effects and 
the interaction.

 b. Compute h2 to measure the size of the effect for 
each main effect and the interaction.

Factor B: Treatment

B1 B2 B3

Male 3 1 10
1 4 10
1 8 14
6 6 7 T

ROW1
 5 90

4 6 9

M 5 3 M 5 5 M 5 10

T 5 15 T 5 25 T 5 50

SS 5 18 SS 5 28 SS 5 26 N 5 30

Factor A: 
Gender

0 2 1 G 5 120
2 7 1 oX2 5 860
0 2 1
0 2 6 T

ROW2
 5 30

Female 3 2 1

M 5 1 M 5 3 M 5 2

T 5 5 T 5 15 T 5 10

SS 5 8 SS 5 20 SS 5 20

T
COL1

 5 20 T
COL2

 5 40 T
COL3

 5 60

 26. Research indicates that paying students to improve 
their grades simply does not work (Fryer, 2011). 
However, paying students for specific tasks such as 
reading books, attending class, or doing homework 
does have a significant effect. Apparently, students 
on their own do not understand how to get good 
grades. If they are told exactly what to do, however, 
the incentives work. The following data represent a 
two-factor study attempting to replicate this result.

Paid for 
Homework

Not Paid for 
Homework

Paid for Grades

14 2
 7 7
10 5
 9 7
11 3
 9 6

Not Paid for Grades

13 7
 7 2
 9 4
 7 2
11 6
 7 3

 a. Use a two-factor ANOVA with a 5 .05 to evalu-
ate the significance of the main effects and the 
interaction.

 b. Calculate the h2 values to measure the effect size 
for the two main effects and the interaction.

 c. Describe the pattern of results. (How does pay-
ing for grades influence performance? How does 
paying for homework influence performance? 
Does the effect of paying for homework depend 
on whether you also pay for grades?)

 27. In Chapter 12 (page 390), we described a study 
reporting that college students who are on Facebook 
(or have it running in the background) while study-
ing had lower grades than students who did not use 
the social network (Kirschner & Karpinski, 2010). 
A researcher would like to know if the same re-
sult extends to students in lower grade levels. The 
researcher planned a two-factor study comparing 
Facebook users with non-users for middle school 
students, high school students, and college students. 
For consistency across groups, grades were con-
verted into six categories, numbered 0 to 5 from  
low to high. The results are presented in the  
following matrix.

 a. Use a two-factor ANOVA with a 5 .05 to evalu-
ate the mean differences.

 b. Describe the pattern of results.
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Middle School High School College

Non-user

3 5 5
5 5 4
5 2 2
3 4 5

User

5 1 1
3 2 0
2 3 0
2 2 3

 28. In Chapter 11, we described a research study in 
which the color red appeared to increase men’s at-
traction to women (Elliot & Niesta, 2008). The same 
researchers have published other results showing 
that red also increases women’s attraction to men but 
does not appear to affect judgments of same-sex indi-
viduals (Elliot et al., 2010). Combining these results 
into one study produces a two-factor design in which 
men judge photographs of both women and men, 
which are shown on both red and white backgrounds. 

The dependent variable is a rating of attractiveness 
for the person shown in the photograph. The study 
uses a separate group of participants for each condi-
tion. The following table presents data similar to the 
results from previous research.

Person Shown in Photograph

Female Male

Background Color 
for Photograph

n 5 10 n 5 10
White M 5 4.5 M 5 4.4

SS 5 6 SS 5 7

n 5 10 n 5 10
Red M 5 7.5 M 5 4.6

SS 5 9 SS 5 8

 a. Use a two-factor ANOVA with a 5 .05 to evaluate 
the main effects and the interaction.

 b. Describe the effect of background color on judg-
ments of males and females.
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P A R T IV

After completing this part, you should be able to perform an ANOVA to evaluate the significance 
of mean differences in three research situations. These include:

445

 1. The single-factor independent-measures design intro-
duced in Chapter 12.

 2. The single-factor repeated-measures design introduced 
in Chapter 13.

 3.  The two-factor independent-measures design intro-
duced in Chapter 13.

In this part, we introduce three applications of ANOVA 
that use an F-ratio statistic to evaluate the mean differences 
among two or more populations. In each case, the F-ratio 
has the following structure:

F 5
variance between treatments

variance from rrandom unsystematic sources

The numerator of the F-ratio measures the mean differences 
that exist from one treatment condition to another, including 
any systematic differences caused by the treatments. The 
denominator measures the differences that exist when there 
are no systematic factors that cause one score to be different 
from another. The F-ratio is structured so that the numerator 
and denominator are measuring exactly the same variance 
when the null hypothesis is true and there are no system-
atic treatment effects. In this case, the F-ratio should have 
a value near 1.00. Thus, an F-ratio near 1.00 is evidence 
that the null hypothesis is true. Similarly, an F-ratio that is 
much larger than 1.00 provides evidence that a systematic 
treatment effect does exist and the null hypothesis should 
be rejected.

For independent-measures designs, either single-factor 
or two-factor, the denominator of the F-ratio is obtained 
by computing the variance within treatments. Inside each 
treatment condition, all participants are treated exactly the 
same so there are no systematic treatment effects that cause 
the scores to vary.

For a repeated-measures design, the same individuals 
are used in every treatment condition, so any differences 
between treatments cannot be caused by individual differ-
ences. Thus, the numerator of the F-ratio does not include 
any individual differences. Therefore, individual differences 
must also be eliminated from the denominator to balance 
the F-ratio. As a result, the repeated-measures ANOVA is 
a two-stage process. The first stage separates the between-
treatments variance (numerator) and the within-treatments 
variance. The second stage removes the systematic indi-
vidual differences from the within-treatments variance to 
produce the appropriate denominator for the F-ratio.

For a two-factor design, the mean differences between 
treatments can be caused by either of the two factors or by 
specific combinations of factors. The goal of the ANOVA 
is to separate these possible treatment effects so that each 
can be evaluated independent of the others. To accomplish 
this, the two-factor ANOVA is a two-stage process. The 
first stage separates the between-treatments variance and 
the within-treatments variance (denominator). The second 
stage analyzes the between-treatments variance into three 
components: the main effect from the first factor, the main 
effect from the second factor, and the interaction.

Note that the repeated-measures ANOVA and the two-
factor ANOVA are both two-stage processes. Both begin 
by separating the between-treatments variance and the 
within-treatments variance. However, the second stages 
of these two ANOVAs serve different purposes and focus 
on different components. The repeated-measures ANOVA 
focuses on the within-treatments variance and is intended to 
remove the individual differences. The two-factor ANOVA 
focuses on the between-treatments variance and is intended 
to separate the main effects and the interaction.

reView exercises

 1. A researcher examining the jet lag that people experi-
ence when flying long distances obtained the following 
data measuring the number of days required to adjust 
after a long flight. Do the data indicate significant dif-
ferences in jet lag depending on the direction of travel? 
Test with a 5 .05.

Westbound Eastbound Same Time Zone

2 6 1
1 4 0
3 6 1
3 8 1
2 5 0
4 7 0

M 5 2.5 M 5 6 M 5 0.5

SS 5 5.5 SS 5 10 SS 5 1.5

 2. The following data were obtained from a repeated-
measures study comparing three treatment conditions.
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Treatments

Person I II III
Person 
Totals

A 0 4 2 P 5 6
B 1 5 6 P 5 12 N 5 18
C 3 3 3 P 5 9 G 5 48
D 0 1 5 P 5 6 oX2 5 184
E 0 2 4 P 5 6
F 2 3 4 P 5 9

M 5 1 M 5 3 M 5 4

T 5 6 T 5 18 T 5 24

SS 5 8 SS 5 10 SS 5 10

 a. Do the data indicate significant differences 
among the three treatments? Test at the .05 level 
of significance.

 b. Calculate h2 to measure the size of the effect.
 c. Write a sentence demonstrating how the outcome 

of the hypothesis test and the measure of effect 
size would appear in a research report.

 3. Briefly describe what is meant by an interaction be-
tween factors in a two-factor research study.

 4. Most sports injuries are immediate and obvious, like 
a broken leg. However, some can be more subtle, like 
the neurological damage that may occur when soccer 

players repeatedly head a soccer ball. To examine long-
term effects of repeated heading, Downs and Abwender 
(2002) examined two different age groups of soccer 
players and swimmers. The dependent variable was 
performance on a conceptual thinking task. Following 
are hypothetical data, similar to the research results.

 a. Use a two-factor ANOVA with a 5 .05 to evaluate 
the main effects and interaction.

 b. Calculate the effects size (h2) for the main effects 
and the interaction.

 c. Briefly describe the outcome of the study.

Factor B: Age

College Older

Factor A: 
Sport

Soccer

n 5 20 n 5 20

M 5 9 M 5 4

T 5 180 T 5 80

SS 5 380 SS 5 390

Swimming

n 5 20 n 5 20

M 5 9 M 5 8

T 5 180 T 5 160

SS 5 350 SS 5 400

oX2 5 6360
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Chapter 15  The Chi-Square Statistic: 
Tests for Goodness of  
Fit and Independence 509 

Back in Chapter 1, we stated that the primary goal of science is 
to establish relationships between variables. Until this point, the 
statistics we have presented all attempt to accomplish this goal 

by comparing groups of scores using means and variances as the basic 
statistical measures. Typically, one variable is used to define the groups, 
and a second variable is measured to obtain a set of scores within each 
group. Means and variances are then computed for the scores, and the 
sample means are used to test hypotheses about population means. If 
the hypothesis test indicates a significant mean difference, then we 
conclude that there is a relationship between the variables.

However, many research situations do not involve comparing 
groups, and many do not produce data that allow you to calculate 
means and variances. For example, a researcher can investigate the 
relationship between two variables (for example, IQ and creativity) 
by measuring both variables within a single group of individuals. 
Also, the measurement procedure may not produce numerical scores. 
For example, participants can indicate their color preferences by sim-
ply picking a favorite color or by ranking several choices. Without 
numerical scores, it is impossible to calculate means and variances. 
Instead, the data consist of proportions or frequencies. For example, 
a research study may investigate what proportion of people select 
red as their favorite color and whether this proportion is different for 
introverted people compared with extroverted people.

Notice that these new research situations are still asking questions 
about the relationships between variables, and they are still using 
sample data to make inferences about populations. However, they are 
no longer comparing groups and they are no longer based on means 
and variances. In this part, we introduce the statistical methods that 
have been developed for these other kinds of research.

Correlations and 
Nonparametric 
Tests

P A R T 

V
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Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.

Correlation

14.1     Introduction

14.2     The Pearson Correlation

14.3     Using and Interpreting the 
Pearson Correlation

14.4     Hypothesis Tests with the 
Pearson Correlation

14.5     Alternatives to the Pearson 
Correlation

14.6     Introduction to Linear Equations 
and Regression

Summary

Focus on Problem Solving

Demonstration 14.1

Problems

C h A P T e R 

14
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 Sum	of	squares	(SS)	(Chapter	4)
•	 Computational	formula
•	 Definitional	formula

•	 z-scores	(Chapter	5)
•	 Hypothesis	testing	(Chapter	8)
•	 Analysis	of	Variance	(Chapter	12)

•	 MS values and F-ratios
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iNTRoduCTioN

Correlation is a statistical technique that is used to measure and describe the relation-
ship between two variables. Usually the two variables are simply observed as they exist 
naturally in the environment—there is no attempt to control or manipulate the variables. 
For example, a researcher could check high school records (with permission) to obtain a 
measure of each student’s academic performance, and then survey each family to obtain 
a measure of income. The resulting data could be used to determine whether there is a 
relationship between high school grades and family income. Notice that the researcher 
is not manipulating any student’s grade or any family’s income, but is simply observing 
what occurs naturally. You also should notice that a correlation requires two scores for 
each individual (one score from each of the two variables). These scores normally are 
identified as X and Y. The pairs of scores can be listed in a table, or they can be pre-
sented graphically in a scatter plot (Figure 14.1). In the scatter plot, the values for the X 
variable are listed on the horizontal axis and the Y values are listed on the vertical axis. 
Each individual is then represented by a single point in the graph so that the horizontal 
position corresponds to the individual’s X value and the vertical position corresponds to 
the Y value. The value of a scatter plot is that it allows you to see any patterns or trends 
that exist in the data. The scores in Figure 14.1, for example, show a clear relationship 
between family income and student grades; as income increases, grades also increase.

A correlation is a numerical value that describes and measures three characteristics of 
the relationship between X and Y. These three characteristics are as follows:

 1. The Direction of the Relationship. The sign of the correlation, positive or 
negative, describes the direction of the relationship.

14.1

The CharaCTerisTiCs 
of a relaTionship
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 Family income (in $1000)

Person

A
B
C
D
E
F
G
H
I
J
K
L
M
N

31
38
42
44
49
56
58
65
70
90
92

106
135
174

Student’s
Average
Grade

72
86
81
78
85
80
91
89
94
83
90
97
89
95

Family
Income

(in $1000)

90

85

80

75

70

95

100

30 55 70 90 110 130 150 170 190

Figure 14.1

Correlational data showing the relationship between family income (X) and student grades (Y) for a sample of n 5 14 high 
school students. The scores are listed in order from lowest to highest family income and are shown in a scatter plot.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTioN 14.1  /  iNTRoduCTioN    451

In a positive correlation, the two variables tend to change in the same direction: As 
the value of the X variable increases from one individual to another, the Y variable 
also tends to increase; when the X variable decreases, the Y variable also decreases.

In a negative correlation, the two variables tend to go in opposite directions. As 
the X variable increases, the Y variable decreases. That is, it is an inverse relationship.

The following examples illustrate positive and negative relationships.

Suppose you run the drink concession at the football stadium. After several seasons, 
you begin to notice a relationship between the temperature at game time and the 
beverages you sell. Specifically, you have noted that when the temperature is low, 
you sell relatively little beer. However, as the temperature goes up, beer sales also 
go up (Figure 14.2). This is an example of a positive correlation. You also have 
noted a relationship between temperature and coffee sales: On cold days, you sell 
a lot of coffee, but coffee sales go down as the temperature goes up. This is an ex-
ample of a negative relationship.

 2. The Form of the Relationship. In the preceding coffee and beer examples, the 
relationships tend to have a linear form; that is, the points in the scatter plot tend 
to cluster around a straight line. We have drawn a line through the middle of the 
data points in each figure to help show the relationship. The most common use 
of correlation is to measure straight-line relationships. However, other forms of 
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Figure 14.2

Examples of positive and negative relationships. (a) Beer sales are positively related to temperature. (b) Coffee sales are 
negatively related to temperature.
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relationships do exist and there are special correlations used to measure them. 
(We examine alternatives in Section 14.5.)

 3. The Strength or Consistency of the Relationship. Finally, the correlation 
measures the consistency of the relationship. For a linear relationship, for 
example, the data points could fit perfectly on a straight line. Every time 
X increases by one point, the value of Y also changes by a consistent and 
predictable amount. Figure 14.3(a) shows an example of a perfect linear 
relationship. However, relationships are usually not perfect. Although there 
may be a tendency for the value of Y to increase whenever X increases, the 
amount that Y changes is not always the same, and occasionally, Y decreases 
when X increases. In this situation, the data points do not fall perfectly on 
a straight line. The consistency of the relationship is measured by the nu-
merical value of the correlation. A perfect correlation always is identified 
by a correlation of 1.00 and indicates a perfectly consistent relationship. 
For a correlation of 1.00 (or –1.00), each change in X is accompanied by 
a perfectly predictable change in Y. At the other extreme, a correlation of 
0 indicates no consistency at all. For a correlation of 0, the data points are 
scattered randomly with no clear trend [see Figure 14.3(b)]. Intermediate 
values between 0 and 1 indicate the degree of consistency. 

Examples of different values for linear correlations are shown in Figure 14.3. In 
each example we have sketched a line around the data points. This line, called an 
envelope because it encloses the data, often helps you to see the overall trend in the 
data. As a rule of thumb, when the envelope is shaped roughly like a football, the 
correlation is around 0.7. Envelopes that are fatter than a football indicate correla-
tions closer to 0, and narrower shapes indicate correlations closer to 1.00.

You should also note that the sign (1 or 2) and the strength of a correlation 
are independent. For example, a correlation of 1.00 indicates a perfectly consis-
tent relationship whether it is positive (11.00) or negative (21.00). Similarly,  
correlations of 10.80 and 20.80 are equally consistent relationships. Finally, you 
should notice that a correlation can never be greater than 11.00 or less than 21.00.

Y

X
(c)

Y

X
(a)

Y

X
(d)

Y

X
(b)

Figure 14.3

Examples of different 
values for linear correla-
tions: (a) a perfect nega-
tive correlation, –1.00; 
(b) no linear trend, 0.00; 
(c) a strong positive rela-
tionship, approximately 
10.90; (d) a relatively 
weak negative correlation, 
approximately –0.40.
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THE PEARSoN CoRRElATioN

By far the most common correlation is the Pearson correlation (or the Pearson product–
moment correlation) which measures the degree of straight-line relationship.

The Pearson correlation measures the degree and the direction of the linear 
relationship between two variables.

The Pearson correlation is identified by the letter r. Conceptually, this correlation is 
computed by

r
X Y

5
degree to which and vary together

degreee to which and vary separately
covari

X Y

5
aability of and

variability of and

X Y

X Y sseparately

When there is a perfect linear relationship, every change in the X variable is accom-
panied by a corresponding change in the Y variable. In Figure 14.3(a), for example, 
every time the value of X increases, there is a perfectly predictable decrease in the value 
of Y. The result is a perfect linear relationship, with X and Y always varying together. 
In this case, the covariability (X and Y together) is identical to the variability of X and 
Y separately, and the formula produces a correlation with a magnitude of 1.00 or –1.00. 
At the other extreme, when there is no linear relationship, a change in the X variable 

14.2

D e f i n i t i o n

 1. For each of the following, indicate whether you would expect a positive or a nega-
tive correlation.

 a. Model year and price for a used Honda

 b. IQ and grade point average for high school students

 c. Daily high temperature and daily energy consumption for 30 winter days in  
New York City

 2. The data points would be clustered more closely around a straight line for a  
correlation of –0.80 than for a correlation of 10.05. (True or false?)

 3. If the data points are clustered close to a line that slopes up from left to right, then 
a good estimate of the correlation would be 10.90. (True or false?)

 4. If a scatter plot shows a set of data points that form a circular pattern, the correla-
tion should be near zero. (True or false?)

 1. a. Positive: Higher model years tend to have higher prices.

 b. Positive: More intelligent students tend to get higher grades.

 c. Negative: Higher temperature tends to decrease the need for heating.

 2. True. The numerical value indicates the strength of the relationship. The sign only indicates 
direction.

 3. True.

 4. True.

l E A R N i N g  C H E C k

ANSwERS
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does not correspond to any predictable change in the Y variable. In this case, there is no 
covariability, and the resulting correlation is zero.

To calculate the Pearson correlation, it is necessary to introduce one new concept: the 
sum of products of deviations, or SP. This new value is similar to SS (the sum of squared 
deviations), which is used to measure variability for a single variable. Now, we use SP 
to measure the amount of covariability between two variables. The value for SP can be 
calculated with either a definitional formula or a computational formula.

The definitional formula for the sum of products is

SP 5 o(X 2 M
X
)(Y 2 M

Y
) (14.1)

where M
X
 is the mean for the X scores and M

Y
 is the mean for the Ys.

The definitional formula instructs you to perform the following sequence of opera-
tions:

 1. Find the X deviation and the Y deviation for each individual.

 2. Find the product of the deviations for each individual.

 3. Add the products.

Notice that this process “defines” the value being calculated: the sum of the products 
of the deviations.

The computational formula for the sum of products of deviations is

SP XY
X Y

n
5 2o o o

 
(14.2)

Because the computational formula uses the original scores (X and Y values), it 
usually results in easier calculations than those required with the definitional formula, 
especially if M

X
 or M

Y
 is not a whole number. However, both formulas always produce 

the same value for SP.
You may have noted that the formulas for SP are similar to the formulas you have learned 

for SS (sum of squares). The relationship between the two sets of formulas is described in 
Box 14.1. The following example demonstrates the calculation of SP with both formulas.

The same set of n 5 4 pairs of scores is used to calculate SP, first using the definitional 
formula and then using the computational formula.

For the definitional formula, you need deviation scores for each of the X values and 
each of the Y values. Note that the mean for the Xs is M

X
 5 3 and the mean for the Ys is 

M
Y
 5 5. The deviations and the products of deviations are shown in the following table:

Scores Deviations Products

X Y X 2 MX Y 2 MY (X 2 MX)(Y 2 MY)

1 3 22 22 14
2 6 21 11 21
4 4 11 21 21
5 7 12 12 14

16 5 SP

The sum of 
produCTs of 

deviaTions

E x A m P l E  1 4 . 2

Caution: The n in this  
formula refers to the number 
of pairs of scores.
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For these scores, the sum of the products of the deviations is SP 5 16.
For the computational formula, you need the X value, the Y value, and the XY product 

for each individual. Then you find the sum of the Xs, the sum of the Ys, and the sum of 
the XY products. These values are as follows:

X Y XY

1 3 3

2 6 12

4 4 16

5 7 35

12 20 66 Totals

Substituting the totals in the formula gives

SP XY
X Y

n
5 2o o o

5 266
12 20

4
( )

566–60

56

Both formulas produce the same result, SP 5 6.

Caution: The signs (1 and 2) 
are critical in determining the 
sum of products, SP.

BOX
14.1

ComPARiNg THE SP ANd SS FoRmulAS

It will help you to learn the formulas for SP if you 
note the similarity between the two SP formulas and 
the corresponding formulas for SS that were presented 
in Chapter 4. The definitional formula for SS is

SS 5 o(X – M)2

In this formula, you must square each deviation, 
which is equivalent to multiplying it by itself. With 
this in mind, the formula can be rewritten as

SS 5 o(X – M)(X – M)

The similarity between the SS formula and the 
SP formula should be obvious—the SS formula uses 
squares and the SP formula uses products. This same 

relationship exists for the computational formulas. 
For SS, the computational formula is

SS X
X
n

5 2o
o2

2( )

As before, each squared value can be rewritten so 
that the formula becomes

SP XX
X X
n

5 2o o o

Again, note the similarity in structure between the SS 
formula and the SP formula. If you remember that SS 
uses squares and SP uses products, the two new formu-
las for the sum of products should be easy to learn.
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As noted earlier, the Pearson correlation consists of a ratio comparing the covariability 
of X and Y (the numerator) with the variability of X and Y separately (the denominator). 
In the formula for the Pearson r, we use SP to measure the covariability of X and Y. The 
variability of X is measured by computing SS for the X scores and the variability of Y 
is measured by SS for the Y scores. With these definitions, the formula for the Pearson 
correlation becomes

r
SP

SS SSX Y

5

 
(14.3)

The following example demonstrates the use of this formula with a simple set of scores.

The Pearson correlation is computed for the following set of n 5 5 pairs of scores.

X Y

0 2
10 6
4 2
8 4
8 6

Before starting any calculations, it is useful to put the data in a scatter plot and make 
a preliminary estimate of the correlation. These data have been graphed in Figure 14.4. 
Looking at the scatter plot, it appears that there is a very good (but not perfect) positive 
correlation. You should expect an approximate value of r 5 10.8 or 10.9. To find the 
Pearson correlation, we need SP, SS for X, and SS for Y. The calculations for each of 
these values, using the definitional formulas, are presented in Table 14.1. (Note that the 
mean for the X values is M

X
 5 6 and the mean for the Y scores is M

Y
 5 4.)

Using the values from Table 14.1, the Pearson correlation is

r
SP

SS SSX Y

= =+5
( )( )

=
( )( )

28 28
32

0.8
64 16

775

CalCulaTion of 
The pearson 
CorrelaTion

E x A m P l E  1 4 . 3

Note that you multiply SS for 
X by SS for Y in the denomina-
tor of the Pearson formula.

6

0 1 2 3 4 5 6 7 8 9 10
X

Y

4

2

Figure 14.4

Scatter plot of the data 
from Example 14.3.
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Correlation and the pattern of data points Note that the value we obtained for the 
correlation in Example 14.3 is perfectly consistent with the pattern formed by the data 
points in Figure 14.4. The positive sign for the correlation indicates that the points are 
clustered around a line that slopes up to the right. Second, the high value for the cor-
relation (near 1.00) indicates that the points are very tightly clustered close to the line. 
Thus, the value of the correlation describes the relationship that exists in the data.

Because the Pearson correlation describes the pattern formed by the data points, any 
factor that does not change the pattern also does not change the correlation. For example, 
if 5 points were added to each of the X values in Figure 14.4, then each data point would 
move to the right. However, because all of the data points shift to the right, the overall 
pattern is not changed, it is simply moved to a new location. Similarly, if 5 points were 
subtracted from each X value, the pattern would shift to the left. In either case, the overall 
pattern stays the same and the correlation is not changed. In the same way, adding a con-
stant to (or subtracting a constant from) each Y value simply shifts the pattern up (or down) 
but does not change the pattern and, therefore, does not change the correlation. Multiplying 
each X and/or Y value by a constant also does not change the pattern formed by the data 
points. For example, if each of the X values in Figure 14.4 were multiplied by 2, then the 
same scatter plot could be used to display either the original scores or the new scores. The 
current figure shows the original scores, but if the values on the X-axis (0, 1, 2, 3, and so 
on) are doubled (0, 2, 4, 6, and so on), then the same figure would show the pattern formed 
by the new scores. In summary, adding a constant to (or subtracting a constant from) each 
X and/or Y value does not change the pattern of data points and does not change the correla-
tion. Also, multiplying (or dividing) each X and/or Y value by a constant does not change 
the pattern and does not change the value of the correlation.

The Pearson correlation measures the relationship between an individual’s location in 
the X distribution and his or her location in the Y distribution. For example, a positive 
correlation means that individuals who have a high X score also tend to have a high 
Y score. Similarly, a negative correlation indicates that individuals with high X scores 
tend to have low Y scores.

Recall from Chapter 5 that z-scores identify the exact location of each individual score 
within a distribution. With this in mind, each X value can be transformed into a z-score, 
z

X
, using the mean and standard deviation for the set of Xs. Similarly, each Y score can be 

transformed into z
Y
. If the X and Y values are viewed as a sample, then the transformation is 

completed using the sample formula for z (Equation 5.3). If the X and Y values form a com-
plete population, then the z-scores are computed using Equation 5.1. After the transforma-
tion, the formula for the Pearson correlation can be expressed entirely in terms of z-scores.

For a sample,
1

r
z z

n
X y

5
2

o
( )  

(14.4)

The pearson 
CorrelaTion and 

z -sCores

Scores Deviations Squared Deviations Products

X Y X – MX Y 2 MY (X 2 MX)2 (Y 2 MY)2 (X 2 MX)(Y 2 MY)

0 2 26 22 36 4 112
10 6 14 12 16 4 18
4 2 22 22 4 4 14
8 4 12 0 4 0 0

8 6 12 12 4 4 14

SS
X
 5 64 SS

Y
 5 16 SP 5 128

TAblE 14.1

Calculation of SS
X
, SS

Y
, and 

SP for a sample of n 5 5 
pairs of scores.
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For a population,r 5
oz z

N
X y

 
(14.5)

Note that the population value is identified with a Greek letter, in this case the letter 
rho (r), which is the Greek equivalent of the letter r.

 1. Can SP ever have a value less than zero?

 2. Calculate the sum of products of deviations (SP) for the following set of scores. 
Use the definitional formula and then the computational formula. Verify that you 
get the same answer with both formulas.

X Y

0 1
4 3
5 3
2 2
4 1

 3. For the following data:

 a. Sketch a scatter plot and make an estimate of the Pearson correlation.

 b. Compute the Pearson correlation.

X Y

2 6
1 5
3 3
0 7
4 4

 1. Yes. SP can be positive, negative, or zero depending on the relationship between X and Y.

 2. SP 5 5

 3. b. r 5 2 8
10  5 20.80

l E A R N i N g  C H E C k

ANSwERS

uSiNg ANd iNTERPRETiNg THE PEARSoN CoRRElATioN

Although correlations have a number of different applications, a few specific examples 
are presented next to give an indication of the value of this statistical measure.

 1. Prediction. If two variables are known to be related in a systematic way, then it 
is possible to use one of the variables to make predictions about the other. For 
example, when you applied for admission to college, you were required to sub-
mit a great deal of personal information, including your scores on the Scholastic 
Achievement Test (SAT). College officials want this information because it helps 
to predict your chances of success in college. It has been demonstrated over several 
years that SAT scores and college grade point averages are correlated. Students 

14.3

Where and Why 
CorrelaTions are 

used
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who do well on the SAT tend to do well in college; students who have difficulty 
with the SAT tend to have difficulty in college. Based on this relationship, college 
admissions officers can predict the potential success of each applicant. You should 
note that this prediction is not perfectly accurate. Not everyone who does poorly 
on the SAT has trouble in college. That is why you also submit letters of recom-
mendation, high school grades, and other information with your application.

 2. Validity. Suppose that a psychologist develops a new test for measuring intel-
ligence. How could you show that this test truly measures what it claims; that 
is, how could you demonstrate the validity of the test? One common technique 
for demonstrating validity is to use a correlation. If the test actually measures 
intelligence, then the scores on the test should be related to other measures of 
intelligence—for example, standardized IQ tests, performance on learning tasks, 
problem-solving ability, and so on. The psychologist could measure the correla-
tion between the new test and each of these other measures of intelligence to 
demonstrate that the new test is valid.

 3. Reliability. In addition to evaluating the validity of a measurement procedure, 
correlations are used to determine reliability. A measurement procedure is con-
sidered reliable to the extent that it produces stable, consistent measurements. 
That is, a reliable measurement procedure produces the same (or nearly the 
same) scores when the same individuals are measured twice under the same 
conditions. For example, if your IQ were measured as 113 last week, you would 
expect to obtain nearly the same score if your IQ were measured again this 
week. One way to evaluate reliability is to use correlations to determine the 
relationship between two sets of measurements. When reliability is high, the 
correlation between two measurements should be strong and positive.

 4. Theory Verification. Many psychological theories make specific predictions 
about the relationship between two variables. For example, a theory may predict 
a relationship between brain size and learning ability; a developmental theory 
may predict a relationship between the parents’ IQs and the child’s IQ; a social 
psychologist may have a theory predicting a relationship between personality 
type and behavior in a social situation. In each case, the prediction of the theory 
could be tested by determining the correlation between the two variables.

When you encounter correlations, there are four additional considerations that you 
should bear in mind:

 1. Correlation simply describes a relationship between two variables. It does not 
explain why the two variables are related. Specifically, a correlation should not 
and cannot be interpreted as proof of a cause-and-effect relationship between 
the two variables.

 2. The value of a correlation can be affected greatly by the range of scores repre-
sented in the data.

 3. One or two extreme data points, often called outliers, can have a dramatic effect 
on the value of a correlation.

 4. When judging how “good” a relationship is, it is tempting to focus on the numeri-
cal value of the correlation. For example, a correlation of 10.5 is halfway between 
0 and 1.00 and, therefore, appears to represent a moderate degree of relationship. 
However, a correlation should not be interpreted as a proportion. Although a cor-
relation of 1.00 does mean that there is a 100% perfectly predictable relationship 

inTerpreTing 
CorrelaTions
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between X and Y, a correlation of 0.5 does not mean that you can make predictions 
with 50% accuracy. To describe how accurately one variable predicts the other, you 
must square the correlation. Thus, a correlation of r 5 0.5 means that one variable 
partially predicts the other, but the predictable portion is only r2 5 0.52 5 0.25 
(or 25%) of the total variability.

We now discuss each of these four points in detail.

One of the most common errors in interpreting correlations is to assume that a cor-
relation necessarily implies a cause-and-effect relationship between the two variables. 
(Even Pearson blundered by asserting causation from correlational data [Blum, 1978].) 
We constantly are bombarded with reports of relationships: Cigarette smoking is related 
to heart disease; alcohol consumption is related to birth defects; carrot consumption is 
related to good eyesight. Do these relationships mean that cigarettes cause heart disease 
or carrots cause good eyesight? The answer is no. Although there may be a causal re-
lationship, the simple existence of a correlation does not prove it. Earlier, for example, 
we discussed a study showing a relationship between high school grades and family 
income. However, this result does not mean that having a higher family income causes 
students to get better grades. For example, if mom gets an unexpected bonus at work, 
it is unlikely that her child’s grades will also show a sudden increase. To establish a 
cause-and-effect relationship, it is necessary to conduct a true experiment (see p. 13)
in which one variable is manipulated by a researcher and other variables are rigorously 
controlled. The fact that a correlation does not establish causation is demonstrated in 
the following example.

Suppose we select a variety of different cities and towns throughout the United 
States and measure the number of churches (X variable) and the number of serious 
crimes (Y variable) for each. A scatter plot showing hypothetical data for this study 
is presented in Figure 14.5. Notice that this scatter plot shows a strong, positive cor-
relation between churches and crime. You also should note that these are realistic 
data. It is reasonable that small towns would have less crime and fewer churches 
and that large cities would have large values for both variables. Does this relation-
ship mean that churches cause crime? Does it mean that crime causes churches? 
It should be clear that both answers are no. Although a strong correlation exists 
between number of churches and crime, the real cause of the relationship is the size 
of the population.

Whenever a correlation is computed from scores that do not represent the full range 
of possible values, you should be cautious in interpreting the correlation. Suppose, for 
example, that you are interested in the relationship between IQ and creativity. If you 
select a sample of your fellow college students, your data probably will represent only 
a limited range of IQ scores (most likely from 110 to 130). The correlation within this 
restricted range could be completely different from the correlation that would be ob-
tained from a full range of IQ scores. For example, Figure 14.6 shows a strong positive 
relationship between X and Y when the entire range of scores is considered. However, 
this relationship is obscured when the data are limited to a restricted range.

To be safe, you should not generalize any correlation beyond the range of data repre-
sented in the sample. For a correlation to provide an accurate description for the general 
population, there should be a wide range of X and Y values in the data.

CorrelaTion and 
CausaTion

E x A m P l E  1 4 . 4

CorrelaTion and 
resTriCTed range
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An outlier is an individual with X and/or Y value that is substantially different (larger or 
smaller) from the values obtained for the other individuals in the data set. The data point of 
a single outlier can have a dramatic influence on the value obtained for the correlation. This 
effect is illustrated in Figure 14.7. Figure 14.7(a) shows a set of n 5 5 data points for which 
the correlation between the X and Y variables is nearly zero (actually r 5 –0.08). In Figure 
14.7(b), one extreme data point (14, 12) has been added to the original data set. When this 
outlier is included in the analysis, a strong, positive correlation emerges (now r 5 1 0.85). 
Note that the single outlier drastically alters the value for the correlation and, thereby, can 
affect one’s interpretation of the relationship between variables X and Y. Without the outlier, 
one would conclude there is no relationship between the two variables. With the extreme 
data point, r 5 10.85, which implies a strong relationship with Y increasing consistently as 
X increases. The problem of outliers is a good reason for looking at a scatter plot, instead 
of simply basing your interpretation on the numerical value of the correlation. If you only 
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Figure 14.5

Hypothetical data showing 
the logical relationship 
between the number of 
churches and the number 
of serious crimes for a 
sample of U.S. cities.
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Figure 14.6

In this example, the  
full range of X and Y  
values shows a strong, 
positive correlation, but 
the restricted range of 
scores produces a  
correlation near zero.
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Figure 14.7

A demonstration of how one extreme data point (an outlier) can influence the value of a correlation.

“go by the numbers,” you might overlook the fact that one extreme data point inflated the 
size of the correlation.

A correlation measures the degree of relationship between two variables on a scale from 
0 to 1.00. Although this number provides a measure of the degree of relationship, many 
researchers prefer to square the correlation and use the resulting value to measure the 
strength of the relationship.

One of the common uses of correlation is for prediction. If two variables are cor-
related, you can use the value of one variable to predict the other. For example, college 
admissions officers do not just guess which applicants are likely to do well; they use 
other variables (SAT scores, high school grades, and so on) to predict which students are 
most likely to be successful. These predictions are based on correlations. By using cor-
relations, the admissions officers expect to make more accurate predictions than would 
be obtained by chance. In general, the squared correlation (r2) measures the gain in ac-
curacy that is obtained from using the correlation for prediction. The squared correlation 
measures the proportion of variability in the data that is explained by the relationship 
between X and Y. It is sometimes called the coefficient of determination.

The value r2 is called the coefficient of determination because it measures the 
proportion of variability in one variable that can be determined from the relation-
ship with the other variable. A correlation of r 5 0.80 (or –0.80), for example, 
means that r2 5 0.64 (or 64%) of the variability in the Y scores can be predicted 
from the relationship with X.

CorrelaTion and 
The sTrengTh of The 

relaTionship

D e f i n i t i o n
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In earlier chapters (see pp. 262, 291, and 322), we introduced r2 as a method for 
measuring effect size for research studies where mean differences were used to com-
pare treatments. Specifically, we measured how much of the variance in the scores was 
accounted for by the differences between treatments. In experimental terminology, r2 
measures how much of the variance in the dependent variable is accounted for by the 
independent variable. Now we are doing the same thing, except that there is no inde-
pendent or dependent variable. Instead, we simply have two variables, X and Y, and we 
use r2 to measure how much of the variance in one variable can be determined from its 
relationship with the other variable. The following example demonstrates this concept.

Figure 14.8 shows three sets of data representing different degrees of linear relation-
ship. The first set of data [Figure 14.8(a)] shows the relationship between IQ and shoe 
size. In this case, the correlation is r 5 0 (and r2 5 0), and you have no ability to predict 
a person’s IQ based on his or her shoe size. Knowing a person’s shoe size provides no 
information (0%) about the person’s IQ. In this case, shoe size provides no help ex-
plaining why different people have different IQs.

Now consider the data in Figure 14.8(b). These data show a moderate, positive 
correlation, r 5 10.60, between IQ scores and college grade point averages (GPA). 
Students with high IQs tend to have higher grades than students with low IQs. From this 
relationship, it is possible to predict a student’s GPA based on his or her IQ. However, 
you should realize that the prediction is not perfect. Although students with high IQs 
tend to have high GPAs, this is not always true. Thus, knowing a student’s IQ provides 
some information about the student’s grades, or knowing a student’s grades provides 
some information about the student’s IQ. In this case, IQ scores help explain the fact 
that different students have different GPAs. Specifically, you can say that part of the 
differences in GPA are accounted for by IQ. With a correlation of r 5 10.60, we obtain 
r2 5 0.36, which means that 36% of the variance in GPA can be explained by IQ.

Finally, consider the data in Figure 14.8(c). This time we show a perfect linear 
relationship (r 5 11.00) between monthly salary and yearly salary for a group of 
college employees. With r 5 1.00 and r2 5 1.00, there is 100% predictability. If you 
know a person’s monthly salary, you can predict perfectly the person’s annual salary. If 
two people have different annual salaries, the difference can be completely explained 
(100%) by the difference in their monthly salaries.

E x A m P l E  1 4 . 5
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Three sets of data showing three different degrees of linear relationship.

(a) (b) (c)
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Just as r2 was used to evaluate effect size for mean differences in Chapters 9, 10, 
and 11, r2 can now be used to evaluate the size or strength of the correlation. The same 
standards that were introduced in Table 9.3 (p. 264) apply to both uses of the r2 mea-
sure. Specifically, an r2 value of 0.01 indicates a small effect or a small correlation, an 
r2 value of 0.09 indicates a medium correlation, and an r2 of 0.25 or larger indicates a 
large correlation.

More information about the coefficient of determination (r2) is presented 
in Section 14.5. For now, you should realize that whenever two variables are  
consistently related, it is possible to use one variable to predict values for the  
second variable.

 1. A researcher finds a correlation of r 5 20.71 between the time spent playing video 
games each week and grade point average for a group of high school boys. This 
means that playing video games causes students to get lower grades. (True or false?)

 2. A researcher finds a correlation of r 5 0.60 between salary and the number of 
years of education for a group of 40-year-old men. How much of the variance in 
salary is explained by the years of education?

 1. False. You cannot conclude that there is a cause-and-effect relationship based on a correlation.

 2. r2 5 0.36, or 36%

l E A R N i N g  C H E C k
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HyPoTHESiS TESTS wiTH THE PEARSoN CoRRElATioN

The Pearson correlation is generally computed for sample data. As with most 
sample statistics, however, a sample correlation is often used to answer questions 
about the corresponding population correlation. For example, a psychologist would 
like to know whether there is a relationship between IQ and creativity. This is a  
general question concerning a population. To answer the question, a sample would 
be selected, and the sample data would be used to compute the correlation value. 
You should recognize this process as an example of inferential statistics: using 
samples to draw inferences about populations. In the past, we have been concerned 
primarily with using sample means as the basis for answering questions about 
population means. In this section, we examine the procedures for using a sample 
correlation as the basis for testing hypotheses about the corresponding population 
correlation.

The basic question for this hypothesis test is whether a correlation exists in the 
population. The null hypothesis is “No. There is no correlation in the population,” 
or “The population correlation is zero.” The alternative hypothesis is “Yes. There is 
a real, nonzero correlation in the population.” Because the population correlation 
is traditionally represented by r (the Greek letter rho), these hypotheses would be 
stated in symbols as

H
0
: r 5 0 (There is no population correlation.)

H
1
: r  0 (There is a real correlation.)

14.4

The hypoTheses
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When there is a specific prediction about the direction of the correlation, it is pos-
sible to do a directional, or one-tailed, test. For example, if a researcher is predicting a 
positive relationship, the hypotheses would be

H
0
: r  0 (The population correlation is not positive.)

H
1
: r . 0 (The population correlation is positive.)

The correlation from the sample data is used to evaluate the hypotheses. For the 
regular, nondirectional test, a sample correlation near zero provides support for H

0
 and a 

sample value far from zero tends to refute H
0
. For a directional test, a positive value for 

the sample correlation would tend to refute a null hypothesis stating that the population 
correlation is not positive.

Although sample correlations are used to test hypotheses about population  
correlations, you should keep in mind that samples are not expected to be identi-
cal to the populations from which they come; there is some discrepancy (sampling 
error) between a sample statistic and the corresponding population parameter. 
Specifically, you should always expect some error between a sample correlation 
and the population correlation it represents. One implication of this fact is that, 
even when there is no correlation in the population (r 5 0), you are still likely 
to obtain a nonzero value for the sample correlation. This is particularly true for  
small samples. Figure 14.9 illustrates how a small sample from a population with 
a near-zero correlation could result in a correlation that deviates from zero. The  
colored dots in the figure represent the entire population and the three circled  
dots represent a random sample. Note that the three sample points show a rela-
tively good, positive correlation even through there is no linear trend (r 5 0) for  
the population.

X values

Y 
va

lu
e

s

Figure 14.9

Scatter plot of a popula-
tion of X and Y values 
with near-zero correla-
tion. However, a small 
sample of n 5 3 data 
points from this popula-
tion shows a relatively 
strong, positive correla-
tion. Data points in the 
sample are circled.
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When you obtain a nonzero correlation for a sample, the purpose of the hypothesis 
test is to decide between the following two interpretations:

 1. There is no correlation in the population (r 5 0), and the sample value is the 
result of sampling error. Remember, a sample is not expected to be identical to 
the population. There always is some error between a sample statistic and the 
corresponding population parameter. This is the situation specified by H

0
.

 2. The nonzero sample correlation accurately represents a real, nonzero correlation 
in the population. This is the alternative stated in H

1
.

The correlation from the sample helps to determine which of these two interpretations 
is more likely. A sample correlation near zero supports the conclusion that the population 
correlation is also zero. A sample correlation that is substantially different from zero sup-
ports the conclusion that there is a real, nonzero correlation in the population.

The hypothesis test evaluating the significance of a correlation can be conducted using 
either a t statistic or an F-ratio. The F-ratio is discussed later (pp. 493–496), and we 
focus on the t statistic here. The t statistic for a correlation has the same general struc-
ture as t statistics introduced in Chapters 9, 10, and 11.

t 5
2sample statistic population parameter

sstandard error

In this case, the sample statistic is the sample correlation (r) and the corresponding 
parameter is the population correlation (r). The null hypothesis specifies that the popu-
lation correlation is r 5 0. The final part of the equation is the standard error, which 
is determined by

standard error for
2

s
1 r

nr

2

r 5 5
2

2  
(14.6)

Thus, the complete t statistic is

t
r

1 r

n

2
5

2r

2

2

( )
( )2

 
(14.7)

The t statistic has degrees of freedom defined by df 5 n – 2. An intuitive explanation 
for this value is that a sample with only n 5 2 data points has no degrees of freedom. 
Specifically, if there are only two points, they will fit perfectly on a straight line, and 
the sample produces a perfect correlation of r 5 11.00 or r 5 –1.00. Because the first 
two points always produce a perfect correlation, the sample correlation is free to vary 
only when the data set contains more than two points. Thus, df 5 n – 2.

The following examples demonstrate the hypothesis test.

A researcher is using a regular, two-tailed test with a 5 .05 to determine whether a 
nonzero correlation exists in the population. A sample of n 5 30 individuals is obtained 
and produces a correlation of r 5 0.35. The null hypothesis states that there is no cor-
relation in the population.

H
0
: r 5 0

The hypoThesis TesT

E x A m P l E  1 4 . 6
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For this example, df 5 28 and the critical values are t 5 ±2.048. With r2 5 0.352  
5 0.1225, the data produce

t = =5
2

2

0.35 0

0.1225

0.35

0.177
1

1 28( ) /
..97

The t value is not in the critical region so we fail to reject the null hypothesis. The 
sample correlation is not large enough to reject the null hypothesis.

With a sample of n 5 30 and a correlation of r 5 0.35, this time we use a direc-
tional, one-tailed test to determine whether there is a positive correlation in the 
population.

H
0
: r  0 (There is not a positive correlation.)

H
1
: r . 0 (There is a positive correlation.)

The sample correlation is positive, as predicted, so we simply need to determine 
whether it is large enough to be significant. For a one-tailed test with df 5 28 and 
a 5 .05, the critical value is t 5 1.701. In the previous example, we found that this 
sample produces t 5 1.97, which is beyond the critical boundary. For the one-tailed 
test, we reject the null hypothesis and conclude that there is a significant positive 
correlation in the population.

As with most hypothesis tests, if other factors are held constant, the likelihood of 
finding a significant correlation increases as the sample size increases. For example, a 
sample correlation of r 5 0.50 produces a nonsignificant t(8) 5 1.63 for a sample of 
n 5 10, but the same correlation produces a significant t(18) 5 2.45 if the sample size 
is increased to n 5 20.

E x A m P l E  1 4 . 7

iN THE liTERATuRE
REPoRTiNg CoRRElATioNS

Correlations are typically reported using APA format. The statement should include the 
sample size, the calculated value for the correlation, whether it is a statistically signifi-
cant relationship, the probability level, and the type of test used (one- or two-tailed). 
For example, a correlation might be reported as follows:

A correlation for the data revealed a significant relationship between amount 
of education and annual income, r 5 10.65, n 5 30, p , .01, two tails.

Sometimes a study might look at several variables, and correlations between all pos-
sible variable pairings are computed. Suppose, for example, that a study measured people’s 
annual income, amount of education, age, and intelligence. With four variables, there are 
six possible pairings leading to six different correlations. The results from multiple cor-
relations are most easily reported in a table called a correlation matrix, using footnotes to 
indicate which correlations are significant. For example, the report might state:

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



468     CHAPTER 14 CoRRElATioN

Occasionally a researcher may suspect that the relationship between two variables 
is being distorted by the influence of a third variable. Earlier in the chapter, for 
example, we found a strong positive relationship between the number of churches 
and the number of serious crimes for a sample of different towns and cities (see 
Example 14.4, p 460). However, it is unlikely that there is a direct relationship 
between churches and crime. Instead, both variables are influenced by population: 
Large cities have a lot of churches and high crime rates compared to smaller towns, 
which have fewer churches and less crime. If population were controlled, there 
probably would be no real correlation between churches and crime.

Fortunately, there is a statistical technique, known as partial correlation, that allows 
a researcher to measure the relationship between two variables while controlling or 
holding constant the influence of a third variable. Thus, a researcher could use a partial 
correlation to examine the relationship between churches and crime without the risk 
that the relationship is distorted by the size of the population.

parTial 
CorrelaTions

 1. A researcher obtains a correlation of r 5 20.39 for a sample of n 5 25 individuals. 
Does this sample provide sufficient evidence to conclude that there is a significant, 
nonzero correlation in the population? Assume a two-tailed test with a 5 .05.

 2. As sample size gets smaller, what happens to the magnitude of the correlation 
necessary for significance? Explain why this occurs.

 1. No. The sample correlation produces t 5 22.03. With df 5 23 and a 5 .05, the critical 
value is 2.069. The sample value is not in the critical region.

 2. As the sample size gets smaller, the magnitude of the correlation needed for significance 
gets larger. With a small sample, it is easy to get a relatively large correlation just by chance. 
Therefore, a small sample requires a very large correlation before you can be confident there 
is a real (nonzero) relationship in the population.

l E A R N i N g  C H E C k
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The analysis examined the relationships among income, amount of education, 
age, and intelligence for n 5 30 participants. The correlations between pairs of 
variables are reported in Table 1. Significant correlations are noted in the table.

TAblE 1

Correlation matrix for income, amount of education, age, and intelligence

Education Age IQ

Income 1.65* 1.41** 1.27

Education 1.11 1.38**

Age 2.02

n 5 30
*p , .01, two tails

**p , .05, two tails
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A partial correlation measures the relationship between two variables while 
controlling the influence of a third variable by holding it constant.

In a situation with three variables, X, Y, and Z, it is possible to compute three individual 
Pearson correlations:

 1. r
XY

, measuring the correlation between X and Y

 2. r
XZ

, measuring the correlation between X and Z

 3. r
YZ

, measuring the correlation between Y and Z

These three individual correlations can then be used to compute a partial correlation. 
For example, the partial correlation between X and Y, holding Z constant, is determined 
by the formula

r
r r r

r r
XY Z

XY XZ YZ

XZ YZ

− 5
2

2 2

( )
( )( )1 12 2

 
(14.8)

The following example demonstrates the calculation and interpretation of a partial 
correlation.

We begin with the hypothetical data shown in Table 14.2. These scores have been con-
structed to simulate the church/crime/population situation for a sample of n 5 15 cities. 
The X variable represents the number of churches, Y represents the number of crimes, 
and Z represents the population for each city. Note that there are three categories for the 
size of the population (three values for Z) corresponding to small, medium, and large 
cities. For these scores, the individual Pearson correlations are all large and positive:

 a. The correlation between churches and crime is r
XY

 5 0.923.

 b. The correlation between churches and population is r
XZ

 5 0.961.

 c. The correlation between crime and population is r
YZ

 5 0.961.

D e f i n i t i o n

E x A m P l E  1 4 . 8

Number of Churches (X) Number of Crimes (Y) Population (Z)

1 4 1
2 3 1
3 1 1
4 2 1
5 5 1
7 8 2
8 11 2
9 9 2

10 7 2
11 10 2
13 15 3
14 14 3
15 16 3
16 17 3
17 13 3

TAblE 14.2

Hypothetical data showing 
the relationship between 
the number of churches, the 
number of crimes, and the 
population of a set of n 5 15 
cities.
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The data points for the 15 cities are shown in the scatter plot in Figure 14.10. Notice that 
the population variable, Z, separates the scores into three distinct groups: When Z 5 1, the 
population is low and churches and crime (X and Y) are also low; when Z 5 2, the popula-
tion is moderate and churches and crime (X and Y) are also moderate; and when Z 5 3, the 
population is large and churches and crime are both high. Thus, as the population increases 
from one city to another, the number of churches and crimes also increase, and the result is 
a strong positive correlation between churches and crime.

Within each of the three population categories, however, there is no linear relation-
ship between churches and crime. Specifically, within each group, the population vari-
able is constant and the five data points for X and Y form a circular pattern, indicating 
no consistent linear relationship. The partial correlation allows us to hold population 

1 2 3 4 5 6 7 8 9

Number of Churches

Z = 1
Small Cities

Z = 2
Medium Cities

Z = 3
Large Cities

N
u

m
b

e
r o

f 
C

rim
e

s

10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Figure 14.10

Hypothetical data showing the relationship between the number of churches and the number of crimes for three 
groups of cities. Those with small populations (Z 5 1), those with medium populations (Z 5 2), and those with  
large populations (Z 5 3).
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constant across the entire sample and measure the underlying relationship between 
churches and crime without any influence from population. For these data, the partial 
correlation is

rXY Z− 5
2

2 2

0 923 0 961 0 961

1 0 961 1 0 9612 2

. . .

. .

( )

( )(( )

5
0

0 076.

5 0

Thus, when the population differences are eliminated, there is no correlation remain-
ing between churches and crime (r 5 0).

In Example 14.8, the population differences, which correspond to the different val-
ues of the Z variable, were eliminated mathematically in the calculation of the partial 
correlation. However, it is possible to visualize how these differences are eliminated 
in the actual data. Looking at Figure 14.10, focus on the five points in the bottom left 
corner. These are the five cities with small populations, few churches, and little crime. 
The five points in the upper right corner represent the five cities with large populations, 
many churches, and a lot of crime. The partial correlation controls population size by 
mathematically equalizing the populations for all 15 cities. Population is increased for 
the five small cities. However, increasing the population also increases churches and 
crime. Similarly, population is decreased for the five large cities, which also decreases 
churches and crime. In Figure 14.10, imagine the five points in the bottom left moving 
up and to the right so that they overlap with the points in the center. At the same time, 
the five points in the upper right move down and to the left so that they also overlap 
the points in the center. When population is equalized, all 15 data points are clustered 
in the center of the figure with no clear positive or negative trend. In other words, the 
remaining correlation between churches and crime is r 5 0.

In Example 14.8 we used a partial correlation to demonstrate that an apparent 
relationship between churches and crime was actually caused by the influence of 
a third variable, population. It also is possible to use partial correlations to dem-
onstrate that a relationship is not caused by the influence of a third variable. As an 
example, consider research examining the relationship between exposure to sexual 
content on television and sexual behavior among adolescents (Collins et al., 2004). 
The study consisted of a survey of 1,792 adolescents, 12 to 17 years old, who re-
ported their television viewing habits and their sexual behaviors. The results showed 
a clear relationship between television viewing and behaviors. Specifically, the more 
sexual content the adolescents watched on television, the more likely they were to 
engage in sexual behaviors. One concern for the researchers was that the observed 
relationship may be influenced by the age of the participants. For example, the 
older adolescents (age 17) probably watch more programs with sexual content and 
engage in more sexual behaviors than the younger adolescents (age 12) do. Although 
the viewing of sexual content on television and the participants’ sexual behaviors 
increase together, the observed relationship may simply be the result of age differ-
ences. To address this problem, the researcher used a partial correlation technique to 
control or hold constant the age variable. The results clearly showed that a relation-
ship still exists between television sexual content and sexual behavior even after the 
influence of the participants’ ages was accounted for.
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AlTERNATivES To THE PEARSoN CoRRElATioN

The Pearson correlation measures the degree of linear relationship between two vari-
ables when the data (X and Y values) consist of numerical scores from an interval 
or ratio scale of measurement. However, other correlations have been developed for 
nonlinear relationships and for other types of data. In this section, we examine three 
additional correlations: the Spearman correlation, the point-biserial correlation, and the 
phi-coefficient. As you will see, all three can be viewed as special applications of the 
Pearson correlation.

When the Pearson correlation formula is used with data from an ordinal scale (ranks), 
the result is called the Spearman correlation. The Spearman correlation is used in two 
situations.

First, the Spearman correlation is used to measure the relationship between X and Y 
when both variables are measured on ordinal scales. Recall from Chapter 1 that an ordinal 
scale typically involves ranking individuals rather than obtaining numerical scores. Rank-
order data are fairly common because they are often easier to obtain than interval or ratio 
scale data. For example, a teacher may feel confident about rank-ordering students’ leader-
ship abilities but would find it difficult to measure leadership on some other scale.

In addition to measuring relationships for ordinal data, the Spearman correlation 
can be used as a valuable alternative to the Pearson correlation, even when the original 
raw scores are on an interval or a ratio scale. As we have noted, the Pearson correlation 
measures the degree of linear relationship between two variables—that is, how well 
the data points fit on a straight line. However, a researcher often expects the data to 
show a consistently one-directional relationship but not necessarily a linear relation-
ship. For example, Figure 14.11 shows the typical relationship between practice and 
performance. For nearly any skill, increasing amounts of practice tend to be associ-
ated with improvements in performance (the more you practice, the better you get). 
However, it is not a straight-line relationship. When you are first learning a new skill, 
practice produces large improvements in performance. After you have been performing 
a skill for several years, however, additional practice produces only minor changes in 
performance. Although there is a consistent relationship between the amount of practice 
and the quality of performance, it clearly is not linear. If the Pearson correlation were 
computed for these data, it would not produce a correlation of 1.00 because the data do 
not fit perfectly on a straight line. In a situation like this, the Spearman correlation can 
be used to measure the consistency of the relationship, independent of its form.

14.5

The spearman 
CorrelaTion

 1. Sales figures show a positive relationship between temperature and ice cream 
consumption; as temperature increases, ice cream consumption also increases. 
Other research shows a positive relationship between temperature and crime 
rate (Cohn & Rotton, 2000). When the temperature increases, both ice cream 
consumption and crime rates tend to increase. As a result, there is a positive 
correlation between ice cream consumption and crime rate. However, what do 
you think is the true relationship between ice cream consumption and crime 
rate? Specifically, what value would you predict for the partial correlation be-
tween the two variables if temperature were held constant?

 1. There should be no systematic relationship between ice cream consumption and crime rate. 
The partial correlation should be near zero.

l E A R N i N g  C H E C k
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The reason that the Spearman correlation measures consistency, rather than form, 
comes from a simple observation: When two variables are consistently related, their 
ranks are linearly related. For example, a perfectly consistent positive relationship 
means that every time the X variable increases, the Y variable also increases. Thus, the 
smallest value of X is paired with the smallest value of Y, the second-smallest value 
of X is paired with the second smallest value of Y, and so on. Every time the rank for 
X goes up by 1 point, the rank for Y also goes up by 1 point. As a result, the ranks fit 
perfectly on a straight line. This phenomenon is demonstrated in the following example.

Table 14.3 presents X and Y scores for a sample of n 5 4 people. Note that the data show 
a perfectly consistent relationship. Each increase in X is accompanied by an increase 
in Y. However, the relationship is not linear, as can be seen in the graph of the data in 
Figure 14.12(a).

Next, we convert the scores to ranks. The lowest X is assigned a rank of 1, the next 
lowest a rank of 2, and so on. The Y scores are then ranked in the same way. The ranks 
are listed in Table 14.3 and shown in Figure 14.12(b). Note that the perfect consistency 
for the scores produces a perfect linear relationship for the ranks.

The preceding example demonstrates that a consistent relationship among scores 
produces a linear relationship when the scores are converted to ranks. Thus, if you want 
to measure the consistency of a relationship for a set of scores, you can simply convert 
the scores to ranks and then use the Pearson correlation formula to measure the linear 
relationship for the ranked data. The degree of linear relationship for the ranks provides 
a measure of the degree of consistency for the original scores.
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Figure 14.11

Hypothetical data showing 
the relationship between 
practice and performance. 
Although this relationship 
is not linear, there is a 
consistent positive relation-
ship. An increase in perfor-
mance tends to accompany 
an increase in practice.

Person X Y X-Rank Y-Rank

A 4 9 3 3

B 2 2 1 1
C 10 10 4 4
D 3 8 2 2

TAblE 14.3

Scores and ranks for 
Example 14.9.
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To summarize, the Spearman correlation measures the relationship between two 
variables when both are measured on ordinal scales (ranks). There are two general situ-
ations in which the Spearman correlation is used:

 1. Spearman is used when the original data are ordinal. In this case, you rank the 
ordinal scores and apply the Pearson correlation formula to the set of ranks.

 2. Spearman is used when the original scores are numerical values from an 
interval or ratio scale and the goal is to measure the consistency of the rela-
tionship between X and Y, independent of the specific form of the relation-
ship. In this case, the original scores are first converted to ranks, and then 
the Pearson correlation formula is used with the ranks. Because the Pearson 
formula measures the degree to which the ranks fit on a straight line, it 
also measures the degree of consistency in the relationship for the original 
scores. Incidentally, when there is a consistently one-directional relationship 
between two variables, the relationship is said to be monotonic. Thus, the 
Spearman correlation measures the degree of monotonic relationship  
between two variables.

In either case, the Spearman correlation is identified by the symbol r
S
 to differentiate 

it from the Pearson correlation. The complete process of computing the Spearman cor-
relation, including ranking scores, is demonstrated in Example 14.10.

The following data show a nearly perfect monotonic relationship between X and Y. 
When X increases, Y tends to decrease, and there is only one reversal in this general 
trend. To compute the Spearman correlation, we first rank the X and Y values, and we 
then compute the Pearson correlation for the ranks.

E x A m P l E  1 4 . 1 0

1 3 5 7 9

Y 
sc

o
re

s

X scores

Scores

2 4 6 8 100

2

4

6

8

10

1

3
B

D

A
C

5

7

9

1 2 3 4

Y 
ra

n
ks

X ranks

Ranks

1

2

B

D

A

C

3

4

(a) (b)
Figure 14.12

Scatter plots showing (a) the scores and (b) the ranks for the data in Example 14.9. Notice that there is a consistent, 
positive relationship between the X and Y scores, although it is not a linear relationship. Also notice that the scatter plot 
of the ranks shows a perfect linear relationship.

The word monotonic describes 
a sequence that is consistently 
increasing (or decreasing). Like 
the word monotonous, it means 
constant and unchanging.
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To compute the correlation, we need SS for X, SS for Y, and SP. Remember that all 
of these values are computed with the ranks, not the original scores. The X ranks are 
simply the integers 1, 2, 3, 4, and 5. These values have oX 5 15 and oX2 5 55. The 
SS for the X ranks is

SS X
X

nX 5  2


5 2 52

2 2

55
15

5
10

( ) ( )

Note that the ranks for Y are identical to the ranks for X; that is, they are the integers 
1, 2, 3, 4, and 5. Therefore, the SS for Y is identical to the SS for X:

SS
Y
 5 10

To compute the SP value, we need oX, oY, and oXY for the ranks. The XY values 
are listed in the table with the ranks, and we already have found that both the Xs and 
the Ys have a sum of 15. Using these values, we obtain

SP XY
Y

n
5  2

 
5 52

X( )( ) ( )( )
36

15 15

5
9−

Finally, the Spearman correlation simply uses the Pearson formula for the ranks.

r
SP

SS SS
s

X Y

5 5
2

52
( )( ) ( )

9

10 10
0 9.

The Spearman correlation indicates that the data show a consistent (nearly perfect) 
negative trend.

When you are converting scores into ranks for the Spearman correlation, you may 
encounter two (or more) identical scores. Whenever two scores have exactly the same 
value, their ranks should also be the same. This is accomplished by the following 
procedure:

 1. List the scores in order from smallest to largest. Include tied values in the list.

 2. Assign a rank (first, second, etc.) to each position in the ordered list.

 3. When two (or more) scores are tied, compute the mean of their ranked positions, 
and assign this mean value as the final rank for each score.

ranking Tied sCores

Original Data

X Y

3 12
4 10

10 11
11 9
12 2

Ranks

X Y XY

1 5 5
2 3 6
3 4 12
4 2 8
5 1 5

36 5 oXY

We have listed the X values 
in order so that the trend is 
easier to recognize.
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The process of finding ranks for tied scores is demonstrated here. These scores have 
been listed in order from smallest to largest.

Scores Rank Position Final Rank

3 1 1.5 Mean of 1 and 2
3 2 1.5
5 3 3
6 4 5 Mean of 4, 5, and 6
6 5 5
6 6 5

12 7 7

Note that this example has seven scores and uses all seven ranks. For X 5 12, the 
largest score, the appropriate rank is 7. It cannot be given a rank of 6 because that rank 
has been used for the tied scores.

If the original scores are ordinal values, then they are ranked using exactly the same 
process for ranking tied scores. For example, suppose a researcher has the following 
letter grades for a sample of n 5 7 students: A, A, B, C, C, D, and F. The grades would 
receive the following ranks: 1.5, 1.5, 3, 4.5, 4.5, 6, and 7.

After the original X values and Y values have been ranked, the calculations necessary 
for SS and SP can be greatly simplified. First, you should note that the X ranks and the 
Y ranks are really just a set of integers: 1, 2, 3, 4, … , n. To compute the mean for these 
integers, you can locate the midpoint of the series by M 5 (n 1 1)/2. Similarly, the SS 
for this series of integers can be computed by

SS
n n

5
22 1

12

( )
( )Try it out.

Also, because the X ranks and the Y ranks are the same values, the SS for X is identical 
to the SS for Y.

Because calculations with ranks can be simplified and because the Spearman 
correlation uses ranked data, these simplifications can be incorporated into the  
final calculations for the Spearman correlation. Instead of using the Pearson  
formula after ranking the data, you can put the ranks directly into a simplified 
formula:

r
D

n ns 5 2
2

1
6

1

2

2

o
( )

 
(14.9)

where D is the difference between the X rank and the Y rank for each individual. 
This formula produces the same result that would be obtained from the Pearson  
formula. However, note that this special formula can be used only after the scores 
have been converted to ranks and only when there are no ties among the ranks. If 
there are relatively few tied ranks, the formula still may be used, but it loses accuracy 
as the number of ties increases. The application of this formula is demonstrated in 
the following example.

speCial formula 
for The spearman 

CorrelaTion

Caution: In this formula, 
you compute the value of the 
fraction and then subtract 
from 1. The 1 is not part of 
the fraction.
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To demonstrate the special formula for the Spearman correlation, we use the same data 
that were presented in Example 14.10. The ranks for these data are shown again here:

Ranks Difference
X Y D D2

1 5 4 16
2 3 1 1
3 4 1 1
4 2 22 4

5 1 24 16

38 5 oD 2

Using the special formula for the Spearman correlation, we obtain

r
D

n ns 5 2
2

5 2
2

5 2 5 21
6

1
1

6 38

5 25 1
1

228

120
1

2

2

o
( )

( )
( )

11 90 0 90. .52

This is exactly the same answer that we obtained in Example 14.10, using the 
Pearson formula on the ranks.

E x A m P l E  1 4 . 1 1

 1. Describe what is measured by a Spearman correlation, and explain how this correlation 
is different from the Pearson correlation.

 2. If the following scores are converted into ranks, what rank will be assigned to the 
individuals who have scores of X 5 7?

Scores: 1, 1, 1, 3, 6, 7, 7, 8, 10

 3. Rank the following scores and compute the Spearman correlation:

X Y

2 7
12 3
9 16

14 5

 1. The Spearman correlation measures the consistency of the direction of the relationship between 
two variables. The Spearman correlation does not depend on the form of the relationship, 
whereas the Pearson correlation measures how well the data fit a linear form.

 2. Both scores get a rank of 6.5 (the average of 6 and 7).

 3. r
S
 5 20.60

l E A R N i N g  C H E C k

ANSwERS

In Chapters 9, 10, and 11, we introduced r2 as a measure of effect size that often accompa-
nies a hypothesis test using the t statistic. The r2 used to measure effect size and the r used 
to measure a correlation are directly related, and we now have an opportunity to demonstrate 
the relationship. Specifically, we compare the independent-measures t test (Chapter 10) and 
a special version of the Pearson correlation known as the point-biserial correlation.

The poinT-Biserial 
CorrelaTion and 

measuring effeCT 
size WiTh r2
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The point-biserial correlation is used to measure the relationship between two vari-
ables in situations in which one variable consists of regular, numerical scores, but the 
second variable has only two values. A variable with only two values is called a dichot-
omous variable or a binomial variable. Some examples of dichotomous variables are

 1. Male versus female

 2. College graduate versus not a college graduate

 3. First-born child versus later-born child

 4. Success versus failure on a particular task

 5. Older than 30 years versus younger than 30 years

To compute the point-biserial correlation, the dichotomous variable is first converted 
to numerical values by assigning a value of zero (0) to one category and a value of one 
(1) to the other category. Then, the regular Pearson correlation formula is used with the 
converted data.

To demonstrate the point-biserial correlation and its association with the r2 measure 
of effect size, we use the data from Example 10.1 (p. 289). The original example com-
pared high school grades for two groups of students: one group who regularly watched 
Sesame Street as 5-year-old children and one who did not watch the program. The 
data from the independent-measures study are presented on the left side of Table 14.4. 
Notice that the data consist of two separate samples and the independent-measures t 
was used to determine whether there was a significant mean difference between the two 
populations represented by the samples.

It is customary to use the 
numerical values 0 and 1, but 
any two different numbers 
would work equally well and 
would not affect the value of 
the correlation.

TAblE 14.4

The same data are organized 
in two different formats. 
On the left-hand side, the 
data appear as two separate 
samples appropriate for an 
independent-measures t 
hypothesis test. On the right-
hand side, the same data are 
shown as a single sample, 
with two scores for each 
individual: the original high 
school grade and a dichoto-
mous score (Y) that identifies 
the group in which the par-
ticipant is located (Sesame 
Street 5 1 and No-Sesame 
Street 5 0). The data on the 
right are appropriate for a 
point-biserial correlation.

Data for the independent-measures  
t test. Two separate samples, each 
with n 5 10 scores.

Average High School Grade

Watched 
Sesame Street

Did Not Watch 
Sesame Street

86 99 90 79
87 97 89 83
91 94 82 86
97 89 83 81
98 92 85 92

n 5 10
M 5 93
SS 5 200

n 5 10
M 5 85
SS 5 160

Data for the point-biserial correlation. Two scores, 
X and Y, for each of the n 5 20 participants.

Participant Grade X Group Y

A 86 1

B 87 1
C 91 1
D 97 1
E 98 1
F 99 1
G 97 1
H 94 1
I 89 1
J 92 1
K 90 0
L 89 0
M 82 0
N 83 0
O 85 0
P 79 0
Q 83 0
R 86 0
S 81 0
T 92 0
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On the right-hand side of Table 14.4 we have reorganized the data into a form that is 
suitable for a point-biserial correlation. Specifically, we used each student’s high school 
grade as the X value and we have created a new variable, Y, to represent the group, or 
condition, for each student. In this case, we have used Y 5 1 for students who watched 
Sesame Street and Y 5 0 for students who did not watch the program.

When the data in Table 14.4 were originally presented in Chapter 10, we conducted 
an independent-measures t hypothesis test and obtained t 5 4.00 with df 5 18. We 
measured the size of the treatment effect by calculating r2, the percentage of variance 
accounted for, and obtained r2 5 0.47.

Calculating the point-biserial correlation for these data also produces a value for r. 
Specifically, the X scores produce SS 5 680; the Y values produce SS 5 5.00, and the 
sum of the products of the X and Y deviations produces SP 5 40. The point-biserial 
correlation is

r
SP

SS SSX Y

5 5 5 5
( )( ) ( )( )

40

680 5

40

58 31
0 686

.
.

Notice that squaring the value of the point-biserial correlation produces r2 5 (0.686)2 
5 0.47, which is exactly the value of r2 we obtained measuring effect size.

In some respects, the point-biserial correlation and the independent-measures 
hypothesis test are evaluating the same thing. Specifically, both are examining the 
relationship between the TV-viewing habits of 5-year-old children and their future aca-
demic performance in high school.

 1. The correlation is measuring the strength of the relationship between the two 
variables. A large correlation (near 1.00 or 21.00) would indicate that there is 
a consistent, predictable relationship between high school grades and watch-
ing Sesame Street as a 5-year-old child. In particular, the value of r2 measures 
how much of the variability in grades can be predicted by knowing whether the 
participants watched Sesame Street.

 2. The t test evaluates the significance of the relationship. The hypothesis test 
determines whether the mean difference in grades between the two groups is 
greater than can be reasonably explained by chance alone.

As we noted in Chapter 10 (p. 291–295), the outcome of the hypothesis test and 
the value of r2 are often reported together. The t value measures statistical signifi-
cance and r2 measures the effect size. Also, as we noted in Chapter 10, the values 
for t and r2 are directly related. In fact, either can be calculated from the other by 
the equations

r
t

t df
t

r

r df
2

2

2
2

2

21
5

1
5

2
and

( ) /

where df is the degrees of freedom for the t statistic.
However, you should note that r2 is determined entirely by the size of the correla-

tion, whereas t is influenced by the size of the correlation and the size of the sample. 
For example, a correlation of r 5 0.30 produces r2 5 0.09 (9%) no matter how large 
the sample may be. On the other hand, a point-biserial correlation of r 5 0.30 for a 
total sample of 10 people (n 5 5 in each group) produces a nonsignificant value of  
t 5 0.889. If the sample is increased to 50 people (n 5 25 in each group), the same 
correlation produces a significant t value of t 5 2.18. Although t and r are related, they 
are measuring different things.
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When both variables (X and Y) measured for each individual are dichotomous, the cor-
relation between the two variables is called the phi-coefficient. To compute phi (), you 
follow a two-step procedure:

 1. Convert each of the dichotomous variables to numerical values by assigning a 0 
to one category and a 1 to the other category for each of the variables.

 2. Use the regular Pearson formula with the converted scores.

This process is demonstrated in the following example.

A researcher is interested in examining the relationship between birth-order position and 
personality for individuals who have at least one sibling. A random sample of n 5 8 
participants is obtained, and each individual is classified in terms of birth-order position 
as first-born versus later-born. Then, each individual’s personality is classified as either 
introvert or extrovert.

The original measurements are then converted to numerical values by the following 
assignments:

Birth Order Personality

First-born child 5 0 Introvert 5 0

Later-born child 5 1 Extrovert 5 1

The original data and the converted scores are as follows:

Original Data Converted Scores

Birth Order 
(X)

Personality 
(Y)

Birth Order 
(X)

Personality 
(Y)

1st Introvert 0 0
3rd Extrovert 1 1
1st Extrovert 0 1
2nd Extrovert 1 1
4th Extrovert 1 1
2nd Introvert 1 0
1st Introvert 0 0
3rd Extrovert 1 1

The Pearson correlation formula is then used with the converted data to compute the 
phi-coefficient.

Because the assignment of numerical values is arbitrary (either category  
could be designated 0 or 1), the sign of the resulting correlation is meaningless. 
As with most correlations, the strength of the relationship is best described by the 
value of r2, the coefficient of determination, which measures how much of the vari-
ability in one variable is predicted or determined by the association with the second  
variable.

We also should note that although the phi-coefficient can be used to assess the rela-
tionship between two dichotomous variables, the more common statistical procedure is 
a chi-square statistic, which is examined in Chapter 15.

The phi-CoeffiCienT

E x A m P l E  1 4 . 1 2
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iNTRoduCTioN To liNEAR EquATioNS ANd REgRESSioN

Earlier in the chapter, we introduced the Pearson correlation as a technique for describ-
ing and measuring the linear relationship between two variables. Figure 14.13 presents 
hypothetical data showing the relationship between SAT scores and college grade point 
average (GPA). Note that the figure shows a good, but not perfect, positive relationship. 
Also note that we have drawn a line through the middle of the data points. This line 
serves several purposes:

 1. The line makes the relationship between SAT scores and GPA easier to see.

 2. The line identifies the center, or central tendency, of the relationship, just as the 
mean describes central tendency for a set of scores. Thus, the line provides a 
simplified description of the relationship. For example, if the data points were 
removed, the straight line would still give a general picture of the relationship 
between SAT scores and GPA.

 3. Finally, the line can be used for prediction. The line establishes a precise, 
one-to-one relationship between each X value (SAT score) and a correspond-
ing Y value (GPA). For example, an SAT score of 620 corresponds to a GPA 
of 3.25 (see Figure 14.13). Thus, the college admissions officers could use the 
straight-line relationship to predict that a student entering college with an SAT 
score of 620 should achieve a college GPA of approximately 3.25.

14.6

 1. The following data represent job-related stress scores for a sample of n 5 8 
individuals. These people also are classified by salary level.

 a. Convert the data into a form suitable for the point-biserial correlation.

 b. Compute the point-biserial correlation for these data.

Salary More 
than $40,000

Salary Less 
than $40,000

8 4
6 2
5 1
3 3

 2. A researcher would like to know whether there is a relationship between gender and 
manual dexterity for 3-year-old children. A sample of n 5 10 boys and n 5 10 girls is 
obtained and each child is given a manual-dexterity test. Five of the girls failed the test 
and only two of the boys failed. Describe how these data could be coded into a form 
suitable for computing a phi-coefficient to measure the strength of the relationship.

 1. a.  Salary level is a dichotomous variable and can be coded as Y 5 1 for individuals with 
salary more than $40,000 and Y 5 0 for salary less than $40,000. The stress scores  
produce SS

X
 5 36, the salary codes produce SS

Y
 5 2, and SP 5 6.

 b. The point-biserial correlation is 0.71.

 2. Gender could be coded with male 5 0 and female 5 1. Manual dexterity could be coded with 
failure 5 0 and success 5 1. Eight boys would have scores of 0 and 1 and two would have 
scores of 0 and 0. Five girls would have scores of 1 and 1 and five would have scores of 1 and 0.

l E A R N i N g  C H E C k
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Our goal in this section is to develop a procedure that identifies and defines the 
straight line that provides the best fit for any specific set of data. This straight line does 
not have to be drawn on a graph; it can be presented in a simple equation. Thus, our 
goal is to find the equation for the line that best describes the relationship for a set of 
X and Y data.

In general, a linear relationship between two variables X and Y can be expressed by 
the equation

Y 5 bX 1 a (14.10)

where a and b are fixed constants.
For example, a local video store charges an annual membership fee of $5,  

which allows you to rent videos and games for $2 each. With this information, the 
total cost for 1 year can be computed using a linear equation that describes the  
relationship between the total cost (Y) and the number of videos and games  
rented (X).

Y 5 2X 1 5

In the general linear equation, the value of b is called the slope. The slope  
determines how much the Y variable changes when X is increased by 1 point. For the 
video store example, the slope is b 5 2 and indicates that your total cost increases 
by $2 for each video you rent. The value of a in the general equation is called  
the Y-intercept because it determines the value of Y when X 5 0. (On a graph,  
the a value identifies the point where the line intercepts the Y-axis.) For the video-
store example, a 5 5; there is a $5 membership charge even if you never rent  
a video.

linear equaTions
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Figure 14.13

Hypothetical data showing 
the relationship between 
SAT scores and GPA with 
a regression line drawn 
through the data points. 
The regression line de-
fines a precise, one-to-one 
relationship between each 
X value (SAT score) and 
its corresponding Y value 
(GPA).

Note that a positive slope 
means that Y increases 
when X is increased, and 
a negative slope indicates 
that Y decreases when X is 
increased.
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Figure 14.14 shows the general relationship between the annual cost and number 
of videos for the video store example. Notice that the relationship results in a straight 
line. To obtain this graph, we picked any two values of X and then used the equation to 
compute the corresponding values for Y. For example,

When X 5 3: When X 5 8:

Y 5 bX 1 a Y 5 bX 1 a

5 $2(3) 1 $5 5 $2(8) 1 $5

5 $6 1 $5 5 $16 1 $5

5 $11 5 $21

Next, these two points are plotted on the graph: one point at X 5 3 and  
Y 5 11, the other point at X 5 8 and Y 5 21. Because two points completely  
determine a straight line, we simply drew the line so that it passed through these 
two points.

When drawing a graph of 
a linear equation, it is wise 
to compute and plot at least 
three points to be certain that 
you have not made a mistake.
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Figure 14.14

The relationship between 
total cost and number of 
videos rented each month. 
The video store charges a 
$5 monthly membership 
fee and $2 for each video 
or game rented. The rela-
tionship is described by a 
linear equation, Y 5 2X 
15, where Y is the total 
cost and X is the number 
of videos.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



484     CHAPTER 14 CoRRElATioN

Because a straight line can be extremely useful for describing a relationship between 
two variables, a statistical technique has been developed that provides a standardized 
method for determining the best-fitting straight line for any set of data. The statistical 
procedure is regression, and the resulting straight line is called the regression line.

The statistical technique for finding the best-fitting straight line for a set of data 
is called regression, and the resulting straight line is called the regression line.

The goal for regression is to find the best-fitting straight line for a set of data. To 
accomplish this goal, however, it is first necessary to define precisely what is meant by 
“best fit.” For any particular set of data, it is possible to draw lots of different straight 
lines that all appear to pass through the center of the data points. Each of these lines can 
be defined by a linear equation of the form Y 5 bX 1 a where b and a are constants that 
determine the slope and Y-intercept of the line, respectively. Each individual line has 
its own unique values for b and a. The problem is to find the specific line that provides 
the best fit to the actual data points.

To determine how well a line fits the data points, the first step is to define mathematically the 
distance between the line and each data point. For every X value in the data, the linear equa-
tion determines a Y value on the line. This value is the predicted Y and is called Ŷ (“Y hat”). 
The distance between this predicted value and the actual Y value in the data is determined by

distance 5 Y 2 Ŷ

regression

D e f i n i t i o n

The leasT-squares 
soluTion

 1. A local gym charges a $25 monthly membership fee plus $2 per hour for aerobics 
classes. What is the linear equation that describes the relationship between the total 
monthly cost (Y) and the number of class hours each month (X)?

 2. For the linear equation, Y 5 23X 1 7, what happens to the value of Y each time 
X is increased by 1 point?

 3. Use the linear equation Y 5 2X 2 7 to determine the value of Y for each of the 
following values of X: 1, 3, 5, 10.

 4. If the slope constant (b) in a linear equation is positive, then a graph of the equation 
is a line tilted from lower left to upper right. (True or false?)

 1. Y 5 2X 1 25

 2. The slope is 23, so Y decreases by 3 points each time X increases by 1 point.

 3. 

X Y

1 –5
3 –1
5 3

10 13

 4. True. A positive slope indicates that Y increases (goes up in the graph) when X increases 
(goes to the right in the graph).

l E A R N i N g  C H E C k
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Note that we simply are measuring the vertical distance between the actual data 
point (Y) and the predicted point on the line. This distance measures the error between 
the line and the actual data (Figure 14.15).

Because some of these distances are positive and some are negative, the next step is to 
square each distance to obtain a uniformly positive measure of error. Finally, to determine 
the total error between the line and the data, we add the squared errors for all of the data 
points. The result is a measure of overall squared error between the line and the data:

total squared error 5 o(Y 2 Ŷ)2

Now we can define the best-fitting line as the one that has the smallest total squared 
error. For obvious reasons, the resulting line is commonly called the least-squared-
error solution. In symbols, we are looking for a linear equation of the form

Ŷ 5 bX 1 a

For each value of X in the data, this equation determines the point on the line (Ŷ) 
that gives the best prediction of Y. The problem is to find the specific values for a and 
b that make this the best-fitting line.

The calculations that are needed to find this equation require calculus and some 
sophisticated algebra, so we do not present the details of the solution. The results, how-
ever, are relatively straightforward, and the solutions for b and a are as follows:

b
SP

SSX

5

 
(14.11)

where SP is the sum of products and SS
X
 is the sum of squares for the X scores.

A commonly used alternative formula for the slope is based on the standard devia-
tions for X and Y. The alternative formula is

b
s
s

y

x

r5

 
(14.12)

X  Values

X, Y
data point

Y 
 V

a
lu

e
s

Y = bX + aˆ

Distance = Y – Ŷ

Figure 14.15

The distance between the 
actual data point (Y) and 
the predicted point on the 
line (Ŷ) is defined as  
Y 2 Ŷ. The goal of  
regression is to find the 
equation for the line that 
minimizes these distances.
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where s
Y
 is the standard deviation for the Y scores, s

X
 is the standard deviation for the  

X scores, and r is the Pearson correlation for X and Y. The value of the constant a in the 
equation is determined by

a 5 M
Y
 2 bM

X
 (14.13)

Note that these formulas determine the linear equation that provides the best predic-
tion of Y values. This equation is called the regression equation for Y.

The regression equation for Y is the linear equation.

Ŷ 5 bX 1 a (14.14)

where the constant b is determined by Equation 14.11, or 14.12 and the constant 
a is determined by Equation 14.13. This equation results in the least squared 
error between the data points and the line.

The scores in the following table are used to demonstrate the calculation and use of the 
regression equation for predicting Y.

X Y X – MX Y – MY (X – MX)2 (Y – MX)2 (X – MX) (Y – MY)

5 10 1 3 1 9 3
1 4 –3 –3 9 9 9
4 5 0 –2 0 4 0
7 11 3 4 9 16 12
6 15 2 8 4 64 16
4 6 0 –1 0 1 0
3 5 –1 –2 1 4 2
2 0 –2 –7 4 49 14

SS
X
 5 28 SS

Y
 5 156 SP 5 56

For these data, oX 5 32, so M
X
 5 4. Also, oY 5 56, so M

Y
 5 7. These values have 

been used to compute the deviation scores for each X and Y value. The final three col-
umns show the squared deviations for X and for Y, and the products of the deviation 
scores.

Our goal is to find the values for b and a in the regression equation. Using Equations 
14.11 and 14.13, the solutions for b and a are

b
SP

SSX

5 5 5
56
28

2

a 5 M
Y
 2 bM

X
 5 7 2 2(4) 5 21

The resulting equation is

Ŷ 5 2X 2 1

The original data and the regression line are shown in Figure 14.16.

D e f i n i t i o n

E x A m P l E  1 4 . 1 3
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The regression line shown in Figure 14.16 demonstrates some simple and very pre-
dictable facts about regression. First, the calculation of the Y-intercept (Equation 14.13) 
ensures that the regression line passes through the point defined by the mean for X and 
the mean for Y. That is, the point identified by the coordinates M

X
, M

Y
 will always be 

on the line. We have included the two means in Figure 14.16 to show that the point they 
define is on the regression line. Second, the sign of the correlation (1 or –) is the same 
as the sign of the slope of the regression line. Specifically, if the correlation is positive, 
then the slope is also positive and the regression line slopes up to the right. On the other 
hand, if the correlation is negative, then the slope is negative and the line slopes down 
to the right. A correlation of zero means that the slope is also zero and the regression 
equation produces a horizontal line that passes through the data at a level equal to the 
mean for the Y values. Note that the regression line in Figure 14.16 has a positive slope. 
One consequence of this fact is that all of the points on the line that are above the mean 
for X are also above the mean for Y. Similarly, all of the points below the mean for X 
are also below the mean for Y. Thus, every individual with a positive deviation for X is 
predicted to have a positive deviation for Y, and everyone with a negative deviation for 
X is predicted to have a negative deviation for Y.

As we noted at the beginning of this section, one common use of regression equations is 
for prediction. For any given value of X, we can use the equation to compute a predicted 
value for Y. For the equation from Example 14.13, an individual with a score of X 5 3 
would be predicted to have a Y score of

Ŷ 5 2X 2 1 5 6 2 1 5 5

using The 
regression equaTion 

for prediCTion

X

Y

1 2 3 4 5 6 7 8

12

13

14

15

11

10

9

8

7

6

5

4

3

2

0

1

M  = 4x

M  = 7
y

Y = X  – ˆ 12

Figure 14.16

The X and Y data points 
and the regression line for 
the n 5 8 pairs of scores 
in Example 14.13.
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Although regression equations can be used for prediction, a few cautions should be 
considered whenever you are interpreting the predicted values:

 1. The predicted value is not perfect (unless r 5 11.00 or 21.00). If you examine 
Figure 14.16, it should be clear that the data points do not fit perfectly on the 
line. In general, there is some error between the predicted Y values (on the line) 
and the actual data. Although the amount of error varies from point to point, 
on average the errors are directly related to the magnitude of the correlation. 
With a correlation near 1.00 (or 21.00), the data points generally are clustered 
close to the line and the error is small. As the correlation gets nearer to zero, the 
points move away from the line and the magnitude of the error increases.

 2. The regression equation should not be used to make predictions for X values that fall 
outside of the range of values covered by the original data. For Example 14.13, the 
X values ranged from X 5 1 to X 5 7, and the regression equation was calculated 
as the best-fitting line within this range. Because you have no information about 
the X-Y relationship outside this range, the equation should not be used to predict Y 
for any X value lower than 1 or greater than 7.

So far, we have presented the regression equation in terms of the original values, or 
raw scores, for X and Y. Occasionally, however, researchers standardize the scores by 
transforming the X and Y values into z-scores before finding the regression equation. 
The resulting equation is often called the standardized form of the regression equation 
and is greatly simplified compared to the raw-score version. The simplification comes 
from the fact that z-scores have standardized characteristics. Specifically, the mean for 
a set of z-scores is always zero and the standard deviation is always 1. As a result, the 
standardized form of the regression equation becomes

ẑ zY X 5 (beta)  
(14.15)

First notice that we are now using the z-score for each X (z
X
) to predict the z-score for 

the corresponding Y (z
Y
). Also, note that the slope constant that was identified as b in the 

raw-score formula is now identified as beta. Because both sets of z-scores have a mean of 
zero, the constant a disappears from the regression equation. Finally, when one variable, X, is 
being used to predict a second variable, Y, the value of beta is equal to the Pearson correlation 
for X and Y. Thus, the standardized form of the regression equation can also be written as

ẑY  5 rz
X  

(14.16)

Because the process of transforming all of the original scores into z-scores can be 
tedious, researchers usually compute the raw-score version of the regression equation 
(Equation 14.14) instead of the standardized form. However, most computer programs 
report the value of beta as part of the output from linear regression, and you should 
understand what this value represents.

sTandardized form 
of The regression 

equaTions

 1. Sketch a scatter plot for the following data—that is, a graph showing the X, Y data 
points:

X Y

4 13
2 5
5 12
1 6

l E A R N i N g  C H E C k
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It is possible to determine a regression equation for any set of data by simply using 
the formulas already presented. The linear equation you obtain is then used to gener-
ate predicted Y values for any known value of X. However, it should be clear that the 
accuracy of this prediction depends on how well the points on the line correspond 
to the actual data points—that is, the amount of error between the predicted values, 
Ŷ , and the actual scores, Y values. Figure 14.17 shows two different sets of data that 
have exactly the same regression equation. In one case, there is a perfect correla-
tion (r 5 11) between X and Y, so the linear equation fits the data perfectly. For 
the second set of data, the predicted Y values on the line only approximate the real 
data points.

A regression equation, by itself, allows you to make predictions, but it  
does not provide any information about the accuracy of the predictions. To mea-
sure the precision of the regression, it is customary to compute a standard error  
of estimate.

The standard error of estimate gives a measure of the standard distance between 
the predicted Y values on the regression line and the actual Y values in the data.

Conceptually, the standard error of estimate is very much like a standard deviation: 
Both provide a measure of standard distance. Also, the calculation of the standard error 
of estimate is very similar to the calculation of standard deviation.

To calculate the standard error of estimate, we first find the sum of squared devia-
tions (SS). Each deviation measures the distance between the actual Y value (from the 
data) and the predicted Y value (from the regression line). This sum of squares is com-
monly called SS

residual
 because it is based on the remaining distance between the actual 

Y scores and the predicted values on the line.

SS
residual

 5 o(Y 2 Ŷ)2 (14.17)

The obtained SS value is then divided by its degrees of freedom to obtain a measure 
of variance. This procedure should be very familiar:

Variance 5
SS

df

The degrees of freedom for the standard error of estimate are df 5 n – 2. The reason 
for having n – 2 degrees of freedom, rather than the customary n – 1, is that we now are 
measuring deviations from a line rather than deviations from a mean. To find the equa-
tion for the regression line, you must know the means for both the X and the Y scores. 
Specifying these two means places two restrictions on the variability of the data, with 
the result that the scores have only n – 2 degrees of freedom. (Note: the df 5 n – 2 for 
SS

residual
 is the same df 5 n – 2 that we encountered when testing the significance of the 

Pearson correlation on page 466.) 

The sTandard error 
of esTimaTe

D e f i n i t i o n

 a. Find the regression equation for predicting Y from X. Draw this line on your 
graph. Does it look like the best-fitting line?

 b. Use the regression equation to find the predicted Y value corresponding to each X 
in the data.

 1. a. SS
X
 5 10, SP 5 20, b 5 2, a 5 3. The equation is Ŷ 5 2X 1 3.

 b. The predicted Y values are 11, 7, 13, and 5.

ANSwERS
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The final step in the calculation of the standard error of estimate is to take the square 
root of the variance to obtain a measure of standard distance. The final equation is

standard error of estimate residual5 5
SS

df

o((Y Y^2 

2

)2

2n  
(14.18)

The following example demonstrates the calculation of this standard error.

Y

12

13

14

15

11

10

9

8

7

6

5

4

3

2

1

0

Y = X – ˆ 12

Y

12

13

14

15

11

10

9

8

7

6

5

4

3

2

1

0

Y = X – ˆ 12

X2 3 4 5 6 7 81

X2 3 4 5 6 7 81

(a)

(b)

Figure 14.17

(a) A scatter plot showing 
data points that perfectly fit 
the regression line defined 
by the equation Ŷ 5 2X – 1. 
Note that the correlation is 
r 5 11.00. (b) A scatter 
plot for the data in Example 
14.13. Notice that there is 
error between the actual data 
points and the predicted Y 
values on the regression line.

Recall that variance measures 
the average squared distance.
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The same data that were used in Example 14.13 are used here to demonstrate the calcu-
lation of the standard error of estimate. These data have the regression equation

Ŷ 5 2X 2 1

Using this regression equation, we have computed the predicted Y value, the re-
sidual, and the squared residual for each individual, using the data from Example 14.13.

Data Predicted Y value Residual Squared Residual

X Y Ŷ 5 2X 2 1 Y 2 Ŷ (Y 2 Ŷ)2

5 10 9 1 1
1 4 1 3 9
4 5 7 22 4

7 11 13 22 4

6 15 11 4 16
4 6 7 21 1

3 5 5 0 0
2 0 3 23 9

0 SS
residual

 5 44

First note that the sum of the residuals is equal to zero. In other words, the sum of the 
distances above the line is equal to the sum of the distances below the line. This is true 
for any set of data and provides a way to check the accuracy of your calculations. The 
squared residuals are listed in the final column. For these data, the sum of the squared 
residuals is SS

residual
 5 244. With n 5 8, the data have df 5 n – 2 5 6, so the standard 

error of estimate is

standard error of estimate residual5 5
SS

df

444

6
2 7085 .

Remember: The standard error of estimate provides a measure of how accurately 
the regression equation predicts the Y values. In this case, the standard distance  
between the actual data points and the regression line is measured by standard error 
of estimate 5 2.708.

It should be clear from Example 14.14 that the standard error of estimate is directly re-
lated to the magnitude of the correlation between X and Y. If the correlation is near 1.00 
(or –1.00), then the data points are clustered close to the line, and the standard error of 
estimate is small. As the correlation gets nearer to zero, the data points become more 
widely scattered, the line provides less accurate predictions, and the standard error of 
estimate grows larger.

Earlier (p. 462), we observed that squaring the correlation provides a measure 
of the accuracy of prediction. The squared correlation, r2, is called the coefficient 
of determination because it determines what proportion of the variability in Y is 
predicted by the relationship with X. Because r2 measures the predicted portion of 
the variability in the Y scores, we can use the expression (1 – r2) to measure the 
unpredicted portion. Thus,

E x A m P l E  1 4 . 1 4

relaTionship 
BeTWeen The 

sTandard error and 
The CorrelaTion
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predicted variability 5 SS
regression

 5 r2SS
Y
 (14.19)

unpredicted variability 5 SS
residual

 5 (1 – r2)SS
Y
 (14.20)

For example, if r 5 0.80, then the predicted variability is r2 5 0.64 (or 64%) of the 
total variability for the Y scores and the remaining 36% (1 – r2) is the unpredicted vari-
ability. Note that when r 5 1.00, the prediction is perfect and there are no residuals. 
As the correlation approaches zero, the data points move farther off the line and the 
residuals grow larger. Using Equation 14.20 to compute SS

residual
, the standard error of 

estimate can be computed as

standard error of estimate residual5 5
SS

df

(11

2

22

2

r SS

n
Y)

 
(14.21)

Because it is usually much easier to compute the Pearson correlation than to 
compute the individual (Y – Ŷ )2 values, Equation 14.20 is usually the easiest way 
to compute SS

residual
, and Equation 14.21 is usually the easiest way to compute the 

standard error of estimate for a regression equation. The following example demon-
strates this new formula.

We use the same data used in Examples 14.13 and 14.14, which produced SS
X
 5 28, 

SS
Y
 5 156, and SP 5 56. For these data, the Pearson correlation is

r 5 5 5
56

28(156)

56

66.09
0.847

With SS
Y
 5 156 and a correlation of r 5 0.847, the predicted variability from the 

regression equation is

SS
regression

 5 r2SS
Y
 5 (0.8472)(156) 5 0.718(156) 5 112.01

Similarly, the unpredicted variability is

SS
residual

 5 (1 2 r2)SS
Y
 5 (1 2 0.8472)(156) 5 0.282(156) 5 43.99

Notice that the new formula for SS
residual 

produces the same value, within rounding 
error, that we obtained by adding the squared residuals in Example 14.14. Also note 
that this new formula is generally much easier to use because it requires only the cor-
relation value (r) and the SS for Y. The primary point of this example, however, is that 
SS

residual
 and the standard error of estimate are closely related to the value of the correla-

tion. With a large correlation (near 11.00 or 21.00), the data points are close to the 
regression line, and the standard error of estimate is small. As a correlation gets smaller 
(near zero), the data points move away from the regression line, and the standard error 
of estimate gets larger.

Because it is possible to have the same regression equation for several different 
sets of data, it is also important to consider r2 and the standard error of estimate. The 
regression equation simply describes the best-fitting line and is used for making pre-
dictions. However, r2 and the standard error of estimate indicate how accurate these 
predictions are.

E x A m P l E  1 4 . 1 5
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As we noted earlier in the chapter, a sample correlation is expected to be representative 
of its population correlation. For example, if the population correlation is zero, then the 
sample correlation is expected to be near zero. Note that we do not expect the sample 
correlation to be exactly equal to zero. This is the general concept of sampling error that 
was introduced in Chapter 1 (p. 8). The principle of sampling error is that there is typi-
cally some discrepancy or error between the value obtained for a sample statistic and the 
corresponding population parameter. Thus, when there is no relationship whatsoever in 
the population, a correlation of r 5 0, you are still likely to obtain a nonzero value for the 
sample correlation. In this situation, however, the sample correlation is caused by chance 
and a hypothesis test usually demonstrates that the correlation is not significant.

Whenever you obtain a nonzero value for a sample correlation, you also obtain 
real, numerical values for the regression equation. However, if there is no real rela-
tionship in the population, both the sample correlation and the regression equation are  
meaningless—they are simply the result of sampling error and should not be viewed 
as an indication of any relationship between X and Y. In the same way that we tested 
the significance of a Pearson correlation, we can test the significance of the regression 
equation. In fact, when a single variable, X, is being used to predict a single variable, 
Y, the two tests are equivalent. In each case, the purpose for the test is to determine 
whether the sample correlation represents a real relationship or is simply the result of 
sampling error. For both tests, the null hypothesis states that there is no relationship 
between the two variables in the population. For a correlation,

H
0
: the population correlation is r 5 0

For the regression equation,

H
0
: the slope of the regression equation (b or beta) is zero

The process of testing the significance of a regression equation is called analysis 
of regression and is very similar to the analysis of variance (ANOVA) presented in 
Chapter 12. As with ANOVA, the regression analysis uses an F-ratio to determine 
whether the variance predicted by the regression equation is significantly greater than 
would be expected if there were no relationship between X and Y. The F-ratio is a ratio 
of two variances, or mean square (MS) values, and each variance is obtained by dividing 
an SS value by its corresponding degrees of freedom. The numerator of the F-ratio is 
MS

regression
, which is the variance in the Y scores that is predicted by the regression equa-

tion. This variance measures the systematic changes in Y that occur when the value of X 

analysis of 
regression: TesTing 

The signifiCanCe 
of The regression 

equaTion

 1. Describe what is measured by the standard error of estimate for a regression equation.

 2. As the numerical value of a correlation increases, what happens to the standard 
error of estimate?

 3. A sample of n 5 6 pairs of X and Y scores produces a correlation of r 5 0.80 and 
SS

Y
 5 100. What is the standard error of estimate for the regression equation?

 1. The standard error of estimate measures the average, or standard, distance between the 
predicted Y values on the regression line and the actual Y values in the data.

 2. A larger correlation means that the data points are clustered closer to the line, which means 
the standard error of estimate is smaller.

 3. The standard error of estimate 5 
36
4

5 3.

l E A R N i N g  C H E C k
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increases or decreases. The denominator is MS
residual

, which is the unpredicted variance 
in the Y scores. This variance measures the changes in Y that are independent of changes 
in X. The two MS value are defined as

MS
SS

dfregression
regression

regression

with5 df MS5 5 1 and residuals
residual

resi

SS

df ddual

with 2df n5 2 

The F-ratio is

F
MS

MS
5 5 2df nregression

residual

with 1,   2
 

(14.22)

The complete analysis of SS and degrees of freedom is diagrammed in Figure 14.18. 
The analysis of regression procedure is demonstrated in the following example, using 
the same data that we used in Examples 14.13, 14.14, and 14.15.

The data consist of n 5 8 pairs of scores with a correlation of r 5 0.847 and SS
Y
 5 156. 

The null hypothesis states either that there is no relationship between X and Y in the 
population, or that the regression equation does not account for a significant portion of 
the variance for the Y scores. The F-ratio for the analysis of regression has df 5 1, n 2 2. 
For these data, df 5 1, 6. With a 5 .05, the critical value is 5.99.

As noted in the previous section, the SS for the Y scores can be separated into two 
components: the predicted portion corresponding to r2 and the unpredicted, or residual, 
portion corresponding to (1 2 r2). With r 5 0.847, we obtain r2 5 0.718 and

predicted variability 5 SS
regression

 5 0.718(156) 5 112.01

unpredicted variability 5 SS
residual

 5 (1 2 0.718)(156) 5 0.282(156) 5 43.99

Using these SS values and the corresponding df values, we calculate a variance, or 
MS, for each component. For these data the MS values are

MS
SS

dfregression
regression

regression

5 5 
1112.01

1
112.015  

MS
SS

dfresidual
residual

residual

43.99

6
5 5 5  7.33

E x A m P l E  1 4 . 1 6

SSregression

r2SSY

SSresidual

(1 � r2)SSY

SSY

dfregression � 1 dfresidual � n � 2

dfY � n � 1

Figure 14.18

The partitioning of SS and df for analysis of regression. The variability in the original Y scores (both SS
Y
 and df

Y
) is partitioned 

into two components: (1) the variability that is explained by the regression equation, and (2) the residual variability.
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Finally, the F-ratio for evaluating the significance of the regression equation is

F
MS

MS
5 5 5

regression

residual

112.01

7.33
   15.28

The F-ratio is in the critical region, so we reject the null hypothesis and conclude 
that the regression equation does account for a significant portion of the variance for 
the Y scores. The complete analysis of regression is summarized in Table 14.5 which is 
a common format for computer printouts of regression analysis.

In a situation with a single X variable and a single Y variable, testing the significance of 
the regression equation is equivalent to testing the significance of the Pearson correla-
tion. Therefore, whenever the correlation between two variables is significant, you can 
conclude that the regression equation is also significant. Similarly, if a correlation is 
not significant, then the regression equation is also not significant. Earlier in the chapter 
(p. 466), we introduced a hypothesis test using the following t statistic to evaluate the 
significance of a correlation.

t 5
2r

2

2

r

r

n

(1 )

( 2)

2

We now demonstrate that this t statistic is equivalent to the F-ratio used for analysis 
of regression. Specifically, the two test statistics are related by the basic equality F 5 t2  
that was introduced in Chapters 12 and 13 (pp. 397 and 407). Recall that a t statistic with 
df 5 n 2 1 can be squared to produce an equivalent F-ratio with df 5 1, n 2 1.

We begin the demonstration of equivalence by removing the population correlation, 
r, from the t equation. This value is always zero, as specified by the null hypothesis, 
and its removal does not affect the equation. Next, we square the t statistic to produce 
the corresponding F-ratio.

t2 5 5
2

2

F
r

r

n

2

2(1 )

( 2)

Finally, multiply the numerator and the denominator by SS
Y
 to produce

t2 5 5
2

2

F
r SS

r SS

n

Y

Y

2

2

( )
(1 )( )

( 2)

You should recognize the numerator of the new F-ratio as SS
regression

 (see Equation 14.19). 
Dividing by df 5 1, which does not change the value, produces MS

regression
. Similarly, the 

signifiCanCe of 
regression and 

signifiCanCe of The 
CorrelaTion

Source SS df MS F

Regression 112.01 1 112.01 15.28
Residual 43.99 6 7.33

Total 156.00 7

TAblE 14.5

A summary table showing 
the results of the analysis of 
regression in Example 14.16.
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denominator of the F-ratio is SS
residual

 (see Equation 14.20) divided by df 5 n – 2, which is 
MS

residual
. Thus, the squared t value is identical to the F-ratio used in analysis of regression 

(Equation 14.22) to evaluate the significance of the regression equation.

 1. A set of n 5 18 pairs of scores produces a Pearson correlation of r 5 0.60 with 
SS

Y
 5 100. Find SS

regression
 and SS

residual
 and compute the F-ratio to evaluate the 

significance of the regression equation of predicting Y.

 1. SS
regression

 5 36 with df 5 1. SS
residual

 5 64 with df 5 16. F 5 9.00. With df 5 1, 16, the 
F-ratio is significant with either a 5 .05 or a 5 .01.

l E A R N i N g  C H E C k

ANSwER

Summary

 1. A correlation measures the relationship between two 
variables, X and Y. The relationship is described by 
three characteristics:

 a. Direction. The sign of the correlation (1 or 2) 
specifies the direction.

 b. Form. The Pearson correlation measures the degree 
of straight line relationship, but other correlations 
measure the consistency or strength of the relation-
ship, independent of any specific form.

 c. Strength or consistency. The numerical value of the 
correlation measures the strength or consistency of the 
relationship from 0 (not consistent) to 1.00 (perfect).

 2. The most commonly used correlation is the Pearson 
correlation, which measures the degree of linear rela-
tionship. The Pearson correlation is identified by the 
letter r and is computed by

r
SS SSX Y

SP
5

  In this formula, SP is the sum of products of deviations.

definitional formula: SP 5 o(X 2 M
X
)(Y 2 M

Y
)

computational formula: SP XY
X Y

n
5 2o o o

 3. A correlation between two variables should not be 
interpreted as implying a causal relationship. Simply 
because X and Y are related does not mean that X 
causes Y or that Y causes X.

 4. To evaluate the strength of a relationship, you square the 
value of the correlation. The resulting value, r2, is called 
the coefficient of determination because it measures 
the portion of the variability in one variable that can be 
predicted using the relationship with the second variable.

 5. A sample correlation, r, can be used to evaluate the 
significance of the corresponding population correlation, 
r, using a t statistic with df 5 n 2 2.

t 5
2r

2

2

r

r

n

(1 )

( 2)

2

 6. A partial correlation measures the linear relationship 
between two variables by eliminating the influence of 
a third variable by holding it constant.

 7. The Spearman correlation (r
S
) measures the consistency 

of direction in the relationship between X and Y—that is, 
the degree to which the relationship is one-directional, or 
monotonic. The Spearman correlation is computed by a 
two-stage process:

 a. Rank the X scores and the Y scores separately.
 b. Compute the Pearson correlation using the ranks.

 8. The point-biserial correlation is used to measure  
the strength of the relationship when one of the two 
variables is dichotomous. The dichotomous variable 
is coded using values of 0 and 1, and the regular 
Pearson formula is applied. Squaring the point-
biserial correlation produces the same r2 value that is 
obtained to measure effect size for the independent-
measures t test. When both variables, X and Y, are 
dichotomous, the phi-coefficient can be used to mea-
sure the strength of the relationship. Both variables 
are coded 0 and 1, and the Pearson formula is used 
to compute the correlation.

 9. When there is a general linear relationship between 
two variables, X and Y, it is possible to construct a 
linear equation that allows you to predict the Y value 
corresponding to any known value of X.

predicted Y value 5 Ŷ5 bX 1 a
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  The technique for determining this equation is called 
regression. By using a least-squares method to mini-
mize the error between the predicted Y values and the 
actual Y values, the best-fitting line is achieved when 
the linear equation has

b
SSX

5 5 5 2
SP

r
s

s
a M bMY

X
Y Xand

 10. The linear equation generated by regression (called 
the regression equation) can be used to compute a 
predicted Y value for any value of X. However, the 
prediction is not perfect, so for each Y value, there is 
a predicted portion and an unpredicted, or residual, 
portion. Overall, the predicted portion of the Y score 
variability is measured by r2, and the residual portion 
is measured by 1 2 r2.

predicted variability 5 SS
regression

 5 r2SS
Y

unpredicted variability 5 SS
residual

 5 (1 2 r2)SS
Y

 11. The residual variability can be used to compute the 
standard error of estimate, which provides a measure of 

the standard distance (or error) between the predicted Y 
values on the line and the actual data points. The stan-
dard error of estimate is computed by

standard error of estimate
2

residualSS

n
5

2
MS5 residual

  It is also possible to compute an F-ratio to evaluate the 
significance of the regression equation. The process is 
called analysis of regression and determines whether the 
equation predicts a significant portion of the variance for 
the Y scores. First a variance, or MS, value is computed 
for the predicted variability and the residual variability,

MS
SS

dfregression
regression

regression

5 MSrresidual
residual

residual

5 
SS

df

where df 
regression

 5 1 and df 
residual

 5 n 22.

F
MS

MS
5 5 2df nregression

residual

with 1,   2

  The F-ratio for analysis of regression is equivalent to the 
t statistic evaluating the significance of the correlation.

key Terms

correlation (450)

positive correlation (451)

negative correlation (451)

perfect correlation (452)

Pearson correlation (453)

sum of products (SP) (454)

restricted range (460)

coefficient of determination (462)

correlation matrix (467)

partial correlation (463)

Spearman correlation (472)

linear relationship (477)

point-biserial correlation (478)

dichotomous variable (478)

phi-coefficient (480)

linear equation (482)

slope (482)

Y-intercept (482)

regression (484)

regression line (484)

least-squared-error solution (485)

regression equation for Y (486)

standard error of estimate (489)

predicted variability (SS
regression

) (492)

unpredicted variability (SS
residual

) (492)

analysis of regression (493)

resourCes

Go to CengageBrain.com to access Psychology CourseMate, where you will find an 
interactive eBook, glossaries, flashcards, quizzes, statistics workshops, and more.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



498     CHAPTER 14 CoRRElATioN

If your professor has assigned Aplia:

1. Sign in to your account.
2. Complete the corresponding exercises as required by your professor.
3. When finished, click “Grade It Now” to see which areas you have mastered, which 

areas need more work, and detailed explanations of every answer.

General instructions for using SPSS are presented in Appendix D. Following are de-
tailed instructions for using SPSS to perform The Pearson, Spearman, point-biserial, 
and partial correlations. Note: We focus on the Pearson correlation and then describe 
how slight modifications to this procedure can be made to compute the Spearman, 
point-biserial, and partial correlations. Separate instructions for the phi-coefficient are 
presented at the end of this section.

Data Entry

The data are entered into two columns in the data editor, one for the X values 
(VAR00001) and one for the Y values (VAR00002), with the two scores for each indi-
vidual in the same row.

Data Analysis

 1. Click Analyze on the tool bar, select Correlate, and click on Bivariate.

 2. One by one, move the labels for the two data columns into the Variables box. 
(Highlight each label and click the arrow to move it into the box.)

 3. The Pearson box should be checked but, at this point, you can switch to the 
Spearman correlation by clicking the appropriate box.

 4. Click OK.

SPSS Output

We used SPSS to compute the correlation for the data in Example 14.13, and the output 
is shown in Figure 14.19. The program produces a correlation matrix showing all of 
the possible correlations, including the correlation of X with X and the correlation of 
Y with Y (both are perfect correlations). You want the correlation of X and Y, which is 
contained in the upper right corner (or the lower left). The output includes the signifi-
cance level (p value or alpha level) for the correlation.

To compute a partial correlation, click Analyze on the tool bar, select Correlate, and 
click on Partial. Move the column labels for the two variables to be correlated into the 
Variables box and move the column label for the variable to be held constant into the 
Controlling for box and click OK.

To compute the Spearman correlation, enter either the X and Y ranks or the X and 
Y scores into the first two columns. Then follow the same Data Analysis instructions 
that were presented for the Pearson correlation. At step 3 in the instructions, click on 
the Spearman box before the final OK. (Note: If you enter X and Y scores into the data 
editor, SPSS converts the scores to ranks before computing the Spearman correlation.)
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To compute the point-biserial correlation, enter the scores (X values) in the first 
column and enter the numerical values (usually 0 and 1) for the dichotomous variable 
in the second column. Then, follow the same Data Analysis instructions that were pre-
sented for the Pearson correlation.

The phi-coefficient can also be computed by entering the complete string of 
0s and 1s into two columns of the SPSS data editor, then following the same Data 
Analysis instructions that were presented for the Pearson correlation. However, this 
can be tedious, especially with a large set of scores. The following is an alternative 
procedure for computing the phi-coefficient with large data sets.

Data Entry

 1. Enter the values 0, 0, 1, 1 (in order) into the first column of the SPSS data editor.

 2. Enter the values 0, 1, 0, 1 (in order) into the second column.

 3. Count the number of individuals in the sample who are classified with X 5 0 
and Y 5 0. Enter this frequency in the top box in the third column of the data 
editor. Then, count how many have X 5 0 and Y 5 1 and enter the frequency in 
the second box of the third column. Continue with the number who have X 5 1 
and Y 5 0, and finally the number who have X 5 1 and Y 5 1. You should end 
up with 4 values in column three.

 4. Click Data on the Tool Bar at the top of the SPSS Data Editor page and select 
Weight Cases at the bottom of the list.

 5. Click the circle labeled Weight cases by, and then highlight the label for the 
column containing your frequencies (VAR00003) on the left and move it into 
the Frequency Variable box by clicking on the arrow.

 6. Click OK.

Correlations

**. Correlation is significant at the 0.01 level (2-tailed).

VAR00001

VAR00001 1 .847

.008

8 8

1

8 8

.847**

.008

Pearson Correlation

Sig. (2-tailed)

N

VAR00002 Pearson Correlation

Sig. (2-tailed)

N

VAR00002

Figure 14.19

The SPSS output showing 
the correlation for the data 
in Example 14.13.
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 7. Click Analyze on the tool bar, select Correlate, and click on Bivariate.

 8. One by one, move the labels for the two data columns containing the 0s and 1s 
(probably VAR00001 and VAR00002) into the Variables box. (Highlight each 
label and click the arrow to move it into the box.)

 9. Verify that the Pearson box is checked.

 10. Click OK.

SPSS Output
The program produces the same correlation matrix that was described for the Pearson 
correlation. Again, you want the correlation between X and Y, which is in the upper 
right corner (or lower left). Remember, with the phi-coefficient, the sign of the correla-
tion is meaningless.

Following are detailed instructions for using SPSS to perform the Linear Regression 
presented in this chapter.

Data Entry

Enter the X values in one column and the Y values in a second column of the SPSS 
data editor.

Data Analysis

 1. Click Analyze on the tool bar, select Regression, and click on Linear.

 2. In the left-hand box, highlight the column label for the Y values, then click the 
arrow to move the column label into the Dependent Variable box.

 3. Highlight the column label for the X values and click the arrow to move it into 
the Independent Variable(s) box.

4. Click OK.

SPSS Output

We used SPSS to perform regression for the data in Examples 14.13, 14.14, 
and 14.15 and the output is shown in Figure 14.20. The Model Summary table  
presents the values for R, R2, and the standard error of estimate. (Note: R is simply the 
Pearson correlation between X and Y.) The ANOVA table presents the analysis of regres-
sion evaluating the significance of the regression equation, including the F-ratio and the 
level of significance (the p value or alpha level for the test). The Coefficients table summa-
rizes both the unstandardized and the standardized coefficients for the regression equation. 
The table shows the values for the constant (a) and the coefficient (b). The standardized 
coefficient is the beta values. Again, beta is simply the Pearson correlation between X and 
Y. Finally, the table uses a t statistic to evaluate the significance of the predictor variable. 
This is identical to the significance of the regression equation and you should find that t is 
equal to the square root of the F-ratio from the analysis of regression.

foCus on proBlem solving

 1. A correlation always has a value from 11.00 to –1.00. If you obtain a correlation 
outside this range, then you have made a computational error.
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 2. When interpreting a correlation, the sign and the numerical value must be 
considered separately. Remember that the sign indicates the direction of the 
relationship between X and Y. The numerical value reflects the strength of 
the relationship. Therefore, a correlation of –0.90 is as strong as a correlation 
of 10.90.

 3. Before you begin to calculate a correlation, sketch a scatter plot of the data and 
make an estimate of the correlation. (Is it positive or negative? Is it near 1 or 
near 0?) After computing the correlation, compare your final answer with your 
original estimate.

4. The F-ratio for analysis of regression is usually calculated using the actual 
SS

regression
 and SS

residual
. However, you can simply use r2 in place of SS

regression
 and 

you can use 1 – r2 in place of SS
residual

. Note: You must still use the correct df 
values for the numerator and the denominator.

Figure 14.20

Portions of the SPSS output from the analysis of regression for the data in Examples 14.13, 14.14, and 14.15.

Model Summary

Model

1

R

.847a .718 .671 2.70801

R Square
Adjusted R

Square
Std. Error of

the Estimate

Coefficientsa

Model

1 (Constant)

VAR00001

-1.000

2.000

2.260

.512

–.442

3.908

.674

.008.847

Unstandardized Coefficients

B Std. Error Beta t Sig.

Standardized
Coefficients

ANOVAb

Model

1 Regression

Residual

Total

112.000

44.000

156.000

1

6

7

112.000 15.273 .008a

7.333

Sum of
Squares df F Sig.Mean Square
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demonsTraTion 14.1

CorrelaTion and regression

Calculate the Pearson correlation for the following data:

Person X Y

A 0 4 M
X
 5 4 with SS

X
 5 40

B 2 1 M
Y
 5 6 with SS

Y
 5 54

C 8 10 SP 5 40
D 6 9

E 4 6

Sketch a scatter plot. We have constructed a scatter plot for the data (Figure 14.21) 
and placed an envelope around the data points to make a preliminary estimate of the 
correlation. Note that the envelope is narrow and elongated. This indicates that the 
correlation is large—perhaps 0.80 to 0.90. Also, the correlation is positive because 
increases in X are generally accompanied by increases in Y. We also have sketched a 
straight line through the middle of the data points, roughly approximating the slope and 
Y-intercept of the regression line.

Compute the Pearson correlation. For these data, the Pearson correlation is

r
SP

SS SSX Y

5 5 5 5 5
40

40(54)

40

2160

40
0.861

46 48.

In step 1, our preliminary estimate for the correlation was between 10.80 and 10.90. 
The calculated correlation is consistent with this estimate.

Compute the values for the regression equation. The general form of the regression equation is

^Y bX a b
SP

SS
a M

X
Y5 1 5 5 2where and   bMX

S t e p  1

S t e p  2

S t e p  3

10

9

8

7

6

5

4

3

2

1

0
 0 1 2 3 4 5 6 7 8 9 10

X

YFigure 14.21

The scatter plot for the 
data of Demonstration 
14.1. An envelope is 
drawn around the points 
to estimate the magnitude 
of the correlation. A line 
is drawn through the 
middle of the envelope.
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For these data,
40

40
1.00 andb a5 5  55  2 5  16 1(4) 2.00

Thus, the regression equation is Ŷ 5 (1)X 1 2.00 or simply, Ŷ 5 X 1 2.

Evaluate the significance of the correlation and the regression equation.  The null hy-
pothesis states that, for the population, there is no linear relationship between X and Y, 
and that the values obtained for the sample correlation and the regression equation are 
simply the result of sampling error. In terms of the correlation, H

0
 says that the popula-

tion correlation is zero (r 5 0). In terms of the regression equation, H
0
 says that the 

equation does not predict a significant portion of the variance, or that the beta value is 
zero. The test can be conducted using either the t statistic for a correlation or the F-ratio 
for analysis of regression. Using the F-ratio, we obtain

SS
regression

 5 r2(SS
Y
) 5 (0.861)2(54) 5 40.03 with df 5 1

SS
residual

 5 (1 2 r2)(SS
Y
) 5 (1 2 0.8612)(54) 5 13.97 with df 5 n 5 2 5 3

F
MS

MS
5 5 

regression

residual

40.03/1

13.97/33
.605  8

With df 5 1, 3 and a 5 .05, the critical value is 10.13. Fail to reject the null hypoth-
esis. The correlation and the regression equation are both not significant.

S t e p  4

proBlems

 1. a. What information is provided by the sign (1 or 2) 
of the Pearson correlation?

 b. What information is provided by the numerical 
value of the Pearson correlation?

 2. Calculate SP (the sum of products of deviations) for 
the following scores. Note: Both means are whole 
numbers, so the definitional formula works well.

X Y

0 2
1 4
4 5
3 3
7 6

 3. Calculate SP (the sum of products of deviations) for 
the following scores. Note: Both means are decimal 
values, so the computational formula works well.

X Y

0 2
0 1
1 0
2 1
1 2
0 3

 4. For the following scores,

X Y

1 3
3 5
2 1
2 3

 a. Sketch a scatter plot and estimate the Pearson  
correlation.

 b. Compute the Pearson correlation.

 5. For the following scores,

X Y

1 7
4 2
1 3
1 6
2 0
0 6
2 3
1 5

 a. Sketch a scatter plot and estimate the Pearson  
correlation.

 b. Compute the Pearson correlation.

 6. For the following scores,
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X Y

1 6
4 1
1 4
1 3
3 1

 a. Sketch a scatter plot and estimate the value of the 
Pearson correlation.

 b. Compute the Pearson correlation.

 7. With a small sample, a single point can have a large 
effect on the magnitude of the correlation. To create 
the following data, we started with the scores from 
problem 8 and changed the first X value from X 5 1 
to X 5 6.

X Y

6 6
4 1
1 4
1 3
3 1

 a. Sketch a scatter plot and estimate the value of the 
Pearson correlation.

 b. Compute the Pearson correlation.

 8. For the following set of scores,

X Y

6 4
3 1
5 0
6 7
4 2
6 4

 a. Compute the Pearson correlation.
 b. Add 2 points to each X value and compute the 

correlation for the modified scores. How does 
adding a constant to every score affect the value 
of the correlation?

 c. Multiply each of the original X values by 2 and 
compute the correlation for the modified scores. 
How does multiplying each score by a constant 
affect the value of the correlation?

 9. Judge and Cable (2010) report the results of a  
study demonstrating a negative relationship be-
tween weight and income for a group of women 
professionals. Following are data similar to those 
obtained in the study. To simplify the weight vari-
able, the women are classified into five categories 
that measure actual weight relative to height, from 

1 5 thinnest to 5 5 heaviest. Income figures are 
annual income (in thousands), rounded to the  
nearest $1,000.

 a. Calculate the Pearson correlation for these data.
 b. Is the correlation statistically significant? Use a 

two-tailed test with a 5 .05.

Weight (X) Income (Y)

1 125
2 78
4 49
3 63
5 35
2 84
5 38
3 51
1 93
4 44

 10. The researchers cited in the previous problem also 
examined the weight/salary relationship for men and 
found a positive relationship, suggesting that we have 
very different standards for men than for women (Judge 
& Cable, 2010). The following are data similar to those 
obtained for working men. Again, weight relative to 
height is coded in five categories from 1 5 thinnest to 
5 5 heaviest. Income is recorded as thousands earned 
annually.

 a. Calculate the Pearson correlation for these data.
 b. Is the correlation statistically significant? Use a 

two-tailed test with a 5 .05.

Weight (X) Income (Y)

4 156
3 88
5 49
2 73
1 45
3 92
1 53
5 148

 11. Identifying individuals with a high risk of Alzheimer’s 
disease usually involves a long series of cognitive 
tests. However, researchers have developed  
a 7-Minute Screen, which is a quick and easy 
way to accomplish the same goal. The question 
is whether the 7-Minute Screen is as effective as 
the complete series of tests. To address this ques-
tion, Ijuin et al. (2008) administered both tests to 
a group of patients and compared the results. The 
following data represent results similar to those 
obtained in the study.
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Patient 7-Minute Screen Cognitive Series

A 3 11

B 8 19
C 10 22
D 8 20
E 4 14
F 7 13
G 4 9
H 5 20
I 14 25

 a. Compute the Pearson correlation to measure 
the degree of relationship between the two test 
scores.

 b. Is the correlation statistically significant? Use a 
two-tailed test with a 5 .01.

 c. What percentage of variance for the cognitive 
scores is predicted from the 7-Minute Screen 
scores? (Compute the value of r2.)

 12. As we have noted in previous chapters, even a very 
small effect can be significant if the sample is large 
enough. Suppose, for example, that a researcher 
obtains a correlation of r 5 0.60 for a sample of  
n 5 10 participants.

 a. Is this sample sufficient to conclude that a signifi-
cant correlation exists in the population? Use a 
two-tailed test with a 5 .05.

 b. If the sample had n 5 25 participants, is the cor-
relation significant? Again, use a two-tailed test 
with a 5 .05.

 13. A researcher measures three variables, X, Y, and 
Z, for each individual in a sample of n 5 25. The 
Pearson correlations for this sample are r

XY
 5 0.8,  

r
XZ

 5 0.6, and r
YZ

 5 0.7.
 a. Find the partial correlation between X and Y, 

holding Z constant.
 b. Find the partial correlation between X and Z, 

holding Y constant. (Hint: Simply switch the 
labels for the variables Y and Z to correspond  
with the labels in the equation.)

 14. Problem 9 presented data showing a negative rela-
tionship between weight and income for a sample 
of working women. However, weight was coded 
in five categories, which could be viewed as an 
ordinal scale rather than an interval or ratio scale. 
If so, a Spearman correlation is more appropriate 
than a Pearson correlation. Convert the weights 
and the incomes into ranks and compute the 
Spearman correlation for the scores in problem 9.

 15. Problem 23 in Chapter 10 presented data showing 
that mature soccer players, who have a history of 
hitting soccer balls with their heads, had significantly 

lower cognitive scores than mature swimmers, who 
do not suffer repeated blows to the head. The  
independent-measures t test produced t 5 2.11  
with df 5 11 and a value of r2 5 0.288 (28.8%).

 a. Convert the data from this problem into a form 
suitable for the point-biserial correlation (use 1 
for the swimmers and 0 for the soccer players), 
and then compute the correlation.

 b. Square the value of the point-biserial correlation 
to verify that you obtain the same r2 value that 
was computed in Chapter 10.

 16. Studies have shown that people with high intel-
ligence are generally more likely to volunteer as 
participants in research, but not for research that 
involves unusual experiences such as hypnosis. 
To examine this phenomenon, a researcher ad-
ministers a questionnaire to a sample of college 
students. The survey asks for the student’s grade 
point average (as a measure of intelligence) and 
whether the student would like to take part in a 
future study in which participants would be hyp-
notized. The results showed that 7 of the 10 lower-
intelligence people were willing to participant  
but only 2 of the 10 higher-intelligence people 
were willing.

 a. Convert the data to a form suitable for comput-
ing the phi-coefficient. (Code the two intelligence 
categories as 0 and 1 for the X variable, and code 
the willingness to participate as 0 and 1 for the Y 
variable.)

 b. Compute the phi-coefficient for the data.

 17. Sketch a graph showing the line for the equation  
Y 5 –2X 1 4. On the same graph, show the line for 
Y 5 X 24.

 18. The regression equation is intended to be the “best 
fitting” straight line for a set of data. What is the 
criterion for “best fitting”?

 19. A set of n 5 20 pairs of scores (X and Y values) has 
SS

X
 5 16, SS

Y
 5 100, and SP 5 32. If the mean for 

the X values is M
X
 5 6 and the mean for the Y values 

is M
Y
 5 20,

 a. Calculate the Pearson correlation for the scores.
 b. Find the regression equation for predicting Y from 

the X values.

 20. A set of n 5 25 pairs of scores (X and Y values) pro-
duces a regression equation of Ŷ5 3X – 2. Find the 
predicted Y value for each of the following X scores: 
0, 1, 3, –2.

 21. For the following set of data,
 a. Find the linear regression equation for predicting 

Y from X.
 b. Calculate the standard error of estimate for the 

regression equation.
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 25. Problem 9 examined the relationship between weight 
and income for a sample of n 5 10 women. Weights 
were classified in five categories and had a mean of 
M 5 3 with SS 5 20. Income, measured in thousands, 
had a mean score of M 5 66 with SS 5 7430, and  
SP 5 2359.

 a. Find the regression equation for predicting  
income from weight. (Identify the income 
scores as X values and the weight scores as  
Y values.)

 b. What percentage of the variance in the income 
is accounted for by the regression equation? 
(Compute the correlation, r, then find r2.)

 c. Does the regression equation account for a  
significant portion of the variance in income?  
Use a5 .05 to evaluate the F-ratio.

 26. There appears to be some evidence suggesting that 
earlier retirement may lead to memory decline 
(Rohwedder & Willis, 2010). The researchers 
gave a memory test to men and women aged 60 
to 64 years in several countries that have different 
retirement ages. For each country, the research-
ers recorded the average memory score and the 
percentage of individuals in the 60 to 64 age range 
who were retired. Note that a higher percentage 
retired indicates a younger retirement age for that 
country. The following data are similar to the 
results from the study. Use the data to find the 
regression equation for predicting memory scores 
from the percentage of people aged 60 to 64 who 
are retired.

Country % Retired (X) Memory Score (Y)

Sweden 39 9.3

U.S.A. 48 10.9
England 59 10.7
Germany 70 9.1

Spain 74 6.4
Netherlands 78 9.1

Italy 81 7.2
France 87 7.9

Belgium 88 8.5
Austria 91 9.0

 27. The regression equation is computed for a set of n 5 
18 pairs of X and Y values with a correlation of r 5 
180 and SS

Y
 5 100.

 a. Find the standard error of estimate for the regres-
sion equation.

 b. How big would the standard error be if the sample 
size were n 5 38?

X Y

7 6
9 6
6 3

12 5
9 6
5 4

 22. Does the regression equation from problem 21 ac-
count for a significant portion of the variance in the 
Y scores? Use a 5 .05 to evaluate the F-ratio.

 23. For the following scores,

X Y

3 6
6 1
3 4
3 3
5 1

 a. Find the regression equation for predicting Y from X.
 b. Calculate the predicted Y value for each X.

 24. Although you might suspect that dissatisfied people 
would be the most likely individuals to participate 
in political activities in an attempt to change things, 
research tends to show just the opposite. Flavin and 
Keane (2011) found a positive relationship between life 
satisfaction and political participation, which included 
activities such as attending rallies, contributing to can-
didates, and displaying a yard sign. Following are data 
similar to those obtained in the study.

Life Satisfaction Political Participation

5 4
8 7
3 2
6 9
3 5
1 3
4 6
2 4

 a. Find the regression equation for predicting politi-
cal participation from life satisfaction.

 b. Using a 5 .05, test the significance of the regression 
equation.
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 28. a.  One set of 20 pairs of scores, X and Y values, 
produces a correlation of r 5 0.70. If SS

Y
 5 

150, find the standard error of estimate for the 
regression line.

 b. A second set of 20 pairs of X and Y values  
produces a correlation of r 5 0.30. If SS

Y
 5 150, 

find the standard error of estimate for the  
regression line.

 29. a.  A researcher computes the regression equation for a 
sample of n 5 25 pairs of scores, X and Y values. If 
an analysis of regression is used to test the signifi-
cance of the equation, what are the df values for the 
F-ratio?

 b. A researcher evaluating the significance of a regression 
equation obtains an F-ratio with df 5 1, 18. How many 
pairs of scores, X and Y values, are in the sample?
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Aplia for Essentials of Statistics for the Behavioral Sciences
After reading, go to “Resources” at the end of this chapter for 
an introduction on how to use Aplia’s homework and learning 
resources.

The Chi-Square 
Statistic: Tests 
for Goodness 
of Fit and 
Independence
15.1     Parametric and Nonparametric 

Statistical Tests

15.2     The Chi-Square Test for 
Goodness of Fit

15.3     The Chi-Square Test for 
Independence

15.4     Measuring Effect Size for 
the Chi-Square Test for 
Independence

15.5     Assumptions and Restrictions for 
Chi-Square Tests

Summary

Focus on Problem Solving

Demonstrations 15.1 and 15.2

Problems

C h a p t e r 

15
Tools You Will Need
The following items are considered 
essential background material for this 
chapter. If you doubt your knowledge 
of any of these items, you should  
review the appropriate chapter  
or section before proceeding.

•	 Proportions	(math	review,	Appendix	A)
•	 Frequency	distributions	(Chapter	2)
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PARAmETRIC And nonPARAmETRIC STATISTICAl TESTS

All of the statistical tests that we have examined thus far are designed to test hypotheses 
about specific population parameters. For example, we used t tests to assess hypotheses 
about a population mean (µ) or mean difference (µ

1
 – µ

2
). In addition, these tests typi-

cally make assumptions about other population parameters. Recall that, for analysis of 
variance (ANOVA), the population distributions are assumed to be normal and homo-
geneity of variance is required. Because these tests all concern parameters and require 
assumptions about parameters, they are called parametric tests.

Another general characteristic of parametric tests is that they require a numerical 
score for each individual in the sample. The scores then are added, squared, averaged, 
and otherwise manipulated using basic arithmetic. In terms of measurement scales, 
parametric tests require data from an interval or a ratio scale (see Chapter 1).

Often, researchers are confronted with experimental situations that do not conform 
to the requirements of parametric tests. In these situations, it may not be appropriate to 
use a parametric test. Remember that, when the assumptions of a test are violated, the 
test may lead to an erroneous interpretation of the data. Fortunately, there are several 
hypothesis-testing techniques that provide alternatives to parametric tests. These alter-
natives are called nonparametric tests.

In this chapter, we introduce two commonly used examples of nonparametric tests. 
Both tests are based on a statistic known as chi-square and both tests use sample data 
to evaluate hypotheses about the proportions or relationships that exist within popula-
tions. Note that the two chi-square tests, like most nonparametric tests, do not state 
hypotheses in terms of a specific parameter and they make few (if any) assumptions 
about the population distribution. For the latter reason, nonparametric tests sometimes 
are called distribution-free tests.

One of the most obvious differences between parametric and nonparametric tests 
is the type of data they use. All of the parametric tests that we have examined so far 
require numerical scores. For nonparametric tests, on the other hand, the participants 
are usually just classified into categories such as Democrat and Republican, or High, 
Medium, and Low IQ. Note that these classifications involve measurement on nominal 
or ordinal scales, and they do not produce numerical values that can be used to calcu-
late means and variances. Instead, the data for many nonparametric tests are simply 
frequencies—for example, the number of Democrats and the number of Republicans in 
a sample of n 5 100 registered voters.

Occasionally, you have a choice between using a parametric and a nonparametric 
test. Changing to a nonparametric test usually involves transforming the data from nu-
merical scores to nonnumerical categories. For example, you could start with numerical 
scores measuring self-esteem and create three categories consisting of high, medium, 
and low self-esteem. In most situations, the parametric test is preferred because it is 
more likely to detect a real difference or a real relationship. However, there are situa-
tions for which transforming scores into categories might be a better choice.

 1. Occasionally, it is simpler to obtain category measurements. For example, it is 
easier to classify students as high, medium, or low in leadership ability than to 
obtain a numerical score measuring each student’s ability.

 2. The original scores may violate some of the basic assumptions that underlie  
certain statistical procedures. For example, the t tests and ANOVA assume that 
the data come from normal distributions. Also, the independent-measures tests  
assume that the different populations all have the same variance (the homogeneity-
of-variance assumption). If a researcher suspects that the data do not satisfy these 

15.1
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assumptions, it may be safer to transform the scores into categories and use a 
nonparametric test to evaluate the data.

 3. The original scores may have unusually high variance. Variance is a major compo-
nent of the standard error in the denominator of t statistics and the error term in the 
denominator of F-ratios. Thus, large variance can greatly reduce the likelihood that 
these parametric tests will find significant differences. Converting the scores to cat-
egories essentially eliminates the variance. For example, all individuals fit into three 
categories (high, medium, and low) no matter how variable the original scores are.

 4. Occasionally, an experiment produces an undetermined, or infinite, score. For 
example, a rat may show no sign of solving a particular maze after hundreds of 
trials. This animal has an infinite, or undetermined, score. Although there is no 
absolute number that can be assigned, you can say that this rat is in the highest 
category, and then classify the other scores according to their numerical values.

THE CHI-SquARE TEST FoR GoodnESS oF FIT

Parameters such as the mean and the standard deviation are the most common way to 
describe a population, but there are situations in which a researcher has questions about 
the proportions or relative frequencies for a distribution. For example,

How does the number of women lawyers compare with the number of men in the 
profession?

Of the two leading brands of cola, which is preferred by most Americans?

In the past 10 years, has there been a significant change in the proportion of college 
students who declare a business major?

Note that each of the preceding examples asks a question about proportions in the 
population. In particular, we are not measuring a numerical score for each individual. 
Instead, the individuals are simply classified into categories and we want to know what 
proportion of the population is in each category. The chi-square test for goodness of 
fit is specifically designed to answer this type of question. In general terms, this chi-
square test uses the proportions obtained for sample data to test hypotheses about the 
corresponding proportions in the population.

The chi-square test for goodness of fit uses sample data to test hypotheses about 
the shape or proportions of a population distribution. The test determines how 
well the obtained sample proportions fit the population proportions specified by 
the null hypothesis.

Recall from Chapter 2 that a frequency distribution is defined as a tabulation of 
the number of individuals located in each category of the scale of measurement. In 
a frequency distribution graph, the categories that make up the scale of measurement 
are listed on the X-axis. In a frequency distribution table, the categories are listed in 
the first column. With chi-square tests, however, it is customary to present the scale of 
measurement as a series of boxes, with each box corresponding to a separate category 
on the scale. The frequency corresponding to each category is simply presented as a 
number written inside the box. Figure 15.1 shows how the grade distribution for a class 
of n 5 40 students can be presented as a graph, a table, or a series of boxes. The scale 
of measurement for this example consists of five grade categories (A, B, C, D, and F).

15.2

D e f i n i t i o n

The name of the test comes 
from the Greek letter x  
(chi, pronounced “kye”), 
which is used to identify  
the test statistic.
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For the chi-square test of goodness of fit, the null hypothesis specifies the proportion (or 
percentage) of the population in each category. For example, a hypothesis might state 
that 50% of all lawyers are men and 50% are women. The simplest way of presenting 
this hypothesis is to put the hypothesized proportions in the series of boxes representing 
the scale of measurement:

H
0
:

Men Women

50% 50%

Although it is conceivable that a researcher could choose any proportions for the null 
hypothesis, there usually is some well-defined rationale for stating a null hypothesis. 
Generally H

0
 falls into one of the following categories:

 1. No Preference, Equal Proportions. The null hypothesis often states that there 
is no preference among the different categories. In this case, H

0
 states that the 

population is divided equally among the categories. For example, a hypothesis 
stating that there is no preference among the three leading brands of soft drinks 
would specify a population distribution as follows:

H
0
:

Brand X Brand Y Brand Z

1
3

1
3

1
3

  The no-preference hypothesis is used in situations in which a researcher wants 
to determine whether there are any preferences among the categories, or 
whether the proportions differ from one category to another.

  Because the null hypothesis for the goodness-of-fit test specifies an exact dis-
tribution for the population, the alternative hypothesis (H

1
) simply states that 

the population distribution has a different shape from that specified in H
0
. If 

The Null hypoThesis 
for The GoodNess-

of-fiT TesT

(Preferences in the population 
are equally divided among the 
three soft drinks.)

Figure 15.1

A distribution of grades for a sample of n 5 40 students. The same frequency distribution is shown as a bar graph, as a 
table, and with the frequencies written in a series of boxes.

A B C D F

5

A B C D E
f

Grade

X f

A
B
C
D
F

5
11
16
6
25

10

0

15

20

11 16 6 2
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the null hypothesis states that the population is equally divided among three 
categories, then the alternative hypothesis says that the population is not divided 
equally.

 2. No Difference from a Known Population. The null hypothesis can state 
that the proportions for one population are not different from the propor-
tions that are known to exist for another population. For example, suppose 
it is known that 28% of the licensed drivers in the state are younger than 
30 years old and 72% are 30 or older. A researcher might wonder whether 
this same proportion holds for the distribution of speeding tickets. The null 
hypothesis would state that tickets are handed out equally across the popu-
lation of drivers, so there is no difference between the age distribution for 
drivers and the age distribution for speeding tickets. Specifically, the null 
hypothesis would be

H
0
:

Tickets Given  
to Drivers  

Younger than 30

Tickets Given  
to Drivers  

30 or Older

28% 72%

  The no-difference hypothesis is used when a specific population distribution is 
already known. For example, you may have a known distribution from an earlier 
time, and the question is whether there has been any change in the proportions. Or, 
you may have a known distribution for one population (drivers) and the question is 
whether a second population (speeding tickets) has the same proportions.

  Again, the alternative hypothesis (H
1
) simply states that the population proportions 

are not equal to the values specified by the null hypothesis. For this example, H
1
 

would state that the number of speeding tickets is disproportionately high for one 
age group and disproportionately low for the other.

The data for a chi-square test are remarkably simple. There is no need to calculate 
a sample mean or SS; you just select a sample of n individuals and count how  
many are in each category. The resulting values are called observed frequencies. 
The symbol for observed frequency is f

o
. For example, the following data represent 

observed frequencies for a sample of 40 college students. The students were clas-
sified into three categories based on the number of times they reported exercising 
each week.

No Exercise 1 Time a Week
More Than 

Once a Week

n 5 4015 19 6

Notice that each individual in the sample is classified into one and only one of the 
categories. Thus, the frequencies in this example represent three completely separate 
groups of students: 15 who do not exercise regularly, 19 who average once a week, and 
6 who exercise more than once a week. Also note that the observed frequencies add up 
to the total sample size: of

o
 5 n. Finally, you should realize that we are not assigning 

individuals to categories. Instead, we are simply measuring individuals to determine the 
category in which they belong.

The daTa for The 
GoodNess-of-fiT TesT

(Proportions for the population 
of tickets are not different from 
proportions for drivers.)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



514     CHAPTER 15 THE CHI-SquARE STATISTIC: TESTS FoR GoodnESS oF FIT And IndEPEndEnCE

The observed frequency is the number of individuals from the sample who are classi-
fied in a particular category. Each individual is counted in one and only one category.

The general goal of the chi-square test for goodness of fit is to compare the data (the 
observed frequencies) with the null hypothesis. The problem is to determine how well 
the data fit the distribution specified in H

0
—hence the name goodness of fit.

The first step in the chi-square test is to construct a hypothetical sample that represents 
how the sample distribution would look if it were in perfect agreement with the propor-
tions stated in the null hypothesis. Suppose, for example, the null hypothesis states that the 
population is distributed in three categories with the following proportions:

H
0
:

Category A Category B Category C

25% 50% 25%

If this hypothesis is correct, how would you expect a random sample of n 5 40 in-
dividuals to be distributed among the three categories? It should be clear that your best 
strategy is to predict that 25% of the sample would be in category A, 50% would be in 
category B, and 25% would be in category C. To find the exact frequency expected for 
each category, multiply the sample size (n) by the proportion (or percentage) from the 
null hypothesis. For this example, you would expect

25% of 40 5 0.25(40) 5 10 individuals in category A

50% of 40 5 0.50(40) 5 20 individuals in category B

25% of 40 5 0.25(40) 5 10 individuals in category C

The frequency values predicted from the null hypothesis are called expected fre-
quencies. The symbol for expected frequency is f

e
, and the expected frequency for each 

category is computed by

expected frequency 5 f
e
 5 pn (15.1)

where p is the proportion stated in the null hypothesis and n is the sample size.

The expected frequency for each category is the frequency value that is pre-
dicted from the proportions in the null hypothesis and the sample size (n). The 
expected frequencies define an ideal, hypothetical sample distribution that would 
be obtained if the sample proportions were in perfect agreement with the propor-
tions specified in the null hypothesis.

Note that the no-preference null hypothesis always produces equal f
e
 values 

for all categories because the proportions (p) are the same for all categories. On 
the other hand, the no-difference null hypothesis typically does not produce equal 
values for the expected frequencies because the hypothesized proportions typically 
vary from one category to another. You also should note that the expected frequen-
cies are calculated, hypothetical values and the numbers that you obtain may be 
decimals or fractions. The observed frequencies, on the other hand, always repre-
sent real individuals and always are whole numbers.

D e f i n i t i o n

expecTed 
frequeNcies

D e f i n i t i o n

(The population is distributed 
across the three categories with 
25% in category A, 50% in cate-
gory B, and 25% in category C.)
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The general purpose of any hypothesis test is to determine whether the sample data 
support or refute a hypothesis about the population. In the chi-square test for goodness 
of fit, the sample is expressed as a set of observed frequencies (f

o
 values), and the null 

hypothesis is represented by a set of expected frequencies (f
e
 values). The chi-square 

statistic simply measures how well the data (f
o
) fit the hypothesis (f

e
). The symbol for 

the chi-square statistic is x2. The formula for the chi-square statistic is

chi-square 5 x 5 
22

2
f f

f
o e

e

( )
 

(15.2)

As the formula indicates, the value of chi-square is computed by the following steps:

 1. Find the difference between f
o
 (the data) and f

e
 (the hypothesis) for each category.

 2. Square the difference. This ensures that all values are positive.

 3. Next, divide the squared difference by f
e
.

 4. Finally, add the values from all of the categories.

The first two steps determine the numerator of the chi-square statistic and should 
be easy to understand. Specifically, the numerator measures how much difference 
there is between the data (the f

o
 values) and the hypothesis (represented by the  

f
e
 values). The final step is also reasonable: we add the values to obtain the total 

discrepancy between the data and the hypothesis. Thus, a large value for chi-square 
indicates that the data do not fit the hypothesis, and leads us to reject the null  
hypothesis.

However, the third step, which determines the denominator of the chi-square statistic, 
is not so obvious. Why must we divide by f

e
 before we add the category values? The 

answer to this question is that the obtained discrepancy between f
o
 and f

e
 is viewed as 

relatively large or relatively small depending on the size of the expected frequency. This 
point is demonstrated in the following analogy.

Suppose that you were going to throw a party and you expected 1,000 people to 
show up. However, at the party you counted the number of guests and observed that 
1,040 actually showed up. Forty more guests than expected are no major problem 
when all along you were planning for 1,000. There probably will be enough beer 
and potato chips for everyone. On the other hand, suppose you had a party and you 
expected 10 people to attend but instead 50 actually showed up. Forty more guests 
in this case spell big trouble. How “significant” the discrepancy is depends in part 
on what you were originally expecting. With very large expected frequencies, al-
lowances are made for more error between f

o
 and f

e
. This is accomplished in the 

chi-square formula by dividing the squared discrepancy for each category, (f
o
 2 f

e
)2, 

by its expected frequency.

It should be clear from the chi-square formula that the numerical value of chi-square is 
a measure of the discrepancy between the observed frequencies (data) and the expected 
frequencies (H

0
). As usual, the sample data are not expected to provide a perfectly 

accurate representation of the population. In this case, the proportions, or observed 
frequencies, in the sample are not expected to be exactly equal to the proportions in 
the population. Thus, if there are small discrepancies between the f

o
 and f

e
 values, we 

obtain a small value for chi-square and we conclude that there is a good fit between the 
data and the hypothesis (fail to reject H

0
). However, when there are large discrepancies 

The chi-square 
sTaTisTic

The chi-square 
disTribuTioN aNd 

deGrees of freedom
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between f
o
 and f

e
, we obtain a large value for chi-square and conclude that the data do 

not fit the hypothesis (reject H
0
). To decide whether a particular chi-square value is 

“large” or “small,” we must refer to a chi-square distribution. This distribution is the set 
of chi-square values for all of the possible random samples when H

0
 is true. Much like 

other distributions that we have examined (t distribution, F distribution), the chi-square 
distribution is a theoretical distribution with well-defined characteristics. Some of these 
characteristics are easy to infer from the chi-square formula.

 1. The formula for chi-square involves adding squared values, so you can  
never obtain a negative value. Thus, all chi-square values are zero or  
larger.

 2. When H
0
 is true, you expect the data (f

o
 values) to be close to the hypothesis  

(f
e
 values). Thus, we expect chi-square values to be small when H

0
 is true.

These two factors suggest that the typical chi-square distribution is positively 
skewed (Figure 15.2). Note that small values, near zero, are expected when H

0
 is true 

and large values (in the right-hand tail) are very unlikely. Thus, unusually large values 
of chi-square form the critical region for the hypothesis test.

Although the typical chi-square distribution is positively skewed, there is one 
other factor that plays a role in the exact shape of the chi-square distribution—the 
number of categories. Recall that the chi-square formula requires that you add values 
from every category. The more categories you have, the more likely it is that you will 
obtain a large sum for the chi-square value. On average, chi-square is larger when 
you are adding values from 10 categories than when you are adding values from only 
3 categories. As a result, there is a whole family of chi-square distributions, with the 
exact shape of each distribution determined by the number of categories used in the 
study. Technically, each specific chi-square distribution is identified by degrees of 
freedom (df), which are determined by the number of categories. For the goodness-
of-fit test, the degrees of freedom are

df 5 C 2 1 (15.3)

where C is the number of categories. A brief discussion of this df formula is pre-
sented in Box 15.1. Figure 15.3 shows the general relationship between df and the 
shape of the chi-square distribution. Note that the chi-square values tend to get 
larger (shift to the right) as the number of categories and the degrees of freedom  
increase.

χ20

Critical
region

Figure 15.2

Chi-square distributions 
are positively skewed. The 
critical region is placed 
in the extreme tail, which 
reflects large chi-square 
values.

Caution: The df for a chi-
square test is not related to 
sample size (n), as it is in 
most other tests.
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Recall that a large value for the chi-square statistic indicates a big discrepancy between 
the data and the hypothesis, and suggests that we reject H

0
. To determine whether a 

particular chi-square value is significantly large, you must consult the table entitled The 
Chi-Square Distribution (Appendix B). A portion of the chi-square table is shown in 
Table 15.1. The first column lists df values for the chi-square test, and the other column 
heads are proportions (alpha levels) in the extreme right-hand tail of the distribution. 
The numbers in the body of the table are the critical values of chi-square. The table 
shows, for example, that when the null hypothesis is true and df 5 3, only 5% (a 5 .05) 
of the chi-square values are greater than 7.81, and only 1% (a 5 .01) are greater than 
11.34. Thus, with df 5 3, any chi-square value greater than 7.81 has a probability of p 
, .05, and any value greater than 11.34 has a probability of p , .01.

locaTiNG The 
criTical reGioN for 

a chi-square TesT

Figure 15.3

The shape of the chi-square 
distribution for different 
values of df. As the number 
of categories increases, 
the peak (mode) of the 
distribution has a larger 
chi-square value.

χ20

df = 1

df = 5

df = 9

BOX
15.1

A CloSER look AT dEGREES oF FREEdom

Degrees of freedom for the chi-square test literally 
measure the number of free choices that exist when 
you are determining the null hypothesis or the expected 
frequencies. For example, when you are classifying 
individuals into three categories, you have exactly two 
free choices in stating the null hypothesis. You may 
select any two proportions for the first two categories, 
but then the third proportion is determined. If you 
hypothesize 25% in the first category and 50% in the 
second category, then the third category must be 25% 
to account for 100% of the population.

Category A Category B Category C

25% 50% ?

In general, you are free to select proportions for all 
but one of the categories, but then the final proportion 
is determined by the fact that the entire set must total 
100%. Thus, you have C – 1 free choices, where C 
is the number of categories: degrees of freedom, df, 
equal C 2 1.
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The following example demonstrates the complete process of hypothesis testing with 
the goodness-of-fit test.

A psychologist examining art appreciation selected an abstract painting that had no obvi-
ous top or bottom. Hangers were placed on the painting so that it could be hung with any 
one of the four sides at the top. The painting was shown to a sample of n 5 50 participants, 
and each was asked to hang the painting in the orientation that looked correct. The follow-
ing data indicate how many people chose each of the four sides to be placed at the top:

Top up (correct) Bottom up Left side up Right side up

18 17 7 8

The question for the hypothesis test is whether there are any preferences among the 
four possible orientations. Are any of the orientations selected more (or less) often than 
would be expected simply by chance?

State the hypotheses and select an alpha level. The hypotheses can be stated as follows:

H
0
:  In the general population, there is no preference for any specific orientation. 

Thus, the four possible orientations are selected equally often, and the popu-
lation distribution has the following proportions:

Top up (correct) Bottom up Left side up Right side up

25% 25% 25% 25%

H
1
:  In the general population, one or more of the orientations is preferred 

over the others.

We use a 5 .05.

Locate the critical region. For this example, the value for degrees of freedom is

df 5 C 2 1 5 4 2 1 5 3

example of The chi-
square TesT for 
GoodNess of fiT

E x A m P l E  1 5 . 1

S t e p  1

S t e p  2

df

Proportion in Critical Region

0.10 0.05 0.025 0.01 0.005

1 2.71 3.84 5.02 6.63 7.88
2 4.61 5.99 7.38 9.21 10.60
3 6.25 7.81 9.35 11.34 12.84
4 7.78 9.49 11.14 13.28 14.86
5 9.24 11.07 12.83 15.09 16.75
6 10.64 12.59 14.45 16.81 18.55
7 12.02 14.07 16.01 18.48 20.28
8 13.36 15.51 17.53 20.09 21.96
9 14.68 16.92 19.02 21.67 23.59

TAblE 15.1

A portion of the table of 
critical values for the chi-
square distribution.
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For df 5 3 and a 5 .05, the table of critical values for chi-square indicates  
that the critical x2 has a value of 7.81. The critical region is sketched in  
Figure 15.4.

Calculate the chi-square statistic. The calculation of chi-square is actually a two-stage 
process. First, you must compute the expected frequencies from H

0
 and then calculate 

the value of the chi-square statistic. For this example, the null hypothesis specifies 
that one-quarter of the population (p 5 25%) will be in each of the four categories. 
According to this hypothesis, we should expect one-quarter of the sample to be in 
each category. With a sample of n 5 50 individuals, the expected frequency for each 
category is

f pne 5 5 5
1

4
50 12 5( ) .

The observed frequencies and the expected frequencies are presented in  
Table 15.2.

Using these values, the chi-square statistic may now be calculated.

x 2

2

2 218 12 5

12 5

17 12 5

12

5 
2

5
2

1
2

f f

f
o e

e

( )

( ) ( ).

.

.

.55

7 12 5

12 5

8 12 5

12 5
30 25

12 5

20

2 2

1
2

1
2

5 1

.

.

.

.
.

.

( ) ( )

..

.

.

.

.

.
. . .

25

12 5

30 25

12 5

20 25

12 5
2 42 1 62 2 42

1 1

5 1 1 11

5

1 62

8 08

.

.

State a decision and a conclusion. The obtained chi-square value is in the critical region. 
Therefore, H

0
 is rejected, and the researcher may conclude that the four orientations are 

not equally likely to be preferred. Instead, there are significant differences among the 
four orientations, with some selected more often and others less often than would be 
expected by chance.

S t e p  3

S t e p  4

Expected frequencies are 
computed and may be decimal 
values. Observed frequencies 
are always whole numbers.

7.810

df = 3
 α = .05

Figure 15.4

For Example 15.1, the 
critical region begins at a 
chi-square value of 7.81.
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In THE lITERATuRE
REPoRTInG THE RESulTS FoR CHI-SquARE

APA style specifies the format for reporting the chi-square statistic in scientific journals. 
For the results of Example 15.1, the report might state:

The participants showed significant preferences among the four orientations for 
hanging the painting, x2(3, n 5 50) 5 8.08, p , .05.

Note that the form of the report is similar to that of other statistical tests we have 
examined. Degrees of freedom are indicated in parentheses following the chi-square 
symbol. Also contained in the parentheses is the sample size (n). This additional infor-
mation is important because the degrees of freedom value is based on the number of 
categories (C), not sample size. Next, the calculated value of chi-square is presented, 
followed by the probability that a Type I error has been committed. Because we ob-
tained an extreme, very unlikely value for the chi-square statistic, the probability is 
reported as less than the alpha level. Additionally, the report may provide the observed 
frequencies (f

o
) for each category. This information may be presented in a simple sen-

tence or in a table.

We began this chapter with a general discussion of the difference between parametric 
tests and nonparametric tests. In this context, the chi-square test for goodness of fit is 
an example of a nonparametric test; that is, it makes no assumptions about the param-
eters of the population distribution, and it does not require data from an interval or ratio 
scale. In contrast, the single-sample t test introduced in Chapter 9 is an example of a 
parametric test: It assumes a normal population, it tests hypotheses about the popula-
tion mean (a parameter), and it requires numerical scores that can be added, squared, 
divided, and so on.

Although the chi-square test and the single-sample t are clearly distinct, they are also 
very similar. In particular, both tests are intended to use the data from a single sample 
to test hypotheses about a single population.

The primary factor that determines whether you should use the chi-square test or the 
t test is the type of measurement that is obtained for each participant. If the sample data 
consist of numerical scores (from an interval or ratio scale), then it is appropriate to 
compute a sample mean and use a t test to evaluate a hypothesis about the population 
mean. For example, a researcher could measure the IQ for each individual in a sample 
of registered voters. A t test could then be used to evaluate a hypothesis about the mean 
IQ for the entire population of registered voters. On the other hand, if the individu-
als in the sample are classified into nonnumerical categories (on a nominal or ordinal 
scale), then the researcher would use a chi-square test to evaluate a hypothesis about the 
population proportions. For example, a researcher could classify people according to 
gender by simply counting the number of males and females in a sample of registered 
voters. A chi-square test would then be appropriate to evaluate a hypothesis about the 
population proportions.

GoodNess of fiT aNd 
The siNGle-sample  

t  TesT

TAblE 15.2

The observed frequencies 
and the expected frequen-
cies for the chi-square test in 
Example 15.1.

Observed Frequencies

Top up 
(Correct)

Bottom 
up

Left 
Side up

Right 
Side up

18 17  7  8

Expected Frequencies 12.5 12.5 12.5 12.5
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THE CHI-SquARE TEST FoR IndEPEndEnCE

The chi-square statistic may also be used to test whether there is a relationship between 
two variables. In this situation, each individual in the sample is measured or classified 
on two separate variables. For example, Table 15.3 shows the data from a classic experi-
ment demonstrating how eyewitness memory can be influenced by the questions that 
witnesses are asked (Loftus and Palmer, 1974). In the study, a sample of 150 students 
watched a film of an automobile accident. After watching the film, the students were 
separated into three groups and questioned about the accident. One group was asked, 
“About how fast were the cars going when they smashed into each other?” Another 
group received the same question except that the verb was changed to “hit” instead of 
“smashed into.” A third group served as a control and was not asked any question about 
the speed of the two cars. A week later, the participants returned and were asked if they 
remembered seeing any broken glass in the accident. (There was no broken glass in 
the film.) Notice that the researchers are manipulating the form of the initial question 
and then measuring a yes/no response to a follow-up question 1 week later. Table 15.3 
shows the structure of this design as a matrix with the independent variable (different 
groups) determining the rows of the matrix and the two categories for the dependent 
variable (yes/no) determining the columns. The number in each cell of the matrix is 
the frequency count showing how many participants are classified in that category. 
For example, of the 50 students who heard the word smashed, there were 16 (32%) 
who claimed to remember seeing broken glass even though there was none in the film. 
By comparison, only 7 of the 50 students (14%) who heard the word hit said they re-
called seeing broken glass. Note that the data consist of frequencies, not scores, from a 

15.3

 1. For a chi-square test, the observed frequencies are always whole numbers.  
(True or false?)

 2. For a chi-square test, the expected frequencies are always whole numbers.  
(True or false?)

 3. A researcher has developed three different designs for a computer keyboard. A sample 
of n 5 60 participants is obtained, and each individual tests all three keyboards and 
identifies his or her favorite. The frequency distribution of preferences is as follows:

Design A Design B Design C

n 5 6023 12 25

 a. What is the df value for the chi-square statistic?

 b. Assuming that the null hypothesis states that there are no preferences among 
the three designs, find the expected frequencies for the chi-square test.

 1. True. Observed frequencies are obtained by counting people in the sample.

 2. False. Expected frequencies are computed and may be fractions or decimal values.

 3. a. df 5 2

 b.  According to the null hypothesis, one-third of the population would prefer each design. 
The expected frequencies should show one-third of the sample preferring each design. 
The expected frequencies are all 20.

l E A R n I n G  C H E C k

AnSwERS
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sample. The researchers would like to use the frequencies from the sample to test a hy-
pothesis about the corresponding frequency distribution in the population. Specifically, 
the researchers would like to know whether the sample data provide enough evidence 
to conclude that there is a significant relationship between eyewitnesses’ memories and 
the questions they were asked during the initial interview.

You should recognize that the eyewitness study shown in Table 15.3 is an example 
of experimental research (Chapter 1, page 13). The researchers manipulated an inde-
pendent variable and controlled other variables by randomly assigning the participants 
to groups or treatment conditions. However, similar data are often obtained from non-
experimental studies. For example, Table 15.4 presents hypothetical data for a sample 
of n 5 200 students who have been classified by personality and color preference. 
The number in each box, or cell, of the matrix indicates the frequency, or number of 
individuals in that particular group. In Table 15.4, for example, there are 10 students 
who were classified as introverted and who selected red as their preferred color. To 
obtain these data, the researcher first selects a random sample of n 5 200 students. 
Each student is then given a personality test and is asked to select a preferred color 
from among the four choices. Note that the classification is based on the measurements 
for each student; the researcher does not assign students to categories. Once again, the 
goal is to use the frequencies from the sample to test a hypothesis about the population 
frequency distribution. Specifically, are these data sufficient to conclude that there is 
a significant relationship between personality and color preference in the population 
of students?

The procedure for using sample frequencies to evaluate hypotheses concerning rela-
tionships between variables involves another test using the chi-square statistic. In this 
situation, however, the test is called the chi-square test for independence.

The chi-square test for independence uses the frequency data from a sample 
to evaluate the relationship between two variables in the population. Each 
individual in the sample is classified on both of the two variables, creating a 
two-dimensional frequency-distribution matrix. The frequency distribution for 
the sample is then used to test hypotheses about the corresponding frequency 
distribution for the population.

D e f i n i t i o n

TAblE 15.3

A frequency distribution table 
showing the number of par-
ticipants who answered either 
yes or no when asked whether 
they recalled seeing any broken 
glass 1 week after witness-
ing a video of an automobile 
accident. Immediately after the 
video, one group was asked 
how fast the cars were going 
when they “smashed into” each 
other. A second group was 
asked how fast the cars were 
going when they “hit” each 
other. A third group served as 
a control and was not asked 
about the speed of the cars.

Verb Used  
to Ask About  
the Speed of  

the Cars

Smashed into  

Hit  

Control (Not Asked)

Response to the 
Question: Did You See 

Any Broken Glass?

Yes No

16 34

7 43

6 44

Introvert

Red Yellow Green Blue

10 3 15 22 50

Extrovert 90 17 25 18 150

100 20 40 40 n 5 200

TAblE 15.4

Color preferences according 
to personality types.
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The null hypothesis for the chi-square test for independence states that the two variables 
being measured are independent; that is, for each individual, the value obtained for one 
variable is not related to (or influenced by) the value for the second variable. This general 
hypothesis can be expressed in two different conceptual forms, each viewing the data 
and the test from slightly different perspectives. The data in Table 15.4 describing color 
preference and personality are used to present both versions of the null hypothesis.

H0 version 1 For this version of H
0
, the data are viewed as a single sample with each 

individual measured on two variables. The goal of the chi-square test is to evaluate the 
relationship between the two variables. For the example we are considering, the goal is 
to determine whether there is a consistent, predictable relationship between personality 
and color preference. That is, if I know your personality, will it help me to predict your 
color preference? The null hypothesis states that there is no relationship. The alternative 
hypothesis, H

1
, states that there is a relationship between the two variables.

H
0
:  For the general population of students, there is no relationship between 

color preference and personality.

This version of H
0
 demonstrates the similarity between the chi-square test for in-

dependence and a correlation. In each case, the data consist of two measurements (X 
and Y) for each individual, and the goal is to evaluate the relationship between the two 
variables. The correlation, however, requires numerical scores for X and Y. The chi-
square test, on the other hand, simply uses frequencies for individuals classified into 
categories.

H0 version 2 For this version of H
0
, the data are viewed as two (or more) separate 

samples representing two (or more) populations or treatment conditions. The goal of the 
chi-square test is to determine whether there are significant differences between the popu-
lations. For the example we are considering, the data in Table 15.4 would be viewed as a 
sample of n 5 50 introverts (top row) and a separate sample of n 5 150 extroverts (bot-
tom row). The chi-square test determines whether the distribution of color preferences for 
introverts is significantly different from the distribution of color preferences for extroverts. 
From this perspective, the null hypothesis is stated as follows:

H
0
:  In the population of students, the distribution of color preferences for 

introverts has the same shape as the distribution for extroverts. The two 
distributions have the same proportions.

Notice that the null hypothesis does not say that the two distributions are identical; it 
simply says that they have the same proportions. For example, if 10% of the introverts 
prefer yellow, then 10% of the extroverts should also prefer yellow.

The second version of H
0
 demonstrates the similarity between the chi-square test 

and an independent-measures t test (or ANOVA). In each case, the data consist of two 
(or more) separate samples that are being used to test for differences between two 
(or more) populations. The t test (or ANOVA) requires numerical scores to compute 
means and mean differences. However, the chi-square test simply uses frequencies 
for individuals classified into categories. The null hypothesis for the chi-square test 
states that the populations have the same proportions (same shape). The alternative 
hypothesis, H

1
, simply states that the populations have different proportions. For 

the example we are considering, H
1
 states that the shape of the distribution of color 

preferences for introverts is different from the shape of the distribution of color pref-
erences for extroverts.

The Null hypoThesis 
for The chi-

square TesT for 
iNdepeNdeNce
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Equivalence of H0 version 1 and H0 version 2 Although we have presented two 
different statements of the null hypothesis, these two versions are equivalent. The first 
version of H

0
 states that color preference is not related to personality. If this hypothesis 

is correct, then the distribution of color preferences should not depend on personality. 
In other words, the distribution of color preferences should have the same proportions 
for introverts and for extroverts, which is the second version of H

0
.

For example, if we found that 60% of the introverts preferred red, then H
0
 would 

predict that we also should find that 60% of the extroverts prefer red. In this case, know-
ing that an individual prefers red does not help you predict his or her personality. Note 
that finding the same proportions indicates no relationship.

On the other hand, if the proportions were different, it would suggest that there is 
a relationship. For example, if red is preferred by 60% of the extroverts but only 10% 
of the introverts, then there is a clear, predictable relationship between personality 
and color preference. (If I know your personality, then I can predict your color prefer-
ence.) Thus, finding different proportions means that there is a relationship between 
the two variables.

Two variables are independent when there is no consistent, predictable relation-
ship between them. In this case, the frequency distribution for one variable is 
not dependent on the categories of the second variable. As a result, when two 
variables are independent, the frequency distribution for one variable has the 
same shape (same proportions) for all categories of the second variable.

Thus, stating that there is no relationship between two variables (version 1 of H
0
) 

is equivalent to stating that the distributions have equal proportions (version 2 of H
0
).

The chi-square test for independence uses the same basic logic that was used for 
the goodness-of-fit test. First, a sample is selected and each individual is classified 
or categorized. Because the test for independence considers two variables, every 
individual is classified on both variables, and the resulting frequency distribution is 
presented as a two-dimensional matrix (see Table 15.4). As before, the frequencies 
in the sample distribution are called observed frequencies and are identified by the 
symbol f

o
.

The next step is to find the expected frequencies, or f
e
 values, for this chi-square test. 

As before, the expected frequencies define an ideal hypothetical distribution that is in 
perfect agreement with the null hypothesis. Once the expected frequencies are obtained, 
we compute a chi-square statistic to determine how well the data (observed frequencies) 
fit the null hypothesis (expected frequencies).

The easiest way to find the expected frequencies is to begin with the null hypoth-
esis stated in terms of equal proportions. For the example we are considering, the null 
hypothesis states

H
0
:  The frequency distribution of color preference has the same shape (same 

proportions) for both categories of personality.

To find the expected frequencies, we first determine the overall distribution of color 
preferences and then apply this distribution to both categories of personality. Table 
15.5 shows an empty matrix corresponding to the data from Table 15.4. Notice that 
the empty matrix includes all of the row totals and column totals from the original 
sample data. The row totals and column totals are essential for computing the expected 
frequencies.

D e f i n i t i o n

observed 
aNd expecTed 

frequeNcies
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The column totals for the matrix describe the overall distribution of color prefer-
ences. For these data, 100 people selected red as their preferred color. Because the total 
sample consists of 200 people, the proportion selecting red is 100 out of 200, or 50%. 
The complete set of color preference proportions is as follows:

100 out of 200 5 50% prefer red

20 out of 200 5 10% prefer yellow

40 out of 200 5 20% prefer green

40 out of 200 5 20% prefer blue

The row totals in the matrix define the two samples of personality types. For 
example, the matrix in Table 15.5 shows a total of 50 introverts (the top row) and a 
sample of 150 extroverts (the bottom row). According to the null hypothesis, both 
personality groups should have the same proportions for color preferences. To find the 
expected frequencies, we simply apply the overall distribution of color preferences 
to each sample. Beginning with the sample of 50 introverts in the top row, we obtain 
expected frequencies of

50% prefer red: f
e
 5 50% of 50 5 0.50(50) 5 25

10% prefer yellow: f
e
 5 10% of 50 5 0.10(50) 5   5

20% prefer green: f
e
 5 20% of 50 5 0.20(50) 5 10

20% prefer blue: f
e
 5 20% of 50 5 0.20(50) 5 10

Using exactly the same proportions for the sample of n 5 150 extroverts in the bot-
tom row, we obtain expected frequencies of

50% prefer red: f
e
 5 50% of 150 5 0.50(50) 5 75

10% prefer yellow: f
e
 5 10% of 150 5 0.10(50) 5 15

20% prefer green: f
e
 5 20% of 150 5 0.20(50) 5 30

20% prefer blue: f
e
 5 20% of 150 5 0.20(50) 5 30

The complete set of expected frequencies is shown in Table 15.6. Notice that the row 
totals and the column totals for the expected frequencies are the same as those for the 
original data (the observed frequencies) in Table 15.4.

A simple formula for determining expected frequencies Although expected frequen-
cies are derived directly from the null hypothesis and the sample characteristics, it is not 
necessary to go through extensive calculations to find f

e
 values. In fact, there is a simple 

formula that determines f
e
 for any cell in the frequency distribution matrix:

f
f f

ne
c r5

 
(15.4)

Introvert

Red Yellow Green Blue

50

Extrovert 150

100 20 40 40

TAblE 15.5

An empty frequency distribu-
tion matrix showing only the 
row totals and column totals. 
(These numbers describe the 
basic characteristics of the 
sample from Table 15.4.)
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where f
c
 is the frequency total for the column (column total), f

r
 is the frequency total for 

the row (row total), and n is the number of individuals in the entire sample. To demon-
strate this formula, we compute the expected frequency for introverts selecting yellow 
in Table 15.6. First, note that this cell is located in the top row and second column in 
the table. The column total is f

c
 5 20, the row total is f

r
 5 50, and the sample size is n 

5 200. Using these values in formula 15.4, we obtain

f
f f

ne
c r5 5 5

20 50

200
5

( )

This is identical to the expected frequency we obtained using percentages from the 
overall distribution.

The chi-square test for independence uses exactly the same chi-square formula as the 
test for goodness of fit:

x 2

2

5 
2f f

f
o e

e

( )

As before, the formula measures the discrepancy between the data (f
o
 values) and the 

hypothesis (f
e
 values). A large discrepancy produces a large value for chi-square and in-

dicates that H
0
 should be rejected. To determine whether a particular chi-square statistic 

is significantly large, you must first determine degrees of freedom (df) for the statistic 
and then consult the chi-square distribution in Appendix B. For the chi-square test of 
independence, degrees of freedom are based on the number of cells for which you can 
freely choose expected frequencies. Recall that the f

e
 values are partially determined by the 

sample size (n) and by the row totals and column totals from the original data. These vari-
ous totals restrict your freedom in selecting expected frequencies. This point is illustrated 
in Table 15.7. Notice that we have filled in only three of the f

e
 values in the table. However, 

these three values determine all of the other expected frequencies. For example, the bottom 
number in the first column must be 75 to produce a column total of 100. Similarly, the final 
value in the first row must be 10 to produce a row total of 50. In general, the entire bottom 

The chi-square 
sTaTisTic aNd 

deGrees of freedom

Introvert

Red Yellow Green Blue

25 5 10 10 50

Extrovert 75 15 30 30 150

100 20 40 40

TAblE 15.6

Expected frequencies cor-
responding to the data in 
Table 15.4. (This is the 
distribution predicted by  
the null hypothesis.)

Red Yellow Green Blue

25 5 10 ? 50

? ? ? ? 150

100 20 40 40

TAblE 15.7

Degrees of freedom and 
expected frequencies. (Once 
three values have been se-
lected, all of the remaining 
expected frequencies are 
determined by the row totals 
and the column totals. This 
example has only three free 
choices, so df 5 3.)
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row and the entire last column are restricted by the row totals and the column totals. As a 
result, we may freely choose all but one f

e
 in each row and all but one f

e
 in each column. If  

R is the number of rows and C is the number of columns, and you remove the last column 
and the bottom row from the matrix, you are left with a smaller matrix that has C 2 1 
columns and R 2 1 rows. This smaller matrix determines the df value. Specifically, the 
total number of f

e
 values that you can freely choose is (R 2 1)(C 2 1), and the degrees of 

freedom for the chi-square test of independence are given by the formula

df 5 (R 2 1)(C 2 1) (15.5)

Also note that once you calculate the expected frequencies to fill the smaller matrix, 
the rest of the f

e
 values can be found by subtraction.

The following example demonstrates the complete hypothesis-testing procedure for the 
chi-square test for independence.

Many parents allow their underage children to drink alcohol in limited situations when 
an adult is present to supervise. The idea is that teens will learn responsible drinking 
habits if they first experience alcohol in a controlled environment. Other parents take 
a strict no-drinking approach with the idea that they are sending a clear message about 
what is right and what is wrong. Recent research, however, suggests that the more 
permissive approach may actually result in more negative consequences (McMorris,  
et al., 2011). In the study, teens who were allowed to drink with their parents were sig-
nificantly more likely to experience alcohol-related problems than teens who were not 
allowed to drink. In an attempt to replicate this study, researchers surveyed a sample of 
150 students each year from age 14 to 17. The students were asked about their alcohol 
use and about alcohol-related problems such as binge drinking, fights, and blackouts. 
The results are shown in Table 15.8. Do the data show a significant relationship be-
tween the parents’ rules about alcohol and subsequent alcohol-related problems?

State the hypotheses, and select a level of significance. According to the null hypoth-
esis, the two variables are independent. This general hypothesis can be stated in two 
different ways:

Version 1

H
0
:  In the general population, there is no relationship between parents’ rules 

for alcohol use and the development of alcohol-related problems.

This version of H
0
 emphasizes the similarity between the chi-square test and a 

correlation.

aN example of The 
chi-square TesT for 

iNdepeNdeNce

E x A m P l E  1 5 . 2

S t e p  1

Experience with  
Alcohol-Related Problems

Not Allowed to Drink

No Yes

71 9 80

Allowed to Drink 89 31 120

160 40 n 5 200

TAblE 15.8

A frequency distribution show-
ing experience with alcohol-
related problems according 
to parents’ rules concerning 
underage drinking.
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Version 2

H
0
:  In the general population, the distribution of alcohol-related problems 

has the same proportions for teenagers whose parents permit drinking 
and for those whose parents do not.

The second version of H
0
 emphasizes the similarity between the chi-square test and 

the independent-measures t test.
The alternative hypothesis states that there is a relationship between the two vari-

ables (version 1), or that the two distributions are different (version 2). Remember that 
the two versions for the hypotheses are equivalent. The choice between them is largely 
determined by how the researcher wants to describe the outcome. For example, a re-
searcher may want to emphasize the relationship between variables or the difference 
between groups.

For this test, we use a 5 .05.

Determine the degrees of freedom and locate the critical region. For the chi-square test 
for independence,

df 5 (R – 1)(C – 1) 5 (2 – 1)(2 – 1) 5 1

With df 5 2 and a 5 .05, the critical value for chi-square is 3.84 (see Table B.6 in 
Appendix B, p. 581).

Determine the expected frequencies, and compute the chi-square statistic. The follow-
ing table shows an empty matrix with the same row totals and column totals as the 
original data. The expected frequencies must maintain the same row totals and column 
totals, and create an ideal frequency distribution that perfectly represents the null 
hypothesis. Specifically, the proportions for the group of 80 teens for whom alcohol 
was not allowed must be the same as the proportions for the group of 120 who were 
permitted to drink.

Experience with  
Alcohol-Related Problems

Not Allowed to Drink

No Yes

80

Allowed to Drink 120

160 40 n 5 200

The column totals describe the overall distribution of alcohol-related problems. 
These totals indicate that 160 out of 200 participants reported that they did not experi-
ence any alcohol-related problems. This proportion corresponds to 160

200
, or 80% of the 

total sample. Similarly, 40
200

, or 20% reported that they did experience alcohol-related 
problems. The null hypothesis (version 2) states that these proportions are the same for 
both groups of participants. Therefore, we simply apply the proportions to each group 
to obtain the expected frequencies. For the group of 80 teens who were not allowed to 
drink (top row), we obtain

80% of 80 5 64 expected to experience problems

20% of 80 5 16 expected not to experience problems

S t e p  2

S t e p  3

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTIon 15.3  /  THE CHI-SquARE TEST FoR IndEPEndEnCE    529

For the group of 120 teens who were allowed to drink (bottom row), we expect

80% of 120 5 96 expected to experience problems

20% of 120 5 24 expected not to experience problems

These expected frequencies are summarized in Table 15.9.
The chi-square statistic is now used to measure the discrepancy between the data 

(the observed frequencies in Table 15.8) and the null hypothesis that was used to gener-
ate the expected frequencies in Table 15.9.

x2
2 2 2 217 64

64

9 16

16

89 96

96

31 24
5

2
5

2
5

2
5

2( ) ( ) ( ) ( )
224

5 1 1 10.766 3.063 0.510 2.042

5 6.381

Make a decision regarding the null hypothesis and the outcome of the study. The ob-
tained chi-square value exceeds the critical value (3.84). Therefore, the decision is to 
reject the null hypothesis. In the literature, this would be reported as a significant result 
with x2(1, n 5 200) 5 6.381, p , .05. According to version 1 of H

0
, this means that 

we have decided that there is a significant relationship between parents’ rules about al-
cohol and subsequent problems. Expressed in terms of version 2 of H

0
, the data show a 

significant difference in alcohol-related problems between teens whose parents allowed 
drinking and those whose parents did not. To describe the details of the significant 
result, you must compare the original data (Table 15.8) with the expected frequencies 
in Table 15.9. Looking at the two tables, it should be clear that teens whose parents al-
lowed drinking experienced more alcohol-related problems than would be expected if 
the two variables were independent.

S t e p  4

Experience with  
Alcohol-Related Problems

Allowed to Drink

No Yes

64 16 80

Not Allowed to Drink 96 24 120

160 40 n 5 200

TAblE 15.9

The expected frequencies  
(f

e
 values) if experience with 

alcohol-related problems is 
completely independent of 
parents’ rules concerning 
underage drinking.

We have noted that the hypotheses for the chi-square test for independence can be stated 
in terms of the relationship between variables (version 1) or the difference between 
groups (version 2). The first version emphasizes the relationship between the chi-square 
test and the Pearson correlation, and the second version emphasizes the relationship 
between chi-square and the independent-measures t or ANOVA.

Chi-square and the Pearson correlation The chi-square test for independence and 
the Pearson correlation are both intended to evaluate the relationship between two 
variables. The type of data obtained in a research study determines which of the two 
statistical procedures is appropriate. Suppose, for example, that a researcher is inter-
ested in the relationship between self-esteem and academic performance for 10-year-
old children. If the researcher obtained numerical scores for both variables, then the 
resulting data would be similar to the values shown in Table 15.10(a) and the researcher 

The relaTioNship 
beTweeN chi-

square aNd 
oTher sTaTisTical 

procedures
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could use a Pearson correlation to evaluate the relationship. On the other hand, if both 
variables are classified into non-numerical categories as in Table 15.10(b), then the data 
consist of frequencies and the relationship could be evaluated with a chi-square test for 
independence.

Chi-square and the independent-measures t and ANOVA Once again, con-
sider a researcher investigating the relationship between self-esteem and academic 
performance for 10-year-old children. This time, suppose that the researcher mea-
sured academic performance by simply classifying individuals into two categories, 
high and low, and then obtained a numerical score for each individual’s self-
esteem. The resulting data would be similar to the scores in Table 15.11(a), and an  
independent-measures t test would be used to evaluate the mean difference between 
the two groups of scores. Alternatively, the researcher could measure self-esteem by 
classifying individuals into three categories: high, medium, and low. If a numerical 
score is then obtained for each individual’s academic performance, the resulting 
data would look like the scores in Table 15.11(b), and an ANOVA would be used to 
evaluate the mean differences among the three groups. Finally, if both variables are 
classified into non-numerical categories, then the data would look like the scores 
shown earlier in Table 15.10(b) and a chi-square test for independence would be 
used to evaluate the difference between the two academic-performance groups or 
the differences among the three self-esteem groups.

The point of these examples is that the chi-square test for independence, the 
Pearson correlation, and tests for mean differences can all be used to evaluate 
the relationship between two variables. One main distinction among the different 
statistical procedures is the form of the data. However, another distinction is the 
fundamental purpose of these different statistics. The chi-square test and the tests 
for mean differences (t and ANOVA) evaluate the significance of the relationship; 
that is, they determine whether the relationship observed in the sample provides 
enough evidence to conclude that there is a corresponding relationship in the popu-
lation. You can also evaluate the significance of a Pearson correlation; however, 
the main purpose of a correlation is to measure the strength of the relationship. In 
particular, squaring the correlation, r2, provides a measure of effect size, describing 
the proportion of variance in one variable that is accounted for by its relationship 
with the other variable.

TAblE 15.10

Two possible data structures 
for research studies examin-
ing the relationship between 
self-esteem and academic 
performance. In part (a), 
there are numerical scores 
for both variables and the 
data are suitable for a cor-
relation. In part (b), both 
variables are classified into 
categories and the data are 
frequencies suitable for a 
chi-square test.

(a) Participant Self-Esteem X Academic Performance Y

A 13 73
B 19 88
C 10 71
D 22 96
E 20 90
F 15 82

(b) Level of Self-Esteem

Academic 
Performance

High

High Medium Low

17 32 11 60

Low 13 43 34 90

30 75 45 n 5 150
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(a)  Self-esteem scores for 
two groups of students.

Academic Performance

High Low

17 13
21 15
16 14
24 20
18 17
15 14
19 12
20 19
18 16

TAblE 15.11

Data appropriate for an  
independent-measures t 
test or an ANOVA. In part 
(a), self-esteem scores are 
obtained for two groups of 
students differing in level  
of academic performance.  
In part (b), academic perfor-
mance scores are obtained for 
three groups of students dif-
fering in level of self-esteem.

(b)  Academic performance scores for 
three groups of students.

Self-Esteem

High Medium Low

94 83 80
90 76 72
85 70 81
84 81 71
89 78 77
96 88 70
91 83 78
85 80 72
88 82 75

 1. A researcher would like to know which factors are most important to people who 
are buying a new car. A sample of n 5 200 customers between the ages of 20 
and 29 are asked to identify the most important factor in the decision process: 
Performance, Reliability, or Style. The researcher would like to know whether 
there is a difference between the factors identified by women compared to those 
identified by men. The data are as follows:

Observed Frequencies of Most Important 
Factor According to Gender

Male

Performance Reliability Style Totals

21 33 26 80

Female 19 67 34 120

Totals 40 100 60

 a. State the null hypotheses.

 b. Determine the value for df for the chi-square test.

 c. Compute the expected frequencies.

 1. a.  H
0
: In the population, the distribution of preferred factors for men has the same proportions 

as the distribution for women.

 b. df 5 2

 c. f
e
 values are as follows:

Expected frequencies

Male

Performance Reliability Style

16 40 24

Female 24 60 36

l E A R n I n G  C H E C k

AnSwERS
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mEASuRInG EFFECT SIzE FoR THE CHI-SquARE TEST FoR 
IndEPEndEnCE

A hypothesis test, like the chi-square test for independence, evaluates the statistical 
significance of the results from a research study. Specifically, the intent of the test 
is to determine whether it is likely that the patterns or relationships observed in the 
sample data could have occurred without any corresponding patterns or relation-
ships in the population. Tests of significance are influenced not only by the size or 
strength of the treatment effects but also by the size of the samples. As a result, even 
a small effect can be statistically significant if it is observed in a very large sample. 
Because a significant effect does not necessarily mean a large effect, it is generally 
recommended that the outcome of a hypothesis test be accompanied by a measure 
of the effect size. This general recommendation also applies to the chi-square test 
for independence.

In Chapter 14 (p. 480), we introduced the phi-coefficient as a measure of correlation 
for data consisting of two dichotomous variables (both variables have exactly two 
values). This same situation exists when the data for a chi-square test for indepen-
dence form a 2 3 2 matrix (again, each variable has exactly two values). In this 
case, it is possible to compute the correlation phi () in addition to the chi-square 
hypothesis test for the same set of data. Because phi is a correlation, it measures the 
strength of the relationship, rather than the significance, and thus provides a measure 
of effect size. The value for the phi-coefficient can be computed directly from chi-
square by the following formula:

 5
x 2

n  
(15.6)

The value of the phi-coefficient is determined entirely by the proportions in the 2 3 2 
data matrix and is completely independent of the absolute size of the frequencies. The chi-
square value, however, is influenced by the proportions and by the size of the frequencies. 
This distinction is demonstrated in the following example.

The following data show a frequency distribution evaluating the relationship between 
gender and preference between two candidates for student president.

Candidate

Male

A B

5 10

Female 10 5

Note that the data show that males prefer candidate B by a 2-to-1 margin  
and females prefer candidate A by 2 to 1. Also note that the sample includes a 
total of 15 males and 15 females. We will not perform all the arithmetic here,  
but these data produce chi-square equal to 3.33 (which is not significant) and a 
phi-coefficient of 0.333.

15.4

The phi-coefficieNT 
aNd cramér’s V

E x A m P l E  1 5 . 3

Caution: The value of x2 is 
already a squared value. Do 
not square it again.
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Next we keep exactly the same proportions in the data, but double all of the frequencies. 
The resulting data are as follows:

Candidate

Male

A B

10 20

Female 20 10

Once again, males prefer candidate B by 2 to 1 and females prefer candidate A by 2 
to 1. However, the sample now contains 30 males and 30 females. For these new data, 
the value of chi-square is 6.66, twice as big as it was before (and now significant with 
a 5 .05), but the value of the phi-coefficient is still 0.333.

Because the proportions are the same for the two samples, the value of the phi-coefficient 
is unchanged. However, the larger sample provides more convincing evidence than the 
smaller sample, so the larger sample is more likely to produce a significant result.

The interpretation of  follows the same standards used to evaluate a correlation 
(Table 9.3, p. 264 shows the standards for squared correlations): a correlation of  
0.10 is a small effect, 0.30 is a medium effect, and 0.50 is a large effect. Occasionally, 
the value of  is squared (2) and is reported as a percentage of variance accounted for, 
exactly the same as r2.

When the chi-square test involves a matrix larger than 2 3 2, a modification of the 
phi-coefficient, known as Cramér’s V, can be used to measure effect size.

V
n df

5
x 2

*( )  
(15.7)

Note that the formula for Cramér’s V (15.7) is identical to the formula for the phi-
coefficient (15.6) except for the addition of df* in the denominator. The df* value is not 
the same as the degrees of freedom for the chi-square test, but it is related. Recall that 
the chi-square test for independence has df 5 (R 2 1)(C 2 1), where R is the number 
of rows in the table and C is the number of columns. For Cramér’s V, the value of df* 
is the smaller of either (R 2 1) or (C 2 1).

Cohen (1988) has also suggested standards for interpreting Cramér’s V that are shown 
in Table 15.12. Note that when df* 5 1, as in a 2 3 2 matrix, the criteria for interpreting  
V are exactly the same as the criteria for interpreting a regular correlation or a phi-coefficient.

In a research report, the measure of effect size appears immediately after the results 
of the hypothesis test. For the study in Example 15.2, for example, we obtained x2 5 
6.381 for a sample of n 5 200 participants. Because the data form a 2 3 2 matrix, the 
phi-coefficient is the appropriate measure of effect size and the data produce

 5 5 5
x 2 6 381

200
0 179

n
.

.

For these data, the results from the hypothesis test and the measure of effect size 
would be reported as follows:

The results showed a significant relationship between parents’ rules about alcohol and 
subsequent alcohol-related problems, x2(1, n 5 200) 5 6.381, p , .05,  5 0.179. 
Specifically, teenagers whose parents allowed supervised drinking were more likely 
to experience problems.
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ASSumPTIonS And RESTRICTIonS FoR  
CHI-SquARE TESTS

To use a chi-square test for goodness of fit or a test of independence, several conditions 
must be satisfied. For any statistical test, violation of assumptions and restrictions casts 
doubt on the results. For example, the probability of committing a Type I error may be 
distorted when assumptions of statistical tests are not satisfied. Some important assump-
tions and restrictions for using chi-square tests are the following:

 1. Independence of Observations. This is not to be confused with the  
concept of independence between variables, as seen in the chi-square test  
for independence (Section 15.3). One consequence of independent observa-
tions is that each observed frequency is generated by a different individual. 
A chi-square test would be inappropriate if a person could produce responses 
that can be classified in more than one category or contribute more than  
one frequency count to a single category. (See p. 220 for more information  
on independence.)

 2. Size of Expected Frequencies. A chi-square test should not be performed 
when the expected frequency of any cell is less than 5. The chi-square  
statistic can be distorted when f

e
 is very small. Consider the chi-square  

computations for a single cell. Suppose that the cell has values of f
e
 5 1 

and f
o
 5 5. Note that there is a 4-point difference between the observed  

and expected frequencies. However, the total contribution of this cell to the 
total chi-square value is

cell 5
2

5
2

5 5
f f

f
o e

e

( ) ( )
2 2 25 1

1

4

1
16

Now consider another instance, in which f
e
 5 10 and f

o
 5 14. The difference be-

tween the observed and the expected frequencies is still 4, but the contribution of this 
cell to the total chi-square value differs from that of the first case:

cell 5
2

5
2

5 5
f f

f
o e

e

( ) ( )
2 2 214 10

10

4

10
1 6.

It should be clear that a small f
e
 value can have a great influence on the chi-square 

value. This problem becomes serious when f
e
 values are less than 5. When f

e
 is very 

small, what would otherwise be a minor discrepancy between f
o
 and f

e
 results in large 

chi-square values. The test is too sensitive when f
e
 values are extremely small. One way 

to avoid small expected frequencies is to use large samples.

15.5

Small 
Effect

Medium 
Effect

Large 
Effect

For df* 5 1 0.10 0.30 0.50

For df* 5 2 0.07 0.21 0.35

For df* 5 3 0.06 0.17 0.29

TAblE 15.12

Standards for interpreting 
Cramér’s V as proposed by 
Cohen (1988).
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 1. Chi-square tests are nonparametric techniques that test 
hypotheses about the form of the entire frequency 
distribution. Two types of chi-square tests are the 
test for goodness of fit and the test for independence. 
The data for these tests consist of the frequency of, 
or number of individuals who are located in, each 
category.

 2. The test for goodness of fit compares the frequency 
distribution for a sample to the population distribu-
tion that is predicted by H

0
. The test determines how 

well the observed frequencies (sample data) fit the 
expected frequencies (data predicted by H

0
).

 3. The expected frequencies for the goodness-of-fit test 
are determined by

expected frequency 5 f
e
 5 pn

  where p is the hypothesized proportion (according to 
H

0
) of observations falling into a category and n is the 

size of the sample.

 4. The chi-square statistic is computed by

chi-square 5 x 5
22

2


( )f f

f
o e

e

  where f
o
 is the observed frequency for a particular 

category and f
e
 is the expected frequency for that cat-

egory. Large values for x2 indicate that there is a large 
discrepancy between the observed (f

o
) and the expected 

(f
e
) frequencies and may warrant rejection of the null 

hypothesis.

 1. A researcher completes a chi-square test for independence and obtains x2 5 6.2 for 
a sample of n 5 40 participants.

 a. If the frequency data formed a 2 3 2 matrix, what is the phi-coefficient for the test?

 b. If the frequency data formed a 3 3 3 matrix, what is Cramér’s V for the test?

 2. Explain why a very small value for an expected frequency can distort the results of 
a chi-square test.

 1. a.   5 0.394

 b. V 5 0.278

 2. With a very small value for an expected frequency, even a minor discrepancy between the 
observed frequency and the expected frequency can produce a large number that is added 
into the chi-square statistic. This inflates the value of chi-square and can distort the outcome 
of the test.

l E A R n I n G  C H E C k

AnSwERS

Summary

 5. Degrees of freedom for the test for goodness of fit are

df 5 C 2 1

  where C is the number of categories.

 6. The chi-square distribution is positively skewed and 
begins at the value of zero. Its exact shape is deter-
mined by degrees of freedom.

 7. The test for independence evaluates the relationship 
between two variables using the same chi-square 
formula as the test for goodness of fit. The null hy-
pothesis states that the two variables in question are 
independent of each other. That is, the frequency 
distribution for one variable does not depend on the 
categories of the second variable.

 8. For the test for independence, the expected frequencies 
for H

0
 can be directly calculated from the marginal 

frequency totals,

f
f f

ne
c r5

  where f
c
 is the total column frequency and f

r
 is the 

total row frequency for the cell in question.

 9. Degrees of freedom for the test for independence are 
computed by

df 5 (R 2 1)(C 2 1)

  where R is the number of row categories and C is the 
number of column categories.
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 10. The chi-square statistic is distorted when f
e
 values are very 

small. Chi-square tests, therefore, should not be performed 
when the expected frequency of any cell is less than 5.

 11. The effect size for a chi-square test for independence 
is measured by computing a phi-coefficient for data 
that form a 2 3 2 matrix or computing Cramér’s V for 
a matrix that is larger than 2 3 2.

phi 5
x2

n  
Cramér’s V 5

 

x2

n df *( )

  where df* is the smaller of (R 2 1) and (C 2 1). Both 
phi and Cramér’s V are evaluated using the criteria in 
Table 15.12.

Key Terms

parametric test (p. 510)

nonparametric test (p. 510)

distribution-free tests (p. 510)

chi-square test for goodness-of- 
fit (p. 511)

observed frequencies (p. 513)

expected frequencies (p. 514)

chi-square statistic (p. 515)

chi-square distribution (p. 516)

chi-square test for independence  
(p. 522)

phi-coefficient (p. 532)

Cramér’s V (p. 533)

resources

Go to CengageBrain.com to access Psychology CourseMate, where you will find an 
interactive eBook, glossaries, flashcards, quizzes, statistics workshops, and more.

If your professor has assigned Aplia:

1. Sign in to your account.
2. Complete the corresponding exercises as required by your professor.
3. When finished, click “Grade It Now” to see which areas you have mastered, which 

areas need more work, and detailed explanations of every answer.

General instructions for using SPSS are presented in Appendix D. Following are  
detailed instructions for using SPSS to perform The Chi-Square Tests for Goodness 
of Fit and for Independence that are presented in this chapter.

The Chi-Square Test for Goodness of Fit

Data Entry

 1. Enter the set of observed frequencies in the first column of the SPSS data editor. If 
there are four categories, for example, enter the four observed frequencies.

 2. In the second column, enter the numbers 1, 2, 3, and so on, so that there is a 
number beside each of the observed frequencies in the first column.
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Data Analysis

 1. Click Data on the tool bar at the top of the page and select weight cases at the 
bottom of the list.

 2. Click the Weight cases by circle, then highlight the label for the column con-
taining the observed frequencies (VAR00001) on the left and move it into the 
Frequency Variable box by clicking on the arrow.

 3. Click OK.

 4. Click Analyze on the tool bar, select Nonparametric Tests, and click on  
One-Sample.

 5. Click the Settings tab on the top of the next page, choose Customize, and  
select Chi-Square.

 6. Click on Options and set the expected probabilities to all equal or customized 
values. Enter the expected probabilities if they are different values.

 7. Click OK.

 8. Click Run.

SPSS Output

The program produces a table reporting either a significant or a not significant 
result and gives the p value or a level for the test. It does not report a value for the 
chi-square statistic.

The Chi-Square Test for Independence

Data Entry

 1. Enter the complete set of observed frequencies in one column of the SPSS data 
editor (VAR00001).

 2. In a second column, enter a number (1, 2, 3, etc.) that identifies the row cor-
responding to each observed frequency. For example, enter a 1 beside each 
observed frequency that came from the first row.

 3. In a third column, enter a number (1, 2, 3, etc.) that identifies the column  
corresponding to each observed frequency. Each value from the first column 
gets a 1, and so on.

Data Analysis

 1. Click Data on the tool bar at the top of the page and select weight cases at the 
bottom of the list.

 2. Click the Weight cases by circle, then highlight the label for the column con-
taining the observed frequencies (VAR00001) on the left and move it into the 
Frequency Variable box by clicking on the arrow.

 3. Click OK.

 4. Click Analyze on the tool bar at the top of the page, select Descriptive 
Statistics, and click on Crosstabs.
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 5. Highlight the label for the column containing the rows (VAR00002) and move 
it into the Rows box by clicking on the arrow.

 6. Highlight the label for the column containing the columns (VAR00003) and 
move it into the Columns box by clicking on the arrow.

 7. Click on Statistics, select Chi-Square, and click Continue.

 8. Click OK.

SPSS Output

We used SPSS to conduct the chi-square test for independence for the data in Example 15.2, 
examining the relationship between parents’ rules concerning teenage drinking and 
subsequent alcohol-related problems, and the output is shown in Figure 15.5. The 
first table in the output simply lists the variables and is not shown in the figure. The 
Crosstabulation table simply shows the matrix of observed frequencies. The final 
table, labeled Chi-Square Tests, reports the results. Focus on the top row, the Pearson 

VAR00002 * VAR00003 Crosstabulation

Chi-Square Tests

VAR00002 1.00

2.00

Total

Count

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 16.00.
b. Computed only for a 2x2 table

71

89

160

9

31

40

80

120

200

VAR00003

1.00 2.00 Total

Pearson Chi-Square

Continuity Correctionb

Linear-by-Linear
Association

N of Valid Cases

Likelihood Ratio

Fisher’s Exact Test

6.380a

5.501

6.774

6.348

200

1 .012

1

1

1

.019

.009

.012

.012 .008

Value df Asymp. Sig.
(2-sided)

Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Figure 15.5

The SPSS output for the chi-square test for independence in Example 15.2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    dEmonSTRATIon 15.1    539

Chi-Square, which reports the calculated chi-square value, the degrees of freedom, 
and the level of significance (the p value, or the alpha level, for the test).

focus oN problem solviNG

 1. The expected frequencies that you calculate must satisfy the constraints of the 
sample. For the goodness-of-fit test, of

e
 5 of

o
 5 n. For the test for indepen-

dence, the row totals and column totals for the expected frequencies should be 
identical to the corresponding totals for the observed frequencies.

 2. It is entirely possible to have fractional (decimal) values for expected frequencies. 
Observed frequencies, however, are always whole numbers.

 3. Whenever df 5 1, the difference between observed and expected frequencies 
(f

o
 5 f

e
) is identical (the same value) for all cells. This makes the calculation of 

chi-square easier.

 4. Although you are advised to compute expected frequencies for all categories (or 
cells), you should realize that it is not essential to calculate all f

e
 values separately. 

Remember that df for chi-square identifies the number of f
e
 values that are free to 

vary. Once you have calculated that number of f
e
 values, the remaining f

e
 values 

are determined. You can get these remaining values by subtracting the calculated 
f
e
 values from their corresponding row or column totals.

 5. Remember that, unlike previous statistical tests, the degrees of freedom (df) for 
a chi-square test are not determined by the sample size (n). Be careful!

demoNsTraTioN 15.1

TesT for iNdepeNdeNce

A manufacturer of watches would like to examine preferences for digital versus 
analog watches. A sample of n 5 200 people is selected, and these individuals are 
classified by age and preference. The manufacturer would like to know whether 
there is a relationship between age and watch preference. The observed frequencies 
(f

o
) are as follows:

Digital Analog Undecided Totals

Younger than 30 90 40 10 140

30 or Older 10 40 10 60

Column Totals 100 80 20 n 5 200

State the hypotheses, and select an alpha level. The null hypothesis states that there is 
no relationship between the two variables.

H
0
:  Preference is independent of age. That is, the frequency distribution of  

preferences has the same form for people younger than 30 as for people 30 
or older.

S t e p  1
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The alternative hypothesis states that there is a relationship between the two variables.

H
1
:  Preference is related to age. That is, the type of watch preferred depends 

on a person’s age.

We set alpha to a 5 .05.

Locate the critical region. Degrees of freedom for the chi-square test for indepen-
dence are determined by

df 5 (C 2 1)(R 2 1)

For these data,

df 5 (3 2 1)(2 2 1) 5 2(1) 5 2

For df 5 2 with a 5 .05, the critical chi-square value is 5.99. Thus, our obtained chi-
square must exceed 5.99 to be in the critical region and to reject H

0
.

Compute the test statistic. Two calculations are required: finding the expected fre-
quencies and calculating the chi-square statistic.

Expected frequencies, f
e
. For the test for independence, the expected frequencies can 

be found using the column totals (f
c
), the row totals (f

r
), and the following formula:

f
f f

ne
c r5

For people younger than 30, we obtain the following expected frequencies:

fe 5 5 5
100 140

200

14 000

200
70

( ) ,
for digital

fe 5 5 5
80 140

200

11 200

200
56

( ) ,
for analog

fe 5 5 5
20 140

200

2800

200
14

( )
for undecided

For individuals 30 or older, the expected frequencies are as follows:

fe 5 5 5
100 60

200

6000

200
30

( )
for digital

fe 5 5 5
80 60

200

4800

200
24

( )
for analog

fe 5 5 5
20 60

200

1200

200
6

( )
for undecided

The following table summarizes the expected frequencies:

Digital Analog Undecided

Younger than 30 70 56 14

30 or Older 30 24 6

S t e p  2

S t e p  3
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The chi-square statistic. The chi-square statistic is computed from the formula

x 5 
22

2
f f

f
o e

e

( )

The following table summarizes the calculations:

Cell fo fe (fo 2 fe) (fo 2 fe)
2 (fo 2 fe)

2/fe

Younger than 30—digital 90 70 20 400 5.71
Younger than 30—analog 40 56 –16 256 4.57

Younger than 30—undecided 10 14 –4 16 1.14
30 or older—digital 10 30 –20 400 13.33
30 or older—analog 40 24 16 256 10.67

30 or older—undecided 10 6 4 16 2.67

Finally, add the values in the last column to get the chi-square statistic.

x2 5 5.71 14.57 1 1.14 1 13.33 1 10.67 1 2.67

5 38.09

Make a decision about H
0
, and state the conclusion. The chi-square value is in the 

critical region. Therefore, we reject the null hypothesis. There is a relationship between 
watch preference and age, x2(2, n 5 200) 5 38.09, p , .05.

demoNsTraTioN 15.2

effecT size wiTh cramér’s V

Because the data matrix is larger than 2 3 2, we compute Cramér’s V to measure 
effect size.

Cramér’s V 5 
x

5 5 5
2 38 09

200 1
0 19 0 436

n df *

.
. .

( ) ( )

S t e p  4

problems

 1. Parametric tests (such as t or ANOVA) differ from 
nonparametric tests (such as chi-square) primarily in 
terms of the assumptions they require and the data 
they use. Explain these differences.

 2. Güven, Elaimis, Binokay, and Tan (2003) studied the 
distribution of paw preferences in rats using a  
computerized food-reaching test. For a sample of  
n 5 144 rats, they found 104 right-handed animals.  
Is this significantly different from what would be  
expected if right- and left-handed rats are equally 
common in the population? Test with a 5 .01.

 3. In Chapter 9 (p. 257), we described a study  
showing that newborn infants spend more time 
looking at attractive faces when they are shown 
together with less attractive faces (Slater, et al., 
1998). In the study, a pair of faces is shown on a 
screen and the researchers record the amount of 
time the baby spends looking at each face. In a 
sample of n 5 40 infants, suppose that 26 spent 
the majority of their time looking at the more 
attractive face and only 14 spent the majority of 
time looking at the unattractive face. Is this result 
significantly different from what would be ex-
pected if there were no preference between the  
two faces? Test with a 5 .05.
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 4. Data from the department of motor vehicles indicate 
that 80% of all licensed drivers are older than age 25.

 a. In a sample of n 5 60 people who recently  
received speeding tickets, 38 were older than  
25 years and the other 22 were age 25 or younger. 
Is the age distribution for this sample significantly 
different from the distribution for the population 
of licensed drivers? Use a 5 .05.

 b. In a sample of n 5 60 people who recently  
received parking tickets, 43 were older than  
25 years and the other 17 were age 25 or younger. 
Is the age distribution for this sample significantly 
different from the distribution for the population 
of licensed drivers? Use a 5 .05.

 5. Research has demonstrated that people tend to be 
attracted to others who are similar to themselves. One 
study demonstrated that individuals are dispropor-
tionately more likely to marry those with surnames 
that begin with the same letter as their own (Jones, 
Pelham, Carvallo, & Mirenberg, 2004). The research-
ers began by looking at marriage records and record-
ing the surname for each groom and the maiden name 
of each bride. From these records it is possible to 
calculate the probability of randomly matching a bride 
and a groom whose last names begin with the same 
letter. Suppose that this probability is only 6.5%. Next, 
a sample of n 5 200 married couples is selected and 
the number who shared the same last initial at the time 
they were married is counted. The resulting observed 
frequencies are as follows:

Same Initial Different Initials

19 181 200

  Do these data indicate that the number of couples with 
the same last initial is significantly different than would 
be expected if couples were matched randomly? Test 
with a 5 .05.

 6. Suppose that the researcher from the previous problem 
repeated the study of married couples’ initials using 
twice as many participants and obtaining observed 
frequencies that exactly double the original values. 
The resulting data are as follows:

Same Initial Different Initials

38 362 400

 a. Use a chi-square test to determine whether the number 
of couples with the same last initial is significantly 
different than would be expected if couples were 
matched randomly. Test with a 5 .05.

 b. You should find that the data lead to rejecting the 
null hypothesis. However, in problem 5 the decision 

was fail to reject. How do you explain the fact that 
the two samples have the same proportions but lead 
to different conclusions?

 7. A normal distribution is a common assumption un-
derlying many statistical tests. Although the assump-
tion is usually not important, it is possible to test 
whether it is plausible. Specifically, the unit normal 
table lists proportions for individual sections of a 
normal distribution, and a chi-square test for good-
ness of fit can be used to evaluate whether a specific 
distribution fits the proportions. For example, if a 
normal distribution is divided into sections using  
z-score values, then proportions in each section 
should be as follows:

z , 21.5
21.5 , z  
, 20.5

20.5 , z  
, 0.5

0.5 , z  
, 1.5 z . 1.5

6.68% 24.17% 38.30% 24.17% 6.68%

  Use these proportions to test whether the following 
sample of n 5 90 scores is significantly different 
from a normal distribution. Test with a 5 .05.

z , 21.5
21.5 , z  
, 20.5

20.5 , z , 
0.5

0.5 , z  
, 1.5 z . 1.5

8 19 31 23 9

 8. Automobile insurance is much more expensive for 
teenage drivers than for older drivers. To justify 
this cost difference, insurance companies claim 
that the younger drivers are much more likely to 
be involved in costly accidents. To test this claim, 
a researcher obtains information about registered 
drivers from the department of motor vehicles 
(DMV) and selects a sample of n 5 300 accident 
reports from the police department. The DMV 
reports the percentage of registered drivers in each 
age category as follows: 16% are younger than age 
20; 28% are 20 to 29 years old; and 56% are age 
30 or older. The number of accident reports for 
each age group is as follows:

Under age 20 Age 20–29 Age 30 or older

68 92 140

 a.  Do the data indicate that the distribution of  
accidents for the three age groups is significantly 
different from the distribution of drivers? Test 
with a 5 .05.

 b. Write a sentence demonstrating how the outcome of 
the hypothesis test would appear in a research report.
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 9. The color red is often associated with anger and male 
dominance. Based on this observation, Hill and Barton 
(2005) monitored the outcome of four combat sports 
(boxing, tae kwan do, Greco-Roman wrestling, and 
freestyle wrestling) during the 2004 Olympic games 
and found that participants wearing red outfits won 
significantly more often than those wearing blue.

 a. In 50 wrestling matches involving red versus blue, 
suppose that the red outfit won 31 times and lost  
19 times. Is this result sufficient to conclude that red 
wins significantly more than would be expected by 
chance? Test at the .05 level of significance.

 b. In 100 matches, suppose red won 62 times and 
lost 38. Is this sufficient to conclude that red wins 
significantly more than would be expected by 
chance? Again, use a 5 .05.

 c. Note that the winning percentage for red uniforms 
in part a is identical to the percentage in part b 
(31 out of 50 is 62%, and 62 out of 100 is also 
62%). Although the two samples have an identi-
cal winning percentage, one is significant and the 
other is not. Explain why the two samples lead to 
different conclusions.

 10. Research suggests that romantic background music 
increases the likelihood that a woman will give her 
phone number to a man she has just met (Guéguen 
& Jacob, 2010). In the study, women spent time in a 
waiting room with background music playing. In one 
condition, the music was a popular love song and for 
the other condition the music was a neutral song. The 
participant was then moved to another room in which 
she was instructed to discuss two food products with 
a young man. The men were part of the study and 
were selected because they had been rated as average 
in attractiveness. The experimenter returned to end 
the study and asked the pair to wait alone for a few 
minutes. During this time, the man used a scripted line 
to ask the woman for her phone number. The follow-
ing table presents data similar to those obtained in the 
study, showing the number of women who did or did 
not give their numbers for each music condition.

Phone 
Number

No 
Number

Romantic Music 21 19 40

Neutral Music 9 31 40

30 50

  Is there a significant difference between the  
two types of music? Test with a 5 .05.

 11. Mulvihill, Obuseh, and Caldwell (2008) conducted a 
survey evaluating healthcare providers’ perception of 

a new state children’s insurance program.  
One question asked the providers whether they 
viewed the reimbursement from the new insurance 
as higher, lower, or the same as private insurance. 
Another question assessed the providers’ overall 
satisfaction with the new insurance. The following 
table presents observed frequencies similar to the 
study results.

Satisfied Not Satisfied

Less 
Reimbursement

46 54 100

Same or More 
Reimbursement

42 18 60

88 72

  Do the results indicate that the providers’ satisfac-
tion of the new program is related to their  
perception of the reimbursement rates? Test with  
a 5 .05.

 12. Research has demonstrated strong gender differ-
ences in teenagers’ approaches to dealing with 
mental health issues (Chandra & Minkovitz, 2006). 
In a typical study, eighth-grade students are asked 
to report their willingness to use mental health  
services in the event they were experiencing emo-
tional or other mental health problems. Typical data 
for a sample of n 5 150 students are shown in the 
following table.

 a. Do the data show a significant relationship between 
gender and willingness to seek mental health assis-
tance? Test with a 5 .05.

 b. Compute Cramér’s V to measure the size of the 
effect.

Willingness to Use Mental 
Health Services

Probably 
No

Maybe Probably 
Yes

Males 17 32 11 60

Females 13 43 34 90

30 75 45 n 5 150

 13. Research indicates that playing a prosocial video 
game tends to increase prosocial behaviors 
(Greitemeyer & Osswald, 2010). In a similar experi-
ment, participants were assigned to play a prosocial, 
a violent (antisocial), or a neutral video game. Near 
the end of each session, the experimenter acciden-
tally spilled a box of pencils on the floor and then 
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recorded whether the participant stopped to help pick 
them up. The data are as follows:

Prosocial Violent Neutral

Helped 12 7 8 27

Did not Help 3 8 7 18

15 15 15

  Do the data indicate a significant relationship between 
the type of game played and helping behavior? Test 
with a 5 .05.

 14. The data from problem 13 show no significant relation-
ship between the type of game and helping behavior. 
To construct the following data, we simply doubled the 
sample size from problem 13 so that all of the individ-
ual frequencies are twice as big. Notice that the sample 
proportions have not changed.

Prosocial Violent Neutral

Helped 24 14 16 54

Did not Help 6 16 14 36

30 30 30

 a. Test for a significant relationship using a 5 
.05. How does the decision compare with the 
decision in problem 13? You should find that a 
larger sample increases the likelihood of a sig-
nificant result.

 b. Compute the phi-coefficient for these data and 
compare it with the result from problem 13. You 
should find that the sample size has no effect on 
the strength of the relationship.

 15. Earlier in this chapter, we discussed a study  
investigating the relationship between memory 
for eyewitnesses and the questions they are asked 
(Loftus & Palmer, 1974). In the study, participants 
watched a film of an automobile accident and then 
were questioned about the accident. One group 
was asked how fast the cars were going when they 
“smashed into” each other. A second group was 
asked about the speed when the cars “hit” each other, 
and a third group was not asked any question about 
the speed of the cars. A week later, the participants 
returned to answer additional questions about the 
accident, including whether they recalled seeing any 
broken glass. Although there was no broken glass 

in the film, several students claimed to remember 
seeing it. The following table shows the frequency 
distribution of responses for each group.

Response to the Question:  
Did You See Any Broken Glass?

Yes No

Verb Used to 
Ask About the 
Speed of the 

Cars

Smashed  
into

16 34

Hit 7 43

Control  
(Not Asked)

6 44

 a. Does the proportion of participants who claim to 
remember broken glass differ significantly from 
group to group? Test with a 5 .05.

 b. Compute Cramérs V to measure the size of the 
treatment effect.

 c. Describe how the phrasing of the question influ-
enced the participants’ memories.

 d. Write a sentence demonstrating how the outcome 
of the hypothesis test and the measure of effect 
size would be reported in a journal article.

 16. Research suggests that liberals and conservatives re-
spond differently to gaze cuing, which is the tendency 
to shift attention in the direction suggested by another 
person’s eye movements (Dodd, Hibbing, & Smith, 
2011). In the study, participants watched a drawing of a 
face on a computer screen. The eyes on the face would 
then look either left or right and, shortly afterward, a 
dot would appear on either the left or right side of the 
screen. Participants had to respond as quickly as pos-
sible indicating the side on which the dot appeared. 
Liberals tended to shift their attention to the side indi-
cated by the eyes and were significantly faster when 
the dot appeared on that side but significantly slower 
when the dot was on the opposite side. Conservatives, 
on the other hand were not influenced by the eye 
direction and were equally fast no matter where the 
dot appeared. One possible explanation is that liberals 
are more empathetic and more likely to be influenced 
by others. The following data are simply measures of 
whether participants shifted their gaze in the direction 
of another person’s eye movements.

 a. Do these results indicate a significant difference be-
tween the two political groups? Test with a 5 .05.

 b. The relationship between responding to gaze cues 
and political tendency can also be evaluated with 
a phi-coefficient. Compute the phi-coefficient for 
these data.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    PRoblEmS    545

Shifted Gaze

No Yes Totals

Liberal 7 23 30

Conservative 15 9 24

Totals 22 32

 17. Research results suggest that IQ scores for boys 
are more variable than IQ scores for girls (Arden 
& Plomin, 2006). A typical study looking at 
10-year-old children classifies participants by 
gender and by low, average, or high IQ. Following 
are hypothetical data representing the research re-
sults. Do the data indicate a significant difference 
between the frequency distributions for males and 
females? Test at the .05 level of significance and 
describe the difference.

IQ

Low Average High

Boys 18 42 20 80

Girls 12 54 14 80

n 5 160

 18. Gender differences in dream content are well docu-
mented (see Winget & Kramer, 1979). Suppose a 
researcher studies aggression content in the dreams 
of men and women. Each participant reports his or 
her most recent dream. Then each dream is judged 
by a panel of experts to have low, medium, or high 
aggression content. The observed frequencies are 
shown in the following matrix:

Aggression Content

Low Medium High

Gender
Female 18 4 2

Male 4 17 15

  Is there a relationship between gender and the ag-
gression content of dreams? Test with a 5 .01.

 19. In a study similar to one conducted by Fallon  
and Rozin (1985), a psychologist prepared a  
set of silhouettes showing different female  
body shapes ranging from somewhat thin to  
somewhat heavy and asked a group of women to 

indicate which body figure they thought men  
would consider the most attractive. Then a group of 
men were shown the same set of profiles and asked 
which image they considered the most attractive. 
The following hypothetical data show the number 
of individuals who selected each of the four body 
image profiles.

 a. Do the data indicate a significant difference 
between the actual preferences for the men and 
the preferences predicted by the women? Test at 
the .05 level of significance.

 b. Compute the phi-coefficient to measure the 
strength of the relationship.

Body Image Profiles

Somewhat 
Thin

Slightly 
Thin

Slightly 
Heavy

Somewhat 
Heavy

Women 29 25 18 8 80

Men 11 15 22 12 60

40 40 40 20

 20. A recent study indicates that people tend to select 
video game avatars with characteristics similar 
to those of their creators (Bélisle & Onur, 2010). 
Participants who had created avatars for a virtual 
community game completed a questionnaire about 
their personalities. An independent group of view-
ers examined the avatars and recorded their impres-
sions of the avatars. One personality characteristic 
considered was introverted/extroverted. Following is 
the frequency distribution of personalities for partici-
pants and the avatars they created.

Participant Personality

Introverted Extroverted

Introverted Avatar 22 23 45

Extroverted Avatar 16 39 55

38 62

 a. Is there a significant relationship between the per-
sonalities of the participants and the personalities 
of their avatars? Test with a 5 .05.

 b. Compute the phi-coefficient to measure the size of 
the effect.

 21. Research indicates that people who volunteer to par-
ticipate in research studies tend to have higher intel-
ligence than nonvolunteers. To test this phenomenon, 
a researcher obtains a sample of 200 high school 
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students. The students are given a description of a 
psychological research study and asked whether they 
would volunteer to participate. The researcher also 
obtains an IQ score for each student and classifies 
the students into high, medium, and low IQ groups. 
Do the following data indicate a significant relation-
ship between IQ and volunteering? Test at the .05 
level of significance.

IQ

High Medium Low

Volunteer 43 73 34 150

Not Volunteer 7 27 16 50

50 100 50

 22. Although the phenomenon is not well understood, it 
appears that people born during the winter months 

are slightly more likely to develop schizophrenia 
than people born at other times (Bradbury & Miller, 
1985). The following hypothetical data represent a 
sample of 50 individuals diagnosed with schizophre-
nia and a sample of 100 people with no psychotic 
diagnosis. Each individual is also classified accord-
ing to the season in which he or she was born. Do 
the data indicate a significant relationship between 
schizophrenia and the season of birth? Test at the .05 
level of significance.

Season of Birth

Summer Fall Winter Spring

No
Disorder

26 24 22 28 100

Schizophrenia 9 11 18 12 50

35 35 40 40
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review

After completing this part, you should be able to calculate 
and interpret correlations, find linear regression equations, 
and conduct the chi-square tests for goodness of fit and for 
independence.

The most commonly used correlation is the Pearson 
correlation, which measures the direction and degree of 
linear relationship between two variables (X and Y) that 
have been measured on interval or ratio scales (numeri-
cal scores). The regression equation determines the best 
fitting line to describe the relationship between X and Y, 
and to compute predicted Y values for each value of X. A 
partial correlation can be used to reveal the underlying 
relationship between X and Y when the influence of a third 
variable is eliminated.

The Pearson formula is also used in a variety of other 
situations to compute special correlations. The Spearman 
correlation uses the Pearson formula when X and Y are both 
measured on ordinal scales (ranks). The Spearman correla-
tion measures the direction and the degree to which the 
relationship is consistently one directional. When one of the 
variables consists of numerical scores and the other has only 
two values, the two values of the dichotomous variable can 
be coded as 0 and 1, and the Pearson formula can be used 
to find the point-biserial correlation. The point-biserial cor-
relation measures the strength of the relationship between X 
and Y, and can be squared to produce the same r2 value that 
is used to measure effect size for the independent-measures 
t test. When both variables are dichotomous, they can both 
be coded as 0 and 1, and the Pearson formula can be used to 
find the phi-coefficient. As a correlation, the phi-coefficient 
measures the strength of the relationship and is often used 
as a measure of effect size to accompany a chi-square test 
for independence for a 2 3 2 data matrix.

The chi-square test for goodness of fit uses the frequency 
distribution from a sample to evaluate a hypothesis about 
the corresponding population distribution. The null hypoth-
esis for the goodness-of-fit test typically falls into one of 
two categories:

 1. Equal proportions: The null hypothesis states that  
the population is equally distributed across the set of 
categories.

 2.  No difference: The null hypothesis states that the dis-
tribution for one population is not different from the 
known distribution for another population.

The chi-square test for independence uses frequency 
data from a sample to evaluate a hypothesis about the 
relationship between two variables in the population. The 
null hypothesis for this test can be phrased two different 
ways:

 1. No relationship: The null hypothesis states that there is no 
relationship between the two variables in the population.

 2.  No difference: One variable is viewed as defining a set 
of different populations. The null hypothesis states that 
the frequency distribution for the second variable has the 
same shape (same proportions) for all of the different 
populations.

review exercises

 1. For the following scores,

X Y

7 6
9 6
6 3

12 5
9 6
5 4

 a. Sketch a scatter plot showing the six data points.
 b. Just looking at the scatter plot, estimate the value 

of the Pearson correlation.
 c. Compute the Pearson correlation.

 2. For the following data:

X Y

1 2
4 7
3 5
2 1
5 14
3 7

 a. Find the regression equation for predicting Y from X.
 b. Does the regression equation account for a signifi-

cant portion of the variance in the Y scores? Use  
a 5 .05 to evaluate the F-ratio.

 3. A developmental psychologist would like to deter-
mine whether infants display any color preferences. A 
stimulus consisting of four color patches (red, green, 
blue, and yellow) is projected onto the ceiling above a 
crib. Infants are placed in the crib, one at a time, and 
the psychologist records how much time each infant 
spends looking at each of the four colors. The color 
that receives the most attention during a 100-second 
test period is identified as the preferred color for that 
infant. The preferred colors for a sample of 60 infants 
are shown in the following table:

Red Green Blue Yellow

20 12 18 10

547

P A R T V
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 a. Do the data indicate any significant preferences 
among the four colors? Test at the .05 level of 
significance.

 b. Write a sentence demonstrating how the outcome 
of the hypothesis test would appear in a research 
report.

 4.  A communications company has developed three new 
designs for a cell phone. To evaluate consumer re-
sponse, a sample of 60 college students and 60 older 
adults is selected and each person is given all three 
phones to use for 1 week. At the end of the week, the 
participants must identify which of the three designs 
they prefer. The distribution of preference is as follows:

Design 1 Design 2 Design 3

Student 27 20 13 60

Older Adult 21 34 5 60

48 54 18

 a. Do the data indicate that the distribution of pref-
erences for older adults is significantly different 
from the distribution for college students? Test 
with a 5 .05.

 b. Compute the phi-coefficient to measure the 
strength of the relationship.
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Basic Mathematics ReviewAPPENDIX A

Preview

A.1    Symbols and Notation

A.2    Proportions: Fractions, Decimals, and Percentages

A.3    Negative Numbers

A.4    Basic Algebra: Solving Equations

A.5    Exponents and Square Roots

PReview

This appendix reviews some of the basic math skills 
that are necessary for the statistical calculations  
presented in this book. Many students already will 
know some or all of this material. Others will need 
to do extensive work and review. To help you assess 
your own skills, we include a skills assessment exam 
here. You should allow approximately 30 minutes to 
complete the test. When you finish, grade your test 
using the answer key on page 569.

Notice that the test is divided into five sections. 
If you miss more than three questions in any  
section of the test, you probably need help in that 
area. Turn to the section of this appendix that  

corresponds to your problem area. In each section, 
you will find a general review, examples, and  
additional practice problems. After reviewing the 
appropriate section and doing the practice problems, 
turn to the end of the appendix. You will find another 
version of the skills assessment exam. If you still miss 
more than three questions in any section of the exam, 
continue studying. Get assistance from an instructor 
or a tutor if necessary. At the end of this appendix is a 
list of recommended books for individuals who need 
a more extensive review than can be provided here. 
We stress that mastering this material now will make 
the rest of the course much easier.
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SECTION 1

(corresponding to Section A.1 of this appendix)

 1. 3 1 2 3 7 5 ?

 2. (3 1 2) 3 7 5 ?

 3. 3 1 22 2 1 5 ?

 4. (3 1 2)2 2 1 5 ?

 5. 12/4 1 2 5 ?

 6. 12/(4 1 2) 5 ?

 7. 12/(4 1 2)2 5 ?

 8. 2 3 (8 2 22) 5 ?

 9. 2 3 (8 2 2)2 5 ?

 10. 3 3 2 1 8 2 1 3 6 5 ?

 11. 3 3 (2 1 8) 2 1 3 6 5 ?

 12. 3 3 2 1 (8 2 1) 3 6 5 ?

SECTION 2

(corresponding to Section A.2 of this appendix)

 1. The fraction }
3
4} corresponds to a percentage of 

 .

 2. Express 30% as a fraction.

 3. Convert }
1
4
2
0} to a decimal.

 4. }1
2
3} 1 }1

8
3} 5 ?

 5. 1.375 1 0.25 5 ?

 6. }
2
5} 3 }

1
4} 5 ?

 7. }
1
8} 1 }

2
3} 5 ?

 8. 3.5 3 0.4 5 ?

 9. }
1
5} 4 }

3
4} 5 ?

 10. 3.75/0.5 5 ?

 11. In a group of 80 students, 20% are psychology ma-
jors. How many psychology majors are in this group?

 12. A company reports that two-fifths of its employees 
are women. If there are 90 employees, how many are 
women?

SECTION 3

(corresponding to Section A.3 of this appendix)

 1. 3 1 (22) 1 (21) 1 4 5 ?

 2. 6 2 (22) 5 ?

 3. 22 2 (24) 5 ?

 4. 6 1 (21) 2 3 2 (22) 2 (25) 5 ?

 5. 4 3 (23) 5 ?

SKILLS ASSESSMENT PREVIEW EXAM

 6. 22 3 (26) 5 ?

 7. 23 3 5 5 ?

 8. 22 3 (24) 3 (23) 5 ?

 9. 12 4 (23) 5 ?

10. 218 4 (26) 5 ?

11. 216 4 8 5 ?

12. 2100 4 (24) 5 ?

SECTION 4

(corresponding to Section A.4 of this appendix)

For each equation, find the value of X.

 1. X 1 6 5 13

 2. X 2 14 5 15

 3. 5 5 X 2 4

 4. 3X 5 12

 5. 72 5 3X

 6. X/5 5 3

 7. 10 5 X/8

 8. 3X 1 5 5 24

 9. 24 5 2X 1 2

10. (X 1 3)/2 5 14

11. (X 2 5)/3 5 2

12. 17 5 4X 2 11

SECTION 5

(corresponding to Section A.5 of this appendix)

 1. 43 5 ?

 2. 25 9 ?2 5

 3. If X 5 2 and Y 5 3, then XY3 5 ?

 4. If X 5 2 and Y 5 3, then (X 1 Y)2 5 ?

 5. If a 5 3 and b 5 2, then a2 1 b2 5 ?

 6. (23)3 5 ?

 7. (24)4 5 ?

 8. 4  3 4 5 ?

 9. 36/ 9  5 ?

10. (9 1 2)2 5 ?

11. 52 1 23 5 ?

12. If a 5 3 and b 5 21, then a2b3 5 ?

The answers to the skills assessment exam are at the 
end of the appendix (pages 5692570).
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sYMBOLs AND NOtAtiON

Table A.1 presents the basic mathematical symbols that you should know, along with 
examples of their use. Statistical symbols and notation are introduced and explained 
throughout this book as they are needed. Notation for exponents and square roots is 
covered separately at the end of this appendix.

Parentheses are a useful notation because they specify and control the order of com-
putations. Everything inside the parentheses is calculated first. For example,

(5 1 3) 3 2 5 8 3 2 5 16

Changing the placement of the parentheses also changes the order of calculations. 
For example,

5 1 (3 3 2) 5 5 1 6 5 11

Often a formula or a mathematical expression will involve several different arithmetic 
operations, such as adding, multiplying, squaring, and so on. When you encounter 
these situations, you must perform the different operations in the correct sequence. 
Following is a list of mathematical operations, showing the order in which they are to 
be performed.

 1. Any calculation contained within parentheses is done first.

 2. Squaring (or raising to other exponents) is done second.

 3. Multiplying and/or dividing is done third. A series of multiplication and/or divi-
sion  operations should be done in order from left to right.

 4. Adding and/or subtracting is done fourth.

The following examples demonstrate how this sequence of operations is applied in 
different situations.

To evaluate the expression

(3 1 1)2 2 4 3 7/2

first, perform the calculation within parentheses:

(4)2 2 4 3 7/2

Next, square the value as indicated:

16 2 4 3 7/2

A.1

Order Of OPeratiOns

tABLe A.1  Symbol Meaning Example

 1 Addition 5 1 7 5 12
 2 Subtraction 8 2 3 5 5
 3, ( ) Multiplication 3 3 9 5 27, 3(9) 5 27
 4, / Division 15 4 3 5 5, 15/3 5 5, }

1
3
5
} 5 5

 . Greater than 20 . 10
 , Less than 7 , 11
  Not equal to 5  6
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Then perform the multiplication and division:

16 2 14

Finally, do the subtraction:

16 2 14 5 2

A sequence of operations involving multiplication and division should be performed 
in order from left to right. For example, to compute 12/2 3 3, you divide 12 by 2 and 
then multiply the result by 3:

12/2 3 3 5 6 3 3 5 18

Notice that violating the left-to-right sequence can change the result. For this ex-
ample, if you multiply before dividing, you will obtain

12/2 3 3 5 12/6 5 2    (This is wrong.)

A sequence of operations involving only addition and subtraction can be performed 
in any order. For example, to compute 3 1 8 2 5, you can add 3 and 8 and then  
subtract 5:

(3 1 8) 2 5 5 11 2 5 5 6

or you can subtract 5 from 8 and then add the result to 3:

3 1 (8 2 5) 5 3 1 3 5 6

A mathematical expression or formula is simply a concise way to write a set of  
instructions. When you evaluate an expression by performing the calculation, you 
simply follow the instructions. For example, assume you are given these instructions:

 1. First, add 3 and 8.

 2. Next, square the result.

 3. Next, multiply the resulting value by 6.

 4. Finally, subtract 50 from the value you have obtained.

You can write these instructions as a mathematical expression.

 1. The first step involves addition. Because addition is normally done last, use 
parentheses to give this operation priority in the sequence of calculations:

  (3 1 8)

 2. The instruction to square a value is noted by using the exponent 2 beside the 
value to be squared:

  (3 1 8)2

 3. Because squaring has priority over multiplication, you can simply introduce the 
multiplication into the expression:

  6 3 (3 1 8)2

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



APPeNDiX A  BAsic MAtheMAtics Review    553

 4. Addition and subtraction are done last, so simply write in the requested  
subtraction:

  6 3 (3 1 8)2 2 50

To calculate the value of the expression, you work through the sequence of opera-
tions in the proper order:

6 3 (3 1 8)2 2 50 5 6 3 (11)2 2 50

 5 6 3 (121) 2 50

 5 726 2 50

 5 676

As a final note, you should realize that the operation of squaring (or raising to any  
exponent) applies only to the value that immediately precedes the exponent. For example,

2 3 32 5 2 3 9 5 18  (Only the 3 is squared.)

If the instructions require multiplying values and then squaring the product, you 
must use parentheses to give the multiplication priority over squaring. For example, to 
multiply 2 times 3 and then square the product, you would write

(2 3 3)2 5 (6)2 5 36

1. Evaluate each of the following expressions:

 a. 4 3 8/22

 b. 4 3 (8/2)2

 c. 100 2 3 3 12/(6 2 4)2

 d. (4 1 6) 3 (3 2 1)2

 e. (8 2 2)/(9 2 8)2

 f. 6 1 (4 2 1)2 2 3 3 42

 g. 4 3 (8 2 3) 1 8 2 3

1. a. 8   b. 64    c. 91    d. 40    e. 6    f. 233    g. 25

L e A R N i N g  c h e c k

ANsweRs

PROPORtiONs: FRActiONs, DeciMALs, AND PeRceNtAges

A proportion is a part of a whole and can be expressed as a fraction, a decimal, or a  
percentage. For example, in a class of 40 students, only 3 failed the final exam.

The proportion of the class that failed can be expressed as a fraction

fraction 5 }
4
3
0
}

or as a decimal value

decimal 5 0.075

A.2
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or as a percentage

percentage 5 7.5%

In a fraction, such as 3
4, the bottom value (the denominator) indicates the number of 

equal pieces into which the whole is split. Here the “pie” is split into 4 equal pieces:

If the denominator has a larger value—say, 8—then each piece of the whole pie is 
smaller:

A larger denominator indicates a smaller fraction of the whole.
The value on top of the fraction (the numerator) indicates how many pieces of the 

whole are being considered. Thus, the fraction }
3
4} indicates that the whole is split evenly 

into 4 pieces and that 3 of them are being used:

A fraction is simply a concise way of stating a proportion: “Three out of four” is 
equivalent to 3

4}}. To convert the fraction to a decimal, you divide the numerator by the 
denominator:

}
3
4

} 5 3 4 4 5 0.75

To convert the decimal to a percentage, simply multiply by 100, and place a percent 
sign (%) after the answer:

0.75 3 100 5 75%

The U.S. money system is a convenient way of illustrating the relationship between 
fractions and decimals. “One quarter,” for example, is one-fourth 1}

1
4}2 of a dollar, and its 

decimal equivalent is 0.25. Other familiar equivalencies are as follows:

  Dime Quarter 50 Cents 75 Cents

 Fraction }1
1
0} }

1
4} }

1
2} }

3
4}

 Decimal 0.10 0.25 0.50 0.75
 Percentage 10% 25% 50% 75%
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 1. Finding Equivalent Fractions. The same proportional value can be expressed 
by many equivalent fractions. For example,

}
1
2

} 5 }
2
4

} 5 }
1
2
0
0
} 5 }

1
5
0
}
0
0

To create equivalent fractions, you can multiply the numerator and denominator by 
the same value. As long as both the numerator and the denominator of the fraction are 
multiplied by the same value, the new fraction will be equivalent to the original. For 
example,

}
1
3
0
} 5 }

3
9
0
}

because both the numerator and the denominator of the original fraction have been 
multiplied by 3. Dividing the numerator and denominator of a fraction by the same value 
will also result in an equivalent fraction. By using division, you can reduce a fraction to 
a simpler form. For example,

}
1
4
0
0
0

} 5 }
2
5

}

because both the numerator and the denominator of the original fraction have been 
divided by 20.

You can use these rules to find specific equivalent fractions. For example, find the 
fraction that has a denominator of 100 and is equivalent to }

3
4}. That is,

}
3
4

} 5 }
10

?
0

}

Notice that the denominator of the original fraction must be multiplied by 25 to 
produce the denominator of the desired fraction. For the two fractions to be equal, both 
the numerator and the denominator must be multiplied by the same number. Therefore, 
we also multiply the top of the original fraction by 25 and obtain

3 25

4 25

75

100

3

3
5

 2. Multiplying Fractions. To multiply two fractions, you first multiply the  
numerators and then multiply the denominators. For example,

3

4

5

7

3 5

4 7

15

28
3 5

3

3
5 

 3. Dividing Fractions. To divide one fraction by another, you invert the second 
fraction and then multiply. For example,

1

2

1

4

1

2

4

1

1 4

2 1

4

2

2

1
  4    5   3  5  

3

3
5 5 55 2

 4. Adding and Subtracting Fractions. Fractions must have the same denominator 
before you can add or subtract them. If the two fractions already have a common 
denominator, you simply add (or subtract as the case may be) only the values in 
the numerators. For example,

}
2
5

} 1 }
1
5

} 5 }
3
5

}

fraCtiOns
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Suppose you divided a pie into five equal pieces (fifths). If you first ate two-fifths of 
the pie and then another one-fifth, the total amount eaten would be three-fifths of the pie:

� �

If the two fractions do not have the same denominator, you must first find 
equivalent fractions with a common denominator before you can add or subtract. 
The product of the two denominators will always work as a common denominator 
for equivalent fractions (although it may not be the lowest common denominator). 
For example,

}
2
3

} 1 }
1
1
0
} 5 ?

Because these two fractions have different denominators, it is necessary to  
convert each into an equivalent fraction and find a common denominator. We will use 
3 3 10 5 30 as the common denominator. Thus, the equivalent fraction of each is

}
2
3

} 5 }
2
3
0
0
}  and  }

1
1
0
} 5 }

3
3
0
}

Now the two fractions can be added:

}
2
3
0
0
} 1 }

3
3
0
} 5 }

2
3
3
0
}

 5. Comparing the Size of Fractions. When comparing the size of two fractions 
with the same denominator, the larger fraction will have the larger numerator. 
For example,

}
5
8

} . }
3
8

}

The denominators are the same, so the whole is partitioned into pieces of the same 
size. Five of these pieces are more than three of them:

�

When two fractions have different denominators, you must first convert them to 
fractions with a common denominator to determine which is larger. Consider the fol-
lowing fractions:

}
3
8

}    and    }
1
7
6
}
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If the numerator and denominator of }
3
8} are multiplied by 2, the resulting equivalent 

fraction will have a denominator of 16:

}
3
8

} 5 }
3
8
 
 
3

3

 
 
2
2

} 5 }
1
6
6
}

Now a comparison can be made between the two fractions:

}
1
6
6
} , }

1
7
6
}

Therefore,

}
3
8

} , }
1
7
6
}

 1. Converting Decimals to Fractions. Like a fraction, a decimal represents part 
of the whole. The first decimal place to the right of the decimal point indicates 
how many tenths are used. For example,

0.1
1

10
0.7

7

10
5            5  

The next decimal place represents }1
1
00}, the next }10

1
00}, the next 

1
10 000, , and so on. To 

change a decimal to a fraction, just use the number without the decimal point for the 
numerator. Use the denominator that the last (on the right) decimal place represents. 
For example,

0.32
32

100
0.5333

5333

10,000
5           5  0.05

5

100
0.001

1

1000
 5   5  

 2. Adding and Subtracting Decimals. To add and subtract decimals, the only 
rule is that you must keep the decimal points in a straight vertical line. For 
example,

0 27 3 595
1 326

. .

.1

1 526

0 67

2 925.

.

.

2

 3. Multiplying Decimals. To multiply two decimal values, you first multiply the 
two numbers, ignoring the decimal points. Then you position the decimal point 
in the answer so that the number of digits to the right of the decimal point is 
equal to the total number of decimal places in the two numbers being multi-
plied. For example,

1.73
0.251

173
865

346
0.

3

443423

 

0.25
0.005  3 

125
00

00
0.000125

deCiMaLs

(two decimal places)
(three decimal places)

(five decimal places)

(two decimal places)
(three decimal places)

(five decimal places)
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 4. Dividing Decimals. The simplest procedure for dividing decimals is based on 
the fact that dividing two numbers is identical to expressing them as a fraction:

0.25 4 1.6 is identical to }
0
1
.2
.6
5

}

You now can multiply both the numerator and the denominator of the fraction by 10, 
100, 1000, or whatever number is necessary to remove the decimal places. Remember 
that multiplying both the numerator and the denominator of a fraction by the same 
value will create an equivalent fraction. Therefore,

0 25

1 6

.

.
5

3

3
5 5

0.25 100

1.6 100

25

100

5

32

The result is a division problem without any decimal places in the two numbers.

 1. Converting a Percentage to a Fraction or a Decimal. To convert a percentage 
to a fraction, remove the percent sign, place the number in the numerator, and 
use 100 for the denominator. For example,

52% 5 }
1
5
0
2
0

}  5% 5 }
1
5
00
}

To convert a percentage to a decimal, remove the percent sign and divide by 100, or 
simply move the decimal point two places to the left. For example,

 83% 5 83. 5 0.83

14.5% 5 14.5 5 0.145

 5% 5  5. 5 0.05

 2. Performing Arithmetic Operations with Percentages. There are situations  
in which it is best to express percent values as decimals in order to perform 
certain arithmetic operations. For example, what is 45% of 60? This question 
may be stated as

45% 3 60 5 ?

The 45% should be converted to decimal form to find the solution to this question. 
Therefore,

0.45 3 60 5 27

PerCentaGes

1. Convert }2
3
5} to a decimal.

2. Convert }
3
8} to a percentage.

3. Next to each set of fractions, write “True” if they are equivalent and “False” if 
they are not:

 a. }
3
8} 5 }2

9
4}   b. }

7
9} 5 }

1
1

7
9}  

 c. }
2
7} 5 }1

4
4}  

L e A R N i N g  c h e c k
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NegAtive NUMBeRs

Negative numbers are used to represent values less than zero. Negative numbers may 
occur when you are measuring the difference between two scores. For example, a 
researcher may want to evaluate the effectiveness of a propaganda film by measuring 
people’s attitudes with a test both before and after viewing the film:

  Before After Amount of Change

 Person A 23 27 14
 Person B 18 15 23
 Person C 21 16 25

Notice that the negative sign provides information about the direction of the 
difference: A plus sign indicates an increase in value, and a minus sign indicates a 
decrease.

Because negative numbers are frequently encountered, you should be comfortable 
working with these values. This section reviews basic arithmetic operations using 
negative numbers. You should also note that any number without a sign (1 or 2) is 
assumed to be positive.

 1. Adding Negative Numbers. When adding numbers that include negative val-
ues, simply interpret the negative sign as subtraction. For example,

3 1 (22) 1 5 5 3 2 2 1 5 5 6

When adding a long string of numbers, it often is easier to add all of the positive values 
to obtain the positive sum and then to add all of the negative values to obtain the negative 
sum. Finally, you subtract the negative sum from the positive sum. For example,

21 1 3 1 (24) 1 3 1 (26) 1 (22)

positive sum 5 6  negative sum 5 13

Answer: 6 2 13 5 27

A.3

4. Compute the following:

 a. }
1
6} 3 }1

7
0}  b. }

7
8} 2 }

1
2}  c. }1

9
0} 4 }

2
3}  d. }2

7
2} 1 }

2
3}

5. Identify the larger fraction of each pair:

 a. }1
7
0}, }1

2
0
1
0}  b. }

3
4}, }1

7
2}  c. }

2
3
2
}, }

1
3
9
}

6. Convert the following decimals into fractions:
 a. 0.012 b. 0.77 c. 0.005

7. 2.59 3 0.015 5 ?

8. 1.8 4 0.02 5 ?

9. What is 28% of 45?

1. 0.12  2. 37.5%  3. a. True  b. False  c. True

4. a. }6
7
0}  b. }

3
8}  c. }

2
2

7
0}  d. }

6
6

5
6}  5. a. }1

7
0}  b. }

3
4}  c. }

2
3
2
}

6. a. }1
1
0
2
00} 5 }2

3
50}  b. }1

7
0
7
0}  c. }10

5
00} 5 }2

1
00}  7. 0.03885  8. 90  9. 12.6

ANsweRs
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 2. Subtracting Negative Numbers. To subtract a negative number, change it to a 
positive number, and add. For example,

4 2 (23) 5 4 1 3 5 7

This rule is easier to understand if you think of positive numbers as financial 
gains and negative numbers as financial losses. In this context, taking away a debt is 
equivalent to a financial gain. In mathematical terms, taking away a negative number is 
equivalent to adding a positive number. For example, suppose you are meeting a friend 
for lunch. You have $7, but you owe your friend $3. Thus, you really have only $4 to 
spend for lunch. But your friend forgives (takes away) the $3 debt. The result is that 
you now have $7 to spend. Expressed as an equation,

$4 minus a $3 debt 5 $7

4 2 (23) 5 4 1 3 5 7

 3. Multiplying and Dividing Negative Numbers. When the two numbers being 
multiplied (or divided) have the same sign, the result is a positive number. 
When the two numbers have different signs, the result is negative. For example,

3 3 (22) 5 26

24 3 (22) 5 18

The first example is easy to explain by thinking of multiplication as repeated addi-
tion. In this case,

3 3 (22) 5 (22) 1 (22) 1 (22) 5 26

You add three negative 2s, which results in a total of negative 6. In the second ex-
ample, we are multiplying by a negative number. This amounts to repeated subtraction. 
That is,

24 3 (22) 5 2(22) 2 (22) 2 (22) 2 (22)

5 2 1 2 1 2 1 2 5 8

By using the same rule for both multiplication and division, we ensure that these two 
operations are compatible. For example,

26 4 3 5 22

which is compatible with

3 3 (22) 5 26

Also,

8 4 (24) 5 22

which is compatible with

24 3 (22) 5 18
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BAsic ALgeBRA: sOLviNg eQUAtiONs

An equation is a mathematical statement that indicates two quantities are identical. 
For example,

12 5 8 1 4

Often an equation will contain an unknown (or variable) quantity that is identified 
with a letter or symbol, rather than a number. For example,

12 5 8 1 X

In this event, your task is to find the value of X that makes the equation “true,” or 
balanced. For this example, an X value of 4 will make a true equation. Finding the value 
of X is usually called solving the equation.

To solve an equation, there are two points to keep in mind:

 1. Your goal is to have the unknown value (X) isolated on one side of the equation. 
This means that you need to remove all of the other numbers and symbols that 
appear on the same side of the equation as the X.

 2. The equation remains balanced, provided that you treat both sides exactly the  
same. For example, you could add 10 points to both sides, and the solution  
(the X value) for the equation would be unchanged.

We will consider four basic types of equations and the operations needed to solve them.

 1. When X Has a Value Added to It. An example of this type of equation is

X 1 3 5 7

A.4

findinG tHe sOLUtiOn  
fOr an eQUatiOn

1. Complete the following calculations:

 a. 3 1 (28) 1 5 1 7 1 (21) 1 (23)

 b. 5 2 (29) 1 2 2 (23) 2 (21)

 c. 3 2 7 2 (221) 1 (25) 2 (29)

 d. 4 2 (26) 2 3 1 11 2 14

 e. 9 1 8 2 2 2 1 2 (26)

 f. 9 3 (23)

 g. 27 3 (24)

 h. 26 3 (22) 3 (23)

 i. 212 4 (23)

 j. 18 4 (26)

1. a. 3  b. 20  c. 21  d. 4  e. 20

f. 227  g. 28  h. 236  i. 4  j. 23

ANsweRs

L e A R N i N g  c h e c k
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Your goal is to isolate X on one side of the equation. Thus, you must remove the 
13 on the left-hand side. The solution is obtained by subtracting 3 from both sides of 
the equation:

X 1 3 2 3 5 7 2 3

X 5 4

The solution is X 5 4. You should always check your solution by returning to the 
original equation and replacing X with the value you obtained for the solution. For this 
example,

X 1 3 5 7

4 1 3 5 7

7 5 7

 2. When X Has a Value Subtracted From It. An example of this type of 
equation is

X 2 8 5 12

In this example, you must remove the 28 from the left-hand side. Thus, the solution 
is obtained by adding 8 to both sides of the equation:

X 2 8 1 8 5 12 1 8

X 5 20

Check the solution:

X 2 8 5 12

20 2 8 5 12

12 5 12

 3. When X Is Multiplied by a Value. An example of this type of equation is

4X 5 24

In this instance, it is necessary to remove the 4 that is multiplied by X. This may be 
accomplished by dividing both sides of the equation by 4:

}
4
4
X
} 5 }

2
4
4
}

X 5 6

Check the solution:

4X 5 24

4(6) 5 24

24 5 24

 4. When X Is Divided by a Value. An example of this type of equation is

}
X
3

} 5 9

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



APPeNDiX A  BAsic MAtheMAtics Review    563

Now the X is divided by 3, so the solution is obtained by multiplying by 3. 
Multiplying both sides yields

31}
X
3

}2 5 9(3)

X 5 27

For the check,

}
X
3

} 5 9

}
2
3
7
} 5 9

9 5 9

More complex equations can be solved by using a combination of the preceding simple 
operations. Remember that at each stage you are trying to isolate X on one side of the 
equation. For example,

3X 1 7 5 22

3X 1 7 2 7 5 22 2 7  (Remove 17 by subtracting 7 from both sides.)

3X 5 15

}
3
3
X
} 5 }

1
3
5
} (Remove 3 by dividing both sides by 3.)

X 5 5

To check this solution, return to the original equation, and substitute 5 in place of X:

3X 1 7 5 22

3(5) 1 7 5 22

15 1 7 5 22

22 5 22

Following is another type of complex equation frequently encountered in statistics:

X 1
5

3

4
2

First, remove the 4 by multiplying both sides by 4:

4
X 1

5
3

4
2(4)









X 1 3 5 8

Now remove the 13 by subtracting 3 from both sides:

X 1 3 2 3 5 8 2 3

X 5 5

sOLUtiOns fOr MOre 
COMPLeX eQUatiOns
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To check this solution, return to the original equation, and substitute 5 in place of X:

X 1
5

3

4
2

51
5

3

4
2

 }
8
4

} 5 2

 2 5 2

1. Solve for X, and check the solutions:

 a. 3X 5 18  b. X 1 7 5 9   c. X 2 4 5 18   d. 5X 2 8 5 12

 e. }
X
9

} 5 5   f. 
X 1

6
4

1  
  5    g. X 1 2 5 25  h. }

X
5

} 5 25

 i. }
2
3
X
} 5 12   j. }

X
3

} 1 1 5 3

 1. a. X 5 6   b. X 5 2   c. X 5 22   d. X 5 4   e. X 5 45

f. X 5 23  g. X 5 27  h. X 5 225  i. X 5 18  j. X 5 6

L e A R N i N g  c h e c k

ANsweRs

eXPONeNts AND sQUARe ROOts

A simplified notation is used whenever a number is being multiplied by itself. The  
notation consists of placing a value, called an exponent, on the right-hand side of  
and raised above another number, called a base. For example,

73mexponent
h

base

The exponent indicates how many times the base is used as a factor in multiplication. 
Following are some examples:

73 5 7(7)(7) (Read “7 cubed” or “7 raised to the third power”)
52 5 5(5) (Read “5 squared”)
25 5 2(2)(2)(2)(2) (Read “2 raised to the fifth power”)

There are a few basic rules about exponents that you will need to know for this 
course. They are outlined here.

 1. Numbers Raised to One or Zero. Any number raised to the first power equals 
itself. For example,

61 5 6

A.5

eXPOnentiaL 
nOtatiOn
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Any number (except zero) raised to the zero power equals 1. For example,

90 5 1

 2. Exponents for Multiple Terms. The exponent applies only to the base that is 
just in front of it. For example,

XY2 5 XYY

a2b3 5 aabbb

 3. Negative Bases Raised to an Exponent. If a negative number is raised to a  
power, then the result will be positive for exponents that are even and negative 
for exponents that are odd. For example,

(24)3 5 24(24)(24)

5 16(24)

5 264

and

(23)4 5 23(23)(23)(23)

5 9(23)(23)

5 9(9)

5 81

Note: The parentheses are used to ensure that the exponent applies to the entire 
negative number, including the sign. Without the parentheses there is some ambiguity 
as to how the exponent should be applied. For example, the expression 232 could have 
two interpretations:

232 5 (23)(23) 5 9 or 232 5 2(3)(3) 5 29

 4. Exponents and Parentheses. If an exponent is present outside of parentheses, 
then the computations within the parentheses are done first, and the exponential 
computation is done last:

(3 1 5)2 5 82 5 64

Notice that the meaning of the expression is changed when each term in the paren-
theses is raised to the exponent individually:

32 1 52 5 9 1 25 5 34

Therefore,

X2 1 Y2 ? (X 1 Y)2

 5. Fractions Raised to a Power. If the numerator and denominator of a fraction 
are each raised to the same exponent, then the entire fraction can be raised to 
that exponent. That is,

a

b

a

b

2

2

2

5  







Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



566    APPeNDiX A  BAsic MAtheMAtics Review

For example,

3

4

3

4

2

2

2

5  







9

16

3

4
5   

3

4








9

16

9

16
5 

The square root of a value equals a number that, when multiplied by itself, yields the 
original value. For example, the square root of 16 equals 4, because 4 times 4 equals 
16. The symbol for the square root is called a radical, . The square root is taken for 
the number under the radical. For example,

16 45 

Finding the square root is the inverse of raising a number to the second power 
(squaring). Thus,

a a2 5 

For example,

3 9 32 5 5 

Also,

b( )2
5 b

For example,

64 64
2( ) 5 5 82

Computations under the same radical are performed before the square root is taken. 
For example,

9 16 25 51 5 5 

Note that with addition (or subtraction), separate radicals yield a different result:

9 16 3 4 71 5  1 5

Therefore,

X Y X Y1  1  

X Y X Y2  2  

sQUare rOOts
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If the numerator and denominator of a fraction each have a radical, then the entire 
fraction can be placed under a single radical:

16

4
5

16

4

4

2
5 4

2 5 2

Therefore,

X

Y
5 

X

Y

Also, if the square root of one number is multiplied by the square root of another 
number, then the same result would be obtained by taking the square root of the product 
of both numbers. For example,

9

3

12

 3 5 3

3 5

5

16 9 16

4 144

122

Therefore,

a ab3 5b

1. Perform the following computations:

 a. (26)3

 b. (3 1 7)2

 c. a3b2 when a 5 2 and b 5 25

 d. a4b3 when a 5 2 and b 5 3

 e. (XY)2 when X 5 3 and Y 5 5

 f. X2 1 Y2 when X 5 3 and Y 5 5

 g. (X 1 Y)2 when X 5 3 and Y 5 5

 h. 5 41

 i. 9
2( )

 j. 16

4

1. a. 2216  b. 100  c. 200  d. 432  e. 225

f. 34   g. 64   h. 3    i. 9   j. 2

ANsweRs

L e A R N i N g  c h e c k
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PROBLEMS FOR APPENDIX A Basic Mathematics Review

 1. 50/(10 2 8) 5 ?

 2. (2 1 3)2 5 ?

 3. 20/10 3 3 5 ?

 4. 12 2 4 3 2 1 6/3 5 ?

 5. 24/(12 2 4) 1 2 3 (6 1 3) 5 ?

 6. Convert }2
7
0} to a decimal.

 7. Express }2
9
5} as a percentage.

 8. Convert 0.91 to a fraction.

 9. Express 0.0031 as a fraction.

10. Next to each set of fractions, write “True” if they are 
equivalent and “False” if they are not:

 a. }
10

4
00
} 5 }

1
2
00
}  

 b. }
5
6

} 5 }
5
6
2
2
}  

 c. }
1
8

} 5 }
5
7
6
}  

11. Perform the following calculations:

 a. }
4
5

} 3 }
2
3

} 5 ?  b. }
7
9

} 4 }
2
3

} 5 ?

 c. }
3
8

} 1 }
1
5

} 5 ?  d. }
1
5
8
} 2 }

1
6

} 5 ?

12. 2.51 3 0.017 5 ?

13. 3.88 3 0.0002 5 ?

14. 3.17 1 17.0132 5 ?

15. 5.55 1 10.7 1 0.711 1 3.33 1 0.031 5 ?

16. 2.04 4 0.2 5 ?

17. 0.36 4 0.4 5 ?

18. 5 1 3 2 6 2 4 1 3 5 ?

19. 9 2 (21) 2 17 1 3 2 (24) 1 5 5 ?

20. 5 1 3 2 (28) 2 (21) 1 (23) 2 4 1 10 5 ?

21. 8 3 (23) 5 ?

22. 222 4 (22) 5 ?

23. 22(24) _ (23) 5 ?

24. 84 4 (24) 5 ?

Solve the equations in problems 25232 for X.

25. X 2 7 5 22 26. 9 5 X 1 3

27. }
X
4

} 5 11 28. 23 5 }
X
3

}

29. 
X

5

1  3
5 2 30. 

X

3

1  1
5 28

31. 6X 2 1 5 11 32. 2X 1 3 5 211

33. (25)2 5 ? 34. (25)3 5 ?

35. If a 5 4 and b 5 3, then a2 1 b4 5 ?

36. If a 5 21 and b 5 4, then (a 1 b)2 5 ?

37. If a 5 21 and b 5 5, then ab2 5 ?

38. 
8

4
 5 ?

39. 20

5
 5 ?

SKILLS ASSESSMENT FINAL EXAM

SECTION 1

 1. 4 1 8/4 5 ?  2. (4 1 8)/4 5 ?

 3. 4 3 32 5 ?  4. (4 3 3)2 5 ?

 5. 10/5 3 2 5 ?  6. 10/(5 3 2) 5 ?

 7. 40 2 10 3 4/2 5 ?  8. (5 2 1)2/2 5 ?

 9. 3 3 6 2 32 5 ? 10. 2 3 (6 2 3)2 5 ?

11. 4 3 3 2 1 1 8 3 2 5 ?

12. 4 3 (3 2 1 1 8) 3 2 5 ?

SECTION 2
 1. Express }

1
8
4
0} as a decimal.

 2. Convert }2
6
5} to a percentage.

 3. Convert 18% to a fraction.

 4. }
3
5} 3 }

2
3} 5 ? 5. }2

5
4} 1 }

5
6} 5 ?

 6. }1
7
2} 4 }

5
6} 5 ? 7. }

5
9} 2 }

1
3} 5 ?

 8. 6.11 3 0.22 5 ?

 9. 0.18 4 0.9 5 ?

10. 8.742 1 0.76 5 ?

11. In a statistics class of 72 students, three-eighths of 
the students received a B on the first test. How many 
Bs were earned?

12. What is 15% of 64?
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SECTION 3
 1. 3 2 1 2 3 1 5 2 2 1 6 5 ?

 2. 28 2 (26) 5 ?

 3. 2 2 (27) 2 3 1 (211) 2 20 5 ?

 4. 28 2 3 2 (21) 2 2 2 1 5 ?

 5. 8(22) 5 ?  6. 27(27) 5 ?

 7. 23(22)(25) 5 ?  8. 23(5)(23) 5 ?

 9. 224 4 (24) 5 ? 10. 36 4 (26) 5 ?

11. 256/7 5 ? 12. 27/(21) 5 ?

SECTION 4

Solve for X.

 1. X 1 5 5 12 2. X 2 11 5 3

 3. 10 5 X 1 4 4. 4X 5 20

 5. }
X
2

} 5 15 6. 18 5 9X

 7. }
X
5

} 5 35 8. 2X 1 8 5 4

 9. X

3

1  1 5 6 10. 4X 1 3 5 213

11. X

3

1  3
5 27 12. 23 5 2X 2 5

SECTION 5

 1. 53 5 ? 2. (24)3 5 ?

 3. (22)5 5 ? 4. (22)6 5 ?

 5. If a 5 4 and b 5 2, then ab2 5 ?

 6. If a 5 4 and b 5 2, then (a 1 b)3 5 ?

 7. If a 5 4 and b 5 2, then a2 1 b2 5 ?

 8. (11 1 4)2 5 ?

 9. 72 5 ?

10. If a 5 36 and b 5 64, then a 1 b  5 ?

11. 
25

25
 5 ? 5 ?

12. If a 5 21 and b 5 2, then a3b4 5 ?

ANSWER KEY  Skills Assessment Exams

PREVIEW EXAM

SECTION 1

 1. 17  2. 35  3. 6

 4. 24  5. 5  6. 2

 7. }
1
3

}  8. 8  9. 72

10. 8 11. 24 12. 48

SECTION 2

 1. 75%  2. 
30

100
, or

3

10   3. 0.3

 4. }
1
1
0
3
}  5. 1.625  6. }

2
2
0
}, or }

1
1
0
}

 7. }
1
2
9
4
}  8. 1.4  9. }

1
4
5
}

10. 7.5 11. 16 12. 36

SECTION 3

 1. 4  2. 8  3. 2

 4. 9  5. 212  6. 12

 7. 215  8. 224  9. 24

10. 3 11. 22 12. 25

FINAL EXAM

SECTION 1

 1. 6  2. 3  3. 36

 4. 144  5. 4  6. 1

 7. 20  8. 8  9. 9

10. 18 11. 27 12. 80

SECTION 2

 1. 0.175  2. 24%  3. }
1
1
0
8
0

}, or }
5
9
0
}

 4. 
6

15
, or

2

5
  5. }

2
2
5
4
}  6. }

4
6
2
0
}, or }

1
7
0
}

 7. }
2
9

}  8. 1.3442  9. 0.2

10. 9.502 11. 27 12. 9.6

SECTION 3

 1. 8  2. 22  3. 225

 4. 213  5. 216  6. 49

 7. 230  8. 45  9. 6

10. 26 11. 28 12. 7
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PREVIEW EXAM

SECTION 4

 1. X 5 7  2. X 5 29  3. X 5 9

 4. X 5 4  5. X 5 24  6. X 5 15

 7. X 5 80  8. X 5 23  9. X 5 11

10. X 5 25 11. X 5 11 12. X 5 7

SECTION 5

 1. 64  2. 4  3. 54

 4. 25  5. 13  6. 227

 7. 256  8. 8  9. 12

10. 121 11. 33 12. 29

FINAL EXAM

SECTION 4

 1. X 5 7  2. X 5 14  3. X 5 6

 4. X 5 5  5. X 5 30  6. X 5 2

 7. X 5 175  8. X 5 22  9. X 5 17

10. X 5 24 11. X 5 224 12. X 5 14

SECTION 5

 1. 125  2. 264  3. 232

 4. 64  5. 16  6. 216

 7. 20  8. 225  9. 7

10. 10 11. 5 12. 216

SOLUTIONS TO SELECTED PROBLEMS FOR APPENDIX A  Basic Mathematics Review

 1. 25  3. 6

 5. 21  6. 0.35 

 7. 36%  9. 
31

10,000
10. b. False

11. a. }
1
8
5
}  b. }

2
1
1
8
}  c. }

2
4
3
0
}

12. 0.04267 14. 20.1832

17. 0.9 19. 5

21. 224 22. 11

25. X 5 5 28. X 5 29

30. X 5 225 31. X 5 2

34. 2125 36. 9

37. 225 39. 2

SUGGESTED REVIEW BOOKS

There are many basic mathematics books available if  
you need a more extensive review than this appendix 
can provide. Several are probably available in your 
library. The following books are but a few of the many 
that you may find helpful:
Gustafson, R. D., Karr, R., & Massey, M. (2011). 

Beginning Algebra (9th ed.). Belmont, CA:  
Brooks/Cole.

Lial, M. L., Salzman, S.A., & Hestwood, D.L. (2010). 
Basic College Mathematics (8th ed). Reading MA: 
Addison-Wesley.

McKeague, C. P. (2010). Basic College Mathematics: A 
Text/Workbook. (7th ed.). Belmont, CA: Brooks/Cole.
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Statistical TablesAPPENDIX B

TABlE B.1 THE UNIT NORMAL TABLE*

*Column A lists z-score values. A vertical line drawn through a normal distribution at a z-score location divides the 
distribution into two sections.
Column B identifies the proportion in the larger section, called the body. 
Column C identifies the proportion in the smaller section, called the tail. 
Column D identifies the proportion between the mean and the z-score.
Note:  Because the normal distribution is symmetrical, the proportions for negative z-scores are the same as those for  
positive z-scores.

+z0

B

Tail Tail

Body

−z 0

B

Body

C

z0

D

C

 0.00 .5000 .5000 .0000
 0.01 .5040 .4960 .0040
 0.02 .5080 .4920 .0080
 0.03 .5120 .4880 .0120
 0.04 .5160 .4840 .0160

 0.05 .5199 .4801 .0199
 0.06 .5239 .4761 .0239
 0.07 .5279 .4721 .0279
 0.08 .5319 .4681 .0319
 0.09 .5359 .4641 .0359

 0.10 .5398 .4602 .0398
 0.11 .5438 .4562 .0438
 0.12 .5478 .4522 .0478
 0.13 .5517 .4483 .0517
 0.14 .5557 .4443 .0557

 0.15 .5596 .4404 .0596
 0.16 .5636 .4364 .0636
 0.17 .5675 .4325 .0675
 0.18 .5714 .4286 .0714
 0.19 .5753 .4247 .0753

 0.20 .5793 .4207 .0793
 0.21 .5832 .4168 .0832
 0.22 .5871 .4129 .0871
 0.23 .5910 .4090 .0910
 0.24 .5948 .4052 .0948

 0.25 .5987 .4013 .0987
 0.26 .6026 .3974 .1026
 0.27 .6064 .3936 .1064
 0.28 .6103 .3897 .1103
 0.29 .6141 .3859 .1141

 0.30 .6179 .3821 .1179
 0.31 .6217 .3783 .1217
 0.32 .6255 .3745 .1255
 0.33 .6293 .3707 .1293
 0.34 .6331 .3669 .1331

 0.35 .6368 .3632 .1368
 0.36 .6406 .3594 .1406
 0.37 .6443 .3557 .1443
 0.38 .6480 .3520 .1480
 0.39 .6517 .3483 .1517

 0.40 .6554 .3446 .1554
 0.41 .6591 .3409 .1591
 0.42 .6628 .3372 .1628
 0.43 .6664 .3336 .1664
 0.44 .6700 .3300 .1700

 0.45 .6736 .3264 .1736
 0.46 .6772 .3228 .1772
 0.47 .6808 .3192 .1808
 0.48 .6844 .3156 .1844
 0.49 .6879 .3121 .1879

 (A) (B) (C) (D) (A) (B) (C) (D) 
  Proportion Proportion Proportion  Proportion Proportion Proportion 
 z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z
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 0.50 .6915 .3085 .1915
 0.51 .6950 .3050 .1950
 0.52 .6985 .3015 .1985
 0.53 .7019 .2981 .2019
 0.54 .7054 .2946 .2054

 0.55 .7088 .2912 .2088
 0.56 .7123 .2877 .2123
 0.57 .7157 .2843 .2157
 0.58 .7190 .2810 .2190
 0.59 .7224 .2776 .2224

 0.60 .7257 .2743 .2257
 0.61 .7291 .2709 .2291
 0.62 .7324 .2676 .2324
 0.63 .7357 .2643 .2357
 0.64 .7389 .2611 .2389

 0.65 .7422 .2578 .2422
 0.66 .7454 .2546 .2454
 0.67 .7486 .2514 .2486
 0.68 .7517 .2483 .2517
 0.69 .7549 .2451 .2549

 0.70 .7580 .2420 .2580
 0.71 .7611 .2389 .2611
 0.72 .7642 .2358 .2642
 0.73 .7673 .2327 .2673
 0.74 .7704 .2296 .2704

 0.75 .7734 .2266 .2734
 0.76 .7764 .2236 .2764
 0.77 .7794 .2206 .2794
 0.78 .7823 .2177 .2823
 0.79 .7852 .2148 .2852

 0.80 .7881 .2119 .2881
 0.81 .7910 .2090 .2910
 0.82 .7939 .2061 .2939
 0.83 .7967 .2033 .2967
 0.84 .7995 .2005 .2995

 0.85 .8023 .1977 .3023
 0.86 .8051 .1949 .3051
 0.87 .8078 .1922 .3078
 0.88 .8106 .1894 .3106
 0.89 .8133 .1867 .3133

 0.90 .8159 .1841 .3159
 0.91 .8186 .1814 .3186
 0.92 .8212 .1788 .3212
 0.93 .8238 .1762 .3238
 0.94 .8264 .1736 .3264

 0.95 .8289 .1711 .3289
 0.96 .8315 .1685 .3315
 0.97 .8340 .1660 .3340
 0.98 .8365 .1635 .3365
 0.99 .8389 .1611 .3389

 1.00 .8413 .1587 .3413
 1.01 .8438 .1562 .3438
 1.02 .8461 .1539 .3461
 1.03 .8485 .1515 .3485
 1.04 .8508 .1492 .3508

 1.05 .8531 .1469 .3531
 1.06 .8554 .1446 .3554
 1.07 .8577 .1423 .3577
 1.08 .8599 .1401 .3599
 1.09 .8621 .1379 .3621

 1.10 .8643 .1357 .3643
 1.11 .8665 .1335 .3665
 1.12 .8686 .1314 .3686
 1.13 .8708 .1292 .3708
 1.14 .8729 .1271 .3729

 1.15 .8749 .1251 .3749
 1.16 .8770 .1230 .3770
 1.17 .8790 .1210 .3790
 1.18 .8810 .1190 .3810
 1.19 .8830 .1170 .3830

 1.20 .8849 .1151 .3849
 1.21 .8869 .1131 .3869
 1.22 .8888 .1112 .3888
 1.23 .8907 .1093 .3907
 1.24 .8925 .1075 .3925

 1.25 .8944 .1056 .3944
 1.26 .8962 .1038 .3962
 1.27 .8980 .1020 .3980
 1.28 .8997 .1003 .3997
 1.29 .9015 .0985 .4015

 1.30 .9032 .0968 .4032
 1.31 .9049 .0951 .4049
 1.32 .9066 .0934 .4066
 1.33 .9082 .0918 .4082
 1.34 .9099 .0901 .4099

 1.35 .9115 .0885 .4115
 1.36 .9131 .0869 .4131
 1.37 .9147 .0853 .4147
 1.38 .9162 .0838 .4162
 1.39 .9177 .0823 .4177

 1.40 .9192 .0808 .4192
 1.41 .9207 .0793 .4207
 1.42 .9222 .0778 .4222
 1.43 .9236 .0764 .4236
 1.44 .9251 .0749 .4251

 1.45 .9265 .0735 .4265
 1.46 .9279 .0721 .4279
 1.47 .9292 .0708 .4292
 1.48 .9306 .0694 .4306
 1.49 .9319 .0681 .4319

 (A) (B) (C) (D) (A) (B) (C) (D) 
  Proportion Proportion Proportion  Proportion Proportion Proportion 
 z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z
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 1.50 .9332 .0668 .4332
 1.51 .9345 .0655 .4345
 1.52 .9357 .0643 .4357
 1.53 .9370 .0630 .4370
 1.54 .9382 .0618 .4382

 1.55 .9394 .0606 .4394
 1.56 .9406 .0594 .4406
 1.57 .9418 .0582 .4418
 1.58 .9429 .0571 .4429
 1.59 .9441 .0559 .4441

 1.60 .9452 .0548 .4452
 1.61 .9463 .0537 .4463
 1.62 .9474 .0526 .4474
 1.63 .9484 .0516 .4484
 1.64 .9495 .0505 .4495

 1.65 .9505 .0495 .4505
 1.66 .9515 .0485 .4515
 1.67 .9525 .0475 .4525
 1.68 .9535 .0465 .4535
 1.69 .9545 .0455 .4545

 1.70 .9554 .0446 .4554
 1.71 .9564 .0436 .4564
 1.72 .9573 .0427 .4573
 1.73 .9582 .0418 .4582
 1.74 .9591 .0409 .4591

 1.75 .9599 .0401 .4599
 1.76 .9608 .0392 .4608
 1.77 .9616 .0384 .4616
 1.78 .9625 .0375 .4625
 1.79 .9633 .0367 .4633

 1.80 .9641 .0359 .4641
 1.81 .9649 .0351 .4649
 1.82 .9656 .0344 .4656
 1.83 .9664 .0336 .4664
 1.84 .9671 .0329 .4671

 1.85 .9678 .0322 .4678
 1.86 .9686 .0314 .4686
 1.87 .9693 .0307 .4693
 1.88 .9699 .0301 .4699
 1.89 .9706 .0294 .4706

 1.90 .9713 .0287 .4713
 1.91 .9719 .0281 .4719
 1.92 .9726 .0274 .4726
 1.93 .9732 .0268 .4732
 1.94 .9738 .0262 .4738

 1.95 .9744 .0256 .4744
 1.96 .9750 .0250 .4750
 1.97 .9756 .0244 .4756
 1.98 .9761 .0239 .4761
 1.99 .9767 .0233 .4767

 2.00 .9772 .0228 .4772
 2.01 .9778 .0222 .4778
 2.02 .9783 .0217 .4783
 2.03 .9788 .0212 .4788
 2.04 .9793 .0207 .4793

 2.05 .9798 .0202 .4798
 2.06 .9803 .0197 .4803
 2.07 .9808 .0192 .4808
 2.08 .9812 .0188 .4812
 2.09 .9817 .0183 .4817

 2.10 .9821 .0179 .4821
 2.11 .9826 .0174 .4826
 2.12 .9830 .0170 .4830
 2.13 .9834 .0166 .4834
 2.14 .9838 .0162 .4838

 2.15 .9842 .0158 .4842
 2.16 .9846 .0154 .4846
 2.17 .9850 .0150 .4850
 2.18 .9854 .0146 .4854
 2.19 .9857 .0143 .4857

 2.20 .9861 .0139 .4861
 2.21 .9864 .0136 .4864
 2.22 .9868 .0132 .4868
 2.23 .9871 .0129 .4871
 2.24 .9875 .0125 .4875

 2.25 .9878 .0122 .4878
 2.26 .9881 .0119 .4881
 2.27 .9884 .0116 .4884
 2.28 .9887 .0113 .4887
 2.29 .9890 .0110 .4890

 2.30 .9893 .0107 .4893
 2.31 .9896 .0104 .4896
 2.32 .9898 .0102 .4898
 2.33 .9901 .0099 .4901
 2.34 .9904 .0096 .4904

 2.35 .9906 .0094 .4906
 2.36 .9909 .0091 .4909
 2.37 .9911 .0089 .4911
 2.38 .9913 .0087 .4913
 2.39 .9916 .0084 .4916

 2.40 .9918 .0082 .4918
 2.41 .9920 .0080 .4920
 2.42 .9922 .0078 .4922
 2.43 .9925 .0075 .4925
 2.44 .9927 .0073 .4927

 2.45 .9929 .0071 .4929
 2.46 .9931 .0069 .4931
 2.47 .9932 .0068 .4932
 2.48 .9934 .0066 .4934
 2.49 .9936 .0064 .4936

 (A) (B) (C) (D) (A) (B) (C) (D) 
  Proportion Proportion Proportion  Proportion Proportion Proportion 
 z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



574    APPENDIX B  STATISTIcAl TABlES

 2.50 .9938 .0062 .4938
 2.51 .9940 .0060 .4940
 2.52 .9941 .0059 .4941
 2.53 .9943 .0057 .4943
 2.54 .9945 .0055 .4945

 2.55 .9946 .0054 .4946
 2.56 .9948 .0052 .4948
 2.57 .9949 .0051 .4949
 2.58 .9951 .0049 .4951
 2.59 .9952 .0048 .4952

 2.60 .9953 .0047 .4953
 2.61 .9955 .0045 .4955
 2.62 .9956 .0044 .4956
 2.63 .9957 .0043 .4957
 2.64 .9959 .0041 .4959

 2.65 .9960 .0040 .4960
 2.66 .9961 .0039 .4961
 2.67 .9962 .0038 .4962
 2.68 .9963 .0037 .4963
 2.69 .9964 .0036 .4964

 2.70 .9965 .0035 .4965
 2.71 .9966 .0034 .4966
 2.72 .9967 .0033 .4967
 2.73 .9968 .0032 .4968
 2.74 .9969 .0031 .4969

 2.75 .9970 .0030 .4970
 2.76 .9971 .0029 .4971
 2.77 .9972 .0028 .4972
 2.78 .9973 .0027 .4973
 2.79 .9974 .0026 .4974

 2.80 .9974 .0026 .4974
 2.81 .9975 .0025 .4975
 2.82 .9976 .0024 .4976
 2.83 .9977 .0023 .4977
 2.84 .9977 .0023 .4977

 2.85 .9978 .0022 .4978
 2.86 .9979 .0021 .4979
 2.87 .9979 .0021 .4979
 2.88 .9980 .0020 .4980
 2.89 .9981 .0019 .4981

 2.90 .9981 .0019 .4981
 2.91 .9982 .0018 .4982
 2.92 .9982 .0018 .4982
 2.93 .9983 .0017 .4983
 2.94 .9984 .0016 .4984

 2.95 .9984 .0016 .4984
 2.96 .9985 .0015 .4985
 2.97 .9985 .0015 .4985
 2.98 .9986 .0014 .4986
 2.99 .9986 .0014 .4986

 3.00 .9987 .0013 .4987
 3.01 .9987 .0013 .4987
 3.02 .9987 .0013 .4987
 3.03 .9988 .0012 .4988
 3.04 .9988 .0012 .4988

 3.05 .9989 .0011 .4989
 3.06 .9989 .0011 .4989
 3.07 .9989 .0011 .4989
 3.08 .9990 .0010 .4990
 3.09 .9990 .0010 .4990

 3.10 .9990 .0010 .4990
 3.11 .9991 .0009 .4991
 3.12 .9991 .0009 .4991
 3.13 .9991 .0009 .4991
 3.14 .9992 .0008 .4992

 3.15 .9992 .0008 .4992
 3.16 .9992 .0008 .4992
 3.17 .9992 .0008 .4992
 3.18 .9993 .0007 .4993
 3.19 .9993 .0007 .4993

 3.20 .9993 .0007 .4993
 3.21 .9993 .0007 .4993
 3.22 .9994 .0006 .4994
 3.23 .9994 .0006 .4994
 3.24 .9994 .0006 .4994

 3.30 .9995 .0005 .4995
 3.40 .9997 .0003 .4997
 3.50 .9998 .0002 .4998
 3.60 .9998 .0002 .4998
 3.70 .9999 .0001 .4999

 3.80 .99993 .00007 .49993
 3.90 .99995 .00005 .49995
 4.00 .99997 .00003 .49997

 (A) (B) (C) (D) (A) (B) (C) (D) 
  Proportion Proportion Proportion  Proportion Proportion Proportion 
 z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z
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TABlE B.2    THE t  DISTRIBUTION

Table entries are values of t corresponding to proportions in one tail or in two tails combined.

One tail
(either right or left)

Two tails
combined

 Proportion in One Tail
  0.25 0.10 0.05 0.025 0.01 0.005

 Proportion in Two Tails Combined
 df 0.50 0.20 0.10 0.05 0.02 0.01

 1 1.000 3.078 6.314 12.706 31.821 63.657
 2 0.816 1.886 2.920 4.303 6.965 9.925
 3 0.765 1.638 2.353 3.182 4.541 5.841
 4 0.741 1.533 2.132 2.776 3.747 4.604
 5 0.727 1.476 2.015 2.571 3.365 4.032
 6 0.718 1.440 1.943 2.447 3.143 3.707
 7 0.711 1.415 1.895 2.365 2.998 3.499
 8 0.706 1.397 1.860 2.306 2.896 3.355
 9 0.703 1.383 1.833 2.262 2.821 3.250
 10 0.700 1.372 1.812 2.228 2.764 3.169
 11 0.697 1.363 1.796 2.201 2.718 3.106
 12 0.695 1.356 1.782 2.179 2.681 3.055
 13 0.694 1.350 1.771 2.160 2.650 3.012
 14 0.692 1.345 1.761 2.145 2.624 2.977
 15 0.691 1.341 1.753 2.131 2.602 2.947
 16 0.690 1.337 1.746 2.120 2.583 2.921
 17 0.689 1.333 1.740 2.110 2.567 2.898
 18 0.688 1.330 1.734 2.101 2.552 2.878
 19 0.688 1.328 1.729 2.093 2.539 2.861
 20 0.687 1.325 1.725 2.086 2.528 2.845
 21 0.686 1.323 1.721 2.080 2.518 2.831
 22 0.686 1.321 1.717 2.074 2.508 2.819
 23 0.685 1.319 1.714 2.069 2.500 2.807
 24 0.685 1.318 1.711 2.064 2.492 2.797
 25 0.684 1.316 1.708 2.060 2.485 2.787
 26 0.684 1.315 1.706 2.056 2.479 2.779
 27 0.684 1.314 1.703 2.052 2.473 2.771
 28 0.683 1.313 1.701 2.048 2.467 2.763
 29 0.683 1.311 1.699 2.045 2.462 2.756
 30 0.683 1.310 1.697 2.042 2.457 2.750
 40 0.681 1.303 1.684 2.021 2.423 2.704
 60 0.679 1.296 1.671 2.000 2.390 2.660
 120 0.677 1.289 1.658 1.980 2.358 2.617
 ` 0.674 1.282 1.645 1.960 2.326 2.576

Table III of Fisher, R. A., & Yates, F. (1974). Statistical Tables for Biological, Agricultural and Medical Research (6th ed.). London: Longman 
Group Ltd., 1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted 
with permission of Pearson Education Limited.
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TABlE B.3    CRITICAL VALUES FOR THE F-MAX STATISTIC*

*The critical values for a = .05 are in lightface type, and for a = .01, they are in boldface type.

k 5 Number of Samples
 n 2 1 2 3 4 5 6 7 8 9 10 11 12

 4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.4 44.6 48.0 51.4
  23.2 37. 49. 59. 69. 79. 89. 97. 106. 113. 120.

 5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
  14.9 22. 28. 33. 38. 42. 46. 50. 54. 57. 60.

 6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7
  11.1 15.5 19.1 22. 25. 27. 30. 32. 34. 36. 37.

 7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
  8.89 12.1 14.5 16.5 18.4 20. 22. 23. 24. 26. 27.

 8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
  7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21.

 9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7
  6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6

 10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
  5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9

 12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48
  4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6

 15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
  4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0

 20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
  3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9

 30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
  2.63 3.0 3.3 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

 60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36
  1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7

Table 31 of Pearson, E., and Hartley, H.O. (1958). Biometrika Tables for Statisticians (2nd ed.). New York: Cambridge University Press. 
Adapted and reprinted with permission of the Biometrika trustees.
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 Degrees of  Degrees of Freedom: Numerator
 Freedom:
 Denominator 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20

  1  161  200  216  225  230  234  237  239  241  242  243  244  245  246  248
  4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6082 6106 6142 6169 6208

  2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44
  98.49 99.00 99.17 99.25 99.30 99.33 99.34 99.36 99.38 99.40 99.41 99.42 99.43 99.44 99.45

  3 10.13  9.55  9.28   9.12  9.01  8.94  8.88  8.84  8.81  8.78  8.76  8.74  8.71  8.69  8.66
  34.12 30.92 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05 26.92 26.83 26.69

  4  7.71  6.94  6.59  6.39  6.26  6.16  6.09  6.04  6.00  5.96  5.93  5.91  5.87  5.84  5.80
  21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37 14.24 14.15 14.02

  5  6.61  5.79  5.41  5.19  5.05  4.95  4.88  4.82  4.78  4.74  4.70  4.68  4.64  4.60  4.56
  16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.27 10.15 10.05  9.96  9.89  9.77  9.68  9.55

  6  5.99  5.14  4.76  4.53  4.39  4.28  4.21  4.15  4.10  4.06  4.03  4.00  3.96  3.92  3.87
  13.74 10.92  9.78  9.15  8.75  8.47  8.26  8.10  7.98  7.87  7.79  7.72  7.60  7.52  7.39

  7  5.59  4.74  4.35  4.12  3.97  3.87  3.79  3.73  3.68  3.63  3.60  3.57  3.52  3.49  3.44
  12.25  9.55  8.45  7.85  7.46  7.19  7.00  6.84  6.71  6.62  6.54  6.47  6.35  6.27  6.15

  8  5.32  4.46  4.07  3.84  3.69  3.58  3.50  3.44  3.39  3.34  3.31  3.28  3.23  3.20  3.15
  11.26  8.65  7.59  7.01  6.63  6.37  6.19  6.03  5.91  5.82  5.74  5.67  5.56  5.48  5.36

  9  5.12  4.26  3.86  3.63  3.48  3.37  3.29  3.23  3.18  3.13  3.10  3.07  3.02  2.98  2.93
  10.56  8.02  6.99  6.42  6.06  5.80  5.62  5.47  5.35  5.26  5.18  5.11  5.00  4.92  4.80

 10  4.96  4.10  3.71  3.48  3.33  3.22  3.14  3.07  3.02  2.97  2.94  2.91  2.86  2.82  2.77
  10.04  7.56  6.55  5.99  5.64  5.39  5.21  5.06  4.95  4.85  4.78  4.71  4.60  4.52  4.41

 11  4.84  3.98  3.59  3.36  3.20  3.09  3.01  2.95  2.90  2.86  2.82  2.79  2.74  2.70  2.65
   9.65  7.20  6.22  5.67  5.32  5.07  4.88  4.74  4.63  4.54  4.46  4.40  4.29  4.21  4.10

 12  4.75  3.88  3.49  3.26  3.11  3.00  2.92  2.85  2.80  2.76  2.72  2.69  2.64  2.60  2.54
   9.33  6.93  5.95  5.41  5.06  4.82  4.65  4.50  4.39  4.30  4.22  4.16  4.05  3.98  3.86

 13  4.67  3.80  3.41  3.18  3.02  2.92  2.84  2.77  2.72  2.67  2.63  2.60  2.55  2.51  2.46
   9.07  6.70  5.74  5.20  4.86  4.62  4.44  4.30  4.19  4.10  4.02  3.96  3.85  3.78  3.67

 14  4.60  3.74  3.34  3.11  2.96  2.85  2.77  2.70  2.65  2.60  2.56  2.53  2.48  2.44  2.39
   8.86  6.51  5.56  5.03  4.69  4.46  4.28  4.14  4.03  3.94  3.86  3.80  3.70  3.62  3.51

 15  4.54  3.68  3.29  3.06  2.90  2.79  2.70  2.64  2.59  2.55  2.51  2.48  2.43  2.39  2.33
   8.68  6.36  5.42  4.89  4.56  4.32  4.14  4.00  3.89  3.80  3.73  3.67  3.56  3.48  3.36

 16  4.49  3.63  3.24  3.01  2.85  2.74  2.66  2.59  2.54  2.49  2.45  2.42  2.37  2.33  2.28
   8.53  6.23  5.29  4.77  4.44  4.20  4.03  3.89  3.78  3.69  3.61  3.55  3.45  3.37  3.25

TABlE B.4    THE F  DISTRIBUTION*

*Table entries in lightface type are critical values for the .05 level of significance. Boldface type values are for  
the .01 level of significance.

Critical
F
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 17  4.45  3.59  3.20  2.96  2.81  2.70  2.62  2.55  2.50  2.45  2.41  2.38  2.33  2.29  2.23
   8.40  6.11  5.18  4.67  4.34  4.10  3.93  3.79  3.68  3.59  3.52  3.45  3.35  3.27  3.16

 18  4.41  3.55  3.16  2.93  2.77  2.66  2.58  2.51  2.46  2.41  2.37  2.34  2.29  2.25  2.19
   8.28  6.01  5.09  4.58  4.25  4.01  3.85  3.71  3.60  3.51  3.44  3.37  3.27  3.19  3.07

 19  4.38  3.52  3.13  2.90  2.74  2.63  2.55  2.48  2.43  2.38  2.34  2.31  2.26  2.21  2.15
   8.18  5.93  5.01  4.50  4.17  3.94  3.77  3.63  3.52  3.43  3.36  3.30  3.19  3.12  3.00

 20  4.35  3.49  3.10  2.87  2.71  2.60  2.52  2.45  2.40  2.35  2.31  2.28  2.23  2.18  2.12
   8.10  5.85  4.94  4.43  4.10  3.87  3.71  3.56  3.45  3.37  3.30  3.23  3.13  3.05  2.94

 21  4.32  3.47  3.07  2.84  2.68  2.57  2.49  2.42  2.37  2.32  2.28  2.25  2.20  2.15  2.09
   8.02  5.78  4.87  4.37  4.04  3.81  3.65  3.51  3.40  3.31  3.24  3.17  3.07  2.99  2.88

 22  4.30  3.44  3.05  2.82  2.66  2.55  2.47  2.40  2.35  2.30  2.26  2.23  2.18  2.13  2.07
   7.94  5.72  4.82  4.31  3.99  3.76  3.59  3.45  3.35  3.26  3.18  3.12  3.02  2.94  2.83

 23  4.28  3.42  3.03  2.80  2.64  2.53  2.45  2.38  2.32  2.28  2.24  2.20  2.14  2.10  2.04
   7.88  5.66  4.76  4.26  3.94  3.71  3.54  3.41  3.30  3.21  3.14  3.07  2.97  2.89  2.78

 24  4.26  3.40  3.01  2.78  2.62  2.51  2.43  2.36  2.30  2.26  2.22  2.18  2.13  2.09  2.02
   7.82  5.61  4.72  4.22  3.90  3.67  3.50  3.36  3.25  3.17  3.09  3.03  2.93  2.85  2.74

 25  4.24  3.38  2.99  2.76  2.60  2.49  2.41  2.34  2.28  2.24  2.20  2.16  2.11  2.06  2.00
   7.77  5.57  4.68  4.18  3.86  3.63  3.46  3.32  3.21  3.13  3.05  2.99  2.89  2.81  2.70

 26  4.22  3.37  2.98  2.74  2.59  2.47  2.39  2.32  2.27  2.22  2.18  2.15  2.10  2.05  1.99
   7.72  5.53  4.64  4.14  3.82  3.59  3.42  3.29  3.17  3.09  3.02  2.96  2.86  2.77  2.66

 27  4.21  3.35  2.96  2.73  2.57  2.46  2.37  2.30  2.25  2.20  2.16  2.13  2.08  2.03  1.97
   7.68  5.49  4.60  4.11  3.79  3.56  3.39  3.26  3.14   3.06  2.98  2.93  2.83  2.74  2.63

 28  4.20  3.34  2.95  2.71  2.56  2.44  2.36  2.29  2.24  2.19  2.15  2.12  2.06  2.02  1.96
   7.64  5.45  4.57  4.07  3.76  3.53  3.36  3.23  3.11  3.03  2.95  2.90  2.80  2.71  2.60

 29  4.18  3.33  2.93  2.70  2.54  2.43  2.35  2.28  2.22  2.18  2.14  2.10  2.05  2.00  1.94
   7.60  5.42  4.54  4.04  3.73  3.50  3.33  3.20  3.08  3.00  2.92  2.87  2.77  2.68  2.57

 30  4.17  3.32  2.92  2.69  2.53  2.42  2.34  2.27  2.21  2.16  2.12  2.09  2.04  1.99  1.93
   7.56  5.39  4.51  4.02  3.70  3.47  3.30  3.17  3.06  2.98  2.90  2.84  2.74  2.66  2.55

 32  4.15  3.30  2.90   2.67  2.51  2.40  2.32  2.25  2.19  2.14  2.10  2.07  2.02  1.97  1.91
   7.50  5.34  4.46  3.97  3.66  3.42  3.25  3.12  3.01  2.94  2.86  2.80  2.70  2.62  2.51

 34  4.13  3.28  2.88  2.65  2.49  2.38  2.30  2.23  2.17  2.12  2.08  2.05  2.00  1.95  1.89
   7.44  5.29  4.42  3.93  3.61  3.38  3.21  3.08  2.97  2.89  2.82  2.76  2.66  2.58  2.47

 36  4.11  3.26  2.86  2.63  2.48  2.36  2.28  2.21  2.15  2.10  2.06  2.03  1.98  1.93  1.87
   7.39  5.25  4.38  3.89  3.58  3.35  3.18  3.04  2.94  2.86  2.78  2.72  2.62  2.54  2.43

 38  4.10  3.25  2.85  2.62  2.46  2.35  2.26  2.19  2.14  2.09  2.05  2.02  1.96  1.92  1.85
   7.35  5.21  4.34  3.86  3.54  3.32  3.15  3.02  2.91  2.82  2.75  2.69  2.59  2.51  2.40

 40  4.08  3.23  2.84  2.61  2.45  2.34  2.25  2.18  2.12  2.07  2.04  2.00  1.95  1.90  1.84
   7.31  5.18  4.31  3.83  3.51  3.29  3.12  2.99  2.88  2.80  2.73  2.66  2.56  2.49  2.37

TABlE B.4    (continued)

 Degrees of  Degrees of Freedom: Numerator
 Freedom:
 Denominator 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20
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 42  4.07  3.22  2.83  2.59  2.44  2.32  2.24  2.17  2.11  2.06  2.02  1.99  1.94  1.89  1.82
   7.27  5.15  4.29  3.80  3.49  3.26  3.10  2.96  2.86  2.77  2.70  2.64  2.54  2.46  2.35

  44  4.06  3.21  2.82  2.58  2.43  2.31  2.23  2.16  2.10  2.05  2.01  1.98  1.92  1.88  1.81
   7.24  5.12  4.26  3.78  3.46  3.24  3.07  2.94  2.84  2.75  2.68  2.62  2.52  2.44  2.32

  46  4.05  3.20  2.81  2.57  2.42  2.30  2.22  2.14  2.09  2.04  2.00  1.97  1.91  1.87  1.80
   7.21  5.10  4.24  3.76  3.44  3.22  3.05  2.92  2.82  2.73  2.66  2.60  2.50  2.42  2.30

  48  4.04  3.19  2.80  2.56  2.41  2.30  2.21  2.14  2.08  2.03  1.99  1.96  1.90  1.86  1.79
   7.19  5.08  4.22  3.74  3.42  3.20  3.04  2.90  2.80  2.71  2.64  2.58  2.48  2.40  2.28

 50  4.03  3.18  2.79  2.56  2.40  2.29  2.20  2.13  2.07  2.02  1.98  1.95  1.90  1.85  1.78
   7.17  5.06  4.20  3.72  3.41  3.18  3.02  2.88  2.78  2.70  2.62  2.56  2.46  2.39  2.26

 55  4.02  3.17  2.78  2.54  2.38  2.27  2.18  2.11  2.05  2.00  1.97  1.93  1.88  1.83  1.76
   7.12  5.01  4.16  3.68  3.37  3.15  2.98  2.85  2.75  2.66  2.59  2.53  2.43  2.35  2.23

 60  4.00  3.15  2.76  2.52  2.37  2.25  2.17  2.10  2.04  1.99  1.95  1.92  1.86  1.81  1.75
   7.08  4.98  4.13  3.65  3.34  3.12  2.95  2.82  2.72  2.63  2.56  2.50  2.40  2.32  2.20

   65  3.99  3.14  2.75  2.51  2.36  2.24  2.15  2.08  2.02  1.98  1.94  1.90  1.85  1.80  1.73
   7.04  4.95  4.10  3.62  3.31  3.09  2.93  2.79  2.70  2.61  2.54  2.47  2.37  2.30  2.18

   70  3.98  3.13  2.74  2.50  2.35  2.23  2.14  2.07  2.01  1.97  1.93  1.89  1.84  1.79  1.72
   7.01  4.92  4.08  3.60  3.29  3.07  2.91  2.77  2.67  2.59  2.51  2.45  2.35  2.28  2.15

   80  3.96  3.11  2.72  2.48  2.33  2.21  2.12  2.05  1.99  1.95  1.91  1.88  1.82  1.77  1.70
   6.96  4.88  4.04  3.56  3.25  3.04  2.87  2.74  2.64  2.55  2.48  2.41  2.32  2.24  2.11

  100  3.94  3.09  2.70  2.46  2.30  2.19  2.10  2.03  1.97  1.92  1.88  1.85  1.79  1.75  1.68
   6.90  4.82  3.98  3.51  3.20  2.99  2.82  2.69  2.59  2.51  2.43  2.36  2.26  2.19  2.06

  125  3.92  3.07  2.68  2.44  2.29  2.17  2.08  2.01  1.95  1.90  1.86  1.83  1.77  1.72  1.65
   6.84  4.78  3.94  3.47  3.17  2.95  2.79  2.65  2.56  2.47  2.40  2.33  2.23  2.15  2.03

  150  3.91  3.06  2.67  2.43  2.27  2.16  2.07  2.00  1.94  1.89  1.85  1.82  1.76  1.71  1.64
   6.81  4.75  3.91  3.44  3.14  2.92  2.76  2.62  2.53  2.44  2.37  2.30  2.20  2.12  2.00

  200  3.89  3.04  2.65  2.41  2.26  2.14  2.05  1.98  1.92  1.87  1.83  1.80  1.74  1.69  1.62
   6.76  4.71  3.88  3.41  3.11  2.90  2.73  2.60  2.50  2.41  2.34  2.28  2.17  2.09  1.97

  400  3.86  3.02  2.62  2.39  2.23  2.12  2.03  1.96  1.90  1.85  1.81  1.78  1.72  1.67  1.60
   6.70  4.66  3.83  3.36  3.06  2.85  2.69  2.55  2.46  2.37  2.29  2.23  2.12  2.04  1.92

 1000  3.85  3.00  2.61  2.38  2.22  2.10  2.02  1.95  1.89  1.84  1.80  1.76  1.70  1.65  1.58
   6.66  4.62  3.80  3.34  3.04  2.82  2.66  2.53  2.43  2.34  2.26  2.20  2.09  2.01  1.89

 `  3.84  2.99  2.60  2.37  2.21  2.09  2.01  1.94  1.88  1.83  1.79  1.75  1.69  1.64  1.57
   6.64  4.60  3.78  3.32  3.02  2.80  2.64  2.51  2.41  2.32  2.24  2.18  2.07  1.99  1.87

Table A14 of Snedecor, G. W., and Cochran, W. G. (1980). Statistical Methods (7th ed.). Ames, Iowa: Iowa State University Press. 
Copyright © 1980 by the Iowa State University Press, 2121 South State Avenue, Ames, Iowa 50010. Reprinted with permission of  
the Iowa State University Press.

TABlE B.4    (continued)

 Degrees of Degrees of Freedom: Numerator
 Freedom:
 Denominator 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20
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TABlE B.5    THE STUDENTIzED RANgE STATISTIC (q)*

*The critical values for q corresponding to a 5 .05 (lightface type) and a 5 .01 (boldface type).

k 5 Number of Treatments

 df for 
 Error Term 2 3 4 5 6 7 8 9 10 11 12

   5  3.64  4.60  5.22  5.67  6.03  6.33  6.58  6.80  6.99  7.17  7.32
   5.70  6.98  7.80  8.42  8.91  9.32  9.67  9.97 10.24 10.48 10.70

   6  3.46  4.34  4.90  5.30  5.63  5.90  6.12  6.32  6.49  6.65  6.79
   5.24  6.33  7.03  7.56  7.97  8.32  8.61  8.87  9.10  9.30  9.48

   7  3.34  4.16  4.68  5.06  5.36  5.61  5.82  6.00  6.16  6.30  6.43
   4.95  5.92  6.54  7.01  7.37  7.68  7.94  8.17  8.37  8.55  8.71

   8  3.26  4.04  4.53  4.89  5.17  5.40  5.60  5.77  5.92  6.05  6.18
   4.75  5.64  6.20  6.62  6.96  7.24  7.47  7.68  7.86  8.03  8.18

   9  3.20  3.95  4.41  4.76  5.02  5.24  5.43  5.59  5.74  5.87  5.98
   4.60  5.43  5.96  6.35  6.66  6.91  7.13  7.33  7.49  7.65  7.78

  10  3.15  3.88  4.33  4.65  4.91  5.12  5.30  5.46  5.60  5.72  5.83
   4.48  5.27  5.77  6.14  6.43  6.67  6.87  7.05  7.21  7.36  7.49

  11  3.11  3.82  4.26  4.57  4.82  5.03  5.20  5.35  5.49  5.61  5.71
   4.39  5.15  5.62  5.97  6.25  6.48  6.67  6.84  6.99  7.13  7.25

  12  3.08  3.77  4.20  4.51  4.75  4.95  5.12  5.27  5.39  5.51  5.61
   4.32  5.05  5.50  5.84  6.10  6.32  6.51  6.67  6.81  6.94  7.06

  13  3.06  3.73  4.15  4.45  4.69  4.88  5.05  5.19  5.32  5.43  5.53
   4.26  4.96  5.40  5.73  5.98  6.19  6.37  6.53  6.67  6.79  6.90

  14  3.03  3.70  4.11  4.41  4.64  4.83  4.99  5.13  5.25  5.36  5.46
   4.21  4.89  5.32  5.63  5.88  6.08  6.26  6.41  6.54  6.66  6.77

  15  3.01  3.67  4.08  4.37  4.59  4.78  4.94  5.08  5.20  5.31  5.40
   4.17  4.84  5.25  5.56  5.80  5.99  6.16  6.31  6.44  6.55  6.66

  16  3.00  3.65  4.05  4.33  4.56  4.74  4.90  5.03  5.15  5.26  5.35
   4.13  4.79  5.19  5.49  5.72  5.92  6.08  6.22  6.35  6.46  6.56

  17  2.98  3.63  4.02  4.30  4.52  4.70  4.86  4.99  5.11  5.21  5.31
   4.10  4.74  5.14  5.43  5.66  5.85  6.01  6.15  6.27  6.38  6.48

  18  2.97  3.61  4.00  4.28  4.49  4.67  4.82  4.96  5.07  5.17  5.27
   4.07  4.70  5.09  5.38  5.60  5.79  5.94  6.08  6.20  6.31  6.41

  19  2.96  3.59  3.98  4.25  4.47  4.65  4.79  4.92  5.04  5.14  5.23
   4.05  4.67  5.05  5.33  5.55  5.73  5.89  6.02  6.14  6.25  6.34

  20  2.95  3.58  3.96  4.23  4.45  4.62  4.77  4.90  5.01  5.11  5.20
   4.02  4.64  5.02  5.29  5.51  5.69  5.84  5.97  6.09  6.19  6.28

  24  2.92  3.53  3.90  4.17  4.37  4.54  4.68  4.81  4.92  5.01  5.10
   3.96  4.55  4.91  5.17  5.37  5.54  5.69  5.81  5.92  6.02  6.11

  30  2.89  3.49  3.85  4.10  4.30  4.46  4.60  4.72  4.82  4.92  5.00
   3.89  4.45  4.80  5.05  5.24  5.40  5.54  5.65  5.76  5.85  5.93

  40  2.86  3.44  3.79  4.04  4.23  4.39  4.52  4.63  4.73  4.82  4.90
   3.82  4.37  4.70  4.93  5.11  5.26  5.39  5.50  5.60  5.69  5.76

  60  2.83  3.40  3.74  3.98  4.16  4.31  4.44  4.55  4.65  4.73  4.81
   3.76  4.28  4.59  4.82  4.99  5.13  5.25  5.36  5.45  5.53  5.60

 120  2.80  3.36  3.68  3.92  4.10  4.24  4.36  4.47  4.56  4.64  4.71
   3.70  4.20  4.50  4.71  4.87  5.01  5.12  5.21  5.30  5.37  5.44

 `  2.77  3.31  3.63  3.86  4.03  4.17  4.28  4.39  4.47  4.55  4.62
   3.64  4.12  4.40  4.60  4.76  4.88  4.99  5.08  5.16  5.23  5.29

Table 29 of Pearson, E., and Hartley, H. O. (1966). Biometrika Tables for Statisticians (3rd ed.). New York: Cambridge University Press. 
Adapted and reprinted with permission of the Biometrika trustees.
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TABlE B.6    CRITICAL VALUES FOR THE PEARSON CORRELATION*

*To be significant, the sample correlation, r, must be greater than or equal to the critical value in the table.

 Level of Significance for 
 One-Tailed Test
 .05 .025 .01 .005

 Level of Significance for 
 Two-Tailed Test
 df 5 n 2 2 .10 .05 .02 .01

   1 .988 .997 .9995 .9999
   2  .900 .950 .980  .990
   3 .805 .878 .934  .959
   4 .729 .811 .882  .917
   5 .669 .754 .833  .874

   6 .622  .707 .789  .834
   7 .582 .666 .750  .798
   8 .549 .632 .716  .765
   9 .521 .602 .685  .735
  10 .497 .576 .658  .708

  11 .476 .553 .634  .684
  12 .458 .532 .612  .661
  13 .441 .514 .592  .641
  14 .426 .497 .574  .623
  15 .412 .482 .558  .606

  16 .400 .468 .542  .590
  17 .389 .456 .528  .575
  18 .378 .444 .516  .561
  19 .369 .433 .503  .549
  20 .360 .423 .492  .537

  21 .352 .413 .482  .526
  22 .344 .404 .472  .515
  23 .337 .396 .462  .505
  24 .330 .388 .453  .496
  25  .323 .381 .445  .487

  26 .317 .374 .437  .479
  27 .311 .367 .430  .471
  28 .306 .361 .423  .463
  29 .301 .355 .416  .456
  30 .296 .349 .409  .449

  35 .275 .325 .381  .418
  40 .257 .304 .358  .393
  45 .243 .288 .338  .372
  50 .231 .273 .322  .354
  60 .211 .250 .295  .325

  70 .195 .232 .274  .302
  80 .183 .217 .256  .283
  90 .173 .205 .242  .267
 100  .164 .195 .230  .254

Table VI of Fisher, R. A., and Yates, F. (1974). Statistical Tables for 
Biological, Agricultural and Medical Research (6th ed.). London: Longman 
Group Ltd. (previously published by Oliver and Boyd Ltd., Edinburgh). 
Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with 
permission of Pearson Education Limited.
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TABlE B.7    THE CHI-SqUARE DISTRIBUTION*

*The table entries are critical values of x2.

 Proportion in Critical Region

 df 0.10 0.05 0.025 0.01 0.005

   1   2.71   3.84   5.02   6.63   7.88
   2   4.61   5.99   7.38   9.21  10.60
   3   6.25   7.81   9.35  11.34  12.84
   4   7.78   9.49  11.14  13.28  14.86
   5   9.24  11.07  12.83  15.09  16.75
   6  10.64  12.59  14.45  16.81  18.55
   7  12.02  14.07  16.01  18.48  20.28
   8  13.36  15.51  17.53  20.09  21.96
   9  14.68  16.92  19.02  21.67  23.59
  10  15.99  18.31  20.48  23.21  25.19

  11  17.28  19.68  21.92  24.72  26.76
  12  18.55  21.03  23.34  26.22  28.30
  13  19.81  22.36  24.74  27.69  29.82
  14  21.06  23.68  26.12  29.14  31.32
  15  22.31  25.00  27.49  30.58  32.80
  16  23.54  26.30  28.85  32.00  34.27
  17  24.77  27.59  30.19  33.41  35.72
  18  25.99  28.87  31.53  34.81  37.16
  19  27.20  30.14  32.85  36.19  38.58
  20  28.41  31.41  34.17  37.57  40.00

  21  29.62  32.67  35.48  38.93  41.40
  22   30.81  33.92  36.78  40.29  42.80
  23  32.01  35.17  38.08  41.64  44.18
  24  33.20  36.42  39.36  42.98  45.56
  25  34.38  37.65  40.65  44.31  46.93
  26  35.56  38.89  41.92  45.64  48.29
  27  36.74  40.11  43.19  46.96  49.64
  28  37.92  41.34  44.46  48.28  50.99
  29  39.09  42.56  45.72  49.59  52.34
  30  40.26  43.77  46.98  50.89  53.67

  40  51.81  55.76  59.34  63.69  66.77
  50  63.17  67.50  71.42  76.15  79.49
  60  74.40  79.08  83.30  88.38  91.95
  70  85.53  90.53  95.02 100.42 104.22
  80  96.58 101.88 106.63  112.33 116.32
  90 107.56 113.14 118.14 124.12 128.30
 100 118.50 124.34 129.56 135.81 140.17

Table 8 of Pearson, E., and Hartley, H. O. (1966). Biometrika Tables for Statisticians  
(3rd ed.). New York: Cambridge University Press. Adapted and reprinted with permission  
of the Biometrika trustees.

Critical 
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Solutions for Odd-Numbered 
Problems in the Text

Appendix C

 C h a p t e r  1  IntroductIon to StatIStIcS

 1. a.  The population is the entire set of adolescent boys 
who take medication for depression.

 b.  The sample is the group of 30 boys who were 
tested in the study.

 3.  Descriptive statistics are used to simplify and sum-
marize data. Inferential statistics use sample data to 
make general conclusions about populations.

 5.  A correlational study has only one group of individu-
als and measures two different variables for each 
individual. Other rese arch evaluating relationships 
between variables compares two (or more) different 
groups of scores.

 7.  The independent variable is the amount of control 
over office design. The dependent variables are pro-
ductivity and well-being.

 9. a.  This is a nonexperimental study. The researcher 
is simply observing two variables. No variable is 
manipulated to create the two groups.

 b.  This is an experiment. The researcher is manipu-
lating the amount of vitamin C and should control 
other variables by using equivalent groups of 
participants.

11.  This is not an experiment because there is no manipu-
lation. Instead, the study is comparing two preexisting 
groups (state university and religious college students).

13. a. Time is continuous.
 b. Discrete

 c. Discrete
 d.  The underlying variable is knowledge, which is 

continuous.

15. a.  The independent variable is Tai Chi versus no Tai 
Chi (control).

 b.  The independent variable is measured on a nomi-
nal scale.

 c.  The dependent variable is the amount of arthritis 
pain.

 d.  The dependent variable is measured on an inter-
val or ratio scale.

17. a.  The independent variable is whether the motivational 
signs were posted, and the dependent variable is 
amount of use of the stairs.

 b.  Posting versus not posting is measured on a nominal 
scale.

19. a. oX2 5 48
 b. (oX)2 5 142 5 196
 c. o(X 2 1) 5 9
 d. o(X 2 1)2 5 25

21. a. oX 5 4
 b. oY 5 18
 c. oXY 5 11
23. a. oX2 5 50
 b. (oX)2 5 122 5 144
 c. o(X 2 3) 5 0
 d. o(X 2 3)2 5 14

3. a. n 5 12

 b. SX 5 40

 c. SX 2 5 148

1. 

 C h a p t e r  2  Frequency dIStrIbutIonS

X f

7 2
6 3
5 1
4 1
3 4
2 6
1 3 583
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15. 

f

7
6
5
4
3
2
1

2 3 4 5 6 7 2

7
6
5
4
3
2
1

3 4 5 6 7

2 3 4 5 6 7 2

7
6
5
4
3
2
1

3 4 5 6 7

Plumb.

f

Elect. Secur. Book. Nurse Educat.

Job Advertisement Categories

N
u

m
b

e
r o

f 
m

a
sc

u
lin

e
-t

h
e

m
e

d
 w

o
rd

s 17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

 7. a. 5 points wide and around 7 intervals
 b. 2 points wide and around 9 intervals
 c. 10 points wide and around 8 intervals

 9.  A bar graph leaves a space between adjacent bars 
and is used with data from nominal or ordinal scales. 
In a histogram, adjacent bars touch at the real limits. 
Histograms are used to display data from interval or 
ratio scales.

11. 

 5. a.   b.X f

50–54 2
45–49 2
40–44 2
35–39 1
30–34 3
25–29 5
20–24 3
15–19 6

X f

50–50 2
40–49 4
30–39 4
20–29 8
10–19 6

X f

9 1
8 1
7 4
6 5
5 7
4 2

X f

10 2
9 4
8 5
7 4
6 3
5 2
4 2
3 1
2 1

17. a.  

 b. The distribution is positively skewed

19. a. 

13. a. Histogram or polygon (ratio scale)
 b. Bar graph (ordinal scale)
 c. Bar graph (nominal scale)
 d. Bar graph (nominal scale)
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 C h a p t e r  3  MeaSureS oF centraL tendency

 b. 21. 

f

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11

 c. 1) The distribution is negatively skewed.
 2) The scores are centered around X 5 7 or X 5 8.
 3)  The scores are clustered at the high end of the 

scale.

X flow fhigh

5 1 5
4 2 6
3 4 3
2 5 1
1 3 0

The scores for children from the high number-talk parents 
are noticeably higher.

 1.  The purpose of central tendency is to identify a 
single score that serves as the best representative for 
an entire distribution, usually a score from the center 
of the distribution.

 3.  The mean is 51
9  5 5.67, the median is 6, and the 

mode is 3.

 5.  The mean is 66
3

 5 5.08, the median is 5, and the 
mode is 5.

 7.  m 5 12
15

 5 8

 9.  N 5 5.

11.  The original sample has n 5 6 and oX 5 78. The 
new sample has n 5 5 and oX 5 75. The new mean 
is M 5 15.

13.  The original sample has n 5 10 and oX 5 90. The 
new sample has n 5 9 and the total is still oX 5 90. 
The new mean is M 5 10.

15.  The original sample has n 5 7 and oX 5 112. The 
new sample has n 5 7 and oX 5 126. The new 
mean is M 5 18.

17.  The original population has N 5 8 and oX 5 128. 
The new population has N 5 7 and oX 5 105. The 
removed score must be X 5 23.

19.  The original sample has n 5 9 and oX 5 180. The 
new sample has n 5 9 and oX 5 198. The total (oX) 
increased by 18 points. If the score was X 5 7, it was 
increased to X 5 25.

21. a.  The combined sample mean is M 5 12.

 b. The combined sample mean is (24 1 80)/8 5 13.

 c. The combined sample mean is (40 1 48)/8 5 11.

23.  With a skewed distribution, the extreme scores in the 
tail can displace the mean out toward the tail. The 
result is that the mean is often not a very representa-
tive value.

25.  The participants recalled an average of M 5 
68
16  5 

4.25 humorous sentences compared to M 5 49
16

 5 
3.06 nonhumorous sentences. Humor does appear to 
improve memory performance.

27.  The average rating with no alcohol was M 5 
53
15  5 

3.53 and with moderate alcohol consumption it was 
M 5 

74
15  5 4.93. The woman is judged to be more 

attractive when the participants have consumed some 
alcohol.
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 p a r t  1  revIew

 1.  a. SS is the sum of squared deviation scores.
 b. Variance is the mean squared deviation.
 c.  Standard deviation is the square root of the vari-

ance. It provides a measure of the standard dis-
tance from the mean.

 3.  Variance and standard deviation are always greater than 
or equal to zero. They are measures of distance that are 
based on squared deviations, which are always positive.

 5.  Variance is defined as the mean squared deviation and, 
for a population, is computed as the sum of squared de-
viations divided by N. However, if this same definition 
is used for a sample, the sample variance will be biased 
and will consistently underestimate the corresponding 
population value. Therefore, the formula for sample 
variance includes an adjustment to correct for the bias. 
The adjustment involves dividing by df 5 n 2 1 rather 
than n.

 7.  a.  With a standard deviation of s 5 2, you are above 
the mean by 3 standard deviations.

 b.  With a standard deviation of s 5 10, you are 
below the mean by less than half of a standard 
deviation.

 9.  a. 

 C h a p t e r  4  MeaSureS oF varIabILIty

f

3 4

3

2

1

5210

µ = 3

 b.  The mean is m 5 18
6  5 3 and the standard devia-

tion appears to be about 1.5 points.

 c. SS 5 6, s2 5 1, s 5 1

11.  a.  The range is either 11 or 12, and the standard 
deviation is s 5 4.

 b.  After adding 2 points to each score, the range is 
still either 11 or 12, and the standard deviation 
is still s 5 4. Adding a constant to every score 
does not affect measures of variability.

13. a.  The new mean is m 5 35 and the standard devia-
tion is still s 5 5.

 b.  The new mean is m 5 90 and the new standard 
deviation is s 5 15.

15. a.  The simplified scores had M 5 4.5, SS 5 27, and 
s 5 3.

 b.  The original scores had M 5 84.5, SS 5 27, and  
s 5 3.

17.  a.  The mean is M 5 4 and the standard deviation is 
s 5 9 5 3.

 b.  The new mean is M 5 6 and the new standard 
deviation is 49 5 7.

 c.  Changing one score changes both the mean and 
the standard deviation.

19. The mean is µ 5 1.50, SS 5 32, s2 5 4, and s 5 2.

21. The mean is M 5 7, SS 5 24, s2 5 6 and s 5 6 5 
2.45.

23. a.  For the older adults, the mean is M 5 5.47,  
SS 5 65.73, s2 5 4.70, and s 5 2.17. For the 
younger adults, the mean is M 5 7.27,  
SS 5 18.93, s2 5 1.35, and s 5 1.16.

 b.  The younger adults had a higher average and 
were much less variable.

 1. a.  The goal for descriptive statistics is to simplify, 
organize, and summarize data so that it is easier for 
researchers to see patterns.

 b.  A frequency distribution provides an organized 
summary of the complete set of scores.

 c.  A measure of central tendency summarizes an entire 
set of scores with a single value that is representative 
of the whole set.

 d.  A measure of variability provides a single number 
that describes the differences that exist from one 
score to another.
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 c.  For the printed-pages group, SS 5 74, the vari-
ance is s2 5 3.7 and the standard deviation is  
s 5 1.92. For the computer-screen group,  
SS 5 122, the variance is s2 5 6.1 and the stan-
dard deviation is s 5 2.47. The scores for the 
computer-screen are more variable.

 The students who studied from printed pages ap-
pear to have higher scores than those who studied 
from a computer screen.

 b.  The students who studied printed pages had an 
average score of M 5 17 compared to an average 
of only M 5 15 for the students who studied on 
the computer.

 2. a. 

6

5

4

3

2

1

10 11 12 13 14 15 16 17 18 19 20

Score on exam

f

Computer

Pages

 C h a p t e r  5   z-ScoreS: LocatIon oF ScoreS and StandardIzed 
dIStrIbutIonS

 b. 

X z X z X z

66 0.50 78 1.50 30 22.50
57 20.25 54 20.50 75 1.25

 9.  

X z X z X z

27 0.40 31 1.20 35 2.00
21 20.80 22 20.60 18 21.40

11. a. X 5 41
 b. X 5 42
 c. X 5 44
 d. X 5 48

13. s 5 6

15. M 5 53

 1.  The sign of the z-score tells whether the location is 
above (1) or below (–) the mean, and the magnitude 
tells the distance from the mean in terms of the num-
ber of standard deviations.

 3. a. above the mean by 40 points
 b. above the mean by 10 points
 c. below the mean by 20 points
 d. below the mean by 5 points
 5.  

X z X z X z

45 0.36 52 1.09 41 0.09
30 20.82 25 21.36 38 20.18

 7.  a. 

X z X z X z

69 0.75 84 2.00 63 0.25
54 20.50 48 21.00 45 21.25
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25. a. m 5 5 and s 5 4
 b. & c.

Original X z-score Transformed X

0 21.25 75

6 0.25 105
4 20.25 95

3 20.50 90

12 1.75 135

17. s 5 4

19.  m 5 50 and s 5 6. The distance between the two 
scores is 9 points, which is equal to 1.5 standard 
deviations.

21. a. s 5 8

 b. s 5 4
23. a. X 5 52 (z 5 0.20)
 b. X 5 60 (z5 1.00)
 c. X 5 44 (z 5 –0.60)
 d. X 5 30 (z 5 –2.00)

 1.  The distribution of sample means will be normal 
(because n . 30), have an expected value of m 5 40, 
and a standard error of s

M
 5 10

100

5 1.

 3.  The distribution of sample means will not be normal 
when it is based on small samples (n , 30) selected 
from a population that is not normal.

 5. a.  5 20

4
10 points

 b. 
20

16
 5 5 points

 c. 
20

25
5 4 points

 7. a. n . 9
 b. n . 16
 c. n . 36
 9. a. s

M
 5 6 points and z 5 0.50

 b. s
M
 5 3 points and z 5 1.00

 c. s
M
 5 2 points and z 5 1.50

11.  a.  With a standard error of 9, M 5 67 corresponds to 
z 5 0.78, which is not extreme.

 b.  With a standard error of 3, M 5 67 corresponds to 
z 5 2.33, which is extreme.

13. a. s
M
 5 5, z 5 20.60, and p 5 0.7257

 b. s
M
 5 3, z 5 21.00, and p 5 0.8413

 C h a p t e r  6  ProbabILIty

 1. a. p 5 
1

50 5 0.02

 b. p 5 10
50

5 0.20

 c. p 5 20
50

5 0.40

 3.  The two requirements for a random sample are: 
(1) each individual has an equal chance of being 
selected, and (2) if more than one individual is se-
lected, the probabilities must stay constant for all 
selections.

 5. a. body to the left, p 5 0.9938
 b. body to the left, p 5 0.7881
 c. body to the right, p 5 0.6915
 d. body to the right, p 5 0.7794
 7. a. p 5 0.1974
 b. p 5 0.4972
 c. p 5 0.7698
 9. a. z 5 –1.64 or 21.65
 b. z 5 0.52

 c. z 5 0.39
 d. z 5 20.84
11. a. tail to the right, p 5 0.4013
 b. tail to the right, p 5 0.2266
 c. tail to the left, p 5 0.3085
 d. tail to the left, p 5 0.1056
13. a. p(z . 0.50) 5 0.3085
 b. p(z , 0.80) 5 0.7881
 c. p(21.00 , z , 1.00) 5 0.6826
15. a. z 5 1.04, X 5 604
 b. z 5 1.28, X 5 628
 c. z 5 2.05, X 5 705
17. a. p(z . 1.20) 5 0.1151
 b. p(z , 21.60) 5 0.0548
19. a. z 5 0.60, p 5 0.2743
 b. z 5 21.40, p 5 0.0808
 c. z 5 0.84, X 5 $206 or more

21. p(X . 36) 5 p(z . 2.17) 5 0.0150 or 1.50%

 C h a p t e r  7   ProbabILIty and SaMPLeS: tHe dIStrIbutIon  
oF SaMPLe MeanS
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21. a.  With a standard error of s
M
 5 3.3, M 5 38.9 

corresponds to z 5 –0.42 and p 5 0.3372. This 
is not an unusual sample. It is representative of 
the population.

 b.  With a standard error of s
M
 5 2.2, M 5 36.2 

corresponds to z 5 –1.86 and p 5 0.0314. The 
sample mean is unusually small and not represen-
tative.

23. 

15. a. z 5 –0.50 and p 5 0.3085
 b. s

M
 5 3, z 5 –1.00 and p 5 0.1587

 c. s
M
 5 1, z 5 –3.00 and p 5 0.0013

17. a. s
M
 5 4, z 5 ±1.96 and the range is 42.16 to 57.84

 b. s
M
 5 4, z 5 ±2.58 and the range is 39.68 to 60.32

19. a. z 5 0.33 and p 5 0.3707
 b. z 5 23.00 and p 5 0.0013
 c. p (0 , z , 1.00) 5 0.3413

Expected

Lo
o

ki
n

g
 T

im
e

(in
 s

e
c

o
n

d
s)

2

4

6

8

10

Unexpected

 C h a p t e r  8  IntroductIon to HyPotHeSIS teStInG

 1. a.  A larger difference produces a larger value in the 
numerator, which produces a larger z-score.

 b.  A larger standard deviation produces larger stan-
dard error in the denominator, which produces a 
smaller z-score.

 c.  A larger sample produces a smaller standard error 
in the denominator, which produces a larger z-
score.

 3. a.  The null hypothesis states that the herb has no 
effect on memory scores.

 b.  H
0
: m 5 50 (even with the herbs, the mean is still 

50). H
1
: m ≠ 50 (the mean has changed). The criti-

cal region consists of z-scores beyond ±1.96. For 
these data, the standard error is 3 and z 5 4

3  5 
1.33. Fail to reject the null hypothesis. The herbal 
supplements do not have a significant effect on 
memory scores.

 5. a.  H
0
: m 5 80. With s 5 12, the sample mean cor-

responds to z 5 24

3  5 21.33. This is not sufficient 
to reject the null hypothesis. You cannot conclude 
that the course has a significant effect.

 b.  H
0
: m 5 80. With s 5 6, the sample mean cor-

responds to z 5 2 24

1 5.  5 22.67. This is sufficient 
to reject the null hypothesis and conclude that the 
course does have a significant effect.

 c.  There is a 4-point difference between the sample 
and the hypothesis. In part a, the standard error is 3 
points and the 4-point difference is not significant. 
However, in part b, the standard error is only 1.5 
points and the 4-point difference is now significantly 
more than is expected by chance. In general, a larger 
standard deviation produces a larger standard error, 
which reduces the likelihood of rejecting the null 
hypothesis.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



590    APPENDIX C  SOluTIONS fOr ODD-NumbErED PrOblEmS IN ThE TEXT

 c.  The blueberry supplement had a significant effect on 
cognitive skill scores, z 5 2.31, p , .05, d 5 0.578.

17. a.  With no treatment effect the distribution of sample 
means is centered at m 5 75 with a standard error 
of 1.90 points. The critical boundary of z 5 1.96 
corresponds to a sample mean of M 5 78.72. With 
a 4-point treatment effect, the distribution of sample 
means is centered at m 5 79. In this distribution a 
mean of M 5 78.72 corresponds to z 5 20.15. The 
power for the test is the probability of obtaining a 
z-score greater than 20.15, which is p 5 0.5596.

 b.  With a one-tailed test, critical boundary of z 5 1.65 
corresponds to a sample mean of M 5 78.14. With 
a 4-point treatment effect, the distribution of sample 
means is centered at m 5 79. In this distribution a 
mean of M 5 78.14 corresponds to z 5 20.45. The 
power for the test is the probability of obtaining a 
z-score greater than 20.45, which is p 5 0.6736.

19. a. Increasing alpha increases power.
 b.  Changing from one- to two-tailed decreases 

power.
21. a.  For a sample of n 5 16, the standard error would 

be 5 points, and the critical boundary for z 5 1.96 
corresponds to a sample mean of M 5 89.8. With 
a 12-point effect, the distribution of sample means 
would be centered at m 5 92. In this distribution, the 
critical boundary of M 5 89.8 corresponds to z 5 
20.44. The power for the test is p (z . 20.44) 5 
0.6700 or 67%.

 b.  For a sample of n 5 25, the standard error would 
be 4 points, and the critical boundary for z 5 1.96 
corresponds to a sample mean of M 5 87.84. With 
a 12-point effect, the distribution of sample means 
would be centered at m 5 92. In this distribution, 
the  critical boundary of M 5 87.84 corresponds to 
z 5 21.04. The power for the test is p(z . 21.04) 
5 0.8508, or 85.08%.

 7. a.  With s 5 5, the standard error is 1, and z 5 4

1 5 
4.00. Reject H

0
.

 b.  With s 5 15, the standard error is 3, and z 5 4

3
5 

1.33. Fail to reject H
0
.

 c.  Larger variability reduces the likelihood of reject-
ing H

0
.

 9. a.  With a 4-point treatment effect, for the z-score 
to be greater than 1.96, the standard error must 
be smaller than 2.03. The sample size must be 
greater than 96.12; a sample of n 5 97 or larger 
is needed.

 b.  With a 2-point treatment effect, for the z-score to be 
greater than 1.96, the standard error must be smaller 
than 1.02. The sample size must be greater than 
384.47; a sample of n 5 385 or larger is needed.

11. a.  The null hypothesis states that there is no effect 
on reaction time, µ 5 400. The critical region 
consists of z-scores beyond z 5 ±1.96. For these 
data, the standard error is 6.67 and z 5 28/6.67 
5 21.20. Fail to reject H

o
. There is no significant 

change in reaction time.
 b.  Cohen’s d 5 

8

40 5 0.20.
 c.  The caffeine did not have a significant effect on 

reaction time, z 5 21.20, p ..05, d 5 0.20.

13.  With n 5 4, the standard error is 0.95 and the sample 
mean corresponds to z 5 2.37. This is well beyond 
the critical boundary of 1.96. Reject the null hypoth-
esis and conclude that the past 4 years do not consti-
tute a representative sample from a population with a 
mean of µ 5 9.6.

15. a.  H
0
: m 5 45 (the supplement has no effect). The 

standard error is 2.25 and z 5 2.31, which is be-
yond the critical boundary of 1.96. Reject the null 
hypothesis and conclude that the supplement has a 
significant effect on cognitive performance.

 b. Cohen’s d 5 
5 2

9

.
5 0.578

 p a r t  I I  revIew

 1. a. z 5 0.10
 b. X 5 40
 c.  If the entire population of X values is transformed 

into z-scores, the set of z-scores will have a mean 
of 0 and a standard deviation of 1.00.

 d. The standard error is 10 points and z 5 20.80.
 e. The standard error is 5 points and z 5 21.60.

 3. a.  H
0
: m  1.85 (not more than average) For the 

males, the standard error is 0.2 and z 5 3.00. 
With a critical value of z 5 2.33, reject the null 
hypothesis.

 b.  H
0
: m  1.85 (not fewer than average) For the 

females, the standard error is 0.24 and z 5 22.38. 
With a critical value of z 5 22.33, reject the null 
hypothesis.
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the null hypothesis and conclude that there has been 
a significant change in the average IQ score.

 b.  Using df5 60, the t values for 80% confidence are 
±1.296, and the interval extends from 105.056 to 
108.944.

17. a.  The estimated standard error is 1.9, and t 5 
4 5

1 9

.

.  
5 2.37. For a two-tailed test, the critical value is 
2.306. Reject the null hypothesis, scores for stu-
dents with e-books are significantly different.

 b.  For 90% confidence, use t 5 ±1.860. The interval 
is 77.2 ± (1.860)1.9 and extends from 73.666 to 
80.734.

 c.  The results show that exam scores were signifi-
cantly different for students using e-books than 
for other students, t(8) 5 2.37, p , .05, 90% CI 
[73.666, 80.734].

19. a.  With n 5 9 the estimated standard error is 4 and 
t 5 

4

4  5 1. r2 5 1

9  5 0.111. Cohen’s d 5 4

12  5 
0.333.

 b.  With n 5 16 the estimated standard error is 3 and 
t 5 4

3  5 1.33. r2 5 
1 77

16 77

.

.  5 0.106. Cohen’s d 5 
4

12  5 0.333.
 c.  The sample size does not have any influence on 

Cohen’s d and has only a minor effect on r2.
21. a.  H

0
: µ  4 (not greater than neutral). The esti-

mated standard error is 0.26 and t 5 2.04. With a 
critical value of 1.753, reject H

0
 and conclude that 

the males with a great sense of humor were rated 
significantly higher than neutral.

 b.  H
0
: µ  4 (not lower than neutral). The estimated 

standard error is 0.295 and t 5 –2.37. With a 
critical value of –1.753, reject H

0
 and conclude 

that the males with a no sense of humor were 
rated significantly lower than neutral.

23. a.  H
0
: µ 5 50. With df 5 9 the critical values are 

t 5 ±3.250. For these data, M 5 55.5, SS 5 
162.5, s2 5 18.06, the standard error is 1.34, 
and t 5 4.10. Reject H

0
 and conclude that math-

ematical achievement scores for children with 
a history of daycare are significantly different 
from scores for other children

 b. Cohen’s d 5 5 5

4 25

.

.  5 1.29.
 c.  The results indicate that mathematics test scores 

for children with a history of daycare are signifi-
cantly different from scores for children without 
daycare experience, t(9) 5 4.10, p , .01, d 5 
1.29.

 1.  A z-score is used when the population standard de-
viation (or variance) is known. The t statistic is used 
when the population variance or standard deviation is 
unknown. The t statistic uses the sample variance or 
standard deviation in place of the unknown popula-
tion values.

 3. a.  The sample variance is 16 and the estimated stan-
dard error is 2.

 b.  The sample variance is 54 and the estimated stan-
dard error is 3.

 c.  The sample variance is 12 and the estimated stan-
dard error is 1.

 5. a. t  5 ±2.571
 b. t  5 ±2.201
 c. t 5 ±2.069
 7. a. M 5 7 and s 5 24 5 4.90
 b. s

M
 5 2.

 9. a.  With n 5 16, s
M
 5 0.75 and t 5 1 3

0 75

.

.  5 1.73. This 
is not greater than the critical value of 2.131, so 
there is no significant effect.

 b.  With n 5 36, s
M
 5 0.50 and t 5 1 3

0 50

.

.  5 2.60. This 
value is greater than the critical value of 2.042 
(using df 5 30), so we reject the null hypothesis 
and conclude that there is a significant treatment 
effect.

 c.  As the sample size increases, the likelihood of 
rejecting the null hypothesis also increases.

11. a.  With a two-tailed test, the critical boundaries are 
±2.306 and the obtained value of t 5 3 3

1 5

.

.
 5 2.20 

is not sufficient to reject the null hypothesis.
 b.  For the one-tailed test the critical value is 1.860, 

so we reject the null hypothesis and conclude that 
participants significantly overestimated the num-
ber who noticed.

13. a.  With df 5 15, the critical values are ±2.947. For 
these data, the sample variance is 16, the estimated 
standard error is 1, and t 5 8 2

1

.  5 8.20. Reject the 
null hypothesis and conclude that there has been a 
significant change in the level of anxiety.

 b.  With df 5 15, the t values for 90% confidence are 
±1.753, and the interval extends from 21.547 to 
25.053.

 c.  The data indicate a significant change in the 
level of anxiety, t(15) 5 8.20, p , .01, 95% CI 
[21.547, 25.053].

15. a.  With df 5 63, the critical values are ±2.660 (using 
df 5 60 in the table). For these data, the estimated 
standard error is 1.50, and t 5 7

1 50.  5 4.67. Reject 

 C h a p t e r  9  IntroductIon to tHe t StatIStIc
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15. a.  Using df 5 30, because 34 is not listed in the 
table, and a 5 .05, the critical region consists of 
t values beyond ±2.042. The pooled variance is 
81, the estimated standard error is 3, and t(34) 5 

7 6

3

.  5 2.53. The t statistic is in the critical region. 
Reject H

0
 and conclude that there is a significant 

difference.
 b.  For 90% confidence, the t values are ±1.697 

(using df 5 30), and the interval extends from 
2.509 to 12.691 points higher with the calming 
music.

 c.  Classroom performance was significantly better 
with background music, t(34) 5 2.53, p , .05, 
95% CI [2.509, 12.691].

17. a.  The pooled variance is 7753, the estimated stan-
dard error is 12.45, and t 5 14

12 45.  5 1.12. With df 
5 198 the critical value is 1.98 (using df 5 120). 
Fail to reject the null hypothesis and conclude that 
there was no significant change in calorie con-
sumption after the mandatory posting.

 b.  r2 5 1 25

199 25

.

.  5 0.0063 or 0.63%
19. a.  The pooled variance is 7.2, the estimated standard 

error is 1.2, and t(18) 5 3.00. For a one-tailed test 
with df 5 18 the critical value is 2.552. Reject the 
null hypothesis. There is a significant difference 
between the two groups.

 b.  For 95% confidence, the t values are ±2.101, and 
the interval extends from 1.079 to 6.121 points 
higher for boys.

 c.  The results indicate that adolescent males have 
significantly higher self-esteem than girls, t(18) 5 
3.00, p , .01, one tailed, 95% CI [1.079, 6.121].

21.  The pooled variance is 63, the estimated standard 
error is 3.00, and t 5 7

3
 5 2.33. With df 5 26 the 

critical value is 2.056. Reject the null hypothesis and 
conclude that there is a significant difference be-
tween the two sleep conditions.

23. a.  The null hypothesis states that the type of sport 
does not affect neurological performance. For a 
one-tailed test, the critical boundary is t 5 1.796. 
For the swimmers, M 5 9 and SS 5 44. For the 
soccer players, M 5 6 and SS 5 24. The pooled 
variance is 6.18 and t(11) 5 2.11. Reject H

0
. The 

data show that the soccer players have signifi-
cantly lower scores.

 b. For these data, r2 5 0.288 (28.8%).

 1.  An independent-measures study uses a separate 
sample for each of the treatments or populations 
being compared.

 3. a.  The size of the mean difference is the numerator 
of the t statistic. The larger the mean difference, 
the larger the value for t.

 b.  The size of the two samples influences the magni-
tude of the estimated standard error in the denom-
inator of the t statistic. As sample size increases, 
the value of t also increases (moves farther from 
zero), and the likelihood of rejecting H

0
 also 

increases.
 c.  The variability of the scores influences the esti-

mated standard error in the denominator. As the 
variability of the scores increases, the value of t 
decreases (becomes closer to zero), and the likeli-
hood of rejecting H

0
 decreases.

 5. a.  The first sample has s2 5 12 and the second has 
s2 5 6. The pooled variance is 54

6
 5 9 (halfway 

between).
 b.  The first sample has s2 5 12 and the second has s2 

5 3. The pooled variance is 54

9
 5 6 (closer to the 

variance for the larger sample).
 7. a.  The pooled variance is 15 and the estimated stan-

dard error is 2.
 b.  The pooled variance is 60 and the estimated stan-

dard error is 4.
 c. Larger variability produces a larger standard error.
 9. a. The pooled variance is 120.
 b. The estimated standard error is 4.00.
 c.  A mean difference of 8 would produce t 5 

8

4  5 
2.00. With df 5 28 the critical values are ±2.048. 
Fail to reject H

0
.

11. a.  The estimated standard error for the sample mean 
difference is 6 points.

 b.  The estimated standard error for the sample mean 
difference is 3 points.

 c. Larger samples produce a smaller standard error.
13. a.  The two samples combined have a total of 27 

participants.
 b.  With df 5 25 and a 5 .05, the critical region 

consists of t values beyond ±2.060. The t statistic 
is in the critical region. Reject H

0
 and conclude 

that there is a significant difference.

 c.  r2 5 4 29

29 29

.

.  5 0.146 or 14.6%

 C h a p t e r  1 0  tHe t teSt For two IndePendent SaMPLeS
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tractive photos. For these data, the estimated standard 
error is 0.4 and t 5 

2 7

0 4

.

.  5 6.75. With df 5 24, the 
critical value is 2.064. Reject the null hypothesis.

15. a. The difference scores are 1, 7, 2, 2, 1, and 5. M
D
 5 3.

 b.  SS 5 30, sample variance is 6, and the estimated 
standard error is 1.

 c.  With df 5 5 and a 5 .05, the critical values are 
t 5 ±2.571. For these data, t 5 3.00. Reject H

0
. 

There is a significant treatment effect.
17.  The null hypothesis states that the background 

color has no effect on judged attractiveness. For 
these data, M

D
 5 3, SS 5 18, the sample variance 

is 2.25, the estimated standard error is 0.50, and 
t(8) 5 6.00. With df 5 8 and a 5 .01, the critical 
values are t 5 ±3.355. Reject the null hypothesis, 
the background color does have a significant  
effect.

19. a.  The pooled variance is 6.4 and the estimated 
standard error is 1.46.

 b.  For the difference scores the variance is 12.8 and 
the estimated standard error is 1.46.

21. a.  The null hypothesis says that changing answers 
has no effect, H

0
: m

D
 5 0. With df 5 8 and a 5 

.05, the critical values are t 5 ±2.306. For these 
data, M

D
 5 7, SS 5 288, the standard error is 

2, and t(8) 5 3.50. Reject H
0
 and conclude that 

changing answers has a significant effect on exam 
performance.

 b.  For 95% confidence use t 5 ±2.306. The interval 
extends from 2.388 to 11.612.

 c.  Changing answers resulted in significantly higher 
exam scores, t(8) 5 3.50, p , .05, 95% CI [2.388, 
11.612].

23.  The null hypothesis says that there is no difference 
between shots fired during versus between heart 
beats, H

0
: m

D
 5 0. With a 5 .05, the critical region 

consists of t values beyond ±2.365. For these data, 
M

D
 5 3, SS 5 36, s2 5 5.14, the standard error is 

0.80, and t(7) 5 3.75. Reject H
0
 and conclude that 

the timing of the shot has a significant effect on the 
marksmen’s scores.

 1.  A repeated-measures design uses the same group of 
participants in all of the treatment conditions.

 3.  For a repeated-measures design the same subjects 
are used in both treatment conditions. In a matched-
subjects design, two different sets of subjects are 
used. However, in a matched-subjects design, each 
subject in one condition is matched with respect to a 
specific variable with a subject in the second condi-
tion so that the two separate samples are equivalent 
with respect to the matching variable.

 5. a.  The standard deviation is 4 points and measures 
the average distance between an individual score 
and the sample mean.

 b.  The estimated standard error is 1.33 points and 
measures the average distance between a sample 
mean and the population mean.

 7. a.  The estimated standard error is 2 points and t(8) 
5 1.50. With a critical boundary of ±2.306, fail to 
reject the null hypothesis.

 b.  With M
D
 5 12, t(8) 5 6.00. With a critical 

boundary of ±2.306, reject the null hypothesis.
 c.  The larger the mean difference, the greater the 

likelihood of finding a significant difference.
 9. a.  The sample variance is 9, the estimated standard 

error is 0.75, and t(15) 5 
2 6

0 75

.

.  5 3.46. With criti-
cal boundaries of ±2.131, reject H

0
.

 b. Cohen’s d 5 2 6

3

.  5 0.867

11. a.  The null hypothesis says that there is no differ-
ence in judgments for smiling versus frowning. 
For these data, the sample variance is 6.25, the 
estimated standard error is 0.5, and t 5 1 6

0 5

.

.  5 
3.20. For a one-tailed test with df 5 24, the criti-
cal value is 2.492. Reject the null hypothesis.

 b.  r2 5 10 24

34 24

.

.
 5 0.299 (29.9%)

 c.  The cartoons were rated significantly funnier 
when people held a pen in their teeth compared to 
holding a pen in their lips, t(24) 5 3.20, p , .01, 
one tailed, r2 5 0.299.

13.  The null hypothesis states that there is no difference in 
the perceived intelligence between attractive and unat-

 C h a p t e r  1 1  tHe t teSt For two reLated SaMPLeS

 p a r t  I I I  revIew

 1. a.  The estimated standard error is 1.50, and t 5 
7 7

1 50

.

.  
5 5.13. For a one-tailed test, the critical value is 
2.602. Reject the null hypothesis, children with a 
history of day care have significantly more behav-
ioral problems.

 b.  For 90% confidence use t 5 ±1.753. The interval 
is µ 5 7.7 ±1.753(1.5) and extends from 5.07 to 
10.33.

 c.  The results show that kindergarten children with a 
history of day care have significantly more behav-
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hypothesis and conclude that attention span is 
significantly longer with the medication.

 b.  The confidence interval is m
D
 5 4.8 ± 1.328(2.5) 

and extends from 1.48 to 8.12.

ioral problems than other kindergarten children, 
t(15) 5 5.13, p , .01, 90% CI[5.07, 10.33].

 3. a.  The estimated standard error is 2.5 and t(19) 5 
1.92. With a critical value of 1.729, reject the null 

 C h a p t e r  1 2  IntroductIon to anaLySIS oF varIance

 1.  When there is no treatment effect, the numerator and 
the denominator of the F-ratio are both measuring 
the same sources of variability (random, unsystem-
atic differences from sampling error). In this case, 
the F-ratio is balanced and should have a value near 
1.00.

 3.  With 3 or more treatment conditions, you need three 
or more t tests to evaluate all the mean differences. 
Each test involves a risk of a Type I error. The more 
tests you do, the more risk there is of a Type I error. 
The ANOVA performs all of the tests simultaneously 
with a single, fixed alpha level.

 5. a. The three means produce SS 5 14.
 b. n(SS

means
) 5 112

 c.  The four totals are 32, 72, 8, and 48 with G 5 96.  
SS

between
 5 112

 7. a.  With smaller mean differences the F-ratio and h2 
should both be smaller than the values obtained in 
problem 6.

 b.

Source SS df MS

Between treatments 8 2 4 F(2, 9) 5 1
Within treatments 36 9 4

Total 44 11

 b.  With a 5 .05, the critical value is F 54.26. Fail 
to reject the null hypothesis and conclude that 
there are no significant differences among the 
three treatments. The F-ratio is much smaller as 
predicted.

 c.  For these data, h2 5 8

44  5 0.182 which is much 
smaller than the value in problem 6.

 9. a.  The sample variances are 2.67, 3.33, and 6.00. 
These values are much larger than the variances in 
problem 8.

 b.  The larger variances should result in a smaller 
F-ratio that is less likely to reject the null  
hypothesis.

 c.

Source SS df MS

Between treatments 32 2 16 F(2, 9) 5 4.00
Within treatments 36 9 4

Total 68 11

  With a 5 .05, the critical value is F 5 4.26. Fail 
to reject the null hypothesis and conclude that 
there are no significant differences among the 
three treatments. The F-ratio is much smaller as 
predicted.

11. a. Larger samples should increase the F-ratio.

Source SS df MS

Between treatments 50 2 25 F(2, 72) 5 12.50
Within treatments 144 72 2

Total 194 74

 The F-ratio is much larger than it was in problem 10.
 b.  Increasing the sample size should have little or no 

effect on h2. h2 5 50

144  5 0.258, which is about the 
same as the value obtained in problem 10.

13. a. 

Source SS df MS

Between treatments 72 2 36 F(2, 21) 5 7.20
Within treatments 105 21 5

Total 177 23

  With a 5 .05, the critical value is F 5 3.47. Reject 
the null hypothesis and conclude that there are 
significant differences among the three types of 
teachers.

 b.  For these data, h2 5 72

177
 5 0.407.

 c.  The results indicate significant differences in the 
students’ acceptability of cheating for the three  
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 b.

Source SS df MS

Between treatments 40 1 40 F(1, 8) 5 20
Within treatments 16 8 2

Total 56 9

  With df 5 1, 8, the critical value is 5.32. Reject the null 
hypothesis. Within rounding error, note that F 5 t2.

23. a. The means and standard deviations are

Non-user Rarely Regularly

M 5 3.71 M 5 3.46 M 5 3.01

s 5 0.302 s 5 0.298 s 5 0.268

Source SS df MS

Between treatments 2.517 2 1.258 F(2, 27) 5 14.98
Within treatments 2.265 27 0.084

Total 4.781 29

  With df  5 2, 27 the critical value is 3.35. Reject the 
null hypothesis.

 b. h2 5 2 517

4 781

.

.  5 0.526

 c.  The results show significant differences in mean 
grade point averages between groups, F(2, 27 ) 5 
14.98, p , .05, h2 5 0.526.

different types of teacher, F(2, 21) 5 7.20, p , 
.05, h2 5 0.407.

15. a. k 5 4 treatment conditions.
 b. The study used a total of N 5 52 participants.
17.

Source SS df MS

Between treatments 20 1 20 F 5 4.00
Within treatments 190 38 5

Total 210 39

19. 

Source SS df MS

Between treatments 96 2 48 F(2, 15) 5 9.01
Within treatments 80 15 5.33

Total 176 17

  With df 5 2, 15, the critical value for a 5 .05 is 
3.68. Reject the null hypothesis.

21. a.  The pooled variance is 2, the estimated stan-
dard error is 0.894 and t(8) 5 4.47. With df 5 
8, the critical value is 2.306. Reject the null 
hypothesis.

 C h a p t e r  1 3   r e P e at e d - M e a S u r e S  a n d  t w o - F a c t o r  
a n a Ly S I S  o F  va r I a n c e

 1.  For an independent measures design, the variability 
within treatments is the appropriate error term. For 
repeated measures, however, you must subtract out 
variability caused by individual differences from the 
variability within treatments to obtain a measure of 
error.

 3. a.  A total of 30 participants is needed; three separate 
samples, each with n 5 10. The F-ratio has  
df 5 2, 27.

 b.  One sample of n 5 10 is needed. The F-ratio has 
df 5 2, 18.

 5. a. 3 treatments
 b. 16 participants
 7. a.  The mean difference is MD 5 4 and the dif-

ference scores have SS 5 8. With an estimated 
standard error of 0.378, t(7) 5 10.582. With a 

critical value of ±2.306, reject the null hypothesis 
and conclude that there is a significant difference 
between treatments.

 b.

Source SS df MS

Between treatments 64 1 64 F(1, 7) 5 112.28
Within treatments 36 14
Between subjects 32 7

Error 4 7 0.57
Total 100 15

  With df 5 1, 7, the critical value is 5.59. Reject 
H

0
. There is a significant difference between the 

two treatments. Note that t2 5 (10.582)2 5 111.98, 
which is within rounding error of F 5 112.28.
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Source SS df MS

Between treatments 810 3 270 F(3, 12) 5 101.25
Within treatments 240 16
Between subjects 208 4

Error 32 12 2.67
Total 1050 19

  With a 5 .01, the critical value is 5.95. There are 
significant differences.

17.  During the second stage of the two-factor ANOVA, the 
mean differences between treatments are analyzed into 
differences from each of the two main effects and dif-
ferences from the interaction.

19. a. M 5 20
 b. M 5 50
21. a. df 5 1, 66
 b. df 5 2, 66
 c. df 5 2, 66
23. 

Source SS df MS

Between treatments 67 3
Achievement need 16 1 16 F(1, 56) 5 4.00

Task difficulty 29 1 29 F(1, 56) 5 7.25
Interaction 22 1 22 F(1, 56) 5 5.50

Within treatments 224 56 4
Total 291 59

25. a. 

Source SS df MS

Between treatments 260 5
Gender 120 1 120 F(1, 24) 5 24

Treatments 80 2 40 F(2, 24) 5 8
Gender x treatment 60 2 30 F(2, 24) 5 6
Within treatments 120 24 5

Total 380 29

  With df = 1, 24, the critical value is 4.26, and with  
df = 2, 24, the critical value is 3.40. Both main effects 
and the interaction are significant.

 b.  For gender, h2 = 120
240  – 0.50  

For treatments, h2 = 10
200  = 0.4  

For the interaction, h2 = 60
180  = 0.33

27. a. The means for the six groups are as follows:

Middle School High School College

Non-user 4.00 4.00 4.00

User 3.00 2.00 1.00

 9. a.  For the independent-measures ANOVA, we  
obtain:

Source SS df MS

Between treatments 48 2 24 F(2, 15) 5 3.46
Within treatments 104 15 6.93

Total 152 17

  With a critical value of 3.68 for a 5 .05, fail to 
reject the null hypothesis.

 b. For the repeated-measures ANOVA,

Source SS df MS

Between treatments 48 2 24 F(2, 10) 5 12.00
Within treatments 104 15
Between subjects 84 5

Error 20 10 2
Total 152 17

 With a critical value of 4.10 for a 5 .05, reject the null 
hypothesis.

 c.  The repeated-measures ANOVA reduces the error 
variance by removing individual differences. This 
increases the likelihood that the ANOVA will find 
significant differences.

11. 

Source SS df MS

Between treatments 2 1 2 F(1, 24) 5 4.00
Within treatments 21 48
Between subjects 9 24

Error 12 24 0.5
Total 23 49

13. 

Source SS df MS

Between treatments 12 2 6 F(2, 10) 5 15.00
Within treatments 100 15
Between subjects 96 5

Error 4 10 0.4
Total 112 17

15.  The means and standard deviations for the four mea-
surement days are as follows:

7 Days 5 Days 3 Days 1 Day

M 5 39 M 5 40 M 5 46 M 5 55

s 5 3.61 s 5 4.73 s 5 3.67 s 5 3.32
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  For df 5 1, 18 the critical value is 4.41 and for df 
5 2, 18 it is 3.55. The main effect for Facebook 
use is significant but the other main effect and the 
interaction are not.

 b.  Grades are significantly lower for Facebook users. 
A difference exists for all three grade levels but ap-
pears to increase as the students get older, although 
there is no significant interaction.

Source SS df MS

Between treatments 32 5
Use 24 1 24 F(1, 18) 5 14.4

School level 4 2 2 F(2, 18) 5 1.2
Interaction 4 2 2 F(2, 18) 5 1.2

Within treatments 30 18 1.67
Total 62 23

 1.  The null hypothesis states that the direction of flight 
has no effect on jet lag. For a 5 .05, the critical 
value is 3.68

Source SS df MS

Between treatments 93 2 46.50 F(2, 15) 5 41.15
Within treatments 17 15 1.13

Total 110 17

 Reject the null hypothesis.
 2. a. 

Source SS df MS

Between treatments 28 2 14 F(2, 10) 5 7.78
Within treatments 28 15
Between subjects 10 5

Error 18 10 1.8
Total 56 17

  With df 5 2, 10, the critical value is 4.10. Reject H
0
. 

There are significant differences among the three 
treatments.

 b. h2 5 28

46  5 .609

 c.  The data indicate significant differences among 
treatments, F(2, 10) 5 7.78, p , .05, h2 5 0.609.

 3.  An interaction indicates that the effect of one 
factor depends on the levels of the other factor. 
Alternatively, it indicates that the main effects for 
one factor are not consistent across the levels of the 
other factor.

 4. a. 

Source SS df MS

Between treatments 340 3
A 80 1 80 F(1, 76) 5 4.00
B 180 1 180 F(1, 76) 5 9.00

A 3 B 80 1 80 F(1, 76) 5 4.00
Within treatments 1520 76 20

Total 1860 79

  The critical value for all three F-ratios is 3.98 (using 
df 5 1, 70). Both main effects and the interaction are 
significant.

 b.  For the sport factor, eta squared is 
80

1600  5 0.050. 
For the age factor, eta squared is 

180

1700  5 0.106. 
For the interaction, eta squared is 80

1600
5 0.050.

 c.  For the swimmers, there is little or no difference 
between the younger and older age groups, but 
the older soccer players show noticeably lower 
scores than the younger players.

 p a r t  I V  revIew

 C h a p t e r  1 4  correLatIon

 1. a.  A positive correlation indicates that X and Y 
change in the same direction: As X increases, Y 
also increases. A negative correlation indicates 
that X and Y tend to change in opposite directions: 
As X increases, Y decreases.

 b.  The numerical value of the Pearson correlation 
indicates how well the data points fit a straight line. 
A value of 1.00 (or –1.00) indicates a perfect linear 
fit and a value of zero indicates no linear trend.

 3. SP 5 22
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 5. a.  The scatter plot shows points moderately scattered 
around a line sloping down to the right.

 b.  SS
X
 5 10, SS

Y
 5 40, and SP 5 –13. The correla-

tion is r 5 213
20

 5 –0.65.

 7. a.  The scatter plot shows points clustered around a 
line sloping up to the right.

 b.  SS
X
 5 18, SS

Y
 5 18, and SP 5 5. The correlation 

is r 5 5
18

 5 0.278.

 9. a.  For the weights, SS 5 20 and for the incomes,  
SS 5 7430. SP 5 –359. The correlation is  
r 5 –0.931.

 b.  With n 5 10, df 5 8 and the critical value is 2.306. 
t(8) 5 7.22. The correlation is significant.

11. a.  For these data, SS
7min

 5 98, SS
cognitive

 5 236, and 
SP 5 127. r 5 0.835.

 b.  With df 5 7, the critical value is 2.365. t(7) 5 4.01. 
The correlation is significant.

 c.  r2 5 0.697 or 69.7%

13. a. r
XY2Z

 5 0 38

0 57

.

.  5 0.667

 b. r
XZ2Y

 5 0 04

0 428

.

.
 5 0.093

15. a. r 5 0.538

 b.  r2 5 0.289. Within rounding error this is the same 
as the r2 obtained with the t test in Chapter 10.

17. 

19. a. r 5 0.80

 b. Ŷ 5 2X 1 8

21.  SS
X
 5 32, SS

Y
 5 8, SP 5 8. The regression equation is 

Ŷ 5 0.25X 1 3

23. a. SS
X
 5 8, SP 5 210, Ŷ 5 21.25X 1 8

 b.

X Ŷ

3 4.25
6 0.50
3 4.25
3 4.25
5 1.75

25. a.  SS
weight

 5 20, SS
income

 5 7430, SP 5 –359.  
Ŷ 5 –17.95X 1 119.85

 b. r 5 –0.931 and r2 5 0.867
 c.  F 5 52.15 with df 5 1, 8. The regression equation 

is significant with a 5 .05 or a 5 .01.
27. a.  The standard error of estimate is 36

16

5 1.50.

 b.  The standard error of estimate is 36

36

5 1.00.
29. a. df 5 1, 23
 b. n 5 20 pairs of scores

1
x

Y

0

6

4

2

2 3 4 5 6

Y � �2X � 4 Y � X � 4

7

 C h a p t e r  1 5   cHI-Square StatIStIc: teStS For GoodneSS oF FIt  
and IndePendence

 1.  Nonparametric tests make few, if any, assumptions 
about the populations from which the data are ob-
tained. For example, the populations do not need 
to form normal distributions, nor is it required that 
different populations in the same study have equal 
variances (homogeneity of variance assumption). 
Parametric tests require data measured on an interval 
or ratio scale. For nonparametric tests, any scale of 
measurement is acceptable.

 3.  The null hypothesis states that there is no preference 
between the two faces. The expected frequency is  
f
e
 5 20 for both categories, and chi-square 5 3.60. 

With df 5 1, the critical value is 3.84. Fail to reject H
0
 

and conclude that there are no significant preferences.

 5.  The null hypothesis states that couples with the same 
initial do not occur more often than would be ex-
pected by chance. For a sample of 200, the expected 
frequencies are 13 with the same initial and 187 with 
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different initials. With df 5 1 the critical value is 
3.84, and the data produce a chi-square of 2.96. Fail 
to reject the null hypothesis.

 7.  The null hypothesis states that the sample distribution 
has the same proportions as a normal distribution. The 
expected frequencies for the five sections are 6.01, 
21.75, 34,47, 21.75, and 6.01. With df 5 4, the critical 
value is 9.49. For this sample, chi-square 5 2.92. Fail 
to reject the null hypothesis. The sample is not signifi-
cantly different from a normal distribution.

 9. a.  The null hypothesis states that there is no advan-
tage (no preference) for red or blue. With df 5 1, 
the critical value is 3.84. The expected frequency 
is 25 wins for each color, and chi-square 5 2.88. 
Fail to reject H

0
 and conclude that there is no sig-

nificant advantage for one color over the other.
 b.  The null hypothesis states that there is no advan-

tage (no preference) for red or blue. With df 5 1, 
the critical value is 3.84. The expected frequency 
is 50 wins for each color, and chi-square 5 5.76. 
Reject H

0
 and conclude that there is a significant 

advantage for the color red.
 c.  Although the proportions are identical for the two 

samples, the sample in part b is twice as big as the 
sample in part a. The larger sample provides more 
convincing evidence of an advantage for red than 
does the smaller sample.

11.  The null hypothesis states that the distribution of 
satisfaction scores is the same for both groups. With 
df 5 1, the critical value is 3.84. The expected  
frequencies are:

Satisfied Not Satisfied

Less  
Reimbursement

55 45 100

Same or More 
Reimbursement

33 27 60

88 72

 Chi-square 5 8.73. Reject H
0
.

13. a.  The null hypothesis states that there is no relation-
ship between helping behavior and the type of 
game played. For the three groups who helped, the 
expected frequencies are all f

e
5 9 and for the three 

groups who did not help the expected frequencies 
are all f

e
5 6. With df 5 2, the critical value is 5.99. 

Chi-square 5 3.88. Fail to reject the null hypothesis.
 b. Cramér’s V 5 0.294
15. a.  The null hypothesis states that the proportion who 

falsely recall seeing broken glass should be the same 
for all three groups. The expected frequency of saying 
yes is 9.67 for all groups, and the expected frequency 

for saying no is 40.33 for all groups. With df 5 2, the 
critical value is 5.99. For these data, chi-square  
5 7.78. Reject the null hypothesis and conclude that 
the likelihood of recalling broken glass is depends on 
the question that the participants were asked.

 b. Cramérs V 5 0.228.
 c.  Participants who were asked about the speed when 

the cars “smashed into” each other were more 
than two times more likely to falsely recall seeing 
broken glass.

 d.  The results of the chi-square test indicate that the 
phrasing of the question had a significant effect 
on the participants’ recall of the accident, x2(2, N 
5 150) 5 7.78, p , .05, V 5 0.228.

17.  The null hypothesis states that IQ and gender are inde-
pendent. The distribution of IQ scores for boys should 
be the same as the distribution for girls. With df 5 2 
and and a 5 .05, the critical value is 5.99. The ex-
pected frequencies are 15 low IQ, 48 medium, and 17 
high for both boys and girls. For these data, chi-square 
is 3.76. Fail to reject the null hypothesis. These data do 
not provide evidence for a significant relationship be-
tween IQ and gender.

19.  The null hypothesis states that there is no difference 
between the distribution of preferences predicted 
by women and the actual distribution for men. With 
df 5 3 and a 5 .05, the critical value is 7.81. The 
expected frequencies are:

Somewhat 
Thin

Slightly 
Thin

Slightly 
Heavy

Somewhat 
Heavy

Women 22.9 22.9 22.9 11.4

Men 17.1 17.1 17.1 8.6

  Chi-square 5 9.13. Reject H
0  

and conclude that there is 
a significant difference in the preferences predicted by 
women and the actual preferences expressed by men.

21. a.  The null hypothesis states that there is no rela-
tionship between IQ and volunteering. With df 
5 2 and a 5 .05, the critical value is 5.99. The 
expected frequencies are:

IQ

High Medium Low

Volunteer 37.5 75 37.5

Not Volunteer 12.5 25 12.5

  The chi-square statistic is 4.75. Fail to reject H
0
, with 

a 5 .05 and df 5 2.
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 1. a.  The scatter plot shows points widely scattered 
around a line sloping up to the right.

 b.  The correlation is small but positive; around 0.4 
to 0.6.

 c.  For these scores, SS
X
 5 32, SS

Y
 5 8, and SP 5 8. 

The correlation is r 5 8

16 5 0.50.
 3. a.  The null hypothesis states that there is no prefer-

ence among the four colors; p 5 1
4  for all  

categories. The expected frequencies are f
e
 5 15 

for all categories, and chi-square 5 4.53. With  
df 5 3, the critical value is 7.81. Fail to reject  
H

0
 and conclude that there are no significant 

preferences.
 b.  The results indicate that there are no significant 

preferences among the four colors, x2(3, N 5 60)  
5 4.53, p . .05.

 p a r t  V  revIew
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General Instructions  
for Using SPSS

APPENDIX D

The Statistical Package for the Social Sciences, commonly known as SPSS, is a  
computer program that performs statistical calculations and is widely available on 
college campuses. Detailed instructions for using SPSS for specific statistical calcu-
lations (such as computing sample variance or performing an independent-measures  
t test) are presented at the end of the appropriate chapter in the text. Look for the 
SPSS logo in the Resources section at the end of each chapter. In this appendix, we 
provide a general overview of the SPSS program. 

SPSS consists of two basic components: A data editor and a set of statistical com-
mands. The data editor is a huge matrix of numbered rows and columns. To begin 
any analysis, you must type your data into the data editor. Typically, the scores are 
entered into columns of the editor. Before scores are entered, each of the columns is 
labeled “var.” After scores are entered, the first column becomes VAR00001, the second  
column becomes VAR00002, and so on. To enter data into the editor, the Data View 
tab must be set at the bottom left of the screen. If you want to name a column (instead 
of using VAR00001), click on the Variable View tab at the bottom of the data edi-
tor. You will get a description of each variable in the editor, including a box for the 
name. You may type in a new name using up to 8 lowercase characters (no spaces, no  
hyphens). Click the Data View tab to go back to the data editor.

The statistical commands are listed in menus that are made available by clicking 
on Analyze in the tool bar at the top of the screen. When you select a statistical com-
mand, SPSS typically asks you to identify exactly where the scores are located and  
exactly what other options you want to use. This is accomplished by identifying the 
column(s) in the data editor that contain the needed information. Typically, you are 
presented with a display similar to the figure at the top of the following page. On the 
left is a box that lists all of the columns in the data editor that contain information. 
In this example, we have typed values into columns 1, 2, 3, and 4. On the right is an 
empty box that is waiting for you to identify the correct column. For example, sup-
pose that you wanted to do a statistical calculation using the scores in column 3. You 
should highlight VAR00003 by clicking on it in the left-hand box, then click the arrow 
to move the column label into the right-hand box. (If you make a mistake, you can 
highlight the variable in the right-hand box, which will reverse the arrow so that you 
can move the variable back to the left-hand box.)
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The SPSS program uses two basic formats for entering scores into the data matrix. Each 
is described and demonstrated as follows:

 1. The first format is used when the data consist of several scores (more than one) for 
each individual. This includes data from a repeated-measures study, in which each 
person is measured in all of the different treatment conditions, and data from a cor-
relational study where there are two scores, X and Y, for each individual. Table D1 
illustrates this kind of data and shows how the scores would appear in the SPSS 
data matrix. Note that the scores in the data matrix have exactly the same structure 
as the scores in the original data. Specifically, each row of the data matrix contains 
the scores for an individual participant, and each column contains the scores for 
one treatment condition. 

SPSS DATA FORMATS

VAR00001
VAR00002
VAR00003
VAR00004

Variable(s)

tAblE D1

Data for a repeated-measures or correlational study with several scores for each indi-
vidual. The left half of the table (a) shows the original data, with three scores for each 
person; and the right half (b) shows the scores as they would be entered into the SPSS 
data matrix. Note: SPSS automatically adds the two decimal points for each score. For 
example, you type in 10 and it appears as 10.00 in the matrix.

(a) Original data

 Treatments

Person I II III

A 10 14 19
B  9 11 15
C 12 15 22
D  7 10 18
E 13 18 20

(b) Data as entered into the SPSS data matrix

 VAR0001 VAR0002 VAR0003 var

1 10.00 14.00 19.00

2  9.00 11.00 15.00

3 12.00 15.00 22.00

4  7.00 10.00 18.00

5 13.00 18.00 20.00
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 2. The second format is used for data from an independent-measures study using a 
separate group of participants for each treatment condition. This kind of data is 
entered into the data matrix in a stacked format. Instead of having the scores from 
different treatments in different columns, all of the scores from all of the treatment 
conditions are entered into a single column so that the scores from one treatment 
condition are literally stacked on top of the scores from another treatment condi-
tion. A code number is then entered into a second column beside each score to tell 
the computer which treatment condition corresponds to each score. For example, 
you could enter a value of 1 beside each score from treatment #1, enter a 2 beside 
each score from treatment #2, and so on. Table D2 illustrates this kind of data and 
shows how the scores would be entered into the SPSS data matrix.

tAblE D2

Data for an independent-measures study with a different group of participants in each 
treatment condition. The left half of the table shows the original data, with three separate 
groups, each with five participants, and the right half shows the scores as they would 
be entered into the SPSS data matrix. Note that the data matrix lists all 15 scores in 
the same column, then uses code numbers in a second column to indicate the treatment 
condition corresponding to each score.

(a) Original data

Treatments

I II III

10 14 19
 9 11 15
12 15 22
 7 10 18
13 18 20

(b) Data as entered into the SPSS data matrix

 VAR0001 VAR0002 var

 1 10.00 1.00

 2 9.00 1.00

 3 12.00 1.00

 4 7.00 1.00

 5 13.00 1.00

 6 14.00 2.00

 7 11.00 2.00

 8 15.00 2.00

 9 10.00 2.00

10 18.00 2.00

11 19.00 3.00

12 15.00 3.00

13 22.00 3.00

14 18.00 3.00

15 20.00 3.00
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Statistics Organizer: Finding 
the Right Statistics for  
Your Data

OveRview: ThRee BaSic DaTa STRucTuReS

After students have completed a statistics course, they occasionally are confronted with 
situations in which they have to apply the statistics they have learned. For example, 
in the context of a research methods course, or while working as a research assistant, 
students are presented with the results from a study and asked to do the appropriate 
statistical analysis. The problem is that many of these students have no idea where 
to begin. Although they have learned the individual statistics, they cannot match the 
statistical procedures to a specific set of data. The Statistics Organizer attempts to help 
you find the right statistics by providing an organized overview for most of the statisti-
cal procedures presented in this book.

We assume that you know (or can anticipate) what your data look like. Therefore, 
we begin by presenting some basic categories of data so you can find the one that 
matches your own data. For each data category, we then present the potential statistical 
procedures and identify the factors that determine which are appropriate for you based 
on the specific characteristics of your data. Most research data can be classified in one 
of three basic categories.

Category 1: A single group of participants with one score per participant.

Category 2: A single group of participants with two variables measured for each 
participant.

Category 3: Two (or more) groups of scores with each score a measurement of 
the same variable.

In this section, we present examples of each structure. Once you match your own 
data to one of the examples, you can proceed to the section of the chapter in which we 
describe the statistical procedures that apply to that example.

Before we begin discussion of the three categories of data, there is one other factor 
that differentiates data within each category and helps to determine which statistics are 
appropriate. In Chapter 1, we introduced four scales of measurement and noted that dif-
ferent measurement scales allow different kinds of mathematical manipulation, which 
result in different statistics. For most statistical applications, however, ratio and interval 
scales are equivalent, so we group them together for the following review.

ScaleS of 
MeaSureMent

605
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Ratio scales and interval scales produce numerical scores that are compatible 
with the full range of mathematical manipulation. Examples include measurements 
of height in inches, weight in pounds, the number of errors on a task, and  
IQ scores.

Ordinal scales consist of ranks or ordered categories. Examples include clas-
sifying cups of coffee as small, medium, and large or ranking job applicants as 
1st, 2nd, and 3rd.

Nominal scales consist of named categories. Examples include gender (male/female), 
academic major, or occupation.

Within each category of data, we present examples representing these three mea-
surement scales and discuss the statistics that apply to each.

This type of data often exists in research studies that are conducted simply to describe 
individual variables as they exist naturally. For example, a recent news report stated 
that half of American teenagers, ages 12 through 17, send 50 or more text messages a 
day. To get this number, the researchers had to measure the number of text messages for 
each individual in a large sample of teenagers. The resulting data consist of one score 
per participant for a single group.

It is also possible that the data are a portion of the results from a larger study 
examining several variables. For example a college administrator may conduct a 
survey to obtain information describing the eating, sleeping, and study habits of the 
college’s students. Although several variables are being measured, the intent is to 
look at them one at a time. For example, the administrator will look at the number 
of hours each week that each student spends studying. These data consist of one 
score for each individual in a single group. The administrator will then shift atten-
tion to the number of hours per day that each student spends sleeping. Again, the 
data consist of one score for each person in a single group. The identifying feature 
for this type of research (and this type of data) is that there is no attempt to examine 
relationships between different variables. Instead, the goal is to describe individual 
variables, one at a time.

Table 1 presents three examples of data in this category. Note that the three  
data sets differ in terms of the scale of measurement used to obtain the scores. The 
first set (a) shows numerical scores measured on an interval or ratio scale. The  
second set (b) consists of ordinal, or rank ordered categories, and the third set 
(c) shows nominal measurements. The statistics used for data in this category are  
discussed in Section I.

category 1:  
a Single group 

of participantS 
with one Score per 

participant

(a) Number of Text Messages 
Sent in Past 24 Hours

(b) Rank in Class for High 
School Graduation

(c) Got a Flu Shot  
Last Season

X X X

6 23rd No
13 18th No
28 5th Yes
11 38th No

9 17th Yes
31 42nd No
18 32nd No

TaBle 1

Three examples of data with 
one score per participant for one 
group of participants.
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These research studies are specifically intended to examine relationships between vari-
ables. Note that different variables are being measured, so each participant has two or more 
scores, each representing a different variable. Typically, there is no attempt to manipulate 
or control the variables; they are simply observed and recorded as they exist naturally.

Although several variables may be measured, researchers usually select pairs of 
variables to evaluate specific relationships. Therefore, we present examples showing 
pairs of variables and focus on statistics that evaluate relationships between two vari-
ables. Table 2 presents four examples of data in this category. Once again, the four data 
sets differ in terms of the scales of measurement that are used. The first set of data (a) 
shows numerical scores for each set of measurements. For the second set (b) we have 
ranked the scores from the first set and show the resulting ranks. The third data set (c) 
shows numerical scores for one variable and nominal scores for the second variable. In 
the fourth set (d), both scores are measured on a nominal scale of measurement. The 
appropriate statistical analyses for these data are discussed in Section II.

A second method for examining relationships between variables is to use the categories 
of one variable to define different groups and then measure a second variable to obtain 
a set of scores within each group. The first variable, defining the groups, usually falls 
into one of the following general categories:

a. Participant Characteristic: For example, gender or age.

b. Time: For example, before versus after treatment.

c. Treatment Conditions: For example, with caffeine versus without caffeine.

category 2: a 
Single group of 

participantS with 
two VariableS 

MeaSured for each 
participant

category 3: two 
or More groupS 

of ScoreS with 
each Score a 

MeaSureMent of the 
SaMe Variable

TaBle 2

Examples of data with  
two scores for each participant 
for one group of participants.

 (c) Age (X) and Wrist Watch 
    Preference (Y)

X Y

27 Digital
43 Analogue
19 Digital
34 Digital
37 Digital
49 Analogue
22 Digital
65 Analogue
46 Digital

  (a) SAT Score (X) and College 
        Freshman GPA (Y)

X Y

620 3.90
540 3.12
590 3.45
480 2.75
510 3.20
660 3.85
570 3.50
560 3.24

 (b) Ranks for the Scores  
    in Set (a)

X Y

7 8
3 2
6 5
1 1
2 3
8 7
5 6
4 4

 (d) Gender (X) and Academic 
     Major (Y)

X Y

M Sciences
M Humanities
F Arts
M Professions
F Professions
F Humanities
F Arts
M Sciences
F Humanities
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If the scores in one group are consistently different from the scores in another group, 
then the data indicate a relationship between variables. For example, if the performance 
scores for a group of females are consistently higher than the scores for a group of 
males, then there is a relationship between performance and gender.

Another factor that differentiates data sets in this category is the distinction between 
independent-measures and repeated-measures designs. Independent-measures designs 
were introduced in Chapters 10 and 12, and repeated-measures designs were presented in 
Chapters 11 and 13. You should recall that an independent-measures design, also known 
as a between-subjects design, requires a separate group of participants for each group of 
scores. For example, a study comparing scores for males with scores for females would 
require two groups of participants. On the other hand, a repeated-measures design, also 
known as a within-subjects design, obtains several groups of scores from the same group 
of participants. A common example of a repeated-measures design is a before/after study 
in which one group of individuals is measured before a treatment and then measured 
again after the treatment.

Examples of data sets in this category are presented in Table 3. The table includes a 
sampling of independent-measures and repeated-measures designs as well as examples 
representing measurements from several different scales of measurement. The appro-
priate statistical analyses for data in this category are discussed in Section III.

TaBle 3

Examples of data comparing  
two or more groups of scores 
with all scores measuring the 
same variable.

(c)  Success or Failure on a Task for 
Participants Working Alone or 

in a Group

Alone Group

Fail Succeed
Succeed Succeed
Succeed Succeed
Succeed Succeed
Fail Fail
Fail Succeed
Succeed Succeed
Fail Succeed

(a) Attractiveness Ratings for a 
Woman in a Photograph Shown on a 

Red or a White Background

White Red

5 7
4 5
4 4
3 5
4 6
3 4
4 5

(b) Performance Scores Before  
and After 24 Hours of  

Sleep Deprivation

Participant Before After

A 9 7
B 7 6
C 7 5
D 8 8
E 5 4
F 9 8
G 8 5

(d) Amount of Time Spent on Facebook (Small, 
Medium, Large) for Students from Each  

High School Class

Freshman Sophomore Junior Senior

Med Small Med Large
Small Large Large Med
Small Med Large Med
Med Med Large Large

Small Med Med Large
Large Large Med Large
Med Large Small Med

Small Med Large Large
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SecTiOn i: STaTiSTical PROceDuReS FOR DaTa FROm  
a Single gROuP OF PaRTiciPanTS wiTh One ScORe  
PeR PaRTiciPanT

One feature of this data category is that the researcher typically does not want to ex-
amine a relationship between variables but rather simply intends to describe individual 
variables as they exist naturally. Therefore, the most commonly used statistical proce-
dures for these data are descriptive statistics that are used to summarize and describe 
the group of scores.

When the data consist of numerical values from interval or ratio scales, there are several 
options for descriptive and inferential statistics. We consider the most likely statistics 
and mention some alternatives.

Descriptive statistics The most often used descriptive statistics for numerical scores 
are the mean (Chapter 3) and the standard deviation (Chapter 4). If there are a few 
extreme scores or the distribution is strongly skewed, the median (Chapter 3) may be 
better than the mean as a measure of central tendency.

Inferential statistics If there is a basis for a null hypothesis concerning the mean of 
the population from which the scores were obtained, a single-sample t test (Chapter 9) 
can be used to evaluate the hypothesis. Some potential sources for a null hypothesis 
are as follows:

 1. If the scores are from a measurement scale with a well-defined neutral point, 
then the t test can be used to determine whether the sample mean is signifi-
cantly different from (higher than or lower than) the neutral point. On a 7-point 
rating scale, for example, a score of X 5 4 is often identified as neutral. The 
null hypothesis would state that the population mean is equal to µ 5 4.

 2. If the mean is known for a comparison population, then the t test can be used to 
determine whether the sample mean is significantly different from (higher than 
or lower than) the known value. For example, it may be known that the average 
score on a standardized reading achievement test for children finishing first grade 
is µ 5 20. If a researcher uses a sample of second-grade children to determine 
whether there is a significant difference between the two grade levels, then the 
null hypothesis would state that the mean for the population of second-grade 
children is also equal to 20. The known mean could also be from an earlier time, 
for example 10 years ago. The hypothesis test would then determine whether a 
sample from today’s population indicates a significant change in the mean during 
the past 10 years.

The single-sample t test evaluates the statistical significance of the results. A sig-
nificant result means that the data are very unlikely (p , a) to have been produced by 
random, chance factors. However, the test does not measure the size or strength of the 
effect. Therefore, a t test should be accompanied by a measure of effect size, such as 
Cohen’s d or the percentage of variance accounted for, r2.

ScoreS froM ratio 
or interVal ScaleS: 

nuMerical ScoreS
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Descriptive statistics Occasionally, the original scores are measurements on an or-
dinal scale. It is also possible that the original numerical scores have been transformed 
into ranks or ordinal categories (for example, small, medium, and large). In either 
case, the median is appropriate for describing central tendency for ordinal measure-
ments and proportions can be used to describe the distribution of individuals across 
categories. For example, a researcher might report that 60% of the students were in the 
high–self-esteem category, 30% in the moderate–self-esteem category, and only 10% 
in the low–self-esteem category.

Inferential statistics If there is a basis for a null hypothesis specifying the propor-
tions in each ordinal category for the population from which the scores were obtained, 
then a chi-square test for goodness of fit (Chapter 15) can be used to evaluate the 
hypothesis. For example, it may be reasonable to hypothesize that the categories 
occur equally often (equal proportions) in the population and the test would determine 
whether the sample proportions are significantly different.

For these data, the scores simply indicate the nominal category for each individual. 
For example, individuals could be classified as male/female or grouped into different 
occupational categories.

Descriptive statistics The only descriptive statistics available for these data are the 
mode (Chapter 3) for describing central tendency or using proportions (or percentages) 
to describe the distribution across categories.

Inferential statistics If there is a basis for a null hypothesis specifying the propor-
tions in each category for the population from which the scores were obtained, then a 
chi-square test for goodness of fit (Chapter 15) can be used to evaluate the hypothesis. 
For example, it may be reasonable to hypothesize that the categories occur equally 
often (equal proportions) in the population. If proportions are known for a comparison 
population or for a previous time, the null hypothesis could specify that the proportions 
are the same for the population from which the scores were obtained. For example, if it 
is known that 35% of the adults in the United States get a flu shot each season, then a 
researcher could select a sample of college students and count how many got a shot and 
how many did not [see the data in Table 1(c)]. The null hypothesis for the chi-square 
test would state that the distribution for college students is not different from the distri-
bution for the general population.

Figure 1 summarizes the statistical procedures used for data in category 1.

SecTiOn ii: STaTiSTical PROceDuReS FOR DaTa FROm  
a Single gROuP OF PaRTiciPanTS wiTh TwO 
vaRiaBleS meaSuReD FOR each PaRTiciPanT

The goal of the statistical analysis for data in this category is to describe and evaluate the 
relationships between variables, typically focusing on two variables at a time. With only 
two variables, the appropriate statistics are correlations and regression (Chapter 14), and 
the chi-square test for independence (Chapter 15). With three variables, another alterna-
tive is a partial correlation (Chapter 14), which evaluates the relationship between two 
variables while controlling the influence of the third.

ScoreS froM 
ordinal ScaleS: 

rankS or ordered 
categorieS

ScoreS froM a 
noMinal Scale
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The Pearson correlation measures the degree and direction of linear relationship be-
tween the two variables (see Example 14.3 on p. 456). Linear regression determines the 
equation for the straight line that gives the best fit to the data points. For each X value 
in the data, the equation produces a predicted Y value on the line so that the squared 
distances between the actual Y values and the predicted Y values are minimized.

Descriptive statistics The Pearson correlation serves as its own descriptive statistic. 
Specifically, the sign and magnitude of the correlation describe the linear relationship 
between the two variables. The squared correlation is often used to describe the strength 
of the relationship. The linear regression equation provides a mathematical description 
of the relationship between X values and Y. The slope constant describes the amount 
that Y changes each time the X value is increased by 1 point. The constant (Y intercept) 
value describes the value of Y when X is equal to zero.

Inferential statistics The statistical significance of the Pearson correlation is evalu-
ated with a t statistic or by comparing the sample correlation with critical values listed 
in Table B.6. A significant correlation means that it is very unlikely (p , a) that the 

two nuMerical 
VariableS froM 

interVal or ratio 
ScaleS

Numerical scores from
interval or ratio scales

Nominal Scores
(Named categories)

Ordinal scores
(ranks or ordered
categories)

Mean (Chapter 3) and
standard deviation
(Chapter 4)

Proportions or percentages
to describe the distribution
across categories

Median (Chapter 3)

Proportions or percentages
to describe the distribution
across categories

Mode (Chapter 3)

Proportions of percentages
to describe the distribution
across categories

Single-sample t test
(Chapter 9): Use the sample
mean to test a hypothesis
about the population mean

Chi-square test for
goodness of fit (Chapter 15):
Use the sample frequencies
to test a hypothesis about
the proportions in the
population.

Chi-square test for
goodness of fit (Chapter 15):
Use the sample frequencies
to test a hypothesis about
the proportions in the
population

Chi-square test for
goodness of fit (Chapter 15):
Use the sample frequencies
to test a hypothesis about
the proportions in the
population

Descriptive
Statistics

Inferential
Statistics

Figure S-1

Statistics for category 1 data: A single group of participants with one score per participant. The goal is to describe 
the variable as it exists naturally.
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sample correlation would occur without a corresponding relationship in the population. 
Analysis of regression is a hypothesis-testing procedure that evaluates the significance 
of the regression equation. Statistical significance means that the equation predicts 
more of the variance in the Y scores than would be reasonable to expect if there were 
not a real underlying relationship between X and Y.

The Spearman correlation is used when both variables are measured on ordinal scales 
(ranks). If one or both variables consist of numerical scores from an interval or ratio 
scale, then the numerical values can be transformed to ranks and the Spearman correla-
tion can be computed.

Descriptive statistics The Spearman correlation describes the degree and direction 
of monotonic relationship; that is the degree to which the relationship is consistently 
one directional.

Inferential statistics A test for significance of the Spearman correlation is not pre-
sented in this book but can be found in more advanced texts such as Gravetter and 
Wallnau (2013). A significant correlation means that it is very unlikely (p , a) that the 
sample correlation would occur without a corresponding relationship in the population.

The point-biserial correlation measures the relationship between a numerical variable 
and a dichotomous variable. The two categories of the dichotomous variable are coded 
as numerical values, typically 0 and 1, to calculate the correlation.

Descriptive statistics Because the point-biserial correlation uses arbitrary numerical 
codes, the direction of relationship is meaningless. However, the size of the correlation, 
or the squared correlation, describes the degree of relationship.

Inferential statistics The data for a point-biserial correlation can be regrouped into a 
format suitable for an independent-measures t hypothesis test, or the t value can be com-
puted directly from the point-biserial correlation (see the example on pages 477–479). 
The t value from the hypothesis test determines the significance of the relationship.

The phi-coefficient is used when both variables are dichotomous. For each variable, the 
two categories are numerically coded, typically as 0 and 1, to calculate the correlation.

Descriptive statistics Because the phi-coefficient uses arbitrary numerical codes, the 
direction of relationship is meaningless. However, the size of the correlation, or the 
squared correlation, describes the degree of relationship.

Inferential statistics The data from a phi-coefficient can be regrouped into a format 
suitable for a 2 3 2 chi-square test for independence, or the chi-square value can be 
computed directly from the phi-coefficient (see Chapter 15, p. 532). The chi-square 
value determines the significance of the relationship.

The chi-square test for independence (Chapter 15) provides an alternative to correlations 
for evaluating the relationship between two variables. For the chi-square test, each of the 
two variables can be measured on any scale, provided that the number of categories is 

two ordinal 
VariableS (rankS or 
ordered categorieS)

one nuMerical 
Variable and one 

dichotoMouS 
Variable (a Variable 

with exactly  
2 ValueS)

two dichotoMouS 
VariableS

two VariableS froM 
any MeaSureMent 

ScaleS
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reasonably small. For numerical scores covering a wide range of value, the scores can be 
grouped into a smaller number of ordinal intervals. For example, IQ scores ranging from 
93 to 137 could be grouped into three categories described as high, medium, and low IQ.

For the chi-square test, the two variables are used to create a matrix showing the 
frequency distribution for the data. The categories for one variable define the rows of 
the matrix and the categories of the second variable define the columns. Each cell of 
the matrix contains the frequency, or number of individuals whose scores correspond 
to the row and column of the cell. For example, the gender and academic major scores 
in Table 2(d) could be reorganized in a matrix as follows:

Arts Humanities Sciences Professions

Female

Male

The value in each cell is the number of students with the gender and major identified 
by the cell’s row and column. The null hypothesis for the chi-square test would state 
that there is no relationship between gender and academic major.

Descriptive statistics The chi-square test is an inferential procedure that does not 
include the calculation of descriptive statistics. However, it is customary to describe the 
data by listing or showing the complete matrix of observed frequencies. Occasionally 
researchers describe the results by pointing out cells that have exceptionally large dis-
crepancies. For example, in Chapter 15 we described a study investigating eyewitness 
memory. Participants watched a video of an automobile accident and were questioned 
about what they saw. One group was asked to estimate the speed of the cars when they 
“smashed into” each other and another group was asked to estimate speed when the cars 
“hit” each other. A week later, they were asked additional questions, including whether 
they recalled seeing broken glass. Part of the description of the results focuses on cells 
reporting “Yes” responses. Specifically, the “smashed into” group had more than twice 
as many “Yes” responses than the “hit” group.

Inferential statistics The chi-square test evaluates the significance of the relationship 
between the two variables. A significant result means that the distribution of frequen-
cies in the data is very unlikely to occur (p , a) if there is no underlying relationship 
between variables in the population. As with most hypothesis tests, a significant result 
does not provide information about the size or strength of the relationship. Therefore, 
either a phi-coefficient or Cramér’s V is used to measure effect size.

Figure 2 summarizes the statistical procedures used for data in category 2.

SecTiOn iii: STaTiSTical PROceDuReS FOR DaTa 
cOnSiSTing OF TwO (OR mORe) gROuPS OF ScOReS 
wiTh each ScORe a meaSuRemenT OF The Same 
vaRiaBle

Data in this category includes single-factor and two-factor designs. In a single-factor 
study, the values of one variable are used to define different groups and a second vari-
able (the dependent variable) is measured to obtain a set of scores in each group. For 
a two-factor design, two variables are used to construct a matrix with the values of 

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



614    StatiSticS Organizer: Finding the right StatiSticS FOr YOur data

one variable defining the rows and the values of the second variable defining the col-
umns. A third variable (the dependent variable) is measured to obtain a set of scores 
in each cell of the matrix. To simplify discussion, we focus on single-factor designs 
now and address two-factor designs in a separate section at the end of this section.

The goal for a single-factor research design is to demonstrate a relationship 
between the two variables by showing consistent differences between groups. The 
scores in each group can be numerical values measured on interval or ratio scales, 
ordinal values (ranks), or simply categories on a nominal scale. The different mea-
surement scales permit different types of mathematics and result in different statisti-
cal analyses.

Descriptive statistics When the scores in each group are numerical values, the 
standard procedure is to compute the mean (Chapter 3) and the standard deviation 
(Chapter 4) as descriptive statistics to summarize and describe each group. For a 
repeated-measures study comparing exactly two groups, it also is common to com-
pute the difference between the two scores for each participant and then report the 
mean and the standard deviation for the difference scores.

ScoreS froM 
interVal or ratio 

ScaleS: nuMerical 
ScoreS

Both variables measured
on interval or ratio scales
(numerical scores)

Descriptive Statistics

Both variables measured
on ordinal scales (ranks or
ordered categories)

A t test or the values in
Table B-6 determine
significance of the
Pearson correlation

Analysis of regression
(Chapter  14) determines
the significance of the
regression equation

No test in this book;
consult an advanced
statistics text

The data can be
grouped to be suitable
for an independent-
measures t test (see
Table 14.4)

The data can be
evaluated with a
2 x 2 chi-square test
for independence

y-intercept

The Pearson correlation
(Chapter 14) describes
the degree and direction
of linear relationship

The regression equation
(Chapter 14) identifies the
slope and y-intercept
for the best-fitting line

The Spearman correlation
(Chapter 14) describes
the degree and direction
of monotonic relationship

The point-biserial
correlation (Chapter 14)
describes the strength
of the relationship

The phi-coefficient (Chapter 14)
describes the strength of the
relationship

Numerical scores for one variable
and two values for the second
(a dichotomous variable coded
as 0 and 1)

Two values for both variables
(two dichotomous variables,
each coded as 0 and 1)

Any measurement scales but
a small number of categories
for each variable

The chi-square test for
independence (Chapter 15)
evaluates the relationship
between variables

Regroup the data as a
frequency distribution matrix;
the frequencies or proportions
describe the data

Inferential Statistics

Figure S-2

Statistics for category 2 data: One group of participants with two variables measured for each participant. The goal 
is to describe and evaluate the relationship between variables.
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Inferential statistics Analysis of variance (ANOVA) and t tests are used to evalu-
ate the statistical significance of the mean differences between the groups of scores. 
With only two groups, the two tests are equivalent and either may be used. With 
more than two groups, mean differences are evaluated with an ANOVA. For inde-
pendent-measures designs (between-subjects designs), the independent-measures  
t (Chapter 10) and independent-measures ANOVA (Chapter 12) are appropriate. 
For repeated-measures designs, the repeated-measures t (Chapter 11) and repeated- 
measures ANOVA (Chapter 13) are used. For all tests, a significant result indicates 
that the sample mean differences in the data are very unlikely (p , a) to occur if 
there are not corresponding mean differences in the population. For an ANOVA 
comparing more than two means, a significant F-ratio indicates that post tests such 
as Scheffé or Tukey (Chapter 12) are necessary to determine exactly which sample 
means are significantly different. Significant results from a t test should be accom-
panied by a measure of effect size such as Cohen’s d or r2. For ANOVA, effect size 
is measured by computing the percentage of variance accounted for, h2.

Descriptive statistics For nominal or ordinal data, the data are usually described by 
the distribution of individuals across categories. For example, the scores in one group 
may be clustered in one category or set of categories and the scores in another group 
may be clustered in different categories.

Inferential statistics With a relatively small number of nominal categories, the data 
can be displayed as a frequency-distribution matrix with the groups defining the rows 
and the nominal categories defining the columns. The number in each cell is the fre-
quency, or number of individuals in the group, identified by the cell’s row, with scores 
corresponding to the cell’s column. For example, the data in Table 3(c) show success or 
failure on a task for participants who are working alone or working in a group. These 
data could be regrouped as follows:

Success Failure

Work Alone

Work in a Group

Ordinal data are treated in exactly the same way. For example, a researcher could 
group high school students by class (Freshman, Sophomore, Junior, Senior) and mea-
sure the amount of time each student spends on Facebook by classifying students into 
three ordinal categories (small, medium, large). An example of the resulting data is 
shown in Table 3(d). However, the same data could be regrouped into a frequency-
distribution matrix as follows:

Amount of Time Spent on Facebook

Small Medium Large

Freshman

Sophomore

Junior

Senior

ScoreS froM 
noMinal or ordinal 

ScaleS
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In each case, a chi-square test for independence (Chapter 15) can be used to evaluate 
differences between groups. A significant result indicates that the sample distributions 
would be very unlikely (p , a) to occur if the corresponding population distributions 
all have the same proportions (same shape).

Research designs with two independent (or quasi-independent) variables are known as 
two-factor designs. These designs can be presented as a matrix with the levels of one 
factor defining the rows and the levels of the second factor defining the columns. A 
third variable (the dependent variable) is measured to obtain a group of scores in each 
cell of the matrix (see Example 13.4 on page 419).

Descriptive statistics When the scores in each group are numerical values, the standard 
procedure is to compute the mean (Chapter 3) and the standard deviation (Chapter 4) as 
descriptive statistics to summarize and describe each group.

Inferential Statistics A two-factor ANOVA is used to evaluate the significance of the 
mean differences between cells. The ANOVA separates the mean differences into three 
categories and conducts three separate hypothesis tests:

 1. The main effect for factor A evaluates the overall mean differences for the first 
factor; that is, the mean differences between rows in the data matrix.

 2. The main effect for factor B evaluates the overall mean differences for the second 
factor; that is, the mean differences between columns in the data matrix.

 3. The interaction between factors evaluates the mean differences between cells 
that are not accounted for by the main effects.

For each test, a significant result indicates that the sample mean differences in the 
data are very unlikely (p , a) to occur if there are not corresponding mean differences 
in the population. For each of the three tests, effect size is measured by computing the 
percentage of variance accounted for, h2.

Figure 3 summarizes the statistical procedures used for data in category 3.

two-factor deSignS 
with ScoreS froM 
interVal or ratio 

ScaleS
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Descriptive Statistics

Data from interval
or ratio scales
(numerical scores)

No test in this book;
consult an advanced
statistics text.

Median (Chapter 3)
or the proportion
in each category.

Two or more
groups

Two or more
groups

Repeated-measures ANOVA
(Chapter 13) evaluates the
mean differences

Independent-measures ANOVA
(Chapter 12) evaluates the
mean differences

Means (Chapter 3) and
standard deviations
(Chapter 4)

Means (Chapter 3) and
standard deviations
(Chapter 4)

Independent-
measures

Independent-
measures

Repeated-
measures

Two or more
groups

Means (Chapter 3) and
standard deviations
(Chapter 4)

Independent-measures t test
(Chapter 10) evaluates the
mean difference

Repeated-measures t test
(Chapter 11) evaluates the
mean difference

Means (Chapter 3) and
standard deviations
(Chapter 4)

Independent-
measures

Repeated-
measures

Two groups

Independent-
or repeated-
measures

Chi-square test for
independence (Chapter 15)
evaluates the group
differences

Proportion in each
category

Ordinal data
(ranks or ordered
categories)

Ordinal or nominal
data with few
categories

Inferential Statistics

Figure S-3

Statistics for category 3 data: Two or more groups of scores with with one score per participant. The goal is to evaluate 
differences between groups of scores.
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A effect, 416, 418
A 3 B effect, 416
A 3 B interaction, 418, 423
Abscissa, 44
Algebra, 574–577
Alpha level, 209, 214, 215–216, 236
Alternative hypothesis (H

1
), 207

Analysis of regression, 493–495
Analysis of variance. See ANOVA
ANOVA

advantages, 346, 394
chi-square, 530
defined, 346
factorial design.  See Two-factor  

ANOVA
repeated-measures design.  See Repeated-

measures ANOVA
simplest form.  See Single factor, 

independent-measures ANOVA
t tests, compared, 346, 379–380
terminology, 346–347
three distinct research situations, 343
typical research situation, 346

ANOVA summary table
repeated-measures ANOVA, 404
single factor, independent-measures 

ANOVA, 361
two-factor ANOVA, 424

APA manual, 78
Apparent limits, 44
Arithmetic average.  See Mean
Axes, 44

B effect, 416, 418
Bar graph, 47, 79–80
Base, 574
Beta, 215
Between-subjects research design, 280, 281. 

See also Independent-measures t test
Between-subjects variance, 398, 401
Between-treatments degrees of freedom 

(df
between

), 359
Between-treatments sum of squares  

(SS 
between treatments

), 357
Between-treatments variability, 421
Between-treatments variance, 351–352
Biased statistic, 105–106
Bimodal distribution, 74
Binomial variable, 478
Body (unit normal table), 159

Central limit theorem, 180
Central tendency, 59–87

defined, 60
in the literature, 78
mean. See Mean
median. See Median
middle, 72
mode, 73–74, 77–78
purpose, 60
selecting a measure, 74–78
skewed distribution, 81
symmetrical distribution, 80–81

Changing to a nonparametric test, 510–511
Chi-square distribution, 516, 595
Chi-square test for goodness of fit, 511–521

alternative hypothesis, 513
assumptions/restrictions, 534
chi-square statistic, 515
critical region, 517, 518
defined, 511
degrees of freedom, 515–516, 517
expected frequencies, 514
hypothesis testing, 518–519
in the literature, 520
null hypothesis, 512–513
observed frequencies, 513
single sample t test, 520
SPSS, 536–537

Chi-square test for independence, 521–595
ANOVA, 530
assumptions/restrictions, 534
chi-square statistic, 526
Cramér’s V, 533, 534, 541
defined, 522
degrees of freedom, 526–527
effect size, 532–534
expected frequencies, 524–526
hypothesis testing, 527–529
illustration/demonstration, 539–541
independent-measures t test, 530
null hypothesis, 523–524
observed frequencies, 524
Pearson correlation, 529–530
phi-coefficient, 532–533
SPSS, 537–539

Class interval, 41
Coefficient of determination, 462, 491
Cohen’s d

effect size, 230–232, 240–241
independent-measures t test, 291

repeated-measures t test, 322, 335
single-sample t test, 260–262, 274–275

Computer software. See SPSS
Confidence interval

construction of, 265–266
defined, 264
independent-measures design, 292–295
level of confidence, 266
repeated-measures design, 322–323
sample size, 266–267

Confounded, 15
Constructs, 20
Continuous variable, 21–22
Control condition, 16
Control group, 16
Controlling variables, 15
Correlated-samples design, 315
Correlation, 449–507

causation, 460
defined, 450
envelope, 452
hypothesis testing, 464–467
in the literature, 467, 468
outliers, 461–462
partial, 468–471
Pearson. See Pearson correlation
point-biserial, 477–479
pointers/tips, 459–460, 500–501
positive/negative, 451
prediction, 458–459
range of values, 452
regression, 495–496
relationship, 450–452
reliability, 459
restricted range, 460
sign/numerical value, 452
Spearman, 472–477
SPSS, 498–500, 501
standard error of estimate, 491–492
strength of the relationship, 462–464
t statistic, 466
theory verification, 459
validity, 459

Correlation matrix, 467
Correlational method, 12–13
Correlational research strategy, 12
Cramér’s V, 533, 534, 541
Critical region

boundaries, 209–210
defined, 209
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directional test, 225–226, 270
goodness-of-fit test, 517, 518
t test, 270

D values, 315–316
Data, 7
Data set, 7
Data structures and statistical methods,  

18–19
Datum, 7
Decimals, 570–571
Degrees of freedom (df), 103–104

chi-square tests, 515–516, 526–527
defined, 103, 252
goodness-of-fit test, 515–516, 517
independent-measures t test, 287
repeated-measures ANOVA, 402
single factor, independent-measures 

ANOVA, 358–360
single-sample t test, 252
test for independence, 526–527
two-factor ANOVA, 421

Denominator, 567
Dependent variable, 16
Descriptive statistics, 8, 119, 121
Deviation, 92
Deviation score, 92, 127
df. See Degrees of freedom (df)
df

between
, 359

df
between treatments

, 421
df

error
, 402

df
total

, 358–359
df

within
, 359

Dichotomous variable, 478
Directional hypothesis test, 224. See also 

One-tailed test
Discrete variable, 20–21
Distribution

bimodal, 74
chi-square, 516, 595
F, 590–592
frequency. See Frequency distribution
multimodal, 74
normal, 49
open-ended, 77
rectangular, 80–81
sampling, 177
skewed, 51, 81
standardized, 132
symmetrical, 51, 80–81
t, 252–255, 581
z-score, 131–134

Distribution-free tests, 510
Distribution of F ratios, 362–363
Distribution of sample means, 184, 185

central limit theorem, 180
characteristics, 178, 179
defined, 177
inferential statistics, 194–196
mean, 181, 182
normal distribution?, 198, 199

probability, 177, 186–189
prototypical, 190
shape, 180
standard error, 182, 191–192
whether sample noticeably different, 

195–196
z-score, 187–188

Distributions of scores, 49
Diversity, 117

Effect size
chi-square test for independence, 

532–534
Cohen’s d, 230–232, 240–241
defined, 230
hypothesis testing, 230–232
independent-measures t test, 291–292, 308
point-biserial correlation, 477–479
power, 235
repeated-measures ANOVA, 404–405
repeated-measures t test, 321–323, 335
single-factor, independent-measures 

ANOVA, 367
single-sample t test, 260–267
two-factor ANOVA, 425–426

Envelope, 452
Environmental variable, 15
Error

estimated. See Estimated standard error
sampling, 8–9, 176, 190, 493
standard. See Standard error
Type I. See Type I error
Type II, 214–215

Error term, 353
Error variance, 111, 398, 399
Estimated d. See also Cohen’s d

independent-measures t test, 291
repeated-measures t test, 322, 335
single-sample t test, 260

Estimated population standard deviation, 103
Estimated population variance, 102–103
Estimated standard error

defined, 251
independent-measures t test, 282–284, 287
repeated-measures t test, 319
single-sample t test, 259

Eta squared. See Percentage of variance 
explained (eta squared)

Expected frequencies, 524–526
Expected value of M, 181
Experimental condition, 16
Experimental group, 16
Experimental method, 13–16
Experimental research strategy, 13
Experimentalwise alpha level, 350
Exponents, 577–579

F distribution, 590–592
F distribution table, 363, 364
F-max statistic, 589
F-max test, 300–302

F-ratio
regression, 493–494, 501
repeated-measures ANOVA, 396–397, 

403–404
single factor, independent-measures 

ANOVA, 349–350, 352–353, 361, 371
two-factor ANOVA, 418, 424, 428

Factor, 347
Factorial design, 347, 410
Fail to reject the null hypothesis, 212
Flynn effect, 276
Fraction, 567–570
Frequency distribution, 37–58

defined, 38
elements, 38
graphs, 44–49
grouped table, 41–43
probability, 153–154
real limits, 43–44
shape, 50–51
SPSS, 54
symmetrical/skewed distribution, 51
tables, 38–44

Frequency distribution graphs, 44–49
Frequency distribution polygon, 47
Frequency distribution tables, 38–44

Goodness-of-fit test. See Chi-square test for 
goodness of fit

Graph
bar graph, 47, 79–80
basic rules, 80
frequency distribution, 44
histogram, 45–46, 79
line, 79
mean/median, 78–80
polygon, 46–47
population distribution, 48–49
use/misuse, 50

Grouped frequency distribution table, 41–43, 
55–56

Hartley’s F-max test, 300–302
High variability, 110
High variance, 111
Histogram, 45–46, 79
Homogeneity of variance, 300, 427–428
Honestly significant difference (HSD),  

376, 406
HSD test, 376, 406
Hypothesis testing, 203–244

alpha level, 209, 214, 215–216, 236
alternative hypothesis, 207
analogy, 212
assumptions, 219–220
chi-square tests, 518–519, 527–529
Cohen’s d, 230–232, 240–241
correlation, 464–467
critical region, 209, 210
defined, 204
effect size, 230–232, 240–241

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



INDEX    627

example test, 240
factors to consider, 222–223
goodness-of-fit test, 518–519
independent-measures t test, 288–291
independent observations, 219, 220
level of significance, 209
limitations/criticisms, 227–229, 239
in the literature, 218–219
normal sampling distribution, 221
null hypothesis, 207
number of scores in sample, 223
one-tailed test, 224–227
power, 232–236
random sampling, 219
repeated-measures t test, 320–321
sample in research study, 205–206
significant/statistically significant, 218
step 1 (state the hypothesis), 207
step 2 (set criteria for a decision), 

208–210
step 3 (collect data/compute sample 

statistics), 211
step 4 (make a decision), 211–212
summary of the hypothesis test,  

217–218
t statistic, 255–259
test for independence, 527–529
test statistic, 221
two-tailed test, 224, 226–227
Type I error, 213–214
Type II error, 214–215
underlying logic, 204
unknown population, 205
value of standard error unchanged, 

219–220
variability of scores, 222–223
z-score statistic, 221–222

Hypothetical construct, 20

In the literature. See also Research studies
central tendency, 78
chi-square test, 520
correlation, 467, 468
hypothesis testing, 218–219
independent-measures t test, 295
repeated-measures ANOVA, 405
repeated-measures t test, 324
single factor, independent-measures 

ANOVA, 368
single-sample t test, 267–268
standard error, 192–194
standard deviation, 109
two-factor ANOVA, 476

Independent, 524
Independent-measures ANOVA. See Single 

factor, independent-measures ANOVA; 
Two-factor ANOVA

Independent-measures t statistic, 282, 287
Independent-measures t test, 279–312

alternative to pooled variance, 302
chi-square, 530

confidence interval, 292–295
defined, 281
degrees of freedom, 287
effect size, 291–292, 308
estimated standard error, 282–284, 287
final formula, 287
Hartley’s F-max test, 300–302
hypotheses, 281
hypothesis test, 288–291
illustration/demonstration, 307–308
in the literature, 295
one-tailed test, 296–297
overall t formula, 282
overview, 280
point-biserial correlation, 477–479
pointers/tips, 305–306
pooled variance, 284–286, 306
repeated-measures design, contrasted, 

314, 328–329
sample size, 298
sample variance, 298–299
single-sample t statistic, compared, 282, 

287, 288
SPSS, 304–305, 306
test statistic, 282, 287, 288
underlying assumptions, 300
variability of difference scores, 284

Independent observations, 219, 220
Independent random sampling, 152
Independent variable, 16
Individual differences

repeated-measures ANOVA, 396, 397
repeated-measures t test, 328–329

Inferential statistics, 8, 99, 110, 121
Interaction, 413–416
Interval scale, 24
IQ scores, 125

Law of large numbers, 182
Least-squared-error solution, 484–486
Level, 347
Level of significance, 209
Line graph, 79
Linear equation, 482–483
Literature. See In the literature
Love hormone (oxytocin), 33
Low variability, 110
Lower real limit, 22

Main effects, 411–413, 416
Major mode, 74
Margin of error, 8
Matched-subjects design, 314–315
Matching, 15
Mathematical expression, 565
Mathematics review, 562–583

algebra, 574–577
decimals, 570–571
exponents, 577–579
final exam, 581–582, 582–583
fraction, 567–570

negative numbers, 572–573
order of operations, 27, 564–566
parentheses, 564
percentages, 571
preview exam, 563, 582–583
proportion, 566–567
reference books, 583
square root, 579–580
symbols, 564

Mean, 61–68, 84
adding/subtracting a constant, 67–68
alternative definitions, 62–66
analogy, 108
balance point, 63
changing a score, 66
describing location of individual scores, 

107–108
distribution of sample means, 181, 182
frequency distribution graph, 104–105
frequency distribution table, 65
graph, 78–80
middle, 72
multiplying/dividing by constant, 68
new score, 66
population, 62
removing a score, 66
sample, 62
SPSS, 83
unbiased statistic, 106
weighted, 64
z-score distribution, 132

Mean squared deviation, 93, 96
Mean squares (MS)

repeated-measures ANOVA, 403
single factor, independent-measures 

ANOVA, 360
two-factor ANOVA, 418, 423

Measurement scales. See Scales of 
measurement

Measures of central tendency. See Central 
tendency

Measures of variability. See Variability
Median, 69–71

continuous variable, 70–71
defined, 69
extreme scores, 75–76
graph, 78–80
how to find, 69–70, 84
middle, 72
open-ended distributions, 72
ordinal scale, 77
skewed distributions, 75–76
undetermined values, 76–77
when to use, 75–77

Middle, 72
Minor mode, 74
Mode, 73–74, 84

defined, 73
describing shape, 78
discrete variable, 77
minor/major, 74

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



628    INDEX

nominal scale, 77
when to use, 77–78

Modified histogram, 45–46
Money-counting experiment, 14
Monotonic relationship, 474
MS. See Mean squares (MS)
MS

between
, 381

MS
within

, 381
Multimodal distribution, 74

N, 26
n, 26
Negative correlation, 451
Negative numbers, 572–573
Negatively skewed distribution, 51, 81
No-difference hypothesis, 513
No-preference hypothesis, 512
Nominal scale, 23
Nondirectional (two-tailed) test, 224, 

226–227, 268
Nonequivalent groups study, 17
Nonexperimental methods, 16–18
Nonparametric tests, 510
Normal distribution, 49, 156
Normality assumption, 300
Null hypothesis (H

0
), 207

Number crunching, 60
Numerator, 567

Observed frequencies, 513, 514, 524
One-tailed test

critical region, 225–226
defined, 224
hypothesis, 224–225
independent-measures t test, 296–297
repeated-measures t test, 326–327
single-sample t test, 268–270
two-tailed test, compared, 226–227

Open-ended distribution, 77
Operational definition, 20
Order effects, 330
Order of mathematical operations, 27, 

564–566
Ordinal scale, 23–24
Ordinate, 44
Outliers, 461–462
Oxytocin, 33

Pairwise comparisons, 375, 376
Parameter, 7
Parametric tests, 510
Partial correlation, 468–471, 498
Partial eta squared, 405
Participant variable, 14
Pearson correlation, 453–458. See also 

Correlation
alternatives to, 472–481
calculation of, 456
chi-square, 529–530
critical values (table), 594
defined, 513
hypothesis testing, 464–467

illustration/demonstration, 502
linear relationship, 472
regression, 495
SPSS, 498, 499
z-score, 457–458

Percentage, 40, 571
Percentage of variance explained (eta squared)

repeated-measures ANOVA, 404–405
single factor, independent-measures 

ANOVA, 367
two-factor ANOVA, 425–426

Percentage of variance explained (r2)
independent-measures t test, 291
point-biserial correlation, 477–479
repeated-measures t test, 322, 335
single-sample t test, 262–264

Percentile, 164
Percentile rank, 164, 171
Perfect correlation, 452
Phi-coefficient, 480, 499, 532–533
Point-biserial correlation, 477–479, 498
Polygon, 46–47
Pooled variance

independent-measures t test, 284–286, 
306

single factor, independent-measures 
ANOVA, 372

t statistic formula, 300
Population, 5, 6
Population mean, 62
Population standard deviation, 98
Population variance, 93, 98
Positive correlation, 451
Positively skewed distribution, 51, 81
Post-hoc tests

repeated-measures ANOVA, 406
single factor, independent-measures 

ANOVA, 375–378
Posttest, 375
Power. See Statistical power
Pre-post study, 17
Predicted variability, 492, 494
Prediction

correlation, 458–459
regression, 487–488

Probability, 149–174
defined, 151
demonstration (find probability from unit 

normal table), 172–173
distribution of sample means, 177, 

186–189
fractions, percentages, decimals, 151–152
frequency distribution, 153–154
inferential statistics, 150, 169–170
normal distribution, 155–159
pointers/tips, 172
proportion problem, as, 171
random sampling, 152–153
range of values, 152
sample means. See Distribution of sample 

means
scores from normal distribution, 162–168

SPSS, 172
unit normal table, 158–159
z-score, 160–162

Probability values, 151–152
Proportion, 40, 566–567
Publication Manual of the American 

Psychological Association, 78

q, 593
Quasi-independent variable, 18

r. See Pearson correlation
r2

percentage of variance explained. See 
Percentage of variance explained (r2)

strength of relationship (coefficient of 
determination), 462–464

r
s
. See Spearman correlation

Radical, 579–580
Random assignment, 15
Random sample, 152
Random sampling, 152–153
Random sampling with replacement, 153
Random sampling without replacement, 153
Range, 91–92, 113
Ratio scale, 24
Raw score, 7, 26
Real limits, 22
Rectangular distribution, 80–81
Regression, 481–496

correlation, 495–496
defined, 484
F-ratio, 493–494, 501
goal, 484
least-squared-error solution, 484–486
predicted/unpredicted variability, 492, 

494
prediction, 487–488
standard error of estimate, 489–492
standardized form, 488
testing the significance, 493–495

Regression equation for Y, 486
Regression line, 484
Reject the null hypothesis, 211
Related-samples design, 315, 331
Relationship, 450–452, 530. See also 

Correlation
Relative frequency, 40, 48
Reliability, 459
Repeated-measures ANOVA, 394–409

advantages/disadvantages, 394–409
assumptions, 406
df

error
, 402

effect size, 404–405
error variance, 399
eta squared (h2), 404–405, 428
F-ratio, 396–397, 403–404
hypotheses, 395–396
illustration/demonstration, 434–435
individual differences, 396, 397
in the literature, 405
MS values, 405
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notation, 399
overall structure, 398
pointers/tips, 432
post hoc tests, 406
repeated-measures t test, compared, 

407–409
SS

between subjects
/SS

between treatments
, 401

stage 1, 400
stage 2, 400–402
summary table, 404
Tukey’s HSD test, 406
two-stage process, 398, 400–402, 428
uses, 395
variance, partitioning of, 398

Repeated measures design, 394
Repeated-measures t statistic, 318–319
Repeated-measures t test, 313–319

analogies for H
0
 and H

1
, 317

assumptions, 330
Cohen’s d, 322, 335
confidence interval, 322–323
counterbalancing, 330
defined, 314
descriptive statistics, 324
difference scores, 315–316, 333
effect size, 321–323, 335
estimated standard error, 319
hypotheses, 316–317
hypothesis test, 320–321
illustration/demonstration, 333–335
independent-measures design, contrasted, 

314, 328–329
individual differences, 328–329
in the literature, 324
number of subjects, 328
one-tailed test, 326–327
order effects, 330
percentage of variance accounted for, 

322, 335
repeated-measures ANOVA, compared, 

407–409
sample size, 325
sample variance, 325
SPSS, 332, 333
study changes over time, 328
t statistic, 318–319
time-related factors, 329, 330
variability/treatment effect, 325–326
when used, 332–333

Reporting. See In the literature
Research studies. See also In the literature

ADHD/Ritalin, 342
adversity/mental health, 310
aging/cognitive functioning, 337
alcohol consumption/reaction time, 242
alcohol consumption/state vs. religious 

college, 33
alcohol consumption/U.S. vs. Canadian 

students, 19
Alzheimer’s disease/cognitive tests, 504
antioxidants/age-related decline, 243
anxiety level, 276

attractiveness/alcohol consumption, 67, 
86–87

attractiveness/humor, 277–278
attractiveness/intelligence, 336
attractiveness/red, 337, 443
attractiveness/tattoos, 242–243
background noise/scholastic performance, 

310
birds/migration, 390
blows to the head/neurological deficits, 

311, 346
caffeine/reaction time, 242
cartoons/smiling vs. frowning, 336
cheating/creative people, 311, 339
cheating/teacher’s performance, 388
cognitive skills/younger vs. older adults, 

117
endorphins/pain sensation, 440
eye-spot patterns/behavior of birds, 276
eyewitness testimony/language used to 

ask question, 310, 521, 544
Facebook/scholastic achievement, 390, 442
facial blemish/job interview, 439
Flynn effect, 276
gaze cuing/liberals vs. conservatives, 544
gender/body image profile, 545
gender/chocolate bars, 341
gender/dream content, 545
gender/energy drinks, 245
gender/intelligence scores, 117, 545
gender/self-esteem, 310
gender/teenage mental health issues, 543
happiness/social network, 58
healthcare providers/health insurance, 543
herbal remedies/memory, 241
humor/memory, 86
infants/sample recognition, 202
lighting/dishonest behavior, 312
marriage/surnames, 542
masculine-themed words/job 

advertisements, 57, 336
math assignments/fifth grade students, 243
memory/younger vs. older women, 117
money/pain perception, 14
motivational signs/physical activity, 34
moving as children/well-being as adult, 

278
multiple-choice exam/rethink your 

answers, 338
music-based physical training/elderly 

people, 311
newborns/looking at attractive faces,  

257, 541
number talk/mathematical development, 58
office workers/productivity, 33
Olympic competition/factors to consider, 

339
oxytocin/trust, 33–34
paw preferences in rats/food-reaching 

test, 541
paying students/scholastic achievement, 

442

pedometer/increased walking, 440
physical exercise/arthritis, 202
pitch-naming ability, 74
political participation/life satisfaction, 506
preschool childcare/children’s 

development, 341
preschool children/scholastic ability, 278
red/anger and male dominance, 543
red/attractiveness, 337, 443
retirement/memory decline, 506
romantic music/woman giving phone 

number to man, 543
self-esteem/presence or absence of 

evidence, 410
SES/prosocial behavior, 309
sexual content on TV/sexual behavior, 471
sleep habits/academic performance, 12
sleep/performance, 311, 336
sports participation/self-esteem, 241
spotlight effect, 276
study strategies, 33, 119, 277, 419
swearing/pain sensation, 19, 320
swearing/pain tolerance, 86
Tai Chi/arthritis pain, 34
tattoos/attractiveness, 242–243
TV viewing/health concerns, 390
video game avatars/creators, 545
video game/behavior, 18, 543–544
weight/health behaviors, 242
weight/income, 33, 504

Residual variance, 398, 399
Restricted range, 460
Rho (r), 458

Sample, 6
Sample mean, 62. See also Distribution of 

sample means
Sample size

confidence interval, 266–267
independent-measures t test, 298
power, 235, 236
repeated-measures t test, 325
single-sample t test, 259
standard error, 182–184, 191–192

Sample standard deviation, 101, 115
Sample variance, 101, 102–103, 104, 115
Sampling distribution, 177
Sampling error, 8–9, 176, 190, 493
Sampling with replacement, 153
Scales of measurement, 22–25

interval scale, 24
nominal scale, 23
ordinal scale, 23–24
ratio scale, 24

Scheffé test, 377–378, 406
Scientific hypothesis (H

1
), 207

Score, 7
Scores, 26
7-Minute Screen, 504
Sigma (S), 26
Significance level, 172
Significance of the relationship, 530

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



630    INDEX

Significant, 218
Simple random sample, 152
Single factor, independent-measures 

ANOVA, 345–391
assumptions, 380
between-treatment variance, 351–352
calculations, 355, 356
conceptual view, 368–371
defined, 346, 394
degrees of freedom, 358–360
distribution of F ratios, 362–363
effect size, 367
eta squared (h2 ), 367, 381
F distribution table, 363, 364
F-ratio, 349–350, 352–353, 361, 371
formulas, 355, 382
hypotheses, 348–349
hypothesis test, 364–367
illustration/demonstration, 384–386
in the literature, 368
mean square (MS), 360
MS within, 372
notational system, 354–355
percentage of variance explained  

(eta squared), 367, 381
pointers/tips, 383–384
pooled variance, 372
post hoc test, 375–378
Scheffé test, 377–378
SPSS, 383, 384
sum of squares (SS), 356–358
summary table, 361
test statistic, 349–350
Tukey’s HSD test, 376
Type I error, 350, 376
unequal sample sizes, 372–374
within-treatment variance, 352

Single factor, repeated-measures ANOVA. 
See Repeated-measures ANOVA

Single-sample t statistic, 251, 252, 282, 288
Single-sample t test

Cohen’s d, 260–262, 274–275
confidence interval, 264–267
degrees of freedom, 252
directional hypotheses/one-tailed tests, 

268–270
effect size, 260–267
estimated d, 260–262, 274–275
example test, 273–274
goodness of fit, 520
hypothesis test, 255–259
independent-measures t statistic, 

compared, 282, 287, 288
in the literature, 267–268
overview/review, 271
r

2
, 262–264, 275

sample size, 259
sample variance, 259
SPSS, 272–273
test statistic, 251, 252, 288
z-score, contrasted, 252

Single-sample techniques, 280

Skewed distribution, 51, 81
Slope, 482
Smooth curve, 48
Software package. See SPSS
Solving the equation, 574
SP, 454–455
Spearman correlation, 472–477

consistency, 473
ranking tied scores, 475–476
special formula, 476
SPSS, 498
when used, 472, 474

Spotlight effect, 276
SPSS, 31, 601–603

chi-square tests, 536–539
correlation, 498–500, 501
data formats, 602–603
frequency distribution, 54
independent-measures t test, 304–305, 306
mean, 83
partial correlation, 498
Pearson correlation, 498
phi-coefficient, 499
point-biserial correlation, 498
probabilities, 172
repeated-measures ANOVA, 430, 431
repeated-measures t test, 332, 333
single factor, independent-measures 

ANOVA, 383, 384
single-sample t test, 272–273
Spearman correlation, 498
standard error, 199
two-factor ANOVA, 432–433, 434
variability, 113–114
z-scores, 144

SS. See Sum of squares (SS)
SS 

between treatments
, 357

SS
between subjects

, 401
SS

between treatments
, 401

SS
total

, 356–357
SS

within treatments
, 357

Standard deviation
adding a constant to each score, 108–109
analogy, 108
defined, 94
describing an entire location, 107
descriptive measure, 107
describing location of individual scores, 

107–108
frequency distribution graph, 103–104
how computed, 92–94
in the literature, 109
multiplying each score by a constant, 109
population, 98
sample, 101, 103
SPSS, 113–114
standard error, contrasted, 189, 199
z-score distribution, 132

Standard error, 181–184, 190–191
correlation, 466
defined, 182
distribution of sample means, 181

estimated. See Estimated standard error
formula/equation, 182, 183, 251
independent-measures t test, 306
inferential statistics, 198
in the literature, 192–194
population standard deviation, 182–183
sample size, 182–184, 191–192
SPSS, 199
standard deviation, contrasted, 189, 199
symbol, 182

Standard error of estimate, 489–492
Standard score, 124. See also z-score
Standardized distribution, 125, 132
Standardized scores, 137
Statistic, 7
Statistical notation, 26–29
Statistical Package for the Social Services. 

See SPSS
Statistical power, 232–236

alpha level, 236
defined, 232
effect size, 235
one-tailed vs. two-tailed tests, 236
sample size, 235, 236

Statistical procedures, 5
Statistical tables

chi-square distribution, 595
F distribution, 590–592
F-max statistic, 589
Pearson correlation, critical values, 594
studentized range statistic (q), 593
t distribution, 588
unit normal table, 584–587

Statistically significant, 218
Statistics

definitions, 4–5
descriptive, 8, 119, 121
inferential, 8, 99, 100, 121
purposes, 5
role of, in research, 10

Strength of the relationship, 530. See also 
Correlation

Studentized range statistic, 376
Studentized range statistic (q), 593
Sum of products of deviations (SP),  

454–455
Sum of squares (SS), 96–98

computational formula, 97, 101
defined, 96
defintional formula, 97, 100
demonstration (how computed), 115
single factor, independent-measures 

ANOVA, 356–358
SP, compared, 455

Summation notation, 26–27, 32–33
Summation sign (S), 26
Symmetrical distribution, 51,  

80–81

t distribution, 252–255, 588
t statistic, 251, 252, 282, 288. See also 

Single-sample t test
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t test
ANOVA, compared, 346, 379–380
between-subjects design. See 

Independent-measures t test
one sample. See Single-sample t test
within-subjects design. See Repeated-

measures t test
t test for independent samples. See 

Independent-measures t test
t test for two-related samples. See Repeated-

measures t test
Tables. See Statistical tables
Tail

distribution, 51
unit normal table, 159

Test for independence. See Chi-square test 
for independence

Testing hypotheses. See Hypothesis testing
Tests for mean differences, 530
Testwise alpha level, 350
Theory verification, 459
Time-related factors, 329, 330
Total degrees of freedom (df

total
), 358–359

Total sum of squares (SS
total

), 356–357
Transformations of scale, 108–109
Treatment effects

repeated-measures t test, 325–326
single factor, independent-measures 

ANOVA, 352
two-factor ANOVA, 418, 423, 428

Tukey’s HSD test, 376, 406
Two-factor ANOVA, 409–428

assumptions, 427–428
A effect/B effect, 416, 418
effects size, 425–426
eta squared (h

2
), 425–426

F-ratio, 418, 424, 428
formulas, 429
hypothesis tests, 418
illustration/demonstration, 435–438
interaction, 413–416
interpreting the result, 477
in the literature, 476
main effects, 411–413, 416
matrix, 410, 411
MS values, 418, 423
notation, 418
overall structure, 419
pointers/tips, 433
simplest version of factorial design, 410
SPSS, 432–433, 434
stage 1, 419–421
stage 2, 422–423
summary table, 424
three sets of mean differences, 411
treatment effects, 418, 423, 428
two-stage process, 418, 419–423
A X B interaction, 418, 423

Two-factor design, 347, 348
Two-tailed test, 224, 226–227

Type I error
ANOVA, 350, 376
hypothesis testing, 213–214

Type II error, 214–215

Unbiased statistic, 105–106
Unit normal table, 158–159, 584–587
Unpredicted variability, 492, 494
Upper real limit, 22

Validity, 459
Variability, 89–117

defined, 90
degrees of freedom, 103–104
high/low, 110
inferential process, 110
in the literature, 109
population standard deviation, 98
population variance, 93, 98
purposes, 90–91
range, 91–92
sample standard deviation, 101, 103
sample variance, 101, 102–103, 104
SPSS, 113–114
SS. See Sum of squares (SS)
standard deviation. See Standard deviation
transformations of scale, 108–109
variance. See Variance

Variable
continuous, 21–22
controlling, 15
defined, 7
dependent, 16
dichotomous, 478
discrete, 20–21
environmental, 15
independent, 16
participant, 14
quasi-independent, 18
relationships between, 12–13

Variance
between-subjects, 398, 401
between-treatments, 351–352
defined, 96
error, 111, 398, 399
high, 111
how computed, 94
independent-measures t test, 298–299
population, 93, 98
repeated-measures t test, 325
sample, 101, 102–103
single-sample t test, 259
SPSS, 113
unbiased statistic, 105–106
within-treatments, 351, 352

Vertical-horizontal illusion, 277

Weighted mean, 64
Within-subject design. See Repeated-

measures t test

Within-treatment variance, 351, 352
Within-treatments degrees of freedom 

(df
within

), 359
Within-treatments sum of squares  

(SS
within treatments

), 357
Within-treatments variability, 420–421
Wrong Shui, 4

X, 26
X-axis, 44

Y, 26
Y-axis, 44
Y-intercept, 482

z-score, 123–147
checking accuracy of z-score value, 128
comparisons, 134–135
computing, from a sample, 138–139
defined, 125
demonstration (transform X values to 

z-scores), 145
demonstration (transform z-scores to  

X values), 145
distribution of sample means,  

187–188
extreme scores, 142, 143, 176
formula, 126–128, 143
hypothesis test, 221–222
inferential statistics, 140–142
location in a distribution, 125–126
new distribution with predetermined 

mean/standard deviation, 136–137
Pearson correlation, 457–458
probability, 160–162
purposes, 124, 125
raw score, 128
relationship between z-score, mean and 

standard deviation, 128–131
shortcoming, 239, 250
sign/number, 125, 126
sketching a picture, 129–131
SPSS, 144
standardizing a distribution,  

131–134
standardizing a sample distribution, 

139–140
t statistic, contrasted, 252
unit table, 159
whether sample noticeably different, 

140–142
z-score boundaries, 142, 143
z-score distribution, 131–134, 143
z-score equation, 126, 143
z-score formula, 126–128, 143
z-score transformation, 131–134
Zero-effect hypothesis, 207
Zero point, 24
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THE MEAN

Population: � � �
�

N
X
� Sample: M � �

�

n
X
�

SUM OF SQUARES

Definitional: SS � �(X � �)2

Computational: SS � �X2 � �
(�

N
X )2

�

VARIANCE

Population: �2 � �
S
N
S
� Sample: s2 � �

n
S
�

S
1

�

STANDARD DEVIATION

Population: � � ��
S
N
S
�� Sample: s � ��

n
S
�

S
1

��
z-SCORE (FOR LOCATING AN X VALUE)

z � �
X �

�

�
�

z-SCORE (FOR LOCATING A SAMPLE MEAN)

z � �
M

�

�

M

�
� where �M � �

�

�

n�
� � ��

�

n

2

��
t STATISTIC (SINGLE SAMPLE)

t � �
M

s
�

M

�
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s
n

2

��
t STATISTIC (INDEPENDENT MEASURES)

t �

where s(M1�M2) � ��
n

s2
p
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n
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p

2
�� and s2

p � �
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1

1

�

�

S

d

S
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2
�
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t STATISTIC (RELATED SAMPLES)

t � �
MD
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�

D

�D
� where sMD

� ��
s
n

2

��
ESTIMATION

t Statistic (Single Sample)

� � M � tsM

t Statistic (Independent Measures)

�1 � �2 � M1 � M2 � ts(M1 � M2)

t Statistic (Related Samples)

�D � MD � tsMD

INDEPENDENT-MEASURES ANOVA

SStotal � �X2 � �
G
N

2

� dftotal � N � 1

SSbetween � � �
T
n

2

� � �
G
N

2

� dfbetween � k � 1
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S
S
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w
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i
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S
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f
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REPEATED-MEASURES ANOVA

SSbetween � � �
T
n

2
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G
N

2

� dfbetween � k � 1

SSerror � SSwithin � SSsubjects

dferror � (N � k) � (n � 1)

where SSwithin � �SSinside each treatment

and SSsubjects � � �
P
k
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� � �
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TWO-FACTOR ANOVA

SSbetween treatments � � �
T
n

2

� � �
G
N

2

�

dfbetween treatments � number of cells � 1

SSwithin treatments � �SSeach treatment

dfwithin treatments � �dfeach treatment

SSA � ��
T

nR

2
R

O

O

W

W
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�

dfA � (number of levels of A) � 1
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T
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2
C

O

O

L

L
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N

2

�

dfB � (number of levels of B) � 1
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PEARSON CORRELATION

r � �
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S

S

P

XSSY�
�

where SP � �(X � MX)(Y � MY) � �XY � �
(�X)

n
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�

SPEARMAN CORRELATION
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6
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�

�
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�
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S
S
S
P

X
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