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Preface

In this digital Internet age, information can be received, processed, stored, and 
transmitted in a fast, reliable, and effi cient manner. This advancement is made pos-
sible by the latest fast, low-cost, and power-effi cient embedded signal processors. 
Embedded signal processing is widely used in most digital devices and systems and 
has grown into a “must-have” category in embedded applications. There are many 
important topics related to embedded signal processing and control, and it is impos-
sible to cover all of these subjects in a one- or two-semester course. However, the 
Internet is now becoming an effective platform in searching for new information, 
and this ubiquitous tool is enriching and speeding up the learning process in 
engineering education. Unfortunately, students have to cope with the problem of 
information overfl ow and be wise in extracting the right amount of material at the 
right time.

This book introduces just-in-time and just-enough information on embedded 
signal processing using the embedded processors based on the micro signal archi-
tecture (MSA). In particular, we examine the MSA-based processors called Blackfi n 
processors from Analog Devices (ADI). We extract relevant and suffi cient informa-
tion from many resources, such as textbooks, electronic books, the ADI website, 
signal processing-related websites, and many journals and magazine articles related 
to these topics. The just-in-time organization of these selective topics provides a 
unique experience in learning digital signal processing (DSP). For example, students 
no longer need to learn advanced digital fi lter design theory before embarking on 
the actual design and implementation of fi lters for real-world applications. In this 
book, students learn just enough essential theory and start to use the latest tools to 
design, simulate, and implement the algorithms for a given application. If they need 
a more advanced algorithm to solve a more sophisticated problem, they are now 
more confi dent and ready to explore new techniques. This exploratory attitude is 
what we hope students will achieve through this book.

We use assembly programming to introduce the architecture of the embedded 
processor. This is because assembly code can give a more precise description of the 
processor’s architecture and provide a better appreciation and control of the hard-
ware. Without this understanding, it is diffi cult to program and optimize code using 
embedded signal processors for real-world applications. However, the use of C code 
as a main program that calls intrinsic and DSP library functions is still the preferred 
programming style for the Blackfi n processor. It is important to think in low-level 
architecture but write in high-level code (C or graphical data fl ow). Therefore, we 
show how to balance high-level and low-level programming and introduce the 
techniques needed for optimization. In addition, we also introduce a very versatile 
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graphical tool jointly developed by ADI and National Instruments (NI) that allows 
users to design, simulate, implement, and verify an embedded system with a high-
level graphical data fl ow approach.

The progressive arrangement makes this book suitable for engineers. They may 
skip some topics they are already familiar with and focus on the sections they are 
interested in. The following subsections introduce the essential parts of this book 
and how these parts are linked together.

PART A: USING SOFTWARE TOOLS TO 
LEARN DSP—A JUST-IN-TIME AND 
PROJECT-ORIENTED APPROACH

In Chapters 2, 3, and 4, we explore fundamental DSP concepts using a set of 
software tools from the MathWorks, ADI, and NI. Rather than introducing all theo-
retical concepts at the beginning and doing exercises at the end of each chapter, 
we provide just enough information on the required concepts for solving the 
given problems and supplement with many quizzes, interactive examples, and hands-
on exercises along the way in a just-in-time manner. Students learn the concepts by 
doing the assignments for better understanding. This approach is especially suitable 
for studying these subjects at different paces and times, thus making self-learning 
possible.

In addition to these hands-on exercises, the end of each chapter also provides 
challenging pen-and-paper and computer problems for homework assignments. 
These problem sets build upon the previous knowledge learned and extend the 
thinking to more advanced concepts. These exercises will motivate students in 
looking for different solutions for a given problem. The goal is to cultivate a learning 
habit after going through the book.

The theory portion of these chapters may be skipped for those who have taken 
a fundamental course on DSP. Nonetheless, these examples and hands-on exercises 
serve as a handy reference on learning important tools available in MATLAB, the 
integrated development environment VisualDSP++, and the LabVIEW Embedded 
Module for Blackfi n Processors. These tools provide a platform to convert theoreti-
cal concepts into software code before learning the Blackfi n processor in detail. The 
introduction to the latest LabVIEW Embedded Module for Blackfi n Processors 
shows the advancement in rapid prototyping and testing of embedded system designs 
for real-world applications. This new tool provides exciting opportunities for new 
users to explore embedded signal processing before learning the programming 
details. Therefore, instructors can make use of these graphical experiments at the 
end of each chapter to teach embedded signal processing concepts in foundation 
engineering courses.
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PART B: LEARNING REAL-TIME SIGNAL 
PROCESSING WITH THE BLACKFIN PROCESSOR—A 
BITE-SIZE APPROACH TO SAMPLING REAL-TIME 
EXAMPLES AND EXERCISES

Part B consists of Chapters 5, 6, 7, and 8, which concentrate on the design and 
implementation of embedded systems based on the Blackfi n processor. Unlike a 
conventional user’s manual that covers the processor’s architecture, instruction set, 
and peripherals in detail, we introduce just enough relevant materials to get started 
on Blackfi n-based projects. Many hands-on examples and exercises are designed in 
a step-by-step manner to guide users toward this goal. We take an integrated 
approach, starting from algorithm design using MATLAB with fl oating-point simu-
lations to the fi xed-point implementation on the Blackfi n processor, and interfacing 
with external peripherals for building a stand-alone or portable device. Along this 
journey to fi nal realization, many design and development tools are introduced to 
accomplish different tasks. In addition, we provide many hints and references and 
supplement with many challenging problems for students to explore more advanced 
topics and applications.

Part B is in fact bridging the gap from DSP concepts to real-time implemen-
tations on embedded processors, and providing a starting point for students to 
embark on real-time signal processing programming with a fi xed-point embedded 
processor.

PART C: DESIGNING AND IMPLEMENTING 
REAL-TIME DSP ALGORITHMS AND 
APPLICATIONS—AN INTEGRATED APPROACH

The fi nal part (Chapters 9 and 10) motivates users to take on more challenging 
real-time applications in audio signal processing and image processing. Students 
can use the knowledge and tools learned in the preceding chapters to complete the 
applications introduced in Chapters 9 and 10. Some guides in the form of basic 
concepts, block diagrams, sample code, and suggestions are provided to solve these 
application problems. We use a module approach in Part C to build the embedded 
system part by part, and also provide many opportunities for users to explore new 
algorithms and applications that are not covered in Parts A and B. These application 
examples also serve as good mini-projects for a hands-on design course on embed-
ded signal processing. As in many engineering problems, there are many possible 
solutions. There are also many opportunities to make mistakes and learn valuable 
lessons. Users can explore the references and fi nd a possible solution for solving 
these projects. In other words, we want the users to explore, learn, and have fun!

A summary of these three parts of the book is illustrated in Figure 1. It shows 
three components: (A) DSP concepts, (B) embedded processor architecture and 
real-time DSP considerations, and (C) real-life applications: a simple A-B-C 
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approach to learning embedded signal processing with the micro signal 
architecture.

DESCRIPTION OF EXAMPLES, EXERCISES, 
EXPERIMENTS, PROBLEMS, AND 
APPLICATION PROJECTS

This book provides readers many opportunities to understand and explore the main 
contents of each chapter through examples, quizzes, exercises, hands-on experi-
ments, exercise problems, and application projects. It also serves as a good hands-on 
workbook to learn different embedded software tools (MATLAB, VisualDSP++,
and LabVIEW Embedded) and solve practical problems. These hands-on sections 
are classifi ed under different types as follows.

1. Examples provide a just-in-time understanding of the concepts learned in 
the preceding sections. Examples contain working MATLAB problems to 
illustrate the concepts and how problems can be solved. The naming conven-
tion for software example fi les is

Part A: Digital Signal Processing Concepts

Chapter 2: Time-Domain Signals and Systems 
Chapter 3: Frequency-Domain Analysis and  
                   Processing 
Chapter 4: Digital Filtering 

o This part may be skipped for 
those who already familiar 
with DSP. However, it serves 
as a quick reference. 

o It provides a good platform for 
learning software tools. 

Part B: Embedded Signal Processing Systems 
and Concepts

Chapter 5: Introduction to the Blackfin   
Processor 

Chapter 6: Real-Time DSP Fundamentals  
                   and Implementation Considerations 
Chapter 7: Memory System and Data Transfer 
Chapter 8: Code Optimization and Power 

Management 

o Part B integrates the 
embedded processor’s 
architecture, programming and 
integrating hardware and 
software into a complete 
embedded system. 

o It provides a good platform to 
learn the in-depth details of 
development tools. 

o It contains many hands-on 
examples and exercises in 
using the Blackfin processors. 

Part C: Real-World Applications

Chapter 9: Audio Coding and Audio Effects 
Chapter 10: Digital Image Processing  

o Explore more advanced, real-
time, and real-world
applications. 

o Implement a working 
prototype running on the 
Blackfin EZ-KIT Lite 

Figure 1 Summary of the book: contents and how to use them
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example{chapter number}_{example number}.m

They are normally found in the directory

c:\adsp\chap{x}\MATLAB_ex{x}\

where {x} is the chapter number.

2. Quizzes contain many short questions to challenge the readers for immedi-
ate feedback of understanding.

3. Experiments are mostly hands-on exercises to get familiar with the tools 
and solve more in-depth problems. These experiments usually use MATLAB, 
VisualDSP++, or LabVIEW Embedded. The naming convention for software 
experiment fi les is

exp{chapter number}_{example number}

These experiment fi les can be found in the directory

c:\adsp\chap{x}\exp{x}_{no.}_<option>

where {no.} indicates the experiment number and <option> indicates the 
BF533 or BF537 EZ-KIT.

4. Exercises further enhance the student’s learning of the topics in the preced-
ing sections, examples, and experiments. They also provide the opportunity 
to attempt more advanced problems to strengthen understanding.

5. Exercise Problems are located at the end of Chapters 1 to 8. These problem 
sets explore or extend more interesting and challenging problems and 
experiments.

6. Application Projects are provided at the end of Chapters 9 and 10 to serve 
as mini-projects. Students can work together as a team to solve these 
application-oriented projects and submit a report that indicates their 
approaches, algorithms, and simulations, and how they verify the projects 
with the Blackfi n processor.

Most of the exercises and experiments require testing data. We provide two 
directories that contain audio and image data fi les. These fi les are located in the 
directories c:\adsp\audio_files and c:\adsp\image_files.

COMPANION WEBSITE

A website, www.ntu.edu.sg/home/ewsgan/esp_book.html, has been set up to support 
the book. This website contains many supplementary materials and useful reference 
links for each chapter. We also include a set of lecture slides with all the fi gures 
and tables in PowerPoint format. This website will also introduce new hands-on 
exercises and new design problems related to embedded signal processing. Because 
the fast-changing world of embedded processors, the software tools and the Blackfi n 
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processor will also undergo many changes as time evolves. The versions of software 
tools used in this book are:

• MATLAB Version 7.0

• VisualDSP++ Version 4.0

• LabVIEW 8.0

• LabVIEW Embedded Edition 7.1

This website keeps track of the latest changes and new features of these tools. It 
also reports on any compatibility problems when running existing experiments with 
the newer version of software.

All the programs mentioned in the exercises and experiments are available 
for download in the Wiley ftp site: ftp://ftp.wiley.com/public/sci_tech_med/
embedded_signal/.

We also include a feedback section to hear your comments and suggestions. 
Alternatively, readers are encouraged to email us at ewsgan@ntu.edu.sg and 
kuo@ceet.niu.edu.

Learning Objective:

We learn by example and by direct experience because there are real limits to the 
adequacy of verbal instruction.

Malcolm Gladwell, Blink: The Power of Thinking Without Thinking, 2005
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Chapter 1

Introduction

1.1 EMBEDDED PROCESSOR: 
MICRO SIGNAL ARCHITECTURE

Embedded systems are usually part of larger and complex systems and are usually 
implemented on dedicated hardware with associated software to form a computa-
tional engine that will effi ciently perform a specifi c function. The dedicated hard-
ware (or embedded processor) with the associated software is embedded into many 
applications. Unlike general-purpose computers, which are designed to perform 
many general tasks, an embedded system is a specialized computer system that is 
usually integrated as part of a larger system. For example, a digital still camera takes 
in an image, and the embedded processor inside the camera compresses the image 
and stores it in the compact fl ash. In some medical instrument applications, the 
embedded processor is programmed to record and process medical data such as 
pulse rate and blood pressure and uses this information to control a patient support 
system. In MP3 players, the embedded processor is used to process compressed 
audio data and decodes them for audio playback. Embedded processors are also 
used in many consumer appliances, including cell phones, personal digital assistants 
(PDA), portable gaming devices, digital versatile disc (DVD) players, digital cam-
corders, fax machines, scanners, and many more.

Among these embedded signal processing-based devices and applications, 
digital signal processing (DSP) is becoming a key component for handling signals 
such as speech, audio, image, and video in real time. Therefore, many of the latest 
hardware-processing units are equipped with embedded processors for real-time 
signal processing.

The embedded processor must interface with some external hardware such as 
memory, display, and input/output (I/O) devices such as coder/decoders to handle 
real-life signals including speech, music, image, and video from the analog world. 
It also has connections to a power supply (or battery) and interfacing chips for I/O 
data transfer and communicates or exchanges information with other embedded 
processors. A typical embedded system with some necessary supporting hardware 
is shown in Figure 1.1. A single (or multiple) embedded processing core is used to 
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2 Chapter 1 Introduction

perform control and signal processing functions. Hardware interfaces to the process-
ing core include (1) internal memories such as read-only memory (ROM) for boot-
loading code and random-access memory (RAM) and cache for storing code and 
data; (2) a direct memory access (DMA) controller that is commonly used to transfer 
data in and out of the internal memory without the intervention of the main process-
ing core; (3) system peripherals that contain timers, clocks, and power management 
circuits for controlling the processor’s operating conditions; and (4) I/O ports that 
allow the embedded core to monitor or control some external events and process 
incoming media streams from external devices. These supporting hardware units 
and the processing core are the typical building blocks that form an embedded 
system. The embedded processor is connected to the real-world analog devices as 
shown in Figure 1.1. In addition, the embedded processor can exchange data with 
another system or processor by digital I/O channels. In this book, we use hands-on 
experiments to illustrate how to program various blocks of the embedded system 
and how to integrate them with the core embedded processor.

In most embedded systems, the embedded processor and its interfaces must 
operate under real-time constraints, so that incoming signals are required to be 
processed within a certain time interval. Failure to meet these real-time constraints 
results in unacceptable outcomes like noisy response in audio and image applica-
tions, or even catastrophic consequences in some human-related applications like 
automobiles, airplanes, and health-monitoring systems. In this book, the terms 
“embedded processing” and “real-time processing” are often used interchangeably 
to include both concepts. In general, an embedded system gathers data, processes 
them, and makes a decision or responds in real time.

To further illustrate how different blocks are linked to the core embedded pro-
cessor, we use the example of a portable audio player shown in Figure 1.2. In this 
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Figure 1.1 Block diagram of a typical embedded system and its peripherals
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1.1 Embedded Processor: Micro Signal Architecture 3

system, the compressed audio bit stream in Ogg Vorbis format (introduced in 
Chapter 9) is stored in the fl ash memory external to the embedded processor, a 
Blackfi n processor. A decoding program for decoding the audio bit stream is loaded 
from the boot fl ash memory into the processor’s memory. The compressed data are 
streamed into the Blackfi n processor, which decodes the compressed bit stream into 
pulse code-modulated (PCM) data. The PCM data can in turn be enhanced by some 
postprocessing tasks like equalization, reverberation, and three-dimensional audio 
effects (presented in Chapter 9). The external audio digital-to-analog converter 
(DAC) converts the PCM data into analog signal for playback with the headphones 
or loudspeakers.

Using this audio media player as an example, we can identify several common 
characteristics in typical embedded systems. They are summarized as follows:

1. Dedicated functions: An embedded system usually executes a specifi c task 
repeatedly. In this example, the embedded processor performs the task of 
decoding the Ogg Vorbis bit stream and sends the decoded audio samples 
to the DAC for playback.

2. Tight constraints: There are many constraints in designing an embedded 
system, such as cost, processing speed, size, and power consumption. In this 
example, the digital media player must be low cost so that it is affordable to 
most consumers, it must be small enough to fi t into the pocket, and the 
battery life must last for a long time.

3. Reactive and real-time performance: Many embedded systems must con-
tinuously react to changes of the system’s input. For example, in the digital 
media player, the compressed data bit stream can be decoded in a number 
of cycles per audio frame (or operating frequency for real-time processing). 
In addition, the media player also must respond to the change of mode 
selected by the users during playback.
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Ogg Vorbis STREAM
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DECODED AUDIO
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BOOT FLASH
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Figure 1.2 A block diagram of the audio media player (courtesy of Analog Devices, Inc.)
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4 Chapter 1 Introduction

Therefore, the selection of a suitable embedded processor plays an important 
role in the embedded system design. A commonly used approach for realizing signal 
processing tasks is to use fi xed-function and hardwired processors. These are imple-
mented as application-specifi c integrated circuits (ASICs) with DSP capabilities. 
However, these hardwired processors are very expensive to design and produce, as 
the development costs become signifi cant for new process lithography. In addition, 
proliferation and rapid change of new standards for telecommunication, audio, 
image, and video coding applications makes the hardwired approach no longer the 
best option.

An alternative is to use programmable processors. This type of processor allows 
users to write software for the specifi c applications. The software programming 
approach has the fl exibility of writing different algorithms for different products 
using the same processor and upgrading the code to meet emerging standards in 
existing products. Therefore, a product can be pushed to the market in a shorter time 
frame, and this signifi cantly reduces the development cost compared to the hard-
wired approach. A programmable digital signal processor is commonly used in 
many embedded applications. DSP architecture has evolved greatly over the last two 
decades to include many advanced features like higher clock speed, multiple multi-
pliers and arithmetic units, incorporation of coprocessors for control and commu-
nication tasks, and advanced memory confi guration. The complexity of today’s 
signal processing applications and the need to upgrade often make a programmable 
embedded processor a very attractive option. In fact, we are witnessing a market 
shift toward software-based microarchitectures for many embedded media process-
ing applications.

One of the latest classes of programmable embedded signal processors is the 
micro signal architecture (MSA). The MSA core [43] was jointly developed by Intel 
and Analog Devices Inc. (ADI) to meet the computational demands and power con-
straints of today’s embedded audio, video, and communication applications. The 
MSA incorporates both DSP and microcontroller functionalities in a single core. 
Both Intel and ADI have further developed processors based on the MSA architecture 
for different applications. The MSA core combines a highly effi cient computational 
architecture with features usually only available on microcontrollers. These features 
include optimizations for high-level language programming, memory protection, and 
byte addressing. Therefore, the MSA has the ability to execute highly complex DSP 
algorithms and basic control tasks in a single core. This combination avoids the need 
for a separate DSP processor and microcontroller and thus greatly simplifi es both 
hardware and software design and implementation. In addition, the MSA has a very 
effi cient and dynamic power management feature that is ideal for a variety of battery-
powered communication and consumer applications that require high-intensity signal 
processing on a strict power budget. In fact, the MSA-based processor is a versatile 
platform for processing video, image, audio, voice, and data.

Inside the computational block of the MSA, there are two multiply-add units, 
two arithmetic-logic units, and a single shifter. These hardware engines allow the 
MSA-based processor to effi ciently perform several multiply-add operations in 
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1.1 Embedded Processor: Micro Signal Architecture 5

parallel to support complex number crunching tasks. The availability of these hard-
ware units coupled with high clock speed (starts from 300 MHz and rises steadily 
to the 1-GHz range) has created a substantial speed improvement over conventional 
microprocessors. The detailed architecture of the MSA core is explained with simple 
instructions and hands-on experiments in Chapter 5.

The MSA core uses a simple, reduce-instruction-set-computer (RISC)-like 
instruction set for both control and signal processing applications. The MSA also 
comes with a set of multifunction instructions that allows different sizes of op-codes 
to be combined into a single instruction. Therefore, the programmer has the fl exibil-
ity of reducing the code size, and at the same time, maximizing the usage of avail-
able resources. In addition, some special instructions support video and wireless 
applications. This chapter introduces some basic features of programming and 
debugging the MSA core and uses examples and exercises to highlight the important 
features in the software tools. In subsequent chapters, we introduce more advanced 
features of the software tools.

The MSA core is a fi xed-point processor. It operates on fi xed-point fractional 
or integer numbers. In contrast to the fl oating-point processors, such as the Intel 
Pentium processors, fi xed-point processors require special attention to manipulating 
numbers to avoid wrong results or extensive computation errors. The concepts of 
real-time implementation using a fi xed-point processor are introduced and examined 
in Chapter 6.

As explained above, the embedded core must be combined with internal and 
external memories, serial ports, mixed signal circuits, external memory interfaces, 
and other peripherals and devices to form an embedded system. Chapter 7 illustrates 
how to program and confi gure some of these peripherals to work with the core pro-
cessor. Chapter 8 explains and demonstrates several important techniques of opti-
mizing the program written for the MSA core. This chapter also illustrates a unique 
feature of the MSA core to control the clock frequency and supply voltage to the 
MSA core via software, so as to reduce the power consumption of the core during 
active operation.

In this book, we examine the MSA core with the latest Blackfi n processors 
(BF5xx series) from ADI. The fi rst generation of Blackfi n processors is the BF535 
processor, which operates at 300 MHz and comes with L1 and L2 cache memories, 
system control blocks, basic peripheral blocks, and high-speed I/O. The next genera-
tion of Blackfi n processors consists of BF531, BF532, BF533, and BF561 processors. 
These processors operate at a higher clock speed of up to 750 MHz and contain 
additional blocks like parallel peripheral interface, voltage regulator, external 
memory interface, and more data and instruction cache. The BF531 and BF532 are 
the least expensive and operate at 400 MHz, and the BF561 is a dual-core Blackfi n 
processor that is targeted for very high-end applications. The BF533 processor oper-
ates at 750 MHz and provides a good platform for media processing applications. 
Recently released Blackfi n processors include BF534, BF536, and BF537. These 
processors operate at around 400–500 MHz and feature a strong support for Ethernet 
connection and a wider range of peripherals.
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6 Chapter 1 Introduction

Because all Blackfi n processors are code compatible, the programs written for 
one processor can be easily ported to other processors. This book uses BF533 and 
BF537 processors to explain architecture, programming, peripheral interface, and 
implementation issues. The main differences between the BF533 and the BF537 are 
the additional peripheral supports and slightly less internal instruction memory of 
the BF537 processors. Therefore, explanation of the Blackfi n processing core can 
be focused solely on the BF533, and additional sections are introduced for the extra 
peripheral supports in the BF537.

There are several low-cost development tools introduced by ADI. In this book, 
we use the VisualDSP++ simulator to verify the correctness of the algorithm and 
the EZ-KIT (development board that contains the MSA processor, memory, and 
other peripherals) for the Blackfi n BF533 and BF537 processors for real-time signal 
processing and control applications. In addition, we also use a new tool (LabVIEW 
Embedded Module for Blackfi n Processors) jointly developed by National Instru-
ments (NI) and ADI to examine a new approach in programming the Blackfi n pro-
cessor with a blockset programming approach.

1.2 REAL-TIME EMBEDDED SIGNAL PROCESSING

DSP plays an important role in many real-time embedded systems. A real-time 
embedded system is a system that requires response to external inputs within a 
specifi c period. For example, a speech-recognition device sampling speech at 8 kHz 
(bandwidth of 4 kHz) must respond to the sampled signal within a period of 125 μs. 
Therefore, it is very important that we take special attention to defi ne the real-time 
system and highlight some special design considerations that apply to real-time 
embedded signal processing systems.

Generally, a real-time system must maintain a timely response to both internal 
and external signal/data. There are two types of real-time system: hard and soft 
real-time systems. For the hard real-time system, an absolute deadline for the com-
pletion of the overall task is imposed. If the hard deadline is not met, the task has 
failed. For example, in the case of speech enhancement, the DSP software must be 
completed within 125 μs; otherwise, the device will fail to function correctly. In the 
case of a soft real-time system, the task can be completed in a more relaxed time 
range. For example, it is not critical how long it takes to complete a credit card 
transaction. There is no hard deadline by which the transaction must be completed, 
as long as it is within a reasonable period of time.

In this book, we only examine hard real-time systems because all embedded 
media processing systems are hard real-time systems. There are many important 
challenges when designing a hard real-time system. Some of the challenges 
include:

1. Understanding DSP concepts and algorithms. A solid understanding of 
the important DSP principles and algorithms is the key to building a suc-
cessful real-time system. With this knowledge, designers can program and 
optimize the algorithm on the processor using the best parameters and set-
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tings. Chapters 2 to 4 introduce the fundamentals of DSP and provide many 
hands-on experiments to implement signal processing algorithms.

2. Resource availability. The selection of processor core, peripherals, sensors 
and actuators, user interface, memory, development, and debugging tools is 
a complex task. There are many critical considerations that make the deci-
sion tough. Chapter 5 shows the architecture of the Blackfi n processor and 
highlights its strength in developing the embedded system.

3. Arithmetic precision. In most embedded systems, a fi xed-point arithmetic 
is commonly used because fi xed-point processors are cheaper, consume less 
power, and have higher processing speed as compared to fl oating-point pro-
cessors. However, fi xed-point processors are more diffi cult to program and 
also introduce many design challenges that are discussed in Chapter 6.

4. Response time requirements. Designers must consider hardware and soft-
ware issues. Hardware considerations include processor speed, memory size 
and its transfer rate, and I/O bandwidth. Software issues include program-
ming language, software techniques, and programming the processor’s 
resources. A good tool can greatly speed up the process of developing and 
debugging the software and ensure that real-time processing can be achieved. 
Chapter 7 explains the peripherals and I/O transfer mechanism of the Black-
fi n processor, whereas Chapter 8 describes the techniques used in optimizing 
the code in C and assembly programming.

5. Integration of software and hardware in embedded system. A fi nal part of 
this book implements several algorithms for audio and image applications. 
The Blackfi n BF533/BF537 EZ-KITs are used as the platform for integration 
of software and hardware.

To start the design of the embedded system, we can go through a series of 
exercises using the development tools. As we progress to subsequent chapters, more 
design and debugging tools and features of these tools are introduced. This progres-
sive style in learning the tools will not overload the users at the beginning. We use 
only the right tool with just enough features to solve a given problem.

1.3 INTRODUCTION TO THE INTEGRATED 
DEVELOPMENT ENVIRONMENT VISUALDSP++

In this section, we examine the software development tool for embedded signal 
processors. The software tool for the Blackfi n processor is the VisualDSP++ [33] 
supplied by ADI. VisualDSP++ is an integrated development and debugging 
environment (IDDE) that provides complete graphical control of the edit, build, 
and debug processes. In this section, we show the detailed steps of loading a 
project fi le into the IDDE, building it, and downloading the executable fi le into 
the simulator (or the EZ-KIT). We introduce some important features of the 
VisualDSP++ in this chapter, and more advanced features are introduced in sub-
sequent chapters.

1.3 Introduction to the Integrated Development Environment VisualDSP++ 7
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8 Chapter 1 Introduction

1.3.1 Setting Up VisualDSP++

The Blackfi n version of VisualDSP++ IDDE can be downloaded and tested for a 
period of 90 days from the ADI website. Once it is downloaded and installed, a 

VisualDSP++ Environment icon  will appear on the desktop. Double-click 
on this icon to activate the VisualDSP++. A New Session window will appear as 
shown in Figure 1.3. Select the Debug target, Platform, and Processor as shown in 
Figure 1.3, and click OK to start the VisualDSP++. Under the Debug target option, 
there are two types of Blackfi n simulator, a cycle-accurate interpreted simulator and 
a functional compiled simulator. When ADSP_BF5xx Blackfi n Family Simulators
is selected, the cycle-accurate simulator is used. This simulator provides a more 
accurate performance, and thus is usually used in this book. The compiled simulator 
is used when the simulator needs to process a large data fi le. The Processor option 
allows users to select the type of processor. In this book, only the Blackfi n BF533 and 
BF537 processors are covered. However, the code developed for any Blackfi n proces-
sor is compatible with other Blackfi n processors. In Figure 1.3, the ADSP-BF533 
simulator is selected. Alternatively, users can select the ADSP-BF537 simulator.

A VisualDSP++ Version 4 window is shown in Figure 1.4. There are three 
subwindows and one toolbar menu in the VisualDSP++ window. A Project Window
displays the fi les available in the project or project group. The Disassembly window 
displays the assembly code of the program after the project has been built. The 
Output Window consists of two pages, Console and Build. The Console page 
displays any message that is being programmed in the code, and the Build page 
shows any errors encountered during the build process. The toolbar menu contains 
all the tools, options, and modes available in the VisualDSP++ environment. We 
will illustrate these tools as we go through the hands-on examples and exercises in 

Figure 1.3 A New Session window
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this and following chapters. Click on Project Æ Project Options and make sure 
that the right processor is selected for the targeted simulator.

1.3.2 Using a Simple Program 
to Illustrate the Basic Tools

In this section, we illustrate the basic tools and features in the VisualDSP++ IDDE 
through a series of simple exercises. We use a sample project that consists of two 
source fi les written in C for the Blackfi n processor.

HANDS-ON EXPERIMENT 1.1

In this experiment, we fi rst start the VisualDSP++ environment as explained above. Next, 
click on the File menu in the toolbar menu and select Open Æ Project.  .  .  . Look for the 
project fi le exp1_1.dpj under directory c:\adsp\chap1\exp1_1 and double-click on 
the project fi le. Once the project fi le is loaded into the VisualDSP++ environment, we can 
see a list of source fi les. Double-click on dotprod_main.c to see the source code in the 
editor window (right side) as shown in Figure 1.5.

Scroll through the source code in both dotprod_main.c and dotprod.c. This is a 
simple program to perform multiply-accumulate (or dot product) of two vectors, a and b.
From the Settings menu, choose Preferences to open the dialog box as shown in Figure 1.6. 

Toolbar 
menu

Figure 1.4 VisualDSP++ window

1.3 Introduction to the Integrated Development Environment VisualDSP++ 9
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10 Chapter 1 Introduction

Under the General preference, click on Run to main after load and Load executable after 
build. The fi rst option starts executing from the void main() of the program after the 
program is loaded into the simulator. The second option enables the code to be loaded into 
the processor memory after the code is being built. The rest of the options can be left as 
default. Click OK to close the Preferences dialog box.

Now, we are ready to build the project. We can either click on Project Æ Build 

Project in the toolbar menu or press the function key F7. There is a build icon  that 

Figure 1.5 Snapshot of the C fi le dotprod_main.c displayed in the source window

Figure 1.6 Preferences dialog box
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can be used to perform the build operation. The build operation basically combines the 
compile, assembler, and link processes to obtain an executable fi le (.dxe). Users will fi nd 
the executable fi le exp1_1.dxe being created in directory c:\adsp\chap1\exp1_1\
debug after the build operation. Besides the Build Project option, there is the Rebuild 

All option (or  icon). The Rebuild All option builds the project regardless of whether 
the project build is up to date. The message Build completed successfully is 
shown in the Build page of the Output Window if the build process detects no error. 
However, users will notice that the build process detects an undefi ned identifi er, as shown 
in Figure 1.7.

Users can double-click on the error message (in red), and the cursor will be placed on 
the line that contains the error. Correct the typo by changing results to result and save 
the source fi le by clicking on File Æ Save Æ File dotprod_main.c. The project is now built 
without any error, as indicated in the Output window.

Once the project has been built, the executable fi le exp1_1.dxe is automatically 
downloaded into the target (enabled in the Preferences dialog box), which is the BF533 (or 
BF537) simulator. Click on the Console page of the Output Window. A message appears 
stating that the executable fi le has been completely loaded into the target, and there is a 
Breakpoint Hit at <ffa006f8>. A solid red circle (indicates breakpoint) and a yellow 
arrow (indicates the current location of the program pointer) are positioned at the left-hand 
edges of the source code and disassembly code, as shown in Figure 1.8.

The VisualDSP++ automatically sets two breakpoints, one at the beginning and the 
other at the end of the code. The location of the breakpoint can be viewed by clicking on 
Setting Æ Breakpoints as shown in Figure 1.9. Users can click on the breakpoint under 
the Breakpoint list and click the View button to fi nd the location of the breakpoint in the 

Figure 1.7 Error message appears after building the project

Editor window 
Disassembly 
window

Red circle and yellow arrow 

Figure 1.8 Breakpoint displayed in both editor and disassembly windows
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Disassembly window. The breakpoint can be set or cleared by double-clicking on the gray 
gutter (Fig. 1.8) next to the target code in the editor and disassembly window.

The project is now ready to run. Click on the run button  or Debug Æ Run (F5). 
The simulator computes the dot product (sum of products or multiply-accumulate) and dis-
plays the result in the Console page of the Output Window. What is the answer for the dot 
product between arrays a and b?

Modify the source fi les to perform the following tasks:

1. Add a new 20-element array c; perform the dot product computation between arrays 
a and c and display the result.

2. Recompute the dot product of the fi rst 10 elements in the arrays.

3. To obtain the cycle count of running the code from start to fi nish, we can use the 
cycle registers. Simply click on Register Æ Core Æ Cycles. Reload the program by 
clicking on File Æ Reload Program. The program pointer will reset to the begin-
ning of the program. In the Cycle window, clear the CYCLE register value to 0 to 
initialize the cycle counter. Run the program and note the cycle count. Note: To 
display the cycle count in unsigned integer format, right-click on the Cycle window 
and select unsigned integer.

1.3.3 Advanced Setup: Using the 
Blackfi n BF533 or BF537 EZ-KIT

In the previous hands-on experiments, we ran the program with the BF533 (or 
BF537) simulator. In this section, we perform the same experiment with the Blackfi n 

Figure 1.9 Breakpoint dialog box
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BF533 (or BF537) EZ-KIT. The EZ-KIT board is a low-cost hardware platform that 
includes a Blackfi n processor surrounded by other devices such as audio coder/
decoder (CODEC), video encoders, video decoders, fl ash, synchronous dynamic 
RAM (SDRAM), and so on. We briefl y introduce the hardware components in the 
EZ-KIT and show the differences between the BF533 and BF537 boards.

Figure 1.10 shows a picture of the BF533 EZ-KIT [29]. This board has four 
audio input and six audio output channels via the RCA jacks. In addition, it can 
also encode and decode three video inputs and three video outputs. Users can 
also program the four general-purpose push buttons (SW4, SW5, SW6, and 
SW7) and six general-purpose LEDs (LED4–LED9). The EZ-KIT board is inter-
faced with the VisualDSP++ (hosted on personal computer) via the USB interface 
cable.

Figure 1.11 shows a picture of the BF537 EZ-KIT [30]. This board consists of 
stereo input and output jack connectors. However, the BF537 EZ-KIT does not have 
any video I/O. Instead, it includes the IEEE 802.3 10/100 Ethernet media access 
control and controller area network (CAN) 2.0B controller. Similar to the BF533 
EZ-KIT, the BF537 EZ-KIT has four general-purpose push buttons (SW10, SW11, 
SW12, and SW13) and six general-purpose LEDs (LED1–LED6). Other feature 
differences between BF533 and BF537 EZ-KITs are highlighted in subsequent 
chapters.

Audio
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Figure 1.10 The BF533 EZ-KIT
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This section describes the setup of the BF533 EZ-KIT [31]. The EZ-KIT’s 
power connector is fi rst connected to the power supply. Turn on the power supply 
and verify that the green LED is lit and LEDs 4–9 continue to roll (indicating that 
the board is not linked to the software). Next, the USB cable is connected from the 
computer to the EZ-KIT board. The window environment recognizes the new hard-
ware and launches the Add New Hardware Wizard, which installs fi les located on 
the EZ-KIT CD-ROM. Once the USB driver is installed successfully, the yellow 
LED (USB monitor) should remain lit. A similar setup can also be carried out for 
the BF537 EZ-KIT [32]. Users can refer to the BF533 (or BF537) EZ-KIT Evalua-
tion System Manual for more details on the settings.

The VisualDSP++ environment can be switched to the EZ-KIT target by the 
following steps. Click on Session Æ New Session. A New Session window will 
appear. Change the debug target and platform to that shown in Figure 1.12 (setup 
for the BF533 EZ-KIT). Click OK and note the change in the title bar of the 
VisualDSP++. We are now ready to run the same project on the BF533 EZ-KIT. 
Similarly, if the BF537 EZ-KIT is used, select the desired processor and its 
EZ-KIT.

Build the project and run the executable fi le on the EZ-KIT, using the same 
procedure as before. Do you notice any difference in the building process on the 
EZ-KIT platform compared to the simulator? Next, obtain the cycle count in running 
the same program on the EZ-KIT. Is there any change in the cycle count as com-
pared to the simulator?
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Figure 1.11 The BF537 EZ-KIT
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1.4 MORE HANDS-ON EXPERIMENTS

We have learned how to load a project fi le into the Blackfi n simulator and EZ-KIT. 
In this section, we create a new project fi le from scratch and use the graphic features 
in the VisualDSP++ environment. The following experiments apply to both BF533 
and BF537 EZ-KITs.

HANDS-ON EXPERIMENT 1.2

1. Using the previous source fi les as templates, create two new source fi les 
vecadd_main.c and vecadd.c to perform vector addition of two arrays a
and b. The result is saved in the third array c. Use File Æ New Æ File to 
create a blank page for editing in the VisualDSP++. Save these fi les in directory 
c:\adsp\chap1\exp1_2.

2. From the File menu, choose New and then Project to open the Project Wizard.
Enter the directory and the name of the new project as shown in Figure 1.13. Click 
on Finish and Yes to create a new project.

3. An empty project is created in the Project window. Click on Project Æ Project 
Options to display the Project Options dialog box as shown in Figure 1.14. The 
default settings are used, and the project creates an executable fi le (.dxe). Because 
Settings for confi guration is set to Debug, the executable fi le also contains debug 
information for debugging.

4. Click on Compile Æ General (1), and click on Enable optimization to enable the 
optimization for speed as shown in Figure 1.15. Click OK to apply changes to the 
project options.

5. To add the source fi les to the new project, click on Project Æ Add to Project Æ
File(s).  .  .  .  Select the two source fi les and click Add. The sources fi les are now 
added to the project fi le.

Figure 1.12 New Session window setup for BF533 EZ-KIT

1.4 More Hands-on Experiments 15
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16 Chapter 1 Introduction

Figure 1.13 Project Wizard window

Figure 1.14 Project Options dialog box
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6. Build the project by following the steps given in Hands-On Experiment 1.1. Run the 
project and verify that the correct result in array c is displayed in the Output 
Window.

HANDS-ON EXPERIMENT 1.3

1. In this hands-on experiment, we introduce some useful graphic features in the 
VisualDSP++ environment. We plot the three arrays, a, b, and c, used in the previ-
ous experiment.

2. Make sure that the project is built and loaded into the simulator. Click on View Æ
Debug Windows Æ Plot Æ New. A Plot Confi guration dialog box appears as 
shown in Figure 1.16. We type in a and 20 and select int in Address, Count, and 

Figure 1.15 Project wizard option for compile

Figure 1.16 Plot Confi guration dialog box

1.4 More Hands-On Experiments 17
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18 Chapter 1 Introduction

Data boxes, respectively. Click on Add to add in the array a. Use similar steps to 
plot the other two arrays. Modify the plot settings to make a graph as displayed in 
Figure 1.17.

3. Finally, add in the other two arrays in the same plot or create two new plots.

So far, we have learned how to program in C and run the code with the Blackfi n 
simulator and EZ-KITs. In the following section, we introduce a new graphical 
development environment, LabVIEW Embedded Module for Blackfi n Processors, 
jointly developed by NI and ADI. This new tool provides an effi cient approach to 
prototyping embedded signal processing systems. This new rapid prototyping tool 
uses a graphical user interface (GUI) to control and select parameters of the signal 
processing algorithms and view updates of graphical plots on the fl y.

1.5 SYSTEM-LEVEL DESIGN USING A 
GRAPHICAL DEVELOPMENT ENVIRONMENT

Graphical development environments, such as National Instruments LabVIEW, 
are effective means to rapidly prototype and deploy developments from indivi-
dual algorithms to full system-level designs onto embedded processors. The graphi-
cal data fl ow paradigm that is used to create LabVIEW programs or virtual 
instruments (VIs) allows for rapid, intuitive development of embedded code. This 
is due to its fl owchart-like syntax and inherent ease in implementing parallel 
tasks.

In this section and sections included at the end of each subsequent chapter, we 
present a common design cycle that engineers are using to reduce product develop-
ment time by effectively integrating the software tools they use on the desktop for 
deployment and testing. This will primarily be done with the LabVIEW Embedded 
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Figure 1.17 Display of array a
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Development Module for the ADI Blackfi n BF533 and BF537 processors which is 
an add-on module for LabVIEW to target and deploy to the Blackfi n processor. 
Other LabVIEW add-ons, such as the Digital Filter Design Toolkit, may also be 
discussed.

Embedded system developers frequently use computer simulation and design 
tools such as LabVIEW and the Digital Filter Design Toolkit to quickly develop a 
system or algorithm for the needs of their project. Next, the developer can leverage 
his/her simulated work on the desktop by rapidly deploying that same design with 
the LabVIEW Embedded Module for Blackfi n Processors and continue to iterate on 
that design until the design meets the design specifi cations. Once the design has 
been completed, many developers will then recode the design using VisualDSP++
for the most effi cient implementation. Therefore, knowledge of the processor archi-
tecture and its C/assembly programming is still important for a successful imple-
mentation. This book provides balanced coverage of both high-level programming 
using the graphical development environment and conventional C/assembly pro-
gramming using VisualDSP++.

In the fi rst example using this graphical design cycle, we demonstrate the 
implementation and deployment of the dot product algorithm presented in Hands-On 
Experiment 1.1 using LabVIEW and the LabVIEW Embedded Module for Blackfi n 
Processors.

1.5.1 Setting up LabVIEW and LabVIEW 
Embedded Module for Blackfi n Processors

LabVIEW and the LabVIEW Embedded Module for Blackfi n Processors (trial 
version) can be downloaded from the book companion website. A brief tutorial on 
using these software tools is included in Appendix A of this book. Once they are 
installed, double-click on National Instruments LabVIEW 7.1 Embedded Edition
under the All Programs panel of the start menu. Hands-On Experiment 1.4 provides 
an introduction to the LabVIEW Embedded Module for Blackfi n Processors to 
explore concepts from the previous hands-on experiments.

HANDS-ON EXPERIMENT 1.4

This exercise introduces the NI LabVIEW Embedded Module for Blackfi n Processors and 
the process for deploying graphical code on the Blackfi n processor for rapid prototyping and 
verifi cation. The dot product application was created with the same vector values used pre-
viously in the VisualDSP++ project fi le, exp1_1.dpj. This experiment uses arrays, func-
tions, and the Inline C Node within LabVIEW.

From the LabVIEW Embedded Project Manager window, open the project fi le 
DotProd – BF5xx.lep located in directory c:\adsp\chap1\exp1_4. Next, double-
click on DotProd_BF.vi from within the project window to open the front panel. The front 
panel is the graphical user interface (GUI), which contains the inputs and outputs of the 

1.5 System-Level Design Using a Graphical Development Environment 19
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Figure 1.18 Front panel of DotProd.vi

Figure 1.19 Block diagram of DotProd.vi

program as shown in Figure 1.18. Select View Æ Block Diagram to switch to the LabVIEW 
block diagram, shown in Figure 1.19, which contains the source code of the program. The 
dot product is implemented by passing two vectors (or one-dimensional arrays) to the Dot 
Product function. The result is then displayed in the Dot Product Result indicator. The 
value is also passed to the standard output buffer, because controls and indicators are only 
available in JTAG debug or instrumented debug modes. The graphical LabVIEW code 
executes based on the principle of data fl ow, in this case from left to right.

This graphical approach to programming makes this program simple to implement and 
self-documenting, which is especially helpful for larger-scale applications. Also note the use 
of the Inline C Node, which allows users to test existing C code within the graphical frame-
work of LabVIEW.

Now run the program by clicking on the Run arrow  to calculate the dot product 
of the two vectors. The application will be translated, linked, compiled, and deployed to the 
Blackfi n processor. Open the Processor Status window and select Output to see the numeric 
result of the dot product operation.

Another feature available for use with the LabVIEW Embedded Module for Blackfi n 
Processors is instrumented debug mode, which allows users to probe wires on the LabVIEW 
block diagram and interact with live-updating front panel controls and indicators while the 
code is actually running on the Blackfi n. Instrumented debug can be accomplished through 
TCP (Ethernet) on the BF537 and through JTAG (USB) on both the BF537 and BF533 pro-
cessors. To use instrumented debug, run the application in debug mode, using the Debug

button . Try changing vector elements on the front panel and probing wires on the block 
diagram. For additional confi guration, setup, and debugging information, refer to Getting 
Started with the LabVIEW Embedded Module for Analog Devices Blackfi n Processors [52], 
found in the book companion website.
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1.6 MORE EXERCISE PROBLEMS

1. List 10 embedded systems in Table 1.1 that are required to perform some forms of DSP. 
Explain the signal processing tasks.

2. Survey the key components in a typical iPod player.

3. Survey the key components in a typical digital camera.

4. Survey the differences between fi xed-function processors and programmable processors. 
State the advantages and disadvantages of these processors.

5. In Hands-on Experiment 1.1, C language is used to program the Blackfi n processor. A 
low-level assembly program can also be used to compute the dot product. The low-level 
assembly code uses a standard set of assembly syntaxes. These assembly syntaxes are 
introduced in Chapter 5 onward. Use the Blackfi n simulator (either BF533 or BF537) to 
create a new project fi le that includes the source codes available in directory c:\adsp\
chap1\problem1_5. Examine the source fi les and understand the differences between 
the C function code in Experiment 1.1 and the assembly function code listed in this 
exercise. Benchmark and compare the cycle count for performing the same dot product 
with assembly code with that obtained with C code. Also benchmark the C code with 
optimization enabled.

6. Implement the same project in the Blackfi n (either BF533 or BF537) EZ-KIT. Any dif-
ference in the cycle counts compared to the Blackfi n simulator?

Table 1.1 DSP Tasks in Embedded Systems

Embedded Systems DSP Tasks

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

1.6 More Exercise Problems 21
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22 Chapter 1 Introduction

7. The Fibonacci series can be computed by adding the two successive numbers to form the 
next number in the series. Generate the Fibonacci series for the fi rst 10 numbers of 1, 1, 
2, 3, 5, 8, 13, 21, 34, 55  .  .  .  , using the Blackfi n simulator, starting from the fi rst two 
numbers. Verify your answer in the Blackfi n memory window.

8. Refer to the ADI manual on getting started with VisualDSP++ [34] and go through 
all the experiments described in the manual. The manual can be found in the ADI 
website.
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Chapter 2

Time-Domain Signals 
and Systems

This chapter uses several noise reduction examples and experiments to introduce 
important time-domain techniques for processing digital signals and analyzing 
simple DSP systems. The detailed analysis and more advanced methods are intro-
duced in Chapter 3, using frequency-domain techniques.

2.1 INTRODUCTION

With the easy accessibility of increasingly powerful personal computers and the 
availability of powerful and easy-to-use MATLAB [48] software for computer 
simulations, we can now learn DSP concepts more effectively. This chapter uses 
hands-on methods to introduce fundamental time-domain DSP concepts because 
it is more interesting to examine real-world DSP applications with the help of 
interactive MATLAB tools.

In particular, this chapter uses the latest powerful graphical user interface 
(GUI) tool called Signal Processing Tool, which comes with the Signal Processing 
Toolbox [49]. Because each experiment requires a set of general problem-solving 
skills and related DSP principles, we provide multiple contexts including the necessary 
DSP theory, computer simulations, and hands-on experiments for achieving thorough 
understanding. Most of the DSP subjects are covered in the introduction to hands-on 
exercises and experiments. These experiments are organized to introduce DSP 
subjects from the simple introductory subjects in this chapter and gradually introduce 
more complicated experiments and applications in subsequent chapters. Each 
experiment introduces and applies just enough information at that time to complete 
the required tasks. This is similar to using a “spiral learning” technique to continually 
circle back and cover concepts in more and more depth throughout Chapters 2, 3, 
and 4.

25

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and 
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.
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26 Chapter 2 Time-Domain Signals and Systems

Projects introduced in this chapter are based on designing simple fi lters to 
remove broadband (white) noise that corrupts the desired narrowband (sinusoidal) 
signal. First, a MATLAB example shows how to generate a digital signal and use 
it to introduce a sampling theorem. A quiz is provided immediately afterward to 
ensure that we understand the relationship between analog and digital worlds. A 
hands-on experiment implements the moving-average fi lter with length L = 5, 10, 
and 20, using the MATLAB code. We fi nd that when the fi lter is working for L =
5, it reduces more noise when L = 10 with higher undesired signal attenuation, but 
are surprised to learn that the fi lter output approaches zero when L = 20. Finally, 
for more complicated problems of adding different noises (sinusoidal and white) to 
the speech, we have to enhance the desired speech. We use the simple moving-
average fi lter but fail. Now our interest is piqued to learn more advanced DSP 
techniques in Chapters 3 and 4. In this fashion, we learn important DSP concepts 
repeatedly at each project by doing hands-on experiments and exercises. We con-
tinually circle back the DSP subjects and cover concepts in more and more depth 
throughout the book.

2.2 TIME-DOMAIN DIGITAL SIGNALS

A digital signal x(n) is defi ned as a function of time index n, which corresponds to 
time at nTs seconds if the signal is sampled from an analog signal x(t) with the 
sampling period Ts seconds. The sampling period can be expressed as

T
f

s
s

,=
1

(2.2.1)

where fs is the sampling frequency (or sampling rate) in hertz (or cycles per second). 
For many real-world applications, the required sampling rates are defi ned by the 
given applications. For example, the sampling rate for telecommunications is 
8,000 Hz (or 8 kHz), and for compact discs (CDs) it is 44.1 kHz.

2.2.1 Sinusoidal Signals

An analog sine wave can be expressed as

x t A ft A t( ) = ( ) = ( )sin sin2π Ω ,  (2.2.2)

where A is the amplitude, f is the frequency of the sine wave in hertz, and Ω = 2πf
is the frequency in radians per second. If we sample this analog sine wave with 
sampling rate fs, we obtain a digital sine wave x(n) with samples at time 0, Ts,
2Ts,  .  .  .  nTs,  .  .  .  . This digital signal can be expressed by replacing t with nTs in 
Equation 2.2.2 as

x n x nT A fnT A n( ) ≡ ( ) = ( ) = ( )s s ,sin sin2π ω  (2.2.3)

where the digital frequency ω in radians per sample (or simply radians) is 
defi ned as
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2.2 Time-Domain Digital Signals 27

ω π π π ω π= = − ≤ ≤2 2f T f fs s, .  (2.2.4)

It is important to note that the sampling rate must satisfy the Nyquist sampling 
theorem expressed as

f fs N ,≥ 2  (2.2.5)

where fN is the maximum frequency component (or bandwidth) of the signal, which 
is also called a Nyquist frequency. If fs < 2fN, frequency components higher than 
fs/2 will fold back to the frequency range from 0 Hz to fs/2 Hz, which results in a 
distortion called aliasing. The sampling theorem implies that digital signals can only 
have meaningful representation of signal components from 0 Hz to fs/2 Hz.

EXAMPLE 2.1

We can generate a 200-Hz sine wave that is sampled at 4,000 Hz (or 4 kHz) using the 
MATLAB program example2_1.m. A partial code is listed as follows:

fs = 4000; % sampling rate is 4 kHz
f = 200; %  frequency of sinewave is 200 Hz
n = 0:1:fs/f; %  time index n that cover one cycle
xn = sin(2*pi*f*n/fs); % generate sinewave
plot(n,xn,’-o’);grid on;

The generated sine wave is shown in Figure 2.1, in which the digital samples are marked by 
open circles. Digital signal x(n) consists of those discrete-time samples; however, we usually 

Time index nTs
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x(t), analog waveform

sampling period, Ts

200 Hz sine wave sampled at 4,000Hz
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Figure 2.1 One cycle of 200-Hz sine wave sampled at 4,000 Hz. Signal samples are marked by 
open circles
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28 Chapter 2 Time-Domain Signals and Systems

plot a digital signal by connecting those samples with a line such as x(t) shown in 
Figure 2.1.

Based on Equation 2.2.1, the sampling period Ts = 1/4,000 s. As shown in Figure 2.1, 
one cycle of sine wave consists of 20 samples. Therefore, the period of sine wave is 
(1/4,000) × 20 = 1/200 s, which is equivalent to the frequency of 200 Hz.

QUIZ 2.1

1. If the sine wave shown in Figure 2.1 is obtained by sampling an analog sine 
wave with a sampling rate of 100 Hz, what is the frequency of the sine wave? 
Why?

2. If the frequency of the sine wave shown in Figure 2.1 is 20 Hz, what is the 
sampling period used for obtaining these digital samples? Why?

3. If we want to produce 3 s of analog sine wave by converting a digital sine 
wave with a digital-to-analog (D/A) converter (DAC) with a sampling rate 
of 4 kHz, how many digital samples are needed?

Quiz 2.1 shows that the frequency of a digital signal is dependent on the sam-
pling rate fs. Therefore, it is more convenient to use the normalized digital frequency 
defi ned as

F f f F≡ ( ) − ≤ ≤s ,2 1 1  (2.2.6)

with unit cycles per sample. Comparing this defi nition with Equation 2.2.4, we show 
that ω = Fπ. For example, the digital frequency of the sine wave shown in Figure 
2.1 is F = 0.1 or ω = 0.1π.

In many real-world applications, the operation of sampling analog signals is 
implemented by an analog-to-digital (A/D) converter (ADC). Similarly, the opera-
tion of converting digital signals to analog forms is realized by a D/A converter. 
These devices are introduced in Section 2.7 for real-time experiments.

2.2.2 Random Signals

The sine wave shown in Figure 2.1 is a deterministic signal because it can be defi ned 
exactly by a mathematical equation (Eq. 2.2.3). In practice, the signals encountered 
in the real world such as speech, music, and noise are random signals. In addition, 
the desired signals are often corrupted by noises such as thermal noise generated 
by thermal agitation of electrons in electrical devices. To enhance the signals, we 
must use different techniques based on the characteristics of signals and noise to 
reduce the undesired noise components.

In many practical applications, a complete statistical characterization of a 
random variable may not be available. The useful measures associated with a 
random signal are mean, variance, and autocorrelation functions. For stationary 
signals, the mean (or expected value) is independent of time and is defi ned as
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m E x n

N
x x x N

N
x n

x

n

N

= ( )[ ]

≅ ( ) + ( ) + + −( )[ ] = ( )
=

−

∑1
0 1 1

1

0

1

. . . , (2.2.7)

where the expectation operator E[.] extracts an average value. The variance is 
defi ned as

σx x xE x n m E x n m2 2 2 2= ( ) −( )⎡⎣ ⎤⎦ = ( )[ ]− .  (2.2.8)

Note that the expected value of the square of a random variable is equivalent to the 
average power. The MATLAB function mean(x) gives the average of the data in 
vector x. The function y=var(x) returns the variance of the values in the vector 
x, and the function std(x) computes the standard derivation σx.

The mean of a uniformly distributed random variable in the interval (X1, X2) is 
given as

m
X X

x =
+2 1

2
. (2.2.9)

The variance is

σx
X X2 2 1

2

12
=

−( )
. (2.2.10)

The MATLAB function rand generates arrays of random numbers whose elements 
are uniformly distributed in the interval (0, 1). The function rand with no argu-
ments is a scalar whose value changes each time it is referenced. In addition, 
MATLAB provides the function randn for generating normally distributed random 
numbers with zero mean and unit variance.

QUIZ 2.2

1. Compute the mean and variance of random numbers generated by the 
MATLAB function rand.

2. How do we generate the zero mean (mx = 0) and unit variance (σ2
x = 1) 

random numbers that are uniformly distributed with rand?

EXAMPLE 2.2

Similar to Example 2.1, we generate 60 samples of a sine wave that is corrupted by noise, 
using the MATLAB script example2_2.m. The generated noisy samples are saved in data 
fi le sineNoise.dat, and the original sine wave and the corrupted sine wave are shown in 
Figure 2.2.
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30 Chapter 2 Time-Domain Signals and Systems

EXERCISE 2.1

1. Modify the MATLAB code example2_2.m to generate 3 s of sine wave 
and 3 s of sine wave corrupted by noise, and save the generated data in fi les 
sine3sec.dat and sineNoise3sec.dat, respectively, using ASCII 
format.

2. Use the function save filename x to save the generated signals to the binary 
fi les named sine3sec.mat and sineNoise3sec.mat. The MATLAB 
code for generating these data fi les is given in sineNoiseGen.m.

3. In sineNoiseGen.m, we use the following code to mix sine wave with 
noise

yn = xn + 0.25*randn(size(n));

The number 0.25 determines the signal-to-noise ratio (SNR), which can be 
defi ned as

SNR
P

P
x

v
= ⎛

⎝
⎞
⎠10 10log , (2.2.11)

where Px and Pv denote the powers of signal and noise, respectively. 
Modify the MATLAB code by replacing 0.25 with values 0.1, 0.5, 
and 1, and save the generated signals in fi les sineNoise3sec_01.mat,
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Figure 2.2 Original (open circles) and corrupted (x) signals
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2.2 Time-Domain Digital Signals 31

sineNoise3sec_05.mat, and sineNoise3sec_1.mat, respectively. 
The modifi ed MATLAB program is given as sineNoiseGenSNR.m.

HANDS-ON EXPERIMENT 2.1

In this experiment, we use a hands-on exercise to introduce the Signal Processing Tool 
(SPTool), which is an interactive GUI software for digital signal processing. The SPTool can 
be used to analyze signals, design and analyze fi lters, fi lter the signals, and analyze the 
spectrum of signals. We can open this tool by typing

sptool

in the MATLAB command window. The SPTool main window appears as shown in 
Figure 2.3.

As indicated by Figure 2.3, there are three main functions that can be accessed within 
the SPTool: The Signal Browser is for analyzing time-domain signals. We can also play 
portions of signals with the computer’s audio hardware. The Filter Designer is for designing 
or editing digital fi lters. This GUI supports most of the Signal Processing Toolbox fi lter 
design methods. Additionally, we can design a fi lter by using the pole/zero editor (introduced 
in Chapter 3) to graphically place poles and zeros on the z-plane. The Spectrum Viewer
uses the spectral estimation methods supported by the Signal Processing Toolbox to estimate 
the power spectral density of signals.

In this experiment, we use the Signal Browser for listening and viewing the digital 
signals. Signals from the workspace or fi le can be loaded into the SPTool by clicking on File 
→ Import. An Import to SPTool window appears and allows the user to select the data 

Figure 2.3 SPTool startup window
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32 Chapter 2 Time-Domain Signals and Systems

from the fi le or workspace. For example, we can view the sine wave generated in Exercise 
2.1 that was saved in the fi le sine3sec.mat. As shown in Figure 2.4, we click on the radio 
button From Disk MAT-fi le Name in the Source region, browse to the folder that contains 
the data fi le, and select the fi le sine3sec.mat. From the File Contents region, we highlight 
xn (signal vector defi ned in sineNoiseGen.m) and click on the top arrow to import it to 
the Data box. We then select fs (sampling rate) and click on the bottom arrow to import it 
to the Sampling Frequency box. Note that the default vector name used by SPTool is 
sig1, as shown in the Name box at the bottom right corner. We can change the name 
by entering a meaningful name into this box. Finally, we click on OK and the vector 
name sig1 is displayed in the Signals region.

To view the signal, we simply highlight the signal sig1, and click on View in the 
Signals region of Figure 2.3. The Signal Browser window, shown in Figure 2.5, allows the 
user to zoom-in and zoom-out the signal, read the data values via markers, display format, 
and even play the selected signal with the computer’s sound card. For example, we can 

click on the Play Selected Signal button  to play the 3-s tone in sig1 with the 
computer’s sound card.

EXERCISE 2.2

1. Use different tools available on the Signal Browser to evaluate the imported 
signal sig1.

2. Import the saved fi le sineNoiseGen.mat from Exercise 2.1 to the SPTool, 
name it sig2, and use Signal Browser to evaluate the noisy signal.

Figure 2.4 Import to SPTool window
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3. Play both sine wave sig1 and noisy sine wave sig2 and observe their 
differences.

4. Select both sig1 and sig2 in the SPTool window, and click on View to 
evaluate these two signals in the same Signal Browser window. Note that 
you may need to zoom in to see the differences between these two signals 
in details.

5. Repeat Exercise 2 for signals saved in fi les sineNoise3sec_01.mat,
sineNoise3sec_05.mat, and sineNoise3sec_1.mat.

2.3 INTRODUCTION TO DIGITAL SYSTEMS

A DSP system (or algorithm) performs operations on digital signals to achieve pre-
determined objectives. In some applications, the single-input, single-output DSP 
system processes an input signal x(n) to produce an output signal y(n). The general 
relationship between x(n) and y(n) is described as

y n F x n( ) = ( )[ ],  (2.3.1)

where F denotes the function of the digital system. A block diagram of the DSP 
system defi ned in Equation 2.3.1 is illustrated in Figure 2.6. The processing of 
digital signals can be described in terms of combinations of fundamental operations 

Figure 2.5 Signal Browser window
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including addition (or subtraction), multiplication, and time shift (or delay). 
Therefore, a DSP system consists of the interconnection of adders, multipliers, and 
delay units.

A digital fi lter alters the spectral content of input signals in a specifi ed manner. 
Common fi ltering objectives include removing noises, improving signal quality, 
extracting information from signals, and separating signal components that have 
been previously combined. A digital fi lter is a mathematical algorithm that can be 
implemented in digital hardware and software and operates on a digital input signal 
for achieving fi ltering objectives. A digital fi lter can be classifi ed as being linear or 
nonlinear, time invariant or time varying.

The objective of this section is to introduce several simple digital systems for 
reducing noises and thus enhancing the desired signals.

2.3.1 Moving-Average Filters: 
Structures and Equations

As shown in Figure 2.2, the effect of noise causes signal samples to fl uctuate from 
the original values; thus the noise may be removed by averaging several adjacent 
samples. The moving (running)-average fi lter is a simple example of a digital fi lter. 
An L-point moving-average fi lter is defi ned by the following input/output (I/O) 
equation

y n
L

x n x n x n L
L

x n l
l

L

( ) = ( ) + −( ) + + − +( )[ ] = −( )
=

−

∑1
1 1

1

0

1

. . . , (2.3.2)

where each output signal y(n) is the average of L consecutive input signal 
samples.

EXAMPLE 2.3

To remove the noise that corrupts the sine wave as shown in Figure 2.2, we implement the 
moving-average fi lter defi ned in Equation 2.3.2 with L = 5, 10, and 20, using the MATLAB 
code example2_3.m. The original sine wave, noisy sine wave, and fi lter output for L = 5 
are shown in Figure 2.7. This fi gure shows that the moving-average fi lter with L = 5 is able 
to reduce the noise, but the output signal is different from the original sine wave in terms of 
amplitude and phase. In addition, the output waveform is not as smooth as the original sine 
wave, which indicates that the moving-average fi lter has failed to completely remove all the 
noise components.

In addition, we plot the fi lter outputs for L = 5, 10, and 20 in Figure 2.8 for comparison. 
This fi gure shows that the fi lter with L = 10 can remove more noise than the fi lter with 

Digital system 
x(n) y(n)

Figure 2.6 General block diagram of digital system
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Figure 2.7 Performance of moving-average fi lter, L = 5

2.3 Introduction to Digital Systems 35

Time index n

A
m

pl
itu

de
 A

0 10 20 30 40 50 60 70 80
–1

–0.5

0

0.5

1

1.5
Moving-average filters, L = 5, 10, 20

L = 5

L = 10

L = 20

Figure 2.8 Moving-average fi lter outputs, L = 5, 10, and 20

TEAM LinG



36 Chapter 2 Time-Domain Signals and Systems

L = 5 because the fi lter output is smoother for L = 10; however, the amplitude of the fi lter 
output is further attenuated. When the fi lter length L is increased to 20, the sine wave 
component is attenuated completely.

QUIZ 2.3

1. Figure 2.7 shows that the fi ltered (L = 5) output sine wave has an amplitude 
similar to that of the original sine wave, but is shifted to the right by 2 
samples. Figure 2.8 also shows that the fi ltered output for L = 10 has further 
shifted to the right. Why?

2. Figure 2.8 shows that the fi lter with L = 10 produces smoother output than 
the fi lter with L = 5. Why? However, the amplitude of the output sine wave 
is further attenuated. Why?

3. Why does the fi lter output with L = 20 approach 0 after 20 samples? (Hint: 
Plot 20 samples of the waveform and you may fi nd it exactly covers one 
period of sine wave. This question is examined further in Chapter 3 with 
frequency-domain techniques.)

We answer some questions in this chapter; however, the best answer is related 
to the frequency response of the fi lter, which is introduced in Chapter 3.

EXERCISE 2.3

1. Modify the MATLAB code example2_3.m by decreasing SNR as 
follows:

xn = sn + randn(size(n));

Run the code and compare the fi lter outputs with those given in Example 
2.3. We observe that the moving-average fi lter has failed to reduce the noise 
to an acceptable level, even with L = 10. Why?

2. Modify example2_3.m by increasing the length of signal from 80 samples 
to 3 s of samples. Run the code with different SNR settings, and save the 
results using .mat format.

3. Import the saved data fi les generated in Exercise 2 into SPTool, and evaluate 
and play these waveforms.

Implementation of Equation 2.3.2 requires L − 1 additions and L memory loca-
tions for storing signal sequence x(n), x(n − 1),  .  .  .  , x(n − L + 1) in a memory buffer. 
As illustrated in Figure 2.9, the signal samples used to compute the output signal 
y(n) at time n are L samples included in the window at time n. These samples are 
almost the same as the samples used in the previous window at time n − 1 to compute 
y(n − 1), except that the oldest sample x(n − L) in the window at time n − 1 is 
replaced by the newest sample x(n) of the window at time n. Thus Equation 2.3.2 
can be computed as
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y n y n
L

x n x n L( ) = −( ) + ( ) − −( )[ ]1
1

. (2.3.3)

Therefore, the averaged signal, y(n), can be computed recursively based on the 
previous result y(n − 1). This recursive equation can be realized by using only 
two additions. However, we need L + 1 memory locations for keeping L + 1 
signal samples {x(n), x(n − 1)  .  .  .  x(n − L)} and another memory location for storing 
y(n − 1).

The recursive equation given in Equation 2.3.3 is often used in DSP algorithms, 
which involves the output feedback term y(n − 1) for computing current output signal 
y(n). This type of fi lters is discussed further in Chapter 3.

2.3.2 Digital Filters

The I/O equation given in Equation 2.3.2 can be generalized as a difference equation 
with L parameters, expressed as

y n b x n b x n b x n L

b x n l

L

l
l

L

( ) = ( ) + −( ) + + − +( )

= −( )

−

=

−

∑
0 1 1

0

1

1 1. . .

, (2.3.4)

where bl are the fi lter coeffi cients. The moving-average fi lter coeffi cients are all 
equal as bl = 1/L. We can use fi lter design techniques (introduced in Chapter 4) to 
determine different sets of coeffi cients for a given specifi cation to achieve better 
performance.

Defi ne a unit impulse function as

δ n
n

n
( ) =

=
≠{1 0

0 0

,

,
. (2.3.5)

Substituting x(n) = δ(n) into Equation 2.3.4, the output is called the impulse response 
of the fi lter, h(n), and can be expressed as

h n b n l b b bl L
l

L

( ) = −( ) = −
=

−

∑ δ 0 1 1
0

1

0 0, ,... , , ,..., (2.3.6)

Therefore, the length of the impulse response is L for the I/O equation defi ned in 
Equation 2.3.4. This type of fi lter is called a fi nite impulse response (FIR) fi lter. 

Time

Window at time n-1

Window at time n

n

n-1

n-L+1

n-L

Figure 2.9 Concept of moving window in signal processing
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38 Chapter 2 Time-Domain Signals and Systems

The impulse responses of the fi lter, h(n), are the same as the FIR fi lter coeffi cients 
(weights or taps), bl, l = 0, 1,  .  .  .  , L − 1.

EXAMPLE 2.4

The moving-average fi lter defi ned by the I/O equation defi ned in Equation 2.3.2 is an FIR 
fi lter of length L (order L − 1) with the same coeffi cients bl = 1/L. Consider an FIR Hanning 
fi lter of length L = 5 with the coeffi cient set {0.1 0.2 0.4 0.2 0.1}. Similar to Example 2.3, 
we implement this fi lter with MATLAB script example2_4.m and compare the perfor-
mance with the moving-average fi lter of the same length. The outputs of both fi lters are 
shown in Figure 2.10. The results show that the fi ve-point Hanning fi lter has less attenuation 
than the moving-average fi lter. Therefore, we show that better performance can be achieved 
by using different fi lter coeffi cients derived from fi lter design techniques.

HANDS-ON EXPERIMENT 2.2

Exercise 2.3 shows that the simple moving-average fi lter has failed to enhance signals with 
low SNR. In this experiment, we use hands-on exercises based on the SPTool for designing 
FIR fi lters for this purpose. Following procedures similar to those used in Experiment 2.1, 
we import four data fi les (generated in Exercise 2.1), sineNoise3sec_01.mat, sine-
Noise3sec.mat, sineNoise3sec_05.mat, and sineNoise3sec_1.mat, into SPTool, 
and name them sig1, sig2, sig3, and sig4, respectively. We display the waveforms and 
play these signals.
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Figure 2.10 Comparison of moving-average and Hanning fi lters, L = 5
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As shown in Figure 2.3, the Filter Designer (in middle column) can be used for design-
ing digital fi lters. We can simply click on the New button to design a new fi lter or the Edit
button for an existing fi lter under the Filters column in the SPTool to open the Filter 
Designer window as shown in Figure 2.11. We can design low-pass, high-pass, bandpass, 
and bandstop fi lters by using different fi lter design algorithms, which are introduced in 
Chapter 4. In this experiment, we learn how to design FIR fi lters for enhancing sinusoidal 
signals. As shown in Figure 2.11, we enter 4000 in the Sampling Frequency box. In the 
Specifi cations region, we use 300 as Passband Fp, 400 as Stopband Fs, and 60 as Rs. Note 
that the designed fi lter is called filt1, as shown in the Filter region, which will also appear 
in the Filters region of the SPTool window.

Once the fi lter has been designed, the frequency specifi cation and other fi lter 
characteristics can be verifi ed by using the Filter Viewer. Selecting the name (filt1) of 
the designed fi lter and clicking on the View button under the Filters column in the SPTool 
will open the Filter Viewer window as shown in Figure 2.12 for analyzing the designed 
fi lter.

When the fi lter characteristics have been confi rmed, we can then select the input signal 
(sig1) and the designed fi lter (filt1). We click on the Apply button to perform fi ltering and 
generate the output signal. The Apply Filter window, shown in Figure 2.13, allows us to 
specify the fi le name of the output signal (sig1_out). The Algorithm list provides a choice 
of several fi lter structures, which are briefl y introduced in the next section and discussed in 
detail in Chapter 4. We repeat this process for sig2, sig3, and sig4 and produce fi lter 
outputs sig2_out, sig3_out, and sig4_out, respectively. We can evaluate the fi lter 
performance by viewing and playing the waveforms.

Figure 2.11 Filter Designer window
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40 Chapter 2 Time-Domain Signals and Systems

EXERCISE 2.4

1. View the input/output pairs, for example, sig1 with sig1_out, to compare 
the fi lter input and output on the same graph. Repeat this for other pairs.

2. Design a bandpass fi lter as shown in Figure 2.14. Use the designed fi lter to 
reduce noise in four fi les. Evaluate the fi lter performance by viewing the 
input/output pairs and also playing the tones.

Figure 2.12 Filter Viewer window

Figure 2.13 Apply Filter window
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3. Compare the performance of the low-pass fi lter shown in Figure 2.11 and 
the bandpass fi lter shown in Figure 2.14. Which fi lter has better perfor-
mance? Why?

4. Compare the performance of the bandpass fi lter with the performance of the 
moving-average fi lter.

2.3.3 Realization of FIR Filters

As mentioned above, a DSP system consists of the interconnection of adders, mul-
tipliers, and delay units. In this section, we use the FIR fi lter given in Equation 2.3.4 
as an example to show how to realize an FIR fi lter by using these basic building 
blocks.

A sample-by-sample addition of two sequences, x1(n) and x2(n), is illustrated in 
Figure 2.15(a), a multiplier is illustrated in Figure 2.15(b), and a delay unit is illus-
trated in Figure 2.15(c), where the box labeled z−1 represents a unit delay. A delay 
by M units can be implemented by cascading M delay units in a row, confi gured as 
a fi rst-in fi rst-out signal (or delay) buffer. This buffer is called the tapped-delay line, 
or simply the delay line. With these basic units, the FIR fi lter defi ned in Equation 
2.3.4 can be realized in Figure 2.16.

The FIR fi ltering defi ned in Equation 2.3.4 is identical to the linear convolution 
of two sequences, h(n) and x(n), defi ned as

Figure 2.14 Bandpass fi lter design
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y n x n h n x i h n i h i x n i
i i

( ) = ( ) ( ) = ( ) −( ) = ( ) −( )
=−∞

∞

=−∞

∞

∑ ∑* , (2.3.7)

where * denotes linear convolution. For causal sequences (values equal to zero for n
< 0), the summation in Equation 2.3.7 starts from i = 0.

EXAMPLE 2.5

Given two sequences h(n) = {1, 2, 2, 1} and x(n) = {1, 2, 3, 4} for n = 0, 1, 2, 3, the linear 
convolution operation defi ned by Equation 2.3.7 can be evaluated with the following graph-
ical approach:

x n1( )

x n2 ( ) )()( 1 nxny = + x n2 ( )

(a) Adder

α )()( nxny α=x(n)

(b) Multiplier

x(n) y(n)=x(n-1)
1−z

(c) Unit delay

Figure 2.15 Block diagram of basic units of digital systems: an adder (a), a multiplier (b), and a 
unit delay (c)

1−z

x(n) y(n)

x(n-1) 
1b

0b

x(n-2) 
2b

1−Lb
x(n-L+1) 

1−z

1−z

Figure 2.16 A block diagram of FIR fi lter with length L
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1. Reverse the time sequence x(i) (refl ected about the origin) to obtain x(−i).

2. Shift x(−i) to the right by n samples if n > 0 (or to the left n samples if n < 0) to 
form the sequence x(n − i).

3. Compute the products of h(i)x(n − i) for those i that have nonzero overlap between 
h(i) and x(n − i).

4. Summing all the products h(i)x(n − i) yields y(n).

Using this graphical method, we have

y(0) = h(0)x(0) = 1 × 1 = 1
y(1) = h(0)x(1) + h(1)x(0) = 1 × 2 + 2 × 1 = 4
y(2) = h(0)x(2) + h(1)x(1) + h(2)x(0) = 1 × 3 + 2 × 2 + 2 × 1 = 9
y(3) = h(0)x(3) + h(1)x(2) + h(2)x(1) + h(3)x(0) = 1 × 4 + 2 × 3 + 2 × 2 + 1 × 1 = 15
y(4) = h(1)x(3) + h(2)x(2) + h(3)x(1) = 2 × 4 + 2 × 3 + 1 × 2 = 16
y(5) = h(2)x(3) + h(3)x(2) = 2 × 4 + 1 × 3 = 11
y(6) = h(3)x(3) = 1 × 4 = 4
y(n) = 0 for n = 7, 8,  .  .  .

In general, if h(n) and x(n) are two sequences of length L and N, respectively, the result-
ing sequence y(n) is of length L + N − 1. The MATLAB function y = conv(h, x) imple-
ments the linear convolution of two sequences in vectors h and x, with the output sequence 
stored in vector y.

EXAMPLE 2.6

Considering the sequences given in Example 2.5, the linear convolution of h(n) with x(n)
can be implemented by using MATLAB (example2_6.m) as follows:

xn = [1 2 3 4];
hn = [1 2 2 1];
yn = conv(xn, hn)

Execution of this program results in

>> example2_6
yn =
     1     4     9     15     16     11     4

In many real-world applications, the designed FIR fi lters have symmetric coef-
fi cients as follows:

b bl L l= − −1 ,  (2.3.8)

for l = 0, 1,  .  .  .  , L/2 − 1 if L is an even number or (L − 1)/2 if L is an odd number. 
In addition, those coeffi cients may be antisymmetric (or negative symmetric), 
expressed as

b bl L l= − − −1 .  (2.3.9)

Therefore, there are four types of symmetric FIR fi lters depending on whether L is 
even or odd and whether coeffi cients bl have positive or negative symmetry. We 
revisit this issue in Chapter 3.
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EXERCISE 2.5

1. Realize the moving-average fi lter defi ned by both Equations 2.3.2 and 2.3.3 
with L = 5.

2. Realize the Hanning fi lter defi ned in Example 2.4.

3. Draw a signal-fl ow diagram of a positive symmetric FIR fi lter with L = 5.

4. Draw a signal-fl ow diagram of a positive symmetric FIR fi lter with L = 6.

5. Draw a signal-fl ow diagram of a positive symmetric FIR fi lter with general 
length L.

For the symmetric FIR fi lter defi ned in Equation 2.3.8, the difference equation 
given in Equation 2.3.4 can be simplifi ed as

y n b x n b x n b x n L

b x n x n L b
L( ) = ( ) + −( ) + + − +( )

= ( ) + − +( )[ ] +
−0 1 1

0 1

1 1

1

. . .

xx n x n L−( ) + − +( )[ ] +1 2 . . . (2.3.10)

This shows that the number of multiplications required to implement the symmetric 
FIR fi ltering can be reduced to half if L is even. In addition, we only have to store 
half the amount (L/2) of coeffi cients because they are symmetric.

QUIZ 2.4

1. Does a symmetric FIR fi lter save the required number of additions?

2. Rewrite Equation 2.3.10 for antisymmetric FIR fi lters.

3. Redraw a signal-fl ow diagram for antisymmetric FIR fi lters if L is an even 
number.

4. Redraw a signal-fl ow diagram for antisymmetric FIR fi lters if L is an odd 
number.

A linear system is a system that satisfi es the superposition principle, which 
states that the response of the system to a weighted sum of signals is equal to the 
corresponding weighted sum of the responses of the system to each of the individual 
input signals. That is, a system is linear if and only if

F x n x n F x n F x nα α α α1 1 2 2 1 1 2 2( ) + ( )[ ] = ( )[ ]+ ( )[ ]  (2.3.11)

for any arbitrary input signals x1(n) and x2(n) and for any arbitrary constants α1 and 
α2. If the input is the sum (superposition) of two or more scaled sequences, we 
can fi nd the output due to each sequence alone and then add the separate scaled 
outputs.

QUIZ 2.5

Identify whether the following systems are linear or nonlinear:
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1. y(n) = b0x(n) + b1x(n − 1)

2. y(n) = b0x(n) + b1x2(n)

3. y(n) = b0x(n) + b1x(n)y(n − 1)

We have introduced moving-average, Hanning, low-pass, and bandpass fi lters 
in this Section. These digital fi lters can be classifi ed as linear, time-invariant (LTI) 
fi lters. A digital system is time invariant if its input-output characteristics do not 
change with time.

2.4 NONLINEAR FILTERS

In this section, we present a simple nonlinear fi lter, the median fi lter, which is very 
effective for reducing impulse noises.

EXAMPLE 2.7

Example 2.2 shows that the desired sine wave is corrupted by random noise, which can be 
reduced by linear FIR fi lters. For some real-world applications, the signal is corrupted by 
impulse noise as shown in Figure 2.17. Similar to Example 2.3, we use a moving-average 
fi lter with L = 5 for the noisy sine wave (see example2_5.m). Figure 2.17 clearly shows 
that the energy presented in the impulse noise will still infl uence the linear fi lter output; thus 
the linear fi lter may not be as effective for reducing impulse noises.
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Figure 2.17 Performance of moving-average fi lter for reducing impulse noise
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An effi cient technique for reducing impulse noise is the use of a nonlinear median fi lter. 
An L-point running median fi lter can be implemented as a fi rst-in fi rst-out buffer of length 
L to store input signals x(n), x(n − 1),  .  .  .  , x(n − L + 1). These samples are moved to a new 
sorting buffer, where the elements are ordered by magnitude. The output of the running 
median fi lter y(n) is simply the median of the L numbers in the sorting buffer. Medians will 
not smear out discontinuities in the signal if the signal has no other discontinuities within 
L/2 samples and will approximately follow low-order trends in the signal. Note that running 
medians is a nonlinear algorithm that does not obey the superposition property described by 
Equation 2.3.11.

EXAMPLE 2.8

MATLAB provides a function medfilt1 for implementing a one-dimensional median fi lter. 
The following command

y = medfilt1(x,L);

returns the output of the order L (default is 3), one-dimensional median fi ltering of x. The 
output vector y is the same size as x; for the edge points, zeros are assumed to the left and 
right of x.

A fi ve-point median fi lter is implemented in example2_8.m for reducing the same 
impulse noise shown in Figure 2.17. The original sine wave, the corrupted sine wave, and 
the median fi lter output are shown in Figure 2.18. It is clearly shown that the nonlinear 
median fi lter is very effective in removing impulse noise.
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Figure 2.18 Performance of median fi lter for impulse noise
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Although median fi lters generally preserve sharp discontinuities in a signal, they often 
fail to provide suffi cient reduction of broadband noises. A good compromise is to use a 
combination of a linear fi lter such as a Hanning fi lter and a nonlinear median fi lter. See 
Exercise 2.6 for details.

EXERCISE 2.6

1. Generate a noisy sine wave that is corrupted by random noise and impulse 
noise.

2. Apply the 5-point moving-average fi lter or the Hanning fi lter to the noisy 
sine wave. Is it effective?

3. Apply the 5-point median fi lter to the noisy sine wave. Is it effective?

4. Apply both the 5-point moving-average fi lter and the median fi lter to the 
noisy sine wave. These two fi lters are connected in cascade form as 
illustrated in Figure 2.19. Compare the result with the results obtained in 
Exercises 2 and 3.

5. Change the order of fi lters shown in Figure 2.19, that is, use the moving-
average fi lter fi rst. Compare the results with Exercise 4. Which one is better? 
Why?

2.5 MORE HANDS-ON EXPERIMENTS

We used simple linear fi lters in Section 2.3 to enhance sinusoidal signals that 
were corrupted by random noise and introduced a nonlinear median fi lter in 
Section 2.4 for reducing impulse noise. In this section, we present different 
signals corrupted by noises and show that these fi lters have diffi culty in solving the 
problems. This will give us the motivation to learn advanced fi lters in Chapters 3 
and 4.

EXAMPLE 2.9

In this example, we use the MATLAB code mulSineGen.m for simulating the desired sine 
wave that is corrupted by another sine wave at a different frequency. This program generates 
the following digital signals and saves the fi les in both ASCII and .mat formats:

1. 200-Hz sine wave is corrupted by 400-Hz sine wave with sampling rate of 4,000 Hz 
(name the fi les sine200plus400at4k.dat and .mat).

Median
filter

Moving-average 
filter 

x(n) y(n)

Figure 2.19 Cascade of median and moving-average fi lters
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2. 200-Hz sine wave is corrupted by 400-Hz sine wave with sampling rate of 1,000 Hz 
(sine200plus400at1k.dat and .mat).

3. 200-Hz sine wave is corrupted by 60-Hz power line hum with sampling rate of 
4,000 Hz (sine200plus60at4k.dat and .mat).

EXERCISE 2.7

1. Import the three fi les in Example 2.9 into SPTool, view, and play the 
signals.

2. Design a moving-average fi lter to reduce the undesired tonal noise. Is the 
fi lter working? Why not?

3. In Exercise 2.4, we designed a bandpass fi lter for enhancing the sinusoidal 
signal corrupted by random noise, which achieved better performance than 
the moving-average fi lters. In this exercise, we use SPTool to design a band-
stop fi lter to attenuate the undesired sinusoidal noises. For example, when a 
200-Hz sine wave is corrupted by a 400-Hz sine wave, we can reduce the 
undesired 400-Hz sine wave by designing a bandstop fi lter at 400 Hz. Design 
different bandstop fi lters for other cases.

4. Design a low-pass fi lter to attenuate the 400-Hz sine wave and pass the 
desired 200-Hz sinewave.

5. Design a high-pass fi lter to attenuate 60-Hz hum, thus enhancing the desired 
200-Hz sine wave.

6. Similar to Exercise 5, design a bandpass fi lter to attenuate 60-Hz hum.

7. Similar to Exercise 5, design a bandstop fi lter to attenuate 60-Hz hum.

8. Evaluate the performance of fi lters designed in Exercises 5, 6, and 7 and 
compare the required fi lter lengths.

EXERCISE 2.8

In MATLAB script exercise2_8.m, a speech fi le timit1.asc (with 8-kHz 
sampling rate) is corrupted by (1) 1,000-Hz tonal noise (the corrupted signal is saved 
in data fi le speech_tone.mat) and (2) random noise (the corrupted signal is 
saved in data fi le speech_random.mat).

1. Use SPTool to view and play the original speech and the speech corrupted 
by tonal noise and random noise.

2. Design and use moving-average, Hanning, and nonlinear median fi lters to 
reduce noise. Are these fi lters working?

3. Design a bandstop fi lter at 1,000 Hz for reducing the tonal noise in speech_
tone.mat. View and play the result. Is this fi lter working? Why?

4. Are you able to design a digital fi lter with SPTool to enhance the speech 
signal that was corrupted by random noise? Why not?
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EXAMPLE 2.10

Similar to Example 2.1, we use the MATLAB function square to generate a square wave 
with two periods (see example2_10.m). The generated waveform is displayed in Figure 
2.20 with the MATLAB function stem.

Similar to Example 2.3, we use this square as input to the moving-average fi lter with 
L = 5. The output waveform is shown in Figure 2.21, where we observe that the corners of 
the square wave are smoothed.

EXERCISE 2.9

1. Modify the MATLAB code example2_10.m by increasing the length 
from 40 to 8,000, and use the MATLAB function soundsc to play the 
generated signal.

2. Modify the MATLAB code example2_10.m by generating a 200-Hz sine 
wave of length 8,000, and use the MATLAB function soundsc to play the 
generated signal. Observe the differences as compared with the square wave 
played in Exercise 1.

3. In Figure 2.20, we plot the square wave with stem. Display the waveform 
with the function plot and observe and explain the differences.

4. In Figure 2.21, we use the moving-average fi lter with L = 5. Try different 
fi lter lengths, display and play the outputs, and compare the differences.

200 Hz square wave sampled at 4000 Hz
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Figure 2.20 A square wave
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50 Chapter 2 Time-Domain Signals and Systems

5. Use the Hanning fi lter defi ned in Example 2.4 to fi lter the square wave and 
compare the result with the output from the moving-average fi lter.

6. Add a white noise to the square wave and use the moving-average fi lter to 
reduce noise. Is this fi lter effective? Why?

2.6 IMPLEMENTATION OF MOVING-AVERAGE 
FILTERS WITH BLACKFIN SIMULATOR

In this section, we implement the moving-average fi lters with the Blackfi n simulator 
(introduced in Chapter 1) to verify the correctness of programs written in C and 
assembly. We write a C program that implements the moving-average fi lter and test 
it on data fi les that contain the sine wave corrupted by noise. The processed signal 
from the simulator is saved in new data fi les and compared with the original one to 
evaluate fi lter performance.

HANDS-ON EXPERIMENT 2.3

In this experiment, we write a simple moving-average fi lter program in C based on 
Equation 2.3.2. This C program (ma.c) reads in the input noisy signal from the data fi le, 
sineNoise3sec_4k.dat, which consists of a sine wave and noise as described in 

Moving-average filter, L = 5
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Figure 2.21 Output from the moving-average fi lter with L = 5
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Hands-On Experiment 2.1. A moving-average fi lter of length L = 5 is implemented to remove 
the noise. The fi lter output is stored in the data fi le filterout.dat. Because the fi le is long, 
users can use the Blackfi n compiled simulator for BF533 to speed up the simulation.

Open the project fi le exp2_3.dpj in directory c:\adsp\chap2\exp2_3. Study the 
program to understand its fl ow and statements. Note that the coeffi cients of the fi lter (lpf)
are represented in integer format (fract16), instead of the double-precision fl oating-point 
(64 bits) format used in the MATLAB environment. Integer format is commonly used in 
programming fi xed-point digital signal processors like the Blackfi n processor. The DSP run 
time library for the Blackfi n processor is written in integer format. A detailed explanation 
of the different number formats used in the Blackfi n processor is provided in Chapter 4.

Set the options as stated in Hands-On Experiment 1.1. Build the project and run the

loaded code by clicking on the run icon . Users can view both the input and processed 
data by using the graphical display of the VisualDSP++. With the steps described in Hands-
On Experiment 1.3, a single graph is created to show both the input and output signals, as 
shown in Figure 2.22. Users are encouraged to explore different plotting features provided 
in the VisualDSP++.

The VisualDSP++ simulator can play back the displayed waveform by exporting the 
data to the sound card. First, display the input signal in and the output signal out in sepa-
rate plots. Confi gure the sampling rate to 4,000 Hz. Right-click on the plot, and click on 
Export Æ Sound Card Æ Export. Extend the duration of play back.

EXERCISE 2.10

1. Modify the length of the moving-average fi lter to L = 10 and 20. Compare 
the results with those shown in Figure 2.8.

2. Instead of using the moving-average fi lter, implement the 5-tap FIR Hanning 
fi lter defi ned in Example 2.4 with the VisualDSP++ simulator and verify its 
result.

3. Replace the DSP library function fir_fr16 from the main program by a 
simple C code that implements Equation 2.3.3.
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Figure 2.22 Graphical plot of the input and output signals
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52 Chapter 2 Time-Domain Signals and Systems

2.7 IMPLEMENTATION OF MOVING-AVERAGE 
FILTERS WITH BF533/BF537 EZ-KIT

We used the Blackfi n simulator to test the functionality of the moving-average fi lter 
in Section 2.6. In this section, we examine how to acquire and process signal in real 
time with the EZ-KIT. The Blackfi n EZ-KIT provides a platform to take in a real-
world signal and process it in real time. We can evaluate the effects of fi ltering by 
evaluating the input and output signals. In the following experiments, a noisy signal 
is sampled by the EZ-KIT via the audio I/O channel, and the Blackfi n processor 
executes the moving-average fi lter to remove the tonal noise in the signal. The pro-
cessed signal from the EZ-KIT is passed to a headphone (or loudspeaker) for real-
time playback. Therefore, the EZ-KIT performs the entire DSP chain of A/D 
conversion, processing, and D/A conversion. More details on the process of CODEC 
(coder/decoder, including A/D and D/A converters and the associated low-pass 
fi lters) and how the digital sample is sampled and processed are provided in 
Chapters 6 and 7.

It is important to note that the EZ-KIT can only support a sampling rate of 48 
or 96 kHz. In our experiments, the CODEC is set to 48 kHz by the initialization 
program. Detailed description and explanation of the CODEC settings is given in 
Chapter 7.

HANDS-ON EXPERIMENT 2.4

In this experiment, we connect devices such as the sound card and headphone to the ADSP-
BF533 EZ-KIT board. The EZ-KIT has four input channels (or two stereo pairs) and six 
output channels (or three stereo pairs). In this experiment, only one pair of input and output 
channels are used, as indicated in Figure 2.23. Note that right connectors are needed for 
connecting the devices to the EZ-KIT. Make sure that pins 5 and 6 of SW9 on the EZ-KIT 
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Figure 2.23 Connecting the input and output audio jacks of the BF533 EZ-KIT Lite
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are set to ON (i.e., pins 5 and 6 are in line with the rest of the pins in SW9). Please refer to 
Figure 1.10 in Chapter 1 for the location of SW9 in the BF533 EZ-KIT.

If the BF537 EZ-KIT is used, there are only one pair of stereo input and one pair of 
stereo output channels available, as shown in Figure 2.24. All the connectors used in the 
BF537 EZ-KIT are 1/8-in. stereo jack.

Activate the VisualDSP++ for the BF533 (or BF537) EZ-KIT target and open exp2_
4_533.dpj (or exp2_4_537.dpj) in directory c:\adsp\chap2\exp2_4_533 (or c:\
adsp\chap2\exp2_4_537). Build the project, and the executable fi le (exp2_4_533.dxe
or exp2_4_537.dxe) is automatically loaded into the memories of the EZ-KIT. Select 
speech_tone_48k.wav in directory c:\adsp\audio_files and play this wave fi le 
continuously on the computer. Note that the fi le speech_tone_48k.wav is derived from 
the data fi le speech_tone.mat generated in Exercise 2.8. A MATLAB fi le, convert_
ez_kit.m, is used to convert the data fi le into a wave fi le sampling at 48 kHz. Examine this 
MATLAB program and see how to convert the 8-kHz sampling rate to 48 kHz. Run the 
program and listen to the original wave fi le from the headphone. See the exact location of 
the switches in BF533 and BF537 EZ-KITs in Figure 1.10 and Figure 1.11, respectively. Press 
SW5 on the BF533 EZ-KIT (or SW11 on the BF537 EZ-KIT) to activate the moving-average 
fi lter; listen to the processed signal again, and compare it with the original wave fi le by 
pressing SW4 on the BF533 EZ-KIT (or SW10 on the BF537 EZ-KIT). Explain why the 
moving-average fi lter of length L = 48 is required to attenuate the 1,000 Hz sine wave from 
the speech signal sampling at 48 kHz.

EXERCISE 2.11

1. Modify the source code in the project, exp2_4_533.dpj (or exp2_4_
537.dpj), to implement moving-average fi lters of L = 24 and 36. Listen to 
the differences and observe the output signals, using the VisualDSP++ plots. 
Are we able to remove the sine wave by using the moving-average fi lters of 
L = 24 and 36? Why?
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Figure 2.24 Connecting the input and output audio jacks of the BF537 EZ-KIT Lite
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2. Benchmark the cycle count needed to complete processing of one sample, 
using L = 24, 36, and 48.

3. Instead of using the I/O equation (Eq. 2.3.2) to implement the moving-
average fi lter, a more computational effi cient equation (Eq. 2.3.3) can be 
used. Implement the moving-average fi lter with Equation 2.3.3 in the 
EZ-KIT. Benchmark its cycle count, and comment on the differences.

4. Design a bandstop fi lter centered at 1,000 Hz with a sampling frequency of 
48 kHz using SPTool to reduce the tonal noise in speech_tone_48k.wav.

2.8 MOVING-AVERAGE FILTER IN LABVIEW 
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

Digital fi lters can be easily simulated, prototyped, deployed, and tested in LabVIEW. 
The following two experiments illustrate the process for simulating and prototyping 
a moving-average fi lter for the Blackfi n BF533/BF537 processor. First, the 
Digital Filter Design toolkit is used to develop and simulate the fi lter on the com-
puter and test its performance with simulated input signals. Next, the LabVIEW 
Embedded Module for Blackfi n Processors is used to program the Blackfi n EZ-KIT 
to perform real-time audio processing that fi lters an audio signal corrupted by a sine 
wave.

HANDS-ON EXPERIMENT 2.5

In this experiment, we design a moving-average fi lter to remove a 1,000-Hz tone that muffl es 
the speech signal. An interactive LabVIEW application has been created to simulate and test 
fi ltering results with the actual audio signal.

To begin designing and simulating the fi lter, open the executable fi le MA_Filter_
Sim.exe, located in directory c:\adsp\chap2\exp2_5. This LabVIEW application was 
created with LabVIEW for Windows and the LabVIEW Digital Filter Design toolkit. The 
simulator has been preloaded with the 3 s of audio fi le, speech_tone_48k.wav, used in 
previous VisualDSP++ experiments. If there are loudspeakers attached to the computer, click 
on Play to hear the audio. Do you hear the sine wave obscuring the speech?

Use the Taps control to experiment with different numbers of FIR fi lter taps. Change 
the Apply Filter? control to Filtered Signal to see the output signal after the fi lter is applied. 
Click on Play again to hear the fi ltered signal. Note that the 48-tap moving-average 
fi lter places a zero precisely on the 1,000-Hz tone that distorts the speech, as shown in 

Figure 2.25. Use the Zoom tool  to zoom in on the graph or the Autoscale feature to 
see the entire signal. We can also load a new audio fi le (.wav), and use the same moving-
average fi lter to fi lter the wave fi le and listen to the results. Compare the fi ltered output with 
the original signal and comment on the results.
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HANDS-ON EXPERIMENT 2.6

In this experiment, we use the LabVIEW Embedded Module for Blackfi n Processors with 
the Blackfi n EZ-KIT to test the designed moving-average fi lter. Based on the results from 
Hands-On Experiment 2.5, we implement a 48-tap moving-average fi lter on the BF533/
BF537 EZ-KIT for real-time experiments.

When implementing audio experiments on the Blackfi n processor, a good starting 
point is the Audio Talkthrough example shown in Figure 2.26. The project fi le Audio 
Talkthrough-BF533.lep for BF533 EZ-KIT (or Audio Talkthrough-BF537.lep
for BF537) can be found in directory c:\adsp\chap2\exp2_6, which is useful for testing 
the audio setup consisting of computer, cables, and loudspeakers (or headphone). On the 
block diagram outside of the While Loop, the Initialize Audio function creates a circular 
buffer between the audio CODEC and the Blackfi n processor. Inside the While Loop, the 
Audio Write–Read function writes right and left channels of audio data to the output Audio 
Buffer, all zeros on the fi rst iteration of the loop, and then reads in newly acquired audio 
samples to the right and left channel arrays for processing. This step allows data to be read 

Figure 2.25 Moving-average fi lter simulator (MA_Filter_Sim.exe)
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and processed in one-loop iteration and passed out to the loudspeaker (or headphone) in the 
next iteration. The process of reading values in the fi rst iteration and then writing them out 
in the next is called pipelining.

Once the audio talkthrough has been established, we still have to make two modifi ca-
tions. First, we must wire in an FIR function to fi lter the input signal; second, we must 
initialize that fi lter with proper parameters. Now open the complete moving-average fi lter 
program from the LabVIEW Embedded Project Manager window. The project is called 
MA Filter-BF533.lep for the BF533 EZ-KIT (or MA Filter-BF537.lep for BF537) 
and is located in directory c:\adsp\chap2\exp2_6. Figure 2.27 shows a block diagram 
of the top level VI in this project, MA Filter-BF533.vi (or MA Filter-BF537.vi).

In this experiment, we add two functions to complete the fi ltering exercise. Outside of 
the While Loop, the Init MA Filter Params VI sets up the moving-average fi lter designed 

Figure 2.26 Audio talkthrough example

Figure 2.27 Block diagram of MA Filter.vi
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in Section 2.7 with the specifi ed length (in this case L = 48), and outputs the fi lter coeffi cients, 
which have been converted from the decimal 1/48 (or 0.020833) to the fi xed-point integer 
fract16 representation, a commonly used number format on embedded signal proces-
sors.

Inside the While Loop, the BF Audio Write/Read function writes data to the DAC 
and then reads values from the ADC through the circular buffer of 1,024 samples, 512 for 
each channel (left and right). The BF FIR Filter function (see Fig. 2.28) fi lters the input 
signal with the FIR fi lter defi ned by the fi lter coeffi cients. This fi ltering function is placed 
inside a Case Structure so that the signal passes through unchanged unless SW4 is pressed 
on the BF533 EZ-KIT (or SW10/PB4 is pressed on the BF537), allowing us to easily compare 
the effects of the fi lter.

When this project is compiled and run on the Blackfi n target, play the speech_tone_
48k.wav, using MA_Filter_Sim.exe from Hands-on Experiment 2.5. Note how the 
1,000-Hz tone is fi ltered out when the fi ltered switch is pressed. Experiment with different 
fi lter lengths and see how they affect the results.

2.9 MORE EXERCISE PROBLEMS

1. The sampling rates for some applications are (a) 8 kHz for telecommunication systems, 
(b) 16 kHz for broadband systems, (c) 44.1 kHz for CDs, and (d) 48 kHz for digital audio 
tapes. What are the sampling periods for those systems? If 2 s of samples are needed 
and each sample is represented by 2 bytes, how many bytes of memory are needed for 
those systems?

2. If a 2-kHz signal is used in systems defi ned in Problem 1, what are the digital frequen-
cies in terms of (a) radians per samples and (b) cycles per sample in those four digital 
systems?

3. Digital signals can be nicely displayed by the MATLAB function stem, where stem(x)
plots the data sequence x as stems from the x-axis terminated with circles for the data 
value. Similar to Example 2.1, plot one cycle of 2-kHz sine wave with four different 
sampling rates defi ned in Problem 1.

4. Generate 256 random numbers, using the MATLAB functions rand and randn.
Compute the mean and variance, using Equations 2.2.9 and 2.2.10, and verify the results 
by using the MATLAB functions mean and var.

5. How can we use rand for generating zero-mean random numbers? How can we make 
this zero-mean random variable have unit variance?

6. The power of the sine wave given in Equation 2.2.3 is A2/2, and the power of random 
numbers is defi ned in Equation 2.2.10. Calculate the SNR for signals generated in 
Exercise 2.1(3).

Figure 2.28 Context help information for the BF FIR Filter function
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7. Generate 256 samples of a sine wave that is corrupted by zero-mean white noise with 
SNR equal to 10, 0, and −10 dB. The frequency of the sine wave is 1 kHz, and the sam-
pling rate is 8 kHz.

8. Apply the moving-average fi lter described in Equation 2.3.2 for noisy signals generated 
in Problem 7. What is the best fi lter length L for reducing noise? Why? Does this fi lter 
work for SNR = −10 dB?

9. Compute the impulse responses of fi lters described by Equations 2.3.2 and 2.3.3. Also, 
implement the fi lter defi ned in Equation 2.3.3 and compare the fi lter outputs from both 
Equations 2.3.2 and 2.3.3. Are those two outputs identical? Why or why not?

10. Compute the linear convolution of sequence x(n) = {1, 2, 3, 4} with the impulse response 
of the Hanning fi lter defi ned in Example 2.4, using the graphical method. Also, use 
MATLAB function conv to realize this operation and verify both results.

11. Modify the C code given in this chapter to implement a median fi lter in the VisualDSP++
simulator or the EZ-KIT, as described in Examples 2.7 and 2.8.

12. Convert the MATLAB data fi le speech_random.mat into a wavefi le and try to reduce 
the random noise by using the EZ-KIT, based on a bandpass fi lter that retains most of 
the speech energy.

13. Instead of acquiring signal directly from a sound card as in Hands-On Experiment 2.4, 
we can capture live sound by using a microphone connected to the EZ-KIT. The noisy 
signal can be played back with a pair of loudspeakers, and the volume can be adjusted 
to a suitable level. The noisy signal can then be captured by using a microphone that is 
fi tted to the line in of the EZ-KIT. However, the microphone must be preamplifi ed before 
connecting to the audio input of the EZ-KIT. Run the program in Hands-On Experiment 
2.4 and listen to the output with a pair of headphones. Is the moving-average fi lter 
working? Compare the performance with the direct input connection from the sound 
card to that with the EZ-KIT.

14. Modify the source fi les in Hands-On Experiment 2.4 to implement a direct pass through 
without fi ltering. Further modify this program to perform the following operations on 
the left and right input signals:

left output
left input right input= +

2

right output
left input right input= −

2

Is there any difference between the left and right outputs? Why? Make sure that you are 
playing a stereo sound at the input.

15. Modify the project fi le in Hands-On Experiment 2.6 to implement the Hanning fi lter in 
Example 2.4.
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Chapter 3

Frequency-Domain Analysis 
and Processing

This chapter introduces frequency-domain techniques for analyzing digital signals 
and systems. In particular, we focus on z-transform, system concepts, and discrete 
Fourier transform with their applications. We use these frequency-analysis methods 
to analyze and explain the noise reduction examples introduced in Chapter 2 and 
use frequency-domain techniques to design more advanced fi lters for reducing 
noises. In addition, we use several examples and hands-on experiments to introduce 
some useful MATLAB and Blackfi n tools for analysis and design of DSP 
algorithms.

3.1 INTRODUCTION

In Chapter 2, we introduced simple time-domain techniques such as moving-average 
fi lters, Hanning fi lters, and nonlinear median fi lters for removing noises that 
corrupted the desired signals. In particular, we described those fi lters with 
time-domain methods such as I/O equations and signal-fl ow diagrams and used 
them to enhance sine waves embedded in white noise. We learned that they worked 
for some conditions, but failed for others. In this chapter, we introduce frequency-
domain techniques to analyze those signals and systems and thus to understand their 
characteristics and explain the results obtained in Chapter 2. In addition, we use 
frequency-domain concepts and techniques to design effective fi lters for reducing 
noises.

In Example 2.3, we used a moving-average fi lter with length L = 5, 10, and 20 
to enhance a sine wave corrupted by white noise. We found that this fi lter worked 
for L = 5 and 10, but failed for L = 20. We also found that the fi lter caused undesired 
effects such as attenuation of the desired sine wave amplitude and shifting of the 
phase of signal. In Example 2.9, we encountered cases in which the desired sine 
wave was corrupted by other sine waves at different frequencies, and we were not 
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60 Chapter 3 Frequency-Domain Analysis and Processing

able to remove those narrowband noises. Again, in Exercise 2.8, we failed to attenu-
ate a tonal noise in desired broadband signals such as speech. In this chapter, we 
use frequency-domain techniques to analyze those cases in order to understand the 
problems associated with the signals and the fi lters. We also use frequency-domain 
pole/zero concepts to develop notch and peak fi lters for reducing noises in those 
cases.

3.2 THE z-TRANSFORM

The z-transform is a powerful technique for analyzing digital signals and systems. 
This transform uses polynomials and rational functions to represent block diagrams 
and I/O equations of digital systems introduced in Section 2.3.

3.2.1 Defi nitions

The z-transform of a digital signal x(n) is defi ned as

X z x n z n

n

( ) = ( ) −

=−∞

∞

∑ , (3.2.1)

where z is a complex variable. The set of z values for which X(z) exists is called 
the region of convergence. We can recover x(n) from X(z) by using the inverse z-
transform. For a causal sequence (i.e., x(n) = 0 for n < 0), the summation starts 
from n = 0. In addition, for a fi nite-length causal sequence x(n), n = 0, 1,  .  .  .  , 
N − 1, the summation starts from n = 0 and ends at n = N − 1.

EXAMPLE 3.1

Consider the causal signal defi ned as

x(n) = anu(n),

where u(n) = 1 for n ≥ 0 and u(n) = 0 for n < 0 is the unit step function. From Equation 3.2.1 
and using the formulas of the infi nite-geometric series

x
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the z-transform of the signal is calculated as
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The region of convergence is defi ned as |az−1| < 1 or

|z| > |a|,

which is the exterior of a circle with radius |a|.
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3.2 The z-Transform 61

EXERCISE 3.1

1. Find the z-transform of the signal x(n) = Ae−jωnu(n).

2. Find the z-transform of the unit impulse sequence δ(n) defi ned in Equation 
2.3.5.

3. Find the z-transform of the unit step sequence u(n) defi ned in Example 
3.1.

4. Find the z-transform of the impulse response of a 5-point Hanning fi lter 
defi ned in Example 2.4 as h(n) = {0.1 0.2 0.4 0.2 0.1}.

5. Find the z-transform of the impulse response of a 4-point moving-average 
fi lter defi ned as h(n) = {0.25 0.25 0.25 0.25}. We will revisit this exercise 
later.

The complex variable z can be expressed in both Cartesian and polar forms 
as

z z j z re j= [ ]+ [ ] =Re Im θ ,  (3.2.3)

where Re[z] and Im[z] represent the real part and the imaginary part of z,
respectively. In the polar form, r = |z| is the magnitude of z and θ is an angle with 
the real axis. The geometric representation in the complex z-plane is illustrated in 
Figure 3.1. In the fi gure, the circle labeled as |z| = 1 is called the unit circle. This 
representation is used to evaluate the frequency response and stability of a digital 
system.

If the signal y(n) is a delayed version of x(n) by k samples, that is, y(n) =
x(n − k), the z-transform of y(n) is given as

Y z z X zk( ) = ( )− .  (3.2.4)

Thus the delay of k samples in the time domain corresponds to the multiplication 
of z−k in the z-domain. A unit delay, z−1, was shown in Figure 2.15. This element has 
the effect of delaying the sampled signal by one sampling period (Ts seconds in time) 
and is one of the three basic operators for implementing DSP systems.

Re[z]

Im[z]

r

q

|z| = 1 

Figure 3.1 Polar representation of complex variable z in the z-plane
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EXAMPLE 3.2

The I/O equation of an FIR fi lter is expressed in Equation 2.3.4. Taking the z-transform of 
both sides using the property given in Equation 3.2.4, we obtain

Y z b X z b z X z b z X z

b z

L
L

l
l

l

L

( ) = ( ) + ( ) + + ( )

= ⎛
⎝⎜

⎞

−
−

− −( )

−

=

−

∑
0 1

1
1

1

0

1

. . .

⎠⎠⎟
( )X z . (3.2.5)

EXERCISE 3.2

1. Compute the z-transform of the I/O equation for the symmetric FIR fi lter 
defi ned in Equation 2.3.10.

2. Compute the z-transform of the I/O equation for the moving-average fi lter 
defi ned in Equation 2.3.2.

3. The z-transform of an N-periodic sequence is defi ned as

x(n) = {x(0) x(1)  .  .  .  x(N − 1) x(0) x(1)  .  .  .  x(N − 1) x(0)  .  .  .}.

 The fi rst period of the sequence is x1(n) = {x(0) x(1)  .  .  .  x(N 1)}, and its 
z-transform is X1(z). Show that the z-transform of x(n) is

X z
X z

z N
( ) =

( )
− −

1

1
.

3.2.2 System Concepts

If y(n) is the result of linear convolution of two sequences x(n) and h(n) as expressed 
in Equation 2.3.7, the z-transform of y(n) is given as

Y z X z H z H z X z( ) = ( ) ( ) = ( ) ( ).  (3.2.6)

Therefore, the convolution in the time domain is equivalent to the multiplication in 
the z-domain. The transfer (or system) function of a given system is defi ned as the 
z-transform of the system’s impulse response, or the ratio of the system’s output and 
input in the z-domain, expressed as H(z) = Y(z)/X(z). From Equation 3.2.5, the 
transfer function of the FIR fi lter is expressed as

H z
Y z

X z
b zl

l

l

L

( ) =
( )
( )

= −

=

−

∑ ,
0

1
(3.2.7)

which also represents the z-transform of the impulse responses h(l) = bl, l = 0, 1,  .  .  .  , 
L − 1.

Because the impulse-response samples of an FIR fi lter are the same as the fi lter 
coeffi cients, an FIR fi ltering can be described by the linear convolution defi ned in 
Equation 2.3.7 or the I/O equation given in Equation 2.3.4, which express the output 
in terms of input samples weighted by fi lter coeffi cients. Connecting delay units, 
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3.2 The z-Transform 63

multipliers, and adders pictorially represent I/O equations as the signal-fl ow diagram 
given in Figure 2.16. The transfer function H(z) describes how the system operates 
on the input signal x(n) to produce the output signal y(n). A system that is both linear 
and time invariant is called a linear time-invariant (LTI) system. This system can be 
represented in both the time domain and the z-domain given in Equations 2.3.4 and 
3.2.6 as illustrated in Figure 3.2, where h(n) is the impulse response of the system.

EXAMPLE 3.3

The moving-average fi lter is defi ned in Equation 2.3.2. Taking the z-transform of both sides, 
we have

Y z
L

z z X z
L

z X zL l

l

L

( ) = + + +[ ] ( ) = ⎛
⎝⎜

⎞
⎠⎟

( )− − −( ) −

=

−

∑1
1

11 1

0

1

. . . .

By arranging the terms, we obtain the system function as

H z
L

z l

l

L

( ) = −

=

−

∑1

0

1

. (3.2.8)

Using the fi nite-geometric series identity,

x
x

x
xl

l

L L

=

−

∑ = −
−

≠
0

1 1

1
1, . (3.2.9)

Equation 3.2.8 can be rewritten as

H z
Y z

X z L

z

z

L

( ) = ( )
( )

= −
−

⎛
⎝⎜

⎞
⎠⎟

−

−

1 1

1 1
. (3.2.10)

This equation can be rearranged as

1
1 1 1

L
z X z z Y zL−( ) ( ) = −( ) ( )− − .

Taking the inverse z-transform of both sides and rearranging terms, we obtain

y n y n
L

x n x n L( ) = −( ) + ( ) − −( )[ ]1
1

. (3.2.11)

This is identical to the recursive equation described in Equation 2.3.3.

z-transform

Inverse 
z-transform

h(n)
x(n) y(n) = x(n)*h(n)

H(z)
X(z) Y(z) = X(z)H(z)

Figure 3.2 Representation of LTI systems in both time- and z-domains
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64 Chapter 3 Frequency-Domain Analysis and Processing

EXERCISE 3.3

Derive the transfer functions of digital systems described by the following difference 
equations:

1. y(n) − 2y(n − 1) + y(n − 2) = 0.5[x(n) + x(n − 1)]

2. y(n) = y(n − 1) +[x(n) − x(n − 10)]

3. y(n) = 0.1x(n) + 0.2x(n − 1) + 0.1x(n − 2)

3.2.3 Digital Filters

Filtering is one of the most commonly used signal processing techniques to remove 
or attenuate undesired signal components while enhancing the desired portions of 
the signals. There are two classes of digital fi lters based on the length of the impulse 
response: FIR and IIR (infi nite impulse response) fi lters.

A fi lter is called an FIR fi lter if its response to an impulse input becomes zero 
after a fi nite number of L samples. The system described by Equation 2.3.4 or Equa-
tion 3.2.7 is an FIR fi lter with a fi nite impulse response {h(i) = bi, i = 0, 1,  .  .  .  , L − 1} 
of length L. The FIR fi lter coeffi cients (taps or weights) are the same as the impulse 
response samples of the fi lter. By setting H(z) = 0 in Equation 3.2.7, we obtain L − 1 
zeros. Therefore, the FIR fi lter of length L has order L − 1.

In practical application, an FIR fi lter is implemented by using the direct-form 
structure (or realization) illustrated in Figure 2.16. The FIR fi lter requires 2L
memory locations for storing L input samples and L fi lter coeffi cients. The signal 
buffer {x(n), x(n − 1), x(n − 2),  .  .  .  , x(n − L + 1)} is also called a delay buffer or a 
tapped-delay line, which is implemented as a fi rst-in fi rst-out buffer in memory.

The fi nite length of the impulse response guarantees that the FIR fi lters are 
stable. In addition, a perfect linear-phase response can be easily designed with an 
FIR fi lter, allowing a signal to be processed without phase distortion. The disadvan-
tage of FIR fi lters is the computational complexity, because it may require a higher-
order fi lter to fulfi ll a given frequency specifi cation. There are a number of techniques 
for designing FIR fi lters for given specifi cations. FIR fi lter design methods and tools 
are introduced in Chapter 4.

If the impulse response of a fi lter is not a fi nite-length sequence, the fi lter is 
called an IIR fi lter. Equation 3. 2.11 can be generalized to the transfer function of 
the IIR fi lter as

y n b x n b x n b x n b x n L

a y n a
L( ) = ( ) + −( ) + −( ) + + − +( )

− −( ) −
−0 1 2 1

1 2

1 2 1

1

. . .

yy n a y n M

b x n l a y n m

M

l
l

L

m
m

M

−( ) − − −( )

= −( ) − −( )
=

−

=
∑ ∑

2

0

1

1

. . .

, (3.2.12)

where the coeffi cient sets {bl} and {am} are constants that determine the fi lter’s 
characteristics. Taking the z-transform of both sides in Equation 3.2.12 and arrang-
ing terms, we obtain

TEAM LinG



3.2 The z-Transform 65

H z
b b z b z b z

a z a z a z
L

L

M
M

( ) = + + + +
+ + + +

− −
−

− −( )

− − −
0 1

1
2

2
1

1

1
1

2
21

. . .

. . .
== =

( )
( )

−

=

−

−

=

∑

∑

b z

a z

B z

A z

i
i

i

L

m
m

m

M
0

1

0

, (3.2.13)

where a0 = 1. Note that if all of the denominator coeffi cients am, m = 1, 2,  .  .  .  , 
M are equal to zero, H(z) is identical to B(z), or an FIR fi lter as defi ned in 
Equation 3.2.7. The signal fl ow diagram given in Figure 3.3 illustrates this I/O 
equation.

It is important to note that there is a sign change of am in the transfer function 
H(z) given in Equation 3.2.13 and the I/O equation described in Equation 3.2.12, or 
the signal-fl ow diagram shown in Figure 3.3. This direct-form I realization of the 
IIR fi lter can be treated as two FIR fi lters. It requires two signal buffers, {x(n), 
x(n − 1), x(n − 2),  .  .  .  , x(n − L + 1)} and {y(n), y(n − 1), y(n − 2),  .  .  .  , y(n − M)}. 
These two buffers can be combined into one by using the direct-form II realization. 
In addition, the simple direct-form implementation of an IIR fi lter will not be used 
in practical applications because of severe sensitivity problems due to coeffi cient 
quantization (which are explained in Chapter 6), especially as the order of the fi lter 
increases. To reduce this effect, a high-order IIR fi lter transfer function is factored 
into second-order sections plus a fi rst-order section if the order of fi lter is an odd 
number. These sections are connected in cascade or parallel to form an overall fi lter. 
We discuss these issues further in Chapter 4.

EXAMPLE 3.4

Consider the second-order IIR fi lter expressed as

y n b x n b x n b x n a y n a y n( ) = ( ) + −( ) + −( ) − −( ) − −( )0 1 2 1 21 2 1 2 .  (3.2.14)

x(n) y(n)

x(n-1) 

0b

1b

x(n-2) 
2b

1−Lb
x(n-L+1) 

y(n-1) 

y(n-2) 

y(n-M)

1a−

2a−

Ma−

1−z

1−z

1−z

1−z

1−z

1−z

Figure 3.3 Signal fl ow diagram of direct-form I IIR fi lter
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The transfer function is expressed as

H z
b b z b z

a z a z
( ) = + +

+ +

− −

− −
0 1

1
2

2

1
1

2
21

. (3.2.15)

The direct-form II realization of the second-order IIR fi lter (also called biquad) is illustrated 
in Figure 3.4.

EXERCISE 3.4

1. Derive the I/O equation of the second-order IIR fi lter based on the direct-
form II realization shown in Figure 3.4, using the intermediate parameters 
w(n), w(n − 1), and w(n − 2).

2. Prove that the direct-form II realization is identical to the direct-form I 
realization.

3. Identify any difference between direct-form I and direct-form II 
realizations.

Factoring the numerator and denominator polynomials of H(z) given in Equa-
tion 3.2.13, we obtain

H z
b z z z z z z

z p z p z p
i L

m M
( ) = −( ) −( ) −( )

−( ) −( ) −( )
=−0 1 1

1

. . . . . .

. . . . . .

BB z

A z

( )
( )

, (3.2.16)

where zi and pm denote the zero and pole of H(z), respectively. The zeros of the 
system can be calculated by setting the numerator B(z) = 0 in Equation 3.2.13, and 
the poles can be obtained by setting the denominator A(z) = 0. To calculate zeros 
and poles of a given transfer function H(z), we can use the MATLAB function 
roots on both the numerator and denominator polynomials.

The system will be bounded-input, bounded-output stable if

h n
n

( ) < ∞
=−∞

∞

∑ . (3.2.17)

For a causal system, the system is stable if and only if the transfer function has all 
its poles inside the unit circle. That is,

2b

w(n-2) 

y(n)

1−z

1−z

x(n) w(n)

w(n-1) 

0b

1b
1a−

2a−

Figure 3.4 Direct-form II realization of second-order IIR fi lter
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p m Mm < =1 1 2, , ,, . . . .  (3.2.18)

If any |pm| > 1, the system is unstable. A system is also unstable if the system has 
multiple-order pole(s) on the unit circle. However, a system is marginally stable if 
H(z) has a fi rst-order pole on the unit circle.

EXAMPLE 3.5

Consider the second-order IIR fi lter given as H(z) = z−1/(1 − 2z−1 + z−2). This system has 
second-order poles at z = 1, and the impulse response of the system is h(n) = n. Therefore, 
this system is unstable because h(n) → ∞ when n → ∞.

Given the fi rst-order IIR fi lter H(z) = z/(z + 1), this system has a pole on the unit circle, 
and the impulse response is h(n) = (−1)n, which is oscillated between ±1. The fi lter with 
oscillatory bounded impulse response is marginally stable.

EXERCISE 3.5

1. Evaluate the stability of system H(z) = z/(z − a) for different values of coef-
fi cient a.

2. Consider the second-order IIR fi lter defi ned in Equation 3.2.15. Evaluate the 
stability of the system in terms of its coeffi cients a1 and a2.

In general, an IIR fi lter requires fewer coeffi cients to approximate the desired 
frequency response than an FIR fi lter with comparable performance. The primary 
advantage of IIR fi lters is that sharper cutoff characteristics are achievable with a 
relatively low-order fi lter. This results in savings of processing time and/or hardware 
complexity. However, IIR fi lters are more diffi cult to design and implement on fi xed-
point processors for practical applications. Stability, fi nite-precision effects, and 
nonlinear phase must be considered in IIR fi lter designs. The issues of fi lter design, 
realization of IIR fi lters in direct-form II, fi lter design tools, quantization effects, 
and implementation of IIR fi lters based on cascade or parallel connection of second-
order sections are discussed further in Chapters 4 and 6.

Consider the moving-average fi lter given in Equation 3.2.10. The transfer func-
tion can be rewritten as

H z
L

z

z z

L

L
( ) = −

−( )−
1 1

11
. (3.2.19)

Therefore, there is a pole at z = 1 from the solution of z − 1 = 0 and L − 1 poles 

at z = 0 from the solution of zL−1 = 0. There are L zeros, z el
j

L
l

=
2π

, l = 0, 1,  .  .  .  , 
L − 1, that come from solving zL−1 = 0, which are located on the unit circle and sepa-
rated by the angle 2π/L. Note that the pole at z = 1 is canceled by the zero at z = 1. 
Thus the moving-averaging fi lter is still an FIR fi lter even though its transfer func-
tion defi ned in Equation 3.2.10 is in rational form and its I/O equation given in 
Equation 3.2.11 is in recursive form.
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68 Chapter 3 Frequency-Domain Analysis and Processing

EXAMPLE 3.6

The MATLAB function zplane(b, a) computes and plots both zeros and poles on the 
z-plane with the unit circle as reference for the given numerator vector b and denominator 
vector a. Each zero is represented with an open circle and each pole with an x on the plot. 
Multiple zeros and poles are indicated by the multiplicity number shown to the upper right 
of the zero or pole. The following script (example3_6.m) shows the poles and zeros of a 
moving-average fi lter with L = 8 in Figure 3.5:

b = [1/8 0 0 0 0 0 0 0 -1/8]; % numerator vector
a = [1 -1];                 % denominator vector
zplane(b, a)                % shows poles & zeros

As shown in Figure 3.5, the pole at z = 1 was canceled by the zero at that location. Therefore, 
the fi lter is an FIR fi lter. Also, it shows that there are seven zeros at angles πl/4 for 
l = 1, 2,  .  .  .  , 7.

Consider the I/O equation of the moving-average fi lter given in Equation 3.2.11. 
The system needs L + 1 memory locations for storing {x(n), x(n − 1),  .  .  .  , x(n − L)}. 
To reduce memory requirements, we assume x(n − L) ≅ y(n − 1) because y(n − 1) 
is the average of x(n) samples; thus Equation 3.2.11 can be simplifi ed to

y n
L

y n
L

x n y n x n( ) ≅ −( ) −( ) + ( ) = −( ) −( ) + ( )1
1

1
1

1 1α α , (3.2.20)

where α = 1/L. Taking the z-transform of both sides and rearranging terms, the 
transfer function of this simplifi ed fi lter can be derived as

H z
z

( ) =
− −( ) −

α
α1 1 1

. (3.2.21)
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Figure 3.5 Poles and zeros of the moving-average fi lter, L = 8
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This is a fi rst-order IIR fi lter with a pole at z = (1 − α) that is equivalent to the moving-
average FIR fi lter with α = 1/L. Because 1 − α = (L − 1)/L < 1, this system is guaran-
teed to be stable since the pole is always inside the unit circle. As α gets smaller, L
becomes larger. When the window is longer, the fi lter provides better averaging 
effects. However, a long window is not suitable for time-varying signals.

The MATLAB function y = filter(b, a, x) implements the IIR fi ltering, 
where the vectors b and a contain the fi lter coeffi cients {bl} and {am} and the vectors 
x and y contain the input and output signals. As a special case, the FIR fi ltering can 
be implemented as y = filter(b, 1, x).

EXAMPLE 3.7

In Example 2.2, we generated 60 samples of a sine wave with noise as shown in Figure 2.2 
and saved the signal in the data fi le sineNoise.dat. In Example 2.3, we fi ltered the noisy 
sine wave with a moving-average fi lter of lengths L = 5, 10, and 20. For L = 5, this fi lter is 
equivalent to the fi rst-order IIR fi lter given in Equation 3.2.21 with α = 0.2. This IIR fi lter 
is implemented with MATLAB code example3.7.m. Both input and output waveforms are 
displayed in Figure 3.6.

EXERCISE 3.6

1. Compare the fi rst-order IIR fi lter output shown in Figure 3.6 with the 
moving-average fi lter output shown in Figure 2.8 for L = 5. Observe and 
explain the differences.

Time index n

A
m

pl
itu

de
 A

First-order IIR filter, alpha = 1/5

Input x(n)

0 10 20 30 40 50 60
–1.5

–1

–0.5

0

0.5

1

1.5

Output y(n)

Figure 3.6 Performance of the fi rst-order IIR fi lter
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2. Implement the fi rst-order IIR fi lter given in Equation 3.2.21 with α = 0.1 and 
0.05. Compare the results with the moving-average fi lter outputs shown in 
Figure 2.8 with L = 10 and 20. Pay special attention to the IIR fi lter with 
α = 0.05. Does the output approach to zero?

3. Evaluate the complexity of moving-average fi lters for L = 5, 10, 20 with their 
corresponding fi rst-order IIR fi lters in terms of memory and multiplication 
requirements.

3.3 FREQUENCY ANALYSIS

Digital signals and systems can be represented and analyzed in the frequency 
domain. We studied z-domain representations of digital signals and systems in 
Section 3.2. In this section, we introduce the discrete Fourier transform and the fast 
Fourier transform and their applications for analyzing digital signals and systems. 
We revisit some unanswered problems from Chapter 2 on using the moving-average 
fi lter for noise reduction.

3.3.1 Frequency Response

The discrete-time Fourier transform (DTFT) of infi nite-length digital signal x(n) is 
defi ned as

X x n e j n

n

ω ω( ) = ( ) −

=−∞

∞

∑ . (3.3.1)

Compare this equation with the equation for the z-transform defi ned in Equation 
3.2.1; they are equal if the variable z is defi ned as

z e j= ω .  (3.3.2)

Thus, evaluating the z-transform on the unit circle, |z| = 1, in the complex z-plane 
shown in Figure 3.1 is equivalent to the frequency-domain representation of the 
sequence.

Similarly, the transfer function H(z) can be evaluated on the unit circle to yield 
the frequency-domain representation of the system as

H H z H ez e
j

jω ωω
φ ω( ) = ( ) = ( )=

( ),  (3.3.3)

where H(ω) is called the frequency response of the system, |H(ω)| is the magnitude 
(amplitude) response, and φ(ω) is the phase response. The value |H(ω0)| is called 
the system gain at a given frequency ω0.

Consider the transfer function of the moving-average fi lter given in Equation 
3.2.10. From Equation 3.3.3, the frequency response can be expressed as

H
L

e

e

jL

j
ω

ω

ω( ) = −
−

⎡
⎣⎢

⎤
⎦⎥

−

−
1 1

1
.
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Because ejω/2e−jω/2 = ejLω/2e−jLω/2 = 1 and sin ,ω ω ω( ) = −( )−1

2 j
e ej j  this equation 

becomes

H
L

e e e

e e e L

e ejL jL jL

j j j

jL jL

ω
ω ω ω

ω ω ω

ω ω
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11 2( )ω (3.3.4)

Beause |e−j(L−1)ω/2| = 1, the magnitude response is given by

H
L

Lω ω
ω

( ) =
( )
( )

1 2

2

sin

sin
, (3.3.5)

and the phase response is

φ ω

ω ω

ω π ω
( ) =

− −( )
( ) ≥

− −( )
± ( ) <

⎧

⎨
⎪

⎩
⎪

L
H

L
H

1

2
0

1

2
0

,

,
. (3.3.6)

EXAMPLE 3.8

The Hanning fi lter defi ned in Example 2.4 has coeffi cients {0.1 0.2 0.4 0.2 0.1}. The transfer 
function of the fi lter is H(z) = 0.1 + 0.2z−1 + 0.4z−2 + 0.2z−3 0.1z−4. Therefore, the frequency 
response is

H(ω) = 0.1 + 0.2e−jω + 0.4e−2jω + 0.2e−3jω + 0.1e−4jω

= e−2jω[0.1(e2jω + e−2jω) + 0.2(ejω + e−jω) + 0.4]
= e−2jω[0.2  cos(2ω) + 0.4  cos(ω) + 0.4].

The magnitude response is |H(ω)| = 0.4 + 0.2  cos(2ω) + 0.4  cos(ω), and the phase response 
is −2ω.

EXERCISE 3.7

1. Find the frequency response of the fi rst-order IIR fi lter defi ned in Equation 
3.2.21.

2. Find the magnitude response of a moving-average fi lter with L = 2.

3. The bandwidth of a fi lter represents the value of the frequency at which the 
squared-magnitude response equals half its maximum value. Find the band-
width of the fi lter given in Exercise 2.

4. Find the transfer function and frequency response of a comb fi lter defi ned 
by the I/O equation

y(n) = x(n) − x(n − L).

3.3 Frequency Analysis 71
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EXAMPLE 3.9

The magnitude and phase responses of the system can be computed and displayed with the 
MATLAB function freqz. The MATLAB script example3_9.m plots the responses of 
the moving-average fi lter for L = 8 and is shown in Figure 3.7. The magnitude response shows 
that there are dips that occur at radian frequencies π/4, π/2, 3π/4, and π (or normalized 
frequencies 0.25, 0.5, 0.75, and 1), same as the zeros shown in Figure 3.5. Equation 3.3.6 
and the phase response of Figure 3.7 imply that φ(ω) is a piecewise linear function of ω. The 
MATLAB script is listed as follows:

b=[1/8 0 0 0 0 0 0 0 -1/8]; % numerator vector
a=[1 -1]; % denominator vector
freqz(b, a) % magnitude and phase responses

From Equation 3.3.6, the time (group)-delay function is defi ned as

T
d

d

L
d ,ω φ ω

ω
( ) = −

( )
= −1

2
(3.3.7)

which is independent of ω. The systems (or fi lters) that have constant Td(ω) are 
called linear-phase systems. The constant time-delay function causes all sinusoidal 
components in the input to be delayed by the same amount, thus avoiding phase 
distortion. The group delay can be calculated and displayed by using the MATLAB 
function grpdelay(b,a).

HANDS-ON EXPERIMENT 3.1

The MATLAB Signal Processing Toolbox [49] provides a graphical user interface fi lter 
visualization tool (FVTool) that allows the user to analyze digital fi lters. The command 
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Figure 3.7 Magnitude and phase responses of moving-average fi lter, L = 8
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fvtool(b, a) launches the FVTool window and computes the magnitude response for 
the fi lter defi ned by numerator and denominator coeffi cients in vectors b and a, respec-
tively. The command fvtool(b1, a1, b2, a2, . . .) performs an analysis of multiple 
fi lters.

Similar to example3_9.m, we design three moving-average fi lters with L = 5, 10, and 
20 and launch the FVTool using experiment3_1.m. Using FVTool, we can display the 
phase response, group delay, impulse response, step response, pole-zero plot, and coeffi cients 
of the fi lters. We can export the displayed response to a fi le with Export on the File menu. 
A window that shows the magnitude responses of three fi lters is displayed as shown in Figure 
3.8. Determine where the nulls of the magnitude response occurred for different L.

As shown in Figure 3.8, the analysis toolbar has the following options:

1. : Magnitude response of the current fi lter. See freqz and zerophase for more 
information.

2. : Phase response of the current fi lter. See phasez for more information.

3. : Superimposes the magnitude response and the phase response of the current 
fi lter. See freqz for more information.

L = 5 L = 10 L = 20

Nulls or
notches 

Figure 3.8 A FVTool window displays magnitude responses of moving-average fi lter with L = 5, 
10, and 20
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4. : Shows the group delay of the current fi lter. The group delay is the average delay 
of the fi lter as a function of frequency. See grpdelay for more information.

5. : Shows the phase delay of the current fi lter. The phase delay is the time delay 
that the fi lter imposes on each component of the input signal. See phasedelay for 
more information.

6. : Impulse response of the current fi lter. The impulse response is the response of 
the fi lter to an impulse input. See impz for more information.

7. : Step response of the current fi lter. The step response is the response of the fi lter 
to a step input. See stepz for more information.

8. : Pole-zero plot, which shows the pole and zero locations of the current fi lter on 
the z-plane. See zplane for more information.

9. : Filter coeffi cients of the current fi lter, which depend on the fi lter structure (e.g., 
direct form, etc.) in a text box. For second-order section fi lters, each section is dis-
played as a separate fi lter.

For example, selecting the group-delay response icon (or from the Analysis menu) will 
compute and display group delay. Export the result as shown in Figure 3.9, where constant 
group delays of 2, 4.5, and 9.5 samples are observed and can be easily obtained from Equa-
tion 3.3.7 for L = 5, 10, and 20, respectively.

An important characteristic of an LTI system is its steady-state response to a sinusoidal 
input. Consider a sinusoidal signal defi ned in Equation 2.2.3 at frequency ω0 expressed as

x(n) = A  sin(ω0n).
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Figure 3.9 Group delays of moving-averaging fi lters, L = 5, 10, and 20 (from bottom to top)
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Applying this sinusoidal signal to the digital fi lter defi ned in Equation 3.3.3, the correspond-
ing output in the steady state is

y n A H n( ) = ( ) + ( )[ ]ω ω φ ω0 0 0sin ,  (3.3.8)

where |H(ω0)| is the gain and φ(ω0) is the phase shift of H(z) at frequency ω0. This equation 
shows that when sinusoidal input is applied to an LTI system its steady-state output is also 
a sinusoid having the same frequency ω0. The amplitude of the input sinusoid A is multiplied 
by the gain of the system, and the phase is shifted by the phase of the system.

EXAMPLE 3.10

Several questions were asked in Quiz 2.3. These questions may be answered with the knowl-
edge of the magnitude response and the group delay of the system.

1. The outputs of the moving-average fi lter with different lengths have different phase 
shifts. This fact can be explained by Equation 3.3.7 and is shown in Figure 3.9. For 
example, the output sine wave is delayed by 2.5 samples, as shown in Figure 2.7 for 
L = 5.

2. Figure 2.7 uses a 200-Hz sine wave sampled at 4 kHz. From Equation 2.2.4, the 
digital frequency of the sine wave is ω = 0.1π. Figure 3.8 shows that the fi rst notch 
of a moving-average fi lter with L = 20 is located at ω = 0.1π. Therefore, the sine 
wave will be completely attenuated by the moving-average fi lter with L = 20, as 
shown in Figure 2.8.

3. Figure 3.8 also shows that the gains |H(ω0)| of a fi lter at ω0 = 0.1π for fi lter lengths 
L = 5 and 10 are less than 1 (0 dB). The steady-state sinusoidal response given in 
Equation 3.3.8 shows that the output will be attenuated, and L = 10 will have more 
attenuation because it has smaller gain.

EXERCISE 3.8

1. Compute the gains |H(ω0)| of moving-average fi lters with lengths L = 5 and 
10 at frequency ω0 = 0.1π. Compare the results with Figure 3.8.

2. Compute the gains of the fi rst-order IIR fi lter defi ned in Equation 3.2.21 for 
α = 0.2, 0.1, and 0.05 at frequency ω0 = 0.1π. Compare the results with the 
results obtained in Exercise 1.

3. What frequencies of sine waves will be attenuated by the moving-average 
fi lter with L = 5 if the sampling rate is 8 kHz? Why?

4. A 100-Hz sine wave is corrupted by white noise, and the corrupted sine wave 
is sampled at 1 kHz. To remove noise, what is the proper length of the 
moving-average fi lter? Why?

5. Show the magnitude responses of comb fi lters defi ned in Exercise 3.7(4) for 
L = 5, 10, and 20. Compare the results with the corresponding moving-
average fi lters and explain the differences using pole-zero diagrams.
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6. Based on the magnitude response of a comb fi lter, suggest its applications 
for reducing noise.

3.3.2 Discrete Fourier Transform

The z-transform and DTFT are defi ned for infi nite-length sequences and are func-
tions of continuous frequency variables z and ω, respectively. These transforms are 
useful for analyzing digital signals and systems in theory. However, they are diffi cult 
to implement from the numerical computation standpoint. In this section, we intro-
duce a numerical computable transform, the discrete Fourier transform (DFT). The 
DFT is a basic operation used in many different DSP applications. It is used to 
transform a sequence of signal samples from the time domain into the frequency 
domain, so that spectral information about the signal can be known explicitly.

If the digital signal x(n) is a fi nite-duration sequence {x(0), x(1),  .  .  .  , x(N − 1)} 
of length N, the DTFT given in Equation 3.3.1 can be modifi ed to become the DFT 
expressed as

X k X
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kn

n

N

k
( ) = ( )

= ( ) = −
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where k is the frequency index. Usually the signal x(n) is a real-valued sequence, 
but the DFT coeffi cients X(k) are complex values. It is important to note that the 
DFT defi ned in Equation 3.3.9 assumes that the signal is a periodic signal with 
period N. The DFT is equivalent to evaluating (or sampling) the DTFT X(ω) at N
equally spaced frequencies ωk = 2πk/N, k = 0, 1,  .  .  .  , N − 1; thus the DFT is com-
putable with digital computers. The interval between the adjacent frequency samples 
is called the frequency resolution, expressed as

Δω
π

=
2

N
. (3.3.10)

EXAMPLE 3.11

Compute the DFT of the impulse response of a moving-average fi lter with length L. From 
Equations 2.3.2 and 3.3.9, we have
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Using the fi nite geometric series given in Equation 3.2.9, e
e
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Therefore, we have X(k) = δ(k).

EXERCISE 3.9

1. Find the DFT of the unit impulse function defi ned in Equation 2.3.5. It is 
interesting to compare the result with the result in Example 3.11 and sum-
marize the observations.

2. If the signal x(n) is a real sequence and N is an even number, show that 
X(N/2 + k) = X * (N/2 − k), for k = 0, 1,  .  .  .  , N/2, where X * (k) denotes the 
complex conjugate of X(k).

3. If the signal x(n) is a real sequence and N is an even number, show that X(0) 
and X(N/2) are real numbers.

By defi ning a twiddle factor

W eN
j

N=
− ( )2π

,  (3.3.11)

the DFT given in Equation 3.3.9 can be modifi ed to
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The inverse DFT can be expressed as

x n
N

X k e

N
X k W n N

j
N

kn

k

N

N
kn

k

N

( ) = ( )

= ( ) =

( )
=

−

−

=

−

∑

∑

1

1
0 1

2

0

1

0

1

π

, , , ,. . . −−1. (3.3.13)

Thus the inverse DFT is the same as the DFT except for the sign of the exponent 
and the scaling factor 1/N.

The DFT is often used as an analysis tool for determining the spectra of digital 
signals. The DFT can be broken into magnitude and phase components as 
follows:

X k X k j X k X k e j k( ) = ( )[ ] + ( )[ ] = ( ) ( )Re Im φ ,  (3.3.14)

where

X k X k X k( ) = ( )[ ]{ } + ( )[ ]{ }Re Im2 2  (3.3.15)

is the magnitude spectrum and

φ k
X k

X k
( ) =

( )[ ]
( )[ ]{ }−tan

Im

Re
1 (3.3.16)
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is the phase spectrum. It is often preferable to measure the magnitude spectrum in 
dB scale defi ned as

spectrum in dB = ( )20 10log .X k  (3.3.17)

If the sequence x(n) is a sampled signal with sampling rate fs, the frequency 
index k corresponds to frequency

ω
π

ωk k
N

k= ( ) = ( )2
Δ radians per sample or radians (3.3.18)

or

f k
f

N
k fk = ( ) = ( )s HzΔ (3.3.19)

for k = 0, 1,  .  .  .  , N − 1. Thus the frequency components can only be discriminated 
if they are separated by at least Δf = fs/N Hz. This frequency resolution is a common 
term used in determining the size of the FFT and sampling frequency required to 
achieve good frequency analysis. In Section 3.3.3, we use computer simulations to 
demonstrate the effects of frequency resolution using DFT.

If x(n) is a real-valued sequence and N is an even number, we can show that

X N k X N k k N2 2 0 1 2+( ) = ∗ −( ) =, , , ,, . . .  (3.3.20)

where X * (k) denotes the complex conjugate of X(k). This complex conjugate prop-
erty of the DFT demonstrates that only the fi rst (N/2 + 1) DFT coeffi cients of a real 
data sequence are independent. From Equation 3.3.20, the even-symmetrical prop-
erty applies to the magnitude |X(k)| and Re[X(k)], while the odd-symmetrical prop-
erty occurs in phase φ(k) and Im[X(k)]. Thus it is common to plot the magnitude 
spectrum only from k = 0, 1,  .  .  .  , N/2, because the rest of the spectrum points from 
k = N/2 + 1 to N − 1 are symmetrical to the points from k = N/2 − 1 to k = 1. It is 
also shown that X(0) and X(N/2) are real valued.

A limitation of DFT is its inability to handle signals extending over all time. It 
is also unsuitable for analyzing nonstationary signals (such as speech) that have 
time-varying spectra. For such a signal, it makes more sense to divide the signal 
into blocks over which it can be assumed to be stationary and estimate the spectrum 
of each block.

3.3.3 Fast Fourier Transform

The DFT given in Equation 3.3.9 shows that N complex multiplications and additions 
are needed to produce one output. To compute N outputs, a total of approximately 
N2 complex multiplications and additions are required. A 1,024-point DFT requires 
over a million complex multiplications and additions. The Fast Fourier Transform 
(FFT) is a family of very effi cient algorithms for computing the DFT. The FFT is 
not a new transform that is different from the DFT; it is simply an effi cient algorithm 
for computing the DFT by taking advantage of the fact that many computations are 
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repeated in the DFT because of the periodic nature of the twiddle factors. The ratio 
of computing cost in terms of number of multiplications is approximately

FFT

DFT
,=

log2

2

N

N
(3.3.21)

which is 10/2,048 when N is equal to 1,024.
The FFT algorithm [16] was fi rst introduced by Cooley and Tukey in 1965. 

Since then, many variations of FFT algorithms have been developed. Each variant 
FFT has a different strength and makes different trade-offs between code complex-
ity, memory requirements, and computational speed. The FFT algorithm becomes 
lengthy when N is not a power of 2. This restriction on N can be overcome by 
appending zeros at the tail of the sequence to cause N to become a power of 2.

MATLAB provides a function fft for computing the DFT of a vector x. The 
following command

Xk = fft(x);

performs N-point DFT, where N is the length of vector x, and the Xk vector contains 
N samples of X(k), k = 0, 1,  .  .  .  , N − 1. If N is a power of 2, an effi cient radix-2 
FFT algorithm will be used; otherwise, a slower mixed-radix FFT algorithm or the 
direct DFT will be used. To avoid slow computation, we can use

Xk = fft(x, L);

where L is a power of 2. If N is less than L, the vector x will be automatically 
padded with (L − N) zeros at the tail of the sequence to make a new sequence of 
length L. If N is larger than L, only the fi rst L samples will be used for computing 
DFT.

EXAMPLE 3.12

Generate a signal that consists of two sinusoids at 400 Hz and 820 Hz with a 4-kHz sampling 
rate. We can use the MATLAB function fft to compute the DFT coeffi cients X(k) with 
DFT length N = 100. MATLAB provides the functions abs and angle to calculate the 
magnitude and phase spectra defi ned in Equations 3.3.15 and 3.3.16, respectively. The 
MATLAB script (example3_12.m) plots the magnitude spectra of these two sine waves as 
shown in Figure 3.10.

QUIZ 3.1

1. What is the frequency resolution for the case given in Example 3.12?

2. Based on Equation 3.3.19, what frequency indexes correspond to sine waves 
at frequencies 400 Hz and 820 Hz?

3. Because the Fourier transform of a sinusoidal function is a delta function, 
we expected to see two lines in the plot. In Figure 3.10, we fi nd a spike (not 
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a line) for the 400-Hz sine wave. Why? (Hint: try to use stem instead of 
the plot function provided by MATLAB).

4. Why is the spectrum of the 820-Hz sine wave spread to adjacent frequency 
bins?

5. Derive a general rule that relates to FFT size N, sampling rate fs, and sinu-
soidal frequency f to predict whether the spectrum of a sine wave will have 
a spike or spread to adjacent bins.

We discuss these problems further in Section 3.3.4 and introduce windowing 
techniques to solve them.

EXERCISE 3.10

1. Similar to example3_12.m, show the magnitude spectrum of two sine 
waves at frequency 400 Hz and 420 Hz. Are you able to see two separated 
frequency components? Why not?

2. Modify the program example3_12.m by changing N = 100 to N = 200. 
Are you able to see two spikes now? Why?

3. Also, use N = 200 for Exercise 1. Are you able to see two separated fre-
quency components now? Why?
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Figure 3.10 Magnitude spectra of two sine waves at 400 Hz and 820 Hz
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EXAMPLE 3.13

In Exercise 2.8, a digitized speech signal (sampling rate 8,000 Hz) stored in file timit1.
asc was corrupted by a 1,000-Hz (normalized frequency 0.25) tonal noise and examined 
with SPTool. The DFT is inadequate for analyzing nonstationary signals such as speech. The 
short-time Fourier transform (STFT) breaks up the signal sequence into consecutive blocks 
and performs the FFT of individual blocks over the entire signal. MATLAB provides a 
function specgram to compute and plot a time-frequency spectrogram of the input signal. 
For example, the following command

specgram(xn_tone,256);

will plot the spectrogram of the speech signal timit1.asc with tonal noise, using an FFT 
of length 256. This plot is shown in Figure 3.11 by MATLAB script example3_13.m. It 
contains both time and frequency information. Therefore, it can pinpoint the time instance 
where the signal is active by looking at the color plot. A darker color indicates higher 
energy.

EXERCISE 3.11

1. Generate a sinusoid embedded in white noise with SNR = 10 dB. Assuming 
that the variance of white noise is 1, what is the amplitude of sine wave 
needed for generating the noisy sine wave?
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Figure 3.11 Spectrogram of the speech signal, timit1.asc, which is corrupted by a tonal noise 
at normalized frequency 0.25
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2. Compute and plot the noisy sine wave’s magnitude spectrum. Compare the 
spectrum of the noisy sine wave with the clean sine wave shown in Figure 
3.10. The white noise has a fl at spectrum over the entire frequency range 
from 0 to π.

3. Analyze this spectrum using the MATLAB function specgram.

HANDS-ON EXPERIMENT 3.2

In this experiment, we use SPTool to perform frequency analysis. As shown in Figure 2.3, 
the rightmost function, Spectra, provides the spectral estimation methods supported by the 
Signal Processing Toolbox. As introduced in Hands-On Experiment 2.1, we can bring signals 
(with their sampling frequencies) from the MATLAB workspace (or data fi les) into the 
SPTool workspace by using Import under the File menu. As shown in Figure 2.4, the data 
fi le xn is imported from the fi le sine3sec.mat with the Signals column. The imported 
data fi le is named sig1 in this example. For 3 s of data fi le with 12,000 samples, we have 
to zoom in on the signal to see it as shown in Figure 2.5.

To use the Spectrum Viewer for analyzing the imported signal sig1, highlight the 
signal in the Signals column and click on the Create button in the Spectra column. The 
new Spectrum Viewer window will appear as shown in Figure 3.12. Click on the Apply
button on the bottom left corner to create the spectrum fi le spect1, and the PSD (power 
spectrum density) subwindow will be displayed as shown in Figure 3.12. The user can select 
one of the many spectral estimation methods to implement the spectrum estimation. In addi-
tion, the size of FFT, window functions, and overlapping samples can be selected to complete 
the PSD estimation. We introduce window functions in Section 3.3.4.

Repeat the above process for importing the second data fi le sineNoise3sec.mat and 
creating the second spectrum fi le spect2. Select both spect1 and spect2 in the Spectra

Figure 3.12 Spectrum Viewer window
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column, and click on the View button to display the spectra as shown in Figure 3.13. This 
feature allows us to display several spectra on the same plot, which is very useful for com-
paring the fi lter input and output spectra. As shown in Figure 3.13, the spectrum of the pure 
sine wave has a spike at 200 Hz, but the white noise spectrum is fl at in the frequency range 
from 0 to π.

EXERCISE 3.12

1. Create the spectra of these two import signals using different parameters 
such as Method, Nfft, Nwind, Window, and Overlap as shown in the left 
side of Figure 3.13, and observe the differences.

2. Import the three data fi les created in Example 2.9 and use the Spectrum 
Viewer to perform frequency analysis.

3. Modify example2_10.m to generate 3 s of square wave, save it using the 
.mat format, import it to SPTool, and use the Spectrum Viewer to perform 
frequency analysis. How many sinusoidal components are there, and what 
are their frequencies? Observe the relationship between the frequency of the 
square wave and the frequencies of those harmonics.

3.3.4 Window Functions

In Example 3.12, Quiz 3.1, and Exercise 3.10, we found some problems with 
using DFT for spectral analysis. From Equation 3.3.19, the frequency index k

Figure 3.13 Spectra of clean (bottom) and noisy (top) sine waves
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corresponds to frequency kfs/N(Hz). If the sine wave frequency f can be exactly 
represented by an integer value of k, we obtain a line spectrum. In Example 3.12, 
fs is 4,000 Hz and N = 100. The 400-Hz sine wave can be exactly represented by 
k = 10. However, the 820-Hz sine wave is located between k = 20 and k = 21. There-
fore, its spectrum cannot be represented by one spectral bin and thus is spread (or 
leaks out) to adjacent bins as shown in Figure 3.10. This phenomenon is called 
spectral leakage.

For the 400-Hz sine wave sampled at 4,000 Hz, one cycle of sine wave consists 
of 10 samples and N = 100 covers exactly 10 cycles. However, for the 820-Hz sine 
wave, N = 100 covers 20.5 cycles. The DFT defi ned in Equation 3.3.9 assumes that 
the signal is a periodic signal with period N, which is only valid for the 400-Hz sine 
wave. To solve this problem, we can change N from 100 to 200. If we only have L
samples that are less than N, we can pad N − L zero samples. Unfortunately, in most 
practical applications, we do not know the sine wave frequency, and thus we are not 
able to select an appropriate N.

As shown in Figure 3.12, a window is often employed for spectral analysis using 
DFT. For a long signal sequence, taking only N samples for analysis is equivalent 
to applying a rectangular window w(n) of length N to the signal. This action can be 
expressed as

x n x n w nN ( ) = ( ) ( ),  (3.3.22)

where

w n
n N( ) = ≤ ≤ −{1 0 1

0
,
, otherwise

. (3.3.23)

The spectrum of the rectangular function is similar to Equation 3.3.4 without the 
scaling factor 1/L. Windowing not only produces leakage effects, it also reduces 
spectral resolution.

HANDS-ON EXPERIMENT 3.3

The MATLAB Signal Processing Toolbox provides two graphical user interface tools, 
Window Visualization Tool (WVTool) and Window Design and Analysis Tool (WINTool), 
to design and analyze windows. In the MATLAB command window, wvtool(winname(n))
opens WVTool with the time- and frequency-domain plots of the n-length window specifi ed 
in winname, which can be any window in the Signal Processing Toolbox. For example, the 
following command will open the WVTool for comparing rectangular and Blackman 
windows as shown in Figure 3.14:

wvtool(rectwin(64), blackman(64))

In Figure 3.14, the time-domain values of window coeffi cients are displayed on the 
left-hand side and the magnitude spectrum is shown on the right-hand side. As shown in the 
fi gure, the Blackman window is tapered to zero at both ends; thus the Blackman window 
has wider bandwidth but higher attenuation at stopband compared to the rectangular 
window.
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A more powerful tool for designing and analyzing window is WINTool, which can be 
launched as

wintool

It opens with a default 64-point Hamming window as shown in Figure 3.15.
As shown in the fi gure, WINTool has three panels: Window Viewer displays the time-

domain and frequency-domain representations of the selected window(s). Three window 
measurements are shown below the plots. (1) Leakage Factor indicates the ratio of power 
in the sidelobes to the total window power. (2) Relative sidelobe attenuation shows the 
difference in height from the mainlobe peak to the highest sidelobe peak. (3) Mainlobe 
width (-3dB) is the bandwidth of the mainlobe at 3 dB below the mainlobe peak.

The second panel, called Window List, lists the windows available for display in the 
Window Viewer. Highlight one or more windows to display them. The four Window List
buttons are as follows. (1) Add a new window allows the user to add a default Hamming 
window with length 64 and symmetric sampling. We can change the information for this 
window by applying changes made in the Current Window Information panel. (2) Copy 
window copies the selected window(s). (3) Save to workspace saves the selected window(s) 
as vector(s) to the MATLAB workspace. The name of the window in WINTool is used as 
the vector name. (4) Delete removes the selected window(s) from the window list.

Current Window Information displays information about the currently active window. 
We can change the current window’s characteristics by changing its parameters and clicking 
Apply. The active window name is shown in the Name fi eld. We can either select a name 
from the menu or type the desired name in the edit box. The parameter Type presents the 
algorithm for the window. Select the type from the menu. All windows in the Signal Process-
ing Toolbox are available. The parameter Length indicates the total number of samples.

For example, click on the Add a new window button at the Window List panel; select 
Kaiser from the Type menu in the Current Window Information panel, and click on Apply.

Figure 3.14 WVTool for evaluating rectangular and Blackman windows
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Both time-domain and frequency-domain representations in the Window Viewer panel are 
updated. Highlight both window_1 and window_2 from the Window List panel; the time- 
and frequency-domain representations of both windows are displayed as shown in Figure 
3.16. Note that we use window length 100 for both cases and use Beta = 8.96 for the Kaiser 
window. The Kaiser window has more sidelobe attenuation (−65.7 dB) as compared to the 
Hamming window (−42.5 dB) that is shown in Figure 3.16. After verifying the designed 
window, we can use Export from the File menu to export window coeffi cients to the 
MATLAB workspace as a text fi le or a MAT fi le.

EXAMPLE 3.14

In Example 3.12, we found undesired spectral leakage effects due to the use of a rectangular 
window that is not tapered to zeros at both ends as shown in Figure 3.14. In this example, 
we modify the MATLAB program example3_12.m by applying the Kaiser window shown 
in Figure 3.16 to the signal, using Equation 3.3.22. We then compute the spectra of signals 

Figure 3.15 A default WINTool window
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with a rectangular window and a Kaiser window, using the MATLAB script example 
3_14.m. The results are displayed in Figure 3.17. Compared with Figure 3.10, we observe 
that the Kaiser window has effectively reduced the spectral leakage of the sine wave at 
820 Hz, but at the cost of broadening the peak for 400 Hz because of the wider bandwidth 
of the Kaiser window compared to the rectangular window shown in Figure 3.14.

EXERCISE 3.13

1. Use WINTool to evaluate and compare different window functions such 
as barthannwin, bartlett, blackman, blackmanharris, 

bohmanwin, chebwin, flattopwin, gausswin, hamming, 

hann, kaiser, nuttallwin, parzenwin, rectwin, triang,

and tukeywin.

2. Evaluate the performance of the Kaiser window with different lengths and 
values of beta.

3. Apply different windows to the signal given in Example 3.14 and observe 
the differences between the spectral leakage reduction and main lobe 
broadening.

4. Redo Exercise 3 using the Kaiser window with different values of beta.

Figure 3.16 Comparison of Hamming window (top) with Kaiser window
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3.4 MORE HANDS-ON EXPERIMENTS

In this section, we use the SPTool for fi lter design and analysis. We apply pole/zero 
concepts learned in Section 3.2 for designing notch and peak fi lters and use these 
fi lters for reducing noises.

3.4.1 Simple Low-Pass Filters

Assume that the signal x(n) consists of a sine wave corrupted by random noise. Our 
goal is to develop and implement a digital low-pass fi lter to reduce noise, thus 
enhancing the sinusoidal component. For simulation purposes, we use the same data 
fi le sineNoise3sec.mat used in Hands-On Experiment 3.2 as x(n), which is a 
sine wave corrupted by noise. The spectrum of this noisy sine wave is shown as the 
top line in Figure 3.13. The fi gure clearly shows that the sinusoidal component (a 
peak) is located at a low frequency (200 Hz) and can be enhanced by reducing noise 
components in high-frequency ranges. This objective may be achieved by using a 
simple low-pass fi lter.

EXAMPLE 3.15

In Figure 3.8, we show the magnitude responses of a moving-average FIR fi lters with lengths 
5, 10, and 20. The simple IIR low-pass fi lter implemented in example3_7.m with α = 0.2 
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Figure 3.17 Spectral analysis using rectangular and Kaiser windows
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is equivalent to the moving-average fi lter of L = 5. We can compute and compare the mag-
nitude responses of these FIR and IIR fi lters with the MATLAB script example3_15.m.
The magnitude responses are shown in Figure 3.18. Compared with Figure 3.13, we know 
that the sinusoidal component (200 Hz or 0.1π rad) will be passed with little attenuation when 
the moving-average fi lter is used, but the simple IIR fi lter has higher attenuation. Both fi lters 
will reduce noise at the high-frequency range with, however, only about 10 dB noise reduc-
tion. Thus these simple fi lters will work for the purpose of reducing random noise that cor-
rupts a low-frequency sinusoidal signal with high SNR. The design of higher-performance 
IIR fi lters is introduced in Chapter 4.

HANDS-ON EXPERIMENT 3.4

In this experiment, we use SPTool to perform the fi ltering and analysis. As shown in previ-
ous experiments, SPTool provides a rich graphic environment for signal viewing, fi lter 
design, and spectral analysis.

We fi rst import the corrupted sine wave sineNoise3sec.mat and name it sig1. The 
next task is to design the FIR and IIR low-pass fi lters as shown in Example 3.15 to fi lter out 
the high-frequency noise components. The simplest way is to import the fi lter from the 
MATLAB workspace to the SPTool by clicking on File → Import and importing the numer-
ator (b1) and denominator (a1) coeffi cients as shown in Figure 3.19 (note that after execution 
of example3_15.m both FIR and IIR fi lter coeffi cients are available from the workspace). 
The imported fi lter is named FIR1. Repeat this process to import the fi rst-order IIR fi lter from 
workspace and name it IIR1. The user can examine the characteristics of the imported fi lters 
by highlighting fi lters FIR1 and IIR1, followed by View. The selected display in the Filter 
Viewer is similar to that displayed in Figure 3.18. The Filter Viewer also allows the user to 
view the characteristics of a designed or imported fi lter, including the magnitude response, 
phase response, group delay, pole-zero plot, impulse, and step responses of the fi lter.

Normalized Frequency (×π rad /sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Moving-average filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
–90

–80

–70

–60

–50

–40

–30

–20

–10

0

Figure 3.18 Magnitude responses of FIR and IIR fi lters
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The imported fi lter, FIR1 (or IIR1), can be selected and applied to the input signal, 
sig1, by clicking on the Apply button in the SPTool window under Filters. A new window 
as shown in Figure 3.20 is displayed, which allows the user to select the structure of the fi lter 
and specify the name of the output signal as FIR_out. Repeat this process for fi ltering the 
same sig1 with the IIR1 fi lter, and name the output signal IIR_out.

The time-domain plots of the input signal and fi ltered output signals can be viewed by 
selecting sig1, FIR_out, and IIR_out. This is followed by clicking on the View button 
in the Signal column. The third column of the SPTool is the Spectrum Viewer, which is 
used to analyze and view the frequency content of the signals. Following the steps introduced 
in Hands-On Experiment 3.2, we can create three spectra for the signals. Figure 3.21 shows 
the magnitude spectra for the input signal and the output signals from both FIR and IIR 
fi lters. Finally, the SPTool session can be saved in the fi le experiment3_4.spt for later 
reference.

Figure 3.19 Import the moving-average fi lter’s coeffi cients into SPTool

Figure 3.20 Apply Filter dialog box for fi ltering
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3.4.2 Design and Applications of Notch Filters

A notch fi lter contains one or more deep notches in its magnitude response. To create 
a notch at frequency ω0, we simply introduce a pair of complex-conjugate zeros on 
the unit circle at angle ω0 as

z e j= ± ω0 .  (3.4.1)

The transfer function of this FIR notch fi lter is

H z e z e z

z z

j j( ) = −( ) −( )
= − ( ) +

− − −

− −

1 1

1 2

0 01 1

0
1 2

ω ω

ωcos . (3.4.2)

This is the FIR fi lter of order 2 because there are two zeros in the system. Note that 
a pair of complex-conjugate zeros guarantees that the fi lter will have real-valued 
coeffi cients as shown in Equation 3.4.2.

The magnitude response of the second-order FIR notch fi lter described in Equa-
tion 3.4.2 has a relatively wide bandwidth, which means that other frequency com-
ponents around the null are severely attenuated. To reduce the bandwidth of the null, 
we may introduce poles into the system. Suppose that we place a pair of complex-
conjugate poles at

z rep
j= ± θ0,  (3.4.3)

where r and θ0 are the radius and angle of poles, respectively. The transfer function 
for the resulting fi lter is
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Figure 3.21 Spectra of input signal (top) and fi ltered signals (the one with notches is the output of 
the FIR moving-average fi lter)
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The notch fi lter expressed in Equation 3.4.4 is the second-order IIR fi lter because 
there are two poles in the system.

EXAMPLE 3.16

The magnitude response of the fi lter defi ned by Equation 3.4.4 is plotted in Figure 3.22. We use 
the fi xed frequency (θ0 = ω0 = 0.25π), but change the value of r. The magnitude responses of the 
fi lter are shown for r = 0.5, 0.75, and 0.95, using the MATLAB script example3_16.m. Com-
pared with the magnitude response of the FIR fi lter given in Equation 3.4.2, we note that the 
effect of the pole is to reduce the bandwidth of the notch. Obviously, the closer the r value to 1 
(poles are closer to the unit circle), the narrower the bandwidth.

EXERCISE 3.14

In MATLAB program exercise2_8.m, a speech fi le, timit1.asc, is corrupted 
by 1-kHz tone, and the corrupted signal with a sampling rate of 8 kHz is saved in 
the fi le speech_tone.mat.

1. Implement the notch fi lter with r = 0.95 designed in Example 3.16 for attenu-
ating the tonal noise. Play both input and output signals with the MATLAB 
function soundsc and display the spectrogram of output speech (see Fig. 
3.23) with the function specgram. Compared with Figure 3.11, we found 
that the tonal noise at 1 kHz (0.25π rad) was removed and the sound quality 
of the output speech is high. See exercise3_14.m for reference.

2. Redo Exercise 1, using different values of r, and evaluate the results by 
playing the outputs and viewing the spectrograms.
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Figure 3.22 Magnitude responses of notch fi lter for different values of r (from top to bottom, 
r = 0.95, 0.75, and 0.5)
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3. Compute the magnitude response of a notch fi lter with only two complex-
conjugate zeros on the unit circle as expressed in Equation 3.4.2. Compare 
it with the notch fi lter with poles as shown in Figure 3.22.

4. Modify the MATLAB script exercise2_8.m that adds a 60-Hz hum 
(tone) into the speech fi le timit1.asc with different SNRs. Play the cor-
rupted speech with soundsc. Note that many real-world speeches are 
corrupted by 60-Hz tone and its harmonics.

5. Design a notch fi lter to attenuate this undesired 60-Hz hum. Evaluate the 
fi lter’s performance by examining the spectrogram and playing the output 
speech.

HANDS-ON EXPERIMENT 3.5

In Example 2.9, we used the MATLAB code mulSineGen.m for generating signal consist-
ing of a desired sine wave that is corrupted by another sine wave at different frequency and 
saved it in a data fi le. We are not able to use simple low-pass fi lters shown in Figure 3.18 to 
remove those interferences because both desired and undesired sine waves are at the low-
frequency range. In this experiment, we design a notch fi lter to attenuate the undesired tone. 
We use the fi rst data fi le, sine200plus400at4k.mat, which is a 200-Hz sine wave cor-
rupted by a 400-Hz sine wave with a sampling rate of 4 kHz, as an example. Note that the 
digital frequencies of 200 Hz and 400 Hz are equivalent to 0.1π and 0.2π, respectively.
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Figure 3.23 Output spectrogram with the tone removed by the notch fi lter
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In this experiment, we use the Pole/Zero Editor in SPTool to specify the poles and 
zeros of the IIR fi lter. In the SPTool window, click on the New button under Filters; a Filter 
Designer dialog box will be displayed. Select the Pole/Zero Editor in the Algorithm menu; 
the default fi lter with a pole/zero diagram is displayed. Clear this fi lter by clicking on the 
Delete All button. The window that appears in Figure 3.24 allows the user to drag- and-

drop poles and zeros in the z-plane with the icons  and , respectively. To reduce 
400-Hz tone, the complex-conjugate poles and zeros are positioned at frequency 0.2II (or 
0.6284) rad. We use these two icons to drop poles and zeros into the desired position and 
use the Specifi cations panel at the left-hand side to fi ne-tune the position as shown in 
Figure 3.24. Note that we also change the default Sampling Frequency to 4000 Hz. Once 
the pole and zero positions are specifi ed, we name the fi lter filt2.

We can evaluate the fi lter characteristics by highlighting the fi lter filt2 and clicking 
on the View button under Filters in the SPTool window. A Filter Visualization Tool (FVTool) 
window is displayed, which was introduced in Hands-On Experiment 3.1. For example, we 
select the Magnitude and Phase Responses option from the Analysis menu, and Figure 
3.25 is displayed. This fi gure clearly shows that the 400-Hz tone is attenuated by the designed 
notch fi lter and the desired 200-Hz tone passes without attenuation.

Import the fi le sine200plus400at4k.mat into the SPTool and name it sig1.
Perform IIR fi ltering to produce the output sig2. We can view both input (mixing of two 
sine waves) and output (only 400-Hz tone) by the Signal Browser. We also create spectra 
of both input and output signals and display both spectra in Figure 3.26. From the fi gure, 
we fi nd that the 400-Hz interference was attenuated by about 60 dB. We also can play input 
and output signals separately and evaluate their differences.

Figure 3.24 Notch fi lter design using Pole/Zero Editor
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EXERCISE 3.15

1. Redesign the notch fi lter shown in Figure 3.25, using r = 0.99. Apply this 
fi lter to the data fi le sine200plus400at4k.mat and show both input and 
output spectra.

2. Design a notch fi lter to remove the 400-Hz sine wave generated in Example 
2.9(2) and show the results.

3. Design a notch fi lter to remove the 60-Hz hum generated in Example 2.9(3) 
and show the results.
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Figure 3.25 Magnitude and phase responses of designed notch fi lter

Figure 3.26 Input and output spectra
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3.4.3 Design and Applications of Peak Filters

In Hands-On Experiment 3.4, we used the moving-average FIR fi lter and the fi rst-
order IIR fi lter for enhancing a sine wave that was corrupted by white noise. As 
shown in Figure 3.18, these fi lters have undesired attenuation of signals because the 
gain is less than 1. They also only provide about 10–15 dB of noise reduction, as 
shown in Figure 3.21. In Section 3.4.2, we introduced notch fi lters that have very 
narrow bandwidth for attenuation of sinusoidal interference. In this section, we 
extend a similar technique to enhance a sinusoidal signal that is corrupted by broad-
band noises.

To create a peak (or narrow passband) at frequency ω0, we may think we can 
simply follow the example of designing a notch fi lter by introducing a pair of 
complex-conjugate poles on the unit circle at angle ω0. However, as discussed in 
Section 3.2.3, the resulting second-order IIR fi lter will be unstable. To solve this 
problem, we have to move the poles slightly inside the unit circle (i.e., use rp < 1) as

z r ep p
j= ± ω0 .  (3.4.5)

The transfer function of this second-order IIR peak fi lter is

H z
r e z r e z r z r zp
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Similar to the second-order IIR notch fi lter introduced in Section 3.4.2, the 
magnitude response of the second-order IIR peak fi lter described in Equation 3.4.6 
has a relatively wide bandwidth, which means that other frequency components 
around the peak will also be amplifi ed. To reduce the bandwidth of the peak, we 
may introduce zeros into the system. Suppose that we place a pair of complex-
conjugate zeros at radius rz with the same angle as the poles; the transfer function 
for the resulting second-order IIR fi lter is
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(3.4.7)

It is important to note that for designing a peak fi lter, the poles must be closer to 
the unit circle as

r rp z> .  (3.4.8)

The IIR fi lter defi ned in Equation 3.4.7 can be applied as a simple parametric 
equalizer for boosting (rp > rz) or cutting (rp < rz) an audio signal. The amount of 
boost or cut is determined by the difference between rp and rz. The bandwidth of 
peaks or notches is determined by the value of rz.

EXAMPLE 3.17

The peak fi lter with a pair of complex-conjugate poles only as defi ned in Equation 3.4.6 is 
implemented in MATLAB code example3_17.m. The magnitude responses for radius 0.99, 
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0.95, and 0.9 are shown in Figure 3.27. This fi gure shows that the second-order IIR fi lter 
with poles only has wide bandwidth. Also, when the poles are closer to the unit circle, the 
fi lter has higher gain.

The peak fi lter with both complex-conjugate poles and zeros as defi ned in Equation 
3.4.7 is also implemented in the same MATLAB code with the radius of poles fi xed at 0.99, 
but the radius of zero is varied at 0.5, 0.75, and 0.95 in order to satisfy Equation 3.4.8. The 
magnitude responses for these three different zero positions are shown in Figure 3.28.
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Figure 3.27 Magnitude responses of peak fi lter with poles only; radius r = 0.99 (top), 
0.95 (middle), and 0.9 (bottom)
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Figure 3.28 Magnitude responses of peak fi lter with poles (radius 0.99) and zeros; radius of zeros 
r = 0.5 (top), 0.75 (middle), and 0.95 (bottom)
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EXERCISE 3.16

1. In Hands-On Experiment 3.4, we used an FIR moving-average fi lter 
with L = 5 and its equivalent fi rst-order IIR fi lter for enhancing the 
200-Hz sine wave (sampled at 4 kHz) in data fi le sineNoise3sec.mat.
Design a peak fi lter using MATLAB with poles radius 0.99 and zeros 
radius 0.95 to enhance the sine wave, and compare the results with 
Figure 3.21.

2. Redo Exercise 1 by using Pole/Zero Editor to design different peak fi lters, 
analyze their characteristics, fi lter the noisy sine wave, and compare input 
and output spectra.

3. In Exercise 2.8, we added tonal and white noises into the speech signal. In 
Exercise 3.14, we used a notch fi lter to remove tonal noise. Try all the fi lters 
we have learned so far to reduce random noise. You may fi nd that this is a 
very diffi cult task. Why?

EXERCISE 3.17

1. If the impulse response of an IIR fi lter is h(n) = sin(ω0n), show that the 
transfer function of the fi lter is expressed as

H z
z

z z
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( )
− ( ) +

−

− −
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.

ω
ω

0
1

0
1 21 2

(3.4.9)

2. Find the poles of this fi lter by comparing the transfer function with 
Equations 3.4.5 and 3.4.6. Is this a stable IIR fi lter?

3. If the sampling rate is 8 kHz, compute the values of IIR fi lter coeffi cients 
for generating sinewaves at frequencies of 697, 770, 852, 941, 1,209, 1,336, 
1,477, and 1,633 Hz.

4. Write a MATLAB program to implement Equation 3.4.9. Apply an 
impulse function to the fi lter to generate sine waves at frequency defi ned in 
Exercise 3.

3.5 FREQUENCY ANALYSIS 
WITH BLACKFIN SIMULATOR

This section introduces additional features of the VisualDSP++ simulator for the 
Blackfi n (BF533 and BF537) processors. We use optimized functions provided in 
the C run time library and DSP run time library. These library functions greatly 
ease the development of effi cient C code for embedded applications.
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HANDS-ON EXPERIMENT 3.6

This experiment uses a simple program, main.c, to compute the magnitude spectrum of 
the input signal. The project fi le, exp3_6.dpj, is provided in directory c:\adsp\chap3\
exp3_6. Double-click on main.c to display it, and examine the program carefully. This C 
main program includes the following header fi les:

#include <stdio.h> // standard input and output
#include <fract.h> // support fractional values
#include <complex.h> // basic complex arithmetic
#include <filter.h> // filters and transformations
#include <math.h> // math functions

The main program reads in data from the input fi le in1.dat, which contains 512 
samples of sine wave. The program then calls the library functions to compute FFT, square 
root, and magnitude spectrum. The result is stored in the output fi le out1.dat. The critical 
portion of program is listed as follows:

twidfft_fr16(w, VEC_SIZE); // initialize twiddle factors rfft_
fr16(in, t, out, w, 1, VEC_SIZE, 0, 0); // FFT
mag[0] = sqrt(out[0].re*out[0].re+out[0].im*out[0].im);
fprintf(fid, “%d,\n”, (short)mag[0]);
for (i=1; i<VEC_SIZE/2; i++) {
 mag[i] = 2*sqrt(out[i].re*out[i].re+out[i].im*out[i].im);
 fprintf(fid, “%d,\n”, (short)mag[i]);
}
mag[VEC_SIZE/2]= sqrt(out[VEC_SIZE/2].re*out[VEC_SIZE/2].re
 +out[VEC_SIZE/2].im*out[VEC_SIZE/2].im);
fprintf(fid, “%d,\n”, (short)mag[VEC_SIZE/2]);
fclose(fid);

Build the project and load the program into the VisualDSP++ simulator. Before running 
the program, open two previously created debug windows, input.vps and output.vps,
to display the input signal waveform and the output spectrum, respectively. Click on View
→ Debug Windows → Plot → Restore, and search for input.vps in directory c:\adsp\
chap3\exp3_6. A graphic window will appear in the right column, as shown in Figure 
3.29. Right-click on the displayed window, click on Confi gure  .  .  . → Settings  .  .  .  , and 
select the 2D-Axis tab. Note that the increment value of the x-axis should be equal to the 
sampling period (1/48,000 in this case).

The main program, main.c, uses the FFT routine provided in the library to compute 
the magnitude spectrum of the input signal. Open the output window by clicking on View
→ Debug Windows → Plot → Restore and search for output.vps in directory c:\adsp\
chap3\exp3_6. Right-click on the output window and select Auto Refresh. Run the 
program, and the output will be updated in the window. Again, right-click and activate 
the Data Cursor to measure the frequency of the peak magnitude. Instead of measuring the 
frequency in hertz, the magnitude spectrum plot can also be measured in term of the fre-
quency index, k. The relationship between the frequency in hertz and the frequency index is 
defi ned in Equation 3.3.19. Because we are using 512-point FFT and the sampling frequency 
fs is 48 kHz, the frequency resolution Δf is 93.75 Hz. The peak frequency is measured at 
3,000 Hz, which corresponds to the frequency index k = 32. Note that the index k starts from 
0 to 511, and only 257 points are displayed from the frequency index k = 0 (corresponds to 
DC or 0 Hz) to k = 257 (corresponds to the Nyquist frequency, which is 24 kHz in this 
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example). Users can also export out1.dat to the MATLAB workspace for observing the 
magnitude spectrum. It is important to note that the MATLAB index starts from 1, so that 
k = 1 corresponds to 0 Hz, and so on.

Instead of writing an FFT routine to compute the magnitude spectrum, users can 
also display the magnitude spectrum of the signal by right-clicking on the input window and 
selecting Modify Settings. Click on the Data Processing tab, and selecting FFT Magnitude
under Data Process. Click on OK, and the magnitude spectrum is displayed as shown in 
Figure 3.30. Examine the position of the peak and its frequency index and magnitude. The 
peak should occur at 3,000 Hz.

We can also display the spectrogram by using the VisualDSP++ graphical feature. 
Right-click on the input signal window and select Confi gure.  .  .  .  Select Spectrogram Plot 
under Plot Type. Because we have 512 samples of input signal, we can divide the time axis 
(y-axis) into 5 parts and the frequency axis (x-axis) into 102 parts. Figure 3.31(a) shows the 

Figure 3.29 Display of input signal

Figure 3.30 Magnitude spectrum obtained with VisualDSP++ data process
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Figure 3.31 (a) Confi guration for plotting spectrogram (b) Spectrogram plot of the input signal, 
in1.dat

3.5 Frequency Analysis with Blackfi n Simulator 101

settings used for the spectrogram plot. The new plot is shown in Figure 3.31(b). It shows a 
vertical red line at the 3,000-Hz mark, which indicates that the 3,000-Hz sine wave is present 
in the signal at all times. The spectrogram plot provides both frequency and time information 
for the signal being analyzed. This plot is particularly useful for analyzing nonstationary 
signals like speech.
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102 Chapter 3 Frequency-Domain Analysis and Processing

EXERCISE 3.18

Use the display tool given in Hands-On Experiment 3.6 to perform the following 
tasks:

1. The digitized speech plus tonal signal (speech_sine.dat) given in 
Example 3.13 can be imported into the VisualDSP++ simulator for analysis. 
However, the data fi le is too long to fi t into the internal memory of the pro-
cessor. This problem can be overcome by placing the data in the external 
memory. To demonstrate this method, a project fi le, exercise3_18.dpj,
is given in directory c:\adsp\chap3\exercise3_18. Build the project 
and perform signal analysis with VisualDSP++.

2. Display the time-domain waveform of the corrupted speech signal and listen 
to this signal with the computer sound card. Set the sampling rate to 8,000 Hz. 
Export data to the sound card can be enabled by right-clicking on the display 
window and selecting the Export  .  .  .  option.

3. Note the length of the speech signal and plot its spectrogram with Visu-
alDSP++. What is the frequency of the sine wave?

3.6 FREQUENCY ANALYSIS WITH 
BLACKFIN BF533/BF537 EZ-KIT

This section implements real-time frequency analysis of the input signal with the 
Blackfi n BF533 or BF537 EZ-KIT. A signal from a CD player or computer sound 
card is connected to the ADC1 input pair (see Fig. 2.23) of the BF533 EZ-KIT or 
the stereo input of the BF537 EZ-KIT. The Blackfi n processor on the EZ-KIT com-
putes the FFT based on the block of data samples, and the result is displayed with 
the graphical plot of the VisualDSP++ environment. To continuously analyze and 
display the spectrum of the incoming signal, a background telemetry channel (BTC) 
is required to facilitate data exchange between the VisualDSP++ hosted on the 
computer and the Blackfi n processor without interrupting the processor. This feature 
allows the frequency spectrum to be updated as soon as the block of signal is being 
calculated. In the following exercises, we use BTC to change the parameters of the 
program (such as the window type, window overlapping, and number of data samples 
per block) on the fl y.

HANDS-ON EXPERIMENT 3.7

This experiment uses the frequency analyzer programs provided in the project exp3_7_533.
dpj for the BF533 EZ-KIT (or exp3_7_537.dpj for the BF537), which can be found in 
directory c:\adsp\chap3\exp3_7_533 (or c:\adsp\chap3\exp3_7_537). This project 
includes four source fi les summarized as follows:
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1. init.c initializes the EZ-KIT for analog-to-digital conversion. This program also 
sets up the direct memory access (DMA) controller and interrupts. A more detailed 
explanation of this program is postponed to Chapter 7.

2. isr.c is the interrupt service routine (ISR) that performs the real-time frequency 
analysis after the CODEC has acquired a block of data samples.

3. main.c is the main program that declares all the variables and their memory 
allocation. It also initializes the EZ-KIT and forces the processor into an infi nite 
loop for frequency analysis.

4. process.c performs windowing and window overlapping and computes FFT and 
magnitude spectrum. This code is called isr.c.

Build the project. Open the graphical window by clicking on View → Debug Windows
→ Plot → Restore. Select FFT In.vps and FFT Out.vps in directory c:\adsp\chap3\
exp3_7. Right-click on the plots and make sure that Auto Refresh is enabled. Select the 
wave fi le chirp.wav from directory c:\adsp\audio_files and play this wave fi le con-
tinuously with an audio player on the computer. Run the project and observe the two 
graphical windows as shown in Figure 3.32. Note that the FFT Out spectrum will be swept 
from left to right and back from right to left along the frequency axis. This plot shows that 
the chirp waveform is a linear swept-frequency signal.

The updates of the signal waveform and the magnitude spectrum (shown in Fig. 3.32) are 
performed by the BTC via the USB interface. Users can adjust the parameters of the program 
with the BTC. Five steps needed to include the BTC in the source code are listed as follows:

1. Add the btc.h header fi le to the source code.

2. Defi ne the channels in the source code (main.c) as follows:

  BTC_MAP_BEGIN
// channel name, starting address, length
BTC_MAP_ENTRY(“FFT_INPUT”,(long)&BTC_CHAN0,sizeof(BTC_CHAN0))
BTC_MAP_ENTRY(“FFT_OUTPUT”,(long)&BTC_CHAN1,sizeof(BTC_CHAN1)
BTC_MAP_ENTRY(“INPUT SIZE”,(long)&new_size,sizeof(new_size))
BTC_MAP_ENTRY(“WINDOW TYPE”,(long)&new_win_select,sizeof(new_
 win_select))
BTC_MAP_ENTRY(“OVERLAP”,(long)&overlap, sizeof(overlap))
BTC_MAP_END

In this case, fi ve channels are defi ned to capture the user’s data entries when the 
program is running.

3. Defi ne the BTC polling loop with the btc_poll( ) command in the interrupt service 
routine. The polling loop checks for incoming commands from the host computer.

4. Initialize the BTC with the btc_init( ) command in main.c.

5. Add the BTC library libbtc532.dlb into the project.

To activate the BTC, click on View → Debug Windows → BTC Memory. The BTC 
Memory window is displayed as shown in Figure 3.33, which indicates fi ve channels that 
are defi ned in the source code. The fi rst two channels (FFT_INPUT and FFT_OUTPUT) are 
used to display the real-time data, while the remaining three channels (INPUT_SIZE,
WINDOW_TYPE, and OVERLAP) are used for user-defi ned parameters. Refer to Table 3.1 for 
the options provided for these three channels. Change the parameter values during the 
program execution and observe the changes to the plots.

3.6 Frequency Analysis with Blackfi n BF533/BF537 EZ-KIT 103
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104 Chapter 3 Frequency-Domain Analysis and Processing

Figure 3.33 BTC memory window

(a)

(b)
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Figure 3.32 Magnitude spectrum and waveform of input signal, spectrum (a) and time-domain 
signal (b)
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EXERCISE 3.19

Replace chirp.wav with the wave fi le, liutm_48k_mono.wav, and perform 
the following tasks:

1. Change INPUT_SIZE of the FFT and observe the resulting magnitude 
spectrum. Users have to adjust the resolution settings of the FFT Out plot 
by changing the Increment value of the x-axis and the Count value of the 
display.

2. Change WINDOW_TYPE for windowing the input signal and note the 
spectrum differences by using different windows.

3. Change OVERLAP of the input blocks and note any change in the 
spectrum.

4. Modify the source code to process stereo input. Display the magnitude 
spectra in real time for both the left and right channels.

5. Instead of using the given code to perform FFT, users can use the graphical 
plot feature to display the magnitude spectrum. Display the spectrum of 
the input signal and compare it with that obtained in Hands-On 
Experiment 3.7.

3.7 FREQUENCY ANALYSIS WITH LABVIEW 
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

Frequency analysis allows a designer to extract useful signal information in the 
presence of noise or to detect a physical phenomenon like failing bearings in a 

Table 3.1 Parameters Used to Adjust the Frequency Analysis

INPUT_SIZE (Hex16)

0×0200 512-point FFT
0×0100 256-point FFT
0×0080 128-point FFT
0×0040  64-point FFT

WINDOW_TYPE (Hex8)
0×00 Rectangular
0×01 Bartlett
0×02 Hanning
0×03 Hamming
0×04 Blackman

OVERLAP (Hex8)
0×00 No overlap between frames
0×01 50% overlap between frames

3.7 Frequency Analysis with LabVIEW Embedded Module for Blackfi n Processors 105
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106 Chapter 3 Frequency-Domain Analysis and Processing

motor. Accurate time and frequency information is often needed before the embed-
ded design process begins, allowing the designer to choose sampling rates and fi lters 
to accurately design and implement the system.

The following examples explore frequency-domain properties in LabVIEW, 
enabling the designer to simulate, prototype, and deploy an application that detects 
frequency information from time-domain signals. First, we explore frequency-
domain concepts through an interactive simulation. Then we implement similar 
functionality with the FFT through the LabVIEW Embedded Module for Blackfi n 
Processors, using the LabVIEW graphical interface to view and interact with signals 
streaming into the Blackfi n EZ-KIT.

HANDS-ON EXPERIMENT 3.8

This hands-on experiment introduces the effects of windowing on frequency analysis. Under-
standing the frequency content of signals within a system is key to development of effective 
fi lters and other system components. We accomplish this by using the FFT algorithm, which 
is based on having a time-domain signal that continues on to infi nity. In real-world applica-
tions, fi nite-length signals will cause leakage in the frequency domain that distorts the result 
of the FFT. Therefore, windowing is used to minimize the leakage introduced at the begin-
ning and end of a time-domain fi nite-length signal.

Open the program Window_FFT_Sim.exe, located in directory c:\adsp\chap3\
exp3_8. This LabVIEW application studies different window topologies applied to 
an input signal and their effects on the performance of the FFT. Figure 3.34 shows the user 
interface for Window_FFT_Sim.exe. Note that the Time & Frequency tab shows the 
Time Domain signal and the Frequency Response, whereas the Window tab shows the 
time representation of both the window and the input signal after the window has been 
applied.

The default input signal is a 1-kHz sine wave sampled at 48 kHz with a buffer length 
of 512 samples. When no window is applied, as shown in Figure 3.34, leakage is expected 
in the frequency domain because the Time Domain plot shows that the sine wave stops short 
of completing a full period. The effects of leakage can be seen in the Frequency Response
plot because the power at high frequencies rests above −60 dB. The Window pull-down menu 
can be used to change the type of windowing to be implemented. Applying a Hanning 
window provides improved performance, as seen in Figure 3.35, where the power at high 
frequencies drops below −120 dB.

Now select the Bartlett window. How do the results change? Experiment with the 
other window types and pay attention to the corresponding frequency response of the sinu-
soidal input. What trade-offs are apparent in both the time and frequency domains when 
using the different windows?

Now load and experiment with the audio fi le speech_tone_48k.wav, which was used 
in Hands-On Experiment 2.5. Can you see the tonal noise in the frequency-response graph? 
Experiment with different windows and parameters to see the FFT results. How does win-
dowing affect the non-periodic speech fi le differently from the periodic sinusoid? How would 
you expect the results to vary if you were to break up the speech tone into 512-sample 
buffers? Explain.
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Figure 3.34 Frequency analysis (user interface for Window_FFT_Sim.exe)

3.7 Frequency Analysis with LabVIEW Embedded Module for Blackfi n Processors 107

Figure 3.35 Frequency analysis of the input signal with a Hanning window
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108 Chapter 3 Frequency-Domain Analysis and Processing

HANDS-ON EXPERIMENT 3.9

This experiment implements the FFT algorithm in the LabVIEW Embedded Module for 
Blackfi n Processors for execution on the Blackfi n EZ-KIT to explore the advantages of 
various windowing implementations. Executing the project in debug mode on the Blackfi n 
processor allows the user to interact with the LabVIEW front panel and to see the results of 
the FFT.

Open the Audio FFT - BF5xx.lep project appropriate for your Blackfi n processor 
in directory c:\adsp\chap3\exp3_9. Open the block diagram to see how the FFT is 
implemented. The block diagram shown in Figure 3.36 is intuitive, allowing the programmer 
to easily see how to integrate the analog input and processing algorithm. The Window Type
control is wired to a Case Structure allowing the user to specify the window to be applied 
to the acquired input signal. The windowed time-domain result is plotted to the 
front panel indicator and passed to the FFT subVI. The FFT result is then converted from 
complex representation to magnitude response, which is then plotted to a front panel indica-
tor as well. The data type is converted before plotting to limit the amount of data transferred 
between the code running on the Blackfi n target and the front panel interface running on 
the computer.

Customize the debugging mode and parameters within the LabVIEW Embedded 
Module for Blackfi n Processors to enhance the experience and value of this exercise. First, 
modify the target debugging parameters to increase the amount of data to be downloaded 
to graph indicators. Then choose the debugging method. Finally, execute the application with 
debugging support. These steps are described in more detail below.

Modify the target debugging parameters by navigating to the LabVIEW Embedded 
Project Manager window and selecting Target → Confi gure Target → Debug Options,
change Max array elements to 256, and click on OK. This is necessary to view all of the 
data on the graph because the buffer length on the block diagram is specifi ed as 512 samples, 
which is divided into 256 for each channel. Therefore, the time-domain signal and FFT result 
will have 256 samples.

These three debugging methods offer different advantages depending on the application 
and resources. By default, this project is confi gured to the standard JTAG debugging 

Figure 3.36 Frequency analysis block diagram
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method using JTAG over USB. JTAG is the standard communication method between the 
Blackfi n processor and VisualDSP++. In this debug mode, data transfers interrupt the 
processor when transmitting data to and from the computer, which disrupts real-time pro-
cessing. JTAG debugging is adequate for this and many other applications as long as real-
time processing is not necessary. Another option, unique to the LabVIEW Embedded Module 
for Blackfi n Processors, is called instrumented debugging, which requires the USB cable 
and an additional cable connection between the Blackfi n and the computer. The additional 
cable can be either serial or TCP/IP and allows for quicker update rates, providing a faster, 
more interactive experience. Instrumented debugging adds extra code to the project to initi-
ate debug data transfers while the LabVIEW code is running on the processor, adding as 
much as 40% to the size of the embedded executable code. If you are interested in using 
serial or TCP/IP debug, attach the appropriate cables and change the debug mode for the 
project by navigating to Target → Build Options and changing Debug Mode to Instru-
mented (via serial port) or Instrumented (via TCP port).

Run the project on the Blackfi n processor. Close the block diagram window and navigate 
back to the project window. Run the VI using debug mode to explore the various types of 
windowing. Different windows can be applied during run time by changing the Window 
Type control on the front panel as shown in Figure 3.37. Change the window type to see 
how it affects the time-domain signal and the performance of the FFT. How does window-
ing improve the resulting frequency-domain calculation?
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Figure 3.37 Frequency analysis front panel
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110 Chapter 3 Frequency-Domain Analysis and Processing

Probe the values passed through wires on the block diagram using probes. Note that 
the resulting vector from the FFT is complex and the Absolute Value function converts the 
complex values to the magnitude response. Modify the experiment to show the real part of 
the frequency response in one graph and the imaginary part in the other.

3.8 MORE EXERCISE PROBLEMS

1. The digital signal x(n) consists of two real-valued sinusoidal components expressed as

x(n) = A1sin(ω1n) + A2sin(ω2n) + v(n),

 where v(n) is zero-mean and unit-variance white noise, ω1 = 0.1π, and ω2 = 0.2π.

(a)  Compute A1 and A2 such that A1 = 2A2 and the signal-to-noise ratio is 10 dB. Gener-
ate 512 samples x(n) with MATLAB.

(b)  Design a moving-average fi lter of L = 10. Filter the signal x(n) and plot both x(n)
and y(n) with MATLAB. Discuss the results and explain why.

(c)  Use MATLAB functions fft, abs, and log10 to compute and plot the magnitude 
spectra of x(n) and y(n) with a dB scale. Plot the spectra from frequencies 0 to π.

(d)  Explain why the sinusoidal component at frequency ω2 = 0.2π has been attenu-
ated.

(e)  Design a peak fi lter with two peaks to enhance these two sinusoids.

2. Redo Problem 1 with SPTool.

3. Given a speech fi le timit1.asc, perform the following task:

(a)  Use different frequency analysis techniques to obtain its spectrum. Other than 
specgram, do other techniques really work?

(b)  Add white noise with a mean of 0 and a variance of 20,000 into the original speech. 
Replay the original and corrupted speech with the MATLAB function soundsc,
and show its frequency contents with the MATLAB function specgram.

(c) Can you design a digital fi lter to reduce the noise?

4. The convolution function conv in MATLAB can be used to perform FIR fi ltering. Redo 
Example 3.7 with the conv function. Is the output derived from conv identical to that 
from filter? If not, how can the two outputs be the same?

5. Generate a 3-s sine wave of 2,000 Hz in MATLAB, using a sampling frequency 
of 16,000 Hz. Use MATLAB function soundsc to play the generated sine wave. 
Save the sine wave as a wave fi le with extension .wav by using the wavwrite
function. The wave fi le can be saved as 16 bits per sample. Record the fi le size of the 
saved wave fi le. Examine the size of the fi le saved if 8 bits per sample is used. Finally, 
the wave fi le can be read back into the MATLAB workspace by using the wavread
function. Plot the wave fi le and compare it with the original data fi le generated by 
MATLAB.

6. Using the property of z-transform of an N-periodic sequence given in Exercise 3.2(3), 
fi nd the z-transform of square wave x(n) = {1 1 1 –1 –1 –1 1 1 1  .  .  .}.
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7. A digital system is defi ned by the I/O equation y(n) = x(n) + x(n − 1).

(a) Sketch the signal fl ow diagram of the system.

(b) Find the magnitude and phase responses of the system.

8. Find the transfer function of the systems described by the following difference 
equations:

(a) 2y(n) + y(n − 1) + 0.75y(n − 2) = x(n − 1) + 2x(n − 2)

(b) y(n) − 0.5y(n − 1) + 2y(n − 2) = x(n) − x(n − 1) + 0.75x(n − 2)

(c) Derive Equation 3.2.21 from Equation 3.2.20.

9. A digital system is defi ned by the I/O equation y(n) = x(n) + ay(n − 1).

(a) Sketch the signal-fl ow diagram of the system.

(b) Find the magnitude response of the system and sketch it for a = 0.9 and a = 0.5.

10. A three-point moving-average fi lter is defi ned by the I/O equation

y(n) = 1/3[x(n) + x(n − 1) + x(n − 2)].

(a) Find the frequency response of the system.

(b) Compute the magnitude and phase responses of the system.

11. An analog sine wave with frequency f0 = 100 Hz is sampled at a sampling rate of 
1,000 Hz. What is the normalized frequency F0 in cycles per sample and the digital 
frequency ω0 in radians per sample?

12. Similar to Equation 3.2.20, a simple power estimator can be expressed as

P n
L

P n
L

x n P n x n( ) ≅ −⎛
⎝⎜

⎞
⎠⎟

−( ) + ( ) = −( ) −( ) + ( )1
1

1
1

1 12 2α α .

 Use this equation to estimate the power of speech signal timit1.asc, using different 
values of L. For example, try L = 32, 128, and 1,024. Plot these power estimation results, 
compare with the speech waveform, and summarize the results.

13. The N-point radix-2 inverse FFT function ifft is used to transform the frequency-
domain complex sequence into the time-domain signal. Using the VisualDSP++ simula-
tor, extend the source code in exp3_6.dpj to include the IFFT routine after FFT to 
recover the original time-domain signal.

14. Extend Hands-On Experiment 3.6 to plot the phase spectrum of the input signal.

15. Play the wave fi le speech_tone_48k.wav with the computer and use the frequency 
analyzer program (given in Hands-On Experiment 3.7) running on the EZ-KIT to detect 
the occurrence of the sinusoidal tone. Design a simple moving-average fi lter or bandstop 
fi lter to remove the tone. Observe the magnitude spectrum after the fi lter is applied to 
the input signal. Did you still see the tone?

16. Modify Hands-On Experiment 3.9 to include the moving-average fi lter in Problem 15. 
Show the magnitude spectrum of both the fi ltered and the unfi ltered signal.

3.8 More Exercise Problems 111
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Chapter 4

Digital Filtering

As discussed in Chapters 2 and 3, a fi lter can be designed to alter the spectral 
content of input signals in a specifi ed manner to achieve the desired objectives, and 
digital fi ltering is widely used for embedded systems. This chapter introduces the 
design, analysis, application, and implementation of time-invariant FIR and IIR 
fi lters and time-varying adaptive fi lters.

4.1 INTRODUCTION

As discussed in Section 3.2.3, digital fi lters can be divided into two categories: FIR 
fi lters and IIR fi lters. These fi lters can be represented by difference (or I/O) equa-
tions, system transfer functions, and signal fl ow diagrams. The I/O equations of FIR 
and IIR fi lters are defi ned in Equations 2.3.4 and 3.2.12, the transfer functions are 
defi ned in Equations 3.2.7 and 3.2.13, and the signal fl ow diagrams are illustrated 
in Figure 2.16 and Figure 3.3, respectively.

The process of deriving the digital fi lter transfer function H(z) that satisfi es a 
given specifi cation is called digital fi lter design. Although some applications require 
only simple fi lters such as the moving-average, notch, and peaking fi lters introduced 
in Chapters 2 and 3, the design of more sophisticated fi lters requires the use of more 
advanced techniques. A number of computer-aided design tools (such as MATLAB) 
are available for designing digital fi lters. In this chapter, we focus on using the Filter 
Design and Analysis Tool (FDATool) for designing FIR and IIR fi lters in Sections 
4.2 and 4.3, respectively.

Linear, time-invariant fi lters are characterized by magnitude response, phase 
response, stability, rise time, settling time, and overshoot. As introduced in Section 
3.3, magnitude response specifi es the gains of the fi lter at different frequencies, 
whereas phase response indicates the amount of phase changed by the fi lter. Mag-
nitude and phase responses determine the steady-state response of the fi lter. Rise 
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4.1 Introduction 113

time, settling time, and overshoot specify the transient response of the fi lter in the 
time domain.

4.1.1 Ideal Filters

As discussed in Section 3.3.1, a fi lter passes certain frequency components in a 
signal through the system and attenuates others based on the magnitude response 
of the fi lter. The range of frequencies that is allowed to pass through the fi lter is 
called the passband, and the range of frequencies that is attenuated by the fi lter is 
called the stopband. If a fi lter is defi ned in terms of its magnitude response, there 
are four different types of fi lters: low-pass, high-pass, bandpass, and bandstop fi lters. 
The magnitude response of an ideal fi lter is given by |H(ω)| = 1 in the passband and 
|H(ω)| = 0 in the stopband. This two-level shape of the magnitude response helps 
in analyzing and visualizing actual fi lters used in DSP systems. However, achieving 
an ideal characteristic is not feasible, and ideal fi lters are only useful for conceptual-
izing the impact of fi lters on signal frequency components.

The frequency response H(ω) of a digital fi lter is a periodic function of fre-
quency ω, and the magnitude response |H(ω)| of a digital fi lter with real coeffi cients 
is an even function of ω. Therefore, digital fi lter specifi cations are given only in the 
range of 0 ≤ ω ≤ π, or 0 ≤ F ≤ 1, where F is the normalized frequency defi ned in 
Equation 2.2.6. The magnitude response of an ideal low-pass fi lter is illustrated in 
Figure 4.1. The regions 0 ≤ ω ≤ ωc and ωc ≤ ω ≤ π are referred to as the passband 
and the stopband, respectively. The frequency that separates the passband and the 
stopband is called the cutoff frequency ωc. An ideal low-pass fi lter has magnitude 
response |H(ω)| = 1 in the frequency range 0 ≤ ω ≤ ωc and has |H(ω)| = 0 for ωc ≤
ω ≤ π. Thus a low-pass fi lter passes low-frequency components below the cutoff 
frequency and attenuates high-frequency components above ωc. For an ideal high-
pass fi lter, the regions ωc ≤ ω ≤ π and 0 ≤ ω ≤ ωc are referred to as the passband 
and the stopband, respectively. A high-pass fi lter passes frequency components 
above the cutoff frequency ωc and attenuates frequency components below ωc.

The magnitude response of an ideal bandpass fi lter is illustrated in Figure 4.2. 
The frequencies ωl and ωu are called the lower and upper cutoff frequencies, respec-
tively. The region ωl ≤ ω ≤ ωu is called the passband, and the regions 0 ≤ ω ≤ ωl

)(ωH
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Figure 4.1 Magnitude response of an ideal low-pass fi lter
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114 Chapter 4 Digital Filtering

and ωu ≤ ω ≤ π are referred to as the stopband. A bandpass fi lter passes 
frequency components between the two cutoff frequencies ωl and ωu and attenuates 
frequency components below the frequency ωl and above the frequency ωu. If 
the passband is narrow, the center frequency and bandwidth are commonly used 
to specify a bandpass fi lter. A narrow bandpass fi lter also can be called a resonator 
(or peaking fi lter) as introduced in Section 3.4.3 and shown in Figures 3.27 
and 3.28.

For an ideal bandstop (or band reject) fi lter, the region ωl < ω < ωu is called the 
stopband, and the regions 0 ≤ ω ≤ ωl and ωu ≤ ω ≤ π are referred to as the passband. 
A bandstop fi lter attenuates frequency components between the cutoff frequencies 
ωl and ωu and passes frequency components below the frequency ωl and above the 
frequency ωu. A narrow bandstop fi lter designed to attenuate a single frequency 
component is called a notch fi lter, as introduced in Section 3.4.2 and illustrated in 
Figure 3.22.

EXAMPLE 4.1

Similar to Example 3.12, we use a MATLAB script (example4_1.m) to generate a signal 
x(n) that consists of four sinusoids at f1 = 400 Hz, f2 = 800 Hz, f3 = 1,200 Hz, and f4 = 1,600 Hz. 
The magnitude spectrum is shown in Figure 4.3. If the sampling frequency is 4 kHz, Equa-
tion 2.2.4 shows that the digital frequencies of these four sine waves are ωl = 0.2π, ω2 = 0.4π,
ω3 = 0.6π, and ω4 = 0.8π. In addition, Equation 2.2.6 indicates that the normalized digital 
frequencies of these four sine waves are 0.2, 0.4, 0.6, and 0.8.

As shown in Figure 4.1, we can pass only a 400-Hz sine wave and attenuate others by 
using a low-pass fi lter with cutoff frequency ωc = 0.3π. Figure 4.2 shows that we can pass 
only a 1,200-Hz sine wave by using a bandpass fi lter with ωl = 0.5π and ωu = 0.7π.

EXERCISE 4.1

Determine the fi lter types and cutoff frequencies for the following tasks:

1. Pass a 1,600-Hz sine wave only and attenuate others.

2. Attenuate a 800-Hz sine wave only.

)(ωH

ω

1

0 lω πuω

Figure 4.2 Magnitude response of an ideal bandpass fi lter
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3. Pass 800-Hz and 1,200-Hz sine waves and attenuate others.

4. Pass 400-Hz and 1,600-Hz sine waves and attenuate others.

4.1.2 Practical Filter Specifi cations

In practice, it is very diffi cult to achieve the sharp cutoff implied by the ideal fi lters 
shown in Figures 4.1 and 4.2. We must accept a more gradual roll-off between the 
passband and the stopband. A transition band is introduced to permit the smooth 
magnitude drop-off between the passband and the stopband. In addition, the devia-
tion from |H(ω)| = 1 (0 dB) in the passband is called magnitude distortion. For fre-
quency-selective fi lters, the magnitude specifi cations of a digital fi lter are often given 
in the form of tolerance (or ripple) schemes. A typical magnitude response of a 
low-pass fi lter is shown in Figure 4.4. The dashed horizontal lines in the fi gure 
indicate the tolerance limits. In the passband the magnitude response has a peak 
deviation δp, and in the stopband it has a maximum deviation δs. The frequencies 
ωp and ωs are the passband edge frequency and the stopband edge frequency, 
respectively.

As shown in Figure 4.4, the magnitude of the passband in the range 0 ≤ ω ≤
ωp approximates unity with an error of ±δp. That is,

1 1 0− ≤ ( ) ≤ + ≤ ≤δ ω δ ω ωp p pH , .  (4.1.1)
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Figure 4.3 Magnitude spectrum of four sine waves
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116 Chapter 4 Digital Filtering

The passband ripple, δp, is a measure of the allowed variation in magnitude response 
in the passband of the fi lter. Note that the gain of the magnitude response is normal-
ized to 1 (0 dB). In practical applications, it is easy to scale the fi lter output by 
multiplying the output with a constant, which is equivalent to multiplying the whole 
magnitude response by the same constant gain.

In the stopband, the magnitude approximates zero with an error δs. That is,

H ω δ ω ω π( ) ≤ ≤ ≤s s, .  (4.1.2)

The stopband ripple describes the minimum attenuation for signal components in 
the stopband.

Passband and stopband deviations may be expressed in decibels. The peak 
passband ripple, δp, and the minimum stopband attenuation, δs, in decibels are given 
as

Ap
p

p1
dB=

+
−

⎛
⎝⎜

⎞
⎠⎟

20
1

10log
δ
δ

(4.1.3)

and

As s dB.= −20 10log δ  (4.1.4)

EXAMPLE 4.2

Consider a fi lter specifi ed as having a magnitude response in the passband within ±0.001. 
That is, δp = 0.001. From Equation 4.1.3, we have

Ap dB.= ( ) =20
1 001

0 999
0 017410log

.

.
.

The minimum stopband attenuation is given as δs = 0.001. From Equation 4.1.4, we 
have
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Ideal filter 

Actual filter 
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Figure 4.4 Practical low-pass fi lter specifi cations
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As = −20log10(0.001) = 60 dB.

The transition band is the frequency range between the passband edge frequency ωp

and the stopband edge frequency ωs. The magnitude response decreases monotonically from 
the passband to the stopband in this region. The width of the transition band determines how 
sharp the fi lter is. Generally, the smaller δp and δs, and the narrower the transition band, the 
more complicated (higher order) is the required fi lter.

HANDS-ON EXPERIMENT 4.1

This experiment uses FDATool to introduce fi lter types and their design specifi cations. 
FDATool is a graphical user interface (GUI) to design (or import) and analyze digital fi lters. 
For general information about using FDATool, refer to the Signal Processing Toolbox User’s 
Guide [49].

FDATool can be activated by typing

fdatool

in the MATLAB command window. The FDATool window is shown in Figure 4.5, which 
has tools similar to the Filter Designer window in the SPTool, as shown in Figure 2.11. The 
design steps and features to view the fi lter characteristics are also similar. However, FDATool 
is a more advanced fi lter design tool. FDATool can be used to (1) design fi lters, (2) quantize 

Figure 4.5 FDATool window
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118 Chapter 4 Digital Filtering

Figure 4.6 Filter Specifi cations window for a high-pass window

fi lters, (3) analyze fi lters, (4) modify existing fi lter designs, (5) create multirate fi lters, (6) 
realize Simulink models of quantized, direct-form, FIR fi lters, (7) import fi lters into FDATool, 
and (8) perform digital frequency transformations of fi lters. Note that capabilities (2), (5), 
(6), and (8) are only available when the Filter Design Toolbox [50] is installed, which inte-
grates advanced fi lter design methods and supports quantized fi lters.

As shown in Figure 4.5, we can choose from several response (fi lter) types: Lowpass,
Highpass, Bandpass, Bandstop, and Differentiator. The fi lter design specifi cations vary 
according to response types and design methods. As shown in Figure 4.5, we can enter (1) 
Filter Order, (2) Options, (3) Frequency Specifi cations, and (4) Magnitude Specifi ca-
tions. For example, to design a high-pass fi lter, select the radio button next to Highpass
in the Response Type region on the GUI. The Filter Specifi cations window is shown in 
Figure 4.6.

It is important to compare the Filter Specifi cations window in Figure 4.6 with Figure 
4.4. The parameters Fstop, Fpass, Astop, and Apass correspond to ωS, ωp, As, and Ap, respec-
tively. These parameters can be entered in the Frequency Specifi cations and Magnitude
Specifi cations regions at the bottom of Figure 4.5. The frequency units are Normalized (0
to 1), Hz (default), kHz, MHz, or GHz, and the magnitude options are dB (default) or 
Linear. Note that Fs/2 corresponds to ω = π or F = 1.

EXAMPLE 4.3

For the four sine waves shown in Figure 4.3, design a bandstop FIR fi lter to attenuate the 
1,200-Hz sine wave.

As shown in Figure 4.5, select the radio button next to Bandstop in the Response Type
region. We can design the fi lter by entering parameters in Frequency Specifi cations as 
shown in Figure 4.7 and using default settings in the Magnitude Specifi cations region. Press 
the Design Filter button to compute the fi lter coeffi cients. The Filter Specifi cations region 
will change to Magnitude Response (dB) as shown in Figure 4.8. Comparing the magnitude 
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4.1 Introduction 119

response of the designed fi lter with the signal spectrum shown in Figure 4.3; we know this 
designed fi lter can attenuate the 1,200-Hz sine wave by 60 dB.

EXERCISE 4.2

Given the signal defi ned in Example 4.1, use FDATool to design FIR fi lters for the 
following tasks:

1. A low-pass fi lter that is passing the 400-Hz sine wave only.

2. A bandpass fi lter that is passing the 1,200-Hz sine wave only.

3. A high-pass fi lter that is passing the 1,600-Hz sine wave only.

Figure 4.7 Frequency Specifi cations for a bandstop fi lter

Figure 4.8 Magnitude response of the designed bandstop fi lter
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120 Chapter 4 Digital Filtering

4. A bandstop fi lter that is attenuating the 800-Hz sine wave only.

5. Redo 1–4 by assuming that the sampling rate is 8 kHz, and use normalized 
frequency for frequency specifi cations.

6. Compare the required fi lter order for the fi lter designed in 1–4. Why do they 
need different orders?

7. Redo 1–4 with IIR fi lters by selecting the radio button next to IIR in the 
Design Method region on the GUI. Pay attention to the required IIR fi lter 
orders as compared with the FIR fi lters.

When a signal passes through a fi lter, its amplitude and phase are modifi ed. 
The phase response is an important fi lter characteristic because it affects time delays 
of different frequency components passing through the fi lter. If we consider a signal 
that consists of several frequency components, the phase delay of the fi lter is the 
time delay the composite signal suffers at each frequency. A fi lter is said to have a 
linear phase if its phase response satisfi es

φ ω αω π ω π( ) = − − ≤ ≤, .  (4.1.5)

This equation shows that for a fi lter with a linear phase, the group delay Td(ω) given 
in Equation 3.3.7 is a constant α for all frequencies. As shown in Equation 3.3.8, 
this fi lter avoids phase distortion because all sinusoidal components in the input are 
delayed by the same amount. A fi lter with a nonlinear phase will cause a phase 
distortion in the signal that passes through it.

4.2 FINITE IMPULSE RESPONSE FILTERS

As discussed in Section 3.2.3, an FIR fi lter of length L can be represented by its 
impulse response h(n), which has at most L nonzero samples. That is, h(n) = 0 for 
all n ≥ L. An FIR fi lter is also called a transversal fi lter. Some characteristics of 
FIR fi lters are summarized as follows:

1. Because there is no feedback of past output samples as defi ned in Equation 
2.3.4, the FIR fi lters are always stable. This inherent stability is also mani-
fested in the absence of poles in the transfer function as defi ned in Equation 
3.2.7, except possibly at the origin.

2. The fi lter has fi nite memory from x(n) to x(n − L + 1), as shown in Figure 
2.16.

3. The design of linear-phase fi lters can be guaranteed. In many real-world 
applications such as audio signal processing, linear-phase fi lters are preferred 
because they avoid phase distortion.

4. The fi nite-precision errors (discussed in Chapter 6) are less severe in FIR 
fi lters than in IIR fi lters.

5. FIR fi lters can be easily implemented on most DSP processors such as the 
Blackfi n processor.
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6. A relatively higher-order FIR fi lter is required to obtain the same character-
istics as compared with an IIR fi lter, and this may result in higher computa-
tional cost.

4.2.1 Characteristics and 
Implementation of FIR Filters

The signal fl ow diagram of the FIR fi lter is shown in Figure 2.16. The general I/O 
equation of FIR fi lter is defi ned in Equation 2.3.4. This equation describes the output 
of the FIR fi lter as a convolution sum of the input with the impulse response of the 
system. An example of linear convolution of two sequences is given in Example 2.5. 
Note that the convolution of the length M input with the length L impulse response 
results in a length L + M − 1 output.

As shown in Example 2.5, the input sequence is fl ipped around (folding) and 
then shifted to the right to overlap with the fi lter coeffi cients. At each time instant, 
the output value is the sum of products of overlapped coeffi cients with the corre-
sponding input data aligned below it. At time n = 0, the only nonzero product comes 
from b0 and x(0), which are time aligned. It takes the fi lter L iterations to completely 
overlap with the input sequence. Therefore, the fi rst L − 1 outputs correspond to the 
transient behavior of the FIR fi lter. For n ≥ L − 1, the fi lter aligns over the nonzero 
portion of the input sequence. That is, when the signal buffer of FIR fi lter is full, 
the fi lter is operated in steady state.

An FIR fi lter has linear phase if its coeffi cients satisfy the following symmetric 
condition

b b l Ll L l= = −− −1 0 1, ,1, . . . , ,  (4.2.1)

or the antisymmetric (negative symmetry) condition

b b l Ll L l= − = −− −1 0 1, ,1, . . . , .  (4.2.2)

There are four types of linear-phase FIR fi lters, depending on whether L is an even 
or an odd number and whether coeffi cients have positive or negative symmetry. 
These four linear-phase FIR fi lters are summarized as follows:

Type I—Positive symmetry and L is even.

Type II—Positive symmetry and L is odd.

Type III—Negative symmetry and L is even.

Type IV—Negative symmetry and L is odd.

The frequency response of the Type I fi lter is always zero at the Nyquist fre-
quency (or fs/2). This type of fi lter is unsuitable for a high-pass fi lter. Type III and 
IV fi lters introduce a 90° phase shift; thus they are often used for designing Hilbert 
transformers. The frequency response is always zero at DC frequency, making them 
unsuitable for low-pass fi lters. In addition, Type III response is always zero at the 
Nyquist frequency, making it also unsuitable for a high-pass fi lter.

4.2 Finite Impulse Response Filters 121
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The symmetry (or antisymmetry) property of a linear-phase FIR fi lter can be 
exploited to reduce the total number of multiplications almost in half. Consider the 
realization of an FIR fi lter with an even number L and positive symmetric impulse 
response as given in Equation 4.2.1; Equation 3.2.7 can be combined as

H z b z b z z b z zL L
L

L L( ) = +( ) + +( ) + + +( )− + − − +
−

− + −
0

1
1

1 2
2 1

2 1 21 . . . .  (4.2.3)

The I/O equation given in Equation 2.3.10 can be generalized as

y n b x n l x n L ll
l

L

( ) = −( ) + − + +( )[ ]
=

−

∑ 1
0

2 1

. (4.2.4)

For an antisymmetric FIR fi lter, the addition of two signals is replaced by subtrac-
tion. That is,

y n b x n l x n L ll
l

L

( ) = −( ) − − + +( )[ ]
=

−

∑ 1
0

2 1

. (4.2.5)

EXERCISE 4.3

1. Realize H(z) defi ned in Equation 4.2.3 as a signal-fl ow diagram of a sym-
metric FIR fi lter where L is even.

2. Redo Exercise 1 with L an odd number.

3. Redo Exercise 1 with an antisymmetric FIR fi lter.

As shown in Equation 4.2.4, the number of required multiplications is reduced 
in half by fi rst adding the pair of samples and then multiplying the sum by the cor-
responding coeffi cient. The trade-off is that instead of addressing data linearly in 
the signal buffer with a single circular pointer, we need two address pointers.

An FIR fi lter can be realized either with a block-by-block- or a sample-by-
sample-based operation. In block processing, the input sequence is segmented into 
multiple blocks. Filtering is performed one block at a time, and the resulting output 
blocks are recombined to form the overall output. The fi ltering of each block can 
be implemented with the linear convolution technique or with fast convolution using 
FFT. In the sample-by-sample operation, the input samples are processed at every 
sampling period after the current input x(n) is available.

As shown in Equation 2.3.4, the fi lter output y(n) is a linear combination of L
input samples {x(n), x(n − 1),  .  .  .  , x(n − L + 1)} with the corresponding L coeffi -
cients {bl, l = 0, 1,  .  .  .  , L − 1)}, which can be represented as two separate tables 
(arrays or vectors) in memory. To compute the output at any given time, we simply 
multiply the corresponding values in each table and sum the results. The coeffi cient 
values are constant, but the data in the signal buffer change every sampling period 
T. For example, the sample x(n) at time n becomes x(n − 1) in the next sampling 
period, then becomes x(n − 2), etc., until it simply drops off the end of the delay 
chain. The signal buffer is refreshed in every sampling period, where the oldest 
sample x(n − L + 1) is discarded and other signals are shifted one location in the 
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buffer. A new sample is inserted to the memory location labeled as x(n). The FIR 
fi ltering operation that computes y(n) with Equation 2.3.4 is then repeated. The 
process of refreshing the signal buffer requires intensive processing time if the 
operation is not implemented by the hardware.

The most effi cient method for refreshing a signal buffer is to load the signal 
samples into a circular buffer, as illustrated in Figure 4.9. Instead of shifting the 
data samples while holding the buffer address fi xed, the data are kept fi xed and the 
address is shifted backwards (counterclockwise) in the circular buffer. The current 
signal buffer is arranged as the left-hand circle in Figure 4.9. After calculating the 
output y(n), the pointer is moved counterclockwise one position pointing at x(n − L
+ 1), which is no longer needed, and we wait for the next input signal. As shown in 
the right-hand circle, the new input is written to the x(n − L + 1) position pointed 
by the circular pointer, and this new sample is referred to as x(n) for the next itera-
tion. The circular buffer implementation of a signal buffer (or a tapped-delay line) 
is very effi cient. The update is carried out by adjusting the address pointer without 
physically shifting any data in memory.

A circular buffer also can be used for addressing FIR fi lter coeffi cients. The 
circular buffer allows the coeffi cient pointer to wrap around when it reaches the end 
of the coeffi cient buffer. That is, the pointer moves from bL−1 back to the adjacent 
b0 such that the fi ltering will always start from the fi rst coeffi cient. Details of how 
these pointers can be programmed in the Blackfi n processor for effi cient FIR fi lter-
ing are discussed in Chapter 8.

4.2.2 Design of FIR Filters

The objective of FIR fi lter design is to determine a set of fi lter coeffi cients {bl, l =
0, 1,  .  .  .  , L − 1} such that the fi lter performance is close to the given specifi cations. 

x(n−L+2)
x(n)x(n−L+1)

x(n−1)

x(n−2)

Signal buffer pointer at current time n Signal buffer pointer for next time

Circular buffer at current time Circular buffer for next time 

x(n)

x(n−1)

x(n−2)

x(n−3)

x(n−L+1)

Figure 4.9 Circular buffer for storing signal samples
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A variety of techniques have been proposed for the design of FIR fi lters. The Fourier 
series method offers a very simple and fl exible way of computing FIR fi lter coeffi -
cients, but it does not allow the designer to control the fi lter parameters. With the 
availability of an effi cient and easy-to-use fi lter design software package such as 
MATLAB, the Park–McClellan algorithm is now widely used in industry for most 
practical applications.

MATLAB fi lter design functions operate with the normalized frequencies 
defi ned in Equation 2.2.6, so they do not require the sampling rate as an extra input 
argument. The Signal Processing Toolbox uses the convention that unit frequency 
is the Nyquist frequency, defi ned as half the sampling frequency. The normalized 
frequency, therefore, is always in the interval 0 ≤ F ≤ 1. For a system with a 1,000-
Hz sampling frequency, 300 Hz is equivalent to a normalized frequency F = 300/500 
= 0.6. To convert normalized frequency to angular frequency ω around the unit 
circle, multiply it by π. To convert normalized frequency back to hertz, multiply it 
by half the sampling frequency.

The FIR fi lter design functions provided by the Signal Processing Toolbox are 
listed in Table 4.1. For example, fir1 function implements the classic method of 
windowed linear-phase FIR digital fi lter design. It designs fi lters in standard low-
pass, high-pass, bandpass, and bandstop types. By default, the magnitude response 
of the fi lter at the center frequency of the passband is normalized to 0 dB. An 
example syntax of using this function is

b = fir1(n,Wn);

This returns row vector b containing n + 1 coeffi cients of low-pass FIR fi lter 
with order n. This is a Hamming window-based linear-phase fi lter with normalized 
cutoff frequency Wn between 0 and 1, where 1 corresponds to the Nyquist frequency. 
If Wn is a two-element vector such as Wn = [w1 w2], the function fir1 returns 

Table 4.1 FIR Filter Design Functions Provided by Signal Processing Toolbox

Methods Functions Description

Windowing fir1, fir2, Apply window to truncated inverse Fourier
kaiserord  transform of desired fi lter

Multiband with firls, firpm, Equiripple or least-squares approach over
 transition bands  firpmord  subbands of the frequency range
Constrained least fircls, fircls1 Minimize squared integral error over entire
 squares  frequency range subject to maximum error
   constraints
Arbitrary response cfirpm Arbitrary responses, including non-linear-phase
   and complex fi lters
Raised cosine firrcos Low-pass response with smooth, sinusoidal
   transition

Adapted from Help menu in MATLAB.
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a bandpass fi lter with passband w1 < F < w2. The MATLAB Filter Design Toolbox
[50] provides an additional 10 FIR fi lter design functions.

EXAMPLE 4.4

Given a signal consisting of four sinusoidal components as shown in Figure 4.3, design an 
FIR fi lter to pass only the 800-Hz sine wave and attenuate others.

Because the sampling rate is 4 kHz, the normalized frequency of 800 Hz is 0.4. There-
fore, we choose w1 = 0.35 and w2 = 0.45. The MATLAB program (example4_4.m) is listed 
as follows:

w1 = 0.35; w2 = 0.45; % define edge frequencies
b = fir1(48,[w1 w2]); % design FIR filter
fvtool(b,1) % activate FVTool

The magnitude and phase responses of the designed fi lter are shown in Figure 4.10.

EXERCISE 4.4

1. Modify example4_4.m to design a bandpass fi lter with different edge 
frequencies and fi lter lengths.

2. Design FIR fi lters with different design functions listed in Table 4.1.

3. Design an FIR fi lter to attenuate the 800-Hz sine wave and pass other 
components.

4. Design an FIR fi lter to pass the 1,600-Hz sine wave only, using a high-pass 
fi lter.
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Figure 4.10 Magnitude and phase responses of FIR fi lter
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4.2.3 Hands-On Experiments

In this section, we expand on Hands-On Experiment 4.1 for designing FIR fi lters. 
We use FDATool to design FIR fi lters for enhancing a 1,000-Hz tonal signal that is 
corrupted by broadband speech (timit1.asc) as shown in Figure 3.11.

HANDS-ON EXPERIMENT 4.2

In the FDATool window shown in Figure 4.5, select the radio button next to Bandpass in 
the Response Type region. The Filter Specifi cations window is shown as Figure 4.11. In 
the Frequency Specifi cation region, enter 8000 in Fs, 900 in Fstop1, 950 in Fpass1, 1050 in 
Fpass2, and 1100 in Fstop2. In the Magnitude Specifi cations region, enter 60 in Astop1, 1 in 
Apass, and 60 in Astop2. The magnitude response of the designed bandpass fi lter is shown in 
Figure 4.12.

In addition to the magnitude response shown in Figure 4.12, we can analyze the phase 
response, group delay response, phase delay, impulse response, step response, pole/zero plot, 
fi lter coeffi cients, etc. from the toolbar icons or from the Analysis pull-down menu. We can 

Figure 4.11 Filter Specifi cations window for a bandpass fi lter

Figure 4.12 Magnitude response of the designed bandpass fi lter
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export the coeffi cients of the fi lter with the Export option from the File menu. The Export
window is displayed as shown in Figure 4.13. From the Export To pull-down menu, we have 
options of Workspace, Coeffi cient File (ASCII), MAT-File, and SPTool. From the Export
As menu, we can choose Coeffi cients or Objects. We also can enter Variable Names. Using 
the default settings, and clicking on Export tab, the designed FIR fi lter coeffi cients are saved 
in the default vector Num under the current workspace.

EXERCISE 4.5

1. Design different bandpass fi lters with different frequency and magnitude 
specifi cations and compare the required fi lter order, which is displayed in 
the Current Filter Information region. Also, analyze the designed fi lter 
performance, using features provided in the Analysis menu.

2. Save the design fi lter coeffi cients to an ASCII fi le and in the format that can 
be imported by SPTool.

3. The default FIR fi lter design method is Equiripple, as shown in the 
Design Method region. From the pull-down menu, there are 11 options. Use 
different methods such as Window for designing FIR fi lters and evaluate 
the performance.

After the fi lter design process has generated the fi lter coeffi cient vectors, 
two functions are available in the Signal Processing Toolbox for implement-
ing the fi lter: dfilt and filter. The dfilt function is a discrete-time fi lter object 
that allows users to specify its structure and values. The fitler function fi lters a 
data sequence with a digital fi lter that works for both real and complex inputs. The 
syntax

y = filter(b, a, x);

Figure 4.13 An Export window

4.2 Finite Impulse Response Filters 127
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fi lters the data in vector x with the fi lter described by numerator coeffi cient vector 
b and denominator coeffi cient vector a. For an FIR fi lter, a = 1.

EXAMPLE 4.5

We use the FIR fi lter designed in Hands-On Experiment 4.2 (save as vector Num in Work-
space) to enhance a tonal signal corrupted by speech in fi le timitl.asc. The MATLAB 
code is given in example4_5.m. The program plays the original speech, the mixed tone 
with speech, and the enhanced tone after the bandpass fi ltering. It also displays the spectro-
gram as shown in Figure 4.14. Comparing this spectrum with Figure 3.11, we verify that the 
bandpass fi lter shown in Figure 4.12 enhances the tonal signal.

EXERCISE 4.6

1. Use FDATool to design an FIR fi lter that can enhance the speech signal 
(timit1.asc) by attenuating the tonal noise at 1,000 Hz. Using different 
design methods and frequency and magnitude specifi cations, compare the 
fi lter order and performance.

2. Export the designed fi lter coeffi cients for SPTool. Similar to hands-on exper-
iments given in Chapter 2, import the signal and fi lter into SPTool, perform 
fi ltering, and examine waveforms and spectra for both input and output 
signals.
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Figure 4.14 Spectrogram of tone enhanced with the designed bandpass fi lter
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3. Instead of designing a notch fi lter to attenuate the tonal noise at 1,000 Hz, 
we can simply subtract the output of the bandpass fi lter in Hands-On Experi-
ment 4.2 from the original noisy speech signal. Compare the performance 
of this method with that from Exercise 1. Explain why it works.

4.3 INFINITE IMPULSE RESPONSE FILTERS

This section introduces the design, realization, and implementation of digital IIR 
fi lters. We discuss the basic characteristics and structures of digital IIR fi lters and 
focus on the techniques used for the design and implementation of these fi lters.

4.3.1 Design of IIR Filters

Digital IIR fi lters can be designed by beginning with the design of an analog fi lter 
in the s-domain and using mapping technique to transform it into the z-domain. The 
one-sided Laplace transform of analog signal x(t) can be expressed as

X s x t e dtst( ) = ( ) −∞
∫ ,

0
(4.3.1)

where

s j= +σ Ω  (4.3.2)

is a complex variable. The z-transform can be viewed as the Laplace transform of 
the sampled function x(nT) with the change of variable

z esT= .  (4.3.3)

This relationship represents the mapping of a region in the s-plane to the z-plane 
because both s and z are complex variables. The portion of the jΩ-axis between 
Ω = −π/T and Ω = π/T in the s-plane is mapped onto the unit circle in the z-plane 
from −π to π. As Ω varies from 0 to ∞, there are an infi nite number of encirclements 
of the unit circle in the counterclockwise direction. Similarly, there are an infi nite 
number of encirclements of the unit circle in the clockwise direction as Ω varies 
from 0 to −∞. Each strip of width 2π/T in the left half of the s-plane is mapped onto 
the unit circle. This mapping occurs in the form of concentric circles in the z-plane 
as σ varies from 0 to −∞. Also, each strip of width 2π/T in the right half of the s-
plane is mapped outside of the unit circle. This mapping also occurs in concentric 
circles in the z-plane as σ varies from 0 to ∞. In conclusion, the mapping from the 
s-plane to the z-plane is not one-to-one because many points in the s-plane are 
mapped to a single point in the z-plane.

Because analog fi lter design is a mature and well-developed fi eld, we begin the 
design of digital IIR fi lters in the analog domain and then convert the designed 
analog fi lter transfer function H(s) into the digital domain. The problem is to deter-
mine a digital fi lter H(z) that will approximate the performance of the desired analog 
fi lter H(s). There are two commonly used methods, the impulse-invariant and the 
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bilinear transform, for designing digital IIR fi lters based on existing analog IIR 
fi lters.

The impulse-invariant method preserves the impulse response of the original 
analog fi lter by digitizing the impulse response of the analog fi lter but not its fre-
quency (magnitude) response. Because of inherent aliasing, this method is inappro-
priate for high-pass or bandstop fi lters. The bilinear-transform method yields very 
effi cient fi lters and is well suited for the design of frequency-selective fi lters. The 
bilinear transform is defi ned as

s
T

z

z T

z

z
= −

+
⎛
⎝⎜

⎞
⎠⎟ = −

+
⎛
⎝⎜

⎞
⎠⎟

−

−
2 1

1

2 1

1

1

1
, (4.3.4)

or, equivalently,

z
T s

T s
= + ( )

− ( )
1 2

1 2
. (4.3.5)

As discussed above, the jΩ-axis of the s-plane (σ = 0) maps onto the unit circle 
in the z-plane. The left (σ < 0) and right (σ > 0) halves of the s-plane map onto the 
inside and outside of the unit circle, respectively. There is a direct relationship 
between the s-plane frequency Ω and the z-plane frequency ω. It can be easily shown 
that the corresponding mapping of frequencies is obtained as

Ω = ( )2

2T
tan

ω
, (4.3.6)

or, equivalently,

ω = ( )−2
2

1tan .
ΩT (4.3.7)

Thus the entire jΩ-axis is compressed into the interval −π/T ≤ ω ≤ π/T in a one-to-
one manner. Each point in the s-plane is uniquely mapped onto the z-plane.

The relationship in Equation 4.3.7 between the frequency variables Ω and ω is 
illustrated in Figure 4.15. The bilinear transform provides a one-to-one mapping of 
the points along the jΩ-axis onto the unit circle, that is, the entire jΩ-axis is mapped 
uniquely onto the unit circle or onto the Nyquist band |ω| ≤ π. However, the mapping 
is highly nonlinear. The entire band ΩT ≥ 1 is compressed onto π/2 ≤ ω ≤ π. This 
frequency compression effect associated with the bilinear transform is known as 
frequency warping because of the nonlinearity of the arctangent function given in 
Equation 4.3.7. This nonlinear frequency warping phenomenon must be taken into 
consideration when designing digital fi lters with the bilinear transform. This can be 
done by prewarping the critical frequencies and using frequency scaling.

The classic IIR fi lters, Butterworth, Chebyshev Types I and II, elliptic, and 
Bessel, all approximate the ideal fi lter in different ways. The MATLAB Signal 
Processing Toolbox provides functions to create these types of IIR fi lters in both 
the analog and digital domains (except Bessel), and in low-pass, high-pass, band-
pass, and bandstop types. Table 4.2 summarizes the various fi lter design methods 
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provided in the toolbox and lists the functions available to implement these methods. 
The direct fi lter design function yulewalk fi nds a fi lter with magnitude response 
approximating a desired function. This is one way to create a multiband bandpass 
fi lter.

0 2
TΩ

ω

π

2

π

−π

Figure 4.15 Frequency mapping due to bilinear transform

Table 4.2 IIR Filter Design Methods and Functions

Methods Functions Description

Analog prototyping Filter design functions: Using lowpass prototype
besself, butter,   fi lter in the s-domain,
cheby1, cheby2,  obtain a digital fi lter
ellip through frequency

 Order estimation functions: transformation.
buttord, cheb1ord,

cheb2ord, ellipord

Direct design yulewalk Design digital fi lter directly
by approximating a
magnitude response.

Generalized Butterworth maxflat Design low-pass Butterworth
 design  fi lters with more zeros than

poles.

Parametric modeling Time-domain modeling Find a digital fi lter that
  functions: approximates a prescribed

lpc, prony, stmcb time- or frequency-domain
 Frequency-domain modeling response.
  functions:

invfreqs, invfreqz

Adapted from Help menu in MATLAB.
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EXAMPLE 4.6

We design simple Butterworth and Chebyshev I low-pass IIR fi lters, using example4_6.m.
The following function

[b, a] = butter(N,Wn);

designs an Nth-order low-pass Butterworth fi lter with the cutoff frequency Wn and returns 
the fi lter coeffi cients in vectors b (numerator) and a (denominator). The function

[b, a] = cheby1(N,R,Wn);

designs a Chebyshev I fi lter with R decibels of peak-to-peak ripple in the passband. The 
magnitude responses of these two fi lters are shown in Figure 4.16.

As shown in Figure 4.16, the magnitude response of the Butterworth fi lter is 
monotonically decreasing in both the passband and the stopband. The Butterworth 
fi lter has a fl at magnitude response over the passband and the stopband. This fl at 
passband is achieved at the expense of the transition region, which has a slower roll-
off. For a given transition band, the order of the Butterworth fi lter required is often 
higher than that of other types. Chebyshev fi lters permit a certain amount of ripples 
in the passband or the stopband but have a much steeper roll-off near the cutoff fre-
quency. Type I Chebyshev fi lters are all-pole fi lters that exhibit equiripple behavior 
in the passband and a monotonic characteristic in the stopband. The family of type 
II Chebyshev fi lters contains both poles and zeros and exhibits a monotonic behavior 
in the passband and an equiripple behavior in the stopband. In general, the Chebyshev 
fi lter meets the specifi cations with a lower number of poles than the corresponding 
Butterworth fi lter; however, it has a poorer phase response. The sharpest transition 
from passband to stopband can be achieved with the elliptic design. Elliptic fi lters 
exhibit equiripple behavior in both the passband and the stopband. In addition, the 
phase response of an elliptic fi lter is extremely nonlinear in the passband, especially 
near the cutoff frequency. However, for a given transition band, the order of the ellip-
tic fi lter required is the lowest among the classic IIR fi lters.
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Figure 4.16 Magnitude responses of Butterworth and Chebyshev I fi lters
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EXERCISE 4.7

1. Examine frequency responses of Chebyshev II and elliptic fi lters by modify-
ing example4_6.m and compare the required fi lter orders for the same 
specifi cations.

2. Evaluate fi lter performance for different orders and different R values.

4.3.2 Structures and Characteristics of IIR Filters

Given an IIR fi lter described by Equation 3.2.13, the direct-form I realization is 
defi ned by the I/O equation (Eq. 3.2.12) and is illustrated as the signal-fl ow diagram 
shown in Figure 3.3. In DSP implementation, we have to consider the required 
operations, memory storage, and fi nite-wordlength effects. A given transfer function 
H(z) can be realized in several forms or confi gurations. As discussed in Section 
3.2.3, a high-order IIR fi lter is factored into second-order sections and connected 
in cascade or parallel to form an overall fi lter. In this section, we discuss direct-form 
I, direct-form II, cascade, and parallel realizations.

The transfer function of the second-order IIR fi lter is defi ned in Equation 3.2.15, 
and the I/O equation is given in Equation 3.2.14. The direct-form II realization is 
illustrated in Figure 3.4, where two signal buffers are combined into one. This 
realization requires three memory locations for the second-order IIR fi lter, as 
opposed to six memory locations required for the direct-form I realization given in 
Figure 3.3. Therefore, the direct-form II realization is called the canonical form 
because it realizes the given transfer function with the smallest possible numbers of 
delays, adders, and multipliers.

The cascade realization of an IIR fi lter assumes that the transfer function is the 
product of fi rst-order and/or second-order IIR sections. By factoring the numerator 
and the denominator polynomials of the transfer function H(z) as a product of lower-
order polynomials, an IIR fi lter can be realized as a cascade of low-order fi lter 
sections. Consider the transfer function H(z) given in Equation 3.2.16, it can be 
expressed as

H z GH z H z H z G H zk k
k

K

( ) = ( ) ( ) ( ) = ( )
=

∏1 2
1

… , (4.3.8)

where each Hk(z) is a fi rst- or second-order IIR fi lter and K is the total number of 
sections. In this form, any complex-conjugate roots must be grouped into the same 
section to guarantee that all the coeffi cients of Hk(z) are real numbers. The realiza-
tion of Equation 4.3.8 in cascade form is illustrated in Figure 4.17.

x(n)
)(1 zH )(2 zH )(zH K

G y(n)

Figure 4.17 Cascade realization of IIR fi lter

4.3 Infi nite Impulse Response Filters 133

TEAM LinG



134 Chapter 4 Digital Filtering

The transfer function for each section of fi lter can be expressed as

H z
b z

a z
k

k

k

( ) = +
+

−

−
1

1
1

1

1
1

, (4.3.9)

for the fi rst-order fi lter or

H z
b b z b z

a z a z
k

k k k

k k

( ) = + +
+ +

− −

− −
0 1

1
2

2

1
1

2
21

(4.3.10)

for the second-order section. Assuming that every Hk(z) is the second-order IIR 
fi lter, the I/O equations describing the time-domain operations of the cascade 
realization are expressed as

w n x n a w n a w nk k k k k k( ) = ( ) − −( ) − −( )1 21 2 ,  (4.3.11)

y n b w n b w n b w nk k k k k k k( ) = ( ) + −( ) + −( )0 1 21 2 ,  (4.3.12)

x n y nk k+ ( ) = ( )1 ,  (4.3.13)

for k = 1, 2,  .  .  .  , K sections and

x n Gx n1( ) = ( ),  (4.3.14)

y n y nK( ) = ( ).  (4.3.15)

The signal-fl ow diagram of the second-order IIR fi lter is illustrated in Figure 4.18.
By different ordering and pairing, it is possible to obtain many different cascade 

realizations for the same transfer function H(z). Ordering means the order of con-
necting Hk(z), and pairing means the grouping of poles and zeros of H(z) to form a 
section. Each cascade realization behaves differently from others because of the 
fi nite-wordlength effects. The best ordering is the one that generates the minimum 
overall roundoff noise.

In the direct-form realization shown in Figure 3.3, the variation of one 
parameter will affect the locations of all the poles of H(z). In the cascade realization 
illustrated in Figure 4.17, the variation of one parameter will affect only pole(s) in 
that section. Therefore, the cascade realization is less sensitive to parameter 
variation (due to coeffi cient quantization, etc.) than the direct-form structure. In 
practical implementations of digital IIR fi lters, the cascade form is often preferred.

kb2

wk(n-2) 

yk(n)

1−z

1−z

xk(n) wk(n)

wk(n-1)

kb0

kb1ka1−

ka2−

Figure 4.18 Block diagram of second-order IIR fi lter section
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EXAMPLE 4.7

Given the second-order IIR fi lter

H z
z z

z z z
( ) = + +

+ + +

− −

− − −

3 1 5 0 75

1 0 86 0 78 0 3

1 2

1 2 3

. .

. . .
,

realize it using the cascade form in terms of fi rst-order and second-order sections.
By factoring the numerator and denominator polynomials of H(z), we obtain

H z
z z

z z z
( ) =

+ +( )
+( ) + +( )

− −

− − −

3 1 0 5 0 25

1 0 5 1 0 36 0 6

1 2

1 1 2

. .

. . .
.

By different pairings of poles and zeros, there are different realizations of H(z). For example, 
we choose G = 3,

H z
z

H z
z z

z z
1 1 2

1 2

1 2

1

1 0 5

1 0 5 0 25

1 0 36 0 6
( ) =

+
( ) = + +

+ +−

− −

− −.

. .

. .
.and

The expression of H(z) in a partial-fraction expansion leads to another canonical struc-
ture called the parallel form. It is expressed as

H z c H z H z H zk( ) = + ( ) + ( ) + + ( )1 2 … ,  (4.3.16)

where c is a constant. The variation of parameters in a parallel form affects only the poles 
of the Hk(z) associated with the parameters. Therefore, the pole sensitivity of a parallel 
realization is less than that of the direct form.

The cascade realization of an IIR transfer function H(z) involves its factorization in the 
form of Equation 3.2.16. This can be done in MATLAB by using the function roots. From 
the computed roots, the coeffi cients of each section can be determined by pole-zero pairings. 
A much simpler approach is to use the function tf2zp in the Signal Processing Toolbox,
which fi nds the zeros, poles, and gains of systems in transfer functions of single-input or 
multiple-output form. For example, the statement

[z, p, c] = tf2zp(b, a);

returns the zero locations in z, the pole locations in p, and the gains for each numerator 
transfer function in c. Vector a specifi es the coeffi cients of the denominator, and b indicates 
the numerator coeffi cients. Some related linear system transformation functions are listed in 
Table 4.3.

As listed in Table 4.3, MATLAB provides a useful function, tf2sos (or zp2sos), to 
convert a given system transfer function to an equivalent representation of second-order 
sections. The function

[sos, G] = tf2sos(b, a);

fi nds a matrix sos in second-order section form and a gain G that represents the same system 
H(z) as the one with numerator b and denominator a. The poles and zeros of H(z) must be 
in complex conjugate pairs. The matrix sos is a K × 6 matrix as follows:

sos =

b b b a a

b b b a a

b b b a aK K K K K

01 11 21 11 21

02 12 22 12 22

0 1 2 1 2

1

1

1

� � � � � �

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, (4.3.17)
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whose rows contain the numerator and denominator coeffi cients, bik and aik, i = 0, 1, 2 of the 
kth second-order section Hk(z). The overall transfer function is expressed as

H z G H z G
b b z b z

a z a z
k

k k k

k kk

K

k

K

( ) = ( ) =
+ +

+ +

− −

− −
==

∏∏ 0 1
1

2
2

1
1

2
2

11 1
. (4.3.18)

The parallel realizations can be realized with the function residuez listed in Table 4.3.
As discussed above, MATLAB function filter supports the implementation of direct-

form IIR fi lters. To implement the cascade of second-order IIR sections, we can use

y = sosfilt(sos,x);

which applies the second-order section fi lter sos to the vector x. The output y has the same 
length as x.

The transfer function of IIR fi lter H(z) can be factored into the pole-zero form defi ned 
in Equation 3.2.16. The system is stable if and only if all its poles are inside the unit circle. 
For the cascade structure given in Equation 4.3.8, the stability can be guaranteed if every 
fi lter section Hk(z) defi ned in Equation 4.3.8 or Equation 4.3.10 is stable. Consider the second-
order IIR fi lter defi ned by Equation 4.3.10, the poles will lie inside the unit circle if the 
coeffi cients satisfy the following conditions:

a k2 1<  (4.3.19)

and

a ak k1 21< +  (4.3.20)

for all k. Therefore, the stability of the IIR fi lter realized as a cascade of fi rst- or second-order 
sections is easy to examine.

4.3.3 Hands-On Experiments

This section uses FDATool and SPTool for designing IIR fi lters to enhance the speech 
signal (timit1.asc) corrupted by a 1,000-Hz tone. As shown in Figure 3.11, a 

Table 4.3 List of Linear System Transformation Functions

Functions Description

residuez z-transform partial-fraction expansion.
sos2tf Convert digital fi lter second-order section data to transfer function form.
sos2zp Convert digital fi lter second-order section parameters to zero-pole-gain form.
ss2sos Convert digital fi lter state-space parameters to second-order section form.
tf2sos Convert digital fi lter transfer function data to second-order section form.
tf2zp Convert continuous-time transfer function fi lter parameters to zero-pole-
  gain form.
tf2zpk Convert discrete-time transfer function fi lter parameters to zero-pole-gain 
  form.
zp2sos Convert digital fi lter zero-pole-gain parameters to second-order section form.
zp2ss Convert zero-pole-gain fi lter parameters to state-space form.
zp2tf Convert zero-pole-gain fi lter parameters to transfer function form.

Adapted from Help menu in MATLAB.
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bandstop fi lter centered at 1,000 Hz (with sampling frequency 8 kHz) is needed to 
attenuate the narrowband noise.

HANDS-ON EXPERIMENT 4.3

In the FDATool window shown in Figure 4.5, select the radio button next to Bandstop in 
the Response Type region and IIR in the Design Method region, and choose Elliptic
from the pull-down menu. In the Frequency Specifi cation region, enter 8000 in Fs, 900 in 
Fpass1, 950 in Fstop1, 1050 in Fstop2, and 1100 in Fpass2. In the Magnitude Specifi ca-
tions region, enter 1 in Apass1, 60 in Astop, and 1 in Apass2. Click on the Design Filter
button; the magnitude response of the designed bandstop fi lter is shown in Figure 4.19.

Note that the Current Filter Information region shows that it required 10th-order IIR 
fi lter, realized as fi ve direct-form II second-order sections. It is interesting to design an FIR 
fi lter with the same specifi cations, and we need an FIR fi lter with order 342. We can use the 
Analysis menu for comparing the IIR fi lter with the FIR fi lter. In the Edit menu, there are 
options of Convert Structure, Reorder and Scale Second-Order Sections, and Convert 
to Single Section. We are able to realize the designed IIR fi lter with different structures for 
implementation.

After becoming satisfi ed with the designed fi lter, we select Export from the File menu. 
Select SPTool from the Export To menu; the SPTool startup window as shown in Figure 
2.3 is displayed. The designed fi lter is displayed in the Filters column as Hd[imported].

Following the procedure given in Hands-On Experiment 2.1, we can import speech_
tone.mat generated by example3_13.m. This fi le is named sig1 in the Signals region. 
View and play the imported speech that is corrupted by a 1,000-Hz tone. Following the steps 
given in Hands-On Experiment 2.2, select the input signal (sig1) and the imported fi lter 
(Hd) and click on the Apply button to perform IIR fi ltering. The Apply Filter window is 
displayed, which allows us to specify the fi le name of the output signal (default sig2). Click 
on OK to perform IIR fi ltering, which will generate the output fi le in the Signals region. 
We can evaluate the fi lter’s performance by viewing and playing the input and output wave-
forms. We should verify that the undesired 1,000-Hz tonal noise was attenuated by the 
designed bandstop IIR fi lter.

Figure 4.19 Magnitude response of the designed bandstop IIR fi lter
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EXERCISE 4.8

1. Design IIR fi lters with other design methods such as Butterworth, Cheby-
shev I, Chebyshev II, etc. supported by FDATool. Compare the required fi lter 
orders and fi lter performance.

2. Design IIR fi lters with different frequency and magnitude specifi cations. 
Compare the required fi lter orders and fi lter performance. Find the relation-
ship between the width of transition band and the required fi lter order.

3. Following the steps given in Hands-On Experiment 2.2, design IIR fi lters 
with SPTool, perform IIR fi ltering, and compare the performance of the 
designed fi lters.

EXAMPLE 4.8

Figure 2.2 shows that the narrowband signal is corrupted by a broadband random noise. It 
can be enhanced by using a simple moving-average fi lter. We also can design bandpass 
FIR and IIR fi lters for reducing random noise. However, if the desired narrowband 
signal has changing frequency as the chirp signal shown in Figure 4.20 (see example4_
8.m), can we use bandpass fi lters to enhance a time-varying signal with changing 
frequency?
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Figure 4.20 Spectrogram of the chirp signal corrupted by random noise
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4.4 ADAPTIVE FILTERS

We have introduced techniques for designing and implementing FIR and IIR fi lters. 
The characteristics of these fi lters are time invariant because they have fi xed coef-
fi cients. As shown in Example 4.8, these fi lters cannot be applied for time-varying 
signals and noises. In contrast, adaptive fi lters’ coeffi cients are updated automati-
cally by adaptive algorithms [6, 22]. The characteristics of adaptive fi lters are time 
varying and can adapt to an unknown and/or changing environment. Therefore, 
coeffi cients of adaptive fi lters cannot be determined by fi lter design software such 
as FDATool. This section introduces structures, algorithms, design, and applications 
of adaptive fi lters.

4.4.1 Structures and Algorithms 
of Adaptive Filters

In this book, we use many practical applications that involve the reduction of noises. 
The signal in some physical systems is time varying like the chirp signal given in 
Example 4.8, unknown, or possibly both. Adaptive fi lters provide a useful approach 
for these applications. For example, a modem needs a channel equalizer for trans-
mitting and receiving data over telecommunication channels. Because the dial-up 
channel has different characteristics on each connection and is time varying, the 
channel equalizers must be adaptive.

As illustrated in Figure 4.21, an adaptive fi lter consists of two functional 
blocks—a digital fi lter to perform the desired fi ltering and an adaptive algorithm to 
automatically adjust the coeffi cients (or weights) of that fi lter. In the fi gure, d(n) is 
a desired signal, y(n) is the output of a digital fi lter driven by an input signal x(n), 
and error signal e(n) is the difference between d(n) and y(n). The adaptive algorithm 
adjusts the fi lter coeffi cients to minimize a predetermined cost function that is 
related to e(n).

The FIR and IIR fi lters presented in Sections 4.2 and 4.3 can be used for adap-
tive fi ltering. The FIR fi lter is always stable and can provide a linear-phase response. 
The poles of the IIR fi lter may move outside the unit circle during adaptation of 

x(n) y(n)

d(n)

e(n)
+

−

Adaptive
algorithm

Digital 
filter

Figure 4.21 Block diagram of adaptive fi lter
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fi lter coeffi cients, thus resulting in an unstable fi lter. Because the fi lter is adaptive, 
the stability problem is very diffi cult to handle. Therefore, adaptive FIR fi lters are 
widely used for real-world applications.

Assuming the adaptive FIR fi lter used in Figure 4.21 with L coeffi cients, wl(n), 
l = 0, 1,  .  .  .  , L − 1, the fi lter output signal is computed as

y n w n x n ll
l

L

( ) = ( ) −( )
=

−

∑ ,
0

1
(4.4.1)

where the fi lter coeffi cients wl(n) are time varying and updated by an adaptive 
algorithm. It is important to note that the length of fi lter is L and the order of the 
fi lter is L − 1. We defi ne the input vector at time n as

x n x n x n x n L T( ) ≡ ( ) −( ) − +( )[ ]1 1. . . ,  (4.4.2)

and the weight vector at time n as

w n w n w n w nL
T( ) ≡ ( ) ( ) ( )[ ]−0 1 1. . . .  (4.4.3)

The output signal y(n) given in Equation 4.4.1 can be expressed with the vector form 
as follows:

y n n nT( ) = ( ) ( )w x ,  (4.4.4)

where T denotes the transpose operation of the vector. The fi lter output y(n) is 
compared with the desired response d(n), which results in the error signal

e n d n y n( ) = ( ) − ( ).  (4.4.5)

The objective of the adaptive algorithm is to update the fi lter coeffi cients 
to minimize some predetermined performance criterion (or cost function). The 
most commonly used cost function is based on the mean square error (MSE) 
defi ned as

ξ n E e n( ) ≡ ( )[ ]2 ,  (4.4.6)

where E denotes the expectation operation.
The MSE defi ned in Equation 4.4.6 is a function of fi lter coeffi cient vector w(n). 

For each coeffi cient vector w(n), there is a corresponding (scalar) value of MSE. 
Therefore, the MSE values associated with w(n) form an (L + 1)-dimensional space, 
which is called the MSE surface or the performance surface. The steepest-descent 
method is an iterative (recursive) technique that starts from an initial (arbitrary) 
weight vector. The weight vector is updated at each iteration in the direction of the 
negative gradient of the error surface.

The concept of the steepest-descent algorithm can be described as

w wn n n+( ) = ( ) − ∇ ( )1
2

μ ξ , (4.4.7)

where μ is a convergence factor (or step size) that controls stability and the rate of 
descent. The larger the value of μ, the faster the speed of convergence. The vector 
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∇ξ(n) denotes the gradient of the error function with respect to w(n), and the nega-
tive sign increments the weight vector in the negative gradient direction. The suc-
cessive corrections to the weight vector in the direction of the steepest descent of 
the performance surface should eventually lead to the minimum MSE, at which 
point the weight vector reaches its optimum value.

The method of steepest descent cannot be used directly because it requires the 
exact gradient vector. Many adaptive fi lter structures and adaptation algorithms have 
been developed for different applications. This section presents the most widely used 
adaptive FIR fi lter with the least mean square (LMS) algorithm, or stochastic gradi-
ent algorithm, which uses the instantaneous squared error, e2(n), to estimate the 
MSE. The LMS algorithm can be expressed as

w w xn n n e n+( ) = ( ) + ( ) ( )1 μ .  (4.4.8)

This equation can be expressed in scalar form as

w n w n x n l e n l Ll l+( ) = ( ) + −( ) ( ) = −1 0 1μ , ,1, . . . , .  (4.4.9)

Adaptive FIR fi lters using the LMS algorithm are relatively simple to design 
and implement. They are well understood with regard to stability, convergence 
speed, steady-state performance, and fi nite-precision effects. To effectively use the 
LMS algorithm, we must determine parameters L, μ, and w(0), where w(0) is the 
initial weight vector at time n = 0.

The convergence of the LMS algorithm from an initial condition w(0) to the 
optimum fi lter must satisfy

0
2< <μ

LPx
, (4.4.10)

where Px denotes the power of x(n). Because the upper bound on μ is inversely 
proportional to L, a smaller μ is used for large-order fi lters. In addition, μ is inversely 
proportional to the input signal power. One effective approach is to normalize μ
with respect to the input signal power Px. The resulting algorithm is called the nor-
malized LMS algorithm, which is expressed as

w w xn n
LP n

n e n
x

+( ) = ( ) +
( )

( ) ( )1
β

ˆ , (4.4.11)

where P̂x(n) is an estimate of the power of x(n) at time n and β is a normalized step 
size that satisfi es the criterion 0 < β < 2.

The commonly used method to estimate P̂x(n) sample by sample is similar to 
the fi rst-order IIR fi lter described in Equation 3.2.20. This effective technique can 
be expressed as

ˆ ˆ .P n P n x nx x( ) = −( ) −( ) + ( )1 1 2α α  (4.4.11)

Because it is not desirable that the power estimate P̂x(n) be zero or very small, a 
software constraint is required to ensure that the normalized step size is bounded 
even if P̂x(n) is very small.
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Convergence of the MSE toward its minimum value is a commonly used per-
formance measurement in adaptive systems because of its simplicity. A plot of the 
MSE versus time n is called the learning curve. Because the MSE is the performance 
criterion of LMS algorithms, the learning curve describes its transient behavior. The 
MSE time constant can be approximated as

τ τ ω
ω

MSE MSE
X

X
∝ ≤

( )
( )

1 2

2μ
 and 

max

min
, (4.4.12)

where |X(ω)|2 is the magnitude-square spectrum of x(n) and the maximum (max) 
and minimum (min) are calculated over the frequency range 0 ≤ ω ≤ π. Therefore, 
input signals with a fl at (white) spectrum have the fastest convergence speed. In 
addition, τMSE is inversely proportional to μ. If we use a large value of μ, the time 
constant is small, which implies faster convergence.

The steepest-descent algorithm defi ned in Equation 4.4.7 requires the true gra-
dient ∇ξ(n). The use of estimated gradient ∇ξ(n) produces the gradient estimation 
noise. After the algorithm converges, perturbing the gradient will cause the weight 
vector w(n + 1) to move away from the optimum solution. When w(n) moves away 
from the optimum weight vector, it causes ξ(n) to be larger than its minimum value, 
thus producing excess noise called the excess MSE at the fi lter output. For the LMS 
algorithm, the excess MSE is directly proportional to μ. The larger the value of μ,
the worse the steady-state performance after convergence. However, Equation 4.4.12 
shows that a larger μ results in faster convergence. Therefore, there is a design trade-
off between the excess MSE and the speed of convergence.

Insuffi cient spectral excitation of the LMS algorithm may result in divergence 
of the adaptive algorithm. Divergence can be avoided by means of a “leaking” 
mechanism used during the weight update. This is called the leaky LMS algorithm, 
expressed as

w w xn n n e n+( ) = ( ) + ( ) ( )1 ν μ ,  (4.4.13)

where ν is the leakage factor with 0 < ν ≤ 1. The leakage factor introduces a bias 
on the long-term coeffi cient estimation. The error due to the leakage is proportional 
to [(1 − ν)/μ]2. Therefore, (1 − ν) should be kept smaller than μ in order to maintain 
an acceptable level of performance. The leaky LMS algorithm not only prevents 
unconstrained weight overfl ow, but also limits the output power in order to avoid 
nonlinear distortion.

4.4.2 Design and Applications of Adaptive Filters

The MATLAB Filter Design Toolbox provides the function adaptfilt for imple-
menting adaptive fi lters. The function

h = adaptfilt.algorithm(. . .);

returns an adaptive fi lter h of type algorithm. MATLAB supports many adaptive 
algorithms. For example, the LMS-type adaptive algorithms based on FIR fi lters are 
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summarized in Table 4.4. The Filter Design Toolbox also provides many advanced 
algorithms such as recursive least squares, affi ne projection, and frequency-domain 
algorithms.

For example, we can construct an adaptive FIR fi lter with the LMS algorithm 
object as follows:

h = adaptfilt.lms(l,step,leakage,coeffs,states);

Table 4.5 describes the input arguments for adaptfilt.lms.
The adaptive fi lter is able to operate in an unknown environment and to track 

time variations of the input signals. The essential difference between various appli-
cations of adaptive fi ltering is where the signals x(n), d(n), y(n), and e(n) shown in 
Figure 4.21 are connected.

Adaptive system identifi cation is illustrated in Figure 4.22, where P(z) is an 
unknown system to be identifi ed and W(z) is an adaptive fi lter used to model P(z). 
The adaptive fi lter adjusts itself to cause its output to match that of the unknown 
system. If the input signal x(n) provides suffi cient spectral excitation, the adaptive 
fi lter output y(n) will approximate d(n) in an optimum sense after convergence. 
When the difference between the physical system response d(n) and the adaptive 
model response y(n) has been minimized, the adaptive model W(z) approximates 
P(z) from the input/output viewpoint. When the plant is time varying, the adaptive 

Table 4.4 Summary of LMS-Type Adaptive Algorithms for 
FIR Filters

Algorithms Description

lms Direct-form LMS
nlms Direct-form normalized LMS
dlms Direct-form delayed LMS
blms Block LMS
blmsfft FFT-based block LMS
ss Direct-form sign-sign LMS
se Direct-form sign-error LMS
sd Direct-form sign-data LMS
filtxlms Filtered-X LMS
adjlms Adjoint LMS

Table 4.5 Input Arguments for adaptfilt.lms

Input Arguments Description

l Filter length L (defaults to 10)
step Step size μ (defaults to 0.1)
leakage Leakage factor ν (0 < ν ≤ 1, defaults to 1)
coeffs Initial fi lter coeffi cients (defaults to 0)
states Initial fi lter states (defaults to 0)
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algorithm will keep the modeling error small by continually tracking time variations 
of the plant dynamics.

EXAMPLE 4.9

In Figure 4.22, an unknown system P(z) is an FIR fi lter designed by the following 
function:

p = fir1(15,0.5);

The excitation signal x(n) used for system identifi cation is generated as follows:

x = randn(1,400);

Use an adapting fi lter W(z) with the LMS algorithm to identify P(z). The length of the adap-
tive fi lter is 16, and the step size is 0.01. The adaptive fi ltering is conducted as follows:

ha = adaptfilt.lms(16,mu);
[y,e] = filter(ha,x,d);

The MATLAB script for implementing Figure 4.22 is given in example4_9.m (adapted 
from Help menu). Signals d(n), y(n), and e(n) are shown in the top plot of Figure 4.23, which 
shows that y(n) gradually approximates d(n) and the error signal e(n) is minimized. The 
bottom plot shows that the coeffi cients of adaptive fi lter W(z) after convergence are identical 
to the corresponding coeffi cients of unknown system P(z).

EXERCISE 4.9

Modify example4_9.m for the following simulations:

1. Design P(z) with different orders. Set W(z) with the same, higher, and lower 
orders and compare the identifi cation results. Note that the step size value 
should be changed according to the fi lter length.

2. Using a fi lter length of 16, change the step size value from 0.01 to 0.05, 0.1, 
0.005, and 0.001. Evaluate the performance of the adaptive fi lter.

x(n) y(n)

d(n)

e(n)
+

−
W(z)

LMS 
algorithm

P(z)

Figure 4.22 Block diagram of adaptive system identifi cation
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3. Change the adaptive algorithm from lms to other functions defi ned in Table 
4.4, and evaluate the performance of the system identifi cation results.

4. Table 4.5 shows that leakage is the leakage factor. It must be a scalar 
between 0 and 1. If it is less than 1, the leaky LMS algorithm is implemented. 
It defaults to 1 (no leakage). Try different leaky factors and compare the 
performance with Figure 4.23.

5. Plot e2(n) instead of e(n). In addition, use the following equation to smooth 
the curve:

ˆ ˆ .P n P n e ne e( ) = −( ) −( ) + ( )1 1 2α α  (4.4.14)

Try different values of α and initial values of P̂e(0).

Linear prediction has been successfully applied to a wide range of applications 
such as speech coding and separating signals from noise. As illustrated in Figure 
4.24, the adaptive predictor consists of a digital fi lter in which the coeffi cients wl(n)
are updated by the LMS algorithm. For example, consider the adaptive predictor for 
enhancing multiple sinusoids embedded in white noise. In this application, the 
structure shown in Figure 4.24 is called the adaptive line enhancer (ALE), which 
provides an effi cient means for the adaptive tracking of the sinusoidal components 
of a received signal d(n) and separates these narrowband signals from broadband 
noise. In this fi gure, delay Δ = 1 is adequate for decorrelating the white noise com-
ponent between d(n) and x(n), and longer delay may be required for other broadband 
noises. This technique has been shown effective in practical applications when there 
is insuffi cient a priori knowledge of the signal and noise parameters.

EXAMPLE 4.10

As shown in Figure 4.24, assume that signal d(n) consists of a desired sine wave that is cor-
rupted by white noise. An adaptive fi lter will form a bandpass fi lter to pass the sine wave in 
y(n). As shown in Figure 4.25, adaptive fi lter output y(n) gradually approaches a clean sine 
wave, while the error signal e(n) is reduced to the noise level. The MATLAB script for 
simulating adaptive line enhancement is given in example4_10.m.

d(n)

y(n) e(n)
+

−
W(z)

LMS 

z −Δ

y(n)

x(n)

Figure 4.24 Block diagram of adaptive prediction
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EXERCISE 4.10

Modify example4_10.m for the following simulations:

1. Add more sine waves into d(n) and redo the simulation with different values 
of μ and L. We may need a higher order of fi lter when the sinusoidal frequen-
cies are close. Accordingly, it requires a smaller value of the step size and 
results in slow convergence.

2. Plot the magnitude response of converged fi lter W(z) and confi rm that it will 
approximate an bandpass fi lter. What is the center frequency of the 
passband?

3. Redo Exercise 1 with different delay values Δ.

4. Use the adaptive line enhancer to enhance the chirp signal that is corrupted 
by random noise as shown in Figure 4.20.

Adaptive noise cancellation employs an adaptive fi lter to cancel the noise com-
ponents in the primary signal picked up by the primary sensor. As illustrated in 
Figure 4.26, the primary sensor is placed close to the signal source to pick up the 
desired signal. The reference sensor is placed close to the noise source to sense the 
noise only. The primary input d(n) consists of signal plus noise, which is highly 
correlated with x(n) because they are derived from the same noise source. The refer-
ence input consists of noise x(n) alone. The adaptive fi lter uses the reference input 
x(n) to estimate the noise picked up by the primary sensor. The fi lter output y(n) is 
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Figure 4.25 Adaptive line enhancement of narrowband signal
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then subtracted from the primary signal d(n), producing e(n) as the desired signal 
plus reduced noise. To apply the adaptive noise cancellation effectively, it is critical 
to avoid the signal components from the signal source being picked up by the refer-
ence sensor. This “cross talk” effect will degrade the performance because the pres-
ence of the signal components in the reference signal will cause the adaptive fi lter to 
cancel the desired signal.

The transmission of high-speed data through a channel is limited by intersym-
bol interference caused by distortion in the transmission channel. This problem can 
be solved by using an adaptive equalizer in the receiver that counteracts the channel 
distortion. As illustrated in Figure 4.27, the received signal s(n) is different from 
the original signal x(n) because it was distorted by the overall channel transfer 
function C(z), which includes the transmit fi lter, the transmission medium, and the 
receive fi lter. To recover the original signal x(n), we need to process s(n) with the 
equalizer W(z), which is the inverse of the channel’s transfer function C(z), to com-
pensate for the channel distortion. That is, C(z)W(z) = 1 such that x̂(n) = x(n). Note 
that d(n) may not be available during data transmission.

4.4.3 More Hands-On Experiments

As discussed in Section 4.4.1, the optimum step size μ is diffi cult to determine. 
Improper selection of μ might make the convergence speed unnecessarily slow or 

-
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Noise 
source y(n)
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LMS 
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sensor

d(n)

x(n)
W(z)

e(n)
1−z

Figure 4.26 Block diagram of adaptive noise cancellation
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Figure 4.27 Block diagram of adaptive channel equalizer
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introduce excess MSE. If the signal is changing and real-time tracking capability is 
crucial, we can use a larger μ. If the signal is stationary and convergence speed is 
not important, we can use a smaller μ to achieve better performance in a steady 
state. In some practical applications, we can use a larger μ at the beginning for faster 
convergence and use a smaller μ after convergence to achieve better steady-state 
performance.

EXAMPLE 4.11

Here we examine how step size affects the performance of the algorithm. Similar to Example 
4.10, we fi x the fi lter length to L = 64; however, we set μ values to 0.001, 0.005, and 0.01. 
In addition, we use Example 4.4.14 to estimate learning curves, which are shown in Figure 
4.28. The MATLAB script is given in example4_11.m. The simulation results confi rm 
that faster convergence can be achieved by using a larger step size.

EXERCISE 4.11

1. Based on example4_11.m, use different values of μ that are larger than 
0.01. What values will make the algorithm diverge? Note that the learning 
curve shown in Figure 4.28 starts from 0. Why? How can we obtain a learn-
ing curve that starts from the correct value and converge to the minimum 
value?
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Figure 4.28 Learning curves for different step size values
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2. Based on example4_11.m, generate three sine waves that are corrupted 
by random noise. Find the relationship between the required fi lter length and 
the distance between adjacent sine waves.

3. The excess MSE is also proportional to the fi lter length L, which means that 
a larger L results in larger algorithm noise. From Equation 4.4.10, a larger L
implies a smaller μ, resulting in slower convergence. Design simulations to 
verify these facts.

As illustrated in Figure 4.26, we can use P(z) to represent the transfer function 
between the noise source and the primary sensor. The noise canceller has two inputs: 
the primary signal input d(n) and the reference noise input x(n). The primary input 
d(n) consists of signal s(n) plus noise x′(n), which is x(n) fi ltered by P(z). To mini-
mize the residual error e(n), the adaptive fi lter W(z) will generate an output y(n)
that is an approximation of x′(n). Therefore, the adaptive fi lter W(z) will converge 
to the unknown plant P(z).

EXAMPLE 4.12

In Figure 4.26, assume that the signal s(n) is speech from fi le timit1.asc. The noise x(n)
is a tone at frequency 1,000 Hz, which is also picked up by the primary sensor as x′(n). 
Assuming that P(z) is the FIR fi lter defi ned in Example 4.9, x′(n) can be obtained by fi lter-
ing x(n) with P(z). An adaptive fi lter will form a bandpass fi lter to pass x(n), but change its 
amplitude and phase to match with x′(n) so it can be canceled. Therefore, the error signal 
e(n) will consist of speech s(n) as shown in Figure 4.29. The MATLAB script for this 
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Figure 4.29 Spectrogram of enhanced speech by adaptive noise cancellation
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experiment is given in example4_12.m. In the code, the step size used is 0.0001/32,767. 
Why it is so small? Hint: For DSP simulations, signals are normalized between ±1, which 
is discussed in Chapter 6. However, many real-world signals (such as timit1.asc) sampled 
by 16-bit A/D converters usually have amplitude between ±32,767.

EXERCISE 4.12

1. It is diffi cult to determine an optimum step size for a given application. A 
trial-and-error method is commonly used. Is it possible to use the normalized 
LMS algorithm to simplify the process of determining step size?

2. In Example 4.12, if the noise x(n) is a random noise, is the adaptive noise 
cancellation able to reduce this random noise?

3. What is the diffi culty of applying the adaptive noise cancellation technique 
to reduce noise pickup by the primary microphone of hands-free conversa-
tion inside a noisy automobile compartment?

Having analyzed the properties of adaptive fi ltering in MATLAB, we now 
examine the implementation of an adaptive fi lter using the Blackfi n simulator and 
perform real-time experiments using the BF533 (or BF537) EZ-KIT.

4.5 ADAPTIVE LINE ENHANCER 
USING BLACKFIN SIMULATOR

This section verifi es the code ported from MATLAB to C for the adaptive line 
enhancer shown in Figure 4.24 using the Blackfi n simulator. We will use some new 
functions provided in the C run time library to generate random noise and sine 
wave.

HANDS-ON EXPERIMENT 4.4

This experiment uses a project fi le, exp4_4.dpj located in directory c:\adsp\chap4\
exp4_4 to simulate the adaptive line enhancer (ALE) given in Example 4.10. The C main 
program ale_demo.c generates a sine wave that is corrupted by a random noise and calls 
the adaptive FIR fi lter with the LMS algorithm to remove the undesired noise. The process.
c performs the ALE based on the LMS algorithm. The sin function in the C run time library 
is used to generate a sine wave of 256 samples as follows:

*out = (fract16) (0.5*sin(2*PI*f*step)*32768.0);

The function rand is called to generate pseudo-random numbers. Because the rand
function generates numbers in the range of [0, 230 − 1], we subtract the generated numbers 
by 0x20000000 and shift right by 15 bits to obtain 16-bit zero-mean random integers as 
follows:

(fract16)((rand() - 0x20000000)>>15)
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The generated sine wave samples and the random numbers are added to form a noisy 
sine wave, which will be enhanced by the ALE. This experiment uses a 32-tap adaptive FIR 
fi lter and a delay Δ = 1 for ALE. Because no adaptive fi ltering function is available in the 
Blackfi n DSP run time library, the process.c fi le consists of a C routine (LMS_filter) to 
perform the adaptive fi ltering. The input arguments for the LMS algorithm are declared as 
follows:

LMS_filter(fract16 in[],fract16 out1[], fract16 out2[], fract16
d[], fract16 c[], int taps, int size, int delaysize,
fir_state_fr16* s)

Note that the FIR fi lter function, fir_fr16, is embedded inside the adaptive fi ltering routine. 
What is the step size used in the program?

Build and load the project into the Blackfi n compiled simulator. The reason for using 
the compiled simulator is to allow quick evaluation of the ALE’s performance. Three signals 
can be viewed by clicking on View Æ Debug Windows Æ Plot Æ Restore  .  .  .  and select-
ing inp.vps (input signal), out1.vps (output signal), and out2.vps (error signal) as 
shown in Figure 4.30 (a), (b), and (c), respectively.

Note that the signal out1 is an enhanced version of the input noisy signal and the error 
signal out2 contains the random noise. Thus the ALE has enhanced the sine wave success-
fully. Users can plot the magnitude spectra of these signals by using the frequency analysis 
features provided in the VisualDSP++.

EXERCISE 4.13

1. Use different step sizes for the LMS algorithm and examine the output signal 
out1. Observe the effects of out1 when increasing and decreasing the value 
of the step size for adaptive fi ltering.

2. Increase the length of the adaptive fi lter and adjust the step size to obtain a 
good result.

3. Modify the program to implement the normalized LMS algorithm by using 
the Calc_mu function in process.c.

4. Set up a new window to show the variation of the normalized step size using 
the normalized LMS algorithm.

4.6 ADAPTIVE LINE ENHANCER USING 
BLACKFIN BF533/BF537 EZ-KIT

This section tests the real-time performance of the ALE using the BF533 (or BF537) 
EZ-KIT. Several noisy signals can be played with the sound card or CD player, 
which is connected to the analog input of the EZ-KIT. The processed output signal 
from the EZ-KIT is connected to a pair of headphones or external loudspeakers. 
Users can experiment with different values of step size, delay, and adaptive fi lter 
length to determine the optimum set of parameters for the ALE.
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Figure 4.30 Plots of (a) input signal, (b) adaptive fi lter output signal (out1), and (c) error signal 
(out2)
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HANDS-ON EXPERIMENT 4.5

Activate the VisualDSP++ for the BF533 (or BF537) EZ-KIT and open exp4_5_533.dpj
in directory c:\adsp\chap4\exp4_5_533 for the BF533 (or exp4_5_537.dpj in c:\
adsp\chap4\exp4_5_537 for the BF537) EZ-KIT. Build the project, and the executable 
fi le exp4_5_533.dxe or exp4_5_537.dxe will be automatically loaded into the EZ-KIT. 
Select speech_tone_48k.wav in directory c:\adsp\audio_files and play this wave 
fi le continuously with the computer sound card. Run the program and listen to the original 
wave fi le from the headphone (or loudspeakers). The switch settings and LED modes for the 
BF533 and BF537 EZ-KITs are listed in Table 4.6.

Experiment with different settings (step size, delay, and fi lter length) of the adaptive 
fi lter. Change the adaptive algorithm from the LMS to the normalized LMS and test the 
performance of the ALE, using the noisy musical signal sineandmusic.wav. Change 
the delay (DELAY_SIZE) to 1 for decorrelating the noise. Do you notice any distortion to 
the error signal? Why?

EXERCISE 4.14

1. Generate multiple sine waves at 1, 2, and 3 kHz, and mix them with a musical 
signal sampled at 48 kHz. Use either the LMS or normalized LMS algorithm 
to remove the sine waves. Note that we may change the fi lter length and the 
corresponding step size for this application.

2. Generate a chirp signal and mix it with the musical signal sampled at 48 kHz. 
Compare the performance of the LMS and normalized LMS algorithms for 
removing the chirp signal. Increase the length of the adaptive fi lter and 
compare its performance with the fi lter of shorter length.

3. In the preceding experiments, two adaptive fi lters are required for the ALE 
to operate separately on the left and right channels. Devise a way to reduce 
computation load by using only one fi lter. Compare the performance of 
ALEs using one and two fi lters on removing sine wave in stereo channels.

Table 4.6 Switch Settings and LED Indicators for Listening to Different Modes of 
Adaptive Filtering

Modes BF533 EZ-KIT BF537 EZ-KIT

Pass-through SW4 (LED4) SW10 (LED1)
Output from adaptive fi lter SW5 (LED5) SW11 (LED2)
Error of adaptive fi lter (default mode after SW6 (LED6) SW12 (LED3)
 loading)
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4.7 ADAPTIVE LINE ENHANCER 
USING LABVIEW EMBEDDED MODULE 
FOR BLACKFIN PROCESSORS

Is this section, we design and implement an ALE with the graphical system design 
approach. First, we simulate the ALE in LabVIEW to gain an intuitive understand-
ing of its behaviors, and then we design and implement the ALE application with 
the LabVIEW Embedded Module for Blackfi n Processors for execution on the 
Blackfi n EZ-KIT.

HANDS-ON EXPERIMENT 4.6

This experiment focuses on the simulation and implementation of a simple adaptive FIR 
fi lter with the LMS algorithm. We use the simulation created in LabVIEW to explore the 
different input parameters that affect the behaviors of the LMS algorithm. Simulation is a 
crucial part of system design because it allows the designer to test and refi ne parameters 
before moving to the real embedded target. This can effectively reduce errors, faulty assump-
tions, and overall development time.

Open the program LMS_Filter_Sim.exe in directory c:\adsp\chap4\exp4_6.
The user interface for this application is shown in Figure 4.31. Some input parameters can 
be altered to study the effects on the LMS algorithm and its outputs. There are two tabs: 
LMS Filter Results (Time Domain) and LMS Filter Results (Frequency Domain). The 

Figure 4.31 Time-domain plots of the signals and coeffi cients of the fi lter using the LMS 
algorithm (LMS_Filter_Sim.exe)
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time-domain plots show the noisy sine wave, the fi ltered output signal, the fi lter coeffi cients, 
and the error signal. Click on the LMS Filter Results (Frequency Domain) tab to evaluate 
the magnitude and phase responses for the FIR fi lter coeffi cients as they adapt to reduce the 
noise.

The most interesting part of the simulation is to see how the LMS algorithm learns and 
adapts its coeffi cients. Click on the Reset Filter button to reset the fi lter coeffi cients to zero 
and restart this learning process. Additional features have been added to the top right corner 
for pausing and single-stepping through the algorithm. We can single-step through the cal-
culation while viewing either the time-domain or the frequency-domain plots. These graph-
ical features greatly aid the visualization and understanding of adaptive fi ltering, which is 
an iterative algorithm. Select the LMS Filter Results (Frequency Domain) tab to see how 
the FIR fi lter adapts to suppress the noise while preserving the desired 1-kHz input signal 
as shown in Figure 4.32.

The input parameters for the LMS algorithm that can be changed include the LMS 
Gain (step size μ), the number of FIR fi lter taps (length L), and the delay size Δ. As discussed 
above, the step size determines the amount of correction to be applied to the fi lter coeffi cients 
as the fi lter adapts. The Taps parameter determines the length of the FIR fi lter. Delay Size
indicates the interval in samples between the current acquired sample and the newest sample 
used by the fi lter.

As the fi lter designer, optimize the LMS algorithm by fi ne-tuning the step size for fast 
learning, while minimizing coeffi cient fl uctuations once the fi lter converges to a steady state. 
How do the input parameters affect the resulting fi lter? Can the LMS algorithm lose stabil-
ity? Explain.

Figure 4.32 Magnitude and phase responses of the adaptive fi lter designed by the LMS algorithm 
(LMS_Filter_Sim.exe)
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HANDS-ON EXPERIMENT 4.7

This experiment implements the LMS algorithm with the LabVIEW Embedded Module for 
Blackfi n Processors using C programming. Algorithms written in C can be quickly proto-
typed in the LabVIEW Embedded Module for Blackfi n Processors, allowing them to be 
implemented as a subcomponent of the graphical system. Graphical system implementation 
allows other parts of the system to be abstracted, thus allowing the programmer to focus on 
the algorithm.

Open the LMS Adaptive Filter - BF5xx.lep project in directory c:\adsp\
chap2\exp4_7. When viewing the block diagram of the LMS Adaptive Filter.vi,
note that it is similar to the audio talk-through example discussed in Chapter 2, but has been 
modifi ed to include buffer initializations, specifi cation of taps and delay size, and an Inline 
C Node as seen in Figure 4.33. The parameters Taps and Delay Size can be customized 
to change the behavior of the LMS algorithm. The Inline C Node contains nearly the same 
LMS algorithm found in the C implementation in earlier experiments with an alternate FIR 
fi lter implementation. In this experiment, the FIR fi lter is implemented with a multiply-
accumulate operation within a For Loop to reduce the amount of C programming needed. 
The original implementation using the fir_fr16 library function required additional pro-
gramming for initialization, which linked global buffers, coeffi cients, and state variables to 
the fi lter. Push-button input was also added, allowing the user to choose which component 
of the algorithm to output.

The LMS algorithm is computationally intensive, making it necessary to confi gure Black-
fi n optimizations to run the LMS algorithm as fast as possible. These settings optimize the C 
code generated from LabVIEW and are found in the Build Options menu by selecting Tools 
Æ Build Options from the Embedded Project Manager window. First, the Build Confi gu-
ration is changed from Debug to Release. This option removes all extra debugging code from 
the generated C. Stack Variables and Disable Parallel Execution are both enabled to opti-

Figure 4.33 The adaptive LMS fi lter block diagram
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mize the way in which memory is managed and parallel programming structures are handled. 
These optimizations are ideal for implementing fast, serialized algorithms that perform many 
memory operations, such as the LMS algorithm that performs FIR fi ltering and coeffi cient 
updating for each of the 512 samples in the acquired audio buffer.

Run the project on the Blackfi n processor. Play the speech_tone_48k.wav that was 
used in Hands-On Experiment 2.4 and feed the wave output to the audio input of the 
BF533/BF537 EZ-KIT. When the SW4 of BF533 (or SW10/PB4 of BF537) is pressed, the 
LMS algorithm adapts to suppress the speech. When the SW5 of BF533 (or SW11/PB3 of 
BF537) is pressed, the error signal is heard. What do you notice about the error signal? When 
can the error signal be used as the desired fi lter output?

4.8 MORE EXERCISE PROBLEMS

1. In FDATool, the default magnitude specifi cations in decibels (dB) are Ap = 1 and As =
80. Convert these units to linear scale.

2. Redo Exercise 4.2 with SPTool. In addition to designing those fi lters, import the signal 
given in Example 4.1, perform FIR fi ltering using SPTool, and analyze input and output 
spectra.

3. Use FIR fi lter design functions listed in Table 4.1 to design bandstop fi lters for attenuat-
ing tonal noise at 1,000 Hz embedded in speech signal timit1.asc as shown in 
Figure 3.11. Also, perform FIR fi ltering with MATLAB function filter.

4. Use the IIR fi lter design functions listed in Table 4.2 to design fi lters specifi ed in 
Exercise 4.2 and compare the required orders of IIR fi lters with the corresponding 
FIR fi lters.

5. Use the transformation functions listed in Table 4.3 to convert the fi lters designed in 
Problem 4 to different realizations.

6. Use the IIR fi lter design functions listed in Table 4.2 to design IIR bandstop fi lters 
specifi ed in Exercise 4.6(1). Realize the designed fi lters in cascade second-order struc-
ture with the functions given in Table 4.3 and perform IIR fi ltering with MATLAB 
function sosfilt.

7. Examine the stability of the IIR fi lter given in Example 4.7.

8. Implement the adaptive channel equalization technique illustrated in Figure 4.27, using 
MATLAB or C program. The input signal x(n) is a zero-mean, unit-variance white noise. 
The unknown channel C(z) is simulated by the FIR fi lter used in Example 4.9. Note that 
a delay of L/2 is used to produce d(n) from x(n).

9. Redo Examples 4.9 and 4.10 with different step sizes. Instead of plotting e(n), use Equa-
tion 4.4.14 to compute learning curves.

10. Modify the adaptive fi ltering program in Hands-On Experiment 4.4 to implement the 
adaptive noise cancellation, described in Section 4.4.2.

11. Repeat Problem 10 by implementing the adaptive channel equalization,

12. The ALE can enhance the detection of DTMF tones in phone dialing. Mix the speech 
signal timit.wav with the dial tone dtmf_tone.wav. Play the combined wave fi le 
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and connect it to the input channel of the BF533 (or BF537) EZ-KIT. Choose suitable 
parameters (algorithm, fi lter length, step size, and delay) for the ALE and run the 
program, using the EZ-KIT. Is the ALE program working?

13. A stereo signal is corrupted with a sine wave (speech_tone_48k_stereo.wav). 
Implement the ALE algorithm in the Blackfi n processor to remove the sine wave. To 
reduce the computational cost of performing ALE to the left and right input channels 
separately, a single ALE algorithm is performed on the common input of (xL + xR)/2, 
where xL and xR are the left and right input channels. The sine wave derived from the 
ALE can be subtracted from the original left and right channels to form a clean stereo 
signal.

14. In the ALE experiment given in Hands-On Experiment 4.5, what is the smallest step 
size that can be used for the 16-bit implementation? What is the largest step size for a 
32-tap adaptive fi lter?

4.8 More Exercise Problems 159
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Chapter 5

Introduction to the 
Blackfi n Processor

This chapter examines the architecture of the Blackfi n processor, which is based 
on the MSA jointly developed by Analog Devices and Intel. We use assembly pro-
grams to introduce the processing units, registers, and memory and its addressing 
modes. At the end of the chapter, we design, simulate, and implement an eight-band 
graphic equalizer and use this application to explain some of the practical imple-
mentation issues. An in-depth discussion of the real-time processing concepts, 
number representations, peripheral programming, code optimization, and system 
design is given in Chapters 6, 7, and 8.

5.1 THE BLACKFIN PROCESSOR: 
AN ARCHITECTURE FOR EMBEDDED 
MEDIA PROCESSING

This section introduces the architecture of the Blackfi n processor and its internal 
hardware units, memory, and peripherals using assembly instructions. In particular, 
we use the BF533 processor [23] for explaining the Blackfi n processor’s architecture. 
The BF537 processor [24] has core and system architectures identical to those of 
the BF533, but slightly different on-chip peripherals.

5.1.1 Introduction to Micro Signal Architecture

As introduced in Chapter 1, the MSA core was designed to achieve high-speed DSP 
performance and best power effi ciency. This core combines the best capabilities 
of microcontroller and DSP processor into a single programming model. This is 
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164 Chapter 5 Introduction to the Blackfi n Processor

different from other cores that require separate DSP processor and microcontroller. 
The main advantage of the MSA core is the integrated feature that combines multi-
media processing, communication, and user interface on a single, easy-to-program 
platform. This highly versatile MSA core performs DSP tasks as well as executing 
user commands and control tasks. The programming environment has many features 
that are familiar to both microcontroller and DSP programmers, thus greatly speed-
ing up the development of embedded systems.

The MSA architecture is also designed to operate over a wide range of clock 
speeds and operating voltages and includes circuitry to ensure stable transitions 
between operating states. A dynamic power management circuit continuously moni-
tors the software running on the processor and dynamically adjusts both the voltage 
delivered to the core and the frequency at which the core runs. This results in 
optimized power consumption and performance for real-time applications.

5.1.2 Overview of the Blackfi n Processor

The ADSP-BF5xx Blackfi n processor is a family of 16-bit fi xed-point processors 
that are based on the MSA core. This processor targets power-sensitive applications 
such as portable audio players, cell phones, and digital cameras. Low cost and high 
performance factors also make Blackfi n suitable for computationally intensive appli-
cations including video equipment and third-generation cell phones.

The fi rst generation of the BF5xx family is the BF535, which achieves a clock 
speed up to 350 MHz at 1.6 V. Analog Devices introduced three processor families 
(BF532, BF533, and BF561) in 2003. These processors can operate up to 750 MHz 
at 1.45 V. The clock speed and operating voltages can be switched dynamically for 
given tasks via software for saving power. The BF561 processor incorporates two 
MSA cores to improve performance using parallel processing. A recent release of 
the BF5xx family consists of BF534, BF536, and BF537. These processors add 
embedded Ethernet and controller area network connectivity to the Blackfi n 
processor.

The Blackfi n core combines dual multiply-accumulate (MAC) engines, an 
orthogonal reduce-instruction-set computer (RISC)-like instruction set, single 
instruction, multiple data (SIMD) programming capabilities, and multimedia pro-
cessing features into a unifi ed architecture. As shown in Figure 5.1, the Blackfi n 
BF533 processor [23] includes system peripherals such as parallel peripheral inter-
face (PPI), serial peripheral interface (SPI), serial ports (SPORTs), general-purpose 
timers, universal asynchronous receiver transmitter (UART), real-time clock (RTC), 
watchdog timer, and general-purpose input/output (I/O) ports. In addition to these 
system peripherals, the Blackfi n processor also has a direct memory access (DMA) 
controller that effectively transfers data between external devices/memories and the 
internal memories without processor intervention. Blackfi n processors provide L1 
cache memory for quick accessing of both data and instructions.

In summary, Blackfi n processors have rich peripheral supports, memory 
management unit (mmu), and RISC-like instructions, which are typically found in 
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5.1 An Architecture for Embedded Media Processing 165

many high-end microcontrollers. These processors have high-speed buses and 
advanced computational engines that support variable-length arithmetic operations 
in hardware. These features make the Blackfi n processors suitable to replace other 
high-end DSP processors and microcontrollers. In the following sections, we further 
introduce the core architecture and its system peripherals.

5.1.3 Architecture: Hardware Processing 
Units and Register Files

Figure 5.2 shows that the core architecture consists of three main units: the address 
arithmetic unit, the data arithmetic unit, and the control unit.

5.1.3.1 Data Arithmetic Unit

The data arithmetic unit contains the following hardware blocks:

1. Two 16-bit multipliers represented as  in Figure 5.2.

2. Two 40-bit accumulators (ACC0 and ACC1). The 40-bit accumulator can be 
partitioned as 16-bit lower-half (A0.L, A1.L), 16-bit upper-half (A0.H, A1.
H), and 8-bit extension (A0.X, A1.X), where L and H denote lower and 
higher 16-bit, respectively.

JTAG TEST AND
EMULATION

EVENT
CONTROLLER/
CORE TIMER

WATCHDOG TIMER

REAL TIME CLOCK

UART PORT
IrDA®

TIMER0,TIMER1,
TIMER2

PPI/GPIO

SERIAL PORTS (2)

SPI PORT

EXTERNAL PORT
FLASH,SDRAM

CONTROL

BOOT ROM

DMA
CONTROLLER

CORE/SYSTEM BUS INTERFACE

VOLTAGE
REGULATOR ®

L1
INSTRUCTION

MEMORY
MMU

L1
DATA

MEMORY

Figure 5.1 Block diagram of the Blackfi n BF533 system (courtesy of Analog Devices, Inc.)
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3. Two 40-bit arithmetic logic units (ALUs) represented as  in Figure 
5.2.

4. Four 8-bit video ALUs represented as  in Figure 5.2.

5. A 40-bit barrel shifter.

6. Eight 32-bit data registers (R0 to R7) or 16 independent 16-bit registers (R0.
L to R7.L and R0.H to R7.H).

Computational units get data from data registers and perform fi xed-point 
operations. The data registers receive data from the data buses and transfer the 
data to the computational units for processing. Similarly, computational results 
are moved to the data registers before transferring to the memory via data 
buses.

These hardware computational blocks are used extensively in performing DSP 
algorithms such as FIR fi ltering, FFT, etc. The multipliers are often combined with 
the adders inside the ALU and the 40-bit accumulators to form two 16- by 16-bit 
MAC units. Besides working with the multiplier, the ALU also performs common 
arithmetic (add, subtract) and logical (AND, OR, XOR, NOT) operations on 16-bit 
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Figure 5.2 Core architecture of the Blackfi n processor (courtesy of Analog Devices, Inc.)
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or 32-bit data. Many special instructions or options are included to perform satura-
tion, rounding, sign/exponent detection, divide, fi eld extraction, and other opera-
tions. In addition, a barrel shifter performs logical and arithmetic shifting, rotation, 
normalization and extraction in the accumulator. An illustrative experiment using 
the shift instructions is presented below in Hands-On Experiment 5.3. With the dual 
ALUs and multipliers, the Blackfi n processor has the fl exibility of operating two 
register pairs or four 16-bit registers simultaneously.

In this section, we use Blackfi n assembly instructions to describe the arithmetic 
operations in several examples. The assembly instructions use algebraic syntax to 
simplify the development of the assembly code.

EXAMPLE 5.1 Single 16-Bit Add/Subtract Operation

Any two 16-bit registers (e.g., R1.L and R2.H) can be added or subtracted to form a 16-bit 
result, which is stored in another 16-bit register, for example, R3.H = R1.L + R2.H (ns),
as shown in Figure 5.3. Note that for 16-bit arithmetic, either a saturation fl ag (s) or a no 
saturation (ns) fl ag must be placed at the end of the instruction. The symbol “;” specifi es 
the end of the instruction. Saturation arithmetic is discussed in Chapter 6.

The Blackfi n processor provides two ALU units to perform two 16-bit add/sub-
tract operations in a single cycle. This dual 16-bit add/subtract operation doubles 
the arithmetic throughput over the single 16-bit add/subtract operation.

EXAMPLE 5.2 Dual 16-Bit Add/Subtract Operations

Any two 32-bit registers can be used to store four inputs for dual 16-bit add/subtract 
operations, and the two 16-bit results are saved in a single 32-bit register. As shown in 
Figure 5.4, the instruction R3 = R1+|-R2 performs addition in the upper halves of R1 and 
R2 and subtraction in the lower halves of R1 and R2, simultaneously. The results are stored 
in the high and low words of the R3 register, respectively.

031 16

031 16

031 16

R1

R2

+

L

H

H R3

R3.H = R1.L+R2.H (ns);

Figure 5.3 Single 16-bit addition using three registers
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The Blackfi n processor is also capable of performing four (or quad) 16-bit 
add/subtract operations in a single pass. These quad operations fully utilize the dual 
40-bit ALU and thus quadruple the arithmetic throughput over the single add/sub-
tract operation.

EXAMPLE 5.3 Quad 16-Bit Add/Subtract Operations

In quad 16-bit add/subtract operations, only the same two 32-bit registers can be used 
to house the four 16-bit inputs for these quad additions. In other words, two operations 
can be operated on the same pair of 16-bit registers. For example, the instructions R3 =
R1+|-R2, R4 = R1-|+R2 perform addition and subtraction on the halves of R1 and R2 as 
shown in Figure 5.5. Note that the symbol “,” separates two instructions that are operated at 
the same cycle.

Besides the previous 16-bit operations, the Blackfi n processor can also perform 
single 32-bit add/subtract using any two 32-bit registers as inputs.

H

R3

R1

R2

L

H L

LH

0

+ -

1631

R3 = R1+|-R2;

Figure 5.4 Dual 16-bit add/subtract using three registers
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Figure 5.5 Quad 16-bit add/subtract using four registers
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EXAMPLE 5.4 Single 32-Bit Operations

The 32-bit result of the single 32-bit add/subtract operation is stored in another 32-bit reg-
ister. For example, the instruction R3 = R1+R2 performs 32-bit addition of R1 and R2 and 
places the result in R3 as shown in Figure 5.6.

Similar to the dual 16-bit add/subtract, dual 32-bit add/subtract can also be 
carried out with the dual 40-bit ALUs.

EXAMPLE 5.5 Dual 32-Bit Operations

Example 5.4 can be extended to a dual 32-bit add/subtract. This operation is also similar to 
dual 16-bit operation, with the exception that the inputs and results are all 32 bits. For 
example, the instructions R3 = R1+R2, R4 = R1-R2 perform simultaneous addition and 
subtraction of R1 and R2 with the addition result saved in R3 and the subtraction result stored 
in R4, as depicted in Figure 5.7.

In the above examples of ALU operations, we add/subtract data in either 16- or 
32-bit wordlength. The results may overfl ow because of the limited wordlength used 
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R3 = R1+R2;

Figure 5.6 Single 32-bit add/subtract using three registers
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R3 = R1+R2, R4 = R1-R2;

Figure 5.7 Dual 32-bit add/subtract using four registers
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in storing the sums. A solution is provided in the arithmetic instructions to saturate 
the result at 16 or 32 bits, depending on the size of the operands. For example, in a 
16-bit word, the result of add/subtract will not exceed the most positive or the most 
negative number of a 16-bit sign data on saturation. The modes and options available 
in the ALU operations are listed in Table 5.1. More details on different number 
formats and arithmetic overfl ow are provided in Chapter 6.

There are rounding options that can be used to perform biased rounding and 
saturation to a 16-bit result. The correct way to handle overfl ow, rounding, satura-
tion, and other arithmetic issues is explained in Chapter 6. Besides performing 
arithmetic operations, ALU also allows 32-bit logical operations such as AND, OR, 
NOT, and XOR.

EXAMPLE 5.6 32-Bit ALU Logical Operations

This example shows 32-bit logical operations. For example, the instruction R3 = R1&R2
performs the bitwise AND operation on R1 and R2 registers, and the result is stored in R1. 
Other examples include R3 = R1|R2 (OR operation); R2 = ~R1 (NOT operation), and R3
= R1^R2 (XOR operation). Note that there is no 16-bit logical operation in the Blackfi n 
processor.

So far, we have only performed addition and subtraction with the ALU. Figure 
5.2 shows that two 16-bit multipliers are available in the Blackfi n processor. These 
16-bit multipliers perform single or dual 16-bit multiplications in a single cycle, and 
the result is stored in either 40-bit accumulators or 32-bit registers. The multipliers 
are also linked to the ALUs for implementing multiply-accumulate operations via 

Table 5.1 Arithmetic Modes and Options for the ALU Operations

Mode Option Example and Explanation

Dual and quad S Saturate the result at 16 bit
 16-bit operation  R3 = R1+|-R2 (s);

(opt_mode_0) CO Cross option that swaps the order of the results in the
   destination registers for use in complex math

R3 = R1+|-R2 (co);

 SCO Combination of S and CO options

Dual 32-bit and S Saturate result at 32 bit.
 40-bit operation  R3 = R1+R2, R4 = R1-R2 (s);

(opt_mode_1)

Quad 16-bit ASR Arithmetic shift right that halves the result before storing
 operation   to the destination register
(opt_mode_2) R3 = R1+|-R2, R4 = R1-|+R2 (s,asr);

  Scaling is performed for the results before saturation.
 ASL Arithmetic shift left that doubles the result before storing
   to the destination register
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the accumulators. The simplest multiplication is carried out with two 16-bit registers, 
and the result can be placed in a 16-bit or 32-bit register.

EXAMPLE 5.7 Single 16-Bit Multiply Operations

A 16-bit multiplication can easily be carried out on the Blackfi n processor. Any two 16-bit 
register halves (e.g., R1.L and R2.H) can be multiplied together to form a 32-bit result, 
which is stored in the accumulator or data register (e.g., R3). For example, the operation of 
R3 = R1.L*R2.H is shown in Figure 5.8. In addition, a 16-bit result can also be stored in 
a half-register, for example, R3.H = R1.L*R2.H.

The 16-bit multiplication example can also be extended to a single 16-bit mul-
tiply/accumulate operation. The MAC operation is usually carried out iteratively, 
and the accumulator must be used to store the intermediate and fi nal results.

EXAMPLE 5.8 Single 16-Bit Multiply/Accumulate Operations

This example is similar to Example 5.7 except that the 32-bit multiplication result is added 
to the previous result in the accumulator. For example, the instruction A0 += R1.L*R2.L
multiplies the contents of R1.L with R2.L, and the result is added to the value in the accu-
mulator A0 as shown in Figure 5.9. The fi nal result is then stored back into the accumulator. 
This MAC operation is very useful in implementing FIR/IIR fi lters, which are described in 
Chapter 4. In addition, we can also transfer the fi nal result to a half-register, for example, 
extending the previous example, R5.L = (A0 += R1.L*R2.L). This instruction truncates 
the accumulator result to 16-bit (i.e., ignore the lower 16 bits of A0) and stores the upper A0 
(A0.H) in the lower half of the R5 register.

Similar to the dual add/subtract operations, dual multiply operations can 
also be carried out with two 16-bit multipliers, two 32-bit registers, and two 
accumulators.

R1

R2

R3

H
31 16

0

¥

31

R3 = R1.L*R2.H;

L
15 0

Figure 5.8 Single 16-bit multiplication using three registers
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EXAMPLE 5.9 Dual 16-Bit Multiply Operations Using Two Accumulators

In this example, we perform A1 = R1.H*R2.H, A0 = R1.L*R2.L, where the two pairs of 
input are stored in the same registers R1 and R2 and the two 32-bit results are stored in the 
accumulators A0 and A1, as shown in Figure 5.10. Note that we use the symbol “,” to sepa-
rate the two parallel instructions.

Instead of using two accumulators as stated in Example 5.9, dual 16-bit multi-
plications can also be performed with two 32-bit registers to save the results.

EXAMPLE 5.10 Dual 16-Bit Multiply Operations Using Two 32-Bit Registers

When performing dual 16-bit multiplications using two 32-bit registers, the 32-bit 
destination registers must be used in pairs as R0:R1, R2:R3, R4:R5, or R6:R7. For example, 
the instructions R0 = R2.H*R3.H, R1 = R2.L*R3.L state that dual 32-bit results are stored 
in R0 and R1, respectively. Therefore, R0 and R1 must always be used as paired registers to 
store the results of high-word and low-word multiplications, respectively. Other pairs like 
R4:R5 and R6:R7 can also be used to replace R0:R1 in the above example.
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H

031

H
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A1 A0

031

A1 = R1.H*R2.H, A0 = R1.L*R2.L;
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Figure 5.10 Dua1 16-bit multiplications using two registers and two accumulators
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Figure 5.9 Single 16-bit MAC using two registers and an accumulator
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Similar to Example 5.9, we can also double the throughput of single 16-bit 
multiply/accumulate by performing dual 16-bit multiply/accumulate operations but 
storing the results in two 16-bit destinations.

EXAMPLE 5.11 Dual 16-Bit Multiply/Accumulate Operations with Two 
16-Bit Destinations

Example 5.9 can also be extended for dual-MAC operations to double its throughput, for 
example, A1 −= R1.H*R2.H, A0 += R1.L*R2.L. In addition, the dual MAC results can be 
stored into two 16-bit registers as shown in Figure 5.11, for example, R3.H = (A1 -= R1.
H*R2.H), R3.L = (A0 += R1.L*R2.L). Note that the result in A1 must be stored to the 
high word of R3 and the result in A0 must be stored to the low word of R3.

The above example can also be extended to save in two 32-bit destination reg-
isters via accumulators A0 and A1.

EXAMPLE 5.12 Dual 16-Bit Multiply/Accumulate Operations with Two 
32-Bit Destinations

In this case, the 32-bit destination registers in the dual 16-bit multiply/accumulate operations 
must be saved in pairs as R0:R1, R2:R3, R4:R5, or R6:R7, for example, R0=(A0+= R2.H*R3.
H), R1=(A1+= R2.L*R3.L). Note that A1 is associated to the higher-numbered register (in 
this case, R1) and A0 is associated to the lower-numbered register (R0).

The above multiply and multiply/accumulate operations are executed as default 
with no option. The default option implies that the input data are of signed fractional 
number. However, the Blackfi n processor is able to handle data of different formats. 
Possible options and descriptions are listed in Table 5.2. We discuss the different 

R1

R2

L

H

H

L

A1 A0

R3.H = (A1 -= R1.H*R2.H), R3.L = (A0 += R1.L*R2.L);

- +

31 016

R3

¥¥

Figure 5.11 Dua1 16-bit multiply/accumulate using three registers and two accumulators
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number formats and the Blackfi n arithmetic options (including why a shift correc-
tion is necessary) in Chapter 6.

Another unique feature of the Blackfi n processor is the inclusion of four addi-
tional 8-bit video ALUs. A special set of video instructions is available for these 
video ALUs in image and video applications. Because the data registers are 32 bits, 
four 8-bit operations (for example, add, subtract, average, absolute) can be executed 
in a single instruction.

5.1.3.2 Address Arithmetic Unit

As shown in Figure 5.2, the address arithmetic unit consists of the following hard-
ware units:

1. Two data address generators (DAG0 and DAG1) generate addresses for data 
moves to and from memory. The advantage of using two data address gen-
erators is to allow dual-data fetches in a single instruction.

2. Six 32-bit general-purpose address pointer registers (P0 to P5).

3. One 32-bit frame pointer (FP) pointing to the current procedure’s activation 
record.

4. One 32-bit stack pointer (SP) pointing to the last location on the run time 
user stack.

5. A set of 32-bit data address generator registers:

a. Indexing registers, I0 to I3, contain the effective addresses.
b.  Modifying registers, M0 to M3, contain offset values for add/subtract 

with the index registers.
c.  Base address registers, B0 to B3, contain the starting addresses of the 

circular buffers.
d.  Length value registers, L0 to L3, contain the lengths (in byte unit) of the 

circular buffers.

Table 5.2 16-Bit Multiplier Options

Option Description

Default (no option) Input data operand is signed fraction.
(FU) Input data operands are unsigned fraction. No shift correction.
(IS) Input data operands are signed integer. No shift correction.
(IU) Input data operands are unsigned integer. No shift correction.
(T) Input data operands are signed fraction. When copying to the 
  destination half-register, truncates the lower 16 bits of the 
  accumulator contents.
(TFU) Input data operands are unsigned fraction. When copying to 
  the destination half-register, truncates the lower 16 bits of the 
  accumulator contents.
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The main function of the address arithmetic unit is to generate addresses for 
accessing the memory in the Blackfi n processor. The Blackfi n processor is byte 
addressable. However, data can be accessed in 8-bit, 16-bit, or 32-bit via the pointer 
registers (P0–P5); 16-bit and 32-bit accesses via index registers (I0–I3); and 32-bit 
via the stack and frame pointer registers.

EXAMPLE 5.13

This example uses simple instructions to access data with different addressing modes. We 
use the register values and memory given in Figure 5.12 to illustrate the data movement.

1. Indirect addressing

Square brackets “[ ]” within the instruction denote the use of index pointer and 
stack/frame registers as address pointers in data load/store operations. For example, 
the instruction R0 = [P0] implies that the pointer register, P0, is pointing to the 
address 0xFF80 0000, which contains a data 0x78; 0xFF80 0001 contains a data 
0x56; 0xFF80 0002 contains a data 0x34; and 0xFF80 0003 contains a data 0x12. 
Note that “0x” denotes the number in a hexadecimal format. These data are loaded 
into R0 as 0x1234 5678 in a little-endian byte-ordering manner (i.e., lower-address 
byte loaded into lower bits of the register, and vice versa).

In another example, [P1] = R0 specifi es a store operation that stores the value 
in the data register to the pointed memory. Continuing from the preceding example, 
R0 contains 0x1234 5678 is stored into the memory pointed to by the P1 register (at 
address 0xFF80 1000). In other words, the memory 0xFF80 1000 now contains 
0x78, 0xFF80 1001 contains 0x56, 0xFF80 1002 contains 0x34, and 0xFF80 1003 
contains 0x12.

2. Indirect addressing that supports 16-bit and 8-bit data access

The above example performed 32-bit data access. A similar example using 16-bit load 
operation can be specifi ed as R0 = W[P0](z), where W represents word access and (z)

0xFF80 0000 

0xFF80 1000 

P0

P1

P2

0xFF80 1000 I0

0x1234 5678 

0xABCD 1234 

0xFF80 0000 

0xFF80 0004 

0xFF80 0008 

Internal memory 

Address arithmetic unit 

0x0000 0000 

0x0101 2020 

0xFF80 1000 

0xFF80 1004 

0x1122 3344 

0x5566 7788 

0xFF90 2000 

0xFF90 2004 

0x0000 0002 M0

0xFF90 2004 SP

0xAABB 1234 0x0000 0004 

Figure 5.12 Current data values in memories and registers
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is the option that states that the high bits must be zero fi lled. Here, R0 becomes 0x0000 
5678. Similarly, an 8-bit load can be specifi ed as R0 = B[P0](x), where B represents 
byte access and the (x) option specifi es sign extension. Therefore, R0 becomes 0x0000 
0078 because the most signifi cant bit of 0x78 is 0 (a positive number).

Instead of using the pointer registers (P0–P5) as the address pointers, we can 
also use the index registers (I0–I3). However, the index registers only support 16-bit 
and 32-bit data access.

3. Post-modify operations

The address pointers (P0–P5) and index registers (I0–I3) can be modifi ed after the 
load/store operations. This postmodifi cation is useful in updating the pointers auto-
matically to the next memory location for loading or storing the next data. Post-
modifi cation can be either ++ or –, which means postincrement or postdecrement, 
respectively. For example, R0 = [P0++] increments the value of P0 by 4 after the 
load operation. This means R0 = 0x1234 5678 and P0 = 0xFF80 0004 after the load 
operation. However, if R0 = W[P0++](z), R0 = 0x0000 5678 and P0 = 0xFF80 
0002. The increment is now by 2 locations because it is a word load. Similarly, if 
R0 = B[P0++](z), P0 increases to 0xFF80 0001.

In a similar manner, a 32-bit store operation with postdecrement can be speci-
fi ed as [P1–] = R0. In this case, P1 is decremented to 0xFF80 0FFC after the store 
operation.

4. Pre-modify operations

The Blackfi n processor also supports pre-modify instructions, but only at pointing 
to the stack pointer. For example, in the instruction [–SP] = R0, the stack pointer, 
SP, is fi rst decremented from 0xFF90 2004 to 0xFF90 2000 before performing the 
store operation from R0 into the stack memory. If R0 = 0x1234 5678, this value is 
stored into the stack, starting from address 0xFF90 2000. It is important to note that 
the stack operates in 32-bit mode, and the push instruction is always predecremented 
before loading the register to the stack. In contrast, the pop instruction loads the 
content of the stack into a specifi ed register and performs postincrement of the stack 
pointer, for example, R0 = [SP++].

5. Modify pointer registers

In some situations, we need to modify the pointer by more than one word increment/
decrement. We can simply modify the pointer registers by an immediate value. For 
example, the instruction R1 = [P0 + 0x08] loads the value at location P0 + 0x08 
= 0xFF80 0008 into the R1 register (i.e., R1 = 0xAABB 1234 after the load opera-
tion). Note that this is a pre-modify operation without updating to the pointer regis-
ter. In this case, the P0 register still remains at 0xFF80 0000 after the operation.

If a postmodifi cation of the pointer register is desired, the pointer register can 
be modifi ed by another pointer register (e.g., R0 = [P0++P1], where P1 contains 
the offset value). Similarly, the index registers can be modifi ed by using the M 
register as modifi er. Note that both modify-increment and modify-decrement are 
supported in this addressing mode. For example, the instruction R1 = [I0 ++ M0]
loads the value specifi ed by I0 = 0xFF80 0000 (which is 0x0000 0000) into R1. The 
I0 register is then postincremented to 0xFF80 0002 because M0 = 0x2.

In addition to the above linear addressing mode, the Blackfi n processor also 
offers circular addressing for accessing data in circular buffers. Circular buffering 

TEAM LinG



5.1 An Architecture for Embedded Media Processing 177

is very useful for signal processing tasks such as FIR fi ltering. The application of 
circular buffering in DSP tasks is explained in Chapter 8. The circular buffer con-
tains data that the address generator steps through repeatedly and wraps around 
when the pointer reaches the end of the circular buffer. The addressing of the cir-
cular buffer is governed by the length (L), base (B), modify (M), and index (I) reg-
isters. The L register sets the size of the circular buffer, and its value is always 
positive, with a maximum length of 232 − 1. When L = 0, the circular buffer is dis-
abled. The B register specifi es the base address of the circular buffer. The I register 
points to the address within the circular buffer, and it is controlled within B + L by 
the DAG. The index register is postmodifi ed by the value specifi ed in the M register 
after every access to the circular buffer. The value in the M register can be a posi-
tive or negative value, but its absolute value must be less than or equal to the length 
of the circular buffer, L.

EXAMPLE 5.14

Figure 5.13 shows that the memory range 0xFF80 0000–0xFF80 002B is set up as a circu-
lar buffer. In this example, 32-bit access is implemented. Therefore, the base address of the 
circular buffer must be 32-bit aligned (or the least signifi cant two bits of starting address 
must always be “0”). The base register is chosen as B0 = 0xFF80 0000, and the index reg-
ister is initialized to the base address as I0 = 0xFF80 0000. The length of the circular buffer 
is L0 = 44 (or 0x2C) bytes, and the modifi er M0 = 16 (or 0x10) bytes.

With reference to Figure 5.13, the data access of the circular buffer can be explained 
as follows:

1st Access: The index register, I0, is pointing to the base address of the circular buffer 
at 0xFF80 0000. After the data 0x0000 0001 is loaded into a data register, I0 is 
modifi ed to 0xFF80 0010 (i.e., 0xFF80 0000 + 0x10).
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0xFF80 0004 

0xFF80 0008 

0xFF80 000C 

0xFF80 0010 

0xFF80 0014 

0xFF80 0018 

0xFF80 001C 

0xFF80 0020 
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0xFF80 0028 

0xFF80 002B 

0x00000002

0x00000003

0x00000004

0x00000005

0x00000006

0x00000007

0x00000008

0x00000009

0x0000000A

0x0000000B

1st access

2nd access

3rd access

4th access

5th access

wrapped around 

Length of 
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buffer = 44 
bytes. Index 
register
always stays 
within
0xFF80 0000 
and 0xFF80 
002B

index

Figure 5.13 Example of a circular buffer with fi ve data accesses
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2nd Access: The data 0x0000 0005 is loaded into a data register, and the index is again 
modifi ed to 0xFF80 0020 (i.e., 0xFF80 0010 + 0x10).

3rd Access: The data 0x0000 0009 is loaded into a data register and the index register, 
I0 = 0xFF80 0020 + 0x10 = 0xFF80 0030, which is outside the circular buffer range 
of 0xFF80 002B and is not a valid address. Therefore, I0 should be modifi ed as 
0xFF80 0020 + 0x10 − 0x2C = 0xFF80 0004, where the length of the circular buffer 
(0x2C) is subtracted after the postmodifi cation.

4th Access: The data 0x0000 0002 is loaded into a data register and the index register, 
I0 = 0xFF80 0004 + 0x10 = 0xFF80 0014.

5th Access: The data 0x0000 0006 is loaded into a data register, and the index is 
modifi ed to 0xFF80 0024 after the 5th access. This process continues, and the same 
update formula as in the 3rd access is used whenever the index register crosses the 
boundary.

QUIZ 5.1

1. The index pointer will return to 0xF800 0000 again at which access?

2. If the modifi er (M) register is set at 0xFFFF FFF0, how do we perform data 
access and wrapping?

3. Change the above circular buffer to a 16-bit data access and determine how 
data can be 16-bit aligned.

5.1.3.3 Control Unit

The control unit shown in Figure 5.2 consists of the following blocks:

1. A program sequencer controls the instruction execution fl ow, which includes 
instruction alignment and instruction decoding. The address generated by 
the program sequencer is a 32-bit memory instruction address. A 32-bit 
program counter (PC) is used to indicate the current instruction being 
fetched.

2. The loop buffer is used to support zero-overhead looping. The Blackfi n 
processor supports two loops with two sets of loop counters (LC0, LC1), 
loop top (LT0, LT1) and loop bottom (LB0, LB1) registers to handle looping. 
Hardware counters are used to evaluate the loop condition. Loop unit 1 has 
a higher priority than loop unit 0. Therefore, loop unit 1 is used for the inner 
loop and loop unit 0 is used for the outer loop.

The program sequencer controls all program fl ow, which includes maintaining 
loops, subroutines, jumps, idles, interrupts, and exceptions. Figure 5.14 illustrates 
the different program fl ows.

In the linear fl ow as shown in Figure 5.14(a), the PC moves from one instruction 
to the next sequentially. In the loop fl ow shown in Figure 5.14(b), the instruction 
within the loop block (i.e., immediately after the loop instruction and the end of the 
loop) is repeated N times. Zero-overhead loop registers are used to control the PC, 
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and the PC jumps out of the loop once N repeats have been completed. In Figure 
5.14(c), an unconditional jump instruction alters the program fl ow and sets the PC 
to point at another part of the memory. Similarly, a conditional branch instruction 
can also be used to direct the PC to another program section.

Figure 5.14(d) shows the program fl ow of the subroutine call. The CALL instruc-
tion temporarily interrupts sequential fl ow to execute instructions from a subroutine. 
Once the subroutine has completed, a return from subroutine (RTS) instruction 
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Figure 5.14 Six different types of program fl ow
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resets the PC back to the instruction immediately after the CALL instruction. The 
return address is found in the RETS register, which is automatically loaded by the 
CALL instruction.

Interrupt can occur when a run time event (asynchronous to program fl ow) or 
an instruction that triggers an exceptional error (synchronous to program fl ow) 
occurs. The processor completes the current instruction and sets the PC to execute 
the interrupt service routine (ISR). Once the ISR has completed, a return from 
interrupt instruction RTI obtains the return address from the RETI register and 
returns to the instruction immediately after interrupted instruction, as shown in 
Figure 5.14(e).

Finally, in the idle fl ow shown in Figure 5.14(f), the IDLE instruction causes 
the processor to stop operating and hold its current state until an interrupt occurs. 
Subsequently, the processor services the interrupt and resumes normal operation. 
This idle program fl ow is frequently used in waiting for the incoming data sample 
and processing the data sample in the ISR.

A common feature of most DSP processors is the pipeline architecture. The 
pipeline is extensively used to maximize the distribution of workload among the 
processor’s functional units, which results in effi cient parallel processing among 
the processor’s hardware. The Blackfi n processor has a 10-stage instruction pipeline 
as shown in Table 5.3.

The sequencer ensures that the pipeline is fully interlocked, and this feature 
eases the task of the programmer in managing the pipeline. Figure 5.15 is a diagram 
showing the pipeline.

Figure 5.15 shows that the 1st instruction at instruction clock cycle #1 is in the 
IF1 stage. At the next clock cycle, the 2nd instruction is in the IF1 stage and, at the 
same time, the 1st instruction is in the IF2 stage. This process of overlapping dif-
ferent stages of instructions allows different functional units in the Blackfi n proces-
sor to work simultaneously in the same clock cycle. As shown in Figure 5.15, the 

Table 5.3 Stages of Instruction Pipeline

Pipeline Stage Description

Instruction fetch 1 (IF1) Start instruction memory access.
Instruction fetch 2 (IF2) Intermediate memory pipeline.
Instruction fetch 3 (IF3) Finish L1 instruction memory access.
Instruction decode Align instruction, start instruction decode, and access pointer 
 (DEC)  register fi le.
Execute 1 (EX1) Start access of data memory (program sequencer).
Execute 2 (EX2) Register fi le read (data registers).
Execute 3 (EX3) Finish access of data memory and start execution of dual-
  cycle instructions (multiplier and video unit).
Execute 4 (EX4) Execute single-cycle instruction (ALU, shifter, accumulator).
Write back (WB) Write states to data and pointer register fi les and process event.

Extracted from Blackfi n Processor Hardware Reference [23].

TEAM LinG



5.1 An Architecture for Embedded Media Processing 181

10 pipeline stages are fi lled up by different instructions at the 10th clock cycle. This 
implies that each instruction can be executed in a single clock cycle when the pipe-
line is full, giving a throughput of one instruction per clock cycle. However, any 
nonsequential program fl ow (depicted in Fig. 5.14) can potentially decrease the 
processor’s throughput. For example, a stall condition can occur when two instruc-
tions require extra cycles to complete because they are close to each other in the 
assembly program. In another example, a branch instruction causes the instruction 
after the branch to be invalid in the pipeline and these instructions must be 
terminated.

Another important feature of the Blackfi n processor is zero-overhead looping. 
A program is given in Example 5.15 to explain the key features and characteristics 
of the hardware loop.

EXAMPLE 5.15

A simple assembly program to illustrate the setup of loop in the Blackfi n processor is listed 
as follows:

P5 = 0x20;
LSETUP (loop_start, loop_end) LC0 = P5;
loop_start:
R2 = R0 + R1 || R3 = [P1++] || R4 = [I1++];
loop_end: R2 = R3 + R4;

In this example, the LSETUP instruction is used to load the three loop registers LC0, LB0,
and LT0. The loop top address register takes on the address of loop_start, and the loop 
bottom address register takes on the address of loop_end. The starting address of the loop 
must be less than 30 bytes away from the LSETUP instruction. In the above program, 
loop_start follows immediately after the LSETUP instruction with zero overhead. The 
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Figure 5.15 Ten pipeline stages of the Blackfi n processor

TEAM LinG



182 Chapter 5 Introduction to the Blackfi n Processor

bottom address of the loop must be between 0 and 2,046 bytes from the LSETUP instruction. 
In other words, the instructions within the loop are at most 2,046 bytes long. In this example, 
the loop count register LC0 is set to 0x20 (loop for 32 times). The maximum count for the 
loop counter register is 232 − 1, and the minimum count is 2.

In addition, the Blackfi n processor supports a four-location instruction loop 
buffer (similar to cache) that reduces instruction fetches during looping. Therefore, 
if the loop code is four or fewer instructions, no fetch from the instruction memory 
is necessary. However, if more than four instructions are present in the loop, only 
the fi rst four instructions are stored in the buffer and the rest of the instructions 
must be fetched from instruction memory.

5.1.4 Bus Architecture and Memory

The Blackfi n processor uses a modifi ed Harvard architecture, which allows multiple 
memory accesses per clock cycle. However, the Blackfi n processor has a single 
memory map that is shared between data and instruction memory. Instead of 
using a single large memory for supporting this single memory map, the Blackfi n 
processor supports a hierarchical memory model as shown in Figure 5.16. The L1 
data and instruction memory are located on the chip and are generally smaller in size 
but faster than the L2 external memory, which has a larger capacity. Therefore, trans-
fer data from memory to registers in the Blackfi n processor is arranged in a hierarchy 
from the slowest (L2 memory) to the fastest (L1 memory). The rationale behind 
hierarchy memory is based on three principles: (1) the principle of making the 
common case fast, where code and data that need to be accessed frequently are stored 
in the fastest memory; (2) the principle of locality, where the program tends to reuse 
instructions and data that have been used recently; and (3) the principle of smaller is 
faster, where smaller memory speeds up the access time.

For example, the memory map for the 4G (or 232)-byte address space of the 
Blackfi n BF533 processor is shown in Figure 5.17. There are 80K bytes of instruction 
memory from address 0xFFA0 0000 to 0xFFA1 3FFF and 64K bytes of data 
memory from address 0xFF80 0000 to 0xFF80 8000 (data bank A) and 0xFF90 
0000 to 0xFF90 8000 (data bank B). In addition, there are 4K bytes of scratchpad 
memory for general data storage, such as the stack. Therefore, a total of 148K bytes 
of internal memory are available in the BF533 processor. These internal memories 
are all classifi ed as internal L1 memory, and some of these memories also have the 
option of confi guring as static random access memory (SRAM) or cache as shown 
in Figure 5.17. SRAM provides deterministic access time and very fast throughput; 

Core 
(Registers) 

L1 
Memory 
(Internal) 

L2 
Memory 
(External) 

Figure 5.16 Hierarchical memory model
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thus it is suitable for DSP-based code. In contrast, cache provides both high perfor-
mance and a simple programming model and is suitable for control-related tasks. 
The BF537 processor has the same size of internal data memory as the BF533, but 
only has 64K bytes of internal instruction memory.

The BF533 processor has 1K bytes of on-chip boot read-only memory (ROM) 
(BF537 has 2K bytes). The boot ROM includes a small boot kernel that can be either 
bypassed or used to load user’s code from external memory devices (like fl ash 
memory or EEPROM) at address 0x2000 0000. The boot kernel completes the boot 
process and jumps to the start of the L1 instruction memory to begin execution of 
code from this address.

Figure 5.18 shows the memory architecture of the Blackfi n processor. It uses 
four buses to link the L1 memory with the core processor: one 64-bit instruction 
bus, two 32-bit data-load buses, and one 32-bit data-store bus. Therefore, the Black-
fi n processor is capable of performing two data loads, or one data load and one data 
store, per cycle. It is important to note that the L1 memory is operating at the core 
clock frequency (CCLK).
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INSTRUCTION SRAM
INSTRUCTION SRAM
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Figure 5.17 Memory map of the BF533 processor (courtesy of Analog Devices, Inc.)
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The larger L2 memory of the BF533 processor can be located at address 0x0000 
0000–0x0800 0000 (128M bytes) and 0x2000 0000–0x2040 0000 (four asynchro-
nous banks with 1M bytes each). The former address is dedicated to the synchronous 
dynamic random access memory (SDRAM), and the latter address is dedicated to 
support asynchronous memories such as fl ash memory, ROM, erasable program-
mable ROM (EPROM), and memory-mapped I/O devices. In the BF537 processor, 
the addressable SDRAM memory has been increased to 512M bytes while maintain-
ing the same addressable asynchronous memory as the BF533 processor. These 
off-chip L2 memories are used to hold large program and data. To access the slower 
external L2 memory, an external bus interface unit (EBIU) links the L1 memory 
with a wide variety of external memory devices. However, the EBIU is clocked by 
the slower system clock (SCLK), and the external data bus and address bus are 
limited to 16-bit and 20-bit width, respectively. In addition, the EBIU can work with 
the DMA controller to transfer data in and out of the processor’s memory without 
the intervention of the processor core.

In the following sections, we take a closer look at the L1 instruction memory 
and the L1 data memory. We also introduce some of the features and characteristics 
of the Blackfi n processor in the cache mode.
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5.1.4.1 L1 Instruction Memory

The L1 instruction memory bank is illustrated in Figure 5.19. For the BF533 
processor, there are three banks: (1) 32K bytes of SRAM in bank A, (2) 32K bytes 
(16K bytes for the BF537) of SRAM in bank B, and (3) 16K bytes of SRAM or 
cache in bank C. When bank C is confi gured as SRAM, the instruction memory is 
implemented as four single-ported subbanks with 4K bytes each. Simultaneous 
accesses to different banks can be carried out to speed up memory transfer. 
The processor core reads the instruction memory through the 64-bit-wide 
instruction bus.
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When the 16K bytes in bank C are confi gured as cache, a line-fi ll buffer (8×32-
bit) transfers four 64-bit word bursts from external memory to cache when a cache 
miss occurs. The instruction remains in the cache whenever there is a cache hit. A 
cacheability and protection look-aside buffer (CPLB) provides control and protec-
tion to the cache during instruction memory access. However, DMA is not allowed 
to access bank C. More explanation on instruction cache confi guration and usage is 
given in Chapter 7.

5.1.4.2 L1 Data Memory

As explained in Section 5.1.4, the BF533 contains 64 K bytes of L1 data memory. 
The L1 data memory is further divided into 8 subbanks as summarized in 
Table 5.4.

In the BF533 processor, the lower 16 K bytes for data bank A (0xFF80 0000–
0xFF80 3FFF) and B (0xFF90 0000–0xFF90 3FFF) memories are always imple-
mented as SRAM. In these SRAM memories, the L1 data memories can be accessed 
simultaneously with dual 32-bit DAGs and DMA as shown in Figure 5.20. When 
the data cache is enabled, either 16 K bytes of data bank A or 16 K bytes of both 
data banks A and B can be implemented as cache. Each bank (A and B) is a two-
way set associative cache that can be independently mapped into the BF533 address 
space. However, no DMA access is allowed in cache mode. Similar to the instruction 
cache, the processor provides victim buffers and line-fi ll buffers for use when a 
cache load miss occurs. Again, more explanation of data cache confi guration and 
usage is given in Chapter 7.

Table 5.4 BF533 L1 Data Memory

Subbank Data bank A Data bank B Confi gured as

1 0xFF80 0000– 0xFF90 0000– 
 0xFF80 0FFF 0xFF90 0FFF
2 0xFF80 1000– 0xFF90 1000–
 0xFF80 1FFF 0xFF90 1FFF SRAM
3 0xFF80 2000– 0xFF90 2000–
 0xFF80 2FFF 0xFF90 2FFF
4 0xFF80 3000– 0xFF90 3000–
 0xFF80 3FFF 0xFF90 3FFF

5 0xFF80 4000– 0xFF90 4000– 
 0xFF80 4FFF 0xFF90 4FFF
6 0xFF80 5000– 0xFF90 5000– SRAM or cache options:
 0xFF80 5FFF 0xFF90 5FFF (1) Both banks A and B as SRAM
7 0xFF80 6000– 0xFF90 6000– (2) Bank A as cache, bank B as SRAM
 0xFF80 6FFF 0xFF90 6FFF (3) Both as cache
8 0xFF80 7000– 0xFF90 7000–
 0xFF80 7FFF 0xFF90 7FFF
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5.1 An Architecture for Embedded Media Processing 187

Note that in Figure 5.20 a dedicated 4 K bytes of L1 scratchpad memory is 
available. However, this scratchpad memory cannot be confi gured as cache and 
accessed by DMA. It is typically used as stack for fast context switching during 
interrupt handling.

5.1.5 Basic Peripherals

As shown in Figure 5.18, the Blackfi n BF533 processor has the following 
peripherals:

1. One watchdog timer is clocked by the system clock (SCLK). It generates 
an event when the timer expires before being updated by software.

2. One real-time clock provides a digital watch to the processor. It provides 
stopwatch countdown and alarm and maintains time of day.
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3. Three general-purpose timers are confi gured as pulse-width modulation, 
width and period capture, and external event counter. These timers generate 
periodic waveform, pulse-width modulation waveform, etc. The BF537 
processor has eight pulse-width modulation timers.

4. 16 Bidirectional general-purpose programmable fl ags (PF0–PF15). Each 
fl ag pin can be confi gured as an input, output, or interrupt pin. In the BF537 
processor the programmable fl ags are named general-purpose inputs/
outputs (GPIOs), and there are 48 GPIO pins.

5. One universal asynchronous receiver/transmitter (UART) has a maximum 
baud rate of up to SCLK/16. It interfaces with slow serial peripherals 
and serves as a maintenance port. The BF537 processor has two UART 
modules.

6. Two synchronous serial ports (SPORT0 and SPORT1) provide high-speed 
serial communication with a maximum speed of SCLK/2. This provides 
effi cient interface with CODEC (coder-decoder).

7. One SPI provides high-speed serial communication of up to SCLK/4. It 
interfaces with another processor, data converters, and display.

8. One PPI provides a programmable parallel bus with a maximum commu-
nication rate of SCLK/2. It is used for high-speed data converters and video 
CODECs.

9. EBIU provides a glueless interface with external memories. Three internal 
16-bit buses are connected to the EBIU: (a) the external access bus (EAB) 
is controlled by the core memory to access external memory; (b) the periph-
eral access bus (PAB) is used to access EBIU memory-mapped registers; 
and (c) the DMA external bus is controlled by the DMA controller to access 
external memory.

10. The DMA controller allows data transfer operations without processor 
intervention. There are three DMA buses: (a) the DMA access bus (DAB) 
allows peripherals to access the DMA channels; (b) the DMA external bus 
(DEB) links off-chip memory to the DMA channels; and (c) the DMA core 
bus (DCB) allows the DMA channels to gain access to the on-chip L1 
memory.

These peripherals are connected to the system via PAB, DAB, DCB, DEB, and 
EAB. These buses and peripherals are operating at the SCLK, and the core proces-
sor and L1 memory run at the CCLK. The peripheral access bus accesses all periph-
eral resources that are mapped to the system memory-mapped register (MMR) space 
(in the memory map shown in Fig. 5.17). The three DMA buses (DAB, DCB, and 
DEB) provide access to on-chip and off-chip memory with little or no intervention 
from the core processor. There are six DMA-capable peripherals (PPI, SPORT0, 
SPORT1, SPI, UART, and memory) in the Blackfi n BF533 processor, and 12 DMA 
channels and bus master support these devices. In the BF537 processor, there are 
four more DMA channels to support additional peripherals. There are 16 DMA 
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channels in the BF537, of which 12 DMA channels support the peripherals (PPI, 
SPORT0, SPORT1, SPI, UART0, UART1, and Ethernet media access control) and 
four DMA channels support memory and handshaking memory. The DAB supports 
transfer of 16- or 32-bit data in and out of the L1 memory. If there is a confl ict with 
the core access to the same memory, the DMA will always gain access because it 
has a higher priority over the core. The DEB and EAB support single word accesses 
of either 8-bit or 16-bit data types. A detailed examination of the DMA and its 
confi guration is presented in Chapter 7.

Besides these system peripherals, the BF537 processor [24] also has the control-
ler area network (CAN) 2.0B module, an I2C-compatible two-wire interface (TWI) 
port, and a 10/100 Mbps Ethernet media access controller (MAC).

5.2 SOFTWARE TOOLS FOR 
THE BLACKFIN PROCESSOR

This section studies topics of programming the Blackfi n processor. We have intro-
duced the steps of loading the project fi le into the VisualDSP++ and performed 
some debugging and benchmarking of C programs. This section further examines 
the software development fl ow and tools. We illustrate the Blackfi n data arithmetic 
and addressing arithmetic units with low-level programming and debugging.

5.2.1 Software Development Flow and Tools

C and assembly programs are the most commonly used in programming today’s 
embedded signal processors including the Blackfi n processor. With the advancement 
of the C compiler for embedded processors, it becomes more common and equally 
effi cient to program in C instead of using assembly code. In addition, Analog 
Devices provides many optimized DSP functions that are available in the DSP run 
time library to ease the programming of DSP algorithms. However, assembly code 
is still useful for programmers who wish to optimize programs in terms of speed, 
memory resources, and power consumption.

A typical software development fl ow for code generation is illustrated in Figure 
5.21. Users can use C/C++ and/or assembly source codes to program their applica-
tions. If the code is written in C, it needs to compile the C code to generate assembly 
code fi rst, and passes this compiler-generated assembly fi le (.s) to the assembler. 
The assembly code can be fed directly to the assembler to generate the object (.doj)
fi le. The linker maps the object fi le to an executable (.dxe) fi le using the informa-
tion from the linker description fi le (.ldf). The .ldf fi le contains information 
on the memory mapping to the physical memory. More information on the linker 
and the .ldf fi le is provided in Section 5.2.3. The fi nal .dxe fi le (which contains 
application code and debugging information) can be loaded into the VisualDSP++
simulator, the EZ-KIT, or other target boards to verify the correctness of the 
program. If not, debugging of the source code must be carried out and the process 
of compile-assemble-link-load is repeated. Once the software is verifi ed, system 
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verifi cation must be carried out. The programmer has the option of downloading 
the .dxe fi le into different hardware systems such as the Blackfi n EZ-KIT or a 
custom Blackfi n target board, or to load into an external fl ash memory. The last 
option is discussed at the end of this chapter.

VisualDSP++ can perform system verifi cation and profi le the performance of 
the code running on the actual processor. There is a need at this stage to make sure 
that the code will meet the real-time processing requirements, resource 
availability, and power consumption demand of the system. Therefore, VisualDSP++
is an integrated development and debugging environment (IDDE) that delivers 
effi cient project management. VisualDSP++ allows programmers to edit, compile 
and/or assemble, and link the code to generate executable code; perform simulation 
of the Blackfi n processor; and debug the code to correct errors and exceptions. 
VisualDSP++ also includes many advanced plotting and profi ling capabilities 
for performing software and system verifi cation. A VisualDSP++ kernel (VDK) 
allows users to perform task scheduling and resource allocation to address memory 
and timing constraints of programming. The VDK also includes standard library 
and framework, which ease the process of writing complex programs. In addition, 
there are several advanced features unique within the VisualDSP++ IDDE. They 
include profi le-guided optimization (PGO), cache visualization, pipeline viewer, 
background telemetry channel (BTC) support, multiple processor support, inte-
grated source code control, automation application program interface, and aware 
scripting engine. We discuss some of these advanced features in subsequent 
chapters.
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5.2.2 Assembly Programming in VisualDSP++

This section uses several hands-on experiments to explain the writing and building 
of assembly code [28] and executing and debugging of the code in the VisualDSP++
environment.

HANDS-ON EXPERIMENT 5.1

Activate VisualDSP++ using the BF533 (or BF537) simulator, and perform the following 
steps:

1. Load a project fi le into VisualDSP++ by clicking on File Æ Open Æ Project and 
look for the project fi le exp5_1.dpj in directory c:\adsp\chap5\exp5_1.

2. Double-click on the exp5_1.asm fi le to view the content of the assembly code as 
shown in Figure 5.22. This assembly fi le is written based on Example 5.13.

3. Build the project by clicking on the Build Project icon  located on the 

 toolbar (or press F7), or click on the Rebuild All icon . Alternatively, click on 
Project Æ Build Project or Project Æ Rebuild Project. Several messages will be 
displayed in the Output Window during the building process. The executable code 
generated from the build operation will be automatically loaded into the simulator.

4. Note that an arrow on the left-hand side is pointing at the fi rst instruction, P0.L =
buffa.

5. Open the following register windows to view the register’s status:

 a.  Register Æ Core Æ DAG Registers to display all I, M, L, and B registers in the 
address arithmetic unit.

Figure 5.22 Snapshot of the project fi le exp5_1.dpj
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 b.  Register Æ Core Æ Data Register File to display all the R registers in the data 
arithmetic unit.

 c.  Register Æ Core Æ P Registers to display all the P registers in the address 
arithmetic unit.

 d. Register Æ Core Æ Stack/Frame Registers to display the stack pointer.

Right-click on these register windows and select Hex32 as the display format. Adjust 
the window size with the mouse. The display windows can also be undocked from the 
rightmost column by right-clicking on the window and deselecting Allow Docking.

6. Display the memory by clicking on Memory Æ Blackfi n Memory. Next, type in 
buffa in the Blackfi n Memory window to view the data contained in address 
0xFF80 0000. Similarly, users can also view memory at buffa1 and buffb. Right-
click on the memory window and click on Select Format Æ Hex32.

7. View the changes in registers and memory as we step through the program. Click 

 on the Step Into icon  on the toolbar to execute the program line by line, or 
press F11 to do the same.

8. Compare the results with those obtained in Example 5.13. Comment on any dispar-
ity in results. Make the following changes (one at a time) to the existing program 
and rebuild the project. What happens with the changes?

 a.  Change the buffa1 address to start at 0xFF80 4000.
 b.  Perform 8-bit and 16-bit store operations.
 c.  Perform 8-bit and 16-bit accesses using the instructions R1 = b[I0++M0] and 

R1 = w[I0++M0], respectively.
 d.  Combine a P-register with an M-register as in the instruction R0 = [P0+M0].

9. Complete this hands-on experiment by closing the project. Click on File Æ Close
Æ Project <filename>. VisualDSP++ will prompt the user to close the project and 
save fi les.

HANDS-ON EXPERIMENT 5.2

This hands-on experiment implements circular buffers using assembly code in the Visu-
alDSP++ BF533 (or BF537) simulator. The project fi le exp5_2.dpj for this experiment is 
located in directory c:\adsp\chap5\exp5_2. This experiment is based on Example 5.14 
and can be loaded into the simulator by using the steps described in Hands-On Experiment 
5.1. Build the project and perform the following steps:

1. Set a breakpoint (indicated by a red dot in the left column of source fi le window) 

 by clicking on the Toggle Breakpoint icon , or press Control + T at the instruc-
tion line, here: jump here;. A red dot will appear at this instruction. Run the 
program from the fi rst instruction to this breakpoint by clicking on the Run icon 

, or press F5. Observe the changes in the Data Register File window. The 

 breakpoint can be cleared by clicking on the Clear All Breakpoints icon .
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2. Click on the Reload icon  to reload the existing program again. This will bring 
the PC to the beginning of the program. In this experiment, we change the content 
of the Blackfi n memory by fi rst selecting the memory buff, right-clicking on the 
specifi c memory data, and clicking on Edit to change the value for that memory 
location. Try changing the data in buff as shown in Figure 5.23. Rerun the program 
by clicking on the Run icon and observe the changed results.

3. Extend the program to perform 12 accesses of the circular buffer. Verify that the 
data are correct.

4. Change the data in buff from 4 bytes to 2 bytes, and modify the program for a 
16-bit word access. Save the new fi le as exp5_2a.asm in the new directory c:\
adsp\chap5\exp5_2a. Close the current project and create a new project by click-
ing on File Æ New Æ Project. Type in the new directory and specify the project 
name as exp5_2a.dpj. Add in the newly created assembly fi le exp5_2a.asm to 
the project by selecting Project Æ Add to Project Æ File and selecting exp5_
2a.asm. Build the project and run the loaded executable fi le to verify the function-
ality of the new fi le.

HANDS-ON EXPERIMENT 5.3

This experiment investigates the shift (arithmetic and logic) and rotation operations. The 
arithmetic shift considers the most signifi cant bit as the sign bit, and the logical shift treats 
the data to be shifted as an unsigned number. Open the project fi le exp5_3.dpj located in 
directory c:\adsp\chap5\exp5_3. Build the project and single-step through the code. 
There are four sections in the exp5_3.asm program:

1. Right shift by 4 bits.

In this section, the R0 register is loaded with a value 0xFFFF A3C6. A logical right 
shift and an arithmetic right shift by 4 bits are written as R1 = R0>>0x04 and 

Figure 5.23 A newly edited data for memory buff
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R2 = R0>>>0x04, respectively. Note the difference in the right shift symbols for 
logical and arithmetic right shifts. The results are R1 = 0x0FFF FA3C and R2 =
0xFFFF FA3C. This shows that the arithmetic shift preserves the sign bit of the data 
and the logical shift simply fi lls in zeros in the most signifi cant bits.

2. Left shift by 4 bits.

In this section, a value of 0x7FFF A3C6 is loaded into the R0 register. The logical 
and arithmetic left shifts by 4 bits are given as R1 = R0<<0x04 and R2 =
R0<<0x04(s), respectively. Note that the symbol “<<” is applicable to both types 
of left shift. However, the arithmetic shift always ends with the saturation option(s). 
In this case, R1 = 0xFFFA 3C60 and R2 = 0x7FFF FFFF. The results show that the 
logical left shift treats the number as an unsigned number, but the arithmetic shift 
saturates the result to the maximum positive (or negative) values. A detailed expla-
nation of the signed number format is given in Chapter 6.

3. Another shifting instruction.

Besides using a constant shift magnitude, another type of shifting instructions uses 
the lower 16 bits of the register to contain the shift magnitude. In this example, we 
use R1.L and R2.L to contain the shift magnitude. A logical right shift by 4 bits is 
stated as R5 = LSHIFT R0 by R2.L, and an arithmetic right shift by 4 bits is 
stated as R4 = ASHIFT R0 by R2.L. In this case, the R2.L register contains the 
2’s complement binary pattern (−4). Examine and verify the results of both shifts. 
A negative (or right) and a positive (or left) shift magnitude correspond to multipli-
cations by 2(−shift) and 2(shift), respectively. The ASHIFT instruction can shift a 32-bit 
data register or 40-bit accumulators from −32 to 31 bits.

4. Rotate instructions.

In the fi nal section of this experiment, the rotate instructions are written to perform 
bit rotation of the binary word. For example, the instruction R1 = ROT R0 by 1
rotates the contents in R0 leftward by one bit, via the CC bit. In other words, the CC 
bit is in the rotate chain. Therefore, the fi rst bit rotated into the register is the initial 
value of the CC bit. Subsequently, the CC bit is replaced by the bit rotated out of the 
register. Similar to the shift instruction, a positive rotate magnitude specifi es a left 
rotate, and a negative rotate magnitude specifi es a right rotate. Single-step through 
the instructions in this section and verify the results. The CC bit can be viewed by 
clicking on Register Æ Core Æ Status Æ Arithmetic Status. It is also easy to see 
the rotate results by using the binary display format.

EXERCISE 5.1

In this hands-on exercise, some arithmetic operations are programmed in the Visu-
alDSP++ environment. We examine the arithmetic instructions by revisiting the 
examples given in Examples 5.1–5.6. A simple template project fi le exercise5_
1.dpj located in directory c:\adsp\chap5\exercise5_1 can be modifi ed to 
implement the following simple arithmetic instructions:

a. Single 16-bit add

b. Dual 16-bit add
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 c. Quad 16-bit add

 d. Single 32-bit add

 e. Dual 32-bit add

 f. 16-bit and 32-bit add with options

 g. 32-bit logical operations

Verify the results obtained from VisualDSP++ with a calculator.

EXERCISE 5.2

In this hands-on exercise, we revisit the multiply and multiply-accumulate opera-
tions given in Examples 5.7–5.12 using VisualDSP++. To simplify the explanation, 
only a signed integer number is considered here. Therefore, the (IS) option must be 
inserted at the end of all multiply and MAC instructions in this exercise. A simple 
template project fi le exercise5_2.dpj located in directory c:\adsp\chap5\
exercise5_2 can be used to implement the following simple arithmetic 
instructions:

 a. Single 16-bit multiply operation

 b. Single 16-bit multiply/accumulate operation

 c. Dual 16-bit multiply operations using two accumulators

 d. Dual 16-bit multiply operations using two 32-bit registers

 e. Dual 16-bit multiply/accumulate operations with two 16-bit destinations

 f. Dual 16-bit multiply/accumulate operations with two 32-bit destinations

Verify the results obtained from VisualDSP++ with a calculator. What happens 
to the multiplication results when the (IS) option is removed from the instruction? 
Explain the difference in the multiplication results. When loading a 32-bit integer 
to a 16-bit register, which part of the 32-bit number is loaded (the most or least sig-
nifi cant 16 bits)?

5.2.3 More Explanation of Linker

The linker [36] is important in the software build process. As shown in Figure 5.21, 
the linker generates a complete executable program (.dxe). The linker also resolves 
all external references, assigns an address to relocatable code and data spaces, and 
generates optional memory map. Its output can be read by loader, simulator, and 
debugger. The linker is controlled by the linker description fi le (.ldf) [39], which 
describes the target system and provides a complete specifi cation for mapping the 
linker’s input fi les into the physical memory.

The VisualDSP++ IDDE provides an Expert Linker, which uses the LDF 
wizard to create the .ldf fi le. The Expert Linker defi nes the target memory map 
and allows object sections to be placed in different memory sections by simple 
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drag-and-drop placement. The following hands-on experiments will launch the LDF 
wizard, view the memory map, and map a user-defi ned section into the memory.

HANDS-ON EXPERIMENT 5.4

This hands-on experiment shows a quick and easy way to create the .ldf fi le. We use the 
previous project fi le, exp5_1.dpj, to illustrate the creation of the .ldf fi le. In the previous 
case, there is no specifi c .ldf fi le under the Linker Files section, and VisualDSP++ uses 
the default .ldf fi le adsp-BF533.ldf for the BF533 processor (or adsp-BF537.ldf for 
the BF537 processor), which is located in directory C:\Program Files\Analog 

Devices\VisualDSP 4.0\Blackfin\ldf.

1. Open the project fi le exp5_1.dpj. Click on Tools Æ Expert Linker Æ Create 
LDF  .  .  .  ; a Create LDF window appears. To continue, click on Next. A new window 
appears as shown in Figure 5.24. Change the .ldf fi lename and choose the program-
ming language type (Assembly in this case). Click on Next to proceed. Note that 
when working with a mixed C and assembly program, Project type C is chosen.

A new window (Step 2 of 3) appears. This window allows users to select pro-
cessor type and other properties. Click on Next, and the last window confi rms the 
selected choice; click on the Finish button to generate the .ldf fi le. A memory 
map view of the generated .ldf fi le is shown in Figure 5.25. It is also observed that 
the .ldf fi le appears under the Linker Files folder in the Project Window.

2. Explore the memory map. The Input Section pane in the left column shows the input 
sections defi ned in the source code. Right-click on the object fi le exp5_1.doj under 

Figure 5.24 LDF wizard window
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the L1_data_a section. Click on View Section Contents to display the section 
contents as shown in Figure 5.26. This shows that the data are arranged in a little-
endian manner (i.e., lower-byte data in the lower memory location).

The Memory Map pane in the right column of the Expert Linker Window
defi nes the target system’s memory, memory types, and their address range. Right-
click on the Memory Map pane and select View Mode Æ Graphical Memory Map
to display a memory map. Zoom in and out of the memory map to have a better view. 
Close the Expert Linker Window when fi nished.

Figure 5.25 Memory map view of the exp5_1.ldf fi le

Figure 5.26 Section Contents window
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3. Modify the existing source fi le (exp5_1.asm) by adding a new user-defi ned section 
as follows before the data buffa1:

.section data_a1; // newly inserted section

.BYTE4 buffa1[2] = 0x00000000, 0x01012020;

In this case, the data buffa1 is no longer specifi ed under the L1_data_a memory. 
Rebuild the program again. A linker error appears in the Output Window as shown 
in Figure 5.27.

The error arises because the section “data_a1” is not linked to any of the 
memory sections. Double-click on the exp5_1.ldf fi le. A red cross (X) appears 
on the data_a1 icon. Click on the (+) sign of the icon, and it is expanded into the 
linker macros $COMMAND_LINE_OBJECTS and $OBJECTS. Map the object exp5_
1.obj under $OBJECTS onto the MEM_L1_SCRATCH output section by drag and 
drop. Alternatively, mapping to another valid output section like data_L1_data_
a or data_L1_data_b is also possible. What is the starting address of buffa1
now? Single-step through the code and check the changes in the data movement.

4. Rebuild the whole program with the option of creating a .map fi le. Before building 
the project, click on Project Æ Project Options Æ Link. Select Generate Symbol 
Map to produce a .map fi le under the debug directory. Open the exp5_1.map fi le, 
and an HTML window is displayed in the web browser. Observe the word size (in 
bytes) of the data and instructions used in this program.

5.2.4 More Debugging Features

This section introduces additional debugging features. Besides using the register 
windows to view the register values, users can also customize the display window 
by clicking on View Æ Debug Windows Æ Expressions. An Expressions window 
appears, and users can click on it and type in the variable names and register names 
(register names must be preceded with a “$” sign) as shown in Figure 5.28.

Another feature of the debugger is that it supports a linear profi ling window 
when running the program in simulation mode. This window displays the percentage 
of execution time or cycle counts needed to run every line of the code. This feature 

Figure 5.27 Output window with linker error
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can be displayed by clicking on Tools Æ Linear Profi ling Æ New profi le; a 
window is displayed as shown in Figure 5.29. Single-step through the code to update 
the results in the Linear Profi le window. The number of instruction cycle count can 
be viewed by right click, followed by View Sample Count. This linear profi ling 
feature is a useful and quick tool in determining bottlenecks in the code. However, 
to compute an accurate cycle count for real-time signal processing, another profi ling 
method is recommended in subsequent chapters.

So far, we have introduced the architecture of the Blackfi n processor using the 
assembly code and the VisualDSP++ simulator. This low-level programming lan-
guage provides an in-depth appreciation of the use of some of the arithmetic and 
addressing modes. However, when we program any embedded signal processing task 
on the Blackfi n processor, it is often wise to start from the high-level programming 

Figure 5.28 Expressions window

Figure 5.29 Linear Profi le window
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language of C/C++ and check whether its real-time performance can be fulfi lled. 
Otherwise, we can optimize the C program and rewrite some time-critical segments 
of code in low-level assembly language. The optimization methods are presented in 
Chapter 8. In the following sections, we examine the design and real-time imple-
mentation (in C) of an eight-band graphic equalizer using the Blackfi n simulator 
and the EZ-KIT. The VisualDSP++ IDDE can be confi gured for both simulation 
and real-time implementation.

5.3 INTRODUCTION TO THE FIR 
FILTER-BASED GRAPHIC EQUALIZER

The eight-band FIR-based graphic equalizer is an extension of the digital FIR fi lter 
design in Section 2.3.2. We design eight separate FIR fi lters with eight different 
frequency specifi cations instead of designing a single FIR fi lter. The output of each 
FIR fi lter has a user-adjustable gain that is used to amplify or attenuate the specifi c 
frequency contents of an audio signal. Thus it can compensate for signal components 
that are distorted by recording devices, boost some frequency contents of the signal 
to make it sound better, or remove undesired band-limited noise. The block diagram 
of a stereo eight-band graphic equalizer is shown in Figure 5.30. The input signals, 
xL(n) and xR(n), may be connected directly to the output in applications that allow 
the original signal to pass through when all of the gains at the outputs of bandpass 
fi lters are set to 0. In other applications, such as the removal of band-limited noise, 
only bandpass fi lter outputs with attenuation are added to form the overall outputs, 
yL(n) and yR(n). Usually, the gains attached to the fi lters are adjusted in tandem for 
the left and right channels.

In the following experiments, we investigate the design and implementation of 
the eight-band graphic equalizer that covers the frequency range from 0 to 24 kHz. 
The sampling rate is 48 kHz. The frequency specifi cations for the eight-band graphic 

Right input 
xR(n)

Right output, 
yR(n)

Left input 
xL(n) Gain #2 

Gain #1 

Filter #8 

Gain #8 

Left output, 
yL(n)

Filter #1 

∑

Optional 

Filter #2 

Figure 5.30 Block diagram of a stereo 8-band graphic equalizer
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equalizer are summarized in Table 5.5. Basically, Filter #1 is a low-pass fi lter from 
0 to 200 Hz, and Filter #8 is a high-pass fi lter from 12,800 to 24,000 Hz. The rest 
of the fi lters are bandpass fi lters. The passband and stopband ripples of these fi lters 
are specifi ed as 1 and 40 dB, respectively, and the window (Hanning) design method 
is used to derive the coeffi cients of these fi lters.

HANDS-ON EXPERIMENT 5.5

This experiment uses the MATLAB FDATool to design the eight FIR fi lters. Open FDATool 
by typing the following command in the MATLAB Command Window:

fdatool

A window is opened as shown in Figure 5.31. Users can key in the parameters for differ-
ent fi lter specifi cations. The fi lter order of 255 is specifi ed, and the Window (Hann) FIR 
fi lter Design Method is used for all fi lters. Note that the default Filter arithmetic is set to 
double precision floating-point (which is 64-bit fl oating-point format). The fi lter 

arithmetic can be viewed by clicking on the Set quantization parameter icon . Click 
on the Design Filter tab at the bottom of the window to design the fi lter. Users can check 
the magnitude response, phase response, impulse response, pole-zero plot, coeffi cients, etc. 
by clicking on the respective icons. A list of icons and their defi nitions can be found in 
Hands-On Experiment 3.1. Observe the characteristics of the FIR fi lters by fi lling in Table 
5.6. The implementation cost depends on the number of multiplications and additions and 
the memory used to implement the FIR fi lter.

Once each fi lter has been designed, it can be saved in a fi le band-i.fda, where i is 
the fi lter number in the graphic equalizer.

The gain of the ith FIR fi lter, Gain(i), can be set in a range of ±12 dB with steps of 
3 dB, as shown in Table 5.7. For example, a gain of 3.9811 applied to the output of any fi lter 
corresponds to an amplifi cation of 12 dB at that frequency band.

Table 5.5 Frequency Specifi cations for the 8-Band Graphic 
Equalizer

Band Number Passband Frequency (Hz)

#1 0–200
#2 200–400
#3 400–800
#4 800–1,600
#5 1,600–3,200
#6 3,200–6,400
#7 6,400–12,800
#8 12,800–24,000
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Figure 5.31 FDATool window for designing Filter #1

Table 5.6 FIR Filter Characteristics

FIR Filter Parameters and Responses Characteristics

Average order of the IIR fi lter
Magnitude response
Phase response
Group-delay response
Impulse response
Pole-zero plot
Implementation cost

5.4 DESIGN OF GRAPHIC EQUALIZER 
USING BLACKFIN SIMULATOR

This section introduces the steps required to complete a fi xed-point DSP system 
design. We use an eight-band FIR based graphic equalizer to illustrate the steps 
needed to convert the fi lter design from double-precision fl oating-point format to 
16-bit fi xed-point format. This conversion is needed because many fi xed-point 
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embedded processors (including Blackfi n) are optimized for 16-bit fi xed-point 
arithmetic. The fl oating-point coeffi cients must be quantized to 16-bit fraction 
before porting these coeffi cients to the fi xed-point processors. FDATool can quan-
tize the fl oating-point coeffi cients to a 16-bit fi xed-point format. A more detailed 
explanation of the concept behind this conversion is provided in Chapter 6. In addi-
tion, FDATool supports a comprehensive simulation on the fi xed-point analysis of 
the digital fi lter. Therefore, this tool provides a mean to detect and correct any fi xed-
point implementation problem before actual implementation on the Blackfi n 
processor.

HANDS-ON EXPERIMENT 5.6

We extend the previous FDATool experiment by converting the double-precision fl oating-
point coeffi cients into fi xed-point coeffi cients. Activate FDATool and open the previously 

saved session for the individual fi lter. Click on the Set quantization parameter icon 
again and change the Filter arithmetic parameters to those shown in Figure 5.32. The 
Numerator word length is set to 16 bits (for implementation on 16-bit processors), and the 
Numerator fractional length is set to 15 bits to form a word with a single sign bit and 15 
fractional bits. This 1.15 format is commonly used in most 16-bit embedded processors as 
it produces an effective result for fi xed-point multiplication. More details on the number 
range of this format and its arithmetic precision are provided in Chapter 6.

Click on Apply to perform the quantization. Examine the magnitude response and 
enable View Æ Show Reference Filter(s). The reference fi lter refers to the fi lter designed 
in Hands-On Experiment 5.5 using the 64-bit double-precision fl oating-point format. We can 
check whether the fi lter characteristics (magnitude and phase) with 16-bit fi xed-point preci-
sion are close to those with the 64-bit fl oating-point precision. If the quantized fi lter degrades 
slightly with 16-bit precision, we can use the 16-bit quantized coeffi cients for implementa-
tion. Unfortunately, we are not able to directly port the fractional coeffi cients (with 1 sign 

Table 5.7 Gain Table Applied to the FIR Filter

Gain Setting Gain Setting in
in dB (20 log A) Linear Scale
 (A = 10(dB/20))

+12 dB 3.9811
  +9 dB 2.8184
   +6 dB 1.9952
   +3 dB 1.4125
  +0 dB 1.0000
  −3 dB 0.7079
  −6 dB 0.5012
 − 9dB 0.3548
−12 dB 0.2512
 −∞ dB (mute) 0.0000
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bit and 15 fractional bits) into the C program because there is no data type available to 
represent fractional number in the Blackfi n C compiler. Instead, we perform another conver-
sion from fractional fi xed-point number into 16-bit integer (fract16). This conversion can 
be easily performed by using the following conversion equation:

fi xed-point integer (or fract16) = round [fi xed-point fractional number × 32,768], (5.4.1)

where the round operation is used to round the result to the nearest integer.
The FDATool automatically performs this conversion when we click on Targets Æ

Generate C header  .  .  .  , and a new window shown in Figure 5.33 is generated. Use the 
suggested settings and click on Generate. Save the header fi le. Because the header fi le 
generated from MATLAB contains a specially defi ned integer constant type that is not 
defi ned in the VisualDSP++ C compiler, we cannot use this header fi le directly. Instead, we 
simply extract the coeffi cients from the header fi le and save them in a data (.dat) fi le. We 
will create eight data fi les from “band0a.dat” to “band7a.dat” for the eight fi lters, which 

Figure 5.32 Set quantization parameter

Figure 5.33 Generate C Header window
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correspond to bands #1 to #8 of the equalizer. These fi les are ported into the Blackfi n 
memory in the following experiment.

HANDS-ON EXPERIMENT 5.7

In this experiment, we port the fi xed-point coeffi cients generated from Hands-On Experi-
ment 5.6 into the Blackfi n memory. The C program, mainEQ.c in directory c:\adsp\
chap5\exp5_7, implements the eight-band graphic equalizer with eight parallel FIR fi lters. 
This C fi le is added to the project fi le, exp5_7.dpj, and run on the BF533 (or BF537) 
VisualDSP++ compiled simulator. The fi lter coeffi cients for eight frequency bands are 
included in the C fi le. A predefi ned gain table is set in the array variable fract16 band_
gain[9] to specify the nine gain settings in the fi rst column of Table 5.8. Conversion from 
dB scale to linear scale must be carried out for a 16-bit gain value, represented in (1.15) 
format. Because this arithmetic representation limits the number range to within ±1, the gain 
value must be scaled down by 4 to limit the gain value to the number range of the (1.15) 
format. This step is shown in the third column of Table 5.8. The last column of Table 5.8 
shows that the gain is converted into integer format (fract16) based on Equation 5.4.1 for 
use in the C program.

Because we are connecting the eight FIR fi lters of equal length in parallel for each 
channel, we can sum these eight parallel FIR fi lters (including band gain) into one combined 
FIR fi lter. This combined FIR fi lter can greatly reduce the workload of the graphic equalizer. 
The combined FIR fi lter can be derived by multiplying each set of fi lter coeffi cients with its 
respective band gain before summing the coeffi cients of the eight fi lters. Two C callable 
functions, mult_fr1x32 and add_fr1x32, are used in the main program, mainEQ.c, to 
perform multiplication and addition, respectively, of two 16-bit numbers and save the result 
in a 32-bit variable. The combined coeffi cients allCoeff [i] are rounded to 16 bits.

Build the project fi le exp5_7.dpj and open the display window by clicking on 
View Æ Debug Windows Æ Plot Æ Restore. Select ImpulseResponse.vps and 

Table 5.8 Gain Settings of the Graphic Equalizer

Gain Setting in Gain Setting in Gain Setting Scaled to (1.15) Format in
dB (20 log10 A) Linear Scale (1.15) Format Hexadecimal
 (A = 10(dB/20)) (A/4) (fract16)

   Hex[(A/4)×32,768]

+12 dB 3.9811 0.9953 0x7F66
  +9 dB 2.8184 0.7046 0x5A30
   +6 dB 1.9952 0.4988 0x3FD9
   +3 dB 1.4125 0.3531 0x2D32
  +0 dB 1.0000 0.2500 0x2000
  −3 dB 0.7079 0.1769 0x16A5
  −6 dB 0.5012 0.1253 0x100A
 −9 dB 0.3548 0.0887 0x0B5B
−12 dB 0.2512 0.0628 0x080A
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FreqResponse.vps to display the impulse and frequency responses of the combined fi lter 
as shown in Figure 5.34 (a) and (b), respectively.

EXERCISE 5.3

1. Modify the C code to enhance the low-frequency bands (band #1 to band 
#3) to +12 dB, middle-frequency bands (band #4 to band #6) to 0 dB, and 
high-frequency bands (band #7 to band #8) to −12 dB.

2. Use the equiripple fi lter design method instead of the window fi lter design 
method. Obtain the frequency response and impulse response of the com-
bined fi lter with the new fi lter design method. Observe any difference with 
the plots obtained in Hands-On Experiment 5.7.

3. Modify the C code to input a noisy signal from the fi le (sineNoise-
3sec_48k.dat) and attenuate the noise by −12 dB using the 8-band graphic 
equalizer. Hint: Refer to Hands-On Experiment 2.3.

5.5 IMPLEMENTATION OF GRAPHIC 
EQUALIZER USING BF533/BF537 EZ-KIT

This section explores the real-time implementation of the eight-band FIR fi lter-based 
graphic equalizer using the Blackfi n BF533 or BF537 EZ-KIT. In addition, we 

(a)

(b)

Figure 5.34 Impulse response (a) and frequency response (b) of combined FIR fi lter
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explore how to program an application as a stand-alone system without needing the 
computer to download the code to the EZ-KIT via the USB cable. In other words, 
the graphic equalizer code can be downloaded to the Blackfi n memory on power 
up. This feature turns the EZ-KIT into a portable device (battery operated) that can 
be used directly in many real-life applications.

HANDS-ON EXPERIMENT 5.8

In this experiment, we convert the C fi le in Hands-On Experiment 5.7 into a real-time graphic 
equalizer that can input musical signal and perform graphic equalization on a pair of stereo 
signals. The processed signals are sent to headphones (or loudspeakers) for playback.

Activate VisualDSP++ for the BF533 (or BF537) EZ-KIT and open exp5_8_533.dpj
(or exp5_8_537.dpj) in directory c:\adsp\chap5\exp5_8_533 (or c:\adsp\chap5\
exp5_8_537). Build the project, and the executable fi le (exp5_8_533.dxe or exp5_8_
537.dxe) is automatically loaded into the memories of the EZ-KIT. In this program, we 
have programmed four push buttons and six LEDs on the BF533 and BF537 EZ-KITs as 
shown in Table 5.9. Input any musical signal (sampled at 48 kHz) to the input port (ADC1) 
of the BF533 EZ-KIT or the stereo line-in port of the BF537 EZ-KIT. Run the project and 
connect the processed signal at the output port (DAC1) of the BF533 EZ-KIT or the stereo 
line-out port of the BF537 EZ-KIT to a pair of loudspeakers. Users can adjust the gains of 
the fi lters with the push button settings listed in Table 5.9 and listen to the equalized 
music.

The combined left and right FIR fi lters of the graphic equalizer are implemented by 
using the following FIR fi lter functions (available in the DSP run time library) to process 
the left (sCh0LeftIn) and right (sCh0RightIn) channels separately:

fir_fr16(sCh0LeftIn, sCh0LeftOut, INPUT_SIZE, &stateFIRL);
fir_fr16(sCh0RightIn, sCh0RightOut, INPUT_SIZE, &stateFIRR);

The processed left (Ch0LeftOut) and right (Ch0RightOut) signals are sent to the DAC 
of the EZ-KIT. The combined left and right FIR fi lters must be initialized by the init.c
fi le, using the following functions:

fir_init(stateFIRL, allCoeff, firDelayL, NUM_COEFF, 0);
fir_init(stateFIRR, allCoeff, firDelayR, NUM_COEFF, 0);

The combined FIR fi lter coeffi cients are defi ned as allCoeff, which are passed to the 
fir_fr16 function as a structured variable. Note that the array variables firDelayL and 
firDelayR represent the delay line for the left and right fi lters, respectively. These array 
variables must be initialized to zero and should not be modifi ed by the user program.

EXERCISE 5.4

1. Instead of user-adjusted gain control, we can predefi ne the equalizer gain 
settings to perform different audio enhancement modes. The gain settings 
are listed below from low- to high-frequency band for the eight-band 
equalizer:
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a. Bass enhanced: [+6 +6 +6 +3 +3 +3 0 0] dB
b. Treble enhanced: [0 0 +3 +3 +3 +6 +6 +6] dB
c. Rock: [+6 +3 −3 −3 0 +3 +6 +6] dB
d. Pop: [0 +3 +3 +6 +6 −3 −3 −3] dB

Simplify the programs in Hands-On Experiment 5.8 to implement the above 
fi xed settings.

2. Implement the BTC feature of the VisualDSP++ to view the input and output 
frequency responses for Hands-On Experiment 5.8. Verify that the output 
frequency response matches with the gain settings selected by the user. Hint: 
Use the BTC example given in Hands-On Experiment 3.7.

3. Determine the cycle counts required to run (1) the overall interrupt service 
routine and (2) FIR fi lters, and (3) compute the combined FIR fi lter coeffi -
cients in the BF533/BF537 EZ-KIT. Hint: Use the CYCLES and CYCLES2
registers.

Table 5.9 Functions of Push Buttons and LEDs on the BF533/BF537 EZ-KITs

Functions BF533 EZ-KIT BF537 EZ-KIT

Switch from higher to SW4 SW10
 lower fi lter band 
 (from #7 to #0)
Switch from lower to SW5 SW11
 higher fi lter band 
 (from #0 to #7)
Decrease the gain level SW6 SW12
 of the active fi lter band 
 in steps of −3 dB per 
 press
Increase the gain level of SW7 SW13
 the active fi lter band in
 steps of +3 dB per press
Indicate the fi lter band LED6|LED5|LED4 LED3|LED2|LED1
 number (in binary)
   Band #1  0 | 0 | 0 (all off)  0 | 0 | 0 (all off)
   Band #2  0 | 0 | 1  0 | 0 | 1
      :  :   :   :  :   :   :
   Band #8  1 | 1 | 1 (all on)  1 | 1 | 1 (all on)
Indicate the gain level of LED7|LED8|LED9 LED4|LED5|LED6
 the active band The blink rate of these LEDs The blink rate of these LEDs
  indicates the gain level.  indicates the gain level. 
  When the blink rate is fast,  When the blink rate is
  higher gain amplifi cation;  fast, higher gain
  when the blink rate is slow,  amplifi cation; when the
  more attenuation  blink rate is slow, more 
   attenuation

TEAM LinG



4. Turn on the statistical profi ler (Tools Æ Statistical Profi ling Æ New 
Profi le) and examine the execution percentage of running different tasks in 
the graphic equalizer.

HANDS-ON EXPERIMENT 5.9

So far, we have loaded our compiled code from the computer to the EZ-KIT via the USB 
cable. VisualDSP++ also provides a feature to create and download a loader fi le to the fl ash 
memory of the EZ-KIT. In this experiment, we go through the steps in creating a stand-alone 
system that runs the above-described eight-band graphic equalizer on power up of the 
EZ-KIT. The steps are stated as follows:

1. Open the VisualDSP++ and load the project fi le exp5_8_533.dpj for the BF533 
EZ-KIT or exp5_8_537.dpj for BF537. These projects are located at directories 
c:\adsp\chap5\exp5_8_533 and c:\adsp\chap5\exp5_8_537, respectively. 
Because we have fi nished debugging the eight-band equalizer in the preceding 
experiment, we can rebuild the project using the release build by changing the toolbar 
menu from Debug to Release. This step will remove all debug information and 
reduce the memory usage in the Blackfi n processor. Release build can also optimize 
real-time performance.

2. Click on Project Æ Project Options and change the Target Type to Loader fi le
as shown in Figure 5.35. The loader fi le (.ldr) is essentially the same as the 

Figure 5.35 Project Options window
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executable fi le (.dxe), with the exception that the loader fi le does not contain any 
debug information and symbols.

3. Click on Options under the Load menu in the Project Options window. A new 
window will appear as shown in Figure 5.36. Select the output format as shown. 
Make sure that Output Width is set to 16-bit. Users can also specify a different 
loader fi le (.ldr) name (which uses the same name as the project fi le by default) by 
typing in the Output fi le fi eld.

4. Click on OK and rebuild the project. A loader fi le exp5_8_533.ldr for the BF533 
EZ-KIT or exp5_8_537.ldr for the BF537 EZ-KIT is created in the respective 
Debug folder.

5. Click on Tools Æ Flash Programmer  .  .  .  to turn on the Flash Programmer

 window as shown in Figure 5.37. Click on the  icon next to the Driver fi le and 
search for the default driver for the BF533 or BF537 EZ-KIT. For the BF533 EZ-KIT, 
use

. . . \VisualDSP 4.0\Blackfin\Flash Programmer Drivers\ADSP-
BF533 EZ-kit Lite\BF533EzFlash.dxe. 
For the BF537 EZ-KIT, use . . . \VisualDSP 4.0\Blackfin\Flash Pro-
grammer Drivers\ADSP-BF537 EZ-kit Lite\BF537EzFlash.dxe.

6. Click on the  icon next to the Data fi le to search for the loader fi le created in Step 
4. Click on Load File to complete the loading.

7. Click on Settings Æ Boot load  .  .  .  to verify that the eight-band graphic equalizer 
program has been loaded into the fl ash memory of the EZ-KIT. The program is 
now booting from the fl ash memory. Alternatively, turn off the EZ-KIT, unplug the 

Figure 5.36 Setting the load option for the fl ash programmer
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USB, and turn on the EZ-KIT again. The program should run immediately on 
power up.

8. Test the functionality of the graphic equalizer to confi rm that the program is working 
properly in stand-alone mode.

5.6 IMPLEMENTATION OF GRAPHIC 
EQUALIZER USING LABVIEW EMBEDDED 
MODULE FOR BLACKFIN PROCESSORS

Graphic equalization is a very scalable technology allowing a designated number 
of audio frequency bands to be extracted, amplifi ed, and reassembled to improve or 
process audio signals. Commercial graphic equalizers use a wide variety of analog 
and digital technology to achieve similar functionality. Most have a standard user 
interface using slider bars allowing each band to be individually amplifi ed or attenu-
ated. The algorithm for equalizing audio is computationally intensive in its theoreti-
cal form but can be simplifi ed and implemented in LabVIEW with the same 
principles discussed in the moving-average fi lter application in Chapter 2.

In the following exercises, you will simulate, prototype, and deploy a graphic 
equalizer using the FIR fi lter coeffi cients derived in previous examples. The eight-
band graphic equalizer simulation allows you to load custom coeffi cients and an 
audio signal. This gives you the ability to modify and listen to the effects of differ-
ent equalizer gains. The equalizer is then run on the Blackfi n EZ-KIT, demonstrat-
ing a real-time fi ltering application created with graphical programming.

Figure 5.37 Flash Programmer window
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HANDS-ON EXPERIMENT 5.10

In this experiment, an eight-band graphic equalizer is implemented, using FIR fi ltering to 
modify the frequency content of audio signals. The simulation allows you to hear the 
effects of the equalizer and see its results in both time and frequency domains. Custom fi lter 
coeffi cients can also be loaded to test the results of your own equalizer designs. You 
can easily modify the gain of each frequency band and observe the differences in fi lter 
characteristics.

Navigate to the program called FIR_EQ_Sim.exe located in directory c:\adsp\
chap5\exp5_10. In Figure 5.38, we see the user interface for FIR_EQ_Sim.exe. Separate 
tabs show various plots of the audio signal and allow you to customize the gain applied to 
each band. The Time Signal tab shows the time-domain input signal. Click the Enable Filter
button to turn on equalization. The Frequency Signal tab shows both the input signal and 
its frequency content, and the graph can be viewed with either a linear or a logarithmic (dB) 
scale. The Frequency Bands tab shows the magnitude response of each of the eight fi lters 

Figure 5.38 Eight-band graphic equalizer (user interface for FIR_EQ_Sim.exe)
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individually. Note that although each of the individual fi lters is not ideal, the overall passband 
is relatively fl at when the fi lter are combined. The Load Bands tab gives us the ability to 
open new sets of coeffi cient data fi les and change the gains applied by the equalizer slider 
positions. The set of eight slider bars at the bottom of the user interface corresponds to the 
gain applied to each of eight frequency bands.

The default input signal is a 1-kHz sine wave sampled at 48 kHz with a buffer length 
of 512 samples, as seen in Figure 5.38. Different wave fi les can be loaded for additional fi lter 
testing. Custom coeffi cients can be loaded from data fi les in fract16, a common delimited 
format for custom equalizer simulations.

Click the Frequency Bands tab and adjust the values of the Band 1 slider bar. As you 
change the selected gain for that frequency band, note how the magnitude response for that 
band changes in the graph as well.

Now load and experiment with the audio fi le speech_tone_48k.wav that we used 
in Hands-On Experiment 2.5. Recall that this audio fi le contains tonal noise that degrades 
the overall quality of the audio. Can you identify the frequency band that contains the tonal 
noise? Experiment with the equalizer gain settings to attenuate the noise as much as possible 
while still retaining the rest of the signal. How would these settings need to change if the 
tonal noise had a different frequency? How would you redesign the fi lter if you needed fi ner 
resolution control over high frequencies and less resolution control over low frequencies 
while keeping just eight bands?

HANDS-ON EXPERIMENT 5.11

This experiment implements an eight-band FIR fi lter on the Blackfi n processor with the 
LabVIEW Embedded Module for Blackfi n Processors. This project is run in Release mode 
to take advantage of the excellent speed optimization when the various debugging features 
are not necessary. There are two key processing steps in this experiment. First, the single 
FIR fi lter Blackfi n library function is the only processing VI that modifi es the original signal. 
The computationally intensive portion of this VI is the calculation of the FIR fi lter coeffi -
cients. This fi lter coeffi cient calculation is packaged into a subVI for code modularity and is 
used as a single processing block.

Open the FIR Equalizer-BF5xx.lep project appropriate for your Blackfi n hard-
ware in directory c:\adsp\chap5\exp5_11. You will fi nd that the project is composed 
of three fi les, one for each of the main processing blocks in the project. Double-click on 
the top-level VI, FIR Equalizer-BF5xx.vi, and open the block diagram to study how 
the equalizer is implemented. Note that the processing algorithm is divided into distinct 
sections for buffer initialization, coeffi cient calculation, and fi ltering, where each of these 
operations has its own subVI. This application streams a real-time audio signal from the 
Blackfi n audio input, processes it, and generates an output signal from the Blackfi n EZ-KIT 
audio out port. When SW4 of BF533 (or SW10/PB4 of BF537) is pressed, the selected FIR 
fi lter is enabled and applied to the signal. Pay special attention to the block diagram of the 
Init Eq Coeffs subVI (shown in Fig. 5.39), which implements the calculation of the fi lter 
coeffi cients.

This block diagram shows how to calculate the coeffi cients of the FIR fi lter. Graphical 
representation of the algorithm illustrates the parallelism of the code to be easily seen. Par-
allelism is valuable in understanding complex algorithms with recurring symmetry. For each 
of the eight bands, the input coeffi cients are multiplied by the gain selected for that band. 

5.6 Implementation of Graphic Equalizer Using LabVIEW Embedded Module 213

TEAM LinG



214 Chapter 5 Introduction to the Blackfi n Processor

We then sum these products to calculate a single set of coeffi cients. Once the coeffi cients 
are calculated by the Init Eq Coeffs subVI, they are passed to the FIR fi lter function block 
along with the audio buffer for real-time processing.

Connect the computer audio output to the input of the Blackfi n processor and the output 
of the Blackfi n processor to loudspeakers or headphones. On the computer, play the audio 
signal that you would like to equalize. Compile and run the project on the Blackfi n EZ-KIT. 
To enable the equalizer, press and hold SW4 of BF533 (or SW13/PB1 of BF537).

The application can be customized with different graphic equalizer gain settings, or by 
changing the fi lter coeffi cients for each band. Customize the gains for different bands by 
changing the selected preset. Use the same settings simulated in Hands-On Experiment 5.10 
to attenuate the 1-kHz sine wave from the speech_tone_48k.wav audio fi le and evaluate 
its performance with the Blackfi n processor implementation. Does it behave the same? 
Recompile the project and run it. Can you hear the difference in the audio? Experiment with 
the various gain presets and try creating your own.

5.7 MORE EXERCISE PROBLEMS

1. State whether the following Blackfi n instructions are correct or not. If not, state the 
reasons.

(a) R6 = R2.L+|−R1.H;
(b) R6.H = R2.L+R1.H;
  R6.L = R2.L−R1.H;
(c) R3 = R0+|+R1, R4 = R2+|−R1;
(d) R3 = R0+R1, R4 = R2−R1;
(e) R4.H = R4.H&R2.H;
(f) R0.L = R2.H*R1.L;
(g) A0.H += R2.H*R3.H;

Figure 5.39 Block diagram for coeffi cient calculation
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(h) R0.H = (A0 += R2.H*R3.H);
(i) R1 = (A0 += R2.H*R3.H);
(j) A1 = R2.H*R3.L, A0 = R2.L*R3.H;
(k) R0.H = (A1 += R5.H*R6.H), R0.L = (A0 += R5.L*R6.L);
(l) R1 = (A1 + = R5.H*R6.H), R2 = (A0 += R5.L*R6.L);

2. The Blackfi n memory starting from 0xFF80 0100 contains the data shown in the second 
column of Table 5.10. The pointer P1 = 0xFF80 0100, and P2 = 0x0000 0002. Fill in all 
the update registers in the last column of Table 5.10 after executing every instruction.

3. Load the project in Hands-On Experiment 5.1 and use the pipeline viewer (View Æ
Debug Windows Æ Pipeline Viewer) to examine any stall in the program when single-
stepping through the program.

4. A 10-band graphic equalizer based on the ISO octave-band center frequency is shown in 
Table 5.11. Design this 10-band graphic equalizer with FDATool and verify its fi xed-point 
implementation using the VisualDSP++ compiled simulator for the BF processor.

Table 5.10 Blackfi n Memory and Instructions

Address Content Instruction (arrange Update Registers
  in sequential top-
  down manner)

0xFF80 0100 0x12 R1 = [P1++]
0xFF80 0101 0x34 R1 = W[P1––](x)
0xFF80 0102 0x56 R1 = B[P1++](z)
0xFF80 0103 0x78 P0 = [P1 + 0x03]
0xFF80 0104 0x9A [P0++] = R1
0xFF80 0105 0xBC R1.H = W[P1++]
0xFF80 0106 0xDE R1.L = W[P1++P2]
0xFF80 0107 0xF0 P1 – = P2
0xFF80 0108 0xAA W[P1++] = R1
0xFF80 0109 0xBB B[P1++] = R1

Table 5.11 ISO Octave Center Frequencies with Band 
Limits

Octave Band Center Frequency Band Limits

  31.5 Hz 22 Hz–44 Hz
   63 Hz 44 Hz–88 Hz
   125 Hz 88 Hz–176 Hz
   250 Hz 176 Hz–353 Hz
   500 Hz 353 Hz–707 Hz
 1,000 Hz 707 Hz–1,414 Hz
 2,000 Hz 1,414 Hz–2,825 Hz
 4,000 Hz 2,825 Hz–5,650 Hz
 8,000 Hz 5,650 Hz–11,250 Hz
16,000 Hz 11,250 Hz–22,500 Hz
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5. Implement the graphic equalizer in Problem 4 with the Blackfi n BF533/BF537 EZ-KIT. 
Benchmark the cycle counts needed to complete the graphic equalizer. Profi le the per-
centage of processing time for the tasks in the graphic equalizer. Feed a stereo musical 
signal (sampled at 48 kHz) to the input of the EZ-KIT and perform the various gain 
settings of the graphic equalizer to hear the processed signal from the output of the 
EZ-KIT.

6. A noisy speech signal, noisy.wav, is recorded offl ine. This signal contains band-
limited noise that can be removed with the graphic equalizer. Analyze the band-limited 
noise in order to design a suitable graphic equalizer to remove the band-limited noise 
with the Blackfi n BF533/BF537 EZ-KIT. Users can implement the graphic equalizer 
either in C or the LabVIEW Embedded Module.

7. Instead of using switch to control the gain of the graphic equalizer, the gain control can 
also be performed by using the BTC. Modify the C fi les in Hands-On Experiment 5.8 
to perform the gain control via software.

8. The project fi le in Hands-On Experiment 5.8 computes the combined FIR fi lter coeffi -
cients at every CODEC interrupt, even though there is no adjustment of the gain setting 
by the user. Rewrite the C fi les such that the combined fi lter coeffi cients are computed 
only when the push buttons are pressed.

9. Table 5.8 shows that the user-adjustable gain of the graphic equalizer is divided by 4 in 
order to scale all the gain values to less than 1. Examine the project fi le in Hands-On 
Experiment 5.8 and state how this gain reduction has been compensated at the output 
of the graphic equalizer.

10. In Hands-On Experiment 5.8, a single combined fi lter is used to implement FIR fi ltering 
in the eight-band graphic equalizer. A more direct approach is to implement eight FIR 
fi lters, one for each band, and add up the gain-adjusted outputs of these eight fi lters. 
Implement this direct approach and benchmark its implementation cost (cycle count and 
data memory usage) with reference to the single combined FIR fi lter.
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Chapter 6

Real-Time DSP Fundamentals 
and Implementation 
Considerations

In Chapter 5, we introduced the architecture of the Blackfi n processor and moved 
data between memories and registers. This chapter introduces important topics on 
representing data in the fi xed-point Blackfi n processors, processing and handling 
digital signals with fi nite wordlength, segmenting signal samples into blocks for 
processing, and evaluating the resources (speed, memory, peripherals, and power 
management) for real-time tasks. We use many examples and hands-on experiments 
to explain these topics and show a step-by-step approach in designing an embedded 
signal processing application. This effective embedded system design moves from 
fl oating-point simulations to fi xed-point representations using MATLAB and then 
to porting the fi xed-point code and data into the Blackfi n processor. We also intro-
duce more advanced debugging and profi ling features in the VisualDSP++ IDDE 
to meet real-time requirements.

6.1 NUMBER FORMATS USED 
IN THE BLACKFIN PROCESSOR

This section defi nes number representations in digital systems with different formats 
and performs different arithmetic operations based on these formats. In particular, 
we use the Blackfi n processor that supports 8-, 16-, 32-, and 40-bit fi xed-point data 
to explain different number formats.

6.1.1 Fixed-Point Format

In fi xed-point processors, a number is represented with a series of binary digits of 
1s and 0s. An unsigned number without sign information is always positive. For 
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218 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

example, an 8-bit unsigned binary number of 1011 0001 represents 177 in base 
10 integer. However, in a signed number representation, the same 8-bit binary 
digits represent −79 in 2’s complement format. The 2’s complement format is 
the most popular signed number in DSP processors, including the Blackfi n 
processor.

In addition, most DSP processors support both integer and fractional data 
formats. In an integer format, the radix point is located to the right of the least 
signifi cant bit (LSB). For example, the integer number 79 has the binary pattern 
shown in Fig. 6.1(a). The smallest magnitude of an integer number is 1 (the weight-
ing of the LSB). The negative number −79 in 2’s complement format is shown in 
Figure 6.1(b). Note that the sign bit in 2’s complement format has a negative 
weight.

In the fractional number format, the radix point is located within the binary 
number. For example, a radix point can be positioned to the left of the four LSBs 
with the weights indicated in Figure 6.2(a) for the unsigned fractional number and 
in Figure 6.2(b) for the signed fractional number. Note that the number to the right 
of the radix point assumes a fractional binary bit, with a weighting of 2−p where 
p = 1, 2, 3, and 4. In this case, the lowest fractional increment is 2−4 (or 0.0625). 
For the number to the left of the radix point, the weighting increases from 2q where 
q = 0, 1, 2, and 3. The weighting of the MSB (or sign bit) depends on whether the 
number is signed or unsigned.

An (N.M) notation describes any fractional number, where N is the number of 
bits to the left of the radix point (integer part) and M is the number of bits to the 
right of the radix point (fractional part). The symbol “.” represents the radix point. 
The total number of bits in the data word is B = N + M. In the example shown in 
Figure 6.2, this is called the (4.4) format. An integer number can be named in the 
(B.0) format. For example, the number given in Figure 6.1 is called the (8.0) format 
or 8-bit integer.

Figure 6.1 Examples of 8-bit binary data format for integer numbers of 177 (a) and −79 (b)

= 27+25+24+20

= 1771 0 1 1 0 0 0 1

+27    26      25      24 23 22 21 20

(a) Unsigned integer 

1 0 1 1 0 0 0 1

-27    26      25      24 23 22 21 20

(b) Signed integer (2’s complement) 

= −27+25+24+20

= −79

Radix point for integer 
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6.1 Number Formats Used in the Blackfi n Processor 219

QUIZ 6.1

Interpret the 16-bit hexadecimal numbers (with prefi x 0x) given in Table 6.1 as

1. (16.0) format or integer

2. (4.12) format

3. (1.15) format

The (1.15) format displayed in the last column of Table 6.1 is commonly 
used in 16-bit fractional number representation. Figure 6.3 shows the weightings 
of bits for the (1.15) format. The radix point is positioned one bit to the right of 
the MSB. Therefore, the maximum positive number in (1.15) format is 1 − 2−15

(= 0.999969482421875), which has a hexadecimal representation of 0x7FFF because 
all bits are “1” except the MSB. The minimum negative number in (1.15) format is 
−1 (0x8000). Therefore, the (1.15) format has a dynamic range of [+0.999969482421875 
to −1], and numbers exceeding this range cannot be represented in (1.15) format. 
For example, +1.0 cannot be represented in (1.15) format. The smallest increment 
(or precision) within the (1.15) format is 2−15. In the Blackfi n processor, the data 
type fract16 represents the (1.15) format.

Table 6.2 lists all 16 possible (N.M) formats for 16-bit numbers. Different formats 
give different dynamic ranges and precisions. There is a trade-off between the 

= 23+21+20+2-4

= 11.0625
1 0 1 1 0 0 0 1

+23    22      21      20 2-1 2-2 2-3 2-4

1 0 1 1 0 0 0 1

-23    22      21      20 2-1 2-2 2-3 2-4

(b) Signed fractional (4.4) format 

= -23+21+20+2-4

= -4.9375

Radix point for fractional 
number

(a) Unsigned fractional (4.4) format 

Figure 6.2 Example of 8-bit binary data formats for a fractional number

Table 6.1 Examples of Representing Numbers in Different Formats

Hexadecimal (16.0) Format or (4.12) Format (1.15) Format
Number Integer

0x7FFF
0x8000
0x1234
0xABCD
0x5566
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220 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

dynamic range and precision. As the dynamic range increases, precision becomes 
coarser. For example, when we change the format from (1.15) to (2.14), we get a larger 
dynamic range from [+0.999969482421875 to −1] to [1.99993896484375 to −2]; 
however, we reduce the precision from 2−15 to 2−14. The largest dynamic range of a 16-
bit number can be obtained by using the (16.0) format or integer; however, this format 
has the worst precision of 1. Therefore, the selection of the right format depends on the 
dynamic range and precision required by the given DSP application.

A number in (N.M) format cannot be represented in the programs because 
most compilers and assemblers only recognize numbers in integer or (16.0) 
format. Therefore we must convert the fractional number in (N.M) format into its 
integer equivalent, and its radix point must be accounted for by the programmers. 
For example, to convert a number 0.6 in (1.15) format to its integer representation, 
we multiply it by 215 (or 32,768) and round the product to its nearest integer to 
become 19,661 (or 0x4CCD). As shown in Table 6.3, a scaling factor 2M is needed 
for converting the (N.M) format to the integer. Note that the number range in 

x = –1 + 2-2 + 2-3 + 2-7 + 2-8 + 2-10 + 2-11+2-15 = –0.61178588867

1

–20    2-1      2 -2     2-3       2-4        2-5       2-6       2-7       2-8     2-9    2-10      2-11      2-12     2-13     2-14    2-15

1 0 1 1 0 0 0 1 1 0 1 1 0 0 0

Figure 6.3 An example of a number represented in (1.15) format

Table 6.2 Dynamic Ranges and Precisions of 16-Bit Numbers Using Different (N.M)
Formats

Format Largest Positive Value Least Negative Value Precision (0x0001)
(N.M) (0x7FFF) (0x8000)

(1.15) 0.999969482421875 −1 0.00003051757813
(2.14) 1.99993896484375 −2 0.00006103515625
(3.13) 3.9998779296875 −4 0.00012207031250
(4.12) 7.999755859375 −8 0.00024414062500
(5.11) 15.99951171875 −16 0.00048828125000
(6.10) 31.9990234375 −32 0.00097656250000
(7.9) 63.998046875 −64 0.00195312500000
(8.8) 127.99609375 −128 0.00390625000000
(9.7) 255.9921875 −256 0.00781250000000
(10.6) 511.984375 −512 0.01562500000000
(11.5) 1,023.96875 −1,024 0.03125000000000
(12.4) 2,047.9375 −2,048 0.06250000000000
(13.3) 4,095.875 −4,096 0.12500000000000
(14.2) 8,191.75 −8,192 0.25000000000000
(15.1) 16,383.5 −16,384 0.50000000000000
(16.0) 32,767 −32,768 1.00000000000000
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hexadecimal, [0x7FFF to 0x8000], remains the same for all 16-bit number formats; 
the only difference is the fractional value that is represented by the hexadecimal 
integer.

QUIZ 6.2

Determine the hexadecimal integer representation of the numbers in different 
(N.M) formats as shown in Table 6.4.

Conversely, we can divide an integer number by the associate scaling factor to 
obtain the fractional number for the specifi c format. In Quiz 6.1, the answers can 
be easily obtained by using the scaling factors listed in Table 6.3.

The major advantage of using fi xed-point fractional representation is that this 
format adheres to the basic arithmetic operations of most fi xed-point signal proces-

Table 6.3 Scaling Factors and Dynamic Ranges for 16-Bit Numbers Using Different 
(N.M) Formats

Format Scaling Factor (2M) Range in Hex (fractional value)

(1.15) 215 = 32,768 0x7FFF (0.99) → 0x8000 (−1)
(2.14) 214 = 16,384 0x7FFF (1.99) → 0x8000 (−2)
(3.13) 213 = 8,192 0x7FFF (3.99) → 0x8000 (−4)
(4.12) 212 = 4,096 0x7FFF (7.99) → 0x8000 (−8)
(5.11) 211 = 2,048 0x7FFF (15.99) → 0x8000 (−16)
(6.10) 210 = 1,024 0x7FFF (31.99) → 0x8000 (−32)
(7.9) 29 = 512 0x7FFF (63.99) → 0x8000 (−64)
(8.8) 28 = 256 0x7FFF (127.99) → 0x8000 (−128)
(9.7) 27 = 128 0x7FFF (511.99) → 0x8000 (−512)
(10.6) 26 = 64 0x7FFF (1,023.99) → 0x8000 (−1,024)
(11.5) 25 = 32 0x7FFF (2,047.99) → 0x8000 (−2,048)
(12.4) 24 = 16 0x7FFF (4,095.99) → 0x8000 (−4,096)
(13.3) 23 = 8 0x7FFF (4,095.99) → 0x8000 (−4,096)
(14.2) 22 = 4 0x7FFF (8,191.99) → 0x8000 (−8,192)
(15.1) 21 = 2 0x7FFF (16,383.99) → 0x8000 (−16,384)
(16.0) 20 = 1(integer) 0x7FFF (32,767) → 0x8000h (−32,768)

Table 6.4 Example of Converting Numbers in (N.M) Format to 
Hexadecimal Representations

Number (1.15) Format (2.14) Format (8.8) Format (16.0) Format

0.5
1.55
−1
−2.0345
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sors and does not require additional libraries or hardware logic. In the following sec-
tions, we examine fi xed-point addition and multiplication in the Blackfi n processor.

6.1.1.1 Binary Addition

In Section 5.1.3.1, we introduced addition and multiplication in the Blackfi n proces-
sor without considering the data format. Overfl ow occurs when an arithmetic opera-
tion produces a number that exceeds the number range. For example, when two 
numbers (0.5 and 0.7) in (1.15) format are added together, the result is 1.2, which 
exceeds the valid (1.15) number range of [+0.999969482421875 to −1]. The result 
1.2 is overfl owed into the negative number range and becomes −0.8. As shown in 
Table 5.1, a saturation mode is available in the Blackfi n processor that forces the 
overfl owed number to be fi xed at the maximum positive or negative value. Therefore, 
in the above example, the result 1.2 will be saturated to the maximum positive 
number of +0.999969482421875 instead of overfl owing into a negative number of 
−0.8. In the saturation mode, the error between the actual number and the saturated 
result is smaller compared to the error without saturation.

HANDS-ON EXPERIMENT 6.1

This VisualDSP++ experiment performs add/subtract operations on four sets of numbers 
with the Blackfi n instructions given in Example 5.1. The arithmetic operations are (a) 0.5 +
0.7, (b) −0.3 − 0.7, (c) 0.1 + 0.8, and (d) −0.5 − 0.7. These add/subtract operations are carried 
out separately, using (1.15) and (2.14) formats. This experiment shows how to load these 
numbers into the Blackfi n memory and add (or subtract) with saturated (s) and nonsaturated 
(ns) modes. The steps of the experiment are as follows:

1. Load the project fi le into the VisualDSP++ BF533/BF537 simulator by clicking on 
File Æ Open Æ Project and look for the project fi le exp6_1.dpj in directory 
c:\adsp\chap6\exp6_1.

2. Examine the fi le exp6_1.asm and fi ll in the missing hexadecimal numbers stated 
in the program. Build the project and single-step through the code.

3. Fill in Table 6.5 after executing addition and subtraction for the four sets of numbers 
presented in (1.15) and (2.14) formats.

4. Change the mode to nonsaturation (or overfl ow) option and repeat Steps 2 and 3.

Table 6.5 Examples of Add/Subtract with Saturation and Nonsaturation Modes

Arithmetic Result in (1.15) Format Result in (2.14) Format

 Saturate (s) Overfl ow Saturate (s) Overfl ow

0.5 + 0.7
−0.3 − 0.7
0.1 + 0.8
−0.5 − 0.7
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Explain why there is no difference between the results of saturation and nonsaturation 
(overfl ow) options using the (2.14) format for add/subtract operations.

Modify the above program to add a series of 10 numbers {0.5, 0.7, −0.3, −0.4, 0.21, 
−0.12, 0.8, −0.6, −0.18, 0.11} in (1.15) format using data registers. Compare the results with 
both saturated and nonsaturated options. Click on Registers Æ Core Æ Status Æ Arith-
metic Status to observe any register overfl ow (V fl ag) in this series of additions. Which 
option gives the right result and why?

6.1.1.2 Binary Multiplication

In binary multiplication, the input numbers can be represented by different data 
formats, and the result depends on the input data formats. If two input numbers have 
formats of (N.M) and (P.Q), then the format of the product is (N + P).(M + Q). For 
example, the product of multiplying two 16-bit numbers in (1.15) format results in 
a 32-bit result in (2.30) format. In another example, if the inputs are in (1.15) and 
(2.14) formats, the multiplication result is in (3.29) format. When both inputs are 
signed numbers, there is an extra sign bit, as shown in Figure 6.4 for the case of 
multiplying two fractional numbers in (1.15) format.

The example shown in Figure 6.4 can be extended to all multiplications with 
signed fractional data format. For example, if a number in (2.14) format is multiplied 
by a number in (3.13) format, the multiplication result is in (5.27) format, but the 
result must be shifted left by one bit to get a correct (4.28) format with only one 
sign bit. The LSB of the multiplication result is zero fi lled after the shift operation. 
The Blackfi n processor can automatically shift the multiplication results left by one 
bit before writing to the register. This is the default option as stated in Table 5.2. 
However, the left shift is not necessary when multiplying a signed number by an 
unsigned number, or multiplying two unsigned numbers. This is the case when the 
(FU) option in Table 5.2 is used.

1100 0000 0000 0000

0100 0000 0000 0000 

11 11 0000 0000 0000 0000 0000 0000 0000 

0.5  (1.15) format 

−0.5 (1.15) format 

−0.25 (2.30) format 

−0.25 (1.31) format 

×

Two identical sign bits. 
Shift left one bit to remove the redundant sign bit.

1 11 0000 0000 0000 0000 0000 0000 0000 0 

The most significant 16 bits can be saved in 
register or memory. Use the (T) option to 
perform this task automatically. 

Zero filled at the 
least significant 
bit.

Figure 6.4 Multiplication of two numbers in (1.15) format

TEAM LinG



224 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

In the case of integer (signed or unsigned) multiplication, there is no need to 
perform any shifting after the multiplication. For example, multiplying two numbers 
in (16.0) format results in a number in (32.0) format. Figure 6.5 illustrates the 
concept behind the multiplication of signed integers. The 32-bit integer multiplica-
tion result must be saved in two 16-bit memory locations. This is because every bit 
in the integer multiplication has a signifi cant weighting, and huge error can be gener-
ated when even a few least signifi cant bits are omitted. In the Blackfi n processor, 
the (IS) and (IU) options stated in Table 5.2 are used for signed and unsigned integer 
multiplication, respectively.

HANDS-ON EXPERIMENT 6.2

Perform the following multiplication operations with the VisualDSP++ BF533/BF537 
simulator:

1. 0.5 × −0.5 (both numbers are in (1.15) format)

2. 16,384 × −16,384 (both numbers are in (16.0) format)

3. 0.25 (in (1.15) format) × 1.25 (in (2.14) format)

4. −1.5 (in (2.14) format) × 1.5 (in (2.14) format)

5. 2−15 × 2−15 (both numbers are in (1.15) format)

Load the project fi le exp6_2.dpj in directory c:\adsp\chap6\exp6_2 and fi ll in 
the missing numbers in the program exp6_2.asm. Open the following register windows:

• Arithmetic status window: Registers Æ Core Æ Status Æ Arithmetic Status.
Observe the AV0 and AV1 bits, which indicate saturation in the A0 and A1 accumula-
tors, respectively. The V bit indicates data register overfl ows when written from ALU 
to data register. A value of “1” indicates overfl ow.

• Accumulators window: Registers Æ Core Æ Accumulators. Observe the A0
and A1 accumulators. From the Accumulators Window, it is observed that the 
accumulators A0 and A1 are 40-bit accumulators that consist of three fi elds, A0.X, 
A0.H, A0.L and A1.X, A1.H, A1.L. The symbol “X” denotes the 8 extended bits 
(or guard bits), and the symbols “H” and “L” denote the upper and lower 16 bits of 
the remaining 32-bit register, respectively.

• Data register fi le window: Registers Æ Core Æ Data Register File. Observe the 
data registers used.

1100 0000 0000 0000  

0100 0000 0000 0000

1111 0000 0000 0000 0000 0000 0000 0000

16384   
(16.0) format 

−16384  

(16.0) format 

−228 (32.0) format 

×

Must store the 32-bit result 

Figure 6.5 Multiplication of two signed integers in (16.0) format
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Interpret and verify the results. In addition, answer the following questions:

1. Will the multiplication of two numbers in (1.15) format result in overfl ow if the result 
is stored in (1.31) format? Any advantage of using (1.15) format for multiplication?

2. Observe and explain the values of A0.X and A1.X after every multiplication from 
the fi ve multiplication operations.

3. Will the multiplication of two numbers in (2.14) format result in overfl ow if the result 
is stored in (2.30) format?

4. Can you perform −1 × −1 in (1.15) format?

6.1.1.3 Binary Multiply-Add

The multiply-add operation is one of the most commonly used operations in DSP 
algorithms. As introduced in Chapters 2 to 4, DSP algorithms such as digital fi lter-
ing and transform require extensive multiply-add operations. Therefore, it is impor-
tant to examine the data formats that may cause overfl ow and use the register 
extension in the accumulator when performing multiply-add in the Blackfi n 
processor.

When multiplying two numbers in (1.15) format, a result in (1.31) format (after 
shift) is obtained. The extended registers A0.X and A1.X allow the result in the 
accumulator to sign extend to (9.31) format. This (9.31) format implies that there 
are 1 sign bit, 8 integer bits, and 31 fractional bits. Therefore, the result of the accu-
mulator can range from 0x7F FFFF FFFF (most positive number of 256 − 2−31) to 
0x80 0000 0000 (most negative number of −256).

When the Blackfi n processor performs multiply-add operations such as in FIR 
fi ltering, the extended registers support the sequence of additions without overfl ow. 
These extended registers with 8 guard bits provide the headroom for accumulated 
products to temporarily overfl ow without setting the AV0/AV1 fl ag. In the worst case, 
a number 0x7FFF is multiplied by another number 0x7FFF, and the product is 
accumulated in the accumulator. If the same multiply-add operation continues for 
more than 28 (or 256) times, the 40-bit accumulator is saturated to 0x7F FFFF FFFF 
without overfl ow. This worst-case scenario is shown in the following experiment.

HANDS-ON EXPERIMENT 6.3

Load the project fi le exp6_3.dpj in directory c:\adsp\chap6\exp6_3. Set the loop 
counter LC0 to 0x100 (256 times). Build and run the project. Increase the loop counter and 
observe the AV0 fl ag in the Arithmetic Status Window. It is easy to run this program by 
setting a breakpoint on the instruction “idle” and running the program from _main to 
idle. It is important to note that this is a very special case, which may never happen in 
carefully designed DSP applications. The objective of this experiment is to demonstrate how 
the result in the accumulator can be overfl owed into the guard bits.
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HANDS-ON EXPERIMENT 6.4

In this experiment, we use the BF533/BF537 simulator to perform multiply-add operations 
in FIR fi ltering with the 16-bit multiply-add instruction. The input data and fi lter coeffi cients 
can be arranged in the memory as shown in Figure 6.6. The multiply-add operation is 
repeated 10 times to complete a single pass of 10-tap FIR fi ltering.

Load the project fi le exp6_4.dpj in directory c:\adsp\chap6\exp6_4 to perform 
the single-MAC FIR fi ltering. Modify the program exp6_4.asm to take full advantage of 
the dual MACs within the Blackfi n processor. We can save almost 50% of the instruction 
cycles for the same 10-tap FIR fi ltering. To profi le the instruction cycles needed to run the 
loop with a single MAC versus dual MACs, we set a breakpoint on the following line:

LSETUP (begin_loop, end_loop) LC0=P1;

We also set another breakpoint after the instruction where the accumulator has been stored 
to the data register R4 as follows:

W[I2++] = R4.H;

The cycle registers can be viewed by clicking on Registers Æ Core Æ Cycles. Right-
click on the Cycles Window and select Unsigned Integer. Run the program (F5) from 
the start until the fi rst breakpoint of the single-MAC program, then reset the counter by 
double-clicking on the number in the CYCLES register and typing 0, followed by Enter. Run 

0xCD

coeffArray

0x0C

0x9A

0x19

0x66

0x26

0x33

0x33

0x00

0x40

0x00

0x40

0x9A

0x19

0xCD

0x0C

0x00

dataArray

0x40

0x00

0x40

0x00

0x40

0x00

0x40

0x00

0x40

0x00

0x40

0x00

0x40

0x00

0x40

I0 I1

×

AC0

+

R4

R0 R1

Figure 6.6 Program setup for performing 16-bit multiply-accumulate in the Blackfi n processor
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the program (F5) to the next breakpoint and record the instruction cycle. Repeat the same 
step for the dual-MAC program and note the difference in the instruction cycle count. For 
checking, the cycle counts for single and dual MACs are 42 and 23 cycles, respectively. 
Obviously, the dual-MAC program is restricted to an FIR fi lter with an even number of 
coeffi cients. Extend the above program to an odd-length fi lter.

6.1.1.4 Truncation and Rounding of Multiplication Results

It was observed in preceding sections that the multiplication of two 16-bit numbers 
results in a 32-bit product. This result may be stored to memory or register with 
16-bit (8-bit or lesser precision). In other words, a 32-bit result with a precision of 
2−31 in (1.31) format can be either truncated or rounded to 16-bit with a precision of 
2−15 in (1.15) format, or to 8-bit with a precision of 2−7 in (1.7) format as shown in 
Figure 6.7.

Truncation reduces the wordlength by simply masking out the lower 16 bits or 
24 bits. In Table 5.2, there are two options, (T) and (TFU), to perform truncation of 
a 32-bit multiplication result into 16-bit so it can be stored in half-register. However, 
these options are applicable to fractional multiplication only.

The Blackfi n processor supports rounding of multiplication results with the RND
option. Similar to truncation, rounding also reduces the precision of the number by 
removing the least signifi cant bits. Instead of simply throwing away the P least sig-
nifi cant bits out of the N-bit result (where N > P), we can modify the remaining 
(N − P) bits to more accurately represent its former value. Two types of rounding 
are used in the Blackfi n processor: unbiased (or convergent) rounding and bias 
(round-to-nearest) rounding.

Unbiased rounding returns the number closest to the original number. When 
the original number lies exactly halfway between two numbers, unbiased rounding 
returns the nearest even number (the rounded result has an LSB of 0). For example, 
a number 0.25 (0.01) in 3-bit (1.2) format lies midway between 0.0 and 0.5. When 
we perform unbiased rounding to two bits in (1.1) format, we get 0.0 because the 
LSB must be 0.

Biased rounding returns the closest number to the original number. However, 
the original number that lies exactly halfway between two numbers always rounds 
up to the larger of the two. Using the same example as above, the number 0.25 is 

Rounding
or

truncation

16-bit

16-bit

32-bit
16-bit
or 8-bit 

+
32-bit

accumulator

32-bit

Figure 6.7 Block diagram of the multiply-accumulate functional block in typical digital signal 
processors
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rounded up to 0.5. Because this method always rounds up, it produces bias in the 
rounding. It is also important to note that biased rounding and unbiased rounding 
result in the same number when the number is not lying halfway between the 
rounded numbers. In addition, when the truncated value is an odd number, both 
biased rounding and unbiased rounding result in the same number, even when the 
original number is lying halfway between the rounded numbers. For example, round 
an 8-bit number 0.6875 in (1.7) format to 4 bits in (1.3) format with both biased and 
unbiased rounding methods.

EXAMPLE 6.1

Figure 6.8 shows the difference in result of reducing a 16-bit number to 8 bits with truncation 
and unbiased and biased rounding. We also show the steps in performing both unbiased and 
biased rounding operations.

QUIZ 6.3

Perform 32-bit to 16-bit truncation and rounding (biased and unbiased) for the fol-
lowing numbers. These numbers are all in (1.31) format and should be truncated 
and rounded to (1.15) format.

0 1 0 0  0 0 1 0   1 0 0 0   0 0 0 0 Original 16-bit number 
(0.51953125) 

0 1 0 0  0 0 1 0   Truncated to 8-bit number 
(0.515625). Error = 2-8 

0 1 0 0  0 0 1 0   1 0 0 0   0 0 0 0 

                           1 0 0 0   0 0 0 0 

0 1 0 0  0 0 1 1   0 0 0 0   0 0 0 0 

Original 16-bit number 
(0.51953125) 

Add 1 at bit position 7 and carry 

Biased rounding to 8-bit number 
(0.5234375). Error =  -2-8 

0 1 0 0  0 0 1 0   1 0 0 0   0 0 0 0 

                           1 0 0 0   0 0 0 0 

0 1 0 0  0 0 1 1   0 0 0 0   0 0 0 0 

Original 16-bit number 
(0.51953125) 

Add 1 at bit position 7 and carry 

Since the original number lies at the 
halfway point between 2 numbers, 
we can force bit 8 to 0.
Unbiased rounding to 8-bit number
(0.515625). Error =  2-8 0 1 0 0  0 0 1 0   0 0 0 0   0 0 0 0 

Figure 6.8 Steps in performing truncation and rounding (biased and unbiased) from 16-bit 
number to 8-bit number
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1. 0x0000 8001.

2. 0x0001 8000.

3. 0x0001 7FFF.

Can we round or truncate an integer multiplication result?

Blackfi n processors provide several options for biased rounding. The options 
RND12, RND, and RND20 extract 16-bit values from bit 12, bit 16, and bit 20, respec-
tively. The RND12 option prescales the input operands by left shifting 4 (16 − 12) bits. 
The RND20 option prescales the input operands by right shifting 4 (16 − 20) bits. The 
RND option has no prescaling. By default (with no option specifi ed), the Blackfi n pro-
cessor performs unbiased rounding. The RND_MOD bit of the arithmetic status register 
ASTAT specifi es the rounding mode. When RND_MOD = 1 the processor uses biased 
rounding, whereas when RND_MOD = 0 the processor uses unbiased rounding.

HANDS-ON EXPERIMENT 6.5

Load the project fi le exp6_5.dpj in directory c:\adsp\chap6\exp6_5 into the BF533/
BF537 VisualDSP++ simulator. Build and run the project. Fill in Table 6.6 for different 
truncation and rounding modes. Comment on the differences between truncation and unbi-
ased rounding.

Table 6.6 Example of Truncating a 32-Bit Multiplication Result into 16 Bits

Multiplication Result Truncation Unbiased Rounding Biased Rounding

0x6675  × 0x5547
0xA000 × 0x0002
0x6000  × 0x0002

6.1.2 Fixed-Point Extended Format

In some applications like high-end audio signal processing, extended precision (32 
bit) is normally preferred to handle the large dynamic range (greater than 100 dB) 
of audio signals. The Blackfi n processor is suited for extended-precision arithmetic 
because the register fi le is based on 32-bit registers. These registers can be treated 
as either a single 32-bit word or two 16-bit halves.

The Blackfi n processor’s instruction set supports a single-cycle 32-bit addition 
of the form Rn = Rm + Rp, where n, m, or p is the number index of the register. 
Similarly, 32-bit subtraction can be carried out.

32-Bit multiplication involves more operations and memories to derive the fi nal 
64-bit result. Usually, a fractional (1.31) format is used for storing the data. For 
example, we can perform 32-bit multiplication with several single-cycle 16-bit 
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multiplications. As shown in Figure 6.9, two 32-bit operands are loaded into R0 and 
R1 registers and can be partitioned into two 16-bit halves (R0.H, R0.L, R1.H, R1.
L) for four 16-bit multiplications. The partial results must be correctly aligned with 
reference to the MSB before being added together. Because multiplication is carried 
out in (1.31) format, the fi nal result is in (1.63) format with the redundant sign bit 
removed. In most applications, we only need to save the most signifi cant 32-bit 
result. Therefore, the (1.63) format is either rounded or truncated to (1.31) format to 
fi t into a 32-bit data register or a 4-byte memory.

To reduce the computational load, the lowest 16-bit multiplication (R0.L × R1.L) 
can be removed. This is possible because the contribution from this lowest 16-bit 
multiplication is negligible if the fi nal result is truncated to (1.31) format (see 
Fig. 6.9). Therefore, the reduced 32-bit multiplication can be stated as:

R0×R1 = (R1.H×R0.H)+(R1.H×R0.L)>>16+(R0.H×R1.L)>>16

HANDS-ON EXPERIMENT 6.6

This experiment demonstrates how to perform 32-bit multiplication. We use the same data 
as in Hands-On Experiment 6.4, but extend the 16-bit data and coeffi cients into 32-bit data 
sets. Therefore, the 10-tap FIR fi lter is now operating with a 32-bit precision. Load the project 
fi le exp6_6.dpj in directory c:\adsp\chap6\exp6_6 into the BF533/BF537 simulator 
to perform the single-MAC FIR fi ltering using 32-bit precision. Note that reduced 32-bit 
multiplication is being used in this program.

It is noted that there are two types of multiplication in the program. The fi rst 
type uses the mixed-mode (M) option and is applied to the (R1.H × R0.L) and 

R0.H R0.L

R1.H R1.L ×

32-bit

16-bit

R0.L × R1.L 

R0.H × R1.L 

R1.H × R0.L 

R1.H × R0.H 

R0 ×  R1 = (R1.H×R0.H) + (R1.H×R0.L) >> 16 +  
                   (R0.H×R1.L) >> 16 + (R0.L×R1.L) >> 32 

R0 

R1 

+

>> 32

>> 16

>> 16

Aligned  
to the last  
partial  
result 

32-bit

64 bits

Figure 6.9 A 32-bit multiplication using several 16-bit multiplications
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(R0.H × R1.L) multiplications. The mixed-mode option treats the fi rst operand as 
signed and the second operand as unsigned to produce a 32-bit result. In fractional 
multiplication, the multiplication of two numbers in (1.15) and (0.16) formats pro-
duces a result in (1.31) format. There is no automatic left shift by 1 bit. The second 
type of multiplication, (R0.H × R1.H), is performed in the default sign fractional 
option. Extend this experiment to perform a full 32-bit multiplication. Compare the 
fi lter outputs (in 32 bits) with reduced and full 32-bit multiplications.

6.1.3 Fixed-Point Data Types

The Blackfi n C compiler supports eight scalar data types and two fractional data 
types as shown in Table 6.7. Fractional data types can be represented in either 
fract16 (1.15) format or fract32 (1.31) format. However, these fractional data 
types are reserved only for fractional value built-in functions. In Chapter 8, we give 
more examples using these data types, explain different programming styles, and 
use built-in functions and a DSP library to ease the task of writing code.

6.1.4 Emulation of Floating-Point Format

In general, fi xed-point processors perform fi xed-point arithmetic. Fixed-point pro-
cessors have higher processing speed, lower power consumption, and lower cost 
compared to fl oating-point processors, such as the SHARC processor [47] from 
Analog Devices. Floating-point processors usually consist of 32-bit registers and 
thus offer higher precision and wider dynamic range compared to fi xed-point 
processors.

Although Blackfi n processors are designed for native fi xed-point computations, 
they can also emulate fl oating-point operations in software. To standardize the 

Table 6.7 Fixed-Point Data Types

Type Number Representation

char  8-bit signed integer
unsigned char  8-bit unsigned integer
short 16-bit signed integer
unsigned short 16-bit unsigned integer
int 32-bit signed integer
unsigned int 32-bit unsigned integer
long 32-bit signed integer
unsigned long 32-bit unsigned integer
fract16 16-bit signed (1.15) fractional number
fract32 32-bit signed (1.31) fractional number
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fl oating-point formats, the Institute of Electrical and Electronics Engineers (IEEE) 
introduced a standard for representing fl oating-point numbers in 32-bit (single preci-
sion), ≥43-bit (extended single precision), 64-bit (double precision), and ≥79-bit 
(extended double precision) formats. These formats are stated in the IEEE-754 
standard [7].

The fl oating-point number consists of three fi elds: sign bit, exponential bits, and 
mantissa bits. The sign bit represents the sign of the number (1 for negative and 0 
for positive). The exponential bits contain the value to be raised by a power of two, 
and the mantissa bits are similar to the fractional bits in the fi xed-point number 
format. As shown in Figure 6.10(a), the IEEE fl oating-point (single precision) format 
is expressed as

x = − × ×−( )1 2 1127s man,exp .  (6.1.1)

where the sign bit is b31, the exponential bits (exp) are 8 bits from b30 to b23, and the 
mantissa bits (man) are 23 bits from b22 to b0. The double-precision format shown 
in Figure 6.10(b) can be expressed as

x = − × ×−( )1 2 11023s man,exp .  (6.1.2)

where the sign bit is b63, the exponential bits are 11 bits from bits b62 to b52, and the 
mantissa bits are 52 bits from b51 to b0.

The exponential value is used to offset the location of the binary point left or right. 
In the IEEE standard, the exponential value is biased by a value of 127 (single preci-
sion) or 1,023 (double precision) to obtain positive and negative offsets. A set of rules 
for representing special fl oating-point data types is stated in the IEEE-754 standard.

An important difference can be observed between fi xed-point and fl oating-point 
numbers. In fi xed-point representation, the radix point is always at the same location. 
In contrast, the fl oating-point number has a movable radix point that can be posi-
tioned to represent very large or very small numbers. Therefore, fl oating-point DSP 
processors automatically scale the number to obtain the full-range representation of 
the mantissa, which is done by increasing or decreasing the exponential value for 
small or large numbers, respectively. In other words, fl oating-point processors track 
the number and adjust the value of the exponent.

s    exp (8-bit)          man (23-bit) 

 31 30            23 22                                    0

(a) Single precision floating-point format. 

s     exp (11-bit)                                   man (52-bit) 

63  62               52 51                                                                                     0 

(b) Double precision floating-point format. 

Figure 6.10 IEEE-754 fl oating-point formats

TEAM LinG



6.1 Number Formats Used in the Blackfi n Processor 233

6.1.4.1 Floating-Point Data Types

The Blackfi n C compiler supports two fl oating-point data types as shown in Table 
6.8. Note that the data type double is equivalent to float on Blackfi n processors 
because 64-bit values are not supported directly by the hardware. Therefore, 64-bit 
double-precision fl oating-point numbers must be implemented with software emula-
tion. In general, it is not recommended to perform fl oating-point operations on the 
Blackfi n processors because of higher cycle count compared to the fi xed-point 
operations.

6.1.4.2 Floating-Point Addition and Multiplication

To perform fl oating-point addition and subtraction, the smaller of the two numbers 
must be adjusted such that they have the same exponential value.

EXAMPLE 6.2

Add two fl oating-point numbers 0.5 × 22 and 0.6 × 21. The smaller of these numbers is 
0.6 × 21 and must be adjusted to 0.3 − 22 by increasing the exponent to match 0.5 × 22. The 
two numbers now can be added to become 0.8 × 22. The fi nal answer has a mantissa of 0.8 
and an exponent of 2.

QUIZ 6.4

The fl oating-point numbers given in Example 6.2 are not defi ned in IEEE-754 
format. Express the numbers in single-precision IEEE-754 fl oating-point format and 
perform the fl oating-point addition.

Floating-point multiplication can be carried out in a more straightforward 
manner. The mantissas of the two numbers are multiplied, whereas the exponential 
terms are added without the need to align them.

EXAMPLE 6.3

Multiply 0.5 × 22 by 0.6 × 21. In this case, the mantissa 0.5 is multiplied by 0.6 to get 0.3, 
and the exponents are added together (2 + 1) to become 3. The result is 0.3 × 23. How do we 
perform the multiplication with IEEE-754 format?

Table 6.8 Floating-Point Data Types

Type Number Representation

float 32-bit IEEE single-precision fl oating point
double 32-bit IEEE single-precision fl oating point

TEAM LinG



234 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

6.1.4.3 Normalization

Normalization of fl oating-point numbers is an important step of fl oating-point 
representation. A fl oating-point number must be normalized if it contains redundant 
sign bits in the mantissa. In other words, all bits in the mantissa are signifi cant 
and provide the highest precision for the number of available mantissa bits. Nor-
malization is required when comparing two fl oating-point numbers. After the two 
numbers are normalized, the exponents of these numbers are compared. If the 
exponents are equal, the mantissas are examined to determine the bigger of the two 
numbers.

EXAMPLE 6.4

This example demonstrates how to normalize a fl oating-point number. A fl oating-point 
number 16.25 is represented in binary as 10,000.01 × 20, which can be normalized to 
1.000001 × 24 by left-shifting the binary point by 4 bits. Normalization is used to maximize 
the precision of a number. Therefore, the normalized binary number always has a signifi cant 
bit of 1 and follows the binary point.

QUIZ 6.5

Express the following fl oating-point numbers in normalized single-precision IEEE-
754 format:

1. 0.125

2. 23.125

3. Smallest positive number 2−126

4. Largest positive number 1.99999988079 × 2127

6.1.4.4 Fast Floating-Point Emulation

To reduce the computational complexity of using the IEEE-754 standard, we can 
relax the rules by using a fast fl oating-point format [40]. This two-word format is 
employed by the Blackfi n processor to represent short (32 bit) and long (48 bit) fast 
fl oating-point data types. The two-word format consists of an exponent that is a 16-
bit signed integer and a mantissa that is either a 16-bit (short) or a 32-bit (long) 
signed fraction as shown in Figure 6.11.

Floating-point emulation (both IEEE-754 and fast formats) on fi xed-point 
DSP processors is very cycle intensive because the emulator routine needs to 
take care of both the exponent and the mantissa. It is only worthwhile to 
perform emulation on small sections of data that require high dynamic range and 
precision. A better approach is to use the block fl oating-point format, which is 
described next.
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6.1.5 Block Floating-Point Format

In block fl oating-point format, a set (or block) of data samples share a common 
exponent. A block of fi xed-point numbers can be converted to block fl oating-point 
numbers by shifting each number left by the same amount and storing the shift value 
as the block exponent. Therefore, the data samples are still stored in fi xed-point 
format, for example, (1.15) format, and the common exponent is stored as a separate 
data word. This arrangement results in a minimum memory requirement compared 
to the conventional fl oating-point format. In general, the common exponent for the 
group of numbers is derived from the number with the largest absolute value.

A block fl oating-point format combines the advantages of both fi xed-point and 
fl oating-point formats. The block fl oating-point format allows a fi xed-point proces-
sor to increase its dynamic range as a fi xed-point computation without the extensive 
overhead and memory needed to emulate fl oating-point arithmetic. It has a common 
exponent for all data values within the same data block and preserves the precision 
of a fi xed-point processor.

EXAMPLE 6.5

This example groups and represents 10 numbers with block fl oating-point numbers. These 
numbers are 0.012, 0.05, −0.03, 0.06, −0.009, −0.01, 0.07, 0.007, −0.09, and 0.01. These 
numbers can be represented in fi xed-point (1.15) format hexadecimal as 0x0189, 0x0666, 
0xFC29, 0x07AE, 0xFED9, 0xFEB8, 0x08F6, 0x00E5, 0xF476, and 0x0148. They are associ-
ated to a common exponent of 3. It is noted that these fi xed-point numbers in (1.15) format have 
at most three nonsignifi cant, redundant sign bits. Therefore, each data value within this block 
can be normalized by left-shifting of three bits to become 0x0C48, 0x3330, 0xE148, 0x3D70, 
0xF6C8, 0xF5C0, 0x47B0, 0x0728, 0xA3D8, and 0x0A40 with a common exponent of 0.

The Blackfi n processor provides exponent detection and sign bit instructions to 
adjust the exponential value for the block of data samples. The sign bit instruction 
SIGNBITS returns the number of sign bits in a number minus 1 (also the reference 
exponent). It can be used in conjunction with the ASHIFT instruction to normalize 
the number. The exponent detection instruction EXPADJ is used to identify the 
largest magnitude of the numbers based on their reference exponent derived from 

    exp (16-bit)               man (16-bit) 

 31                        16  15                             0 

 47                        32  31                                                          0 

    exp (16-bit)                              man (32-bit) 

(a) Fast floating-point (short)

(b) Fast floating-point (long)

Figure 6.11 Fast fl oating-point formats
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236 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

the sign bit instruction. If block fl oating-point numbers have an exponent that is less 
than the reference exponent, right-shift these numbers by P bits (where P is the 
reference exponent minus the detected exponent) to maintain the reference exponent 
before the next process.

For example, if the reference exponent of the block fl oating-point numbers given 
in Example 6.5 is 3, and the exponent is changed to 1 (or 1 redundant sign bit) after 
processing, the numbers within the block can be shifted by 2 bits to maintain the 
reference exponent of 3. Therefore, the block fl oating-point format can be used to 
eliminate the possibility of overfl owing.

6.2 DYNAMIC RANGE, PRECISION, 
AND QUANTIZATION ERRORS

This section discusses several practical issues on the dynamic range and precision 
of digital signals. We also study a common error occurring in fi xed-point imple-
mentation called the quantization error. Many factors contribute to this error, includ-
ing nonperfect digitization of the input signal, fi nite wordlength of the memory (or 
register), and rounding and truncation of fi xed-point arithmetic. MATLAB experi-
ments are developed to illustrate these important concepts.

6.2.1 Incoming Analog Signal and Quantization

As introduced in Chapters 1 and 2, the incoming analog signal, x(t), is sampled at 
a regular interval of Ts seconds. These samples must be quantized into discrete 
values within a specifi c range for a given number of bits. Therefore, the analog-to-
digital converter (ADC) performs both sampling and quantization of the analog 
signal to form a discrete-time, discrete-amplitude data sample called the digital 
signal as shown in Figure 6.12.

For a B-bit ADC with full-scale (peak to peak) voltage of VFS, the physical 
quantization interval (step) or LSB is defi ned as

Δ =
V

B
FS

2
. (6.2.1)

Ts

Input 

Output

Sample-and-hold Quantizer 

Analog-to-digital converter 

Analog
input

Digital
output 

Figure 6.12 Sampling and quantization of the ADC
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For example, the AD1836A CODEC used in the BF533 EZ-KIT has four ADC 
channels. The maximum ADC resolution is 24 bits, and the full-scale voltage is 
6.16 V. Therefore, the number of quantization levels is 224 = 16,777,216 and the 
quantization step Δ = 0.367 μV.

Equation 6.2.1 is applicable for a linear quantizer that has a midrise character-
istic as shown in Figure 6.13(a). In the midrise quantizer, there are 2B quantization 
levels. There is however, no zero output level in the midrise quantizer. An alternate 
linear quantizer has a midtread characteristic as shown in Figure 6.13(b). In contrast 
to the midrise quantizer, the midtread quantizer always has an odd number (2B − 1) 
of quantization levels. The midtread quantizer has a zero output level, and it is often 
preferred for audio signals.

A quantization error (or noise) exists between the analog-valued discrete-time 
signal and its corresponding discrete-valued digital signal. The quantization errors 
depend on the type of quantizer used. For a simple linear quantizer, quantization 
errors are distributed uniformly between ±Δ/2. When an analog-valued discrete-
time sample is halfway between two discrete levels, the quantizer quantizes the 
analog sample into the upper discrete level. In this situation, a maximum absolute 
quantization error of Δ/2 occurs. In other words, the quantization error of an ideal 
ADC can never be greater than ±1/2 of LSB. The mean and variance of the quanti-
zation error e(n) are:

me = 0  (6.2.2)

σe
2 2 12= Δ .  (6.2.3)

HANDS-ON EXPERIMENT 6.7

This experiment quantizes an incoming analog signal x(t) with the MATLAB program 
exp6_7.m in directory c:\adsp\chap6\MATLAB_ex6. It generates a 200-Hz sine wave 
sampled at 4 kHz.

fs = 4000; % sampling rate is 4 kHz
f = 200; % frequency of sinewave is 200 Hz

(a) Midrise quantizer (b) Midtread quantizer 

0

Output
Output

Input 
Input 

Figure 6.13 Two different quantizers: midrise (a) and midtread (b)
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n = 0:1/fs:3; % time index n to cover 3 seconds
xn = sin(2*pi*f*n); % generate sinewave
figure(1),plot(n, xn);grid on;
soundsc(xn_, fs); % listen to the quantized signal

This sine wave can be quantized to 16 bits with a scaling factor of 32,768 for (1.15) 
format with the following MATLAB code:

xn_fix_1_15 = fix((2^15)*sin(2*pi*f*n/fs));
index = (xn_fix_1_15 == 2^15);
xn_fix_1_15(index) = 2^15–1;
figure, plot(n, xn_fix_1_15); grid on;
soundsc(xn_fix_115, fs); % listen to the quantized signal

Repeat the same process of quantizing the sinewave to:

1. 8 bits, using (1.7) format with scaling factor of 128

2. 4 bits, using (1.3) format with scaling factor of 8

3. 2 bits, using (1.1) format with scaling factor of 2

Can you still hear the sine wave encoded with 2 bits? Perform FFT over a single period 
of these quantized signals and observe their magnitude spectrum plots. Explain the differ-
ences in what you hear. Replace the sine wave with a speech wave fi le, timit.wav, and 
repeat the quantization process with different wordlengths. Can you still perceive the speech 
signal using 2 bits?

6.2.2 Dynamic Range, Signal-to-Quantization 
Noise Ratio, and Precision

The dynamic range of a digital signal is defi ned as the difference between the largest 
and smallest signal values. If noise is present in the system, the dynamic range is 
the difference between the largest signal level and the noise fl oor. Dynamic range 
is also commonly defi ned by taking the logarithm of the ratio between the largest 
signal level and the noise fl oor (assuming signal is inaudible below the noise fl oor) 
as follows:

dynamic range
largest signal level

dB= ( ) ( )20 10log (6.2.4)

The signal-to-quantization noise ratio (SQNR) has the same defi nition as 
dynamic range expressed in Equation 6.2.4 when noise is measured in the absence 
of any signal. In theory, there is an increase of SQNR and dynamic range by approxi-
mately 6 dB for every bit increased. Therefore,

dynamic range SQNR dB ,= ≈ × ( )6 B  (6.2.5)

where B is the wordlength of the ADC. A more accurate expression is stated in 
Chapter 7. For example, if an ADC has a wordlength of 16 bits, the dynamic range 
is approximately 96 dB. In addition, the overall dynamic range of the system is 
always bounded by the ADC. When performing signal processing, a higher precision 

noise fl oor
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(>16 bits) is normally preferred to maintain this level of dynamic range. There are 
other sources of quantization errors, which are explained in Section 6.2.3.

QUIZ 6.6

A 16-bit ADC is used for “CD-quality” audio. The 16-bit digital sample is trans-
ferred to a processor that operates on 16-bit wordlength. However, three bits of 
truncation error occurs when a simple audio processing algorithm is performed in 
the processor. These data samples are sent to the 16-bit DAC.

1. What is the SQNR at the ADC?

2. What is the SQNR after processing?

3. How do we compensate for the loss of the SQNR?

4. Is there a way to increase the SQNR of the overall system?

QUIZ 6.7

A 12-bit converter is used to convert a temperature reading to a digital value once 
every second, that is, a sampling frequency of 1 Hz.

1. What is the temperature range to be displayed if the temperature resolution 
is 0.1°C?

2. If oversampling of the temperature readings is allowed, specify the over-
sampling factor that allows an increase of resolution to 16 bits. Hint: Every 
factor of 4 times oversampling results in an increase of 1-bit precision.

3. What is the maximum temperature range that can be achieved with 16-bit 
precision if the temperature resolution is now 0.01°C?

EXAMPLE 6.6

The AD1836 audio CODEC [41] offers 24-bit, 96-kHz multichannel audio capability. It has 
a dynamic range of 105 dB. A digital audio system has 20-dB headroom and uses either 
16-bit or 32-bit wordlength in the Blackfi n processor as shown in Figure 6.14.

The dynamic range of the 16-bit processor is not suffi cient to preserve the data 
samples from the 24-bit ADC. Therefore, a 32-bit wordlength can be used to pre-
serve the 24-bit precision. Using 32-bit wordlength and assuming that each bit con-
tributes to 6 dB of SQNR gain, there are approximately 14 bits below the noise fl oor 
of the AD1836 CODEC. This extra fl oor room is useful in keeping the error in 
arithmetic computation below the noise fl oor. In conclusion, preserving the quality 
of 24-bit samples requires at least 32 bits (or extended precision) for signal process-
ing. However, to keep the programming simple, we use the 16-bit mode of the 
AD1836 CODEC and perform 16-bit computations in the Blackfi n processor in most 
of the experiments and exercises in this book.
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240 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

Precision defi nes the resolution of the digital signal representations. In fi xed-
point format, precision equals to the size of the LSB of the fraction (see Table 6.2). 
For example, the precision of (1.15) format is 2−15 and the precision of (16.0) format 
is 1. Therefore, the wordlength of the fi xed-point format governs its precision. For 
the fl oating-point format, precision is derived as the minimum difference between 
two numbers with a common exponent.

QUIZ 6.8

Complete Table 6.9 by stating the precision and dynamic range of the number 
formats. Comment on the differences between fi xed-point and fl oating-point 
representations.

By default, MATLAB is operating in IEEE-754 double-precision fl oating-point 
format (64 bits). Type in the following MATLAB commands to confi rm:

eps % precision used in MATLAB
realmax  % maximum number represented in MATLAB
realmin  % smallest number represented in MATLAB

6.2.3 Sources of Quantization 
Errors in Digital Systems

Besides analog-to-digital and digital-to-analog quantization noise, there are other 
sources of quantization errors in digital systems. These error sources include:

1. Coeffi cient quantization

2. Computational overfl ow

3. Quantization error due to truncation and rounding

Headroom 

 +20 dB 

 0 dB 

AD1836A 24-bit  
ADC/DAC noise floor 

-85 dB 

96 dB 
of

dynamic 
range 

-76 dB 

192 dB 
of

dynamic 
range 

16-bit wordlength 32-bit wordlength 

-172 dB 

14 extra bits below 
noise floor 

Figure 6.14 Comparison of AD1836 CODEC noise fl oor with different wordlengths
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6.2.3.1 Coeffi cient Quantization

When a digital system is designed for computer simulation, the coeffi cients are 
generally represented with fl oating-point format. However, these parameters are 
usually represented with a fi nite number of bits in fi xed-point processors with a 
typical wordlength of 16 bits. Quantization of coeffi cients can alter the characteris-
tics of the original digital system. For example, coeffi cient quantization of an IIR 
fi lter can affect pole/zero locations, thus altering the frequency response and even 
the stability of the digital fi lter.

HANDS-ON EXPERIMENT 6.8

This example uses FDATool (introduced in Chapter 4) to examine the fi lter coeffi cient 
quantization effects. FDATool allows quick examination of various quantization errors 
including coeffi cient quantization. Open FDATool and design a 6-tap FIR low-pass fi lter by 
entering the parameters shown in Figure 6.15. Click on the Design Filter button to start the 
fi lter design. Observe the magnitude response by clicking on the magnitude response 

icon .

Table 6.9 Precision versus Dynamic Range

Number Format Precision Dynamic Range Dynamic Range in dB
  (for positive range)

(0.16) fi xed point
(1.15) fi xed point
(2.14) fi xed point
(16.0) fi xed point
IEEE-754 single
 precision
IEEE-754 double
 precision

Figure 6.15 Parameters used for designing an FIR fi lter
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We can quantize the fi lter coeffi cients by using the fi xed-point (1.15) format in the 

Blackfi n processor. Simply click on the Set quantization parameters icon  to open a 
new window as shown in Figure 6.16 and set the wordlength and fractional length as 16 and 
15, respectively. Click on Apply to start the quantization.

Display the fi lter coeffi cients by clicking on the  icon at the top row of the window. 
A window displays the coeffi cients quantized in (1.15) format and reference fl oating-point 
double-precision format as shown in Figure 6.17. It is noted that there are variations between 
the reference and quantized coeffi cients. The difference is called the coeffi cient quantization 
error. Compute the sum of the squared quantization error for the 6-tap FIR fi lter. In this 
example, the quantization error has a marginal effect on the reference fi lter response based 
on double-precision fl oating-point format.

Repeat the experiment with (1.31) and (1.7) formats. Compare the quantization errors 
with different data formats. In particular, examine the frequency response and pole/zero 
plots for the (1.7) format and comment on the results.

As shown in the preceding experiments, coeffi cient quantization can affect the fre-
quency response of the fi lter. In the case of an IIR fi lter, the coeffi cient quantization can even 
cause instability if the quantized poles lie outside the unit circle. Therefore, careful design 
of the quantized IIR fi lter must be performed to ensure stability before porting the coeffi -
cients to the fi xed-point processor.

Figure 6.16 Coeffi cient quantization settings

Figure 6.17 Comparison of quantized and reference fi lter coeffi cients
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HANDS-ON EXPERIMENT 6.9

A simple 2nd-order IIR fi lter with a complex pole-pair at 0.9998∠ ± 1.04 radians (where ∠
is the angular frequency) is fi rst designed with double precision, using FDATool. Click on 

the Pole/Zero Editor icon  in FDATool. A new window that shows the pole/zero plot 
of the fi lter is displayed. Remove all the zeros and poles by right-clicking on the z-plane, 
choosing Select All, and then pressing Delete. A blank window appears. Click on the Add 

pole icon  and select Conjugate in the menu. Enter the magnitude and phase as shown 
in Figure 6.18. Observe the impulse response and note that it will gradually decay to zero.

Click on the Set quantization parameter icon . A new window appears; select 
Fixed-Point under Filter arithmetic. We now implement the designed IIR fi lter with the 
fi xed-point (1.7) format as shown in Figure 6.19.

Click on Apply and examine the impulse response of the quantized IIR fi lter. Note that 
the quantized fi lter using the (1.7) format produces an oscillatory impulse response, which 
is undesirable. Examine the quantized and reference (using double-precision fl oating-point 
format) coeffi cients of the IIR fi lter and explain the differences.

Figure 6.18 Pole-zero editor

Figure 6.19 Quantizing fi lter coeffi cients
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6.2.3.2 Computational Overfl ow

Because of the fi nite memory/register length, the results of arithmetic operations 
may have too many bits to be fi tted into the wordlength of the memory or register, 
for example, when adding two 8-bit numbers in (1.7) format, 0111 0000b (0.875) 
and 0100 1111b (0.6171875), and saving the result into another 8-bit register as 1011 
1111b (−0.5078125). This is the wrong result, because adding two positive number 
results in a negative number! Figure 6.20 shows an 8-bit number circle for adding 
the above two numbers shown in hexadecimal. The positive number starts from the 
12 o’clock position (or 0x00) of the number circle and increments in a clockwise 
direction to the most positive number of 0x7F. The next position clockwise after the 
0x7F is immediately the most negative number of 0x80. The negative number range 
is decremented (in clockwise direction) toward 0xFF, which is the smallest negative 
number. When adding the preceding numbers, we fi rst locate 0x70 (0.875) and add 
0x4F (0.6171875) in a clockwise manner to reach the overfl owed answer at 0xBF. 
When performing subtraction, the direction is changed to counterclockwise. It is 
also noted that when adding two numbers of different signs overfl ow will never 
occur. Therefore, the number circle is a useful tool to illustrate the concept of 
number overfl ow in add/subtract operations.

The number circle in Figure 6.20 can be extended to illustrate any addition/
subtraction overfl ow in any fi xed-point and fl oating-point formats. A general rule in 
fi xed-point arithmetic is that the sum of M B-bit numbers requires B + log2M bits 
to represent the fi nal result without overfl ow. For example, if 256 32-bit numbers 
are added, a total of 32 + log2256 (=40) bits are required to save the fi nal result. In 
the case of the Blackfi n processor, 40-bit accumulators are available to ensure that 
no overfl ow occurs when adding 256 numbers in an extreme case. This extreme case 
is demonstrated in Hands-On Experiment 6.3.

One method to avoid arithmetic overfl ow is to perform scaling, followed by 
truncation or rounding after every partial sum in order to fi t into the given 
wordlength. Scaling is a process of reducing the value of a number with a 
certain constant so that the end result can fi t into the wordlength of the processor. In 

Overflow
answer! 

0xBF  
(1011 1111b) 

0x70  
(0111 0000b) 

0x00 

0x7F0x80 

+ 0x4F 

Negative number 
range Positive number 

range 

      0xFF 
      0x01 

Figure 6.20 A 8-bit number circle and its addition
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DSP systems, scaling can be applied to the signal or to the internal parameters of the 
system. For example, the coeffi cients of the FIR fi lter can be scaled down such that 
it has a gain of 1. Alternatively, we can also scale the input signal. However, scaling 
reduces the dynamic range (or SQNR) of the digital system. For example, right shift 
of the input signal by 1 bit (or scale by 0.5) results in a loss of 6 dB in the dynamic 
range of the input signal. Several methods of deriving scaling factors are:

1. Scaling by sum of magnitude of impulse response (L1 norm). In this method, 
we constrain the magnitude of the digital system at any node to be less than 1 for 
a system using (1.15) format. If the maximum input signal xmax to the digital system 
is (1 − 2−15), the output of the digital system is restricted to |y(n)| < 1 provided that 
the scaling factor is limited by

G

x hk
k

N
<

=

−

∑
1

0

1

max

, (6.2.6)

where hk is the impulse response of the fi lter with length N. The summation 

term, hk
k

N

=

−

∑
0

1

,  is also called the L1 norm of the impulse response hk, and it is 

denoted as ||hk||1. The scaling factor G can be applied to either the input signal or 
the coeffi cients of the fi lter. This scaling factor is the most stringent and guarantees 
no overfl ow.

2. Scaling by square root of sum of squared magnitude of impulse response 
(L2 norm). Besides using the magnitude of the impulse response, we can also relax 
the restriction by using a scaling factor as follows:
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The term hk
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 is called the L2 norm of impulse response, and it is 

denoted as ||hk||2. The L2 norm is always less than the L1 norm of hk.

3. Scaling by maximum of frequency response (Chebyshev norm). The preced-
ing two scaling methods are suitable for wideband signals. The third method to 
determine the scaling factor is applicable when the input is a narrowband (or sinu-
soidal) signal. In this method, the magnitude response (or system gain) at the input 
frequency is fi rst determined, which is multiplied by the maximum input signal xmax

to determine the scaling gain as follows:

G
x H k

<
( )[ ]

1

max max
.

ω
(6.2.8)
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The term max[H(ωk)] is known as the Chebyshev norm of the frequency 
response H(ω). The Chebyshev norm guarantees that the steady-state response of 
the system to a sine wave input will never overfl ow. We will use an example to 
illustrate the effects of using different scaling methods.

EXAMPLE 6.7

A simple 2nd-order IIR fi lter with the transfer function

H z
z z

z z
( ) = + +

+ +

− −

− −

1 0 72

1 0 052 0 8

1 2

1 2

.

. .

is implemented in MATLAB fi le example6_7.m. Observe the impulse response and 
compute the L1 and L2 norms. Also, compute the frequency response of the transfer function 
and pick the highest magnitude to compute the Chebyshev norm. It is noted that L1 norm ≥
Chebyshev norm ≥ L2 norm. The L1 norm is the most conservative. We can observe the 
frequency responses after scaling by the three norms as shown in Figure 6.21. The most 
conservative scaling has all its magnitude below 1. It is observed in Figure 6.21 that the L2

norm allows magnitude to exceed 1 within a normalized frequency from 0.2 to 0.55. The 
Chebyshev norm has its maximum frequency response at around 0.5.

In this example, we only compute the scaling factor based on the output of the IIR fi lter. 
However, overfl ow can occur in other addition nodes. Assuming that (1.15) format is used 
and multiplication nodes will not overfl ow, there is a need to compute the scaling factor for 
all addition nodes. The overall scaling factor for the fi lter is based on the largest norm. 
Fortunately, we can skip the scaling factor computation for all nodes, if the nonsaturating 

(a) Freq response under L1 norm

(b) Freq response under L2 norm

(c) Freq response under Chebyshev norm
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Figure 6.21 Frequency responses after scaling by L1 (a), L2 (b), and Chebyshev (c) norms
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mode is used and internal nodes are allowed to overfl ow. The fi nal output node must be 
computed to ensure that no overfl ow is allowed at the fi nal result. This intermediate overfl ow 
is also demonstrated in Hands-On Experiment 6.1 on the Blackfi n processor.

Another method to avoid overfl ow is use of the saturation mode of the proces-
sor. The saturation mode limits any positive or negative number from exceeding its 
most positive (0x7FFF) or most negative (0x8000) for a 16-bit number, respectively. 
In consecutive summations, the saturation mode can be applied to every summation, 
but this step will produce too much error. A better approach is to allow intermediate 
overfl ow during consecutive summation and only apply saturation in the fi nal 
addition.

In Section 6.1.1.2, we discussed several aspects of overfl ow due to multiplication 
in different formats. In particular, (1.15) format is preferred because multiplying 
two numbers in (1.15) format cannot lead to overfl ow, with the exception of −1 ×
−1 = 1. A method to overcome this exceptional case is to saturate the result to 
1 − 2−15.

6.2.3.3 Truncation and Rounding

As discussed in Section 6.1.1.4, truncation or rounding is used after multiplication 
to store the result back into the memory. Truncation or rounding must also be used 
in other arithmetic operations such as addition, division, square root, trigonometric 
functions, and other operations. In general, the distribution of errors caused by 
rounding is uniform, resulting in quantization errors with zero mean and variance 
of Δ2/12. Truncation has a bias mean of Δ/2 and a variance of Δ2/12.

EXAMPLE 6.8

There are several MATLAB functions that can be used to truncate and round numbers. 
These functions include round, which rounds a number to the nearest integer; floor, which 
rounds a number toward fl oor (or negative infi nity); ceil, which rounds a number to
ward ceiling (or positive infi nity); and fix, which rounds a number toward zero (or 
truncation). We can simply plot a 1-Hz sine wave, sampling at 20 Hz, using different round-
ing and truncation methods to illustrate the behaviors of rounding and truncation. Run 
example6_8.m located in directory c:\adsp\chap6\MATLAB_ex6 to obtain the 
graphs shown in Figure 6.22. This example shows that the round function has the smallest 
squared error and the fix function has the highest squared error. From Figure 6.22, the floor
function has negative cumulative bias error, whereas the ceil function has positive cumula-
tive bias error. We can also relate the rounding schemes in MATLAB to the rounding 
schemes in the Blackfi n processor as stated in Section 6.1.1.4. Unbiased and bias rounding 
in Blackfi n processors are equivalent to the round and ceil functions in MATLAB, 
respectively.

In an IIR fi lter, limit cycles can occur because of the truncation and rounding of mul-
tiplication results or addition overfl ow. The limit cycles cause periodic oscillations in the 
output of the IIR fi lter, even when no input signal is applied to the fi lter. We use a simple 
example to illustrate this phenomenon.
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HANDS-ON EXPERIMENT 6.10

A simple 2nd-order IIR fi lter is shown in Figure 6.23. The summation of the feedback paths 
is rounded before storing to the delay elements. Different rounding and truncation schemes 
can be examined to test their suitability. A MATLAB fi le, exp6_10.m, is written to imple-
ment the IIR fi lter with different rounding schemes. The initial internal state of the IIR fi lter 
is given as y(−2) = 0 and y(−1) = 0.001, and no input is applied to the fi lter. Examine the 
response (limit cycle oscillation) of this fi lter under different rounding schemes. Suggest a 
method to remove the limit cycle oscillation.

Figure 6.22 Performance of different rounding schemes used in MATLAB

+
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z-1

+
Rounding 
schemes

0.98

–0.75

x(n) = 0 y(n)

y(n–1)
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Figure 6.23 A 2nd-order IIR fi lter with no input applied
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6.2.3.4 Overall Quantization Errors

In this section, we summarize quantization errors found in a typical digital system. 
We use the 4-tap FIR fi lter shown in Figure 6.24 to illustrate different quantization 
errors. The quantization error ein fi rst occurs when the analog input signal is con-
verted into digital samples. The ADC wordlength and conversion error degrades the 
dynamic range of the digital signal as compared to the analog signal. The 
quantized signal is passed into the signal buffer for processing. The dynamic range 
of the signal processing path depends on the program defi nitions. These defi nitions 
include wordlength used to declare coeffi cients of fi lter and whether truncation or 
rounding is applied at the fi nal multiply-accumulate of the FIR fi lter. The coeffi cient 
quantization error ecoeff is the error introduced when converting a coeffi cient 
from a reference fl oating-point to a fi xed-point representation. There is saturation 
error esat if saturation mode is set during the multiply-accumulate operations 
and results exceed the dynamic range of the data format. However, saturation 
error in the accumulator will only occur in an extreme case. In addition, truncation 
error etrunc or rounding error eround will only be considered when transferring 
the accumulator result to memory location with shorter wordlength, before 
passing to the DAC for conversion into analog signal. The wordlength of DAC 
also restricts the fi nal dynamic range and contributes to the DAC quantization 
error eout. A fi xed-point simulation tool like FDATool can be used to evaluate 
the performance of the digital system under different fi xed-point quantization 
errors.

In general, using a double-precision (32-bit) arithmetic in a fi xed-point pro-
cessor ensures that the 16-bit or 24-bit signal samples from the ADC are not 
impaired by the quantization noise. Alternatively, a 32-bit fi xed-point or fl oating-
point processor is required to maintain the dynamic range of the input signal. The 

x(n)

b0

ecoeff ecoeff ecoeff ecoeff

esat

y(t)
DAC

y(n)

eout(n)

b1 b2

memory

eround/ etrunc

esat esat

Possible quantization errors 

ADC z-1 z-1 z-1

× × × ×

+

x(t)

b3

+ +

ein(n)

Figure 6.24 Quantization error sources in a 4-tap FIR fi lter
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use of 32-bit arithmetic is particularly crucial for IIR fi ltering. We examine this case 
in Section 6.5.

6.3 OVERVIEW OF REAL-TIME PROCESSING

This section discusses important topics on real-time signal processing and defi nes 
the terms used in measuring real-time performance. We introduce concepts of real-
time and non-real-time processing and explain the sample-by-sample and block 
processing modes. To benchmark real-time performance in embedded signal pro-
cessing, we measure the cycle counts of running different tasks on the Blackfi n 
processor. A brief introduction of the power measurement and its relation to the 
processing speed is also given, but a detailed discussion on power-saving features 
of the Blackfi n processor is postponed to Chapter 8.

6.3.1 Real-Time Versus Offl ine Processing

A real-time system processes data at a regular and timely rate. As shown in Figure 
6.25, the inputs of a real-time system are often associated with signal capturing 
devices like microphones, cameras, thermometers, etc. The inputs can also come 
from digital media streaming devices like audio and video players. The outputs 
can be devices like loudspeakers, video display, etc. that play back the processed 
signals.

To be more explicit, a real-time system must satisfy certain response time con-
straints. The response time is defi ned as the time between the arrival of input data 
sample(s) and the output of processed data sample(s). For example, the response 
time constraint for a typical speech processing system is to digitize the analog 
speech, process the digital speech, and output the processed signal within a given 
sampling period. If the response time exceeds the sampling period, the new speech 
sample cannot be retrieved on time and thus violates the real-time constraint. A 
more detailed explanation is provided in Sections 6.3.2 and 6.3.3.

Embedded 
processor 

ADC DAC

Digital I/O

Cameras, 
microphones, 
thermometers, 
etc. 

Digital audio and 
video bit stream, 
etc. 

Display monitors, 
speakers, headsets,  
actuators, etc. 

Digital storage, 
devices, control  
signal, etc. 

Figure 6.25 A typical real-time system that receives, processes, and transmits data
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In contrast, an offl ine processing system is not required to complete the task 
within allocated time. For example, we can sample a noisy speech signal, save it in 
a data fi le, and run a program on a computer to read the speech samples from the 
fi le and perform noise reduction. After processing, we can store the clean signal to 
a data fi le and play it back with a loudspeaker. In this way, there is no timing con-
straint to complete the overall receive-process-transmit chain. Offl ine processing 
always involves extensive memory storage, and it is often used in fi lm and music 
postproduction. The Blackfi n simulator can be used to simulate DSP algorithms in 
an offl ine manner because the test data are stored in a data fi le and no time constraint 
is imposed on the processing. However, when the same algorithm is implemented 
on the Blackfi n processor, real-time processing must be carried out on the incoming 
signal.

6.3.2 Sample-by-Sample Processing 
Mode and Its Real-Time Constraints

The sample-by-sample processing mode requires that all operations must be com-
pleted within the given sampling period. As shown in Figure 6.26, an audio signal 
can be sampled at a sampling period of every Ts seconds. Latency (or response time) 
of processing can be defi ned as the total time from the instant the data sample is 
read in to the time the digital output is written to the memory. This latency contains 
the three subintervals listed below:

1. Tin is the time needed for the processor to copy the current sample from the 
ADC into the processor memory. It also includes the program access time.

2. Tsp is the time needed for processing the current data samples. This duration 
depends on the complexity of the algorithm and the effi ciency of the 
program.

3. Tout is the time needed to output the processed data to the DAC.

The overall overhead time for sample-by-sample processing is denoted as Tos,
which includes both Tin and Tout and the response time to interrupt. At the beginning 
of every sampling interval, the ADC samples new data, and the DAC sends out the 
processed data.

Tsp   Tin  Tout 

Read ADC 
sample 

Write DAC 
sample  

Sample period, Ts

Sampling 
ADC and 

DAC 

Sampling next 
ADC and DAC 

Ts

Processing single sample 

Figure 6.26 Timing details for sample-by-sample processing mode
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The real-time constraint of the sample-by-sample processing is that the process-
ing time Tsp must satisfy

T T Tsp s os≤ − .  (6.3.1)

The advantages of using sample-by-sample processing are:

1. Delay between the input and the output is always kept within one sampling 
interval.

2.  Single-sample storage for input and output samples. In some applications, 
multiple channels are acquired, processed, and output within the sampling 
interval. The memory requirement is increased to store the multichannel 
data samples.

3. Results are kept current within the sampling period.

The disadvantage of sample-by-sample processing is the overhead of program 
setup, program access, and latency in reading a new data sample and writing the 
processed sample in every sampling interval. The processor must be fast enough to 
complete all processing tasks before the arrival of the next input sample to avoid 
distortion caused by missing data. A possible method to reduce the processing speed 
requirement is to group a block of data samples and perform processing on this 
block of data as a batch. The block processing method is introduced in Section 
6.3.3.

In addition, some DSP algorithms, such as the fast Fourier transform described 
in Chapter 3, require a block of data samples for processing. In this type of block 
processing algorithm, sample-by-sample processing cannot be implemented and the 
block processing mode must be applied.

6.3.3 Block Processing Mode 
and Its Real-Time Constraints

In the block mode, data samples are gathered into an input buffer of N samples and 
a whole block of samples are processed after the buffer is full. At the same time, a 
new block of N samples are acquired. Figure 6.27 shows block processing for a block 
of fi ve samples. The block processing system starts by sampling the fi rst fi ve input 
samples from the ADC to form block i. A more detailed description of how data 
can be acquired into the processor is presented in Chapter 7. The system continues 
to sample another fi ve data samples to form block i + 1. At the same time, the pro-
cessor operates on data samples in block i and sends the fi ve previously processed 
samples to the DAC. During the next block period, i + 2, another fi ve newer samples 
are acquired. The processor operates on the data samples in block i + 1 and outputs 
the processed data samples in block i. Therefore, the data samples are output to the 
DAC after a delay of 2NTs seconds.

To perform the block processing shown in Figure 6.27, we need to continuously 
save data samples in different memory buffers. Therefore, the memory requirement 
is increased. A memory buffering approach known as double (or ping pong) buffer-
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ing is recommended. As shown in Figure 6.28, double buffering uses two memory 
buffers of length N for the input of data and another two buffers of the same length 
for the output. When the processor is operating on data in buffer(in) ➊, new input 
samples x(n) are saved in buffer(in) ➋. The function of these two buffers is alter-
nated every NTs seconds. This “ping-pong” switching mechanism between data 
acquisition and processing is shown in Figure 6.28, with the labels identifying the 
buffer used in every block. In the same fashion, the output of data to the buffer and 
the sending of data out to the DAC are also alternated between two output buffers, 
buffer(out) ➀ and buffer(out) ➁.

To meet real-time constraints for block processing shown in Figure 6.27, the 
computational time for block processing Tbp must satisfy

T NT Tbp s ob ,≤ −  (6.3.2)

where NTs is the block acquisition time in seconds and Tob is the overhead for block 
processing, which is mainly caused by program setup and the response time to get 
data in and out of the processor. In general, the overhead for block processing is 
lower than for sample-by-sample processing because the program access and setup 
time for block data transfer is lower than for single-sample transfer. That is,
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block i+2
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Output
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Figure 6.27 Block processing mode (N = 5)
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T NTob os< .  (6.3.3)

Therefore, more time is available for the processor to process signal. However, 
the disadvantages of using block processing are:

1. Four memory buffers of length N are required for holding input and output 
data samples with the double-buffering method. In addition, another two 
memory buffers (in and out) are needed for internal processing by the pro-
cessor. A detailed explanation of the data acquisition program and how to 
reduce the memory buffer is given in Chapter 7.

2. A delay of 2NTs is incurred in block processing.

3. More complicated programming is needed to manage the switching between 
buffers.

A detailed introduction on setting up ADC and DAC to transfer data samples 
into the internal memory of processor using the serial ports and the DMA is provide 
in Chapter 7.

QUIZ 6.9

An analog signal is sampling at 48 kHz. Frequency analysis using FFT is applied 
to a buffer of 5 ms.

1. How many data samples in the 5-ms buffer?

2. What is the order of the FFT that can be used if the FFT is based on the 
radix-2 algorithm?

3. What is the frequency resolution?

4. What is the memory requirement if double buffering is used?

5. What is the maximum time available for the processor to compute FFT?

The core clock frequency Fcore used by the processor and the sampling frequency 
fs of the real-time system determine the total cycle counts possible within 
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Figure 6.28 Implementation of double buffering
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the data acquisition period. The total time (or deadline) needed for sampling a block 
of N samples is NTs (or N/fs.) seconds. The deadline cycle count is therefore given 
as

N
NF

f
deadline_cycle

core

s
= . (6.3.4)

As a result, the three ways to increase the deadline cycle are to (1) increase the block 
size N at the expense of memory, (2) increase the core clock frequency Fcore at the 
expense of higher power consumption, and (3) reduce sampling frequency fs at the 
expense of coarser frequency resolution.

6.3.4 Performance Parameters 
for Real-Time Implementation

This section examines three important topics of real-time implementation for 
embedded systems:

1. Speed and clock frequency of different processors

2. Memory requirements for DSP algorithms

3. Power consumption of the Blackfi n processors

These topics are crucial for selecting a suitable processor to meet the real-time 
demand of the given application. We use the Blackfi n processor to examine these 
topics.

The current Blackfi n processors operate at a clock speed ranging from 400 to 
750 MHz. The instruction cycle time is the inverse of the clock speed. For example, 
if the CYCLE register in the Blackfi n processor has recorded 2,000 cycles to com-
plete a task under a clock speed of 600 MHz, the execution time for this task is 
computed as 2,000 × (1/600 MHz) = 3.33 μs.

The computational speed of the fi xed-point processor is often specifi ed as 
million instructions per second (MIPS), million multiply-accumulate computation 
(MMAC), or million operations per second (MOPS). In fl oating-point processors, 
million fl oating-point operations per second (MFLOPS) is commonly used. These 
numbers are only applicable to describe how fast an individual processor can 
perform a task, and cannot be used for comparison among different processors. The 
main reason for this is that the term “instruction” refers to different operations in 
different processors. For example, in a RISC-like processor, an instruction can be 
just a simple addition; in a complex instruction set computer (CISC)-like processor, 
a single instruction can perform multiply-accumulate and shift operations. There-
fore, these benchmark numbers are only applicable as an approximation of whether 
a certain DSP algorithm can be implemented on a particular processor.

To compute the MIPS needed for the algorithm running within a sampling 
period, the user can simply profi le the code, using the following formula:

MIPS instruction cycle sample sample s= ( ) × ( ).  (6.3.5)
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For example, an interrupt service routine (ISR) is profi led to complete a task in 
2,000 cycles. The sampling frequency used is 48 kHz, and the ISR is running on 
the Blackfi n processor at CCLK = 600 MHz. Assume that the 600-MHz processor 
executes one instruction per cycle, which results in a total of 600 MIPS. From Equa-
tion 6.3.5, the algorithm requires 96 MIPS (or 16% of the total available MIPS) to 
complete the task.

If block processing is used, Equation 6.3.5 can be computed as:

MIPS instruction cycle samples per block sample s block siz= ( ) × ( ) × 1 ee( ).
(6.3.6)

As explained in Section 6.3.3, the instruction cycle to compute a block of samples 
is shorter compared to sample-by-sample processing. This is mainly due to the 
reduced overhead in response to ISR and function call. For example, when process-
ing the above ISR in a block size of 32, the cycle count profi led is 60,000. Therefore, 
using Equation 6.3.6, the block algorithm only requires 90 MIPS or 15% of the total 
processor MIPS.

EXAMPLE 6.9

A digital signal processor is used to fi lter two channels of audio signal at a sampling fre-
quency of 48 kHz. If a 300-tap FIR fi lter is used and the processor can execute one MAC 
instruction in a single cycle, we need 300 MACs for each channel and a total of 600 MACs 
for two channels. The dual-channel fi ltering must be completed within 1/(48 kHz) = 20.83 μs. 
The processor requires more than 600 × 48 kHz = 28.8 MIPS plus other overhead. This 
approximation gives us an idea about selecting a processor with the right MIPS (more than 
30 MIPS) to handle the task.

EXAMPLE 6.10

A Blackfi n processor with an instruction cycle time of 2 ns has been chosen to implement 
an FIR fi lter. Based on a benchmark given by ADI, a block FIR fi ltering requires (number 
of samples/2) × (2 + number of taps) cycles. If the number of samples per block is 64 and 
the sampling frequency is 48 kHz, we can fi nd the maximum number of taps available for 
processing as: 32 × (2 + maximum number of taps) × 2 ns < 64/(48 kHz). Therefore, the 
maximum number of taps ≈ 20,831 taps.

HANDS-ON EXPERIMENT 6.11

This experiment uses the Blackfi n BF533/BF537 EZ-KIT to run a simple FIR fi lter on stereo 
channels at a sampling frequency of 48 kHz. The CYCLE register is embedded in the main 
program (process_data.c) to benchmark the time needed to process two FIR fi lters. A 
background telemetry channel (BTC) is set up to display the cycle count. Load the project 
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fi le exp6_11_533.dpj (or exp6_11_537.dpj) located in directory c:\adsp\chap6\
exp6_11_533 for the BF533 EZ-KIT (or c:\adsp\chap6\exp6_11_537 for the 

BF537 EZ-KIT) and build the project. Run the program by clicking on the Run icon .
To view the cycle count, click on View Æ Debug Windows Æ BTC Memory. A BTC 
Memory window appears. Right-click on this window to change the display format by click-
ing on Select Format Æ Hex32. Right-click again to turn on the Auto Refresh option and 
set a refresh rate of 1 se. Press the SW6 (SW11) button on the BF533 (or the BF537) EZ-KIT 
to start the fi lter operation. Observe the cycle count and compute the execution time in 
seconds. The core clock frequency used in this program is 270 MHz based on the initial 
setup, and block fi ltering is used in this program. Modify the code to profi le the cycle count 
to fi lter one channel of signal. Halt the program after running the program. Is the single-
channel cycle count half that of the stereo channels?

HANDS-ON EXPERIMENT 6.12

Following the preceding experiment, we use the statistical profi ling tool to evaluate program 
effi ciency and identify the program segment that takes up most of the execution time. From 
the Tools menu, select Statistical Profi ling Æ New Profi le. Run the program and press the 
SW6 button for the BF533 (or SW11 for the BF537) to activate FIR fi ltering. The percentage 
of execution time is shown in the profi le window illustrated in Figure 6.29.

It is shown that about 75% of the execution time is spent on the stereo FIR fi ltering. 
Users can also display the accumulated cycle counts by right-clicking on the profi ling 
window and selecting View Sample Count. Users can even break down the details of per-
centage execution time within each function by double-clicking on the function name. Now, 
press the SW7 switch for the BF533 (or SW10 for the BF537) to deactivate FIR fi ltering. 
What happens? Note that the statistical profi ling gives an accumulated result up to the current 
time. It is not meant to give an exact execution cycle count at every sample or block of 
samples. Users still need to use the CYCLE registers as illustrated in the preceding experi-
ment to profi le the required clock cycles.

Besides processing speed, the processor’s memory also plays an important role in selec-
tion of the right processor. In most DSP processors, data and instruction memories are 
addressed in separate memory spaces. The Blackfi n processor has on-chip data and instruc-
tion memory bands, which can be independently confi gured as SRAM or cache as shown in 
the BF533/BF537 memory map displayed in Figure 5.17. The data memory requirement can 
be estimated based on the algorithm. However, the actual requirement of program memory 
can only be known once the program is written and compiled.

Figure 6.29 Statistical profi ling of the fi ltering process
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EXAMPLE 6.11

In a digital system, a 250-tap FIR fi lter is used at a sampling frequency of 8 kHz and with 
a resolution of 16 bits. Five minutes of the processed signal need to be saved in the external 
memory. The data memory required to store the coeffi cients and data samples is 250 and 
249 words, respectively. If block processing mode and double buffering are used, we need 
an additional 4N memory locations, where N is the number of samples per block. In addition, 
we need to use an additional 8,000 × 5 × 60 = 2.4 M words to store the fi ve minutes of 
processed data. We need to examine the compiled memory map fi le to fi nd out the memory 
size for the instructions.

HANDS-ON EXPERIMENT 6.13

This experiment examines the size of the main program before and after optimization. From 
the existing project loaded into VisualDSP++ in preceding experiment, click on Project Æ
Project Options. In the new window, select General under Link. Click on Generate 
Symbol Map under Additional Output to produce an XML fi le that displays the address 
and size of different program and data memories. Check whether optimization is used by 
clicking on General(1) under Compile. In the fi rst compilation, we disable optimization by 
unchecking the Enable optimization [0] box. Build the project and display the XML (.map)
fi le in the debug directory. Search for firc to fi nd the memory size used to implement the 
fi lter. Next, enable optimization by checking the Enable optimization [0] box. Make sure 
that the slider bar is pointing to the Speed position. Rebuild the project and observe the 
memory size used to implement firc. Do you fi nd any change in the memory size after 
optimization? There is always a trade-off between speed and memory size optimization. Find 
out the smallest memory size with the optimization setting.

In power-sensitive portable multimedia applications, the power consumption of 
the processor and its power management capability are becoming the most critical 
selection factor. The Blackfi n processor supports a multitiered approach to power 
management, and the processor is able to operate in fi ve different operating modes: 
full-on, active, sleep, deep sleep, and hibernate. Power consumption is computed 
with the following formula:

P
CV f=

2

2
clk , (6.3.7)

where P is the power in watts, C is the capacitance in farads, V is the supply voltage 
in volts, and fclk is the clock frequency in hertz. Therefore, power consumption can 
be reduced by lowering the capacitance, supply voltage, and clock frequency. The 
Blackfi n processor allows the operating clock frequency for the core (CCLK) and 
system (SCLK) to be varied. At the same time, the Blackfi n processor also allows 
core voltage to be changed in tandem with frequency change. This frequency-voltage 
scaling reduces the power consumption of the Blackfi n processor.
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The on-chip voltage regulator of the Blackfi n processor generates internal 
voltage levels from 0.8 to 1.2 V from an external supply of 2.25 to 3.6 V. The voltage 
regulator allows the voltage level to be adjusted in 50-mV increments. Depending on 
the current model of the Blackfi n processor, the core clock frequency can range from 
350 to 700 MHz. The Blackfi n processor offers low power consumption of 0.15 mW/
MMAC at 0.8 V. Therefore, if a maximum MMAC of a Blackfi n processor is 1,000, 
the power consumption is approximately 0.15 W. In Chapter 8, we show the steps in 
adjusting the voltage and core frequency of the Blackfi n processor.

However, power consumption may not be a good comparison benchmark between 
processors. This statement is valid when processors are being deployed in portable 
devices, because batteries have limitation of energy [21]. A better benchmark is 
energy consumption. Energy consumption is defi ned as the time integral of power 
consumption. To estimate the energy required for a processor to complete a given 
task, the task execution time is multiplied by the estimated power consumption. The 
savings in energy consumption can be expressed by the following equation
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(6.3.8)

where Er/En is the ratio of the reduced energy to nominal energy, frc is the reduced 
core clock frequency, fnc is the nominal core clock frequency, Vr is the reduced 
internal supply voltage, Vn is the nominal internal supply voltage, tr is the duration 
of task running at reduced core frequency, and tn is the duration of task running at 
nominal core frequency.

EXAMPLE 6.12

The nominal core clock frequency is 600 MHz, and the reduced core clock frequency is set 
to 200 MHz. The nominal supply voltage is set to 1.2 V on power up and reduced to 0.8 V 
after the clock frequency is reduced to 200 MHz. Consequently, the duration taken to com-
plete the task at reduced core frequency and voltage has increased from 1 to 3 se. Therefore, 
the savings in energy consumption is computed with Equation 6.3.8 as (1 − (200/600) ×
(0.8/1.2)2 × (3/1)) × 100 = 55% saving.

QUIZ 6.10

1. A processor’s supply voltage changes from 3.6 to 1.2 V. What is the reduced 
power consumption in percentage?

2. The clock frequency of a Blackfi n processor drops from 700 to 350 MHz, 
and the supply voltage is reduced from 3.6 to 0.8 V. What is the reduction in 
power consumption in percentage?

3. The execution times of processors A and B are 0.1 and 0.33 ms, respectively. 
However, the power consumption of processor A is twice that of processor 
B. Which processor consumes less energy?
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6.4 INTRODUCTION TO THE IIR 
FILTER-BASED GRAPHIC EQUALIZER

The FIR fi lter-based eight-band graphic equalizer was introduced in Section 5.3. In 
this section, we replace FIR fi lters with IIR fi lters to implement the eight-band 
graphic equalizer. We only discuss the differences of using IIR fi lters as compared 
to FIR fi lters. We will go through the same process of designing the IIR fi lter in 
fl oating-point format, analyzing its fi xed-point performance, and then porting the 
coeffi cients into the Blackfi n processor.

HANDS-ON EXPERIMENT 6.14

This experiment designs eight fi lters based on the elliptic IIR fi lter to meet the fi lter speci-
fi cations stated in Section 5.3. Open FDATool in the MATLAB window. Specify the pass-
band frequencies according to Table 5.4. Users can specify their own stopband frequencies. 
Select IIR Elliptic and Minimum order from the Design Method and Filter Order,
respectively. Set all the stopband attenuation to 40 dB and passband ripple to 1 dB. Click on 
Design Filter to complete the fi lter design for the fi rst frequency band, and repeat the design 
process for the remaining seven bands. For reference, these eight IIR fi lters are saved in 
directory c:\adsp\chap6\exp6_14, using band-i.fda (where i represents the frequency 
band from 1 to 8) as fi le names for the eight frequency bands. Users can load these fi les into 
FDATool to examine the magnitude and phase responses for each band. Observe the 
characteristics of the IIR fi lters by fi lling in Table 6.10 and compare them with the charac-
teristics of the FIR fi lters listed in Table 5.6. The implementation cost includes the number 
of multiplications and additions and the memory used to save the fi lter coeffi cients and signal 
buffers of the IIR fi lters.

Note that the IIR fi lter is seldom implemented with the high-order direct-form IIR 
structure shown in Figure 3.3 because of its sensitivity to coeffi cient quantization error. In 
practical applications, the high-order IIR fi lter is implemented as a cascade of 2nd-order IIR 
fi lter sections shown in Figure 4.17. This cascade structure reduces coeffi cient quantization 
and round-off errors. For example, a 6th-order IIR fi lter can be implemented as three 2nd-
order IIR fi lters (or biquad) in a cascade structure as shown in Figure 6.30. Note that the 
coeffi cients are denoted as {b0k b1k b2k a1k a2k}, where the subscript k = 1, 2, or 3 specifi es 
the section number. In Figure 4.17, a gain G is used at the input of the cascade IIR fi lter. 

Table 6.10 IIR Filter Characteristics

IIR Filter Parameters and Responses Characteristics

Average order of the IIR fi lter
Magnitude response
Phase response
Group-delay response
Impulse response
Pole-zero plot
Implementation cost
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This single gain (G = g1 × g2 × g3 × g4) can also be distributed across all biquads as shown 
in Figure 6.30. At the input of each section, there is a gain gk, associated to each section. A 
fi nal gain g4 at the output of the fi nal section is also available. These gains are generated 
from FDATool. The fl exibility of the cascade IIR fi lter lies in the ability to arrange these 
2nd-order sections to further minimize quantization errors. This step can be done by 
clicking on Edit Æ Reorder and Scale Second Order Sections  .  .  .  of FDATool.

6.5 DESIGN OF IIR FILTER-BASED GRAPHIC 
EQUALIZER USING BLACKFIN SIMULATOR

This section introduces the process of completing fi xed-point simulation of the IIR 
fi lter-based graphic equalizer with MATLAB and porting to the Blackfi n 
VisualDSP++ simulator. As explained in Section 6.2.3.1, fi xed-point simulation is 
very important in IIR fi lter design because the IIR fi lter is very sensitive to its pole 
locations. FDATool can convert the double-precision fl oating-point IIR fi lters 
designed in Hands-On Experiment 6.14 to 16-bit fi xed-point IIR fi lters and analyze 
the characteristics of these fi xed-point IIR fi lters.

HANDS-ON EXPERIMENT 6.15

This experiment converts the fl oating-point fi lter coeffi cients derived from Hands-On Experi-
ment 6.14 into 16-bit fi xed-point coeffi cients. Because all the IIR fi lter coeffi cients are larger 
than 1 but less than 2, we can assign 2 bits as the integer bits and the remaining 14 bits as 
fractional bits (refer to Table 6.2). This fi xed-point (2.14) format can be specifi ed in FDATool 
under the Set quantization parameters option as shown in Figure 6.31. Click on Apply to 
simulate the fi xed-point IIR fi lter. Check the quantized fi lter responses by comparing with 
the reference fi lter in fl oating-point format and confi rm that this fi xed-point IIR fi lter is stable. 
Repeat these steps for the remaining seven IIR fi lters.

We can directly port the coeffi cients in (2.14) format into the Blackfi n memory. However, 
we have to perform IIR fi ltering with different formats because the signal samples are rep-
resented in (1.15) format. The advantage of using (1.15) format for multiplication as described 
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Figure 6.30 Cascade of three 2nd-order direct-form IIR sections to form a 6th-order IIR fi lter
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262 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

in Section 6.1.1.2 cannot be achieved. Therefore, we have to convert the coeffi cients into 
(1.15) format before porting to the Blackfi n memory. A simple method is to use saturated 
coeffi cients. This process saturates coeffi cients that exceed (1 − 2−15) or −1 to their respective 
maximum values. This can be done by selecting a Numerator range and a Denominator 
range of (+/−) 1 in FDATool. However, this simple method greatly distorts the magnitude 
response of the IIR fi lter. Explore the characteristics of the IIR fi lter with saturated coeffi -
cients and compare it to the reference IIR fi lter using fl oating-point format.

A better way to fi t the coeffi cients into (1.15) format is to scale all the numerator and 
denominator coeffi cients. In the IIR fi lter-based equalizer, we scale down all the coeffi cients 
by half so that these coeffi cients can fi t into the number range of (1.15) format. However, 
scaling the IIR fi lter coeffi cients is not straightforward because the fi rst feedback coeffi cient 
a0 must always be 1. We can scale down all coeffi cients (including a0) by half, perform the 
computation, and scale back the result by 2 to obtain the output signal y(n) with the follow-
ing equation:

2
1

2
2

1

2
1 2

1

2
1 20 1 2 1 2× ( ) = × ( ) + −( ) + −( )[ ] − −( ) + −(y n b x n b x n b x n a y n a y n ))[ ]{ }. (6.5.1)

In FDATool, click on Target Æ Generate C Header.  .  .  .  Select Export Suggested and 
click on Generate to complete the process. Open the generated header fi le for the 6th-order 
cascade IIR fi lter (band #1), and examine the numerator and denominator coeffi cients gener-
ated as shown below:

const int16_T NUM[MWSPT_NSEC][3] = {
  {
    162,       0,     0   Numerator gain for section #1
  },
  {
    16384, -32688,  16384   Numerator for section #1
  },
  {
    16384,     0,     0   Numerator gain for section #2
  },
  {
    16384, -32752,  16384   Numerator for section #2
  },
  {
    16384,     0,     0   Numerator gain for section #3

Figure 6.31 Filter arithmetic setting for using (2.14) format
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  },
  {
    16384, -32757,  16384   Numerator for section #3
  },
  {
    16384,     0,     0   Gain for output
  }
};
const int DL[MWSPT_NSEC] = { 1,3,1,3,1,3,1 };
const int16_T DEN[MWSPT_NSEC][3] = {
  {
    16384,     0,     0   Denominator gain for section #1
  },
  {
    16384, -32524,  16142   Denominator for section #1
  },
  {
    16384,     0,     0   Denominator gain for section #2
  },
  {
    16384, -32670,  16293   Denominator for section #2
  },
  {
    16384,     0,     0   Denominator gain for section #3
  },
  {
    16384, -32741,  16366   Denominator for section #3
  },
  {
    16384,     0,     0   Output gain for section #3
  }

We can extract all the numerator and denominator coeffi cients from the header fi le and 
treat them as (1.15) format. For example, 16384 represents 1 in (2.14) format and represents 
0.5 in (1.15) format. Therefore, if we treat the integer in (2.14) format with (1.15) format, we 
can directly perform IIR fi ltering in (1.15) format. However, because there is an inherent 
factor of two between the (2.14) and (1.15) formats, the section gains in the above C header 
fi le needed to be scaled up by 2 in order to turn them into (1.15) format. We are now ready 
to port fi lter coeffi cients and section gains into a fi xed-point C program to run on the 
Blackfi n simulator.

HANDS-ON EXPERIMENT 6.16

In this experiment, we move from fi xed-point simulation using MATLAB to fi xed-point 
implementation on the Blackfi n processor. All the programs are written in C for ease of 
understanding. The fi rst step is to port all the coeffi cients and gains in (1.15) format into the 
Blackfi n memory. Two data fi les, equalizer_iir_coefs.dat and equalizer_iir_
scales.dat in directory c:\adsp\chap6\exp6_16, are needed to be included in 
the main C program, main_EQ.c. Note that the coeffi cients in the coeffi cient data fi le 
equalizer_iir_coefs.dat are arranged as b0k, b1k, b2k, a1k, a2k, where k represents the 
section number (see Fig. 6.30). The coeffi cient a0k, is not required in the computation of the 
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IIR fi ltering as shown in Equation 6.5.1. Users can refer to the IIR fi lter function in iirc.
c and fi nd the IIR fi lter structure and the number of delay buffers used in this program. 
Because of the arithmetic sensitivity of the IIR fi lter, we use fract32 for the delay buffer 
and perform built-in 32-bit multiplication and addition functions to reduce the quantization 
noise.

The DSP run time library also consists of the cascade IIR fi lter function iir_fr16.
However, this function imposes the restriction that a0k must be 1 and greater than both a1k

and a2k. Because the coeffi cients derived from Hands-On Experiment 6.15 do not allow the 
restriction for arithmetic in (1.15) format, we have to write the IIR fi lter function iirc.c,
which can implement the IIR fi lter expressed in Equation 6.5.1.

This experiment performs the IIR fi ltering routine eight times as shown in main_EQ.c.
Because each frequency band requires different orders of IIR fi lter, we need to specify the 
stage number in the program. This information is included in the data fi le equalizer_
iir_stages.dat. As in the FIR fi lter-based equalizer, we also include the same range of 
band gains for the IIR fi lter-based equalizer.

Build the project equalizer.dpj and open the following debug windows: 
FreqResponse.vps and ImpResponse.vps. Run the project and observe the frequency 
and impulse responses as shown in Figure 6.32(a) and (b), respectively. The impulse response 
is obtained by injecting an impulse of magnitude 32,767 into eight IIR fi lters and summing 
these eight impulse responses into a single impulse response over a duration of 256 samples. 
The frequency response is obtained by computing the FFT of these 256 samples with the 
built-in graphical feature in VisualDSP++. Observe the differences between the impulse 
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Figure 6.32 Impulse response (a) and frequency response (b) of combined IIR fi lter
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responses of the IIR graphic equalizer and the FIR graphic equalizer shown in Figure 5.35. 
Note that the spikes and nulls in Figure 6.32(a) are caused by the unequal attenuation in the 
transition band between adjacent frequency bands.

To compare the impulse response of the combined IIR fi lter with that obtained in 
MATLAB with the fl oating-point format, we dump the specifi c Blackfi n memory into a fi le 
and read this fi le into MATLAB workspace for comparison. To dump the memory, click on 
Memory Æ 2 Dump in VisualDSP++. A Dump Memory window opens, and we can fi ll 
in the parameters as shown in Figure 6.33. Specify the fi le name used to save the output data 
for comparison.

EXERCISE 6.1

1. Modify the C code to enhance the low-frequency bands (band #1 to band 
#3) to +12 dB, middle-frequency bands (band #4 to band #6) to 0 dB, and 
high-frequency bands (band #7 to band #8) to −12 dB.

2. Instead of using the elliptic fi lter design method, use the Butterworth fi lter 
design method. Obtain the frequency and impulse responses of the combined 
fi lter with the new fi lter design method. Observe any difference with the 
plots obtained in Hands-On Experiment 6.16.

3. Modify the C code to read data in the input fi le sineNoise3sec_48k.
dat and attenuate the noise by −12 dB with the eight-band graphic equalizer. 
Hint: Refer to Hands-On Experiment 2.3.

Figure 6.33 Dump Memory window
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6.6 DESIGN OF IIR FILTER-BASED GRAPHIC 
EQUALIZER WITH BF533/BF537 EZ-KIT

This section explores the real-time implementation of the IIR fi lter-based eight-band 
graphic equalizer with the Blackfi n BF533/BF537 EZ-KIT. The real-time perfor-
mance of this IIR equalizer is examined and compared to the FIR fi lter-based 
equalizer in Chapter 5.

HANDS-ON EXPERIMENT 6.17

This experiment modifi es the C fi le used in Hands-On Experiment 6.16 to perform a real-
time graphic equalizer on a stereo signal. The processed signals are sent to loudspeakers for 
playback. Activate VisualDSP++ for the BF533 (or BF537) EZ-KIT and open the project fi le 
exp6_17_533.dpj (or exp6_17_537.dpj) in directory c:\adsp\chap6\exp6_17_533
(or c:\adsp\chap6\exp6_17_537). Build the project, and the executable fi le exp6_17_
533.dxe (or exp6_17_537.dxe) is automatically loaded into the memory of the EZ-KIT. 
As in Hands-On Experiment 5.8, we have programmed four push buttons and six LEDs to 
the same functions as shown in Table 5.9. Adjust the gain of the equalizer and note the 
performance.

A main difference in the real-time implementation of the FIR fi lter-based and IIR fi lter-
based equalizers is that IIR equalizer must carry out the IIR fi ltering eight times.

EXERCISE 6.2

1. Find the cycle counts required to run (1) the interrupt service routine and 
(2) IIR fi lters and (3) compute the combined IIR fi lter coeffi cients. Note that 
the IIR fi lter function is written in C and has not been optimized with 
assembly code.

2. Turn on the statistical profi ler and examine the percentage of computation 
load for running the IIR fi lter-based eight-band graphic equalizer.

6.7 IMPLEMENTATION OF IIR FILTER-BASED 
GRAPHIC EQUALIZER WITH LABVIEW EMBEDDED 
MODULE FOR BLACKFIN PROCESSORS

The IIR fi lter is commonly used in equalizer designs and can be implemented with 
many of the same principles discussed in Chapter 5. The following experiments 
explore an IIR fi lter-based graphic equalizer. The fi rst experiment uses LabVIEW 
for Windows to simulate an eight-band equalizer, and the second experiment uses 
the LabVIEW Embedded Module for Blackfi n Processors to create a four-band 
equalizer on the Blackfi n processor. Push-button interrupts are introduced in the 
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LabVIEW Embedded Module for Blackfi n Processors example for more effi cient 
and functional user interaction.

HANDS-ON EXPERIMENT 6.18

This experiment explores the implementation and behavior of a multiband IIR fi lter-based 
equalizer with a LabVIEW for Windows simulation. Navigate to the compiled simulation 
IIR_EQ_Sim.exe located in directory c:\adsp\chap6\exp6_18 and launch the execut-
able code. The user interface for this application, shown in Figure 6.34, is nearly identical 
to that of FIR_EQ_Sim.exe given in Chapter 5. Run the application and switch to the 
Frequency Bands tab. Note the shape of each frequency band.

Compare the frequency response of each band with the response seen in Chapter 5. 
What do you notice about the comparative sharpness of the IIR and FIR fi lter methods? 
What might account for this difference? Explain.

Figure 6.34 Frequency bands for IIR fi lter-based graphic equalizer
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The IIR fi lter-based equalizer cannot be computed with the same method that was used 
in the FIR equalizer case, because impulse responses of IIR fi lters cannot be determined 
from their coeffi cients alone. Therefore, the IIR fi lter band equalizer is computed by apply-
ing several IIR fi lters to the input signal in parallel, one for each band. The selected gain is 
then applied to each band, and the results are summed to produce the overall response. Switch 
to the Frequency Signal tab of the simulation and choose the Linear Display option. The 
combined response of the eight fi lters is shown along with that of the input signal. Note that 
spikes occur in the plot corresponding to the transitions between each frequency band. 
Experiment with the slider values for each frequency band to see the relationship between 
the individual bands and the combined response. Note how greater amounts of overlap in 
the transition bands on the Frequency Bands tab correspond to larger spikes in the frequency 
response.

Each of the eight fi lters is defi ned by a set of fi lter parameters accessible on the Defi ne 
Bands tab of the simulation. The Filter Band Specifi cations array contains specifi cation 
parameters consisting of high and low cutoff frequencies, the desired order of the fi lter, the 
passband ripple, and stopband attenuation parameters (in dB). The fi rst fi lter, at index 0, is 
a low-pass fi lter, and all others are bandpass fi lters. The parameters for each band are pre-
loaded to match the fi lter specifi cations used in Section 5.3.

Load an audio fi le to hear the effects of the equalizer. The speech_tone_48k.wav
fi le used in previous experiments is ideal for this purpose, because it contains noise centered 
at 1 kHz. Experiment with the various fi lter options to attenuate the noise while retaining as 
much of the voice signal as possible. What settings meet these criteria? Do the audio results 
differ from those heard in the eight-band FIR fi lter simulation?

HANDS-ON EXPERIMENT 6.19

In this experiment, we combine many of the concepts discussed previously, including audio 
input and output, the use of subVIs, and the Inline C Node, to create a four-band IIR fi lter-
based equalizer within the LabVIEW Embedded Module for Blackfi n Processors. This 
experiment introduces interrupt handling, which allows us to use the Blackfi n EZ-KIT 
pushbuttons for updating the band gains during execution on the Blackfi n processor.

Open the IIR Equalizer-BF5xx.lep LabVIEW embedded project in directory c:\adsp\
chap6\exp6_19. Open the block diagram for IIR_4_Band_Equalizer-BF5xx.vi, as 
shown in Figure 6.35, which contains the top-level processing structure for the IIR 
equalizer.

The graphical code makes it easy to recognize the parallelism of band implementations. 
Each band is individually initialized with coeffi cients that are passed to the cascaded IIR 
fi lter block. Each fi lter block passes both the original input parameter and its result to the 
next stage. When all four stages have been completed, the output is passed back to the Audio 
Write/Read VI.

The fi lter used within the cascaded IIR fi lter block is nearly identical to that introduced 
in the previous VisualDSP++ experiment. The Inline C Node is used to combine the textual 
implementation of the fi lter with the graphical code. The output of each stage is accumulated 
with the previous stages rather than creating an intermediate array for each band and sub-
sequently applying band gains. This structure allows for a pipelined approach where the 
output of the nth band’s IIR fi lter subVI is the sum of the weighted IIR fi lter outputs of the 
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fi rst n bands. This method is advantageous because additional frequency bands can be 
added without modifying any of the underlying processing code. To add another frequency 
band, simply add another stage to the pipeline. Global variables and structures were removed 
to make the code more modular. When working with embedded applications, small improve-
ments to repetitious code can often contribute to large performance enhancements.

Connect the Blackfi n EZ-KIT audio input to the audio output jack of your computer 
and connect the loudspeakers to the Blackfi n EZ-KIT audio output. Click on the Run button 
to execute the IIR equalizer project on the Blackfi n processor. With an audio fi le playing 
on the computer, adjust the equalizer band gains by pressing buttons 1 through 4 on the 
Blackfi n EZ-KIT. Each button corresponds to one of the four frequency bands and 
their levels. In the BF533 (BF537), SW4 to SW7 (SW13/PB1 to SW10/PB4) correspond to 
band 0 to band 3, respectively. When a button corresponding to a band is pressed, the 
gain applied to that band will be incremented until the gain reaches the maximum value, at 
which point it will reset to the smallest value. You can keep track of the current level with 
the LED display, which shows a binary representation of the gain level of the last modifi ed 
band.

Unlike the FIR fi lter-based equalizer in Chapter 5, the IIR fi lter-based equalizer uses 
interrupts to determine when a button has been pressed. In past experiments, the button 
values were checked during each iteration of the loop, which is a polling method. Handling 

Figure 6.35 Block diagram of IIR fi lter-based equalizer (IIR_4_Band_Equalizer-
BF5xx.vi)

6.7 Implementation of IIR Filter-Based Graphic Equalizer 269

TEAM LinG



270 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

interrupts with the LabVIEW Embedded Module for Blackfi n Processors is straightforward 
and makes your applications signifi cantly more interactive and responsive. On the block 
diagram of IIR_4_Band_Equalizer-BF5xx.vi, scroll down to the second loop, as 
shown in Figure 6.36. This loop structure handles all of the processing necessary for the 
button-pressing functionality and only executes when a button-based interrupt is received by 
the Blackfi n processor.

When button interrupts are enabled with BF Enable Button Interrupt.vi, an 
interrupt fl ag causes the timed loop to iterate one time. In this case, the number of the button 
pressed corresponds to a specifi c frequency band. The gain for that band is incremented 
unless it was already at the maximum level, in which case it will reset to the lowest value. 
The binary representation of the gain level, a value from 0 to 7, is then output to the LED 
display. The numeric result is shared with the main processing loop through a global variable, 
as seen in Figure 6.36.

Recall how the IIR fi ltering occurs in a pipelined fashion, with each frequency band 
calculated sequentially and accumulated with the rest of the fi ltered signal. How would you 
implement an eight-band equalizer with this architecture? What code would need to be added 
to the existing VI, and what code could be reused?

6.8 MORE EXERCISE PROBLEMS

1. Can multiplicative overfl ow occur in multiplication of two numbers in (2.14) format?

2. Equation 6.2.1 shows the quantization level in terms of full-scale (or peak to peak) 
voltage. Express the quantization level in terms of root-mean-square voltage Vrms.

3. Use Equations 6.2.1 and 6.2.3 to derive an expression for the SQNR for a signal with 
an input power Px. Plot the SQNR in dB versus the input power in dB for a wordlength 
of 4, 8, and 16 bits.

4. Compute the variance of the quantization noise and the signal energy. Express the SQNR 
and show that each bit contributes to 6 dB of the system performance.

Figure 6.36 Interrupt handler loop in IIR_4_Band_Equalizer-BF5xx.vi
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5. The exponential bits in the fl oating-point number allow gain in multiples of decibels to 
be applied to the number. In the case of the IEEE-754 format, there are 8 exponential 
bits. Determine the dynamic range introduced by the 8 exponential bits, assuming that 
each bit contributes to 6 dB of dynamic range.

6. The IEEE single-precision fl oating-point format has a 23-bit mantissa and an 8-bit 
exponent. How many quantization levels are available in this format? What happens to 
the quantization level and dynamic range when the combined exponential value 
increases?

7. If a system uses an 80-dB ADC and DAC, what is a possible dynamic range for a 
processor, and how much degradation in SQNR is possible? State a way to increase 
the internal dynamic range of the processor.

8. Double-precision arithmetic such as that shown in Section 6.1.2 can be used to increase 
the dynamic range of internal processing. Examine the computation and memory over-
head to perform a 10-tap FIR fi lter compared with the single-precision method.

9. A 120-dB, 24-bit ADC is used to digitize 24-bit samples in (1.23) format to a processor. 
If the processor generates 4 bits of quantization noise, suggest a working precision in 
the processor to ensure that quantization noise will never be seen by a 120-dB, 24-bit 
DAC. How can we prevent multiplicative and accumulative overfl ows?

10. Figure 6.24 shows the various sources of quantization error for a direct-form FIR fi lter. 
If the transposed-form FIR fi lter shown in Figure 6.37 is used, are the sources of quan-
tization errors similar or different from the direct-form FIR fi lter?

11. A typical MP3 player comes with the following features: (1) voice recording in MP3 
format, (2) equalization of MP3 sound track, (3) image storage and display, (4) bass 
enhancement of MP3 sound track, and (5) selection of sound track. State whether these 
features require real-time or offl ine processing.

12. In a speech processing system, a 20-ms window is used to analyze the spectrum of the 
speech signal sampled at 8 kHz. If 50% overlap of data samples are used, derive a 
double-buffering technique for this digital system.

13. The deadline constraint of a digital system is set at 2.7 ms. A Blackfi n processor is 
operating at a core clock frequency of 540 MHz. If a 128-tap FIR fi lter is profi led as 
requiring 1,411,000 cycles, is there any violation of the real-time constraint? What 
happens when the core clock frequency is reduced to 270 MHz?

14. Write a simple MATLAB program to convert any number into any fi xed-point format 
specifi ed by the user. The input and output arguments for M-fi le should include the 
following:

function [qnum,sat_flag, qerror] = quant(number,w,f)
% qnum = quantized number
% sat_flag = indicates whether saturation has occurred
% qerror = number - qnum

1−z

x(n)

y(n)

0b1b2b3b

1−z 1−z

Figure 6.37 A 4-tap transposed FIR fi lter
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% number = scalar or vector of input numbers
% w = total wordlength in bits
% f = number of fractional bits

Test the function with different numbers and wave fi les under different fi xed-point 
formats.

15. In Example 6.7, different norms have been applied to the 2nd-order IIR fi lters. Use the 
MATLAB fi le given in Problem 14 to implement the fi xed-point version of the IIR fi lter 
in (1.15) format. Verify whether the output of the fi lter (using different norms) will 
overfl ow when a sine wave with a normalized frequency of 0.5 is input to the IIR fi lter. 
Apply saturation or overfl ow mode when overfl ow occurs, and listen to the output 
signal.

16. Repeat Problem 15 with the Blackfi n processor. A template project fi le is located in 
directory c:\adsp\chap6\problem6_16\ to start this problem. The comments 
inside the code provide guidelines for implementing the IIR fi lter to run on different 
scaling norms. Verify whether overfl ow can still occur under different norms by using 
graphical display.

17. Investigate the error performance of midtread and midrise quantizers for the (1.15) 
format number range of −1.0 to +1.0 in steps of 0.1. Two MATLAB M-fi les, midtread_
q.m and midrise_q.m, are provided to implement midtread and midrise quantizers, 
respectively. In addition, two other MATLAB M-fi les, midtread_dq.m and midrise_
dq.m, are available to dequantize the respective quantized values.

18. Generate a sine wave of f = 100 Hz @ fs = 1,000 Hz and save in (1.15) and (1.7) formats. 
Perform FFT on these two sine waves and compare the quantization noise fl oor. Verify 
whether there is a 48-dB difference in the quantization noise fl oor.

19. Generate a sine wave of f = 100 Hz @ fs = 1,000 Hz in (1.15) format. A signal can 
be scaled by a small constant, α, and results in reduction of 20log10α dB SNR. 
Determine the value of α that will result in the signal being buried under the quantiza-
tion noise.

20. Repeat Hands-On Experiment 6.7 with the Blackfi n BF533/BF537 simulator. Starting 
from using (1.15) format for representation of the sine wave, use the built-in shift-right 
function fract16 shr to simulate the quantization of the sine wave to 8, 4, and 2 
bits.

21. Describe how biased and unbiased rounding is carried out on the Blackfi n processor.

22. In Section 6.1.2, 32-bit multiplication is carried out. Extend the operation to 64-bit 
multiplication, using single-cycle 32-bit multiplications.

23. Design three-band IIR fi lters with fl oating-point arithmetic. The three-band fi lter split 
the input signal sampled at 48 kHz into three bands: [0–7.5 kHz], [8–15.5 kHz], and 
[16–24 kHz]. The output of each fi lter contains only the frequency components that fall 
into that fi lter’s passband. This three-band fi lter can be extended to include adjustable 
gain at the fi lter output to control the level of amplifi cation or attenuation. The passband 
ripple and stopband attenuation are set to 1 and 50 dB, respectively.

24. Convert the fl oating-point IIR fi lters in Problem 23 into fi xed point. Take the necessary 
steps in porting the coeffi cients into the Blackfi n memory using the (1.15) format. A 
chirp signal saved in data fi le chirp_960.dat (using 960 samples or 20 ms @ fs =
48 kHz) can be used to verify these IIR fi lters.
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25. IIR fi lter coeffi cients that are greater than 1 but less than 2 can be split into two equal 
coeffi cients whose values are less than 1, as shown in Figure 6.38. This division of 
selected coeffi cients allows all coeffi cients to be represented in (1.15) format.

Modify the program main_EQ.c in directory c:\adsp\chap6\exp6_16 to split 
those coeffi cients that exceed 1 with the splitting approach. State the problem in doing 
this splitting for the IIR fi lter-based eight-band graphic equalizer.

1.5

0.75

0.75

≡
+¥

¥
¥

Figure 6.38 Splitting of single multiplier into two
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Chapter 7

Memory System and 
Data Transfer

We introduced several techniques to process digital signals in sample and block 
processing modes in Chapter 6. This chapter describes how to transfer data between 
the ADC and memory, within memory spaces, and between memory and peripher-
als with DMA. We present the unique caching mechanism of the Blackfi n processor 
to speed up the transfer of program and data from external memory to internal 
memory.

7.1 OVERVIEW OF SIGNAL ACQUISITION 
AND TRANSFER TO MEMORY

This section presents the operations of the CODEC and its interface with the 
Blackfi n processor. We use a simple talk-through program to illustrate a typical 
real-time signal processing chain from converting analog signal to digital samples 
to processing the data, and reconstructing the processed digital signal back to the 
analog form.

7.1.1 Understanding the CODEC

A CODEC consists of both ADC and DAC with associated analog antialiasing and 
reconstruction low-pass fi lters. For example, the Analog Devices AD1836A [41] 
shown in Figure 7.1 is a single-chip CODEC that provides two stereo ADCs and three 
stereo DACs. These ADCs and DACs can operate in 16-, 18-, 20-, or 24-bit resolution. 
An N-bit ADC produces 2N digital output numbers, and an N-bit DAC has 2N analog 
output levels. To achieve a fi ne resolution to encode a small signal, the value of N
must be carefully chosen. For example, a 5-V peak-to-peak (or full scale) signal can 
be applied to a 16-bit CODEC to obtain a voltage resolution of 5/216 = 76.29 μV. This 

274
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7.1 Overview of Signal Acquisition and Transfer to Memory 275

resolution is 0.0015% (−96 dB) of full scale. The defi nitions of dynamic range, 
signal-to-quantization noise, and precision are presented in Section 6.2.2.

A more accurate signal-to-quantization-noise ratio (SQNR) in decibels can be 
expressed as

SQNR ,s= + + ( )[ ]6 02 1 76 10 210. . logB f W  (7.1.1)

where B is the number of bits, fs is the sampling frequency, and W is the signal 
bandwidth. If fs is oversampled by M times, SQNR = 6.02B + 1.76 + 10log10(M). 
Therefore, we can increase the SQNR by oversampling the analog signal. The 
oversampling technique increases SQNR by spreading out the quantization noise 
across a wider frequency band. Equation 7.1.1 shows that the quantization noise 
power is reduced by a factor of 10log10(M) dB. For example, if the sampling 
frequency is oversampled by M = 4, the quantization noise is reduced by 6 dB; this 
is equivalent to an increase of 1-bit precision.

Four ADC channels on the AD1836A can be confi gured as primary ADC stereo 
channels with differential inputs, a programmable secondary stereo pair with dif-
ferential mode, differential mode with programmable input gain of up to 12 dB, 
and single-ended multiplex mode. The AD1836A can support time-division multi-
plex (TDM) mode, where receive or transmit data from different channels are allo-
cated at different time slots in a TDM frame. In the TDM mode, the AD1836A 
operates at a 48-kHz sampling rate. The AD1836A also supports I2S mode, which 
can operate at 96 kHz with only the stereo primary channels active.

The AD1836A CODEC contains six DAC channels, which are arranged as three 
independent stereo channels. These channels are fully differential, and each channel 
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Figure 7.1 Functional block diagram of the AD1836A CODEC (courtesy of Analog Devices, Inc.)
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has its own programmable attenuator of up to 60-dB attenuation. The resolution of 
the ADC and DAC in the AD1836A can be programmed as 16, 20, or 24 bits 
(default). A set of ADC and DAC control registers is given in Table 7.1 to determine 
the operation of the AD1836A.

HANDS-ON EXPERIMENT 7.1

This experiment uses the settings listed in Table 7.1 and the naming convention given in 
Figure 2.23. Set switch pins 5 and 6 of SW9 on the BF533 EZ-KIT to OFF. Modify the 
talk-through program in the project exp7_1.dpj (in directory c:\adsp\chap7\exp7_1)
for the following confi gurations:

1. Connect the input to the ADC2 and the output to the DAC2. Set the ADC2L 
(left) gain to 0 dB and the ADC2R (right) gain to 12 dB. Verify these settings by 
listening at both left and right channels. The addresses of the CODEC registers 
are located in the talkthrough.h fi le, and the volume can be adjusted by chang-
ing the registers’ values in main.c. From Figure 7.1, note that only ADC2 has a 
programmable gain amplifi er (PGA) that allows users to select the gain of the 
ADC.

2. Reset ADC2R gain back to 0 dB. Attenuate DAC2L output to −10 dB and 
leave DAC2R unchanged at 0 dB (or value 1023). Again, verify the settings by 
listening. (Hint: Derive the volume value by taking the antilog of the desired dB 
value.)

3. Read the ADC2L peak-level data registers by inputting a sine wave of 2-Vpp to the 
ADC2L input of the EZ-KIT. The 2-Vpp signal can be derived from any signal gen-
erator. Extract bit 4 to bit 9 of the ADC2L peak-level data register and see whether 
it is equal to −3.0 dBFS.

7.1.2 Connecting AD1836A to BF533 Processor

The BF533 processor has two serial ports: SPORT0 and SPORT1. Each serial port 
provides synchronous serial data transfer and supports full-duplex communications 
(i.e., simultaneous data transfer in both directions). Figure 7.2 shows the connection 
between the AD1836A CODEC and the BF533 processor. SPORT0 receives serial 
data on its primary (DR0PRI) and secondary (DR0SEC) inputs and transmits serial 
data on its primary (DT0PRI) and secondary (DT0SEC) outputs simultaneously. 
SPORT1 can provide another two input and two output channels. Together, these 
two SPORTs support four input (stereo) channels and four output (stereo) channels. 
Note that transmit data are synchronous to the transmit clock (TCLKx) and receive 
data are synchronous to the receive clock (RCLKx), where x = 0 or 1 represents the 
selected SPORT.
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7.1 Overview of Signal Acquisition and Transfer to Memory 281

Figure 7.2 shows that these serial clocks are input from the CODEC. In addition, 
frame synchronization signals for receive (RFSx) and transmit (TFSx) are provided 
by the external device to signal the start of serial data words. A serial peripheral 
interface (SPI) port in the BF533 processor is used to program the internal control 
registers of the CODEC with the confi guration listed in Table 7.1. The SPI control 
port is a four-wire control port consisting of two data ports (MOSI and MISO), one 
device select pin (SPISS), and a clock pin (SPICLK). Like SPORT, SPI supports 
full-duplex operation. In the connection with the AD1836A shown in Figure 7.2, 
SPI allows reading of the ADC peak signal levels through the ADC-peak level data 
registers shown in Table 7.1(g). The DAC output level can be independently pro-
grammed with the DAC volume register shown in Table 7.1(c).

As explained in the previous section, the AD1836A CODEC can operate in the 
TDM mode. In this mode, two ADC left channels (L0 and L1) and two right chan-
nels (R0 and R1) occupy slots #1, #2, #5, and #6 of ASDATA1, respectively, as 
shown in Figure 7.3. Six DAC channels within the AD1836A occupy the six time 
slots of DSDATA1 as shown in Figure 7.3. A special TDM auxiliary mode allows 
two external stereo ADCs and one external stereo DAC to be interfaced to the 
AD1836A to form a total of eight input and eight output transfers. These external 
CODECs’ time slots are marked with “AUX.” Each time slot is 32 bits wide and is 
most signifi cant bit (MSB) fi rst. Because AD1836A has a maximum of 24-bit resolu-
tion, the least signifi cant 8 bits in the time slot are fi lled with zeros.

By default, the frequency of the master clock, BCLK, is 32 bits/slot × 8 slot/
frame × 48 frame/s = 12.288 Mbits/s (or MHz). Therefore, the period of the frame 
sync, FSTDM, is 20.8 μs (or fs = 48 kHz), and eight input and eight output data 
streams can be received and transmitted during this period.

Besides the TDM mode, the data format of the AD1836A CODEC can also be 
confi gured as I2S, right-justifi ed (RJ), left-justifi ed (LJ), or DSP mode according to 

ADSP-BF533

TCLK0
TFS0

RCLK0
RFS0

DT0PRI
DR0PRI

DT0SEC
DR0SEC

SPISS
SPICLK

MOSI
MISO

AD1836 CODEC 

DBCLK
DLRCLK
ABCLK
ALRCLK

DSDATA1
ASDATA1

DSDATA2
ASDATA2

CLATCH
CCLK
CDATA
COUT

SPORT0

SPI
interface

Figure 7.2 Serial connection between BF533 processor and AD1836A CODEC (only SPORT0 is 
shown)
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ADC control register 2 and DAC control register 1, as shown in Table 7.1. By default, 
the data format for the AD1836A is the I2S format. The I2S is a three-wire serial 
bus standard protocol developed by Philips for transmission of two channels of pulse 
code modulation (PCM) digital data. The I2S protocol is similar to the TDM mode, 
with only two time slots for left and right channels.

HANDS-ON EXPERIMENT 7.2

This experiment compares the settings used in confi guring the AD1836A CODEC as TDM 
mode or I2S mode. The project fi les exp7_2_tdm.dpj (in directory c:\adsp\chap7\
exp7_2_tdm) and exp7_2_i2s.dpj (in c:\adsp\chap7\exp7_2_i2s) confi gure the 
CODEC to the TDM and I2S modes, respectively. In this experiment, we use the BF533 
EZ-KIT. In the TDM mode, pins 5 and 6 of SW9 on the EZ-KIT are switched to the OFF
position, whereas pins 5 and 6 of SW9 are set to the ON position in the I2S mode. Note that 
the BF533 EZ-KIT allows up to four input and six output channels in the TDM mode and 
supports only four input and four output channels in the I2S mode. Examine the differences 
in these two main.c fi les.

7.1.3 Understanding the Serial Port

This section examines the serial port (SPORT) of the BF533 processor [23]. Figure 
7.4 shows a block diagram of a single SPORT. Serial data from the ADC are con-
nected to the primary receive (DRPRI) pin and secondary receive (DRSEC) pin and 
shifted bit by bit into the receive-primary (RX PRI) shift register and receive-
secondary (RX SEC) shift register, respectively. The primary and secondary serial 
data bits are synchronized to the receive clock (RCLK), which can be generated 
from the internal clock generator in the processor or from an external clock source. 

20.8 μsec
FSTDM

BCLK
TDM

MSB TDMMSB TDM

MSB TDM

STH
CH

1ST
CH

INTERNAL
ADC L0

INTERNAL
ADC L1

INTERNAL
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INTERNAL
ADC R0AUX_ADC L0 AUX_ADC R0 AUX_ADC R1AUX_ADC L1

ASDATA1
TDM (OUT)

DSDATA1
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ASDATA1

DSDATA1

MSB TDM
STH
CH

1ST
CH

32
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INTERNAL
ADC L0

INTERNAL
ADC L1
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DAC R2

INTERNAL
DAC R0 AUX_DAC R0AUX_DAC L0

Figure 7.3 TDM timing diagram (courtesy of Analog Devices, Inc.)
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The receive frame synchronization signal (RFS) indicates the start of the serial data. 
An optional companding hardware block supports the A-law or μ-law companding 
algorithm to reduce the number of bits before storing the received word in the RX 
PRI and RX SEC data registers. The primary and secondary data can be stored in 
the 8 × 16 bits (or 4 × 32 bits) receive fi rst-in fi rst-out (RX FIFO) in an interleaved 
manner. Finally, the data can be retrieved by the data address generator (DAG).

The transmit section of the SPORT transmits data from the processor to the 
DAC. Data from the Blackfi n register are written to the 8 × 16 bits (or 4 × 32 bits) 
transmit fi rst-in fi rst-out (TX FIFO) in an alternating manner of primary-secondary 
channel. Again, data from the TX PRI and TX SEC can be optionally compressed 
by the companding hardware and transferred to the TX PRI and TX SEC shift 
registers. Finally, the bits in the shift registers are shifted out to the DAC via 
the data transmit-primary (DT PRI) and data transmit-secondary (DT SEC) pins. 
The transmit clock (TCLK) synchronizes the transmit data bit, and the transmit 
frame synchronization signal (TFS) indicates the start of transmission.

Both RX FIFO and TX FIFO are 16 bits wide and 8 words deep. These FIFOs 
are common to both primary and secondary data arranged in an interleaved manner, 
with primary fi rst and then secondary. Therefore, there are four possible data 
arrangements for the FIFO:

1. When the data length is less than or equal to 16 bits and only the primary 
channel is enabled, a total of 8 primary words can be stored into the 
FIFO.

TX FIFO

4x32 or 8x16

TX SEC

Data Register 

TX PRI

Data Register 

TX SEC

Shift Register 

TX PRI

Shift Register 

Companding

Hardware

RX FIFO

4x32 or 8x16

RX SEC

Data Register 

RX PRI

Data Register 

RX SEC

Shift Register 

RX PRI

Shift Register 

Serial Control

Internal 

CLK

Generator

Companding 

Hardware

DAB
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TFS TCLK RCLK RFSDT PRI DT SEC DR PRI DR SEC

TX FIFO

4x32 or 8x16

TX SEC

Data Register 

TX PRI

Data Register 

TX SEC

Shift Register 

TX PRI

Shift Register 

Companding

Hardware

RX FIFO

4x32 or 8x16

RX SEC

Data Register 

RX PRI

Data Register 
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Shift Register 

RX PRI

Shift Register 

Serial Control
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CLK

Generator

Companding 
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Figure 7.4 SPORT block diagram (courtesy of Analog Devices, Inc.)
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2. When the data length is greater than 16 bits and only the primary channel 
is enabled, a total of 4 primary words can be stored into the FIFO.

3. When the data length is less than or equal to 16 bits and both primary and 
secondary channels are enabled, a total of 4 primary and 4 secondary words 
can be stored into the FIFO.

4. When the data length is greater than 16 bits and both primary and secondary 
channels are enabled, a total of 2 primary and 2 secondary words can be 
stored into the FIFO.

The serial port must be confi gured before transmit or receive of data. There are 
two transmit confi guration registers (SPORTx_TCR1 and SPORT_TCR2) per serial 
port for setting up the SPORT transmit as shown in Figure 7.5. Similarly, two reg-
isters (SPORTx_RCR1 and SPORTx_RCR2) per serial port are used for confi guring 
the receive side as shown in Figure 7.6. These confi guration registers can only be 
changed while the SPORT is disabled by setting TSPEN/RSPEN = 0 (in TCR1 
and RCR1 registers). From Figures 7.5 and 7.6, users can select the desired settings 
for both transmit and receive operations. We use an example to set transmit and 
receive confi guration registers.

EXAMPLE 7.1

Set transmit and receive channels of SPORT0 to operate on external clock and external frame 
sync (active low) (see Fig. 7.5 and 7.6). Also, transmit the most signifi cant bit (MSB) of the 
16-bit word fi rst and turn on the stereo frame sync. In addition, enable the secondary side 
of the serial port. The settings are shown below:

write(SPORT0_TCR1, 0x5400) /* setup for TCR1 register */
write(SPORT0_TCR2, 0x030F) /* setup for TCR2 register */
write(SPORT0_RCR1, 0x5400) /* setup for RCR1 register */
write(SPORT0_RCR2, 0x030F) /* setup for RCR1 register */

Note that the serial wordlength = SLEN + 1. Therefore, the value of SLEN is set to 0xF for 
16-bit word transmit/receive. SLEN is limited to a maximum of a 32-bit word and a minimum 
of a 3-bit word. Refer to the Blackfi n processor hardware reference manual [23] for a more 
in-depth defi nition of the settings.

An important block of the serial port is the transmit/receive clock. The serial 
clock frequency can be generated from an internal source in the Blackfi n processor 
or from an external source. The system clock (SCLK) is used for the internally 
generated clock. The transmit/receive clock can be derived by dividing the SCLK 
with the 16-bit serial clock divider register (SPORTx_TCLKDIV and SPORTx_
RCLKDIV) as follows:

SPORTx_TCLK frequency
SCLK frequency

SPORTx_TCLKDIV

SPORT

=
+( )2 1

xx_RCLK frequency
SCLK frequency

SPORTx_RCLKDIV
=

+( )2 1

(7.1.2)
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7.1 Overview of Signal Acquisition and Transfer to Memory 285

These equations show that the maximum and minimum serial clock frequencies are 
SCLK/2 and SCLK/(217), respectively.

In addition, the serial port generates internal frame syncs to initiate 
periodic transfer of data in and out of the serial port. The number of transmit 
serial cycles between frame sync pulses is SPORTx_TFSDIV + 1. Similarly, the 
number of receive serial cycles between frame sync pulses is SPORTx_RFSDIV +
1. Figure 7.7 illustrates the clock and frame sync timing relationship. To fi nd the 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0¥0000

SPORTx Transmit Configuration 1 Register (SPORTx_TCR1)

SPORTx Transmit Configuration 2 Register (SPORTx_TCR2)

SPORT0:
      0xFFC0 0800
SPORT1:
      0xFFC0 0900

SPORT0:
      0xFFC0 0804
SPORT1:
      0xFFC0 0904

TRFST (Left/Right Order)
0 - Left stereo channel first
1 - Right stereo channel first

SLEN[4:0] (SPORT Word
Length)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

TCKFE (Clock Failing
Edge Select)
0 - Drive data and internal
     frame syncs with rising 
     edge of TSCLK. Sample
     external frame syncs with
     failling edge of TSCLK.
1 - Drive data and internal
     frame syncs with falling 
     edge of TSCLK. Sample
     external frame syncs with
     rising edge of TSCLK.

LATFS (Late Transmit
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

15

TSPEN (Transmit Enable)
0 - Transmit disabled
1 - Transmit enabled

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0¥0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TDTYPE[1:0] (Data Format-
ting Type Select)
00 - Normal operation
01 - Reserved
10 - Compand using μ-law
11 - Compand using A-law

LTFS (Low Transmit
Frame Sync Select)
0 - Active high TFS
1 - Active low TFS
DITFS (Data-Independent
Transmit Frame Sync Select)
0 - Data-dependent TFS generated
1 - Data-independent TFS generated

ITCLK (Internal Transmit
Clock Select)
0 - External transmit clock
     selected
1 - Internal transmit clock
     selected

TLSBIT (Transmit Bit Order)
0 - Transmit MSB first
1 - Transmit LSB first
ITFS (Internal Transmit
Frame Sync Select)
0 - External TFS used
1 - Internal TFS used
TFSR (Transmit Frame Sync
Required Select)
0 - Does not require TFS for
     every data word
1 - Required TFS for every 
     data word

TSFSE (Transmit Stereo
Frame Sync Enable)
0 - Normal mode
1 - Frame sync becomes L/R clock

TXSE (TxSEC Enable)
0 - Secondary side disabled
1 - Secondary side enabled

Figure 7.5 SPORT transmit confi guration 1 and 2 registers (courtesy of Analog Devices, Inc.)
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desired frame sync frequencies for transmit and receive frames, we can use the 
following equations:

SPORTx_TFS frequency
TCLK frequency

SPORTx_TFSDIV

SPORTx_RFS

=
+1

ffrequency
RCLK frequency

SPORTx_RFSDIV
=

+1

(7.1.3)

Note that the value of TFSDIV (or RFSDIV) must be greater than SLEN − 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0¥0000

SPORTx Receive Configuration 1 Register (SPORTx_RCR1)

SPORT0:
      0xFFC0 0820
SPORT1:
      0xFFC0 0920

SPORT0:
      0xFFC0 0824
SPORT1:
      0xFFC0 0924

RRFST (Left/Right Order)
0 - Left stereo channel first
1 - Right stereo channel first

SLEN[4:0] (SPORT Word
Length)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

RCKFE (Clock Failing
Edge Select)
0 - Drive internal frame sync
     on rising edge of RSCLK.
     Sample data and external
     frame sync with failling
     edge of RSCLK.
1 - Drive internal frame sync
     on falling edge of RSCLK.
     Sample data and external
     frame sync with rising
     edge of RSCLK.

LARFS (Late Receive
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

15

RSPEN (Receive Enable)
0 - Receive disabled
1 - Receive enabled

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0¥0000

SPORTx Receive Configuration 2 Register (SPORTx_RCR2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RDTYPE[1:0] (Data Format-
ting Type Select)
00 - Zero fill
01 - sign-extend
10 - Compand using μ-law
11 - Compand using A-law

IRCLK (Internal Receive
Clock Select)
0 - External receive clock
     selected
1 - Internal receive clock
     selected

RLSBIT (Receive Bit Order)
0 - Receive MSB first
1 - Receive LSB first
IRFS (Internal Receive Frame
Sync Select)
0 - External RFS used
1 - Internal RFS used

LRFS (Low Receive Frame
Sync Select)
0 - Active high RFS
1 - Active low RFS

RFSR (Receive Frame Sync
Required Select)
0 - Does not require RFS for
     every data word
1 - Require RFS for every data
     word

RSFSE (Receive Stereo
Frame Sync Enable)
0 - Normal mode
1 - Frame sync becomes L/R clock

RXSE (RxSEC Enable)
0 - Secondary side disabled
1 - Secondary side enabled

Figure 7.6 SPORT receive confi guration 1 and 2 registers (courtesy of Analog Devices, Inc.)
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EXAMPLE 7.2

Compute the values to be written to the receive a serial clock divider register for a serial 
port frequency of 13.3 MHz. The maximum SCLK of 133 MHz is used in the BF533 proces-
sor. If a 48-kHz receive frame sync rate is desired, the values of the frame sync divider 
register are

SPORTx_RCLKDIV
MHz

MHz

SPORTx_RFSDIV
MHz

k

=
×

− =

=

133

2 13 3
1 4

13 3

48

.

.

HHz
− =1 276

7.2 DMA OPERATIONS AND PROGRAMMING

This section presents techniques for transferring data between SPORT and on-chip 
memory. Data can be transferred in either single-word or block transfers with DMA. 
In the single-word transfer, SPORT generates an interrupt every time it receives or 
transmits a data word. The drawback of this approach is the frequent interruption 
of the processing core, thus reducing the core’s ability to process more complicated 
tasks. A more effi cient data transfer is to confi gure and enable the SPORT DMA 
channel for receiving or transmitting an entire block or multiple blocks of data before 
interrupting the core processor. Once a block of data is transmitted or received, the 
interrupt service routine (ISR) can operate on the whole block of data (as shown in 
Section 6.3.3) instead of a single sample mode.

In addition to transferring data between SPORT and internal memory via DMA, 
the Blackfi n BF533 processor can also perform DMA transfers between (1) memory 
and serial peripheral interface (SPI), (2) memory and the universal asynchronous 
receive-transmit (UART) port, (3) memory and the parallel peripheral interface 
(PPI), and (4) memory and memory. In the following sections, we use an example 
to confi gure the SPORT DMA channel and describe the DMA operations. In Section 
7.2.3, examples and exercises are given to explain memory DMA such as moving 
program and data from external memory into the internal memory.

RSCLK/ 
TSCLK 

RFS/TFS 

Data

Number of cycles between frame sync pulses 

TCLK/RCLK frequency 

Figure 7.7 Timing diagram of clock and frame sync pulse
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288 Chapter 7 Memory System and Data Transfer

Figure 7.8 shows the connection of the DMA controller with the peripherals 
and external and internal memories. The three DMA buses include the following. 
(1) The DMA access bus (DAB) connects the peripheral to the DMA. (2) The DMA 
core bus (DCB) connects the DMA to the core. (3) The DMA external bus (DEB) 
connects external memory to the DMA. In some of the latest Blackfi n processors 
such as BF561, an additional internal L2 memory is available and a DMA system 
bus (DSB) is used to connect the core to the L2 memory. The BF533 processor 
supports a total of six DMA-capable peripherals, including two SPORTs, one UART, 
one SPI, one PPI, and one memory. A total of 12 DMA channels are available in 
the BF533 processor as shown in Table 7.2. The BF537 processor has 4 more DMA 
channels, including 12 peripheral DMA channels to support seven DMA-capable 
peripherals of one Ethernet media access control, two SPORTs, two UARTs, one 
SPI, and one PPI. In addition, there are four memory DMA channels for transferring 
data between memories and between memory and off-chip peripherals. The latter 
DMA transfer is called the handshaking memory DMA, which enables external 
hardware to control the timing of individual data transfers or block transfers. This 
type of DMA transfer is particularly useful for asynchronous FIFO-style devices 
connected to the external memory bus.

Because the peripherals and memories are all connected to the DMA controller 
in the BF533 processor, the priority system allows the highest-priority channel to 
gain access to the DMA controller. As shown in Table 7.2, the BF533 processor 
gives the highest priority to the PPI and the lowest priority to memory DMA1 RX 
by default. The memory DMA channels are assigned to a lower priority than the 
peripheral DMA channels. In addition, the default peripheral mapping can be reas-
signed for all peripherals, except for the four memory DMA streams (8–11) that are 
rooted to the last four DMA channels. In the BF537 processor, the additional periph-
erals are Ethernet media access control and UART1, which have priority after PPI 

Internal L1 
memory

Blackfin core

DMA core bus (DCB) 16

Peripherals

SPORT        SPI        UART       PPI

16DMA access bus (DAB)

External bus 
interface unit 
(EBIU)16

DMA ext. bus (DEB)
External
memory

Internal L2 
memory

DMA system bus (DSB)

Only available on some 
processors (e.g., BF561) 

DMA
controller

Ethernet BF537
only

Figure 7.8 DMA controller and its connections
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and UART0. Similar to the BF533 processor, the memory DMA of the BF537 has 
the lower priority, and MDMA0 takes precedence over MDMA1.

7.2.1 DMA Transfer Confi guration

The Blackfi n processor provides two DMA transfer confi gurations: register mode 
and descriptor mode. The register-based DMA transfers allow the user to program 
the DMA control registers directly, whereas the descriptor-based DMA transfers 
require a set of parameters to be stored in the memory to initiate a DMA sequence. 
The latter transfer approach supports a sequence of multiple DMA transfers. Table 
7.3 shows the DMA registers that are used to set up the DMA controller.

The register-based DMA provides two submodes: stop mode and autobuffer 
mode. The control registers are automatically updated with their initialized values 
(autobuffer mode) with zero overhead, or the DMA channel is automatically shut 
off after a single pass of DMA transfer (stop mode). We examine the autobuffer 
mode for handling the audio data streaming in and out of the processor in the next 
section.

In the descriptor-based DMA transfers, users are given fl exibility in managing 
the DMA transfer. The DMA channel can be programmed to perform different 
DMA transfers in a sequential manner. There are three descriptor modes: descriptor 
array mode, descriptor list (small model) mode, and descriptor list (big model) 
mode. As shown in Figure 7.9, the descriptor array mode allows the descriptor to 
reside in consecutive memory locations. Therefore, there is no need to initialize the 
next descriptor pointer. However, in the descriptor list mode the descriptors are not 
required to locate in a consecutive manner. If the descriptors are all located within 
the 64K bytes in memory, a small-model descriptor list mode is used, where a single 
16-bit fi eld of the next descriptor pointer is used. When the descriptors are located 

Table 7.2 DMA Channels in the BF533 Processor and 
Their Default Priorities

DMA Channel Default Peripheral Mapping

 0 (Highest priority) PPI
 1 SPORT0 RX
 2 SPORT0 TX
 3 SPORT1 RX
 4 SPORT1 TX
 5 SPI
 6 UART RX
 7 UART TX
 8 Memory DMA0 TX (destination)
 9 Memory DMA0 RX (source)
10 Memory DMA1 TX (destination)
11 (Lowest priority) Memory DMA1 RX (source)

7.2 DMA Operations and Programming 289
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Table 7.3 DMA Registers

Generic DMA Registers Description Mode
[memory-mapped register
name]

Start address (lower and Start address (source or Register and descriptor
 upper16 bits)  destination)
 [DMAx_START_ADDR]
DMA confi guration Control information of DMA Register and descriptor
 [DMAx_CONFIG]
X_Count Number of transfers in inner Register and descriptor
 [DMAx_X_COUNT]  loop
X_Modify Number of bytes-address Register and descriptor
 [DMAx_X_MODIFY]  increments (signed and 2’s
  complement) in inner loop
Y_Count Number of transfers in outer Register and descriptor
 [DMAx_Y_COUNT]  loop
Y_Modify Number of bytes between end Register and descriptor
 [DMAx_Y_MODIFY]  of inner loop and start of
  outer loop (signed and 2’s
  complement)
Next descriptor pointer Address of next descriptor Only descriptor
 (lower and/or upper16 bits)  (descriptor list mode)
 [DMAx_NEXT_DESC_PTR]

x denotes the DMA channel number (0, 1,  .  .  .  , 7).

(a) Descriptor array mode

Start_Addr[15:0]

Start_Addr[31:16

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Start_Addr[15:0]

Start_Addr[31:16

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Start_Addr[15:0]

Start_Addr[31:16

DMA_Config

……….………
…………………

….

Descriptor
Block 1 

Descriptor
Block 2 

Descriptor
Block 3 

0x0

0x2

0x4

0x6

0x8

0xA

0xC

0xE

0x10

0x12

0x14

0x16

0x18

0x1A

0x1C

0x1E

0x20

(b) Descriptor list (small model) mode

Next_Desc_Ptr[15:0

Start_Addr[15:0]

Start_Addr[31:16]
DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Next_Desc_Ptr[15:0

Start_Addr[15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Next_Desc_Ptr[15:0

Start_Addr[15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

(c) Descriptor list (large model) mode

Next_Desc_Ptr[15:0]

Start_Addr[15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Next_Desc_Ptr[31:16

Next_Desc_Ptr[15:0]

Start_Addr[15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Next_Desc_Ptr[31:16
Next_Desc_Ptr[15:0]

Start_Addr[15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Next_Desc_Ptr[31:16

Figure 7.9 DMA descriptor modes for descriptor array (a), descriptor list (small model) (b), and 
descriptor list (large model) (c) (courtesy of Analog Devices, Inc.)
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across the 64K-byte boundary, a large-model descriptor list mode is used to provide 
the full 32 bits for the next descriptor pointer as shown in Figure 7.9.

7.2.2 Setting Up the Autobuffer-Mode DMA

As stated above, the BF533 processor has 12 DMA channels. As shown in Figure 
7.10, each DMA channel can be mapped to a different peripheral and memory 
with the peripheral map register (CTYPE = 0) and memory DMA map register 
(CTYPE = 1), respectively. In this section, we set up the DMA for transferring 
data in and out of the AD1836A CODEC with the Blackfi n processor’s serial port 
0 (SPORT0). Therefore, we set up DMA channel 0x1 for serial port 0 receive 
(SPORT0 RX) and the DMA channel 0x2 for serial port 0 transmit (SPORT0 TX). 
This default setup also implies that SPORT0 RX has a higher priority than SPORT0 
TX. The setup instructions are listed as follows:

DMA1_PERIPHERAL_MAP = 0x1000; // channel 1 for SPORT0 RX
DMA2_PERIPHERAL_MAP = 0x2000; // channel 2 for SPORT0 TX

After the DMA channels have been mapped to the peripherals, they can be 
confi gured by using their respective confi guration registers. As shown in Figure 7.11, 
the 16-bit confi guration register DMAx_CONFIG allows selections such as DMA 
transfer mode, data interrupt enable, transfer word size, DMA direction, DMA 
channel enable (DMA_EN), etc. During initialization, DMA_EN must be disabled 
and DMA parameters and modes are confi gured. The DMA channel can then be 
turned on and made ready for operation by writing DMA_EN = 1.

CTYPE (DMA channel type) – RO  
0 – Peripheral DMA 
1 – Memory DMA 

xxxxxxxxxxxxxxxx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

PMAP[3:0] (Peripheral mapped to this 
channel by default. Can be re-assigned) 
0000 – PPI 
0001 – SPORT0 RX 
0010 – SPORT0 TX 
0011 – SPORT1 RX 

0100 – SPORT1 TX 
0101 – SPI 
0110 – UART RX 
0111 – UART TX 

Figure 7.10 Peripheral map register (DMAx_PERIPHERAL_MAP and MDMA_yy_PERIPH-
ERAL_MAP, where x = 0, 1,  .  .  .  or 7, and yy = D0, S0, D1, or S1) (courtesy of Analog Devices, Inc.)
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EXAMPLE 7.3

Set up the DMA confi guration register (DMA1_CONFIG) to confi gure DMA channel 1 for 
SPORT0 RX and DMA channel 2 for SPORT0 TX with autobuffer mode. The transfer word 
size is set to 16 bits.
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292 Chapter 7 Memory System and Data Transfer

7.2.2.1 Setting Up the Buffer Address, 

DMA Count, and DMA Modify Registers

Figure 7.12 shows a block diagram of receiving (or transmitting) data between the 
CODEC and the internal memory of the processor. SPORT0 (shown in Fig. 7.4) of 
the Blackfi n processor is confi gured as the serial port for receiving and transmitting 
data. The DMA transfers data to the receive buffer via the DMA channel. Once the 
buffer is full, the DMA interrupts the processor core to process the received data. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0¥0000
15

FLOW[2:0] (Next
Operation)
0x0 - Stop
0x1 - Autobuffer mode
0x4 - Descriptor array
0x6 - Descriptor list (small model)
0x7 - Descriptor list (large model)

DMA_EN (DMA
Channel Enable)
0 - Disable DMA channel
1 - Enable DMA channel

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NDSIZE[3:0] (Flex Descriptor Size)
Size of next descriptor
0000 - Required if in Stop or Autobuffer mode
0001 - 1001 - Descriptor size
1010 - 1111 - Reserved
DI_EN (Data Interrupt Enable)
0 - Do not allow completion of
     work unit to generate an
     interrupt
1 - Allow completion of work unit
     to generate a data interrupt

WDSIZE [1:0] (Transfer Word
Size)
00 - 8-bit transfers
01 - 16-bit transfers
10 - 32-bit transfers
11 - Reserved

DI_SEL (Data Interrupt Timing Select)
Applies only when DMA2D = 1
0 - Interrupt after completing
     whole buffer (outer loop)
1 - Interrupt after completing
     each row (inner loop)

WNR (DMA Direction) 
0 - DMA is a memory read
     (source) operation
1 - DMA is a memory write
     (destination) operation

DMA2D (DMA Mode)
0 - Linear (One-dimensional)
1 - Two-dimensional (2D)
RESTART (DMA Buffer Clear)
0 - Retain DMA FIFO data
     between work units
1 - Discard DMA FIFO before
     beginning work unit

Figure 7.11 DMA confi guration registers (DMAx_CONFIG or MDMA_yy_CONFIG, where 
x = 0, 1,  .  .  .  or 7, and yy = D0, S0, D1, or S1) (courtesy of Analog Devices, Inc.)

// set DMA channel 1 for autobuffer mode, enable data inter-
rupt, retain DMA buffer
// one-dimensional DMA using 16-bit transfers, DMA is a memory 
write, and
// DMA channel 1 is not enabled.
DMA1_CONFIG = 0001 0000 1000 0110b
// set DMA channel 2 for autobuffer mode, disable data inter-
rupt, retain DMA buffer
// one-dimensional DMA using 16-bit transfers, DMA is a memory 
read, and
// DMA channel 2 is not enabled.
DMA2_CONFIG = 0001 0000 0000 0100b

Note that DMA channel 2 does not interrupt the processor on completion of sending a block 
of data to the transmit register. This is due to the fact that receive and transmit channels are 
synchronized with the receive DMA channel 1.
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In the opposite direction, the processed data are moved to the transmit buffer. Once 
the buffer is full, the data are transferred to SPORT0 via DMA with DMA channel 
2. The transmit data is subsequently output to the CODEC. Because DMA operates 
on the system peripheral, the system clock (SCLK) is used to manage the data 
transfer. The SCLK is typically set up to 133 MHz and is lower than the core clock 
(CCLK), which can exceed 600 MHz. The peripheral DMA channels have a 
maximum transfer rate of one 16-bit word per two system clocks, per channel, in 
either direction. Therefore, if the SCLK = 133 MHz, DMA transfer rate = 16 ×
133 M/2 = 1.064 Gbps.

After setting up the DMA confi guration registers as shown in Example 7.3, we 
defi ne the start addresses of the source and destination. In our case, the DMA 
channel 1 start address register, DMA1_START_ADDR, is set to a memory starting 
at the receive (Rx) buffer (sDataBufferRX), which is the destination address. 
The DMA channel 2 start address register, DMA2_START_ADDR, is set to a 
memory starting at the transmit (Tx) buffer (sDataBufferTX), which is the 
source address.

The X_COUNT register specifi es the number of transfers that are required, and 
the X_MODIFY register specifi es the number of byte increments after every data 
transfer. Note that the data transfer can be in 8, 16, or 32 bits. Therefore, X_COUNT 
is related to the number of words, and the word can be 8, 16, or 32 bits. However, 
X_MODIFY is always expressed in number of bytes. Blackfi n processors allow 
one-dimensional (1D) and two-dimensional (2D) DMA modes. When the DMAx_
CONFIG register shown in Figure 7.11 is set to operate in 1D mode, only the X_
COUNT and X_MODIFY registers need to be set up. Otherwise, when 2D mode 
is set, Y_COUNT and Y_MODIFY registers must also be set up in addition to the 
X_COUNT and X_MODIFY registers. The 2D DMA can be considered as a nested 
loop, where X_COUNT and X_MODIFY specify the inner loop and Y_COUNT 
and Y_MODIFY specify the outer loop. The 2D DMA is particularly useful in 
implementing double buffers for block processing mode and in addressing 2D data 
like images. We show more examples on how to set up 2D DMA in Hands-On 
Experiments 7.4 and 7.5.

SPORT0CODEC 

Rx

Tx 
DMA

DMA channel #1 

DMA channel #2 

Rx buffer 

Processor
core

Tx buffer 
Blackfin processor 

Interrupt 

Figure 7.12 Block diagram of use of DMA for connecting CODEC and internal memory
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HANDS-ON EXPERIMENT 7.3

This experiment examines the DMA setup for connecting an external AD1836A CODEC with 
the BF533 processor on the BF533 EZ-KIT. We use a simple talk-through program in the 
project fi le exp7_3.dpj (located in directory c:\adsp\chap7\exp7_3) to acquire four 
input channels (L0, R0, L1, R1) from the CODEC. Similarly, four output channels are used to 
send the processed signals from the processor to the CODEC. The initialize.c fi le 
initializes the DMA as follows:

void Init_DMA(void)
{
 // set DMA1 to SPORT0 RX
 *pDMA1_PERIPHERAL_MAP = 0x1000;

 // configure DMA1
 // configure DMA1
 // 16-bit transfers, interrupt on completion, autobuffer mode
 *pDMA1_CONFIG = WNR | WDSIZE_16 | DI_EN | FLOW_1;

 // start address of data buffer
 *pDMA1_START_ADDR = sDataBufferRX;
 // DMA inner loop count
 *pDMA1_X_COUNT = 4;
 // inner loop address increment
 *pDMA1_X_MODIFY = 2;

 // set up DMA2 to transmit
 // map DMA2 to Sport0 TX
 *pDMA2_PERIPHERAL_MAP = 0x2000;

 // configure DMA2
 // 16-bit transfers, autobuffer mode
 *pDMA2_CONFIG = WDSIZE_16 | FLOW_1;
 // start address of data buffer
 *pDMA2_START_ADDR = sDataBufferTX;
 // DMA inner loop count
 *pDMA2_X_COUNT = 4;
 // inner loop address increment
 *pDMA2_X_MODIFY = 2;
}

SPORT0 RX and SPORT0 TX use 1D DMA. X_COUNT = 4 is used to defi ne the 
four input and four output channels, whereas X_MODIFY = 2 is used to indicate a 2-byte 
increment for a 16-bit word transfer. An additional internal memory (sCh0LeftIn, 
sCh0RightIn, sCh1LeftIn, and sCh1RightIn) must also be used to move data 
from sDataBufferRX into these memory locations. Similarly, internal memory 
(sCh0LeftOut, sCh0RightOut, sCh1LeftOut, and sCh1RightOut) are used 
to transfer processed data to the sDataBufferTX memory. The processor’s timing diagram 
is shown in Figure 7.13, which shows the operations within the ISR, including copy data into 
local memory, processing, and copy the processed data out of the processor. As explained 
in Section 6.3.2, this is the sample-by-sample processing mode. The real-time constraint 
for the sample processing mode is TISR ≤ Ts, where TISR is the cycle time needed for complet-
ing the ISR plus the overhead of reading and writing data. This mode has higher overhead 
time compared to the block processing mode. In this experiment, we increase the processing 
load by increasing the loop counter in process_data.c as shown in Table 7.4. Do you 
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observe any distortion of the output audio when increasing the loop counter? Profi le the cycle 
time taken to run the ISR and use CCLK = 270 MHz to compute the time required to perform 
the loop N times. Compare this cycle time with the sampling period of 1/48,000 = 20.83 μs
and note the percentage of computation load. Complete the ISR cycle count in Table 7.4. 
Also, turn on the statistical profi ler by clicking on Tools → Statistical Profi ling to view the 
percentage of workload.

It is observed in Hands-On Experiment 7.3 that the overhead time associated 
with the sample-by-sample mode is longer compared to the block processing mode, 
which reduces overhead by performing setup and function call once every block. 
The following experiment uses block processing on the BF537 EZ-KIT.

HANDS-ON EXPERIMENT 7.4

As explained in Section 6.3.3, the block processing mode is more effi cient for processing, 
but at the expense of higher memory usage. This experiment modifi es the project fi le in 
Hands-On Experiment 7.3 with a double-buffer block processing mode. The program can be 
found in the project fi le, exp7_4.dpj, which is located in directory c:\adsp\chap7\
exp7_4. Perform the following tasks:

Read data from 
sDataBufferRX
to local memory  

Processing 
data

Write processed  
data from local 
memory to 
sDataBufferTX

Sampling period, Ts

Cycle time to run ISR, TISR 

Tsp   Tin  Tout 

Figure 7.13 Sample-by-sample processing (input, process, and output 4 data channels within 1 
sampling period)

Table 7.4 Benchmark Results of Sample-by-Sample Processing Mode

Loop Counter, N ISR Processing Cycle Time % of Sampling Period
 (sample by sample)

   1
  10
  100
1,000
 Starts to fail
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1. Change the DMA from 1D to 2D.

In init.c, change bit 4 of the DMA1_CONFIG registers to 1 (2D DMA). Set DMA1_
X_COUNT = 4×INPUT_SIZE, where INPUT_SIZE = 100, to input 100 samples 
from L0in, R0in, L1in, and R1in (the CODEC on the BF533 EZ-KIT takes in 4 
inputs). In other words, a window length of 100 samples is acquired for every block 
and put into the top row of the data buffer (Buffer A) as shown in Figure 7.14. Set 
DMA1_X_MODIFY = 2 to move from one 16-bit data to another. After the block of 
100 data samples are acquired, an interrupt is generated to ask the processor to operate 
on these 100 samples. The DMA controller continues to bring in new samples and put 
them into the bottom row of data buffer (Buffer B). In this case, we need another set 
of registers (DMA1_Y_COUNT = 2 and DMA1_Y_MODIFY = 2) to specify the dual 
buffers and its selection between Buffer A and Buffer B. After Buffer B has been fi lled 
up, it generates another interrupt to ask the processor to operate on the new data set. 
Because the DMA is confi gured in autobuffer mode, the DMA1 _ X _ COUNT and 
DMA1_Y_COUNT registers will be reloaded with the initialized values. A similar setup 
is used in the output data buffer to transfer the processed data with the DMA. Refer 
to the confi guration for DMA channel 2 in init.c.

2. Transfer data from data buffer to local buffer for processing.

After the input data have been transferred into the data buffer, sDataBufferRX
can be reloaded into the local buffers sCh0LeftIn[i], sCh0RightIn[i],
sCh1LeftIn[i], and sCh1RightIn[i], as shown in ISR.c. These four sets of 
memory contain 100 × 16-bit data samples of L0, L1, R0 and R1. Therefore, the 
programmer can process these data channels independently. A total of 3 × (4 ×
INPUT_SIZE) memory locations are required to store the incoming data samples in 
double-buffering mode. Another 3 × (4 × INPUT_SIZE) memory locations are 
required for saving processed data before passing out from the processor.

3. Processing in a block manner.

The fi nal change to the program is the use of block processing. Here, the processing 
needs to be repeated for the number of data samples in the block (INPUT_SIZE), 
as shown in the fi le process.c. The user can profi le the time needed to process 
100 samples and use Table 7.5 to document the results. A dummy inner loop is used 
to compare the same workload used in the sample-by-sample processing mode listed 
in Table 7.4. Change the inner-loop counter and observe when the block processing 
program starts to distort.

This experiment can also be carried out with the BF537 EZ-KIT in problems listed at the 
end of this chapter (see Problem 5).

L0 R0 L1 R1 L0 R0 L1 R1
……

X_COUNT = 4 × INPUT_SIZE 

L0 R0 L1 R1 L0 R0 L1 R1
……

X_MODIFY 

2
=

T
N

U
O

C_
Y

Buffer B 

Buffer A 

Y_MODIFY

Figure 7.14 2D data buffer setup for moving data from DMA into the internal memory
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EXERCISE 7.1

Ping-pong (or double) buffering is the standard method of transferring a block 
of data samples from CODEC to the internal memory via DMA. As shown in 
Hands-On Experiment 7.4, this approach uses two buffers at the receive end and 
another two buffers at the transmit end. We can eliminate two buffers from the 
transmit end (sDataBufferTx) if we perform in-place DMA transfer. That is, 
only two buffers are required to save both the input data samples and the processed 
output data.

1. Modify the program in exp7_4.dpj to implement in-place buffering and 
computation in the BF533 EZ-KIT.

2. Perform the same for the BF537 EZ-KIT.

7.2.3 Memory DMA Transfer

Memory DMA transfers data between internal memory and external memory. A 
single memory DMA transfer requires a pair of DMA channels: one channel for 
source memory and the other for destination memory. In the BF533 processor, a 
total of four memory DMA channels (as shown in Table 7.2) are used for two simul-
taneous memory-to-memory DMA transfers. In addition, an 8-entry, 16-bit FIFO 
buffer is available for the source and destination channels to provide an effi cient 
data transfer. A memory DMA is particularly useful in transferring data from the 
larger external memory to the smaller internal memory. This memory transfer avoids 
the need for stopping the processor from the current operation and fetching data 
from external memory.

Compared with the peripheral DMA, the memory DMA occupies the lowest 
priority as shown in Table 7.2. Also, we cannot reconfi gure the priority of the 
memory DMA. In the BF533 processor, a round-robin access is provided in the 
memory DMA to allow one channel to gain access to the bus for a number of cycles 
before surrendering the bus access to the next channel. An added feature in the 
BF537 processor is the ability to program the DMA request enable (DRQ) bit fi eld 
in the handshake memory DMA control register to make the priority become 
urgent.

Table 7.5 Benchmark Results of Block Processing Mode

Loop Counter ISR Processing Cycle Time % of Sampling Period
(outer loop × inner (block processing time/
loop) INPUT_SIZE)

   100 (100 × 1)
 1,000 (100 × 10)
10,000 (100 × 100)
 Starts to fail
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In the following sections, we use examples and experiments to show how to set 
up the memory DMA and move data between memories with 1D and 2D memory 
DMA transfers.

7.2.4 Setting Up Memory DMA

As shown in Figure 7.10, the peripheral map registers in the BF533 processor for 
the memory DMA can be confi gured as follows:

MDMA_D0_PERIPHERAL_MAP = 0x0040; //  memory DMA desti-
nation D0

MDMA_S0_PERIPHERAL_MAP = 0x0040; //  memory DMA source 
S0

MDMA_D1_PERIPHERAL_MAP = 0x0040; //  memory DMA desti-
nation D1

MDMA_S1_PERIPHERAL_MAP = 0x0040; //  memory DMA source 
S1

In the memory DMA, destination stream 0 (D0) has the highest priority, and source 
stream 1 (S1) has the lowest priority.

Similar to the peripheral DMA, the memory DMA channels can be confi gured 
with the MDMA_yy_CONFIG (yy = D0, S0, D1, or S1) registers shown in Figure 
7.11. However, the DMA confi guration register for the source channel must be 
written before the DMA confi guration register for the destination channel. The other 
parameter registers to be set up in the memory DMA channels are:

1. MDMA_yy_START_ADDR registers specify the start address of the data 
buffer for DMA access.

2. MDMA_yy_X_COUNT registers specify the number of elements (8, 16, or 
32 bit) to be transferred. A value of 0x0 in this register corresponds to 65536 
elements. X_COUNT is not necessarily the same as the number of bytes to 
be transferred.

3. MDMA_yy_X_MODIFY registers contain a signed, 2’s complement byte-
address increment. These registers allow different parts of elements to be 
extracted. In the 2D DMA confi guration, the X_MODIFY register is not 
increased after the last element in each inner loop. The Y_MODIFY register 
is applied instead.

4. MDMA_yy_Y_COUNT registers are used only for 2D DMA. These regis-
ters specify the outer loop count.

5. MDMA_yy_Y_MODIFY registers are used only for 2D DMA. These reg-
isters specify a byte-address increment and are applied after each decrement 
of the Y_COUNT except for the last item in the 2D array.

7.2.5 Examples of Using Memory DMA

This section uses several experiments to illustrate how to move data around the 
internal memory without the intervention of the core processor.
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HANDS-ON EXPERIMENT 7.5

This experiment uses the VisualDSP++ BF533/BF537 simulator. In the project fi le exp7_
5.dpj (located in directory c:\adsp\chap7\exp7_5), a set of 15 (16 bit) sequential 
numbers is generated as shown in Figure 7.15. These numbers are saved in the source memory 
s_MemDMA0_Src_Array.

This experiment uses memory DMA to transfer data from the source memory 
to the destination memory at s_MemDMA0_Dst_Array with different transfer 
modes. Note that the memory DMA transfers below are confi gured as stop mode, 
8-bit data transfers, and no interrupt enabled.

1. Using 1D-to-1D memory DMA transfer.

Set *pMDMA_S0_CONFIG = 0x0061 and *pMDMA_D0_CONFIG = 0x0063 for 
source and destination memory channels, respectively. Because both memory DMA 
channels are confi gured as 1D, the Y_COUNT and Y_MODIFY registers are not 
used. Use X _ COUNT = 0X10 and X_MODIFY = 0x2 for both source and destina-
tion channels. Modify the main.c with the above settings and build the program. 
Run and then halt the program. Click on Memory → Blackfi n Memory and type 
in s_MemDMA0_Src_Array in the Blackfi n Memory window to view the memory 
of the source and destination addresses. Observe the data in the source and destina-
tion memory.

Change the destination modifi er to pMDMA_D0_X_MODIFY = 0x1 (0x3 or 
0x4). What happens to the destination memory? How can we modify the DMA 
setting for copying only the fi rst 8 data from the source to the destination?

2. Using 1D-to-2D memory DMA transfer.

The 1D-to-1D data transfer above can be modifi ed to a 1D-to-2D data transfer by 
changing the *pMDMA_D0_CONFIG = 0x0073. Keep the source count and modify 
registers unchanged. Change the destination registers as follows:

 *pMDMA_D0_X_COUNT  =0x8;
 *pMDMA_D0_Y_COUNT  =0x2;
 *pMDMA_D0_X_MODIFY =0x2;
 *pMDMA_D0_Y_MODIFY =0x2;

0x01

0x00

0x02 

0x00

:

:

0x10

0x00

s_MemDMA0_Src_Array 

0x01

0x00

0x02 

0x00

:

:

0x10

0x00

1D-to-1D 
1D-to-2D 
2D-to-1D 
2D-to-2D 

Possible 
memory DMA 
transfers 

s_MemDMA0_Dst_Array

Figure 7.15 Memory DMA transfer from source memory to destination memory with different 
memory DMA transfers

7.2 DMA Operations and Programming 299

TEAM LinG



300 Chapter 7 Memory System and Data Transfer

Do you observe the same destination memory as in Part 1 for the 1D-to-1D DMA 
memory? Now change the destination registers as follows:

*pMDMA_D0_X_COUNT  =0x8;
*pMDMA_D0_Y_COUNT  =0x2;
*pMDMA_D0_X_MODIFY =0x2;
*pMDMA_D0_Y_MODIFY =0xFFF3; // move back 13 bytes

What happens to the destination memory? It is important to make sure that the total 
number of bytes transferred on each side (source and destination) of the DMA 
channel are the same.

3. Using 2D-to-1D memory DMA transfer.

If we need to access all odd numbers of data that follow an even number of data, we 
can use 2D memory DMA at the source memory to pick up the right set of data. Set 
up 2D-to-1D memory DMA as follows: *pMDMA_S0_CONFIG = 0x0071 and 
*pMDMA_D0_CONFIG = 0x0063. Change the source and destination registers as 
follows:

*pMDMA_S0_X_COUNT = 0x8;
*pMDMA_S0_Y_COUNT = 0x2;
*pMDMA_S0_X_MODIFY = 0x4;
*pMDMA_S0_Y_MODIFY = 0xFFE6;  // move back 26 bytes

*pMDMA_D0_X_COUNT =0x10;
*pMDMA_D0_X_MODIFY =0x2;

Do you observe the right sequence being displayed in the destination memory?

4. Using 2D-to-2D memory DMA transfer.

We can move the data in the source memory to the destination memory with the 
2D-to-2D memory DMA as shown in Figure 7.16.

The source and destination registers can be initialized as follows:

*pMDMA_S0_X_COUNT = 0x5;
*pMDMA_S0_Y_COUNT = 0x3;
*pMDMA_S0_X_MODIFY = 0x6;
*pMDMA_S0_Y_MODIFY = 0xFFEA; // -22 bytes

*pMDMA_D0_X_COUNT =0x5;
*pMDMA_D0_Y_COUNT =0x3;
*pMDMA_D0_X_MODIFY =0x1;
*pMDMA_D0_Y_MODIFY =0x6;

0x1 0x0 0x2 0x0 0x3   0x0 

0x4 0x0 0x5 0x0 0x6   0x0 

0x7 0x0 0x8 0x0 0x9   0x0 

0xA 0x0 0xB 0x0 0xC 0x0 

0xD 0x0 0xE 0x0 0xF  0x0 

s_MemDMA0_Src_Array 

0x1  0x4  0x7  0xA  0xD   

0x0  0x0  0x0  0x0   0x0    

0x2  0x5  0x8  0xB   0xE    

0x0  0x0  0x0  0x0   0x0 

0x3  0x6  0x9  0xC   0xF   

0x0  0x0  0x0  0x0   0x0 

s_MemDMA0_Dst_Array

2D-to-
2D

Figure 7.16 Source and destination memory data arrangements
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The 2D-to-2D memory DMA provides fl exibility in defi ning data transfer from the source 
memory to the destination memory. Change the DMA data transfer above to 16 bits and 32 
bits to observe any differences in the destination memory.

The above hands-on experiments show examples of moving data from the 
source memory to the destination memory. We further illustrate real-world applica-
tions in the following examples.

EXAMPLE 7.4

A video frame buffer of size 320 × 240 has a total of 76,800 pixels. Use a 2D DMA to 
retrieve a block of 16 × 8 bytes as shown in Figure 7.17.

The memory DMA registers for the source memory can be initialized as follows:

X_COUNT = 16

X_MODIFY = 1

Y_COUNT = 8

Y_MODIFY = 320–15 = 305

1 2 3 ….      16 ……….                                        320 
321 322…  336 ………                                        640 
641 642 … 656……….                                        960 
:               : 
:               : 
2241 2242..  2256 ……...                                   2560 
:
:
:
76480…           ………..                                   76800 

320

8

16

240

Figure 7.17 A video frame buffer of 320 × 240 pixels, where a block of 16 × 8 pixels are 
extracted into the data memory
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EXAMPLE 7.5

A video data stream of bytes consists of red (R), green (G), and blue (B) of a color image of 
size N × M pixels as shown in Figure 7.18. It is desired to extract the R, G, and B of the cor-
responding pixels into destination memory as shown in the right-hand side of Figure 7.18.

The memory DMA registers for the source memory can be initialized as follows:

Source DMA Destination DMA

X_COUNT = 3 X_COUNT = 3

X_MODIFY = N×M X_MODIFY = 1

Y_COUNT = N×M Y_COUNT = N×M

Y_MODIFY = −2(N×M) + 1 Y_MODIFY = 1
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302 Chapter 7 Memory System and Data Transfer

HANDS-ON EXPERIMENT 7.6

This experiment fi lls a large section of memory with some predefi ned values. A simple 
approach is to use the processor core for memory copy; thus the processor will not able to 
perform other tasks. A more effi cient approach is to perform a 1D DMA in stop mode. The 
source memory DMA can be set up by fetching the predefi ned value (for example, 0x33) 
continuously, X_COUNT = number of transfer, and X_MODIFY = 0x0 to ensure that the 
source pointer keeps pointing to the predefi ned value. The destination memory DMA can 
be set up with X_COUNT = number of transfer and X_MODIFY = 0x1 for 1 byte/transfer. 
Modify main.c in the project fi le exp7_6.dpj located in directory c:\adsp\chap7\
exp7_6 to initialize 128 bytes of destination memory with a value of 0x33. Create a new 
project and run it on the BF533/BF537 simulator to verify the results.

7.2.6 Advanced Features of DMA

We have introduced several DMA features including prioritizing DMA channels in 
previous sections to meet peripheral task requirements. For example, the parallel 
port DMA channel is given a higher priority (lower number DMA channel) over the 
serial port DMA channel. However, users have fl exibility in confi guring the priority 
of these DMA channels to optimize the data transfer fl ow in the system. Some of 
the latest Blackfi n processors (such as the BF561) have multiple DMA controllers 
for transferring data to multiple processing cores.

The memory DMA channels always have lower priority than the peripheral 
DMA channels. Therefore, when both peripheral and memory DMA transfers exist, 
the memory DMA transfer can only take place during the unused time slots of the 
peripheral DMA. In addition, if more than one memory DMA transfer is enabled, 
only the highest-priority memory DMA channel is granted access. To allow the 

N

M

R1         GN.M+1      B2N.M+1

R2         GN.M+2      B2N.M+2

:                 :                    : 

:                 :                    : 

RN.M G2N..M B3N.M

G N.M+1

                         G2N..M

R1

                          RN.M

B2N.M+1

                          B3N.M

N

N

2D-to-2D 

Source memory Destination memory 

Figure 7.18 Transfer of R, G, and B data to the destination memory with 2D memory DMA
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lower-priority memory DMA channel to gain access to the DMA bus, a round-robin 
period mechanism is available in the Blackfi n processor to allow each memory 
DMA channel for a fi xed number of transfers.

As applications are becoming more complex and involve multiple bidirectional 
data streams from audio and video devices, the DMA controller in the Blackfi n 
processor provides advanced features such as a traffi c controller to control the direc-
tion of data transfer. The reason for direction control is that each direction change 
of data transfer can impose several cycles of delay. Traffi c can be independently 
controlled for each of the three DMA buses DAB, DCB, and DEB by using simple 
counters in the DMA traffi c control counter period register, DMA_TC_PER. These 
counters state the cycle count for performing DMA data transfer in the same direc-
tion as the previous transfer. In other words, the DMA controller grants a DMA bus 
to peripherals and memory performing the same read/write direction for a period 
cycle count, until the counter time out occurs, or until the traffi c changes direction. 
After the period counter decrements to zero, the preference is changed to the oppo-
site fl ow direction.

Program and data can also be moved from the external memory to the internal 
memory with the cache mechanism. In the following section, we discuss cache 
memory concepts and how instruction and data caching can be carried out in the 
Blackfi n processor. The comparison between cache and DMA access provides some 
guidelines in choosing between DMA and cache.

7.3 USING CACHE IN THE BLACKFIN PROCESSOR

We briefl y introduced different types of memory in the Blackfi n processors in 
Chapter 5. We described the internal program and data memories and split these 
memories between SRAM and cache. In this section, we examine the cache memory 
of the Blackfi n processor in detail. Cache memory [46] can be thought of as copying 
a block of external memory to the internal memory that is closer to the core in order 
to speed up the memory access. Different methods are used for instruction and data 
caches, and these methods predict which blocks of memory need to be copied into 
the cache memory for optimum performance. The following sections explain cache 
memory concepts, cache terminology, the instruction cache, the data cache, and the 
memory management unit.

7.3.1 Cache Memory Concepts

The BF53x processor provides separate Level 1 (L1) caches for data and instruction. 
For time-critical applications, data and instructions are stored in the on-chip SRAM, 
which can be accessed in a single core clock (CCLK) cycle. However, if code and 
data are too large to fi t into the internal memory, they are stored in larger but slower 
off-chip memory. Data transfer between internal and external memories can be 
carried out by using the DMA, as explained in the previous sections. Alternatively, 
some internal memories can be confi gured as cache to allow data transfer between 
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cache and external memories. Figure 7.19 shows the memory confi guration of the 
Blackfi n processor. As shown in the BF533’s memory map (Fig. 5.17), the memory 
address from 0xFFA1 0000 to 0xFFA1 3FFF can be confi gured as either instruction 
SRAM or instruction cache. Similarly, the data memory address from 0xFF80 4000 
to 0xFF80 7FFF and from 0xFF90 4000 to 0xFF90 7FFF can be confi gured as data 
SRAM or data cache. The rest of the internal memory of the BF533 processor can 
only be confi gured as SRAM. Note that the size of the cache is small (16 Kbytes). 
This small-size cache allows quick checking and fi nding of data/instruction.

The main reason for using cache is to reduce the movement of instructions and 
data into the processor’s internal memory. Cache simplifi es the programming model 
once it is properly set up. However, in many time-critical signal processing tasks, 
most programmers tend to avoid confi guring memory as cache. The reason for this 
is to avoid movement of data and program code in and out of the internal memory 
that may degrade realtime performance, or even violate the real-time constraint. To 
solve this real-time issue for hard real-time code, the Blackfi n processor provides a 
cache-locking mechanism that can lock time-critical code in the cache such that this 
code cannot be replaced. Other soft real-time code can be unlocked for possible 
cache fi ll. This caching mechanism is highlighted in subsequent sections.

If the entire program code and data can be fi tted into the internal memory, there 
is no need to confi gure internal memory as cache. The cache is only confi gured if 
large program code or data needs to be extracted from the external memory. The 
cache memory system is able to manage the movement of program code and data 
from the external memory into the cache without any intervention from the pro-
grammer. This is unlike the memory DMA, where data transfer between external 
and internal memories is handled by the DMA controller. In addition, program 
overlay can be carried out by using the memory DMA to move code from external 
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Figure 7.19 Memory confi guration of the Blackfi n processor
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memory to internal memory when needed. Therefore, there is a need to understand 
the strengths and weaknesses of using cache and DMA and formulate a good strat-
egy in selecting cache and DMA for data and code transfer. This issue is discussed 
in Section 7.4.

7.3.2 Terminology in Cache Memory

To discuss the cache mechanism in the Blackfi n processor in detail, we need to 
understand some basic concepts and terms that are commonly used in describing 
cache memory. This introduction will be “just enough” to understand the operations 
of the cache mechanism and to set up the cache memory in the Blackfi n processor.

Several memory spaces can be confi gured as cache or SRAM. The cache 
memory space can be divided into several fi xed-size blocks, commonly known as 
cache lines. A cache line is the smallest unit of memory to be transferred from 
external memory to the cache memory on a cache miss. Figure 7.20 shows an 
example in which the cache memory is divided into six cache lines and maps to a 
bigger cacheable external memory that has 18 memory blocks (lines). Every cache 
line and memory line has the same number of bytes. In the Blackfi n cache organiza-
tion, each cache line has 32 bytes.

A “cache hit” occurs when the processor references a memory block that is 
already placed in the cache. The processor will access the data or instruction from 
the internal cache memory, instead of accessing from the external memory. In con-
trast, a “cache miss” occurs when the processor references a memory block that is 
not inside the cache. The consequence of a cache miss is that the cache controller 
needs additional access time to move the referenced memory block from the external 
memory into the cache memory. This process is called a cache line fi ll. Sub-
sequently, when the same memory block is referenced by the processor again, the 
access will be from the faster cache memory.

Because the external memory is larger than the cache memory, there is a need 
to understand different ways of mapping the external memory to the cache memory. 
There are three schemes for mapping the external memory into the cache memory.
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Figure 7.20 Fixed-size block/line for external memory and cache
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1. Direct-mapped cache: In this mapping, every block in the external memory 
has only a fi xed destination line in the cache. However, other blocks in the 
external memory can also share the same destination line in the cache. 
Therefore, this many-to-one mapping scheme is not suitable for control 
application, where the program constantly switches from one section to 
another, and results in many cache misses.

2. Fully associative cache: In this caching scheme, a block in the external 
memory can be mapped to any line in the cache memory. This mapping 
scheme is the opposite extreme of the direct-mapped cache, and has the least 
number of missing cache lines.

3. Set-associative cache: This caching scheme is used in the Blackfi n 
processor. The cache memory is arranged as sets, and one set consists of 
several cache lines. For example, the Blackfi n processor has four cache lines 
per set in the instruction cache, and this instruction cache is called a four-
way set-associative cache. Therefore, any external instruction memory can 
be cached into any of the four cache lines within a set, as shown in Figure 
7.21. The data cache in the Blackfi n processor is a two-way set-associative 
cache.

The next commonly asked question is how the processor knows whether there 
is a cache hit or a cache miss. The answer can be derived by examining the tag fi eld 
of the cache line. The 20-bit tag fi eld (or address) is stored along with the cached 
data line to identify the specifi c address source in memory that represents the cache 
line. If the tag address matches the external memory, the processor checks the valid-
ity bit, which is a single bit that determines whether the cache line is valid or not. 
Only a valid cache line can be used directly. In subsequent sections, we will show 
in detail how to cache data and instructions into the internal memory.

Another question is what happens when all the cache lines are valid and a cache 
miss occurs. In this case, some of the cache lines need to be replaced, but how do 
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Set #1 

Line #0 Line #1 Line #2 Line #3 

:
:
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Figure 7.21 Caching of external memory into instruction cache using 4-way set-associative 
memory
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we select and replace these cache lines? Some possible cache line replacement 
strategies are summarized as follows:

1. Random replacement: The destination cache line to be replaced is ran-
domly selected from all participating cache lines. This strategy is the sim-
plest but least effi cient.

2. FIFO replacement: The oldest cache line is replaced fi rst.

3. Least recently used (LRU) replacement: This method is based on the fre-
quency of a cache line being accessed by the processor core. A recently used 
cache line is more likely to be used again. The replaced cache line is the one 
that has not been accessed for the longest time, or the least recently used.

4. Modifi ed LRU replacement: Every cache line is assigned a low or high 
priority. If the incoming block from external memory is a low-priority block, 
only low-priority cache lines can be replaced. If the incoming block is a 
high-priority block, all low-priority cache lines are replaced fi rst, followed 
by high-priority cache lines. This replacement strategy is only used in the 
instruction cache line.

In the following sections, we explain the detailed features of the instruction and 
data caches in the BF533 processor. The BF537 processor has the same cache 
memory and mechanism as the BF533 processor.

7.3.3 Instruction Cache

The BF533 processor has 80K bytes of on-chip instruction memory, in which 64K 
bytes can only be set as SRAM and the remaining 16K bytes (located at address 
0xFFA1 0000 to 0xFFA1 3FFF) can be confi gured as either SRAM or cache. When 
the 16K bytes are enabled as cache, the cache is further arranged as four 4K-byte 
subbanks; each subbank consists of 32 sets, each set has four cache lines, and each 
cache line is 32 bytes, as shown in Figure 7.22. When the cache is disabled, only a 
single 64-bit instruction is transferred into the SRAM at a time. When the cache is 
enabled, instruction is fetched from the external memory via the 64-bit bus. Because 
the cache line is 32 bytes long, a burst of 4 × 64-bit (or 32 bytes) instruction data 
is transferred at a time.

When replacing the cache line from external memory during a cache miss, 
the cache line fi ll returns four 64-bit words, starting from the address of the 
missed instruction, and the next three words are fetched in sequential address 
order, as shown in Table 7.6. The advantage of using this fetching arrangement is 
to allow the processor to start executing the target instruction without waiting for 
the three unwanted instructions. This is made possible by the 4 × 64-bit line fi ll 
buffer.

As explained in the previous section, the tag fi eld of the cache line consists of 
the tag address and the valid bit. In addition to this information, the tag fi eld of the 
instruction cache line also consists of the LRU state fi eld and the LRU priority 
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(LRUPRIO) bit. The LRU state fi eld is used by the cache controller to indicate the 
frequency of the cache lines, and it replaces the cache line that is the least used. 
The LRU priority bit is used to assign a priority to each of the cache lines, and this 
scheme allows the high-priority cache line to be protected from replacement. The 
cache controller of the Blackfi n processor can be confi gured to use either the modi-
fi ed LRU scheme or the LRU scheme for cache line replacement.

When addressing the instruction located in external memory, the 32-bit address 
(A0–A31) is partitioned into the following fi elds:

1. Twenty address bits, A31–A14 and A11-A10, are used to compare with the 
20-bit tag address in the cache.

2. Two address bits, A13 and A12, are used to select one of the four 4K byte 
subbanks.

3. Five address bits, A9–A5, are used to select one of the 32 cache lines.

4. Five address bits, A4–A0, are used to select a byte within a given 32-byte 
cache line.

Way3 

Way2 

Way1 

Subbank 0
(4 Kbyte)

Subbank 1 
(4 Kbyte)

Subbank 2
(4 Kbyte)

Subbank 3
(4 Kbyte)

Line fill 
buffer 
(4 × 64 bits) 

Way0 
(1 Kbyte) 

tag Data (32 bytes) Line0 

tag Data (32 bytes) Line1 

tag Data (32 bytes) Line31 

:

4:1 MUX 

64-bit

:

Each set has 4 lines. 
32 sets in total. 

Figure 7.22 4-Way set-associative instruction cache of the BF533 processor

Table 7.6 Cache Line Word Fetching Order

Target Word Fetching Order for Next Three Words

WD0 WD1, WD2, WD3
WD1 WD2, WD3, WD0
WD2 WD3, WD0, WD1
WD3 WD0, WD1, WD2
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EXAMPLE 7.6

An access to an external memory at address 0x2010 2836 will result in the comparison of 
the tag address and cache selection as shown in Figure 7.23. By converting the hexadecimal 
address into its binary equivalent, the 20-bit address 0x20102 is compared to the tag 
addresses of the four cache lines in set 1 (out of the possible 32 sets) from subbank 2 (out 
of the possible 4 subbanks). If there is a match, a cache hit occurs and the 22nd byte of the 
selected cache line is accessed by the processor.

Example 7.6 showed how to select a cache line for comparison. However, if 
there is a cache miss, a cache line fi ll access is used to retrieve the cache line from 
the external memory. The cache line replacement unit is used to determine which 
cache line in the selected set can be replaced. The cache replacement scheme can 
be carried out in the following cases:

1. When only one invalid way is available in the set, the incoming external 
memory block replaces this cache line in the invalid way.

2. When more than one invalid way is available in the set, the incoming exter-
nal memory block replaces the cache line in the following order of priority: 
Way0, Way1, Way2, and Way3.

3. If there is no invalid way in the cache, the LRU scheme explained above is 
used to replace the least recently used way. However, if the modifi ed 
LRU scheme is used, ways with high priority cannot be replaced by the low-
priority memory block. If all ways are high priority, the low-priority blocks 
cannot be cached, but high-priority blocks can be cached with the LRU 
scheme.

Finally, a particular way can be locked by using the instruction memory control 
register. The advantage of using this locking mechanism is to keep the time-critical 
code in one of the ways and allow the other three ways to response to a cache 
miss.

0010 0000 0001 0000 0010 1000 0011 0110

  2            0            1            0            2            8           3            6 Hex 

Binary 

0x20102 is used to 
compare with the tag 
address of the cache 

Select 
subbank 
2

Select 
set 1

Select 22nd
byte of the 
cache line 

Figure 7.23 Mapping the external memory address space into the instruction cache memory 
space
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HANDS-ON EXPERIMENT 7.7

This experiment demonstrates the concept of locking a particular way in the instruction cache 
memory. This locking concept is analogous to luring a mouse into the desired mouse trap. 
Suppose Way0 (the desired mouse trap) is to be locked and Way1, Way2, and Way3 are to 
be unlocked. This can be done by fi rst unlocking Way0 (i.e., putting bait in Way0) and 
locking the remaining three ways. A dummy call to the time-critical function will force the 
function into Way0. This is similar to forcing the mouse into the Way0 trap. Subsequently, 
lock Way0 (to trap the mouse) and unlock the other ways. Any subsequent cache miss can 
only be channeled into Way1, Way2, or Way3 (i.e., other mice will be lured to other traps).

This concept is illustrated in main.c in the project exp7_7.dpj located in directory 
c:\adsp\chap7\exp7_7. Load this project fi le into the VisualDSP++ simulator and 
examine the following:

1. Lock_Control settings in main.c.

2. Use the Blackfi n Memory window to locate the instructions in the external memory 
(0x0000 0000) and the internal memory (0xFFA1 0000).

3. Run the program and check the internal memory (0xFFA1 0000) again. Explain your 
observations.

4. Note that the ILOC bits in the IMEM_CONTROL register are used to control which 
way is to be locked. The program listing is shown in config_I_cache.c.

7.3.4 Data Cache

This section introduces the data cache confi guration of the BF53x processor, which 
has 64K bytes of on-chip data memory. Half of the memory (32K bytes) is SRAM, 
and the other half can be confi gured as either SRAM or cache. The memory that 
can be confi gured as cache is separated into two independent memory banks of 16K 
bytes. The bank A address starts from 0xFF80 4000 to 0xFF80 7FFF, and bank B 
starts from 0xFF90 4000 to 0xFF90 7FFF. Therefore, these two banks can be sepa-
rately confi gured as cache or SRAM, with the exception that bank B cannot be 
confi gured as cache if bank A is already confi gured as SRAM.

Unlike the instruction cache, the data cache is a two-way set-associative memory. 
Figure 7.24 shows the confi guration of the data cache memory. The 16K-byte cache 
bank is confi gured as four 4K-byte subbanks. Unlike the instruction cache, each 
subbank in the data cache has 2 ways (2K bytes for each way) and consists of 64 
cache lines per way. Similar to the instruction cache, each cache line has 32 
bytes.

Like the instruction cache, the tag fi eld of the data cache consists of the address 
tag, the valid bit, and the LRU fi eld. However, the tag fi eld of the data cache does 
not include LRUPRIO bits; instead, a dirty bit is included to indicate whether the 
cache line has been modifi ed. Using the valid bit and dirty bit, the data cache line 
can occur in the following states: (a) invalid, (b) valid and clean, and (c) valid and 
dirty.
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When addressing the data in external memory, the 32-bit address (A0–A31) is 
partitioned into the following fi elds:

1. Nineteen address bits, A31–A14 and A11, are used to compare with the 
19-bit tag address in the cache.

2. Two address bits, A13–A12, are used to select one of the four (4K byte) 
subbanks.

3. Six address bits, A10–A5, are used to select one of the 64 cache lines.

4. Five address bits, A4–A0, are used to select a byte within a given 32-byte 
cache line.

5. If both data banks A and B are enabled as cache, bit 14 or bit 23 is used to 
determine which data bank.

Compared to the instruction cache, the data cache needs more complex pro-
gramming tasks. These complexities are due to the read and write operations in the 
data cache. In addition to the line fi ll buffer (8 × 32 bits) for reading data from the 
external memory, the data cache has an extra victim buffer (8 × 32 bits) for writing 
data back to the external memory.

Two cache-write policies (write-through and write-back) are commonly used. 
In the write-through policy (also known as store through), data are written to both 
the cache line and the (external) source memory. Modifi cation in the cache will also 
be written to the source memory as shown in Figure 7.25(a). However, when there 
is a data cache miss (the cache line is invalid), the write-through data cache only 
replaces the cache line and does not update the source memory.
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Figure 7.24 Two-way set-associative data cache of the BF533 processor
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In contrast, in the write-back policy (also known as copy-back), data are only 
written to the cache line. The modifi ed cache line is written to source memory only 
when it is being replaced, as shown in Figure 7.25(b). Therefore, as long as there is 
a cache hit, data are only modifi ed in the cache line. When the cache entry is 
replaced during a cache miss, the source memory will also be updated. The dirty 
bit in the address tag of each cache line is used to indicate that the cache contains 
the only valid copy of the data, and these data must be copied back to the external 
memory before the new data are written into the cache line. The victim buffer shown 
in Figure 7.24 is used to hold the data that need to be written back while the proces-
sor writes the new data in the cache line.

A comparison between the two cache-write policies shows that the write-
through mode allows source memory to be coherent (or consistent) with cache 
memory; thus multiple processors can access the updated data in the source memory. 
However, in the write-through mode, cache-write results in more communication 
overhead in transferring data between cache and source memory. The write-back 
mode is usually faster because of the fewer writes to the source memory unless the 
cache is being replaced. Nevertheless, the choice between write-through and write-
back is not clear cut, and depends on applications. Therefore, the best approach in 
selecting a suitable mode is to test them separately for a given application.

HANDS-ON EXPERIMENT 7.8

This experiment uses the BF533 (or BF537) EZ-KIT to investigate the cycles needed to run 
an assembly program under different instruction and data cache modes. The project fi le 
exp7_8_533.dpj (or exp7_8_537.dpj) is located in directory c:\adsp\chap7\exp7_
8_533 (or c:\adsp\chap7\exp7_8_537). Build the project and set a break point at the 
line “end:idle;” in main.asm. Click on Register → Core → Data Register File to open 
the Data Register File window. Change the format of display to Unsigned Integer 

32-bit and observe the value of registers R0 (low word) and R1 (high word). These 
registers contain the cycle count to run myprogram.asm. By commenting out the selected 
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together 
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Figure 7.25 Write-through and write-back data cache
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instruction in the header fi le, cache_init.h, various cache modes can be selected, and 
cycle counts are tabulated in Table 7.7. Comment on the performance.

7.3.5 Memory Management Unit

The Blackfi n processor includes a memory management unit (MMU) that controls 
how to set up and access memory in the processor. However, the MMU is an optional 
feature that is disabled on reset. The MMU is important in embedded applications 
because it provides a means to protect memory at a page level and determines 
whether a memory page is cacheable.

The MMU in Blackfi n processors consists of the cacheability and protection 
look-aside buffers (CPLBs). The BF533 processor has a total of 32 CPLBs, including 
16 ICPLBs for instruction memory and 16 DCPLBs for data memory. The ICPLBs 
and DCPLBs are enabled by setting the appropriate bits in the L1 instruction 
memory control register (IMEM_CONTROL) and L1 data memory control 
(DMEM_CONTROL). A memory page size can be defi ned as 1K, 4K, 1M or 4M 
bytes. Therefore, users can program different pages in the Blackfi n memory with 
different cacheability and protection properties. In a simple application, 32 CPLBs 
are suffi cient to cover the entire addressable space of the application. This type of 
defi nition is referred to as the static memory management model. A quick calcula-
tion will show that we cannot specify all the 4G bytes of address of the Blackfi n 
processor with just 16 pages of data and 16 pages of instruction, with a maximum 
page size of 4 Mbytes each. There will be instances when the processor accesses to 
a location without a valid CPLB. In this case, an exception error will occur and the 
exception routine must free up one CPLB and reinitialize the CPLB to that location. 
In a more complex application, a page descriptor table is often used to describe 
different memory management models. All the potentially required CPLBs are 
stored in the page descriptor table, and the relevant CPLBs are selected by the 
MMU.

Each CPLB has two associated registers: (a) start address for instruction 
(ICPLB_ADDRn) and data (DCPLB_ADDRn) pages and (b) instruction cache/
protection properties (ICPLB_DATAn) and data cache/protection properties 

Table 7.7 Cycle Counts of Different Cache Modes

Mode Cycle Count Comment

Only data cache enable (default write through)
Only data cache enable (write back)
Only instruction cache enable
Both data and instruction cache enable
Data bank A and bank B as cache
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(DCPLB_DATAn). The letter “n” in the registers indicates page numbers 0, 1,  .  .  .  ,
15 of the 16 pages. Typically, there are some rules for setting up the CPLBs:

1. Default CPLBs are set up for the system memory mapped registers and 
scratchpad memory. There is no need to use additional CPLB to set up these 
regions of memory.

2. CPLB must be confi gured for L1 data and L1 instruction memory as 
noncacheable.

3. Disable all memory other than the desired memory space.

4. Pages must be aligned on page boundaries that are integer multiples of their 
size.

Figure 7.26 and Figure 2.27 show the various bit fi elds and their functionalities 
in the ICPLB_DATA and DCPLB_DATA registers, respectively.

The VisualDSP++ IDDE allows users to set up a startup code when creating a 
new project. A startup code is a procedure that initializes and confi gures the proces-
sor on reset. One of these initialization routines is the confi guration of the proces-
sor’s cache and memory protection. The window shown in Figure 7.28 is obtained 
when a startup code option is enabled. In the Cache and Memory Protection
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Figure 7.26 32-bit ICPLB_DATA register (courtesy of Analog Devices, Inc.)
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option, users can specify the instruction cache memory and data cache memory 
options. There are three options under the instruction cache memory: (1) RAM with 
no memory protection, (2) RAM with memory protection, and (3) instruction cache. 
Under the data cache memory, there are four options: (1) RAM with no memory 
protection, (2) RAM with memory protection, (3) data cache (bank A), (4) 
data cache (banks A and B). The basiccrt.s fi le, which contains the user-speci-
fi ed memory settings and known machine states, is created in the new project fi le 
under the Generated Files folder.

7.4 COMPARING AND CHOOSING 
BETWEEN CACHE AND MEMORY DMA

As long as memory can be fi tted into the internal memory of the processor, cache 
and memory DMA should not be used. However, in cases where data and/or program 
are larger than the available internal memory, part of the code or data must be 
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Figure 7.27 32-bit DCPLB_DATA register (courtesy of Analog Devices, Inc.)
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allocated in external memory. Therefore, there is a need to decide whether DMA or 
cache is a better way of moving data or program into the internal memory of the 
processor. In this section, we analyze different cases for selecting cache or DMA 
as the memory transfer mode.

Case 1: When an application is required to move a large amount of data from 
external to internal memory, the memory DMA should be used because the 
cache memory is limited and DMA also prevents the intervention of the 
processor core.

Case 2: When data is static, data should be mapped into cacheable memory.

Case 3: If DMA is not part of the programming model, use cache memory.

Case 4: In the case of moving program into the internal memory, the preferred 
method is to use the instruction cache. However, when instruction cache 
(even with locking lines in critical code) fails to provide an acceptable per-
formance, program code overlay via DMA is used.

Case 5: When a highly deterministic system is required, instruction and data 
DMA are the preferred option.

Case 6: When a system has no hard real-time constraints, it is preferred to use 
instruction cache and data DMA or data cache.

These cases are just for reference, and there is no perfect answer for selecting 
the right mode. A more detailed description of this topic can be found in [43]. For 

Figure 7.28 Startup code settings: Cache and Memory Protection window
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a more accurate evaluation of the DMA and cache performance, the statistical pro-
fi ler in VisualDSP++ should be used on the actual application code.

7.5 SCRATCHPAD MEMORY 
OF BLACKFIN PROCESSOR

The scratchpad memory in the Blackfi n processor is a dedicated internal memory. 
The BF53x processor has 4K bytes of scratchpad memory, which cannot be confi g-
ured as cache or DMA access. Therefore, scratchpad memory is commonly used to 
house the user and supervisor stacks for fast context saving during interrupts. Alter-
natively, scratchpad memory can be used to store small program code.

7.6 SIGNAL GENERATOR USING 
BLACKFIN SIMULATOR

In this section, we implement the signal generator (as shown in Fig. 7.29) in the 
Blackfi n VisualDSP++ simulator by using a look-up table stored in a data fi le. This 
application is important for generating digital signals internally to test a digital 
system without an external signal generator. A signal generator is programmed to 
take in the user selections and display the generated waveform with VisualDSP++
graphical display.

One period of 1-kHz sine wave samples (sampled at 48 kHz) are stored in a 
data fi le. These samples are extracted to form the desired waveform. For example, 
to form a 2-kHz sinewave, every other sample in the table is extracted. This tech-
nique can be applied to generate any sine wave at a multiple integer of the funda-
mental frequency.

To generate a sawtooth waveform, we add the fundamental frequency with 
several scaled harmonics as follows:

sawtooth x x x x x( ) = ( ) + ( ) + ( ) + ( ) +sin sin sin sin . . .
1

2
2

1

3
3

1

4
4 , (7.6.1)

Signal generator 

User input: 
1: Sinewave (1–20 kHz, step of 1 kHz) 
2: Sawtooth wave (1–5 kHz, step of 1 kHz) 
3: Square wave (1–3 kHz, step of 1 kHz)  

Graphical display 
Look-up 

table 

Figure 7.29 Signal generator for sine, sawtooth, and square waveforms at different frequencies
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where x = 2πf0/fs and f0 is the fundamental frequency. Similarly, a square waveform 
can be generated as follows:

square x x x x x( ) = ( ) + ( ) + ( ) + ( ) +sin sin sin sin . . .
1

3
3

1

5
5

1

7
7 , (7.6.2)

In this section, we program the Blackfi n processor to generate sine, sawtooth, 
and square waves. The Blackfi n processor (BF533/BF537) provides a built-in func-
tion for performing circular addressing that can be effectively used in indexing the 
look-up table. We will use the circular buffer discussed in Section 5.1.3.2 in the 
signal generator program.

HANDS-ON EXPERIMENT 7.9

This experiment uses the project fi le exp7_9.dpj located in directory c:\adsp\chap7\
exp7_9 to perform signal generation. There are three options: (1) a sine wave whose fre-
quency can be varied from 1 to 20 kHz, (2) a sawtooth wave whose frequency can be varied 
from 1 to 3 kHz, and (3) a square wave whose frequency can be varied from 1 to 5 kHz. The 
frequency increment step is 1 kHz, and the sampling frequency is fi xed at 48 kHz.

The main program main.c uses a look-up table stored in the fi le sine1k_halved.
dat. As shown in Figure 7.30, the look-up table consists of one period of 1-kHz sine wave 
with 48 samples. By extracting every other sample in a 1-kHz sine wave, we can generate a 
2-kHz sine wave with a period of 24 samples. In theory, we can continue this process of 
generating a sine wave up to 24 kHz, which is the Nyquist frequency. However, only zero-

Look-up table
2
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Figure 7.30 One period of a 1-kHz sine wave sampled at 48 kHz
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value samples are extracted from the 1-kHz sine wave table to generate a 24-kHz sine wave. 
Therefore, we limit our highest sine wave frequency to 20 kHz.

Activate the VisualDSP++ BF533 (or BF537) simulator and load and build the project. 
Make sure that the correct processor target is selected under Project Options  .  .  .  . Set a 
breakpoint at the “nop” operation at the end of the while loop before running the project. 
Select a particular sine wave frequency and view the graph with the waveout.vps fi le. 
Verify that the generated waveform is correct by viewing the FFT magnitude plot.

Examine the program section that generates the waveout array as shown below:

 for (i=0; i<SAMPLESIZE; i++)
 {
  waveout[i] = lookup_table[idx];
  idx = circindex(idx, freq, DATASIZE);
 }

The build-in function circindex controls the step used to extract the samples from the 
sine wave table. The index idx wraps around once it exceeds 48 samples (DATASIZE) to 
form a circular buffer. The argument freq specifi es the increment of the index.

We can generate other waveforms such as sawtooth and square waves by combining the 
sine wave with its harmonics as shown in Equations 7.6.1 and 7.6.2, respectively. However, 
because of the constraint of the Nyquist frequency, we can only combine a certain number 
of harmonics. Scaling of the harmonics can be done by multiplying the harmonic with the 
corresponding fractional value instead of performing division. The fractional value repre-
sented in (1.15) format is stored in a data fi le, scaler.dat. Verify the correctness of the 
generated waveform by examining the time-domain and frequency-domain plots as shown 
in Figure 7.31.

EXERCISE 7.2

Modify the main program (main.c) to implement the following tasks:

1. Cosine waveform
2. Dual tones of 1 kHz and 3 kHz
3. Triangular waveform

7.7 SIGNAL GENERATOR 
USING BF533/BF537 EZ-KIT

This section performs real-time implementation of the signal generator using the 
BF533/BF537 EZ-KIT to generate sine, sawtooth, and square waves. We can select 
the waveform and its frequency on the fl y without reloading the program. In the 
EZ-KIT experiment, a linearly swept chirp signal is also generated.

HANDS-ON EXPERIMENT 7.10

Activate VisualDSP++ for the BF533 (or BF537) EZ-KIT and open exp7_10_533.dpj (or 
exp7_10_537.dpj) in directory c:\adsp\chap7\exp7_10_533 (or c:\adsp\chap7\
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Figure 7.31 Generation of (a) 1-kHz sine wave ( fs = 48 kHz) and its frequency magnitude, 
(b) 1-kHz sawtooth wave ( fs = 48 kHz) and its frequency magnitude, (c) 1-kHz square wave ( fs =
48 kHz) and its frequency magnitude
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exp7_10_537). The waveform selection and frequency adjustment are carried out with the 
switches on the EZ-KIT as listed in Table 7.8.

An additional feature of this program running on the EZ-KIT is the generation of 
quadrature outputs (right channel is 90° phase shift with reference to the left channel) to the 
stereo output port of the EZ-KIT. Use a headphone to listen to the signals from the left and 
right channels. Alter the program such that the right channel is in phase with the left channel. 
Build the program and listen to the generated stereo signal again. Comment on any percep-
tual difference.

EXERCISE 7.3

Using the project fi les given in the preceding hands-on experiments, perform the 
following tasks:

1. Generate a pair of sine waves with the right channel 180° phase shifted with 
reference to the left channel. Connect the left and right channels to a pair of 
loudspeakers and face these two loudspeakers toward each other. Do you 
hear any reduction in volume? Explain the outcome.

2. Repeat Exercise 1 with no phase shift between the left and right channels.

7.8 SIGNAL GENERATION WITH LABVIEW 
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

In previous chapters, we acquired input signals with the ADC, processed the sampled 
signals, and output them with the DAC. In this section, we create signals on the 
Blackfi n EZ-KIT that can be used as test signals for other systems. Test signals are 
typically generated to contain specifi c frequency information or simulate real-world 
signals. These user-defi ned signals allow engineers to test systems for specifi c 

Table 7.8 Switch Control for Signal Generator

Mode BF533 BF537
 (control by SW7) (control by SW13)

 LED #8 LED #9 LED #5 LED #6

Sine wave Off On Off On
Sawtooth wave On Off On Off
Square wave On On On On
Chirp (linearly sweep from 0 to 10 kHz) Off Off Off Off
Increase frequency* SW4 SW10
Decrease frequency* SW5 SW11

* Not applicable for chirp signal.
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performance or real-world behavior while still in the lab. For instance, communica-
tion signals can be generated based on input data and adhering to a common stan-
dard agreed upon by both the transmitter and the receiver. Another usage of signal 
generation is the creation of control signals. For example, a pulse-width modulated 
(PWM) square wave can be used to control motor speed or heater voltage (or tem-
perature) in an experiment.

In the following experiments, we focus on dual-tone multifrequency (DTMF) 
communication signals. DTMF is the standard protocol used for routing numbers 
pressed on a touch-tone telephone. A typical DTMF keypad is divided into rows 
and columns, where each row and column contains its own unique frequency as 
shown in Figure 7.32. When a key is pressed, two single-frequency signals are gen-
erated and added together to create the touch tone.

In this experiment, LabVIEW is used to simulate custom frequency DTMF 
generator (or encoder) and a DTMF receiver (or decoder). Each signal consists of 
two specifi c tonal frequencies that uniquely identify it. The LabVIEW Embedded 
Module for Blackfi n Processors is then used to prototype and deploy a DTMF 
encoder on the Blackfi n EZ-KIT. The interactive LabVIEW graphical interface is 
used for live debugging and interaction with the DTMF generator running on the 
Blackfi n processor.

HANDS-ON EXPERIMENT 7.11

The purpose of this exercise is to gain an intuitive understanding of how a DTMF 
signal generator works and an understanding of its time- and frequency-domain character-
istics. LabVIEW and the LabVIEW Embedded Module for Blackfi n Processors are 
capable of generating many types of signals in addition to these sine waves and DTMF 
signals.

row 1  697 Hz 1

4

7 8 9

5 6

2 3 A

B

C

D#0*

column 1
1209 Hz

column 2
1336 Hz

column 3
1477 Hz

column 4
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row 2  770 Hz

row 3  852 Hz

row 4  941 Hz

Figure 7.32 Touch-tone phone DTMF mapping
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Open the program DTMF_Encoder_Sim.exe located in directory c:\adsp\chap7\
exp7_11 to see the user interface shown in Figure 7.33. The array of 16 buttons is arranged 
in a 4-by-4 matrix as shown in Figure 7.32. Each row and column has a unique frequency 
assignment giving it a distinct dual-tone combination. Two tonal signals are added together 
to create a DTMF signal. The column and row tonal frequencies can be customized, although 
they may not be interpreted properly by most phone receivers. Note that we use different 
frequencies in Figure 7.33 instead of the standard DTMF frequencies defi ned in 
Figure 7.32.

In Figure 7.33, button “6” is pressed, causing sine waves of frequencies 800 and 
1,400 Hz to be combined into a single signal. The resulting time-domain and frequency-
domain responses can be seen in their respective graphs on the right side of Figure 7.33. Test 
other buttons to verify that the time-domain signal contains the correct corresponding fre-
quencies. Attach loudspeakers or headphones to the audio output of the sound card to hear 
the resulting DTMF tones.

Now open the DTMF_Decoder_Sim.exe application located in directory c:\adsp\
chap7\exp7_11. The interface shown in Figure 7.34 decodes DTMF signals according to 
the default frequencies specifi ed in Figure 7.33.

The sound card output can be connected to the computer audio/microphone input to 
create a loop-back for the DTMF communications. This allows generating and decoding of 
signals when both simulations are running concurrently. The DTMF decoder interprets the 
detected frequencies as a row and a column in the format of Figure 7.33 and displays the 
corresponding button value. Both the time- and frequency-domain signals are shown on their 
respective graphs, and cursors show the values of the last acquired frequency spikes. Device 
ID specifi es which sound card to use if more than one is detected in your machine. Number 

Figure 7.33 DTMF encoder (user interface for DTMF_Encoder_Sim.exe)
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of Samples/ch can be varied to detect different pulse durations. Finally, Threshold is used 
for noise immunity and can be adjusted to reduce false readings.

Note that the acquired signals are not necessarily identical to those generated in each 
row and column combination. Experiment with different values for the DTMF encoder 
frequencies and listen to the tones with loudspeakers (or headphones). Are these results 
expected? Can the two frequencies for a button be placed too close together such that they 
are not distinguishable by the decoder? Explain.

HANDS-ON EXPERIMENT 7.12

This experiment implements the DTMF encoder on the Blackfi n EZ-KIT using the LabVIEW 
Embedded Module for Blackfi n Processors. Running the project in debug mode on the 
target gives us the ability to interact with the graphical front panel interface and 
dictate which tones are generated by the Blackfi n processor. We can then use the DTMF 

Figure 7.34 DTMF decoder (user interface for DTMF_Decoder_Sim.exe)
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decoder application from Hands-On Experiment 7.11 to receive and decode the resulting 
touch-tone signals.

Open the DTMF-BF5xx.lep project located in directory c:\adsp\chap7\exp7_12.
Note that there are four VIs in the project and the top-level VI is DTMF-BF5xx.vi. Double-
click on this VI to open its front panel as shown in Figure 7.35.

Debug mode allows users to press one of the 16 Boolean buttons within the Boolean 
array input and generate the corresponding dual-tone signal. Open the block diagram for 
DTMF-BF5xx.vi to see how the DTMF encoder is implemented in the graphical LabVIEW 
code, as shown in Figure 7.36. Wires on the block diagram can also be probed to view the 
data being passed along them.

The data fl ow determines the execution order, which is generally from left to right. The 
process for outputting a key pressed on the keypad on the front panel follows several distinct 
steps. First, the program evaluates whether a key has been pressed by calculating a Boolean 

Figure 7.35 Blackfi n DTMF encoder (front panel for DTMF-BF5xx.vi)

Figure 7.36 Blackfi n DTMF encoder (block diagram for DTMF-BF5xx.vi)
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logical OR of every element in the buttom array. If the result is true, the key press is detected 
and the resulting signals are combined and sent to the DAC output buffer. The buffer is 
allowed to output for the 500 ms, and then the output buffer is set to zero. In this instance, 
data fl ow is used to implement a 500-ms delay between the two output buffer write VIs by 
preventing the program from continuing until the timer within the sequence structure is 
complete. In this main VI, open each of the three subVIs one by one and explore their block 
diagrams to see how their functionality contributes to the overall DTMF encoder.

Execute the application on the Blackfi n EZ-KIT in debug mode, and make sure that the 
audio output is wired to speakers (or headphones). Press buttons on the front panel to hear 
the tones created by the Blackfi n processor. Next, wire the audio out from the Blackfi n 
processor to the audio/microphone input on the computer. Open DTMF_Decoder_Sim.
exe, which was used in the previous experiment to view and decode the signals generated 
by the Blackfi n processor. Alternatively, implement the Blackfi n DTMF decoder with the 
LabVIEW Embedded Module for Blackfi n Processors and connect the audio out from the 
encoder to the audio in of the decoder in the Blackfi n EZ-KIT.

7.9 MORE EXERCISE PROBLEMS

1. An FFT measurement of a single sine wave is commonly used to assess the performance 
of the ADC. A theoretical SQNR of a 16-bit ADC is 96 dB. However, an N-point FFT 
is used as an N-band spectrum analyzer; therefore, there is a processing gain of the FFT 
that pushes the noise fl oor lower than the ADC noise fl oor. Use Equation 7.1.1 to compute 
the overall noise fl oor. Determine the minimum level of distortion that can be picked 
up by a 1024-point FFT.

2. The SQNR of Equation 7.1.1 is based on the assumption that the input signal, xin, is equal 
to the full-scale level of xmax. However, if the input signal is less than xmax, a new SQNR 
must be derived. In general, the quantization error power can be stated as σ2

e ≈ x2
max/

(3 × 22B). If the input signal power is x2
in, derive the general expression of SQNR.

(a)  Plot the SQNR (in dB) versus input level (in dB) for 8-bit and 16-bit quantizers. The 
input power should range from −50 dB to 0 dB.

(b)  Explain the relationship between SQNR and signal power. Why is there a change 
of SQNR beyond −4.77 dB?

3. The BF537 EZ-KIT uses separate ADC (AD1871) and DAC (AD1854). The data speci-
fi cation of these ADC and DAC can be found in the ADI website. Examine their con-
nections to the BF537 processor in the EZ-KIT and answer the following questions:

(a) What are the resolutions and sampling frequencies of the ADC and DAC?

(b) What are the possible gain settings of the ADC?

(c) Draw the circuit connection from the ADC to the serial port of the BF537.

(d) Draw the circuit connection from the serial port of the BF537 to the DAC.

(e) Is the SPI port being used to program the ADC/DAC?

(f) Examine and explain the timing diagrams of interface formats.

4. A pass-through project of the BF537 is provided in the fi le problem7_4.dpj located 
in directory c:\adsp\chap7\problem7_4. The ADC and DAC in the BF537 EZ-KIT 
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are confi gured for 24-bit receive and transmit. Subsequently, the received 24-bit data 
from the DMA receive buffer (iRxBuffer1) is truncated to 16-bit data before storing 
into the input memory. A simple block copy from the input memory to the output 
memory is performed in the fi le process_data.c. Finally, the 16-bit data from the 
output memory is extended to 24 bits before sending to the DMA transmit buffer 
(iTxBuffer1). Unlike the BF533 EZ-KIT, we cannot control the volume of the ADC 
and the DAC in the BF537 EZ-KIT as the confi guration pins are hardwired to either Vcc 
or ground. Build and run the pass-through project in the BF537 EZ-KIT. Comment on 
the differences between the pass-through programs used in the BF533 and BF537 
EZ-KITs.

5. Using the project fi les given in problem7_4.dpj located in directory c:\adsp\
chap7\problem7_4, modify the program and repeat the same sample-by-sample 
processing and block processing experiments in Hands-On Experiments 7.3 and 7.4, 
respectively, with the BF537 EZ-KIT. Note that the ADC/DAC in the BF537 EZ-KIT 
is operating at 24-bit, and 32-bit DMA transfer is used.

6. In the digital domain, a 0 dBFS corresponds to 0x7FFF for the 16-bit wordlength. There-
fore, any value with reference to full scale has a negative value of dBFS.

(a) What is the dBFS for a value of 0.5 in (1.15) format?

(b) What is the smallest dBFS for the (1.15) format number?

7. Explain why the instruction cache has more cache lines per set compared to the data 
cache.

8. This problem examines the different modes of using data and instruction caches in the 
BF533 processor. An FIR fi lter program is written with its code and data located in the 
external memory. The user can select one of the fi ve cases shown in Table 7.9. Under 
the main.c fi le, select the cases one at a time and observe the cycle count after build-
ing and running c_cache_data.dpj in directory c:\adsp\chap7\problem7_8.
In addition, choose different CPLB_DMYCACHE options in the cplbtab533.s fi le 
when data cache is used to examine the cycle counts of write-through and write-back 
cache. Discuss the performance of using different cache modes. Enable the Cache 
Viewer window (View→ Debug Windows→ Cache Viewer) in VisualDSP++ to visu-
alize the activities of the processor’s cache in simulation mode.

9. In Hands-On Experiment 7.10, the signal is generated continuously. Modify the program 
such that all signals are limited to 3 s.

10. Instead of storing a complete period (48 samples) of the sine wave, a quarter of the sine 
wave (i.e., only 12 samples) can be stored to reduce the memory usage. Modify the 
program in Hands-On Experiment 7.10 to implement a sine wave generator (based on 

Table 7.9 Cycle Count of Different Cache Modes

Case Cycle Count

Disable data and instruction cache
Enable instruction cache only
Enable instruction cache and data cache bank A
Enable instruction cach e and data cache banks A and B
Enable data cache bank A only
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partial data storage) with variable frequency from 1 to 20 kHz. What is the trade-off of 
using a quarter-period of data samples?

11. The touch-tone keypad was shown in Figure 7.32. The keypad numbers are encoded with 
combinations from the low-frequency group and the high-frequency group. A DTMF 
generation can be computed with the look-up table in Section 7.8 provided in LabVIEW 
software. Instead of using a look-up table to generate DTMF tone, we can design a pair 
of IIR fi lters that oscillate at the desired frequencies. See [11] for a detailed description 
of the implementation. A Blackfi n program is written to perform this task on the 
BF533 (or BF537) EZ-KIT. These project fi les are located in directories c:\adsp\
chap7\problem7_11_533 and c:\adsp\chap7\problem7_11_537 for the 
BF533 and BF537 EZ-KITs, respectively. Build and run the project. Read the comment 
section of the main.c fi le for the function of switch settings to test the DTMF gen-
erator. Determine the duration of the tones set in the program. Modify the program to 
construct a piano keyboard.

12. Besides using the IIR fi lters to generate the DTMF tone in Problem 11, we can also use 
a polynomial expansion for sine wave generation. A Blackfi n program is also written to 
perform this task on the BF533 and BF537 EZ-KITs. These project fi les are located in 
directories c:\adsp\chap7\problem7_12_533 and c:\adsp\chap7\problem7_
12_537 for the BF533 and BF537 EZ-KITs, respectively. Build and run the project. 
Examine how fi xed-point polynomial expansion can be carried out with fi xed-point 
arithmetic, and determine its computational load in the fi xed-point Blackfi n processor.

13. Three techniques of sine wave generation, look-up table (Section 7.6), IIR oscillator 
(Problem 11), and polynomial expansion (Problem 12), have been implemented in the 
Blackfi n processor. State the advantages and disadvantages of using these techniques. 
In particular, examine and comment on the cycle count and memory requirement for 
each technique.

14. A 200-tap FIR low-pass fi lter is programmed to remove high-frequency noise; 256 
samples are acquired every block, and the sampling frequency is 48 kHz. The FIR fi lter 
benchmark on the Blackfi n processor is given as: [(number of samples/block)/2] *
[number of taps +7] cycles.

(a)  What is the block rate? In other words, how many times is the buffer full per 
second?

(b)  How many MIPS does this FIR fi ltering algorithm require. When the Blackfi n 
processor is operating at 300 MHz?

(c) What is the percentage of the MIPS being used by the FIR fi ltering algorithm?

(d)  How many channels of simultaneous processing can be performed by the 
processor?

The above questions only evaluate the CPU performance of the processor. The I/O that 
brings in the data from external devices must also be fast enough to handle the multiple 
channels. Analog signal is sampled and quantized with the ADC, and transfers to the 
internal memory via the serial port.

(e)  Compute the bit rate required for the serial port to handle the maximum channel 
density.

(f)  The serial port is operated at full duplex of 50 Mbps. Can the processor handle the 
maximum bit rate computed in (e)?
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(g)  There is another data movement from the serial port to the internal memory of the 
DSP processor via DMA. Can the DMA move the samples from serial port to the 
memory fast enough? The peripheral DMA transfer rate is around 1 Gbps, as stated 
in Section 7.2.2.1.

(h)  If double buffering is implemented in the block FIR fi ltering above, compute the 
internal data memory required. All the coeffi cients and data samples are stored as 
16-bit words.

(i)  Is the internal data memory suffi cient to meet the maximum channel density above? 
If not, what is your recommendation?

15. If the FIR fi ltering in Problem 14 is performed in sample processing mode, compute the 
following:

(a)  Processing MIPS with sample processing mode. Comment on any difference from 
processing MIPS with block processing mode.

(b)  Determine the maximum channel density with sample processing mode.

(c)  Determine the memory required with sample processing mode and check whether 
it is able to fi t into the internal data memory of the Blackfi n processor.
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Chapter 8

Code Optimization and 
Power Management

We have introduced arithmetic, memory architecture, programming, and real-time 
implementation issues for the Blackfi n processors in previous chapters. This chapter 
focuses on code optimization and power management for developing effi cient 
embedded systems with the Blackfi n processor. We explore how to optimize a 
program with faster execution speed, effi cient resource utilization, and power-saving 
features. At the end of the chapter, an FIR fi lter for sampling rate conversion is used 
for hands-on experiments.

8.1 CODE OPTIMIZATION

Because most embedded systems are real-time systems, code optimization in term 
of execution speed is an important performance index. Increasing execution speed 
with code optimization will result in decreasing power consumption; however, this 
may come at the cost of increasing memory usage. In other situations, reducing 
memory usage will result in lower power consumption due to fewer memory accesses, 
but may increase execution time. Speed, memory, and power optimizations deter-
mine the overall cost of the embedded systems. For example, speed optimization 
allows the choice of a slower but less expensive processor; memory optimization 
reduces external memory size; and power optimization means fewer cooling require-
ments and cheaper power supply.

In previous chapters, we have used a simple technique for optimizing C pro-
grams by turning on the Enable optimization option in the C compiler. In this 
chapter, we further optimize C programs by using special optimization settings and 
understanding the different optimization levels. We compare the execution speed 
and memory requirement of using normal C code versus using intrinsic functions. 
In addition, we explore different low-level assembly programming techniques that 
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8.2 C Optimization Techniques 331

can further optimize the code. We use an FIR fi lter as an example to investigate the 
performance of these code optimization techniques.

C code optimization is very important in developing embedded systems. It is 
always easier to use the C compiler for optimization. For example, we can simply 
choose the optimization options in VisualDSP++ and rebuild the project for better 
performance. The performance gain from using C code optimization can be signifi -
cant. However, in cases in which we have to save more processing MIPs and 
memory, assembly code optimization is the only way to achieve this level of 
performance. However, the development cost of writing the overall program with 
100% assembly code far exceeds the performance gain. A better approach is to 
start with writing the code in C, perform a detail profi ling to identify the time-criti-
cal sections of the code, and replace those code segments with assembly program-
ming. A common 80/20% rule states that 80% of the processing time is spent on 
the 20% of the code. Therefore, if we can identify that 20% of the code and optimize 
it with assembly programming, signifi cant performance gain can be achieved. 
A method to identify the hot spot of the workload is through the statistical profi ler 
(for an EZ-KIT) or linear profi ler (for a simulator) in the VisualDSP++
environment.

We use the FIR fi ltering to illustrate the concepts of optimizing both C and 
assembly programs. A pseudo code for implementing the FIR fi lter is shown 
below:

void firc (input, output, filter state)
 // FIR filter initialization
 // declare filter coefficients
 // declare pointer for reading delay buffer
 // declare pointer for updating delay buffer
 // declare number of input samples
 // perform multiply-add in a loop for N taps
 // update delay buffer

This pseudo code serves as a guideline to implement the FIR fi lter with different 
programming languages and styles. Both C and assembly programs are bench-
marked in terms of execution cycles, processing time, and memory (data and code) 
usage. In implementing an FIR fi lter, the 20% of code that consumes 80% of the 
processing time comes from the multiply-accumulate operations and updating the 
delay buffer. Therefore, the optimization effort is concentrated on these bottlenecks. 
In the following sections, several versions of optimized C and assembly codes are 
developed and compared with the reference C and assembly programs without 
optimization.

8.2 C OPTIMIZATION TECHNIQUES

Hands-on experiments given in Chapters 5 and 6 show a large difference of execu-
tion speed between the C code with and without optimization. In particular, the IIR 
fi lter-based eight-band equalizer fails to operate properly when the compiler 
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optimization is disabled. This is because the execution time exceeds the real-time 
constraint. The VisualDSP++ compiler’s optimizer [35] is designed to generate 
effi cient executable code for the program that has been written in a straightforward 
and simple manner. We discuss important programming guidelines and consider-
ations in writing an effi cient C program in the following sections.

8.2.1 C Compiler in VisualDSP++

Figure 8.1 shows the Code Generation window under the C compiler (Compile: 
General(1) option) of Project Options  .  .  .  in VisualDSP++. Not that we can select 
the following parameters in the code optimization options:

1. Enable optimization. Turn on the optimization of C code. It is related to 
the sliding bar at the right column in Figure 8.1. The number indicates the 
optimization level, where [100] represents optimization for speed and [0]
represents optimization for size. Other values of optimization lie between 
100 and 0.

2. Automatic inlining. The compiler automatically inlines C/C++ functions 
that are not declared as inline in the source code. When this option is turned 
on, the compiler inlines the C/C++ function only when there is a reduction 
in execution time. More details on inlining are given in Section 8.2.4.

3. Interprocedural optimization. Most programs consist of more than one 
function, and it is advantageous for the compiler to perform optimization 
over the entire program. A two-stage compilation is performed when the 
interprocedural optimization is turned on. The fi rst stage compiles the 
program and extracts information from all functions. In the second stage, 
the compiler is called from the linker stage to compile the program with the 
information obtained from the fi rst stage.

4. Generate debug information. Allows users to debug programs and set 
breakpoints in C source code.

These optimizations can be applied to all functions in the project fi les. Some-
times, it may be useful that different optimization schemes are applied to different 
sections of the code. For example, a particular section of the code is optimized for 
memory usage, while another section is optimized for execution speed as shown 
below:

Figure 8.1 Code generation options in the Project Option menu
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#pragma optimize_for_space
void op_for_size()  // code optimized for memory usage
#pragma optimize_for_speed
void op_for_speed()  // code optimized for speed
// subsequent function declarations optimized for speed
#pragma optimize off // optimization is turned off

The symbol #pragma {instruction} is placed before the code to be opti-
mized. This symbol is called pragma, and it is an implementation-specifi c directive 
that modifi es the compiler’s behavior. Note that pragma does not produce any object 
code. The Blackfi n C/C++ compiler supports many pragmas as user-specifi ed 
instructions to the compiler for producing a more effi cient code. These pragmas 
perform the following functions:

1. Align data.

2. Defi ne functions that act as interrupt handler.

3. Change the optimization level in different sections of the program.

4. Change how to link an external function.

5. Loop optimization.

6. Header fi le confi gurations and properties.

7. Memory bank usage.

Some of these pragmas are discussed further in the following sections.

8.2.2 C Programming Considerations

This section examines several important C programming considerations [42] for the 
Blackfi n processors.

8.2.2.1 Array versus Pointers

C uses an index or pointer to access a sequence of data from an array. There is no 
clear advantage in using one over the other, but the index is easier to understand. 
The pointer introduces additional variables that need more memory space. In con-
trast, the index must be transformed to a pointer by the compiler, which may degrade 
the performance. Therefore, the best strategy is to start with index style and move 
to pointer style if the former does not provide a good result.

HANDS-ON EXPERIMENT 8.1

This experiment examines the performance difference between the index-style and pointer-
style FIR fi lter routines. The C program process_data.c implements the index-style FIR 
fi lter, which is located in directory c:\adsp\chap8\exp8_1a_533 for the BF533 EZ-KIT 
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(or c:\adsp\chap8\exp8_1a_537 for the BF537). A section of the FIR fi ltering program 
for indexing array is listed below. Note that there is a need to perform a right shift of 15 bits 
to save the 16 most signifi cant bits (excluding the extra sign bit) of the fract32 variable 
acc to the fract16 variable out. The updating of the delay buffer is carried out by 
shifting the data in the wdelaybuf array iteratively.

for (i=0; i<IP_SIZE; i++)
 {
  wdelaybuf[0]=in[i];
  for (j=0; j<nc; j++) // perform MAC
  {
   acc+=coef[j]*wdelaybuf[j];
  }
  out[i] = (fract16) (acc >> 15);
  for (k=(nc-1); k>=1; k–) // update delay buffer
  {
   wdelaybuf[k]=wdelaybuf[k-1];
  }
  acc = 0;
 }

In the case of the pointer-style FIR fi lter, pointers point to the coeffi cient and delay 
buffers. However, pointers introduce additional variables that need extra memory locations. 
A section of the pointer-style FIR fi lter program is shown below. The project fi le is located 
in directory c:\adsp\exp8_1b_533 for the BF533 EZ-KIT (or c:\adsp\exp8_1b_537
for the BF537).

for (i=0; i<IP_SIZE; i++)
 {
  *wdelaybuf=in[i];
  for (j=0; j<nc-1; j++) // perform MAC
  {
   acc += *coef++ * (*rdelaybuf++);
  }
  acc += *coef * (*rdelaybuf);
  out[i] = (fract16) (acc >> 15);
  tempdelaybuf = rdelaybuf; // update delay buffer
  rdelaybuf-=1;
  for (k=(nc-1); k>=1; k−−)
  {
   *tempdelaybuf−− = *rdelaybuf––;
  }
  acc = 0;
  coef=state.h;
  rdelaybuf=state.d;
 }

Build the project based on the index-style 32-tap FIR fi lter with 32 samples per block 
without optimization. The cycle count needed to perform 32 samples of FIR fi ltering is 
recorded by clicking on View Æ Debug Windows Æ BTC Memory. Select Cycle Counter
from the BTC Memory window and select display format to hex32. Enable Auto Refresh
and run the project. Click on SW6 for the BF533 (or SW11 for the BF537) to enable the FIR 
fi ltering. Now, select Enable optimization[100] and repeat the build and benchmark pro-
cesses. Record the cycle count in Table 8.1. Repeat the experiment for the pointer-style FIR 
fi lter.
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HANDS-ON EXPERIMENT 8.2

The preceding experiment benchmarks the execution speed based on cycle count. This 
experiment uses VisualDSP++ to benchmark the memory usage of the program and data. 
Click on Project Æ Project Options  .  .  .  Æ Link Æ General and enable Generate symbol 
map. An XML document containing the memory information will be generated after the 
build process. This fi le can be found in directory ..\Debug. Open the .map fi le and search 
for the FIR fi lter program memory as shown in Figure 8.2(a), the data memory as shown in 
Figure 8.2(b), and the buffer memory as shown in Figure 8.2(c).

Note that the size stated in the table is in byte units. Determine the length of the FIR 
fi lter and the number of data samples acquired per block. Benchmark the code size for the 
index-style and pointer-style FIR fi lters given in Hands-On Experiment 8.1. Experiment with 
different levels of optimization for execution speed and memory size and fi ll in the results 
in Table 8.2.

Table 8.1 Cycle Count Benchmark for 32-Tap FIR Filter (with 32 Data Samples/Block)

FIR Filter Program in C Cycle Count

 Optimization On Optimization Off

Index style
Pointer style

Symbol Demangled Name Address Size Binding 

Address Size

_firc firc 0xffa0119c 0xc6 GLOBAL

_Process_Data Process_Data 0xffa01262 0x168 GLOBAL

(a) Input section .\Debug\Process_data.doj(program)

Symbol Demangled Name Binding 

__btc_nNumBtcMapEntries _btc_nNumBtcMapEntries 0xff8002bc 0x0 GLOBAL

_lpf lpf 0xff8002c0 0x40 GLOBAL

_ldelay ldelay 0xff800300 0x40 GLOBAL

_rdelay rdelay 0xff800340 0x40 GLOBAL

(b) Input section .\Debug\main.doj(data1)

Symbol Demangled Name Address Size Binding 

_iTxBuffer1 iTxBuffer1 0xff902234 0x200 GLOBAL

_iRxBuffer1 iRxBuffer1 0xff902434 0x200 GLOBAL

(c) Input section .\Debug\main.doj(bsz)

Figure 8.2 Memory information for FIR fi lter program (a), data for FIR fi lter (b), and data for 
input and output block buffer (c)
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8.2.2.2 Using Loop Optimization Pragmas

In general, it is most effective to apply loop pragmas to the innermost loops. The 
loop pragmas are placed before the loop statement to supply additional information 
to the compiler to perform a more aggressive optimization. For example,

#pragma vector_for
for (i=0; i < 100; i++)
 a[i] = b[i]

. . .

The pragma directive notifi es the optimizer that it is safe to execute two iterations 
of the loop in parallel. However, this pragma does not force the compiler to vectorize 
the loop. The fi nal decision is still determined by the optimizer.

As seen in previous chapters, DSP algorithms usually involve extensive looping. 
Therefore, it is very important that the compiler can optimize the loop operations. 
The Blackfi n C compiler can automatically perform loop unrolling and use multiple 
arithmetic units for loop optimization.

8.2.2.3 Using Data Alignment Pragmas

The data alignment pragmas are used for the compiler to arrange data within the 
processor’s memory. For example, the following pragmas are used to align data to 
different byte boundaries:

#pragma align 1
char a; // 1-byte alignment
#pragma align 2
short b; // 2-byte alignment
#pragma align 4
int c; // 4-byte (or 32-bit) alignment
#pragma align 8
int d; // 8-byte (or 64-bit) alignment

In the Blackfi n processor, a word is defi ned as 32-bit data. Data are often fetched 
with 32-bit loads and must be word (or 32-bit)—aligned to generate effi cient 
code. In other words, the last two bits of the starting address of the data must 
be zero. Because data and coeffi cients in the FIR fi lter are 16 bits, we can use 
#pragma align 2 to align these variables to a 2-byte boundary. Figure 8.3 

Table 8.2 Memory Benchmark for 32-Tap FIR Filter (Using 32 Data Samples/Block)

FIR Filter Program in C (firc) Code Size in Bytes

 Optimization On Optimization Off

Index style
Pointer style
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shows the possible starting addresses for the array aligned to 2-byte and 4-byte 
boundaries.

8.2.2.4 Using Different Memory Banks

The memory bank pragma allows the compiler to assume that groups of 
memory accesses in a loop based on different pointers reside in different memory 
banks. This pragma will improve memory access because the processor is capable 
of accessing multiple data from different banks in a single instruction. For 
example,

#pragma different_banks
for (i=0; i < 100; i++)
 a[i] = b[i]

. . .

The above pragma uses different memory banks to allow simultaneous accesses to 
arrays a and b.

8.2.2.5 No Aliasing

#pragma no_alias tells the compiler that the following loop has no load or 
store instruction that accesses the same memory. Using the no alias pragma leads 
to a better code because it allows any number of iterations (instead of two at a time) 
to be performed simultaneously.

HANDS-ON EXPERIMENT 8.3

This experiment investigates the performance gain from using some of the pragmas intro-
duced in the preceding subsections. We use the index-style FIR fi lter example in Hands-On 

0x0000 0000 

0x0000 0002 

0x0000 0004 

0x0000 0006 

0x0000 0008 

0x0000 000A 
  : 
  :

Array or data 
must start from 
one of the 
address

align 2:
Last bit of starting 
address must be zero. 

0x0000 0000 

0x0000 0004 

0x0000 0008 
  : 
  : 

align 4:
Last 2 bits of starting address
must be zero 

Figure 8.3 Data alignment for 2-byte and 4-byte boundaries
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Experiment 8.1 to test the optimization performance. Note that optimization must be 
turned on for the pragmas to be effective. Open the project fi le exp8_3_533.dpj for the 
BF533 EZ-KIT (or exp8_3_537.dpj for the BF537). This fi le is located in directory 
c:\adsp\chap8\exp8_3_533 (or c:\adsp\chap8\exp8_3_537). Examine the 
Process_data.c fi le to see the additional pragma instructions. Benchmark the perfor-
mance gain of the optimized C code with pragmas as comparing with the C code without 
optimization. Note that the instruction __builtin_aligned( ) is similar to the data 
alignment pragma. Change the data alignment to four bytes and observe any difference in 
performance. Comment out the pragmas and rebuild the project with optimization. Observe 
any change in performance.

8.2.2.6 Volatile and Static Data Types

When declaring variables in the C source fi le, a volatile data type is declared to 
ensure that the optimizer is aware that their values may be changed externally at 
any time. The volatile data type is important for peripheral-related registers and 
interrupt-related data. For example, in the previous experiment, the transmit buffer 
iTxBuffer and the receive buffer iRxBuffer are declared as volatile because 
these variables are constantly updated by the DMA.

Static variables can only be accessed by the function in which they were 
declared as local variables. The static variable is not erased on exit from the func-
tion; instead, its value is preserved and is available when the function is called again. 
For example, the index variables, j and k, in the EX_INTERRUPT_HANDLER are 
declared as static because these values must be correctly maintained in the interrupt 
service routine.

8.2.2.7 Global versus Local Variables

Local variables are normally aliased to the core registers or internal memory. Local 
variables have an advantage over the global variables because the compiler does not 
need to maintain the local variables outside the scope. However, global variables 
reduce the size of the stack.

8.2.2.8 Arithmetic Data Types

As shown in Chapter 6, we use integer data types to represent fractional numbers 
for the fi xed-point Blackfi n processor. In Table 6.7, we observe that the integers can 
be represented as char (8 bit), short (16 bit), int (32 bit), and their unsigned 
formats. We can also use fract16 and fract32, which are mainly reserved for 
fractional built-in or intrinsic functions. These data types are described in the next 
section.

For example, the following code performs a 256-tap FIR fi lter using the integer 
data type:
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int filter(short *in, short *coeff)
{
 int i;
 int acc=0;
 for (i=0; i<128; i++) {
  acc += ((in[i]*coeff[i])>>15);
 }
 return acc;
}

Floating-point arithmetic is usually avoided for the Blackfi n processor because 
it requires much a longer processing time. If fl oating-point arithmetic is required in 
certain sections of the code, it can be implemented with library routines. However, 
the optimizer is ineffective for optimizing fl oating-point code.

8.2.3 Using Intrinsics

The VisualDSP++ compiler supports intrinsic functions for effi cient use of the 
Blackfi n’s hardware resources. These built-in C-callable functions generate assem-
bly instructions that are designed to optimize the code produced by the compiler, 
or to effectively access system hardware. The intrinsic functions generally operate 
on single 16- or 32-bit values, and they support the following operations and 
functions:

1. Fractional value built-in functions

2. European Telecommunications Standard Institution (ETSI) support

3. Complex fractional data and operations

4. Viterbi history and decoding functions

5. Circular buffer functions

6. Endian-swapping functions

7. System built-in functions

8. Video operation functions

9. Misaligned data functions

Refer to the VisualDSP++ 4.0 C/C++ Compiler and Library Manual for Blackfi n 
Processors [35] for details on using intrinsic function. In the following, we briefl y 
introduce some of intrinsic functions.

The fractional value built-in function provides access to fractional arithmetic 
and the parallel 16-bit operations supported by the Blackfi n instructions. For 
example, the intrinsic functions add_fr1x32( ) and mult_fr1x32( ) perform 
add and multiply of 32-bit fractional data, respectively. By using the intrinsic func-
tions, the compiler can perform different optimization techniques to speed up the 
execution. In addition, the intrinsic functions support saturation arithmetic that 
prevents overfl ow. This is in contrast to the standard C program, which needs addi-
tional routines for checking overfl ows and setting saturation arithmetic.
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The FIR fi lter routine using intrinsic functions can be written as follows:

#include <fract.h>
fract32 filter(fract16 *in, fract16 *coeff)
{
 int i;
 fract32 acc=0;
 for (i=0; i<128; i++) {
  acc = add_fr1x32(acc,mult_fr1x32(in[i],coeff[i]));
 }
 return acc;
}

The use of the intrinsic functions to implement the FIR fi ltering routine is illustrated 
in Hands-On Experiment 8.4.

HANDS-ON EXPERIMENT 8.4

This experiment evaluates the performance improvement using the intrinsic functions for 
implementing FIR fi lter on the Blackfi n processor. The experiment fi les can be found in 
directory c:\adsp\chap8\exp8_4_533 for the BF533 EZ-KIT (or c:\adsp\chap8\
exp8_4_537 for the BF537). Turn on the optimization option before building the project. 
Benchmark the cycle count and memory size of the C code using intrinsics and record the 
results in Table 8.3. Compare the performance with the index-style C code with optimization 
given in Hands-On Experiment 8.1.

In previous hands-on experiments, we used several intrinsic functions to perform 
fractional arithmetic such as addition, multiplication, absolute value, and shift. These 
intrinsic functions are categorized under the fractional value functions that support 
fractional arithmetic and parallel 16-bit operations. Special C data types are used with 
these built-in functions. Table 8.4 lists the fractional value C data types. The fract.h
header fi le provides access to the defi nitions of the fractional value built-in functions. 

Table 8.3 Cycle Count and Code Size for the C Code 
with Intrinsics

C Code Using Intrinsics (with optimization)

Cycle count

Code size (in byte) (firc)

Table 8.4 Fractional Value C Data Types

C Type Number Representation

fract16 Single 16-bit signed fractional value in (1.15) format
fract32 Single 32-bit signed fractional value in (1.31) format
fract2x16 Double 16-bit signed fractional value in (1.15) format
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Some of the commonly used fractional 16-bit and 32-bit functions are listed in 
Table 8.5.

The ETSI build-in functions are included in the libetsi.h header fi le. Similar to the 
fractional value built-in functions, the ETSI functions operate on both 16-bit and 32-bit 
fractional data. The ETSI functions include fractional multiply-accumulate, multiply-sub-
tract, and divide.

The complex fractional built-in functions consist of complex_fract16 and complex_
fract32 data types and support complex fractional multiply and accumulate, square, and 
distance. The header fi le complex.h must be included in the program to use these complex 
data types.

The VisualDSP++ compiler also provides intrinsic functions for automatic circular 
buffer generation, circular indexing, and circular pointer reference. These built-in functions 
are defi ned in the ccblkfn.h header fi le. Circular indexing was used in the previous 
hands-on experiment to update the pointer for a circular buffer. For example, the function 
circindex(index, incr, nitems) is used in the signal generator experiment in Section 
7.6. The index and incr arguments are the circular buffer index and the step increment, 
respectively. The nitems argument is the length of the circular buffer. In addition, Visu-
alDSP++ includes a function that performs a circular buffer increment of a pointer as follows:

void *circptr(void *ptr, long incr, void *base, unsigned long 
buflen);

Note that both incr and buflen are specifi ed in bytes.

Table 8.5 Fractional 16-Bit and 32-Bit Built-In Functions

Built-in Functions Operations

fract16 add_fr1x16 Add two 16-bit fractional numbers.
fract16 mult_fr1x16 Multiply two 16-bit fractional numbers. The result is
  truncated to 16 bits.
fract32 mult_fr1x32 Multiply two 16-bit fractional numbers and return the
  32-bit result.
fract16 abs_fr1x16 Perform absolute value of the input number.
fract16 shl_fr1x16 Perform arithmetic left shift with sign extension for 
  signed number.
fract16 shr_fr1x16 Perform arithmetic right shift.
fract32 add_fr1x32 Add two 32-bit fractional numbers.
fract32 Multiply two 32-bit fractional numbers. The result is 
 mult_fr1x32x32  rounded to 32 bits.
fract16 sat_fr1x32 Saturate a 32-bit fractional number to 0x7FFF or 0x8000. 
  Otherwise, return the lower 16 bits of the number.
fract16 round_fr1x32 Rounds a 32-bit number to 16-bit using biased rounding.
fract2x16 mult_fr2x16 Multiply two packed 16-bit fractional numbers, and

truncate the result to 16 bits. Note that the fract2x16
  type represents two fractional 16-bit numbers packed
  into upper and lower halves and makes use of the dual
  multipliers.

* All fractional built-in functions are in saturation mode.
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HANDS-ON EXPERIMENT 8.5

In the previous experiments, the delay buffer was updated in a linear fashion as shown in 
Figure 8.4(a). All data in the buffer must be physically shifted by one position downward after 
the end of the multiply-accumulate operations of the FIR fi ltering. The oldest data are dis-
carded and the new data sample is inserted at the top of buffer. Figure 8.4(b) shows the cir-
cular buffer, which does not require the physical moving of data. Instead, the circular buffer 
uses a pointer to replace the oldest data sample by the new data sample and updates the pointer 
in modulo fashion (wrap back) once the pointer reaches the bottom of the circular buffer.

This experiment implements the circular buffers for the FIR fi ltering. The experiment 
can be found in directory c:\adsp\chap8\exp8_5_533 for the BF533 EZ-KIT (or c:\
adsp\chap8\exp8_5_537 for the BF537). The FIR fi lter program using the circular buffer 
is listed as follows:

for (i=0; i<IP_SIZE; i++)
 {
   *wdelaybuf = in[i];
   acc = mult_fr1x32(coef[0],*wdelaybuf);
   for (j=1; j<nc; j++)
   {
    wdelaybuf = circptr(wdelaybuf, 2, state.d, 2*TAPS);
    acc = add_fr1x32(acc,mult_fr1x32(coef[j],*wdelaybuf));
   }
   out[i] = (fract16)(acc >>15);
   acc = 0;
 }

This code uses the circular pointer to the delay buffer wdelaybuf. The pointer is 
increased by 2 bytes, and the length of the buffer is 2*TAPS bytes. Build the project with 
optimization and benchmark the performance against the FIR fi lter using a linear buffer in 
Hands-On Experiment 8.4. Fill in the benchmark results in Table 8.6.

8.2.4 Inlining

VisualDSP++ supports an “inline assembly” feature that allows programmers 
to insert small sections of assembly code within the C program. For example, 

x(n)

x(n-1) 

x(n-2) 

x(n-3) 

x(n-4) 
(1) New data 
replaces 
oldest 
sample 

(2) Pointer 
wraps back to 
the beginning 
of buffer  

(b) Circular buffer(a)  Linear buffer

discarded

x(n)

x(n-1) 

x(n-2) 

x(n-3) 

x(n-4) 

New 
data

Figure 8.4 Linear buffer (a) and circular buffer (b)
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the C statement asm(“nop;”) inserts a nop assembly instruction into the C code. 
However, inline assembly must be avoided when built-in functions are available. In 
addition, a volatil keyword is used to prevent an asm() instruction from being 
moved, combined, or deleted, for example, asm volatile(“nop;”).

VisualDSP++ uses the keyword inline to indicate that functions should have 
C code generated inline at the point of call. For example,

inline int mult(int a, int b) {
 return(a*b);
}

The use of this keyword has the advantages of reducing program-fl ow latencies, 
function entry and exit instructions, and parameter passing overheads. However, this 
keyword is only useful for small and frequently used functions, which gives the best 
gain in execution speed with little increment in code size.

Inline code is often used instead of a subroutine because a subroutine incurs 
overhead. Although a subroutine is more effi cient in code size, inline code gains in 
execution speed. Therefore, software designers must make a careful decision on this 
memory-speed trade-off.

8.2.5 C/C++ Run Time Library

The C/C++ run time library is the collection of functions, macros, and class tem-
plates. This library simplifi es the software development by providing many ready-
to-use functions such as standard I/O routines, character and string handling, 
fl oating-point arithmetic emulation, mathematics, and others. Table 8.7 lists the 
standard C run time library header fi les.

8.2.6 DSP Run Time Library

The DSP run time library supports many general-purpose DSP algorithms such as 
fi lters, FFT, vector and matrix functions, math functions, statistical functions, 
window functions, and others. Table 8.8 lists the DSP library functions and their 
header fi les. These DSP functions were called from the main program in many 

Table 8.6 Cycle Count and Code Size for the C Code 
Using Circular Buffer Intrinsic Functions

C Code with Intrinsics with Optimization and Circular 
Buffer

Cycle count

Code size (in byte) (firc)
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hands-on experiments in previous chapters. In addition, VisualDSP++ provides the 
source code of these DSP functions, which can be found in directory c:\Program 
Files\Analog Devices\VisualDSP 4.0\Blackfin\lib\src\libdsp.
These source codes are available with .asm and .c extensions.

These functions support different data types including float, double, long
double, and fract16. A detailed description of the DSP library functions can be 
found in the VisualDSP++ 4.0 C/C++ Compiler and Library Manual for Blackfi n 
Processors [35]. Table 8.9 shows the cycle count and the code size of some com-
monly used DSP library functions.

EXAMPLE 8.1

Using the FIR fi lter benchmark results listed in Table 8.9, we can determine the memory 
required to perform a 256-tap FIR fi lter (with 16-bit arithmetic) using sample and block 
processing modes as follows. The FIR fi lter is sampled at 48 kHz.

1. Sample processing. Data memory includes 256 × 2 bytes for the coeffi cient buffer, 
255 × 2 bytes for the delay buffer, and 2 × 2 bytes for input and output. From the 
benchmark results, 354 bytes are required for the code. Thus the total memory 
needed is 1,380 bytes.

2. Block processing (using a block size of 32 samples). Data memory includes 512 bytes 
for coeffi cients and 510 bytes for the delay buffer. There are 4 × 32 × 2 bytes required 
for the input and output buffers in the ping-pong buffering scheme. Again, 354 bytes 
are required for the code. Thus the total memory needed is 1,632 bytes.

Table 8.7 Standard C Run Time Library Header Files

Functions Header Files

Diagnostics assert.h

Character handling ctype.h

Macros and data structures for alternative device drivers device.h

Enumerations and prototypes for alternative device drivers device_int.h

Error handling errno.h

Floating point float.h

Boolean operation iso646.h

Limits limits.h

Localization locale.h

Mathematics math.h

Nonlocal jumps setjmp.h

Signal handling signal.h

Variable arguments stdarg.h

Standard defi nitions stdef.h

Input/output stdio.h

Standard library stdlib.h

String handling string.h

Date and time time.h
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EXAMPLE 8.2

Based on Table 8.9, determine the cycle count and processing MIPS in implementing a 256-
tap FIR fi lter (with 16-bit arithmetic) using sample and block processing modes. The FIR 
fi lter is sampled at 48 kHz.

1. Sample processing. The cycle count needed to perform FIR fi ltering for generating 
one output sample ∼194 cycles. Thus MIPS needed for performing sample FIR fi lter-
ing ∼9.3 MIPS.

Table 8.8 DSP Library Functions and Header Files

Functions Header Files

Complex arithmetic function complex.h

Cycle count function cycles.h

Filters and transformations filter.h

Math functions math.h

Matrix functions matrix.h

Statistical functions stats.h

Vector functions vector.h

Window functions window.h

Table 8.9 Benchmark of Some DSP Library Functions

Functions Cycle Count Code Size (in bytes)

fir_fr16 ∼ 64 + Nb/2 × (3 + Nc) 354
FIR fi lter in (1.15) format
(Nb: number of input sample/block)
(Nc: number of coeffi cients)

iir_fr16 ∼ 58 + 3 ×Ni ×B + 1.5 ×Ni 384
IIR fi lter in (1.15) format
(B: number of biquad)

div16 ∼35  32
16-bit integer divide

sin_fr16 ∼25  78
Sine function in (1.15) format

sqrt_fr16 ∼ 33 + 8 × log4(8192/In) 116
Square root function in (1.15) format  for positive input value
(In: input value in (1.15) integer)

mean_fr16 ∼ 20 + Nb  58
Mean function in (1.15) format
(Nb: number of samples)

Extracted from the comment section of ADI source codes.
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2. Block processing (using a block size of 32 samples). The cycle count needed to 
perform FIR fi ltering on 32 samples ∼4,208 cycles. Thus, to perform 1 sample 
requires ∼4,208/32 = 131.5 cycles. The required MIPS for performing the block FIR 
fi lter ∼6.3 MIPS. Therefore, we can perform more tasks on the same processor with 
the block processing mode.

HANDS-ON EXPERIMENT 8.6

The DSP library functions are hand-optimized in either assembly or C. This experiment 
examines the performance of the FIR fi lter function fir_fr16 given in the run time 
DSP library. This function has been used in many previous hands-on experiments. In this 
experiment, we build the project and benchmark its cycle count and code size. The 
experiment fi le is located in directory c:\adsp\chap8\exp8_6_533 for the BF533 EZ-
KIT (or c:\adsp\chap8\exp8_6_537 for the BF537). Fill in the results in Table 8.10 and 
compare with the previous benchmark results using intrinsic functions. Comment on the 
results.

Table 8.10 Cycle Count and Code Size for C Code Using 
the Run Time DSP Library

C Code Using Run Time DSP Library Function fir_fr16

Cycle count

Code size (in byte) (fir_fr16)

8.2.7 Profi le-Guided Optimization

Profi le-guided optimization (PGO) allows the compiler to use data collected during 
program execution for the optimization analysis. Representative data sets are passed 
to the application program to profi le which sections of the code are executed most 
frequently in order for the compiler to perform selective optimization. The process 
of performing PGO is stated as follows:

1. Compile the application program to collect profi le information.

2. Run the application in the simulator using a representative data set.

3. The simulator accumulates the profi le data and identifi es the “hot spot” for 
optimization.

4. Recompile the application program by using the collected profi le data.
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In particular, PGO informs the compiler about the application that 
affects branch prediction, improves loop transformation, and reduces code size. 
Therefore, the compiler can perform more advanced and aggressive optimizations 
by using profi ler statistics generated from running the application with representa-
tive data.

HANDS-ON EXPERIMENT 8.7

This experiment illustrates the process of using PGO in the VisualDSP++ simulator. This 
simple program multiplies the positive and negative input samples with different gain values, 
and the compiler decides the most common case in an if. . .else construct. Use the fol-
lowing steps to perform PGO experiment:

1. Activate the BF533 (or BF537) VisualDSP++ simulator and load the project 
fi le exp8_7.dpj in directory c:\adsp\chap8\exp8_7. Make sure that the 
target processor (in Project Options menu) matches the selected simulator 
type.

2. The C program uses three input data fi les. The fi rst data fi le, dataset_1.dat, has 
50% positive samples; the second fi le, dataset_2.dat, has 75% positive samples; 
and the third fi le, dataset_3.dat, has 100% positive samples. Users can read 
these data fi les by double-clicking on the fi lename. Because these fi les contain a bias 
toward the positive samples, more execution time is needed for the if branch. 
Therefore, this information will be used by the PGO to tune the compilation to 
optimize the if branch.

3. The data sets must be fed into the PGO by clicking on Tools Æ PGO Æ
Manage Data Sets. Figure 8.5 shows the Manage Data Sets dialog box, 
which allows users to control the optimization level. Set Optimization level to 
Fastest Code. Click on New  .  .  .  to open the Edit Data Set dialog box. Replace 
the Data set name with a more descriptive one such as 50%p50%n for a fi le 
with 50% positive numbers. Type in the fi le name dataset_1.pgo in Output 
fi lename.

4. Attach an input stream to the data set by clicking on the New  .  .  .  button in the 
Edit Data Set dialog box. An Edit PGO Stream dialog box is opened as 
shown in Figure 8.6. Key in the input fi le dataset_1.dat in the Filename
fi eld and other parameters as shown in Figure 8.6. Click on OK to return to the 
Edit Data Set dialog box. Click on OK to save the data set and close the dialog 
box.

5. Create the remaining two data sets by following Steps 3 and 4. We can also use the 
Copy button in the Manage Data Set dialog box to speed up the creation of these 
two data sets. Highlight the input fi le under Input Streams  .  .  .  and click on Edit to 
enter a new name in Input Source File.

6. Once the data sets have been confi gured, we can optimize the program by clicking 
on Tools Æ PGO Æ Execute Data Sets. Note that the project is built and run with 
different data sets. The simulator will monitor the number of cycles and the execution 

TEAM LinG



348 Chapter 8 Code Optimization and Power Management

path and store them in the respective .pgo fi les. Subsequently, the project is recom-
piled by using the information in the .pgo fi les to optimize the executable code. 
Finally, the executable code is run again with the data sets to measure the speed gain 
after optimization.

7. When the execution in Step 6 is completed, an XML report of the PGO result is 
generated and displayed as shown in Figure 8.7.

Figure 8.5 Manage Data Sets and Edit Data Set dialog boxes

Figure 8.6 Edit PGO Stream dialog box
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8.3 USING ASSEMBLY CODE 
FOR EFFICIENT PROGRAMMING

We have used different C programming techniques to enhance the performance of 
the C code. These techniques are under the fi rst level of optimization and have the 
advantage of being easy to program and maintain. However, a C program does not 
give the programmer complete control over using registers, addressing modes, paral-
lel instructions, zero-overhead loops, and managing multiple resources of the 
processor. Therefore, a C program may produce a larger code size and a slower 
execution speed.

The DSP run time library functions mentioned in Section 8.2.6 are mainly 
written in optimized assembly to take advantage of the unique features of the 
Blackfi n processors. These source codes serve as important references in learning 
the art of optimizing the low-level programming in Blackfi n processors. Because 

Command line: 

Input stream: 
File: C:\ADSP\CHAP8\exp8_7\DataSet1.dat
Device: 0xFFD00000-0xFFD00FFF 

PGO output: C:\ADSP\CHAP8\exp8_7\dataset1.pgo

Before optimization: 7111 cycles 

After optimization: 7111 cycles 

Cycle reduction: 0.00%

Command line: 

Input stream: 
File: C:\ADSP\CHAP8\exp8_7\DataSet2.dat
Device: 0xFFD00000-0xFFD00FFF 

PGO output: C:\ADSP\CHAP8\exp8_7\dataset2.pgo

Before optimization: 7943 cycles 

After optimization: 6279 cycles 

Cycle reduction: 20.95%

Command line: 

Input stream: 
File: C:\ADSP\CHAP8\exp8_7\DataSet3.dat
Device: 0xFFD00000-0xFFD00FFF 

PGO output: C:\ADSP\CHAP8\exp8_7\dataset3.pgo

Before optimization: 8775 cycles 

After optimization: 5447 cycles 

Cycle reduction: 37.93%

Data Set: 50%p50%n 

Data Set: 75%p25%n 

Data Set: 100%p0%n 

Figure 8.7 PGO results on the program in Hands-On Experiment 8.7

8.3 Using Assembly Code for Effi cient Programming 349

TEAM LinG



350 Chapter 8 Code Optimization and Power Management

an assembly code requires more time to write and maintain, a good practice is to 
write the time-critical or resource-critical sections of code in assembly and leave 
most of the housekeeping and initialization tasks in C. This hybrid C-and-assembly 
code produces the best balance between development time and code effi ciency. As 
discussed above, 20% of the code accounts for 80% of the execution time. This 20% 
of code can be written in assembly to optimize the most critical portions of the 
code.

In the following sections, we highlight some important optimization techniques 
for assembly programming [28]. We benchmark the performance of these tech-
niques with the FIR fi lter. We begin by writing a linear assembly code without using 
any special feature of the Blackfi n processor, and gradually add low-level optimiza-
tion techniques, one at a time, to show the corresponding improvement achieved by 
different changes. Based on the pseudo code listed in Section 8.1, we can write the 
assembly code in the following three parts:

1. Initialization. The data sample and the corresponding fi lter coeffi cient are 
fetched to registers R0.L and R2.L, respectively. A delay line buffer is defi ned in 
memory. The initialization code is listed as follows:

E_FIR_START: R0.L=W[P0++P3]; //  fetch x(n) from input 
array

 R2.L=W[I2]; // fetch filter coefficient
 I1=P4; // index to READ/WRITE pointer
 W[I0]=R0.L; //  store input sample into delay 

buffer
  // restore delay line address in I1

2. Multiply-accumulate operation. Multiply-accumulate is the key operation 
in FIR fi ltering. The multiplication is carried out between the 16-bit data sample in 
R0.L and the fi lter coeffi cient in R2.L, and the 32-bit result is accumulated in the 
40-bit register A0. The multiply-accumulate operation is repeated for the number of 
taps in the FIR fi lter. A software loop is used in the linear assembly code as 
follows:

 R6=P2; // setup inner loop counter
E_MAC_ST: R2.L=W[I2++]; // input sample
 R0.L=W[I1++]; // filter coefficient
 A0+=R0.L*R2.L; // multiply add
 R6 += -1; // decrement loop counter
 CC=AZ; // is CC a zero?
E_MAC_END: if !CC JUMP E_MAC_ST;
 R3.L=A0(S2RND); // save in a register

Note that the register R6 is used as a counter for the software loop. This register is 
decremented at every iteration, and the CC fl ag is compared with zero. If this fl ag is 
not zero, the program returns to the start of the fi ltering loop (E_MAC_ST), and 
repeats the multiply-accumulate operation of the next coeffi cient and the correspond-
ing data sample. This process continues until the loop counter equals the number of 
fi lter taps. The fi nal fi ltering result in A0 is rounded and stored to register R3.L.
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3. Update the delay line buffer. The fi nal part of FIR fi ltering is to update 
the delay line implemented as the linear buffer. A software loop that performs the 
buffer update as follows:

R6=P2; // loop counter to update buffer
UPDATE_BUF_ST: W[I0–]=R1.L; // update input samples
 I0-=2;
 R1.L=W[I0++];
 R6 += -1; // decrement loop counter
 CC=AZ; // is CC a zero?
UPDATE_BUF_END: if !CC JUMP UPDATE_BUF_ST;

Again, the counter R6 is initialized to the total number of taps. The oldest data 
sample is replaced by the next data sample in the delay line via register R1.L, and 
this linear replacement (or shifting) of the data samples is carried out until the end 
of the buffer. This operation is shown in Figure 8.8.

HANDS-ON EXPERIMENT 8.8

This experiment examines the performance of the assembly code for implementing 
the FIR fi lter. Open the project fi le exp8_8_533.dpj for the BF533 EZ-KIT (or exp8_
8_537.dpj for the BF537). The project fi le is located in directory c:\adsp\chap8\exp8_
8_533 (or c:\adsp\chap8\exp8_8_537). Build the project and benchmark the cycle 
count and code size and write the results in Table 8.11.

The assembly program uses a conditional branch for looping. The branch is executed 
based on the state of the CC bit. A conditional branch takes nine cycles to complete. 
However, the Blackfi n processor provides a branch prediction that can accelerate the execu-
tion of a conditional branch. If the prediction is “branch taken”, the branch will be executed 
and fi ve cycles are required; otherwise, nine cycles are required. If the prediction is “branch 
not taken”, only one cycle is required; otherwise, nine cycles are required. To implement 
branch prediction, the option bp is applied to the conditional branch instruction. For 
example,

if !CC JUMP E_FIR_START (bp);

x(n)

x(n-1) 

x(n-2) 

x(n-N+1) 

x(n-N+2) 

R1.L

I0

Higher  
memory 
address 

Figure 8.8 Updating of the linear delay line buffer

8.3 Using Assembly Code for Effi cient Programming 351

TEAM LinG



352 Chapter 8 Code Optimization and Power Management

Insert the branch prediction and note the changes in the cycle count and code size in the 
second row of Table 8.11.

8.3.1 Using Hardware Loops

As mentioned in Chapter 5, the Blackfi n processor supports hardware loops. Unlike 
the software loop that performs counter decrement and checks for loop completion 
with a conditional branch, the hardware loop has zero overhead. The setup for the 
hardware loop is explained in Example 5.15. Here, we apply the hardware loop to 
the MAC operation and the delay buffer update as follows:

// perform MAC
LSETUP(E_MAC_ST,E_MAC_END)LC1=P2;
 // setup inner loop counter
 // P2 = number of filter taps
E_MAC_ST: R2.L=W[I2++]; // input sample
  R0.L=W[I1++]; // filter coefficient
E_MAC_END: A0+=R0.L*R2.L ; // MAC

// update delay line
LSETUP(UPDATE_BUF_ST,UPDATE_BUF_END)LC1=P2;
 // loop counter to update buffer
UPDATE_BUF_ST: W[I0–-]=R1.L;   // update input samples
  I0-=2;
UPDATE_BUF_END: R1.L=W[I0++];

HANDS-ON EXPERIMENT 8.9

This experiment examines the performance of the assembly code that uses the hardware 
loop instructions. Open the project fi le exp8_9_533.dpj for the BF533 EZ-KIT (or 
exp8_9_537.dpj for the BF537). The project fi le is located in directory c:\adsp\
chap8\exp8_9_533 (or c:\adsp\chap8\exp8_9_537). Study the assembly program 
fir_asm_hardware_loop.asm and identify the hardware loops for MAC and delay 
line update. Build the project and benchmark the cycle count and code size to fi ll in 
Table 8.12.

Table 8.11 Cycle Count and Code Size for the Linear Assembly Code

 Cycle Count Code Size in Bytes

Linear assembly (without 
 branch prediction)
Linear assembly (with 
 branch prediction)
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8.3.2 Using Dual MACs

After optimizing the loop, we turn our attention to optimizing the MAC operations 
in the assembly code. The Blackfi n processor consists of two MAC units as described 
in Section 5.1.3. We can use these dual MAC units to speed up the MAC operations. 
One possible approach is to halve the loop count and perform two MAC operations 
in the loop as:

LSETUP(E_MAC_ST,E_MAC_END)LC1=P2>>1;
  // setup inner loop counter
E_MAC_ST: R2=[I2++]; // input samples
 R0=[I1++]; // filter coefficients
 A1+=R0.H*R2.H; // MAC1
E_MAC_END: A0+=R0.L*R2.L; // MAC2 -** UNROLL 2x **-

The loop counter LC1 is reduced by half or, equivalently, the loop is now unrolled 
by a factor of two.

HANDS-ON EXPERIMENT 8.10

This experiment examines the cycle count and code size of the assembly program using the 
hardware loop and dual MACs. The program can be found in directory c:\adsp\chap8\
exp8_10_533 for the BF533 EZ-KIT (or c:\adsp\chap8\exp8_10_537 for the BF537). 
Fill in the performance in Table 8.13.

8.3.3 Using Parallel Instructions

The Blackfi n instructions can be executed in parallel. Up to three instructions can 
be executed in a single cycle with some limitations. A multi-issue instruction is 

Table 8.12 Cycle Count and Code Size for Assembly Code Using Hardware Loop

 Cycle Count Code Size in Bytes

Hardware loop
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Table 8.13 Cycle Count and Code Size for Assembly Code with Hardware Loop and 
Dual MACs

 Cycle Count Code Size in Bytes

Hardware loop and dual MACs
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64-bit long and consists of one 32-bit instruction and two 16-bit instructions as 
shown in Figure 8.9.

There are three possible ways to form parallel instructions with following 
syntaxes:

1. 32-bit ALU/MAC instruction || 16-bit instruction || 16-bit instruction.

2. 32-bit ALU/MAC instruction || 16-bit instruction.

3. MNOP || 16-bit instruction || 16-bit instruction.

The vertical bar (||) indicates that the instructions are issued in parallel. In Method 
2, a 16-bit NOP is automatically inserted into the unused 16-bit slot. In Method 3, a 
32-bit NOP instruction may be required in the parallel instruction, and the assembler 
can automatically insert it if needed [37]. In addition, there are some restrictions to 
the 16-bit instructions in a multi-issue instruction. Only one of the 16-bit instructions 
can be a store instruction; however, it is possible to have two load instructions. In 
addition, if these two 16-bit instructions are memory access instructions, one 
memory access must be an I-register and the other can be either an I- or a 
P-register.

We can further optimize the previous FIR fi ltering program by using parallel 
instruction for loading input samples and fi lter coeffi cients as follows:

E_FIR_START: MNOP || R0.L=W[P0++P3] || R2.L=W[I2];
 // parallel fetch x(n) from input array
 // and fetch filter coefficient

and

E_MAC_ST: MNOP || R2=[I2++] || R0=[I1++];
 // parallel fetch input and filter coefficient

The above multi-issue instructions are executed in a single cycle.

HANDS-ON EXPERIMENT 8.11

This experiment examines the cycle count and code size of the assembly program using 
multi-issue instructions, coupled with the hardware loop and dual MAC operations. 
The program can be found in directory c:\adsp\chap8\exp8_11_533 for the BF533 
EZ-KIT (or c:\adsp\chap8\exp8_11_537 for the BF537). Fill in the performance in 
Table 8.14.

32-bit ALU/MAC instruction 16-bit instruction 16-bit instruction 

Figure 8.9 Parallel issued combinations
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8.3.4 Special Addressing Modes: 
Separate Data Sections

As discussed in Section 5.1.4, the Blackfi n processor has separated data memory 
banks A and B. Programmers can allocate different variables in different memory 
banks and thus access data from these banks in a single cycle. In the case of the 
FIR fi lter program, we can assign the delay buffer in data bank A (L1_data_a), 
and the fi lter coeffi cients are placed in data bank B (L1_data_b). This arrange-
ment can be programmed in C as follows:

section (“L1_data_a”) fract16 ldelay[TAPS]={0};

section (“L1_data_b”) fract16 lpf[TAPS] = {
 #include “coef32.dat”
};

HANDS-ON EXPERIMENT 8.12

This experiment examines the performance improvement when variables are allocated in 
different data banks. This optimization technique is applied to Hands-On Experiment 8.11. 
The program can be found in directory c:\adsp\chap8\exp8_12_533 for the BF533 
EZ-KIT (or c:\adsp\chap8\exp8_12_537 for the BF537). Fill in the performance 
results in Table 8.15.

Examine the memory map of this project and note the starting address of the delay line 
buffer ldelay and the fi lter coeffi cient buffer lpf. Refer to the memory map of the BF53x 
processor and verify that different data banks are used for delay line and fi lter coeffi cient 
buffers. This separated memory allocation allows simultaneous accesses to support a single-
cycle dual-MAC operation.

Table 8.14 Cycle Count and Code Size for Assembly Code with Multi-issue Instructions

 Cycle Count Code Size in Bytes

Hardware loop, dual MACs, and multi-issue
 instruction

Table 8.15 Cycle Count and Code Size for Assembly Code Using Different Memory 
Banks

 Cycle Count Code Size in Bytes

Hardware loop, dual MACs, multi-issue instruction, 
 and different data memory banks
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8.3.5 Using Software Pipelining

Software pipelining is a technique to optimize loop code to further maximize utili-
zation of the processor’s functional units. This technique can be used if one section 
of the algorithm is not dependent on the others. For example, when performing the 
multiply-accumulate operation in the FIR fi ltering loop, the current iteration is 
independent of the previous one, and these two iterations can be overlapped.

We will use pseudo-assembly code to illustrate the performance of dual-MAC 
operations with and without software pipeline. The fi rst pseudo code without using 
any software pipeline is listed as follows:

// dual MAC operations without software pipeline

Loop_start
 MNOP || Load input || Load coef

Dual MAC
Store result

Loop end

Software pipeline can be used to schedule loop and functional units more effi -
ciently. Because the Blackfi n processor has multiple hardware resources that can be 
operated in parallel, the programmer can enhance the parallelism by bringing the 
load instructions outside the loop. The software pipeline for the FIR fi ltering is 
shown in the following pseudo code:

// dual MAC operations with software pipeline

Prolog: MNOP || Load input || Load coef

Loop kernel: DualMAC || Load input || Load coef

Epilog: DualMAC || Load input || Load coef
  Store result

The software pipeline greatly improves the execution speed because the 32-bit 
MNOP (no operation) instruction that wastes the processor cycle is no longer inside 
the loop. As shown above, parallel-load instructions are carried out before entering 
the loop kernel. This overhead period is called the prolog. The loop kernel now 
contains only the dual-MAC operations in parallel with the loading of the next data 
sample and coeffi cient. An epilog is an overhead period after the loop kernel that 
is needed to complete the fi nal tap of the FIR fi ltering. As a trade-off, the software 
pipeline technique has increased code size.

HANDS-ON EXPERIMENT 8.13

This experiment examines the cycle count and code size of the assembly program with the 
software pipeline technique. The program can be found in directory c:\adsp\chap8\
exp8_13_533 for the BF533 EZ-KIT (or c:\adsp\chap8\exp8_13_537 for the BF537). 
Fill in the performance results in Table 8.16.
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EXERCISE 8.1

Modify the assembly program fir_asm_simple_pipeline.asm in Hands-On 
Experiment 8.13 to further improve its cycle count and code size by using multi-issue 
instructions inside the loop kernel.

EXERCISE 8.2

As discussed in Section 8.2.6, an optimized FIR fi lter function fir_fr16.asm is 
provided in the run time DSP library. Compare the cycle count and code size of this 
function (in Table 8.10) with that of the optimized assembly code in Hands-On 
Experiment 8.13. Examine the fir_fr16.asm code and identify the optimization 
techniques used in this function.

8.3.6 Summary of Execution Cycle Count 
and Code Size for FIR Filter Implementation

We have studied different optimization techniques in assembly programming. A 
faster execution speed can be achieved by using parallel instructions and multiple 
hardware resources and applying software pipeline. The cycle counts and code size 
for these techniques are summarized in Table 8.17.

Table 8.16 Cycle Count and Code Size for Assembly Code with Software Pipeline

 Cycle Count Code Size in Bytes

Hardware loop, dual MACs, multi-issue
 instruction, and software pipeline
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Table 8.17 Summary of Execution Cycle Counts and Code Sizes for Different 
Optimization Techniques

Optimization Technique Cycle Count (firc) Code Size (in bytes)

(a) Linear assembly code [28 × Nc + 22] × Nb + 66 140
(b) Linear assembly code with [20 × Nc + 18] × Nb + 66 140
  branch prediction
(c) Using hardware looping [6 × Nc + 11] × Nb + 66 128
(d) Using dual MACs and (c) [5 × Nc + 14] × Nb + 66 148
(e) Multiple instructions and (d) [4.5 × Nc + 9] × Nb + 67 148
(f) Separate data sections and (e) [4 × Nc + 10] × Nb + 67 148
(g) Software pipeline and (f) [3.5 × Nc + 10] × Nb + 69 160
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EXERCISE 8.3

Using the cycle count benchmark of Technique (g) in Table 8.17, tabulate the cycle 
count and memory size (for both data and code) for implementing an Nc-tap FIR 
fi lter using Nb samples per block as shown in Table 8.18(a) and (b), respectively.

8.4 POWER CONSUMPTION AND MANAGEMENT 
IN THE BLACKFIN PROCESSOR

Power consumption and management are important design considerations in many 
embedded systems, especially in portable devices where a battery is the energy 
source. This section discusses the power consumption behavior and power-saving 
features of the Blackfi n processors.

8.4.1 Computing System Power 
in the Blackfi n Processor

This Section studies the total power consumption of the Blackfi n processors in 
detail. The power performance evaluated with mW/MMAC (in Section 6.3.4) does 

Table 8.18(a) Cycle Count for Implementing Optimized Assembly Code with 
Optimization Technique (g)

Nb\ Nc 4 8 16 32 64 128 256 512 1024

 1

 2

 4

 8

 16

 32

 64

128

256

512
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Table 8.18(b) Code and Data Sizes (in bytes) for Implementing Optimized Assembly 
Code with Optimization Technique (g)

Nb\Nc 4 8 16 32 64 128 256 512 1024

 1

 2

 4

 8

 16

 32

 64

128

256

512
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not refl ect the actual operating conditions, in which cores, peripherals, and memory 
are turned on and off according to the state of the application code.

There are three power domains that consume power: the internal voltage supply, 
the external voltage supply, and the real-time clock supply. In the BF53x processors, 
the core operates in the voltage range of 0.8 to 1.32 V with a nominal voltage of 
1.2 V. The I/O circuitry supports a range of 2.25 to 3.6 V with a nominal voltage of 
2.5 V or 3.3 V. The real-time clock (RTC) can either be powered from the I/O supply 
or another external supply with the same nominal voltage.

Power dissipation is defi ned as the product of supply voltage and current drawn. 
The total average power Ptot_av dissipated by the Blackfi n processor is defi ned as:

P P P Ptot_av int ext RTC,= + +  (8.4.1)

where Pint = Vint × Iint is the internal core power, Pext = Vext × Iext is the external core 
power, and PRTC is the RTC power. The terms Vint and Vext are internal and external 
voltages, respectively. Similarly, Iint and Iext are internal and external currents, 
respectively.

The internal power of the Blackfi n processor consists of static and dynamic 
power components. The static component is derived from the leakage current when 
the core processor is disabled. The leakage current is proportional to the supply 
voltage and temperature. Therefore, we can save power by lowering the supply 
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voltage when the core is disabled. On the other hand, the dynamic component is a 
function of both supply voltage and switching frequency. Dynamic power dissipation 
increases as the voltage and/or frequency increases.

The external power consumption is contributed by the number of enabled periph-
erals in the system. The equation for external power consumption is expressed as

P V C f O TR Uext ext ,= ( ) × × × ×( ) ×2 2  (8.4.2)

where C is the load capacitance, f is the frequency at which the peripheral runs, O
is the number of output pins, TR is the number of pins toggling each clock cycle, 
and U is the ratio of time that the peripheral is turned on.

EXAMPLE 8.3

The serial port is operating at 4 MHz and consists of two pins. The capacitance per pin is 
0.3 pF, and the external supply voltage is 3.65 V. The utilization and toggle ratios are 1. This 
implies that the output pin changes state every clock cycle. With Equation 8.4.2, the external 
power dissipation is computed as 1.6 mW.

The fi nal source of power consumption in the Blackfi n processor comes from 
the RTC power domain. Typically, the RTC can be powered between 2.25 and 3.6 V, 
and the current drawn is in the range of 30 to 50 μA. Therefore, the worst-case power 
consumption for the RTC is around 180 μW.

To compute the actual average power consumption, a statistical analysis of the 
application program must also be performed to determine what percentage of time 
(% time) the processor spends in each of the defi ned states (Pstate) in an application 
(i). The total average power can then be derived as

P i P i
i

N

total state% time= ( ) × ( )
=
∑ .

1

(8.4.3)

This total average power only shows how much the Blackfi n processor is loading 
the power source over time. However, the power supply must also support the worst-
case requirement of a given application.

8.4.2 Power Management 
in the Blackfi n Processor

The Blackfi n processor provides several power-saving features that are commonly 
used in embedded systems. These features include:

1. Powering down the peripherals and internal functional units when they are 
not in use.

2. Reducing the power supply voltage.

3. Running the processor and peripherals at lower clock frequency.
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The Blackfi n processor has a dynamic power management controller and a program-
mable phase-locked loop (PLL) to control the operating modes, dynamic voltage, 
and frequency scaling of the core and the system. In the following sections, we 
investigate the power-saving blocks and the power modes of the Blackfi n 
processors.

8.4.2.1 Processor Clock

In the Blackfi n processor, a core clock (CCLK) and a system clock (SCLK) are 
generated by the clock generation unit. The core clock is responsible for instruction 
execution and data processing, and the system clock is used for the peripherals, 
DMA, and external memory buses. As shown in Figure 8.10, the processor uses a 
PLL with a programmable clock divider to set the clock frequencies for the core 
and system. The PLL is a circuit that is used to generate multiple frequencies from 
one or more reference frequencies. A fi xed-frequency reference CLKIN is connected 
to a phase detect (or comparator) block, and the other phase detect input is driven 
from a divide-by-N counter (divider), which is in turn driven by the voltage-con-
trolled oscillator (VCO). The input clock, CLKIN, which provides the necessary 
clock frequency and duty cycle, is derived from a crystal oscillator in the range of 
10 to 40 MHz.

The PLL circuit operates on negative feedback, which forces the output of the 
internal loop fi lter to generate a frequency at VCO = N × CLKIN. The CCLK and 
the SCLK are obtained by dividing the VCO frequency by their respective scalar 
values, CSEL and SSEL. The divider ratio for the core clock CSEL (2 bits) can be 
set to 1, 2, 4, or 8. However, the divider ratio for the system clock SSEL (4 bits) can 
be set to a wider range of 1 to 15. These bits are located in the PLL divide register, 

CLKIN

DF

MSEL[5:0]

SSEL[3:0]
CSEL[1:0]

BYPASS

DIVIDER

SCLK

CLOCK
DIVIDE

AND
MUX

VCOLOOP
FILTER

PHASE
DETECT

CCLK
/1 or /2

Figure 8.10 Functional blocks of the Blackfi n processor’s clock generation unit (courtesy of 
Analog Devices, Inc.)
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PLL_DIV, and they can be changed on the fl y to adjust the core and system clock 
frequencies dynamically.

EXAMPLE 8.4

A 27-MHz oscillator is built into the BF533 EZ-KIT to drive the CLKIN of the 
processor. If DF = 0 (i.e., no further divide of the CLKIN by 2) and MSEL = 14, the VCO 
frequency = MSEL × CLKIN = 27 × 10 = 270 MHz. The CSEL and SSEL in the PLL_DIV 
register are divided from the VCO frequency to obtain the CCLK and SCLK, respectively. 
Note that SCLK should be less than or equal to 133 MHz, and it must be smaller than CCLK. 
Therefore, SSEL must be set to a value of more than 2.

The dynamic power management controller allows users to program the proces-
sor in fi ve operating modes and different internal voltages and to disable the clock 
to a disabled peripheral. In addition, the dynamic power management controller 
works with the clock generation unit to control the CCLK and SCLK. In the fol-
lowing subsections, we discuss the fi ve operating modes and how to program the 
voltage and frequency of the Blackfi n processor.

8.4.2.2 Power Modes

As stated in Section 6.3.4, the Blackfi n processor works in fi ve operating modes: 
(1) full on, (2) active, (3) sleep, (4) deep sleep, and (5) hibernate. Each of 
these modes has different power saving levels and clock activities as shown in 
Table 8.19.

In the full-on mode, the processor and all peripherals run at full speed deter-
mined by the CCLK and SCLK, respectively. The PLL is enabled, and the CCLK 
and SCLK are derived from the CLKIN and their respective divider ratios. DMA 
access to the L1 memory is allowed in this mode. In the active mode, the PLL is 
enabled but bypassed. Therefore, the CCLK and SCLK run at the same frequency 
as CLKIN, which is around 30 MHz. DMA access to the L1 memory is also avail-

Table 8.19 Operating Characteristics of Different Power Modes

Operating Mode Power Saving Core Clock System Clock PLL 

Full on None Enabled Enabled Enabled
Active Medium Enabled Enabled Enabled/disabled
    Bypass PLL
Sleep High Disabled Enabled Enabled
Deep sleep Maximum Disabled Disabled Disabled
Hibernate Maximum Off Off Off
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able in this mode. The active mode is important because it allows the user to 
program the PLL for different core and system frequencies.

In the sleep mode, signifi cant reduction in power consumption can be achieved 
because the core clock is disabled. The system clock is still enabled, and DMA 
access can only take place between peripherals and external memories. In the deep-
sleep mode, maximum power saving is achieved by disabling the PLL, CCLK, and 
SCLK. In addition, the processor core and all peripherals, except the real-time clock, 
are disabled. Therefore, DMA is not supported in this mode. The deep-sleep mode 
can be awaked by an RTC interrupt or hardware reset. Power dissipation still occurs 
through the processor leakage current. To further cut down the power dissipation, 
the hibernate mode in the Blackfi n processor turns off the internal core voltage 
supply, thus eliminating any leakage current. However, the internal state of the 
processor must be written to external SDRAM before switching to the hibernate 
mode. The SDRAM is set to self-refreshing mode before entering the hibernate 
mode. Table 8.20 shows the possible mode transition between different 
power modes. The PLL status register (PLL_STAT) indicates the status of the 
operating mode.

Besides these different power modes, the Blackfi n processor allows peripherals 
to be individually enabled or disabled. By default, all peripherals are enabled, but 
they can be selectively disabled by controlling the respective bits of the peripheral 
clock enable register PLL_IOCK.

8.4.2.3 Dynamic Voltage and Frequency Scaling

Power dissipation depends on clock frequency and voltage as stated in Equation 
6.3.7. Changing the clock frequency (CCLK) affects the processing speed. A faster 
clock frequency needs a shorter period to complete a given task, resulting in longer 
idle time. We can set the device to sleep mode during this idle time, but power 
consumption still occurs because of the leakage current. A better approach is to 
reduce the idle time by lowering the clock frequency and complete the task in the 
required time period. When the frequency is reduced, the supply voltage must also 
be reduced. It is always recommended to use the lowest possible voltage that sup-
ports the required clock frequency. The lower voltage leads to signifi cant power 
reduction, as power dissipation is proportional to the squared voltage.

Table 8.20 Allowed Power Mode Transition

New Mode Full On Active Sleep Deep Sleep

Current Mode

Full on — Allowed Allowed Allowed
Active Allowed — Allowed Allowed
Sleep Allowed Allowed — —
Deep sleep — Allowed — —

8.4 Power Consumption and Management in the Blackfi n Processor 363

TEAM LinG



364 Chapter 8 Code Optimization and Power Management

To implement the frequency-voltage scaling in a real-time system, we need to 
examine the deadline and execution time to perform real-time processing. As 
explained in Section 6.3, an event-triggered system (such as real-time audio process-
ing) needs to interrupt the processor at regular intervals. The deadline time is basi-
cally determined by the time needed to acquire N data samples for block processing. 
For example, if the block size is set at 32 samples and the sampling frequency is 
48 kHz, the deadline time is 666.67 μs. In the actual implementation, the deadline 
can be expressed as deadline cycle, which is deadline time multiplied by the core 
clock frequency as shown in Equation 6.3.4. For a core frequency of 270 MHz, the 
deadline cycle is 180,000 cycles. Note that the deadline time is always constant for 
the same sampling frequency and block size, but the deadline cycle varies with dif-
ferent core frequency. To guarantee real-time processing, the maximum execution 
time must be bounded to the worst-case execution time (WCET), which is the 
deadline time. The number of execution cycles needed for a given task is always 
constant, whereas the execution time depends on the core clock frequency. Based 
on the constant property of the deadline time tdeadline and execution cycle Nexe_cycle, a 
suitable operating frequency Fcore can be determined as

F N tcore exe_cycle deadline= .  (8.4.4)

Note that the number of execution cycles, Nexe_cycle, includes the cycles needed for 
task initialization, overhead, and the actual task in the interrupt service routine. As 
shown in Figure 8.10, the CCLK (or Fcore) and SCLK can be adjusted by changing 
the value in the PLL divide register. The adjustment of CCLK is performed with 
some fi xed integer divisor. Therefore, Fcore is quantized to some permissible operat-
ing frequencies.

The Blackfi n processor provides an on-chip switching regulator controller that 
is used to generate internal voltage levels from the external voltage supply. There 
are 10 internal voltage levels that can be programmed into the 4-bit internal voltage 
level (VLEV) fi eld of the voltage regulator control register (VR_CTL) as shown in 
Table 8.21. Once the core frequency has been selected, the minimum core voltage 
can be obtained from the Blackfi n datasheet [26, 27]. In this way, the minimum 
core frequency and voltage are used for a given processing task.

HANDS-ON EXPERIMENT 8.14

This experiment implements the frequency-voltage scaling technique [5] for running a pro-
cessing load. An FIR fi lter with variable fi lter length is implemented with a C program. The 
processing load can be varied by using different fi lter lengths of 32, 128, 512, and 1,024. 
Figure 8.11 shows the block diagram of this experiment. The setting of the DMA controller 

Table 8.21 Voltage Selection Via VLEV

VLEV 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Voltage 0.85 V 0.90 V 0.95 V 1.00 V 1.05 V 1.10 V 1.15 V 1.20 V 1.25 V 1.30 V
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provides the deadline time information to a dynamic frequency-voltage scaling routine. The 
cycle count is benchmarked in real time and furnished to the frequency-voltage scaling 
routine. Because we cannot benchmark the execution time on the same processing interval, 
we benchmark the current execution time and use it as the estimated execution time of the 
next processing frame. In this way, we are able to track the execution time of the processing 
load and adjust the frequency and voltage accordingly.

The project fi le is located in directory c:\adsp\chap8\exp8_14_533 for the BF533 
EZ-KIT (or c:\adsp\chap8\exp8_14_537 for the BF537). The maximum core clock 
frequency is set to 459 MHz, and the core voltage is 1 V at startup.

Build and run the project. Enable the fi lter by pressing SW6 on the BF533 EZ-KIT (or 
SW12 on the BF537). Vary the load of this program by pressing SW6 (or SW12). The execution 
cycles are displayed in the BTC memory window. Users can check the core frequency in the 
PLL_DIV register and the core voltage in the VR_CTL register. Click on Register Æ Core Æ
PLL Register File to display these registers. Complete the tasks listed in Table 8.22.

8.5 SAMPLE RATE CONVERSION 
WITH BLACKFIN SIMULATOR

This section presents an application of the FIR fi lter for sample rate conversion. For 
example, we change an incoming digital signal sampled at 48 kHz to 8 kHz. This 

Task 
request

Executing 
task 

Output

Dynamic 
voltage & 
frequency 

scaling 

DMA

Serial port 

Memory 

Deadline information 

Figure 8.11 Block diagram of dynamic frequency-voltage scaling

Table 8.22 Benchmark Results of Execution Cycle, Core Frequency, and Voltage

Load (fi lter length) Execution Cycle Frequency Voltage Power Reduction

 32
 128
 512
1024
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signal can be mixed with another digital speech signal sampled at 8 kHz as shown 
in Figure 8.12. The sample rate conversion block is downsampled (or decimated) 
by a factor of D = 6 from 48 kHz to 8 kHz. The downsampling process can be 
implemented by simply discarding every D−1 samples. However, decreasing the 
sampling rate by the factor D reduces the bandwidth by the same factor. To prevent 
aliasing, a low-pass fi lter with a cutoff frequency of fs /2D (4 kHz) must be applied 
to the original high-rate signal before the downsampling process. The FIR fi lter 
is commonly used to realize the low-pass fi lter for sampling rate conversion 
applications.

The sampling rate can also be increased by an integer factor, U. This process 
is called upsampling (or interpolation). For example, the sampling frequency of 
the digital speech can be upsampled from 8 kHz to 48 kHz before mixing with the 
audio signal sampled at 48 kHz. Upsampling can be realized by inserting additional 
zero samples between successive samples of the original lower-rate signal. For 
example, we insert U−1 samples when upsampling by a factor of U = 6 from 8 kHz 
to 48 kHz. Again, a low-pass fi lter is required to smooth out the interpolated 
samples.

This section investigates the decimation and interpolation processes with the 
Blackfi n simulator. The run time DSP library provides several decimation and 
interpolation FIR fi lter functions. However, users need to select and design a suitable 
FIR fi lter before using these functions.

HANDS-ON EXPERIMENT 8.15

This experiment performs decimation and interpolation with the project fi le exp8_15.dpj
located in directory c:\adsp\chap8\exp8_15. A 1-kHz sine wave sampled at 48 kHz is 
downsampled by a factor of 6 to 8 kHz, followed by upsampling to 16 kHz (by a factor of 
2). This 16-kHz-sampled signal is further upsampled to 32 kHz by a factor of 2, and 48 kHz 
by a factor of 3, as shown in Figure 8.13. The objective of this experiment is to check whether 
the original signal sampling at 48 kHz can be recovered with decimation and a series of 

Sample-rate 
conversion 

(Downsample by 6) 

Analog speech 
signal 

ADC 

Digital 
speech 
( fs = 8 kHz)  

+

Audio signal 
sampled at  
48 kHz 

Digital audio signal 
sampled at 8 kHz 

Mixed signal 
at 8 kHz 

Figure 8.12 Sample rate conversion and mixing of signals
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interpolation processes. In addition, users can examine the signal sampled at different 
frequencies.

Because the number of zeros introduced between successive samples of the input signal 
during interpolation, only one out of every U samples input to the interpolation fi lter is 
nonzero. To effi ciently implement the low-pass fi lter, we divide the FIR fi lter of length L to 
form U FIR fi lters, each with a length of L/U. These smaller FIR fi lters operate at lower 
sampling rate fs instead of Ufs after the upsampler. However, the interpolation fi lter coeffi -
cients must be rearranged for the smaller fi lters. These interpolation fi lters are provided 
in data fi les interp_8kto16k_64taps.dat, interp_16kto32k_64taps.dat, and 
interp_16kto48k_96taps.dat. Because the decimation FIR fi lter operates at the 
original sampling frequency as the input signal, there is no need to rearrange the coeffi cients 
of the fi lter.

The program main.c implements the decimation and interpolation processes shown in 
Figure 8.13. The programming steps are listed below:

fir_decima_fr16(inp_arr, out8k, INPUTSIZE, &filter_state_dec);
fir_interp_fr16(out8k,out16k,INPUTSIZE/6,&filter_state_interp_
8to16);
fir_interp_fr16(out16k,out32k,2*INPUTSIZE/6,&filter_state_interp_
16to32);
fir_interp_fr16(out16k,out48k,2*INPUTSIZE/6,&filter_state_interp_
16to48);

Build and run the project. Display the input and output signals at different stages with 
the plot feature in the debug window as shown in Figure 8.14.
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Figure 8.13 Downsampling and upsampling in Hands-On Experiment 8.15
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(a)

(b)

(c)

(d)

(e)

Figure 8.14 (a) Input sine wave ( fs = 48 kHz), (b) decimator output ( fs = 8 kHz), (c) 1st interpolator 
output ( fs = 16 kHz), (d) output of cascade of 1st and 2nd interpolators ( fs = 32 kHz), and (e) output 
of cascade of 1st and 3rd interpolators ( fs = 48 kHz)
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Figure 8.14 reveals some important observations:

1. The amplitude of the output signal from the interpolator has reduced compared 
with the original signal. The magnitude reduction is in the order of 1/U. Users can 
compensate this amplitude reduction by amplifying the interpolator output by a 
gain of U.

2. The output from the decimator or interpolator has been delayed compared with the 
original signal. This is due to the group delay introduced by the decimation and 
interpolation fi lters.

Users can use the FFT with the correct sampling rate to verify the magnitude spectrum 
of the signals at different stages. Instead of using 1-kHz sine wave sine1k.dat as the input, 
generate a 5-kHz sine wave in MATLAB and save it in a data fi le, sine5k.dat. Repeat the 
same experiments with the 5-kHz sine wave and comment on the results.

EXERCISE 8.4

Modify the main program main.c to implement the following tasks:

1. Add a 16-kHz sine wave sampled at 48 kHz to a 1-kHz sine wave sampled 
at 8 kHz.

2. Mix the musical wave fi le liutm_48k_mono.wav sampled at 48 kHz with 
the speech wave fi le timit.wav sampled at 8 kHz. Hint: Convert the wave 
fi les into data fi les and make sure that the two data sequences have the same 
length before adding.

8.6 SAMPLE-RATE CONVERSION 
WITH BF533/BF537 EZ-KIT

This section implements sample rate conversion in real time with the Blackfi n 
EZ-KIT. Because the CODEC in the EZ-KIT can only operate at either 48 kHz or 
96 kHz, we sample the signal at 48 kHz and decimate it to different sampling fre-
quencies. The decimated signal can be displayed in the display window and played 
via the computer sound card. In another experiment, we sample the signal at 48 kHz, 
down sample to 8 kHz and mix it with an internally generated signal sampled at 
8 kHz, and upsample the mixed signal to 48 kHz before sending it to the CODEC. 
The input and output connections to the BF533 and BF537 EZ-KITs follow the 
default settings described in previous chapters.

HANDS-ON EXPERIMENT 8.16

Activate VisualDSP++ for the BF533 (or BF537) EZ-KIT target and open exp8_16_533.
dpj (or exp8_16_537.dpj) in directory c:\adsp\chap8\exp8_16_533 (or c:\adsp\
chap8\exp8_16_537). This project samples the incoming signal at 48 kHz, downsamples 
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it to 8 kHz, and upsamples it to 32 kHz. Because the sampling frequency of the EZ-KIT 
is 48 kHz, we can only save the downsampled signals to a data fi le or display them on the 
graphical display. In the main.c and interpolation.h fi les, determine the lengths and 
durations of the decimated signals sampled at 8 and 32 kHz. Build and run the program, and 
display the input signal at 48 kHz (48k.vps), downsampled signal at 8 kHz (8k.vps), and 
downsampled signal at 32 kHz (32k.vps). Instead of listening to these signals directly from 
the EZ-KIT, the downsampled signals can be exported to the sound card (steps explained in 
Exercise 3.18) with proper sampling frequency settings for playback. Benchmark the cycle 
count and memory size for implementing the interpolator and decimator.

HANDS-ON EXPERIMENT 8.17

In the second experiment, the project fi le exp8_17_533.dpj (or exp8_17_537.dpj)
located in directory c:\adsp\chap8\exp8_17_533 (or c:\adsp\chap8\exp8_17_
537) is used to mix an incoming signal sampled at 48 kHz with an internally generated 1-kHz 
sine wave sampled at 8 kHz. The sine wave generation is based on the look-up table approach, 
which is explained in Section 7.6. Build and run the project. The switch settings for the 
BF533 and BF537 EZ-KITs are listed in Table 8.23.

Listen to the signals with the switch settings listed in Table 8.23. Do you hear any 
difference between different modes?

Table 8.23 Switch Settings for Different Modes

Mode Switch on BF533 EZ-KIT Switch on BF537 EZ-KIT

(1) Pass-through SW4 SW10
(2) Downsample to 8 kHz SW5 SW11
   → Mixing at 8 kHz →
   Upsample to 48 kHz
(3) Downsample to 8 kHz SW6 SW12
   → Upsample to 48 kHz
   (without mixing)

EXERCISE 8.5

Based on the project fi les given in the preceding hands-on experiment and using 
either the BF533 or the BF537 EZ-KIT, perform the following tasks:

1. Mix an incoming 1-kHz sine wave sampled at 48 kHz with an internally 
generated 1-kHz sine wave sampled at 8 kHz. Both signals must be aligned 
without any phase shift. Listen to the mixed signal at 48 kHz.

2. Similar to Task 1, mix the two sine waves but with one sine wave at 180° 
out of phase with the other sine wave. Verify the result.
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8.7 SAMPLE RATE CONVERSION WITH LABVIEW 
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

In practical engineering applications, it is often necessary to change the sampling 
rate of signals within a system. For example, the Blackfi n EZ-KIT operates with an 
audio CODEC that digitizes signals at 48 kHz, which is a common rate for capturing 
audio signals. It is often desirable to process signals with a lower sampling rate, 
such as 8,000 Hz, which minimizes the amount of computation necessary by reduc-
ing the number of samples. Sample rate conversion is commonly used in industrial 
applications for analyzing and manipulating communication signals, mixing signals 
from multiple sources, and noise cancellation.

The following experiments use LabVIEW to illustrate the concepts of sample 
rate conversion. We control the sampling rates of signals and observe what design 
considerations are affected by resampling. The interactive simulation allows you to 
see and hear how decimation and interpolation fi lters can be used to manipulate and 
process audio signals. This understanding will further reinforce these concepts when 
using the Blackfi n EZ-KIT target.

HANDS-ON EXPERIMENT 8.18

This experiment reinforces the concepts of sample rate conversion. This conversion allows 
us to combine and process signals sampled at different rates within the same system. This 
experiment begins with an input signal sampled at a frequency of 48 kHz and then analyzes 
the results of applying decimation and interpolation fi lters to decrease and increase the 
sampling rate, respectively. Remember from Section 8.5 that the downsampling process 
requires low-pass fi ltering of the input signal to prevent aliasing by ensuring that the signal 
satisfi es the Nyquist rate.

Open the compiled LabVIEW simulation Resample_Sim.exe located in directory 
c:\adsp\chap8\exp8_18 to explore sample rate conversion. The graphical user interface 
is similar to those in earlier chapters and is shown in Figure 8.15. The interface shares many 
controls, indicators, and functions used in previous hands-on LabVIEW experiments.

The tabs on Tab control are unique, allowing the user to choose which signals to view, 
including input, downsampled, and upsampled signals in both time and frequency domains. 
The Upsampled Output tab enables the Upsample To rate selector, which allows each of 
the upsampled rates to be seen and heard. The frequency slider allows the frequency of the 
default test sine wave to be manipulated. The sine wave input signal is sampled at 48 kHz to 
simulate that of the Blackfi n EZ-KIT, downsampled by a factor of 6 to 8 kHz, and then 
upsampled to 16, 32, or 48 kHz. The 32-kHz and 48-kHz sampling rates are achieved by fi rst 
upsampling by a factor of 2 to 16 kHz and then upsampling the resulting signal by a factor 
of 2 or 3, respectively.

When you open the simulation, a default sine wave signal with 1-kHz frequency is used 
as the input. Explore the different tabs to gain an understanding of how the signal changes 
when decimation and interpolation fi lters are applied. Also, manipulate the signal frequency 
while observing its time- and frequency-domain data. Pay attention to the effects of sample 
rate conversion on audio bandwidth. What observations can you make about the time-domain 
plots of the input signal after its sampling rate has been altered? Can you hear these effects 
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when playing back the altered signals? Experiment with different input sine wave frequencies 
by changing the value of the Sine Test Frequency slider control.

Now load an audio fi le to experiment with the effects of decimation and interpolation. 
You can use the speech_tone_48k.wav fi le from Hands-On Experiment 2.5. Play the 
signal at different sampling rates to determine how sample rate conversion affects the audio 
quality. What observations can you make? How might consumer electronics, digital audio 
media, or the music recording industry utilize these concepts?

HANDS-ON EXPERIMENT 8.19

This experiment examines a LabVIEW Embedded Module for Blackfi n Processors project 
that uses decimation and interpolation fi lters to mix signals of different sampling rates. 
LabVIEW programming structure and code are reused from previous exercises to maintain 
a similar program structure and more effi ciently develop a sample rate conversion application 
that can be deployed in the Blackfi n EZ-KIT.

Figure 8.15 User interface for Resample_Sim.exe
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Open the Resample_Ex-BF5xx.lep project located in directory c:\adsp\chap8\
exp8_19. Open the top-level VI named Resample_Ex – BF5xx.vi and view its block 
diagram, shown in Figure 8.16. This VI provides the ability to acquire live audio at 48 kHz, 
downsample it by a factor of 6 to 8 kHz, mix the 8-kHz signal with a 1-kHz sine wave 
sampled at 8 kHz, and then upsample back to 48 kHz for audio output. Which portions of 
the block diagram look familiar?

Note that the structure for writing and reading audio is common to most pre-
vious LabVIEW Embedded Module for Blackfi n Processors audio exercises. In particular, 
Init Audio BF5xx.vi and BF Audio Write-Read (BF5xx).vi set the audio buffer 
sizes and generate and acquire the audio signals. After acquiring a buffer of data, the sample 
rate is converted, mixed, and output in the next loop iteration. As in previous experiments, 
the graphical program is logically organized with subVIs that allow program modules to be 
reused, thus reducing development time.

The three custom subVIs, found in the lower left of the block diagram, initialize 
the fi lters and sine wave generation before the While Loop begins. Init Decimation 
Filter.vi and Init Interpolation Filter.vi both store fi lter coeffi cients and 
create the necessary data buffers to perform the decimation and interpolation FIR fi ltering 
inside the processing loop. A 1-kHz sine wave sampled at 8 kHz is generated from an eight-
point look-up table by Gen 1k Sine.vi and is mixed with the downsampled live audio 
when the correct case is executed. These subVI functions are part of the project and can be 
seen in the Embedded Project Manager window below the main VI.

The Case Structure in the processing loop determines which of the three processing 
modes is used. The three modes include audio talk-through, resample, and resample with 
mix. The button selections for the EZ-KIT are shown in Table 8.24.

The Case Structure in the center of the VI contains the three cases seen in Figure 8.17. 
One of the three cases is executed in each iteration of the loop, depending on the button 

Figure 8.16 Block diagram of Resample_Ex – BF5xx.vi
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combination being pressed. Several wires are required to confi gure the decimation and 
interpolation fi lters, but the general fl ow of the input signal is easily followed.

Connect the audio input of the Blackfi n EZ-KIT to the computer sound card or CD 
player. Then compile and run the LabVIEW Embedded project on the Blackfi n processor. 
Press different switch combinations to hear each of the three audio modes. What differences 
are heard between audio pass-through and the resampled audio signals? Explain. Can you 
hear the mixed 1-kHz tone?

8.8 MORE EXERCISE PROBLEMS

1. In Hands-On Experiments 8.1 and 8.2, the implementation is carried out with a 32-tap 
FIR fi lter with 32 samples per block. Benchmark the cycle count and code/data 
size when implementing different fi lter lengths given in Table 8.25. These fi lter coeffi -
cients are also included in the project. Comment on the performance with different 
fi lter taps.

2. Problem 1 uses block processing of 32 samples per block. The block size can be varied 
by changing the value of IP_SIZE to 1 (sample mode), 4, 8, 16, 32, 64, and 128. The 

Table 8.24 Switch Selections for Different Modes

Mode Switch on BF533 EZ-KIT Switch on BF537 EZ-KIT

1 Pass-through None None
2 Downsample to 8 kHz → SW4 and SW5 SW10/PB4 and SW11/PB3
 Mixing at 8 kHz →  pressed together  pressed together
 Upsample to 48 kHz
3 Downsample to 8 kHz → SW4 SW10/PB4
 Upsample to 48 kHz
 (without mixing)

Figure 8.17 Cases in the Resample_Ex – BF5xx.vi graphical code.
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FIR fi lter length is fi xed at 32 taps. Fill in Table 8.26 and comment on the performance 
versus the different block sizes.

3. Instead of using global optimization for the project in Hands-On Experiment 8.1, 
implement local optimization (in Section 8.2.1) on the fi ltering and delay buffer update 
sections of the code. Benchmark its performance and compare to the results in Table 
8.1. Also, experiment with the loop optimization pragma in Section 8.2.2.2 and observe 
its performance.

4. Extend Hands-On Experiment 8.6 for different samples per block and different fi lter 
lengths. Comment on the following:

(a) Cycle count per sample for different block sizes

(b) Trade-off between processing gain and block size

(c) Filter length and block size

5. Implement a symmetric FIR fi lter based on Equation 2.3.10 in C with intrinsic functions 
on the Blackfi n processor. Build the project by enabling the optimization in the Visu-
alDSP++ compiler. Benchmark on the cycle count, data, and code size of the symmetric 
FIR fi lter and compare the results with the direct-form FIR fi lter. Does the symmetric 
FIR fi lter always result in a better performance as compared to the direct-form FIR 
fi lter? If not, why?

Table 8.25 Benchmark Table (IP_SIZE = 32 Samples/Block)

Number of Taps Index-Style C (optimize) Pointer-Style C (optimize)

 Cycle count Data and code Cycle count Data and code
  size (byte)  size (byte)

 16
 32
 64
128
256

Table 8.26 Benchmark Table (Filter Taps = 32)

Number of Index-Style C (optimize) Pointer-Style C (optimize)

Samples per Cycle count Data and code Cycle count Data and code
Block (IP_SIZE)  size (byte)  size (byte) 

 1
 4
 8
 16
 32
 64
128
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6. Repeat Problem 5 by implementing the symmetric FIR fi lter with assembly 
programming.

7. The cycle count for performing FIR fi lter in linear assembly code without branch predic-
tion is [28 × Nc +22] × Nb + 66 cycles, where Nc is the number of coeffi cients in the FIR 
fi lter and Nb is the number of samples per block. The 66 cycles are overhead for setting 
up the FIR fi lter. Compute the cycle count/input sample and processing time/input 
sample (Table 8.27) in implementing a 32-tap FIR fi lter with different data samples per 
block. The Blackfi n processor is operating at 270 MHz.

8. Open the optimized IIR fi lter function iir_fr16.asm in the run time DSP library. 
Identify the techniques used in this optimized assembly code. How do these optimized 
techniques differ from the FIR fi lter function fir_fr16.asm?

9. Open the optimized radix-2 FFT function r2fftnasm.asm in the run time DSP library. 
Examine and list the techniques used in this optimized assembly code.

10. Compute the total external power of the Blackfi n processor based on the following 
peripherals and their activities listed in Table 8.28.

11. Develop a real-time speech and audio recorder with playback using the BF533 or BF537 
EZ-KIT. A microphone can be connected to the input port of the EZ-KIT. The output 
port of the EZ-KIT is connected to loudspeakers or a headset. There are four operating 
modes in this recorder:

Mode I: Normal pass-through mode without recording

Mode II: Normal recording

Mode III: Recording with low-pass fi ltering (cutoff frequency is 4 kHz)

Mode IV: Playback

Table 8.28 Total External Power Consumption

Peripheral Frequency No. of Capacitance/ Toggle Ratio of Vext External
  Pins Pin Ratio Time  Power
     Peripheral
     Is On

PPI 27 MHz  9 30 pF 1 1 3.65 V
SPORT0 4 MHz  2 30 pF 1 1 3.65 V
UART 0.115 MHz  2 30 pF 1 0.25 3.65 V
SDRAM 133 MHz 36 30 pF 0.25 0.50 3.65 V

Total

Table 8.27 Benchmark Results Using 32-Tap FIR Filter

Nb = 1 8 16 32 64

Cycle count/input sample

Processing time/input sample
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The switches and LEDs on the EZ-KIT are user control and indicator on the above 
modes. In addition, the recorded data must be stored in the external SDRAM. Determine 
the maximum recorded period at a sampling rate of 48 kHz. Downsample the signal to 
8 kHz and determine the maximum recorded period. Finally, develop a stand-alone 
system.

12. Perform cycle count and memory benchmark on the different modes in the recording 
system developed in Problem 11.

8.8 More Exercise Problems 377
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Chapter 9

Practical DSP Applications: 
Audio Coding and 
Audio Effects

Audio coding exploits unique features of audio signals to compress audio data for 
storage or transmission. Today, digital audio coding techniques are widely used in 
consumer electronics such as portable audio players. This chapter introduces basic 
concepts of audio coder and decoder (codec) based on moving pictures experts 
group (MPEG) layer 3 (MP3) and implements a more recent, license-and-royalty-
free Ogg Vorbis decoder using the BF533/BF537 processors. In addition, two audio 
effects and their implementations are presented and used for experiments.

9.1 OVERVIEW OF AUDIO COMPRESSION

The overall structure of audio codec is illustrated in Figure 9.1. An audio codec is 
an algorithm or a device that compresses the original digital audio signal to a lower 
bit rate and decompresses the coded data (bit stream) to produce a perceptually 
similar version of the original audio signal. The goals of audio coding are to mini-
mize the bit rate required for representing the signal, to maximize the perceived 
audio quality, and to reduce system cost in terms of memory and computational 
requirements of codec. In general, bit rate, quality, and cost are confl icting issues, 
and trade-offs must be resolved based on a given application.

The human ear can perceive frequencies of sound between 20 Hz and 20 kHz. 
According to the sampling theorem defi ned in Equation 2.2.5, we have to sample a 
sound (analog signal) at least twice the highest frequency component in the signal 
to avoid aliasing. Therefore, the sampling frequency of 44.1 kHz is commonly used 
in digital consumer products such as CD players; and 48 kHz is used in many pro-
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fessional audio systems. In data converters, the signal amplitude is quantized into 
a binary value represented by a fi nite number of bits. The noise introduced by this 
quantization process is called quantization noise, which sets the maximum signal-
to-noise ratio (SNR) that can be achieved by representing analog signal with digital 
values. This signal-to-quantization noise ratio (SQNR) stated in Equation 7.1.1 can 
be approximated as

SQNR dB,= +( )6 02 1 76. .N  (9.1.1)

where N is the number of bits (wordlength) used to represent digital samples.
The bit rate of digital signals can be computed as

Bit rate bit s,s= × ×C N f  (9.1.2)

where C is the number of channels and fs is the sampling rate. For example, music in 
CDs is recorded at 44.1 kHz with 16 bits per sample, which requires a bit rate of 1,411.2 
kilobits per seconds (kbit/s) for stereo (2 channels) audio. This bit rate poses a chal-
lenge on channel bandwidth or storage capacity for emerging digital audio applications 
such as Internet delivery. The increasing demand for better-quality digital audio, such 
as multichannel audio coding (5–7 channels) or higher sampling rate (96 kHz), 
requires more sophisticated encoding and decoding techniques to minimize the trans-
mission cost and provide cost-effi cient storage. For example, the Ogg Vorbis coder is 
typically used to encode audio at bit rates of 16–128 kbit/s per channel.

EXAMPLE 9.1

MPEG-1 has three operation modes for audio, layer 1, layer 2, and layer 3, with increasing 
complexity and sound quality. MPEG-2 is the second phase of MPEG, which provides exten-
sion of MPEG-1 to support multichannel audio coding and lower sampling frequencies. MP3 
is a popular digital audio encoding format standardized in 1991 for Internet audio delivery 
and portable audio devices. A new standard called MPEG-2 AAC (advanced audio coding) 
was developed in 1997 to improve coding effi ciency. More recent developments of audio 
coding are based on AAC with enhanced quality.

MP3 supports variable bit rates and sampling frequencies for different sound fi les. Bit 
rates available for MP3 are 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, and 
320 kbit/s, and the available sampling frequencies are 32, 44.1, and 48 kHz. MP3 provides a 
range of bit rates and supports the switching of bit rates between audio frames. MP3 at 
320 kbit/s produces perceptually comparable quality with CD at 1,411.2 kbit/s. MP3 fi les 
encoded with a lower bit rate will have a lower quality. A compression ratio of approximately 
11 : 1 is most commonly used for MP3 to achieve a sampling rate of 44.1 kHz and a bit rate 
of 128 kbit/s. Similar to MP3, the Ogg Vorbis coder is also a variable bit-rate codec, with 
the bit rate varied from sample to sample.

Original 
audio

Encoder
Storage or 

transmission Decoder 

Reconstructed
audio

Figure 9.1 An overall audio codec structure
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EXERCISE 9.1

1. Compute the number of bytes required to store an hour of music in the CD 
format for stereo audio.

2. Redo Exercise 1 for MP3 music with the bit rates listed in Example 9.1.

3. Redo Exercise 1 for the most widely used multichannel audio coding with 
the 5.1-channel confi guration.

In general, the effi cient speech coding techniques such as linear predictive 
coding using a vocal track model are not applicable to audio signals. In addition, 
we have to deal with stereo or multichannel signal presentations, higher sampling 
rate, higher resolution, wider dynamic range, and higher listener expectation. There 
are many different audio compressing standards, and most use the principles of 
psychoacoustics [67]. That is, the hearing system adapts to dynamic variations in 
the sounds, and these adaptations and masking effects form the basic principles of 
psychoacoustics. The basic structure of the MP3 encoder illustrated in Figure 9.2 
includes three important functions:

1. Filterbank splits the full-band signals into several subbands uniformly or 
according to the critical band model of the human auditory system, and a 
modifi ed discrete cosine transform (MDCT) converts time-domain signals 
to frequency-domain coeffi cients. Note that MP3 uses a hybrid of fi lterbank 
and MDCT, and MPEG-2 AAC and Ogg Vorbis use MDCT with a longer 
length for splitting full-band signals.

2. The psychoacoustic model consists of critical bands, calculates the masking 
threshold according to the human auditory masking effect from the spectral 
coeffi cients, and uses the masking threshold to quantize the MDCT coeffi -
cients. Psychoacoustic analysis is done in the frequency domain with the 
computational effi cient FFT introduced in Chapter 3.

3. Quantization allocates bits to indexes for quantizing the MDCT coeffi cients 
at each subband based on the masking threshold provided by the 
psychoacoustic model in the encoder and converts these indexes back to the 
spectral coeffi cients in the decoder. The coded bit stream redundancy can 
be further removed with entropy coding. For example, a fi xed Huffman 
codebook is used in MP3. In contrast, the Ogg Vorbis coder does not defi ne 
a set of precomputed codebooks. Instead, the quantized data are entropy 

Filterbank & 
transform

Digital 
audio

Psychoacoustic 
model

Quantization
Bitstream 

Figure 9.2 Basic structure of audio encoder
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coded with a codebook-based vector quantization algorithm, and codebooks 
are transmitted as a part of the audio stream.

In addition, the output bit stream includes side information of bit allocation informa-
tion needed for the decoder, which is packed by a multiplexer.

The threshold of hearing is also called the absolute threshold in quiet, which 
represents the lowest audible level of any sound at a given frequency. Sound lying 
below the threshold curve cannot be perceived by our hearing, and thus can be 
removed before quantization for reducing the bit rate. In addition, quantization noise 
introduced by codec below this level will not be perceived by humans. This is the 
fundamental principle of psychoacoustic compression, which permits more noise in 
sounds close to strong masking sounds. Allowing additional noise in the sampling 
process is equivalent to quantization with fewer bits, and this achieves data compres-
sion as shown in Equation 9.1.2.

The threshold of hearing can be approximated with the following equation 
[67]:

T f f e ff
h ,( ) = ( ) − + ( )− − −( ) −3 64 1000 6 5 10 10000 8 0 6 1000 3 3 3 42

. .. . .  (9.1.3)

where f is frequency in hertz.

EXAMPLE 9.2

This example demonstrates the threshold of hearing with example9_2.m. The plot of 
human threshold in quiet is shown in Figure 9.3. It shows that human hearing is relatively 
sensitive in the frequency range of 2 to 5 kHz, but we can tolerate more noise outside this 
range. For example, this threshold increases rapidly at frequencies higher than 10 kHz and 
changes slowly in the frequency range from 500 Hz to 2 kHz. Note that the threshold of 
hearing changes with age and an older person has a higher threshold.

Every narrowband signal has a masking curve, and various spreading functions 
can be used to estimate the masking capability of each tone. Typically, the masking 
curves extend farther toward higher frequencies. The slope of the frequency-masking 
curve depends on the sound pressure level (SPL) of the tone and the frequency at 
which it is present [55]. A basic spreading function is a triangular function with a 
steeper slope for lower frequencies and a negative, gradually falling slope for the 
higher frequencies. For example, the Schroeder spreading function has been used 
in [56], which can be expressed as:

10 15 81 7 5 0 474 17 5 1 0 47410
2 1 2

log . . . . .F dz dz dz( ) = + +( ) − + +( )( ) ,  (9.1.4)

where dz is the Bark scale difference between the maskee (neighboring frequencies) 
and the masker (loud tone) frequency. The SPL of the tone is added to the spreading 
function to obtain the masking curve [55]. The bark scale gives the conversion 
between frequency in hertz and the critical bands of the human auditory system as 
follows [56]:
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z f f f( ) = ( ) + ( )⎡⎣ ⎤⎦
− −13 0 00076 3 5 75001 1 2tan . . tan  (9.1.5)

dz z f z f= ( ) − ( )maskee masker .  (9.1.6)

EXAMPLE 9.3

With Equations 9.1.5 and 9.1.6, a simple MATLAB program, example9_3.m, can be 
written to demonstrate frequency masking. As shown in Figure 9.4, the masker is a 1-kHz 
tone. This tone generates a new masking curve, which makes frequency components that are 
below this curve (two tones at 650 and 1,500 Hz) inaudible because their levels are below 
the masking curve. The masking threshold can be used to eliminate redundant frequency 
components and quantization noise to achieve higher coding effi ciency.

In addition to the steady-state frequency masking illustrated in Figure 9.4, the 
temporal masking also occurs after the masker is not present. There are three tem-
poral regions: (1) premasking before the presentation of the masker, (2) simultaneous 
masking at the start of the masker, and (3) postmasking after the stop of the masker. 
The effective duration of premasking is relatively short at about 20 ms, whereas the 
postmasking can last for about 100 to 200 ms. Simultaneous masking is dependent 
on the relationship between frequencies and their relative volumes. For example, if a 
stronger tonal component is played before a quiet sound, the quiet sound may not be 
heard if it appears within the order of 50 to 200 ms. These three temporal masking 
effects are considered in modern perceptual audio coding such as Ogg Vorbis.

–10

0

10

20

40

30

50

60

70
Auditory threshold of hearing

0.1 0.2 0.50.05 1 kHz 2

Frequency in log scale

S
ou

nd
 p

re
ss

ur
e 

le
ve

l i
n 

dB

5 10

Figure 9.3 A threshold of hearing curve in log scale

TEAM LinG



386 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

Several new audio coding techniques have been developed to improve MP3 by 
using a better psychoacoustic model, temporal noise shaping, etc. These second-
generation techniques include MPEG-4 AAC [56], which is used by Apple’s iTunes 
music store and iPod. MP3 and AAC depend on similar psychoacoustic models, and 
key patents are held by many companies. Ogg Vorbis from the Xiph.org Foundation 
is a free software and is patent free. This second-generation coding technique has 
performance similar to MPEG-4 AAC and higher quality than MP3; however, the 
computational cost of Ogg Vorbis is higher than MP3. Implementation issues are 
discussed in [59] and [61]. In this chapter, we implement Ogg Vorbis decoder with 
the BF537 processor.

9.2 MP3/OGG VORBIS AUDIO ENCODING

The basic idea of perceptual audio coding techniques is to split the time-domain 
signal into its frequency components and to code its frequency component parame-
ters with the number of bits determined by the psychoacoustic model. Figure 9.5 
illustrates the hybrid fi lterbank & transform block shown in Figure 9.2 for MP3 
coding, which consists of cascade of polyphase fi lterbank and MDCT. First, the 
audio signal is split into 32 subbands with a polyphase fi lterbank. Each subband is 
critically sampled at a 1/32 sampling rate to minimize the bit rate, and 36 samples 
are buffered into the block. To reduce block effects, the windowing technique intro-
duced in Section 3.3.4 plays an important role. Again, note that Ogg Vorbis only 
uses large-size MDCT to function as a fi lterbank for splitting time-domain signals. 
The MDCT uses the concept of time-domain aliasing cancellation, whereas the 
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quadrature mirror fi lterbank uses the concept of frequency-domain aliasing cancel-
lation. MDCT also cancels frequency-domain aliasing; thus MDCT achieves perfect 
reconstruction.

The polyphase fi lterbank with N subbands and critically sampled at fs/N can be 
designed with pseudo quadrature mirror fi lters [57], which exactly cancel the aliasing 
from adjacent bands. The prototype low-pass fi lter with cutoff frequency at π/N and 
impulse response h(n) of length L can be modulated to form N bandpass fi lters as [57]

h n h n
k n L

N
k k( ) = ( ) + − −( )

+⎡
⎣⎢

⎤
⎦⎥

cos
( / ) ( / )1

2 1 2 ϕ , (9.2.1)

for k = 0, 1,  .  .  .  , N − 1 and n = 0, 1,  .  .  .  , L − 1. The phase value ϕk is selected to 
cancel aliasing between adjacent bands.

EXAMPLE 9.4

The MATLAB Filter Design Toolbox supports the design of the polyphase fi lterbank by 
providing 11 functions to create multirate fi lter objects. For example, the following function

hm = mfilt.firdecim(N);

returns a direct-form FIR polyphase decimator object hm with a decimation factor of N. A 
low-pass Nyquist fi lter of gain 1 and cutoff frequency of π/N is designed by default. The 
magnitude response of the low-pass fi lter designed by example9_4.m with L = 512 and 
N = 32 is shown in Figure 9.6.

As shown in Figure 9.5, the MP3 coder compensates for fi lterbank problems 
by processing the subband signals with MDCT. Similar to the DFT defi ned in Equa-
tion 3.3.9, the discrete cosine transform (DCT) of signal x(n), n = 0, 1,  .  .  .  , N − 1, 
can be expressed as

X k a k x n
n k

N
k N

n

N

( ) = ( ) ( ) +( )⎡
⎣⎢

⎤
⎦⎥

= −
=

−

∑ cos . . .
π 2 1

2
0 1 1

0

1

, , , , , (9.2.2)

where X(k) is the kth MDCT coeffi cient, a k N( ) = 1  for k = 0, and a k N( ) = 2
for k = 1, 2,  .  .  .  N − 1. It is important to note that the DCT coeffi cient, X(k), is a 
real number. MATLAB provides the following function for DCT:
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Figure 9.5 Block diagram of fi lterbank and transform in MP3
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y = dct(x);

MDCT is widely used for audio coding techniques. In addition to an energy 
compaction capability similar to DCT, MDCT can simultaneously achieve critical 
sampling and reduction of block effects. The MDCT of x(n), n = 0, 1,  .  .  .  , N − 1, 
is expressed as

X k x n n
N

k
N

k N
n

N

( ) = ( ) + +( ) +( )⎡
⎣⎢

⎤
⎦⎥

=
=

−

∑ cos . . . .
2

4

1

2

2
0 1

0

1 π
, , , , 2-1 (9.2.3)

The inverse MDCT is defi ned as

x n
N

X k n
N

k
N

n N
k

N

( ) = ( ) + +( ) +( )⎡
⎣⎢

⎤
⎦⎥

= −
=

2 2

4

1

2

2
0 1 1

0

cos . . . .
π

, , , ,
2-11

∑ (9.2.4)

For real-valued signals, MDCT coeffi cients in Equation 9.2.3 can be calculated with 
the FFT method. Similarly, IMDCT can be computed with FFT. Refer to Hands-On 
Experiment 9.4 for the fast implementation of IMDCT.

A block of data is segmented with an appropriate window function. For imple-
mentation of time-domain aliasing cancellation, the window needs to satisfy the 
following conditions to have perfect reconstruction: (1) The analysis and synthesis 
windows must be equal, and the length N must be an even number. (2) The window 
coeffi cients must be symmetric. There is a 50% overlap between two successive 
windows for transform. MP3 uses a sine window expressed as [56]

w n
n

N
( ) = +( )⎡

⎣⎢
⎤
⎦⎥

sin
.

.
π 0 5

2
(9.2.5)
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Figure 9.6 Magnitude response of prototype low-pass fi lter for 32-band fi lterbank
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MP3 specifi es two different MDCT block lengths: a long block of 18 samples and 
a short block of 6 samples. There is 50% overlap between successive windows, so 
the window sizes are 36 and 12. The long block length allows better frequency reso-
lution for audio signals with stationary characteristics, and the short block length 
provides better time resolution for transients.

AAC uses a Kaiser–Bessel derived window, and Ogg/Vorbis uses the following 
Vorbis window [61]:

w n
n

N
( ) = +( )( )⎡

⎣⎢
⎤
⎦⎥

sin sin
.

.
π π
2

0 5

2
2 (9.2.6)

Ogg/Vorbis uses two window lengths between 64 and 8,192 and commonly uses 
256 for the short window and 2,048 for the long window. Note that the windows 
applied to MDCT are different from the windows introduced in Chapter 3 that are 
used for other types of signal analysis. One of the reasons is that MDCT windows 
are applied twice for both MDCT and the inverse MDCT.

EXAMPLE 9.5

Both the sine window given in Equation 9.2.5 and the Vorbis window for N = 32 are calcu-
lated in example9_5.m, which uses the GUI WVTool (window visualization tool) for 
analyzing windows. These two windows and their magnitude responses are shown in Figure 
9.7. The fi gure shows that the Vorbis window has better stopband attenuation.

EXERCISE 9.2

1. Evaluate the sine and Vorbis windows with different length L.

2. Use WINTool introduced in Chapter 3 to further analyze the sine and Vorbis 
windows.

Figure 9.7 Sine and Vorbis windows
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Window function and length will affect the frequency response of the fi lterbank. 
In general, a long window improves coding effi ciency for audio with complex spectra; 
however, it may create problems for transient signals. The Ogg Vorbis encoder allows 
smooth change of window length and the use of a transition window (long start, short 
stop; or short start, long stop) to better adapt to input audio characteristics.

As shown in Figure 9.2, the psychoacoustic model analyzes the input audio 
signal to determine the best quantization levels for encoding each frequency 
band. The MDCT outputs are fed into the quantization block, which uses the psy-
choacoustic model to perform a bit allocation and quantization. To further compress 
the bit rate, a lossless coding technique is used. Lossless audio coding uses entropy 
code to further remove the redundancy of the coded data without any loss in 
quality.

Huffman encoding is a lossless coding scheme that produces Huffman codes 
from input symbols. Based on the statistic contents of the input sequence, the symbols 
are mapped to Huffman codes. Symbols that occur more frequently are coded with 
shorter codes, whereas symbols that occur less frequently are coded with longer 
codes. On average, this will reduce the total number of bits if some combinations of 
input sequences are more likely to appear than others. Huffman coding is extremely 
fast because it utilizes a look-up table for mapping quantized coeffi cients to possible 
Huffman codes. On average, an additional 20% of compression can be achieved.

9.3 MP3/OGG VORBIS AUDIO DECODING

Audio decoding is carefully defi ned in the standard. Actually, the Ogg/Vorbis stan-
dard only defi nes the decoding process. The basic structure of the MP3 decoder 
illustrated in Figure 9.8 includes three important functions: (1) decoder, (2) inverse 
quantization, and (3) synthesis fi lterbank. The synthesis fi lterbank can be obtained 
from the analysis fi lterbank hk(n) defi ned in Equation 9.2.1 as follows:

g n h L nk k( ) = − −( )1 .  (9.3.1)

In the synthesis fi lterbank, the signal is upsampled by a factor N and fi ltered by the 
set of fi lters, gk(n).

The encoded bit stream format for the compressed audio signal includes (1) 
header containing the format of the frame; (2) optional cyclic redundancy checksum 
(CRC) for error correcting; (3) side information containing information for decoding 
and processing the main data; (4) main data consisting of coded spectral coeffi -
cients; and (5) ancillary data holding user-defi ned information such as song title. 
The MP3 fi le has a standard format, which is a frame consisting of 384, 576, or 
1,152 samples, and all the frames have associated header information (32 bits) and 

Synthesis 
filterbank

Decoding 
Inverse 

quantization 

Bitstream 
Audio
signal 

Figure 9.8 Basic structure of MP3 decoder
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side information (9, 17, or 32 bytes). The header and side information help the 
decoder to decode the associated Huffman encoded data correctly.

The Ogg Vorbis bit stream consists of identifi cation, comment, setup, and audio 
packets. The audio packet contains audio data, which can be decoded with the sim-
plifi ed diagram given in Figure 9.9. The decoding block consists of header decoding, 
fl oor decoding, residue decoding, and channel decoupling. The fl oor is a smooth 
curve to represent a spectral envelope, which is equivalent to the frequency response 
of the linear predictive coding fi lter. The decoded residue values are added with the 
decoded fl oor in the frequency-domain to complete the spectral reconstruction. The 
resulting frequency-domain coeffi cients are transformed back to the time domain 
with the inverse MDCT defi ned in Equation 9.2.4.

The Ogg Vorbis decoder is implemented with TMS320C55x in [61], which 
shows that the inverse MDCT needs more than 50% of processing time, the most 
time-consuming block of the decoder. Several implementations listed in [59] show 
that the optimization of inverse MDCT can achieve an effi cient Ogg Vorbis decoder. 
Effi cient implementations include using an optimized assembly routine for inverse 
MDCT, exploiting the inverse MDCT with FFT, or implementing it with dedicated 
hardware.

The inverse MDCT and windowing are performed to obtain time-domain audio 
samples, where the window function is defi ned in Equation 9.2.6. The current 
MDCT window is 50% overlapped with adjacent windows. As mentioned above, 
Ogg Vorbis uses short and long windows with length (a power-of-two number) from 
32 to 8,192.

9.4 IMPLEMENTATION OF OGG 
VORBIS DECODER WITH BF537 EZ-KIT

This section implements the Ogg Vorbis decoder in real time with the Blackfi n 
processor. This Ogg Vorbis decoder supports encoded fi les with different bit rates. 
The Ogg Vorbis fi le is transferred from the computer to the Blackfi n memory. This 
encoded bit stream is then decoded with the Ogg Vorbis decoding algorithm 
explained in the previous sections and played back in real time with the EZ-KIT.

HANDS-ON EXPERIMENT 9.1

This experiment implements an Ogg Vorbis decoder on the BF537 EZ-KIT. Users who use 
the BF533 EZ-KIT should refer to Application Project 1 at the end of this chapter for instruc-
tion. To run the Ogg Vorbis decoder with the BF537 EZ-KIT, turn all SW7 switches to ON,

WindowingDecoding
Inverse
MDCT

Audio
packet

Audio
signal

Figure 9.9 Simplifi ed Ogg Vorbis decoder
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and turn SW8 switches 1 and 2 to ON. Several Ogg Vorbis fi les (with .ogg extension) 
have been created and stored in directory c:\adsp\chap9\chap9_1_537\Debug logg 
files for experiment. In addition, users can convert a .wav fi le to an Ogg Vorbis fi le with 
encoding software like OggdropXpd. This software may be downloaded from websites such 
as http://www.rarewares.org/ogg.html.

The Ogg Vorbis decoder copies an Ogg Vorbis fi le from the host computer into the 
Blackfi n memory and decodes and plays the audio output with the EZ-KIT. In directory 
c:\adsp\chap9\chap9_1_537, there are two VisualDSP++ project fi les, Vorbis_
Player_BF537.dpj and libtremor537_lowmem.dpj. The fi rst fi le is the main 
project fi le that sets up the audio driver and runs the Tremor library, and the second fi le 
builds the Tremor library. The Tremor library code consists of the source code of the fi xed-
point Ogg Vorbis decoder, which is based on the open source code available on the website 
http://xiph.org/. Only Vorbis_Player_BF537.dpj needs to be loaded in VisualDSP++,
because this project fi le is linked to the Tremor library. Build and run the project. When 
prompted for the Ogg fi le to be loaded, type in liutm.ogg (or other Ogg Vorbis fi les). This 
Ogg Vorbis fi le is encoded with a bit rate of 112 kbit/s. Do you hear any music coming out 
from the headphones or loudspeakers? Reload the project and decode other Ogg Vorbis 
fi les.

The default Ogg Vorbis decoder was built with optimization turned on. We can also 
examine the difference when the optimizer is turned off. Load the project libtremor537_
lowmem.dpj into VisualDSP++ and rebuild with optimization turned off. Make sure that 
the project fi le is Set as Active Project before building it. Next, build the project Vorbis_
Player_BF537.dpj and run the decoder again. In the decoder.c program, we have set 
up a benchmark routine to measure the cycle counts (or MIPS) needed by the Ogg Vorbis 
decoder to complete one second of decoding. The MIPS score is stored at the memory loca-
tion testsample.0, and this information can be viewed in the Blackfi n Memory window. 
Load the Ogg Vorbis fi le liutm.ogg again and fi ll in the MIPS benchmark results with 
and without optimization as shown in Table 9.1.

We can also examine the MIPS required to decode different Ogg Vorbis fi les encoded 
at different bit rates. A set of Ogg Vorbis fi les shown in the fi rst column of Table 9.2 are 

Table 9.1 MIPS Benchmark of Ogg Vorbis Decoder with 
and without Optimization

 MIPS

Decoder (without optimization)

Decoder (with optimization)

Table 9.2 Bit Rate, MIPS, and Duration of the Decoded Ogg Vorbis Files

Filename Bit Rate (kbit/s) MIPS Duration (100,000 bytes)

liutm64.ogg  64
liutm128.ogg 128
liutm196.ogg 196
liutm256.ogg 256
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encoded at different (average) bit rates of 64, 128, 192, and 256 kbit/s. Perform the MIPS 
benchmark for these fi les and fi ll in the third column of Table 9.2. In addition, note that these 
decoded music fi les vary in length. Why? Examine the main fi le decode.c again and note 
that this program will transfer 100,000 bytes (determined by the constant NUM_BYTE_TO_
DECODE) of data from the fi le to the Blackfi n memory. Because these fi les are encoded at 
different bit rates, the lengths of the decoded fi les are also different. Determine the duration 
of the decoded music clips, and fi ll in the results in the last column of Table 9.2. Reload the 
project for decoding a new Ogg Vorbis fi le. Verify the duration of the music playback. Users 
can also increase the number of bytes to decode and verify the new duration of the decoded 
music clip.

Examine the fi le size of the Ogg fi les shown in Table 9.2 and determine the compression 
ratio of these fi les with reference to the original fi le that is sampled at 48 kHz with 16 bits 
per sample. Also, perform a benchmark on the memory (data and instruction) used in the 
Ogg Vorbis decoder when decoding the fi les listed in Table 9.2.

9.5 AUDIO EFFECTS

This section introduces three-dimensional (3D) audio and reverberation effects with 
different combinations of FIR and IIR fi lters. We begin with an explanation of these 
audio effects using block diagrams, move on to the MATLAB fl oating-point simula-
tions, and fi nally implement these audio effects in real time with the Blackfi n 
processor.

9.5.1 3D Audio Effects

Unlike stereo sound, which only allows lateral listening, 3D sound enables sound to 
be positioned around the listener’s head at different directions with only a pair of 
loudspeakers or a headphone. This effect is achieved by using a set of FIR 
fi lters, commonly called head-related impulse responses (HRIRs) in time domain or 
head-related transfer functions (HRTFs) in frequency domain [58]. For example, 
Figure 9.10 shows that a mono sound source can be perceived as coming from 30° 
right with respect to the front of the listener by convolving (or fi ltering) the original 
signal with the impulse responses of two HRIR fi lters (left and right) that correspond 
to the 3D position of 30° right and 0° elevation. This simple fi ltering reconstructs the 
acoustic pressures at the listener’s ears that would occur with a free-fi eld sound 
source at the desired location. This system is commonly called the binaural 
spatializer.

The HRIRs are usually measured with microphones inside the ears of a dummy 
head and loudspeakers that are placed at different positions that emit white noise 
[54]. A popular HRIR data set was measured by MIT Media Lab [58],which consists 
of 710 different positions at elevations from −40° (i.e., 40° below the horizontal 
plane) to +90° (directly overhead). At each elevation, 360° of azimuth was sampled 
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in equal increments, and the defi nition of the angle of horizontal azimuth is shown 
in Figure 9.10.

EXAMPLE 9.6

This example uses the MATLAB program example9_6.m to convolve a mono sound source 
with a set of HRIR fi lters at an azimuth of 30° and 0° elevation. Plot the HRIR and note the 
differences between the two HRIRs at an azimuth of 30° as shown in Figure 9.11. Note that 
the right HRIR (bottom diagram) has a higher amplitude and responds earlier compared with 
the left HRIR (top diagram). The HRIR at the azimuth of 30° is transformed to frequency 
domain to obtain the HRTF plots as shown in Figure 9.12. Note that the right HRTF (solid 
line) has a higher magnitude (>10 dB) than the left HRTF (dashed line), and the peaks and 
notches of the HRTFs occur at different frequencies. These different spectral envelopes 
contain important cues to convey the spatial information of the sound source. Listen to the 
original and fi ltered signals with a headphone. Continue the experiment with different 
azimuths of 0°, 60°, 90°, 120°, 150°, and 180°.

EXAMPLE 9.7

The previous example shows a single-source binaural spatializer. This system can be extended 
to a multiple source spatializer that can localize different sound sources in 3D space. The 
system simply convolves each source signal with a pair of HRIRs that corresponds to the 
direction of the source. All the processed (left and right) signals are summed together to 
form the left and right input of the fi nal binaural signals. For example, a two-source binau-
ral spatializer is shown in Figure 9.13. The gain settings at the output of the HRIR fi lters 
provide further control of the perceived sound image. A MATLAB fi le, example9_7.m, is 
written to perform this two-source binaural spatializer.

Left HRIR 
at 30o

Right HRIR 
at 30o

Mono sound source 

Perceive mono sound 
source coming from 30o

right and elevation of 0o.

0o

30o

60o

90o

120o

150o

180o
210o

240o

270o

300o

330o

Horizontal azimuth 

Figure 9.10 3D audio fi ltering for a mono sound source
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Figure 9.11 Two HRIRs at azimuth of 30°
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EXERCISE 9.3

1. In the previous two-source binaural spatializer, place the source x1 at 210° 
instead of 30°. How do we derive the HRIR for azimuth at 210° if only the 
HRIRs for the right hemisphere (0° to 180°) are measured?

2. Modify the two-source binaural spatializer to include distance information. 
Assuming that sources x1 and x2 are located at one and two meters away 
from the listener, respectively. Note that the signal strength of the sound 
source is halved for every doubling of distance from the listener.

9.5.2 Implementation of 3D Audio 
Effects with BF533/BF537 EZ-KIT

The Blackfi n EZ-KIT allows users to select and play back signals with different 3D 
effects in real time. The audio signal can be continuously sampled at the audio input 
channels of the Blackfi n processor, and 3D audio processing is carried out. The 3D 
audio effects can be changed on the fl y by pressing different switches on the EZ-
KIT. This real-time processing platform supports a useful functionality test for 
interactive applications.

HANDS-ON EXPERIMENT 9.2

This experiment implements a real-time binaural spatializer with the BF533 (or BF537) EZ-
KIT. A stereo or mono sound source is connected to the audio input channels of the EZ-KIT, 
and the output of the EZ-KIT is connected to a headphone. The project fi les are located in 
directory c:\adsp\chap9\exp9_2_533 for the BF533 EZ-KIT (or c:\adsp\chap9\
exp9_2_537 for the BF537). Load the project fi le and build and run the project. The default 
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at 150o

Right HRIR 
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+
gl2

+

gr1

gr2

gl1

Figure 9.13 Two-source binaural spatializer
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starting mode of the spatializer is the “Static” mode, where sound can be moved from one 
position to another with every press of a button as described in the second row of Table 9.3. 
The signal source is considered as a mono sound source.

The second mode is the “Mixed” mode. To switch to this mode, press the switch SW4
for the BF533 EZ-KIT (or SW10 for the BF537). The “Mixed” mode implements the two-
source binaural spatializer as shown in Figure 9.13. A stereo wave fi le, mixed_48k_
stereo.wav, is available in directory c:\adsp\audio_files\ to test the 3D audio effects 
in this mode. This binaural spatializer places two sound sources in symmetric locations, and 
these sound sources can be perceived as moving clockwise or counterclockwise in tandem. 
Press the switches indicated in Table 9.3 to perceive the movement of the two sound 
sources.

The third mode is the “Pass-through” mode, which passes the left and right input chan-
nels to the output channels without processing. This mode is used to compare the differences 
between the 3D audio effects and the “Pass-through” without processing. The fi nal “Dynamic” 
mode in this project moves a single sound source around the head. The sound position is 
automatically changed by 30° clockwise in every second. A cross-fading method is used in 
this mode to avoid any sudden discontinuation that creates clicking distortion when moving 
from one position to another. If the switch SW4 (for the BF533) or SW10 (for the BF537) is 
pressed again, it will rotate back to the “Static” mode.

Table 9.3 Defi nition of LEDs and Switches for Different Operating Modes

Modes BF533 EZ-KIT BF537 EZ-KIT

Static (default LED4 off LED1 off
 when start) LED5–8 light up to indicate the LED2–5 light up to indicate the
  12 azimuth angles  12 azimuth angles
 SW5: Every press increases the SW11: Every press increases the
  angle by 30° clockwise  angle by 30° clockwise
 SW6: Every press increases the SW12: Every press increases the
  angle by 30° counterclockwise  angle by 30° counterclockwise

Mixed SW4 to switch to this mode SW10 to switch to this mode
 LED4 blinks LED1 blinks
 LED5–8 light up to indicate the LED2–5 light up to indicate the
  12 azimuth angles  12 azimuth angles
 SW5: Every press increases the SW11: Every press increases the
  angle by 30° clockwise  angle by 30° clockwise
 SW6: Every press increases the SW12: Every press increases the
  angle by 30° counterclockwise  angle by 30° counterclockwise

Pass-through SW4 to switch to this mode SW10 to switch to this mode

Dynamic SW4 to switch to this mode SW10 to switch to this mode
 LED4 off LED1 blinks
 LED5–8 rotate to indicate dynamic LED2–5 rotate to indicate
  movement of sound source  dynamic movement of sound
   source

9.5 Audio Effects 397

TEAM LinG



398 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

9.5.3 Generating Reverberation Effects

Room reverberation [64] can be simulated with a set of IIR fi lters. The reverberation 
algorithm simulates the sound refl ections in an enclosed environment such as rooms, 
concert halls, etc. These audio effects enhance the listening experience of audio 
playback in an environment with little or poor reverberation. For example, when 
listening music with headphones, there is no reverberation from the surroundings 
that is being added to the music. We can artifi cially add these reverberation effects 
to the music and make it sound richer.

Reverberation consists of three components: direct sound, early refl ections, and 
late refl ections (or reverberation). Direct sound takes a direct (shortest) path from 
the sound source to the receiver (or listener). Early refl ections, which arrive within 
10 to 100 msec after the direct sound, are caused by sound waves refl ected once 
before reaching the listener. The late refl ection is produced after 100 msec and forms 
the reverberation. The reverberation time t60 is defi ned as the time needed for the 
impulse response to decay by 60 dB. Reverberation time is often used to characterize 
the reverberation of an enclosed space. A large room such as a concert hall has a 
long reverberation time between 1.5 and 2 s, whereas a small meeting room has a 
reverberation of few hundredths of a millisecond.

A digital reverberation algorithm was proposed by Schroeder [64] to model the 
reverberation effects in a room. As shown in Figure 9.14, this algorithm simulates 
room reverberation with four comb fi lters C1(z), C2(z), C3(z), and C4(z) connected 
in parallel, followed by two cascaded allpass fi lters A1(z) and A1(z).

The transfer function of the comb fi lter is expressed as

z-D1

a1

∑

C1(z)
b1

C2(z) with D2
and a2

b2

C3(z) with D3
and a3

b3

C4(z) with D4
and a4

b4

z-D5

a5

-a5

A5(z)

A6(z)
with a6

and D6

y(n)x(n)

Comb filters 

Allpass filters 

+

+ +

Figure 9.14 Block diagram of a digital reverberation algorithm
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which is the IIR fi lter with Di poles equally spaced (2π/Di) on the unit circle. The 
coeffi cient ai determines the decay rate of the impulse response for each comb fi lter. 
The comb fi lter increases the echo density and gives the impression of the acoustics 
environment and room size. However, it also causes distinct coloration of the incoming 
signal. Allpass fi lters prevent such coloration and emulate more natural sound charac-
teristics in a real room. The transfer function of the allpass fi lter is expressed as
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−1
5 6, , . (9.5.2)

By cascading the allpass fi lters with comb fi lters, the impulse response of the overall 
system becomes more diffuse.

EXAMPLE 9.8

The digital reverberation algorithm shown in Figure 9.14 can be simulated with MATLAB. 
Open the MATLAB fi le example9_8.m, which specifi es the time delays of 40, 44, 48, and 
52 msec for the four comb fi lters. The allpass fi lter has a delay of 7 msec. The reverberation 
algorithm is running at 48 kHz. Determine the length of the comb and allpass fi lters. Set all 
feedback coeffi cients, ai, i = 1,  .  .  .  , 4, of the comb fi lters as 0.75. Run the simulation with 
the input wave fi le liutm_48k_mono.wav, which is located in directory c:\adsp\
audio_files, and play back the processed signal output.wav in directory c:\adsp\
chap9\MATLAB_ex9. Do you perceive any reverberation effect? Use different time delays 
and coeffi cients to create different effects.

EXERCISE 9.4

1. Examine the impulse and magnitude responses of the comb fi lters and 
allpass fi lters separately. Compare the differences of using a longer delay 
and a larger coeffi cient.

2. Use an impulse signal as input to the reverberation algorithm shown in 
Figure 9.14 and save the impulse response. Examine the impulse and mag-
nitude responses of the cascade structure. Compute the reverberation time, 
t60, based on the parameters given in Example 9.8.

9.5.4 Implementation of Reverberation 
with BF533/BF537 EZ-KIT

This section implements the reverberation algorithm in real time with the Blackfi n 
EZ-KIT. The performance of the previous fl oating-point MATLAB implementation 
must be reevaluated with the fi xed-point (1.15) format before porting to the Blackfi n 
processors. Refer to the fi xed-point design and implementation of the IIR fi lters in 
Chapter 6 for details.
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HANDS-ON EXPERIMENT 9.3

This experiment implements the reverberation algorithm [47] with the Blackfi n processor. 
The project fi le is located in directory c:\adsp\chap9\exp9_3_533 for the BF533 (or 
c:\adsp\chap9\exp9_3_537 for the BF5337). In addition to the generation of rever-
beration shown in Figure 9.14, this project also implements the early refl ection portion and 
direct path of the impulse response as shown in Figure 9.15. This reverberation structure, 
proposed by Moorer [62], produces a more realistic reverberation sound than that proposed 
by Schroeder (Fig. 9.14). Build and run the project. Connect stereo music to the audio input 
port of the EZ-KIT. Press SW5 (for the BF533 EZ-KIT) or SW11 (for the BF537) to listen 
to the reverberation version of the music and then press SW4 (for BF533) or SW10 (for 
BF537) to switch back to the pass-through mode. Three gains (g1, g2, and g3) can be indi-
vidually controlled to emphasize the signifi cance of the early refl ection generator, rever-
beration, and direct path signals. We can also turn off the contribution of different paths by 
setting the corresponding gains to zero.

9.6 IMPLEMENTATION OF MDCT WITH LABVIEW 
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

MDCT divides the audio signal into overlapping frequency bands and later 
recombines them using inverse MDCT (IMDCT) to reproduce the signal with 
minimal distortion. In this experiment, we focus on IMDCT, which is used in 
the Ogg Vorbis decoder. First, we analyze two methods of implementing the 
IMDCT in LabVIEW: (1) direct implementation of IMDCT and (2) faster imple-
mentation using FFT. Next, the algorithms are benchmarked for both LabVIEW for 
Windows and the Blackfi n EZ-KIT. Benchmarking is done by isolating IMDCT and 
placing it in a simple structure that can be reused to study the performance of any 
function within LabVIEW or the LabVIEW Embedded Module for Blackfi n 
Processors.

Reverberation 
generator 

(in Figure 9.14) 

Early reflection 
generator 

+

g1

g2

g3

y(n)x(n)

Direct path

Figure 9.15 Moorer’s digital reverberation structure
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HANDS-ON EXPERIMENT 9.4

IMDCT is an overlapping algorithm that generates an output data set that is twice the size 
of the input signal. The resulting signal is then overlapped and combined with the last 50% 
of the previous packet and the fi rst 50% of the next packet to reconstruct the signal.

Launch LabVIEW and open the fi le Test_IMDCT_by_Eqn.llb located in directory 
c:\adsp\chap9\exp9_4 to begin exploring IMDCT. Test_MDCT_Eqn.vi, inside the 
.llb library, allows users to test and verify that the implementation of the IMDCT is correct. 
The input signal is a sine wave as shown in Figure 9.16. This test signal is unique in that the 
past, present, and next data packets are identical.

This input signal is passed through a Window function to remove the beginning and 
ending discontinuities and then transformed with the MDCT defi ned in Equation 9.2.3. Next, 
the IMDCT defi ned in Equation 9.2.4 is used to transform the DCT coeffi cients back to the 
time domain. The windowing function is applied again to combine the past, present, and 
next signal packets to complete the reconstruction of the original input signal.

Run the VI and verify that the input and output signals are identical. Open IMDCT
subVI shown in Figure 9.17 and analyze the graphical code used to implement the 
algorithm.

As shown in Figure 9.17, the outer For Loop iterates 2N times, where N is the size of 
the input signal, to generate each point of the output signal. Formula Node inside the inner 
For Loop calculates and accumulates all of the values according to the IMDCT. Note that 
the output of the algorithm has twice the number of points as the input signal.

FFT can be used to improve the speed of execution for computing IMDCT. Ideally, 
when packets are created with a length that is a power of two, the radix-2 FFT algorithm 

Figure 9.16 Direct implementation of MDCT and IMDCT, MDCT by Eqn.vi

Figure 9.17 Direct implementation of IMDCT, IMDCT.vi
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can be used. The calculation of IMDCT with inverse FFT is derived in the following three 
equations. The detailed explanation can be found in [56]. Some additional processing is 
necessary, as shown in the LabVIEW implementation in Figure 9.18.
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j

N
kn

2
0

π

, (9.6.1)

x n X k( ) = ′ ( )[ ]IFFT ,  (9.6.2)

    y n x n e
j

N
n n

( ) = ( )
+( )2

0
π

,  (9.6.3)

where n
N

0
4

1

2
= +⎛

⎝
⎞
⎠ , N represents the number of samples to be recovered, k is the 

frequency index, and n is the time index.
Modify Test_MDCT_Eqn.vi by replacing both MDCT.vi and IMDCT.vi with MDCT_

FFT.vi and IMDCT_FFT.vi, respectively. To do this, right-lick on MDCT.vi, select Replace 
Æ Select A VI.  .  .  , and navigate to MDCT_FFT.vi in directory c:\adsp\chap9\exp9_4\
Test_IMDCT_by_FFT.llb. Do the same for IMDCT_FFT.vi. Run the exercise again to 
verify that this FFT implementation of IMDCT generates the same results as the direct 
implementation of IMDCT.

HANDS-ON EXPERIMENT 9.5

In this experiment, we benchmark the performance of the IMDCT with a common architec-
ture that can be used to benchmark any function or algorithm in LabVIEW or the LabVIEW 
Embedded Module for Blackfi n Processors. DSP algorithms typically execute very fast, with 
submillisecond execution times. For this reason, we derive the average execution time by 
running the algorithm several times while measuring the total execution time. When operat-
ing on the embedded target, the fi nal execution time is output to the standard output port 
with One Button Dialog VI.

Open IMDCT_Benchmark.vi located in Bench_IMDCT.llb in directory c:\adsp\
chap9\exp9_5. This VI provides a common benchmarking architecture for testing 
any application. Figure 9.19 shows that within the benchmarking VI, the data set Xk
simulates a 128-point packet of input data. The IMDCT has been placed in For Loop so 
that it can execute several iterations in order to calculate an average execution time per 
iteration.

Figure 9.18 FFT implementation of IMDCT, IMDCT_FFT.vi
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Use Table 9.4 to record the execution results. Fill up the benchmark table by 
running the VI shown in Figure 9.19 targeted to Windows. Record the resulting execution 
time in the top left cell of Table 9.4. Then right-click on IMDCT.vi and replace it with 
IMDCT_FFT.vi. Run the VI again and record the result.

After you have completed testing in Windows, change the execution target to the Black-
fi n EZ-KIT. Open the project IMDCT_Benchmark_Default_BF5xx.lep located in 
directory c:\adsp\chap9\exp9_5. Execute the VI on the embedded target. The resulting 
time should be sent back to the computer through the standard output port and can be seen 
on the Output tab of the Processor Status window. Once you have tested IMDCT.vi, again 
replace it with IMDCT_FFT.vi.

Finally, close the current project and open the new project IMDCT_Benchmark_
Optimized_BF5xx.lep located in directory c:\adsp\chap9\exp9_5. Execute the VI 
on the embedded target and record the execution results. Again replace IMDCT.vi with 
IMDCT_FFT.vi to test the execution time of both IMDCT computation methods. Examine 
the confi gured Blackfi n Build Options from the Embedded Project Manager to see which 
optimizations were enabled.

Once the table is complete, study the results. Which compiling optimizations effectively 
reduce the execution time? What methods could be used to further increase the execution 
speed of IMDCT? Explain. Also, consider data types and the analysis library used.

Figure 9.19 A benchmarking structure, IMDCT_Benchmark.vi

Table 9.4 Execution Time for Different Platforms

 Execution Time in Milliseconds

 Windows Blackfi n Default Blackfi n Optimized

IMDCT.vi

IMDCT_FFT.vi

9.6 Implementation of MDCT with LabVIEW Embedded Module 403
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404 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

9.7 MORE APPLICATION PROJECTS

1. The BF533 EZ-KIT can be used to perform the same Ogg Vorbis decoder defi ned in 
Hands-On Experiment 9.1. However, it takes a longer time to load an Ogg Vorbis fi le 
into the BF533 EZ-KIT. Load and build the project fi le Vorbis_Player_BF533.dpj
located in directory c:\adsp\chap9\project9_1. Perform the same operations 
including benchmark measurements described in Hands-On Experiment 9.1.

2. In Hands-On Experiment 9.1, benchmarking is carried out on the entire decoding 
process. It is useful to profi le the computational load for different modules in the decod-
ing process and identify the hot spot of the program. Activate the statistical profi ler and 
examine the percentage of time spent in different modules. Which portion of the module 
accounts for the majority of the cycle count?

3. For using loudspeakers to play back 3D sound, we need an additional processing block 
called the cross talk canceller that cancels cross talk from the loudspeakers to the ears. 
Refer to reference [54] for details on the cross talk canceller. Extend Hands-On Exper-
iment 9.2 to include the loudspeaker playback mode. Comment on the perception dif-
ferences between 3D audio listening with a headphone and loudspeakers.

4. Extend the MATLAB simulation of the reverberation algorithm given in Example 9.8, 
using longer delays of 52, 56, 60, and 80 msec for the comb fi lters and delays of 10 msec 
for the allpass fi lters. Determine the lengths of the delay buffer for implementing these 
delays when sampling rate is 44.1 kHz.

5. The reverberation algorithm implemented in Hands-On Experiment 9.3 can be further 
fi ne-tuned by programming a room selection option. Different sets of reverberation 
parameters can be tabulated in the program for users to select the reverberation effects 
that correspond to different room sizes and reverberation times. Modify the project in 
Hands-On Experiment 9.3, which allows users to perform this selection on the fl y with 
a switch on the EZ-KIT.

6. The reverberation algorithm can be integrated into the binaural spatializer to further 
enhance the realism of spatial reproduction. A simplifi ed approach is to sum all the input 
sources and use this combined signal as input to the reverberation algorithm described 
in Example 9.8. The reverberation output can then be added to the output of the left and 
right channels of the binaural spatializer. Implement this new structure by combining 
and modifying the codes given in Hands-On Experiments 9.2 and 9.3.

7. Integrate the 3D audio and reverberation effects into the Ogg Vorbis decoder with the 
BF537 EZ-KIT. Program the switch on the EZ-KIT to select different combinations of 
audio effects.

8. The ability to select different audio enhancement modes is a common feature found in 
most portable audio players. For example, the graphic equalizer introduced in Chapter 
5 can be used to enhance the audio content in a portable audio player. Integrate the FIR 
fi lter-based eight-band graphic equalizer into the Ogg Vorbis decoder project in Hands-
On Experiment 9.1.

9. In general, the bass perception from low-end loudspeakers and headphones is poor. This 
is due to the poor frequency response of transducers at frequency below 200 Hz. A 
simple way to overcome this is to boost up the low-frequency bands with a graphic 
equalizer. However, this approach suffers from overdriving the loudspeakers and wasting 
of energy. A better approach is called the virtual bass system [60], which creates the 
low-frequency harmonics of the musical source and mixes these harmonics into the 
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original music. These harmonics will give the same pitch perception as the low-
frequency content, which can be reproduced accurately in most low-end loudspeakers 
with moderate midfrequency response. For example, if the musical signal consists of a 
prominent low-frequency component at 50 Hz, the virtual bass system generates fre-
quency harmonics at 100, 150, and 200 Hz. The interfrequency difference of these 
harmonics will create a 100-Hz pitch that is perceived by the human ear based on psy-
choacoustic effects.

A simple virtual bass system can be developed as shown in Figure 9.20. It consists 
of two low-pass and high-pass fi lters of cutoff frequency 150 Hz. The sampling 
frequency is 48 kHz. The low-pass fi lter output is passed to a harmonic generator, 
which creates the harmonics with a simple nonlinear function such as a power function, 
y(n) = x2(n) + x3(n). These harmonics are then mixed with the high-frequency compo-
nents to form the enhanced bass system. Implement the virtual bass system the BF533/
BF537 EZ-KIT and evaluate its effects.

10. A set of audio fi les located in directory c:\adsp\audio_files\noisy_audio\ have 
been severely distorted. Based on the techniques learned in preceding chapters, devise 
a suitable technique to clean up these audio fi les. In some cases, advanced techniques 
that are not described in this book must be explored. Users can refer to the textbooks 
listed in the References or search the website for solutions. Implement the developed 
algorithms on the BF533/BF537 EZ-KIT and test its real-time performance. Obtain the 
signal-to-noise ratio measurements of the audio signal before and after enhancement and 
comment on its performance.

Lowpass  
filter 

Harmonic
generator 

Highpass  
filter 

+
x(n) y(n)

Figure 9.20 A simple virtual bass system

9.7 More Application Projects 405
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Chapter 10

Practical DSP Applications: 
Digital Image Processing

Image processing is an important application of two-dimensional (2D) signal pro-
cessing. Because of the developments of fast, low-cost, and power-effi cient embed-
ded signal processors for real-time processing, digital image processing is widely 
used in portable consumer electronics such as digital cameras and picture phones. 
This chapter introduces basic concepts of digital image processing and some simple 
applications.

10.1 OVERVIEW OF IMAGE REPRESENTATION

A digital image (or picture) is visual information received, represented, processed, 
stored, or transmitted by digital systems. With advancements in microelectronics, 
digital image processing is widely used for applications such as enhancement, com-
pression, and recognition. Digital image processing has many characteristics in 
common with one-dimensional (1D) signal processing introduced in previous 
chapters.

As discussed in Chapter 2, 1D digital signals are denoted by x(n), which rep-
resents the value (amplitude) of signal x at discrete time n. Digital images are 2D 
signals that consist of picture elements called pixels. Each pixel can be represented 
as x(m,n), where m is the row (height) index from 0 to M − 1 (top to bottom), n is 
the column (width) index from 0 to N − 1 (left to right), and x(m,n) is the value of 
2D space function x at the pixel location (m,n). Therefore, each digital image can 
be represented by M × N pixels. Similar to the 1D sampling theorem stated in 
Chapter 2, the 2D sampling theorem indicates that a sequence of pixels x(m,n) can 
represent the analog picture if the sampling is suffi ciently dense.

The digital image pixel coordinates are illustrated in Figure 10.1. For pixel 
coordinate (m,n), the fi rst component m (row) increases downward, while the second 
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component n (column) increases to the right. For example, the data for the pixel in 
the second row, third column is stored in the matrix element (1,2). Note that the 
pixel coordinates used by MATLAB are integer values and range between 1 and M
or N. Therefore, the pixel in the second row, third column has coordinate (2,3) in 
MATLAB.

Pixel values can be represented by integer or fi xed-point number. For a black-
and-white (B&W, or grayscale intensity) image, each pixel is represented by one 
number that indicates the grayscale level of that pixel. The number of levels used 
to represent a B&W image depends on the number of bits. For example, 8 bits (B =
8) are commonly used for 256 (2B) grayscale levels to display the intensity of B&W 
images from 0 to 255, where “0” represents a black pixel and “255” corresponds to 
a white pixel. Similar to the quantization noise of digitizing 1D analog signals, 
encoding continuous grayscale with fi nite number of bits also results in quantization 
errors. The resolution of digital images depends on the total number of pixels (M ×
N) and grayscale levels 2B.

The sensation of color is determined by the light frequency spectrum, from red 
to violet. Each pixel of color image can be represented by three components: red 
(R), green (G), and blue (B) and thus is called RGB data. Proper mixing of these 
three basic colors can generate all other colors. Similar to B&W images, each color 
can be represented with 8 bits, thus forming the commonly used 24-bit RGB data 
(8 bits for R, 8 bits for G, and 8 bits for B). Color images are widely used in cameras, 
televisions, and computer displays. For example, the traditional North American 
television standard is 480 × 720 pixels. Most digital images are in the size of 764 
× 1,024 pixels or larger for computers and high-defi nition televisions and 480 × 720 
or smaller for real-time transmission via networks.

EXAMPLE 10.1

In most speech processing for telecommunications, speech is sampled at 8 kHz with 16-bit 
resolution. Therefore, we have 8,000 signal samples to process in a second, and we need 
16,000 bytes to store 1 second of digital speech. In video processing, we have 30 frames 
(images) per second. Assuming that each B&W image has 764 × 1,024 pixels, we have more 
than 23 million samples to process and store in a second. These requirements increase 
dramatically for color images. Therefore, image or video processing requires higher com-
plexity in terms of computational power and memory requirements.

Column index, n

,x
ed

ni
s

wo
R

m

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

Figure 10.1 An example of 3 × 4 digital image pixel coordinates
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408 Chapter 10 Practical DSP Applications: Digital Image Processing

MATLAB stores and represents B&W images as matrices, in which each 
element of the matrix corresponds to a single pixel in the image. For example, an 
image composed of M rows and N columns of different dots would be stored in 
MATLAB as an M × N matrix. Color images require a three-dimensional array as 
an M × N × 3 matrix, where the fi rst plane in the three-dimensional array represents 
red, the second plane represents green, and the third plane represents blue. MATLAB 
fi le formats store true-color images as 24-bit RGB images, where the red, green, 
and blue components are 8 bits each. The three color components for each pixel are 
stored along the third dimension of the data array. For example, the red, green, and 
blue color components of the pixel (10,5) are stored in RGB(10,5,1), RGB(10,5,2), 
and RGB(10,5,3), respectively.

MATLAB provides the function imread to read an image. This function can 
read most image formats such as bmp (windows bitmap), gif (graphics interchange 
format), jpg (Joint Photographic Experts Group, JPEG), tif (tagged image fi le 
format, TIFF), etc. Most image fi le formats use 8 bits to store pixel values. When 
these are read into memory, MATLAB stores them as class uint8. For fi le formats 
that support 16-bit data, MATLAB stores the images as class uint16.

The Image Processing Toolbox [51] provides two image display functions, 
imshow and imtool. The function imshow is the fundamental image display func-
tion, and the function imtool starts the Image Tool, which is an integrated environ-
ment for displaying images and performing some common image processing tasks.

EXAMPLE 10.2

The following MATLAB command

I = imread(filename,fmt);

reads a grayscale or color image from the fi le specifi ed by the string filename, and the 
string fmt specifi es the format of the fi le. In example10_2.m, we read a JPEG 
fi le, Disney.jpg, and display it with imtool as shown in Figure 10.2. The imtool
function integrates the image display tool with the pixel region tool, the image information 
tool, and the adjust contrast tool. It can help explore large images, such as scroll bars, the 
overview tool, pan tool, and zoom buttons. For example, the image tool displays Pixel 
infor: (639,441)[143 111 90] at the bottom left corner, where (639,441) indicates 
pixel location pointed at by the arrow (cursor), and [143 111 90] indicates the correspond-
ing R, G, B values. We can move the cursor to different locations for examining its pixel 
values. We can also enter the whos command to see memory storage of image I as 
follows:

>> whos
  Name      Size         Bytes       Class
  I       480x640x3      921600   uint8 array
Grand total is 921600 elements using 921600 bytes

Intensity and true-color images can be uint8 (unsigned 8-bit integers), uint16
(unsigned 16-bit integers), int16 (16-bit signed integers), single (single precision), or 
double (double precision). MATLAB supports conversion between the various image 
types.
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10.2 Image Processing with BF533/BF537 EZ-KIT 409

10.2 IMAGE PROCESSING WITH 
BF533/BF537 EZ-KIT

VisualDSP++ IDE supports image fi les in different formats such as bmp, gif, jpg,
and tif to be loaded into the Blackfi n memory for processing. In the subsequent 
experiments, we import an image and process this image with the Blackfi n processor.

HANDS-ON EXPERIMENT 10.1

This experiment loads an image from the computer to the Blackfi n memory with the Visu-
alDSP++ IDE. The BF533 (or BF537) EZ-KIT is used as a platform for loading images. 
Click on View Æ Debug Windows Æ Image Viewer  .  .  .; an Image Confi guration window 
is opened as shown in Figure 10.3. Set Source location to File and type in the fi le name (for 
example, c:\adsp\image_files\Disney.jpg) for the image to be loaded into the Black-
fi n memory. We set Start address to 0x0 with Memory stride of 1. This starting address 
is the SDRAM memory of the Blackfi n processor. Click on OK to display the image in the 
Image Viewer window. It takes a few minutes for transferring the image from the computer 
to the Blackfi n via the USB port and displaying in the Image Viewer window.

Note that the image information is displayed in the Image Confi guration window. The 
memory locations needed to store an image are determined by the size of the image (width ×
height). In addition, an RGB image takes three times the memory of a B&W image. Load dif-
ferent (B&W or color) images to the Blackfi n processor’s memory at different start addresses 
and display them. Some sample images can be found in directory c:\adsp\image_files\.

Figure 10.2 An example of digital color image displayed by MATLAB
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410 Chapter 10 Practical DSP Applications: Digital Image Processing

10.3 COLOR CONVERSION

Color is determined by the spectral distribution of the energy of illumination source 
and the visual sensation of the human viewer. A color space represents colors with 
digital pixels. A B&W image uses one number for each pixel, whereas a color image 
needs multiple numbers per pixel. There are several different color spaces to repre-
sent color images. The Image Processing Toolbox represents colors as RGB values. 
Because the image processing functions assume all color data as RGB, we can 
process an image that uses a different color space by fi rst converting it to RGB data, 
processing it, and then converting the processed image back to the original color 
space.

The National Television System Committee (NTSC) color space is used in 
televisions in the USA. In the NTSC format, color images consist of three compo-
nents: luminance (Y), hue (I), and saturation (Q); thus the NTSC format is also 
called the YIQ format. The fi rst component, luminance, represents grayscale infor-
mation, and the last two components make up chrominance (color information). The 
conversions between the RGB and YIQ color spaces are defi ned as [72]

Y
I
Q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − −
−

0 299 0 587 0 114
0 596 0 274 0 322
0 211 0 523 0 3

. . .

. . .

. . . 112

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R
G
B

. (10.3.1)

and

Figure 10.3 Image Confi guration window for loading image into Blackfi n memory
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The Image Processing Toolbox provides functions for conversion between color 
spaces. The function rgb2ntsc converts RGB images to the NTSC color space, 
and the function ntsc2rgb performs the reverse operation. In addition, the func-
tion rgb2gray extracts the grayscale information from a color image.

EXAMPLE 10.3

In MATLAB code example10_3.m, we fi rst convert the color image shown in Figure 10.2 
to a B&W image with the function rgb2gray. We then convert the color image from the 
RGB data to the NTSC format. Because luminance is one of the components of the NTSC 
format, we can isolate the grayscale level information in an image. The obtained B&W image 
is shown in Figure 10.4. Finally, we store the B&W image back to disk fi le Disney_BW.
jpg using the function imwrite.

Human vision is more sensitive to brightness than color changes; thus humans 
perceive a similar image even if the color varies slightly. This fact leads to the YCbCr 
color space, which is widely used for digital video and computer images such as JPEG 
and MPEG standards. In this format, luminance information is stored as a single 
component Y, and chrominance information is stored as two color-difference com-
ponents Cb and Cr. The value Cb represents the difference between the blue compo-
nent and a reference value, and Cr represents the difference between the red component 
and a reference value. The relation between the RGB color space and the YCbCr color 
space can be expressed as

Y
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Figure 10.4 The B&W image obtained from the color image shown in Figure 10.2
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412 Chapter 10 Practical DSP Applications: Digital Image Processing

For uint8 images, the data range for Y is [16, 235], and the range for Cb and Cr 
is [16, 240]. The MATLAB function rgb2ycbcr converts RGB images to the 
YCbCr color space, and the function ycbcr2rgb performs the reverse operation.

10.4 COLOR CONVERSION 
WITH BF533/BF537 EZ-KIT

We can perform color conversion with the BF533/BF537 EZ-KIT. In the following 
experiments, we examine the C code that performs various color conversions.

HANDS-ON EXPERIMENT 10.2

In this experiment, we load a color image (e.g., Disney.jpg) into the Blackfi n memory at 
the start address of 0x0 as shown in Hands-On Experiment 10.1. Three project fi les with 
the same name, colorconversion.dpj, are located in separate directories c:\adsp\
chap10\exp10_2\rgb2xxxx (where xxxx represents ntsc, cbcr, and gray), and they 
are used to perform different color conversion experiments (e.g., RGB image to NTSC, RGB 
image to YCbCr, and RGB image to gray) on the BF533 (or BF537) EZ-KIT. The color 
conversions are based on Equations 10.3.1 and 10.3.3. Assembly programs are written to 
perform the color conversion, and the gray level is extracted by the C routine.

Build and run each project. From the C main function, note the location and size of the 
original color image and the gray image in the Blackfi n memory and display them with the 
VisualDSP++ image viewer as shown in Figure 10.5. Compare the color conversion results 
with those obtained with MATLAB.

Figure 10.5 Image Viewer windows for both color and gray images
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10.5 TWO-DIMENSIONAL DISCRETE 
COSINE TRANSFORM

The discrete cosine transform (DCT) consists of a set of basis vectors that are cosine 
functions. The DCT may also be computed with a fast algorithm such as FFT. 
Comparing the DCT with the DFT introduced in Chapter 3, the DCT has advantage 
that the transform is real valued. It is widely used in audio compression algorithms, 
as introduced in Chapter 9. In this section, we expand it to 2D DCT, which represents 
an image as a sum of sinusoids of varying magnitudes and frequencies. 2D DCT 
and 2D inverse DCT (IDCT) [70] are widely used in many image and video com-
pression techniques such as JPEG and MPEG standards.

The 2D DCT of a rectangular M × N image is defi ned as
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(10.5.1)

for row i = 0, 1,  .  .  .  M − 1 and column k = 0, 1,  .  .  .  N − 1, and X(i,k) is the corre-
sponding DCT coeffi cient for the pixel value X(m,n). In Equation 10.5.1, the nor-
malization factors are defi ned as
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(10.5.2b)

The 2D DCT can be applied to the rows and then the columns or started from 
columns to rows. For a typical image, most of the signifi cant information is concen-
trated in a few lower (smaller i and k) DCT coeffi cients. The 2D IDCT is defi ned 
as
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Most image compression algorithms use a square image with M = N = 8. For 
example, JPEG image coding standard partitions the original image into 8 × 8 subim-
ages and processes these small blocks one by one. In addition, the original pixel values 
of B&W images are subtracted by 128 to shift the grayscale levels from the original 
range [0 to 255] to a symmetric range [−128 to 127] before performing DCT.

The dct2 function in the Image Processing Toolbox computes the 2D DCT of 
an image. Again, note that matrix indices in MATLAB always start at 1 rather than 
0; therefore, the MATLAB matrix elements X(1,1) correspond to the mathematical 
quantity X(0,0).

10.5 Two-Dimensional Discrete Cosine Transform 413
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414 Chapter 10 Practical DSP Applications: Digital Image Processing

EXAMPLE 10.4

The MATLAB command

X = dct2(x);

computes the 2D DCT of image matrix x to obtain the same size DCT coeffi cient matrix X.
In addition, the command x = idct2(X) performs the 2D IDCT of coeffi cient matrix X to 
obtain the image matrix x. In example10_4a.m, we read the B&W image Disney_BW.jpg
created in Example 10.3 and perform 2D DCT of the image and IDCT of the DCT coeffi cients. 
When executing the program, we are surprised to fi nd that we obtain a blank image. Why?

In JPEG compression, the original pixel values of B&W images are subtracted by 128 
to shift the grayscale levels from the original [0 to 255] to [−128 to 127] before performing 
DCT. The modifi ed program is given in example10_4b.m. Run the program, and the 
recovered image is shown in Figure 10.6, which is different than the original B&W image 
shown in Figure 10.4. Why?

In the imtool window, move the cursor around to examine pixel values at different 
locations. We fi nd that the image shown in Figure 10.6 only consists of a few different values, 
and this is caused by fi nite-precision effects. Therefore, we convert the image from 8-bit 
integer to 32-bit fl oating-point format with the function im2single, perform DCT and 
IDCT with fl oating-point arithmetic, and convert the recovered image back to integer format 
with the function im2uint8. We run the program example10_4c.m. with fl oating-point 
conversion, and we obtain a recovered image that is almost the same as the original one 
shown in Figure 10.4.

EXAMPLE 10.5

As mentioned above, in many image compression standards the image is divided into 8 × 8 
blocks and the 2D DCT is computed for each block. The resulting 64 DCT coeffi cients are 
split into one DC (0,0) and 63 AC coeffi cients and then quantized, coded, and transmitted 

Figure 10.6 A recovered B&W image after DCT and IDCT operations
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or stored. The receiver decodes the quantized DCT coeffi cients, computes the 2D IDCT of 
each block, and then reconstructs a single image. For typical images, many of the DCT 
coeffi cients with large indexes (i,k) have values close to zero and thus can be discarded 
without seriously affecting the quality of the reconstructed image.

The code example10_5.m (adapted from Help menu) computes the 2D DCT of 8 ×
8 blocks in the input image, saves only 10 DCT coeffi cients with small indexes (i,k) in each 
block, and then reconstructs the image with the 2D IDCT of each block. In the code, we use 
T = dctmtx(8) to obtain an 8 × 8 DCT transform matrix. If A is a square matrix, the 2D 
DCT of A can be computed as T*A*T′. This computation is faster than using the dct2
function if we are computing a large number of small subimages. In the code, we also use 
the function blkproc to implement distinct block processing for image. We use a mask to 
keep only 10 DCT coeffi cients with the smallest indexes and clear other coeffi cients to zero 
so they do not need to be transmitted or stored. This is the basic principle of image compres-
sion with DCT. The reconstructed image is displayed in Figure 10.7, which shows some loss 
of quality compared with the original B&W image given in Figure 10.4; however, we only 
code 10 DCT coeffi cients instead of 64. Note that we can use MATLAB function subimage
to display multiple images in a single fi gure. In this case, we can compare the original image 
with the reconstructed image side by side.

The 1D N-point DFT defi ned in Chapter 4 can be extended to 2D (M,N)-point 
DFT as follows:
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where X(i,k) is a complex-valued number. Similarly, the 2D inverse DFT can be 
expressed as
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Figure 10.7 The reconstructed image using 2D DCT and block processing
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MATLAB provides the functions fft2 and ifft2 to support the 2D DFT and the inverse 
2D DFT, respectively.

10.6 TWO-DIMENSIONAL DCT/IDCT 
WITH BF533/BF537 EZ-KIT

We have used an example to illustrate how to transform an image using 2D DCT, 
retain only 10 DCT coeffi cients, and use IDCT to reconstruct the image. In this 
section, we use a luminance quantization table recommended by the JPEG standard 
[71] to remove insignifi cant coeffi cients based on the percentage of retained 
coeffi cients.

A luminance quantization table for retaining approximately 50% of the DCT 
coeffi cients is provided in Table 10.1. The quantized DCT coeffi cients can be derived 
by dividing the DCT coeffi cients with the respective values in the quantized table, 
and the results are truncated to the integer values.

A different quantization table can be derived from Table 10.1 by fi nding a scaling 
factor that is proportional to the percentage of the retained DCT coeffi cients. This 
scaling factor is then multiplied with the quantized values of Table 10.1 to retain a 
different percentage of DCT coeffi cients. Depending on the percentage of DCT coef-
fi cients retained, the number of zeros in the quantized DCT coeffi cients will vary.

For example, to retain 1% to 50% of the DCT coeffi cients, the scaling factor is 
computed as

Scaling factor =
50

                       

. (10.6.1)

To retain 51% to 99% of the DCT coeffi cients, the scaling factor is computed as

Scaling factor =

                                

50
. (10.6.2)

In a simple image compression scheme, we only transmit or store the nonzero DCT 
coeffi cients. We will show how to transform, quantize, and inverse transform an 
image with the Blackfi n processor.

Table 10.1 Luminance Quantization Table

16 11 10 16  24  40  51  61
12 12 14 19  26  58  60  55
14 13 16 24  40  57  69  56
14 17 22 29  51  87  80  62
18 22 37 56  68 109 103  77
24 35 55 64  81 104 113  92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103  99

From [71].

Percentage of DCT coeffi cients retained

100 − Percentage of DCT coeffi cients retained
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HANDS-ON EXPERIMENT 10.3

This experiment implements the 2D DCT and the IDCT with the BF533/BF537 EZ-KIT. In 
addition, we introduce a quantization process between the DCT and IDCT operations to 
compress the image to different levels. The quantization table used in this experiment is 
derived from the JPEG compression standard as shown in Table 10.1. Load a B&W image, 
disney2.bmp, into the Blackfi n memory at address 0x0. Load the project fi le in directory 
c:\adsp\chap10\exp10_3_BF533\exp10_3_BF533.dpj for the BF533 EZ-KIT (or 
c:\adsp\chap10\exp10_3_BF537\exp10_3_BF537.dpj for the BF537) into Visu-
alDSP++. Note the size of the image by clicking on Confi gure  .  .  .  in the Image Viewer and 
edit the picture height and width in dct.h. Build and run the project.

The settings for the switches on the BF533/BF537 EZ-KITs are shown in Table 10.2 for 
selecting different compression ratios of the image. Press the switch of the EZ-KIT to select 
the level of compression for the original image. One of the six LEDs will light up to indicate 
the completion of the compress routine. Halt the program in order to view the reconstructed 
image. The reconstructed image is located at address 0x80000. Use the Image Viewer in 
VisualDSP++ to observe the reconstructed image. Instead of loading the image repeatedly 

in the image viewer, simply click on the refresh icon  in the Image Viewer window to 
update the image, because all the reconstructed images are located at the same address. 
Observe and comment on the quality of the reconstructed image.

This experiment can be extended to the compression of a color image by performing 
the same compression of the chrominance components with the chrominance quantization 
table listed in [71].

10.7 TWO-DIMENSIONAL FILTERING

The theory of 1D systems presented in previous chapters can be extended to 2D 
systems. For example, digital convolution (or FIR fi ltering) introduced in Chapters 
2 and 3 for 1D signal (such as speech) can be expanded to 2D convolution of images 
with 2D impulse response (or convolution kernel) of fi lter. 2D fi ltering can reduce 
noise and emphasize desired features of given images. In this section, we focus on 
2D FIR fi lters.

Table 10.2 Switch Settings for Controlling Compression of B&W Image

Percentage of DCT  BF533 EZ-KIT BF537 EZ-KIT
Coeffi cients Retained

100% SW4 SW10
 80% SW5 SW11
 50% SW6 SW12
 30% SW7 SW13

10.7 Two-Dimensional Filtering 417

TEAM LinG



418 Chapter 10 Practical DSP Applications: Digital Image Processing

10.7.1 2D Filtering

Similar to the 1D FIR fi lter, a 2D FIR fi lter has a fi nite length of impulse responses 
that are also called fi lter coeffi cients. The impulse response of a 2D L1 × L2 FIR 
fi lter can be represented by the following matrix:
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h h
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For example, the moving-average fi lter introduced in Equation 2.3.2 with impulse 
response {1/L, 1/L,  .  .  ., 1/L} can be extended to the 2D moving-average (mean) 
fi lter. A 5 × 5 mean fi lter can be expressed as

hl l1 2
1

25

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

, =
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⎥
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. (10.7.2)

MATLAB provides the function freqz2 to compute 2D frequency response. 
The following command

[H,Fx,Fy] = freqz2(h,Nx,Ny);

returns H, the frequency response of 2D fi lter h, and the frequency vectors Fx
(of length Nx) and Fy (of length Ny). Fx and Fy are normalized frequencies in 
the range −1.0 to 1.0, where 1.0 corresponds to π radians. When used with 
no output arguments, freqz2 produces a mesh plot of the 2D frequency 
response.

Similar to the 1D FIR fi ltering defi ned in Equation 2.3.4, the I/O equation of 
an L1 × L2 FIR fi lter can be expressed as

y m n h x m l n ll l
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. (10.7.3)

The concept of linear convolution of 2D fi lter coeffi cients with the image x(m,n) is 
similar to a 1D fi lter shown in Example 2.5. In 2D fi ltering, the image x(m,n) is 
rotated by 180° about its center element, and this is equivalent to fl ipping the image 
over the vertical axis and then fl ipping it again over the horizontal axis to obtain 
x(−m,−n). The fi lter coeffi cient matrix hl1,l2 is shifted over the rotated image, multi-
plying the fi lter coeffi cients with the overlapped image pixels and summing the 
products to obtain the fi ltered output at each point. A problem will occur close to 
the edges of the image where the fi lter coeffi cients overlap with areas outside the 
image. The simplest solution is to compute the fi lter output only when the fi lter 
coeffi cients completely overlay with image pixels. However, this results in a smaller 
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size of the output image. The Image Processing Toolbox provides functions 
imfilter for performing 2D fi ltering and conv2 for 2D convolution.

EXAMPLE 10.6

This example fi lters the B&W image shown in Figure 10.4 by the 5 × 5 moving-average fi lter 
defi ned in Equation 10.7.2. This 2D fi ltering example is given in example10_6.m. The 5 
× 5 mean fi lter can be constructed in MATLAB with the following command:

h = ones(5,5)/25;

The frequency response of the 2D fi lter is computed with the function freqz2, which is 
illustrated in Figure 10.8. This fi gure clearly shows that the 5 × 5 moving-average fi lter is a 
low-pass fi lter, which will attenuate high-frequency components.

The 2D fi ltering of input image x with fi lter h can be implemented as follows:

y = imfilter(x,h);

and the fi ltered image y is displayed in Figure 10.9. In most images, high-frequency compo-
nents are concentrated at the edges (or transition regions) of the image. Therefore, low-pass 
fi ltering of images will blur the image by smearing its edges so the boundary will no longer 
be as sharp as the original one.

In video processing, frame-to-frame averaging produces a similar effect as 
low-pass fi ltering in time if the image is stationary. This temporal averaging tech-
nique effectively reduces noise without smearing the image.

0
1

1

0
0

Fx
Fy

0.5
0.5

–0.5 –0.5
–1 –1

0.2

0.4

0.6

M
ag

ni
tu

de

0.8

1

Figure 10.8 Magnitude response of 5 × 5 moving-average fi lter
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10.7.2 2D Filter Design

This section briefl y introduces the design of 2D digital fi lters [70], with focus on 
designing FIR fi lters. Similar to 1D FIR fi lter design, the design of FIR fi lters with 
the windowing method involves multiplying the ideal impulse response with a 
window function to generate a corresponding fi lter, which tapers the ideal impulse 
response with fi nite length. The windowing method produces a fi lter whose fre-
quency response approximates a desired frequency response. The Image Processing 
Toolbox provides two functions, fwind1 and fwind2, for window-based fi lter 
design. The function fwind1 designs a 2D fi lter with two 1D windows, and the 
function fwind2 designs a 2D fi lter by a specifi ed 2D window directly. The fol-
lowing example uses fwind1 to create a 2D fi lter from the desired frequency 
response Hd:

Hd = zeros(11,11); Hd(4:8,4:8) = 1;

The hamming function from the Signal Processing Toolbox is used to create a 1D 
window. The fwind1 function then extends it to a 2D window as follows:

h = fwind1(Hd,hamming(11));

A more effective technique uses fi lter design methods introduced in Chapter 4 
for designing a 1D FIR fi lter and then transforms it to a 2D FIR fi lter with the fre-
quency transformation method, which preserves the characteristics of the 1D fi lter 
such as the transition width and ripples. The MATLAB Image Processing Toolbox
provides a function ftrans2 for designing a 2D FIR fi lter with frequency trans-
formation. For example, the following command

h = ftrans2(b);

Figure 10.9 Image fi ltered by an 5 × 5 moving-average (low-pass) fi lter
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uses the McClellan transformation. The 1D fi lter b must be an odd-length (type I) 
fi lter such as it can be designed by fir1, fir2, or remez in the Signal Processing 
Toolbox.

EXAMPLE 10.7

In this example, we design a 2D high-pass fi lter. First, we use the remez function to design 
a 1D fi lter as follows:

b = remez(10,[0 0.4 0.6 1],[0 0 1 1]);

This high-pass fi lter is transformed to a 2D fi lter, and its magnitude response is shown in 
Figure 10.10. The MATLAB code is given in example10_7.m.

As shown in Equation 10.7.2, the sum of the fi lter coeffi cients usually equals 1 
in order to keep the same image intensity. If the sum is larger than 1, the resulting 
image will be brighter; otherwise, it will be darker. Because 2D fi ltering requires 
intensive computation, most commonly used 2D fi lters are 3 × 3 kernels summarized 
as follows [73]:
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Figure 10.10 Magnitude response of the 2D high-pass fi lter
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3. Laplacian fi lter: hl l1 2
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Note that the Laplacian fi lter is a high-pass fi lter. When this fi lter moves over an image, the 
output of the fi lter is a small value (darker) when the fi lter overlaps with a region of similar 
grayscale levels. At the edges of the image, the output is large (brighter).

10.8 TWO-DIMENSIONAL FILTERING 
WITH BF533/BF537 EZ-KIT

This section performs 2D fi ltering with the BF533/BF537 EZ-KIT. In particular, we 
examine the effect of smoothing (low-pass fi ltering) and sharpening (high-pass fi lter-
ing). Smoothing fi lters are commonly used for noise reduction in images. For example, 
the output of a mean fi lter is simply the average of the pixels in the neighborhood of 
the fi lter mask. If the fi lter mask is 5 × 5, the output is the average over the 25 pixels. 
Therefore, the smoothing fi lter results in an image that is less sharp. In contrast, sharp-
ening an image requires a high-pass fi lter. This sharpening fi lter is used to highlight 
the fi ne detail (edges) in an image or enhance detail that has been blurred. The sharp-
ening fi lter kernel has a high magnitude in its center pixel compared to its neighboring 
pixels. For example, the Laplacian fi lter is a high-pass sharpening fi lter.

HANDS-ON EXPERIMENT 10.4

This experiment fi rst performs the low-pass fi ltering of a B&W image. Load the image 
disney2.bmp into the Blackfi n memory at starting address 0x0. Specify the correct proces-
sor type and load the project fi le in directory c:\adsp\chap10\exp10_4\exp10_4.dpj
into VisualDSP++. Perform 5 × 5 low-pass fi ltering on the image and observe the processed 
image at starting address 0x130000. From the main C fi le, it is noted that the image is 
declared as unsigned char (8-bit data type); however, the 2D convolution routine is 
implemented with the (1.15) data format. Alternately, we can scale the 8-bit data to fi t the 
16-bit data range of the (1.15) format by multiplying the grayscale data with 0x80. The 
processed image can be scaled back to [0 to 255] by dividing with 0x80 and checking for 
overfl ow or underfl ow. Change the fi lter mask to a 5 × 5 high-pass fi lter and perform image 
fi ltering. Comment on the differences between low-pass and high-pass fi ltered images.

10.9 IMAGE ENHANCEMENT

Digital images are usually distorted by additive noises, linear and nonlinear distor-
tions. In this section, we introduce several image enhancement techniques to improve 
the perception of the given image for human viewers. We will show that different 
methods are required for different noises and distortions.
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10.9.1 Gaussian White Noise and Linear Filtering

An image may be corrupted by noise generated by sensing, transmission, or storage 
process. For example, noise generating from an electronic sensor usually appears 
as random, uncorrelated, additive errors, which causes extreme pixel-to-pixel 
changes rather than the small changes normally occurring in a natural picture. A 
2D random sequence is called a random fi eld, and an identically distributed Gauss-
ian noise fi eld is called white noise when its mean is zero. The following MATLAB 
function

J = imnoise(I,type, . . .);

adds noise of a given type to the image I, where type is a string that can have one 
of these values:

‘gaussian’—Gaussian white noise with constant mean and 
 variance
‘localvar’—Zero-mean Gaussian white noise with an 
 intensity-dependent variance
‘poisson’—Poisson noise
‘salt & pepper’—“On and off” impulselike noise
‘speckle’—Multiplicative noise

EXAMPLE 10.8

Suppose the B&W image shown in Figure 10.4 is corrupted by Gaussian white noise. In 
example10_8.m, we use the following command for adding Gaussian white noise of mean 
m and variance v to the original image:

J = imnoise(I,’gaussian’,m,v);

An image corrupted by the Gaussian white noise with zero mean and variance 0.02 is shown 
in Figure 10.11.

As discussed in Example 10.5, most images have energy concentrated in the 
low-frequency range, whereas white noise is uniformly distributed over all frequen-
cies. At low frequencies, the energy of white noise is less than the image, whereas 
the energy of noise is larger than the energy of the image at high frequencies. 
Therefore, we may use a low-pass fi lter for enhancing an image that is corrupted by 
Gaussian white noise.

EXAMPLE 10.9

In example10_9.m, the noisy image shown in Figure 10.11 is enhanced by the 5 × 5 
moving-average fi lter defi ned in Equation 10.7.2. The fi ltered output image is shown in Figure 
10.12. The fi gure clearly shows that the low-pass fi lter can reduce white noise at high 
frequencies; however, it also degrades the image because the high-frequency components 
presented at the edges are also smeared. 
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The Wiener fi lter is the optimal fi lter for attenuating noise if the spectra of the 
image and noise can be estimated from the noisy image. Assume the noisy image 
is expressed as

s m n x m n v m n, , , ,( ) = ( ) + ( )  (10.9.1)

where x(m,n) is the noise-free image and v(m,n) is the random noise fi eld. We further 
assume that noise v(m,n) is zero-mean with variance σ2

v; the frequency response of 
general 2D Wiener fi lter can be defi ned as

Figure 10.11 An image corrupted by Gaussian white noise

Figure 10.12 Enhanced image with a low-pass mean fi lter
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where Sxx(ωi,ωk) is the power spectrum density of the desired image x(m,n). With 
the knowledge of Sxx(ωi,ωk) and noise, we can design the optimum fi lter as described 
in Equation 10.9.2 for reducing white noise.

EXAMPLE 10.10

The MATLAB function wiener2 designs and performs Wiener fi ltering of a noisy image 
by partitioning the image into several small windows, estimating power spectrum density 
and noise variance at each window, designing an adaptive Wiener fi lter based on statistics 
estimated from the corresponding local neighborhood, and fi ltering the noisy image as the 
fi lter slides across the image. When the local image variance is large, it performs little 
smoothing; otherwise, it performs more smoothing. The MATLAB code example10_10.m
implements the Wiener fi lter to enhance the noisy image shown in Figure 10.11, and the 
fi ltered image is shown in Figure 10.13. Compare it with the mean fi lter output in Figure 
10.12. It clearly shows that the Wiener fi lter performs better than the moving-average for 
removing Gaussian white noise by preserving edges and other high-frequency components 
of an image.

10.9.2 Impulse Noise and Median Filtering

In Example 2.8, we show that a nonlinear median fi lter is effective for impulse-like 
noises. In this section, we use a 2D median fi lter for removing impulse noises called 
“salt & pepper” in images.

Figure 10.13 Enhanced image with Wiener fi lters adaptive to local statistics
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EXAMPLE 10.11

In example10_11.m, we use the following command to add salt & pepper noise into the 
B&W image I:

J = imnoise(I,’salt & pepper’,d);

where d is the noise density. The salt & pepper noise consists of random pixels with extreme 
values close to white (salt, 255) or black (pepper, 0) for an 8-bit image, which is a good 
mimic of impulse noise. An image corrupted by the salt & pepper noise with density d =
0.05 is shown in Figure 10.14.

In the program, we fi rst use the following command to design a 3 × 3 mean fi lter:

h = ones(3,3)/9;

We then use this linear smoothing fi lter for enhancing the corrupted image shown in Figure 
10.14. The fi ltered output image is displayed in Figure 10.15, which shows that the “salt” and 
“pepper” dots reduce their intensity by spreading out to become larger dots.

We introduced 1D median fi lters in Chapter 2 for effectively reducing impulse 
noise and compared their performance with a moving-average fi lter. An N-point 1D 
median fi lter ranks the samples in the buffer based on their values and outputs the 
middle of the sequence in the buffer. Similarly, instead of smoothing a noisy image 
by averaging the pixels in its neighborhood with a 2D moving-average fi lter, each 
output pixel of the 2D median fi lter is the median of the values in the neighborhood 
pixels after all numbers have been ranked.

Figure 10.14 An image corrupted by salt & pepper noise with density 0.05
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EXAMPLE 10.12

In example10_12.m, we use a 3 × 3 median fi lter to remove the salt & pepper noise as 
shown in Figure 10.14. MATLAB provides the function medfilt2 for implementing a 2D 
median fi lter as follows:

Y = medfilt2(J_SP,[3 3]);

where J_SP is the image corrupted by the salt & pepper noise. The output image is shown 
in Figure 10.16. Compare it with the linear fi lter output given in Figure 10.15. We show that 
the 2D median fi lter has the ability to preserve edges and to remove impulse noises.

Figure 10.15 Reducing salt & pepper noise with a linear fi lter

Figure 10.16 Performance of median fi lter for reducing salt & pepper noise
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HANDS-ON EXPERIMENT 10.5

This experiment performs low-pass and median fi ltering with the Blackfi n processor to 
remove the salt & pepper noise shown in Figure 10.14. An image fi le (e.g., disney2.bmp)
is fi rst loaded into the Blackfi n memory, and the image is corrupted with salt & pepper noise. 
Set the target processor in the Project Options and load the project fi le exp10_5.dpj in 
directory c:\adsp\chap10\exp10_5 into VisualDSP++. Build and run the project. 
Display the corrupted image at starting address 0x130000. Next, display the images after 
low-pass fi ltering and median fi ltering at starting addresses 0xA30000 and 0xB30000,
respectively. These three displays are shown in Figure 10.17. Compare these to the results 
obtained with the MATLAB program.

10.9.3 Contrast Adjustment

Adjustment of image intensity is very useful to enhance visual information from 
images that are too bright (overexposed) or too dark (underexposed). We may 
change the grayscale values and thus alter the contrast of the image with a linear or 
nonlinear transformation. Useful information for contrast adjustment is the histo-
gram, which represents the distribution of pixel values. We can compute the histo-
gram of a given image and modify the grayscale values of the image. Basically, the 
histogram counts the occurrence of gray levels in an image and plots it against the 
gray level bin. MATLAB provides the function imhist for displaying the histo-
gram of an image. The following command

imhist(I);

(a) (b) (c)

Figure 10.17 Corrupted image (a) with salt & pepper noise, (b) after low-pass fi ltering, and 
(c) after median fi ltering
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displays a histogram for the image I whose number of bins are specifi ed by the image 
type. If I is an 8-bit grayscale image, imhist uses 256 bins as a default value.

EXAMPLE 10.13

As shown in Figure 10.18, the original image of a dining room is underexposed; in particu-
lar, the tablecloth is too dark to reveal any detail. We use the MATLAB script example10_
13.m to display this B&W image and compute its histogram as shown in Figure 10.19. This 
histogram shows that most pixel values are distributed in the range of 20 to 100, which 
indicates that the image is too dark, as shown in Figure 10.18.

Histogram equalization enhances the contrast of images by equally distributing the 
grayscale values so that the histogram of the output image approximately matches a specifi ed 
histogram. Histogram processing is commonly used in image enhancement and image seg-
mentation. The Image Processing Toolbox provides the function histeq to enhance contrast 
with histogram equalization.

Contrast adjustment can be done by mapping the original image to a new con-
trast range. The MATLAB function

J = imadjust(I,[low_in; high_in],[low_out; high_out]);

maps the pixel values in image I between low_in and high_in to new values 
in J between low_out and high_out. Values below low_in and above high_
in are clipped, which eliminates extreme values. The principle of this intensity 
adjustment is illustrated in Figure 10.20. As shown in the fi gure, pixel values 
between [low_in; high_in] are mapped to [low_out; high_out]. If the slope 
is less than unity, the image contrast in this range is compressed; if the slope is 
greater than unity, the image contrast in this range is enhanced.

Figure 10.18 An underexposed dining room picture
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EXAMPLE 10.14

As shown in Figure 10.19, the bin index 100 corresponds to the high_in value of 0.4. To 
make the image brighter, we stretch it to the high_out value of 1. MATLAB code 
example10_14.m adjusts the intensity of image with the following command:

K = imadjust(J,[0 0.4],[0 1]);

This command scales pixel values of 0.4 to 1, and this brightens the image. The enhanced 
image is shown in Figure 10.21, which displays the details of the tablecloth after adjustment 
of the image intensity. A histogram of the stretched image is shown in Figure 10.22. This 
equalized histogram shows that the pixel values are distributed more evenly.
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Figure 10.19 Histogram of image shown in Figure 10.18

Input Low-in High-in 

wo
L

-
tu

o
hg

i
H

-
tu

o

Output

Figure 10.20 Adjustment of image intensity with clipping threshold
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Figure 10.21 A corrected image with intensity adjustment
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Figure 10.22 Equalized histogram with contrast adjustment
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The function imadjust also supports a nonlinear gamma correction using the 
following command:

J = imadjust(I,[low_in; high_in],[low_out; high_out],
gamma);

This function maps the pixel values of I to new values in J using gamma to specify the 
shape of the curve describing the nonlinear relation between the values in I and J. If 
gamma is less than 1, the mapping is weighted toward higher (brighter) output values. If 
gamma is greater than 1, the mapping is weighted toward lower (darker) output values. 
In the MATLAB code, we also use a gamma value of 0.6 for brighter correction.

10.10 IMAGE ENHANCEMENT 
WITH BF533/BF537 EZ-KIT

This section explores histogram equalization of a given image with the Blackfi n 
processor. The fi rst step is to compute the histogram of an image. For a B&W image, 
a 256-element array is set up to record the occurrence of the particular gray level 
in the image.

The second step is to derive a mapping function. Instead of using the mapping 
function as shown in Figure 10.20, we compute a mapping function that is based on 
the normalized sum of the histogram. Here, we set up another array to store the sum 
of all the histogram values. For example, element #1 of the array contains the sum 
of histogram elements #0 and #1, and element #2 of the array contains the sum of 
histogram elements #0 to #2, and so on for the rest of the elements in this array. 
This array is then normalized with reference to the total number of pixels in the 
image.

The last step in the histogram equalization is to map the input intensity to a 
more uniformly spread output intensity with the mapping function derived in the 
previous step. In the following experiment, we show the steps used to perform his-
togram equalization on the Blackfi n processor.

HANDS-ON EXPERIMENT 10.6

In this experiment, we load a new image truck.bmp into the Blackfi n memory. Build and 
run the project fi le exp10_6.dpj in directory c:\adsp\chap10\exp10_6 with Visu-
alDSP++. A histogram equalization routine hist_eq.asm based on the normalized sum of 
histogram is used in this project to enhance the original image in Figure 10.23(a) and produce 
a clearer image in Figure 10.23(b). The enhanced image shows better contrast of the image 
because the terrain features are clearly visible as compared to the original image. The his-
tograms of these images are also plotted in Figure 10.23(c) and 10.23(d) for the original 
image and equalized image, respectively. These plots show that the histogram of the equal-
ized image has a more uniform distribution of gray levels, and this wider spread has led to 
higher contrast in the image compared with the original image.
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10.11 IMAGE PROCESSING WITH LABVIEW 
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

Images are commonly processed with the same signal processing principles we have 
introduced in previous chapters. Image processing can be performed in real time, 
for example, to compress live video to store it to disk, or as a postprocessing step 
such as manually touching up a digital photo before printing.

The following experiments utilize graphical system design to prototype and 
implement signal processing algorithms in Windows and then on the Blackfi n EZ-
KIT. First, we open the application and execute it with LabVIEW targeted to 
Windows for conceptual analysis and development. The execution target is then 
changed to the Blackfi n processor, allowing the execution of the same code on the 
EZ-KIT. This ability to program and develop algorithms independent of the intended 
hardware target is the basis for true graphical system design and code-sharing across 
platforms.

(a) (b)

(c) (d)

Figure 10.23 (a) Original image, (b) enhanced image with histogram processing, (c) histogram of 
original image, and (d) histogram of equalized image
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HANDS-ON EXPERIMENT 10.7

The extensive libraries of analysis functions in LabVIEW can be applied to both one- and 
multidimensional data. In this experiment, we explore the effects of basic mathematical 
operations on a 2D image. The subtraction operation is used to invert the image. Division 
allows us to reduce the number of quantized values present in the image. Multiplication 
affects the contrast. We also explore thresholding, which converts the grayscale image to 
black and white. These types of operations are common when preparing an image for addi-
tional processing or to highlight specifi c details. For example, inverting an image can often 
make dark or faint features easier to see with the human eye.

Open Basic Image Processing.vi located in directory c:\adsp\chap10\
exp10_7. Be sure that LabVIEW is targeted to Windows. The target can be changed by 
selecting Switch Execution Target from the Operate menu. Open the block diagram and 
examine the graphical code. Note that the original image, represented by an array, has 100 
× 96 pixels with values ranging from 0 to 255. The value of the tab control is used to specify 
which processing operation in the Case Structure is executed. Manually change the visible 
case of the Case Structure to view the Invert case on the block diagram. Image inversion 
is calculated with the following equation and implemented in Figure 10.24.

Inversed Image Input Image= −255 .  (10.11.1)

Polymorphism allows the Subtract function to receive inputs of different representation 
and dimensionality and handle them appropriately. The polymorphic Subtract function in 
LabVIEW allows the original image to be subtracted from the scalar value by simply wiring 
the two values to its inputs. The result is then displayed on the Image Result indicator. The 
other processing cases contain algorithms that require some additional function blocks. 
The Multiply case, for example, needs additional code to protect against numerical overfl ow. 
The Threshold case uses the Greater Than or Equal To function to evaluate whether the 
pixel value is above or below the specifi ed threshold. Each of these cases produces a result-
ing image that is displayed on the same Image Result intensity graph.

Figure 10.24 Block diagram for Basic Image Processing.vi
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Run the VI from the Front Panel (Fig. 10.25). Move through the tabs one at a time and 
examine the effects of each processing algorithm. Are the resulting images what you 
expected?

A common form of image optimization is reducing the number of colors used to rep-
resent the image. Using the Divide tab, what value for Y produces a four-color image? Does 
it correspond to the algebraic equation 255 / Y = 4, when you solve for Y?

Change the LabVIEW execution target to the BF53x and open the Embedded Project 
Manager window. Open Basic Image Processing_BF5xx.lep located in directory 
c:\adsp\chap10\exp10_7.

As discussed above, the input is an 8-bit grayscale image containing 100 × 96 pixels. 
However, the default LabVIEW Embedded Module for Blackfi n Processors debugging mech-
anism only reports the fi rst 128 data points for any array. This number must be increased to 
greater than 9,600 to properly see the results of the processed image. To change the default 
debugging array size, navigate to Target Æ Confi gure Target Æ Debugging Options from 
the Embedded Project Manager window. Increase Max Array Elements to 10000. This 
will allow the entire image to be retrieved during debug execution. Increasing the Debug 
update period to 1000 ms (1 s) will also improve performance by causing fewer interrupts 
to the processor during execution. Click OK and return to the Embedded Project Manager
window.

Click on the Debug execution button to download, run, and link the processor to the 
LabVIEW front panel. Click through the tabs to verify that the same results are achieved on 

Figure 10.25 Front panel for Basic Image Processing.vi
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the Blackfi n processor as in Windows. This example demonstrates how LabVIEW abstracts 
the hardware target from design and thus allows the user to focus on the algorithms and 
concepts. Click on the Threshold tab. Can you calculate how much more data it takes to 
represent a 100 × 100 pixel, 8-bit, 256-color level image in memory compared to a 1-bit, 
2-color level image?

HANDS-ON EXPERIMENT 10.8

This experiment implements a 2D image fi lter that consists of a 3 × 3 kernel matrix. We 
utilize the concepts of graphical system design to implement and test the fi lter in LabVIEW 
targeted to Windows and then port the design to the Blackfi n processor.

Open the 2D Conv Image Processing-BF5xx.lep in directory c:\adsp\chap10\
exp10_8. As in Hands-On Experiment 10.7, this VI can be executed with the LabVIEW 
Embedded when targeted to Windows or to the Blackfi n processor. When analyzing the 
block diagram, we see that the image fi lter kernels are the same as those designed earlier in 
Example 10.7.

The low-pass fi lter implementation is shown in Figure 10.26. 2D Convolution subVI
performs the point-by-point convolution of the image and the 3 × 3 fi lter kernel, and then 
divides by the scalar (9 in this case). The scalar is used to reduce the overall multiplied effect 
of the fi lter kernel to 1. Open 2D Convolution subVI to see how the graphical program 
performs the 2D convolution.

Open the front panel and run the VI. Click on the Custom tab shown in Figure 10.27. 
The Laplacian fi lter is performed by default. Change the fi lter to the Sobel fi lter with the 
parameters found in Example 10.7. Note that there are two Sobel fi lter implementations, 

Figure 10.26 Block diagram for 2D Convolution Image Processing.vi
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which are not symmetric about both axes in contrast to the delta and low-pass fi lters. How 
do the resulting images differ when the orientation of the Sobel fi lter is changed?

To run the project on the Blackfi n processor, change the execution target from Windows 
to the Blackfi n EZ-KIT. Open the 2D Conv Image Processing-BF5xx.lep file in 
directory c:\adsp\chap10\exp10_8 from the Embedded Project Manager window.

As discussed above, the input is an 8-bit grayscale image containing 100 × 96 pixels. 
Again, the default LabVIEW Embedded Module for Blackfi n Processors debugging param-
eters must be changed properly to see the results of the processed image. In the project 
Debugging Options, increase Max Array Elements to 10000 and Debug update period
to 1000 ms.

Run the VI on the Blackfi n by clicking on the Debug execution button. As in Hands-On 
Experiment 10.7, be sure that the algorithms on the Blackfi n processor behaves the same as 
they did in LabVIEW targeted to Windows.

Explore the values being passed through wires on the block diagram with probes. The 
Custom tab is useful for testing common 3 × 3 image fi lter implementations as well as your 
own designs. What 3 × 3 fi lter values allow you to invert the image as shown in Figure 
10.25?

Figure 10.27 Front panel for 2D Convolution Image Processing.vi
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10.12 MORE APPLICATION PROJECTS

1. In this chapter, all the images used in examples and experiments are transferred from the 
fi les in the computer to the SDRAM in the Blackfi n processor. The BF533 EZ-KIT comes 
with a video connector that allows users to transfer images from the image/video captur-
ing devices such as digital cameras. A sample program from Analog Devices is provided 
in directory c:\Program Files\Analog Devices\VisualDSP 4.0\Blackfin\
EZ-KITs\ADSP-BF533\Examples\Video Input to capture the image through the 
parallel port interface of the Blackfi n processor. A peripheral DMA is set up as stop mode, 
which stops capturing after 50,000 transfers to move the image from the PPI to the 
SDRAM, and the PPI port is confi gured to ITU-656 input mode. Open the project 
fi le BF533_EZ_KIT_Video_Receive_C.dpj in VisualDSP++. Before building the 
project, make sure that switch #6 of SW3 in the BF533 EZ-KIT is set to ON. Build the 
project. Connect the video NTSC/PAL composite video blanking sync (CVBS) 
signal to the video input jack, which is located at the bottom right of the video in/out 
connector (AVIN1) on the BF533 EZ-KIT. The CVBS combines the color, luminance, 
and synchronization information into one signal. Click on the Run icon to start the 
capture of the image from the imaging device. Click on the Halt icon to stop the proces-
sor. Open the image in the image viewer with the following parameters: Start address
= 0x1; Stride = 2; Horizontal pixels = 720; Vertical Pixels = 525; Pixel format = Gray 

Scale (8-bit). Click OK to display the captured image from the camera. Capture 
images under different lighting conditions and perform contrast adjustment to these 
images.

2. The PPI of the Blackfi n processor can also be used to display an image from the SDRAM 
to an external display monitor. In this project, we look into how to display a color bar 
pattern stored in the SDRAM memory to the PPI, which in turn connects to the monitor. 
Confi gure the peripheral DMA as 2D DMA, autobuffer, and 16-bit transmit DMA; 
perform the data transfer from the SDRAM to the PPI. Load the project video_out.
dpj, which is located in directory c:\Program Files\Analog Devices\Visu-
alDSP 4.0\Blackfin\EZ-KITs\ADSP-BF533\Examples\Video Output. Make 
sure that switch #6 of SW3 on the BF533 EZ-KIT is set to ON. Connect a video display 
monitor to the video output jack (found on the top row of the video in/out connect) on 
the BF533 EZ-KIT [29]. Run the project and see the color bar pattern displayed on the 
video monitor. Overwrite the SDRAM with another image or sequence of images and 
display them.

3. The gamma correction is commonly used in compensating the nonlinearity of display 
devices. To display the image in linear output, the gamma correction prewraps the RGB 
color image with a gamma value. For example, a gamma value of 2.2 is used in most 
computer monitors. For an 8-bit RGB sample, a 256-value table is used to map the image. 
The equations for gamma correction are given as follows:

R R , G G , B B ,g g gg g g= = =1 1 1γ γ γ  (10.12.1)

where g is the conversion gain factor, γ is the gamma value, and RGB are the color com-
ponents. Implement the gamma correction on any RGB image and display the image on 
the computer monitor by modifying the program in Project 2.

4. Modify the code in Hands-On Experiment 10.3 to compress a captured image from a 
digital still camera in the BF533 processor. The compression ratio can be selected from 
the switches in the BF533 EZ-KIT as indicated in Table 10.2. Use the image viewer in 
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VisualDSP++ to view the reconstructed image. In addition, perform low-pass fi ltering on 
the reconstructed image to smooth out any blocking edges.

5. To estimate the quality of a reconstructed image compared with the original image, a 
peak signal-to-noise ratio (PSNR) measurement is commonly used in image compression. 
PSNR is computed from the mean square error (MSE) of the reconstructed image as 
follows
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where x(i,j) is the original N × M image and R(i,j) is the reconstructed image obtained 
by decoding the encoded version of x(i,j). Note that the error metrics are computed on 
the luminance signal only and the peak image level is white (255). A detailed description 
of PSNR and its application in image coding can be found in [68]. Compute and display 
the PSNR for the reconstructed images in Hands-On Experiment 10.3 using the 
EZ-KIT.

6. Extend Project 5 by displaying the pixel-by-pixel error image between the original image 
and the reconstructed image. Use the image viewer of VisualDSP++ to display the error 
image. Can you observe any difference as the compression ratio increases? Can you devise 
a different error computation to increase the visible difference?

7. A color image is converted from RGB color space to YCbCr space as shown in Hands-On 
Experiment 10.2. A 2D low-pass fi lter is then applied only to the luminance (Y) in the 
YCbCr color space. After fi ltering, convert the YCbCr back to RGB color space and 
display in the image viewer of VisualDSP++.

8. A set of noisy image fi les are located in directory c:\adsp\image_files\noisy_
image\. Based on the image processing techniques learned in this chapter, devise a 
suitable technique to clean up each of these image fi les. In some cases, advanced tech-
niques that are not described in this book must also be explored. Users can refer to the 
textbooks listed in the References or search the website for solutions. Implement the 
algorithm with the BF533/BF537 EZ-KIT and test its performance. Compare the perfor-
mance with MATLAB simulations.
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Appendix A

An Introduction to Graphical 
Programming with LabVIEW

Contributed by National Instruments

This appendix provides an overview of National Instruments LabVIEW and the 
LabVIEW Embedded Module for Blackfi n Processors software.

A.1 WHAT IS LABVIEW?

LabVIEW is a full-featured graphical programming language and development 
environment for embedded system design. LabVIEW provides a single graphical 
design tool for algorithm development, embedded system design, prototyping, and 
interfacing with real-world hardware. Additional modules have been designed to 
expand the core functionalities of LabVIEW to real-time operating systems, DSP, 
and FPGA programming, making LabVIEW an ideal platform for signal processing 
algorithm design and implementation.

This section briefl y introduces the LabVIEW development environment from 
installation and basic programming to system development. This material provides 
a high-level overview of the concepts necessary to be successful with LabVIEW 
and the LabVIEW Embedded Module for Blackfi n Processors. Additional references 
to supplemental manuals and resources are provided for more in-depth 
information.

A.1.1 A Picture Is Worth a Thousand Lines of Code

Graphical system design and prototyping opens the door to the masses in embedded 
development. The industry is confi rming that higher levels of abstraction in 
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embedded tools are needed, suggesting electronic system-level (ESL) design is an 
answer and citing concepts such as hardware/software co-design, predictive analy-
sis, transaction-level modeling, and others. Does this sound like simplifying the 
problem or just making it more complex?

Fundamentally, the problem is that the domain experts—scientists, researchers, 
and engineers developing new algorithms—are at the mercy of the relatively few 
embedded system developers who are experienced in dealing with today’s complex 
tools. The industry requires a fundamental change to empower the thousands of 
domain experts to experiment and prototype algorithms for embedded systems 
to prove success early before they are overtaken with the complexity of 
implementation.

The test and measurement industry saw this same phenomenon. Using a 
graphical modeling and programming approach, engineers can more quickly 
represent algorithms and solve their problems through block diagrams. This is 
especially true for embedded systems development. With a graphical programming 
language, engineers succinctly embody the code that is actually running on the 
hardware. For example, they can represent parallel executing loops simply by 
placing two graphical loop structures next to each other on the diagram. How 
many lines of code would it take to represent that in today’s tools? How many 
domain experts could look at text code and quickly interpret exactly what is hap-
pening? Only a truly innovative user experience—like Windows for PCs or the 
spreadsheet for fi nancial analysis—can truly empower the masses to move into a 
new area.

Domain experts also need a simple and integrated platform for testing algo-
rithms with real-world I/O. The reason these embedded systems fail so often is 
because there are so many unknowns during development that are not discovered 
until the end of the development cycle.

After seeing this shift in the test and measurement industry from traditional 
text-based programming approaches like BASIC and C to LabVIEW, it seems more 
obvious than ever. Graphical system design is essential to open embedded systems 
to more people.

Figure A.1 Graphical system design in LabVIEW
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A.1.2 Getting Started with LabVIEW

The LabVIEW development system is the core software with which other modules, 
toolkits, and drivers can be installed to expand functionality and capability. For the 
purposes of this book, the LabVIEW Embedded Module for Blackfi n Processors 
should also be installed, adding the ability to generate Blackfi n-compatible C code 
that can be targeted to the Blackfi n EZ-KIT using the Analog Devices VisualDSP++
tool chain under the hood.

A.1.3 Install Software

The installation order is as follows:

1. Install VisualDSP++ 4.0 for LabVIEW

2. Install the LabVIEW Embedded 7.1

3. Install the LabVIEW Embedded Module for Blackfi n Processors 1.0

A.1.4 Activating Software

The software will default to a 60 day evaluation version. If you have purchased a 
copy of the software and have received an activation code, follow these steps to 
activate both LabVIEW Embedded Module for Blackfi n Processors and Visual 
DSP++ 4.0 at once.

1. Navigate to the NI License Manager. Start by selecting Start Æ Programs Æ
National Instruments Æ NI License Manager. The NI License Manager will 
open, showing all NI software installed on the computer that can be activated.

2. Expand the LabVIEW category to expose the LabVIEW Embedded 
Module.

3. Right click on the Embedded Module and select Activate. Follow the steps 
provided in the NI Activation Wizard to activate the software.

A.1.5 Connecting Hardware

After the appropriate software has been installed, attach the power connector to the 
Blackfi n EZ-KIT and then connect the EZ-KIT to the computer using the USB cable. 
Windows will detect the EZ-KIT and install the appropriate driver.

A.1.6 Running an Example Program

Open and run the fi rst example program by opening LabVIEW Embedded Edition 
and changing the execution target on the introduction screen from LabVIEW to the 
appropriate Blackfi n EZ-KIT, labeled Analog Devices ADSP-BF5xx, VDK Module.
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Open the Embedded Project Manager by selecting Tools Æ Embedded Project 
Manager Æ File Æ Open Project. All examples can be found in the c:\Program 
Files\National Instruments\LabVIEW 7.1 Embedded\examples\

lvemb\Blackfin directory. In the Embedded Project Manager, select File Æ
Open Project and navigate to the fundamentals directory to open the Pushbutton 
- polling (BF5xx).lep project. Click on the Execute button to compile, link, 
and download the application to the Blackfi n EZ-KIT. Refer to the Introduction to 
LabVIEW Embedded Edition 7.1 and the LabVIEW Embedded Module for 
Blackfi n Processors sections of this appendix for more information.

A.2 OVERVIEW OF LABVIEW

This section introduces the key components of the LabVIEW environment and 
provides step-by-step experiments in developing LabVIEW programs and graphical 
user interfaces.

A.2.1 The LabVIEW Environment

The LabVIEW development environment allows you to develop graphical programs 
and graphical user interfaces easily and effectively. A program in LabVIEW is called 
a Virtual Instrument (VI), and acts as an individual function similar to a function 
defi ned in the C programming language. The main executable VI is called the top-
level VI and VIs used as modular subroutines are called subVIs. Every VI is made 
of two key components, the front panel and block diagram, shown in Figure A.2. 
The front panel is the graphical user interface and the block diagram contains the 
graphical code that implements the functionality of the VI. Once you create and 
save a VI, it can be used as a subVI in the block diagram of another VI, much like 
a subroutine in a text based programming language.

A.2.2 Front Panel

The front panel contains objects known as controls and indicators. Controls are the 
inputs that provide data to the block diagram as will be discussed in Section A.2.3, 
while output data from the block diagram is viewed and reported on front panel 
indicators. In Figure A.3(a), two numeric array controls, Vector A and Vector B,
allow the user to input two numeric vectors. The result of the dot product is displayed 
as a single scalar value in the Dot Product Result numeric indicator. There is also 
a Boolean control button that will stop the VI.

The Controls palette in Figure A.3 (b) contains all the front panel objects that 
you can use to build or modify the user interface. To open the Controls palette, 
right click on free space within the front panel. The Controls palette can remain

visible while you work by clicking on the pushpin icon  in the upper left 
corner.

TEAM LinG



Figure A.2 LabVIEW front panel and block diagram

(a) (b)

Figure A.3 (a) Front panel and (b) controls palette
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A.2.3 Block Diagram

The block diagram contains the graphical code that defi nes how the VI will operate. 
Front panel controls and indicators have a corresponding terminal block on the block 
diagram. The corresponding terminals for array controls Vector A, Vector B and 
the Boolean stop button provide input to the block diagram, while the Dot Product 
Result numeric indicator terminal allows the result of the algorithm to be 
displayed.

Wires defi ne how data will fl ow between terminals and other nodes on the 
block diagram. VIs execute based on the concept of data fl ow, meaning that a 
node, subVI or structure will not execute until data is available at all its inputs. 
Data wire color and thickness are used to show data type (fl oating point number, 
integer number, Boolean, string, etc) and dimensionality (scalar or array). For 
example, in Figure A.4 (a), the input vectors both enter the left side of the For Loop
with a thick orange wire representing double precision numeric 1D arrays. The wire 
exiting the For Loop is a thin orange wire representing a double precision numeric 
scalar.

When creating or modifying a block diagram, the Functions palette provides 
access to all functions, structures, and subVIs available in LabVIEW. Right-click 
on empty space on the block diagram to see the Functions palette, shown in Figure 
A.4 (b). Again, the pushpin can be used to keep the palette from disappearing.

(a) (b)

Figure A.4 Functions palette for block diagram objects
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A.2.4 Debugging in LabVIEW (Windows)

Many debugging features in LabVIEW make it ideal for designing and testing 
algorithms before moving to a hardware target like the Blackfi n EZ-KIT. LabVIEW 
continuously compiles code while it is being developed, allowing errors to be 
detected and displayed before the application is executed. This method of error 
checking provides immediate feedback by ensuring that subVIs and structures have 
been wired properly during development. Programming errors are shown in the 
form of broken or dashed wires or a broken Run arrow toolbar icon. When the Run
arrow toolbar icon appears broken and grey in color, click it to see the list of errors 
preventing the VI from executing, shown in Figure A.5. Use the Show Error button 
or double-click on the error description to highlight the problematic code on the 
block diagram or the object on the front panel that is causing the error.

There are additional debugging features unique to LabVIEW that help you 
understand the operation of a VI during runtime. The block diagram debugging 
features include the use of breakpoints to pause code during execution, adding 
probes to see the data value present on wires, and highlight execution mode, a 
debugging feature that slows execution and shows the actual fl ow of data along wires 
and through structures. These tools assist in understanding and confi rming program 
logic and program fl ow.

A.2.5 Help

Several help options exist for programming and function reference. These features 
can be accessed through the Help menu on both the front panel and block diagram 
tool bar. Context Help can be activated by selecting Help Æ Show Context Help.
Context Help displays a fl oating help window that changes based on the current 
block diagram or front panel element under the cursor. Launch the comprehensive 
LabVIEW Help by selecting HelpÆVI, Function, & How-To Help. View the 

Figure A.5 Debugging broken wires and using the Error List
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extensive library of LabVIEW manuals by selecting HelpÆSearch the LabVIEW 
Bookshelf.

The National Instruments support website, www.ni.com, is also a great resource 
for fi nding answers to questions. Thousands of KnowledgeBase entries and search-
able forums on the NI web site offer interactive up-to-date help resources.

HANDS-ON EXPERIMENT A.1

In this experiment, we will create the VI shown in Figure A.2 that performs the dot product 
of two input vectors. This simple VI will introduce the concepts of datafl ow programming 
in LabVIEW and graphical constructs such as arrays, looping structures, and shift registers. 
Start by opening LabVIEW and creating a new VI. Notice that the front panel user interface 
has a gray workspace and when the block diagram is opened, it has a white workspace. We 
will begin by fi rst creating the user interface on the front panel and then coding the dot 
product algorithm on the block diagram.

Begin on the front panel by right-clicking on the free space to display the Controls 
palette. Click on the Pushpin to give the palette its own window. First, we will create Vector 
A by placing an Array shell on the front panel. You will quickly become comfortable with 
the location of controls and indicators in their respective palettes. For now, take advantage 
of the palette search feature to fi nd functions and controls if you are not sure where they are 
located. Find the Array shell by opening the Controls palette and clicking on Search,
located at the top of the palette. Type “array” in the search fi eld and note that as you type, 
the list box populates with your search results. Locate the Array control in the list and 
double-click on the entry. The window will change to the appropriate subpalette and the 
Array shell will be highlighted. Click on the Array shell icon and drag your cursor where 
you want to place it on the front panel. Arrays are created empty, that is, without an associ-
ated data type. Defi ne the array data type by dropping a numeric, Boolean, or string control 
within the array shell. From the Numeric subpalette on the Controls palette, select a numeric 
control and drop it into the Array shell, as shown in Figure A.6. The color indicates the data 
type. In this case, orange indicates that the array holds double precision numbers. Double-
click on the Array label to change its text to Vector A. The array can be expanded vertically 
or horizontally to show multiple elements at once. Expand Vector A horizontally to show 
three elements.

Create Vector B by creating a copy of Vector A. You can click on the edge Vector A
to select it and then select Edit Æ Copy and then Edit Æ Paste to create a copy. Place the 
copy below the original (see Fig. A.7). Change the label for this control to Vector B.

Figure A.6 Creating an Array control

TEAM LinG



Now that the controls, or inputs, to the VI have been created, we need an indicator to 
show the output of the dot product operation. On the Controls palette, select the Numeric 
Indicator, available by selecting Controls Æ Numeric Æ Numeric Indicator, and place it 
on the front panel. Name this indicator Dot Product Result. Finally, place a Stop button on 
the front panel so that the user can terminate the application. This control is found on the 
Controls Æ Boolean subpalette.

After the front panel graphical user interface has been completed, we turn our attention 
to completing the dot product functionality on the block diagram. If the block diagram is 
not already open, select Window Æ Show Block Diagram. Block diagram code executes 
based on the principle of datafl ow. The rule of datafl ow states that functions execute only 
when all of their required inputs are populated with data. This programming architecture 
allows both sequential and parallel execution to be easily defi ned graphically. When the 
block diagram for the dot product is complete, as shown in Figure A.4(a), data passes from 
the inputs on the left to the outputs on the right and follows the datafl ow imposed by the 
wires connecting the block diagram objects. The next step is to create the block diagram by 
fi rst placing the correct structures and functions and then connecting them together with the 
appropriate wiring.

Place a For Loop available on the Structures palette in the center of the block diagram. 
It may be necessary to move the controls and indicators out of the center to do so. A For 
Loop in LabVIEW behaves like a for loop in most text based programming environments, 

iterating an integer number of times as specifi ed by the input terminal N, .
After the For Loop has been placed and sized, the next step is to place both the 

Multiply  and the Add  functions within the loop. Move Vector A and Vector B
to the left of the loop and begin wiring Vector A through the For Loop and into the top 
input of the Multiply function. The mouse cursor automatically changes to the wiring tool 
when it is placed above the input or output of an icon or another wire. Use the wiring tool 
to connect inputs and outputs by clicking and drawing wires between them. Now, wire Vector 
B to the bottom input of the Multiply function, and the output of the Multiply function to 
the bottom input of the Add function. The product of each pair of multiplied values will be 
cumulatively added by means of a shift register every time the loop iterates. Now create a 
shift register on the left side of the For Loop by right-clicking and selecting Add Shift 
Register. Shift registers will be added to each side of the loop automatically. A shift regis-
ter allows values from previous loop iterations to be used in the next iteration of the loop. 
Wire the output of the add operation to the right shift register. The shift register will then 
change to the color of the wire. Now right-click on the left shift register and create a con-
stant, wire the left shift register to the top of the add, and wire the right shift register to 

Figure A.7 Copying objects holding CTRL while dragging the object
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the Dot Product Result. Notice in Figure A.8, the shift register input  is initialized with 
a value of zero, and during each iteration of the For Loop, the product of the elements from 
Vector A and Vector B is summed and stored in the shift register . This stored value 
will appear at the shift register input during the next iteration of the loop. When the For 
Loop has iterated through all of the vector elements, the fi nal result will be passed from the 
right shift register to the Dot Product Result. Can you now see how the graphical code 
within this For Loop is performing the dot product of the two input arrays?

Finish the program by adding a While Loop, available on the Functions Æ Structures
subpalette that encloses all of the existing code on the block diagram. This structure will 

allow the code inside to run continuously until the stop condition  is met. For our VI, 
wire the stop button to the stop condition so that it can be used to stop the loop from the 
front panel thus, ending execution of the entire VI. Finally, we must add functionality in the 
While Loop to keep it from running at the maximum speed of the computer’s processor. 
Find the Wait Until Next ms Multiple function and wire in 100 ms of delay. This will 
suspend execution of the VI for 100 ms so that the processor can handle other operations 
and programs. Your VI should look similar to the completed block diagram shown in 
Figure A.8.

If you have successfully completed the Dot Product VI, the Run arrow on the toolbar 
should appear solid and white, indicating that there are no errors in the code that would 
prevent the program from compiling. A broken Run arrow means that there is an error that 
you can investigate and fi x by clicking on this error to report what is causing the problem. 
Click on the Run arrow to run the VI and experiment by placing different values into Vector 
A and Vector B. Compute the dot product of two small vectors by hand and compare the 
results with VI you created. Do they match?

Click on the stop button to halt the VI execution. Click on View Æ Block Diagram to 
switch to the block diagram. Enable the highlight execution feature by clicking on the 

toolbar icon with the light bulb icon . Now press run again. What do you notice? How 
can this feature help you during development? Right-click on a wire and select Probe. You 
can now see a small dialog box that displays the data value of that wire as the VI executes. 

Figure A.8 Block diagram of the vector dot product VI
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Experiment with the other debugging features of the LabVIEW environment and save the 
program when you are fi nished.

HANDS-ON EXPERIMENT A.2

In this experiment, you will create the VI as shown in Figure A.9. This VI generates a one-
second sinewave of a given frequency, displays its time-domain plot, and outputs the signal 
to the sound card.

Open a new blank VI. Start by placing the Sine Waveform.vi on the block diagram. 
Right-click on the frequency input of this function and select Create Æ Control. This 
automatically creates a numeric control of double representation with the name frequency.
Switch to the front panel to see the actual control. Do the same for the amplitude input. 
Finally, right-click on the Sampling Info input and select Create Æ Constant. This input 
happens to be a cluster data type that allows you to specify the sampling frequency and the 
number of samples for the generated sinewave. Clusters are a type of data unique to LabVIEW 
but are similar to structures in text based programming. They allow you to bundle together 
different data elements that are related in some way. Clusters can consist of the same or 
different data types. Search the LabVIEW Help for more information on clusters. Change 
both values within the cluster to 44,100. The fi rst is Fs, the sampling rate, and the second 
is #s, the number of samples to generate. Setting both values to the same number generates 
1 second of 44,100 sample/second data as shown in Figure A.9.

Now that we have all of the necessary inputs, navigate to the front panel and place a 
Waveform Graph on the front panel. Navigate back to the block diagram and wire the signal 
out terminal of the Sine Waveform VI to the Waveform Graph. The VI should now run. 
Test it once. Zoom in on the graph to see a smaller piece of the data. Consider clicking and 
changing the right-most value on the x axis to 0.005.

In order to play the sinewave on the sound card, we must use the Snd Write Wave-
form.vi. Right-click on the sound format input and select Create Æ Constant. The default 
values will need to be changed to mono, 44100, and 16-bit. Then, wire the output signal to 
the mono 16-bit input on the top right of the Snd Write Waveform VI. Finish the VI by 

(a) (b)

Figure A.9 Screen shots of the (a) signal generator and (b) its block diagram
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enclosing the block diagram code with a While Loop so that it will run until the stop button 
is pressed. Right-click the termination terminal of the loop and select Create Æ Control so 
that a stop button appears on the front panel. Arrange the front panel objects so that they 
look like those shown in Figure A.9.

As in the previous experiment, fi x any errors that might be causing the Run arrow to 
be broken. Plug speakers or headphones into audio output of the computer so that you can 
listen to the generated sinewave signal. Click on the Run button to start the VI. Experiment 
by changing values of the input controls on the front panel. Does the VI behave as 
expected?

A.3 INTRODUCTION TO THE LABVIEW EMBEDDED 
MODULE FOR BLACKFIN PROCESSORS

This section examines the state-of-the-art software that allows algorithms to be 
developed in the LabVIEW graphical environment and downloaded onto the Black-
fi n EZ-KITs.

A.3.1 What Is the LabVIEW Embedded Edition 7.1?

The LabVIEW Embedded Edition 7.1 adds the ability to cross-compile a LabVIEW 
Embedded project for a specifi c embedded target. This is performed by integrating 
LabVIEW Embedded and the tool chain specifi c to the embedded target. First, 
LabVIEW analyzes the graphical block diagram code and instead of compiling it 
directly for Windows, generates an ANSI C code representation for the top-level VI 
and each subVI in the VI hierarchy. This task is performed by the LabVIEW C 
Code Generator, which converts LabVIEW data wires and nodes into variables and 
structures in their C code equivalent. The LabVIEW C Runtime Library is used 
when functions cannot be simplifi ed to basic C constructs. The Inline C Node
generates C code identical to that entered on the LabVIEW block diagram. LabVIEW 
Embedded Modules, such as the LabVIEW Embedded Module for Blackfi n Proces-
sors, integrate the processor specifi c tool chain allowing the generated C code to be 
compiled and run on the Analog Devices Blackfi n processor.

A.3.2 What Is the LabVIEW Embedded 
Module for Blackfi n Processors?

The LabVIEW Embedded Module for Blackfi n Processors allows programs written 
in the LabVIEW to be executed and debugged on Blackfi n BF533 and BF537 pro-
cessors. The software was jointly developed by Analog Devices and National Instru-
ments, to take advantage of the NI LabVIEW Embedded technology and the 
convergence of capabilities of the Blackfi n EZ-KIT, for control and signal process-
ing applications. With the LabVIEW Embedded Module for Blackfi n Processors, 
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you can design and test algorithms in Windows and then compile and run them on 
the Blackfi n Processor. Advanced debugging features such as viewing of live front 
panel updates via JTAG, serial, or TCP/IP, as well as single-stepping through code 
with VisualDSP++ allow complex embedded systems to be rapidly designed, pro-
totyped, and tested.

A.3.3 Targeting the Blackfi n Processor

This section describes the process for changing the execution target and using the 
LabVIEW Embedded Project Manager. Begin by launching LabVIEW 7.1 
Embedded by navigating to Start Æ All Programs Æ National Instruments 
LabVIEW 7.1 Embedded Edition. Once open, you will see the menu shown in 
Figure A.10. Change the Execution Target option to the appropriate Blackfi n 
processor.

Use the New button to create a new blank LabVIEW VI for the selected target; 
however, when targeting embedded devices such as the BF533 or BF537, the Embed-
ded Project Manager should be opened fi rst. The Embedded Project Manager is 
used to manage your LabVIEW application. Open the Embedded Project 
Manager by selecting Tools Æ Embedded Project Manager. After the project 
manager window opens, select File Æ Open Project and navigate to the project 
fi le DotProd – BF5xx.lep located in the directory c:\adsp\chap1\exp1_4.
Note that LabVIEW embedded project fi les have “.lep” as the fi le extension. You 
should see the embedded project as shown in Figure A.11.

Figure A.10 LabVIEW Embedded startup screen

A.3 Introduction to the LabVIEW Embedded Module for Blackfi n Processors 453

TEAM LinG



454 Appendix A An Introduction to Graphical Programming with LabVIEW

The Embedded Project Manager provides a way to manage the target settings 
and all of the fi les included in the application. First, check the Target settings to 
be sure the Blackfi n Target is set up appropriately. The two most important target 
settings are Target Æ Build Options and Target Æ Confi gure Target. Settings 
changed in the Confi gure Target dialog box are unique to the development machine, 
while Build Options are unique to the individual LabVIEW Embedded project fi le. 
Any time you switch between BF533 and BF537 targets, you will need to verify 
target confi guration.

A.3.4 Build Options

The Build Options dialog box, shown in Figure A.12, is separated into three con-
fi gurations: General, Advanced, and Processor. The General tab allows the 
Debugging mode to be confi gured and provides some options for code generation 
optimizations. The Advanced tab provides higher level debugging and optimization 
options to be set, as well as compiler and linker fl ag options for more experienced 
users. The Processor tab contains additional processor specifi c options for advanced 
users, including one of the most critical options for proper code compilation, the 
Silicon revision. The silicon revison chosen in the project and that of your Blackfi n 

Figure A.11 LabVIEW Embedded project manager
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processor must match. The processor model and revision can be found on the silk-
screen of the Blackfi n chip at the center of the EZ-KIT circuit board.

A.3.5 Target Confi guration

The Target Confi guration dialog box is separated into two confi guration tabs, 
Target Settings and Debug Options, as shown in Figure A.13. The Target Settings
must be verifi ed each time the target is changed from one processor type to another. 
The Debug Options pane provides confi guration settings for update rate, commu-
nications port, and advanced debug options. Remember, these settings are unique 
to the development machine, so they are not saved in the project fi le and not changed 
when a new project fi le is loaded.

A.3.6 Running an Embedded Application

LabVIEW embedded applications can be executed by clicking on the Run button 
in the Embedded Project Manager. Clicking the Run button on an individual VI 
will bring the Project Manager window to the front or ask you to create a project 
fi le if there is no project associated with the VI.

LabVIEW Embedded applications are fi rst translated from graphical LabVIEW 
to C code, compiled, and then downloaded to the embedded controller for execution. 

Figure A.12 LabVIEW Embedded target build options
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Using the buttons in the Embedded Project Manager window, you can specify 
which steps in the embedded tool chain to complete. Refer to Figure A.14 for a 
description of the Compile and Run button options. Each option will complete all 
of the necessary tasks before it in the compilation chain. For example, the Compile
button will generate C and compile the fi les in the project, while the Debug button 
will generate C, compile, download, run, and begin debugging.

For additional reference material and more specifi c help using LabVIEW 
Embedded for Blackfi n Processors, refer to the Getting Started with the LabVIEW 
Embedded Module for Analog Devices Blackfi n Processors manual [52] and the 
LabVIEW Embedded Module for Analog Devices Blackfi n Processors Release 

Figure A.13 LabVIEW Embedded target confi guration options

Figure A.14 LabVIEW Embedded target execution options
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Notes [53]. These manuals are also installed in the National Instruments folder on 
your computer and can be found at \National Instruments\LabVIEW 7.1 
Embedded\manuals\Blackfin_Getting_Started.pdf and National 
Instruments\manuals\Blackfin_Release_Notes.pdf. The manuals 
can also be downloaded from http://ni.com/manuals.

A.3.7 Debugging in the LabVIEW Embedded 
Module for Blackfi n Processors

Different debugging options are available when using the LabVIEW Embedded 
Module for Blackfi n Processors to develop a Blackfi n application. Debugging modes 
available in the module include the standard non-instrumented debugging that 
employs the JTAG/EZ-KIT USB port, as well as a unique instrumented debugging 
mode that uses the serial or TCP port. The debugging method can be selected using 
the Target Æ Build Options Æ Debug Mode menu shown previously in Figure 
A.12. Debugging provides a window into the processes and programs running on 
the DSP during execution. The LabVIEW Embedded Module for Blackfi n Proces-
sors allows you to interact with and view the values of front panel controls and 
indicators, as well as probed data wires on the block diagram. This type of debug-
ging control allows the programmer to visualize and understand every step of an 
algorithm graphically, which can be more intuitive than conventional register-based 
debugging. Data is transferred from the target to the Windows environment based 
on the polling rate and vector size specifi ed in the Target Confi guration tab, shown 
in Figure A.13.

A.3.7.1 Noninstrumented Debugging

Debug via JTAG/EZ-KIT USB is the same type of debugging available in the Visu-
alDSP++ environment, but with the added benefi t of LabVIEW’s interactive debug-
ging features. Keep in mind that JTAG mode interrupts the processor to perform 
debug data transfers, which can disrupt real-time processes. The faster the update 
rate and the more data transferred in each vector, the more JTAG debugging could 
interfere with the execution of your process. For this reason, Instrumented Debug-
ging was developed for faster communication between the host and embedded 
processor. Refer to the release notes for additional noninstrumented debugging 
troubleshooting information.

A.3.7.2 Instrumented Debugging

Instrumented debugging allows the user to fully interact with a running embedded 
application without disrupting the processor during execution. This feature, unique 
to the LabVIEW 7.1 Embedded Edition, is achieved by adding additional code, as 
much as a 40% increase in overall code size, to the application before compilation. 

A.3 Introduction to the LabVIEW Embedded Module for Blackfi n Processors 457

TEAM LinG



458 Appendix A An Introduction to Graphical Programming with LabVIEW

This added code captures and transfers values over an interface other than USB, 
such as serial or TCP ports. Occasionally, this form of debugging may slow down 
a time critical process, but it is extremely useful for debugging applications at higher 
data rates with the greatest ease and fl exibility. When using Instrumented Debug-
ging, the USB cable must remain attached for execution control and error checking 
during debugging.

HANDS-ON EXPERIMENT A.3

In this experiment, you will create the VI shown in Figure A.15, which calculates the dot 
product of two vectors and displays the result on the front panel. This VI will be compiled, 
downloaded, and executed on the Blackfi n processor with front panel interaction available 
through the debugging capabilities of the LabVIEW Embedded Module for Blackfi n Proces-
sors. The dot product result will also be passed back to the host computer through the 
standard output port using the Inline C Node.

Open the Embedded Project Manager window by clicking on Tools Æ Embedded 
Project Manager and create a new LabVIEW embedded project through the File Æ New 
Project menu. Name the project dotproduct.lep and click OK. The LabVIEW execution 
target should set to execute on the Blackfi n processor. Verify this by selecting Target Æ
Switch Execution Target, and make sure that the appropriate Blackfi n EZ-KIT is selected. 
Next, add a new VI to the project by choosing File Æ New  .  .  .  , selecting the Blank VI 
option and naming the fi le as DotProd.vi. Click OK. Notice that the fi le has been added 
to your project and its front panel has been opened.

The next step is to recreate parts of the Hands-On Experiment A.1 following those 
instructions, or you may start with a saved version of that VI. The goal is to modify the VI 
to that found in Figure A.15. For the purposes of this exercise, we will replace the For Loop
implementation of the dot product with the dot product LabVIEW analysis function. The 
controls and indicators will be identical to those used in the previous exercise and the outer 
While Loop will be reused.

Once you have recreated the new DotProd.vi complete with controls, indicators, and 
while loop, place the Dot Product.vi, located on the Analyze Æ Mathematics Æ Linear 

Figure A.15 Dot product VI block diagram written in LabVIEW Embedded
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Algebra palette, in the center of the VI. Click to select and then click to drop the Dot 
Product.vi on the block diagram. Confi gure the function inputs and outputs by wiring 
Vector A to the X array input, Vector B to the Y array input, and Dot Product Result to 
the X*Y output of the Dot Product VI. Click and drag each of these icons to move and 
arrange them as seen in Figure A.15.

Next, we will add console output capability to our application using an Inline C Node,
which will allow us to enter text-based C code directly into the LabVIEW application. Navi-
gate to the Structures palette, select the Inline C Node, and drag the mouse across the block 
diagram to create a rectangular region roughly the size shown in Figure A.15. Click inside the 
Inline C Node and enter printf(“The Dot Product is: %f \n”,value);, which 
will output to the debugging window the value of the dot product during every iteration of the 
While Loop. To pass the value of the dot product to this C code, right-click on the left border 
of the Inline C Node and select Add Input. This creates a new input terminal for the C node, 
which is named as value to match the name referenced in the C code.

Verify that you have enclosed the dot product controls and indicators with a While 
Loop structure to allow the code to execute continuously. Finally, add time delay to the loop 
if you have not already done so. Add a Wait (ms) function, located in the Time, Dialog & 
Error palette and create a constant input of 100 milliseconds to provide a short pause 
between the processing of each iteration of the loop.

After the VI has been wired correctly, clicking on the Run arrow will open the Embed-
ded Project Manager window. Select Build Option from the Target menu to open the 
Blackfi n Build Options dialog box. You can choose what level of debugging support to 
use, as well as various compilation options for the project. For Debug mode, choose Non-
instrumented (via JTAG/EZ-KIT USB) from the pull-down menu and make sure that the 
Build confi guration is set to Debug. This option allows for debugging our application 
without the need for any additional cables or hardware. You will also need to uncheck 
Redirect stdout to serial port on the Advanced tab. Before running the application 
open the Processor Status dialog box from the Target menu to view the console output 
transferred over the standard output port from the application.

After the build options have been set for the project, click on the Debug  button 
to compile, build, download, run, and debug the application. Switch to the front panel and 
observe how the calculated value for the dot product changes as you enter different values 
for the input vectors. Note also the console output in the Processor Status dialog box. Do 
the values calculated by this VI match those you calculated in Hands-on Experiment A.1?

HANDS-ON EXPERIMENT A.4

In this fi nal experiment, we will modify an audio pass-through example to generate and 
output a custom sinewave to the audio out port of the Blackfi n EZ-KIT using the LabVIEW 
code shown in Figure A.16. To begin, launch the Embedded Project Manager and open 
the Audio Talkthrough – BF5XX.lep project fi le. Select File Æ Save Project As
and save the project as Sine Generator.lep. From the Embedded Project Manager
window, open Audio Talkthrough – BF53X.vi and select File Æ Save As to save 
the VI as Sine Generator.vi in the same directory as your embedded project fi le. We 
are now ready to add the sinewave generator functionality to the code.
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Start by fi rst adding the Sine Wave.vi, located on the Analyze Æ Signal Processing 
Æ Signal Generation palette, to the block diagram. Place this VI outside of the While 
Loop, below the Init Audio function. At this point you should expand the size of the While 
Loop to make more room for additional code. This is easily done by placing the mouse over 
the While Loop and dragging down the lower handle until the loop is approximately the 
same size as shown in Figure A.16. Move the mouse over the sinewave output of Sine 
Wave.vi, and notice that the terminal has an orange color, denoting a fl oating-point data 
type. Because the Blackfi n processor is a fi xed-point processor, we need to convert the 
fl oating-point array of samples into a fi xed-point format, as explained in Chapter 6. To 
accomplish this, place a To Word Integer VI, located on the Numeric Æ Conversion
palette, next to the sine wave output terminal and wire them together. Next, a wire between 
the output of the conversion function to the border of the While Loop. What data type is 
this wire?

You must now defi ne the signal parameters for the sinewave you want to generate. To 
ensure that the sinewave generated is the appropriate number of samples, connect a wire 
between the samples input of the Sine Wave.vi and the Half buffer size output of the 
Init Audio.vi. Refer to Figure A.16 if you need help locating the terminals. Next, defi ne 
the amplitude of the sinewave by right-clicking the amplitude terminal and selecting Create 
Æ Constant from the shortcut menu. The amplitude has a default value of 1. Finally, we 
need to defi ne the frequency of sinewave. From the Numeric palette, place two numeric 
constants and a Divide function and wire the constants to the inputs of the Divide function. 
Wire the output of the Divide function to the Frequency input terminal of the Sine Wave.
vi. The units that this VI uses for frequency are cycles/sample, which we will calculate by 
dividing the desired sinewave frequency in Hz by the sampling frequency of our audio 
system. Use 1000 for the desired frequency and 48000 for the sampling frequency. At this 
point, the block diagram should look like Figure A.17.

Now that the sinewave generation is implemented, we need to add in the ability to play 
the signal using the audio capabilities built into the Blackfi n EZ-KIT when the user holds 
down a push button. Place an Initialize Array function from the Array palette below the 
Sine Wave function and wire the dimension size terminal to the half buffer size output of 

Figure A.16 Completed Sine Generator.vi block diagram
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the Init Audio.vi. You can connect to the same wire that connects the Init Audio and 
Sine Wave VIs. Create a constant for the element input and change it to 0 of I16 data type 
by right-clicking on the constant and selecting Representation Æ I16. This creates an empty 
array of the same size as the generated sinewave that we can use to output a silent signal 
when the button is not pressed. Connect the output of the Initialize Array function to the 
border of the While Loop.

Right-click the tunnel created on the While Loop border and select Replace with Shift 
Register, then wire the left shift register to the right shift register . Next, we need 
to determine if a button has been pushed. Place a BF is Button Pushed VI, located on the 
Blackfi n Æ EZ-KIT Æ Button palette, inside the While Loop and select the instance 
appropriate for the hardware from the pull-down menu. This VI will return a Boolean output 
telling us if a particular button is currently being pressed. To choose which button to monitor, 
create a constant on the button number input. Valid ranges are 1–4 for the BF537 EZ-KIT 
and 4–7 for the BF533 EZ-KIT, corresponding to the PB and SW numbers of the buttons, 
respectively. To choose which signal to output, add a Select function located on the Com-
parison palette and wire the button pushed output to the s input of the Select function. 
Now, wire the f input of the Select function to the wire connecting the two shift registers 
we just created, and wire the t input of the Select function to the converted sine array. Delete 
the connections between the right and left audio channel outputs of the BF Audio Write-
Read.vi and the right shift registers . Finally, connect the output of the Select function 
to the right shift registers for both the right channel and the left channel. The block diagram 
is now complete, and should match Figure A.15.

Compile, download, and run the application on the Blackfi n processor and test the VI 
by pressing the button you chose to monitor and listen for the generated sinewave to be output 
on the audio out line of the Blackfi n EZ-KIT. Experiment with generating different sinewave 
frequencies. Can you hear the difference? Why do most combinations parameters distort the 
audio tone? Consider the combination of buffer size, sampling rate, and the frequency of the 
sinewave. How would you modify the VI to remove this phenomenon?

Figure A.17 Sinewave generator—intermediate stage
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Appendix B

Useful Websites

This Appendix provides many useful websites that are related to the contents of 
this book. A companion website, www.ntu.edu.sg\home\ewsgan\esp_book.htm, has 
been set up by the authors to provide more information and latest updates on soft-
ware tools, installations of software, more hands-on exercises, solutions to selected 
problems, and many useful teaching and learning aids for instructors and 
students.

Websites Details

www.analog.com Analog Devices Inc. (ADI) main 
  website
www.intel.com/design/msa/index.htm Intel’s MSA website
www.analog.com/processors/index.html Tools and resources website for
  ADI processors
www.analog.com/processors/blackfi n/index.html Blackfi n processor main website
www.analog.com/processors/universityProgram/ ADI university program
 includedproducts.html
www.analog.com/processors/blackfi n/ ADI Blackfi n processor manuals
 technicalLibrary/manuals/index.html
www.analog.com/processors/blackfi n/ ADI Blackfi n technical library
 technicalLibrary/index.html
www.analog.com/processors/blackfi n/ VisualDSP++ development
 evaluationDevelopment/blackfi n  software trial download for
 ProcessorTestDrive.html  Blackfi n processors
www.analog.com/ee-notes Application notes
http://forms.analog.com/Form_Pages/support/ DSP technical support
 dsp/dspSupport.asp
www.analog.com/salesdir/continent.asp DSP sales and distributors
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Appendix B Useful Websites 463

Websites Details

www.analog.com/processors/technicalSupport/ ADI hardware anormalies
 ICanomalies.html
www.analog.com/BOLD Blackfi n online learning and
  development (BOLD)
www.analog.com/visualaudio VisualAduio algorithm
  development tool
Processor.support@analog.com Technical support email
www.ni.com National Instruments (NI) main
  website
www.ni.com/labview/blackfi n/ NI LabVIEW Embedded website
www.mathworks.com The Mathworks main website
www.bdti.com/products/reports_msa.html BDTI MSA report
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Appendix C

List of Files Used in 
Hands-On Experiments 
and Exercises

This appendix lists all the experiment and exercise fi les used in this book. The 
book is written in such a way that the main text of each chapter is supplemented 
with examples, quizzes, exercises, hands-on experiments, and exercise problems. 
These fi les are located in the directories:

c:\adsp\chap{x}\exp{x}_{no.}_<option>  for Blackfin and 
 LabVIEW 
 experiments

c:\adsp\chap{x}\exercise{x}_{no.}  for Blackfin and 
 LabVIEW 
 exercises

c:\adsp\chap{x}\MATLAB_ex{x}  for MATLAB 
 examples and
 exercises

where {x} indicates the chapter number and {no.} indicates the experiment 
number; <option> states the BF533 or BF537 EZ-KIT. To reference these supple-
mentary fi les, we tabulate them as shown below.
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Appendix C List of Files Used in Hands-On Experiments and Exercises 465

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 1 Experiment 1.1 — Explore VisualDSP++ — Blackfi n simulator
    environment
 Experiment 1.2 — Vector addition — Blackfi n simulator
 Experiment 1.3 — Graphic display — Blackfi n simulator
 Experiment 1.4 — Dot product in — LabVIEW 
    LabVIEW    Embedded
    Embedded

 2 Experiment 2.1 — Explore SPTool — MATLAB (SPTool)
 Experiment 2.2 — Moving-average fi lter — MATLAB (SPTool)
    in MATLAB
 Experiment 2.3 — Moving-average fi lter — Blackfi n simulator
    in Blackfi n simulator
 Experiment 2.4 — Moving-average fi lter — EZ-KIT
    in EZ-KIT
 Experiment 2.5 — Moving-average fi lter — LabVIEW
    in LabVIEW
 Experiment 2.6 — Moving-average fi lter — LabVIEW 
    in LabVIEW   Embedded
    Embedded   +EZ-KIT
 Exercise 2.1 — Generate sine wave — MATLAB
    and compute SNR
 Exercise 2.2 — Import and display — MATLAB (SPTool)
    signals
 Exercise 2.3 — Moving-average fi lter — MATLAB (SPTool)
    exercises
 Exercise 2.4 — Filter design exercises — MATLAB (SPTool)
 Exercise 2.5 — Draw signal-fl ow 
    graph
 Exercise 2.6 — Compare moving- — MATLAB 
    average and median   (SPTool)
    fi lters
 Exercise 2.7 — Filters to remove hum — MATLAB (SPTool)
 Exercise 2.8 — Filters to remove — MATLAB (SPTool)
    noisy speech signal
 Exercise 2.9 — Filters to remove — MATLAB (SPTool)
    noisy square wave
 Exercise 2.10 — Moving-average fi lter — Blackfi n simulator
    in Blackfi n simulator
 Exercise 2.11 — Moving-average fi lter — EZ-KIT
    in EZ-KIT

 3 Experiment 3.1 — Explore fi lter — MATLAB (FVTool)
    visualization tool
 Experiment 3.2 — Frequency analysis in — MATLAB (SPTool)
    SPTool
 Experiment 3.3 — Explore window — MATLAB
    visualization tool   (WVTool)
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466 Appendix C List of Files Used in Hands-On Experiments and Exercises

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Experiment 3.4 — Filtering and analysis  — MATLAB (SPTool)
    in SPTool
 Experiment 3.5 — Notch fi lter to — MATLAB (SPTool)
    attenuate undesired 
    tone
 Experiment 3.6 — Frequency analysis in — Blackfi n simulator
    Blackfi n simulator
 Experiment 3.7 — Real-time frequency — EZ-KIT
    analyzer
 Experiment 3.8 — Windowing on — LabVIEW
    frequency analysis
 Experiment 3.9 — Windowing on — LabVIEW 
    frequency analysis   Embedded
    using LabVIEW   + EZ-KIT
    Embedded
 Exercise 3.1 — Exercises on 
    z-transform
 Exercise 3.2 — Exercises on 
    z-transform of fi lters
 Exercise 3.3 — Exercises on transfer
    function
 Exercise 3.4 — Direct-form I and II
    IIR fi lters
 Exercise 3.5 — Stability of IIR fi lters
 Exercise 3.6 — Relate IIR fi lter to
    moving-average fi lter
 Exercise 3.7 — Transfer function and — MATLAB
    frequency response
 Exercise 3.8 — Compute gain and — MATLAB
    magnitude response
 Exercise 3.9 — DFT exercises
 Exercise 3.10 — Magnitude response — MATLAB
 Exercise 3.11 — Plotting magnitude — MATLAB
    spectrum
 Exercise 3.12 — Spectrum viewer in — MATLAB (SPTool)
    SPTool
 Exercise 3.13 — Window analysis in — MATLAB
    WINTool   (WINTool)
 Exercise 3.14 — Exercises on notch — MATLAB
    fi lter
 Exercise 3.15 — More exercises on — MATLAB
    notch fi lter
 Exercise 3.16 — Exercises on IIR fi lter — MATLAB
 Exercise 3.17 — Tone generation using — MATLAB
    IIR fi lter
 Exercise 3.18 — Spectrogram in — Blackfi n simulator
    Blackfi n simulator
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Appendix C List of Files Used in Hands-On Experiments and Exercises 467

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Exercise 3.19 — Real-time frequency — EZ-KIT
    analysis in EZ-KIT

 4 Experiment 4.1 — Filter design using — MATLAB
    FDATool   (FDATool)
 Experiment 4.2 — Design bandpass FIR — MATLAB
    fi lter and export to fi le   (FDATool)
 Experiment 4.3 — Design bandstop IIR — MATLAB 
    fi lter    (FDATool)
 Experiment 4.4 — Adaptive line — Blackfi n simulator
    enhancer using  
    Blackfi n simulator
 Experiment 4.5 — Adaptive line — EZ-KIT
    enhancer using 
    EZ-KIT
 Experiment 4.6 — Adaptive line — LabVIEW
    enhancer using 
    LabVIEW
 Experiment 4.7 — Adaptive line — LabVIEW 
    enhancer using    Embedded + 
    LabVIEW Embedded   EZ-KIT
 Exercise 4.1 — Determine fi lter types
    and cutoff frequencies
 Exercise 4.2 — Design fi lters using — MATLAB
    FDATool   (FDATool)
 Exercise 4.3 — Signal-fl ow graph
    exercise
 Exercise 4.4 — Design FIR fi lters — MATLAB
 Exercise 4.5 — Design bandpass FIR — MATLAB
    fi lters   (FDATool)
 Exercise 4.6 — Filter to enhance — MATLAB
    speech signal   (FDATool)
 Exercise 4.7 — Frequency response — MATLAB
    of Chebyshev IIR 
    fi lter
 Exercise 4.8 — Design other IIR — MATLAB
    fi lters using FDATool   (FDATool)
 Exercise 4.9 — System identifi cation — MATLAB
 Exercise 4.10 — Adaptive line — MATLAB
    enhancer
 Exercise 4.11 — Effect of step size on — MATLAB
    adaptive fi lter
 Exercise 4.12 — Adaptive noise — MATLAB
    cancellation
 Exercise 4.13 — Adaptive line — Blackfi n simulator
    enhancer in Blackfi n 
    simulator
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468 Appendix C List of Files Used in Hands-On Experiments and Exercises

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Exercise 4.14 — Adaptive line — EZ-KIT
    enhancer in EZ-KIT

 5 Experiment 5.1 — Assembly — Blackfi n simulator
    programming and 
    debugging in Blackfi n
 Experiment 5.2 — Circular buffering in — Blackfi n simulator
    assembly
 Experiment 5.3 — Arithmetic and — Blackfi n simulator
    logical shifting in 
    assembly
 Experiment 5.4 — Create linker — Blackfi n simulator
    description fi le using 
    Expert Linker
 Experiment 5.5 — Design 8-band — MATLAB
    graphic equalizer   (FDATool)
    (FIR) in fl oating point
 Experiment 5.6 — Converting fl oating — MATLAB
    point coeffi cients to   (FDATool)
    fi xed point
 Experiment 5.7 — Design graphic — Blackfi n simulator
    equalizer using 
    Blackfi n simulator
 Experiment 5.8 — Implement graphic — EZ-KIT
    equalizer using 
    EZ-KIT
 Experiment 5.9 — Creating a stand- — EZ-KIT
    alone graphic 
    equalizer
 Experiment 5.10 — Implement graphic — LabVIEW
    equalizer using
    LabVIEW.
 Experiment 5.11 — Implement graphic — LabVIEW
    equalizer using    Embedded +
    LabVIEW Embedded   EZ-KIT
 Exercise 5.1 — Addition operations — Blackfi n simulator
    in simulator
 Exercise 5.2 — Multiply operations — Blackfi n simulator
    in simulator
 Exercise 5.3 — More exercises on — Blackfi n simulator
    graphic equalizer
 Exercise 5.4 — Predefi ned gain — Blackfi n simulator
    control in graphic 
    equalizer

 6 Experiment 6.1 — Add/Subtract and — Blackfi n simulator
    saturation in Blackfi n
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Appendix C List of Files Used in Hands-On Experiments and Exercises 469

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Experiment 6.2 — Multiplication in — Blackfi n simulator
    Blackfi n
 Experiment 6.3 — Using the guard bits — Blackfi n simulator
    of the accumulator
 Experiment 6.4 — FIR fi ltering using — Blackfi n simulator
    multiply-add 
    instruction
 Experiment 6.5 — Truncation and — Blackfi n simulator
    rounding modes
 Experiment 6.6 — 32-Bit multiplication — Blackfi n simulator
 Experiment 6.7 — Quantization of signal — MATLAB
 Experiment 6.8 — Quantization of FIR — MATLAB
    fi lter’s coeffi cients   (FDATool)
 Experiment 6.9 — Quantization of IIR — MATLAB 
    fi lter    (FDATool)
 Experiment 6.10 — Limit cycle in IIR — MATLAB
    fi lter
 Experiment 6.11 — Benchmarking using — EZ-KIT
    BTC
 Experiment 6.12 — Statistical profi ling — EZ-KIT
 Experiment 6.13 — Code and data size — EZ-KIT
 Experiment 6.14 — Designing 8-band — MATLAB
    graphic equalizer    (FDATool)
    (IIR) in fl oating
    point
 Experiment 6.15 — Converting fl oating- — MATLAB
    point to fi xed-point   (FDATool)
    coeffi cients
 Experiment 6.16 — Implementing fi xed- — Blackfi n simulator
    point 8-band graphic 
    equalizer
 Experiment 6.17 — Real-time graphic — EZ-KIT
    equalizer
 Experiment 6.18 — IIR graphic equalizer — LabVIEW
    in LabVIEW
 Experiment 6.19 — IIR graphic equalizer — LabVIEW
    in LabVIEW    Embedded +
    Embedded   EZ-KIT
 Exercise 6.1 — Exercises on graphic — Blackfi n simulator
    equalizer
 Exercise 6.2 — Benchmarking real- — EZ-KIT
    time performance of
    graphic equalizer

 7 Experiment 7.1 — Confi guring CODEC — BF533 EZ-KIT
 Experiment 7.2 — TDM and I2S modes — BF533 EZ-KIT
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Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Experiment 7.3 — 1D DMA setup — BF533 EZ-KIT
    (sample mode)
 Experiment 7.4 — 2D DMA setup — BF533 EZ-KIT
    (block mode)
 Experiment 7.5 — Memory DMA — Blackfi n simulator
    transfer
 Experiment 7.6 — Memory fi ll using — Blackfi n simulator
    DMA
 Experiment 7.7 — Locking of way in — Blackfi n simulator
    instruction cache
 Experiment 7.8 — Cache modes — EZ-KIT
 Experiment 7.9 — Signal generation — Blackfi n simulator
    using look-up table
 Experiment 7.10 — Real-time signal — EZ-KIT
    generation
 Experiment 7.11 — DTMF tone — LabVIEW
    generation using 
    LabVIEW
 Experiment 7.12 — DTMF tone — LabVIEW
    generation using    Embedded +
    LabVIEW Embedded   EZ-KIT
 Exercise 7.1 — Ping-pong buffering — EZ-KIT
 Exercise 7.2 — Exercises on signal — Blackfi n simulator
    generation
 Exercise 7.3 — Exercises on  — EZ-KIT
    realtime signal 
    generation

 8 Experiment 8.1 — Index versus point — EZ-KIT
    style
 Experiment 8.2 — Benchmarking — EZ-KIT
    memory
 Experiment 8.3 — Using pragmas — EZ-KIT
 Experiment 8.4 — Using intrinsic — EZ-KIT
    functions
 Experiment 8.5 — Circular buffering — EZ-KIT
 Experiment 8.6 — Using DSP library — EZ-KIT
    functions
 Experiment 8.7 — Profi le-guided — EZ-KIT
    optimization
 Experiment 8.8 — Linear assembly code — EZ-KIT
 Experiment 8.9 — Using hardware loop — EZ-KIT
    in assembly
 Experiment 8.10 — With dual MACs — EZ-KIT
 Experiment 8.11 — With multi-issue — EZ-KIT
    instructions
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Appendix C List of Files Used in Hands-On Experiments and Exercises 471

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Experiment 8.12 — With separate data — EZ-KIT
    sections
 Experiment 8.13 — With software — EZ-KIT
    pipelining
 Experiment 8.14 — Voltage-frequency — EZ-KIT
    scaling
 Experiment 8.15 — Decimation and — Blackfi n simulator
    interpolation
 Experiment 8.16 — Real-time decimator — EZ-KIT
    and interpolator
 Experiment 8.17 — Real-time signal — EZ-KIT
    mixing
 Experiment 8.18 — Sample rate — LabVIEW
    conversion in 
    LabVIEW
 Experiment 8.19 — Sample rate — LabVIEW 
    conversion in    Embedded
    LabVIEW Embedded   + EZ-KIT
 Exercise 8.1 — Enhancing software — EZ-KIT
    pipelining
 Exercise 8.2 — Examining the DSP — EZ-KIT
    library FIR function
 Exercise 8.3 — Benchmarking block — EZ-KIT
    size and fi lter length
 Exercise 8.4 — Exercise on sample — Blackfi n simulator
    rate conversion
 Exercise 8.5 — Exercise on real-time — EZ-KIT
    signal mixing

 9 Experiment 9.1 — Ogg Vorbis decoding — BF537 EZ-KIT
 Experiment 9.2 — 3D audio effects — EZ-KIT
 Experiment 9.3 — Reverberation effects — EZ-KIT
 Experiment 9.4 — MDCT/IMDCT in — LabVIEW
    LabVIEW
 Experiment 9.5 — Benchmark IMDCT — LabVIEW 
     Embedded +
     EZ-KIT
 Exercise 9.1 — Bit rate computation
 Exercise 9.2 — Window type and — MATLAB
    length for audio    (WINTool)
    coding
 Exercise 9.3 — Binaural spatializer — MATLAB
 Exercise 9.4 — Reverberation effects — MATLAB

10 Experiment 10.1 — Display image in — EZ-KIT
    VisualDSP++
 Experiment 10.2 — Color conversion — EZ-KIT
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472 Appendix C List of Files Used in Hands-On Experiments and Exercises

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Experiment 10.3 — 2D DCT, quantization — EZ-KIT
    and 2D IDCT
 Experiment 10.4 — 2D image fi ltering — EZ-KIT
 Experiment 10.5 — Image enhancement — EZ-KIT
 Experiment 10.6 — Contrast adjustment — EZ-KIT
 Experiment 10.7 — Mathematical — LabVIEW
    operations for image 
    in LabVIEW
 Experiment 10.8 — 2D convolution in — LabVIEW 
    LabVIEW Embedded   Embedded + 
     EZ-KIT
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Appendix D

Updates of Experiments Using 
VisualDSP++ V4.5

With the recent release of VisualDSP++ V4.5, there are some minor changes to 
the experiments listed in this book. This appendix lists the differences and necessary 
changes required in the Blackfi n programming code from VisualDSP ++ V4.0 
(described in this book) to VisualDSP++ V4.5.

• The Create LDF Wizard option is no longer available for the VisualDSP++ 
V4.5 for Blackfi n processor. In order to add .ldf fi le in an existing project, 
open the existing project in VisualDSP++ V4.5. Click on Project → Project 
Options . . . and navigate down in the left window to enable Add Startup 
Code/LDF. Select Add an LDF and startup code and click OK. A new 
.ldf fi le with the same fi lename as the project is generated. Double click on 
the .ldf fi le to assign the memory section and settings as described in V4.0 
(described in this book).

• For those programs that defi ne the DMA settings in the init.c fi le. Type 
mismatch error is reported when building these projects in V4.5. The error 
message is described as “A value of type “volatile unsigned 
short *” can’t be assigned to an entity of type “void 

*”. ”  Simply add (void *) before the variable. For example: change 
“pDMA1_START_ADDR = sDataBufferRx” to “pDMA1_START_ADDR 
= (void*)sDataBufferRx”.

• When defi ning the size of the BTC channel in V4.5, it is necessary to add in 
8 more words, for example, fract16 BTC_CHAN0[VECTOR_SIZE+8].
In V4.0, 4 more words are used instead.

• In V4.5, a new BTC library, libbtc532.dlb is located in directory c:\
Program Files\Analog Devices\VisualDSP 4.5\Blackfin\

lib. Please use this new library when building project that uses BTC under 
V4.5.
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• In V4.5, the default .ldf fi les is found in directory c:\Program Files\
Analog Devices\VisualDSP 4.5\Blackfin\ldf.

• In V4.5, the fl ash drivers (mentioned in Chapter 5) for BF533 and BF537 
are located at directories c:\Program Files\Analog Devices\

VisualDSP 4.5\Blackfin\Examples \ADSP-BF533 EZ-Kit Lite\

Flash Programmer \BF533EzFlashDriver.dxe and c:\Program 
Files\Analog Devices\VisualDSP 4.5\Blackfin\Examples\

ADSP-BF537 EZ-Kit Lite\Flash Programmer\BF537EzFlash-

Driver.dxe.

• In V4.5, the DSP library function (mentioned in Chapter 8) is now located at 
directory c:\Program Files\Analog Devices\VisualDSP 4.5\
zBlackfin\lib\src\libdsp.

• In V4.5, the sample program on capturing and displaying image (mentioned 
in Chapter 10) through the parallel port are listed in directories c:\Program 
Files\Analog Devices\VisualDSP 4.5\Blackfin\Examples\

ADSP-BF533 EZ-Kit Lite\Video Input (C) and c:\Program 
Files\Analog Devices\VisualDSP 4.5\Blackfin\Examples\

ADSP-BF533 EZ-Kit Lite\Video Output (ASM), respectively.
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2’s complement, 194, 218
2D

DCT, 413, 416
DFT, 415
DMA, 293, 296, 298, 301
fi lter, 418, 420, 422
inverse DCT, 413
inverse DFT, 415
signal, 406

3D audio, 393, 396

A
Accumulator (ACC0, ACC1), 165, 170–174, 

194–195, 224, 225, 244, 249
A/D converter (conversion), see analog-to-

digital converter
Adaptive

algorithm, 139
channel equalization, 148
fi lter, 139, 142
linear prediction (predictor), 146
line enhancer (ALE), 146, 151, 152, 155
noise cancellation, 147, 150
system identifi cation, 143

Adders, 34, 41, 63, 133, 166
Address pointer register (P0–P5), 174
Addressing modes, 163, 175, 176, 199
Advanced audio coding (AAC), 382
Algebraic syntax, 167
Aliasing, 27, 366, 371, 387
Allpass fi lter, 398
Amplitude spectrum, see magnitude 

spectrum
Analog fi lter, 129
Analog-to-digital converter (ADC), 28, 52, 

57, 151, 207, 236–239, 249, 251–252, 
274–282, 321

Ancillary data, 390

Antialiasing fi lter, 274
Anti-symmetric, 43, 121, 122
Application specifi c integrated circuits 

(ASIC), 4
Arithmetic and logic unit (ALU), 4, 166, 

169–170, 224, 354
Arithmetic

data type, 338
precision, 7
shift, 167, 193–194, 341

ASCII (text) format, 30, 47, 127
Assembly

code optimization, 331, 357
instruction, 339
programming (code), 330–331, 349–357

Audio codec, 381
Autocorrelation function, 28

B
Background telemetry channel (BTC), 

102–103, 190, 208, 256–257, 334, 365
Band-limited, 200
Bandpass fi lter, 39, 40, 48, 113, 118, 124, 

126–127, 138, 147, 150, 200, 268, 
387

Bandstop (band-reject) fi lter, 39, 48, 113, 
114, 118, 124, 130, 137

Bandwidth, 6, 27, 71, 84, 87, 91, 96, 114, 
275, 371

Bark, 384
Barrel shifter, 166, 167
Benchmark, 331, 334, 335, 338, 340, 342, 

344–346, 351, 352, 358, 365, 370
Biased rounding, see rounding
Bilinear transform, 130
Binary

fi le, 30
point, see radix point
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Biquad, 66, 260–261, 345
Bit rate, 381, 382, 384, 386, 391–393
Blackfi n

EZ-KIT, 12, 52, 102, 152, 206, 211, 
294–296, 312, 319, 331, 333–334, 338, 
340, 342, 346, 351–356, 362, 365, 
369–374, 391, 396, 399, 409, 412, 416, 
422, 432

LabVIEW Embedded Module, 18, 
54, 105, 155, 211, 266, 321, 371, 400, 
433

Simulator, 8, 14, 50, 54, 98, 151, 189, 
195, 202, 261, 317, 365

Blackman window, 84
Block

FIR fi lter, 256
fl oating-point, 235
processing, 250, 252–254, 256, 258, 

294–296, 344–346, 364
Boot load, 210
Branch, 179, 181
Breakpoint, 11, 192, 225, 226, 319, 332
Buses, 165–166, 183, 188, 288, 303, 361
Butterworth fi lter, 130, 132, 138

C
Cache

hit, 305, 306, 309, 312
line, 305–312
memory, 2, 5, 164, 182, 185, 186, 

303–317
miss, 305, 306–307, 309–310, 311–312

Cacheability and protection look-aside 
buffer(CPLB), 313–315

Canonical form, 133, 135
Cascade form, 47, 65, 67, 133, 134, 260, 

262, 264, 268, 368, 386, 398, 399
Causal, 42, 60, 66
C compiler, 189, 204, 231, 233, 330–333, 

336–339, 346–347
CD player, 26, 382
Center frequency, 114, 124, 147
Channel bandwidth, 382
Channel equalization, 139, 148
Chebyshev fi lter, 132
Chirp signal, 138
Circular

buffer, 174, 177, 178, 192, 339, 341–342
pointer (index), 341–342

Coeffi cient quantization, 241–242, 249, 
260

Coder/decoder (CODEC), 13, 52, 103, 
188, 274–276, 281–282, 291–297, 369, 
371

Color conversion, 407, 410
Comb fi lter, 71, 75, 398–399
Compiler optimization, 331–332
Complex-conjugate, 77, 78, 91, 133
Complex instruction set computer (CISC), 

255
Contrast adjustment, 428
Convergence,

factor, see step size
speed, 140, 141

Code optimization, 330–332
Core clock (CCLK), 183, 255, 257–259, 

293, 295, 303, 361–364
Critical band, 383
Crosstalk, 148
Cutoff frequency, 67, 113, 124, 132, 268, 

366, 387
Cycle

accurate, 8
count, 12, 14, 54, 198, 208, 256–257, 

295, 312, 334, 340, 345, 351, 353, 354, 
357, 365, 370

registers (CYCLES,CYCLES2), 208, 
226, 255, 257

Cyclic redundancy checksum (CRC), 390

D
D/A converter (conversion), see digital-to-

analog converter
Data

address generator (DAG), 174, 177, 186, 
283

alignment, 336–338
register (R0 to R7), 166
type, 338, 340–341, 344

Debugger (debugging), 189–190, 195, 198, 
209, 213

Decimation, fi lter, 366–369, 371–374
Decoding, 3, 382, 390–393
Delay, 146, 252, 254

unit, 34, 41, 61
(line) buffer, 41, 64, 264, 331, 334, 342, 

344, 350, 355
Descriptor mode, 289–290
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Digital
fi lter, 31, 34, 36, 37, 54, 64, 75, 112, 

115, 124, 129–130, 136, 139, 146, 203, 
241

full scale (dBFS), 276, 280
frequency, 26, 28
image, 406
signal, 26–28, 33, 47, 60, 70, 76, 236, 

238, 240, 275, 317, 382, 406
signal processors, 4, 227, 256,
signal processing (DSP), 1, 6, 25, 31, 33, 

41, 52, 61, 76, 113, 133, 163, 166, 189, 
225, 251, 255, 336, 343, 402

Digital-to-analog converter (DAC), 28, 52, 
57, 207, 239, 249, 251–253, 274–282, 
321

Direct form, 65–66, 118, 133–135, 137, 
260, 387

Direct memory access (DMA), 164, 186, 
187, 287–303, 304–305, 315–317, 338, 
362–363, 364,

access bus (DAB), 184, 188, 288, 303
core bus (DCB), 184, 188, 288, 303
external bus (DEB), 184, 188, 288, 303

Discrete
cosine transform (DCT), 387, 401
Fourier transform (DFT), 76, 78, 83, 

387
Discrete-time

Fourier transform (DTFT), 70
Signal (sample), 27, 237

Double (ping pong) buffer, 252–254, 258, 
293

DTMF (dual-tone multi-frequency)
frequencies, 323
receiver (or decoder), 322–323, 325–326
generator (or encoder), 322–324, 326

Dual MAC, 173, 353, 354–357
Dynamic range, 219–221, 231, 234–236, 

238–241, 245, 249

E
Edge frequency, 115, 117
Elliptic fi lter, 130, 132, 137, 260
Embedded

system, 1, 7, 112, 164, 217, 255, 330–331, 
358, 360

signal processing (processor), 1, 6, 18, 
57, 189, 199, 203, 217

Encoding, 382, 390, 392, 407
Energy consumption, see power 

consumption
Equiripple fi lter, 127, 206
Erasable programmable ROM (EPROM), 

184
Error surface, 140
Excess mean-square error (MSE), 142, 149
Expectation

operation, 140
value, see mean

Expert linker, 195–196
Expressions window, 198
External

access bus, 188–189
bus interface unit (EBIU), 184, 188

F
Fast Fourier transform (FFT), 78, 238, 254, 

264, 319, 343, 369, 383, 388, 391, 
400–402, 413

Filter
design and analysis tool (FDATool), 117, 

126, 137, 201, 203, 241, 243, 249, 
260–262

design functions, 124, 131
specifi cations, 113, 115
visualization tool (FVTool), 72

Filterbank, 386, 390
Finite impulse response, see FIR fi lter
Finite wordlength (precision) effects, 67, 

120, 133–134, 141, 414
FIR fi lter, 37, 62, 64, 120, 122, 200, 202, 

205, 207, 211, 213, 226, 230, 241–242, 
245, 249, 256–258, 260, 266, 331, 
333–336, 337–339, 340–342, 344–346, 
350–357, 364, 365–367, 373, 393, 417, 
420

First-in fi rst-out (FIFO), 283–284, 288, 
297, 307

Fixed-point, 5, 7, 164, 166, 202–205, 217, 
222, 229, 231, 235, 240–244, 249, 260, 
261, 263

Flash, 3, 13, 183, 190, 209, 210
programmer, 210

Floating-point, 5, 7, 201–203, 217, 231–234, 
240–244, 255, 261, 265

Folding frequency, see Nyquist frequency
Fourier series (window) method, 124
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Fractional
arithmetic, 339, 340,
number (value), 5, 173, 204, 218–220, 

223, 231, 319, 339, 340–341
Frame pointer (FP), 174
Frequency

index, 76, 78, 83, 99, 402
masking, 385
resolution, 76, 78, 99, 255, 389
response, 61, 70, 106, 113, 121, 206, 

208, 241, 245–246, 267, 390, 418, 
424

voltage scaling, 258, 363–365
warping, 130

G
Gamma correction, 438
General-purpose inputs/outputs (GPIO), 

188
Gradient, 141–142
Grayscale, 407, 410, 413, 422, 428, 434, 

437
Graphic equalizer, 200–201, 205–207, 

211–216, 260–270
Graphical

development environment, 18
user interface, 18, 25, 72, 84, 117

Group delay, 72, 74, 120, 369
Guard bits, 224, 225

H
Hanning fi lter, 38, 47, 61, 201
Hardware loop, 352–357
Head-related

transfer function, 393
impulse response, 393–396

Hertz, 26
High-pass fi lter, 113, 121, 201, 421, 

422
Hilbert transformer, 121
Histogram, 428
Huffman code, 390

I
I2S, 275, 281–282
Ideal fi lter, 113
IIR Filters, 64, 69, 88, 92, 96, 129, 133, 

241–243, 246–248, 260–269, 331, 345, 
398–399

Image
compression, 413–416
enhancement, 422, 432

Impulse
function, 37
noise, 45, 46, 425
response, 37, 62, 64, 120, 243, 245–246, 

260, 264–265 268, 387, 393, 398–399, 
400, 418, 420

Impulse-invariant method, 129
Infi nite impulse response, see IIR fi lters
Inline, 332, 342–343
Input

clock (CLKIN), 361–362
output (I/O), 1, 5, 7, 13, 34, 37, 52, 62, 

65, 68, 112, 121, 133, 164, 343, 359, 
418

vector, 140
Instruction

fetch, 180, 182
load/store, 354, 356

Integrated development of debugging 
environment (IDDE), 7, 9, 190, 195, 
200, 314

Interpolation, fi lter, 366–369, 371–374
Interprocedural optimization, 332
Interrupt service routine (ISR), 180, 188, 

256, 287, 294–295
Intersymbol interference, 148
Intrinsics, 330, 338, 339–341, 346
Inverse

MDCT, 388, 391, 400–403
discrete Fourier transform (IDFT), 77
z-transform, 60, 63

J
Joint Test Action Group (JTAG), 20, 108
JPEG, 408, 411, 413, 416

K
Kaiser window, 86–87, 389

L
L1 memory, see cache memory
L2 memory, 182, 184, 288
Laplace transform, 129,
Laplacian fi lter, 422, 436
Latency, 251–252
Leakage factor, 142
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Leaky LMS algorithm, 142, 146
Learning curve, 142, 149
Least-mean-square, see LMS algorithm
Least recently used (LRU), 307–309
Least signifi cant bit (LSB), 218, 223, 227, 

236–237, 240
Limit cycle oscillation, 247–248
Line-fi ll buffer, 186, 307, 311
Linear

convolution, 41–43, 62, 121, 418
phase fi lter, 72, 120, 121
profi ling, see Profi ling
time-invariant, 45, 63, 112
system, 44, 135

Linearity (superposition), 44
Linker, 189, 195–196, 332

description fi le, 189, 195
Little endian, 175, 197
LMS algorithm, 141, 143, 151, 154, 155
Loader fi le, 209–210
Logical shift, 193–194
Look-up table, 317–318, 370, 390
Loop

bottom (LB0, LB1), 178, 181
counter (LC0, LC1), 178, 181
top (LT0, LT1), 178, 181
optimization, 333, 336, 356

Low-pass fi lter, 88, 113, 115, 121, 201, 241, 
268, 274, 366, 387, 419, 422, 428, 
436

M
MAC unit, see multiply-accumulate
Magnitude

distortion, 115
(amplitude) response, 70–71, 89, 91, 96, 

108, 113, 115, 124, 126, 130, 132, 137, 
201, 213, 241, 243, 245, 260, 262, 387, 
419, 421

spectrum, 77–78, 84, 99–100, 103, 114, 
238, 369

Mapping properties, 129
Marginally stable, 67
Maskee, 384
Masker, 384–385
Masking threshold, 383, 385
Mean, 28, 29, 237, 247,
Mean-square error (MSE), 140, 142, 439
Median fi lter, 46, 59, 426, 428

Memory
bank, 185, 310, 333, 337, 355
buffer, 36, 252, 254
map, 182, 195, 196, 197, 258, 355
mapped I/O, 184
mapped register (MMR), 188, 290, 314
management unit (MMU), 164, 313

Micro signal architecture (MSA), 4, 5, 163, 
164

Microcontrollers, 4, 163, 165
Million instructions per second (MIPS), 

255–256, 331, 345, 392
Million multiply accumulate computation 

(MMAC), 255, 259, 358
Modifi ed

DCT (MDCT), 383, 386–389, 400–403
Harvard architecture, 182

Most signifi cant bit (MSB), 218–219, 230, 
281, 284

Moving average fi lter, 26, 34, 45, 47, 49, 
50, 52, 54, 63, 67, 70, 88, 418, 421, 
426

Moving window, 37
MPEG, 382–383, 411, 413
MP3, 1, 381–383, 386, 390
MSE surface, see error surface
MSE time constant, 142
Multipliers, 4, 41, 34, 63, 13, 165–166, 170
Multiply-accumulate (MAC), 164, 171, 

226–227, 230, 256, 331, 341, 342, 350, 
356

N
Negative symmetry, see anti-symmetric
Noise, 26, 200, 213, 384, 393, 423, 425
Nonlinear fi lters, 45
Norm, 245–246
Normalized,

(digital) frequency, 28, 81, 124, 246
LMS algorithm, 141, 154
step size, 141

Notch fi lter, 91, 94, 114
Nyquist frequency, 27, 99, 121, 124, 

318–319

O
Offl ine processing, 250, 251
Ogg Vorbis, 3, 381–383, 386, 391
Operand, 170, 174, 229, 231
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Oscillatory behavior, 67, 243
Overfl ow, 169, 222–225, 236, 244–247, 

339, 422, 434
Oversampling, 275

P
Parallel

form, 135
instruction, 172, 349, 353–354, 357,
peripheral interface (PPI), 164, 188, 

287–288
Parametric equalizer, 96
Partial-fraction expansion, 135
Passband, 96, 113, 115–116, 132, 201

ripple, 116, 260, 268
Peak

fi lter, 96
signal-to-noise ratio (PSNR), 439

Performance
(or cost) function, 140
surface, 140

Peripheral access bus (PAB), 188
Phase,

distortion, 72, 120
lock loop (PLL), 361–365
response (shift), 70, 243, 260
spectrum, 78

Pipeline, 180, 181, 268,
Pipeline viewer, 190, 215
Pixel, 406
Polar form, 61
Pole, 66, 67, 91, 96, 132, 134–135, 261
Pole-zero cancellation, 67
Positive symmetric, see symmetric
Power, 30

consumption, 5, 190, 231, 255, 258–259, 
330, 358–360, 363

spectrum density (PSD), 82, 425
estimator, 111, 141
management, 2, 164, 258, 360, 362
mode, 361–363

Pragma, 333, 336–338
Probe wire, 20
Processing time, 67, 123, 252, 294–297, 

331, 339, 391
Profi ler (profi ling), 190, 198–199, 209, 266, 

295–296, 317, 331, 347
Profi le-guided optimization (PGO), 190, 

346–349

Program
counter, 178–180, 193
execution pipeline, see pipeline
fetch pipeline, see pipeline
sequencer, 178, 180

Pseudo code, 331, 350, 356
Psychoacoustics, 383

model, 383, 386, 390
masking, 383

Pulse code modulated (PCM), 3, 282
Pulse-width modulated (PWM), 322

Q
Quadrature mirror fi lterbank (QMF), 387
Quantization,

effect, 67, 241
errors (noise), 236, 237, 240–242, 247, 

249, 260–261, 275, 407
parameter, 201, 204, 242–243, 261
step (interval, resolution), 236–237

R
Radix-2 FFT, 79
Radix point, 218–220, 232
Random-access memory (RAM), 2, 315
Random signals, 28, 423
Read-only memory (ROM), 2, 183–184
Realization of

FIR fi lter, 41, 122
IIR fi lter, 65, 67, 133, 135

Real-time
application, 164
clock (RTC), 164, 187, 359–360, 363
constraint, 2, 250, 252, 253, 294, 304, 

316, 332
embedded system, 6, 250, 254, 330, 

364
Receive clock (RCLK), 276, 282, 286
Reconstruction fi lter, 274
Rectangular window, 84
Recursive algorithm, 37, 63, 67, 140
Reduce-instruction-set-computer (RISC), 5, 

164, 255
Region of convergence, 60
Register, 12, 165–178, 179–182, 188, 

191–195, 198, 208, 223–230, 244, 257, 
276–280, 282–286, 289–293, 296–303, 
309–310, 312–315, 350–351, 354, 
361–365
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Release
build, 209
mode, 213

Repeat operation, 123, 177, 179, 226–227, 
350

Resonator (peaking) fi lter, 114
Return

from interrupt (RTI), 180
from subroutine (RTS), 179

Reverberation, 398–400
RGB color, 407, 411
Rounding, 167, 170, 227–229, 236, 240, 

244, 247–249
Run time library, 207, 264, 343–344, 346, 

349, 357, 366

S
Sample-by-sample (or sample) processing, 

250–252, 256, 294–295, 344–346
Sample rate conversion, 365, 369, 371
Sampling

frequency (rate), 26, 78, 99, 124, 200, 
255–256, 275, 365–369, 371–373, 382, 
386

period, 26, 61, 99, 122, 250–252, 255, 
295

theorem, 27, 406
Saturation

arithmetic, 167, 339
error, 249
fl ag, 167
mode, 222, 247, 249, 341

Sawtooth wave, 317–321
Scaling factor, 77, 84, 220–221, 238, 

245–246, 416
Scratchpad memory, 182, 187, 314, 317
Serial

peripheral interface (SPI), 164, 188, 281, 
287, 288–289

port (SPORT), 164, 188, 276, 281–289, 
291–294

Set-associative, 306, 310
Settling time, 113
Short-time Fourier transform, 81
Sigma-delta ADC, see analog-to-digital 

converter
Signal

buffer, 64, 121–123, 133, 249, 260
generator, 317–322

Signal-to-quantization-noise ratio (SQNR), 
238, 239, 245, 275, 382

Signal-to-noise ratio, 30, 36, 89, 382
Signal processing tool (SPTool), 31, 38, 82, 

89, 94, 117, 127, 383
Sign bit, 193–194, 203–204, 218, 223, 225, 

230, 232, 234, 235–236, 334
Sine window, 388
Sine wave, 26, 27, 106, 317, 318–321, 

322–323, 401
Single instruction, multiple data (SIMD), 

164
Sinusoidal

signal, see sine wave
steady-state response, 74

Smoothing fi lter, see low-pass fi lter
SNR, see signal-to-noise ratio
Sober fi lter, 421, 436
Software

loop, 350–351
pipelining, 356–357

Sound pressure level (SPL), 384
Spectral leakage, 84, 87
Speech, 1, 6, 26, 28, 48, 251, 366, 407
Square wave, 49, 83, 317–321, 322
s-plane, 129–130
Stability, 61, 120, 139, 140, 156, 241

condition, 66, 67, 136
Stack, 174, 176, 182, 187, 338
Stack pointer (SP), 174, 176, 192
Stall condition, 181
Standard deviation, 29
Static RAM (SRAM), 182, 185, 186, 257, 

303–305, 307, 310
Statistical profi ling, see profi ling
Status registers, 229, 363
Steady-state response, 74, 246
Steepest descent, 140
Step size, 140, 141, 148, 152
Stochastic gradient algorithm, see LMS

algorithm
Stopband, 113–115

ripple (or attenuation), 116, 201, 260, 
268, 389

Successive approximation, see analog-to-
digital converter

Sum of products, 12, 121
Superposition, 44
Symmetry, 43, 78, 121, 122
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Synchronous dynamic RAM (SDRAM), 
13, 184, 363, 409

System
Clock (SCLK), 184, 187, 258, 284–287, 

293, 361–364
gain, 70, 75, 245

T
Tag fi eld (address), 306, 307–309, 

310–311
Tapped-delay line, see delay buffer
Temporal masking, 385
Threshold of hearing, 384, 385
Throughput, 167, 168, 173 181
Time delay, 72, 120
Time division multiplex (TDM), 275, 

281–282
Timer, 164, 188
TMS320C55x, 391
Transmit clock (TCLK), 276, 283, 286
Transfer function, 62, 64, 66, 70, 91, 96, 

112, 133, 136, 148, 398
Transfer rate, 7, 293
Transient response, 113
Transition band, 115, 132, 265
Transversal fi lter, see FIR fi lter
Truncation, 227–229, 236, 240, 244, 

247–249
Twiddle factor, 77

U
Unbiased rounding, see rounding
Uniform distribution, 29, 432
Unit circle, 61, 70, 129, 136, 139, 242, 

399
Unit-impulse function, 37
Universal asynchronous receiver transmitter 

(UART), 164, 188, 287–288
Univeral serial bus (USB), 14, 20, 108, 207, 

209, 211, 409

V
Variance, 28, 29, 237, 247, 423, 424
Victim buffer, 186, 311–312
Video instructions, 174, 339
Virtual instruments (VI), 18, 213, 325–326, 
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