
TEAM LinG

Embedded Signal
Processing with the
Micro Signal Architecture

TEAM LinG

TEAM LinG

Embedded Signal
Processing with the
Micro Signal Architecture
Woon-Seng Gan
Sen M. Kuo

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

IEEE PRESS

TEAM LinG

Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of merchant-
ability or fi tness for a particular purpose. No warranty may be created or extended by sales representa-
tives or written sales materials. The advice and strategies contained herein may not be suitable for your
situation. You should consult with a professional where appropriate. Neither the publisher nor author
shall be liable for any loss of profi t or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Gan, Woon-Seng.
 Embedded signal processing with the Micro Signal Architecture / by Woon-Seng Gan
and Sen M. Kuo.
 p. cm.
 Includes bibliographical references and index.
 ISBN: 978-0-471-73841-1
1. Signal processing—Digital techniques. 2. Embedded computer systems—Programming.
3. Computer architecture. I. Kuo, Sen M. (Sen-Maw) II. Title.
 TK5102.9.G364 2007
 621.382′2 – dc22

2006049693

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

TEAM LinG

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

v

Contents

Preface xi

Acknowledgments xvii

About the Authors xix

 1. Introduction 1

 1.1 Embedded Processor: Micro Signal Architecture 1
 1.2 Real-Time Embedded Signal Processing 6
 1.3 Introduction to the Integrated Development Environment

VisualDSP++ 7

 1.3.1 Setting Up VisualDSP++ 8
 1.3.2 Using a Simple Program to Illustrate the Basic Tools 9
 1.3.3 Advanced Setup: Using the Blackfi n BF533 or BF537 EZ-KIT 12

 1.4 More Hands-On Experiments 15
 1.5 System-Level Design Using a Graphical Development

Environment 18

 1.5.1 Setting up LabVIEW and LabVIEW Embedded Module for
Blackfi n Processors 19

 1.6 More Exercise Problems 21

Part A Digital Signal Processing Concepts

 2. Time-Domain Signals and Systems 25

 2.1 Introduction 25
 2.2 Time-Domain Digital Signals 26

 2.2.1 Sinusoidal Signals 26
 2.2.2 Random Signals 28

 2.3 Introduction to Digital Systems 33

 2.3.1 Moving-Average Filters: Structures and Equations 34
 2.3.2 Digital Filters 37
 2.3.3 Realization of FIR Filters 41

TEAM LinG

vi Contents

 2.4 Nonlinear Filters 45
 2.5 More Hands-On Experiments 47
 2.6 Implementation of Moving-Average Filters with Blackfi n

Simulator 50
 2.7 Implementation of Moving-Average Filters with BF533/BF537

EZ-KIT 52
 2.8 Moving-Average Filter in LabVIEW Embedded Module for Blackfi n

Processors 54
 2.9 More Exercise Problems 57

 3. Frequency-Domain Analysis and Processing 59

 3.1 Introduction 59
 3.2 The z-Transform 60

 3.2.1 Defi nitions 60
 3.2.2 System Concepts 62
 3.2.3 Digital Filters 64

 3.3 Frequency Analysis 70

 3.3.1 Frequency Response 70
 3.3.2 Discrete Fourier Transform 76
 3.3.3 Fast Fourier Transform 78
 3.3.4 Window Functions 83

 3.4 More Hands-On Experiments 88

 3.4.1 Simple Low-Pass Filters 88
 3.4.2 Design and Applications of Notch Filters 91
 3.4.3 Design and Applications of Peak Filters 96

 3.5 Frequency Analysis with Blackfi n Simulator 98
 3.6 Frequency Analysis with Blackfi n BF533/BF537 EZ-KIT 102
 3.7 Frequency Analysis with LabVIEW Embedded Module for Blackfi n

Processors 105
 3.8 More Exercise Problems 110

 4. Digital Filtering 112

 4.1 Introduction 112

 4.1.1 Ideal Filters 113
 4.1.2 Practical Filter Specifi cations 115

 4.2 Finite Impulse Response Filters 120

 4.2.1 Characteristics and Implementation of FIR Filters 121
 4.2.2 Design of FIR Filters 123
 4.2.3 Hands-On Experiments 126

 4.3 Infi nite Impulse Response Filters 129

 4.3.1 Design of IIR Filters 129
 4.3.2 Structures and Characteristics of IIR Filters 133
 4.3.3 Hands-On Experiments 136

TEAM LinG

Contents vii

 4.4 Adaptive Filters 139

 4.4.1 Structures and Algorithms of Adaptive Filters 139
 4.4.2 Design and Applications of Adaptive Filters 142
 4.4.3 More Hands-On Experiments 148

 4.5 Adaptive Line Enhancer Using Blackfi n Simulator 151
 4.6 Adaptive Line Enhancer Using Blackfi n BF533/BF537 EZ-KIT 152
 4.7 Adaptive Line Enhancer Using LabVIEW Embedded Module for

Blackfi n Processors 155
 4.8 More Exercise Problems 158

Part B Embedded Signal Processing Systems and Concepts

 5. Introduction to the Blackfi n Processor 163

 5.1 The Blackfi n Processor: An Architecture for Embedded Media
Processing 163

 5.1.1 Introduction to Micro Signal Architecture 163
 5.1.2 Overview of the Blackfi n Processor 164
 5.1.3 Architecture: Hardware Processing Units and Register Files 165
 5.1.4 Bus Architecture and Memory 182
 5.1.5 Basic Peripherals 187

 5.2 Software Tools for the Blackfi n Processor 189

 5.2.1 Software Development Flow and Tools 189
 5.2.2 Assembly Programming in VisualDSP++ 191
 5.2.3 More Explanation of Linker 195
 5.2.4 More Debugging Features 198

 5.3 Introduction to the FIR Filter-Based Graphic Equalizer 200
 5.4 Design of Graphic Equalizer Using Blackfi n Simulator 202
 5.5 Implementation of Graphic Equalizer Using

BF533/BF537 EZ-KIT 206
 5.6 Implementation of Graphic Equalizer Using LabVIEW Embedded

Module for Blackfi n Processors 211
 5.7 More Exercise Problems 214

 6. Real-Time DSP Fundamentals and Implementation
Considerations 217

 6.1 Number Formats Used in the Blackfi n Processor 217

 6.1.1 Fixed-Point Formats 217
 6.1.2 Fixed-Point Extended Format 229
 6.1.3 Fixed-Point Data Types 231
 6.1.4 Emulation of Floating-Point Format 231
 6.1.5 Block Floating-Point Format 235

TEAM LinG

viii Contents

 6.2 Dynamic Range, Precision, and Quantization Errors 236

 6.2.1 Incoming Analog Signal and Quantization 236
 6.2.2 Dynamic Range, Signal-to-Quantization Noise Ratio, and

Precision 238
 6.2.3 Sources of Quantization Errors in Digital Systems 240

 6.3 Overview of Real-Time Processing 250

 6.3.1 Real-Time Versus Offl ine Processing 250
 6.3.2 Sample-by-Sample Processing Mode and Its Real-Time

Constraints 251
 6.3.3 Block Processing Mode and Its Real-Time Constraints 252
 6.3.4 Performance Parameters for Real-Time Implementation 255

 6.4 Introduction to the IIR Filter-Based Graphic Equalizer 260
 6.5 Design of IIR Filter-Based Graphic Equalizer Using Blackfi n

Simulator 261
 6.6 Design of IIR Filter-Based Graphic Equalizer with BF533/BF537

EZ-KIT 266
 6.7 Implementation of IIR Filter-Based Graphic Equalizer with LabVIEW

Embedded Module for Blackfi n Processors 266
 6.8 More Exercise Problems 270

 7. Memory System and Data Transfer 274

 7.1 Overview of Signal Acquisition and Transfer to Memory 274

 7.1.1 Understanding the CODEC 274
 7.1.2 Connecting AD1836A to BF533 Processor 276
 7.1.3 Understanding the Serial Port 282

 7.2 DMA Operations and Programming 287

 7.2.1 DMA Transfer Confi guration 289
 7.2.2 Setting Up the Autobuffer-Mode DMA 291
 7.2.3 Memory DMA Transfer 297
 7.2.4 Setting Up Memory DMA 298
 7.2.5 Examples of Using Memory DMA 298
 7.2.6 Advanced Features of DMA 302

 7.3 Using Cache in the Blackfi n Processor 303

 7.3.1 Cache Memory Concepts 303
 7.3.2 Terminology in Cache Memory 305
 7.3.3 Instruction Cache 307
 7.3.4 Data Cache 310
 7.3.5 Memory Management Unit 313

 7.4 Comparing and Choosing Between Cache and Memory DMA 315
 7.5 Scratchpad Memory of Blackfi n Processor 317

TEAM LinG

Contents ix

 7.6 Signal Generator Using Blackfi n Simulator 317
 7.7 Signal Generator Using BF533/BF537 EZ-KIT 319
 7.8 Signal Generation with LabVIEW Embedded Module for Blackfi n

Processors 321
 7.9 More Exercise Problems 326

 8. Code Optimization and Power Management 330

 8.1 Code Optimization 330
 8.2 C Optimization Techniques 331

 8.2.1 C Compiler in VisualDSP++ 332
 8.2.2 C Programming Considerations 333
 8.2.3 Using Intrinsics 339
 8.2.4 Inlining 342
 8.2.5 C/C++ Run Time Library 343
 8.2.6 DSP Run Time Library 343
 8.2.7 Profi le-Guided Optimization 346

 8.3 Using Assembly Code for Effi cient Programming 349

 8.3.1 Using Hardware Loops 352
 8.3.2 Using Dual MACs 353
 8.3.3 Using Parallel Instructions 353
 8.3.4 Special Addressing Modes: Separate Data Sections 355
 8.3.5 Using Software Pipelining 356
 8.3.6 Summary of Execution Cycle Count and Code Size for FIR Filter

Implementation 357

 8.4 Power Consumption and Management in the Blackfi n
Processor 358

 8.4.1 Computing System Power in the Blackfi n Processor 358
 8.4.2 Power Management in the Blackfi n Processor 360

 8.5 Sample Rate Conversion with Blackfi n Simulator 365
 8.6 Sample Rate Conversion with BF533/BF537 EZ-KIT 369
 8.7 Sample Rate Conversion with LabVIEW Embedded Module for

Blackfi n Processors 371
 8.8 More Exercise Problems 374

Part C Real-World Applications

 9. Practical DSP Applications: Audio Coding and Audio Effects 381

 9.1 Overview of Audio Compression 381
 9.2 MP3/Ogg Vorbis Audio Encoding 386
 9.3 MP3/Ogg Vorbis Audio Decoding 390

TEAM LinG

x Contents

 9.4 Implementation of Ogg Vorbis Decoder with BF537 EZ-KIT 391
 9.5 Audio Effects 393

 9.5.1 3D Audio Effects 393
 9.5.2 Implementation of 3D Audio Effects with BF533/BF537

EZ-KIT 396
 9.5.3 Generating Reverberation Effects 398
 9.5.4 Implementation of Reverberation with BF533/BF537 EZ-KIT 399

 9.6 Implementation of MDCT with LabVIEW Embedded Module for
Blackfi n Processors 400

 9.7 More Application Projects 404

10. Practical DSP Applications: Digital Image Processing 406

 10.1 Overview of Image Representation 406
 10.2 Image Processing with BF533/BF537 EZ-KIT 409
 10.3 Color Conversion 410
 10.4 Color Conversion with BF533/BF537 EZ-KIT 412
 10.5 Two-Dimensional Discrete Cosine Transform 413
 10.6 Two-Dimensional DCT/IDCT with BF533/BF537 EZ-KIT 416
 10.7 Two-Dimensional Filtering 417

 10.7.1 2D Filtering 418
 10.7.2 2D Filter Design 420

 10.8 Two-Dimensional Filtering with BF533/BF537 EZ-KIT 422
 10.9 Image Enhancement 422

 10.9.1 Gaussian White Noise and Linear Filtering 423
 10.9.2 Impulse Noise and Median Filtering 425
 10.9.3 Contrast Adjustment 428

 10.10 Image Enhancement with BF533/BF537 EZ-KIT 432
 10.11 Image Processing with LabVIEW Embedded Module for

Blackfi n Processors 433
 10.12 More Application Projects 438

Appendix A: An Introduction to Graphical Programming with
LabVIEW 441

Appendix B: Useful Websites 462

Appendix C: List of Files Used in Hands-On Experiments and Exercises 464

Appendix D: Updates of Experiments Using Visual DSP++ V4.5 473

References 475

Index 479

TEAM LinG

xi

Preface

In this digital Internet age, information can be received, processed, stored, and
transmitted in a fast, reliable, and effi cient manner. This advancement is made pos-
sible by the latest fast, low-cost, and power-effi cient embedded signal processors.
Embedded signal processing is widely used in most digital devices and systems and
has grown into a “must-have” category in embedded applications. There are many
important topics related to embedded signal processing and control, and it is impos-
sible to cover all of these subjects in a one- or two-semester course. However, the
Internet is now becoming an effective platform in searching for new information,
and this ubiquitous tool is enriching and speeding up the learning process in
engineering education. Unfortunately, students have to cope with the problem of
information overfl ow and be wise in extracting the right amount of material at the
right time.

This book introduces just-in-time and just-enough information on embedded
signal processing using the embedded processors based on the micro signal archi-
tecture (MSA). In particular, we examine the MSA-based processors called Blackfi n
processors from Analog Devices (ADI). We extract relevant and suffi cient informa-
tion from many resources, such as textbooks, electronic books, the ADI website,
signal processing-related websites, and many journals and magazine articles related
to these topics. The just-in-time organization of these selective topics provides a
unique experience in learning digital signal processing (DSP). For example, students
no longer need to learn advanced digital fi lter design theory before embarking on
the actual design and implementation of fi lters for real-world applications. In this
book, students learn just enough essential theory and start to use the latest tools to
design, simulate, and implement the algorithms for a given application. If they need
a more advanced algorithm to solve a more sophisticated problem, they are now
more confi dent and ready to explore new techniques. This exploratory attitude is
what we hope students will achieve through this book.

We use assembly programming to introduce the architecture of the embedded
processor. This is because assembly code can give a more precise description of the
processor’s architecture and provide a better appreciation and control of the hard-
ware. Without this understanding, it is diffi cult to program and optimize code using
embedded signal processors for real-world applications. However, the use of C code
as a main program that calls intrinsic and DSP library functions is still the preferred
programming style for the Blackfi n processor. It is important to think in low-level
architecture but write in high-level code (C or graphical data fl ow). Therefore, we
show how to balance high-level and low-level programming and introduce the
techniques needed for optimization. In addition, we also introduce a very versatile

TEAM LinG

xii Preface

graphical tool jointly developed by ADI and National Instruments (NI) that allows
users to design, simulate, implement, and verify an embedded system with a high-
level graphical data fl ow approach.

The progressive arrangement makes this book suitable for engineers. They may
skip some topics they are already familiar with and focus on the sections they are
interested in. The following subsections introduce the essential parts of this book
and how these parts are linked together.

PART A: USING SOFTWARE TOOLS TO
LEARN DSP—A JUST-IN-TIME AND
PROJECT-ORIENTED APPROACH

In Chapters 2, 3, and 4, we explore fundamental DSP concepts using a set of
software tools from the MathWorks, ADI, and NI. Rather than introducing all theo-
retical concepts at the beginning and doing exercises at the end of each chapter,
we provide just enough information on the required concepts for solving the
given problems and supplement with many quizzes, interactive examples, and hands-
on exercises along the way in a just-in-time manner. Students learn the concepts by
doing the assignments for better understanding. This approach is especially suitable
for studying these subjects at different paces and times, thus making self-learning
possible.

In addition to these hands-on exercises, the end of each chapter also provides
challenging pen-and-paper and computer problems for homework assignments.
These problem sets build upon the previous knowledge learned and extend the
thinking to more advanced concepts. These exercises will motivate students in
looking for different solutions for a given problem. The goal is to cultivate a learning
habit after going through the book.

The theory portion of these chapters may be skipped for those who have taken
a fundamental course on DSP. Nonetheless, these examples and hands-on exercises
serve as a handy reference on learning important tools available in MATLAB, the
integrated development environment VisualDSP++, and the LabVIEW Embedded
Module for Blackfi n Processors. These tools provide a platform to convert theoreti-
cal concepts into software code before learning the Blackfi n processor in detail. The
introduction to the latest LabVIEW Embedded Module for Blackfi n Processors
shows the advancement in rapid prototyping and testing of embedded system designs
for real-world applications. This new tool provides exciting opportunities for new
users to explore embedded signal processing before learning the programming
details. Therefore, instructors can make use of these graphical experiments at the
end of each chapter to teach embedded signal processing concepts in foundation
engineering courses.

TEAM LinG

Preface xiii

PART B: LEARNING REAL-TIME SIGNAL
PROCESSING WITH THE BLACKFIN PROCESSOR—A
BITE-SIZE APPROACH TO SAMPLING REAL-TIME
EXAMPLES AND EXERCISES

Part B consists of Chapters 5, 6, 7, and 8, which concentrate on the design and
implementation of embedded systems based on the Blackfi n processor. Unlike a
conventional user’s manual that covers the processor’s architecture, instruction set,
and peripherals in detail, we introduce just enough relevant materials to get started
on Blackfi n-based projects. Many hands-on examples and exercises are designed in
a step-by-step manner to guide users toward this goal. We take an integrated
approach, starting from algorithm design using MATLAB with fl oating-point simu-
lations to the fi xed-point implementation on the Blackfi n processor, and interfacing
with external peripherals for building a stand-alone or portable device. Along this
journey to fi nal realization, many design and development tools are introduced to
accomplish different tasks. In addition, we provide many hints and references and
supplement with many challenging problems for students to explore more advanced
topics and applications.

Part B is in fact bridging the gap from DSP concepts to real-time implemen-
tations on embedded processors, and providing a starting point for students to
embark on real-time signal processing programming with a fi xed-point embedded
processor.

PART C: DESIGNING AND IMPLEMENTING
REAL-TIME DSP ALGORITHMS AND
APPLICATIONS—AN INTEGRATED APPROACH

The fi nal part (Chapters 9 and 10) motivates users to take on more challenging
real-time applications in audio signal processing and image processing. Students
can use the knowledge and tools learned in the preceding chapters to complete the
applications introduced in Chapters 9 and 10. Some guides in the form of basic
concepts, block diagrams, sample code, and suggestions are provided to solve these
application problems. We use a module approach in Part C to build the embedded
system part by part, and also provide many opportunities for users to explore new
algorithms and applications that are not covered in Parts A and B. These application
examples also serve as good mini-projects for a hands-on design course on embed-
ded signal processing. As in many engineering problems, there are many possible
solutions. There are also many opportunities to make mistakes and learn valuable
lessons. Users can explore the references and fi nd a possible solution for solving
these projects. In other words, we want the users to explore, learn, and have fun!

A summary of these three parts of the book is illustrated in Figure 1. It shows
three components: (A) DSP concepts, (B) embedded processor architecture and
real-time DSP considerations, and (C) real-life applications: a simple A-B-C

TEAM LinG

xiv Preface

approach to learning embedded signal processing with the micro signal
architecture.

DESCRIPTION OF EXAMPLES, EXERCISES,
EXPERIMENTS, PROBLEMS, AND
APPLICATION PROJECTS

This book provides readers many opportunities to understand and explore the main
contents of each chapter through examples, quizzes, exercises, hands-on experi-
ments, exercise problems, and application projects. It also serves as a good hands-on
workbook to learn different embedded software tools (MATLAB, VisualDSP++,
and LabVIEW Embedded) and solve practical problems. These hands-on sections
are classifi ed under different types as follows.

1. Examples provide a just-in-time understanding of the concepts learned in
the preceding sections. Examples contain working MATLAB problems to
illustrate the concepts and how problems can be solved. The naming conven-
tion for software example fi les is

Part A: Digital Signal Processing Concepts

Chapter 2: Time-Domain Signals and Systems
Chapter 3: Frequency-Domain Analysis and
 Processing
Chapter 4: Digital Filtering

o This part may be skipped for
those who already familiar
with DSP. However, it serves
as a quick reference.

o It provides a good platform for
learning software tools.

Part B: Embedded Signal Processing Systems
and Concepts

Chapter 5: Introduction to the Blackfin
Processor

Chapter 6: Real-Time DSP Fundamentals
 and Implementation Considerations
Chapter 7: Memory System and Data Transfer
Chapter 8: Code Optimization and Power

Management

o Part B integrates the
embedded processor’s
architecture, programming and
integrating hardware and
software into a complete
embedded system.

o It provides a good platform to
learn the in-depth details of
development tools.

o It contains many hands-on
examples and exercises in
using the Blackfin processors.

Part C: Real-World Applications

Chapter 9: Audio Coding and Audio Effects
Chapter 10: Digital Image Processing

o Explore more advanced, real-
time, and real-world
applications.

o Implement a working
prototype running on the
Blackfin EZ-KIT Lite

Figure 1 Summary of the book: contents and how to use them

TEAM LinG

Preface xv

example{chapter number}_{example number}.m

They are normally found in the directory

c:\adsp\chap{x}\MATLAB_ex{x}\

where {x} is the chapter number.

2. Quizzes contain many short questions to challenge the readers for immedi-
ate feedback of understanding.

3. Experiments are mostly hands-on exercises to get familiar with the tools
and solve more in-depth problems. These experiments usually use MATLAB,
VisualDSP++, or LabVIEW Embedded. The naming convention for software
experiment fi les is

exp{chapter number}_{example number}

These experiment fi les can be found in the directory

c:\adsp\chap{x}\exp{x}_{no.}_<option>

where {no.} indicates the experiment number and <option> indicates the
BF533 or BF537 EZ-KIT.

4. Exercises further enhance the student’s learning of the topics in the preced-
ing sections, examples, and experiments. They also provide the opportunity
to attempt more advanced problems to strengthen understanding.

5. Exercise Problems are located at the end of Chapters 1 to 8. These problem
sets explore or extend more interesting and challenging problems and
experiments.

6. Application Projects are provided at the end of Chapters 9 and 10 to serve
as mini-projects. Students can work together as a team to solve these
application-oriented projects and submit a report that indicates their
approaches, algorithms, and simulations, and how they verify the projects
with the Blackfi n processor.

Most of the exercises and experiments require testing data. We provide two
directories that contain audio and image data fi les. These fi les are located in the
directories c:\adsp\audio_files and c:\adsp\image_files.

COMPANION WEBSITE

A website, www.ntu.edu.sg/home/ewsgan/esp_book.html, has been set up to support
the book. This website contains many supplementary materials and useful reference
links for each chapter. We also include a set of lecture slides with all the fi gures
and tables in PowerPoint format. This website will also introduce new hands-on
exercises and new design problems related to embedded signal processing. Because
the fast-changing world of embedded processors, the software tools and the Blackfi n

TEAM LinG

xvi Preface

processor will also undergo many changes as time evolves. The versions of software
tools used in this book are:

• MATLAB Version 7.0

• VisualDSP++ Version 4.0

• LabVIEW 8.0

• LabVIEW Embedded Edition 7.1

This website keeps track of the latest changes and new features of these tools. It
also reports on any compatibility problems when running existing experiments with
the newer version of software.

All the programs mentioned in the exercises and experiments are available
for download in the Wiley ftp site: ftp://ftp.wiley.com/public/sci_tech_med/
embedded_signal/.

We also include a feedback section to hear your comments and suggestions.
Alternatively, readers are encouraged to email us at ewsgan@ntu.edu.sg and
kuo@ceet.niu.edu.

Learning Objective:

We learn by example and by direct experience because there are real limits to the
adequacy of verbal instruction.

Malcolm Gladwell, Blink: The Power of Thinking Without Thinking, 2005

TEAM LinG

xvii

Acknowledgments

We are very grateful to many individuals for their assistance in developing this
book. In particular, we are indebted to Todd Borkowski of Analog Devices,
who got us started in this book project. Without his constant support and encourage-
ment, we would not have come this far. We would like to thank Erik B. Luther, Jim
Cahow, Mark R. Kaschner, and Matt Pollock of National Instruments for contri-
buting to the experiments, examples, and writing in the LabVIEW Embedded
Module for Blackfi n Processors. Without their strong commitment and support, we
would never have been able to complete many exciting demos within such a short
time. The fi rst author would like to thank Chandran Nair and Siew-Hoon Lim of
National Instruments for providing their technical support and advice. We would
also like to thank David Katz and Dan Ledger of Analog Devices for providing
useful advice on Blackfi n processors. Additionally, many thanks to Mike Eng, Dick
Sweeney, Tonny Jiang, Li Chuan, Mimi Pichey, and Dianwei Sun of Analog
Devices.

Several individuals at John Wiley also provided great help to make this book
a reality. We wish to thank George J. Telecki, Associate Publisher, for his support
of this book. Special thanks must go to Rachel Witmer, Editorial Program Coordi-
nator, who promptly answered our questions. We would also like to thank Danielle
Lacourciere and Dean Gonzalez at Wiley for the fi nal preparation of this book.

The authors would also like to thank Dahyanto Harliono, who contributed to
the majority of the Blackfi n hands-on exercises in the entire book. Thanks also go
to Furi Karnapi, Wei-Chee Ku, Ee-Leng Tan, Cyril Tan, and Tany Wijaya, who
also contributed to some of the hands-on exercises and examples in the book. We
would also like to thank Say-Cheng Ong for his help in testing the LabVIEW
experiments.

This book is also dedicated to many of our past and present students who have
taken our DSP courses and have written M.S. theses and Ph.D. dissertations and
completed senior design projects under our guidance at both NTU and NIU. Both
institutions have provided us with a stimulating environment for research and teach-
ing, and we appreciate the strong encouragement and support we have received.
Finally, we are greatly indebted to our parents and families for their understanding,
patience, and encouragement throughout this period.

 Woon-Seng Gan and Sen M. Kuo

TEAM LinG

TEAM LinG

About the Authors

Woon-Seng Gan is an Associate Professor in the Information Engineering Division
in the School of Electrical and Electronic Engineering at the Nanyang Technological
University in Singapore. He is the co-author of the textbook Digital Signal Proces-
sors: Architectures, Implementations, and Applications (Prentice Hall 2005).
He has published more than 130 technical papers in peer-reviewed journals
and international conferences. His research interests are embedded media
processing, embedded systems, low-power-consumption algorithms, and real-time
implementations.

Sen M. Kuo is a Professor and Chair at the Department of Electrical Engineering,
Northern Illinois University, DeKalb, IL. In 1993, he was with Texas Instruments,
Houston, TX. He is the leading author of four books: Active Noise Control Systems
(Wiley, 1996), Real-Time Digital Signal Processing (Wiley, 2001, 2nd Ed. 2006),
Digital Signal Processors (Prentice Hall, 2005), and Design of Active Noise Control
Systems with the TMS320 Family (Texas Instruments, 1996). His research focuses
on real-time digital signal processing applications, active noise and vibration control,
adaptive echo and noise cancellation, digital audio applications, and digital
communications.

Note

• A number of illustrations appearing in this book are reproduced from copy-
right material published by Analog Devices, Inc., with permission of the
copyright owner.

• A number of illustrations and text appearing in this book are reprinted with
the permission of National Instruments Corp. from copyright material.

• VisualDSP++® is the registered trademark of Analog Devices, Inc.

• LabVIEWTM and National InstrumentsTM are trademarks and trade names of
National Instruments Corporation.

• MATLAB® is the registered trademark of The MathWorks, Inc.

• Thanks to the Hackles for providing audioclips from their singles “Leave It
Up to Me” copyright ©2006 www.TheHackles.com

xix
TEAM LinG

TEAM LinG

Chapter 1

Introduction

1.1 EMBEDDED PROCESSOR:
MICRO SIGNAL ARCHITECTURE

Embedded systems are usually part of larger and complex systems and are usually
implemented on dedicated hardware with associated software to form a computa-
tional engine that will effi ciently perform a specifi c function. The dedicated hard-
ware (or embedded processor) with the associated software is embedded into many
applications. Unlike general-purpose computers, which are designed to perform
many general tasks, an embedded system is a specialized computer system that is
usually integrated as part of a larger system. For example, a digital still camera takes
in an image, and the embedded processor inside the camera compresses the image
and stores it in the compact fl ash. In some medical instrument applications, the
embedded processor is programmed to record and process medical data such as
pulse rate and blood pressure and uses this information to control a patient support
system. In MP3 players, the embedded processor is used to process compressed
audio data and decodes them for audio playback. Embedded processors are also
used in many consumer appliances, including cell phones, personal digital assistants
(PDA), portable gaming devices, digital versatile disc (DVD) players, digital cam-
corders, fax machines, scanners, and many more.

Among these embedded signal processing-based devices and applications,
digital signal processing (DSP) is becoming a key component for handling signals
such as speech, audio, image, and video in real time. Therefore, many of the latest
hardware-processing units are equipped with embedded processors for real-time
signal processing.

The embedded processor must interface with some external hardware such as
memory, display, and input/output (I/O) devices such as coder/decoders to handle
real-life signals including speech, music, image, and video from the analog world.
It also has connections to a power supply (or battery) and interfacing chips for I/O
data transfer and communicates or exchanges information with other embedded
processors. A typical embedded system with some necessary supporting hardware
is shown in Figure 1.1. A single (or multiple) embedded processing core is used to

1

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

2 Chapter 1 Introduction

perform control and signal processing functions. Hardware interfaces to the process-
ing core include (1) internal memories such as read-only memory (ROM) for boot-
loading code and random-access memory (RAM) and cache for storing code and
data; (2) a direct memory access (DMA) controller that is commonly used to transfer
data in and out of the internal memory without the intervention of the main process-
ing core; (3) system peripherals that contain timers, clocks, and power management
circuits for controlling the processor’s operating conditions; and (4) I/O ports that
allow the embedded core to monitor or control some external events and process
incoming media streams from external devices. These supporting hardware units
and the processing core are the typical building blocks that form an embedded
system. The embedded processor is connected to the real-world analog devices as
shown in Figure 1.1. In addition, the embedded processor can exchange data with
another system or processor by digital I/O channels. In this book, we use hands-on
experiments to illustrate how to program various blocks of the embedded system
and how to integrate them with the core embedded processor.

In most embedded systems, the embedded processor and its interfaces must
operate under real-time constraints, so that incoming signals are required to be
processed within a certain time interval. Failure to meet these real-time constraints
results in unacceptable outcomes like noisy response in audio and image applica-
tions, or even catastrophic consequences in some human-related applications like
automobiles, airplanes, and health-monitoring systems. In this book, the terms
“embedded processing” and “real-time processing” are often used interchangeably
to include both concepts. In general, an embedded system gathers data, processes
them, and makes a decision or responds in real time.

To further illustrate how different blocks are linked to the core embedded pro-
cessor, we use the example of a portable audio player shown in Figure 1.2. In this

Embedded
Processing

Core

ROM/RAM/
Cache

I/O
Port

System
Peripherals

DMA

Clock

Power
Supply

External
Memory

Embedded Processor

Analog-to-
Digital
Converter

Digital-to-
Analog
Converter

Input/Output
Device

Figure 1.1 Block diagram of a typical embedded system and its peripherals

TEAM LinG

1.1 Embedded Processor: Micro Signal Architecture 3

system, the compressed audio bit stream in Ogg Vorbis format (introduced in
Chapter 9) is stored in the fl ash memory external to the embedded processor, a
Blackfi n processor. A decoding program for decoding the audio bit stream is loaded
from the boot fl ash memory into the processor’s memory. The compressed data are
streamed into the Blackfi n processor, which decodes the compressed bit stream into
pulse code-modulated (PCM) data. The PCM data can in turn be enhanced by some
postprocessing tasks like equalization, reverberation, and three-dimensional audio
effects (presented in Chapter 9). The external audio digital-to-analog converter
(DAC) converts the PCM data into analog signal for playback with the headphones
or loudspeakers.

Using this audio media player as an example, we can identify several common
characteristics in typical embedded systems. They are summarized as follows:

1. Dedicated functions: An embedded system usually executes a specifi c task
repeatedly. In this example, the embedded processor performs the task of
decoding the Ogg Vorbis bit stream and sends the decoded audio samples
to the DAC for playback.

2. Tight constraints: There are many constraints in designing an embedded
system, such as cost, processing speed, size, and power consumption. In this
example, the digital media player must be low cost so that it is affordable to
most consumers, it must be small enough to fi t into the pocket, and the
battery life must last for a long time.

3. Reactive and real-time performance: Many embedded systems must con-
tinuously react to changes of the system’s input. For example, in the digital
media player, the compressed data bit stream can be decoded in a number
of cycles per audio frame (or operating frequency for real-time processing).
In addition, the media player also must respond to the change of mode
selected by the users during playback.

SDRAM

FLASH
MEMORY

(COMPRESSED
AUDIO DATA)

Ogg Vorbis STREAM
COMPRESSED AUDIO

DECODED AUDIO
OVER SERIAL PORT

BOOT FLASH
MEMORY

AUDIO
OUTPUT

(FIRMWARE)

AUDIO
DAC

ANALOG
DEVICES

®

Figure 1.2 A block diagram of the audio media player (courtesy of Analog Devices, Inc.)

TEAM LinG

4 Chapter 1 Introduction

Therefore, the selection of a suitable embedded processor plays an important
role in the embedded system design. A commonly used approach for realizing signal
processing tasks is to use fi xed-function and hardwired processors. These are imple-
mented as application-specifi c integrated circuits (ASICs) with DSP capabilities.
However, these hardwired processors are very expensive to design and produce, as
the development costs become signifi cant for new process lithography. In addition,
proliferation and rapid change of new standards for telecommunication, audio,
image, and video coding applications makes the hardwired approach no longer the
best option.

An alternative is to use programmable processors. This type of processor allows
users to write software for the specifi c applications. The software programming
approach has the fl exibility of writing different algorithms for different products
using the same processor and upgrading the code to meet emerging standards in
existing products. Therefore, a product can be pushed to the market in a shorter time
frame, and this signifi cantly reduces the development cost compared to the hard-
wired approach. A programmable digital signal processor is commonly used in
many embedded applications. DSP architecture has evolved greatly over the last two
decades to include many advanced features like higher clock speed, multiple multi-
pliers and arithmetic units, incorporation of coprocessors for control and commu-
nication tasks, and advanced memory confi guration. The complexity of today’s
signal processing applications and the need to upgrade often make a programmable
embedded processor a very attractive option. In fact, we are witnessing a market
shift toward software-based microarchitectures for many embedded media process-
ing applications.

One of the latest classes of programmable embedded signal processors is the
micro signal architecture (MSA). The MSA core [43] was jointly developed by Intel
and Analog Devices Inc. (ADI) to meet the computational demands and power con-
straints of today’s embedded audio, video, and communication applications. The
MSA incorporates both DSP and microcontroller functionalities in a single core.
Both Intel and ADI have further developed processors based on the MSA architecture
for different applications. The MSA core combines a highly effi cient computational
architecture with features usually only available on microcontrollers. These features
include optimizations for high-level language programming, memory protection, and
byte addressing. Therefore, the MSA has the ability to execute highly complex DSP
algorithms and basic control tasks in a single core. This combination avoids the need
for a separate DSP processor and microcontroller and thus greatly simplifi es both
hardware and software design and implementation. In addition, the MSA has a very
effi cient and dynamic power management feature that is ideal for a variety of battery-
powered communication and consumer applications that require high-intensity signal
processing on a strict power budget. In fact, the MSA-based processor is a versatile
platform for processing video, image, audio, voice, and data.

Inside the computational block of the MSA, there are two multiply-add units,
two arithmetic-logic units, and a single shifter. These hardware engines allow the
MSA-based processor to effi ciently perform several multiply-add operations in

TEAM LinG

1.1 Embedded Processor: Micro Signal Architecture 5

parallel to support complex number crunching tasks. The availability of these hard-
ware units coupled with high clock speed (starts from 300 MHz and rises steadily
to the 1-GHz range) has created a substantial speed improvement over conventional
microprocessors. The detailed architecture of the MSA core is explained with simple
instructions and hands-on experiments in Chapter 5.

The MSA core uses a simple, reduce-instruction-set-computer (RISC)-like
instruction set for both control and signal processing applications. The MSA also
comes with a set of multifunction instructions that allows different sizes of op-codes
to be combined into a single instruction. Therefore, the programmer has the fl exibil-
ity of reducing the code size, and at the same time, maximizing the usage of avail-
able resources. In addition, some special instructions support video and wireless
applications. This chapter introduces some basic features of programming and
debugging the MSA core and uses examples and exercises to highlight the important
features in the software tools. In subsequent chapters, we introduce more advanced
features of the software tools.

The MSA core is a fi xed-point processor. It operates on fi xed-point fractional
or integer numbers. In contrast to the fl oating-point processors, such as the Intel
Pentium processors, fi xed-point processors require special attention to manipulating
numbers to avoid wrong results or extensive computation errors. The concepts of
real-time implementation using a fi xed-point processor are introduced and examined
in Chapter 6.

As explained above, the embedded core must be combined with internal and
external memories, serial ports, mixed signal circuits, external memory interfaces,
and other peripherals and devices to form an embedded system. Chapter 7 illustrates
how to program and confi gure some of these peripherals to work with the core pro-
cessor. Chapter 8 explains and demonstrates several important techniques of opti-
mizing the program written for the MSA core. This chapter also illustrates a unique
feature of the MSA core to control the clock frequency and supply voltage to the
MSA core via software, so as to reduce the power consumption of the core during
active operation.

In this book, we examine the MSA core with the latest Blackfi n processors
(BF5xx series) from ADI. The fi rst generation of Blackfi n processors is the BF535
processor, which operates at 300 MHz and comes with L1 and L2 cache memories,
system control blocks, basic peripheral blocks, and high-speed I/O. The next genera-
tion of Blackfi n processors consists of BF531, BF532, BF533, and BF561 processors.
These processors operate at a higher clock speed of up to 750 MHz and contain
additional blocks like parallel peripheral interface, voltage regulator, external
memory interface, and more data and instruction cache. The BF531 and BF532 are
the least expensive and operate at 400 MHz, and the BF561 is a dual-core Blackfi n
processor that is targeted for very high-end applications. The BF533 processor oper-
ates at 750 MHz and provides a good platform for media processing applications.
Recently released Blackfi n processors include BF534, BF536, and BF537. These
processors operate at around 400–500 MHz and feature a strong support for Ethernet
connection and a wider range of peripherals.

TEAM LinG

6 Chapter 1 Introduction

Because all Blackfi n processors are code compatible, the programs written for
one processor can be easily ported to other processors. This book uses BF533 and
BF537 processors to explain architecture, programming, peripheral interface, and
implementation issues. The main differences between the BF533 and the BF537 are
the additional peripheral supports and slightly less internal instruction memory of
the BF537 processors. Therefore, explanation of the Blackfi n processing core can
be focused solely on the BF533, and additional sections are introduced for the extra
peripheral supports in the BF537.

There are several low-cost development tools introduced by ADI. In this book,
we use the VisualDSP++ simulator to verify the correctness of the algorithm and
the EZ-KIT (development board that contains the MSA processor, memory, and
other peripherals) for the Blackfi n BF533 and BF537 processors for real-time signal
processing and control applications. In addition, we also use a new tool (LabVIEW
Embedded Module for Blackfi n Processors) jointly developed by National Instru-
ments (NI) and ADI to examine a new approach in programming the Blackfi n pro-
cessor with a blockset programming approach.

1.2 REAL-TIME EMBEDDED SIGNAL PROCESSING

DSP plays an important role in many real-time embedded systems. A real-time
embedded system is a system that requires response to external inputs within a
specifi c period. For example, a speech-recognition device sampling speech at 8 kHz
(bandwidth of 4 kHz) must respond to the sampled signal within a period of 125 μs.
Therefore, it is very important that we take special attention to defi ne the real-time
system and highlight some special design considerations that apply to real-time
embedded signal processing systems.

Generally, a real-time system must maintain a timely response to both internal
and external signal/data. There are two types of real-time system: hard and soft
real-time systems. For the hard real-time system, an absolute deadline for the com-
pletion of the overall task is imposed. If the hard deadline is not met, the task has
failed. For example, in the case of speech enhancement, the DSP software must be
completed within 125 μs; otherwise, the device will fail to function correctly. In the
case of a soft real-time system, the task can be completed in a more relaxed time
range. For example, it is not critical how long it takes to complete a credit card
transaction. There is no hard deadline by which the transaction must be completed,
as long as it is within a reasonable period of time.

In this book, we only examine hard real-time systems because all embedded
media processing systems are hard real-time systems. There are many important
challenges when designing a hard real-time system. Some of the challenges
include:

1. Understanding DSP concepts and algorithms. A solid understanding of
the important DSP principles and algorithms is the key to building a suc-
cessful real-time system. With this knowledge, designers can program and
optimize the algorithm on the processor using the best parameters and set-

TEAM LinG

tings. Chapters 2 to 4 introduce the fundamentals of DSP and provide many
hands-on experiments to implement signal processing algorithms.

2. Resource availability. The selection of processor core, peripherals, sensors
and actuators, user interface, memory, development, and debugging tools is
a complex task. There are many critical considerations that make the deci-
sion tough. Chapter 5 shows the architecture of the Blackfi n processor and
highlights its strength in developing the embedded system.

3. Arithmetic precision. In most embedded systems, a fi xed-point arithmetic
is commonly used because fi xed-point processors are cheaper, consume less
power, and have higher processing speed as compared to fl oating-point pro-
cessors. However, fi xed-point processors are more diffi cult to program and
also introduce many design challenges that are discussed in Chapter 6.

4. Response time requirements. Designers must consider hardware and soft-
ware issues. Hardware considerations include processor speed, memory size
and its transfer rate, and I/O bandwidth. Software issues include program-
ming language, software techniques, and programming the processor’s
resources. A good tool can greatly speed up the process of developing and
debugging the software and ensure that real-time processing can be achieved.
Chapter 7 explains the peripherals and I/O transfer mechanism of the Black-
fi n processor, whereas Chapter 8 describes the techniques used in optimizing
the code in C and assembly programming.

5. Integration of software and hardware in embedded system. A fi nal part of
this book implements several algorithms for audio and image applications.
The Blackfi n BF533/BF537 EZ-KITs are used as the platform for integration
of software and hardware.

To start the design of the embedded system, we can go through a series of
exercises using the development tools. As we progress to subsequent chapters, more
design and debugging tools and features of these tools are introduced. This progres-
sive style in learning the tools will not overload the users at the beginning. We use
only the right tool with just enough features to solve a given problem.

1.3 INTRODUCTION TO THE INTEGRATED
DEVELOPMENT ENVIRONMENT VISUALDSP++

In this section, we examine the software development tool for embedded signal
processors. The software tool for the Blackfi n processor is the VisualDSP++ [33]
supplied by ADI. VisualDSP++ is an integrated development and debugging
environment (IDDE) that provides complete graphical control of the edit, build,
and debug processes. In this section, we show the detailed steps of loading a
project fi le into the IDDE, building it, and downloading the executable fi le into
the simulator (or the EZ-KIT). We introduce some important features of the
VisualDSP++ in this chapter, and more advanced features are introduced in sub-
sequent chapters.

1.3 Introduction to the Integrated Development Environment VisualDSP++ 7

TEAM LinG

8 Chapter 1 Introduction

1.3.1 Setting Up VisualDSP++

The Blackfi n version of VisualDSP++ IDDE can be downloaded and tested for a
period of 90 days from the ADI website. Once it is downloaded and installed, a

VisualDSP++ Environment icon will appear on the desktop. Double-click
on this icon to activate the VisualDSP++. A New Session window will appear as
shown in Figure 1.3. Select the Debug target, Platform, and Processor as shown in
Figure 1.3, and click OK to start the VisualDSP++. Under the Debug target option,
there are two types of Blackfi n simulator, a cycle-accurate interpreted simulator and
a functional compiled simulator. When ADSP_BF5xx Blackfi n Family Simulators
is selected, the cycle-accurate simulator is used. This simulator provides a more
accurate performance, and thus is usually used in this book. The compiled simulator
is used when the simulator needs to process a large data fi le. The Processor option
allows users to select the type of processor. In this book, only the Blackfi n BF533 and
BF537 processors are covered. However, the code developed for any Blackfi n proces-
sor is compatible with other Blackfi n processors. In Figure 1.3, the ADSP-BF533
simulator is selected. Alternatively, users can select the ADSP-BF537 simulator.

A VisualDSP++ Version 4 window is shown in Figure 1.4. There are three
subwindows and one toolbar menu in the VisualDSP++ window. A Project Window
displays the fi les available in the project or project group. The Disassembly window
displays the assembly code of the program after the project has been built. The
Output Window consists of two pages, Console and Build. The Console page
displays any message that is being programmed in the code, and the Build page
shows any errors encountered during the build process. The toolbar menu contains
all the tools, options, and modes available in the VisualDSP++ environment. We
will illustrate these tools as we go through the hands-on examples and exercises in

Figure 1.3 A New Session window

TEAM LinG

this and following chapters. Click on Project Æ Project Options and make sure
that the right processor is selected for the targeted simulator.

1.3.2 Using a Simple Program
to Illustrate the Basic Tools

In this section, we illustrate the basic tools and features in the VisualDSP++ IDDE
through a series of simple exercises. We use a sample project that consists of two
source fi les written in C for the Blackfi n processor.

HANDS-ON EXPERIMENT 1.1

In this experiment, we fi rst start the VisualDSP++ environment as explained above. Next,
click on the File menu in the toolbar menu and select Open Æ Project. . . . Look for the
project fi le exp1_1.dpj under directory c:\adsp\chap1\exp1_1 and double-click on
the project fi le. Once the project fi le is loaded into the VisualDSP++ environment, we can
see a list of source fi les. Double-click on dotprod_main.c to see the source code in the
editor window (right side) as shown in Figure 1.5.

Scroll through the source code in both dotprod_main.c and dotprod.c. This is a
simple program to perform multiply-accumulate (or dot product) of two vectors, a and b.
From the Settings menu, choose Preferences to open the dialog box as shown in Figure 1.6.

Toolbar
menu

Figure 1.4 VisualDSP++ window

1.3 Introduction to the Integrated Development Environment VisualDSP++ 9

TEAM LinG

10 Chapter 1 Introduction

Under the General preference, click on Run to main after load and Load executable after
build. The fi rst option starts executing from the void main() of the program after the
program is loaded into the simulator. The second option enables the code to be loaded into
the processor memory after the code is being built. The rest of the options can be left as
default. Click OK to close the Preferences dialog box.

Now, we are ready to build the project. We can either click on Project Æ Build

Project in the toolbar menu or press the function key F7. There is a build icon that

Figure 1.5 Snapshot of the C fi le dotprod_main.c displayed in the source window

Figure 1.6 Preferences dialog box

TEAM LinG

can be used to perform the build operation. The build operation basically combines the
compile, assembler, and link processes to obtain an executable fi le (.dxe). Users will fi nd
the executable fi le exp1_1.dxe being created in directory c:\adsp\chap1\exp1_1\
debug after the build operation. Besides the Build Project option, there is the Rebuild

All option (or icon). The Rebuild All option builds the project regardless of whether
the project build is up to date. The message Build completed successfully is
shown in the Build page of the Output Window if the build process detects no error.
However, users will notice that the build process detects an undefi ned identifi er, as shown
in Figure 1.7.

Users can double-click on the error message (in red), and the cursor will be placed on
the line that contains the error. Correct the typo by changing results to result and save
the source fi le by clicking on File Æ Save Æ File dotprod_main.c. The project is now built
without any error, as indicated in the Output window.

Once the project has been built, the executable fi le exp1_1.dxe is automatically
downloaded into the target (enabled in the Preferences dialog box), which is the BF533 (or
BF537) simulator. Click on the Console page of the Output Window. A message appears
stating that the executable fi le has been completely loaded into the target, and there is a
Breakpoint Hit at <ffa006f8>. A solid red circle (indicates breakpoint) and a yellow
arrow (indicates the current location of the program pointer) are positioned at the left-hand
edges of the source code and disassembly code, as shown in Figure 1.8.

The VisualDSP++ automatically sets two breakpoints, one at the beginning and the
other at the end of the code. The location of the breakpoint can be viewed by clicking on
Setting Æ Breakpoints as shown in Figure 1.9. Users can click on the breakpoint under
the Breakpoint list and click the View button to fi nd the location of the breakpoint in the

Figure 1.7 Error message appears after building the project

Editor window
Disassembly
window

Red circle and yellow arrow

Figure 1.8 Breakpoint displayed in both editor and disassembly windows

1.3 Introduction to the Integrated Development Environment VisualDSP++ 11

TEAM LinG

12 Chapter 1 Introduction

Disassembly window. The breakpoint can be set or cleared by double-clicking on the gray
gutter (Fig. 1.8) next to the target code in the editor and disassembly window.

The project is now ready to run. Click on the run button or Debug Æ Run (F5).
The simulator computes the dot product (sum of products or multiply-accumulate) and dis-
plays the result in the Console page of the Output Window. What is the answer for the dot
product between arrays a and b?

Modify the source fi les to perform the following tasks:

1. Add a new 20-element array c; perform the dot product computation between arrays
a and c and display the result.

2. Recompute the dot product of the fi rst 10 elements in the arrays.

3. To obtain the cycle count of running the code from start to fi nish, we can use the
cycle registers. Simply click on Register Æ Core Æ Cycles. Reload the program by
clicking on File Æ Reload Program. The program pointer will reset to the begin-
ning of the program. In the Cycle window, clear the CYCLE register value to 0 to
initialize the cycle counter. Run the program and note the cycle count. Note: To
display the cycle count in unsigned integer format, right-click on the Cycle window
and select unsigned integer.

1.3.3 Advanced Setup: Using the
Blackfi n BF533 or BF537 EZ-KIT

In the previous hands-on experiments, we ran the program with the BF533 (or
BF537) simulator. In this section, we perform the same experiment with the Blackfi n

Figure 1.9 Breakpoint dialog box

TEAM LinG

BF533 (or BF537) EZ-KIT. The EZ-KIT board is a low-cost hardware platform that
includes a Blackfi n processor surrounded by other devices such as audio coder/
decoder (CODEC), video encoders, video decoders, fl ash, synchronous dynamic
RAM (SDRAM), and so on. We briefl y introduce the hardware components in the
EZ-KIT and show the differences between the BF533 and BF537 boards.

Figure 1.10 shows a picture of the BF533 EZ-KIT [29]. This board has four
audio input and six audio output channels via the RCA jacks. In addition, it can
also encode and decode three video inputs and three video outputs. Users can
also program the four general-purpose push buttons (SW4, SW5, SW6, and
SW7) and six general-purpose LEDs (LED4–LED9). The EZ-KIT board is inter-
faced with the VisualDSP++ (hosted on personal computer) via the USB interface
cable.

Figure 1.11 shows a picture of the BF537 EZ-KIT [30]. This board consists of
stereo input and output jack connectors. However, the BF537 EZ-KIT does not have
any video I/O. Instead, it includes the IEEE 802.3 10/100 Ethernet media access
control and controller area network (CAN) 2.0B controller. Similar to the BF533
EZ-KIT, the BF537 EZ-KIT has four general-purpose push buttons (SW10, SW11,
SW12, and SW13) and six general-purpose LEDs (LED1–LED6). Other feature
differences between BF533 and BF537 EZ-KITs are highlighted in subsequent
chapters.

Audio
input

Audio
output

Video
I/O

BF533
processor

SDRAM

Power
in

USB
interface

General-purpose
push buttons

SW4 SW5 SW6 SW7

General-purpose
LEDs

SW9
1 2 3 4 5 6

on
off

Figure 1.10 The BF533 EZ-KIT

1.3 Introduction to the Integrated Development Environment VisualDSP++ 13

TEAM LinG

14 Chapter 1 Introduction

This section describes the setup of the BF533 EZ-KIT [31]. The EZ-KIT’s
power connector is fi rst connected to the power supply. Turn on the power supply
and verify that the green LED is lit and LEDs 4–9 continue to roll (indicating that
the board is not linked to the software). Next, the USB cable is connected from the
computer to the EZ-KIT board. The window environment recognizes the new hard-
ware and launches the Add New Hardware Wizard, which installs fi les located on
the EZ-KIT CD-ROM. Once the USB driver is installed successfully, the yellow
LED (USB monitor) should remain lit. A similar setup can also be carried out for
the BF537 EZ-KIT [32]. Users can refer to the BF533 (or BF537) EZ-KIT Evalua-
tion System Manual for more details on the settings.

The VisualDSP++ environment can be switched to the EZ-KIT target by the
following steps. Click on Session Æ New Session. A New Session window will
appear. Change the debug target and platform to that shown in Figure 1.12 (setup
for the BF533 EZ-KIT). Click OK and note the change in the title bar of the
VisualDSP++. We are now ready to run the same project on the BF533 EZ-KIT.
Similarly, if the BF537 EZ-KIT is used, select the desired processor and its
EZ-KIT.

Build the project and run the executable fi le on the EZ-KIT, using the same
procedure as before. Do you notice any difference in the building process on the
EZ-KIT platform compared to the simulator? Next, obtain the cycle count in running
the same program on the EZ-KIT. Is there any change in the cycle count as com-
pared to the simulator?

USB
interface

Power
in

Ethernet
MAC

CAN

esoprup-larene
G

snottub
hsup

esoprup-larene
G

s
D

E
L

BF537
processor

SW10

SW11

SW12

SW13

Figure 1.11 The BF537 EZ-KIT

TEAM LinG

1.4 MORE HANDS-ON EXPERIMENTS

We have learned how to load a project fi le into the Blackfi n simulator and EZ-KIT.
In this section, we create a new project fi le from scratch and use the graphic features
in the VisualDSP++ environment. The following experiments apply to both BF533
and BF537 EZ-KITs.

HANDS-ON EXPERIMENT 1.2

1. Using the previous source fi les as templates, create two new source fi les
vecadd_main.c and vecadd.c to perform vector addition of two arrays a
and b. The result is saved in the third array c. Use File Æ New Æ File to
create a blank page for editing in the VisualDSP++. Save these fi les in directory
c:\adsp\chap1\exp1_2.

2. From the File menu, choose New and then Project to open the Project Wizard.
Enter the directory and the name of the new project as shown in Figure 1.13. Click
on Finish and Yes to create a new project.

3. An empty project is created in the Project window. Click on Project Æ Project
Options to display the Project Options dialog box as shown in Figure 1.14. The
default settings are used, and the project creates an executable fi le (.dxe). Because
Settings for confi guration is set to Debug, the executable fi le also contains debug
information for debugging.

4. Click on Compile Æ General (1), and click on Enable optimization to enable the
optimization for speed as shown in Figure 1.15. Click OK to apply changes to the
project options.

5. To add the source fi les to the new project, click on Project Æ Add to Project Æ
File(s). . . . Select the two source fi les and click Add. The sources fi les are now
added to the project fi le.

Figure 1.12 New Session window setup for BF533 EZ-KIT

1.4 More Hands-on Experiments 15

TEAM LinG

16 Chapter 1 Introduction

Figure 1.13 Project Wizard window

Figure 1.14 Project Options dialog box

TEAM LinG

6. Build the project by following the steps given in Hands-On Experiment 1.1. Run the
project and verify that the correct result in array c is displayed in the Output
Window.

HANDS-ON EXPERIMENT 1.3

1. In this hands-on experiment, we introduce some useful graphic features in the
VisualDSP++ environment. We plot the three arrays, a, b, and c, used in the previ-
ous experiment.

2. Make sure that the project is built and loaded into the simulator. Click on View Æ
Debug Windows Æ Plot Æ New. A Plot Confi guration dialog box appears as
shown in Figure 1.16. We type in a and 20 and select int in Address, Count, and

Figure 1.15 Project wizard option for compile

Figure 1.16 Plot Confi guration dialog box

1.4 More Hands-On Experiments 17

TEAM LinG

18 Chapter 1 Introduction

Data boxes, respectively. Click on Add to add in the array a. Use similar steps to
plot the other two arrays. Modify the plot settings to make a graph as displayed in
Figure 1.17.

3. Finally, add in the other two arrays in the same plot or create two new plots.

So far, we have learned how to program in C and run the code with the Blackfi n
simulator and EZ-KITs. In the following section, we introduce a new graphical
development environment, LabVIEW Embedded Module for Blackfi n Processors,
jointly developed by NI and ADI. This new tool provides an effi cient approach to
prototyping embedded signal processing systems. This new rapid prototyping tool
uses a graphical user interface (GUI) to control and select parameters of the signal
processing algorithms and view updates of graphical plots on the fl y.

1.5 SYSTEM-LEVEL DESIGN USING A
GRAPHICAL DEVELOPMENT ENVIRONMENT

Graphical development environments, such as National Instruments LabVIEW,
are effective means to rapidly prototype and deploy developments from indivi-
dual algorithms to full system-level designs onto embedded processors. The graphi-
cal data fl ow paradigm that is used to create LabVIEW programs or virtual
instruments (VIs) allows for rapid, intuitive development of embedded code. This
is due to its fl owchart-like syntax and inherent ease in implementing parallel
tasks.

In this section and sections included at the end of each subsequent chapter, we
present a common design cycle that engineers are using to reduce product develop-
ment time by effectively integrating the software tools they use on the desktop for
deployment and testing. This will primarily be done with the LabVIEW Embedded

Array a

5,000

0

0 2 4 6 8 10

Number of elements

12 14 16 18 20 22

V
al

ue
s

Figure 1.17 Display of array a

TEAM LinG

Development Module for the ADI Blackfi n BF533 and BF537 processors which is
an add-on module for LabVIEW to target and deploy to the Blackfi n processor.
Other LabVIEW add-ons, such as the Digital Filter Design Toolkit, may also be
discussed.

Embedded system developers frequently use computer simulation and design
tools such as LabVIEW and the Digital Filter Design Toolkit to quickly develop a
system or algorithm for the needs of their project. Next, the developer can leverage
his/her simulated work on the desktop by rapidly deploying that same design with
the LabVIEW Embedded Module for Blackfi n Processors and continue to iterate on
that design until the design meets the design specifi cations. Once the design has
been completed, many developers will then recode the design using VisualDSP++
for the most effi cient implementation. Therefore, knowledge of the processor archi-
tecture and its C/assembly programming is still important for a successful imple-
mentation. This book provides balanced coverage of both high-level programming
using the graphical development environment and conventional C/assembly pro-
gramming using VisualDSP++.

In the fi rst example using this graphical design cycle, we demonstrate the
implementation and deployment of the dot product algorithm presented in Hands-On
Experiment 1.1 using LabVIEW and the LabVIEW Embedded Module for Blackfi n
Processors.

1.5.1 Setting up LabVIEW and LabVIEW
Embedded Module for Blackfi n Processors

LabVIEW and the LabVIEW Embedded Module for Blackfi n Processors (trial
version) can be downloaded from the book companion website. A brief tutorial on
using these software tools is included in Appendix A of this book. Once they are
installed, double-click on National Instruments LabVIEW 7.1 Embedded Edition
under the All Programs panel of the start menu. Hands-On Experiment 1.4 provides
an introduction to the LabVIEW Embedded Module for Blackfi n Processors to
explore concepts from the previous hands-on experiments.

HANDS-ON EXPERIMENT 1.4

This exercise introduces the NI LabVIEW Embedded Module for Blackfi n Processors and
the process for deploying graphical code on the Blackfi n processor for rapid prototyping and
verifi cation. The dot product application was created with the same vector values used pre-
viously in the VisualDSP++ project fi le, exp1_1.dpj. This experiment uses arrays, func-
tions, and the Inline C Node within LabVIEW.

From the LabVIEW Embedded Project Manager window, open the project fi le
DotProd – BF5xx.lep located in directory c:\adsp\chap1\exp1_4. Next, double-
click on DotProd_BF.vi from within the project window to open the front panel. The front
panel is the graphical user interface (GUI), which contains the inputs and outputs of the

1.5 System-Level Design Using a Graphical Development Environment 19

TEAM LinG

20 Chapter 1 Introduction

Figure 1.18 Front panel of DotProd.vi

Figure 1.19 Block diagram of DotProd.vi

program as shown in Figure 1.18. Select View Æ Block Diagram to switch to the LabVIEW
block diagram, shown in Figure 1.19, which contains the source code of the program. The
dot product is implemented by passing two vectors (or one-dimensional arrays) to the Dot
Product function. The result is then displayed in the Dot Product Result indicator. The
value is also passed to the standard output buffer, because controls and indicators are only
available in JTAG debug or instrumented debug modes. The graphical LabVIEW code
executes based on the principle of data fl ow, in this case from left to right.

This graphical approach to programming makes this program simple to implement and
self-documenting, which is especially helpful for larger-scale applications. Also note the use
of the Inline C Node, which allows users to test existing C code within the graphical frame-
work of LabVIEW.

Now run the program by clicking on the Run arrow to calculate the dot product
of the two vectors. The application will be translated, linked, compiled, and deployed to the
Blackfi n processor. Open the Processor Status window and select Output to see the numeric
result of the dot product operation.

Another feature available for use with the LabVIEW Embedded Module for Blackfi n
Processors is instrumented debug mode, which allows users to probe wires on the LabVIEW
block diagram and interact with live-updating front panel controls and indicators while the
code is actually running on the Blackfi n. Instrumented debug can be accomplished through
TCP (Ethernet) on the BF537 and through JTAG (USB) on both the BF537 and BF533 pro-
cessors. To use instrumented debug, run the application in debug mode, using the Debug

button . Try changing vector elements on the front panel and probing wires on the block
diagram. For additional confi guration, setup, and debugging information, refer to Getting
Started with the LabVIEW Embedded Module for Analog Devices Blackfi n Processors [52],
found in the book companion website.

TEAM LinG

1.6 MORE EXERCISE PROBLEMS

1. List 10 embedded systems in Table 1.1 that are required to perform some forms of DSP.
Explain the signal processing tasks.

2. Survey the key components in a typical iPod player.

3. Survey the key components in a typical digital camera.

4. Survey the differences between fi xed-function processors and programmable processors.
State the advantages and disadvantages of these processors.

5. In Hands-on Experiment 1.1, C language is used to program the Blackfi n processor. A
low-level assembly program can also be used to compute the dot product. The low-level
assembly code uses a standard set of assembly syntaxes. These assembly syntaxes are
introduced in Chapter 5 onward. Use the Blackfi n simulator (either BF533 or BF537) to
create a new project fi le that includes the source codes available in directory c:\adsp\
chap1\problem1_5. Examine the source fi les and understand the differences between
the C function code in Experiment 1.1 and the assembly function code listed in this
exercise. Benchmark and compare the cycle count for performing the same dot product
with assembly code with that obtained with C code. Also benchmark the C code with
optimization enabled.

6. Implement the same project in the Blackfi n (either BF533 or BF537) EZ-KIT. Any dif-
ference in the cycle counts compared to the Blackfi n simulator?

Table 1.1 DSP Tasks in Embedded Systems

Embedded Systems DSP Tasks

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

1.6 More Exercise Problems 21

TEAM LinG

22 Chapter 1 Introduction

7. The Fibonacci series can be computed by adding the two successive numbers to form the
next number in the series. Generate the Fibonacci series for the fi rst 10 numbers of 1, 1,
2, 3, 5, 8, 13, 21, 34, 55 . . . , using the Blackfi n simulator, starting from the fi rst two
numbers. Verify your answer in the Blackfi n memory window.

8. Refer to the ADI manual on getting started with VisualDSP++ [34] and go through
all the experiments described in the manual. The manual can be found in the ADI
website.

TEAM LinG

Part A

Digital Signal
Processing Concepts

TEAM LinG

TEAM LinG

Chapter 2

Time-Domain Signals
and Systems

This chapter uses several noise reduction examples and experiments to introduce
important time-domain techniques for processing digital signals and analyzing
simple DSP systems. The detailed analysis and more advanced methods are intro-
duced in Chapter 3, using frequency-domain techniques.

2.1 INTRODUCTION

With the easy accessibility of increasingly powerful personal computers and the
availability of powerful and easy-to-use MATLAB [48] software for computer
simulations, we can now learn DSP concepts more effectively. This chapter uses
hands-on methods to introduce fundamental time-domain DSP concepts because
it is more interesting to examine real-world DSP applications with the help of
interactive MATLAB tools.

In particular, this chapter uses the latest powerful graphical user interface
(GUI) tool called Signal Processing Tool, which comes with the Signal Processing
Toolbox [49]. Because each experiment requires a set of general problem-solving
skills and related DSP principles, we provide multiple contexts including the necessary
DSP theory, computer simulations, and hands-on experiments for achieving thorough
understanding. Most of the DSP subjects are covered in the introduction to hands-on
exercises and experiments. These experiments are organized to introduce DSP
subjects from the simple introductory subjects in this chapter and gradually introduce
more complicated experiments and applications in subsequent chapters. Each
experiment introduces and applies just enough information at that time to complete
the required tasks. This is similar to using a “spiral learning” technique to continually
circle back and cover concepts in more and more depth throughout Chapters 2, 3,
and 4.

25

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

26 Chapter 2 Time-Domain Signals and Systems

Projects introduced in this chapter are based on designing simple fi lters to
remove broadband (white) noise that corrupts the desired narrowband (sinusoidal)
signal. First, a MATLAB example shows how to generate a digital signal and use
it to introduce a sampling theorem. A quiz is provided immediately afterward to
ensure that we understand the relationship between analog and digital worlds. A
hands-on experiment implements the moving-average fi lter with length L = 5, 10,
and 20, using the MATLAB code. We fi nd that when the fi lter is working for L =
5, it reduces more noise when L = 10 with higher undesired signal attenuation, but
are surprised to learn that the fi lter output approaches zero when L = 20. Finally,
for more complicated problems of adding different noises (sinusoidal and white) to
the speech, we have to enhance the desired speech. We use the simple moving-
average fi lter but fail. Now our interest is piqued to learn more advanced DSP
techniques in Chapters 3 and 4. In this fashion, we learn important DSP concepts
repeatedly at each project by doing hands-on experiments and exercises. We con-
tinually circle back the DSP subjects and cover concepts in more and more depth
throughout the book.

2.2 TIME-DOMAIN DIGITAL SIGNALS

A digital signal x(n) is defi ned as a function of time index n, which corresponds to
time at nTs seconds if the signal is sampled from an analog signal x(t) with the
sampling period Ts seconds. The sampling period can be expressed as

T
f

s
s

,=
1

(2.2.1)

where fs is the sampling frequency (or sampling rate) in hertz (or cycles per second).
For many real-world applications, the required sampling rates are defi ned by the
given applications. For example, the sampling rate for telecommunications is
8,000 Hz (or 8 kHz), and for compact discs (CDs) it is 44.1 kHz.

2.2.1 Sinusoidal Signals

An analog sine wave can be expressed as

x t A ft A t() = () = ()sin sin2π Ω , (2.2.2)

where A is the amplitude, f is the frequency of the sine wave in hertz, and Ω = 2πf
is the frequency in radians per second. If we sample this analog sine wave with
sampling rate fs, we obtain a digital sine wave x(n) with samples at time 0, Ts,
2Ts, . . . nTs, This digital signal can be expressed by replacing t with nTs in
Equation 2.2.2 as

x n x nT A fnT A n() ≡ () = () = ()s s ,sin sin2π ω (2.2.3)

where the digital frequency ω in radians per sample (or simply radians) is
defi ned as

TEAM LinG

2.2 Time-Domain Digital Signals 27

ω π π π ω π= = − ≤ ≤2 2f T f fs s, . (2.2.4)

It is important to note that the sampling rate must satisfy the Nyquist sampling
theorem expressed as

f fs N ,≥ 2 (2.2.5)

where fN is the maximum frequency component (or bandwidth) of the signal, which
is also called a Nyquist frequency. If fs < 2fN, frequency components higher than
fs/2 will fold back to the frequency range from 0 Hz to fs/2 Hz, which results in a
distortion called aliasing. The sampling theorem implies that digital signals can only
have meaningful representation of signal components from 0 Hz to fs/2 Hz.

EXAMPLE 2.1

We can generate a 200-Hz sine wave that is sampled at 4,000 Hz (or 4 kHz) using the
MATLAB program example2_1.m. A partial code is listed as follows:

fs = 4000; % sampling rate is 4 kHz
f = 200; % frequency of sinewave is 200 Hz
n = 0:1:fs/f; % time index n that cover one cycle
xn = sin(2*pi*f*n/fs); % generate sinewave
plot(n,xn,’-o’);grid on;

The generated sine wave is shown in Figure 2.1, in which the digital samples are marked by
open circles. Digital signal x(n) consists of those discrete-time samples; however, we usually

Time index nTs
0 2 4 6 8 10 12 14 16 18 20

x(t), analog waveform

sampling period, Ts

200 Hz sine wave sampled at 4,000Hz

A
m

pl
itu

de
 A

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

x(0)

x(Ts)

x(2Ts)

Figure 2.1 One cycle of 200-Hz sine wave sampled at 4,000 Hz. Signal samples are marked by
open circles

TEAM LinG

28 Chapter 2 Time-Domain Signals and Systems

plot a digital signal by connecting those samples with a line such as x(t) shown in
Figure 2.1.

Based on Equation 2.2.1, the sampling period Ts = 1/4,000 s. As shown in Figure 2.1,
one cycle of sine wave consists of 20 samples. Therefore, the period of sine wave is
(1/4,000) × 20 = 1/200 s, which is equivalent to the frequency of 200 Hz.

QUIZ 2.1

1. If the sine wave shown in Figure 2.1 is obtained by sampling an analog sine
wave with a sampling rate of 100 Hz, what is the frequency of the sine wave?
Why?

2. If the frequency of the sine wave shown in Figure 2.1 is 20 Hz, what is the
sampling period used for obtaining these digital samples? Why?

3. If we want to produce 3 s of analog sine wave by converting a digital sine
wave with a digital-to-analog (D/A) converter (DAC) with a sampling rate
of 4 kHz, how many digital samples are needed?

Quiz 2.1 shows that the frequency of a digital signal is dependent on the sam-
pling rate fs. Therefore, it is more convenient to use the normalized digital frequency
defi ned as

F f f F≡ () − ≤ ≤s ,2 1 1 (2.2.6)

with unit cycles per sample. Comparing this defi nition with Equation 2.2.4, we show
that ω = Fπ. For example, the digital frequency of the sine wave shown in Figure
2.1 is F = 0.1 or ω = 0.1π.

In many real-world applications, the operation of sampling analog signals is
implemented by an analog-to-digital (A/D) converter (ADC). Similarly, the opera-
tion of converting digital signals to analog forms is realized by a D/A converter.
These devices are introduced in Section 2.7 for real-time experiments.

2.2.2 Random Signals

The sine wave shown in Figure 2.1 is a deterministic signal because it can be defi ned
exactly by a mathematical equation (Eq. 2.2.3). In practice, the signals encountered
in the real world such as speech, music, and noise are random signals. In addition,
the desired signals are often corrupted by noises such as thermal noise generated
by thermal agitation of electrons in electrical devices. To enhance the signals, we
must use different techniques based on the characteristics of signals and noise to
reduce the undesired noise components.

In many practical applications, a complete statistical characterization of a
random variable may not be available. The useful measures associated with a
random signal are mean, variance, and autocorrelation functions. For stationary
signals, the mean (or expected value) is independent of time and is defi ned as

TEAM LinG

2.2 Time-Domain Digital Signals 29

m E x n

N
x x x N

N
x n

x

n

N

= ()[]

≅ () + () + + −()[] = ()
=

−

∑1
0 1 1

1

0

1

. . . , (2.2.7)

where the expectation operator E[.] extracts an average value. The variance is
defi ned as

σx x xE x n m E x n m2 2 2 2= () −()⎡⎣ ⎤⎦ = ()[]− . (2.2.8)

Note that the expected value of the square of a random variable is equivalent to the
average power. The MATLAB function mean(x) gives the average of the data in
vector x. The function y=var(x) returns the variance of the values in the vector
x, and the function std(x) computes the standard derivation σx.

The mean of a uniformly distributed random variable in the interval (X1, X2) is
given as

m
X X

x =
+2 1

2
. (2.2.9)

The variance is

σx
X X2 2 1

2

12
=

−()
. (2.2.10)

The MATLAB function rand generates arrays of random numbers whose elements
are uniformly distributed in the interval (0, 1). The function rand with no argu-
ments is a scalar whose value changes each time it is referenced. In addition,
MATLAB provides the function randn for generating normally distributed random
numbers with zero mean and unit variance.

QUIZ 2.2

1. Compute the mean and variance of random numbers generated by the
MATLAB function rand.

2. How do we generate the zero mean (mx = 0) and unit variance (σ2
x = 1)

random numbers that are uniformly distributed with rand?

EXAMPLE 2.2

Similar to Example 2.1, we generate 60 samples of a sine wave that is corrupted by noise,
using the MATLAB script example2_2.m. The generated noisy samples are saved in data
fi le sineNoise.dat, and the original sine wave and the corrupted sine wave are shown in
Figure 2.2.

TEAM LinG

30 Chapter 2 Time-Domain Signals and Systems

EXERCISE 2.1

1. Modify the MATLAB code example2_2.m to generate 3 s of sine wave
and 3 s of sine wave corrupted by noise, and save the generated data in fi les
sine3sec.dat and sineNoise3sec.dat, respectively, using ASCII
format.

2. Use the function save filename x to save the generated signals to the binary
fi les named sine3sec.mat and sineNoise3sec.mat. The MATLAB
code for generating these data fi les is given in sineNoiseGen.m.

3. In sineNoiseGen.m, we use the following code to mix sine wave with
noise

yn = xn + 0.25*randn(size(n));

The number 0.25 determines the signal-to-noise ratio (SNR), which can be
defi ned as

SNR
P

P
x

v
= ⎛

⎝
⎞
⎠10 10log , (2.2.11)

where Px and Pv denote the powers of signal and noise, respectively.
Modify the MATLAB code by replacing 0.25 with values 0.1, 0.5,
and 1, and save the generated signals in fi les sineNoise3sec_01.mat,

Time index n

A
m

pl
itu

de
 A

Sinewave corrupted by noise

noisy sinewave

sinewave

0 10 20 30 40 50 60
–1.5

–1

–0.5

0

0.5

1

1.5

Figure 2.2 Original (open circles) and corrupted (x) signals

TEAM LinG

2.2 Time-Domain Digital Signals 31

sineNoise3sec_05.mat, and sineNoise3sec_1.mat, respectively.
The modifi ed MATLAB program is given as sineNoiseGenSNR.m.

HANDS-ON EXPERIMENT 2.1

In this experiment, we use a hands-on exercise to introduce the Signal Processing Tool
(SPTool), which is an interactive GUI software for digital signal processing. The SPTool can
be used to analyze signals, design and analyze fi lters, fi lter the signals, and analyze the
spectrum of signals. We can open this tool by typing

sptool

in the MATLAB command window. The SPTool main window appears as shown in
Figure 2.3.

As indicated by Figure 2.3, there are three main functions that can be accessed within
the SPTool: The Signal Browser is for analyzing time-domain signals. We can also play
portions of signals with the computer’s audio hardware. The Filter Designer is for designing
or editing digital fi lters. This GUI supports most of the Signal Processing Toolbox fi lter
design methods. Additionally, we can design a fi lter by using the pole/zero editor (introduced
in Chapter 3) to graphically place poles and zeros on the z-plane. The Spectrum Viewer
uses the spectral estimation methods supported by the Signal Processing Toolbox to estimate
the power spectral density of signals.

In this experiment, we use the Signal Browser for listening and viewing the digital
signals. Signals from the workspace or fi le can be loaded into the SPTool by clicking on File
→ Import. An Import to SPTool window appears and allows the user to select the data

Figure 2.3 SPTool startup window

TEAM LinG

32 Chapter 2 Time-Domain Signals and Systems

from the fi le or workspace. For example, we can view the sine wave generated in Exercise
2.1 that was saved in the fi le sine3sec.mat. As shown in Figure 2.4, we click on the radio
button From Disk MAT-fi le Name in the Source region, browse to the folder that contains
the data fi le, and select the fi le sine3sec.mat. From the File Contents region, we highlight
xn (signal vector defi ned in sineNoiseGen.m) and click on the top arrow to import it to
the Data box. We then select fs (sampling rate) and click on the bottom arrow to import it
to the Sampling Frequency box. Note that the default vector name used by SPTool is
sig1, as shown in the Name box at the bottom right corner. We can change the name
by entering a meaningful name into this box. Finally, we click on OK and the vector
name sig1 is displayed in the Signals region.

To view the signal, we simply highlight the signal sig1, and click on View in the
Signals region of Figure 2.3. The Signal Browser window, shown in Figure 2.5, allows the
user to zoom-in and zoom-out the signal, read the data values via markers, display format,
and even play the selected signal with the computer’s sound card. For example, we can

click on the Play Selected Signal button to play the 3-s tone in sig1 with the
computer’s sound card.

EXERCISE 2.2

1. Use different tools available on the Signal Browser to evaluate the imported
signal sig1.

2. Import the saved fi le sineNoiseGen.mat from Exercise 2.1 to the SPTool,
name it sig2, and use Signal Browser to evaluate the noisy signal.

Figure 2.4 Import to SPTool window

TEAM LinG

3. Play both sine wave sig1 and noisy sine wave sig2 and observe their
differences.

4. Select both sig1 and sig2 in the SPTool window, and click on View to
evaluate these two signals in the same Signal Browser window. Note that
you may need to zoom in to see the differences between these two signals
in details.

5. Repeat Exercise 2 for signals saved in fi les sineNoise3sec_01.mat,
sineNoise3sec_05.mat, and sineNoise3sec_1.mat.

2.3 INTRODUCTION TO DIGITAL SYSTEMS

A DSP system (or algorithm) performs operations on digital signals to achieve pre-
determined objectives. In some applications, the single-input, single-output DSP
system processes an input signal x(n) to produce an output signal y(n). The general
relationship between x(n) and y(n) is described as

y n F x n() = ()[], (2.3.1)

where F denotes the function of the digital system. A block diagram of the DSP
system defi ned in Equation 2.3.1 is illustrated in Figure 2.6. The processing of
digital signals can be described in terms of combinations of fundamental operations

Figure 2.5 Signal Browser window

2.3 Introduction to Digital Systems 33

TEAM LinG

34 Chapter 2 Time-Domain Signals and Systems

including addition (or subtraction), multiplication, and time shift (or delay).
Therefore, a DSP system consists of the interconnection of adders, multipliers, and
delay units.

A digital fi lter alters the spectral content of input signals in a specifi ed manner.
Common fi ltering objectives include removing noises, improving signal quality,
extracting information from signals, and separating signal components that have
been previously combined. A digital fi lter is a mathematical algorithm that can be
implemented in digital hardware and software and operates on a digital input signal
for achieving fi ltering objectives. A digital fi lter can be classifi ed as being linear or
nonlinear, time invariant or time varying.

The objective of this section is to introduce several simple digital systems for
reducing noises and thus enhancing the desired signals.

2.3.1 Moving-Average Filters:
Structures and Equations

As shown in Figure 2.2, the effect of noise causes signal samples to fl uctuate from
the original values; thus the noise may be removed by averaging several adjacent
samples. The moving (running)-average fi lter is a simple example of a digital fi lter.
An L-point moving-average fi lter is defi ned by the following input/output (I/O)
equation

y n
L

x n x n x n L
L

x n l
l

L

() = () + −() + + − +()[] = −()
=

−

∑1
1 1

1

0

1

. . . , (2.3.2)

where each output signal y(n) is the average of L consecutive input signal
samples.

EXAMPLE 2.3

To remove the noise that corrupts the sine wave as shown in Figure 2.2, we implement the
moving-average fi lter defi ned in Equation 2.3.2 with L = 5, 10, and 20, using the MATLAB
code example2_3.m. The original sine wave, noisy sine wave, and fi lter output for L = 5
are shown in Figure 2.7. This fi gure shows that the moving-average fi lter with L = 5 is able
to reduce the noise, but the output signal is different from the original sine wave in terms of
amplitude and phase. In addition, the output waveform is not as smooth as the original sine
wave, which indicates that the moving-average fi lter has failed to completely remove all the
noise components.

In addition, we plot the fi lter outputs for L = 5, 10, and 20 in Figure 2.8 for comparison.
This fi gure shows that the fi lter with L = 10 can remove more noise than the fi lter with

Digital system
x(n) y(n)

Figure 2.6 General block diagram of digital system

TEAM LinG

Time index n

A
m

pl
itu

de
 A

0 10 20 30 40 50 60 70 80
–1.5

–1

–0.5

0

0.5

1

1.5
Moving-average filter, L = 5

noisy sinewave

sinewave
filter output

Figure 2.7 Performance of moving-average fi lter, L = 5

2.3 Introduction to Digital Systems 35

Time index n

A
m

pl
itu

de
 A

0 10 20 30 40 50 60 70 80
–1

–0.5

0

0.5

1

1.5
Moving-average filters, L = 5, 10, 20

L = 5

L = 10

L = 20

Figure 2.8 Moving-average fi lter outputs, L = 5, 10, and 20

TEAM LinG

36 Chapter 2 Time-Domain Signals and Systems

L = 5 because the fi lter output is smoother for L = 10; however, the amplitude of the fi lter
output is further attenuated. When the fi lter length L is increased to 20, the sine wave
component is attenuated completely.

QUIZ 2.3

1. Figure 2.7 shows that the fi ltered (L = 5) output sine wave has an amplitude
similar to that of the original sine wave, but is shifted to the right by 2
samples. Figure 2.8 also shows that the fi ltered output for L = 10 has further
shifted to the right. Why?

2. Figure 2.8 shows that the fi lter with L = 10 produces smoother output than
the fi lter with L = 5. Why? However, the amplitude of the output sine wave
is further attenuated. Why?

3. Why does the fi lter output with L = 20 approach 0 after 20 samples? (Hint:
Plot 20 samples of the waveform and you may fi nd it exactly covers one
period of sine wave. This question is examined further in Chapter 3 with
frequency-domain techniques.)

We answer some questions in this chapter; however, the best answer is related
to the frequency response of the fi lter, which is introduced in Chapter 3.

EXERCISE 2.3

1. Modify the MATLAB code example2_3.m by decreasing SNR as
follows:

xn = sn + randn(size(n));

Run the code and compare the fi lter outputs with those given in Example
2.3. We observe that the moving-average fi lter has failed to reduce the noise
to an acceptable level, even with L = 10. Why?

2. Modify example2_3.m by increasing the length of signal from 80 samples
to 3 s of samples. Run the code with different SNR settings, and save the
results using .mat format.

3. Import the saved data fi les generated in Exercise 2 into SPTool, and evaluate
and play these waveforms.

Implementation of Equation 2.3.2 requires L − 1 additions and L memory loca-
tions for storing signal sequence x(n), x(n − 1), . . . , x(n − L + 1) in a memory buffer.
As illustrated in Figure 2.9, the signal samples used to compute the output signal
y(n) at time n are L samples included in the window at time n. These samples are
almost the same as the samples used in the previous window at time n − 1 to compute
y(n − 1), except that the oldest sample x(n − L) in the window at time n − 1 is
replaced by the newest sample x(n) of the window at time n. Thus Equation 2.3.2
can be computed as

TEAM LinG

y n y n
L

x n x n L() = −() + () − −()[]1
1

. (2.3.3)

Therefore, the averaged signal, y(n), can be computed recursively based on the
previous result y(n − 1). This recursive equation can be realized by using only
two additions. However, we need L + 1 memory locations for keeping L + 1
signal samples {x(n), x(n − 1) . . . x(n − L)} and another memory location for storing
y(n − 1).

The recursive equation given in Equation 2.3.3 is often used in DSP algorithms,
which involves the output feedback term y(n − 1) for computing current output signal
y(n). This type of fi lters is discussed further in Chapter 3.

2.3.2 Digital Filters

The I/O equation given in Equation 2.3.2 can be generalized as a difference equation
with L parameters, expressed as

y n b x n b x n b x n L

b x n l

L

l
l

L

() = () + −() + + − +()

= −()

−

=

−

∑
0 1 1

0

1

1 1. . .

, (2.3.4)

where bl are the fi lter coeffi cients. The moving-average fi lter coeffi cients are all
equal as bl = 1/L. We can use fi lter design techniques (introduced in Chapter 4) to
determine different sets of coeffi cients for a given specifi cation to achieve better
performance.

Defi ne a unit impulse function as

δ n
n

n
() =

=
≠{1 0

0 0

,

,
. (2.3.5)

Substituting x(n) = δ(n) into Equation 2.3.4, the output is called the impulse response
of the fi lter, h(n), and can be expressed as

h n b n l b b bl L
l

L

() = −() = −
=

−

∑ δ 0 1 1
0

1

0 0, ,... , , ,..., (2.3.6)

Therefore, the length of the impulse response is L for the I/O equation defi ned in
Equation 2.3.4. This type of fi lter is called a fi nite impulse response (FIR) fi lter.

Time

Window at time n-1

Window at time n

n

n-1

n-L+1

n-L

Figure 2.9 Concept of moving window in signal processing

2.3 Introduction to Digital Systems 37

TEAM LinG

38 Chapter 2 Time-Domain Signals and Systems

The impulse responses of the fi lter, h(n), are the same as the FIR fi lter coeffi cients
(weights or taps), bl, l = 0, 1, . . . , L − 1.

EXAMPLE 2.4

The moving-average fi lter defi ned by the I/O equation defi ned in Equation 2.3.2 is an FIR
fi lter of length L (order L − 1) with the same coeffi cients bl = 1/L. Consider an FIR Hanning
fi lter of length L = 5 with the coeffi cient set {0.1 0.2 0.4 0.2 0.1}. Similar to Example 2.3,
we implement this fi lter with MATLAB script example2_4.m and compare the perfor-
mance with the moving-average fi lter of the same length. The outputs of both fi lters are
shown in Figure 2.10. The results show that the fi ve-point Hanning fi lter has less attenuation
than the moving-average fi lter. Therefore, we show that better performance can be achieved
by using different fi lter coeffi cients derived from fi lter design techniques.

HANDS-ON EXPERIMENT 2.2

Exercise 2.3 shows that the simple moving-average fi lter has failed to enhance signals with
low SNR. In this experiment, we use hands-on exercises based on the SPTool for designing
FIR fi lters for this purpose. Following procedures similar to those used in Experiment 2.1,
we import four data fi les (generated in Exercise 2.1), sineNoise3sec_01.mat, sine-
Noise3sec.mat, sineNoise3sec_05.mat, and sineNoise3sec_1.mat, into SPTool,
and name them sig1, sig2, sig3, and sig4, respectively. We display the waveforms and
play these signals.

Time index n

A
m

pl
itu

de
 A

0 10 20 30 40 50 60 70 80
–1.5

–1

–0.5

0

0.5

1

1.5
FIR filters, L = 5

Hanning filter

Moving-average filter

Figure 2.10 Comparison of moving-average and Hanning fi lters, L = 5

TEAM LinG

As shown in Figure 2.3, the Filter Designer (in middle column) can be used for design-
ing digital fi lters. We can simply click on the New button to design a new fi lter or the Edit
button for an existing fi lter under the Filters column in the SPTool to open the Filter
Designer window as shown in Figure 2.11. We can design low-pass, high-pass, bandpass,
and bandstop fi lters by using different fi lter design algorithms, which are introduced in
Chapter 4. In this experiment, we learn how to design FIR fi lters for enhancing sinusoidal
signals. As shown in Figure 2.11, we enter 4000 in the Sampling Frequency box. In the
Specifi cations region, we use 300 as Passband Fp, 400 as Stopband Fs, and 60 as Rs. Note
that the designed fi lter is called filt1, as shown in the Filter region, which will also appear
in the Filters region of the SPTool window.

Once the fi lter has been designed, the frequency specifi cation and other fi lter
characteristics can be verifi ed by using the Filter Viewer. Selecting the name (filt1) of
the designed fi lter and clicking on the View button under the Filters column in the SPTool
will open the Filter Viewer window as shown in Figure 2.12 for analyzing the designed
fi lter.

When the fi lter characteristics have been confi rmed, we can then select the input signal
(sig1) and the designed fi lter (filt1). We click on the Apply button to perform fi ltering and
generate the output signal. The Apply Filter window, shown in Figure 2.13, allows us to
specify the fi le name of the output signal (sig1_out). The Algorithm list provides a choice
of several fi lter structures, which are briefl y introduced in the next section and discussed in
detail in Chapter 4. We repeat this process for sig2, sig3, and sig4 and produce fi lter
outputs sig2_out, sig3_out, and sig4_out, respectively. We can evaluate the fi lter
performance by viewing and playing the waveforms.

Figure 2.11 Filter Designer window

2.3 Introduction to Digital Systems 39

TEAM LinG

40 Chapter 2 Time-Domain Signals and Systems

EXERCISE 2.4

1. View the input/output pairs, for example, sig1 with sig1_out, to compare
the fi lter input and output on the same graph. Repeat this for other pairs.

2. Design a bandpass fi lter as shown in Figure 2.14. Use the designed fi lter to
reduce noise in four fi les. Evaluate the fi lter performance by viewing the
input/output pairs and also playing the tones.

Figure 2.12 Filter Viewer window

Figure 2.13 Apply Filter window

TEAM LinG

3. Compare the performance of the low-pass fi lter shown in Figure 2.11 and
the bandpass fi lter shown in Figure 2.14. Which fi lter has better perfor-
mance? Why?

4. Compare the performance of the bandpass fi lter with the performance of the
moving-average fi lter.

2.3.3 Realization of FIR Filters

As mentioned above, a DSP system consists of the interconnection of adders, mul-
tipliers, and delay units. In this section, we use the FIR fi lter given in Equation 2.3.4
as an example to show how to realize an FIR fi lter by using these basic building
blocks.

A sample-by-sample addition of two sequences, x1(n) and x2(n), is illustrated in
Figure 2.15(a), a multiplier is illustrated in Figure 2.15(b), and a delay unit is illus-
trated in Figure 2.15(c), where the box labeled z−1 represents a unit delay. A delay
by M units can be implemented by cascading M delay units in a row, confi gured as
a fi rst-in fi rst-out signal (or delay) buffer. This buffer is called the tapped-delay line,
or simply the delay line. With these basic units, the FIR fi lter defi ned in Equation
2.3.4 can be realized in Figure 2.16.

The FIR fi ltering defi ned in Equation 2.3.4 is identical to the linear convolution
of two sequences, h(n) and x(n), defi ned as

Figure 2.14 Bandpass fi lter design

2.3 Introduction to Digital Systems 41

TEAM LinG

42 Chapter 2 Time-Domain Signals and Systems

y n x n h n x i h n i h i x n i
i i

() = () () = () −() = () −()
=−∞

∞

=−∞

∞

∑ ∑* , (2.3.7)

where * denotes linear convolution. For causal sequences (values equal to zero for n
< 0), the summation in Equation 2.3.7 starts from i = 0.

EXAMPLE 2.5

Given two sequences h(n) = {1, 2, 2, 1} and x(n) = {1, 2, 3, 4} for n = 0, 1, 2, 3, the linear
convolution operation defi ned by Equation 2.3.7 can be evaluated with the following graph-
ical approach:

x n1()

x n2 ())()(1 nxny = + x n2 ()

(a) Adder

α)()(nxny α=x(n)

(b) Multiplier

x(n) y(n)=x(n-1)
1−z

(c) Unit delay

Figure 2.15 Block diagram of basic units of digital systems: an adder (a), a multiplier (b), and a
unit delay (c)

1−z

x(n) y(n)

x(n-1)
1b

0b

x(n-2)
2b

1−Lb
x(n-L+1)

1−z

1−z

Figure 2.16 A block diagram of FIR fi lter with length L

TEAM LinG

1. Reverse the time sequence x(i) (refl ected about the origin) to obtain x(−i).

2. Shift x(−i) to the right by n samples if n > 0 (or to the left n samples if n < 0) to
form the sequence x(n − i).

3. Compute the products of h(i)x(n − i) for those i that have nonzero overlap between
h(i) and x(n − i).

4. Summing all the products h(i)x(n − i) yields y(n).

Using this graphical method, we have

y(0) = h(0)x(0) = 1 × 1 = 1
y(1) = h(0)x(1) + h(1)x(0) = 1 × 2 + 2 × 1 = 4
y(2) = h(0)x(2) + h(1)x(1) + h(2)x(0) = 1 × 3 + 2 × 2 + 2 × 1 = 9
y(3) = h(0)x(3) + h(1)x(2) + h(2)x(1) + h(3)x(0) = 1 × 4 + 2 × 3 + 2 × 2 + 1 × 1 = 15
y(4) = h(1)x(3) + h(2)x(2) + h(3)x(1) = 2 × 4 + 2 × 3 + 1 × 2 = 16
y(5) = h(2)x(3) + h(3)x(2) = 2 × 4 + 1 × 3 = 11
y(6) = h(3)x(3) = 1 × 4 = 4
y(n) = 0 for n = 7, 8, . . .

In general, if h(n) and x(n) are two sequences of length L and N, respectively, the result-
ing sequence y(n) is of length L + N − 1. The MATLAB function y = conv(h, x) imple-
ments the linear convolution of two sequences in vectors h and x, with the output sequence
stored in vector y.

EXAMPLE 2.6

Considering the sequences given in Example 2.5, the linear convolution of h(n) with x(n)
can be implemented by using MATLAB (example2_6.m) as follows:

xn = [1 2 3 4];
hn = [1 2 2 1];
yn = conv(xn, hn)

Execution of this program results in

>> example2_6
yn =
 1 4 9 15 16 11 4

In many real-world applications, the designed FIR fi lters have symmetric coef-
fi cients as follows:

b bl L l= − −1 , (2.3.8)

for l = 0, 1, . . . , L/2 − 1 if L is an even number or (L − 1)/2 if L is an odd number.
In addition, those coeffi cients may be antisymmetric (or negative symmetric),
expressed as

b bl L l= − − −1 . (2.3.9)

Therefore, there are four types of symmetric FIR fi lters depending on whether L is
even or odd and whether coeffi cients bl have positive or negative symmetry. We
revisit this issue in Chapter 3.

2.3 Introduction to Digital Systems 43

TEAM LinG

44 Chapter 2 Time-Domain Signals and Systems

EXERCISE 2.5

1. Realize the moving-average fi lter defi ned by both Equations 2.3.2 and 2.3.3
with L = 5.

2. Realize the Hanning fi lter defi ned in Example 2.4.

3. Draw a signal-fl ow diagram of a positive symmetric FIR fi lter with L = 5.

4. Draw a signal-fl ow diagram of a positive symmetric FIR fi lter with L = 6.

5. Draw a signal-fl ow diagram of a positive symmetric FIR fi lter with general
length L.

For the symmetric FIR fi lter defi ned in Equation 2.3.8, the difference equation
given in Equation 2.3.4 can be simplifi ed as

y n b x n b x n b x n L

b x n x n L b
L() = () + −() + + − +()

= () + − +()[] +
−0 1 1

0 1

1 1

1

. . .

xx n x n L−() + − +()[] +1 2 . . . (2.3.10)

This shows that the number of multiplications required to implement the symmetric
FIR fi ltering can be reduced to half if L is even. In addition, we only have to store
half the amount (L/2) of coeffi cients because they are symmetric.

QUIZ 2.4

1. Does a symmetric FIR fi lter save the required number of additions?

2. Rewrite Equation 2.3.10 for antisymmetric FIR fi lters.

3. Redraw a signal-fl ow diagram for antisymmetric FIR fi lters if L is an even
number.

4. Redraw a signal-fl ow diagram for antisymmetric FIR fi lters if L is an odd
number.

A linear system is a system that satisfi es the superposition principle, which
states that the response of the system to a weighted sum of signals is equal to the
corresponding weighted sum of the responses of the system to each of the individual
input signals. That is, a system is linear if and only if

F x n x n F x n F x nα α α α1 1 2 2 1 1 2 2() + ()[] = ()[]+ ()[] (2.3.11)

for any arbitrary input signals x1(n) and x2(n) and for any arbitrary constants α1 and
α2. If the input is the sum (superposition) of two or more scaled sequences, we
can fi nd the output due to each sequence alone and then add the separate scaled
outputs.

QUIZ 2.5

Identify whether the following systems are linear or nonlinear:

TEAM LinG

1. y(n) = b0x(n) + b1x(n − 1)

2. y(n) = b0x(n) + b1x2(n)

3. y(n) = b0x(n) + b1x(n)y(n − 1)

We have introduced moving-average, Hanning, low-pass, and bandpass fi lters
in this Section. These digital fi lters can be classifi ed as linear, time-invariant (LTI)
fi lters. A digital system is time invariant if its input-output characteristics do not
change with time.

2.4 NONLINEAR FILTERS

In this section, we present a simple nonlinear fi lter, the median fi lter, which is very
effective for reducing impulse noises.

EXAMPLE 2.7

Example 2.2 shows that the desired sine wave is corrupted by random noise, which can be
reduced by linear FIR fi lters. For some real-world applications, the signal is corrupted by
impulse noise as shown in Figure 2.17. Similar to Example 2.3, we use a moving-average
fi lter with L = 5 for the noisy sine wave (see example2_5.m). Figure 2.17 clearly shows
that the energy presented in the impulse noise will still infl uence the linear fi lter output; thus
the linear fi lter may not be as effective for reducing impulse noises.

Time index n

A
m

pl
itu

de
 A

Moving-average filtering for impulse noise

0 10 20 30 40 50 60
–6

–4

–2

0

2

4

6

8

Impulse noise

Moving-average filter output

Original sinewave

Figure 2.17 Performance of moving-average fi lter for reducing impulse noise

2.4 Nonlinear Filters 45

TEAM LinG

46 Chapter 2 Time-Domain Signals and Systems

An effi cient technique for reducing impulse noise is the use of a nonlinear median fi lter.
An L-point running median fi lter can be implemented as a fi rst-in fi rst-out buffer of length
L to store input signals x(n), x(n − 1), . . . , x(n − L + 1). These samples are moved to a new
sorting buffer, where the elements are ordered by magnitude. The output of the running
median fi lter y(n) is simply the median of the L numbers in the sorting buffer. Medians will
not smear out discontinuities in the signal if the signal has no other discontinuities within
L/2 samples and will approximately follow low-order trends in the signal. Note that running
medians is a nonlinear algorithm that does not obey the superposition property described by
Equation 2.3.11.

EXAMPLE 2.8

MATLAB provides a function medfilt1 for implementing a one-dimensional median fi lter.
The following command

y = medfilt1(x,L);

returns the output of the order L (default is 3), one-dimensional median fi ltering of x. The
output vector y is the same size as x; for the edge points, zeros are assumed to the left and
right of x.

A fi ve-point median fi lter is implemented in example2_8.m for reducing the same
impulse noise shown in Figure 2.17. The original sine wave, the corrupted sine wave, and
the median fi lter output are shown in Figure 2.18. It is clearly shown that the nonlinear
median fi lter is very effective in removing impulse noise.

Time index n

A
m

pl
itu

de
 A

Median filtering of impulse noise

Impulse noise

0 10 20 30 40 50 60
–6

–4

–2

0

2

4

6

8

Original sinewave Filter output

Figure 2.18 Performance of median fi lter for impulse noise

TEAM LinG

Although median fi lters generally preserve sharp discontinuities in a signal, they often
fail to provide suffi cient reduction of broadband noises. A good compromise is to use a
combination of a linear fi lter such as a Hanning fi lter and a nonlinear median fi lter. See
Exercise 2.6 for details.

EXERCISE 2.6

1. Generate a noisy sine wave that is corrupted by random noise and impulse
noise.

2. Apply the 5-point moving-average fi lter or the Hanning fi lter to the noisy
sine wave. Is it effective?

3. Apply the 5-point median fi lter to the noisy sine wave. Is it effective?

4. Apply both the 5-point moving-average fi lter and the median fi lter to the
noisy sine wave. These two fi lters are connected in cascade form as
illustrated in Figure 2.19. Compare the result with the results obtained in
Exercises 2 and 3.

5. Change the order of fi lters shown in Figure 2.19, that is, use the moving-
average fi lter fi rst. Compare the results with Exercise 4. Which one is better?
Why?

2.5 MORE HANDS-ON EXPERIMENTS

We used simple linear fi lters in Section 2.3 to enhance sinusoidal signals that
were corrupted by random noise and introduced a nonlinear median fi lter in
Section 2.4 for reducing impulse noise. In this section, we present different
signals corrupted by noises and show that these fi lters have diffi culty in solving the
problems. This will give us the motivation to learn advanced fi lters in Chapters 3
and 4.

EXAMPLE 2.9

In this example, we use the MATLAB code mulSineGen.m for simulating the desired sine
wave that is corrupted by another sine wave at a different frequency. This program generates
the following digital signals and saves the fi les in both ASCII and .mat formats:

1. 200-Hz sine wave is corrupted by 400-Hz sine wave with sampling rate of 4,000 Hz
(name the fi les sine200plus400at4k.dat and .mat).

Median
filter

Moving-average
filter

x(n) y(n)

Figure 2.19 Cascade of median and moving-average fi lters

2.5 More Hands-On Experiments 47

TEAM LinG

48 Chapter 2 Time-Domain Signals and Systems

2. 200-Hz sine wave is corrupted by 400-Hz sine wave with sampling rate of 1,000 Hz
(sine200plus400at1k.dat and .mat).

3. 200-Hz sine wave is corrupted by 60-Hz power line hum with sampling rate of
4,000 Hz (sine200plus60at4k.dat and .mat).

EXERCISE 2.7

1. Import the three fi les in Example 2.9 into SPTool, view, and play the
signals.

2. Design a moving-average fi lter to reduce the undesired tonal noise. Is the
fi lter working? Why not?

3. In Exercise 2.4, we designed a bandpass fi lter for enhancing the sinusoidal
signal corrupted by random noise, which achieved better performance than
the moving-average fi lters. In this exercise, we use SPTool to design a band-
stop fi lter to attenuate the undesired sinusoidal noises. For example, when a
200-Hz sine wave is corrupted by a 400-Hz sine wave, we can reduce the
undesired 400-Hz sine wave by designing a bandstop fi lter at 400 Hz. Design
different bandstop fi lters for other cases.

4. Design a low-pass fi lter to attenuate the 400-Hz sine wave and pass the
desired 200-Hz sinewave.

5. Design a high-pass fi lter to attenuate 60-Hz hum, thus enhancing the desired
200-Hz sine wave.

6. Similar to Exercise 5, design a bandpass fi lter to attenuate 60-Hz hum.

7. Similar to Exercise 5, design a bandstop fi lter to attenuate 60-Hz hum.

8. Evaluate the performance of fi lters designed in Exercises 5, 6, and 7 and
compare the required fi lter lengths.

EXERCISE 2.8

In MATLAB script exercise2_8.m, a speech fi le timit1.asc (with 8-kHz
sampling rate) is corrupted by (1) 1,000-Hz tonal noise (the corrupted signal is saved
in data fi le speech_tone.mat) and (2) random noise (the corrupted signal is
saved in data fi le speech_random.mat).

1. Use SPTool to view and play the original speech and the speech corrupted
by tonal noise and random noise.

2. Design and use moving-average, Hanning, and nonlinear median fi lters to
reduce noise. Are these fi lters working?

3. Design a bandstop fi lter at 1,000 Hz for reducing the tonal noise in speech_
tone.mat. View and play the result. Is this fi lter working? Why?

4. Are you able to design a digital fi lter with SPTool to enhance the speech
signal that was corrupted by random noise? Why not?

TEAM LinG

EXAMPLE 2.10

Similar to Example 2.1, we use the MATLAB function square to generate a square wave
with two periods (see example2_10.m). The generated waveform is displayed in Figure
2.20 with the MATLAB function stem.

Similar to Example 2.3, we use this square as input to the moving-average fi lter with
L = 5. The output waveform is shown in Figure 2.21, where we observe that the corners of
the square wave are smoothed.

EXERCISE 2.9

1. Modify the MATLAB code example2_10.m by increasing the length
from 40 to 8,000, and use the MATLAB function soundsc to play the
generated signal.

2. Modify the MATLAB code example2_10.m by generating a 200-Hz sine
wave of length 8,000, and use the MATLAB function soundsc to play the
generated signal. Observe the differences as compared with the square wave
played in Exercise 1.

3. In Figure 2.20, we plot the square wave with stem. Display the waveform
with the function plot and observe and explain the differences.

4. In Figure 2.21, we use the moving-average fi lter with L = 5. Try different
fi lter lengths, display and play the outputs, and compare the differences.

200 Hz square wave sampled at 4000 Hz

Time index nT

A
m

pl
itu

de
 A

0
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40

Figure 2.20 A square wave

2.5 More Hands-On Experiments 49

TEAM LinG

50 Chapter 2 Time-Domain Signals and Systems

5. Use the Hanning fi lter defi ned in Example 2.4 to fi lter the square wave and
compare the result with the output from the moving-average fi lter.

6. Add a white noise to the square wave and use the moving-average fi lter to
reduce noise. Is this fi lter effective? Why?

2.6 IMPLEMENTATION OF MOVING-AVERAGE
FILTERS WITH BLACKFIN SIMULATOR

In this section, we implement the moving-average fi lters with the Blackfi n simulator
(introduced in Chapter 1) to verify the correctness of programs written in C and
assembly. We write a C program that implements the moving-average fi lter and test
it on data fi les that contain the sine wave corrupted by noise. The processed signal
from the simulator is saved in new data fi les and compared with the original one to
evaluate fi lter performance.

HANDS-ON EXPERIMENT 2.3

In this experiment, we write a simple moving-average fi lter program in C based on
Equation 2.3.2. This C program (ma.c) reads in the input noisy signal from the data fi le,
sineNoise3sec_4k.dat, which consists of a sine wave and noise as described in

Moving-average filter, L = 5

Time index n

A
m

pl
itu

de
 A

0
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40

Figure 2.21 Output from the moving-average fi lter with L = 5

TEAM LinG

Hands-On Experiment 2.1. A moving-average fi lter of length L = 5 is implemented to remove
the noise. The fi lter output is stored in the data fi le filterout.dat. Because the fi le is long,
users can use the Blackfi n compiled simulator for BF533 to speed up the simulation.

Open the project fi le exp2_3.dpj in directory c:\adsp\chap2\exp2_3. Study the
program to understand its fl ow and statements. Note that the coeffi cients of the fi lter (lpf)
are represented in integer format (fract16), instead of the double-precision fl oating-point
(64 bits) format used in the MATLAB environment. Integer format is commonly used in
programming fi xed-point digital signal processors like the Blackfi n processor. The DSP run
time library for the Blackfi n processor is written in integer format. A detailed explanation
of the different number formats used in the Blackfi n processor is provided in Chapter 4.

Set the options as stated in Hands-On Experiment 1.1. Build the project and run the

loaded code by clicking on the run icon . Users can view both the input and processed
data by using the graphical display of the VisualDSP++. With the steps described in Hands-
On Experiment 1.3, a single graph is created to show both the input and output signals, as
shown in Figure 2.22. Users are encouraged to explore different plotting features provided
in the VisualDSP++.

The VisualDSP++ simulator can play back the displayed waveform by exporting the
data to the sound card. First, display the input signal in and the output signal out in sepa-
rate plots. Confi gure the sampling rate to 4,000 Hz. Right-click on the plot, and click on
Export Æ Sound Card Æ Export. Extend the duration of play back.

EXERCISE 2.10

1. Modify the length of the moving-average fi lter to L = 10 and 20. Compare
the results with those shown in Figure 2.8.

2. Instead of using the moving-average fi lter, implement the 5-tap FIR Hanning
fi lter defi ned in Example 2.4 with the VisualDSP++ simulator and verify its
result.

3. Replace the DSP library function fir_fr16 from the main program by a
simple C code that implements Equation 2.3.3.

A
m

pl
itu

de

0 4 8 12 16 20 24 28

Time (Sec)

Input and Output

32 36 40 44 48 52 56

Output
Input

0.0*100

2.5*104

–2.5*104

*10–3

Figure 2.22 Graphical plot of the input and output signals

2.6 Implementation of Moving-Average Filters 51

TEAM LinG

52 Chapter 2 Time-Domain Signals and Systems

2.7 IMPLEMENTATION OF MOVING-AVERAGE
FILTERS WITH BF533/BF537 EZ-KIT

We used the Blackfi n simulator to test the functionality of the moving-average fi lter
in Section 2.6. In this section, we examine how to acquire and process signal in real
time with the EZ-KIT. The Blackfi n EZ-KIT provides a platform to take in a real-
world signal and process it in real time. We can evaluate the effects of fi ltering by
evaluating the input and output signals. In the following experiments, a noisy signal
is sampled by the EZ-KIT via the audio I/O channel, and the Blackfi n processor
executes the moving-average fi lter to remove the tonal noise in the signal. The pro-
cessed signal from the EZ-KIT is passed to a headphone (or loudspeaker) for real-
time playback. Therefore, the EZ-KIT performs the entire DSP chain of A/D
conversion, processing, and D/A conversion. More details on the process of CODEC
(coder/decoder, including A/D and D/A converters and the associated low-pass
fi lters) and how the digital sample is sampled and processed are provided in
Chapters 6 and 7.

It is important to note that the EZ-KIT can only support a sampling rate of 48
or 96 kHz. In our experiments, the CODEC is set to 48 kHz by the initialization
program. Detailed description and explanation of the CODEC settings is given in
Chapter 7.

HANDS-ON EXPERIMENT 2.4

In this experiment, we connect devices such as the sound card and headphone to the ADSP-
BF533 EZ-KIT board. The EZ-KIT has four input channels (or two stereo pairs) and six
output channels (or three stereo pairs). In this experiment, only one pair of input and output
channels are used, as indicated in Figure 2.23. Note that right connectors are needed for
connecting the devices to the EZ-KIT. Make sure that pins 5 and 6 of SW9 on the EZ-KIT

Left channel (white)

Right channel (red)

1
C

D
A

2
C

D
A

1
C

A
D

2
C

A
D

3
C

A
D

IN (J5) OUT (J4)

Output of
sound card

L

R

L

RHeadphones or speakers

Front view of the
EZ-KIT Lite

RCA jacks
1/8 inch plug 1/8 inch plug

RCA jacks

Figure 2.23 Connecting the input and output audio jacks of the BF533 EZ-KIT Lite

TEAM LinG

are set to ON (i.e., pins 5 and 6 are in line with the rest of the pins in SW9). Please refer to
Figure 1.10 in Chapter 1 for the location of SW9 in the BF533 EZ-KIT.

If the BF537 EZ-KIT is used, there are only one pair of stereo input and one pair of
stereo output channels available, as shown in Figure 2.24. All the connectors used in the
BF537 EZ-KIT are 1/8-in. stereo jack.

Activate the VisualDSP++ for the BF533 (or BF537) EZ-KIT target and open exp2_
4_533.dpj (or exp2_4_537.dpj) in directory c:\adsp\chap2\exp2_4_533 (or c:\
adsp\chap2\exp2_4_537). Build the project, and the executable fi le (exp2_4_533.dxe
or exp2_4_537.dxe) is automatically loaded into the memories of the EZ-KIT. Select
speech_tone_48k.wav in directory c:\adsp\audio_files and play this wave fi le
continuously on the computer. Note that the fi le speech_tone_48k.wav is derived from
the data fi le speech_tone.mat generated in Exercise 2.8. A MATLAB fi le, convert_
ez_kit.m, is used to convert the data fi le into a wave fi le sampling at 48 kHz. Examine this
MATLAB program and see how to convert the 8-kHz sampling rate to 48 kHz. Run the
program and listen to the original wave fi le from the headphone. See the exact location of
the switches in BF533 and BF537 EZ-KITs in Figure 1.10 and Figure 1.11, respectively. Press
SW5 on the BF533 EZ-KIT (or SW11 on the BF537 EZ-KIT) to activate the moving-average
fi lter; listen to the processed signal again, and compare it with the original wave fi le by
pressing SW4 on the BF533 EZ-KIT (or SW10 on the BF537 EZ-KIT). Explain why the
moving-average fi lter of length L = 48 is required to attenuate the 1,000 Hz sine wave from
the speech signal sampling at 48 kHz.

EXERCISE 2.11

1. Modify the source code in the project, exp2_4_533.dpj (or exp2_4_
537.dpj), to implement moving-average fi lters of L = 24 and 36. Listen to
the differences and observe the output signals, using the VisualDSP++ plots.
Are we able to remove the sine wave by using the moving-average fi lters of
L = 24 and 36? Why?

NI
eni

L

Output of
sound card Speakers or headphones

1/8 inch plug 1/8 inch plug

BF537 EZ-KIT

T
U

O
eni

L

Figure 2.24 Connecting the input and output audio jacks of the BF537 EZ-KIT Lite

2.7 Implementation of Moving-Average Filters 53

TEAM LinG

54 Chapter 2 Time-Domain Signals and Systems

2. Benchmark the cycle count needed to complete processing of one sample,
using L = 24, 36, and 48.

3. Instead of using the I/O equation (Eq. 2.3.2) to implement the moving-
average fi lter, a more computational effi cient equation (Eq. 2.3.3) can be
used. Implement the moving-average fi lter with Equation 2.3.3 in the
EZ-KIT. Benchmark its cycle count, and comment on the differences.

4. Design a bandstop fi lter centered at 1,000 Hz with a sampling frequency of
48 kHz using SPTool to reduce the tonal noise in speech_tone_48k.wav.

2.8 MOVING-AVERAGE FILTER IN LABVIEW
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

Digital fi lters can be easily simulated, prototyped, deployed, and tested in LabVIEW.
The following two experiments illustrate the process for simulating and prototyping
a moving-average fi lter for the Blackfi n BF533/BF537 processor. First, the
Digital Filter Design toolkit is used to develop and simulate the fi lter on the com-
puter and test its performance with simulated input signals. Next, the LabVIEW
Embedded Module for Blackfi n Processors is used to program the Blackfi n EZ-KIT
to perform real-time audio processing that fi lters an audio signal corrupted by a sine
wave.

HANDS-ON EXPERIMENT 2.5

In this experiment, we design a moving-average fi lter to remove a 1,000-Hz tone that muffl es
the speech signal. An interactive LabVIEW application has been created to simulate and test
fi ltering results with the actual audio signal.

To begin designing and simulating the fi lter, open the executable fi le MA_Filter_
Sim.exe, located in directory c:\adsp\chap2\exp2_5. This LabVIEW application was
created with LabVIEW for Windows and the LabVIEW Digital Filter Design toolkit. The
simulator has been preloaded with the 3 s of audio fi le, speech_tone_48k.wav, used in
previous VisualDSP++ experiments. If there are loudspeakers attached to the computer, click
on Play to hear the audio. Do you hear the sine wave obscuring the speech?

Use the Taps control to experiment with different numbers of FIR fi lter taps. Change
the Apply Filter? control to Filtered Signal to see the output signal after the fi lter is applied.
Click on Play again to hear the fi ltered signal. Note that the 48-tap moving-average
fi lter places a zero precisely on the 1,000-Hz tone that distorts the speech, as shown in

Figure 2.25. Use the Zoom tool to zoom in on the graph or the Autoscale feature to
see the entire signal. We can also load a new audio fi le (.wav), and use the same moving-
average fi lter to fi lter the wave fi le and listen to the results. Compare the fi ltered output with
the original signal and comment on the results.

TEAM LinG

HANDS-ON EXPERIMENT 2.6

In this experiment, we use the LabVIEW Embedded Module for Blackfi n Processors with
the Blackfi n EZ-KIT to test the designed moving-average fi lter. Based on the results from
Hands-On Experiment 2.5, we implement a 48-tap moving-average fi lter on the BF533/
BF537 EZ-KIT for real-time experiments.

When implementing audio experiments on the Blackfi n processor, a good starting
point is the Audio Talkthrough example shown in Figure 2.26. The project fi le Audio
Talkthrough-BF533.lep for BF533 EZ-KIT (or Audio Talkthrough-BF537.lep
for BF537) can be found in directory c:\adsp\chap2\exp2_6, which is useful for testing
the audio setup consisting of computer, cables, and loudspeakers (or headphone). On the
block diagram outside of the While Loop, the Initialize Audio function creates a circular
buffer between the audio CODEC and the Blackfi n processor. Inside the While Loop, the
Audio Write–Read function writes right and left channels of audio data to the output Audio
Buffer, all zeros on the fi rst iteration of the loop, and then reads in newly acquired audio
samples to the right and left channel arrays for processing. This step allows data to be read

Figure 2.25 Moving-average fi lter simulator (MA_Filter_Sim.exe)

2.8 Moving-Average Filter in Labview Embedded Module 55

TEAM LinG

56 Chapter 2 Time-Domain Signals and Systems

and processed in one-loop iteration and passed out to the loudspeaker (or headphone) in the
next iteration. The process of reading values in the fi rst iteration and then writing them out
in the next is called pipelining.

Once the audio talkthrough has been established, we still have to make two modifi ca-
tions. First, we must wire in an FIR function to fi lter the input signal; second, we must
initialize that fi lter with proper parameters. Now open the complete moving-average fi lter
program from the LabVIEW Embedded Project Manager window. The project is called
MA Filter-BF533.lep for the BF533 EZ-KIT (or MA Filter-BF537.lep for BF537)
and is located in directory c:\adsp\chap2\exp2_6. Figure 2.27 shows a block diagram
of the top level VI in this project, MA Filter-BF533.vi (or MA Filter-BF537.vi).

In this experiment, we add two functions to complete the fi ltering exercise. Outside of
the While Loop, the Init MA Filter Params VI sets up the moving-average fi lter designed

Figure 2.26 Audio talkthrough example

Figure 2.27 Block diagram of MA Filter.vi

TEAM LinG

in Section 2.7 with the specifi ed length (in this case L = 48), and outputs the fi lter coeffi cients,
which have been converted from the decimal 1/48 (or 0.020833) to the fi xed-point integer
fract16 representation, a commonly used number format on embedded signal proces-
sors.

Inside the While Loop, the BF Audio Write/Read function writes data to the DAC
and then reads values from the ADC through the circular buffer of 1,024 samples, 512 for
each channel (left and right). The BF FIR Filter function (see Fig. 2.28) fi lters the input
signal with the FIR fi lter defi ned by the fi lter coeffi cients. This fi ltering function is placed
inside a Case Structure so that the signal passes through unchanged unless SW4 is pressed
on the BF533 EZ-KIT (or SW10/PB4 is pressed on the BF537), allowing us to easily compare
the effects of the fi lter.

When this project is compiled and run on the Blackfi n target, play the speech_tone_
48k.wav, using MA_Filter_Sim.exe from Hands-on Experiment 2.5. Note how the
1,000-Hz tone is fi ltered out when the fi ltered switch is pressed. Experiment with different
fi lter lengths and see how they affect the results.

2.9 MORE EXERCISE PROBLEMS

1. The sampling rates for some applications are (a) 8 kHz for telecommunication systems,
(b) 16 kHz for broadband systems, (c) 44.1 kHz for CDs, and (d) 48 kHz for digital audio
tapes. What are the sampling periods for those systems? If 2 s of samples are needed
and each sample is represented by 2 bytes, how many bytes of memory are needed for
those systems?

2. If a 2-kHz signal is used in systems defi ned in Problem 1, what are the digital frequen-
cies in terms of (a) radians per samples and (b) cycles per sample in those four digital
systems?

3. Digital signals can be nicely displayed by the MATLAB function stem, where stem(x)
plots the data sequence x as stems from the x-axis terminated with circles for the data
value. Similar to Example 2.1, plot one cycle of 2-kHz sine wave with four different
sampling rates defi ned in Problem 1.

4. Generate 256 random numbers, using the MATLAB functions rand and randn.
Compute the mean and variance, using Equations 2.2.9 and 2.2.10, and verify the results
by using the MATLAB functions mean and var.

5. How can we use rand for generating zero-mean random numbers? How can we make
this zero-mean random variable have unit variance?

6. The power of the sine wave given in Equation 2.2.3 is A2/2, and the power of random
numbers is defi ned in Equation 2.2.10. Calculate the SNR for signals generated in
Exercise 2.1(3).

Figure 2.28 Context help information for the BF FIR Filter function

2.9 More Exercise Problems 57

TEAM LinG

58 Chapter 2 Time-Domain Signals and Systems

7. Generate 256 samples of a sine wave that is corrupted by zero-mean white noise with
SNR equal to 10, 0, and −10 dB. The frequency of the sine wave is 1 kHz, and the sam-
pling rate is 8 kHz.

8. Apply the moving-average fi lter described in Equation 2.3.2 for noisy signals generated
in Problem 7. What is the best fi lter length L for reducing noise? Why? Does this fi lter
work for SNR = −10 dB?

9. Compute the impulse responses of fi lters described by Equations 2.3.2 and 2.3.3. Also,
implement the fi lter defi ned in Equation 2.3.3 and compare the fi lter outputs from both
Equations 2.3.2 and 2.3.3. Are those two outputs identical? Why or why not?

10. Compute the linear convolution of sequence x(n) = {1, 2, 3, 4} with the impulse response
of the Hanning fi lter defi ned in Example 2.4, using the graphical method. Also, use
MATLAB function conv to realize this operation and verify both results.

11. Modify the C code given in this chapter to implement a median fi lter in the VisualDSP++
simulator or the EZ-KIT, as described in Examples 2.7 and 2.8.

12. Convert the MATLAB data fi le speech_random.mat into a wavefi le and try to reduce
the random noise by using the EZ-KIT, based on a bandpass fi lter that retains most of
the speech energy.

13. Instead of acquiring signal directly from a sound card as in Hands-On Experiment 2.4,
we can capture live sound by using a microphone connected to the EZ-KIT. The noisy
signal can be played back with a pair of loudspeakers, and the volume can be adjusted
to a suitable level. The noisy signal can then be captured by using a microphone that is
fi tted to the line in of the EZ-KIT. However, the microphone must be preamplifi ed before
connecting to the audio input of the EZ-KIT. Run the program in Hands-On Experiment
2.4 and listen to the output with a pair of headphones. Is the moving-average fi lter
working? Compare the performance with the direct input connection from the sound
card to that with the EZ-KIT.

14. Modify the source fi les in Hands-On Experiment 2.4 to implement a direct pass through
without fi ltering. Further modify this program to perform the following operations on
the left and right input signals:

left output
left input right input= +

2

right output
left input right input= −

2

Is there any difference between the left and right outputs? Why? Make sure that you are
playing a stereo sound at the input.

15. Modify the project fi le in Hands-On Experiment 2.6 to implement the Hanning fi lter in
Example 2.4.

TEAM LinG

Chapter 3

Frequency-Domain Analysis
and Processing

This chapter introduces frequency-domain techniques for analyzing digital signals
and systems. In particular, we focus on z-transform, system concepts, and discrete
Fourier transform with their applications. We use these frequency-analysis methods
to analyze and explain the noise reduction examples introduced in Chapter 2 and
use frequency-domain techniques to design more advanced fi lters for reducing
noises. In addition, we use several examples and hands-on experiments to introduce
some useful MATLAB and Blackfi n tools for analysis and design of DSP
algorithms.

3.1 INTRODUCTION

In Chapter 2, we introduced simple time-domain techniques such as moving-average
fi lters, Hanning fi lters, and nonlinear median fi lters for removing noises that
corrupted the desired signals. In particular, we described those fi lters with
time-domain methods such as I/O equations and signal-fl ow diagrams and used
them to enhance sine waves embedded in white noise. We learned that they worked
for some conditions, but failed for others. In this chapter, we introduce frequency-
domain techniques to analyze those signals and systems and thus to understand their
characteristics and explain the results obtained in Chapter 2. In addition, we use
frequency-domain concepts and techniques to design effective fi lters for reducing
noises.

In Example 2.3, we used a moving-average fi lter with length L = 5, 10, and 20
to enhance a sine wave corrupted by white noise. We found that this fi lter worked
for L = 5 and 10, but failed for L = 20. We also found that the fi lter caused undesired
effects such as attenuation of the desired sine wave amplitude and shifting of the
phase of signal. In Example 2.9, we encountered cases in which the desired sine
wave was corrupted by other sine waves at different frequencies, and we were not

59

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

60 Chapter 3 Frequency-Domain Analysis and Processing

able to remove those narrowband noises. Again, in Exercise 2.8, we failed to attenu-
ate a tonal noise in desired broadband signals such as speech. In this chapter, we
use frequency-domain techniques to analyze those cases in order to understand the
problems associated with the signals and the fi lters. We also use frequency-domain
pole/zero concepts to develop notch and peak fi lters for reducing noises in those
cases.

3.2 THE z-TRANSFORM

The z-transform is a powerful technique for analyzing digital signals and systems.
This transform uses polynomials and rational functions to represent block diagrams
and I/O equations of digital systems introduced in Section 2.3.

3.2.1 Defi nitions

The z-transform of a digital signal x(n) is defi ned as

X z x n z n

n

() = () −

=−∞

∞

∑ , (3.2.1)

where z is a complex variable. The set of z values for which X(z) exists is called
the region of convergence. We can recover x(n) from X(z) by using the inverse z-
transform. For a causal sequence (i.e., x(n) = 0 for n < 0), the summation starts
from n = 0. In addition, for a fi nite-length causal sequence x(n), n = 0, 1, . . . ,
N − 1, the summation starts from n = 0 and ends at n = N − 1.

EXAMPLE 3.1

Consider the causal signal defi ned as

x(n) = anu(n),

where u(n) = 1 for n ≥ 0 and u(n) = 0 for n < 0 is the unit step function. From Equation 3.2.1
and using the formulas of the infi nite-geometric series

x
x

xn

n

=
−

<
=

∞

∑ 1

1
1

0

, , (3.2.2)

the z-transform of the signal is calculated as

X z a u n z a z az
az

azn n n n n

nnn

() = () = = () =
−

<− − −
−

=

∞
−

=

∞

=−∞
∑∑ 1

1
0

1

0

1

1
1, .

∞∞

∑
The region of convergence is defi ned as |az−1| < 1 or

|z| > |a|,

which is the exterior of a circle with radius |a|.

TEAM LinG

3.2 The z-Transform 61

EXERCISE 3.1

1. Find the z-transform of the signal x(n) = Ae−jωnu(n).

2. Find the z-transform of the unit impulse sequence δ(n) defi ned in Equation
2.3.5.

3. Find the z-transform of the unit step sequence u(n) defi ned in Example
3.1.

4. Find the z-transform of the impulse response of a 5-point Hanning fi lter
defi ned in Example 2.4 as h(n) = {0.1 0.2 0.4 0.2 0.1}.

5. Find the z-transform of the impulse response of a 4-point moving-average
fi lter defi ned as h(n) = {0.25 0.25 0.25 0.25}. We will revisit this exercise
later.

The complex variable z can be expressed in both Cartesian and polar forms
as

z z j z re j= []+ [] =Re Im θ , (3.2.3)

where Re[z] and Im[z] represent the real part and the imaginary part of z,
respectively. In the polar form, r = |z| is the magnitude of z and θ is an angle with
the real axis. The geometric representation in the complex z-plane is illustrated in
Figure 3.1. In the fi gure, the circle labeled as |z| = 1 is called the unit circle. This
representation is used to evaluate the frequency response and stability of a digital
system.

If the signal y(n) is a delayed version of x(n) by k samples, that is, y(n) =
x(n − k), the z-transform of y(n) is given as

Y z z X zk() = ()− . (3.2.4)

Thus the delay of k samples in the time domain corresponds to the multiplication
of z−k in the z-domain. A unit delay, z−1, was shown in Figure 2.15. This element has
the effect of delaying the sampled signal by one sampling period (Ts seconds in time)
and is one of the three basic operators for implementing DSP systems.

Re[z]

Im[z]

r

q

|z| = 1

Figure 3.1 Polar representation of complex variable z in the z-plane

TEAM LinG

62 Chapter 3 Frequency-Domain Analysis and Processing

EXAMPLE 3.2

The I/O equation of an FIR fi lter is expressed in Equation 2.3.4. Taking the z-transform of
both sides using the property given in Equation 3.2.4, we obtain

Y z b X z b z X z b z X z

b z

L
L

l
l

l

L

() = () + () + + ()

= ⎛
⎝⎜

⎞

−
−

− −()

−

=

−

∑
0 1

1
1

1

0

1

. . .

⎠⎠⎟
()X z . (3.2.5)

EXERCISE 3.2

1. Compute the z-transform of the I/O equation for the symmetric FIR fi lter
defi ned in Equation 2.3.10.

2. Compute the z-transform of the I/O equation for the moving-average fi lter
defi ned in Equation 2.3.2.

3. The z-transform of an N-periodic sequence is defi ned as

x(n) = {x(0) x(1) . . . x(N − 1) x(0) x(1) . . . x(N − 1) x(0) . . .}.

 The fi rst period of the sequence is x1(n) = {x(0) x(1) . . . x(N 1)}, and its
z-transform is X1(z). Show that the z-transform of x(n) is

X z
X z

z N
() =

()
− −

1

1
.

3.2.2 System Concepts

If y(n) is the result of linear convolution of two sequences x(n) and h(n) as expressed
in Equation 2.3.7, the z-transform of y(n) is given as

Y z X z H z H z X z() = () () = () (). (3.2.6)

Therefore, the convolution in the time domain is equivalent to the multiplication in
the z-domain. The transfer (or system) function of a given system is defi ned as the
z-transform of the system’s impulse response, or the ratio of the system’s output and
input in the z-domain, expressed as H(z) = Y(z)/X(z). From Equation 3.2.5, the
transfer function of the FIR fi lter is expressed as

H z
Y z

X z
b zl

l

l

L

() =
()
()

= −

=

−

∑ ,
0

1
(3.2.7)

which also represents the z-transform of the impulse responses h(l) = bl, l = 0, 1, . . . ,
L − 1.

Because the impulse-response samples of an FIR fi lter are the same as the fi lter
coeffi cients, an FIR fi ltering can be described by the linear convolution defi ned in
Equation 2.3.7 or the I/O equation given in Equation 2.3.4, which express the output
in terms of input samples weighted by fi lter coeffi cients. Connecting delay units,

TEAM LinG

3.2 The z-Transform 63

multipliers, and adders pictorially represent I/O equations as the signal-fl ow diagram
given in Figure 2.16. The transfer function H(z) describes how the system operates
on the input signal x(n) to produce the output signal y(n). A system that is both linear
and time invariant is called a linear time-invariant (LTI) system. This system can be
represented in both the time domain and the z-domain given in Equations 2.3.4 and
3.2.6 as illustrated in Figure 3.2, where h(n) is the impulse response of the system.

EXAMPLE 3.3

The moving-average fi lter is defi ned in Equation 2.3.2. Taking the z-transform of both sides,
we have

Y z
L

z z X z
L

z X zL l

l

L

() = + + +[] () = ⎛
⎝⎜

⎞
⎠⎟

()− − −() −

=

−

∑1
1

11 1

0

1

. . . .

By arranging the terms, we obtain the system function as

H z
L

z l

l

L

() = −

=

−

∑1

0

1

. (3.2.8)

Using the fi nite-geometric series identity,

x
x

x
xl

l

L L

=

−

∑ = −
−

≠
0

1 1

1
1, . (3.2.9)

Equation 3.2.8 can be rewritten as

H z
Y z

X z L

z

z

L

() = ()
()

= −
−

⎛
⎝⎜

⎞
⎠⎟

−

−

1 1

1 1
. (3.2.10)

This equation can be rearranged as

1
1 1 1

L
z X z z Y zL−() () = −() ()− − .

Taking the inverse z-transform of both sides and rearranging terms, we obtain

y n y n
L

x n x n L() = −() + () − −()[]1
1

. (3.2.11)

This is identical to the recursive equation described in Equation 2.3.3.

z-transform

Inverse
z-transform

h(n)
x(n) y(n) = x(n)*h(n)

H(z)
X(z) Y(z) = X(z)H(z)

Figure 3.2 Representation of LTI systems in both time- and z-domains

TEAM LinG

64 Chapter 3 Frequency-Domain Analysis and Processing

EXERCISE 3.3

Derive the transfer functions of digital systems described by the following difference
equations:

1. y(n) − 2y(n − 1) + y(n − 2) = 0.5[x(n) + x(n − 1)]

2. y(n) = y(n − 1) +[x(n) − x(n − 10)]

3. y(n) = 0.1x(n) + 0.2x(n − 1) + 0.1x(n − 2)

3.2.3 Digital Filters

Filtering is one of the most commonly used signal processing techniques to remove
or attenuate undesired signal components while enhancing the desired portions of
the signals. There are two classes of digital fi lters based on the length of the impulse
response: FIR and IIR (infi nite impulse response) fi lters.

A fi lter is called an FIR fi lter if its response to an impulse input becomes zero
after a fi nite number of L samples. The system described by Equation 2.3.4 or Equa-
tion 3.2.7 is an FIR fi lter with a fi nite impulse response {h(i) = bi, i = 0, 1, . . . , L − 1}
of length L. The FIR fi lter coeffi cients (taps or weights) are the same as the impulse
response samples of the fi lter. By setting H(z) = 0 in Equation 3.2.7, we obtain L − 1
zeros. Therefore, the FIR fi lter of length L has order L − 1.

In practical application, an FIR fi lter is implemented by using the direct-form
structure (or realization) illustrated in Figure 2.16. The FIR fi lter requires 2L
memory locations for storing L input samples and L fi lter coeffi cients. The signal
buffer {x(n), x(n − 1), x(n − 2), . . . , x(n − L + 1)} is also called a delay buffer or a
tapped-delay line, which is implemented as a fi rst-in fi rst-out buffer in memory.

The fi nite length of the impulse response guarantees that the FIR fi lters are
stable. In addition, a perfect linear-phase response can be easily designed with an
FIR fi lter, allowing a signal to be processed without phase distortion. The disadvan-
tage of FIR fi lters is the computational complexity, because it may require a higher-
order fi lter to fulfi ll a given frequency specifi cation. There are a number of techniques
for designing FIR fi lters for given specifi cations. FIR fi lter design methods and tools
are introduced in Chapter 4.

If the impulse response of a fi lter is not a fi nite-length sequence, the fi lter is
called an IIR fi lter. Equation 3. 2.11 can be generalized to the transfer function of
the IIR fi lter as

y n b x n b x n b x n b x n L

a y n a
L() = () + −() + −() + + − +()

− −() −
−0 1 2 1

1 2

1 2 1

1

. . .

yy n a y n M

b x n l a y n m

M

l
l

L

m
m

M

−() − − −()

= −() − −()
=

−

=
∑ ∑

2

0

1

1

. . .

, (3.2.12)

where the coeffi cient sets {bl} and {am} are constants that determine the fi lter’s
characteristics. Taking the z-transform of both sides in Equation 3.2.12 and arrang-
ing terms, we obtain

TEAM LinG

3.2 The z-Transform 65

H z
b b z b z b z

a z a z a z
L

L

M
M

() = + + + +
+ + + +

− −
−

− −()

− − −
0 1

1
2

2
1

1

1
1

2
21

. . .

. . .
== =

()
()

−

=

−

−

=

∑

∑

b z

a z

B z

A z

i
i

i

L

m
m

m

M
0

1

0

, (3.2.13)

where a0 = 1. Note that if all of the denominator coeffi cients am, m = 1, 2, . . . ,
M are equal to zero, H(z) is identical to B(z), or an FIR fi lter as defi ned in
Equation 3.2.7. The signal fl ow diagram given in Figure 3.3 illustrates this I/O
equation.

It is important to note that there is a sign change of am in the transfer function
H(z) given in Equation 3.2.13 and the I/O equation described in Equation 3.2.12, or
the signal-fl ow diagram shown in Figure 3.3. This direct-form I realization of the
IIR fi lter can be treated as two FIR fi lters. It requires two signal buffers, {x(n),
x(n − 1), x(n − 2), . . . , x(n − L + 1)} and {y(n), y(n − 1), y(n − 2), . . . , y(n − M)}.
These two buffers can be combined into one by using the direct-form II realization.
In addition, the simple direct-form implementation of an IIR fi lter will not be used
in practical applications because of severe sensitivity problems due to coeffi cient
quantization (which are explained in Chapter 6), especially as the order of the fi lter
increases. To reduce this effect, a high-order IIR fi lter transfer function is factored
into second-order sections plus a fi rst-order section if the order of fi lter is an odd
number. These sections are connected in cascade or parallel to form an overall fi lter.
We discuss these issues further in Chapter 4.

EXAMPLE 3.4

Consider the second-order IIR fi lter expressed as

y n b x n b x n b x n a y n a y n() = () + −() + −() − −() − −()0 1 2 1 21 2 1 2 . (3.2.14)

x(n) y(n)

x(n-1)

0b

1b

x(n-2)
2b

1−Lb
x(n-L+1)

y(n-1)

y(n-2)

y(n-M)

1a−

2a−

Ma−

1−z

1−z

1−z

1−z

1−z

1−z

Figure 3.3 Signal fl ow diagram of direct-form I IIR fi lter

TEAM LinG

66 Chapter 3 Frequency-Domain Analysis and Processing

The transfer function is expressed as

H z
b b z b z

a z a z
() = + +

+ +

− −

− −
0 1

1
2

2

1
1

2
21

. (3.2.15)

The direct-form II realization of the second-order IIR fi lter (also called biquad) is illustrated
in Figure 3.4.

EXERCISE 3.4

1. Derive the I/O equation of the second-order IIR fi lter based on the direct-
form II realization shown in Figure 3.4, using the intermediate parameters
w(n), w(n − 1), and w(n − 2).

2. Prove that the direct-form II realization is identical to the direct-form I
realization.

3. Identify any difference between direct-form I and direct-form II
realizations.

Factoring the numerator and denominator polynomials of H(z) given in Equa-
tion 3.2.13, we obtain

H z
b z z z z z z

z p z p z p
i L

m M
() = −() −() −()

−() −() −()
=−0 1 1

1

.

.

BB z

A z

()
()

, (3.2.16)

where zi and pm denote the zero and pole of H(z), respectively. The zeros of the
system can be calculated by setting the numerator B(z) = 0 in Equation 3.2.13, and
the poles can be obtained by setting the denominator A(z) = 0. To calculate zeros
and poles of a given transfer function H(z), we can use the MATLAB function
roots on both the numerator and denominator polynomials.

The system will be bounded-input, bounded-output stable if

h n
n

() < ∞
=−∞

∞

∑ . (3.2.17)

For a causal system, the system is stable if and only if the transfer function has all
its poles inside the unit circle. That is,

2b

w(n-2)

y(n)

1−z

1−z

x(n) w(n)

w(n-1)

0b

1b
1a−

2a−

Figure 3.4 Direct-form II realization of second-order IIR fi lter

TEAM LinG

3.2 The z-Transform 67

p m Mm < =1 1 2, , ,, (3.2.18)

If any |pm| > 1, the system is unstable. A system is also unstable if the system has
multiple-order pole(s) on the unit circle. However, a system is marginally stable if
H(z) has a fi rst-order pole on the unit circle.

EXAMPLE 3.5

Consider the second-order IIR fi lter given as H(z) = z−1/(1 − 2z−1 + z−2). This system has
second-order poles at z = 1, and the impulse response of the system is h(n) = n. Therefore,
this system is unstable because h(n) → ∞ when n → ∞.

Given the fi rst-order IIR fi lter H(z) = z/(z + 1), this system has a pole on the unit circle,
and the impulse response is h(n) = (−1)n, which is oscillated between ±1. The fi lter with
oscillatory bounded impulse response is marginally stable.

EXERCISE 3.5

1. Evaluate the stability of system H(z) = z/(z − a) for different values of coef-
fi cient a.

2. Consider the second-order IIR fi lter defi ned in Equation 3.2.15. Evaluate the
stability of the system in terms of its coeffi cients a1 and a2.

In general, an IIR fi lter requires fewer coeffi cients to approximate the desired
frequency response than an FIR fi lter with comparable performance. The primary
advantage of IIR fi lters is that sharper cutoff characteristics are achievable with a
relatively low-order fi lter. This results in savings of processing time and/or hardware
complexity. However, IIR fi lters are more diffi cult to design and implement on fi xed-
point processors for practical applications. Stability, fi nite-precision effects, and
nonlinear phase must be considered in IIR fi lter designs. The issues of fi lter design,
realization of IIR fi lters in direct-form II, fi lter design tools, quantization effects,
and implementation of IIR fi lters based on cascade or parallel connection of second-
order sections are discussed further in Chapters 4 and 6.

Consider the moving-average fi lter given in Equation 3.2.10. The transfer func-
tion can be rewritten as

H z
L

z

z z

L

L
() = −

−()−
1 1

11
. (3.2.19)

Therefore, there is a pole at z = 1 from the solution of z − 1 = 0 and L − 1 poles

at z = 0 from the solution of zL−1 = 0. There are L zeros, z el
j

L
l

=
2π

, l = 0, 1, . . . ,
L − 1, that come from solving zL−1 = 0, which are located on the unit circle and sepa-
rated by the angle 2π/L. Note that the pole at z = 1 is canceled by the zero at z = 1.
Thus the moving-averaging fi lter is still an FIR fi lter even though its transfer func-
tion defi ned in Equation 3.2.10 is in rational form and its I/O equation given in
Equation 3.2.11 is in recursive form.

TEAM LinG

68 Chapter 3 Frequency-Domain Analysis and Processing

EXAMPLE 3.6

The MATLAB function zplane(b, a) computes and plots both zeros and poles on the
z-plane with the unit circle as reference for the given numerator vector b and denominator
vector a. Each zero is represented with an open circle and each pole with an x on the plot.
Multiple zeros and poles are indicated by the multiplicity number shown to the upper right
of the zero or pole. The following script (example3_6.m) shows the poles and zeros of a
moving-average fi lter with L = 8 in Figure 3.5:

b = [1/8 0 0 0 0 0 0 0 -1/8]; % numerator vector
a = [1 -1]; % denominator vector
zplane(b, a) % shows poles & zeros

As shown in Figure 3.5, the pole at z = 1 was canceled by the zero at that location. Therefore,
the fi lter is an FIR fi lter. Also, it shows that there are seven zeros at angles πl/4 for
l = 1, 2, . . . , 7.

Consider the I/O equation of the moving-average fi lter given in Equation 3.2.11.
The system needs L + 1 memory locations for storing {x(n), x(n − 1), . . . , x(n − L)}.
To reduce memory requirements, we assume x(n − L) ≅ y(n − 1) because y(n − 1)
is the average of x(n) samples; thus Equation 3.2.11 can be simplifi ed to

y n
L

y n
L

x n y n x n() ≅ −() −() + () = −() −() + ()1
1

1
1

1 1α α , (3.2.20)

where α = 1/L. Taking the z-transform of both sides and rearranging terms, the
transfer function of this simplifi ed fi lter can be derived as

H z
z

() =
− −() −

α
α1 1 1

. (3.2.21)

Real Part

–1 0 1

7

1

0.8

0.6

0.4

–0.4

–0.6

–0.8

–1

0.2

Im
a
g
in

a
ry

 P
a
rt

0

–0.2

0.5–0.5

Figure 3.5 Poles and zeros of the moving-average fi lter, L = 8

TEAM LinG

3.2 The z-Transform 69

This is a fi rst-order IIR fi lter with a pole at z = (1 − α) that is equivalent to the moving-
average FIR fi lter with α = 1/L. Because 1 − α = (L − 1)/L < 1, this system is guaran-
teed to be stable since the pole is always inside the unit circle. As α gets smaller, L
becomes larger. When the window is longer, the fi lter provides better averaging
effects. However, a long window is not suitable for time-varying signals.

The MATLAB function y = filter(b, a, x) implements the IIR fi ltering,
where the vectors b and a contain the fi lter coeffi cients {bl} and {am} and the vectors
x and y contain the input and output signals. As a special case, the FIR fi ltering can
be implemented as y = filter(b, 1, x).

EXAMPLE 3.7

In Example 2.2, we generated 60 samples of a sine wave with noise as shown in Figure 2.2
and saved the signal in the data fi le sineNoise.dat. In Example 2.3, we fi ltered the noisy
sine wave with a moving-average fi lter of lengths L = 5, 10, and 20. For L = 5, this fi lter is
equivalent to the fi rst-order IIR fi lter given in Equation 3.2.21 with α = 0.2. This IIR fi lter
is implemented with MATLAB code example3.7.m. Both input and output waveforms are
displayed in Figure 3.6.

EXERCISE 3.6

1. Compare the fi rst-order IIR fi lter output shown in Figure 3.6 with the
moving-average fi lter output shown in Figure 2.8 for L = 5. Observe and
explain the differences.

Time index n

A
m

pl
itu

de
 A

First-order IIR filter, alpha = 1/5

Input x(n)

0 10 20 30 40 50 60
–1.5

–1

–0.5

0

0.5

1

1.5

Output y(n)

Figure 3.6 Performance of the fi rst-order IIR fi lter

TEAM LinG

70 Chapter 3 Frequency-Domain Analysis and Processing

2. Implement the fi rst-order IIR fi lter given in Equation 3.2.21 with α = 0.1 and
0.05. Compare the results with the moving-average fi lter outputs shown in
Figure 2.8 with L = 10 and 20. Pay special attention to the IIR fi lter with
α = 0.05. Does the output approach to zero?

3. Evaluate the complexity of moving-average fi lters for L = 5, 10, 20 with their
corresponding fi rst-order IIR fi lters in terms of memory and multiplication
requirements.

3.3 FREQUENCY ANALYSIS

Digital signals and systems can be represented and analyzed in the frequency
domain. We studied z-domain representations of digital signals and systems in
Section 3.2. In this section, we introduce the discrete Fourier transform and the fast
Fourier transform and their applications for analyzing digital signals and systems.
We revisit some unanswered problems from Chapter 2 on using the moving-average
fi lter for noise reduction.

3.3.1 Frequency Response

The discrete-time Fourier transform (DTFT) of infi nite-length digital signal x(n) is
defi ned as

X x n e j n

n

ω ω() = () −

=−∞

∞

∑ . (3.3.1)

Compare this equation with the equation for the z-transform defi ned in Equation
3.2.1; they are equal if the variable z is defi ned as

z e j= ω . (3.3.2)

Thus, evaluating the z-transform on the unit circle, |z| = 1, in the complex z-plane
shown in Figure 3.1 is equivalent to the frequency-domain representation of the
sequence.

Similarly, the transfer function H(z) can be evaluated on the unit circle to yield
the frequency-domain representation of the system as

H H z H ez e
j

jω ωω
φ ω() = () = ()=

(), (3.3.3)

where H(ω) is called the frequency response of the system, |H(ω)| is the magnitude
(amplitude) response, and φ(ω) is the phase response. The value |H(ω0)| is called
the system gain at a given frequency ω0.

Consider the transfer function of the moving-average fi lter given in Equation
3.2.10. From Equation 3.3.3, the frequency response can be expressed as

H
L

e

e

jL

j
ω

ω

ω() = −
−

⎡
⎣⎢

⎤
⎦⎥

−

−
1 1

1
.

TEAM LinG

Because ejω/2e−jω/2 = ejLω/2e−jLω/2 = 1 and sin ,ω ω ω() = −()−1

2 j
e ej j this equation

becomes

H
L

e e e

e e e L

e ejL jL jL

j j j

jL jL

ω
ω ω ω

ω ω ω

ω ω
() = −

−
⎡
⎣⎢

⎤
⎦⎥

= −− −

− −

−1 12 2

2 2

2 22

2 2

2

2

1 2

2

e e

e

e

L

L
e

j j

jL

j

j L

ω ω

ω

ω

ω
ω

−
⎡
⎣⎢

⎤
⎦⎥

=
()
()

⎡
⎣⎢

⎤
⎦⎥

−

−

−

− −sin

sin
11 2()ω (3.3.4)

Beause |e−j(L−1)ω/2| = 1, the magnitude response is given by

H
L

Lω ω
ω

() =
()
()

1 2

2

sin

sin
, (3.3.5)

and the phase response is

φ ω

ω ω

ω π ω
() =

− −()
() ≥

− −()
± () <

⎧

⎨
⎪

⎩
⎪

L
H

L
H

1

2
0

1

2
0

,

,
. (3.3.6)

EXAMPLE 3.8

The Hanning fi lter defi ned in Example 2.4 has coeffi cients {0.1 0.2 0.4 0.2 0.1}. The transfer
function of the fi lter is H(z) = 0.1 + 0.2z−1 + 0.4z−2 + 0.2z−3 0.1z−4. Therefore, the frequency
response is

H(ω) = 0.1 + 0.2e−jω + 0.4e−2jω + 0.2e−3jω + 0.1e−4jω

= e−2jω[0.1(e2jω + e−2jω) + 0.2(ejω + e−jω) + 0.4]
= e−2jω[0.2 cos(2ω) + 0.4 cos(ω) + 0.4].

The magnitude response is |H(ω)| = 0.4 + 0.2 cos(2ω) + 0.4 cos(ω), and the phase response
is −2ω.

EXERCISE 3.7

1. Find the frequency response of the fi rst-order IIR fi lter defi ned in Equation
3.2.21.

2. Find the magnitude response of a moving-average fi lter with L = 2.

3. The bandwidth of a fi lter represents the value of the frequency at which the
squared-magnitude response equals half its maximum value. Find the band-
width of the fi lter given in Exercise 2.

4. Find the transfer function and frequency response of a comb fi lter defi ned
by the I/O equation

y(n) = x(n) − x(n − L).

3.3 Frequency Analysis 71

TEAM LinG

72 Chapter 3 Frequency-Domain Analysis and Processing

EXAMPLE 3.9

The magnitude and phase responses of the system can be computed and displayed with the
MATLAB function freqz. The MATLAB script example3_9.m plots the responses of
the moving-average fi lter for L = 8 and is shown in Figure 3.7. The magnitude response shows
that there are dips that occur at radian frequencies π/4, π/2, 3π/4, and π (or normalized
frequencies 0.25, 0.5, 0.75, and 1), same as the zeros shown in Figure 3.5. Equation 3.3.6
and the phase response of Figure 3.7 imply that φ(ω) is a piecewise linear function of ω. The
MATLAB script is listed as follows:

b=[1/8 0 0 0 0 0 0 0 -1/8]; % numerator vector
a=[1 -1]; % denominator vector
freqz(b, a) % magnitude and phase responses

From Equation 3.3.6, the time (group)-delay function is defi ned as

T
d

d

L
d ,ω φ ω

ω
() = −

()
= −1

2
(3.3.7)

which is independent of ω. The systems (or fi lters) that have constant Td(ω) are
called linear-phase systems. The constant time-delay function causes all sinusoidal
components in the input to be delayed by the same amount, thus avoiding phase
distortion. The group delay can be calculated and displayed by using the MATLAB
function grpdelay(b,a).

HANDS-ON EXPERIMENT 3.1

The MATLAB Signal Processing Toolbox [49] provides a graphical user interface fi lter
visualization tool (FVTool) that allows the user to analyze digital fi lters. The command

0 0.1 0.2 0.3 0.4
Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0.5 0.6 0.7 0.8 10.9
–200

–100

100

0

0 0.1 0.2 0.3 0.4
Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

0.5 0.6 0.7 0.8 10.9
–60

–40

0

–20

Figure 3.7 Magnitude and phase responses of moving-average fi lter, L = 8

TEAM LinG

fvtool(b, a) launches the FVTool window and computes the magnitude response for
the fi lter defi ned by numerator and denominator coeffi cients in vectors b and a, respec-
tively. The command fvtool(b1, a1, b2, a2, . . .) performs an analysis of multiple
fi lters.

Similar to example3_9.m, we design three moving-average fi lters with L = 5, 10, and
20 and launch the FVTool using experiment3_1.m. Using FVTool, we can display the
phase response, group delay, impulse response, step response, pole-zero plot, and coeffi cients
of the fi lters. We can export the displayed response to a fi le with Export on the File menu.
A window that shows the magnitude responses of three fi lters is displayed as shown in Figure
3.8. Determine where the nulls of the magnitude response occurred for different L.

As shown in Figure 3.8, the analysis toolbar has the following options:

1. : Magnitude response of the current fi lter. See freqz and zerophase for more
information.

2. : Phase response of the current fi lter. See phasez for more information.

3. : Superimposes the magnitude response and the phase response of the current
fi lter. See freqz for more information.

L = 5 L = 10 L = 20

Nulls or
notches

Figure 3.8 A FVTool window displays magnitude responses of moving-average fi lter with L = 5,
10, and 20

3.3 Frequency Analysis 73

TEAM LinG

74 Chapter 3 Frequency-Domain Analysis and Processing

4. : Shows the group delay of the current fi lter. The group delay is the average delay
of the fi lter as a function of frequency. See grpdelay for more information.

5. : Shows the phase delay of the current fi lter. The phase delay is the time delay
that the fi lter imposes on each component of the input signal. See phasedelay for
more information.

6. : Impulse response of the current fi lter. The impulse response is the response of
the fi lter to an impulse input. See impz for more information.

7. : Step response of the current fi lter. The step response is the response of the fi lter
to a step input. See stepz for more information.

8. : Pole-zero plot, which shows the pole and zero locations of the current fi lter on
the z-plane. See zplane for more information.

9. : Filter coeffi cients of the current fi lter, which depend on the fi lter structure (e.g.,
direct form, etc.) in a text box. For second-order section fi lters, each section is dis-
played as a separate fi lter.

For example, selecting the group-delay response icon (or from the Analysis menu) will
compute and display group delay. Export the result as shown in Figure 3.9, where constant
group delays of 2, 4.5, and 9.5 samples are observed and can be easily obtained from Equa-
tion 3.3.7 for L = 5, 10, and 20, respectively.

An important characteristic of an LTI system is its steady-state response to a sinusoidal
input. Consider a sinusoidal signal defi ned in Equation 2.2.3 at frequency ω0 expressed as

x(n) = A sin(ω0n).

Normalized Frequency (×π rad /sample)

Group Delay

0
1

2

3

4

5

6

7

8

9

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
ro

up
 d

el
ay

 (
in

 s
am

pl
es

)

Figure 3.9 Group delays of moving-averaging fi lters, L = 5, 10, and 20 (from bottom to top)

TEAM LinG

Applying this sinusoidal signal to the digital fi lter defi ned in Equation 3.3.3, the correspond-
ing output in the steady state is

y n A H n() = () + ()[]ω ω φ ω0 0 0sin , (3.3.8)

where |H(ω0)| is the gain and φ(ω0) is the phase shift of H(z) at frequency ω0. This equation
shows that when sinusoidal input is applied to an LTI system its steady-state output is also
a sinusoid having the same frequency ω0. The amplitude of the input sinusoid A is multiplied
by the gain of the system, and the phase is shifted by the phase of the system.

EXAMPLE 3.10

Several questions were asked in Quiz 2.3. These questions may be answered with the knowl-
edge of the magnitude response and the group delay of the system.

1. The outputs of the moving-average fi lter with different lengths have different phase
shifts. This fact can be explained by Equation 3.3.7 and is shown in Figure 3.9. For
example, the output sine wave is delayed by 2.5 samples, as shown in Figure 2.7 for
L = 5.

2. Figure 2.7 uses a 200-Hz sine wave sampled at 4 kHz. From Equation 2.2.4, the
digital frequency of the sine wave is ω = 0.1π. Figure 3.8 shows that the fi rst notch
of a moving-average fi lter with L = 20 is located at ω = 0.1π. Therefore, the sine
wave will be completely attenuated by the moving-average fi lter with L = 20, as
shown in Figure 2.8.

3. Figure 3.8 also shows that the gains |H(ω0)| of a fi lter at ω0 = 0.1π for fi lter lengths
L = 5 and 10 are less than 1 (0 dB). The steady-state sinusoidal response given in
Equation 3.3.8 shows that the output will be attenuated, and L = 10 will have more
attenuation because it has smaller gain.

EXERCISE 3.8

1. Compute the gains |H(ω0)| of moving-average fi lters with lengths L = 5 and
10 at frequency ω0 = 0.1π. Compare the results with Figure 3.8.

2. Compute the gains of the fi rst-order IIR fi lter defi ned in Equation 3.2.21 for
α = 0.2, 0.1, and 0.05 at frequency ω0 = 0.1π. Compare the results with the
results obtained in Exercise 1.

3. What frequencies of sine waves will be attenuated by the moving-average
fi lter with L = 5 if the sampling rate is 8 kHz? Why?

4. A 100-Hz sine wave is corrupted by white noise, and the corrupted sine wave
is sampled at 1 kHz. To remove noise, what is the proper length of the
moving-average fi lter? Why?

5. Show the magnitude responses of comb fi lters defi ned in Exercise 3.7(4) for
L = 5, 10, and 20. Compare the results with the corresponding moving-
average fi lters and explain the differences using pole-zero diagrams.

3.3 Frequency Analysis 75

TEAM LinG

76 Chapter 3 Frequency-Domain Analysis and Processing

6. Based on the magnitude response of a comb fi lter, suggest its applications
for reducing noise.

3.3.2 Discrete Fourier Transform

The z-transform and DTFT are defi ned for infi nite-length sequences and are func-
tions of continuous frequency variables z and ω, respectively. These transforms are
useful for analyzing digital signals and systems in theory. However, they are diffi cult
to implement from the numerical computation standpoint. In this section, we intro-
duce a numerical computable transform, the discrete Fourier transform (DFT). The
DFT is a basic operation used in many different DSP applications. It is used to
transform a sequence of signal samples from the time domain into the frequency
domain, so that spectral information about the signal can be known explicitly.

If the digital signal x(n) is a fi nite-duration sequence {x(0), x(1), . . . , x(N − 1)}
of length N, the DTFT given in Equation 3.3.1 can be modifi ed to become the DFT
expressed as

X k X

x n e k N

k k N

j
N

kn

n

N

k
() = ()

= () = −

=

− ()
=

−

∑

ω ω π

π

2

2

0

1

0 1 1, , , , ,. . . (3.3.9)

where k is the frequency index. Usually the signal x(n) is a real-valued sequence,
but the DFT coeffi cients X(k) are complex values. It is important to note that the
DFT defi ned in Equation 3.3.9 assumes that the signal is a periodic signal with
period N. The DFT is equivalent to evaluating (or sampling) the DTFT X(ω) at N
equally spaced frequencies ωk = 2πk/N, k = 0, 1, . . . , N − 1; thus the DFT is com-
putable with digital computers. The interval between the adjacent frequency samples
is called the frequency resolution, expressed as

Δω
π

=
2

N
. (3.3.10)

EXAMPLE 3.11

Compute the DFT of the impulse response of a moving-average fi lter with length L. From
Equations 2.3.2 and 3.3.9, we have

X k x n e
L

e k
j

L
kn

n

L j
L

kn

n

L

() = () = =
− ⎛

⎝⎜
⎞
⎠⎟

=

− − ⎛
⎝⎜

⎞
⎠⎟

=

−

∑ ∑
2

0

1 2

0

11
0

π π

, ,, , ,1 1. . . .L −

For k = 0, we obtain X
L

e
L

j
L

n

n

L

n

L

0
1 1

1 1
2

0

0

1

0

1

() = = =
− ⎛

⎝⎜
⎞
⎠⎟

=

−

=

−

∑ ∑
π

. For k ≠ 0, we get

X k x n e
L

e k
j

L
kn

n

L j
L

kn

n

L

() = () = =
− ⎛

⎝⎜
⎞
⎠⎟

=

− − ⎛
⎝⎜

⎞
⎠⎟

=

−

∑ ∑
2

0

1 2

0

11
1

π π

, ,, ,. . . .L −1

TEAM LinG

Using the fi nite geometric series given in Equation 3.2.9, e
e

e

j
L

kn

n

L j L kL

j L k

− ⎛
⎝⎜

⎞
⎠⎟

=

− − ()

− ()∑ = −
−

=
2

0

1 2

2

1

1
0

π π

π .

Therefore, we have X(k) = δ(k).

EXERCISE 3.9

1. Find the DFT of the unit impulse function defi ned in Equation 2.3.5. It is
interesting to compare the result with the result in Example 3.11 and sum-
marize the observations.

2. If the signal x(n) is a real sequence and N is an even number, show that
X(N/2 + k) = X * (N/2 − k), for k = 0, 1, . . . , N/2, where X * (k) denotes the
complex conjugate of X(k).

3. If the signal x(n) is a real sequence and N is an even number, show that X(0)
and X(N/2) are real numbers.

By defi ning a twiddle factor

W eN
j

N=
− ()2π

, (3.3.11)

the DFT given in Equation 3.3.9 can be modifi ed to

X k x n W k NN
kn

n

N

() = () = −
=

−

∑
0

1

0 1 1, , , ,. . . . (3.3.12)

The inverse DFT can be expressed as

x n
N

X k e

N
X k W n N

j
N

kn

k

N

N
kn

k

N

() = ()

= () =

()
=

−

−

=

−

∑

∑

1

1
0 1

2

0

1

0

1

π

, , , ,. . . −−1. (3.3.13)

Thus the inverse DFT is the same as the DFT except for the sign of the exponent
and the scaling factor 1/N.

The DFT is often used as an analysis tool for determining the spectra of digital
signals. The DFT can be broken into magnitude and phase components as
follows:

X k X k j X k X k e j k() = ()[] + ()[] = () ()Re Im φ , (3.3.14)

where

X k X k X k() = ()[]{ } + ()[]{ }Re Im2 2 (3.3.15)

is the magnitude spectrum and

φ k
X k

X k
() =

()[]
()[]{ }−tan

Im

Re
1 (3.3.16)

3.3 Frequency Analysis 77

TEAM LinG

78 Chapter 3 Frequency-Domain Analysis and Processing

is the phase spectrum. It is often preferable to measure the magnitude spectrum in
dB scale defi ned as

spectrum in dB = ()20 10log .X k (3.3.17)

If the sequence x(n) is a sampled signal with sampling rate fs, the frequency
index k corresponds to frequency

ω
π

ωk k
N

k= () = ()2
Δ radians per sample or radians (3.3.18)

or

f k
f

N
k fk = () = ()s HzΔ (3.3.19)

for k = 0, 1, . . . , N − 1. Thus the frequency components can only be discriminated
if they are separated by at least Δf = fs/N Hz. This frequency resolution is a common
term used in determining the size of the FFT and sampling frequency required to
achieve good frequency analysis. In Section 3.3.3, we use computer simulations to
demonstrate the effects of frequency resolution using DFT.

If x(n) is a real-valued sequence and N is an even number, we can show that

X N k X N k k N2 2 0 1 2+() = ∗ −() =, , , ,, . . . (3.3.20)

where X * (k) denotes the complex conjugate of X(k). This complex conjugate prop-
erty of the DFT demonstrates that only the fi rst (N/2 + 1) DFT coeffi cients of a real
data sequence are independent. From Equation 3.3.20, the even-symmetrical prop-
erty applies to the magnitude |X(k)| and Re[X(k)], while the odd-symmetrical prop-
erty occurs in phase φ(k) and Im[X(k)]. Thus it is common to plot the magnitude
spectrum only from k = 0, 1, . . . , N/2, because the rest of the spectrum points from
k = N/2 + 1 to N − 1 are symmetrical to the points from k = N/2 − 1 to k = 1. It is
also shown that X(0) and X(N/2) are real valued.

A limitation of DFT is its inability to handle signals extending over all time. It
is also unsuitable for analyzing nonstationary signals (such as speech) that have
time-varying spectra. For such a signal, it makes more sense to divide the signal
into blocks over which it can be assumed to be stationary and estimate the spectrum
of each block.

3.3.3 Fast Fourier Transform

The DFT given in Equation 3.3.9 shows that N complex multiplications and additions
are needed to produce one output. To compute N outputs, a total of approximately
N2 complex multiplications and additions are required. A 1,024-point DFT requires
over a million complex multiplications and additions. The Fast Fourier Transform
(FFT) is a family of very effi cient algorithms for computing the DFT. The FFT is
not a new transform that is different from the DFT; it is simply an effi cient algorithm
for computing the DFT by taking advantage of the fact that many computations are

TEAM LinG

repeated in the DFT because of the periodic nature of the twiddle factors. The ratio
of computing cost in terms of number of multiplications is approximately

FFT

DFT
,=

log2

2

N

N
(3.3.21)

which is 10/2,048 when N is equal to 1,024.
The FFT algorithm [16] was fi rst introduced by Cooley and Tukey in 1965.

Since then, many variations of FFT algorithms have been developed. Each variant
FFT has a different strength and makes different trade-offs between code complex-
ity, memory requirements, and computational speed. The FFT algorithm becomes
lengthy when N is not a power of 2. This restriction on N can be overcome by
appending zeros at the tail of the sequence to cause N to become a power of 2.

MATLAB provides a function fft for computing the DFT of a vector x. The
following command

Xk = fft(x);

performs N-point DFT, where N is the length of vector x, and the Xk vector contains
N samples of X(k), k = 0, 1, . . . , N − 1. If N is a power of 2, an effi cient radix-2
FFT algorithm will be used; otherwise, a slower mixed-radix FFT algorithm or the
direct DFT will be used. To avoid slow computation, we can use

Xk = fft(x, L);

where L is a power of 2. If N is less than L, the vector x will be automatically
padded with (L − N) zeros at the tail of the sequence to make a new sequence of
length L. If N is larger than L, only the fi rst L samples will be used for computing
DFT.

EXAMPLE 3.12

Generate a signal that consists of two sinusoids at 400 Hz and 820 Hz with a 4-kHz sampling
rate. We can use the MATLAB function fft to compute the DFT coeffi cients X(k) with
DFT length N = 100. MATLAB provides the functions abs and angle to calculate the
magnitude and phase spectra defi ned in Equations 3.3.15 and 3.3.16, respectively. The
MATLAB script (example3_12.m) plots the magnitude spectra of these two sine waves as
shown in Figure 3.10.

QUIZ 3.1

1. What is the frequency resolution for the case given in Example 3.12?

2. Based on Equation 3.3.19, what frequency indexes correspond to sine waves
at frequencies 400 Hz and 820 Hz?

3. Because the Fourier transform of a sinusoidal function is a delta function,
we expected to see two lines in the plot. In Figure 3.10, we fi nd a spike (not

3.3 Frequency Analysis 79

TEAM LinG

80 Chapter 3 Frequency-Domain Analysis and Processing

a line) for the 400-Hz sine wave. Why? (Hint: try to use stem instead of
the plot function provided by MATLAB).

4. Why is the spectrum of the 820-Hz sine wave spread to adjacent frequency
bins?

5. Derive a general rule that relates to FFT size N, sampling rate fs, and sinu-
soidal frequency f to predict whether the spectrum of a sine wave will have
a spike or spread to adjacent bins.

We discuss these problems further in Section 3.3.4 and introduce windowing
techniques to solve them.

EXERCISE 3.10

1. Similar to example3_12.m, show the magnitude spectrum of two sine
waves at frequency 400 Hz and 420 Hz. Are you able to see two separated
frequency components? Why not?

2. Modify the program example3_12.m by changing N = 100 to N = 200.
Are you able to see two spikes now? Why?

3. Also, use N = 200 for Exercise 1. Are you able to see two separated fre-
quency components now? Why?

Magnitude spectrum of sinewave

Frequency index k

M
ag

ni
tu

de
 in

 d
B

5

5

0

10

10

15

15

20

20

25

25

30

30

35 40 45 50

820 Hz

400 Hz

Figure 3.10 Magnitude spectra of two sine waves at 400 Hz and 820 Hz

TEAM LinG

EXAMPLE 3.13

In Exercise 2.8, a digitized speech signal (sampling rate 8,000 Hz) stored in file timit1.
asc was corrupted by a 1,000-Hz (normalized frequency 0.25) tonal noise and examined
with SPTool. The DFT is inadequate for analyzing nonstationary signals such as speech. The
short-time Fourier transform (STFT) breaks up the signal sequence into consecutive blocks
and performs the FFT of individual blocks over the entire signal. MATLAB provides a
function specgram to compute and plot a time-frequency spectrogram of the input signal.
For example, the following command

specgram(xn_tone,256);

will plot the spectrogram of the speech signal timit1.asc with tonal noise, using an FFT
of length 256. This plot is shown in Figure 3.11 by MATLAB script example3_13.m. It
contains both time and frequency information. Therefore, it can pinpoint the time instance
where the signal is active by looking at the color plot. A darker color indicates higher
energy.

EXERCISE 3.11

1. Generate a sinusoid embedded in white noise with SNR = 10 dB. Assuming
that the variance of white noise is 1, what is the amplitude of sine wave
needed for generating the noisy sine wave?

2000
0

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy

0.6

0.7

0.8

0.9

1

4000 6000 8000 10000 12000
Time

Figure 3.11 Spectrogram of the speech signal, timit1.asc, which is corrupted by a tonal noise
at normalized frequency 0.25

3.3 Frequency Analysis 81

TEAM LinG

82 Chapter 3 Frequency-Domain Analysis and Processing

2. Compute and plot the noisy sine wave’s magnitude spectrum. Compare the
spectrum of the noisy sine wave with the clean sine wave shown in Figure
3.10. The white noise has a fl at spectrum over the entire frequency range
from 0 to π.

3. Analyze this spectrum using the MATLAB function specgram.

HANDS-ON EXPERIMENT 3.2

In this experiment, we use SPTool to perform frequency analysis. As shown in Figure 2.3,
the rightmost function, Spectra, provides the spectral estimation methods supported by the
Signal Processing Toolbox. As introduced in Hands-On Experiment 2.1, we can bring signals
(with their sampling frequencies) from the MATLAB workspace (or data fi les) into the
SPTool workspace by using Import under the File menu. As shown in Figure 2.4, the data
fi le xn is imported from the fi le sine3sec.mat with the Signals column. The imported
data fi le is named sig1 in this example. For 3 s of data fi le with 12,000 samples, we have
to zoom in on the signal to see it as shown in Figure 2.5.

To use the Spectrum Viewer for analyzing the imported signal sig1, highlight the
signal in the Signals column and click on the Create button in the Spectra column. The
new Spectrum Viewer window will appear as shown in Figure 3.12. Click on the Apply
button on the bottom left corner to create the spectrum fi le spect1, and the PSD (power
spectrum density) subwindow will be displayed as shown in Figure 3.12. The user can select
one of the many spectral estimation methods to implement the spectrum estimation. In addi-
tion, the size of FFT, window functions, and overlapping samples can be selected to complete
the PSD estimation. We introduce window functions in Section 3.3.4.

Repeat the above process for importing the second data fi le sineNoise3sec.mat and
creating the second spectrum fi le spect2. Select both spect1 and spect2 in the Spectra

Figure 3.12 Spectrum Viewer window

TEAM LinG

column, and click on the View button to display the spectra as shown in Figure 3.13. This
feature allows us to display several spectra on the same plot, which is very useful for com-
paring the fi lter input and output spectra. As shown in Figure 3.13, the spectrum of the pure
sine wave has a spike at 200 Hz, but the white noise spectrum is fl at in the frequency range
from 0 to π.

EXERCISE 3.12

1. Create the spectra of these two import signals using different parameters
such as Method, Nfft, Nwind, Window, and Overlap as shown in the left
side of Figure 3.13, and observe the differences.

2. Import the three data fi les created in Example 2.9 and use the Spectrum
Viewer to perform frequency analysis.

3. Modify example2_10.m to generate 3 s of square wave, save it using the
.mat format, import it to SPTool, and use the Spectrum Viewer to perform
frequency analysis. How many sinusoidal components are there, and what
are their frequencies? Observe the relationship between the frequency of the
square wave and the frequencies of those harmonics.

3.3.4 Window Functions

In Example 3.12, Quiz 3.1, and Exercise 3.10, we found some problems with
using DFT for spectral analysis. From Equation 3.3.19, the frequency index k

Figure 3.13 Spectra of clean (bottom) and noisy (top) sine waves

3.3 Frequency Analysis 83

TEAM LinG

84 Chapter 3 Frequency-Domain Analysis and Processing

corresponds to frequency kfs/N(Hz). If the sine wave frequency f can be exactly
represented by an integer value of k, we obtain a line spectrum. In Example 3.12,
fs is 4,000 Hz and N = 100. The 400-Hz sine wave can be exactly represented by
k = 10. However, the 820-Hz sine wave is located between k = 20 and k = 21. There-
fore, its spectrum cannot be represented by one spectral bin and thus is spread (or
leaks out) to adjacent bins as shown in Figure 3.10. This phenomenon is called
spectral leakage.

For the 400-Hz sine wave sampled at 4,000 Hz, one cycle of sine wave consists
of 10 samples and N = 100 covers exactly 10 cycles. However, for the 820-Hz sine
wave, N = 100 covers 20.5 cycles. The DFT defi ned in Equation 3.3.9 assumes that
the signal is a periodic signal with period N, which is only valid for the 400-Hz sine
wave. To solve this problem, we can change N from 100 to 200. If we only have L
samples that are less than N, we can pad N − L zero samples. Unfortunately, in most
practical applications, we do not know the sine wave frequency, and thus we are not
able to select an appropriate N.

As shown in Figure 3.12, a window is often employed for spectral analysis using
DFT. For a long signal sequence, taking only N samples for analysis is equivalent
to applying a rectangular window w(n) of length N to the signal. This action can be
expressed as

x n x n w nN () = () (), (3.3.22)

where

w n
n N() = ≤ ≤ −{1 0 1

0
,
, otherwise

. (3.3.23)

The spectrum of the rectangular function is similar to Equation 3.3.4 without the
scaling factor 1/L. Windowing not only produces leakage effects, it also reduces
spectral resolution.

HANDS-ON EXPERIMENT 3.3

The MATLAB Signal Processing Toolbox provides two graphical user interface tools,
Window Visualization Tool (WVTool) and Window Design and Analysis Tool (WINTool),
to design and analyze windows. In the MATLAB command window, wvtool(winname(n))
opens WVTool with the time- and frequency-domain plots of the n-length window specifi ed
in winname, which can be any window in the Signal Processing Toolbox. For example, the
following command will open the WVTool for comparing rectangular and Blackman
windows as shown in Figure 3.14:

wvtool(rectwin(64), blackman(64))

In Figure 3.14, the time-domain values of window coeffi cients are displayed on the
left-hand side and the magnitude spectrum is shown on the right-hand side. As shown in the
fi gure, the Blackman window is tapered to zero at both ends; thus the Blackman window
has wider bandwidth but higher attenuation at stopband compared to the rectangular
window.

TEAM LinG

A more powerful tool for designing and analyzing window is WINTool, which can be
launched as

wintool

It opens with a default 64-point Hamming window as shown in Figure 3.15.
As shown in the fi gure, WINTool has three panels: Window Viewer displays the time-

domain and frequency-domain representations of the selected window(s). Three window
measurements are shown below the plots. (1) Leakage Factor indicates the ratio of power
in the sidelobes to the total window power. (2) Relative sidelobe attenuation shows the
difference in height from the mainlobe peak to the highest sidelobe peak. (3) Mainlobe
width (-3dB) is the bandwidth of the mainlobe at 3 dB below the mainlobe peak.

The second panel, called Window List, lists the windows available for display in the
Window Viewer. Highlight one or more windows to display them. The four Window List
buttons are as follows. (1) Add a new window allows the user to add a default Hamming
window with length 64 and symmetric sampling. We can change the information for this
window by applying changes made in the Current Window Information panel. (2) Copy
window copies the selected window(s). (3) Save to workspace saves the selected window(s)
as vector(s) to the MATLAB workspace. The name of the window in WINTool is used as
the vector name. (4) Delete removes the selected window(s) from the window list.

Current Window Information displays information about the currently active window.
We can change the current window’s characteristics by changing its parameters and clicking
Apply. The active window name is shown in the Name fi eld. We can either select a name
from the menu or type the desired name in the edit box. The parameter Type presents the
algorithm for the window. Select the type from the menu. All windows in the Signal Process-
ing Toolbox are available. The parameter Length indicates the total number of samples.

For example, click on the Add a new window button at the Window List panel; select
Kaiser from the Type menu in the Current Window Information panel, and click on Apply.

Figure 3.14 WVTool for evaluating rectangular and Blackman windows

3.3 Frequency Analysis 85

TEAM LinG

86 Chapter 3 Frequency-Domain Analysis and Processing

Both time-domain and frequency-domain representations in the Window Viewer panel are
updated. Highlight both window_1 and window_2 from the Window List panel; the time-
and frequency-domain representations of both windows are displayed as shown in Figure
3.16. Note that we use window length 100 for both cases and use Beta = 8.96 for the Kaiser
window. The Kaiser window has more sidelobe attenuation (−65.7 dB) as compared to the
Hamming window (−42.5 dB) that is shown in Figure 3.16. After verifying the designed
window, we can use Export from the File menu to export window coeffi cients to the
MATLAB workspace as a text fi le or a MAT fi le.

EXAMPLE 3.14

In Example 3.12, we found undesired spectral leakage effects due to the use of a rectangular
window that is not tapered to zeros at both ends as shown in Figure 3.14. In this example,
we modify the MATLAB program example3_12.m by applying the Kaiser window shown
in Figure 3.16 to the signal, using Equation 3.3.22. We then compute the spectra of signals

Figure 3.15 A default WINTool window

TEAM LinG

with a rectangular window and a Kaiser window, using the MATLAB script example
3_14.m. The results are displayed in Figure 3.17. Compared with Figure 3.10, we observe
that the Kaiser window has effectively reduced the spectral leakage of the sine wave at
820 Hz, but at the cost of broadening the peak for 400 Hz because of the wider bandwidth
of the Kaiser window compared to the rectangular window shown in Figure 3.14.

EXERCISE 3.13

1. Use WINTool to evaluate and compare different window functions such
as barthannwin, bartlett, blackman, blackmanharris,

bohmanwin, chebwin, flattopwin, gausswin, hamming,

hann, kaiser, nuttallwin, parzenwin, rectwin, triang,

and tukeywin.

2. Evaluate the performance of the Kaiser window with different lengths and
values of beta.

3. Apply different windows to the signal given in Example 3.14 and observe
the differences between the spectral leakage reduction and main lobe
broadening.

4. Redo Exercise 3 using the Kaiser window with different values of beta.

Figure 3.16 Comparison of Hamming window (top) with Kaiser window

3.3 Frequency Analysis 87

TEAM LinG

88 Chapter 3 Frequency-Domain Analysis and Processing

3.4 MORE HANDS-ON EXPERIMENTS

In this section, we use the SPTool for fi lter design and analysis. We apply pole/zero
concepts learned in Section 3.2 for designing notch and peak fi lters and use these
fi lters for reducing noises.

3.4.1 Simple Low-Pass Filters

Assume that the signal x(n) consists of a sine wave corrupted by random noise. Our
goal is to develop and implement a digital low-pass fi lter to reduce noise, thus
enhancing the sinusoidal component. For simulation purposes, we use the same data
fi le sineNoise3sec.mat used in Hands-On Experiment 3.2 as x(n), which is a
sine wave corrupted by noise. The spectrum of this noisy sine wave is shown as the
top line in Figure 3.13. The fi gure clearly shows that the sinusoidal component (a
peak) is located at a low frequency (200 Hz) and can be enhanced by reducing noise
components in high-frequency ranges. This objective may be achieved by using a
simple low-pass fi lter.

EXAMPLE 3.15

In Figure 3.8, we show the magnitude responses of a moving-average FIR fi lters with lengths
5, 10, and 20. The simple IIR low-pass fi lter implemented in example3_7.m with α = 0.2

Magnitude spectra of sinewaves

Frequency index k

M
ag

ni
tu

de
 in

 d
B

5

0

10 15 20

–10

–20

–30

–40

–50

–60

20

10

25 30

30

35 40 45 50

Rectangular window

Kaiser window

Figure 3.17 Spectral analysis using rectangular and Kaiser windows

TEAM LinG

is equivalent to the moving-average fi lter of L = 5. We can compute and compare the mag-
nitude responses of these FIR and IIR fi lters with the MATLAB script example3_15.m.
The magnitude responses are shown in Figure 3.18. Compared with Figure 3.13, we know
that the sinusoidal component (200 Hz or 0.1π rad) will be passed with little attenuation when
the moving-average fi lter is used, but the simple IIR fi lter has higher attenuation. Both fi lters
will reduce noise at the high-frequency range with, however, only about 10 dB noise reduc-
tion. Thus these simple fi lters will work for the purpose of reducing random noise that cor-
rupts a low-frequency sinusoidal signal with high SNR. The design of higher-performance
IIR fi lters is introduced in Chapter 4.

HANDS-ON EXPERIMENT 3.4

In this experiment, we use SPTool to perform the fi ltering and analysis. As shown in previ-
ous experiments, SPTool provides a rich graphic environment for signal viewing, fi lter
design, and spectral analysis.

We fi rst import the corrupted sine wave sineNoise3sec.mat and name it sig1. The
next task is to design the FIR and IIR low-pass fi lters as shown in Example 3.15 to fi lter out
the high-frequency noise components. The simplest way is to import the fi lter from the
MATLAB workspace to the SPTool by clicking on File → Import and importing the numer-
ator (b1) and denominator (a1) coeffi cients as shown in Figure 3.19 (note that after execution
of example3_15.m both FIR and IIR fi lter coeffi cients are available from the workspace).
The imported fi lter is named FIR1. Repeat this process to import the fi rst-order IIR fi lter from
workspace and name it IIR1. The user can examine the characteristics of the imported fi lters
by highlighting fi lters FIR1 and IIR1, followed by View. The selected display in the Filter
Viewer is similar to that displayed in Figure 3.18. The Filter Viewer also allows the user to
view the characteristics of a designed or imported fi lter, including the magnitude response,
phase response, group delay, pole-zero plot, impulse, and step responses of the fi lter.

Normalized Frequency (×π rad /sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Moving-average filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
–90

–80

–70

–60

–50

–40

–30

–20

–10

0

Figure 3.18 Magnitude responses of FIR and IIR fi lters

3.4 More Hands-On Experiments 89

TEAM LinG

90 Chapter 3 Frequency-Domain Analysis and Processing

The imported fi lter, FIR1 (or IIR1), can be selected and applied to the input signal,
sig1, by clicking on the Apply button in the SPTool window under Filters. A new window
as shown in Figure 3.20 is displayed, which allows the user to select the structure of the fi lter
and specify the name of the output signal as FIR_out. Repeat this process for fi ltering the
same sig1 with the IIR1 fi lter, and name the output signal IIR_out.

The time-domain plots of the input signal and fi ltered output signals can be viewed by
selecting sig1, FIR_out, and IIR_out. This is followed by clicking on the View button
in the Signal column. The third column of the SPTool is the Spectrum Viewer, which is
used to analyze and view the frequency content of the signals. Following the steps introduced
in Hands-On Experiment 3.2, we can create three spectra for the signals. Figure 3.21 shows
the magnitude spectra for the input signal and the output signals from both FIR and IIR
fi lters. Finally, the SPTool session can be saved in the fi le experiment3_4.spt for later
reference.

Figure 3.19 Import the moving-average fi lter’s coeffi cients into SPTool

Figure 3.20 Apply Filter dialog box for fi ltering

TEAM LinG

3.4.2 Design and Applications of Notch Filters

A notch fi lter contains one or more deep notches in its magnitude response. To create
a notch at frequency ω0, we simply introduce a pair of complex-conjugate zeros on
the unit circle at angle ω0 as

z e j= ± ω0 . (3.4.1)

The transfer function of this FIR notch fi lter is

H z e z e z

z z

j j() = −() −()
= − () +

− − −

− −

1 1

1 2

0 01 1

0
1 2

ω ω

ωcos . (3.4.2)

This is the FIR fi lter of order 2 because there are two zeros in the system. Note that
a pair of complex-conjugate zeros guarantees that the fi lter will have real-valued
coeffi cients as shown in Equation 3.4.2.

The magnitude response of the second-order FIR notch fi lter described in Equa-
tion 3.4.2 has a relatively wide bandwidth, which means that other frequency com-
ponents around the null are severely attenuated. To reduce the bandwidth of the null,
we may introduce poles into the system. Suppose that we place a pair of complex-
conjugate poles at

z rep
j= ± θ0, (3.4.3)

where r and θ0 are the radius and angle of poles, respectively. The transfer function
for the resulting fi lter is

H z
e z e z

re z re z

j j

j j
() =

−() −()
−() −()

=
−− − −

− − −

1 1

1 1

1 20 0

0 0

1 1

1 1

ω ω

θ θ
coos

cos
.

ω
θ

0
1 2

0
1 2 21 2

() +
− () +

− −

− −
z z

r z r z
(3.4.4)

Figure 3.21 Spectra of input signal (top) and fi ltered signals (the one with notches is the output of
the FIR moving-average fi lter)

3.4 More Hands-On Experiments 91

TEAM LinG

92 Chapter 3 Frequency-Domain Analysis and Processing

The notch fi lter expressed in Equation 3.4.4 is the second-order IIR fi lter because
there are two poles in the system.

EXAMPLE 3.16

The magnitude response of the fi lter defi ned by Equation 3.4.4 is plotted in Figure 3.22. We use
the fi xed frequency (θ0 = ω0 = 0.25π), but change the value of r. The magnitude responses of the
fi lter are shown for r = 0.5, 0.75, and 0.95, using the MATLAB script example3_16.m. Com-
pared with the magnitude response of the FIR fi lter given in Equation 3.4.2, we note that the
effect of the pole is to reduce the bandwidth of the notch. Obviously, the closer the r value to 1
(poles are closer to the unit circle), the narrower the bandwidth.

EXERCISE 3.14

In MATLAB program exercise2_8.m, a speech fi le, timit1.asc, is corrupted
by 1-kHz tone, and the corrupted signal with a sampling rate of 8 kHz is saved in
the fi le speech_tone.mat.

1. Implement the notch fi lter with r = 0.95 designed in Example 3.16 for attenu-
ating the tonal noise. Play both input and output signals with the MATLAB
function soundsc and display the spectrogram of output speech (see Fig.
3.23) with the function specgram. Compared with Figure 3.11, we found
that the tonal noise at 1 kHz (0.25π rad) was removed and the sound quality
of the output speech is high. See exercise3_14.m for reference.

2. Redo Exercise 1, using different values of r, and evaluate the results by
playing the outputs and viewing the spectrograms.

Normalized Frequency (×π rad /sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
–60

–50

–40

–30

–20

–10

0

Figure 3.22 Magnitude responses of notch fi lter for different values of r (from top to bottom,
r = 0.95, 0.75, and 0.5)

TEAM LinG

3. Compute the magnitude response of a notch fi lter with only two complex-
conjugate zeros on the unit circle as expressed in Equation 3.4.2. Compare
it with the notch fi lter with poles as shown in Figure 3.22.

4. Modify the MATLAB script exercise2_8.m that adds a 60-Hz hum
(tone) into the speech fi le timit1.asc with different SNRs. Play the cor-
rupted speech with soundsc. Note that many real-world speeches are
corrupted by 60-Hz tone and its harmonics.

5. Design a notch fi lter to attenuate this undesired 60-Hz hum. Evaluate the
fi lter’s performance by examining the spectrogram and playing the output
speech.

HANDS-ON EXPERIMENT 3.5

In Example 2.9, we used the MATLAB code mulSineGen.m for generating signal consist-
ing of a desired sine wave that is corrupted by another sine wave at different frequency and
saved it in a data fi le. We are not able to use simple low-pass fi lters shown in Figure 3.18 to
remove those interferences because both desired and undesired sine waves are at the low-
frequency range. In this experiment, we design a notch fi lter to attenuate the undesired tone.
We use the fi rst data fi le, sine200plus400at4k.mat, which is a 200-Hz sine wave cor-
rupted by a 400-Hz sine wave with a sampling rate of 4 kHz, as an example. Note that the
digital frequencies of 200 Hz and 400 Hz are equivalent to 0.1π and 0.2π, respectively.

2000
0

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy

0.6

0.7

0.8

0.9

1

4000 6000 8000 10000 12000
Time

Figure 3.23 Output spectrogram with the tone removed by the notch fi lter

3.4 More Hands-On Experiments 93

TEAM LinG

94 Chapter 3 Frequency-Domain Analysis and Processing

In this experiment, we use the Pole/Zero Editor in SPTool to specify the poles and
zeros of the IIR fi lter. In the SPTool window, click on the New button under Filters; a Filter
Designer dialog box will be displayed. Select the Pole/Zero Editor in the Algorithm menu;
the default fi lter with a pole/zero diagram is displayed. Clear this fi lter by clicking on the
Delete All button. The window that appears in Figure 3.24 allows the user to drag- and-

drop poles and zeros in the z-plane with the icons and , respectively. To reduce
400-Hz tone, the complex-conjugate poles and zeros are positioned at frequency 0.2II (or
0.6284) rad. We use these two icons to drop poles and zeros into the desired position and
use the Specifi cations panel at the left-hand side to fi ne-tune the position as shown in
Figure 3.24. Note that we also change the default Sampling Frequency to 4000 Hz. Once
the pole and zero positions are specifi ed, we name the fi lter filt2.

We can evaluate the fi lter characteristics by highlighting the fi lter filt2 and clicking
on the View button under Filters in the SPTool window. A Filter Visualization Tool (FVTool)
window is displayed, which was introduced in Hands-On Experiment 3.1. For example, we
select the Magnitude and Phase Responses option from the Analysis menu, and Figure
3.25 is displayed. This fi gure clearly shows that the 400-Hz tone is attenuated by the designed
notch fi lter and the desired 200-Hz tone passes without attenuation.

Import the fi le sine200plus400at4k.mat into the SPTool and name it sig1.
Perform IIR fi ltering to produce the output sig2. We can view both input (mixing of two
sine waves) and output (only 400-Hz tone) by the Signal Browser. We also create spectra
of both input and output signals and display both spectra in Figure 3.26. From the fi gure,
we fi nd that the 400-Hz interference was attenuated by about 60 dB. We also can play input
and output signals separately and evaluate their differences.

Figure 3.24 Notch fi lter design using Pole/Zero Editor

TEAM LinG

EXERCISE 3.15

1. Redesign the notch fi lter shown in Figure 3.25, using r = 0.99. Apply this
fi lter to the data fi le sine200plus400at4k.mat and show both input and
output spectra.

2. Design a notch fi lter to remove the 400-Hz sine wave generated in Example
2.9(2) and show the results.

3. Design a notch fi lter to remove the 60-Hz hum generated in Example 2.9(3)
and show the results.

Magnitude (dB) and Phase Responses

Magnitude response

Phase response

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

P
ha

se
 (

ra
di

an
s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
–60

–46

–32

–18

–4

10

–2

–1.2

–0.4

0.4

1.2

2

Figure 3.25 Magnitude and phase responses of designed notch fi lter

Figure 3.26 Input and output spectra

3.4 More Hands-On Experiments 95

TEAM LinG

96 Chapter 3 Frequency-Domain Analysis and Processing

3.4.3 Design and Applications of Peak Filters

In Hands-On Experiment 3.4, we used the moving-average FIR fi lter and the fi rst-
order IIR fi lter for enhancing a sine wave that was corrupted by white noise. As
shown in Figure 3.18, these fi lters have undesired attenuation of signals because the
gain is less than 1. They also only provide about 10–15 dB of noise reduction, as
shown in Figure 3.21. In Section 3.4.2, we introduced notch fi lters that have very
narrow bandwidth for attenuation of sinusoidal interference. In this section, we
extend a similar technique to enhance a sinusoidal signal that is corrupted by broad-
band noises.

To create a peak (or narrow passband) at frequency ω0, we may think we can
simply follow the example of designing a notch fi lter by introducing a pair of
complex-conjugate poles on the unit circle at angle ω0. However, as discussed in
Section 3.2.3, the resulting second-order IIR fi lter will be unstable. To solve this
problem, we have to move the poles slightly inside the unit circle (i.e., use rp < 1) as

z r ep p
j= ± ω0 . (3.4.5)

The transfer function of this second-order IIR peak fi lter is

H z
r e z r e z r z r zp

j
p

j
p p

() =
−() −() =

− () +− − − − −
1

1 1

1

1 20 01 1
0

1 2 2ω ω ωcos
. (3.4.6)

Similar to the second-order IIR notch fi lter introduced in Section 3.4.2, the
magnitude response of the second-order IIR peak fi lter described in Equation 3.4.6
has a relatively wide bandwidth, which means that other frequency components
around the peak will also be amplifi ed. To reduce the bandwidth of the peak, we
may introduce zeros into the system. Suppose that we place a pair of complex-
conjugate zeros at radius rz with the same angle as the poles; the transfer function
for the resulting second-order IIR fi lter is

H z
r e z r e z

r e z r e z
z

j
z

j

p
j

p
j

() =
−() −()
−() −(

− − −

− − −
1 1

1 1

0 0

0 0

1 1

1 1

ω ω

ω ω)) = − () +
− () +

− −

− −
1 2

1 2
0

1 2 2

0
1 2 2

r z r z

r z r z
z z

p p

cos

cos
.

ω
ω

(3.4.7)

It is important to note that for designing a peak fi lter, the poles must be closer to
the unit circle as

r rp z> . (3.4.8)

The IIR fi lter defi ned in Equation 3.4.7 can be applied as a simple parametric
equalizer for boosting (rp > rz) or cutting (rp < rz) an audio signal. The amount of
boost or cut is determined by the difference between rp and rz. The bandwidth of
peaks or notches is determined by the value of rz.

EXAMPLE 3.17

The peak fi lter with a pair of complex-conjugate poles only as defi ned in Equation 3.4.6 is
implemented in MATLAB code example3_17.m. The magnitude responses for radius 0.99,

TEAM LinG

0.95, and 0.9 are shown in Figure 3.27. This fi gure shows that the second-order IIR fi lter
with poles only has wide bandwidth. Also, when the poles are closer to the unit circle, the
fi lter has higher gain.

The peak fi lter with both complex-conjugate poles and zeros as defi ned in Equation
3.4.7 is also implemented in the same MATLAB code with the radius of poles fi xed at 0.99,
but the radius of zero is varied at 0.5, 0.75, and 0.95 in order to satisfy Equation 3.4.8. The
magnitude responses for these three different zero positions are shown in Figure 3.28.

Normalized Frequency (×π rad /sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
–20

–10

0

10

20

30

40

Figure 3.27 Magnitude responses of peak fi lter with poles only; radius r = 0.99 (top),
0.95 (middle), and 0.9 (bottom)

Normalized Frequency (×π rad /sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
–5

10

5

0

15

20

25

30

35

Figure 3.28 Magnitude responses of peak fi lter with poles (radius 0.99) and zeros; radius of zeros
r = 0.5 (top), 0.75 (middle), and 0.95 (bottom)

3.4 More Hands-On Experiments 97

TEAM LinG

98 Chapter 3 Frequency-Domain Analysis and Processing

EXERCISE 3.16

1. In Hands-On Experiment 3.4, we used an FIR moving-average fi lter
with L = 5 and its equivalent fi rst-order IIR fi lter for enhancing the
200-Hz sine wave (sampled at 4 kHz) in data fi le sineNoise3sec.mat.
Design a peak fi lter using MATLAB with poles radius 0.99 and zeros
radius 0.95 to enhance the sine wave, and compare the results with
Figure 3.21.

2. Redo Exercise 1 by using Pole/Zero Editor to design different peak fi lters,
analyze their characteristics, fi lter the noisy sine wave, and compare input
and output spectra.

3. In Exercise 2.8, we added tonal and white noises into the speech signal. In
Exercise 3.14, we used a notch fi lter to remove tonal noise. Try all the fi lters
we have learned so far to reduce random noise. You may fi nd that this is a
very diffi cult task. Why?

EXERCISE 3.17

1. If the impulse response of an IIR fi lter is h(n) = sin(ω0n), show that the
transfer function of the fi lter is expressed as

H z
z

z z
() =

()
− () +

−

− −
sin

cos
.

ω
ω

0
1

0
1 21 2

(3.4.9)

2. Find the poles of this fi lter by comparing the transfer function with
Equations 3.4.5 and 3.4.6. Is this a stable IIR fi lter?

3. If the sampling rate is 8 kHz, compute the values of IIR fi lter coeffi cients
for generating sinewaves at frequencies of 697, 770, 852, 941, 1,209, 1,336,
1,477, and 1,633 Hz.

4. Write a MATLAB program to implement Equation 3.4.9. Apply an
impulse function to the fi lter to generate sine waves at frequency defi ned in
Exercise 3.

3.5 FREQUENCY ANALYSIS
WITH BLACKFIN SIMULATOR

This section introduces additional features of the VisualDSP++ simulator for the
Blackfi n (BF533 and BF537) processors. We use optimized functions provided in
the C run time library and DSP run time library. These library functions greatly
ease the development of effi cient C code for embedded applications.

TEAM LinG

HANDS-ON EXPERIMENT 3.6

This experiment uses a simple program, main.c, to compute the magnitude spectrum of
the input signal. The project fi le, exp3_6.dpj, is provided in directory c:\adsp\chap3\
exp3_6. Double-click on main.c to display it, and examine the program carefully. This C
main program includes the following header fi les:

#include <stdio.h> // standard input and output
#include <fract.h> // support fractional values
#include <complex.h> // basic complex arithmetic
#include <filter.h> // filters and transformations
#include <math.h> // math functions

The main program reads in data from the input fi le in1.dat, which contains 512
samples of sine wave. The program then calls the library functions to compute FFT, square
root, and magnitude spectrum. The result is stored in the output fi le out1.dat. The critical
portion of program is listed as follows:

twidfft_fr16(w, VEC_SIZE); // initialize twiddle factors rfft_
fr16(in, t, out, w, 1, VEC_SIZE, 0, 0); // FFT
mag[0] = sqrt(out[0].re*out[0].re+out[0].im*out[0].im);
fprintf(fid, “%d,\n”, (short)mag[0]);
for (i=1; i<VEC_SIZE/2; i++) {
 mag[i] = 2*sqrt(out[i].re*out[i].re+out[i].im*out[i].im);
 fprintf(fid, “%d,\n”, (short)mag[i]);
}
mag[VEC_SIZE/2]= sqrt(out[VEC_SIZE/2].re*out[VEC_SIZE/2].re
 +out[VEC_SIZE/2].im*out[VEC_SIZE/2].im);
fprintf(fid, “%d,\n”, (short)mag[VEC_SIZE/2]);
fclose(fid);

Build the project and load the program into the VisualDSP++ simulator. Before running
the program, open two previously created debug windows, input.vps and output.vps,
to display the input signal waveform and the output spectrum, respectively. Click on View
→ Debug Windows → Plot → Restore, and search for input.vps in directory c:\adsp\
chap3\exp3_6. A graphic window will appear in the right column, as shown in Figure
3.29. Right-click on the displayed window, click on Confi gure . . . → Settings . . . , and
select the 2D-Axis tab. Note that the increment value of the x-axis should be equal to the
sampling period (1/48,000 in this case).

The main program, main.c, uses the FFT routine provided in the library to compute
the magnitude spectrum of the input signal. Open the output window by clicking on View
→ Debug Windows → Plot → Restore and search for output.vps in directory c:\adsp\
chap3\exp3_6. Right-click on the output window and select Auto Refresh. Run the
program, and the output will be updated in the window. Again, right-click and activate
the Data Cursor to measure the frequency of the peak magnitude. Instead of measuring the
frequency in hertz, the magnitude spectrum plot can also be measured in term of the fre-
quency index, k. The relationship between the frequency in hertz and the frequency index is
defi ned in Equation 3.3.19. Because we are using 512-point FFT and the sampling frequency
fs is 48 kHz, the frequency resolution Δf is 93.75 Hz. The peak frequency is measured at
3,000 Hz, which corresponds to the frequency index k = 32. Note that the index k starts from
0 to 511, and only 257 points are displayed from the frequency index k = 0 (corresponds to
DC or 0 Hz) to k = 257 (corresponds to the Nyquist frequency, which is 24 kHz in this

3.5 Frequency Analysis with Blackfi n Simulator 99

TEAM LinG

100 Chapter 3 Frequency-Domain Analysis and Processing

example). Users can also export out1.dat to the MATLAB workspace for observing the
magnitude spectrum. It is important to note that the MATLAB index starts from 1, so that
k = 1 corresponds to 0 Hz, and so on.

Instead of writing an FFT routine to compute the magnitude spectrum, users can
also display the magnitude spectrum of the signal by right-clicking on the input window and
selecting Modify Settings. Click on the Data Processing tab, and selecting FFT Magnitude
under Data Process. Click on OK, and the magnitude spectrum is displayed as shown in
Figure 3.30. Examine the position of the peak and its frequency index and magnitude. The
peak should occur at 3,000 Hz.

We can also display the spectrogram by using the VisualDSP++ graphical feature.
Right-click on the input signal window and select Confi gure. . . . Select Spectrogram Plot
under Plot Type. Because we have 512 samples of input signal, we can divide the time axis
(y-axis) into 5 parts and the frequency axis (x-axis) into 102 parts. Figure 3.31(a) shows the

Figure 3.29 Display of input signal

Figure 3.30 Magnitude spectrum obtained with VisualDSP++ data process

TEAM LinG

Figure 3.31 (a) Confi guration for plotting spectrogram (b) Spectrogram plot of the input signal,
in1.dat

3.5 Frequency Analysis with Blackfi n Simulator 101

settings used for the spectrogram plot. The new plot is shown in Figure 3.31(b). It shows a
vertical red line at the 3,000-Hz mark, which indicates that the 3,000-Hz sine wave is present
in the signal at all times. The spectrogram plot provides both frequency and time information
for the signal being analyzed. This plot is particularly useful for analyzing nonstationary
signals like speech.

TEAM LinG

102 Chapter 3 Frequency-Domain Analysis and Processing

EXERCISE 3.18

Use the display tool given in Hands-On Experiment 3.6 to perform the following
tasks:

1. The digitized speech plus tonal signal (speech_sine.dat) given in
Example 3.13 can be imported into the VisualDSP++ simulator for analysis.
However, the data fi le is too long to fi t into the internal memory of the pro-
cessor. This problem can be overcome by placing the data in the external
memory. To demonstrate this method, a project fi le, exercise3_18.dpj,
is given in directory c:\adsp\chap3\exercise3_18. Build the project
and perform signal analysis with VisualDSP++.

2. Display the time-domain waveform of the corrupted speech signal and listen
to this signal with the computer sound card. Set the sampling rate to 8,000 Hz.
Export data to the sound card can be enabled by right-clicking on the display
window and selecting the Export . . . option.

3. Note the length of the speech signal and plot its spectrogram with Visu-
alDSP++. What is the frequency of the sine wave?

3.6 FREQUENCY ANALYSIS WITH
BLACKFIN BF533/BF537 EZ-KIT

This section implements real-time frequency analysis of the input signal with the
Blackfi n BF533 or BF537 EZ-KIT. A signal from a CD player or computer sound
card is connected to the ADC1 input pair (see Fig. 2.23) of the BF533 EZ-KIT or
the stereo input of the BF537 EZ-KIT. The Blackfi n processor on the EZ-KIT com-
putes the FFT based on the block of data samples, and the result is displayed with
the graphical plot of the VisualDSP++ environment. To continuously analyze and
display the spectrum of the incoming signal, a background telemetry channel (BTC)
is required to facilitate data exchange between the VisualDSP++ hosted on the
computer and the Blackfi n processor without interrupting the processor. This feature
allows the frequency spectrum to be updated as soon as the block of signal is being
calculated. In the following exercises, we use BTC to change the parameters of the
program (such as the window type, window overlapping, and number of data samples
per block) on the fl y.

HANDS-ON EXPERIMENT 3.7

This experiment uses the frequency analyzer programs provided in the project exp3_7_533.
dpj for the BF533 EZ-KIT (or exp3_7_537.dpj for the BF537), which can be found in
directory c:\adsp\chap3\exp3_7_533 (or c:\adsp\chap3\exp3_7_537). This project
includes four source fi les summarized as follows:

TEAM LinG

1. init.c initializes the EZ-KIT for analog-to-digital conversion. This program also
sets up the direct memory access (DMA) controller and interrupts. A more detailed
explanation of this program is postponed to Chapter 7.

2. isr.c is the interrupt service routine (ISR) that performs the real-time frequency
analysis after the CODEC has acquired a block of data samples.

3. main.c is the main program that declares all the variables and their memory
allocation. It also initializes the EZ-KIT and forces the processor into an infi nite
loop for frequency analysis.

4. process.c performs windowing and window overlapping and computes FFT and
magnitude spectrum. This code is called isr.c.

Build the project. Open the graphical window by clicking on View → Debug Windows
→ Plot → Restore. Select FFT In.vps and FFT Out.vps in directory c:\adsp\chap3\
exp3_7. Right-click on the plots and make sure that Auto Refresh is enabled. Select the
wave fi le chirp.wav from directory c:\adsp\audio_files and play this wave fi le con-
tinuously with an audio player on the computer. Run the project and observe the two
graphical windows as shown in Figure 3.32. Note that the FFT Out spectrum will be swept
from left to right and back from right to left along the frequency axis. This plot shows that
the chirp waveform is a linear swept-frequency signal.

The updates of the signal waveform and the magnitude spectrum (shown in Fig. 3.32) are
performed by the BTC via the USB interface. Users can adjust the parameters of the program
with the BTC. Five steps needed to include the BTC in the source code are listed as follows:

1. Add the btc.h header fi le to the source code.

2. Defi ne the channels in the source code (main.c) as follows:

 BTC_MAP_BEGIN
// channel name, starting address, length
BTC_MAP_ENTRY(“FFT_INPUT”,(long)&BTC_CHAN0,sizeof(BTC_CHAN0))
BTC_MAP_ENTRY(“FFT_OUTPUT”,(long)&BTC_CHAN1,sizeof(BTC_CHAN1)
BTC_MAP_ENTRY(“INPUT SIZE”,(long)&new_size,sizeof(new_size))
BTC_MAP_ENTRY(“WINDOW TYPE”,(long)&new_win_select,sizeof(new_
 win_select))
BTC_MAP_ENTRY(“OVERLAP”,(long)&overlap, sizeof(overlap))
BTC_MAP_END

In this case, fi ve channels are defi ned to capture the user’s data entries when the
program is running.

3. Defi ne the BTC polling loop with the btc_poll() command in the interrupt service
routine. The polling loop checks for incoming commands from the host computer.

4. Initialize the BTC with the btc_init() command in main.c.

5. Add the BTC library libbtc532.dlb into the project.

To activate the BTC, click on View → Debug Windows → BTC Memory. The BTC
Memory window is displayed as shown in Figure 3.33, which indicates fi ve channels that
are defi ned in the source code. The fi rst two channels (FFT_INPUT and FFT_OUTPUT) are
used to display the real-time data, while the remaining three channels (INPUT_SIZE,
WINDOW_TYPE, and OVERLAP) are used for user-defi ned parameters. Refer to Table 3.1 for
the options provided for these three channels. Change the parameter values during the
program execution and observe the changes to the plots.

3.6 Frequency Analysis with Blackfi n BF533/BF537 EZ-KIT 103

TEAM LinG

104 Chapter 3 Frequency-Domain Analysis and Processing

Figure 3.33 BTC memory window

(a)

(b)

4

0 3 4 4 4 4

0

4

3

Figure 3.32 Magnitude spectrum and waveform of input signal, spectrum (a) and time-domain
signal (b)

TEAM LinG

EXERCISE 3.19

Replace chirp.wav with the wave fi le, liutm_48k_mono.wav, and perform
the following tasks:

1. Change INPUT_SIZE of the FFT and observe the resulting magnitude
spectrum. Users have to adjust the resolution settings of the FFT Out plot
by changing the Increment value of the x-axis and the Count value of the
display.

2. Change WINDOW_TYPE for windowing the input signal and note the
spectrum differences by using different windows.

3. Change OVERLAP of the input blocks and note any change in the
spectrum.

4. Modify the source code to process stereo input. Display the magnitude
spectra in real time for both the left and right channels.

5. Instead of using the given code to perform FFT, users can use the graphical
plot feature to display the magnitude spectrum. Display the spectrum of
the input signal and compare it with that obtained in Hands-On
Experiment 3.7.

3.7 FREQUENCY ANALYSIS WITH LABVIEW
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

Frequency analysis allows a designer to extract useful signal information in the
presence of noise or to detect a physical phenomenon like failing bearings in a

Table 3.1 Parameters Used to Adjust the Frequency Analysis

INPUT_SIZE (Hex16)

0×0200 512-point FFT
0×0100 256-point FFT
0×0080 128-point FFT
0×0040 64-point FFT

WINDOW_TYPE (Hex8)
0×00 Rectangular
0×01 Bartlett
0×02 Hanning
0×03 Hamming
0×04 Blackman

OVERLAP (Hex8)
0×00 No overlap between frames
0×01 50% overlap between frames

3.7 Frequency Analysis with LabVIEW Embedded Module for Blackfi n Processors 105

TEAM LinG

106 Chapter 3 Frequency-Domain Analysis and Processing

motor. Accurate time and frequency information is often needed before the embed-
ded design process begins, allowing the designer to choose sampling rates and fi lters
to accurately design and implement the system.

The following examples explore frequency-domain properties in LabVIEW,
enabling the designer to simulate, prototype, and deploy an application that detects
frequency information from time-domain signals. First, we explore frequency-
domain concepts through an interactive simulation. Then we implement similar
functionality with the FFT through the LabVIEW Embedded Module for Blackfi n
Processors, using the LabVIEW graphical interface to view and interact with signals
streaming into the Blackfi n EZ-KIT.

HANDS-ON EXPERIMENT 3.8

This hands-on experiment introduces the effects of windowing on frequency analysis. Under-
standing the frequency content of signals within a system is key to development of effective
fi lters and other system components. We accomplish this by using the FFT algorithm, which
is based on having a time-domain signal that continues on to infi nity. In real-world applica-
tions, fi nite-length signals will cause leakage in the frequency domain that distorts the result
of the FFT. Therefore, windowing is used to minimize the leakage introduced at the begin-
ning and end of a time-domain fi nite-length signal.

Open the program Window_FFT_Sim.exe, located in directory c:\adsp\chap3\
exp3_8. This LabVIEW application studies different window topologies applied to
an input signal and their effects on the performance of the FFT. Figure 3.34 shows the user
interface for Window_FFT_Sim.exe. Note that the Time & Frequency tab shows the
Time Domain signal and the Frequency Response, whereas the Window tab shows the
time representation of both the window and the input signal after the window has been
applied.

The default input signal is a 1-kHz sine wave sampled at 48 kHz with a buffer length
of 512 samples. When no window is applied, as shown in Figure 3.34, leakage is expected
in the frequency domain because the Time Domain plot shows that the sine wave stops short
of completing a full period. The effects of leakage can be seen in the Frequency Response
plot because the power at high frequencies rests above −60 dB. The Window pull-down menu
can be used to change the type of windowing to be implemented. Applying a Hanning
window provides improved performance, as seen in Figure 3.35, where the power at high
frequencies drops below −120 dB.

Now select the Bartlett window. How do the results change? Experiment with the
other window types and pay attention to the corresponding frequency response of the sinu-
soidal input. What trade-offs are apparent in both the time and frequency domains when
using the different windows?

Now load and experiment with the audio fi le speech_tone_48k.wav, which was used
in Hands-On Experiment 2.5. Can you see the tonal noise in the frequency-response graph?
Experiment with different windows and parameters to see the FFT results. How does win-
dowing affect the non-periodic speech fi le differently from the periodic sinusoid? How would
you expect the results to vary if you were to break up the speech tone into 512-sample
buffers? Explain.

TEAM LinG

Figure 3.34 Frequency analysis (user interface for Window_FFT_Sim.exe)

3.7 Frequency Analysis with LabVIEW Embedded Module for Blackfi n Processors 107

Figure 3.35 Frequency analysis of the input signal with a Hanning window

TEAM LinG

108 Chapter 3 Frequency-Domain Analysis and Processing

HANDS-ON EXPERIMENT 3.9

This experiment implements the FFT algorithm in the LabVIEW Embedded Module for
Blackfi n Processors for execution on the Blackfi n EZ-KIT to explore the advantages of
various windowing implementations. Executing the project in debug mode on the Blackfi n
processor allows the user to interact with the LabVIEW front panel and to see the results of
the FFT.

Open the Audio FFT - BF5xx.lep project appropriate for your Blackfi n processor
in directory c:\adsp\chap3\exp3_9. Open the block diagram to see how the FFT is
implemented. The block diagram shown in Figure 3.36 is intuitive, allowing the programmer
to easily see how to integrate the analog input and processing algorithm. The Window Type
control is wired to a Case Structure allowing the user to specify the window to be applied
to the acquired input signal. The windowed time-domain result is plotted to the
front panel indicator and passed to the FFT subVI. The FFT result is then converted from
complex representation to magnitude response, which is then plotted to a front panel indica-
tor as well. The data type is converted before plotting to limit the amount of data transferred
between the code running on the Blackfi n target and the front panel interface running on
the computer.

Customize the debugging mode and parameters within the LabVIEW Embedded
Module for Blackfi n Processors to enhance the experience and value of this exercise. First,
modify the target debugging parameters to increase the amount of data to be downloaded
to graph indicators. Then choose the debugging method. Finally, execute the application with
debugging support. These steps are described in more detail below.

Modify the target debugging parameters by navigating to the LabVIEW Embedded
Project Manager window and selecting Target → Confi gure Target → Debug Options,
change Max array elements to 256, and click on OK. This is necessary to view all of the
data on the graph because the buffer length on the block diagram is specifi ed as 512 samples,
which is divided into 256 for each channel. Therefore, the time-domain signal and FFT result
will have 256 samples.

These three debugging methods offer different advantages depending on the application
and resources. By default, this project is confi gured to the standard JTAG debugging

Figure 3.36 Frequency analysis block diagram

TEAM LinG

method using JTAG over USB. JTAG is the standard communication method between the
Blackfi n processor and VisualDSP++. In this debug mode, data transfers interrupt the
processor when transmitting data to and from the computer, which disrupts real-time pro-
cessing. JTAG debugging is adequate for this and many other applications as long as real-
time processing is not necessary. Another option, unique to the LabVIEW Embedded Module
for Blackfi n Processors, is called instrumented debugging, which requires the USB cable
and an additional cable connection between the Blackfi n and the computer. The additional
cable can be either serial or TCP/IP and allows for quicker update rates, providing a faster,
more interactive experience. Instrumented debugging adds extra code to the project to initi-
ate debug data transfers while the LabVIEW code is running on the processor, adding as
much as 40% to the size of the embedded executable code. If you are interested in using
serial or TCP/IP debug, attach the appropriate cables and change the debug mode for the
project by navigating to Target → Build Options and changing Debug Mode to Instru-
mented (via serial port) or Instrumented (via TCP port).

Run the project on the Blackfi n processor. Close the block diagram window and navigate
back to the project window. Run the VI using debug mode to explore the various types of
windowing. Different windows can be applied during run time by changing the Window
Type control on the front panel as shown in Figure 3.37. Change the window type to see
how it affects the time-domain signal and the performance of the FFT. How does window-
ing improve the resulting frequency-domain calculation?

3.7 Frequency Analysis with LabVIEW Embedded Module for Blackfi n Processors 109

Figure 3.37 Frequency analysis front panel

TEAM LinG

110 Chapter 3 Frequency-Domain Analysis and Processing

Probe the values passed through wires on the block diagram using probes. Note that
the resulting vector from the FFT is complex and the Absolute Value function converts the
complex values to the magnitude response. Modify the experiment to show the real part of
the frequency response in one graph and the imaginary part in the other.

3.8 MORE EXERCISE PROBLEMS

1. The digital signal x(n) consists of two real-valued sinusoidal components expressed as

x(n) = A1sin(ω1n) + A2sin(ω2n) + v(n),

 where v(n) is zero-mean and unit-variance white noise, ω1 = 0.1π, and ω2 = 0.2π.

(a) Compute A1 and A2 such that A1 = 2A2 and the signal-to-noise ratio is 10 dB. Gener-
ate 512 samples x(n) with MATLAB.

(b) Design a moving-average fi lter of L = 10. Filter the signal x(n) and plot both x(n)
and y(n) with MATLAB. Discuss the results and explain why.

(c) Use MATLAB functions fft, abs, and log10 to compute and plot the magnitude
spectra of x(n) and y(n) with a dB scale. Plot the spectra from frequencies 0 to π.

(d) Explain why the sinusoidal component at frequency ω2 = 0.2π has been attenu-
ated.

(e) Design a peak fi lter with two peaks to enhance these two sinusoids.

2. Redo Problem 1 with SPTool.

3. Given a speech fi le timit1.asc, perform the following task:

(a) Use different frequency analysis techniques to obtain its spectrum. Other than
specgram, do other techniques really work?

(b) Add white noise with a mean of 0 and a variance of 20,000 into the original speech.
Replay the original and corrupted speech with the MATLAB function soundsc,
and show its frequency contents with the MATLAB function specgram.

(c) Can you design a digital fi lter to reduce the noise?

4. The convolution function conv in MATLAB can be used to perform FIR fi ltering. Redo
Example 3.7 with the conv function. Is the output derived from conv identical to that
from filter? If not, how can the two outputs be the same?

5. Generate a 3-s sine wave of 2,000 Hz in MATLAB, using a sampling frequency
of 16,000 Hz. Use MATLAB function soundsc to play the generated sine wave.
Save the sine wave as a wave fi le with extension .wav by using the wavwrite
function. The wave fi le can be saved as 16 bits per sample. Record the fi le size of the
saved wave fi le. Examine the size of the fi le saved if 8 bits per sample is used. Finally,
the wave fi le can be read back into the MATLAB workspace by using the wavread
function. Plot the wave fi le and compare it with the original data fi le generated by
MATLAB.

6. Using the property of z-transform of an N-periodic sequence given in Exercise 3.2(3),
fi nd the z-transform of square wave x(n) = {1 1 1 –1 –1 –1 1 1 1 . . .}.

TEAM LinG

7. A digital system is defi ned by the I/O equation y(n) = x(n) + x(n − 1).

(a) Sketch the signal fl ow diagram of the system.

(b) Find the magnitude and phase responses of the system.

8. Find the transfer function of the systems described by the following difference
equations:

(a) 2y(n) + y(n − 1) + 0.75y(n − 2) = x(n − 1) + 2x(n − 2)

(b) y(n) − 0.5y(n − 1) + 2y(n − 2) = x(n) − x(n − 1) + 0.75x(n − 2)

(c) Derive Equation 3.2.21 from Equation 3.2.20.

9. A digital system is defi ned by the I/O equation y(n) = x(n) + ay(n − 1).

(a) Sketch the signal-fl ow diagram of the system.

(b) Find the magnitude response of the system and sketch it for a = 0.9 and a = 0.5.

10. A three-point moving-average fi lter is defi ned by the I/O equation

y(n) = 1/3[x(n) + x(n − 1) + x(n − 2)].

(a) Find the frequency response of the system.

(b) Compute the magnitude and phase responses of the system.

11. An analog sine wave with frequency f0 = 100 Hz is sampled at a sampling rate of
1,000 Hz. What is the normalized frequency F0 in cycles per sample and the digital
frequency ω0 in radians per sample?

12. Similar to Equation 3.2.20, a simple power estimator can be expressed as

P n
L

P n
L

x n P n x n() ≅ −⎛
⎝⎜

⎞
⎠⎟

−() + () = −() −() + ()1
1

1
1

1 12 2α α .

 Use this equation to estimate the power of speech signal timit1.asc, using different
values of L. For example, try L = 32, 128, and 1,024. Plot these power estimation results,
compare with the speech waveform, and summarize the results.

13. The N-point radix-2 inverse FFT function ifft is used to transform the frequency-
domain complex sequence into the time-domain signal. Using the VisualDSP++ simula-
tor, extend the source code in exp3_6.dpj to include the IFFT routine after FFT to
recover the original time-domain signal.

14. Extend Hands-On Experiment 3.6 to plot the phase spectrum of the input signal.

15. Play the wave fi le speech_tone_48k.wav with the computer and use the frequency
analyzer program (given in Hands-On Experiment 3.7) running on the EZ-KIT to detect
the occurrence of the sinusoidal tone. Design a simple moving-average fi lter or bandstop
fi lter to remove the tone. Observe the magnitude spectrum after the fi lter is applied to
the input signal. Did you still see the tone?

16. Modify Hands-On Experiment 3.9 to include the moving-average fi lter in Problem 15.
Show the magnitude spectrum of both the fi ltered and the unfi ltered signal.

3.8 More Exercise Problems 111

TEAM LinG

Chapter 4

Digital Filtering

As discussed in Chapters 2 and 3, a fi lter can be designed to alter the spectral
content of input signals in a specifi ed manner to achieve the desired objectives, and
digital fi ltering is widely used for embedded systems. This chapter introduces the
design, analysis, application, and implementation of time-invariant FIR and IIR
fi lters and time-varying adaptive fi lters.

4.1 INTRODUCTION

As discussed in Section 3.2.3, digital fi lters can be divided into two categories: FIR
fi lters and IIR fi lters. These fi lters can be represented by difference (or I/O) equa-
tions, system transfer functions, and signal fl ow diagrams. The I/O equations of FIR
and IIR fi lters are defi ned in Equations 2.3.4 and 3.2.12, the transfer functions are
defi ned in Equations 3.2.7 and 3.2.13, and the signal fl ow diagrams are illustrated
in Figure 2.16 and Figure 3.3, respectively.

The process of deriving the digital fi lter transfer function H(z) that satisfi es a
given specifi cation is called digital fi lter design. Although some applications require
only simple fi lters such as the moving-average, notch, and peaking fi lters introduced
in Chapters 2 and 3, the design of more sophisticated fi lters requires the use of more
advanced techniques. A number of computer-aided design tools (such as MATLAB)
are available for designing digital fi lters. In this chapter, we focus on using the Filter
Design and Analysis Tool (FDATool) for designing FIR and IIR fi lters in Sections
4.2 and 4.3, respectively.

Linear, time-invariant fi lters are characterized by magnitude response, phase
response, stability, rise time, settling time, and overshoot. As introduced in Section
3.3, magnitude response specifi es the gains of the fi lter at different frequencies,
whereas phase response indicates the amount of phase changed by the fi lter. Mag-
nitude and phase responses determine the steady-state response of the fi lter. Rise

112

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

4.1 Introduction 113

time, settling time, and overshoot specify the transient response of the fi lter in the
time domain.

4.1.1 Ideal Filters

As discussed in Section 3.3.1, a fi lter passes certain frequency components in a
signal through the system and attenuates others based on the magnitude response
of the fi lter. The range of frequencies that is allowed to pass through the fi lter is
called the passband, and the range of frequencies that is attenuated by the fi lter is
called the stopband. If a fi lter is defi ned in terms of its magnitude response, there
are four different types of fi lters: low-pass, high-pass, bandpass, and bandstop fi lters.
The magnitude response of an ideal fi lter is given by |H(ω)| = 1 in the passband and
|H(ω)| = 0 in the stopband. This two-level shape of the magnitude response helps
in analyzing and visualizing actual fi lters used in DSP systems. However, achieving
an ideal characteristic is not feasible, and ideal fi lters are only useful for conceptual-
izing the impact of fi lters on signal frequency components.

The frequency response H(ω) of a digital fi lter is a periodic function of fre-
quency ω, and the magnitude response |H(ω)| of a digital fi lter with real coeffi cients
is an even function of ω. Therefore, digital fi lter specifi cations are given only in the
range of 0 ≤ ω ≤ π, or 0 ≤ F ≤ 1, where F is the normalized frequency defi ned in
Equation 2.2.6. The magnitude response of an ideal low-pass fi lter is illustrated in
Figure 4.1. The regions 0 ≤ ω ≤ ωc and ωc ≤ ω ≤ π are referred to as the passband
and the stopband, respectively. The frequency that separates the passband and the
stopband is called the cutoff frequency ωc. An ideal low-pass fi lter has magnitude
response |H(ω)| = 1 in the frequency range 0 ≤ ω ≤ ωc and has |H(ω)| = 0 for ωc ≤
ω ≤ π. Thus a low-pass fi lter passes low-frequency components below the cutoff
frequency and attenuates high-frequency components above ωc. For an ideal high-
pass fi lter, the regions ωc ≤ ω ≤ π and 0 ≤ ω ≤ ωc are referred to as the passband
and the stopband, respectively. A high-pass fi lter passes frequency components
above the cutoff frequency ωc and attenuates frequency components below ωc.

The magnitude response of an ideal bandpass fi lter is illustrated in Figure 4.2.
The frequencies ωl and ωu are called the lower and upper cutoff frequencies, respec-
tively. The region ωl ≤ ω ≤ ωu is called the passband, and the regions 0 ≤ ω ≤ ωl

)(ωH

ω

1

0 cω π

Figure 4.1 Magnitude response of an ideal low-pass fi lter

TEAM LinG

114 Chapter 4 Digital Filtering

and ωu ≤ ω ≤ π are referred to as the stopband. A bandpass fi lter passes
frequency components between the two cutoff frequencies ωl and ωu and attenuates
frequency components below the frequency ωl and above the frequency ωu. If
the passband is narrow, the center frequency and bandwidth are commonly used
to specify a bandpass fi lter. A narrow bandpass fi lter also can be called a resonator
(or peaking fi lter) as introduced in Section 3.4.3 and shown in Figures 3.27
and 3.28.

For an ideal bandstop (or band reject) fi lter, the region ωl < ω < ωu is called the
stopband, and the regions 0 ≤ ω ≤ ωl and ωu ≤ ω ≤ π are referred to as the passband.
A bandstop fi lter attenuates frequency components between the cutoff frequencies
ωl and ωu and passes frequency components below the frequency ωl and above the
frequency ωu. A narrow bandstop fi lter designed to attenuate a single frequency
component is called a notch fi lter, as introduced in Section 3.4.2 and illustrated in
Figure 3.22.

EXAMPLE 4.1

Similar to Example 3.12, we use a MATLAB script (example4_1.m) to generate a signal
x(n) that consists of four sinusoids at f1 = 400 Hz, f2 = 800 Hz, f3 = 1,200 Hz, and f4 = 1,600 Hz.
The magnitude spectrum is shown in Figure 4.3. If the sampling frequency is 4 kHz, Equa-
tion 2.2.4 shows that the digital frequencies of these four sine waves are ωl = 0.2π, ω2 = 0.4π,
ω3 = 0.6π, and ω4 = 0.8π. In addition, Equation 2.2.6 indicates that the normalized digital
frequencies of these four sine waves are 0.2, 0.4, 0.6, and 0.8.

As shown in Figure 4.1, we can pass only a 400-Hz sine wave and attenuate others by
using a low-pass fi lter with cutoff frequency ωc = 0.3π. Figure 4.2 shows that we can pass
only a 1,200-Hz sine wave by using a bandpass fi lter with ωl = 0.5π and ωu = 0.7π.

EXERCISE 4.1

Determine the fi lter types and cutoff frequencies for the following tasks:

1. Pass a 1,600-Hz sine wave only and attenuate others.

2. Attenuate a 800-Hz sine wave only.

)(ωH

ω

1

0 lω πuω

Figure 4.2 Magnitude response of an ideal bandpass fi lter

TEAM LinG

4.1 Introduction 115

3. Pass 800-Hz and 1,200-Hz sine waves and attenuate others.

4. Pass 400-Hz and 1,600-Hz sine waves and attenuate others.

4.1.2 Practical Filter Specifi cations

In practice, it is very diffi cult to achieve the sharp cutoff implied by the ideal fi lters
shown in Figures 4.1 and 4.2. We must accept a more gradual roll-off between the
passband and the stopband. A transition band is introduced to permit the smooth
magnitude drop-off between the passband and the stopband. In addition, the devia-
tion from |H(ω)| = 1 (0 dB) in the passband is called magnitude distortion. For fre-
quency-selective fi lters, the magnitude specifi cations of a digital fi lter are often given
in the form of tolerance (or ripple) schemes. A typical magnitude response of a
low-pass fi lter is shown in Figure 4.4. The dashed horizontal lines in the fi gure
indicate the tolerance limits. In the passband the magnitude response has a peak
deviation δp, and in the stopband it has a maximum deviation δs. The frequencies
ωp and ωs are the passband edge frequency and the stopband edge frequency,
respectively.

As shown in Figure 4.4, the magnitude of the passband in the range 0 ≤ ω ≤
ωp approximates unity with an error of ±δp. That is,

1 1 0− ≤ () ≤ + ≤ ≤δ ω δ ω ωp p pH , . (4.1.1)

200
0

5

10

15

20

25

M
ag

ni
tu

de
 in

 d
B

30

35

40

400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz

Magnitude spectrum of sinewaves

Figure 4.3 Magnitude spectrum of four sine waves

TEAM LinG

116 Chapter 4 Digital Filtering

The passband ripple, δp, is a measure of the allowed variation in magnitude response
in the passband of the fi lter. Note that the gain of the magnitude response is normal-
ized to 1 (0 dB). In practical applications, it is easy to scale the fi lter output by
multiplying the output with a constant, which is equivalent to multiplying the whole
magnitude response by the same constant gain.

In the stopband, the magnitude approximates zero with an error δs. That is,

H ω δ ω ω π() ≤ ≤ ≤s s, . (4.1.2)

The stopband ripple describes the minimum attenuation for signal components in
the stopband.

Passband and stopband deviations may be expressed in decibels. The peak
passband ripple, δp, and the minimum stopband attenuation, δs, in decibels are given
as

Ap
p

p1
dB=

+
−

⎛
⎝⎜

⎞
⎠⎟

20
1

10log
δ
δ

(4.1.3)

and

As s dB.= −20 10log δ (4.1.4)

EXAMPLE 4.2

Consider a fi lter specifi ed as having a magnitude response in the passband within ±0.001.
That is, δp = 0.001. From Equation 4.1.3, we have

Ap dB.= () =20
1 001

0 999
0 017410log

.

.
.

The minimum stopband attenuation is given as δs = 0.001. From Equation 4.1.4, we
have

Passband

pA

pδ−1

Stopband

pδ+1

0
pω sω

sδ

()ωH

ω
πcω

sA

Ideal filter

Actual filter

 Transition
band

1

Figure 4.4 Practical low-pass fi lter specifi cations

TEAM LinG

4.1 Introduction 117

As = −20log10(0.001) = 60 dB.

The transition band is the frequency range between the passband edge frequency ωp

and the stopband edge frequency ωs. The magnitude response decreases monotonically from
the passband to the stopband in this region. The width of the transition band determines how
sharp the fi lter is. Generally, the smaller δp and δs, and the narrower the transition band, the
more complicated (higher order) is the required fi lter.

HANDS-ON EXPERIMENT 4.1

This experiment uses FDATool to introduce fi lter types and their design specifi cations.
FDATool is a graphical user interface (GUI) to design (or import) and analyze digital fi lters.
For general information about using FDATool, refer to the Signal Processing Toolbox User’s
Guide [49].

FDATool can be activated by typing

fdatool

in the MATLAB command window. The FDATool window is shown in Figure 4.5, which
has tools similar to the Filter Designer window in the SPTool, as shown in Figure 2.11. The
design steps and features to view the fi lter characteristics are also similar. However, FDATool
is a more advanced fi lter design tool. FDATool can be used to (1) design fi lters, (2) quantize

Figure 4.5 FDATool window

TEAM LinG

118 Chapter 4 Digital Filtering

Figure 4.6 Filter Specifi cations window for a high-pass window

fi lters, (3) analyze fi lters, (4) modify existing fi lter designs, (5) create multirate fi lters, (6)
realize Simulink models of quantized, direct-form, FIR fi lters, (7) import fi lters into FDATool,
and (8) perform digital frequency transformations of fi lters. Note that capabilities (2), (5),
(6), and (8) are only available when the Filter Design Toolbox [50] is installed, which inte-
grates advanced fi lter design methods and supports quantized fi lters.

As shown in Figure 4.5, we can choose from several response (fi lter) types: Lowpass,
Highpass, Bandpass, Bandstop, and Differentiator. The fi lter design specifi cations vary
according to response types and design methods. As shown in Figure 4.5, we can enter (1)
Filter Order, (2) Options, (3) Frequency Specifi cations, and (4) Magnitude Specifi ca-
tions. For example, to design a high-pass fi lter, select the radio button next to Highpass
in the Response Type region on the GUI. The Filter Specifi cations window is shown in
Figure 4.6.

It is important to compare the Filter Specifi cations window in Figure 4.6 with Figure
4.4. The parameters Fstop, Fpass, Astop, and Apass correspond to ωS, ωp, As, and Ap, respec-
tively. These parameters can be entered in the Frequency Specifi cations and Magnitude
Specifi cations regions at the bottom of Figure 4.5. The frequency units are Normalized (0
to 1), Hz (default), kHz, MHz, or GHz, and the magnitude options are dB (default) or
Linear. Note that Fs/2 corresponds to ω = π or F = 1.

EXAMPLE 4.3

For the four sine waves shown in Figure 4.3, design a bandstop FIR fi lter to attenuate the
1,200-Hz sine wave.

As shown in Figure 4.5, select the radio button next to Bandstop in the Response Type
region. We can design the fi lter by entering parameters in Frequency Specifi cations as
shown in Figure 4.7 and using default settings in the Magnitude Specifi cations region. Press
the Design Filter button to compute the fi lter coeffi cients. The Filter Specifi cations region
will change to Magnitude Response (dB) as shown in Figure 4.8. Comparing the magnitude

TEAM LinG

4.1 Introduction 119

response of the designed fi lter with the signal spectrum shown in Figure 4.3; we know this
designed fi lter can attenuate the 1,200-Hz sine wave by 60 dB.

EXERCISE 4.2

Given the signal defi ned in Example 4.1, use FDATool to design FIR fi lters for the
following tasks:

1. A low-pass fi lter that is passing the 400-Hz sine wave only.

2. A bandpass fi lter that is passing the 1,200-Hz sine wave only.

3. A high-pass fi lter that is passing the 1,600-Hz sine wave only.

Figure 4.7 Frequency Specifi cations for a bandstop fi lter

Figure 4.8 Magnitude response of the designed bandstop fi lter

TEAM LinG

120 Chapter 4 Digital Filtering

4. A bandstop fi lter that is attenuating the 800-Hz sine wave only.

5. Redo 1–4 by assuming that the sampling rate is 8 kHz, and use normalized
frequency for frequency specifi cations.

6. Compare the required fi lter order for the fi lter designed in 1–4. Why do they
need different orders?

7. Redo 1–4 with IIR fi lters by selecting the radio button next to IIR in the
Design Method region on the GUI. Pay attention to the required IIR fi lter
orders as compared with the FIR fi lters.

When a signal passes through a fi lter, its amplitude and phase are modifi ed.
The phase response is an important fi lter characteristic because it affects time delays
of different frequency components passing through the fi lter. If we consider a signal
that consists of several frequency components, the phase delay of the fi lter is the
time delay the composite signal suffers at each frequency. A fi lter is said to have a
linear phase if its phase response satisfi es

φ ω αω π ω π() = − − ≤ ≤, . (4.1.5)

This equation shows that for a fi lter with a linear phase, the group delay Td(ω) given
in Equation 3.3.7 is a constant α for all frequencies. As shown in Equation 3.3.8,
this fi lter avoids phase distortion because all sinusoidal components in the input are
delayed by the same amount. A fi lter with a nonlinear phase will cause a phase
distortion in the signal that passes through it.

4.2 FINITE IMPULSE RESPONSE FILTERS

As discussed in Section 3.2.3, an FIR fi lter of length L can be represented by its
impulse response h(n), which has at most L nonzero samples. That is, h(n) = 0 for
all n ≥ L. An FIR fi lter is also called a transversal fi lter. Some characteristics of
FIR fi lters are summarized as follows:

1. Because there is no feedback of past output samples as defi ned in Equation
2.3.4, the FIR fi lters are always stable. This inherent stability is also mani-
fested in the absence of poles in the transfer function as defi ned in Equation
3.2.7, except possibly at the origin.

2. The fi lter has fi nite memory from x(n) to x(n − L + 1), as shown in Figure
2.16.

3. The design of linear-phase fi lters can be guaranteed. In many real-world
applications such as audio signal processing, linear-phase fi lters are preferred
because they avoid phase distortion.

4. The fi nite-precision errors (discussed in Chapter 6) are less severe in FIR
fi lters than in IIR fi lters.

5. FIR fi lters can be easily implemented on most DSP processors such as the
Blackfi n processor.

TEAM LinG

6. A relatively higher-order FIR fi lter is required to obtain the same character-
istics as compared with an IIR fi lter, and this may result in higher computa-
tional cost.

4.2.1 Characteristics and
Implementation of FIR Filters

The signal fl ow diagram of the FIR fi lter is shown in Figure 2.16. The general I/O
equation of FIR fi lter is defi ned in Equation 2.3.4. This equation describes the output
of the FIR fi lter as a convolution sum of the input with the impulse response of the
system. An example of linear convolution of two sequences is given in Example 2.5.
Note that the convolution of the length M input with the length L impulse response
results in a length L + M − 1 output.

As shown in Example 2.5, the input sequence is fl ipped around (folding) and
then shifted to the right to overlap with the fi lter coeffi cients. At each time instant,
the output value is the sum of products of overlapped coeffi cients with the corre-
sponding input data aligned below it. At time n = 0, the only nonzero product comes
from b0 and x(0), which are time aligned. It takes the fi lter L iterations to completely
overlap with the input sequence. Therefore, the fi rst L − 1 outputs correspond to the
transient behavior of the FIR fi lter. For n ≥ L − 1, the fi lter aligns over the nonzero
portion of the input sequence. That is, when the signal buffer of FIR fi lter is full,
the fi lter is operated in steady state.

An FIR fi lter has linear phase if its coeffi cients satisfy the following symmetric
condition

b b l Ll L l= = −− −1 0 1, ,1, . . . , , (4.2.1)

or the antisymmetric (negative symmetry) condition

b b l Ll L l= − = −− −1 0 1, ,1, . . . , . (4.2.2)

There are four types of linear-phase FIR fi lters, depending on whether L is an even
or an odd number and whether coeffi cients have positive or negative symmetry.
These four linear-phase FIR fi lters are summarized as follows:

Type I—Positive symmetry and L is even.

Type II—Positive symmetry and L is odd.

Type III—Negative symmetry and L is even.

Type IV—Negative symmetry and L is odd.

The frequency response of the Type I fi lter is always zero at the Nyquist fre-
quency (or fs/2). This type of fi lter is unsuitable for a high-pass fi lter. Type III and
IV fi lters introduce a 90° phase shift; thus they are often used for designing Hilbert
transformers. The frequency response is always zero at DC frequency, making them
unsuitable for low-pass fi lters. In addition, Type III response is always zero at the
Nyquist frequency, making it also unsuitable for a high-pass fi lter.

4.2 Finite Impulse Response Filters 121

TEAM LinG

122 Chapter 4 Digital Filtering

The symmetry (or antisymmetry) property of a linear-phase FIR fi lter can be
exploited to reduce the total number of multiplications almost in half. Consider the
realization of an FIR fi lter with an even number L and positive symmetric impulse
response as given in Equation 4.2.1; Equation 3.2.7 can be combined as

H z b z b z z b z zL L
L

L L() = +() + +() + + +()− + − − +
−

− + −
0

1
1

1 2
2 1

2 1 21 (4.2.3)

The I/O equation given in Equation 2.3.10 can be generalized as

y n b x n l x n L ll
l

L

() = −() + − + +()[]
=

−

∑ 1
0

2 1

. (4.2.4)

For an antisymmetric FIR fi lter, the addition of two signals is replaced by subtrac-
tion. That is,

y n b x n l x n L ll
l

L

() = −() − − + +()[]
=

−

∑ 1
0

2 1

. (4.2.5)

EXERCISE 4.3

1. Realize H(z) defi ned in Equation 4.2.3 as a signal-fl ow diagram of a sym-
metric FIR fi lter where L is even.

2. Redo Exercise 1 with L an odd number.

3. Redo Exercise 1 with an antisymmetric FIR fi lter.

As shown in Equation 4.2.4, the number of required multiplications is reduced
in half by fi rst adding the pair of samples and then multiplying the sum by the cor-
responding coeffi cient. The trade-off is that instead of addressing data linearly in
the signal buffer with a single circular pointer, we need two address pointers.

An FIR fi lter can be realized either with a block-by-block- or a sample-by-
sample-based operation. In block processing, the input sequence is segmented into
multiple blocks. Filtering is performed one block at a time, and the resulting output
blocks are recombined to form the overall output. The fi ltering of each block can
be implemented with the linear convolution technique or with fast convolution using
FFT. In the sample-by-sample operation, the input samples are processed at every
sampling period after the current input x(n) is available.

As shown in Equation 2.3.4, the fi lter output y(n) is a linear combination of L
input samples {x(n), x(n − 1), . . . , x(n − L + 1)} with the corresponding L coeffi -
cients {bl, l = 0, 1, . . . , L − 1)}, which can be represented as two separate tables
(arrays or vectors) in memory. To compute the output at any given time, we simply
multiply the corresponding values in each table and sum the results. The coeffi cient
values are constant, but the data in the signal buffer change every sampling period
T. For example, the sample x(n) at time n becomes x(n − 1) in the next sampling
period, then becomes x(n − 2), etc., until it simply drops off the end of the delay
chain. The signal buffer is refreshed in every sampling period, where the oldest
sample x(n − L + 1) is discarded and other signals are shifted one location in the

TEAM LinG

buffer. A new sample is inserted to the memory location labeled as x(n). The FIR
fi ltering operation that computes y(n) with Equation 2.3.4 is then repeated. The
process of refreshing the signal buffer requires intensive processing time if the
operation is not implemented by the hardware.

The most effi cient method for refreshing a signal buffer is to load the signal
samples into a circular buffer, as illustrated in Figure 4.9. Instead of shifting the
data samples while holding the buffer address fi xed, the data are kept fi xed and the
address is shifted backwards (counterclockwise) in the circular buffer. The current
signal buffer is arranged as the left-hand circle in Figure 4.9. After calculating the
output y(n), the pointer is moved counterclockwise one position pointing at x(n − L
+ 1), which is no longer needed, and we wait for the next input signal. As shown in
the right-hand circle, the new input is written to the x(n − L + 1) position pointed
by the circular pointer, and this new sample is referred to as x(n) for the next itera-
tion. The circular buffer implementation of a signal buffer (or a tapped-delay line)
is very effi cient. The update is carried out by adjusting the address pointer without
physically shifting any data in memory.

A circular buffer also can be used for addressing FIR fi lter coeffi cients. The
circular buffer allows the coeffi cient pointer to wrap around when it reaches the end
of the coeffi cient buffer. That is, the pointer moves from bL−1 back to the adjacent
b0 such that the fi ltering will always start from the fi rst coeffi cient. Details of how
these pointers can be programmed in the Blackfi n processor for effi cient FIR fi lter-
ing are discussed in Chapter 8.

4.2.2 Design of FIR Filters

The objective of FIR fi lter design is to determine a set of fi lter coeffi cients {bl, l =
0, 1, . . . , L − 1} such that the fi lter performance is close to the given specifi cations.

x(n−L+2)
x(n)x(n−L+1)

x(n−1)

x(n−2)

Signal buffer pointer at current time n Signal buffer pointer for next time

Circular buffer at current time Circular buffer for next time

x(n)

x(n−1)

x(n−2)

x(n−3)

x(n−L+1)

Figure 4.9 Circular buffer for storing signal samples

4.2 Finite Impulse Response Filters 123

TEAM LinG

124 Chapter 4 Digital Filtering

A variety of techniques have been proposed for the design of FIR fi lters. The Fourier
series method offers a very simple and fl exible way of computing FIR fi lter coeffi -
cients, but it does not allow the designer to control the fi lter parameters. With the
availability of an effi cient and easy-to-use fi lter design software package such as
MATLAB, the Park–McClellan algorithm is now widely used in industry for most
practical applications.

MATLAB fi lter design functions operate with the normalized frequencies
defi ned in Equation 2.2.6, so they do not require the sampling rate as an extra input
argument. The Signal Processing Toolbox uses the convention that unit frequency
is the Nyquist frequency, defi ned as half the sampling frequency. The normalized
frequency, therefore, is always in the interval 0 ≤ F ≤ 1. For a system with a 1,000-
Hz sampling frequency, 300 Hz is equivalent to a normalized frequency F = 300/500
= 0.6. To convert normalized frequency to angular frequency ω around the unit
circle, multiply it by π. To convert normalized frequency back to hertz, multiply it
by half the sampling frequency.

The FIR fi lter design functions provided by the Signal Processing Toolbox are
listed in Table 4.1. For example, fir1 function implements the classic method of
windowed linear-phase FIR digital fi lter design. It designs fi lters in standard low-
pass, high-pass, bandpass, and bandstop types. By default, the magnitude response
of the fi lter at the center frequency of the passband is normalized to 0 dB. An
example syntax of using this function is

b = fir1(n,Wn);

This returns row vector b containing n + 1 coeffi cients of low-pass FIR fi lter
with order n. This is a Hamming window-based linear-phase fi lter with normalized
cutoff frequency Wn between 0 and 1, where 1 corresponds to the Nyquist frequency.
If Wn is a two-element vector such as Wn = [w1 w2], the function fir1 returns

Table 4.1 FIR Filter Design Functions Provided by Signal Processing Toolbox

Methods Functions Description

Windowing fir1, fir2, Apply window to truncated inverse Fourier
kaiserord transform of desired fi lter

Multiband with firls, firpm, Equiripple or least-squares approach over
 transition bands firpmord subbands of the frequency range
Constrained least fircls, fircls1 Minimize squared integral error over entire
 squares frequency range subject to maximum error
 constraints
Arbitrary response cfirpm Arbitrary responses, including non-linear-phase
 and complex fi lters
Raised cosine firrcos Low-pass response with smooth, sinusoidal
 transition

Adapted from Help menu in MATLAB.

TEAM LinG

a bandpass fi lter with passband w1 < F < w2. The MATLAB Filter Design Toolbox
[50] provides an additional 10 FIR fi lter design functions.

EXAMPLE 4.4

Given a signal consisting of four sinusoidal components as shown in Figure 4.3, design an
FIR fi lter to pass only the 800-Hz sine wave and attenuate others.

Because the sampling rate is 4 kHz, the normalized frequency of 800 Hz is 0.4. There-
fore, we choose w1 = 0.35 and w2 = 0.45. The MATLAB program (example4_4.m) is listed
as follows:

w1 = 0.35; w2 = 0.45; % define edge frequencies
b = fir1(48,[w1 w2]); % design FIR filter
fvtool(b,1) % activate FVTool

The magnitude and phase responses of the designed fi lter are shown in Figure 4.10.

EXERCISE 4.4

1. Modify example4_4.m to design a bandpass fi lter with different edge
frequencies and fi lter lengths.

2. Design FIR fi lters with different design functions listed in Table 4.1.

3. Design an FIR fi lter to attenuate the 800-Hz sine wave and pass other
components.

4. Design an FIR fi lter to pass the 1,600-Hz sine wave only, using a high-pass
fi lter.

Normalized Frequency (×π rad /sample)

Magnitude (dB) and Phase Responses

Magnitude response

Phase response

P
ha

se
 (

ra
di

an
s)

M
ag

ni
tu

de
 (

dB
)

–71.0847

–56.0907

–41.0968

–26.1028

–11.1088

3.8851

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

–11.0103

–15.0013

–7.0193

–3.0283

0.9627

4.9537

Figure 4.10 Magnitude and phase responses of FIR fi lter

4.2 Finite Impulse Response Filters 125

TEAM LinG

126 Chapter 4 Digital Filtering

4.2.3 Hands-On Experiments

In this section, we expand on Hands-On Experiment 4.1 for designing FIR fi lters.
We use FDATool to design FIR fi lters for enhancing a 1,000-Hz tonal signal that is
corrupted by broadband speech (timit1.asc) as shown in Figure 3.11.

HANDS-ON EXPERIMENT 4.2

In the FDATool window shown in Figure 4.5, select the radio button next to Bandpass in
the Response Type region. The Filter Specifi cations window is shown as Figure 4.11. In
the Frequency Specifi cation region, enter 8000 in Fs, 900 in Fstop1, 950 in Fpass1, 1050 in
Fpass2, and 1100 in Fstop2. In the Magnitude Specifi cations region, enter 60 in Astop1, 1 in
Apass, and 60 in Astop2. The magnitude response of the designed bandpass fi lter is shown in
Figure 4.12.

In addition to the magnitude response shown in Figure 4.12, we can analyze the phase
response, group delay response, phase delay, impulse response, step response, pole/zero plot,
fi lter coeffi cients, etc. from the toolbar icons or from the Analysis pull-down menu. We can

Figure 4.11 Filter Specifi cations window for a bandpass fi lter

Figure 4.12 Magnitude response of the designed bandpass fi lter

TEAM LinG

export the coeffi cients of the fi lter with the Export option from the File menu. The Export
window is displayed as shown in Figure 4.13. From the Export To pull-down menu, we have
options of Workspace, Coeffi cient File (ASCII), MAT-File, and SPTool. From the Export
As menu, we can choose Coeffi cients or Objects. We also can enter Variable Names. Using
the default settings, and clicking on Export tab, the designed FIR fi lter coeffi cients are saved
in the default vector Num under the current workspace.

EXERCISE 4.5

1. Design different bandpass fi lters with different frequency and magnitude
specifi cations and compare the required fi lter order, which is displayed in
the Current Filter Information region. Also, analyze the designed fi lter
performance, using features provided in the Analysis menu.

2. Save the design fi lter coeffi cients to an ASCII fi le and in the format that can
be imported by SPTool.

3. The default FIR fi lter design method is Equiripple, as shown in the
Design Method region. From the pull-down menu, there are 11 options. Use
different methods such as Window for designing FIR fi lters and evaluate
the performance.

After the fi lter design process has generated the fi lter coeffi cient vectors,
two functions are available in the Signal Processing Toolbox for implement-
ing the fi lter: dfilt and filter. The dfilt function is a discrete-time fi lter object
that allows users to specify its structure and values. The fitler function fi lters a
data sequence with a digital fi lter that works for both real and complex inputs. The
syntax

y = filter(b, a, x);

Figure 4.13 An Export window

4.2 Finite Impulse Response Filters 127

TEAM LinG

128 Chapter 4 Digital Filtering

fi lters the data in vector x with the fi lter described by numerator coeffi cient vector
b and denominator coeffi cient vector a. For an FIR fi lter, a = 1.

EXAMPLE 4.5

We use the FIR fi lter designed in Hands-On Experiment 4.2 (save as vector Num in Work-
space) to enhance a tonal signal corrupted by speech in fi le timitl.asc. The MATLAB
code is given in example4_5.m. The program plays the original speech, the mixed tone
with speech, and the enhanced tone after the bandpass fi ltering. It also displays the spectro-
gram as shown in Figure 4.14. Comparing this spectrum with Figure 3.11, we verify that the
bandpass fi lter shown in Figure 4.12 enhances the tonal signal.

EXERCISE 4.6

1. Use FDATool to design an FIR fi lter that can enhance the speech signal
(timit1.asc) by attenuating the tonal noise at 1,000 Hz. Using different
design methods and frequency and magnitude specifi cations, compare the
fi lter order and performance.

2. Export the designed fi lter coeffi cients for SPTool. Similar to hands-on exper-
iments given in Chapter 2, import the signal and fi lter into SPTool, perform
fi ltering, and examine waveforms and spectra for both input and output
signals.

2000
0

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy

0.6

0.7

0.8

0.9

1

4000 6000 8000 10000 12000
Time

Figure 4.14 Spectrogram of tone enhanced with the designed bandpass fi lter

TEAM LinG

3. Instead of designing a notch fi lter to attenuate the tonal noise at 1,000 Hz,
we can simply subtract the output of the bandpass fi lter in Hands-On Experi-
ment 4.2 from the original noisy speech signal. Compare the performance
of this method with that from Exercise 1. Explain why it works.

4.3 INFINITE IMPULSE RESPONSE FILTERS

This section introduces the design, realization, and implementation of digital IIR
fi lters. We discuss the basic characteristics and structures of digital IIR fi lters and
focus on the techniques used for the design and implementation of these fi lters.

4.3.1 Design of IIR Filters

Digital IIR fi lters can be designed by beginning with the design of an analog fi lter
in the s-domain and using mapping technique to transform it into the z-domain. The
one-sided Laplace transform of analog signal x(t) can be expressed as

X s x t e dtst() = () −∞
∫ ,

0
(4.3.1)

where

s j= +σ Ω (4.3.2)

is a complex variable. The z-transform can be viewed as the Laplace transform of
the sampled function x(nT) with the change of variable

z esT= . (4.3.3)

This relationship represents the mapping of a region in the s-plane to the z-plane
because both s and z are complex variables. The portion of the jΩ-axis between
Ω = −π/T and Ω = π/T in the s-plane is mapped onto the unit circle in the z-plane
from −π to π. As Ω varies from 0 to ∞, there are an infi nite number of encirclements
of the unit circle in the counterclockwise direction. Similarly, there are an infi nite
number of encirclements of the unit circle in the clockwise direction as Ω varies
from 0 to −∞. Each strip of width 2π/T in the left half of the s-plane is mapped onto
the unit circle. This mapping occurs in the form of concentric circles in the z-plane
as σ varies from 0 to −∞. Also, each strip of width 2π/T in the right half of the s-
plane is mapped outside of the unit circle. This mapping also occurs in concentric
circles in the z-plane as σ varies from 0 to ∞. In conclusion, the mapping from the
s-plane to the z-plane is not one-to-one because many points in the s-plane are
mapped to a single point in the z-plane.

Because analog fi lter design is a mature and well-developed fi eld, we begin the
design of digital IIR fi lters in the analog domain and then convert the designed
analog fi lter transfer function H(s) into the digital domain. The problem is to deter-
mine a digital fi lter H(z) that will approximate the performance of the desired analog
fi lter H(s). There are two commonly used methods, the impulse-invariant and the

4.3 Infi nite Impulse Response Filters 129

TEAM LinG

130 Chapter 4 Digital Filtering

bilinear transform, for designing digital IIR fi lters based on existing analog IIR
fi lters.

The impulse-invariant method preserves the impulse response of the original
analog fi lter by digitizing the impulse response of the analog fi lter but not its fre-
quency (magnitude) response. Because of inherent aliasing, this method is inappro-
priate for high-pass or bandstop fi lters. The bilinear-transform method yields very
effi cient fi lters and is well suited for the design of frequency-selective fi lters. The
bilinear transform is defi ned as

s
T

z

z T

z

z
= −

+
⎛
⎝⎜

⎞
⎠⎟ = −

+
⎛
⎝⎜

⎞
⎠⎟

−

−
2 1

1

2 1

1

1

1
, (4.3.4)

or, equivalently,

z
T s

T s
= + ()

− ()
1 2

1 2
. (4.3.5)

As discussed above, the jΩ-axis of the s-plane (σ = 0) maps onto the unit circle
in the z-plane. The left (σ < 0) and right (σ > 0) halves of the s-plane map onto the
inside and outside of the unit circle, respectively. There is a direct relationship
between the s-plane frequency Ω and the z-plane frequency ω. It can be easily shown
that the corresponding mapping of frequencies is obtained as

Ω = ()2

2T
tan

ω
, (4.3.6)

or, equivalently,

ω = ()−2
2

1tan .
ΩT (4.3.7)

Thus the entire jΩ-axis is compressed into the interval −π/T ≤ ω ≤ π/T in a one-to-
one manner. Each point in the s-plane is uniquely mapped onto the z-plane.

The relationship in Equation 4.3.7 between the frequency variables Ω and ω is
illustrated in Figure 4.15. The bilinear transform provides a one-to-one mapping of
the points along the jΩ-axis onto the unit circle, that is, the entire jΩ-axis is mapped
uniquely onto the unit circle or onto the Nyquist band |ω| ≤ π. However, the mapping
is highly nonlinear. The entire band ΩT ≥ 1 is compressed onto π/2 ≤ ω ≤ π. This
frequency compression effect associated with the bilinear transform is known as
frequency warping because of the nonlinearity of the arctangent function given in
Equation 4.3.7. This nonlinear frequency warping phenomenon must be taken into
consideration when designing digital fi lters with the bilinear transform. This can be
done by prewarping the critical frequencies and using frequency scaling.

The classic IIR fi lters, Butterworth, Chebyshev Types I and II, elliptic, and
Bessel, all approximate the ideal fi lter in different ways. The MATLAB Signal
Processing Toolbox provides functions to create these types of IIR fi lters in both
the analog and digital domains (except Bessel), and in low-pass, high-pass, band-
pass, and bandstop types. Table 4.2 summarizes the various fi lter design methods

TEAM LinG

provided in the toolbox and lists the functions available to implement these methods.
The direct fi lter design function yulewalk fi nds a fi lter with magnitude response
approximating a desired function. This is one way to create a multiband bandpass
fi lter.

0 2
TΩ

ω

π

2

π

−π

Figure 4.15 Frequency mapping due to bilinear transform

Table 4.2 IIR Filter Design Methods and Functions

Methods Functions Description

Analog prototyping Filter design functions: Using lowpass prototype
besself, butter, fi lter in the s-domain,
cheby1, cheby2, obtain a digital fi lter
ellip through frequency

 Order estimation functions: transformation.
buttord, cheb1ord,

cheb2ord, ellipord

Direct design yulewalk Design digital fi lter directly
by approximating a
magnitude response.

Generalized Butterworth maxflat Design low-pass Butterworth
 design fi lters with more zeros than

poles.

Parametric modeling Time-domain modeling Find a digital fi lter that
 functions: approximates a prescribed

lpc, prony, stmcb time- or frequency-domain
 Frequency-domain modeling response.
 functions:

invfreqs, invfreqz

Adapted from Help menu in MATLAB.

4.3 Infi nite Impulse Response Filters 131

TEAM LinG

132 Chapter 4 Digital Filtering

EXAMPLE 4.6

We design simple Butterworth and Chebyshev I low-pass IIR fi lters, using example4_6.m.
The following function

[b, a] = butter(N,Wn);

designs an Nth-order low-pass Butterworth fi lter with the cutoff frequency Wn and returns
the fi lter coeffi cients in vectors b (numerator) and a (denominator). The function

[b, a] = cheby1(N,R,Wn);

designs a Chebyshev I fi lter with R decibels of peak-to-peak ripple in the passband. The
magnitude responses of these two fi lters are shown in Figure 4.16.

As shown in Figure 4.16, the magnitude response of the Butterworth fi lter is
monotonically decreasing in both the passband and the stopband. The Butterworth
fi lter has a fl at magnitude response over the passband and the stopband. This fl at
passband is achieved at the expense of the transition region, which has a slower roll-
off. For a given transition band, the order of the Butterworth fi lter required is often
higher than that of other types. Chebyshev fi lters permit a certain amount of ripples
in the passband or the stopband but have a much steeper roll-off near the cutoff fre-
quency. Type I Chebyshev fi lters are all-pole fi lters that exhibit equiripple behavior
in the passband and a monotonic characteristic in the stopband. The family of type
II Chebyshev fi lters contains both poles and zeros and exhibits a monotonic behavior
in the passband and an equiripple behavior in the stopband. In general, the Chebyshev
fi lter meets the specifi cations with a lower number of poles than the corresponding
Butterworth fi lter; however, it has a poorer phase response. The sharpest transition
from passband to stopband can be achieved with the elliptic design. Elliptic fi lters
exhibit equiripple behavior in both the passband and the stopband. In addition, the
phase response of an elliptic fi lter is extremely nonlinear in the passband, especially
near the cutoff frequency. However, for a given transition band, the order of the ellip-
tic fi lter required is the lowest among the classic IIR fi lters.

Normalized Frequency (×π rad /sample)

Butterworth

Chebyshev I

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

–50

–40

–30

–20

–10

0

10

Figure 4.16 Magnitude responses of Butterworth and Chebyshev I fi lters

TEAM LinG

EXERCISE 4.7

1. Examine frequency responses of Chebyshev II and elliptic fi lters by modify-
ing example4_6.m and compare the required fi lter orders for the same
specifi cations.

2. Evaluate fi lter performance for different orders and different R values.

4.3.2 Structures and Characteristics of IIR Filters

Given an IIR fi lter described by Equation 3.2.13, the direct-form I realization is
defi ned by the I/O equation (Eq. 3.2.12) and is illustrated as the signal-fl ow diagram
shown in Figure 3.3. In DSP implementation, we have to consider the required
operations, memory storage, and fi nite-wordlength effects. A given transfer function
H(z) can be realized in several forms or confi gurations. As discussed in Section
3.2.3, a high-order IIR fi lter is factored into second-order sections and connected
in cascade or parallel to form an overall fi lter. In this section, we discuss direct-form
I, direct-form II, cascade, and parallel realizations.

The transfer function of the second-order IIR fi lter is defi ned in Equation 3.2.15,
and the I/O equation is given in Equation 3.2.14. The direct-form II realization is
illustrated in Figure 3.4, where two signal buffers are combined into one. This
realization requires three memory locations for the second-order IIR fi lter, as
opposed to six memory locations required for the direct-form I realization given in
Figure 3.3. Therefore, the direct-form II realization is called the canonical form
because it realizes the given transfer function with the smallest possible numbers of
delays, adders, and multipliers.

The cascade realization of an IIR fi lter assumes that the transfer function is the
product of fi rst-order and/or second-order IIR sections. By factoring the numerator
and the denominator polynomials of the transfer function H(z) as a product of lower-
order polynomials, an IIR fi lter can be realized as a cascade of low-order fi lter
sections. Consider the transfer function H(z) given in Equation 3.2.16, it can be
expressed as

H z GH z H z H z G H zk k
k

K

() = () () () = ()
=

∏1 2
1

… , (4.3.8)

where each Hk(z) is a fi rst- or second-order IIR fi lter and K is the total number of
sections. In this form, any complex-conjugate roots must be grouped into the same
section to guarantee that all the coeffi cients of Hk(z) are real numbers. The realiza-
tion of Equation 4.3.8 in cascade form is illustrated in Figure 4.17.

x(n)
)(1 zH)(2 zH)(zH K

G y(n)

Figure 4.17 Cascade realization of IIR fi lter

4.3 Infi nite Impulse Response Filters 133

TEAM LinG

134 Chapter 4 Digital Filtering

The transfer function for each section of fi lter can be expressed as

H z
b z

a z
k

k

k

() = +
+

−

−
1

1
1

1

1
1

, (4.3.9)

for the fi rst-order fi lter or

H z
b b z b z

a z a z
k

k k k

k k

() = + +
+ +

− −

− −
0 1

1
2

2

1
1

2
21

(4.3.10)

for the second-order section. Assuming that every Hk(z) is the second-order IIR
fi lter, the I/O equations describing the time-domain operations of the cascade
realization are expressed as

w n x n a w n a w nk k k k k k() = () − −() − −()1 21 2 , (4.3.11)

y n b w n b w n b w nk k k k k k k() = () + −() + −()0 1 21 2 , (4.3.12)

x n y nk k+ () = ()1 , (4.3.13)

for k = 1, 2, . . . , K sections and

x n Gx n1() = (), (4.3.14)

y n y nK() = (). (4.3.15)

The signal-fl ow diagram of the second-order IIR fi lter is illustrated in Figure 4.18.
By different ordering and pairing, it is possible to obtain many different cascade

realizations for the same transfer function H(z). Ordering means the order of con-
necting Hk(z), and pairing means the grouping of poles and zeros of H(z) to form a
section. Each cascade realization behaves differently from others because of the
fi nite-wordlength effects. The best ordering is the one that generates the minimum
overall roundoff noise.

In the direct-form realization shown in Figure 3.3, the variation of one
parameter will affect the locations of all the poles of H(z). In the cascade realization
illustrated in Figure 4.17, the variation of one parameter will affect only pole(s) in
that section. Therefore, the cascade realization is less sensitive to parameter
variation (due to coeffi cient quantization, etc.) than the direct-form structure. In
practical implementations of digital IIR fi lters, the cascade form is often preferred.

kb2

wk(n-2)

yk(n)

1−z

1−z

xk(n) wk(n)

wk(n-1)

kb0

kb1ka1−

ka2−

Figure 4.18 Block diagram of second-order IIR fi lter section

TEAM LinG

EXAMPLE 4.7

Given the second-order IIR fi lter

H z
z z

z z z
() = + +

+ + +

− −

− − −

3 1 5 0 75

1 0 86 0 78 0 3

1 2

1 2 3

. .

. . .
,

realize it using the cascade form in terms of fi rst-order and second-order sections.
By factoring the numerator and denominator polynomials of H(z), we obtain

H z
z z

z z z
() =

+ +()
+() + +()

− −

− − −

3 1 0 5 0 25

1 0 5 1 0 36 0 6

1 2

1 1 2

. .

. . .
.

By different pairings of poles and zeros, there are different realizations of H(z). For example,
we choose G = 3,

H z
z

H z
z z

z z
1 1 2

1 2

1 2

1

1 0 5

1 0 5 0 25

1 0 36 0 6
() =

+
() = + +

+ +−

− −

− −.

. .

. .
.and

The expression of H(z) in a partial-fraction expansion leads to another canonical struc-
ture called the parallel form. It is expressed as

H z c H z H z H zk() = + () + () + + ()1 2 … , (4.3.16)

where c is a constant. The variation of parameters in a parallel form affects only the poles
of the Hk(z) associated with the parameters. Therefore, the pole sensitivity of a parallel
realization is less than that of the direct form.

The cascade realization of an IIR transfer function H(z) involves its factorization in the
form of Equation 3.2.16. This can be done in MATLAB by using the function roots. From
the computed roots, the coeffi cients of each section can be determined by pole-zero pairings.
A much simpler approach is to use the function tf2zp in the Signal Processing Toolbox,
which fi nds the zeros, poles, and gains of systems in transfer functions of single-input or
multiple-output form. For example, the statement

[z, p, c] = tf2zp(b, a);

returns the zero locations in z, the pole locations in p, and the gains for each numerator
transfer function in c. Vector a specifi es the coeffi cients of the denominator, and b indicates
the numerator coeffi cients. Some related linear system transformation functions are listed in
Table 4.3.

As listed in Table 4.3, MATLAB provides a useful function, tf2sos (or zp2sos), to
convert a given system transfer function to an equivalent representation of second-order
sections. The function

[sos, G] = tf2sos(b, a);

fi nds a matrix sos in second-order section form and a gain G that represents the same system
H(z) as the one with numerator b and denominator a. The poles and zeros of H(z) must be
in complex conjugate pairs. The matrix sos is a K × 6 matrix as follows:

sos =

b b b a a

b b b a a

b b b a aK K K K K

01 11 21 11 21

02 12 22 12 22

0 1 2 1 2

1

1

1

� � � � � �

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, (4.3.17)

4.3 Infi nite Impulse Response Filters 135

TEAM LinG

136 Chapter 4 Digital Filtering

whose rows contain the numerator and denominator coeffi cients, bik and aik, i = 0, 1, 2 of the
kth second-order section Hk(z). The overall transfer function is expressed as

H z G H z G
b b z b z

a z a z
k

k k k

k kk

K

k

K

() = () =
+ +

+ +

− −

− −
==

∏∏ 0 1
1

2
2

1
1

2
2

11 1
. (4.3.18)

The parallel realizations can be realized with the function residuez listed in Table 4.3.
As discussed above, MATLAB function filter supports the implementation of direct-

form IIR fi lters. To implement the cascade of second-order IIR sections, we can use

y = sosfilt(sos,x);

which applies the second-order section fi lter sos to the vector x. The output y has the same
length as x.

The transfer function of IIR fi lter H(z) can be factored into the pole-zero form defi ned
in Equation 3.2.16. The system is stable if and only if all its poles are inside the unit circle.
For the cascade structure given in Equation 4.3.8, the stability can be guaranteed if every
fi lter section Hk(z) defi ned in Equation 4.3.8 or Equation 4.3.10 is stable. Consider the second-
order IIR fi lter defi ned by Equation 4.3.10, the poles will lie inside the unit circle if the
coeffi cients satisfy the following conditions:

a k2 1< (4.3.19)

and

a ak k1 21< + (4.3.20)

for all k. Therefore, the stability of the IIR fi lter realized as a cascade of fi rst- or second-order
sections is easy to examine.

4.3.3 Hands-On Experiments

This section uses FDATool and SPTool for designing IIR fi lters to enhance the speech
signal (timit1.asc) corrupted by a 1,000-Hz tone. As shown in Figure 3.11, a

Table 4.3 List of Linear System Transformation Functions

Functions Description

residuez z-transform partial-fraction expansion.
sos2tf Convert digital fi lter second-order section data to transfer function form.
sos2zp Convert digital fi lter second-order section parameters to zero-pole-gain form.
ss2sos Convert digital fi lter state-space parameters to second-order section form.
tf2sos Convert digital fi lter transfer function data to second-order section form.
tf2zp Convert continuous-time transfer function fi lter parameters to zero-pole-
 gain form.
tf2zpk Convert discrete-time transfer function fi lter parameters to zero-pole-gain
 form.
zp2sos Convert digital fi lter zero-pole-gain parameters to second-order section form.
zp2ss Convert zero-pole-gain fi lter parameters to state-space form.
zp2tf Convert zero-pole-gain fi lter parameters to transfer function form.

Adapted from Help menu in MATLAB.

TEAM LinG

bandstop fi lter centered at 1,000 Hz (with sampling frequency 8 kHz) is needed to
attenuate the narrowband noise.

HANDS-ON EXPERIMENT 4.3

In the FDATool window shown in Figure 4.5, select the radio button next to Bandstop in
the Response Type region and IIR in the Design Method region, and choose Elliptic
from the pull-down menu. In the Frequency Specifi cation region, enter 8000 in Fs, 900 in
Fpass1, 950 in Fstop1, 1050 in Fstop2, and 1100 in Fpass2. In the Magnitude Specifi ca-
tions region, enter 1 in Apass1, 60 in Astop, and 1 in Apass2. Click on the Design Filter
button; the magnitude response of the designed bandstop fi lter is shown in Figure 4.19.

Note that the Current Filter Information region shows that it required 10th-order IIR
fi lter, realized as fi ve direct-form II second-order sections. It is interesting to design an FIR
fi lter with the same specifi cations, and we need an FIR fi lter with order 342. We can use the
Analysis menu for comparing the IIR fi lter with the FIR fi lter. In the Edit menu, there are
options of Convert Structure, Reorder and Scale Second-Order Sections, and Convert
to Single Section. We are able to realize the designed IIR fi lter with different structures for
implementation.

After becoming satisfi ed with the designed fi lter, we select Export from the File menu.
Select SPTool from the Export To menu; the SPTool startup window as shown in Figure
2.3 is displayed. The designed fi lter is displayed in the Filters column as Hd[imported].

Following the procedure given in Hands-On Experiment 2.1, we can import speech_
tone.mat generated by example3_13.m. This fi le is named sig1 in the Signals region.
View and play the imported speech that is corrupted by a 1,000-Hz tone. Following the steps
given in Hands-On Experiment 2.2, select the input signal (sig1) and the imported fi lter
(Hd) and click on the Apply button to perform IIR fi ltering. The Apply Filter window is
displayed, which allows us to specify the fi le name of the output signal (default sig2). Click
on OK to perform IIR fi ltering, which will generate the output fi le in the Signals region.
We can evaluate the fi lter’s performance by viewing and playing the input and output wave-
forms. We should verify that the undesired 1,000-Hz tonal noise was attenuated by the
designed bandstop IIR fi lter.

Figure 4.19 Magnitude response of the designed bandstop IIR fi lter

4.3 Infi nite Impulse Response Filters 137

TEAM LinG

138 Chapter 4 Digital Filtering

EXERCISE 4.8

1. Design IIR fi lters with other design methods such as Butterworth, Cheby-
shev I, Chebyshev II, etc. supported by FDATool. Compare the required fi lter
orders and fi lter performance.

2. Design IIR fi lters with different frequency and magnitude specifi cations.
Compare the required fi lter orders and fi lter performance. Find the relation-
ship between the width of transition band and the required fi lter order.

3. Following the steps given in Hands-On Experiment 2.2, design IIR fi lters
with SPTool, perform IIR fi ltering, and compare the performance of the
designed fi lters.

EXAMPLE 4.8

Figure 2.2 shows that the narrowband signal is corrupted by a broadband random noise. It
can be enhanced by using a simple moving-average fi lter. We also can design bandpass
FIR and IIR fi lters for reducing random noise. However, if the desired narrowband
signal has changing frequency as the chirp signal shown in Figure 4.20 (see example4_
8.m), can we use bandpass fi lters to enhance a time-varying signal with changing
frequency?

100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy

0.6

0.7

0.8

0.9

1

Time

Figure 4.20 Spectrogram of the chirp signal corrupted by random noise

TEAM LinG

4.4 ADAPTIVE FILTERS

We have introduced techniques for designing and implementing FIR and IIR fi lters.
The characteristics of these fi lters are time invariant because they have fi xed coef-
fi cients. As shown in Example 4.8, these fi lters cannot be applied for time-varying
signals and noises. In contrast, adaptive fi lters’ coeffi cients are updated automati-
cally by adaptive algorithms [6, 22]. The characteristics of adaptive fi lters are time
varying and can adapt to an unknown and/or changing environment. Therefore,
coeffi cients of adaptive fi lters cannot be determined by fi lter design software such
as FDATool. This section introduces structures, algorithms, design, and applications
of adaptive fi lters.

4.4.1 Structures and Algorithms
of Adaptive Filters

In this book, we use many practical applications that involve the reduction of noises.
The signal in some physical systems is time varying like the chirp signal given in
Example 4.8, unknown, or possibly both. Adaptive fi lters provide a useful approach
for these applications. For example, a modem needs a channel equalizer for trans-
mitting and receiving data over telecommunication channels. Because the dial-up
channel has different characteristics on each connection and is time varying, the
channel equalizers must be adaptive.

As illustrated in Figure 4.21, an adaptive fi lter consists of two functional
blocks—a digital fi lter to perform the desired fi ltering and an adaptive algorithm to
automatically adjust the coeffi cients (or weights) of that fi lter. In the fi gure, d(n) is
a desired signal, y(n) is the output of a digital fi lter driven by an input signal x(n),
and error signal e(n) is the difference between d(n) and y(n). The adaptive algorithm
adjusts the fi lter coeffi cients to minimize a predetermined cost function that is
related to e(n).

The FIR and IIR fi lters presented in Sections 4.2 and 4.3 can be used for adap-
tive fi ltering. The FIR fi lter is always stable and can provide a linear-phase response.
The poles of the IIR fi lter may move outside the unit circle during adaptation of

x(n) y(n)

d(n)

e(n)
+

−

Adaptive
algorithm

Digital
filter

Figure 4.21 Block diagram of adaptive fi lter

4.4 Adaptive Filters 139

TEAM LinG

140 Chapter 4 Digital Filtering

fi lter coeffi cients, thus resulting in an unstable fi lter. Because the fi lter is adaptive,
the stability problem is very diffi cult to handle. Therefore, adaptive FIR fi lters are
widely used for real-world applications.

Assuming the adaptive FIR fi lter used in Figure 4.21 with L coeffi cients, wl(n),
l = 0, 1, . . . , L − 1, the fi lter output signal is computed as

y n w n x n ll
l

L

() = () −()
=

−

∑ ,
0

1
(4.4.1)

where the fi lter coeffi cients wl(n) are time varying and updated by an adaptive
algorithm. It is important to note that the length of fi lter is L and the order of the
fi lter is L − 1. We defi ne the input vector at time n as

x n x n x n x n L T() ≡ () −() − +()[]1 1. . . , (4.4.2)

and the weight vector at time n as

w n w n w n w nL
T() ≡ () () ()[]−0 1 1. . . . (4.4.3)

The output signal y(n) given in Equation 4.4.1 can be expressed with the vector form
as follows:

y n n nT() = () ()w x , (4.4.4)

where T denotes the transpose operation of the vector. The fi lter output y(n) is
compared with the desired response d(n), which results in the error signal

e n d n y n() = () − (). (4.4.5)

The objective of the adaptive algorithm is to update the fi lter coeffi cients
to minimize some predetermined performance criterion (or cost function). The
most commonly used cost function is based on the mean square error (MSE)
defi ned as

ξ n E e n() ≡ ()[]2 , (4.4.6)

where E denotes the expectation operation.
The MSE defi ned in Equation 4.4.6 is a function of fi lter coeffi cient vector w(n).

For each coeffi cient vector w(n), there is a corresponding (scalar) value of MSE.
Therefore, the MSE values associated with w(n) form an (L + 1)-dimensional space,
which is called the MSE surface or the performance surface. The steepest-descent
method is an iterative (recursive) technique that starts from an initial (arbitrary)
weight vector. The weight vector is updated at each iteration in the direction of the
negative gradient of the error surface.

The concept of the steepest-descent algorithm can be described as

w wn n n+() = () − ∇ ()1
2

μ ξ , (4.4.7)

where μ is a convergence factor (or step size) that controls stability and the rate of
descent. The larger the value of μ, the faster the speed of convergence. The vector

TEAM LinG

∇ξ(n) denotes the gradient of the error function with respect to w(n), and the nega-
tive sign increments the weight vector in the negative gradient direction. The suc-
cessive corrections to the weight vector in the direction of the steepest descent of
the performance surface should eventually lead to the minimum MSE, at which
point the weight vector reaches its optimum value.

The method of steepest descent cannot be used directly because it requires the
exact gradient vector. Many adaptive fi lter structures and adaptation algorithms have
been developed for different applications. This section presents the most widely used
adaptive FIR fi lter with the least mean square (LMS) algorithm, or stochastic gradi-
ent algorithm, which uses the instantaneous squared error, e2(n), to estimate the
MSE. The LMS algorithm can be expressed as

w w xn n n e n+() = () + () ()1 μ . (4.4.8)

This equation can be expressed in scalar form as

w n w n x n l e n l Ll l+() = () + −() () = −1 0 1μ , ,1, . . . , . (4.4.9)

Adaptive FIR fi lters using the LMS algorithm are relatively simple to design
and implement. They are well understood with regard to stability, convergence
speed, steady-state performance, and fi nite-precision effects. To effectively use the
LMS algorithm, we must determine parameters L, μ, and w(0), where w(0) is the
initial weight vector at time n = 0.

The convergence of the LMS algorithm from an initial condition w(0) to the
optimum fi lter must satisfy

0
2< <μ

LPx
, (4.4.10)

where Px denotes the power of x(n). Because the upper bound on μ is inversely
proportional to L, a smaller μ is used for large-order fi lters. In addition, μ is inversely
proportional to the input signal power. One effective approach is to normalize μ
with respect to the input signal power Px. The resulting algorithm is called the nor-
malized LMS algorithm, which is expressed as

w w xn n
LP n

n e n
x

+() = () +
()

() ()1
β

ˆ , (4.4.11)

where P̂x(n) is an estimate of the power of x(n) at time n and β is a normalized step
size that satisfi es the criterion 0 < β < 2.

The commonly used method to estimate P̂x(n) sample by sample is similar to
the fi rst-order IIR fi lter described in Equation 3.2.20. This effective technique can
be expressed as

ˆ ˆ .P n P n x nx x() = −() −() + ()1 1 2α α (4.4.11)

Because it is not desirable that the power estimate P̂x(n) be zero or very small, a
software constraint is required to ensure that the normalized step size is bounded
even if P̂x(n) is very small.

4.4 Adaptive Filters 141

TEAM LinG

142 Chapter 4 Digital Filtering

Convergence of the MSE toward its minimum value is a commonly used per-
formance measurement in adaptive systems because of its simplicity. A plot of the
MSE versus time n is called the learning curve. Because the MSE is the performance
criterion of LMS algorithms, the learning curve describes its transient behavior. The
MSE time constant can be approximated as

τ τ ω
ω

MSE MSE
X

X
∝ ≤

()
()

1 2

2μ
 and

max

min
, (4.4.12)

where |X(ω)|2 is the magnitude-square spectrum of x(n) and the maximum (max)
and minimum (min) are calculated over the frequency range 0 ≤ ω ≤ π. Therefore,
input signals with a fl at (white) spectrum have the fastest convergence speed. In
addition, τMSE is inversely proportional to μ. If we use a large value of μ, the time
constant is small, which implies faster convergence.

The steepest-descent algorithm defi ned in Equation 4.4.7 requires the true gra-
dient ∇ξ(n). The use of estimated gradient ∇ξ(n) produces the gradient estimation
noise. After the algorithm converges, perturbing the gradient will cause the weight
vector w(n + 1) to move away from the optimum solution. When w(n) moves away
from the optimum weight vector, it causes ξ(n) to be larger than its minimum value,
thus producing excess noise called the excess MSE at the fi lter output. For the LMS
algorithm, the excess MSE is directly proportional to μ. The larger the value of μ,
the worse the steady-state performance after convergence. However, Equation 4.4.12
shows that a larger μ results in faster convergence. Therefore, there is a design trade-
off between the excess MSE and the speed of convergence.

Insuffi cient spectral excitation of the LMS algorithm may result in divergence
of the adaptive algorithm. Divergence can be avoided by means of a “leaking”
mechanism used during the weight update. This is called the leaky LMS algorithm,
expressed as

w w xn n n e n+() = () + () ()1 ν μ , (4.4.13)

where ν is the leakage factor with 0 < ν ≤ 1. The leakage factor introduces a bias
on the long-term coeffi cient estimation. The error due to the leakage is proportional
to [(1 − ν)/μ]2. Therefore, (1 − ν) should be kept smaller than μ in order to maintain
an acceptable level of performance. The leaky LMS algorithm not only prevents
unconstrained weight overfl ow, but also limits the output power in order to avoid
nonlinear distortion.

4.4.2 Design and Applications of Adaptive Filters

The MATLAB Filter Design Toolbox provides the function adaptfilt for imple-
menting adaptive fi lters. The function

h = adaptfilt.algorithm(. . .);

returns an adaptive fi lter h of type algorithm. MATLAB supports many adaptive
algorithms. For example, the LMS-type adaptive algorithms based on FIR fi lters are

TEAM LinG

summarized in Table 4.4. The Filter Design Toolbox also provides many advanced
algorithms such as recursive least squares, affi ne projection, and frequency-domain
algorithms.

For example, we can construct an adaptive FIR fi lter with the LMS algorithm
object as follows:

h = adaptfilt.lms(l,step,leakage,coeffs,states);

Table 4.5 describes the input arguments for adaptfilt.lms.
The adaptive fi lter is able to operate in an unknown environment and to track

time variations of the input signals. The essential difference between various appli-
cations of adaptive fi ltering is where the signals x(n), d(n), y(n), and e(n) shown in
Figure 4.21 are connected.

Adaptive system identifi cation is illustrated in Figure 4.22, where P(z) is an
unknown system to be identifi ed and W(z) is an adaptive fi lter used to model P(z).
The adaptive fi lter adjusts itself to cause its output to match that of the unknown
system. If the input signal x(n) provides suffi cient spectral excitation, the adaptive
fi lter output y(n) will approximate d(n) in an optimum sense after convergence.
When the difference between the physical system response d(n) and the adaptive
model response y(n) has been minimized, the adaptive model W(z) approximates
P(z) from the input/output viewpoint. When the plant is time varying, the adaptive

Table 4.4 Summary of LMS-Type Adaptive Algorithms for
FIR Filters

Algorithms Description

lms Direct-form LMS
nlms Direct-form normalized LMS
dlms Direct-form delayed LMS
blms Block LMS
blmsfft FFT-based block LMS
ss Direct-form sign-sign LMS
se Direct-form sign-error LMS
sd Direct-form sign-data LMS
filtxlms Filtered-X LMS
adjlms Adjoint LMS

Table 4.5 Input Arguments for adaptfilt.lms

Input Arguments Description

l Filter length L (defaults to 10)
step Step size μ (defaults to 0.1)
leakage Leakage factor ν (0 < ν ≤ 1, defaults to 1)
coeffs Initial fi lter coeffi cients (defaults to 0)
states Initial fi lter states (defaults to 0)

4.4 Adaptive Filters 143

TEAM LinG

144 Chapter 4 Digital Filtering

algorithm will keep the modeling error small by continually tracking time variations
of the plant dynamics.

EXAMPLE 4.9

In Figure 4.22, an unknown system P(z) is an FIR fi lter designed by the following
function:

p = fir1(15,0.5);

The excitation signal x(n) used for system identifi cation is generated as follows:

x = randn(1,400);

Use an adapting fi lter W(z) with the LMS algorithm to identify P(z). The length of the adap-
tive fi lter is 16, and the step size is 0.01. The adaptive fi ltering is conducted as follows:

ha = adaptfilt.lms(16,mu);
[y,e] = filter(ha,x,d);

The MATLAB script for implementing Figure 4.22 is given in example4_9.m (adapted
from Help menu). Signals d(n), y(n), and e(n) are shown in the top plot of Figure 4.23, which
shows that y(n) gradually approximates d(n) and the error signal e(n) is minimized. The
bottom plot shows that the coeffi cients of adaptive fi lter W(z) after convergence are identical
to the corresponding coeffi cients of unknown system P(z).

EXERCISE 4.9

Modify example4_9.m for the following simulations:

1. Design P(z) with different orders. Set W(z) with the same, higher, and lower
orders and compare the identifi cation results. Note that the step size value
should be changed according to the fi lter length.

2. Using a fi lter length of 16, change the step size value from 0.01 to 0.05, 0.1,
0.005, and 0.001. Evaluate the performance of the adaptive fi lter.

x(n) y(n)

d(n)

e(n)
+

−
W(z)

LMS
algorithm

P(z)

Figure 4.22 Block diagram of adaptive system identifi cation

TEAM LinG

0 50 100 150 200 250 300 350

d(n)

Adaptive System Identification

y(n)
e(n)

400
–2

–1.5

–1

–0.5

0

0.5

1

2

1.5

A
m

pl
itu

de

Time index, n

0 2 4 6 8 10 12 14

Actual
Estimated

16
–0.1

0

0.1

0.2

0.3

0.4

0.6

0.5

C
oe

ffi
ci

en
t V

al
ue

s

Coefficient #

Figure 4.23 Adaptive system identifi cation results. Top: signals d(n), y(n), and e(n). Bottom:
coeffi cients of P(z) and W(z)

4.4 Adaptive Filters 145

TEAM LinG

146 Chapter 4 Digital Filtering

3. Change the adaptive algorithm from lms to other functions defi ned in Table
4.4, and evaluate the performance of the system identifi cation results.

4. Table 4.5 shows that leakage is the leakage factor. It must be a scalar
between 0 and 1. If it is less than 1, the leaky LMS algorithm is implemented.
It defaults to 1 (no leakage). Try different leaky factors and compare the
performance with Figure 4.23.

5. Plot e2(n) instead of e(n). In addition, use the following equation to smooth
the curve:

ˆ ˆ .P n P n e ne e() = −() −() + ()1 1 2α α (4.4.14)

Try different values of α and initial values of P̂e(0).

Linear prediction has been successfully applied to a wide range of applications
such as speech coding and separating signals from noise. As illustrated in Figure
4.24, the adaptive predictor consists of a digital fi lter in which the coeffi cients wl(n)
are updated by the LMS algorithm. For example, consider the adaptive predictor for
enhancing multiple sinusoids embedded in white noise. In this application, the
structure shown in Figure 4.24 is called the adaptive line enhancer (ALE), which
provides an effi cient means for the adaptive tracking of the sinusoidal components
of a received signal d(n) and separates these narrowband signals from broadband
noise. In this fi gure, delay Δ = 1 is adequate for decorrelating the white noise com-
ponent between d(n) and x(n), and longer delay may be required for other broadband
noises. This technique has been shown effective in practical applications when there
is insuffi cient a priori knowledge of the signal and noise parameters.

EXAMPLE 4.10

As shown in Figure 4.24, assume that signal d(n) consists of a desired sine wave that is cor-
rupted by white noise. An adaptive fi lter will form a bandpass fi lter to pass the sine wave in
y(n). As shown in Figure 4.25, adaptive fi lter output y(n) gradually approaches a clean sine
wave, while the error signal e(n) is reduced to the noise level. The MATLAB script for
simulating adaptive line enhancement is given in example4_10.m.

d(n)

y(n) e(n)
+

−
W(z)

LMS

z −Δ

y(n)

x(n)

Figure 4.24 Block diagram of adaptive prediction

TEAM LinG

EXERCISE 4.10

Modify example4_10.m for the following simulations:

1. Add more sine waves into d(n) and redo the simulation with different values
of μ and L. We may need a higher order of fi lter when the sinusoidal frequen-
cies are close. Accordingly, it requires a smaller value of the step size and
results in slow convergence.

2. Plot the magnitude response of converged fi lter W(z) and confi rm that it will
approximate an bandpass fi lter. What is the center frequency of the
passband?

3. Redo Exercise 1 with different delay values Δ.

4. Use the adaptive line enhancer to enhance the chirp signal that is corrupted
by random noise as shown in Figure 4.20.

Adaptive noise cancellation employs an adaptive fi lter to cancel the noise com-
ponents in the primary signal picked up by the primary sensor. As illustrated in
Figure 4.26, the primary sensor is placed close to the signal source to pick up the
desired signal. The reference sensor is placed close to the noise source to sense the
noise only. The primary input d(n) consists of signal plus noise, which is highly
correlated with x(n) because they are derived from the same noise source. The refer-
ence input consists of noise x(n) alone. The adaptive fi lter uses the reference input
x(n) to estimate the noise picked up by the primary sensor. The fi lter output y(n) is

0 50 100 150 200 250 300 350 400
–1.5

–1

–0.5

0

0.5

1.5

1

A
m

pl
itu

de

Time index, n

Adaptive Line Enhancement

e(n)
y(n)

Figure 4.25 Adaptive line enhancement of narrowband signal

4.4 Adaptive Filters 147

TEAM LinG

148 Chapter 4 Digital Filtering

then subtracted from the primary signal d(n), producing e(n) as the desired signal
plus reduced noise. To apply the adaptive noise cancellation effectively, it is critical
to avoid the signal components from the signal source being picked up by the refer-
ence sensor. This “cross talk” effect will degrade the performance because the pres-
ence of the signal components in the reference signal will cause the adaptive fi lter to
cancel the desired signal.

The transmission of high-speed data through a channel is limited by intersym-
bol interference caused by distortion in the transmission channel. This problem can
be solved by using an adaptive equalizer in the receiver that counteracts the channel
distortion. As illustrated in Figure 4.27, the received signal s(n) is different from
the original signal x(n) because it was distorted by the overall channel transfer
function C(z), which includes the transmit fi lter, the transmission medium, and the
receive fi lter. To recover the original signal x(n), we need to process s(n) with the
equalizer W(z), which is the inverse of the channel’s transfer function C(z), to com-
pensate for the channel distortion. That is, C(z)W(z) = 1 such that x̂(n) = x(n). Note
that d(n) may not be available during data transmission.

4.4.3 More Hands-On Experiments

As discussed in Section 4.4.1, the optimum step size μ is diffi cult to determine.
Improper selection of μ might make the convergence speed unnecessarily slow or

-
+

Noise
source y(n)

Signal
source

LMS

Primary
sensor

Reference
sensor

d(n)

x(n)
W(z)

e(n)
1−z

Figure 4.26 Block diagram of adaptive noise cancellation

−C(z) W(z)

LMS

d(n)

+
x(n) s(n))(ˆ nx e(n)

Figure 4.27 Block diagram of adaptive channel equalizer

TEAM LinG

introduce excess MSE. If the signal is changing and real-time tracking capability is
crucial, we can use a larger μ. If the signal is stationary and convergence speed is
not important, we can use a smaller μ to achieve better performance in a steady
state. In some practical applications, we can use a larger μ at the beginning for faster
convergence and use a smaller μ after convergence to achieve better steady-state
performance.

EXAMPLE 4.11

Here we examine how step size affects the performance of the algorithm. Similar to Example
4.10, we fi x the fi lter length to L = 64; however, we set μ values to 0.001, 0.005, and 0.01.
In addition, we use Example 4.4.14 to estimate learning curves, which are shown in Figure
4.28. The MATLAB script is given in example4_11.m. The simulation results confi rm
that faster convergence can be achieved by using a larger step size.

EXERCISE 4.11

1. Based on example4_11.m, use different values of μ that are larger than
0.01. What values will make the algorithm diverge? Note that the learning
curve shown in Figure 4.28 starts from 0. Why? How can we obtain a learn-
ing curve that starts from the correct value and converge to the minimum
value?

Leaming curves for different mu values

Time index, n

A
m

pl
itu

de

mu=0.001

mu=0.005

mu=0.01

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 150 200 250 300

Figure 4.28 Learning curves for different step size values

4.4 Adaptive Filters 149

TEAM LinG

150 Chapter 4 Digital Filtering

2. Based on example4_11.m, generate three sine waves that are corrupted
by random noise. Find the relationship between the required fi lter length and
the distance between adjacent sine waves.

3. The excess MSE is also proportional to the fi lter length L, which means that
a larger L results in larger algorithm noise. From Equation 4.4.10, a larger L
implies a smaller μ, resulting in slower convergence. Design simulations to
verify these facts.

As illustrated in Figure 4.26, we can use P(z) to represent the transfer function
between the noise source and the primary sensor. The noise canceller has two inputs:
the primary signal input d(n) and the reference noise input x(n). The primary input
d(n) consists of signal s(n) plus noise x′(n), which is x(n) fi ltered by P(z). To mini-
mize the residual error e(n), the adaptive fi lter W(z) will generate an output y(n)
that is an approximation of x′(n). Therefore, the adaptive fi lter W(z) will converge
to the unknown plant P(z).

EXAMPLE 4.12

In Figure 4.26, assume that the signal s(n) is speech from fi le timit1.asc. The noise x(n)
is a tone at frequency 1,000 Hz, which is also picked up by the primary sensor as x′(n).
Assuming that P(z) is the FIR fi lter defi ned in Example 4.9, x′(n) can be obtained by fi lter-
ing x(n) with P(z). An adaptive fi lter will form a bandpass fi lter to pass x(n), but change its
amplitude and phase to match with x′(n) so it can be canceled. Therefore, the error signal
e(n) will consist of speech s(n) as shown in Figure 4.29. The MATLAB script for this

2000
0

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy

0.6

0.7

0.8

0.9

1

4000 6000 8000 10000 12000
Time

Figure 4.29 Spectrogram of enhanced speech by adaptive noise cancellation

TEAM LinG

experiment is given in example4_12.m. In the code, the step size used is 0.0001/32,767.
Why it is so small? Hint: For DSP simulations, signals are normalized between ±1, which
is discussed in Chapter 6. However, many real-world signals (such as timit1.asc) sampled
by 16-bit A/D converters usually have amplitude between ±32,767.

EXERCISE 4.12

1. It is diffi cult to determine an optimum step size for a given application. A
trial-and-error method is commonly used. Is it possible to use the normalized
LMS algorithm to simplify the process of determining step size?

2. In Example 4.12, if the noise x(n) is a random noise, is the adaptive noise
cancellation able to reduce this random noise?

3. What is the diffi culty of applying the adaptive noise cancellation technique
to reduce noise pickup by the primary microphone of hands-free conversa-
tion inside a noisy automobile compartment?

Having analyzed the properties of adaptive fi ltering in MATLAB, we now
examine the implementation of an adaptive fi lter using the Blackfi n simulator and
perform real-time experiments using the BF533 (or BF537) EZ-KIT.

4.5 ADAPTIVE LINE ENHANCER
USING BLACKFIN SIMULATOR

This section verifi es the code ported from MATLAB to C for the adaptive line
enhancer shown in Figure 4.24 using the Blackfi n simulator. We will use some new
functions provided in the C run time library to generate random noise and sine
wave.

HANDS-ON EXPERIMENT 4.4

This experiment uses a project fi le, exp4_4.dpj located in directory c:\adsp\chap4\
exp4_4 to simulate the adaptive line enhancer (ALE) given in Example 4.10. The C main
program ale_demo.c generates a sine wave that is corrupted by a random noise and calls
the adaptive FIR fi lter with the LMS algorithm to remove the undesired noise. The process.
c performs the ALE based on the LMS algorithm. The sin function in the C run time library
is used to generate a sine wave of 256 samples as follows:

*out = (fract16) (0.5*sin(2*PI*f*step)*32768.0);

The function rand is called to generate pseudo-random numbers. Because the rand
function generates numbers in the range of [0, 230 − 1], we subtract the generated numbers
by 0x20000000 and shift right by 15 bits to obtain 16-bit zero-mean random integers as
follows:

(fract16)((rand() - 0x20000000)>>15)

4.5 Adaptive Line Enhancer Using Blackfi n Simulator 151

TEAM LinG

152 Chapter 4 Digital Filtering

The generated sine wave samples and the random numbers are added to form a noisy
sine wave, which will be enhanced by the ALE. This experiment uses a 32-tap adaptive FIR
fi lter and a delay Δ = 1 for ALE. Because no adaptive fi ltering function is available in the
Blackfi n DSP run time library, the process.c fi le consists of a C routine (LMS_filter) to
perform the adaptive fi ltering. The input arguments for the LMS algorithm are declared as
follows:

LMS_filter(fract16 in[],fract16 out1[], fract16 out2[], fract16
d[], fract16 c[], int taps, int size, int delaysize,
fir_state_fr16* s)

Note that the FIR fi lter function, fir_fr16, is embedded inside the adaptive fi ltering routine.
What is the step size used in the program?

Build and load the project into the Blackfi n compiled simulator. The reason for using
the compiled simulator is to allow quick evaluation of the ALE’s performance. Three signals
can be viewed by clicking on View Æ Debug Windows Æ Plot Æ Restore . . . and select-
ing inp.vps (input signal), out1.vps (output signal), and out2.vps (error signal) as
shown in Figure 4.30 (a), (b), and (c), respectively.

Note that the signal out1 is an enhanced version of the input noisy signal and the error
signal out2 contains the random noise. Thus the ALE has enhanced the sine wave success-
fully. Users can plot the magnitude spectra of these signals by using the frequency analysis
features provided in the VisualDSP++.

EXERCISE 4.13

1. Use different step sizes for the LMS algorithm and examine the output signal
out1. Observe the effects of out1 when increasing and decreasing the value
of the step size for adaptive fi ltering.

2. Increase the length of the adaptive fi lter and adjust the step size to obtain a
good result.

3. Modify the program to implement the normalized LMS algorithm by using
the Calc_mu function in process.c.

4. Set up a new window to show the variation of the normalized step size using
the normalized LMS algorithm.

4.6 ADAPTIVE LINE ENHANCER USING
BLACKFIN BF533/BF537 EZ-KIT

This section tests the real-time performance of the ALE using the BF533 (or BF537)
EZ-KIT. Several noisy signals can be played with the sound card or CD player,
which is connected to the analog input of the EZ-KIT. The processed output signal
from the EZ-KIT is connected to a pair of headphones or external loudspeakers.
Users can experiment with different values of step size, delay, and adaptive fi lter
length to determine the optimum set of parameters for the ALE.

TEAM LinG

A
m

pl
itu

de

0 1 2 3 4 5 6

Time (Sec)

(a) Input signal.

Input
4*104

–4*104

2*104

–2*104

0*100

0.0*100

2.5*104

–2.5*104

*10–3

A
m

pl
itu

de

0 1 2 3 4 5 6

Time (Sec)

(b) Output signal.

Out1

8,000

4,000

–8,000

–4,000

0

*10–3

A
m

pl
itu

de

0 1 2 3 4 5 6

Time (Sec)

(c) Error signal.

Out2

*10–3

Figure 4.30 Plots of (a) input signal, (b) adaptive fi lter output signal (out1), and (c) error signal
(out2)

4.6 Adaptive Line Enhancer Using Blackfi n BF533/BF537 EZ-KIT 153

TEAM LinG

154 Chapter 4 Digital Filtering

HANDS-ON EXPERIMENT 4.5

Activate the VisualDSP++ for the BF533 (or BF537) EZ-KIT and open exp4_5_533.dpj
in directory c:\adsp\chap4\exp4_5_533 for the BF533 (or exp4_5_537.dpj in c:\
adsp\chap4\exp4_5_537 for the BF537) EZ-KIT. Build the project, and the executable
fi le exp4_5_533.dxe or exp4_5_537.dxe will be automatically loaded into the EZ-KIT.
Select speech_tone_48k.wav in directory c:\adsp\audio_files and play this wave
fi le continuously with the computer sound card. Run the program and listen to the original
wave fi le from the headphone (or loudspeakers). The switch settings and LED modes for the
BF533 and BF537 EZ-KITs are listed in Table 4.6.

Experiment with different settings (step size, delay, and fi lter length) of the adaptive
fi lter. Change the adaptive algorithm from the LMS to the normalized LMS and test the
performance of the ALE, using the noisy musical signal sineandmusic.wav. Change
the delay (DELAY_SIZE) to 1 for decorrelating the noise. Do you notice any distortion to
the error signal? Why?

EXERCISE 4.14

1. Generate multiple sine waves at 1, 2, and 3 kHz, and mix them with a musical
signal sampled at 48 kHz. Use either the LMS or normalized LMS algorithm
to remove the sine waves. Note that we may change the fi lter length and the
corresponding step size for this application.

2. Generate a chirp signal and mix it with the musical signal sampled at 48 kHz.
Compare the performance of the LMS and normalized LMS algorithms for
removing the chirp signal. Increase the length of the adaptive fi lter and
compare its performance with the fi lter of shorter length.

3. In the preceding experiments, two adaptive fi lters are required for the ALE
to operate separately on the left and right channels. Devise a way to reduce
computation load by using only one fi lter. Compare the performance of
ALEs using one and two fi lters on removing sine wave in stereo channels.

Table 4.6 Switch Settings and LED Indicators for Listening to Different Modes of
Adaptive Filtering

Modes BF533 EZ-KIT BF537 EZ-KIT

Pass-through SW4 (LED4) SW10 (LED1)
Output from adaptive fi lter SW5 (LED5) SW11 (LED2)
Error of adaptive fi lter (default mode after SW6 (LED6) SW12 (LED3)
 loading)

TEAM LinG

4.7 ADAPTIVE LINE ENHANCER
USING LABVIEW EMBEDDED MODULE
FOR BLACKFIN PROCESSORS

Is this section, we design and implement an ALE with the graphical system design
approach. First, we simulate the ALE in LabVIEW to gain an intuitive understand-
ing of its behaviors, and then we design and implement the ALE application with
the LabVIEW Embedded Module for Blackfi n Processors for execution on the
Blackfi n EZ-KIT.

HANDS-ON EXPERIMENT 4.6

This experiment focuses on the simulation and implementation of a simple adaptive FIR
fi lter with the LMS algorithm. We use the simulation created in LabVIEW to explore the
different input parameters that affect the behaviors of the LMS algorithm. Simulation is a
crucial part of system design because it allows the designer to test and refi ne parameters
before moving to the real embedded target. This can effectively reduce errors, faulty assump-
tions, and overall development time.

Open the program LMS_Filter_Sim.exe in directory c:\adsp\chap4\exp4_6.
The user interface for this application is shown in Figure 4.31. Some input parameters can
be altered to study the effects on the LMS algorithm and its outputs. There are two tabs:
LMS Filter Results (Time Domain) and LMS Filter Results (Frequency Domain). The

Figure 4.31 Time-domain plots of the signals and coeffi cients of the fi lter using the LMS
algorithm (LMS_Filter_Sim.exe)

4.7 Adaptive Line Enhancer Using LabVIEW Embedded Module 155

TEAM LinG

156 Chapter 4 Digital Filtering

time-domain plots show the noisy sine wave, the fi ltered output signal, the fi lter coeffi cients,
and the error signal. Click on the LMS Filter Results (Frequency Domain) tab to evaluate
the magnitude and phase responses for the FIR fi lter coeffi cients as they adapt to reduce the
noise.

The most interesting part of the simulation is to see how the LMS algorithm learns and
adapts its coeffi cients. Click on the Reset Filter button to reset the fi lter coeffi cients to zero
and restart this learning process. Additional features have been added to the top right corner
for pausing and single-stepping through the algorithm. We can single-step through the cal-
culation while viewing either the time-domain or the frequency-domain plots. These graph-
ical features greatly aid the visualization and understanding of adaptive fi ltering, which is
an iterative algorithm. Select the LMS Filter Results (Frequency Domain) tab to see how
the FIR fi lter adapts to suppress the noise while preserving the desired 1-kHz input signal
as shown in Figure 4.32.

The input parameters for the LMS algorithm that can be changed include the LMS
Gain (step size μ), the number of FIR fi lter taps (length L), and the delay size Δ. As discussed
above, the step size determines the amount of correction to be applied to the fi lter coeffi cients
as the fi lter adapts. The Taps parameter determines the length of the FIR fi lter. Delay Size
indicates the interval in samples between the current acquired sample and the newest sample
used by the fi lter.

As the fi lter designer, optimize the LMS algorithm by fi ne-tuning the step size for fast
learning, while minimizing coeffi cient fl uctuations once the fi lter converges to a steady state.
How do the input parameters affect the resulting fi lter? Can the LMS algorithm lose stabil-
ity? Explain.

Figure 4.32 Magnitude and phase responses of the adaptive fi lter designed by the LMS algorithm
(LMS_Filter_Sim.exe)

TEAM LinG

HANDS-ON EXPERIMENT 4.7

This experiment implements the LMS algorithm with the LabVIEW Embedded Module for
Blackfi n Processors using C programming. Algorithms written in C can be quickly proto-
typed in the LabVIEW Embedded Module for Blackfi n Processors, allowing them to be
implemented as a subcomponent of the graphical system. Graphical system implementation
allows other parts of the system to be abstracted, thus allowing the programmer to focus on
the algorithm.

Open the LMS Adaptive Filter - BF5xx.lep project in directory c:\adsp\
chap2\exp4_7. When viewing the block diagram of the LMS Adaptive Filter.vi,
note that it is similar to the audio talk-through example discussed in Chapter 2, but has been
modifi ed to include buffer initializations, specifi cation of taps and delay size, and an Inline
C Node as seen in Figure 4.33. The parameters Taps and Delay Size can be customized
to change the behavior of the LMS algorithm. The Inline C Node contains nearly the same
LMS algorithm found in the C implementation in earlier experiments with an alternate FIR
fi lter implementation. In this experiment, the FIR fi lter is implemented with a multiply-
accumulate operation within a For Loop to reduce the amount of C programming needed.
The original implementation using the fir_fr16 library function required additional pro-
gramming for initialization, which linked global buffers, coeffi cients, and state variables to
the fi lter. Push-button input was also added, allowing the user to choose which component
of the algorithm to output.

The LMS algorithm is computationally intensive, making it necessary to confi gure Black-
fi n optimizations to run the LMS algorithm as fast as possible. These settings optimize the C
code generated from LabVIEW and are found in the Build Options menu by selecting Tools
Æ Build Options from the Embedded Project Manager window. First, the Build Confi gu-
ration is changed from Debug to Release. This option removes all extra debugging code from
the generated C. Stack Variables and Disable Parallel Execution are both enabled to opti-

Figure 4.33 The adaptive LMS fi lter block diagram

4.7 Adaptive Line Enhancer Using LabVIEW Embedded Module 157

TEAM LinG

158 Chapter 4 Digital Filtering

mize the way in which memory is managed and parallel programming structures are handled.
These optimizations are ideal for implementing fast, serialized algorithms that perform many
memory operations, such as the LMS algorithm that performs FIR fi ltering and coeffi cient
updating for each of the 512 samples in the acquired audio buffer.

Run the project on the Blackfi n processor. Play the speech_tone_48k.wav that was
used in Hands-On Experiment 2.4 and feed the wave output to the audio input of the
BF533/BF537 EZ-KIT. When the SW4 of BF533 (or SW10/PB4 of BF537) is pressed, the
LMS algorithm adapts to suppress the speech. When the SW5 of BF533 (or SW11/PB3 of
BF537) is pressed, the error signal is heard. What do you notice about the error signal? When
can the error signal be used as the desired fi lter output?

4.8 MORE EXERCISE PROBLEMS

1. In FDATool, the default magnitude specifi cations in decibels (dB) are Ap = 1 and As =
80. Convert these units to linear scale.

2. Redo Exercise 4.2 with SPTool. In addition to designing those fi lters, import the signal
given in Example 4.1, perform FIR fi ltering using SPTool, and analyze input and output
spectra.

3. Use FIR fi lter design functions listed in Table 4.1 to design bandstop fi lters for attenuat-
ing tonal noise at 1,000 Hz embedded in speech signal timit1.asc as shown in
Figure 3.11. Also, perform FIR fi ltering with MATLAB function filter.

4. Use the IIR fi lter design functions listed in Table 4.2 to design fi lters specifi ed in
Exercise 4.2 and compare the required orders of IIR fi lters with the corresponding
FIR fi lters.

5. Use the transformation functions listed in Table 4.3 to convert the fi lters designed in
Problem 4 to different realizations.

6. Use the IIR fi lter design functions listed in Table 4.2 to design IIR bandstop fi lters
specifi ed in Exercise 4.6(1). Realize the designed fi lters in cascade second-order struc-
ture with the functions given in Table 4.3 and perform IIR fi ltering with MATLAB
function sosfilt.

7. Examine the stability of the IIR fi lter given in Example 4.7.

8. Implement the adaptive channel equalization technique illustrated in Figure 4.27, using
MATLAB or C program. The input signal x(n) is a zero-mean, unit-variance white noise.
The unknown channel C(z) is simulated by the FIR fi lter used in Example 4.9. Note that
a delay of L/2 is used to produce d(n) from x(n).

9. Redo Examples 4.9 and 4.10 with different step sizes. Instead of plotting e(n), use Equa-
tion 4.4.14 to compute learning curves.

10. Modify the adaptive fi ltering program in Hands-On Experiment 4.4 to implement the
adaptive noise cancellation, described in Section 4.4.2.

11. Repeat Problem 10 by implementing the adaptive channel equalization,

12. The ALE can enhance the detection of DTMF tones in phone dialing. Mix the speech
signal timit.wav with the dial tone dtmf_tone.wav. Play the combined wave fi le

TEAM LinG

and connect it to the input channel of the BF533 (or BF537) EZ-KIT. Choose suitable
parameters (algorithm, fi lter length, step size, and delay) for the ALE and run the
program, using the EZ-KIT. Is the ALE program working?

13. A stereo signal is corrupted with a sine wave (speech_tone_48k_stereo.wav).
Implement the ALE algorithm in the Blackfi n processor to remove the sine wave. To
reduce the computational cost of performing ALE to the left and right input channels
separately, a single ALE algorithm is performed on the common input of (xL + xR)/2,
where xL and xR are the left and right input channels. The sine wave derived from the
ALE can be subtracted from the original left and right channels to form a clean stereo
signal.

14. In the ALE experiment given in Hands-On Experiment 4.5, what is the smallest step
size that can be used for the 16-bit implementation? What is the largest step size for a
32-tap adaptive fi lter?

4.8 More Exercise Problems 159

TEAM LinG

TEAM LinG

Part B

Embedded Signal
Processing Systems
and Concepts

TEAM LinG

TEAM LinG

Chapter 5

Introduction to the
Blackfi n Processor

This chapter examines the architecture of the Blackfi n processor, which is based
on the MSA jointly developed by Analog Devices and Intel. We use assembly pro-
grams to introduce the processing units, registers, and memory and its addressing
modes. At the end of the chapter, we design, simulate, and implement an eight-band
graphic equalizer and use this application to explain some of the practical imple-
mentation issues. An in-depth discussion of the real-time processing concepts,
number representations, peripheral programming, code optimization, and system
design is given in Chapters 6, 7, and 8.

5.1 THE BLACKFIN PROCESSOR:
AN ARCHITECTURE FOR EMBEDDED
MEDIA PROCESSING

This section introduces the architecture of the Blackfi n processor and its internal
hardware units, memory, and peripherals using assembly instructions. In particular,
we use the BF533 processor [23] for explaining the Blackfi n processor’s architecture.
The BF537 processor [24] has core and system architectures identical to those of
the BF533, but slightly different on-chip peripherals.

5.1.1 Introduction to Micro Signal Architecture

As introduced in Chapter 1, the MSA core was designed to achieve high-speed DSP
performance and best power effi ciency. This core combines the best capabilities
of microcontroller and DSP processor into a single programming model. This is

163

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

164 Chapter 5 Introduction to the Blackfi n Processor

different from other cores that require separate DSP processor and microcontroller.
The main advantage of the MSA core is the integrated feature that combines multi-
media processing, communication, and user interface on a single, easy-to-program
platform. This highly versatile MSA core performs DSP tasks as well as executing
user commands and control tasks. The programming environment has many features
that are familiar to both microcontroller and DSP programmers, thus greatly speed-
ing up the development of embedded systems.

The MSA architecture is also designed to operate over a wide range of clock
speeds and operating voltages and includes circuitry to ensure stable transitions
between operating states. A dynamic power management circuit continuously moni-
tors the software running on the processor and dynamically adjusts both the voltage
delivered to the core and the frequency at which the core runs. This results in
optimized power consumption and performance for real-time applications.

5.1.2 Overview of the Blackfi n Processor

The ADSP-BF5xx Blackfi n processor is a family of 16-bit fi xed-point processors
that are based on the MSA core. This processor targets power-sensitive applications
such as portable audio players, cell phones, and digital cameras. Low cost and high
performance factors also make Blackfi n suitable for computationally intensive appli-
cations including video equipment and third-generation cell phones.

The fi rst generation of the BF5xx family is the BF535, which achieves a clock
speed up to 350 MHz at 1.6 V. Analog Devices introduced three processor families
(BF532, BF533, and BF561) in 2003. These processors can operate up to 750 MHz
at 1.45 V. The clock speed and operating voltages can be switched dynamically for
given tasks via software for saving power. The BF561 processor incorporates two
MSA cores to improve performance using parallel processing. A recent release of
the BF5xx family consists of BF534, BF536, and BF537. These processors add
embedded Ethernet and controller area network connectivity to the Blackfi n
processor.

The Blackfi n core combines dual multiply-accumulate (MAC) engines, an
orthogonal reduce-instruction-set computer (RISC)-like instruction set, single
instruction, multiple data (SIMD) programming capabilities, and multimedia pro-
cessing features into a unifi ed architecture. As shown in Figure 5.1, the Blackfi n
BF533 processor [23] includes system peripherals such as parallel peripheral inter-
face (PPI), serial peripheral interface (SPI), serial ports (SPORTs), general-purpose
timers, universal asynchronous receiver transmitter (UART), real-time clock (RTC),
watchdog timer, and general-purpose input/output (I/O) ports. In addition to these
system peripherals, the Blackfi n processor also has a direct memory access (DMA)
controller that effectively transfers data between external devices/memories and the
internal memories without processor intervention. Blackfi n processors provide L1
cache memory for quick accessing of both data and instructions.

In summary, Blackfi n processors have rich peripheral supports, memory
management unit (mmu), and RISC-like instructions, which are typically found in

TEAM LinG

5.1 An Architecture for Embedded Media Processing 165

many high-end microcontrollers. These processors have high-speed buses and
advanced computational engines that support variable-length arithmetic operations
in hardware. These features make the Blackfi n processors suitable to replace other
high-end DSP processors and microcontrollers. In the following sections, we further
introduce the core architecture and its system peripherals.

5.1.3 Architecture: Hardware Processing
Units and Register Files

Figure 5.2 shows that the core architecture consists of three main units: the address
arithmetic unit, the data arithmetic unit, and the control unit.

5.1.3.1 Data Arithmetic Unit

The data arithmetic unit contains the following hardware blocks:

1. Two 16-bit multipliers represented as in Figure 5.2.

2. Two 40-bit accumulators (ACC0 and ACC1). The 40-bit accumulator can be
partitioned as 16-bit lower-half (A0.L, A1.L), 16-bit upper-half (A0.H, A1.
H), and 8-bit extension (A0.X, A1.X), where L and H denote lower and
higher 16-bit, respectively.

JTAG TEST AND
EMULATION

EVENT
CONTROLLER/
CORE TIMER

WATCHDOG TIMER

REAL TIME CLOCK

UART PORT
IrDA®

TIMER0,TIMER1,
TIMER2

PPI/GPIO

SERIAL PORTS (2)

SPI PORT

EXTERNAL PORT
FLASH,SDRAM

CONTROL

BOOT ROM

DMA
CONTROLLER

CORE/SYSTEM BUS INTERFACE

VOLTAGE
REGULATOR ®

L1
INSTRUCTION

MEMORY
MMU

L1
DATA

MEMORY

Figure 5.1 Block diagram of the Blackfi n BF533 system (courtesy of Analog Devices, Inc.)

TEAM LinG

166 Chapter 5 Introduction to the Blackfi n Processor

3. Two 40-bit arithmetic logic units (ALUs) represented as in Figure
5.2.

4. Four 8-bit video ALUs represented as in Figure 5.2.

5. A 40-bit barrel shifter.

6. Eight 32-bit data registers (R0 to R7) or 16 independent 16-bit registers (R0.
L to R7.L and R0.H to R7.H).

Computational units get data from data registers and perform fi xed-point
operations. The data registers receive data from the data buses and transfer the
data to the computational units for processing. Similarly, computational results
are moved to the data registers before transferring to the memory via data
buses.

These hardware computational blocks are used extensively in performing DSP
algorithms such as FIR fi ltering, FFT, etc. The multipliers are often combined with
the adders inside the ALU and the 40-bit accumulators to form two 16- by 16-bit
MAC units. Besides working with the multiplier, the ALU also performs common
arithmetic (add, subtract) and logical (AND, OR, XOR, NOT) operations on 16-bit

DAG0 DAG1

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

SP
FP
P5
P4
P3
P2
P1
P0

I3
I2
I1
I0

L3
L2
L1
L0

B3
B2
B1
B0

M3
M2
M1
M0

R7
R6
R5
R4
R3
R2
R1
R0

BARREL
SHIFTER

8 8 8 8
16 16

40 40

ACC 0 ACC 1

DATA ARITHMETIC UNIT

ADDRESS ARITHMETIC UNIT

CONTROL
UNIT

Figure 5.2 Core architecture of the Blackfi n processor (courtesy of Analog Devices, Inc.)

TEAM LinG

5.1 An Architecture for Embedded Media Processing 167

or 32-bit data. Many special instructions or options are included to perform satura-
tion, rounding, sign/exponent detection, divide, fi eld extraction, and other opera-
tions. In addition, a barrel shifter performs logical and arithmetic shifting, rotation,
normalization and extraction in the accumulator. An illustrative experiment using
the shift instructions is presented below in Hands-On Experiment 5.3. With the dual
ALUs and multipliers, the Blackfi n processor has the fl exibility of operating two
register pairs or four 16-bit registers simultaneously.

In this section, we use Blackfi n assembly instructions to describe the arithmetic
operations in several examples. The assembly instructions use algebraic syntax to
simplify the development of the assembly code.

EXAMPLE 5.1 Single 16-Bit Add/Subtract Operation

Any two 16-bit registers (e.g., R1.L and R2.H) can be added or subtracted to form a 16-bit
result, which is stored in another 16-bit register, for example, R3.H = R1.L + R2.H (ns),
as shown in Figure 5.3. Note that for 16-bit arithmetic, either a saturation fl ag (s) or a no
saturation (ns) fl ag must be placed at the end of the instruction. The symbol “;” specifi es
the end of the instruction. Saturation arithmetic is discussed in Chapter 6.

The Blackfi n processor provides two ALU units to perform two 16-bit add/sub-
tract operations in a single cycle. This dual 16-bit add/subtract operation doubles
the arithmetic throughput over the single 16-bit add/subtract operation.

EXAMPLE 5.2 Dual 16-Bit Add/Subtract Operations

Any two 32-bit registers can be used to store four inputs for dual 16-bit add/subtract
operations, and the two 16-bit results are saved in a single 32-bit register. As shown in
Figure 5.4, the instruction R3 = R1+|-R2 performs addition in the upper halves of R1 and
R2 and subtraction in the lower halves of R1 and R2, simultaneously. The results are stored
in the high and low words of the R3 register, respectively.

031 16

031 16

031 16

R1

R2

+

L

H

H R3

R3.H = R1.L+R2.H (ns);

Figure 5.3 Single 16-bit addition using three registers

TEAM LinG

168 Chapter 5 Introduction to the Blackfi n Processor

The Blackfi n processor is also capable of performing four (or quad) 16-bit
add/subtract operations in a single pass. These quad operations fully utilize the dual
40-bit ALU and thus quadruple the arithmetic throughput over the single add/sub-
tract operation.

EXAMPLE 5.3 Quad 16-Bit Add/Subtract Operations

In quad 16-bit add/subtract operations, only the same two 32-bit registers can be used
to house the four 16-bit inputs for these quad additions. In other words, two operations
can be operated on the same pair of 16-bit registers. For example, the instructions R3 =
R1+|-R2, R4 = R1-|+R2 perform addition and subtraction on the halves of R1 and R2 as
shown in Figure 5.5. Note that the symbol “,” separates two instructions that are operated at
the same cycle.

Besides the previous 16-bit operations, the Blackfi n processor can also perform
single 32-bit add/subtract using any two 32-bit registers as inputs.

H

R3

R1

R2

L

H L

LH

0

+ -

1631

R3 = R1+|-R2;

Figure 5.4 Dual 16-bit add/subtract using three registers

+
R3

--

R1

R2

1631

R3 = R1+|-R2, R4 = R1-|+R2;

R4

16 031

+

Figure 5.5 Quad 16-bit add/subtract using four registers

TEAM LinG

5.1 An Architecture for Embedded Media Processing 169

EXAMPLE 5.4 Single 32-Bit Operations

The 32-bit result of the single 32-bit add/subtract operation is stored in another 32-bit reg-
ister. For example, the instruction R3 = R1+R2 performs 32-bit addition of R1 and R2 and
places the result in R3 as shown in Figure 5.6.

Similar to the dual 16-bit add/subtract, dual 32-bit add/subtract can also be
carried out with the dual 40-bit ALUs.

EXAMPLE 5.5 Dual 32-Bit Operations

Example 5.4 can be extended to a dual 32-bit add/subtract. This operation is also similar to
dual 16-bit operation, with the exception that the inputs and results are all 32 bits. For
example, the instructions R3 = R1+R2, R4 = R1-R2 perform simultaneous addition and
subtraction of R1 and R2 with the addition result saved in R3 and the subtraction result stored
in R4, as depicted in Figure 5.7.

In the above examples of ALU operations, we add/subtract data in either 16- or
32-bit wordlength. The results may overfl ow because of the limited wordlength used

031

031

R2

R3

+

R1

R3 = R1+R2;

Figure 5.6 Single 32-bit add/subtract using three registers

R4

-

R1

R2

31 0

R3

+

R1

R2

31 0

R3 = R1+R2, R4 = R1-R2;

Figure 5.7 Dual 32-bit add/subtract using four registers

TEAM LinG

170 Chapter 5 Introduction to the Blackfi n Processor

in storing the sums. A solution is provided in the arithmetic instructions to saturate
the result at 16 or 32 bits, depending on the size of the operands. For example, in a
16-bit word, the result of add/subtract will not exceed the most positive or the most
negative number of a 16-bit sign data on saturation. The modes and options available
in the ALU operations are listed in Table 5.1. More details on different number
formats and arithmetic overfl ow are provided in Chapter 6.

There are rounding options that can be used to perform biased rounding and
saturation to a 16-bit result. The correct way to handle overfl ow, rounding, satura-
tion, and other arithmetic issues is explained in Chapter 6. Besides performing
arithmetic operations, ALU also allows 32-bit logical operations such as AND, OR,
NOT, and XOR.

EXAMPLE 5.6 32-Bit ALU Logical Operations

This example shows 32-bit logical operations. For example, the instruction R3 = R1&R2
performs the bitwise AND operation on R1 and R2 registers, and the result is stored in R1.
Other examples include R3 = R1|R2 (OR operation); R2 = ~R1 (NOT operation), and R3
= R1^R2 (XOR operation). Note that there is no 16-bit logical operation in the Blackfi n
processor.

So far, we have only performed addition and subtraction with the ALU. Figure
5.2 shows that two 16-bit multipliers are available in the Blackfi n processor. These
16-bit multipliers perform single or dual 16-bit multiplications in a single cycle, and
the result is stored in either 40-bit accumulators or 32-bit registers. The multipliers
are also linked to the ALUs for implementing multiply-accumulate operations via

Table 5.1 Arithmetic Modes and Options for the ALU Operations

Mode Option Example and Explanation

Dual and quad S Saturate the result at 16 bit
 16-bit operation R3 = R1+|-R2 (s);

(opt_mode_0) CO Cross option that swaps the order of the results in the
 destination registers for use in complex math

R3 = R1+|-R2 (co);

 SCO Combination of S and CO options

Dual 32-bit and S Saturate result at 32 bit.
 40-bit operation R3 = R1+R2, R4 = R1-R2 (s);

(opt_mode_1)

Quad 16-bit ASR Arithmetic shift right that halves the result before storing
 operation to the destination register
(opt_mode_2) R3 = R1+|-R2, R4 = R1-|+R2 (s,asr);

 Scaling is performed for the results before saturation.
 ASL Arithmetic shift left that doubles the result before storing
 to the destination register

TEAM LinG

5.1 An Architecture for Embedded Media Processing 171

the accumulators. The simplest multiplication is carried out with two 16-bit registers,
and the result can be placed in a 16-bit or 32-bit register.

EXAMPLE 5.7 Single 16-Bit Multiply Operations

A 16-bit multiplication can easily be carried out on the Blackfi n processor. Any two 16-bit
register halves (e.g., R1.L and R2.H) can be multiplied together to form a 32-bit result,
which is stored in the accumulator or data register (e.g., R3). For example, the operation of
R3 = R1.L*R2.H is shown in Figure 5.8. In addition, a 16-bit result can also be stored in
a half-register, for example, R3.H = R1.L*R2.H.

The 16-bit multiplication example can also be extended to a single 16-bit mul-
tiply/accumulate operation. The MAC operation is usually carried out iteratively,
and the accumulator must be used to store the intermediate and fi nal results.

EXAMPLE 5.8 Single 16-Bit Multiply/Accumulate Operations

This example is similar to Example 5.7 except that the 32-bit multiplication result is added
to the previous result in the accumulator. For example, the instruction A0 += R1.L*R2.L
multiplies the contents of R1.L with R2.L, and the result is added to the value in the accu-
mulator A0 as shown in Figure 5.9. The fi nal result is then stored back into the accumulator.
This MAC operation is very useful in implementing FIR/IIR fi lters, which are described in
Chapter 4. In addition, we can also transfer the fi nal result to a half-register, for example,
extending the previous example, R5.L = (A0 += R1.L*R2.L). This instruction truncates
the accumulator result to 16-bit (i.e., ignore the lower 16 bits of A0) and stores the upper A0
(A0.H) in the lower half of the R5 register.

Similar to the dual add/subtract operations, dual multiply operations can
also be carried out with two 16-bit multipliers, two 32-bit registers, and two
accumulators.

R1

R2

R3

H
31 16

0

¥

31

R3 = R1.L*R2.H;

L
15 0

Figure 5.8 Single 16-bit multiplication using three registers

TEAM LinG

172 Chapter 5 Introduction to the Blackfi n Processor

EXAMPLE 5.9 Dual 16-Bit Multiply Operations Using Two Accumulators

In this example, we perform A1 = R1.H*R2.H, A0 = R1.L*R2.L, where the two pairs of
input are stored in the same registers R1 and R2 and the two 32-bit results are stored in the
accumulators A0 and A1, as shown in Figure 5.10. Note that we use the symbol “,” to sepa-
rate the two parallel instructions.

Instead of using two accumulators as stated in Example 5.9, dual 16-bit multi-
plications can also be performed with two 32-bit registers to save the results.

EXAMPLE 5.10 Dual 16-Bit Multiply Operations Using Two 32-Bit Registers

When performing dual 16-bit multiplications using two 32-bit registers, the 32-bit
destination registers must be used in pairs as R0:R1, R2:R3, R4:R5, or R6:R7. For example,
the instructions R0 = R2.H*R3.H, R1 = R2.L*R3.L state that dual 32-bit results are stored
in R0 and R1, respectively. Therefore, R0 and R1 must always be used as paired registers to
store the results of high-word and low-word multiplications, respectively. Other pairs like
R4:R5 and R6:R7 can also be used to replace R0:R1 in the above example.

R1

R2

L

H

031

H

L

A1 A0

031

A1 = R1.H*R2.H, A0 = R1.L*R2.L;

¥ ¥

Figure 5.10 Dua1 16-bit multiplications using two registers and two accumulators

R1

R2

L

L

15

031

A0 += R1.L*R2.L;

+

A0.H

0

A0.L

¥

Figure 5.9 Single 16-bit MAC using two registers and an accumulator

TEAM LinG

5.1 An Architecture for Embedded Media Processing 173

Similar to Example 5.9, we can also double the throughput of single 16-bit
multiply/accumulate by performing dual 16-bit multiply/accumulate operations but
storing the results in two 16-bit destinations.

EXAMPLE 5.11 Dual 16-Bit Multiply/Accumulate Operations with Two
16-Bit Destinations

Example 5.9 can also be extended for dual-MAC operations to double its throughput, for
example, A1 −= R1.H*R2.H, A0 += R1.L*R2.L. In addition, the dual MAC results can be
stored into two 16-bit registers as shown in Figure 5.11, for example, R3.H = (A1 -= R1.
H*R2.H), R3.L = (A0 += R1.L*R2.L). Note that the result in A1 must be stored to the
high word of R3 and the result in A0 must be stored to the low word of R3.

The above example can also be extended to save in two 32-bit destination reg-
isters via accumulators A0 and A1.

EXAMPLE 5.12 Dual 16-Bit Multiply/Accumulate Operations with Two
32-Bit Destinations

In this case, the 32-bit destination registers in the dual 16-bit multiply/accumulate operations
must be saved in pairs as R0:R1, R2:R3, R4:R5, or R6:R7, for example, R0=(A0+= R2.H*R3.
H), R1=(A1+= R2.L*R3.L). Note that A1 is associated to the higher-numbered register (in
this case, R1) and A0 is associated to the lower-numbered register (R0).

The above multiply and multiply/accumulate operations are executed as default
with no option. The default option implies that the input data are of signed fractional
number. However, the Blackfi n processor is able to handle data of different formats.
Possible options and descriptions are listed in Table 5.2. We discuss the different

R1

R2

L

H

H

L

A1 A0

R3.H = (A1 -= R1.H*R2.H), R3.L = (A0 += R1.L*R2.L);

- +

31 016

R3

¥¥

Figure 5.11 Dua1 16-bit multiply/accumulate using three registers and two accumulators

TEAM LinG

174 Chapter 5 Introduction to the Blackfi n Processor

number formats and the Blackfi n arithmetic options (including why a shift correc-
tion is necessary) in Chapter 6.

Another unique feature of the Blackfi n processor is the inclusion of four addi-
tional 8-bit video ALUs. A special set of video instructions is available for these
video ALUs in image and video applications. Because the data registers are 32 bits,
four 8-bit operations (for example, add, subtract, average, absolute) can be executed
in a single instruction.

5.1.3.2 Address Arithmetic Unit

As shown in Figure 5.2, the address arithmetic unit consists of the following hard-
ware units:

1. Two data address generators (DAG0 and DAG1) generate addresses for data
moves to and from memory. The advantage of using two data address gen-
erators is to allow dual-data fetches in a single instruction.

2. Six 32-bit general-purpose address pointer registers (P0 to P5).

3. One 32-bit frame pointer (FP) pointing to the current procedure’s activation
record.

4. One 32-bit stack pointer (SP) pointing to the last location on the run time
user stack.

5. A set of 32-bit data address generator registers:

a. Indexing registers, I0 to I3, contain the effective addresses.
b. Modifying registers, M0 to M3, contain offset values for add/subtract

with the index registers.
c. Base address registers, B0 to B3, contain the starting addresses of the

circular buffers.
d. Length value registers, L0 to L3, contain the lengths (in byte unit) of the

circular buffers.

Table 5.2 16-Bit Multiplier Options

Option Description

Default (no option) Input data operand is signed fraction.
(FU) Input data operands are unsigned fraction. No shift correction.
(IS) Input data operands are signed integer. No shift correction.
(IU) Input data operands are unsigned integer. No shift correction.
(T) Input data operands are signed fraction. When copying to the
 destination half-register, truncates the lower 16 bits of the
 accumulator contents.
(TFU) Input data operands are unsigned fraction. When copying to
 the destination half-register, truncates the lower 16 bits of the
 accumulator contents.

TEAM LinG

5.1 An Architecture for Embedded Media Processing 175

The main function of the address arithmetic unit is to generate addresses for
accessing the memory in the Blackfi n processor. The Blackfi n processor is byte
addressable. However, data can be accessed in 8-bit, 16-bit, or 32-bit via the pointer
registers (P0–P5); 16-bit and 32-bit accesses via index registers (I0–I3); and 32-bit
via the stack and frame pointer registers.

EXAMPLE 5.13

This example uses simple instructions to access data with different addressing modes. We
use the register values and memory given in Figure 5.12 to illustrate the data movement.

1. Indirect addressing

Square brackets “[]” within the instruction denote the use of index pointer and
stack/frame registers as address pointers in data load/store operations. For example,
the instruction R0 = [P0] implies that the pointer register, P0, is pointing to the
address 0xFF80 0000, which contains a data 0x78; 0xFF80 0001 contains a data
0x56; 0xFF80 0002 contains a data 0x34; and 0xFF80 0003 contains a data 0x12.
Note that “0x” denotes the number in a hexadecimal format. These data are loaded
into R0 as 0x1234 5678 in a little-endian byte-ordering manner (i.e., lower-address
byte loaded into lower bits of the register, and vice versa).

In another example, [P1] = R0 specifi es a store operation that stores the value
in the data register to the pointed memory. Continuing from the preceding example,
R0 contains 0x1234 5678 is stored into the memory pointed to by the P1 register (at
address 0xFF80 1000). In other words, the memory 0xFF80 1000 now contains
0x78, 0xFF80 1001 contains 0x56, 0xFF80 1002 contains 0x34, and 0xFF80 1003
contains 0x12.

2. Indirect addressing that supports 16-bit and 8-bit data access

The above example performed 32-bit data access. A similar example using 16-bit load
operation can be specifi ed as R0 = W[P0](z), where W represents word access and (z)

0xFF80 0000

0xFF80 1000

P0

P1

P2

0xFF80 1000 I0

0x1234 5678

0xABCD 1234

0xFF80 0000

0xFF80 0004

0xFF80 0008

Internal memory

Address arithmetic unit

0x0000 0000

0x0101 2020

0xFF80 1000

0xFF80 1004

0x1122 3344

0x5566 7788

0xFF90 2000

0xFF90 2004

0x0000 0002 M0

0xFF90 2004 SP

0xAABB 1234 0x0000 0004

Figure 5.12 Current data values in memories and registers

TEAM LinG

176 Chapter 5 Introduction to the Blackfi n Processor

is the option that states that the high bits must be zero fi lled. Here, R0 becomes 0x0000
5678. Similarly, an 8-bit load can be specifi ed as R0 = B[P0](x), where B represents
byte access and the (x) option specifi es sign extension. Therefore, R0 becomes 0x0000
0078 because the most signifi cant bit of 0x78 is 0 (a positive number).

Instead of using the pointer registers (P0–P5) as the address pointers, we can
also use the index registers (I0–I3). However, the index registers only support 16-bit
and 32-bit data access.

3. Post-modify operations

The address pointers (P0–P5) and index registers (I0–I3) can be modifi ed after the
load/store operations. This postmodifi cation is useful in updating the pointers auto-
matically to the next memory location for loading or storing the next data. Post-
modifi cation can be either ++ or –, which means postincrement or postdecrement,
respectively. For example, R0 = [P0++] increments the value of P0 by 4 after the
load operation. This means R0 = 0x1234 5678 and P0 = 0xFF80 0004 after the load
operation. However, if R0 = W[P0++](z), R0 = 0x0000 5678 and P0 = 0xFF80
0002. The increment is now by 2 locations because it is a word load. Similarly, if
R0 = B[P0++](z), P0 increases to 0xFF80 0001.

In a similar manner, a 32-bit store operation with postdecrement can be speci-
fi ed as [P1–] = R0. In this case, P1 is decremented to 0xFF80 0FFC after the store
operation.

4. Pre-modify operations

The Blackfi n processor also supports pre-modify instructions, but only at pointing
to the stack pointer. For example, in the instruction [–SP] = R0, the stack pointer,
SP, is fi rst decremented from 0xFF90 2004 to 0xFF90 2000 before performing the
store operation from R0 into the stack memory. If R0 = 0x1234 5678, this value is
stored into the stack, starting from address 0xFF90 2000. It is important to note that
the stack operates in 32-bit mode, and the push instruction is always predecremented
before loading the register to the stack. In contrast, the pop instruction loads the
content of the stack into a specifi ed register and performs postincrement of the stack
pointer, for example, R0 = [SP++].

5. Modify pointer registers

In some situations, we need to modify the pointer by more than one word increment/
decrement. We can simply modify the pointer registers by an immediate value. For
example, the instruction R1 = [P0 + 0x08] loads the value at location P0 + 0x08
= 0xFF80 0008 into the R1 register (i.e., R1 = 0xAABB 1234 after the load opera-
tion). Note that this is a pre-modify operation without updating to the pointer regis-
ter. In this case, the P0 register still remains at 0xFF80 0000 after the operation.

If a postmodifi cation of the pointer register is desired, the pointer register can
be modifi ed by another pointer register (e.g., R0 = [P0++P1], where P1 contains
the offset value). Similarly, the index registers can be modifi ed by using the M
register as modifi er. Note that both modify-increment and modify-decrement are
supported in this addressing mode. For example, the instruction R1 = [I0 ++ M0]
loads the value specifi ed by I0 = 0xFF80 0000 (which is 0x0000 0000) into R1. The
I0 register is then postincremented to 0xFF80 0002 because M0 = 0x2.

In addition to the above linear addressing mode, the Blackfi n processor also
offers circular addressing for accessing data in circular buffers. Circular buffering

TEAM LinG

5.1 An Architecture for Embedded Media Processing 177

is very useful for signal processing tasks such as FIR fi ltering. The application of
circular buffering in DSP tasks is explained in Chapter 8. The circular buffer con-
tains data that the address generator steps through repeatedly and wraps around
when the pointer reaches the end of the circular buffer. The addressing of the cir-
cular buffer is governed by the length (L), base (B), modify (M), and index (I) reg-
isters. The L register sets the size of the circular buffer, and its value is always
positive, with a maximum length of 232 − 1. When L = 0, the circular buffer is dis-
abled. The B register specifi es the base address of the circular buffer. The I register
points to the address within the circular buffer, and it is controlled within B + L by
the DAG. The index register is postmodifi ed by the value specifi ed in the M register
after every access to the circular buffer. The value in the M register can be a posi-
tive or negative value, but its absolute value must be less than or equal to the length
of the circular buffer, L.

EXAMPLE 5.14

Figure 5.13 shows that the memory range 0xFF80 0000–0xFF80 002B is set up as a circu-
lar buffer. In this example, 32-bit access is implemented. Therefore, the base address of the
circular buffer must be 32-bit aligned (or the least signifi cant two bits of starting address
must always be “0”). The base register is chosen as B0 = 0xFF80 0000, and the index reg-
ister is initialized to the base address as I0 = 0xFF80 0000. The length of the circular buffer
is L0 = 44 (or 0x2C) bytes, and the modifi er M0 = 16 (or 0x10) bytes.

With reference to Figure 5.13, the data access of the circular buffer can be explained
as follows:

1st Access: The index register, I0, is pointing to the base address of the circular buffer
at 0xFF80 0000. After the data 0x0000 0001 is loaded into a data register, I0 is
modifi ed to 0xFF80 0010 (i.e., 0xFF80 0000 + 0x10).

0x000000010xFF80 0000

0xFF80 0004

0xFF80 0008

0xFF80 000C

0xFF80 0010

0xFF80 0014

0xFF80 0018

0xFF80 001C

0xFF80 0020

0xFF80 0024

0xFF80 0028

0xFF80 002B

0x00000002

0x00000003

0x00000004

0x00000005

0x00000006

0x00000007

0x00000008

0x00000009

0x0000000A

0x0000000B

1st access

2nd access

3rd access

4th access

5th access

wrapped around

Length of
circular
buffer = 44
bytes. Index
register
always stays
within
0xFF80 0000
and 0xFF80
002B

index

Figure 5.13 Example of a circular buffer with fi ve data accesses

TEAM LinG

178 Chapter 5 Introduction to the Blackfi n Processor

2nd Access: The data 0x0000 0005 is loaded into a data register, and the index is again
modifi ed to 0xFF80 0020 (i.e., 0xFF80 0010 + 0x10).

3rd Access: The data 0x0000 0009 is loaded into a data register and the index register,
I0 = 0xFF80 0020 + 0x10 = 0xFF80 0030, which is outside the circular buffer range
of 0xFF80 002B and is not a valid address. Therefore, I0 should be modifi ed as
0xFF80 0020 + 0x10 − 0x2C = 0xFF80 0004, where the length of the circular buffer
(0x2C) is subtracted after the postmodifi cation.

4th Access: The data 0x0000 0002 is loaded into a data register and the index register,
I0 = 0xFF80 0004 + 0x10 = 0xFF80 0014.

5th Access: The data 0x0000 0006 is loaded into a data register, and the index is
modifi ed to 0xFF80 0024 after the 5th access. This process continues, and the same
update formula as in the 3rd access is used whenever the index register crosses the
boundary.

QUIZ 5.1

1. The index pointer will return to 0xF800 0000 again at which access?

2. If the modifi er (M) register is set at 0xFFFF FFF0, how do we perform data
access and wrapping?

3. Change the above circular buffer to a 16-bit data access and determine how
data can be 16-bit aligned.

5.1.3.3 Control Unit

The control unit shown in Figure 5.2 consists of the following blocks:

1. A program sequencer controls the instruction execution fl ow, which includes
instruction alignment and instruction decoding. The address generated by
the program sequencer is a 32-bit memory instruction address. A 32-bit
program counter (PC) is used to indicate the current instruction being
fetched.

2. The loop buffer is used to support zero-overhead looping. The Blackfi n
processor supports two loops with two sets of loop counters (LC0, LC1),
loop top (LT0, LT1) and loop bottom (LB0, LB1) registers to handle looping.
Hardware counters are used to evaluate the loop condition. Loop unit 1 has
a higher priority than loop unit 0. Therefore, loop unit 1 is used for the inner
loop and loop unit 0 is used for the outer loop.

The program sequencer controls all program fl ow, which includes maintaining
loops, subroutines, jumps, idles, interrupts, and exceptions. Figure 5.14 illustrates
the different program fl ows.

In the linear fl ow as shown in Figure 5.14(a), the PC moves from one instruction
to the next sequentially. In the loop fl ow shown in Figure 5.14(b), the instruction
within the loop block (i.e., immediately after the loop instruction and the end of the
loop) is repeated N times. Zero-overhead loop registers are used to control the PC,

TEAM LinG

5.1 An Architecture for Embedded Media Processing 179

and the PC jumps out of the loop once N repeats have been completed. In Figure
5.14(c), an unconditional jump instruction alters the program fl ow and sets the PC
to point at another part of the memory. Similarly, a conditional branch instruction
can also be used to direct the PC to another program section.

Figure 5.14(d) shows the program fl ow of the subroutine call. The CALL instruc-
tion temporarily interrupts sequential fl ow to execute instructions from a subroutine.
Once the subroutine has completed, a return from subroutine (RTS) instruction

Instruction #1

Instruction #2

Instruction #3

Instruction #4

Instruction #5

Instruction #6

(a) Linear sequential flow

:
:

Repeat N time

Instruction #1

Instruction #2

Instruction #3

Instruction #4

End of Loop

 for
N time

(b) Repeat loop flow

Jump to Inst.#3

Instruction #1

Instruction #2

Instruction #3

Instruction #4

Instruction #5

(c) Jump flow

Call subroutine

Instruction #1

Instruction #2

Sub. start

Instruction #A

Instruction #B

RTS

Linear
flow

(d) Subroutine flow

Interrupt
request

Instruction #1

Instruction #2

Instruction #3

ISR start

Instruction #A

Instruction #B

RTI

Int.
vector

(e) Interrupt/exception flow

IDLE

Instruction #1

Instruction #2

Instruction #3

Instruction #4

Instruction #5

(f) Idle flow

Waiting
for
interrupt

Figure 5.14 Six different types of program fl ow

TEAM LinG

180 Chapter 5 Introduction to the Blackfi n Processor

resets the PC back to the instruction immediately after the CALL instruction. The
return address is found in the RETS register, which is automatically loaded by the
CALL instruction.

Interrupt can occur when a run time event (asynchronous to program fl ow) or
an instruction that triggers an exceptional error (synchronous to program fl ow)
occurs. The processor completes the current instruction and sets the PC to execute
the interrupt service routine (ISR). Once the ISR has completed, a return from
interrupt instruction RTI obtains the return address from the RETI register and
returns to the instruction immediately after interrupted instruction, as shown in
Figure 5.14(e).

Finally, in the idle fl ow shown in Figure 5.14(f), the IDLE instruction causes
the processor to stop operating and hold its current state until an interrupt occurs.
Subsequently, the processor services the interrupt and resumes normal operation.
This idle program fl ow is frequently used in waiting for the incoming data sample
and processing the data sample in the ISR.

A common feature of most DSP processors is the pipeline architecture. The
pipeline is extensively used to maximize the distribution of workload among the
processor’s functional units, which results in effi cient parallel processing among
the processor’s hardware. The Blackfi n processor has a 10-stage instruction pipeline
as shown in Table 5.3.

The sequencer ensures that the pipeline is fully interlocked, and this feature
eases the task of the programmer in managing the pipeline. Figure 5.15 is a diagram
showing the pipeline.

Figure 5.15 shows that the 1st instruction at instruction clock cycle #1 is in the
IF1 stage. At the next clock cycle, the 2nd instruction is in the IF1 stage and, at the
same time, the 1st instruction is in the IF2 stage. This process of overlapping dif-
ferent stages of instructions allows different functional units in the Blackfi n proces-
sor to work simultaneously in the same clock cycle. As shown in Figure 5.15, the

Table 5.3 Stages of Instruction Pipeline

Pipeline Stage Description

Instruction fetch 1 (IF1) Start instruction memory access.
Instruction fetch 2 (IF2) Intermediate memory pipeline.
Instruction fetch 3 (IF3) Finish L1 instruction memory access.
Instruction decode Align instruction, start instruction decode, and access pointer
 (DEC) register fi le.
Execute 1 (EX1) Start access of data memory (program sequencer).
Execute 2 (EX2) Register fi le read (data registers).
Execute 3 (EX3) Finish access of data memory and start execution of dual-
 cycle instructions (multiplier and video unit).
Execute 4 (EX4) Execute single-cycle instruction (ALU, shifter, accumulator).
Write back (WB) Write states to data and pointer register fi les and process event.

Extracted from Blackfi n Processor Hardware Reference [23].

TEAM LinG

5.1 An Architecture for Embedded Media Processing 181

10 pipeline stages are fi lled up by different instructions at the 10th clock cycle. This
implies that each instruction can be executed in a single clock cycle when the pipe-
line is full, giving a throughput of one instruction per clock cycle. However, any
nonsequential program fl ow (depicted in Fig. 5.14) can potentially decrease the
processor’s throughput. For example, a stall condition can occur when two instruc-
tions require extra cycles to complete because they are close to each other in the
assembly program. In another example, a branch instruction causes the instruction
after the branch to be invalid in the pipeline and these instructions must be
terminated.

Another important feature of the Blackfi n processor is zero-overhead looping.
A program is given in Example 5.15 to explain the key features and characteristics
of the hardware loop.

EXAMPLE 5.15

A simple assembly program to illustrate the setup of loop in the Blackfi n processor is listed
as follows:

P5 = 0x20;
LSETUP (loop_start, loop_end) LC0 = P5;
loop_start:
R2 = R0 + R1 || R3 = [P1++] || R4 = [I1++];
loop_end: R2 = R3 + R4;

In this example, the LSETUP instruction is used to load the three loop registers LC0, LB0,
and LT0. The loop top address register takes on the address of loop_start, and the loop
bottom address register takes on the address of loop_end. The starting address of the loop
must be less than 30 bytes away from the LSETUP instruction. In the above program,
loop_start follows immediately after the LSETUP instruction with zero overhead. The

cycle

Pipeline is full and completes
one instruction per cycle

IF1 IF2 IF3 DE AC EX EX EX EX WB

IF1 IF2 IF3 DE AC EX EX EX EX WB

IF1 IF2 IF3 DE AC EX EX EX EX WB

Inst. #1

Inst. #2

Inst. #3

Inst. #4

Inst. #5

Inst. #6

Inst. #7

Inst. #8

Inst. #9

Inst. #10 IF1 IF2 IF3

IF1 IF2 IF3 DE AC EX EX EX EX

IF1 IF2 IF3 DE AC EX EX EX

IF1 IF2 IF3 DE AC EX EX

IF1 IF2 IF3 DE AC EX

IF1 IF2 IF3 DE AC

IF1 IF2 IF3 DE

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Figure 5.15 Ten pipeline stages of the Blackfi n processor

TEAM LinG

182 Chapter 5 Introduction to the Blackfi n Processor

bottom address of the loop must be between 0 and 2,046 bytes from the LSETUP instruction.
In other words, the instructions within the loop are at most 2,046 bytes long. In this example,
the loop count register LC0 is set to 0x20 (loop for 32 times). The maximum count for the
loop counter register is 232 − 1, and the minimum count is 2.

In addition, the Blackfi n processor supports a four-location instruction loop
buffer (similar to cache) that reduces instruction fetches during looping. Therefore,
if the loop code is four or fewer instructions, no fetch from the instruction memory
is necessary. However, if more than four instructions are present in the loop, only
the fi rst four instructions are stored in the buffer and the rest of the instructions
must be fetched from instruction memory.

5.1.4 Bus Architecture and Memory

The Blackfi n processor uses a modifi ed Harvard architecture, which allows multiple
memory accesses per clock cycle. However, the Blackfi n processor has a single
memory map that is shared between data and instruction memory. Instead of
using a single large memory for supporting this single memory map, the Blackfi n
processor supports a hierarchical memory model as shown in Figure 5.16. The L1
data and instruction memory are located on the chip and are generally smaller in size
but faster than the L2 external memory, which has a larger capacity. Therefore, trans-
fer data from memory to registers in the Blackfi n processor is arranged in a hierarchy
from the slowest (L2 memory) to the fastest (L1 memory). The rationale behind
hierarchy memory is based on three principles: (1) the principle of making the
common case fast, where code and data that need to be accessed frequently are stored
in the fastest memory; (2) the principle of locality, where the program tends to reuse
instructions and data that have been used recently; and (3) the principle of smaller is
faster, where smaller memory speeds up the access time.

For example, the memory map for the 4G (or 232)-byte address space of the
Blackfi n BF533 processor is shown in Figure 5.17. There are 80K bytes of instruction
memory from address 0xFFA0 0000 to 0xFFA1 3FFF and 64K bytes of data
memory from address 0xFF80 0000 to 0xFF80 8000 (data bank A) and 0xFF90
0000 to 0xFF90 8000 (data bank B). In addition, there are 4K bytes of scratchpad
memory for general data storage, such as the stack. Therefore, a total of 148K bytes
of internal memory are available in the BF533 processor. These internal memories
are all classifi ed as internal L1 memory, and some of these memories also have the
option of confi guring as static random access memory (SRAM) or cache as shown
in Figure 5.17. SRAM provides deterministic access time and very fast throughput;

Core
(Registers)

L1
Memory
(Internal)

L2
Memory
(External)

Figure 5.16 Hierarchical memory model

TEAM LinG

5.1 An Architecture for Embedded Media Processing 183

thus it is suitable for DSP-based code. In contrast, cache provides both high perfor-
mance and a simple programming model and is suitable for control-related tasks.
The BF537 processor has the same size of internal data memory as the BF533, but
only has 64K bytes of internal instruction memory.

The BF533 processor has 1K bytes of on-chip boot read-only memory (ROM)
(BF537 has 2K bytes). The boot ROM includes a small boot kernel that can be either
bypassed or used to load user’s code from external memory devices (like fl ash
memory or EEPROM) at address 0x2000 0000. The boot kernel completes the boot
process and jumps to the start of the L1 instruction memory to begin execution of
code from this address.

Figure 5.18 shows the memory architecture of the Blackfi n processor. It uses
four buses to link the L1 memory with the core processor: one 64-bit instruction
bus, two 32-bit data-load buses, and one 32-bit data-store bus. Therefore, the Black-
fi n processor is capable of performing two data loads, or one data load and one data
store, per cycle. It is important to note that the L1 memory is operating at the core
clock frequency (CCLK).

CORE MMR

SYSTEM MMR
RESERVED

SCRATCHPAD SRAM
RESERVED

INSTRUCTION SRAM/CACHE

INSTRUCTION SRAM
INSTRUCTION SRAM
INSTRUCTION SRAM
RESERVED

DATA BANK B SRAM/CACHE

DATA BANK B SRAM
RESERVED

DATA BANK A SRAM/CACHE

DATA BANK A SRAM
RESERVED
RESERVED

ASYNC BANK 3

ASYNC BANK 2
ASYNC BANK 1
ASYNC BANK 0
RESERVED

SDRAM

EXTERNAL
MEMORY

INTERNAL
MEMORY

ADSP-BF533 MEMORY MAP

0XFFE0 0000

0XFFC0 0000

0XFFB0 1000
0XFFB0 0000

0XFFA1 4000

0XFFA1 0000
0XFFA0 C000
0XFFA0 8000

0XFFA0 0000
0XFF90 8000

0XFF80 4000

0XFF80 0000

0XEF00 0000

0XFF90 4000
0XFF90 0000
0XEF80 8000

0X2040 0000

0X2030 0000

0X2020 0000
0X2010 0000
0X2000 0000

0X0800 0000
0X0000 0000

Figure 5.17 Memory map of the BF533 processor (courtesy of Analog Devices, Inc.)

TEAM LinG

184 Chapter 5 Introduction to the Blackfi n Processor

The larger L2 memory of the BF533 processor can be located at address 0x0000
0000–0x0800 0000 (128M bytes) and 0x2000 0000–0x2040 0000 (four asynchro-
nous banks with 1M bytes each). The former address is dedicated to the synchronous
dynamic random access memory (SDRAM), and the latter address is dedicated to
support asynchronous memories such as fl ash memory, ROM, erasable program-
mable ROM (EPROM), and memory-mapped I/O devices. In the BF537 processor,
the addressable SDRAM memory has been increased to 512M bytes while maintain-
ing the same addressable asynchronous memory as the BF533 processor. These
off-chip L2 memories are used to hold large program and data. To access the slower
external L2 memory, an external bus interface unit (EBIU) links the L1 memory
with a wide variety of external memory devices. However, the EBIU is clocked by
the slower system clock (SCLK), and the external data bus and address bus are
limited to 16-bit and 20-bit width, respectively. In addition, the EBIU can work with
the DMA controller to transfer data in and out of the processor’s memory without
the intervention of the processor core.

In the following sections, we take a closer look at the L1 instruction memory
and the L1 data memory. We also introduce some of the features and characteristics
of the Blackfi n processor in the cache mode.

CORE CLOCK
(CCLK) DOMAIN

SYSTEM CLOCK
(SCLK) DOMAIN

CORE
PROCESSOR

PERIPHERAL ACCESS
BUS (PAB)

PROG
FLAG

RTC TIMERS UART

DMA ACCESS BUS
(DAB)

EXTERNAL
MEMORY
DEVICES

EXTERNAL
PORT
BUS (EPB)

EBIU

16

EXTERNAL
ACCESS
BUS (EAB)

DMA
CORE
BUS (DCB)

DMA
CONTROLLER

DMA
EXTERNAL
BUS (DEB)

SPORT PPI SPIWATCH-
DOG

TIMER

INSTRUCTION L1 MEMORY
64

32

32

32

LOAD DATA

LOAD DATA

STORE DATA

Figure 5.18 Blackfi n BF533 processor memory architecture (courtesy of Analog Devices, Inc.)

TEAM LinG

5.1 An Architecture for Embedded Media Processing 185

5.1.4.1 L1 Instruction Memory

The L1 instruction memory bank is illustrated in Figure 5.19. For the BF533
processor, there are three banks: (1) 32K bytes of SRAM in bank A, (2) 32K bytes
(16K bytes for the BF537) of SRAM in bank B, and (3) 16K bytes of SRAM or
cache in bank C. When bank C is confi gured as SRAM, the instruction memory is
implemented as four single-ported subbanks with 4K bytes each. Simultaneous
accesses to different banks can be carried out to speed up memory transfer.
The processor core reads the instruction memory through the 64-bit-wide
instruction bus.

INSTRUCTION FETCH 64 BIT
MMR ACCESS

TO
PROCESSOR
CORE

4 KB 4 KB 4 KB 4 KB

4 KB 4 KB 4 KB 4 KB

4 KB 4 KB 4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

ADSP-BF532 AND
ADSP-BF533

ONLY

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 A

A
D

S
P

-B
F

53
1:

 R
E

S
E

R
V

E
D

A
D

S
P

-B
F

53
2:

 R
E

S
E

R
V

E
D

A
D

S
P

-B
F

53
3:

 3
2

K
B

 S
R

A
M

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 B

32
 K

B
 S

R
A

M
IN

S
T

R
U

C
T

IO
N

 B
A

N
K

 C
16

 K
B

 C
A

C
H

E
 O

R
 S

R
A

M

4 KB 4 KB

4 KB 4 KB

DMA
BUFFER

DMA
BUFFER

LINE FILL
BUFFER
8×32 BIT

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

TO
MEMORY

EXTERNAL

DMA

DMA
BUFFER

ADSP-BF533
ONLY

L2

Figure 5.19 L1 instruction memory bank architecture (courtesy of Analog Devices, Inc.)

TEAM LinG

186 Chapter 5 Introduction to the Blackfi n Processor

When the 16K bytes in bank C are confi gured as cache, a line-fi ll buffer (8×32-
bit) transfers four 64-bit word bursts from external memory to cache when a cache
miss occurs. The instruction remains in the cache whenever there is a cache hit. A
cacheability and protection look-aside buffer (CPLB) provides control and protec-
tion to the cache during instruction memory access. However, DMA is not allowed
to access bank C. More explanation on instruction cache confi guration and usage is
given in Chapter 7.

5.1.4.2 L1 Data Memory

As explained in Section 5.1.4, the BF533 contains 64 K bytes of L1 data memory.
The L1 data memory is further divided into 8 subbanks as summarized in
Table 5.4.

In the BF533 processor, the lower 16 K bytes for data bank A (0xFF80 0000–
0xFF80 3FFF) and B (0xFF90 0000–0xFF90 3FFF) memories are always imple-
mented as SRAM. In these SRAM memories, the L1 data memories can be accessed
simultaneously with dual 32-bit DAGs and DMA as shown in Figure 5.20. When
the data cache is enabled, either 16 K bytes of data bank A or 16 K bytes of both
data banks A and B can be implemented as cache. Each bank (A and B) is a two-
way set associative cache that can be independently mapped into the BF533 address
space. However, no DMA access is allowed in cache mode. Similar to the instruction
cache, the processor provides victim buffers and line-fi ll buffers for use when a
cache load miss occurs. Again, more explanation of data cache confi guration and
usage is given in Chapter 7.

Table 5.4 BF533 L1 Data Memory

Subbank Data bank A Data bank B Confi gured as

1 0xFF80 0000– 0xFF90 0000–
 0xFF80 0FFF 0xFF90 0FFF
2 0xFF80 1000– 0xFF90 1000–
 0xFF80 1FFF 0xFF90 1FFF SRAM
3 0xFF80 2000– 0xFF90 2000–
 0xFF80 2FFF 0xFF90 2FFF
4 0xFF80 3000– 0xFF90 3000–
 0xFF80 3FFF 0xFF90 3FFF

5 0xFF80 4000– 0xFF90 4000–
 0xFF80 4FFF 0xFF90 4FFF
6 0xFF80 5000– 0xFF90 5000– SRAM or cache options:
 0xFF80 5FFF 0xFF90 5FFF (1) Both banks A and B as SRAM
7 0xFF80 6000– 0xFF90 6000– (2) Bank A as cache, bank B as SRAM
 0xFF80 6FFF 0xFF90 6FFF (3) Both as cache
8 0xFF80 7000– 0xFF90 7000–
 0xFF80 7FFF 0xFF90 7FFF

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

TEAM LinG

5.1 An Architecture for Embedded Media Processing 187

Note that in Figure 5.20 a dedicated 4 K bytes of L1 scratchpad memory is
available. However, this scratchpad memory cannot be confi gured as cache and
accessed by DMA. It is typically used as stack for fast context switching during
interrupt handling.

5.1.5 Basic Peripherals

As shown in Figure 5.18, the Blackfi n BF533 processor has the following
peripherals:

1. One watchdog timer is clocked by the system clock (SCLK). It generates
an event when the timer expires before being updated by software.

2. One real-time clock provides a digital watch to the processor. It provides
stopwatch countdown and alarm and maintains time of day.

SRAM I/O BUFFERSSRAM OR CACHE

4 KB

4 KB 4 KB 4 KB 4 KB

4 KB4 KB4 KB 4 KB

4 KB4 KB 4 KB 4 KB

4 KB4 KB 4 KB 4 KB

ADSP-BF523
ONLY

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

LINE FILL
BUFFER
8 × 32 BIT

LINE FILL
BUFFER
8 × 32 BIT

VICTIM
BUFFER
8 × 32 BIT

VICTIM
BUFFER
8 × 32 BIT

WRITE
BUFFER

2 TO 8 × 32 BIT

DMA
BUFFER DMA

WRITE

TO
EXTERNAL
MEMORY

TO
PROCESSOR
CORESTORE BUFFER

6 × 32 BIT

DAG1 LOAD
DAG0 LOAD

DAG1/0 STORE

64 BIT
32 BIT
32 BIT

32 BIT

64 BIT
32 BIT

32 BIT
32 BIT

DMA
BUFFER

READ

DMA

WRITE

READ

P
O

R
T

 B
P

O
R

T
 A

DMA

L2

D
AT

A
 B

A
N

K
 B

A
D

G
P

-B
F

53
2

A
N

D
 A

D
S

P
-B

F
52

3
O

N
LY

S
C

R
AT

C
H

PA
D

D
A

TA
 B

A
N

K
 A

32
 B

IT
32

 B
IT

32
 B

IT

Figure 5.20 L1 data memory architecture (courtesy of Analog Devices, Inc.)

TEAM LinG

188 Chapter 5 Introduction to the Blackfi n Processor

3. Three general-purpose timers are confi gured as pulse-width modulation,
width and period capture, and external event counter. These timers generate
periodic waveform, pulse-width modulation waveform, etc. The BF537
processor has eight pulse-width modulation timers.

4. 16 Bidirectional general-purpose programmable fl ags (PF0–PF15). Each
fl ag pin can be confi gured as an input, output, or interrupt pin. In the BF537
processor the programmable fl ags are named general-purpose inputs/
outputs (GPIOs), and there are 48 GPIO pins.

5. One universal asynchronous receiver/transmitter (UART) has a maximum
baud rate of up to SCLK/16. It interfaces with slow serial peripherals
and serves as a maintenance port. The BF537 processor has two UART
modules.

6. Two synchronous serial ports (SPORT0 and SPORT1) provide high-speed
serial communication with a maximum speed of SCLK/2. This provides
effi cient interface with CODEC (coder-decoder).

7. One SPI provides high-speed serial communication of up to SCLK/4. It
interfaces with another processor, data converters, and display.

8. One PPI provides a programmable parallel bus with a maximum commu-
nication rate of SCLK/2. It is used for high-speed data converters and video
CODECs.

9. EBIU provides a glueless interface with external memories. Three internal
16-bit buses are connected to the EBIU: (a) the external access bus (EAB)
is controlled by the core memory to access external memory; (b) the periph-
eral access bus (PAB) is used to access EBIU memory-mapped registers;
and (c) the DMA external bus is controlled by the DMA controller to access
external memory.

10. The DMA controller allows data transfer operations without processor
intervention. There are three DMA buses: (a) the DMA access bus (DAB)
allows peripherals to access the DMA channels; (b) the DMA external bus
(DEB) links off-chip memory to the DMA channels; and (c) the DMA core
bus (DCB) allows the DMA channels to gain access to the on-chip L1
memory.

These peripherals are connected to the system via PAB, DAB, DCB, DEB, and
EAB. These buses and peripherals are operating at the SCLK, and the core proces-
sor and L1 memory run at the CCLK. The peripheral access bus accesses all periph-
eral resources that are mapped to the system memory-mapped register (MMR) space
(in the memory map shown in Fig. 5.17). The three DMA buses (DAB, DCB, and
DEB) provide access to on-chip and off-chip memory with little or no intervention
from the core processor. There are six DMA-capable peripherals (PPI, SPORT0,
SPORT1, SPI, UART, and memory) in the Blackfi n BF533 processor, and 12 DMA
channels and bus master support these devices. In the BF537 processor, there are
four more DMA channels to support additional peripherals. There are 16 DMA

TEAM LinG

channels in the BF537, of which 12 DMA channels support the peripherals (PPI,
SPORT0, SPORT1, SPI, UART0, UART1, and Ethernet media access control) and
four DMA channels support memory and handshaking memory. The DAB supports
transfer of 16- or 32-bit data in and out of the L1 memory. If there is a confl ict with
the core access to the same memory, the DMA will always gain access because it
has a higher priority over the core. The DEB and EAB support single word accesses
of either 8-bit or 16-bit data types. A detailed examination of the DMA and its
confi guration is presented in Chapter 7.

Besides these system peripherals, the BF537 processor [24] also has the control-
ler area network (CAN) 2.0B module, an I2C-compatible two-wire interface (TWI)
port, and a 10/100 Mbps Ethernet media access controller (MAC).

5.2 SOFTWARE TOOLS FOR
THE BLACKFIN PROCESSOR

This section studies topics of programming the Blackfi n processor. We have intro-
duced the steps of loading the project fi le into the VisualDSP++ and performed
some debugging and benchmarking of C programs. This section further examines
the software development fl ow and tools. We illustrate the Blackfi n data arithmetic
and addressing arithmetic units with low-level programming and debugging.

5.2.1 Software Development Flow and Tools

C and assembly programs are the most commonly used in programming today’s
embedded signal processors including the Blackfi n processor. With the advancement
of the C compiler for embedded processors, it becomes more common and equally
effi cient to program in C instead of using assembly code. In addition, Analog
Devices provides many optimized DSP functions that are available in the DSP run
time library to ease the programming of DSP algorithms. However, assembly code
is still useful for programmers who wish to optimize programs in terms of speed,
memory resources, and power consumption.

A typical software development fl ow for code generation is illustrated in Figure
5.21. Users can use C/C++ and/or assembly source codes to program their applica-
tions. If the code is written in C, it needs to compile the C code to generate assembly
code fi rst, and passes this compiler-generated assembly fi le (.s) to the assembler.
The assembly code can be fed directly to the assembler to generate the object (.doj)
fi le. The linker maps the object fi le to an executable (.dxe) fi le using the informa-
tion from the linker description fi le (.ldf). The .ldf fi le contains information
on the memory mapping to the physical memory. More information on the linker
and the .ldf fi le is provided in Section 5.2.3. The fi nal .dxe fi le (which contains
application code and debugging information) can be loaded into the VisualDSP++
simulator, the EZ-KIT, or other target boards to verify the correctness of the
program. If not, debugging of the source code must be carried out and the process
of compile-assemble-link-load is repeated. Once the software is verifi ed, system

5.2 Software Tools for the Blackfi n Processor 189

TEAM LinG

190 Chapter 5 Introduction to the Blackfi n Processor

verifi cation must be carried out. The programmer has the option of downloading
the .dxe fi le into different hardware systems such as the Blackfi n EZ-KIT or a
custom Blackfi n target board, or to load into an external fl ash memory. The last
option is discussed at the end of this chapter.

VisualDSP++ can perform system verifi cation and profi le the performance of
the code running on the actual processor. There is a need at this stage to make sure
that the code will meet the real-time processing requirements, resource
availability, and power consumption demand of the system. Therefore, VisualDSP++
is an integrated development and debugging environment (IDDE) that delivers
effi cient project management. VisualDSP++ allows programmers to edit, compile
and/or assemble, and link the code to generate executable code; perform simulation
of the Blackfi n processor; and debug the code to correct errors and exceptions.
VisualDSP++ also includes many advanced plotting and profi ling capabilities
for performing software and system verifi cation. A VisualDSP++ kernel (VDK)
allows users to perform task scheduling and resource allocation to address memory
and timing constraints of programming. The VDK also includes standard library
and framework, which ease the process of writing complex programs. In addition,
there are several advanced features unique within the VisualDSP++ IDDE. They
include profi le-guided optimization (PGO), cache visualization, pipeline viewer,
background telemetry channel (BTC) support, multiple processor support, inte-
grated source code control, automation application program interface, and aware
scripting engine. We discuss some of these advanced features in subsequent
chapters.

Debugging
code

Working
code?

Generate
assembly

source (.asm)

Generate
C/C++ source
(.c/.cpp)

and/or

C/C++
compilerAssembler

Linker

.s

.doj

Linker
descriptor file

(.ldf)

VisualDSP ++
simulator

Hardware
evaluation
EZ-KIT

Target
verification

ICE

ROM
production

loader (.ldr)

.dxe

No Yes

oror or

or or

Figure 5.21 Software development fl ow

TEAM LinG

5.2.2 Assembly Programming in VisualDSP++

This section uses several hands-on experiments to explain the writing and building
of assembly code [28] and executing and debugging of the code in the VisualDSP++
environment.

HANDS-ON EXPERIMENT 5.1

Activate VisualDSP++ using the BF533 (or BF537) simulator, and perform the following
steps:

1. Load a project fi le into VisualDSP++ by clicking on File Æ Open Æ Project and
look for the project fi le exp5_1.dpj in directory c:\adsp\chap5\exp5_1.

2. Double-click on the exp5_1.asm fi le to view the content of the assembly code as
shown in Figure 5.22. This assembly fi le is written based on Example 5.13.

3. Build the project by clicking on the Build Project icon located on the

 toolbar (or press F7), or click on the Rebuild All icon . Alternatively, click on
Project Æ Build Project or Project Æ Rebuild Project. Several messages will be
displayed in the Output Window during the building process. The executable code
generated from the build operation will be automatically loaded into the simulator.

4. Note that an arrow on the left-hand side is pointing at the fi rst instruction, P0.L =
buffa.

5. Open the following register windows to view the register’s status:

 a. Register Æ Core Æ DAG Registers to display all I, M, L, and B registers in the
address arithmetic unit.

Figure 5.22 Snapshot of the project fi le exp5_1.dpj

5.2 Software Tools for the Blackfi n Processor 191

TEAM LinG

192 Chapter 5 Introduction to the Blackfi n Processor

 b. Register Æ Core Æ Data Register File to display all the R registers in the data
arithmetic unit.

 c. Register Æ Core Æ P Registers to display all the P registers in the address
arithmetic unit.

 d. Register Æ Core Æ Stack/Frame Registers to display the stack pointer.

Right-click on these register windows and select Hex32 as the display format. Adjust
the window size with the mouse. The display windows can also be undocked from the
rightmost column by right-clicking on the window and deselecting Allow Docking.

6. Display the memory by clicking on Memory Æ Blackfi n Memory. Next, type in
buffa in the Blackfi n Memory window to view the data contained in address
0xFF80 0000. Similarly, users can also view memory at buffa1 and buffb. Right-
click on the memory window and click on Select Format Æ Hex32.

7. View the changes in registers and memory as we step through the program. Click

 on the Step Into icon on the toolbar to execute the program line by line, or
press F11 to do the same.

8. Compare the results with those obtained in Example 5.13. Comment on any dispar-
ity in results. Make the following changes (one at a time) to the existing program
and rebuild the project. What happens with the changes?

 a. Change the buffa1 address to start at 0xFF80 4000.
 b. Perform 8-bit and 16-bit store operations.
 c. Perform 8-bit and 16-bit accesses using the instructions R1 = b[I0++M0] and

R1 = w[I0++M0], respectively.
 d. Combine a P-register with an M-register as in the instruction R0 = [P0+M0].

9. Complete this hands-on experiment by closing the project. Click on File Æ Close
Æ Project <filename>. VisualDSP++ will prompt the user to close the project and
save fi les.

HANDS-ON EXPERIMENT 5.2

This hands-on experiment implements circular buffers using assembly code in the Visu-
alDSP++ BF533 (or BF537) simulator. The project fi le exp5_2.dpj for this experiment is
located in directory c:\adsp\chap5\exp5_2. This experiment is based on Example 5.14
and can be loaded into the simulator by using the steps described in Hands-On Experiment
5.1. Build the project and perform the following steps:

1. Set a breakpoint (indicated by a red dot in the left column of source fi le window)

 by clicking on the Toggle Breakpoint icon , or press Control + T at the instruc-
tion line, here: jump here;. A red dot will appear at this instruction. Run the
program from the fi rst instruction to this breakpoint by clicking on the Run icon

, or press F5. Observe the changes in the Data Register File window. The

 breakpoint can be cleared by clicking on the Clear All Breakpoints icon .

TEAM LinG

2. Click on the Reload icon to reload the existing program again. This will bring
the PC to the beginning of the program. In this experiment, we change the content
of the Blackfi n memory by fi rst selecting the memory buff, right-clicking on the
specifi c memory data, and clicking on Edit to change the value for that memory
location. Try changing the data in buff as shown in Figure 5.23. Rerun the program
by clicking on the Run icon and observe the changed results.

3. Extend the program to perform 12 accesses of the circular buffer. Verify that the
data are correct.

4. Change the data in buff from 4 bytes to 2 bytes, and modify the program for a
16-bit word access. Save the new fi le as exp5_2a.asm in the new directory c:\
adsp\chap5\exp5_2a. Close the current project and create a new project by click-
ing on File Æ New Æ Project. Type in the new directory and specify the project
name as exp5_2a.dpj. Add in the newly created assembly fi le exp5_2a.asm to
the project by selecting Project Æ Add to Project Æ File and selecting exp5_
2a.asm. Build the project and run the loaded executable fi le to verify the function-
ality of the new fi le.

HANDS-ON EXPERIMENT 5.3

This experiment investigates the shift (arithmetic and logic) and rotation operations. The
arithmetic shift considers the most signifi cant bit as the sign bit, and the logical shift treats
the data to be shifted as an unsigned number. Open the project fi le exp5_3.dpj located in
directory c:\adsp\chap5\exp5_3. Build the project and single-step through the code.
There are four sections in the exp5_3.asm program:

1. Right shift by 4 bits.

In this section, the R0 register is loaded with a value 0xFFFF A3C6. A logical right
shift and an arithmetic right shift by 4 bits are written as R1 = R0>>0x04 and

Figure 5.23 A newly edited data for memory buff

5.2 Software Tools for the Blackfi n Processor 193

TEAM LinG

194 Chapter 5 Introduction to the Blackfi n Processor

R2 = R0>>>0x04, respectively. Note the difference in the right shift symbols for
logical and arithmetic right shifts. The results are R1 = 0x0FFF FA3C and R2 =
0xFFFF FA3C. This shows that the arithmetic shift preserves the sign bit of the data
and the logical shift simply fi lls in zeros in the most signifi cant bits.

2. Left shift by 4 bits.

In this section, a value of 0x7FFF A3C6 is loaded into the R0 register. The logical
and arithmetic left shifts by 4 bits are given as R1 = R0<<0x04 and R2 =
R0<<0x04(s), respectively. Note that the symbol “<<” is applicable to both types
of left shift. However, the arithmetic shift always ends with the saturation option(s).
In this case, R1 = 0xFFFA 3C60 and R2 = 0x7FFF FFFF. The results show that the
logical left shift treats the number as an unsigned number, but the arithmetic shift
saturates the result to the maximum positive (or negative) values. A detailed expla-
nation of the signed number format is given in Chapter 6.

3. Another shifting instruction.

Besides using a constant shift magnitude, another type of shifting instructions uses
the lower 16 bits of the register to contain the shift magnitude. In this example, we
use R1.L and R2.L to contain the shift magnitude. A logical right shift by 4 bits is
stated as R5 = LSHIFT R0 by R2.L, and an arithmetic right shift by 4 bits is
stated as R4 = ASHIFT R0 by R2.L. In this case, the R2.L register contains the
2’s complement binary pattern (−4). Examine and verify the results of both shifts.
A negative (or right) and a positive (or left) shift magnitude correspond to multipli-
cations by 2(−shift) and 2(shift), respectively. The ASHIFT instruction can shift a 32-bit
data register or 40-bit accumulators from −32 to 31 bits.

4. Rotate instructions.

In the fi nal section of this experiment, the rotate instructions are written to perform
bit rotation of the binary word. For example, the instruction R1 = ROT R0 by 1
rotates the contents in R0 leftward by one bit, via the CC bit. In other words, the CC
bit is in the rotate chain. Therefore, the fi rst bit rotated into the register is the initial
value of the CC bit. Subsequently, the CC bit is replaced by the bit rotated out of the
register. Similar to the shift instruction, a positive rotate magnitude specifi es a left
rotate, and a negative rotate magnitude specifi es a right rotate. Single-step through
the instructions in this section and verify the results. The CC bit can be viewed by
clicking on Register Æ Core Æ Status Æ Arithmetic Status. It is also easy to see
the rotate results by using the binary display format.

EXERCISE 5.1

In this hands-on exercise, some arithmetic operations are programmed in the Visu-
alDSP++ environment. We examine the arithmetic instructions by revisiting the
examples given in Examples 5.1–5.6. A simple template project fi le exercise5_
1.dpj located in directory c:\adsp\chap5\exercise5_1 can be modifi ed to
implement the following simple arithmetic instructions:

a. Single 16-bit add

b. Dual 16-bit add

TEAM LinG

 c. Quad 16-bit add

 d. Single 32-bit add

 e. Dual 32-bit add

 f. 16-bit and 32-bit add with options

 g. 32-bit logical operations

Verify the results obtained from VisualDSP++ with a calculator.

EXERCISE 5.2

In this hands-on exercise, we revisit the multiply and multiply-accumulate opera-
tions given in Examples 5.7–5.12 using VisualDSP++. To simplify the explanation,
only a signed integer number is considered here. Therefore, the (IS) option must be
inserted at the end of all multiply and MAC instructions in this exercise. A simple
template project fi le exercise5_2.dpj located in directory c:\adsp\chap5\
exercise5_2 can be used to implement the following simple arithmetic
instructions:

 a. Single 16-bit multiply operation

 b. Single 16-bit multiply/accumulate operation

 c. Dual 16-bit multiply operations using two accumulators

 d. Dual 16-bit multiply operations using two 32-bit registers

 e. Dual 16-bit multiply/accumulate operations with two 16-bit destinations

 f. Dual 16-bit multiply/accumulate operations with two 32-bit destinations

Verify the results obtained from VisualDSP++ with a calculator. What happens
to the multiplication results when the (IS) option is removed from the instruction?
Explain the difference in the multiplication results. When loading a 32-bit integer
to a 16-bit register, which part of the 32-bit number is loaded (the most or least sig-
nifi cant 16 bits)?

5.2.3 More Explanation of Linker

The linker [36] is important in the software build process. As shown in Figure 5.21,
the linker generates a complete executable program (.dxe). The linker also resolves
all external references, assigns an address to relocatable code and data spaces, and
generates optional memory map. Its output can be read by loader, simulator, and
debugger. The linker is controlled by the linker description fi le (.ldf) [39], which
describes the target system and provides a complete specifi cation for mapping the
linker’s input fi les into the physical memory.

The VisualDSP++ IDDE provides an Expert Linker, which uses the LDF
wizard to create the .ldf fi le. The Expert Linker defi nes the target memory map
and allows object sections to be placed in different memory sections by simple

5.2 Software Tools for the Blackfi n Processor 195

TEAM LinG

196 Chapter 5 Introduction to the Blackfi n Processor

drag-and-drop placement. The following hands-on experiments will launch the LDF
wizard, view the memory map, and map a user-defi ned section into the memory.

HANDS-ON EXPERIMENT 5.4

This hands-on experiment shows a quick and easy way to create the .ldf fi le. We use the
previous project fi le, exp5_1.dpj, to illustrate the creation of the .ldf fi le. In the previous
case, there is no specifi c .ldf fi le under the Linker Files section, and VisualDSP++ uses
the default .ldf fi le adsp-BF533.ldf for the BF533 processor (or adsp-BF537.ldf for
the BF537 processor), which is located in directory C:\Program Files\Analog

Devices\VisualDSP 4.0\Blackfin\ldf.

1. Open the project fi le exp5_1.dpj. Click on Tools Æ Expert Linker Æ Create
LDF . . . ; a Create LDF window appears. To continue, click on Next. A new window
appears as shown in Figure 5.24. Change the .ldf fi lename and choose the program-
ming language type (Assembly in this case). Click on Next to proceed. Note that
when working with a mixed C and assembly program, Project type C is chosen.

A new window (Step 2 of 3) appears. This window allows users to select pro-
cessor type and other properties. Click on Next, and the last window confi rms the
selected choice; click on the Finish button to generate the .ldf fi le. A memory
map view of the generated .ldf fi le is shown in Figure 5.25. It is also observed that
the .ldf fi le appears under the Linker Files folder in the Project Window.

2. Explore the memory map. The Input Section pane in the left column shows the input
sections defi ned in the source code. Right-click on the object fi le exp5_1.doj under

Figure 5.24 LDF wizard window

TEAM LinG

the L1_data_a section. Click on View Section Contents to display the section
contents as shown in Figure 5.26. This shows that the data are arranged in a little-
endian manner (i.e., lower-byte data in the lower memory location).

The Memory Map pane in the right column of the Expert Linker Window
defi nes the target system’s memory, memory types, and their address range. Right-
click on the Memory Map pane and select View Mode Æ Graphical Memory Map
to display a memory map. Zoom in and out of the memory map to have a better view.
Close the Expert Linker Window when fi nished.

Figure 5.25 Memory map view of the exp5_1.ldf fi le

Figure 5.26 Section Contents window

5.2 Software Tools for the Blackfi n Processor 197

TEAM LinG

198 Chapter 5 Introduction to the Blackfi n Processor

3. Modify the existing source fi le (exp5_1.asm) by adding a new user-defi ned section
as follows before the data buffa1:

.section data_a1; // newly inserted section

.BYTE4 buffa1[2] = 0x00000000, 0x01012020;

In this case, the data buffa1 is no longer specifi ed under the L1_data_a memory.
Rebuild the program again. A linker error appears in the Output Window as shown
in Figure 5.27.

The error arises because the section “data_a1” is not linked to any of the
memory sections. Double-click on the exp5_1.ldf fi le. A red cross (X) appears
on the data_a1 icon. Click on the (+) sign of the icon, and it is expanded into the
linker macros $COMMAND_LINE_OBJECTS and $OBJECTS. Map the object exp5_
1.obj under $OBJECTS onto the MEM_L1_SCRATCH output section by drag and
drop. Alternatively, mapping to another valid output section like data_L1_data_
a or data_L1_data_b is also possible. What is the starting address of buffa1
now? Single-step through the code and check the changes in the data movement.

4. Rebuild the whole program with the option of creating a .map fi le. Before building
the project, click on Project Æ Project Options Æ Link. Select Generate Symbol
Map to produce a .map fi le under the debug directory. Open the exp5_1.map fi le,
and an HTML window is displayed in the web browser. Observe the word size (in
bytes) of the data and instructions used in this program.

5.2.4 More Debugging Features

This section introduces additional debugging features. Besides using the register
windows to view the register values, users can also customize the display window
by clicking on View Æ Debug Windows Æ Expressions. An Expressions window
appears, and users can click on it and type in the variable names and register names
(register names must be preceded with a “$” sign) as shown in Figure 5.28.

Another feature of the debugger is that it supports a linear profi ling window
when running the program in simulation mode. This window displays the percentage
of execution time or cycle counts needed to run every line of the code. This feature

Figure 5.27 Output window with linker error

TEAM LinG

can be displayed by clicking on Tools Æ Linear Profi ling Æ New profi le; a
window is displayed as shown in Figure 5.29. Single-step through the code to update
the results in the Linear Profi le window. The number of instruction cycle count can
be viewed by right click, followed by View Sample Count. This linear profi ling
feature is a useful and quick tool in determining bottlenecks in the code. However,
to compute an accurate cycle count for real-time signal processing, another profi ling
method is recommended in subsequent chapters.

So far, we have introduced the architecture of the Blackfi n processor using the
assembly code and the VisualDSP++ simulator. This low-level programming lan-
guage provides an in-depth appreciation of the use of some of the arithmetic and
addressing modes. However, when we program any embedded signal processing task
on the Blackfi n processor, it is often wise to start from the high-level programming

Figure 5.28 Expressions window

Figure 5.29 Linear Profi le window

5.2 Software Tools for the Blackfi n Processor 199

TEAM LinG

200 Chapter 5 Introduction to the Blackfi n Processor

language of C/C++ and check whether its real-time performance can be fulfi lled.
Otherwise, we can optimize the C program and rewrite some time-critical segments
of code in low-level assembly language. The optimization methods are presented in
Chapter 8. In the following sections, we examine the design and real-time imple-
mentation (in C) of an eight-band graphic equalizer using the Blackfi n simulator
and the EZ-KIT. The VisualDSP++ IDDE can be confi gured for both simulation
and real-time implementation.

5.3 INTRODUCTION TO THE FIR
FILTER-BASED GRAPHIC EQUALIZER

The eight-band FIR-based graphic equalizer is an extension of the digital FIR fi lter
design in Section 2.3.2. We design eight separate FIR fi lters with eight different
frequency specifi cations instead of designing a single FIR fi lter. The output of each
FIR fi lter has a user-adjustable gain that is used to amplify or attenuate the specifi c
frequency contents of an audio signal. Thus it can compensate for signal components
that are distorted by recording devices, boost some frequency contents of the signal
to make it sound better, or remove undesired band-limited noise. The block diagram
of a stereo eight-band graphic equalizer is shown in Figure 5.30. The input signals,
xL(n) and xR(n), may be connected directly to the output in applications that allow
the original signal to pass through when all of the gains at the outputs of bandpass
fi lters are set to 0. In other applications, such as the removal of band-limited noise,
only bandpass fi lter outputs with attenuation are added to form the overall outputs,
yL(n) and yR(n). Usually, the gains attached to the fi lters are adjusted in tandem for
the left and right channels.

In the following experiments, we investigate the design and implementation of
the eight-band graphic equalizer that covers the frequency range from 0 to 24 kHz.
The sampling rate is 48 kHz. The frequency specifi cations for the eight-band graphic

Right input
xR(n)

Right output,
yR(n)

Left input
xL(n) Gain #2

Gain #1

Filter #8

Gain #8

Left output,
yL(n)

Filter #1

∑

Optional

Filter #2

Figure 5.30 Block diagram of a stereo 8-band graphic equalizer

TEAM LinG

equalizer are summarized in Table 5.5. Basically, Filter #1 is a low-pass fi lter from
0 to 200 Hz, and Filter #8 is a high-pass fi lter from 12,800 to 24,000 Hz. The rest
of the fi lters are bandpass fi lters. The passband and stopband ripples of these fi lters
are specifi ed as 1 and 40 dB, respectively, and the window (Hanning) design method
is used to derive the coeffi cients of these fi lters.

HANDS-ON EXPERIMENT 5.5

This experiment uses the MATLAB FDATool to design the eight FIR fi lters. Open FDATool
by typing the following command in the MATLAB Command Window:

fdatool

A window is opened as shown in Figure 5.31. Users can key in the parameters for differ-
ent fi lter specifi cations. The fi lter order of 255 is specifi ed, and the Window (Hann) FIR
fi lter Design Method is used for all fi lters. Note that the default Filter arithmetic is set to
double precision floating-point (which is 64-bit fl oating-point format). The fi lter

arithmetic can be viewed by clicking on the Set quantization parameter icon . Click
on the Design Filter tab at the bottom of the window to design the fi lter. Users can check
the magnitude response, phase response, impulse response, pole-zero plot, coeffi cients, etc.
by clicking on the respective icons. A list of icons and their defi nitions can be found in
Hands-On Experiment 3.1. Observe the characteristics of the FIR fi lters by fi lling in Table
5.6. The implementation cost depends on the number of multiplications and additions and
the memory used to implement the FIR fi lter.

Once each fi lter has been designed, it can be saved in a fi le band-i.fda, where i is
the fi lter number in the graphic equalizer.

The gain of the ith FIR fi lter, Gain(i), can be set in a range of ±12 dB with steps of
3 dB, as shown in Table 5.7. For example, a gain of 3.9811 applied to the output of any fi lter
corresponds to an amplifi cation of 12 dB at that frequency band.

Table 5.5 Frequency Specifi cations for the 8-Band Graphic
Equalizer

Band Number Passband Frequency (Hz)

#1 0–200
#2 200–400
#3 400–800
#4 800–1,600
#5 1,600–3,200
#6 3,200–6,400
#7 6,400–12,800
#8 12,800–24,000

5.3 Introduction to the Fir Filter-Based Graphic Equalizer 201

TEAM LinG

202 Chapter 5 Introduction to the Blackfi n Processor

Figure 5.31 FDATool window for designing Filter #1

Table 5.6 FIR Filter Characteristics

FIR Filter Parameters and Responses Characteristics

Average order of the IIR fi lter
Magnitude response
Phase response
Group-delay response
Impulse response
Pole-zero plot
Implementation cost

5.4 DESIGN OF GRAPHIC EQUALIZER
USING BLACKFIN SIMULATOR

This section introduces the steps required to complete a fi xed-point DSP system
design. We use an eight-band FIR based graphic equalizer to illustrate the steps
needed to convert the fi lter design from double-precision fl oating-point format to
16-bit fi xed-point format. This conversion is needed because many fi xed-point

TEAM LinG

embedded processors (including Blackfi n) are optimized for 16-bit fi xed-point
arithmetic. The fl oating-point coeffi cients must be quantized to 16-bit fraction
before porting these coeffi cients to the fi xed-point processors. FDATool can quan-
tize the fl oating-point coeffi cients to a 16-bit fi xed-point format. A more detailed
explanation of the concept behind this conversion is provided in Chapter 6. In addi-
tion, FDATool supports a comprehensive simulation on the fi xed-point analysis of
the digital fi lter. Therefore, this tool provides a mean to detect and correct any fi xed-
point implementation problem before actual implementation on the Blackfi n
processor.

HANDS-ON EXPERIMENT 5.6

We extend the previous FDATool experiment by converting the double-precision fl oating-
point coeffi cients into fi xed-point coeffi cients. Activate FDATool and open the previously

saved session for the individual fi lter. Click on the Set quantization parameter icon
again and change the Filter arithmetic parameters to those shown in Figure 5.32. The
Numerator word length is set to 16 bits (for implementation on 16-bit processors), and the
Numerator fractional length is set to 15 bits to form a word with a single sign bit and 15
fractional bits. This 1.15 format is commonly used in most 16-bit embedded processors as
it produces an effective result for fi xed-point multiplication. More details on the number
range of this format and its arithmetic precision are provided in Chapter 6.

Click on Apply to perform the quantization. Examine the magnitude response and
enable View Æ Show Reference Filter(s). The reference fi lter refers to the fi lter designed
in Hands-On Experiment 5.5 using the 64-bit double-precision fl oating-point format. We can
check whether the fi lter characteristics (magnitude and phase) with 16-bit fi xed-point preci-
sion are close to those with the 64-bit fl oating-point precision. If the quantized fi lter degrades
slightly with 16-bit precision, we can use the 16-bit quantized coeffi cients for implementa-
tion. Unfortunately, we are not able to directly port the fractional coeffi cients (with 1 sign

Table 5.7 Gain Table Applied to the FIR Filter

Gain Setting Gain Setting in
in dB (20 log A) Linear Scale
 (A = 10(dB/20))

+12 dB 3.9811
 +9 dB 2.8184
 +6 dB 1.9952
 +3 dB 1.4125
 +0 dB 1.0000
 −3 dB 0.7079
 −6 dB 0.5012
 − 9dB 0.3548
−12 dB 0.2512
 −∞ dB (mute) 0.0000

5.4 Design of Graphic Equalizer Using Blackfi n Simulator 203

TEAM LinG

204 Chapter 5 Introduction to the Blackfi n Processor

bit and 15 fractional bits) into the C program because there is no data type available to
represent fractional number in the Blackfi n C compiler. Instead, we perform another conver-
sion from fractional fi xed-point number into 16-bit integer (fract16). This conversion can
be easily performed by using the following conversion equation:

fi xed-point integer (or fract16) = round [fi xed-point fractional number × 32,768], (5.4.1)

where the round operation is used to round the result to the nearest integer.
The FDATool automatically performs this conversion when we click on Targets Æ

Generate C header . . . , and a new window shown in Figure 5.33 is generated. Use the
suggested settings and click on Generate. Save the header fi le. Because the header fi le
generated from MATLAB contains a specially defi ned integer constant type that is not
defi ned in the VisualDSP++ C compiler, we cannot use this header fi le directly. Instead, we
simply extract the coeffi cients from the header fi le and save them in a data (.dat) fi le. We
will create eight data fi les from “band0a.dat” to “band7a.dat” for the eight fi lters, which

Figure 5.32 Set quantization parameter

Figure 5.33 Generate C Header window

TEAM LinG

correspond to bands #1 to #8 of the equalizer. These fi les are ported into the Blackfi n
memory in the following experiment.

HANDS-ON EXPERIMENT 5.7

In this experiment, we port the fi xed-point coeffi cients generated from Hands-On Experi-
ment 5.6 into the Blackfi n memory. The C program, mainEQ.c in directory c:\adsp\
chap5\exp5_7, implements the eight-band graphic equalizer with eight parallel FIR fi lters.
This C fi le is added to the project fi le, exp5_7.dpj, and run on the BF533 (or BF537)
VisualDSP++ compiled simulator. The fi lter coeffi cients for eight frequency bands are
included in the C fi le. A predefi ned gain table is set in the array variable fract16 band_
gain[9] to specify the nine gain settings in the fi rst column of Table 5.8. Conversion from
dB scale to linear scale must be carried out for a 16-bit gain value, represented in (1.15)
format. Because this arithmetic representation limits the number range to within ±1, the gain
value must be scaled down by 4 to limit the gain value to the number range of the (1.15)
format. This step is shown in the third column of Table 5.8. The last column of Table 5.8
shows that the gain is converted into integer format (fract16) based on Equation 5.4.1 for
use in the C program.

Because we are connecting the eight FIR fi lters of equal length in parallel for each
channel, we can sum these eight parallel FIR fi lters (including band gain) into one combined
FIR fi lter. This combined FIR fi lter can greatly reduce the workload of the graphic equalizer.
The combined FIR fi lter can be derived by multiplying each set of fi lter coeffi cients with its
respective band gain before summing the coeffi cients of the eight fi lters. Two C callable
functions, mult_fr1x32 and add_fr1x32, are used in the main program, mainEQ.c, to
perform multiplication and addition, respectively, of two 16-bit numbers and save the result
in a 32-bit variable. The combined coeffi cients allCoeff [i] are rounded to 16 bits.

Build the project fi le exp5_7.dpj and open the display window by clicking on
View Æ Debug Windows Æ Plot Æ Restore. Select ImpulseResponse.vps and

Table 5.8 Gain Settings of the Graphic Equalizer

Gain Setting in Gain Setting in Gain Setting Scaled to (1.15) Format in
dB (20 log10 A) Linear Scale (1.15) Format Hexadecimal
 (A = 10(dB/20)) (A/4) (fract16)

 Hex[(A/4)×32,768]

+12 dB 3.9811 0.9953 0x7F66
 +9 dB 2.8184 0.7046 0x5A30
 +6 dB 1.9952 0.4988 0x3FD9
 +3 dB 1.4125 0.3531 0x2D32
 +0 dB 1.0000 0.2500 0x2000
 −3 dB 0.7079 0.1769 0x16A5
 −6 dB 0.5012 0.1253 0x100A
 −9 dB 0.3548 0.0887 0x0B5B
−12 dB 0.2512 0.0628 0x080A

5.4 Design of Graphic Equalizer Using Blackfi n Simulator 205

TEAM LinG

206 Chapter 5 Introduction to the Blackfi n Processor

FreqResponse.vps to display the impulse and frequency responses of the combined fi lter
as shown in Figure 5.34 (a) and (b), respectively.

EXERCISE 5.3

1. Modify the C code to enhance the low-frequency bands (band #1 to band
#3) to +12 dB, middle-frequency bands (band #4 to band #6) to 0 dB, and
high-frequency bands (band #7 to band #8) to −12 dB.

2. Use the equiripple fi lter design method instead of the window fi lter design
method. Obtain the frequency response and impulse response of the com-
bined fi lter with the new fi lter design method. Observe any difference with
the plots obtained in Hands-On Experiment 5.7.

3. Modify the C code to input a noisy signal from the fi le (sineNoise-
3sec_48k.dat) and attenuate the noise by −12 dB using the 8-band graphic
equalizer. Hint: Refer to Hands-On Experiment 2.3.

5.5 IMPLEMENTATION OF GRAPHIC
EQUALIZER USING BF533/BF537 EZ-KIT

This section explores the real-time implementation of the eight-band FIR fi lter-based
graphic equalizer using the Blackfi n BF533 or BF537 EZ-KIT. In addition, we

(a)

(b)

Figure 5.34 Impulse response (a) and frequency response (b) of combined FIR fi lter

TEAM LinG

explore how to program an application as a stand-alone system without needing the
computer to download the code to the EZ-KIT via the USB cable. In other words,
the graphic equalizer code can be downloaded to the Blackfi n memory on power
up. This feature turns the EZ-KIT into a portable device (battery operated) that can
be used directly in many real-life applications.

HANDS-ON EXPERIMENT 5.8

In this experiment, we convert the C fi le in Hands-On Experiment 5.7 into a real-time graphic
equalizer that can input musical signal and perform graphic equalization on a pair of stereo
signals. The processed signals are sent to headphones (or loudspeakers) for playback.

Activate VisualDSP++ for the BF533 (or BF537) EZ-KIT and open exp5_8_533.dpj
(or exp5_8_537.dpj) in directory c:\adsp\chap5\exp5_8_533 (or c:\adsp\chap5\
exp5_8_537). Build the project, and the executable fi le (exp5_8_533.dxe or exp5_8_
537.dxe) is automatically loaded into the memories of the EZ-KIT. In this program, we
have programmed four push buttons and six LEDs on the BF533 and BF537 EZ-KITs as
shown in Table 5.9. Input any musical signal (sampled at 48 kHz) to the input port (ADC1)
of the BF533 EZ-KIT or the stereo line-in port of the BF537 EZ-KIT. Run the project and
connect the processed signal at the output port (DAC1) of the BF533 EZ-KIT or the stereo
line-out port of the BF537 EZ-KIT to a pair of loudspeakers. Users can adjust the gains of
the fi lters with the push button settings listed in Table 5.9 and listen to the equalized
music.

The combined left and right FIR fi lters of the graphic equalizer are implemented by
using the following FIR fi lter functions (available in the DSP run time library) to process
the left (sCh0LeftIn) and right (sCh0RightIn) channels separately:

fir_fr16(sCh0LeftIn, sCh0LeftOut, INPUT_SIZE, &stateFIRL);
fir_fr16(sCh0RightIn, sCh0RightOut, INPUT_SIZE, &stateFIRR);

The processed left (Ch0LeftOut) and right (Ch0RightOut) signals are sent to the DAC
of the EZ-KIT. The combined left and right FIR fi lters must be initialized by the init.c
fi le, using the following functions:

fir_init(stateFIRL, allCoeff, firDelayL, NUM_COEFF, 0);
fir_init(stateFIRR, allCoeff, firDelayR, NUM_COEFF, 0);

The combined FIR fi lter coeffi cients are defi ned as allCoeff, which are passed to the
fir_fr16 function as a structured variable. Note that the array variables firDelayL and
firDelayR represent the delay line for the left and right fi lters, respectively. These array
variables must be initialized to zero and should not be modifi ed by the user program.

EXERCISE 5.4

1. Instead of user-adjusted gain control, we can predefi ne the equalizer gain
settings to perform different audio enhancement modes. The gain settings
are listed below from low- to high-frequency band for the eight-band
equalizer:

5.5 Implementation of Graphic Equalizer Using BF533/BF537 EZ-KIT 207

TEAM LinG

208 Chapter 5 Introduction to the Blackfi n Processor

a. Bass enhanced: [+6 +6 +6 +3 +3 +3 0 0] dB
b. Treble enhanced: [0 0 +3 +3 +3 +6 +6 +6] dB
c. Rock: [+6 +3 −3 −3 0 +3 +6 +6] dB
d. Pop: [0 +3 +3 +6 +6 −3 −3 −3] dB

Simplify the programs in Hands-On Experiment 5.8 to implement the above
fi xed settings.

2. Implement the BTC feature of the VisualDSP++ to view the input and output
frequency responses for Hands-On Experiment 5.8. Verify that the output
frequency response matches with the gain settings selected by the user. Hint:
Use the BTC example given in Hands-On Experiment 3.7.

3. Determine the cycle counts required to run (1) the overall interrupt service
routine and (2) FIR fi lters, and (3) compute the combined FIR fi lter coeffi -
cients in the BF533/BF537 EZ-KIT. Hint: Use the CYCLES and CYCLES2
registers.

Table 5.9 Functions of Push Buttons and LEDs on the BF533/BF537 EZ-KITs

Functions BF533 EZ-KIT BF537 EZ-KIT

Switch from higher to SW4 SW10
 lower fi lter band
 (from #7 to #0)
Switch from lower to SW5 SW11
 higher fi lter band
 (from #0 to #7)
Decrease the gain level SW6 SW12
 of the active fi lter band
 in steps of −3 dB per
 press
Increase the gain level of SW7 SW13
 the active fi lter band in
 steps of +3 dB per press
Indicate the fi lter band LED6|LED5|LED4 LED3|LED2|LED1
 number (in binary)
 Band #1 0 | 0 | 0 (all off) 0 | 0 | 0 (all off)
 Band #2 0 | 0 | 1 0 | 0 | 1
 : : : : : : :
 Band #8 1 | 1 | 1 (all on) 1 | 1 | 1 (all on)
Indicate the gain level of LED7|LED8|LED9 LED4|LED5|LED6
 the active band The blink rate of these LEDs The blink rate of these LEDs
 indicates the gain level. indicates the gain level.
 When the blink rate is fast, When the blink rate is
 higher gain amplifi cation; fast, higher gain
 when the blink rate is slow, amplifi cation; when the
 more attenuation blink rate is slow, more
 attenuation

TEAM LinG

4. Turn on the statistical profi ler (Tools Æ Statistical Profi ling Æ New
Profi le) and examine the execution percentage of running different tasks in
the graphic equalizer.

HANDS-ON EXPERIMENT 5.9

So far, we have loaded our compiled code from the computer to the EZ-KIT via the USB
cable. VisualDSP++ also provides a feature to create and download a loader fi le to the fl ash
memory of the EZ-KIT. In this experiment, we go through the steps in creating a stand-alone
system that runs the above-described eight-band graphic equalizer on power up of the
EZ-KIT. The steps are stated as follows:

1. Open the VisualDSP++ and load the project fi le exp5_8_533.dpj for the BF533
EZ-KIT or exp5_8_537.dpj for BF537. These projects are located at directories
c:\adsp\chap5\exp5_8_533 and c:\adsp\chap5\exp5_8_537, respectively.
Because we have fi nished debugging the eight-band equalizer in the preceding
experiment, we can rebuild the project using the release build by changing the toolbar
menu from Debug to Release. This step will remove all debug information and
reduce the memory usage in the Blackfi n processor. Release build can also optimize
real-time performance.

2. Click on Project Æ Project Options and change the Target Type to Loader fi le
as shown in Figure 5.35. The loader fi le (.ldr) is essentially the same as the

Figure 5.35 Project Options window

5.5 Implementation of Graphic Equalizer Using BF533/BF537 EZ-KIT 209

TEAM LinG

210 Chapter 5 Introduction to the Blackfi n Processor

executable fi le (.dxe), with the exception that the loader fi le does not contain any
debug information and symbols.

3. Click on Options under the Load menu in the Project Options window. A new
window will appear as shown in Figure 5.36. Select the output format as shown.
Make sure that Output Width is set to 16-bit. Users can also specify a different
loader fi le (.ldr) name (which uses the same name as the project fi le by default) by
typing in the Output fi le fi eld.

4. Click on OK and rebuild the project. A loader fi le exp5_8_533.ldr for the BF533
EZ-KIT or exp5_8_537.ldr for the BF537 EZ-KIT is created in the respective
Debug folder.

5. Click on Tools Æ Flash Programmer . . . to turn on the Flash Programmer

 window as shown in Figure 5.37. Click on the icon next to the Driver fi le and
search for the default driver for the BF533 or BF537 EZ-KIT. For the BF533 EZ-KIT,
use

. . . \VisualDSP 4.0\Blackfin\Flash Programmer Drivers\ADSP-
BF533 EZ-kit Lite\BF533EzFlash.dxe.
For the BF537 EZ-KIT, use . . . \VisualDSP 4.0\Blackfin\Flash Pro-
grammer Drivers\ADSP-BF537 EZ-kit Lite\BF537EzFlash.dxe.

6. Click on the icon next to the Data fi le to search for the loader fi le created in Step
4. Click on Load File to complete the loading.

7. Click on Settings Æ Boot load . . . to verify that the eight-band graphic equalizer
program has been loaded into the fl ash memory of the EZ-KIT. The program is
now booting from the fl ash memory. Alternatively, turn off the EZ-KIT, unplug the

Figure 5.36 Setting the load option for the fl ash programmer

TEAM LinG

USB, and turn on the EZ-KIT again. The program should run immediately on
power up.

8. Test the functionality of the graphic equalizer to confi rm that the program is working
properly in stand-alone mode.

5.6 IMPLEMENTATION OF GRAPHIC
EQUALIZER USING LABVIEW EMBEDDED
MODULE FOR BLACKFIN PROCESSORS

Graphic equalization is a very scalable technology allowing a designated number
of audio frequency bands to be extracted, amplifi ed, and reassembled to improve or
process audio signals. Commercial graphic equalizers use a wide variety of analog
and digital technology to achieve similar functionality. Most have a standard user
interface using slider bars allowing each band to be individually amplifi ed or attenu-
ated. The algorithm for equalizing audio is computationally intensive in its theoreti-
cal form but can be simplifi ed and implemented in LabVIEW with the same
principles discussed in the moving-average fi lter application in Chapter 2.

In the following exercises, you will simulate, prototype, and deploy a graphic
equalizer using the FIR fi lter coeffi cients derived in previous examples. The eight-
band graphic equalizer simulation allows you to load custom coeffi cients and an
audio signal. This gives you the ability to modify and listen to the effects of differ-
ent equalizer gains. The equalizer is then run on the Blackfi n EZ-KIT, demonstrat-
ing a real-time fi ltering application created with graphical programming.

Figure 5.37 Flash Programmer window

5.6 Implementation of Graphic Equalizer Using LabVIEW Embedded Module 211

TEAM LinG

212 Chapter 5 Introduction to the Blackfi n Processor

HANDS-ON EXPERIMENT 5.10

In this experiment, an eight-band graphic equalizer is implemented, using FIR fi ltering to
modify the frequency content of audio signals. The simulation allows you to hear the
effects of the equalizer and see its results in both time and frequency domains. Custom fi lter
coeffi cients can also be loaded to test the results of your own equalizer designs. You
can easily modify the gain of each frequency band and observe the differences in fi lter
characteristics.

Navigate to the program called FIR_EQ_Sim.exe located in directory c:\adsp\
chap5\exp5_10. In Figure 5.38, we see the user interface for FIR_EQ_Sim.exe. Separate
tabs show various plots of the audio signal and allow you to customize the gain applied to
each band. The Time Signal tab shows the time-domain input signal. Click the Enable Filter
button to turn on equalization. The Frequency Signal tab shows both the input signal and
its frequency content, and the graph can be viewed with either a linear or a logarithmic (dB)
scale. The Frequency Bands tab shows the magnitude response of each of the eight fi lters

Figure 5.38 Eight-band graphic equalizer (user interface for FIR_EQ_Sim.exe)

TEAM LinG

individually. Note that although each of the individual fi lters is not ideal, the overall passband
is relatively fl at when the fi lter are combined. The Load Bands tab gives us the ability to
open new sets of coeffi cient data fi les and change the gains applied by the equalizer slider
positions. The set of eight slider bars at the bottom of the user interface corresponds to the
gain applied to each of eight frequency bands.

The default input signal is a 1-kHz sine wave sampled at 48 kHz with a buffer length
of 512 samples, as seen in Figure 5.38. Different wave fi les can be loaded for additional fi lter
testing. Custom coeffi cients can be loaded from data fi les in fract16, a common delimited
format for custom equalizer simulations.

Click the Frequency Bands tab and adjust the values of the Band 1 slider bar. As you
change the selected gain for that frequency band, note how the magnitude response for that
band changes in the graph as well.

Now load and experiment with the audio fi le speech_tone_48k.wav that we used
in Hands-On Experiment 2.5. Recall that this audio fi le contains tonal noise that degrades
the overall quality of the audio. Can you identify the frequency band that contains the tonal
noise? Experiment with the equalizer gain settings to attenuate the noise as much as possible
while still retaining the rest of the signal. How would these settings need to change if the
tonal noise had a different frequency? How would you redesign the fi lter if you needed fi ner
resolution control over high frequencies and less resolution control over low frequencies
while keeping just eight bands?

HANDS-ON EXPERIMENT 5.11

This experiment implements an eight-band FIR fi lter on the Blackfi n processor with the
LabVIEW Embedded Module for Blackfi n Processors. This project is run in Release mode
to take advantage of the excellent speed optimization when the various debugging features
are not necessary. There are two key processing steps in this experiment. First, the single
FIR fi lter Blackfi n library function is the only processing VI that modifi es the original signal.
The computationally intensive portion of this VI is the calculation of the FIR fi lter coeffi -
cients. This fi lter coeffi cient calculation is packaged into a subVI for code modularity and is
used as a single processing block.

Open the FIR Equalizer-BF5xx.lep project appropriate for your Blackfi n hard-
ware in directory c:\adsp\chap5\exp5_11. You will fi nd that the project is composed
of three fi les, one for each of the main processing blocks in the project. Double-click on
the top-level VI, FIR Equalizer-BF5xx.vi, and open the block diagram to study how
the equalizer is implemented. Note that the processing algorithm is divided into distinct
sections for buffer initialization, coeffi cient calculation, and fi ltering, where each of these
operations has its own subVI. This application streams a real-time audio signal from the
Blackfi n audio input, processes it, and generates an output signal from the Blackfi n EZ-KIT
audio out port. When SW4 of BF533 (or SW10/PB4 of BF537) is pressed, the selected FIR
fi lter is enabled and applied to the signal. Pay special attention to the block diagram of the
Init Eq Coeffs subVI (shown in Fig. 5.39), which implements the calculation of the fi lter
coeffi cients.

This block diagram shows how to calculate the coeffi cients of the FIR fi lter. Graphical
representation of the algorithm illustrates the parallelism of the code to be easily seen. Par-
allelism is valuable in understanding complex algorithms with recurring symmetry. For each
of the eight bands, the input coeffi cients are multiplied by the gain selected for that band.

5.6 Implementation of Graphic Equalizer Using LabVIEW Embedded Module 213

TEAM LinG

214 Chapter 5 Introduction to the Blackfi n Processor

We then sum these products to calculate a single set of coeffi cients. Once the coeffi cients
are calculated by the Init Eq Coeffs subVI, they are passed to the FIR fi lter function block
along with the audio buffer for real-time processing.

Connect the computer audio output to the input of the Blackfi n processor and the output
of the Blackfi n processor to loudspeakers or headphones. On the computer, play the audio
signal that you would like to equalize. Compile and run the project on the Blackfi n EZ-KIT.
To enable the equalizer, press and hold SW4 of BF533 (or SW13/PB1 of BF537).

The application can be customized with different graphic equalizer gain settings, or by
changing the fi lter coeffi cients for each band. Customize the gains for different bands by
changing the selected preset. Use the same settings simulated in Hands-On Experiment 5.10
to attenuate the 1-kHz sine wave from the speech_tone_48k.wav audio fi le and evaluate
its performance with the Blackfi n processor implementation. Does it behave the same?
Recompile the project and run it. Can you hear the difference in the audio? Experiment with
the various gain presets and try creating your own.

5.7 MORE EXERCISE PROBLEMS

1. State whether the following Blackfi n instructions are correct or not. If not, state the
reasons.

(a) R6 = R2.L+|−R1.H;
(b) R6.H = R2.L+R1.H;
 R6.L = R2.L−R1.H;
(c) R3 = R0+|+R1, R4 = R2+|−R1;
(d) R3 = R0+R1, R4 = R2−R1;
(e) R4.H = R4.H&R2.H;
(f) R0.L = R2.H*R1.L;
(g) A0.H += R2.H*R3.H;

Figure 5.39 Block diagram for coeffi cient calculation

TEAM LinG

(h) R0.H = (A0 += R2.H*R3.H);
(i) R1 = (A0 += R2.H*R3.H);
(j) A1 = R2.H*R3.L, A0 = R2.L*R3.H;
(k) R0.H = (A1 += R5.H*R6.H), R0.L = (A0 += R5.L*R6.L);
(l) R1 = (A1 + = R5.H*R6.H), R2 = (A0 += R5.L*R6.L);

2. The Blackfi n memory starting from 0xFF80 0100 contains the data shown in the second
column of Table 5.10. The pointer P1 = 0xFF80 0100, and P2 = 0x0000 0002. Fill in all
the update registers in the last column of Table 5.10 after executing every instruction.

3. Load the project in Hands-On Experiment 5.1 and use the pipeline viewer (View Æ
Debug Windows Æ Pipeline Viewer) to examine any stall in the program when single-
stepping through the program.

4. A 10-band graphic equalizer based on the ISO octave-band center frequency is shown in
Table 5.11. Design this 10-band graphic equalizer with FDATool and verify its fi xed-point
implementation using the VisualDSP++ compiled simulator for the BF processor.

Table 5.10 Blackfi n Memory and Instructions

Address Content Instruction (arrange Update Registers
 in sequential top-
 down manner)

0xFF80 0100 0x12 R1 = [P1++]
0xFF80 0101 0x34 R1 = W[P1––](x)
0xFF80 0102 0x56 R1 = B[P1++](z)
0xFF80 0103 0x78 P0 = [P1 + 0x03]
0xFF80 0104 0x9A [P0++] = R1
0xFF80 0105 0xBC R1.H = W[P1++]
0xFF80 0106 0xDE R1.L = W[P1++P2]
0xFF80 0107 0xF0 P1 – = P2
0xFF80 0108 0xAA W[P1++] = R1
0xFF80 0109 0xBB B[P1++] = R1

Table 5.11 ISO Octave Center Frequencies with Band
Limits

Octave Band Center Frequency Band Limits

 31.5 Hz 22 Hz–44 Hz
 63 Hz 44 Hz–88 Hz
 125 Hz 88 Hz–176 Hz
 250 Hz 176 Hz–353 Hz
 500 Hz 353 Hz–707 Hz
 1,000 Hz 707 Hz–1,414 Hz
 2,000 Hz 1,414 Hz–2,825 Hz
 4,000 Hz 2,825 Hz–5,650 Hz
 8,000 Hz 5,650 Hz–11,250 Hz
16,000 Hz 11,250 Hz–22,500 Hz

5.7 More Exercise Problems 215

TEAM LinG

216 Chapter 5 Introduction to the Blackfi n Processor

5. Implement the graphic equalizer in Problem 4 with the Blackfi n BF533/BF537 EZ-KIT.
Benchmark the cycle counts needed to complete the graphic equalizer. Profi le the per-
centage of processing time for the tasks in the graphic equalizer. Feed a stereo musical
signal (sampled at 48 kHz) to the input of the EZ-KIT and perform the various gain
settings of the graphic equalizer to hear the processed signal from the output of the
EZ-KIT.

6. A noisy speech signal, noisy.wav, is recorded offl ine. This signal contains band-
limited noise that can be removed with the graphic equalizer. Analyze the band-limited
noise in order to design a suitable graphic equalizer to remove the band-limited noise
with the Blackfi n BF533/BF537 EZ-KIT. Users can implement the graphic equalizer
either in C or the LabVIEW Embedded Module.

7. Instead of using switch to control the gain of the graphic equalizer, the gain control can
also be performed by using the BTC. Modify the C fi les in Hands-On Experiment 5.8
to perform the gain control via software.

8. The project fi le in Hands-On Experiment 5.8 computes the combined FIR fi lter coeffi -
cients at every CODEC interrupt, even though there is no adjustment of the gain setting
by the user. Rewrite the C fi les such that the combined fi lter coeffi cients are computed
only when the push buttons are pressed.

9. Table 5.8 shows that the user-adjustable gain of the graphic equalizer is divided by 4 in
order to scale all the gain values to less than 1. Examine the project fi le in Hands-On
Experiment 5.8 and state how this gain reduction has been compensated at the output
of the graphic equalizer.

10. In Hands-On Experiment 5.8, a single combined fi lter is used to implement FIR fi ltering
in the eight-band graphic equalizer. A more direct approach is to implement eight FIR
fi lters, one for each band, and add up the gain-adjusted outputs of these eight fi lters.
Implement this direct approach and benchmark its implementation cost (cycle count and
data memory usage) with reference to the single combined FIR fi lter.

TEAM LinG

Chapter 6

Real-Time DSP Fundamentals
and Implementation
Considerations

In Chapter 5, we introduced the architecture of the Blackfi n processor and moved
data between memories and registers. This chapter introduces important topics on
representing data in the fi xed-point Blackfi n processors, processing and handling
digital signals with fi nite wordlength, segmenting signal samples into blocks for
processing, and evaluating the resources (speed, memory, peripherals, and power
management) for real-time tasks. We use many examples and hands-on experiments
to explain these topics and show a step-by-step approach in designing an embedded
signal processing application. This effective embedded system design moves from
fl oating-point simulations to fi xed-point representations using MATLAB and then
to porting the fi xed-point code and data into the Blackfi n processor. We also intro-
duce more advanced debugging and profi ling features in the VisualDSP++ IDDE
to meet real-time requirements.

6.1 NUMBER FORMATS USED
IN THE BLACKFIN PROCESSOR

This section defi nes number representations in digital systems with different formats
and performs different arithmetic operations based on these formats. In particular,
we use the Blackfi n processor that supports 8-, 16-, 32-, and 40-bit fi xed-point data
to explain different number formats.

6.1.1 Fixed-Point Format

In fi xed-point processors, a number is represented with a series of binary digits of
1s and 0s. An unsigned number without sign information is always positive. For

217

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

218 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

example, an 8-bit unsigned binary number of 1011 0001 represents 177 in base
10 integer. However, in a signed number representation, the same 8-bit binary
digits represent −79 in 2’s complement format. The 2’s complement format is
the most popular signed number in DSP processors, including the Blackfi n
processor.

In addition, most DSP processors support both integer and fractional data
formats. In an integer format, the radix point is located to the right of the least
signifi cant bit (LSB). For example, the integer number 79 has the binary pattern
shown in Fig. 6.1(a). The smallest magnitude of an integer number is 1 (the weight-
ing of the LSB). The negative number −79 in 2’s complement format is shown in
Figure 6.1(b). Note that the sign bit in 2’s complement format has a negative
weight.

In the fractional number format, the radix point is located within the binary
number. For example, a radix point can be positioned to the left of the four LSBs
with the weights indicated in Figure 6.2(a) for the unsigned fractional number and
in Figure 6.2(b) for the signed fractional number. Note that the number to the right
of the radix point assumes a fractional binary bit, with a weighting of 2−p where
p = 1, 2, 3, and 4. In this case, the lowest fractional increment is 2−4 (or 0.0625).
For the number to the left of the radix point, the weighting increases from 2q where
q = 0, 1, 2, and 3. The weighting of the MSB (or sign bit) depends on whether the
number is signed or unsigned.

An (N.M) notation describes any fractional number, where N is the number of
bits to the left of the radix point (integer part) and M is the number of bits to the
right of the radix point (fractional part). The symbol “.” represents the radix point.
The total number of bits in the data word is B = N + M. In the example shown in
Figure 6.2, this is called the (4.4) format. An integer number can be named in the
(B.0) format. For example, the number given in Figure 6.1 is called the (8.0) format
or 8-bit integer.

Figure 6.1 Examples of 8-bit binary data format for integer numbers of 177 (a) and −79 (b)

= 27+25+24+20

= 1771 0 1 1 0 0 0 1

+27 26 25 24 23 22 21 20

(a) Unsigned integer

1 0 1 1 0 0 0 1

-27 26 25 24 23 22 21 20

(b) Signed integer (2’s complement)

= −27+25+24+20

= −79

Radix point for integer

TEAM LinG

6.1 Number Formats Used in the Blackfi n Processor 219

QUIZ 6.1

Interpret the 16-bit hexadecimal numbers (with prefi x 0x) given in Table 6.1 as

1. (16.0) format or integer

2. (4.12) format

3. (1.15) format

The (1.15) format displayed in the last column of Table 6.1 is commonly
used in 16-bit fractional number representation. Figure 6.3 shows the weightings
of bits for the (1.15) format. The radix point is positioned one bit to the right of
the MSB. Therefore, the maximum positive number in (1.15) format is 1 − 2−15

(= 0.999969482421875), which has a hexadecimal representation of 0x7FFF because
all bits are “1” except the MSB. The minimum negative number in (1.15) format is
−1 (0x8000). Therefore, the (1.15) format has a dynamic range of [+0.999969482421875
to −1], and numbers exceeding this range cannot be represented in (1.15) format.
For example, +1.0 cannot be represented in (1.15) format. The smallest increment
(or precision) within the (1.15) format is 2−15. In the Blackfi n processor, the data
type fract16 represents the (1.15) format.

Table 6.2 lists all 16 possible (N.M) formats for 16-bit numbers. Different formats
give different dynamic ranges and precisions. There is a trade-off between the

= 23+21+20+2-4

= 11.0625
1 0 1 1 0 0 0 1

+23 22 21 20 2-1 2-2 2-3 2-4

1 0 1 1 0 0 0 1

-23 22 21 20 2-1 2-2 2-3 2-4

(b) Signed fractional (4.4) format

= -23+21+20+2-4

= -4.9375

Radix point for fractional
number

(a) Unsigned fractional (4.4) format

Figure 6.2 Example of 8-bit binary data formats for a fractional number

Table 6.1 Examples of Representing Numbers in Different Formats

Hexadecimal (16.0) Format or (4.12) Format (1.15) Format
Number Integer

0x7FFF
0x8000
0x1234
0xABCD
0x5566

TEAM LinG

220 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

dynamic range and precision. As the dynamic range increases, precision becomes
coarser. For example, when we change the format from (1.15) to (2.14), we get a larger
dynamic range from [+0.999969482421875 to −1] to [1.99993896484375 to −2];
however, we reduce the precision from 2−15 to 2−14. The largest dynamic range of a 16-
bit number can be obtained by using the (16.0) format or integer; however, this format
has the worst precision of 1. Therefore, the selection of the right format depends on the
dynamic range and precision required by the given DSP application.

A number in (N.M) format cannot be represented in the programs because
most compilers and assemblers only recognize numbers in integer or (16.0)
format. Therefore we must convert the fractional number in (N.M) format into its
integer equivalent, and its radix point must be accounted for by the programmers.
For example, to convert a number 0.6 in (1.15) format to its integer representation,
we multiply it by 215 (or 32,768) and round the product to its nearest integer to
become 19,661 (or 0x4CCD). As shown in Table 6.3, a scaling factor 2M is needed
for converting the (N.M) format to the integer. Note that the number range in

x = –1 + 2-2 + 2-3 + 2-7 + 2-8 + 2-10 + 2-11+2-15 = –0.61178588867

1

–20 2-1 2 -2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15

1 0 1 1 0 0 0 1 1 0 1 1 0 0 0

Figure 6.3 An example of a number represented in (1.15) format

Table 6.2 Dynamic Ranges and Precisions of 16-Bit Numbers Using Different (N.M)
Formats

Format Largest Positive Value Least Negative Value Precision (0x0001)
(N.M) (0x7FFF) (0x8000)

(1.15) 0.999969482421875 −1 0.00003051757813
(2.14) 1.99993896484375 −2 0.00006103515625
(3.13) 3.9998779296875 −4 0.00012207031250
(4.12) 7.999755859375 −8 0.00024414062500
(5.11) 15.99951171875 −16 0.00048828125000
(6.10) 31.9990234375 −32 0.00097656250000
(7.9) 63.998046875 −64 0.00195312500000
(8.8) 127.99609375 −128 0.00390625000000
(9.7) 255.9921875 −256 0.00781250000000
(10.6) 511.984375 −512 0.01562500000000
(11.5) 1,023.96875 −1,024 0.03125000000000
(12.4) 2,047.9375 −2,048 0.06250000000000
(13.3) 4,095.875 −4,096 0.12500000000000
(14.2) 8,191.75 −8,192 0.25000000000000
(15.1) 16,383.5 −16,384 0.50000000000000
(16.0) 32,767 −32,768 1.00000000000000

TEAM LinG

6.1 Number Formats Used in the Blackfi n Processor 221

hexadecimal, [0x7FFF to 0x8000], remains the same for all 16-bit number formats;
the only difference is the fractional value that is represented by the hexadecimal
integer.

QUIZ 6.2

Determine the hexadecimal integer representation of the numbers in different
(N.M) formats as shown in Table 6.4.

Conversely, we can divide an integer number by the associate scaling factor to
obtain the fractional number for the specifi c format. In Quiz 6.1, the answers can
be easily obtained by using the scaling factors listed in Table 6.3.

The major advantage of using fi xed-point fractional representation is that this
format adheres to the basic arithmetic operations of most fi xed-point signal proces-

Table 6.3 Scaling Factors and Dynamic Ranges for 16-Bit Numbers Using Different
(N.M) Formats

Format Scaling Factor (2M) Range in Hex (fractional value)

(1.15) 215 = 32,768 0x7FFF (0.99) → 0x8000 (−1)
(2.14) 214 = 16,384 0x7FFF (1.99) → 0x8000 (−2)
(3.13) 213 = 8,192 0x7FFF (3.99) → 0x8000 (−4)
(4.12) 212 = 4,096 0x7FFF (7.99) → 0x8000 (−8)
(5.11) 211 = 2,048 0x7FFF (15.99) → 0x8000 (−16)
(6.10) 210 = 1,024 0x7FFF (31.99) → 0x8000 (−32)
(7.9) 29 = 512 0x7FFF (63.99) → 0x8000 (−64)
(8.8) 28 = 256 0x7FFF (127.99) → 0x8000 (−128)
(9.7) 27 = 128 0x7FFF (511.99) → 0x8000 (−512)
(10.6) 26 = 64 0x7FFF (1,023.99) → 0x8000 (−1,024)
(11.5) 25 = 32 0x7FFF (2,047.99) → 0x8000 (−2,048)
(12.4) 24 = 16 0x7FFF (4,095.99) → 0x8000 (−4,096)
(13.3) 23 = 8 0x7FFF (4,095.99) → 0x8000 (−4,096)
(14.2) 22 = 4 0x7FFF (8,191.99) → 0x8000 (−8,192)
(15.1) 21 = 2 0x7FFF (16,383.99) → 0x8000 (−16,384)
(16.0) 20 = 1(integer) 0x7FFF (32,767) → 0x8000h (−32,768)

Table 6.4 Example of Converting Numbers in (N.M) Format to
Hexadecimal Representations

Number (1.15) Format (2.14) Format (8.8) Format (16.0) Format

0.5
1.55
−1
−2.0345

TEAM LinG

222 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

sors and does not require additional libraries or hardware logic. In the following sec-
tions, we examine fi xed-point addition and multiplication in the Blackfi n processor.

6.1.1.1 Binary Addition

In Section 5.1.3.1, we introduced addition and multiplication in the Blackfi n proces-
sor without considering the data format. Overfl ow occurs when an arithmetic opera-
tion produces a number that exceeds the number range. For example, when two
numbers (0.5 and 0.7) in (1.15) format are added together, the result is 1.2, which
exceeds the valid (1.15) number range of [+0.999969482421875 to −1]. The result
1.2 is overfl owed into the negative number range and becomes −0.8. As shown in
Table 5.1, a saturation mode is available in the Blackfi n processor that forces the
overfl owed number to be fi xed at the maximum positive or negative value. Therefore,
in the above example, the result 1.2 will be saturated to the maximum positive
number of +0.999969482421875 instead of overfl owing into a negative number of
−0.8. In the saturation mode, the error between the actual number and the saturated
result is smaller compared to the error without saturation.

HANDS-ON EXPERIMENT 6.1

This VisualDSP++ experiment performs add/subtract operations on four sets of numbers
with the Blackfi n instructions given in Example 5.1. The arithmetic operations are (a) 0.5 +
0.7, (b) −0.3 − 0.7, (c) 0.1 + 0.8, and (d) −0.5 − 0.7. These add/subtract operations are carried
out separately, using (1.15) and (2.14) formats. This experiment shows how to load these
numbers into the Blackfi n memory and add (or subtract) with saturated (s) and nonsaturated
(ns) modes. The steps of the experiment are as follows:

1. Load the project fi le into the VisualDSP++ BF533/BF537 simulator by clicking on
File Æ Open Æ Project and look for the project fi le exp6_1.dpj in directory
c:\adsp\chap6\exp6_1.

2. Examine the fi le exp6_1.asm and fi ll in the missing hexadecimal numbers stated
in the program. Build the project and single-step through the code.

3. Fill in Table 6.5 after executing addition and subtraction for the four sets of numbers
presented in (1.15) and (2.14) formats.

4. Change the mode to nonsaturation (or overfl ow) option and repeat Steps 2 and 3.

Table 6.5 Examples of Add/Subtract with Saturation and Nonsaturation Modes

Arithmetic Result in (1.15) Format Result in (2.14) Format

 Saturate (s) Overfl ow Saturate (s) Overfl ow

0.5 + 0.7
−0.3 − 0.7
0.1 + 0.8
−0.5 − 0.7

TEAM LinG

6.1 Number Formats Used in the Blackfi n Processor 223

Explain why there is no difference between the results of saturation and nonsaturation
(overfl ow) options using the (2.14) format for add/subtract operations.

Modify the above program to add a series of 10 numbers {0.5, 0.7, −0.3, −0.4, 0.21,
−0.12, 0.8, −0.6, −0.18, 0.11} in (1.15) format using data registers. Compare the results with
both saturated and nonsaturated options. Click on Registers Æ Core Æ Status Æ Arith-
metic Status to observe any register overfl ow (V fl ag) in this series of additions. Which
option gives the right result and why?

6.1.1.2 Binary Multiplication

In binary multiplication, the input numbers can be represented by different data
formats, and the result depends on the input data formats. If two input numbers have
formats of (N.M) and (P.Q), then the format of the product is (N + P).(M + Q). For
example, the product of multiplying two 16-bit numbers in (1.15) format results in
a 32-bit result in (2.30) format. In another example, if the inputs are in (1.15) and
(2.14) formats, the multiplication result is in (3.29) format. When both inputs are
signed numbers, there is an extra sign bit, as shown in Figure 6.4 for the case of
multiplying two fractional numbers in (1.15) format.

The example shown in Figure 6.4 can be extended to all multiplications with
signed fractional data format. For example, if a number in (2.14) format is multiplied
by a number in (3.13) format, the multiplication result is in (5.27) format, but the
result must be shifted left by one bit to get a correct (4.28) format with only one
sign bit. The LSB of the multiplication result is zero fi lled after the shift operation.
The Blackfi n processor can automatically shift the multiplication results left by one
bit before writing to the register. This is the default option as stated in Table 5.2.
However, the left shift is not necessary when multiplying a signed number by an
unsigned number, or multiplying two unsigned numbers. This is the case when the
(FU) option in Table 5.2 is used.

1100 0000 0000 0000

0100 0000 0000 0000

11 11 0000 0000 0000 0000 0000 0000 0000

0.5 (1.15) format

−0.5 (1.15) format

−0.25 (2.30) format

−0.25 (1.31) format

×

Two identical sign bits.
Shift left one bit to remove the redundant sign bit.

1 11 0000 0000 0000 0000 0000 0000 0000 0

The most significant 16 bits can be saved in
register or memory. Use the (T) option to
perform this task automatically.

Zero filled at the
least significant
bit.

Figure 6.4 Multiplication of two numbers in (1.15) format

TEAM LinG

224 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

In the case of integer (signed or unsigned) multiplication, there is no need to
perform any shifting after the multiplication. For example, multiplying two numbers
in (16.0) format results in a number in (32.0) format. Figure 6.5 illustrates the
concept behind the multiplication of signed integers. The 32-bit integer multiplica-
tion result must be saved in two 16-bit memory locations. This is because every bit
in the integer multiplication has a signifi cant weighting, and huge error can be gener-
ated when even a few least signifi cant bits are omitted. In the Blackfi n processor,
the (IS) and (IU) options stated in Table 5.2 are used for signed and unsigned integer
multiplication, respectively.

HANDS-ON EXPERIMENT 6.2

Perform the following multiplication operations with the VisualDSP++ BF533/BF537
simulator:

1. 0.5 × −0.5 (both numbers are in (1.15) format)

2. 16,384 × −16,384 (both numbers are in (16.0) format)

3. 0.25 (in (1.15) format) × 1.25 (in (2.14) format)

4. −1.5 (in (2.14) format) × 1.5 (in (2.14) format)

5. 2−15 × 2−15 (both numbers are in (1.15) format)

Load the project fi le exp6_2.dpj in directory c:\adsp\chap6\exp6_2 and fi ll in
the missing numbers in the program exp6_2.asm. Open the following register windows:

• Arithmetic status window: Registers Æ Core Æ Status Æ Arithmetic Status.
Observe the AV0 and AV1 bits, which indicate saturation in the A0 and A1 accumula-
tors, respectively. The V bit indicates data register overfl ows when written from ALU
to data register. A value of “1” indicates overfl ow.

• Accumulators window: Registers Æ Core Æ Accumulators. Observe the A0
and A1 accumulators. From the Accumulators Window, it is observed that the
accumulators A0 and A1 are 40-bit accumulators that consist of three fi elds, A0.X,
A0.H, A0.L and A1.X, A1.H, A1.L. The symbol “X” denotes the 8 extended bits
(or guard bits), and the symbols “H” and “L” denote the upper and lower 16 bits of
the remaining 32-bit register, respectively.

• Data register fi le window: Registers Æ Core Æ Data Register File. Observe the
data registers used.

1100 0000 0000 0000

0100 0000 0000 0000

1111 0000 0000 0000 0000 0000 0000 0000

16384
(16.0) format

−16384

(16.0) format

−228 (32.0) format

×

Must store the 32-bit result

Figure 6.5 Multiplication of two signed integers in (16.0) format

TEAM LinG

6.1 Number Formats Used in the Blackfi n Processor 225

Interpret and verify the results. In addition, answer the following questions:

1. Will the multiplication of two numbers in (1.15) format result in overfl ow if the result
is stored in (1.31) format? Any advantage of using (1.15) format for multiplication?

2. Observe and explain the values of A0.X and A1.X after every multiplication from
the fi ve multiplication operations.

3. Will the multiplication of two numbers in (2.14) format result in overfl ow if the result
is stored in (2.30) format?

4. Can you perform −1 × −1 in (1.15) format?

6.1.1.3 Binary Multiply-Add

The multiply-add operation is one of the most commonly used operations in DSP
algorithms. As introduced in Chapters 2 to 4, DSP algorithms such as digital fi lter-
ing and transform require extensive multiply-add operations. Therefore, it is impor-
tant to examine the data formats that may cause overfl ow and use the register
extension in the accumulator when performing multiply-add in the Blackfi n
processor.

When multiplying two numbers in (1.15) format, a result in (1.31) format (after
shift) is obtained. The extended registers A0.X and A1.X allow the result in the
accumulator to sign extend to (9.31) format. This (9.31) format implies that there
are 1 sign bit, 8 integer bits, and 31 fractional bits. Therefore, the result of the accu-
mulator can range from 0x7F FFFF FFFF (most positive number of 256 − 2−31) to
0x80 0000 0000 (most negative number of −256).

When the Blackfi n processor performs multiply-add operations such as in FIR
fi ltering, the extended registers support the sequence of additions without overfl ow.
These extended registers with 8 guard bits provide the headroom for accumulated
products to temporarily overfl ow without setting the AV0/AV1 fl ag. In the worst case,
a number 0x7FFF is multiplied by another number 0x7FFF, and the product is
accumulated in the accumulator. If the same multiply-add operation continues for
more than 28 (or 256) times, the 40-bit accumulator is saturated to 0x7F FFFF FFFF
without overfl ow. This worst-case scenario is shown in the following experiment.

HANDS-ON EXPERIMENT 6.3

Load the project fi le exp6_3.dpj in directory c:\adsp\chap6\exp6_3. Set the loop
counter LC0 to 0x100 (256 times). Build and run the project. Increase the loop counter and
observe the AV0 fl ag in the Arithmetic Status Window. It is easy to run this program by
setting a breakpoint on the instruction “idle” and running the program from _main to
idle. It is important to note that this is a very special case, which may never happen in
carefully designed DSP applications. The objective of this experiment is to demonstrate how
the result in the accumulator can be overfl owed into the guard bits.

TEAM LinG

226 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

HANDS-ON EXPERIMENT 6.4

In this experiment, we use the BF533/BF537 simulator to perform multiply-add operations
in FIR fi ltering with the 16-bit multiply-add instruction. The input data and fi lter coeffi cients
can be arranged in the memory as shown in Figure 6.6. The multiply-add operation is
repeated 10 times to complete a single pass of 10-tap FIR fi ltering.

Load the project fi le exp6_4.dpj in directory c:\adsp\chap6\exp6_4 to perform
the single-MAC FIR fi ltering. Modify the program exp6_4.asm to take full advantage of
the dual MACs within the Blackfi n processor. We can save almost 50% of the instruction
cycles for the same 10-tap FIR fi ltering. To profi le the instruction cycles needed to run the
loop with a single MAC versus dual MACs, we set a breakpoint on the following line:

LSETUP (begin_loop, end_loop) LC0=P1;

We also set another breakpoint after the instruction where the accumulator has been stored
to the data register R4 as follows:

W[I2++] = R4.H;

The cycle registers can be viewed by clicking on Registers Æ Core Æ Cycles. Right-
click on the Cycles Window and select Unsigned Integer. Run the program (F5) from
the start until the fi rst breakpoint of the single-MAC program, then reset the counter by
double-clicking on the number in the CYCLES register and typing 0, followed by Enter. Run

0xCD

coeffArray

0x0C

0x9A

0x19

0x66

0x26

0x33

0x33

0x00

0x40

0x00

0x40

0x9A

0x19

0xCD

0x0C

0x00

dataArray

0x40

0x00

0x40

0x00

0x40

0x00

0x40

0x00

0x40

0x00

0x40

0x00

0x40

0x00

0x40

I0 I1

×

AC0

+

R4

R0 R1

Figure 6.6 Program setup for performing 16-bit multiply-accumulate in the Blackfi n processor

TEAM LinG

6.1 Number Formats Used in the Blackfi n Processor 227

the program (F5) to the next breakpoint and record the instruction cycle. Repeat the same
step for the dual-MAC program and note the difference in the instruction cycle count. For
checking, the cycle counts for single and dual MACs are 42 and 23 cycles, respectively.
Obviously, the dual-MAC program is restricted to an FIR fi lter with an even number of
coeffi cients. Extend the above program to an odd-length fi lter.

6.1.1.4 Truncation and Rounding of Multiplication Results

It was observed in preceding sections that the multiplication of two 16-bit numbers
results in a 32-bit product. This result may be stored to memory or register with
16-bit (8-bit or lesser precision). In other words, a 32-bit result with a precision of
2−31 in (1.31) format can be either truncated or rounded to 16-bit with a precision of
2−15 in (1.15) format, or to 8-bit with a precision of 2−7 in (1.7) format as shown in
Figure 6.7.

Truncation reduces the wordlength by simply masking out the lower 16 bits or
24 bits. In Table 5.2, there are two options, (T) and (TFU), to perform truncation of
a 32-bit multiplication result into 16-bit so it can be stored in half-register. However,
these options are applicable to fractional multiplication only.

The Blackfi n processor supports rounding of multiplication results with the RND
option. Similar to truncation, rounding also reduces the precision of the number by
removing the least signifi cant bits. Instead of simply throwing away the P least sig-
nifi cant bits out of the N-bit result (where N > P), we can modify the remaining
(N − P) bits to more accurately represent its former value. Two types of rounding
are used in the Blackfi n processor: unbiased (or convergent) rounding and bias
(round-to-nearest) rounding.

Unbiased rounding returns the number closest to the original number. When
the original number lies exactly halfway between two numbers, unbiased rounding
returns the nearest even number (the rounded result has an LSB of 0). For example,
a number 0.25 (0.01) in 3-bit (1.2) format lies midway between 0.0 and 0.5. When
we perform unbiased rounding to two bits in (1.1) format, we get 0.0 because the
LSB must be 0.

Biased rounding returns the closest number to the original number. However,
the original number that lies exactly halfway between two numbers always rounds
up to the larger of the two. Using the same example as above, the number 0.25 is

Rounding
or

truncation

16-bit

16-bit

32-bit
16-bit
or 8-bit

+
32-bit

accumulator

32-bit

Figure 6.7 Block diagram of the multiply-accumulate functional block in typical digital signal
processors

TEAM LinG

228 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

rounded up to 0.5. Because this method always rounds up, it produces bias in the
rounding. It is also important to note that biased rounding and unbiased rounding
result in the same number when the number is not lying halfway between the
rounded numbers. In addition, when the truncated value is an odd number, both
biased rounding and unbiased rounding result in the same number, even when the
original number is lying halfway between the rounded numbers. For example, round
an 8-bit number 0.6875 in (1.7) format to 4 bits in (1.3) format with both biased and
unbiased rounding methods.

EXAMPLE 6.1

Figure 6.8 shows the difference in result of reducing a 16-bit number to 8 bits with truncation
and unbiased and biased rounding. We also show the steps in performing both unbiased and
biased rounding operations.

QUIZ 6.3

Perform 32-bit to 16-bit truncation and rounding (biased and unbiased) for the fol-
lowing numbers. These numbers are all in (1.31) format and should be truncated
and rounded to (1.15) format.

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 Original 16-bit number
(0.51953125)

0 1 0 0 0 0 1 0 Truncated to 8-bit number
(0.515625). Error = 2-8

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Original 16-bit number
(0.51953125)

Add 1 at bit position 7 and carry

Biased rounding to 8-bit number
(0.5234375). Error = -2-8

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Original 16-bit number
(0.51953125)

Add 1 at bit position 7 and carry

Since the original number lies at the
halfway point between 2 numbers,
we can force bit 8 to 0.
Unbiased rounding to 8-bit number
(0.515625). Error = 2-8 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Figure 6.8 Steps in performing truncation and rounding (biased and unbiased) from 16-bit
number to 8-bit number

TEAM LinG

6.1 Number Formats Used in the Blackfi n Processor 229

1. 0x0000 8001.

2. 0x0001 8000.

3. 0x0001 7FFF.

Can we round or truncate an integer multiplication result?

Blackfi n processors provide several options for biased rounding. The options
RND12, RND, and RND20 extract 16-bit values from bit 12, bit 16, and bit 20, respec-
tively. The RND12 option prescales the input operands by left shifting 4 (16 − 12) bits.
The RND20 option prescales the input operands by right shifting 4 (16 − 20) bits. The
RND option has no prescaling. By default (with no option specifi ed), the Blackfi n pro-
cessor performs unbiased rounding. The RND_MOD bit of the arithmetic status register
ASTAT specifi es the rounding mode. When RND_MOD = 1 the processor uses biased
rounding, whereas when RND_MOD = 0 the processor uses unbiased rounding.

HANDS-ON EXPERIMENT 6.5

Load the project fi le exp6_5.dpj in directory c:\adsp\chap6\exp6_5 into the BF533/
BF537 VisualDSP++ simulator. Build and run the project. Fill in Table 6.6 for different
truncation and rounding modes. Comment on the differences between truncation and unbi-
ased rounding.

Table 6.6 Example of Truncating a 32-Bit Multiplication Result into 16 Bits

Multiplication Result Truncation Unbiased Rounding Biased Rounding

0x6675 × 0x5547
0xA000 × 0x0002
0x6000 × 0x0002

6.1.2 Fixed-Point Extended Format

In some applications like high-end audio signal processing, extended precision (32
bit) is normally preferred to handle the large dynamic range (greater than 100 dB)
of audio signals. The Blackfi n processor is suited for extended-precision arithmetic
because the register fi le is based on 32-bit registers. These registers can be treated
as either a single 32-bit word or two 16-bit halves.

The Blackfi n processor’s instruction set supports a single-cycle 32-bit addition
of the form Rn = Rm + Rp, where n, m, or p is the number index of the register.
Similarly, 32-bit subtraction can be carried out.

32-Bit multiplication involves more operations and memories to derive the fi nal
64-bit result. Usually, a fractional (1.31) format is used for storing the data. For
example, we can perform 32-bit multiplication with several single-cycle 16-bit

TEAM LinG

230 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

multiplications. As shown in Figure 6.9, two 32-bit operands are loaded into R0 and
R1 registers and can be partitioned into two 16-bit halves (R0.H, R0.L, R1.H, R1.
L) for four 16-bit multiplications. The partial results must be correctly aligned with
reference to the MSB before being added together. Because multiplication is carried
out in (1.31) format, the fi nal result is in (1.63) format with the redundant sign bit
removed. In most applications, we only need to save the most signifi cant 32-bit
result. Therefore, the (1.63) format is either rounded or truncated to (1.31) format to
fi t into a 32-bit data register or a 4-byte memory.

To reduce the computational load, the lowest 16-bit multiplication (R0.L × R1.L)
can be removed. This is possible because the contribution from this lowest 16-bit
multiplication is negligible if the fi nal result is truncated to (1.31) format (see
Fig. 6.9). Therefore, the reduced 32-bit multiplication can be stated as:

R0×R1 = (R1.H×R0.H)+(R1.H×R0.L)>>16+(R0.H×R1.L)>>16

HANDS-ON EXPERIMENT 6.6

This experiment demonstrates how to perform 32-bit multiplication. We use the same data
as in Hands-On Experiment 6.4, but extend the 16-bit data and coeffi cients into 32-bit data
sets. Therefore, the 10-tap FIR fi lter is now operating with a 32-bit precision. Load the project
fi le exp6_6.dpj in directory c:\adsp\chap6\exp6_6 into the BF533/BF537 simulator
to perform the single-MAC FIR fi ltering using 32-bit precision. Note that reduced 32-bit
multiplication is being used in this program.

It is noted that there are two types of multiplication in the program. The fi rst
type uses the mixed-mode (M) option and is applied to the (R1.H × R0.L) and

R0.H R0.L

R1.H R1.L ×

32-bit

16-bit

R0.L × R1.L

R0.H × R1.L

R1.H × R0.L

R1.H × R0.H

R0 × R1 = (R1.H×R0.H) + (R1.H×R0.L) >> 16 +
 (R0.H×R1.L) >> 16 + (R0.L×R1.L) >> 32

R0

R1

+

>> 32

>> 16

>> 16

Aligned
to the last
partial
result

32-bit

64 bits

Figure 6.9 A 32-bit multiplication using several 16-bit multiplications

TEAM LinG

6.1 Number Formats Used in the Blackfi n Processor 231

(R0.H × R1.L) multiplications. The mixed-mode option treats the fi rst operand as
signed and the second operand as unsigned to produce a 32-bit result. In fractional
multiplication, the multiplication of two numbers in (1.15) and (0.16) formats pro-
duces a result in (1.31) format. There is no automatic left shift by 1 bit. The second
type of multiplication, (R0.H × R1.H), is performed in the default sign fractional
option. Extend this experiment to perform a full 32-bit multiplication. Compare the
fi lter outputs (in 32 bits) with reduced and full 32-bit multiplications.

6.1.3 Fixed-Point Data Types

The Blackfi n C compiler supports eight scalar data types and two fractional data
types as shown in Table 6.7. Fractional data types can be represented in either
fract16 (1.15) format or fract32 (1.31) format. However, these fractional data
types are reserved only for fractional value built-in functions. In Chapter 8, we give
more examples using these data types, explain different programming styles, and
use built-in functions and a DSP library to ease the task of writing code.

6.1.4 Emulation of Floating-Point Format

In general, fi xed-point processors perform fi xed-point arithmetic. Fixed-point pro-
cessors have higher processing speed, lower power consumption, and lower cost
compared to fl oating-point processors, such as the SHARC processor [47] from
Analog Devices. Floating-point processors usually consist of 32-bit registers and
thus offer higher precision and wider dynamic range compared to fi xed-point
processors.

Although Blackfi n processors are designed for native fi xed-point computations,
they can also emulate fl oating-point operations in software. To standardize the

Table 6.7 Fixed-Point Data Types

Type Number Representation

char 8-bit signed integer
unsigned char 8-bit unsigned integer
short 16-bit signed integer
unsigned short 16-bit unsigned integer
int 32-bit signed integer
unsigned int 32-bit unsigned integer
long 32-bit signed integer
unsigned long 32-bit unsigned integer
fract16 16-bit signed (1.15) fractional number
fract32 32-bit signed (1.31) fractional number

TEAM LinG

232 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

fl oating-point formats, the Institute of Electrical and Electronics Engineers (IEEE)
introduced a standard for representing fl oating-point numbers in 32-bit (single preci-
sion), ≥43-bit (extended single precision), 64-bit (double precision), and ≥79-bit
(extended double precision) formats. These formats are stated in the IEEE-754
standard [7].

The fl oating-point number consists of three fi elds: sign bit, exponential bits, and
mantissa bits. The sign bit represents the sign of the number (1 for negative and 0
for positive). The exponential bits contain the value to be raised by a power of two,
and the mantissa bits are similar to the fractional bits in the fi xed-point number
format. As shown in Figure 6.10(a), the IEEE fl oating-point (single precision) format
is expressed as

x = − × ×−()1 2 1127s man,exp . (6.1.1)

where the sign bit is b31, the exponential bits (exp) are 8 bits from b30 to b23, and the
mantissa bits (man) are 23 bits from b22 to b0. The double-precision format shown
in Figure 6.10(b) can be expressed as

x = − × ×−()1 2 11023s man,exp . (6.1.2)

where the sign bit is b63, the exponential bits are 11 bits from bits b62 to b52, and the
mantissa bits are 52 bits from b51 to b0.

The exponential value is used to offset the location of the binary point left or right.
In the IEEE standard, the exponential value is biased by a value of 127 (single preci-
sion) or 1,023 (double precision) to obtain positive and negative offsets. A set of rules
for representing special fl oating-point data types is stated in the IEEE-754 standard.

An important difference can be observed between fi xed-point and fl oating-point
numbers. In fi xed-point representation, the radix point is always at the same location.
In contrast, the fl oating-point number has a movable radix point that can be posi-
tioned to represent very large or very small numbers. Therefore, fl oating-point DSP
processors automatically scale the number to obtain the full-range representation of
the mantissa, which is done by increasing or decreasing the exponential value for
small or large numbers, respectively. In other words, fl oating-point processors track
the number and adjust the value of the exponent.

s exp (8-bit) man (23-bit)

 31 30 23 22 0

(a) Single precision floating-point format.

s exp (11-bit) man (52-bit)

63 62 52 51 0

(b) Double precision floating-point format.

Figure 6.10 IEEE-754 fl oating-point formats

TEAM LinG

6.1 Number Formats Used in the Blackfi n Processor 233

6.1.4.1 Floating-Point Data Types

The Blackfi n C compiler supports two fl oating-point data types as shown in Table
6.8. Note that the data type double is equivalent to float on Blackfi n processors
because 64-bit values are not supported directly by the hardware. Therefore, 64-bit
double-precision fl oating-point numbers must be implemented with software emula-
tion. In general, it is not recommended to perform fl oating-point operations on the
Blackfi n processors because of higher cycle count compared to the fi xed-point
operations.

6.1.4.2 Floating-Point Addition and Multiplication

To perform fl oating-point addition and subtraction, the smaller of the two numbers
must be adjusted such that they have the same exponential value.

EXAMPLE 6.2

Add two fl oating-point numbers 0.5 × 22 and 0.6 × 21. The smaller of these numbers is
0.6 × 21 and must be adjusted to 0.3 − 22 by increasing the exponent to match 0.5 × 22. The
two numbers now can be added to become 0.8 × 22. The fi nal answer has a mantissa of 0.8
and an exponent of 2.

QUIZ 6.4

The fl oating-point numbers given in Example 6.2 are not defi ned in IEEE-754
format. Express the numbers in single-precision IEEE-754 fl oating-point format and
perform the fl oating-point addition.

Floating-point multiplication can be carried out in a more straightforward
manner. The mantissas of the two numbers are multiplied, whereas the exponential
terms are added without the need to align them.

EXAMPLE 6.3

Multiply 0.5 × 22 by 0.6 × 21. In this case, the mantissa 0.5 is multiplied by 0.6 to get 0.3,
and the exponents are added together (2 + 1) to become 3. The result is 0.3 × 23. How do we
perform the multiplication with IEEE-754 format?

Table 6.8 Floating-Point Data Types

Type Number Representation

float 32-bit IEEE single-precision fl oating point
double 32-bit IEEE single-precision fl oating point

TEAM LinG

234 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

6.1.4.3 Normalization

Normalization of fl oating-point numbers is an important step of fl oating-point
representation. A fl oating-point number must be normalized if it contains redundant
sign bits in the mantissa. In other words, all bits in the mantissa are signifi cant
and provide the highest precision for the number of available mantissa bits. Nor-
malization is required when comparing two fl oating-point numbers. After the two
numbers are normalized, the exponents of these numbers are compared. If the
exponents are equal, the mantissas are examined to determine the bigger of the two
numbers.

EXAMPLE 6.4

This example demonstrates how to normalize a fl oating-point number. A fl oating-point
number 16.25 is represented in binary as 10,000.01 × 20, which can be normalized to
1.000001 × 24 by left-shifting the binary point by 4 bits. Normalization is used to maximize
the precision of a number. Therefore, the normalized binary number always has a signifi cant
bit of 1 and follows the binary point.

QUIZ 6.5

Express the following fl oating-point numbers in normalized single-precision IEEE-
754 format:

1. 0.125

2. 23.125

3. Smallest positive number 2−126

4. Largest positive number 1.99999988079 × 2127

6.1.4.4 Fast Floating-Point Emulation

To reduce the computational complexity of using the IEEE-754 standard, we can
relax the rules by using a fast fl oating-point format [40]. This two-word format is
employed by the Blackfi n processor to represent short (32 bit) and long (48 bit) fast
fl oating-point data types. The two-word format consists of an exponent that is a 16-
bit signed integer and a mantissa that is either a 16-bit (short) or a 32-bit (long)
signed fraction as shown in Figure 6.11.

Floating-point emulation (both IEEE-754 and fast formats) on fi xed-point
DSP processors is very cycle intensive because the emulator routine needs to
take care of both the exponent and the mantissa. It is only worthwhile to
perform emulation on small sections of data that require high dynamic range and
precision. A better approach is to use the block fl oating-point format, which is
described next.

TEAM LinG

6.1 Number Formats Used in the Blackfi n Processor 235

6.1.5 Block Floating-Point Format

In block fl oating-point format, a set (or block) of data samples share a common
exponent. A block of fi xed-point numbers can be converted to block fl oating-point
numbers by shifting each number left by the same amount and storing the shift value
as the block exponent. Therefore, the data samples are still stored in fi xed-point
format, for example, (1.15) format, and the common exponent is stored as a separate
data word. This arrangement results in a minimum memory requirement compared
to the conventional fl oating-point format. In general, the common exponent for the
group of numbers is derived from the number with the largest absolute value.

A block fl oating-point format combines the advantages of both fi xed-point and
fl oating-point formats. The block fl oating-point format allows a fi xed-point proces-
sor to increase its dynamic range as a fi xed-point computation without the extensive
overhead and memory needed to emulate fl oating-point arithmetic. It has a common
exponent for all data values within the same data block and preserves the precision
of a fi xed-point processor.

EXAMPLE 6.5

This example groups and represents 10 numbers with block fl oating-point numbers. These
numbers are 0.012, 0.05, −0.03, 0.06, −0.009, −0.01, 0.07, 0.007, −0.09, and 0.01. These
numbers can be represented in fi xed-point (1.15) format hexadecimal as 0x0189, 0x0666,
0xFC29, 0x07AE, 0xFED9, 0xFEB8, 0x08F6, 0x00E5, 0xF476, and 0x0148. They are associ-
ated to a common exponent of 3. It is noted that these fi xed-point numbers in (1.15) format have
at most three nonsignifi cant, redundant sign bits. Therefore, each data value within this block
can be normalized by left-shifting of three bits to become 0x0C48, 0x3330, 0xE148, 0x3D70,
0xF6C8, 0xF5C0, 0x47B0, 0x0728, 0xA3D8, and 0x0A40 with a common exponent of 0.

The Blackfi n processor provides exponent detection and sign bit instructions to
adjust the exponential value for the block of data samples. The sign bit instruction
SIGNBITS returns the number of sign bits in a number minus 1 (also the reference
exponent). It can be used in conjunction with the ASHIFT instruction to normalize
the number. The exponent detection instruction EXPADJ is used to identify the
largest magnitude of the numbers based on their reference exponent derived from

 exp (16-bit) man (16-bit)

 31 16 15 0

 47 32 31 0

 exp (16-bit) man (32-bit)

(a) Fast floating-point (short)

(b) Fast floating-point (long)

Figure 6.11 Fast fl oating-point formats

TEAM LinG

236 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

the sign bit instruction. If block fl oating-point numbers have an exponent that is less
than the reference exponent, right-shift these numbers by P bits (where P is the
reference exponent minus the detected exponent) to maintain the reference exponent
before the next process.

For example, if the reference exponent of the block fl oating-point numbers given
in Example 6.5 is 3, and the exponent is changed to 1 (or 1 redundant sign bit) after
processing, the numbers within the block can be shifted by 2 bits to maintain the
reference exponent of 3. Therefore, the block fl oating-point format can be used to
eliminate the possibility of overfl owing.

6.2 DYNAMIC RANGE, PRECISION,
AND QUANTIZATION ERRORS

This section discusses several practical issues on the dynamic range and precision
of digital signals. We also study a common error occurring in fi xed-point imple-
mentation called the quantization error. Many factors contribute to this error, includ-
ing nonperfect digitization of the input signal, fi nite wordlength of the memory (or
register), and rounding and truncation of fi xed-point arithmetic. MATLAB experi-
ments are developed to illustrate these important concepts.

6.2.1 Incoming Analog Signal and Quantization

As introduced in Chapters 1 and 2, the incoming analog signal, x(t), is sampled at
a regular interval of Ts seconds. These samples must be quantized into discrete
values within a specifi c range for a given number of bits. Therefore, the analog-to-
digital converter (ADC) performs both sampling and quantization of the analog
signal to form a discrete-time, discrete-amplitude data sample called the digital
signal as shown in Figure 6.12.

For a B-bit ADC with full-scale (peak to peak) voltage of VFS, the physical
quantization interval (step) or LSB is defi ned as

Δ =
V

B
FS

2
. (6.2.1)

Ts

Input

Output

Sample-and-hold Quantizer

Analog-to-digital converter

Analog
input

Digital
output

Figure 6.12 Sampling and quantization of the ADC

TEAM LinG

For example, the AD1836A CODEC used in the BF533 EZ-KIT has four ADC
channels. The maximum ADC resolution is 24 bits, and the full-scale voltage is
6.16 V. Therefore, the number of quantization levels is 224 = 16,777,216 and the
quantization step Δ = 0.367 μV.

Equation 6.2.1 is applicable for a linear quantizer that has a midrise character-
istic as shown in Figure 6.13(a). In the midrise quantizer, there are 2B quantization
levels. There is however, no zero output level in the midrise quantizer. An alternate
linear quantizer has a midtread characteristic as shown in Figure 6.13(b). In contrast
to the midrise quantizer, the midtread quantizer always has an odd number (2B − 1)
of quantization levels. The midtread quantizer has a zero output level, and it is often
preferred for audio signals.

A quantization error (or noise) exists between the analog-valued discrete-time
signal and its corresponding discrete-valued digital signal. The quantization errors
depend on the type of quantizer used. For a simple linear quantizer, quantization
errors are distributed uniformly between ±Δ/2. When an analog-valued discrete-
time sample is halfway between two discrete levels, the quantizer quantizes the
analog sample into the upper discrete level. In this situation, a maximum absolute
quantization error of Δ/2 occurs. In other words, the quantization error of an ideal
ADC can never be greater than ±1/2 of LSB. The mean and variance of the quanti-
zation error e(n) are:

me = 0 (6.2.2)

σe
2 2 12= Δ . (6.2.3)

HANDS-ON EXPERIMENT 6.7

This experiment quantizes an incoming analog signal x(t) with the MATLAB program
exp6_7.m in directory c:\adsp\chap6\MATLAB_ex6. It generates a 200-Hz sine wave
sampled at 4 kHz.

fs = 4000; % sampling rate is 4 kHz
f = 200; % frequency of sinewave is 200 Hz

(a) Midrise quantizer (b) Midtread quantizer

0

Output
Output

Input
Input

Figure 6.13 Two different quantizers: midrise (a) and midtread (b)

6.2 Dynamic Range, Precision, and Quantization Errors 237

TEAM LinG

238 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

n = 0:1/fs:3; % time index n to cover 3 seconds
xn = sin(2*pi*f*n); % generate sinewave
figure(1),plot(n, xn);grid on;
soundsc(xn_, fs); % listen to the quantized signal

This sine wave can be quantized to 16 bits with a scaling factor of 32,768 for (1.15)
format with the following MATLAB code:

xn_fix_1_15 = fix((2^15)*sin(2*pi*f*n/fs));
index = (xn_fix_1_15 == 2^15);
xn_fix_1_15(index) = 2^15–1;
figure, plot(n, xn_fix_1_15); grid on;
soundsc(xn_fix_115, fs); % listen to the quantized signal

Repeat the same process of quantizing the sinewave to:

1. 8 bits, using (1.7) format with scaling factor of 128

2. 4 bits, using (1.3) format with scaling factor of 8

3. 2 bits, using (1.1) format with scaling factor of 2

Can you still hear the sine wave encoded with 2 bits? Perform FFT over a single period
of these quantized signals and observe their magnitude spectrum plots. Explain the differ-
ences in what you hear. Replace the sine wave with a speech wave fi le, timit.wav, and
repeat the quantization process with different wordlengths. Can you still perceive the speech
signal using 2 bits?

6.2.2 Dynamic Range, Signal-to-Quantization
Noise Ratio, and Precision

The dynamic range of a digital signal is defi ned as the difference between the largest
and smallest signal values. If noise is present in the system, the dynamic range is
the difference between the largest signal level and the noise fl oor. Dynamic range
is also commonly defi ned by taking the logarithm of the ratio between the largest
signal level and the noise fl oor (assuming signal is inaudible below the noise fl oor)
as follows:

dynamic range
largest signal level

dB= () ()20 10log (6.2.4)

The signal-to-quantization noise ratio (SQNR) has the same defi nition as
dynamic range expressed in Equation 6.2.4 when noise is measured in the absence
of any signal. In theory, there is an increase of SQNR and dynamic range by approxi-
mately 6 dB for every bit increased. Therefore,

dynamic range SQNR dB ,= ≈ × ()6 B (6.2.5)

where B is the wordlength of the ADC. A more accurate expression is stated in
Chapter 7. For example, if an ADC has a wordlength of 16 bits, the dynamic range
is approximately 96 dB. In addition, the overall dynamic range of the system is
always bounded by the ADC. When performing signal processing, a higher precision

noise fl oor

TEAM LinG

(>16 bits) is normally preferred to maintain this level of dynamic range. There are
other sources of quantization errors, which are explained in Section 6.2.3.

QUIZ 6.6

A 16-bit ADC is used for “CD-quality” audio. The 16-bit digital sample is trans-
ferred to a processor that operates on 16-bit wordlength. However, three bits of
truncation error occurs when a simple audio processing algorithm is performed in
the processor. These data samples are sent to the 16-bit DAC.

1. What is the SQNR at the ADC?

2. What is the SQNR after processing?

3. How do we compensate for the loss of the SQNR?

4. Is there a way to increase the SQNR of the overall system?

QUIZ 6.7

A 12-bit converter is used to convert a temperature reading to a digital value once
every second, that is, a sampling frequency of 1 Hz.

1. What is the temperature range to be displayed if the temperature resolution
is 0.1°C?

2. If oversampling of the temperature readings is allowed, specify the over-
sampling factor that allows an increase of resolution to 16 bits. Hint: Every
factor of 4 times oversampling results in an increase of 1-bit precision.

3. What is the maximum temperature range that can be achieved with 16-bit
precision if the temperature resolution is now 0.01°C?

EXAMPLE 6.6

The AD1836 audio CODEC [41] offers 24-bit, 96-kHz multichannel audio capability. It has
a dynamic range of 105 dB. A digital audio system has 20-dB headroom and uses either
16-bit or 32-bit wordlength in the Blackfi n processor as shown in Figure 6.14.

The dynamic range of the 16-bit processor is not suffi cient to preserve the data
samples from the 24-bit ADC. Therefore, a 32-bit wordlength can be used to pre-
serve the 24-bit precision. Using 32-bit wordlength and assuming that each bit con-
tributes to 6 dB of SQNR gain, there are approximately 14 bits below the noise fl oor
of the AD1836 CODEC. This extra fl oor room is useful in keeping the error in
arithmetic computation below the noise fl oor. In conclusion, preserving the quality
of 24-bit samples requires at least 32 bits (or extended precision) for signal process-
ing. However, to keep the programming simple, we use the 16-bit mode of the
AD1836 CODEC and perform 16-bit computations in the Blackfi n processor in most
of the experiments and exercises in this book.

6.2 Dynamic Range, Precision, and Quantization Errors 239

TEAM LinG

240 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

Precision defi nes the resolution of the digital signal representations. In fi xed-
point format, precision equals to the size of the LSB of the fraction (see Table 6.2).
For example, the precision of (1.15) format is 2−15 and the precision of (16.0) format
is 1. Therefore, the wordlength of the fi xed-point format governs its precision. For
the fl oating-point format, precision is derived as the minimum difference between
two numbers with a common exponent.

QUIZ 6.8

Complete Table 6.9 by stating the precision and dynamic range of the number
formats. Comment on the differences between fi xed-point and fl oating-point
representations.

By default, MATLAB is operating in IEEE-754 double-precision fl oating-point
format (64 bits). Type in the following MATLAB commands to confi rm:

eps % precision used in MATLAB
realmax % maximum number represented in MATLAB
realmin % smallest number represented in MATLAB

6.2.3 Sources of Quantization
Errors in Digital Systems

Besides analog-to-digital and digital-to-analog quantization noise, there are other
sources of quantization errors in digital systems. These error sources include:

1. Coeffi cient quantization

2. Computational overfl ow

3. Quantization error due to truncation and rounding

Headroom

 +20 dB

 0 dB

AD1836A 24-bit
ADC/DAC noise floor

-85 dB

96 dB
of

dynamic
range

-76 dB

192 dB
of

dynamic
range

16-bit wordlength 32-bit wordlength

-172 dB

14 extra bits below
noise floor

Figure 6.14 Comparison of AD1836 CODEC noise fl oor with different wordlengths

TEAM LinG

6.2.3.1 Coeffi cient Quantization

When a digital system is designed for computer simulation, the coeffi cients are
generally represented with fl oating-point format. However, these parameters are
usually represented with a fi nite number of bits in fi xed-point processors with a
typical wordlength of 16 bits. Quantization of coeffi cients can alter the characteris-
tics of the original digital system. For example, coeffi cient quantization of an IIR
fi lter can affect pole/zero locations, thus altering the frequency response and even
the stability of the digital fi lter.

HANDS-ON EXPERIMENT 6.8

This example uses FDATool (introduced in Chapter 4) to examine the fi lter coeffi cient
quantization effects. FDATool allows quick examination of various quantization errors
including coeffi cient quantization. Open FDATool and design a 6-tap FIR low-pass fi lter by
entering the parameters shown in Figure 6.15. Click on the Design Filter button to start the
fi lter design. Observe the magnitude response by clicking on the magnitude response

icon .

Table 6.9 Precision versus Dynamic Range

Number Format Precision Dynamic Range Dynamic Range in dB
 (for positive range)

(0.16) fi xed point
(1.15) fi xed point
(2.14) fi xed point
(16.0) fi xed point
IEEE-754 single
 precision
IEEE-754 double
 precision

Figure 6.15 Parameters used for designing an FIR fi lter

6.2 Dynamic Range, Precision, and Quantization Errors 241

TEAM LinG

242 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

We can quantize the fi lter coeffi cients by using the fi xed-point (1.15) format in the

Blackfi n processor. Simply click on the Set quantization parameters icon to open a
new window as shown in Figure 6.16 and set the wordlength and fractional length as 16 and
15, respectively. Click on Apply to start the quantization.

Display the fi lter coeffi cients by clicking on the icon at the top row of the window.
A window displays the coeffi cients quantized in (1.15) format and reference fl oating-point
double-precision format as shown in Figure 6.17. It is noted that there are variations between
the reference and quantized coeffi cients. The difference is called the coeffi cient quantization
error. Compute the sum of the squared quantization error for the 6-tap FIR fi lter. In this
example, the quantization error has a marginal effect on the reference fi lter response based
on double-precision fl oating-point format.

Repeat the experiment with (1.31) and (1.7) formats. Compare the quantization errors
with different data formats. In particular, examine the frequency response and pole/zero
plots for the (1.7) format and comment on the results.

As shown in the preceding experiments, coeffi cient quantization can affect the fre-
quency response of the fi lter. In the case of an IIR fi lter, the coeffi cient quantization can even
cause instability if the quantized poles lie outside the unit circle. Therefore, careful design
of the quantized IIR fi lter must be performed to ensure stability before porting the coeffi -
cients to the fi xed-point processor.

Figure 6.16 Coeffi cient quantization settings

Figure 6.17 Comparison of quantized and reference fi lter coeffi cients

TEAM LinG

HANDS-ON EXPERIMENT 6.9

A simple 2nd-order IIR fi lter with a complex pole-pair at 0.9998∠ ± 1.04 radians (where ∠
is the angular frequency) is fi rst designed with double precision, using FDATool. Click on

the Pole/Zero Editor icon in FDATool. A new window that shows the pole/zero plot
of the fi lter is displayed. Remove all the zeros and poles by right-clicking on the z-plane,
choosing Select All, and then pressing Delete. A blank window appears. Click on the Add

pole icon and select Conjugate in the menu. Enter the magnitude and phase as shown
in Figure 6.18. Observe the impulse response and note that it will gradually decay to zero.

Click on the Set quantization parameter icon . A new window appears; select
Fixed-Point under Filter arithmetic. We now implement the designed IIR fi lter with the
fi xed-point (1.7) format as shown in Figure 6.19.

Click on Apply and examine the impulse response of the quantized IIR fi lter. Note that
the quantized fi lter using the (1.7) format produces an oscillatory impulse response, which
is undesirable. Examine the quantized and reference (using double-precision fl oating-point
format) coeffi cients of the IIR fi lter and explain the differences.

Figure 6.18 Pole-zero editor

Figure 6.19 Quantizing fi lter coeffi cients

6.2 Dynamic Range, Precision, and Quantization Errors 243

TEAM LinG

244 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

6.2.3.2 Computational Overfl ow

Because of the fi nite memory/register length, the results of arithmetic operations
may have too many bits to be fi tted into the wordlength of the memory or register,
for example, when adding two 8-bit numbers in (1.7) format, 0111 0000b (0.875)
and 0100 1111b (0.6171875), and saving the result into another 8-bit register as 1011
1111b (−0.5078125). This is the wrong result, because adding two positive number
results in a negative number! Figure 6.20 shows an 8-bit number circle for adding
the above two numbers shown in hexadecimal. The positive number starts from the
12 o’clock position (or 0x00) of the number circle and increments in a clockwise
direction to the most positive number of 0x7F. The next position clockwise after the
0x7F is immediately the most negative number of 0x80. The negative number range
is decremented (in clockwise direction) toward 0xFF, which is the smallest negative
number. When adding the preceding numbers, we fi rst locate 0x70 (0.875) and add
0x4F (0.6171875) in a clockwise manner to reach the overfl owed answer at 0xBF.
When performing subtraction, the direction is changed to counterclockwise. It is
also noted that when adding two numbers of different signs overfl ow will never
occur. Therefore, the number circle is a useful tool to illustrate the concept of
number overfl ow in add/subtract operations.

The number circle in Figure 6.20 can be extended to illustrate any addition/
subtraction overfl ow in any fi xed-point and fl oating-point formats. A general rule in
fi xed-point arithmetic is that the sum of M B-bit numbers requires B + log2M bits
to represent the fi nal result without overfl ow. For example, if 256 32-bit numbers
are added, a total of 32 + log2256 (=40) bits are required to save the fi nal result. In
the case of the Blackfi n processor, 40-bit accumulators are available to ensure that
no overfl ow occurs when adding 256 numbers in an extreme case. This extreme case
is demonstrated in Hands-On Experiment 6.3.

One method to avoid arithmetic overfl ow is to perform scaling, followed by
truncation or rounding after every partial sum in order to fi t into the given
wordlength. Scaling is a process of reducing the value of a number with a
certain constant so that the end result can fi t into the wordlength of the processor. In

Overflow
answer!

0xBF
(1011 1111b)

0x70
(0111 0000b)

0x00

0x7F0x80

+ 0x4F

Negative number
range Positive number

range

 0xFF
 0x01

Figure 6.20 A 8-bit number circle and its addition

TEAM LinG

DSP systems, scaling can be applied to the signal or to the internal parameters of the
system. For example, the coeffi cients of the FIR fi lter can be scaled down such that
it has a gain of 1. Alternatively, we can also scale the input signal. However, scaling
reduces the dynamic range (or SQNR) of the digital system. For example, right shift
of the input signal by 1 bit (or scale by 0.5) results in a loss of 6 dB in the dynamic
range of the input signal. Several methods of deriving scaling factors are:

1. Scaling by sum of magnitude of impulse response (L1 norm). In this method,
we constrain the magnitude of the digital system at any node to be less than 1 for
a system using (1.15) format. If the maximum input signal xmax to the digital system
is (1 − 2−15), the output of the digital system is restricted to |y(n)| < 1 provided that
the scaling factor is limited by

G

x hk
k

N
<

=

−

∑
1

0

1

max

, (6.2.6)

where hk is the impulse response of the fi lter with length N. The summation

term, hk
k

N

=

−

∑
0

1

, is also called the L1 norm of the impulse response hk, and it is

denoted as ||hk||1. The scaling factor G can be applied to either the input signal or
the coeffi cients of the fi lter. This scaling factor is the most stringent and guarantees
no overfl ow.

2. Scaling by square root of sum of squared magnitude of impulse response
(L2 norm). Besides using the magnitude of the impulse response, we can also relax
the restriction by using a scaling factor as follows:

G

x hk
k

N
<

⎛
⎝⎜

⎞
⎠⎟=

−

∑

1

2

0

1 1 2

max

. (6.2.7)

The term hk
k

N
2

0

1 1 2

=

−

∑⎛
⎝⎜

⎞
⎠⎟

 is called the L2 norm of impulse response, and it is

denoted as ||hk||2. The L2 norm is always less than the L1 norm of hk.

3. Scaling by maximum of frequency response (Chebyshev norm). The preced-
ing two scaling methods are suitable for wideband signals. The third method to
determine the scaling factor is applicable when the input is a narrowband (or sinu-
soidal) signal. In this method, the magnitude response (or system gain) at the input
frequency is fi rst determined, which is multiplied by the maximum input signal xmax

to determine the scaling gain as follows:

G
x H k

<
()[]

1

max max
.

ω
(6.2.8)

6.2 Dynamic Range, Precision, and Quantization Errors 245

TEAM LinG

246 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

The term max[H(ωk)] is known as the Chebyshev norm of the frequency
response H(ω). The Chebyshev norm guarantees that the steady-state response of
the system to a sine wave input will never overfl ow. We will use an example to
illustrate the effects of using different scaling methods.

EXAMPLE 6.7

A simple 2nd-order IIR fi lter with the transfer function

H z
z z

z z
() = + +

+ +

− −

− −

1 0 72

1 0 052 0 8

1 2

1 2

.

. .

is implemented in MATLAB fi le example6_7.m. Observe the impulse response and
compute the L1 and L2 norms. Also, compute the frequency response of the transfer function
and pick the highest magnitude to compute the Chebyshev norm. It is noted that L1 norm ≥
Chebyshev norm ≥ L2 norm. The L1 norm is the most conservative. We can observe the
frequency responses after scaling by the three norms as shown in Figure 6.21. The most
conservative scaling has all its magnitude below 1. It is observed in Figure 6.21 that the L2

norm allows magnitude to exceed 1 within a normalized frequency from 0.2 to 0.55. The
Chebyshev norm has its maximum frequency response at around 0.5.

In this example, we only compute the scaling factor based on the output of the IIR fi lter.
However, overfl ow can occur in other addition nodes. Assuming that (1.15) format is used
and multiplication nodes will not overfl ow, there is a need to compute the scaling factor for
all addition nodes. The overall scaling factor for the fi lter is based on the largest norm.
Fortunately, we can skip the scaling factor computation for all nodes, if the nonsaturating

(a) Freq response under L1 norm

(b) Freq response under L2 norm

(c) Freq response under Chebyshev norm

0
0

1

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

00

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0

1

2

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

Figure 6.21 Frequency responses after scaling by L1 (a), L2 (b), and Chebyshev (c) norms

TEAM LinG

mode is used and internal nodes are allowed to overfl ow. The fi nal output node must be
computed to ensure that no overfl ow is allowed at the fi nal result. This intermediate overfl ow
is also demonstrated in Hands-On Experiment 6.1 on the Blackfi n processor.

Another method to avoid overfl ow is use of the saturation mode of the proces-
sor. The saturation mode limits any positive or negative number from exceeding its
most positive (0x7FFF) or most negative (0x8000) for a 16-bit number, respectively.
In consecutive summations, the saturation mode can be applied to every summation,
but this step will produce too much error. A better approach is to allow intermediate
overfl ow during consecutive summation and only apply saturation in the fi nal
addition.

In Section 6.1.1.2, we discussed several aspects of overfl ow due to multiplication
in different formats. In particular, (1.15) format is preferred because multiplying
two numbers in (1.15) format cannot lead to overfl ow, with the exception of −1 ×
−1 = 1. A method to overcome this exceptional case is to saturate the result to
1 − 2−15.

6.2.3.3 Truncation and Rounding

As discussed in Section 6.1.1.4, truncation or rounding is used after multiplication
to store the result back into the memory. Truncation or rounding must also be used
in other arithmetic operations such as addition, division, square root, trigonometric
functions, and other operations. In general, the distribution of errors caused by
rounding is uniform, resulting in quantization errors with zero mean and variance
of Δ2/12. Truncation has a bias mean of Δ/2 and a variance of Δ2/12.

EXAMPLE 6.8

There are several MATLAB functions that can be used to truncate and round numbers.
These functions include round, which rounds a number to the nearest integer; floor, which
rounds a number toward fl oor (or negative infi nity); ceil, which rounds a number to
ward ceiling (or positive infi nity); and fix, which rounds a number toward zero (or
truncation). We can simply plot a 1-Hz sine wave, sampling at 20 Hz, using different round-
ing and truncation methods to illustrate the behaviors of rounding and truncation. Run
example6_8.m located in directory c:\adsp\chap6\MATLAB_ex6 to obtain the
graphs shown in Figure 6.22. This example shows that the round function has the smallest
squared error and the fix function has the highest squared error. From Figure 6.22, the floor
function has negative cumulative bias error, whereas the ceil function has positive cumula-
tive bias error. We can also relate the rounding schemes in MATLAB to the rounding
schemes in the Blackfi n processor as stated in Section 6.1.1.4. Unbiased and bias rounding
in Blackfi n processors are equivalent to the round and ceil functions in MATLAB,
respectively.

In an IIR fi lter, limit cycles can occur because of the truncation and rounding of mul-
tiplication results or addition overfl ow. The limit cycles cause periodic oscillations in the
output of the IIR fi lter, even when no input signal is applied to the fi lter. We use a simple
example to illustrate this phenomenon.

6.2 Dynamic Range, Precision, and Quantization Errors 247

TEAM LinG

248 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

HANDS-ON EXPERIMENT 6.10

A simple 2nd-order IIR fi lter is shown in Figure 6.23. The summation of the feedback paths
is rounded before storing to the delay elements. Different rounding and truncation schemes
can be examined to test their suitability. A MATLAB fi le, exp6_10.m, is written to imple-
ment the IIR fi lter with different rounding schemes. The initial internal state of the IIR fi lter
is given as y(−2) = 0 and y(−1) = 0.001, and no input is applied to the fi lter. Examine the
response (limit cycle oscillation) of this fi lter under different rounding schemes. Suggest a
method to remove the limit cycle oscillation.

Figure 6.22 Performance of different rounding schemes used in MATLAB

+

z-1

z-1

+
Rounding
schemes

0.98

–0.75

x(n) = 0 y(n)

y(n–1)

y(n–2)

Figure 6.23 A 2nd-order IIR fi lter with no input applied

TEAM LinG

6.2.3.4 Overall Quantization Errors

In this section, we summarize quantization errors found in a typical digital system.
We use the 4-tap FIR fi lter shown in Figure 6.24 to illustrate different quantization
errors. The quantization error ein fi rst occurs when the analog input signal is con-
verted into digital samples. The ADC wordlength and conversion error degrades the
dynamic range of the digital signal as compared to the analog signal. The
quantized signal is passed into the signal buffer for processing. The dynamic range
of the signal processing path depends on the program defi nitions. These defi nitions
include wordlength used to declare coeffi cients of fi lter and whether truncation or
rounding is applied at the fi nal multiply-accumulate of the FIR fi lter. The coeffi cient
quantization error ecoeff is the error introduced when converting a coeffi cient
from a reference fl oating-point to a fi xed-point representation. There is saturation
error esat if saturation mode is set during the multiply-accumulate operations
and results exceed the dynamic range of the data format. However, saturation
error in the accumulator will only occur in an extreme case. In addition, truncation
error etrunc or rounding error eround will only be considered when transferring
the accumulator result to memory location with shorter wordlength, before
passing to the DAC for conversion into analog signal. The wordlength of DAC
also restricts the fi nal dynamic range and contributes to the DAC quantization
error eout. A fi xed-point simulation tool like FDATool can be used to evaluate
the performance of the digital system under different fi xed-point quantization
errors.

In general, using a double-precision (32-bit) arithmetic in a fi xed-point pro-
cessor ensures that the 16-bit or 24-bit signal samples from the ADC are not
impaired by the quantization noise. Alternatively, a 32-bit fi xed-point or fl oating-
point processor is required to maintain the dynamic range of the input signal. The

x(n)

b0

ecoeff ecoeff ecoeff ecoeff

esat

y(t)
DAC

y(n)

eout(n)

b1 b2

memory

eround/ etrunc

esat esat

Possible quantization errors

ADC z-1 z-1 z-1

× × × ×

+

x(t)

b3

+ +

ein(n)

Figure 6.24 Quantization error sources in a 4-tap FIR fi lter

6.2 Dynamic Range, Precision, and Quantization Errors 249

TEAM LinG

250 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

use of 32-bit arithmetic is particularly crucial for IIR fi ltering. We examine this case
in Section 6.5.

6.3 OVERVIEW OF REAL-TIME PROCESSING

This section discusses important topics on real-time signal processing and defi nes
the terms used in measuring real-time performance. We introduce concepts of real-
time and non-real-time processing and explain the sample-by-sample and block
processing modes. To benchmark real-time performance in embedded signal pro-
cessing, we measure the cycle counts of running different tasks on the Blackfi n
processor. A brief introduction of the power measurement and its relation to the
processing speed is also given, but a detailed discussion on power-saving features
of the Blackfi n processor is postponed to Chapter 8.

6.3.1 Real-Time Versus Offl ine Processing

A real-time system processes data at a regular and timely rate. As shown in Figure
6.25, the inputs of a real-time system are often associated with signal capturing
devices like microphones, cameras, thermometers, etc. The inputs can also come
from digital media streaming devices like audio and video players. The outputs
can be devices like loudspeakers, video display, etc. that play back the processed
signals.

To be more explicit, a real-time system must satisfy certain response time con-
straints. The response time is defi ned as the time between the arrival of input data
sample(s) and the output of processed data sample(s). For example, the response
time constraint for a typical speech processing system is to digitize the analog
speech, process the digital speech, and output the processed signal within a given
sampling period. If the response time exceeds the sampling period, the new speech
sample cannot be retrieved on time and thus violates the real-time constraint. A
more detailed explanation is provided in Sections 6.3.2 and 6.3.3.

Embedded
processor

ADC DAC

Digital I/O

Cameras,
microphones,
thermometers,
etc.

Digital audio and
video bit stream,
etc.

Display monitors,
speakers, headsets,
actuators, etc.

Digital storage,
devices, control
signal, etc.

Figure 6.25 A typical real-time system that receives, processes, and transmits data

TEAM LinG

In contrast, an offl ine processing system is not required to complete the task
within allocated time. For example, we can sample a noisy speech signal, save it in
a data fi le, and run a program on a computer to read the speech samples from the
fi le and perform noise reduction. After processing, we can store the clean signal to
a data fi le and play it back with a loudspeaker. In this way, there is no timing con-
straint to complete the overall receive-process-transmit chain. Offl ine processing
always involves extensive memory storage, and it is often used in fi lm and music
postproduction. The Blackfi n simulator can be used to simulate DSP algorithms in
an offl ine manner because the test data are stored in a data fi le and no time constraint
is imposed on the processing. However, when the same algorithm is implemented
on the Blackfi n processor, real-time processing must be carried out on the incoming
signal.

6.3.2 Sample-by-Sample Processing
Mode and Its Real-Time Constraints

The sample-by-sample processing mode requires that all operations must be com-
pleted within the given sampling period. As shown in Figure 6.26, an audio signal
can be sampled at a sampling period of every Ts seconds. Latency (or response time)
of processing can be defi ned as the total time from the instant the data sample is
read in to the time the digital output is written to the memory. This latency contains
the three subintervals listed below:

1. Tin is the time needed for the processor to copy the current sample from the
ADC into the processor memory. It also includes the program access time.

2. Tsp is the time needed for processing the current data samples. This duration
depends on the complexity of the algorithm and the effi ciency of the
program.

3. Tout is the time needed to output the processed data to the DAC.

The overall overhead time for sample-by-sample processing is denoted as Tos,
which includes both Tin and Tout and the response time to interrupt. At the beginning
of every sampling interval, the ADC samples new data, and the DAC sends out the
processed data.

Tsp Tin Tout

Read ADC
sample

Write DAC
sample

Sample period, Ts

Sampling
ADC and

DAC

Sampling next
ADC and DAC

Ts

Processing single sample

Figure 6.26 Timing details for sample-by-sample processing mode

6.3 Overview of Real-Time Processing 251

TEAM LinG

252 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

The real-time constraint of the sample-by-sample processing is that the process-
ing time Tsp must satisfy

T T Tsp s os≤ − . (6.3.1)

The advantages of using sample-by-sample processing are:

1. Delay between the input and the output is always kept within one sampling
interval.

2. Single-sample storage for input and output samples. In some applications,
multiple channels are acquired, processed, and output within the sampling
interval. The memory requirement is increased to store the multichannel
data samples.

3. Results are kept current within the sampling period.

The disadvantage of sample-by-sample processing is the overhead of program
setup, program access, and latency in reading a new data sample and writing the
processed sample in every sampling interval. The processor must be fast enough to
complete all processing tasks before the arrival of the next input sample to avoid
distortion caused by missing data. A possible method to reduce the processing speed
requirement is to group a block of data samples and perform processing on this
block of data as a batch. The block processing method is introduced in Section
6.3.3.

In addition, some DSP algorithms, such as the fast Fourier transform described
in Chapter 3, require a block of data samples for processing. In this type of block
processing algorithm, sample-by-sample processing cannot be implemented and the
block processing mode must be applied.

6.3.3 Block Processing Mode
and Its Real-Time Constraints

In the block mode, data samples are gathered into an input buffer of N samples and
a whole block of samples are processed after the buffer is full. At the same time, a
new block of N samples are acquired. Figure 6.27 shows block processing for a block
of fi ve samples. The block processing system starts by sampling the fi rst fi ve input
samples from the ADC to form block i. A more detailed description of how data
can be acquired into the processor is presented in Chapter 7. The system continues
to sample another fi ve data samples to form block i + 1. At the same time, the pro-
cessor operates on data samples in block i and sends the fi ve previously processed
samples to the DAC. During the next block period, i + 2, another fi ve newer samples
are acquired. The processor operates on the data samples in block i + 1 and outputs
the processed data samples in block i. Therefore, the data samples are output to the
DAC after a delay of 2NTs seconds.

To perform the block processing shown in Figure 6.27, we need to continuously
save data samples in different memory buffers. Therefore, the memory requirement
is increased. A memory buffering approach known as double (or ping pong) buffer-

TEAM LinG

ing is recommended. As shown in Figure 6.28, double buffering uses two memory
buffers of length N for the input of data and another two buffers of the same length
for the output. When the processor is operating on data in buffer(in) ➊, new input
samples x(n) are saved in buffer(in) ➋. The function of these two buffers is alter-
nated every NTs seconds. This “ping-pong” switching mechanism between data
acquisition and processing is shown in Figure 6.28, with the labels identifying the
buffer used in every block. In the same fashion, the output of data to the buffer and
the sending of data out to the DAC are also alternated between two output buffers,
buffer(out) ➀ and buffer(out) ➁.

To meet real-time constraints for block processing shown in Figure 6.27, the
computational time for block processing Tbp must satisfy

T NT Tbp s ob ,≤ − (6.3.2)

where NTs is the block acquisition time in seconds and Tob is the overhead for block
processing, which is mainly caused by program setup and the response time to get
data in and out of the processor. In general, the overhead for block processing is
lower than for sample-by-sample processing because the program access and setup
time for block data transfer is lower than for single-sample transfer. That is,

Input
block i+5

Output
block i+2

Output
block i+3

Input
block i+2

n

Input
block i+1

y(n), output

NTs

Tbp

Output
block i

Process
block i

Process
block i+1

Process
block i+2

Output
block i+1

Process
block i+3

Process
block i+4

Block delay = 2NTs

Input
block i

Input
block i+3

Input
block i+4

x(n), input

n

1 1 1

1 1

1 2 1 2

12 2

2 2 2

Figure 6.27 Block processing mode (N = 5)

6.3 Overview of Real-Time Processing 253

TEAM LinG

254 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

T NTob os< . (6.3.3)

Therefore, more time is available for the processor to process signal. However,
the disadvantages of using block processing are:

1. Four memory buffers of length N are required for holding input and output
data samples with the double-buffering method. In addition, another two
memory buffers (in and out) are needed for internal processing by the pro-
cessor. A detailed explanation of the data acquisition program and how to
reduce the memory buffer is given in Chapter 7.

2. A delay of 2NTs is incurred in block processing.

3. More complicated programming is needed to manage the switching between
buffers.

A detailed introduction on setting up ADC and DAC to transfer data samples
into the internal memory of processor using the serial ports and the DMA is provide
in Chapter 7.

QUIZ 6.9

An analog signal is sampling at 48 kHz. Frequency analysis using FFT is applied
to a buffer of 5 ms.

1. How many data samples in the 5-ms buffer?

2. What is the order of the FFT that can be used if the FFT is based on the
radix-2 algorithm?

3. What is the frequency resolution?

4. What is the memory requirement if double buffering is used?

5. What is the maximum time available for the processor to compute FFT?

The core clock frequency Fcore used by the processor and the sampling frequency
fs of the real-time system determine the total cycle counts possible within

Processing
core

x(n)

From
ADC/
serial
port
via
DMA

Buffer(in)

Buffer(in)

Input buffers Output buffers

Buffer(out)

Buffer(out)

.
me

m
)ni(.

me
m

)t
uo

(

y(n)

To DAC/
serial port
via DMA

1

2

1

2

Figure 6.28 Implementation of double buffering

TEAM LinG

the data acquisition period. The total time (or deadline) needed for sampling a block
of N samples is NTs (or N/fs.) seconds. The deadline cycle count is therefore given
as

N
NF

f
deadline_cycle

core

s
= . (6.3.4)

As a result, the three ways to increase the deadline cycle are to (1) increase the block
size N at the expense of memory, (2) increase the core clock frequency Fcore at the
expense of higher power consumption, and (3) reduce sampling frequency fs at the
expense of coarser frequency resolution.

6.3.4 Performance Parameters
for Real-Time Implementation

This section examines three important topics of real-time implementation for
embedded systems:

1. Speed and clock frequency of different processors

2. Memory requirements for DSP algorithms

3. Power consumption of the Blackfi n processors

These topics are crucial for selecting a suitable processor to meet the real-time
demand of the given application. We use the Blackfi n processor to examine these
topics.

The current Blackfi n processors operate at a clock speed ranging from 400 to
750 MHz. The instruction cycle time is the inverse of the clock speed. For example,
if the CYCLE register in the Blackfi n processor has recorded 2,000 cycles to com-
plete a task under a clock speed of 600 MHz, the execution time for this task is
computed as 2,000 × (1/600 MHz) = 3.33 μs.

The computational speed of the fi xed-point processor is often specifi ed as
million instructions per second (MIPS), million multiply-accumulate computation
(MMAC), or million operations per second (MOPS). In fl oating-point processors,
million fl oating-point operations per second (MFLOPS) is commonly used. These
numbers are only applicable to describe how fast an individual processor can
perform a task, and cannot be used for comparison among different processors. The
main reason for this is that the term “instruction” refers to different operations in
different processors. For example, in a RISC-like processor, an instruction can be
just a simple addition; in a complex instruction set computer (CISC)-like processor,
a single instruction can perform multiply-accumulate and shift operations. There-
fore, these benchmark numbers are only applicable as an approximation of whether
a certain DSP algorithm can be implemented on a particular processor.

To compute the MIPS needed for the algorithm running within a sampling
period, the user can simply profi le the code, using the following formula:

MIPS instruction cycle sample sample s= () × (). (6.3.5)

6.3 Overview of Real-Time Processing 255

TEAM LinG

256 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

For example, an interrupt service routine (ISR) is profi led to complete a task in
2,000 cycles. The sampling frequency used is 48 kHz, and the ISR is running on
the Blackfi n processor at CCLK = 600 MHz. Assume that the 600-MHz processor
executes one instruction per cycle, which results in a total of 600 MIPS. From Equa-
tion 6.3.5, the algorithm requires 96 MIPS (or 16% of the total available MIPS) to
complete the task.

If block processing is used, Equation 6.3.5 can be computed as:

MIPS instruction cycle samples per block sample s block siz= () × () × 1 ee().
(6.3.6)

As explained in Section 6.3.3, the instruction cycle to compute a block of samples
is shorter compared to sample-by-sample processing. This is mainly due to the
reduced overhead in response to ISR and function call. For example, when process-
ing the above ISR in a block size of 32, the cycle count profi led is 60,000. Therefore,
using Equation 6.3.6, the block algorithm only requires 90 MIPS or 15% of the total
processor MIPS.

EXAMPLE 6.9

A digital signal processor is used to fi lter two channels of audio signal at a sampling fre-
quency of 48 kHz. If a 300-tap FIR fi lter is used and the processor can execute one MAC
instruction in a single cycle, we need 300 MACs for each channel and a total of 600 MACs
for two channels. The dual-channel fi ltering must be completed within 1/(48 kHz) = 20.83 μs.
The processor requires more than 600 × 48 kHz = 28.8 MIPS plus other overhead. This
approximation gives us an idea about selecting a processor with the right MIPS (more than
30 MIPS) to handle the task.

EXAMPLE 6.10

A Blackfi n processor with an instruction cycle time of 2 ns has been chosen to implement
an FIR fi lter. Based on a benchmark given by ADI, a block FIR fi ltering requires (number
of samples/2) × (2 + number of taps) cycles. If the number of samples per block is 64 and
the sampling frequency is 48 kHz, we can fi nd the maximum number of taps available for
processing as: 32 × (2 + maximum number of taps) × 2 ns < 64/(48 kHz). Therefore, the
maximum number of taps ≈ 20,831 taps.

HANDS-ON EXPERIMENT 6.11

This experiment uses the Blackfi n BF533/BF537 EZ-KIT to run a simple FIR fi lter on stereo
channels at a sampling frequency of 48 kHz. The CYCLE register is embedded in the main
program (process_data.c) to benchmark the time needed to process two FIR fi lters. A
background telemetry channel (BTC) is set up to display the cycle count. Load the project

TEAM LinG

fi le exp6_11_533.dpj (or exp6_11_537.dpj) located in directory c:\adsp\chap6\
exp6_11_533 for the BF533 EZ-KIT (or c:\adsp\chap6\exp6_11_537 for the

BF537 EZ-KIT) and build the project. Run the program by clicking on the Run icon .
To view the cycle count, click on View Æ Debug Windows Æ BTC Memory. A BTC
Memory window appears. Right-click on this window to change the display format by click-
ing on Select Format Æ Hex32. Right-click again to turn on the Auto Refresh option and
set a refresh rate of 1 se. Press the SW6 (SW11) button on the BF533 (or the BF537) EZ-KIT
to start the fi lter operation. Observe the cycle count and compute the execution time in
seconds. The core clock frequency used in this program is 270 MHz based on the initial
setup, and block fi ltering is used in this program. Modify the code to profi le the cycle count
to fi lter one channel of signal. Halt the program after running the program. Is the single-
channel cycle count half that of the stereo channels?

HANDS-ON EXPERIMENT 6.12

Following the preceding experiment, we use the statistical profi ling tool to evaluate program
effi ciency and identify the program segment that takes up most of the execution time. From
the Tools menu, select Statistical Profi ling Æ New Profi le. Run the program and press the
SW6 button for the BF533 (or SW11 for the BF537) to activate FIR fi ltering. The percentage
of execution time is shown in the profi le window illustrated in Figure 6.29.

It is shown that about 75% of the execution time is spent on the stereo FIR fi ltering.
Users can also display the accumulated cycle counts by right-clicking on the profi ling
window and selecting View Sample Count. Users can even break down the details of per-
centage execution time within each function by double-clicking on the function name. Now,
press the SW7 switch for the BF533 (or SW10 for the BF537) to deactivate FIR fi ltering.
What happens? Note that the statistical profi ling gives an accumulated result up to the current
time. It is not meant to give an exact execution cycle count at every sample or block of
samples. Users still need to use the CYCLE registers as illustrated in the preceding experi-
ment to profi le the required clock cycles.

Besides processing speed, the processor’s memory also plays an important role in selec-
tion of the right processor. In most DSP processors, data and instruction memories are
addressed in separate memory spaces. The Blackfi n processor has on-chip data and instruc-
tion memory bands, which can be independently confi gured as SRAM or cache as shown in
the BF533/BF537 memory map displayed in Figure 5.17. The data memory requirement can
be estimated based on the algorithm. However, the actual requirement of program memory
can only be known once the program is written and compiled.

Figure 6.29 Statistical profi ling of the fi ltering process

6.3 Overview of Real-Time Processing 257

TEAM LinG

258 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

EXAMPLE 6.11

In a digital system, a 250-tap FIR fi lter is used at a sampling frequency of 8 kHz and with
a resolution of 16 bits. Five minutes of the processed signal need to be saved in the external
memory. The data memory required to store the coeffi cients and data samples is 250 and
249 words, respectively. If block processing mode and double buffering are used, we need
an additional 4N memory locations, where N is the number of samples per block. In addition,
we need to use an additional 8,000 × 5 × 60 = 2.4 M words to store the fi ve minutes of
processed data. We need to examine the compiled memory map fi le to fi nd out the memory
size for the instructions.

HANDS-ON EXPERIMENT 6.13

This experiment examines the size of the main program before and after optimization. From
the existing project loaded into VisualDSP++ in preceding experiment, click on Project Æ
Project Options. In the new window, select General under Link. Click on Generate
Symbol Map under Additional Output to produce an XML fi le that displays the address
and size of different program and data memories. Check whether optimization is used by
clicking on General(1) under Compile. In the fi rst compilation, we disable optimization by
unchecking the Enable optimization [0] box. Build the project and display the XML (.map)
fi le in the debug directory. Search for firc to fi nd the memory size used to implement the
fi lter. Next, enable optimization by checking the Enable optimization [0] box. Make sure
that the slider bar is pointing to the Speed position. Rebuild the project and observe the
memory size used to implement firc. Do you fi nd any change in the memory size after
optimization? There is always a trade-off between speed and memory size optimization. Find
out the smallest memory size with the optimization setting.

In power-sensitive portable multimedia applications, the power consumption of
the processor and its power management capability are becoming the most critical
selection factor. The Blackfi n processor supports a multitiered approach to power
management, and the processor is able to operate in fi ve different operating modes:
full-on, active, sleep, deep sleep, and hibernate. Power consumption is computed
with the following formula:

P
CV f=

2

2
clk , (6.3.7)

where P is the power in watts, C is the capacitance in farads, V is the supply voltage
in volts, and fclk is the clock frequency in hertz. Therefore, power consumption can
be reduced by lowering the capacitance, supply voltage, and clock frequency. The
Blackfi n processor allows the operating clock frequency for the core (CCLK) and
system (SCLK) to be varied. At the same time, the Blackfi n processor also allows
core voltage to be changed in tandem with frequency change. This frequency-voltage
scaling reduces the power consumption of the Blackfi n processor.

TEAM LinG

The on-chip voltage regulator of the Blackfi n processor generates internal
voltage levels from 0.8 to 1.2 V from an external supply of 2.25 to 3.6 V. The voltage
regulator allows the voltage level to be adjusted in 50-mV increments. Depending on
the current model of the Blackfi n processor, the core clock frequency can range from
350 to 700 MHz. The Blackfi n processor offers low power consumption of 0.15 mW/
MMAC at 0.8 V. Therefore, if a maximum MMAC of a Blackfi n processor is 1,000,
the power consumption is approximately 0.15 W. In Chapter 8, we show the steps in
adjusting the voltage and core frequency of the Blackfi n processor.

However, power consumption may not be a good comparison benchmark between
processors. This statement is valid when processors are being deployed in portable
devices, because batteries have limitation of energy [21]. A better benchmark is
energy consumption. Energy consumption is defi ned as the time integral of power
consumption. To estimate the energy required for a processor to complete a given
task, the task execution time is multiplied by the estimated power consumption. The
savings in energy consumption can be expressed by the following equation

E E

E

f

f

V

V

t

t
n r

n

rc

nc

r

n

r

n
% ,

−
= − × ⎛

⎝
⎞
⎠ ×

⎛
⎝⎜

⎞
⎠⎟

× ()1 100
2

(6.3.8)

where Er/En is the ratio of the reduced energy to nominal energy, frc is the reduced
core clock frequency, fnc is the nominal core clock frequency, Vr is the reduced
internal supply voltage, Vn is the nominal internal supply voltage, tr is the duration
of task running at reduced core frequency, and tn is the duration of task running at
nominal core frequency.

EXAMPLE 6.12

The nominal core clock frequency is 600 MHz, and the reduced core clock frequency is set
to 200 MHz. The nominal supply voltage is set to 1.2 V on power up and reduced to 0.8 V
after the clock frequency is reduced to 200 MHz. Consequently, the duration taken to com-
plete the task at reduced core frequency and voltage has increased from 1 to 3 se. Therefore,
the savings in energy consumption is computed with Equation 6.3.8 as (1 − (200/600) ×
(0.8/1.2)2 × (3/1)) × 100 = 55% saving.

QUIZ 6.10

1. A processor’s supply voltage changes from 3.6 to 1.2 V. What is the reduced
power consumption in percentage?

2. The clock frequency of a Blackfi n processor drops from 700 to 350 MHz,
and the supply voltage is reduced from 3.6 to 0.8 V. What is the reduction in
power consumption in percentage?

3. The execution times of processors A and B are 0.1 and 0.33 ms, respectively.
However, the power consumption of processor A is twice that of processor
B. Which processor consumes less energy?

6.3 Overview of Real-Time Processing 259

TEAM LinG

260 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

6.4 INTRODUCTION TO THE IIR
FILTER-BASED GRAPHIC EQUALIZER

The FIR fi lter-based eight-band graphic equalizer was introduced in Section 5.3. In
this section, we replace FIR fi lters with IIR fi lters to implement the eight-band
graphic equalizer. We only discuss the differences of using IIR fi lters as compared
to FIR fi lters. We will go through the same process of designing the IIR fi lter in
fl oating-point format, analyzing its fi xed-point performance, and then porting the
coeffi cients into the Blackfi n processor.

HANDS-ON EXPERIMENT 6.14

This experiment designs eight fi lters based on the elliptic IIR fi lter to meet the fi lter speci-
fi cations stated in Section 5.3. Open FDATool in the MATLAB window. Specify the pass-
band frequencies according to Table 5.4. Users can specify their own stopband frequencies.
Select IIR Elliptic and Minimum order from the Design Method and Filter Order,
respectively. Set all the stopband attenuation to 40 dB and passband ripple to 1 dB. Click on
Design Filter to complete the fi lter design for the fi rst frequency band, and repeat the design
process for the remaining seven bands. For reference, these eight IIR fi lters are saved in
directory c:\adsp\chap6\exp6_14, using band-i.fda (where i represents the frequency
band from 1 to 8) as fi le names for the eight frequency bands. Users can load these fi les into
FDATool to examine the magnitude and phase responses for each band. Observe the
characteristics of the IIR fi lters by fi lling in Table 6.10 and compare them with the charac-
teristics of the FIR fi lters listed in Table 5.6. The implementation cost includes the number
of multiplications and additions and the memory used to save the fi lter coeffi cients and signal
buffers of the IIR fi lters.

Note that the IIR fi lter is seldom implemented with the high-order direct-form IIR
structure shown in Figure 3.3 because of its sensitivity to coeffi cient quantization error. In
practical applications, the high-order IIR fi lter is implemented as a cascade of 2nd-order IIR
fi lter sections shown in Figure 4.17. This cascade structure reduces coeffi cient quantization
and round-off errors. For example, a 6th-order IIR fi lter can be implemented as three 2nd-
order IIR fi lters (or biquad) in a cascade structure as shown in Figure 6.30. Note that the
coeffi cients are denoted as {b0k b1k b2k a1k a2k}, where the subscript k = 1, 2, or 3 specifi es
the section number. In Figure 4.17, a gain G is used at the input of the cascade IIR fi lter.

Table 6.10 IIR Filter Characteristics

IIR Filter Parameters and Responses Characteristics

Average order of the IIR fi lter
Magnitude response
Phase response
Group-delay response
Impulse response
Pole-zero plot
Implementation cost

TEAM LinG

This single gain (G = g1 × g2 × g3 × g4) can also be distributed across all biquads as shown
in Figure 6.30. At the input of each section, there is a gain gk, associated to each section. A
fi nal gain g4 at the output of the fi nal section is also available. These gains are generated
from FDATool. The fl exibility of the cascade IIR fi lter lies in the ability to arrange these
2nd-order sections to further minimize quantization errors. This step can be done by
clicking on Edit Æ Reorder and Scale Second Order Sections . . . of FDATool.

6.5 DESIGN OF IIR FILTER-BASED GRAPHIC
EQUALIZER USING BLACKFIN SIMULATOR

This section introduces the process of completing fi xed-point simulation of the IIR
fi lter-based graphic equalizer with MATLAB and porting to the Blackfi n
VisualDSP++ simulator. As explained in Section 6.2.3.1, fi xed-point simulation is
very important in IIR fi lter design because the IIR fi lter is very sensitive to its pole
locations. FDATool can convert the double-precision fl oating-point IIR fi lters
designed in Hands-On Experiment 6.14 to 16-bit fi xed-point IIR fi lters and analyze
the characteristics of these fi xed-point IIR fi lters.

HANDS-ON EXPERIMENT 6.15

This experiment converts the fl oating-point fi lter coeffi cients derived from Hands-On Experi-
ment 6.14 into 16-bit fi xed-point coeffi cients. Because all the IIR fi lter coeffi cients are larger
than 1 but less than 2, we can assign 2 bits as the integer bits and the remaining 14 bits as
fractional bits (refer to Table 6.2). This fi xed-point (2.14) format can be specifi ed in FDATool
under the Set quantization parameters option as shown in Figure 6.31. Click on Apply to
simulate the fi xed-point IIR fi lter. Check the quantized fi lter responses by comparing with
the reference fi lter in fl oating-point format and confi rm that this fi xed-point IIR fi lter is stable.
Repeat these steps for the remaining seven IIR fi lters.

We can directly port the coeffi cients in (2.14) format into the Blackfi n memory. However,
we have to perform IIR fi ltering with different formats because the signal samples are rep-
resented in (1.15) format. The advantage of using (1.15) format for multiplication as described

y1(n)

21b
w(n-2)

1−z

w(n)

w(n-1)

01b

11b11a−

21a−

1−z

22b

w(n-2)

1−z

w(n)

w(n-1)

02b

12b12a−

22a−

1−z

23b
w(n-2)

1−z

w(n)

w(n-1)

03b

13b13a− 1−z

g2g1 g3 g4

y2(n) y3(n)

Section #1 Section #2 Section #3

x(n)

23a−

Figure 6.30 Cascade of three 2nd-order direct-form IIR sections to form a 6th-order IIR fi lter

6.5 Design of IIR Filter-Based Graphic Equalizer Using Blackfi n Simulator 261

TEAM LinG

262 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

in Section 6.1.1.2 cannot be achieved. Therefore, we have to convert the coeffi cients into
(1.15) format before porting to the Blackfi n memory. A simple method is to use saturated
coeffi cients. This process saturates coeffi cients that exceed (1 − 2−15) or −1 to their respective
maximum values. This can be done by selecting a Numerator range and a Denominator
range of (+/−) 1 in FDATool. However, this simple method greatly distorts the magnitude
response of the IIR fi lter. Explore the characteristics of the IIR fi lter with saturated coeffi -
cients and compare it to the reference IIR fi lter using fl oating-point format.

A better way to fi t the coeffi cients into (1.15) format is to scale all the numerator and
denominator coeffi cients. In the IIR fi lter-based equalizer, we scale down all the coeffi cients
by half so that these coeffi cients can fi t into the number range of (1.15) format. However,
scaling the IIR fi lter coeffi cients is not straightforward because the fi rst feedback coeffi cient
a0 must always be 1. We can scale down all coeffi cients (including a0) by half, perform the
computation, and scale back the result by 2 to obtain the output signal y(n) with the follow-
ing equation:

2
1

2
2

1

2
1 2

1

2
1 20 1 2 1 2× () = × () + −() + −()[] − −() + −(y n b x n b x n b x n a y n a y n))[]{ }. (6.5.1)

In FDATool, click on Target Æ Generate C Header. . . . Select Export Suggested and
click on Generate to complete the process. Open the generated header fi le for the 6th-order
cascade IIR fi lter (band #1), and examine the numerator and denominator coeffi cients gener-
ated as shown below:

const int16_T NUM[MWSPT_NSEC][3] = {
 {
 162, 0, 0 Numerator gain for section #1
 },
 {
 16384, -32688, 16384 Numerator for section #1
 },
 {
 16384, 0, 0 Numerator gain for section #2
 },
 {
 16384, -32752, 16384 Numerator for section #2
 },
 {
 16384, 0, 0 Numerator gain for section #3

Figure 6.31 Filter arithmetic setting for using (2.14) format

TEAM LinG

 },
 {
 16384, -32757, 16384 Numerator for section #3
 },
 {
 16384, 0, 0 Gain for output
 }
};
const int DL[MWSPT_NSEC] = { 1,3,1,3,1,3,1 };
const int16_T DEN[MWSPT_NSEC][3] = {
 {
 16384, 0, 0 Denominator gain for section #1
 },
 {
 16384, -32524, 16142 Denominator for section #1
 },
 {
 16384, 0, 0 Denominator gain for section #2
 },
 {
 16384, -32670, 16293 Denominator for section #2
 },
 {
 16384, 0, 0 Denominator gain for section #3
 },
 {
 16384, -32741, 16366 Denominator for section #3
 },
 {
 16384, 0, 0 Output gain for section #3
 }

We can extract all the numerator and denominator coeffi cients from the header fi le and
treat them as (1.15) format. For example, 16384 represents 1 in (2.14) format and represents
0.5 in (1.15) format. Therefore, if we treat the integer in (2.14) format with (1.15) format, we
can directly perform IIR fi ltering in (1.15) format. However, because there is an inherent
factor of two between the (2.14) and (1.15) formats, the section gains in the above C header
fi le needed to be scaled up by 2 in order to turn them into (1.15) format. We are now ready
to port fi lter coeffi cients and section gains into a fi xed-point C program to run on the
Blackfi n simulator.

HANDS-ON EXPERIMENT 6.16

In this experiment, we move from fi xed-point simulation using MATLAB to fi xed-point
implementation on the Blackfi n processor. All the programs are written in C for ease of
understanding. The fi rst step is to port all the coeffi cients and gains in (1.15) format into the
Blackfi n memory. Two data fi les, equalizer_iir_coefs.dat and equalizer_iir_
scales.dat in directory c:\adsp\chap6\exp6_16, are needed to be included in
the main C program, main_EQ.c. Note that the coeffi cients in the coeffi cient data fi le
equalizer_iir_coefs.dat are arranged as b0k, b1k, b2k, a1k, a2k, where k represents the
section number (see Fig. 6.30). The coeffi cient a0k, is not required in the computation of the

6.5 Design of IIR Filter-Based Graphic Equalizer Using Blackfi n Simulator 263

TEAM LinG

264 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

IIR fi ltering as shown in Equation 6.5.1. Users can refer to the IIR fi lter function in iirc.
c and fi nd the IIR fi lter structure and the number of delay buffers used in this program.
Because of the arithmetic sensitivity of the IIR fi lter, we use fract32 for the delay buffer
and perform built-in 32-bit multiplication and addition functions to reduce the quantization
noise.

The DSP run time library also consists of the cascade IIR fi lter function iir_fr16.
However, this function imposes the restriction that a0k must be 1 and greater than both a1k

and a2k. Because the coeffi cients derived from Hands-On Experiment 6.15 do not allow the
restriction for arithmetic in (1.15) format, we have to write the IIR fi lter function iirc.c,
which can implement the IIR fi lter expressed in Equation 6.5.1.

This experiment performs the IIR fi ltering routine eight times as shown in main_EQ.c.
Because each frequency band requires different orders of IIR fi lter, we need to specify the
stage number in the program. This information is included in the data fi le equalizer_
iir_stages.dat. As in the FIR fi lter-based equalizer, we also include the same range of
band gains for the IIR fi lter-based equalizer.

Build the project equalizer.dpj and open the following debug windows:
FreqResponse.vps and ImpResponse.vps. Run the project and observe the frequency
and impulse responses as shown in Figure 6.32(a) and (b), respectively. The impulse response
is obtained by injecting an impulse of magnitude 32,767 into eight IIR fi lters and summing
these eight impulse responses into a single impulse response over a duration of 256 samples.
The frequency response is obtained by computing the FFT of these 256 samples with the
built-in graphical feature in VisualDSP++. Observe the differences between the impulse

(a) Freq Resp

Frequency (Hz)

Impulse Resp

Time index

0 25 50 75 100 125 150 175 200 225 275250

M
a
g
n
it
u
d
e

5.0*10
4

2.5*10
4

0.0*10
0

0.0*10
0

1*10
4

0*10
0

A
m

p
lit

u
d
e

–1*10
4

2.5*10
3

5.0*10
3

7.5*10
3

1.0*10
4

1.25*10
4

1.5*10
4

1.75*10
4

2.0*10
4

2.25*10
4

2.5*10
4

(b)

Figure 6.32 Impulse response (a) and frequency response (b) of combined IIR fi lter

TEAM LinG

responses of the IIR graphic equalizer and the FIR graphic equalizer shown in Figure 5.35.
Note that the spikes and nulls in Figure 6.32(a) are caused by the unequal attenuation in the
transition band between adjacent frequency bands.

To compare the impulse response of the combined IIR fi lter with that obtained in
MATLAB with the fl oating-point format, we dump the specifi c Blackfi n memory into a fi le
and read this fi le into MATLAB workspace for comparison. To dump the memory, click on
Memory Æ 2 Dump in VisualDSP++. A Dump Memory window opens, and we can fi ll
in the parameters as shown in Figure 6.33. Specify the fi le name used to save the output data
for comparison.

EXERCISE 6.1

1. Modify the C code to enhance the low-frequency bands (band #1 to band
#3) to +12 dB, middle-frequency bands (band #4 to band #6) to 0 dB, and
high-frequency bands (band #7 to band #8) to −12 dB.

2. Instead of using the elliptic fi lter design method, use the Butterworth fi lter
design method. Obtain the frequency and impulse responses of the combined
fi lter with the new fi lter design method. Observe any difference with the
plots obtained in Hands-On Experiment 6.16.

3. Modify the C code to read data in the input fi le sineNoise3sec_48k.
dat and attenuate the noise by −12 dB with the eight-band graphic equalizer.
Hint: Refer to Hands-On Experiment 2.3.

Figure 6.33 Dump Memory window

6.5 Design of IIR Filter-Based Graphic Equalizer Using Blackfi n Simulator 265

TEAM LinG

266 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

6.6 DESIGN OF IIR FILTER-BASED GRAPHIC
EQUALIZER WITH BF533/BF537 EZ-KIT

This section explores the real-time implementation of the IIR fi lter-based eight-band
graphic equalizer with the Blackfi n BF533/BF537 EZ-KIT. The real-time perfor-
mance of this IIR equalizer is examined and compared to the FIR fi lter-based
equalizer in Chapter 5.

HANDS-ON EXPERIMENT 6.17

This experiment modifi es the C fi le used in Hands-On Experiment 6.16 to perform a real-
time graphic equalizer on a stereo signal. The processed signals are sent to loudspeakers for
playback. Activate VisualDSP++ for the BF533 (or BF537) EZ-KIT and open the project fi le
exp6_17_533.dpj (or exp6_17_537.dpj) in directory c:\adsp\chap6\exp6_17_533
(or c:\adsp\chap6\exp6_17_537). Build the project, and the executable fi le exp6_17_
533.dxe (or exp6_17_537.dxe) is automatically loaded into the memory of the EZ-KIT.
As in Hands-On Experiment 5.8, we have programmed four push buttons and six LEDs to
the same functions as shown in Table 5.9. Adjust the gain of the equalizer and note the
performance.

A main difference in the real-time implementation of the FIR fi lter-based and IIR fi lter-
based equalizers is that IIR equalizer must carry out the IIR fi ltering eight times.

EXERCISE 6.2

1. Find the cycle counts required to run (1) the interrupt service routine and
(2) IIR fi lters and (3) compute the combined IIR fi lter coeffi cients. Note that
the IIR fi lter function is written in C and has not been optimized with
assembly code.

2. Turn on the statistical profi ler and examine the percentage of computation
load for running the IIR fi lter-based eight-band graphic equalizer.

6.7 IMPLEMENTATION OF IIR FILTER-BASED
GRAPHIC EQUALIZER WITH LABVIEW EMBEDDED
MODULE FOR BLACKFIN PROCESSORS

The IIR fi lter is commonly used in equalizer designs and can be implemented with
many of the same principles discussed in Chapter 5. The following experiments
explore an IIR fi lter-based graphic equalizer. The fi rst experiment uses LabVIEW
for Windows to simulate an eight-band equalizer, and the second experiment uses
the LabVIEW Embedded Module for Blackfi n Processors to create a four-band
equalizer on the Blackfi n processor. Push-button interrupts are introduced in the

TEAM LinG

LabVIEW Embedded Module for Blackfi n Processors example for more effi cient
and functional user interaction.

HANDS-ON EXPERIMENT 6.18

This experiment explores the implementation and behavior of a multiband IIR fi lter-based
equalizer with a LabVIEW for Windows simulation. Navigate to the compiled simulation
IIR_EQ_Sim.exe located in directory c:\adsp\chap6\exp6_18 and launch the execut-
able code. The user interface for this application, shown in Figure 6.34, is nearly identical
to that of FIR_EQ_Sim.exe given in Chapter 5. Run the application and switch to the
Frequency Bands tab. Note the shape of each frequency band.

Compare the frequency response of each band with the response seen in Chapter 5.
What do you notice about the comparative sharpness of the IIR and FIR fi lter methods?
What might account for this difference? Explain.

Figure 6.34 Frequency bands for IIR fi lter-based graphic equalizer

6.7 Implementation of IIR Filter-Based Graphic Equalizer 267

TEAM LinG

268 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

The IIR fi lter-based equalizer cannot be computed with the same method that was used
in the FIR equalizer case, because impulse responses of IIR fi lters cannot be determined
from their coeffi cients alone. Therefore, the IIR fi lter band equalizer is computed by apply-
ing several IIR fi lters to the input signal in parallel, one for each band. The selected gain is
then applied to each band, and the results are summed to produce the overall response. Switch
to the Frequency Signal tab of the simulation and choose the Linear Display option. The
combined response of the eight fi lters is shown along with that of the input signal. Note that
spikes occur in the plot corresponding to the transitions between each frequency band.
Experiment with the slider values for each frequency band to see the relationship between
the individual bands and the combined response. Note how greater amounts of overlap in
the transition bands on the Frequency Bands tab correspond to larger spikes in the frequency
response.

Each of the eight fi lters is defi ned by a set of fi lter parameters accessible on the Defi ne
Bands tab of the simulation. The Filter Band Specifi cations array contains specifi cation
parameters consisting of high and low cutoff frequencies, the desired order of the fi lter, the
passband ripple, and stopband attenuation parameters (in dB). The fi rst fi lter, at index 0, is
a low-pass fi lter, and all others are bandpass fi lters. The parameters for each band are pre-
loaded to match the fi lter specifi cations used in Section 5.3.

Load an audio fi le to hear the effects of the equalizer. The speech_tone_48k.wav
fi le used in previous experiments is ideal for this purpose, because it contains noise centered
at 1 kHz. Experiment with the various fi lter options to attenuate the noise while retaining as
much of the voice signal as possible. What settings meet these criteria? Do the audio results
differ from those heard in the eight-band FIR fi lter simulation?

HANDS-ON EXPERIMENT 6.19

In this experiment, we combine many of the concepts discussed previously, including audio
input and output, the use of subVIs, and the Inline C Node, to create a four-band IIR fi lter-
based equalizer within the LabVIEW Embedded Module for Blackfi n Processors. This
experiment introduces interrupt handling, which allows us to use the Blackfi n EZ-KIT
pushbuttons for updating the band gains during execution on the Blackfi n processor.

Open the IIR Equalizer-BF5xx.lep LabVIEW embedded project in directory c:\adsp\
chap6\exp6_19. Open the block diagram for IIR_4_Band_Equalizer-BF5xx.vi, as
shown in Figure 6.35, which contains the top-level processing structure for the IIR
equalizer.

The graphical code makes it easy to recognize the parallelism of band implementations.
Each band is individually initialized with coeffi cients that are passed to the cascaded IIR
fi lter block. Each fi lter block passes both the original input parameter and its result to the
next stage. When all four stages have been completed, the output is passed back to the Audio
Write/Read VI.

The fi lter used within the cascaded IIR fi lter block is nearly identical to that introduced
in the previous VisualDSP++ experiment. The Inline C Node is used to combine the textual
implementation of the fi lter with the graphical code. The output of each stage is accumulated
with the previous stages rather than creating an intermediate array for each band and sub-
sequently applying band gains. This structure allows for a pipelined approach where the
output of the nth band’s IIR fi lter subVI is the sum of the weighted IIR fi lter outputs of the

TEAM LinG

fi rst n bands. This method is advantageous because additional frequency bands can be
added without modifying any of the underlying processing code. To add another frequency
band, simply add another stage to the pipeline. Global variables and structures were removed
to make the code more modular. When working with embedded applications, small improve-
ments to repetitious code can often contribute to large performance enhancements.

Connect the Blackfi n EZ-KIT audio input to the audio output jack of your computer
and connect the loudspeakers to the Blackfi n EZ-KIT audio output. Click on the Run button
to execute the IIR equalizer project on the Blackfi n processor. With an audio fi le playing
on the computer, adjust the equalizer band gains by pressing buttons 1 through 4 on the
Blackfi n EZ-KIT. Each button corresponds to one of the four frequency bands and
their levels. In the BF533 (BF537), SW4 to SW7 (SW13/PB1 to SW10/PB4) correspond to
band 0 to band 3, respectively. When a button corresponding to a band is pressed, the
gain applied to that band will be incremented until the gain reaches the maximum value, at
which point it will reset to the smallest value. You can keep track of the current level with
the LED display, which shows a binary representation of the gain level of the last modifi ed
band.

Unlike the FIR fi lter-based equalizer in Chapter 5, the IIR fi lter-based equalizer uses
interrupts to determine when a button has been pressed. In past experiments, the button
values were checked during each iteration of the loop, which is a polling method. Handling

Figure 6.35 Block diagram of IIR fi lter-based equalizer (IIR_4_Band_Equalizer-
BF5xx.vi)

6.7 Implementation of IIR Filter-Based Graphic Equalizer 269

TEAM LinG

270 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

interrupts with the LabVIEW Embedded Module for Blackfi n Processors is straightforward
and makes your applications signifi cantly more interactive and responsive. On the block
diagram of IIR_4_Band_Equalizer-BF5xx.vi, scroll down to the second loop, as
shown in Figure 6.36. This loop structure handles all of the processing necessary for the
button-pressing functionality and only executes when a button-based interrupt is received by
the Blackfi n processor.

When button interrupts are enabled with BF Enable Button Interrupt.vi, an
interrupt fl ag causes the timed loop to iterate one time. In this case, the number of the button
pressed corresponds to a specifi c frequency band. The gain for that band is incremented
unless it was already at the maximum level, in which case it will reset to the lowest value.
The binary representation of the gain level, a value from 0 to 7, is then output to the LED
display. The numeric result is shared with the main processing loop through a global variable,
as seen in Figure 6.36.

Recall how the IIR fi ltering occurs in a pipelined fashion, with each frequency band
calculated sequentially and accumulated with the rest of the fi ltered signal. How would you
implement an eight-band equalizer with this architecture? What code would need to be added
to the existing VI, and what code could be reused?

6.8 MORE EXERCISE PROBLEMS

1. Can multiplicative overfl ow occur in multiplication of two numbers in (2.14) format?

2. Equation 6.2.1 shows the quantization level in terms of full-scale (or peak to peak)
voltage. Express the quantization level in terms of root-mean-square voltage Vrms.

3. Use Equations 6.2.1 and 6.2.3 to derive an expression for the SQNR for a signal with
an input power Px. Plot the SQNR in dB versus the input power in dB for a wordlength
of 4, 8, and 16 bits.

4. Compute the variance of the quantization noise and the signal energy. Express the SQNR
and show that each bit contributes to 6 dB of the system performance.

Figure 6.36 Interrupt handler loop in IIR_4_Band_Equalizer-BF5xx.vi

TEAM LinG

5. The exponential bits in the fl oating-point number allow gain in multiples of decibels to
be applied to the number. In the case of the IEEE-754 format, there are 8 exponential
bits. Determine the dynamic range introduced by the 8 exponential bits, assuming that
each bit contributes to 6 dB of dynamic range.

6. The IEEE single-precision fl oating-point format has a 23-bit mantissa and an 8-bit
exponent. How many quantization levels are available in this format? What happens to
the quantization level and dynamic range when the combined exponential value
increases?

7. If a system uses an 80-dB ADC and DAC, what is a possible dynamic range for a
processor, and how much degradation in SQNR is possible? State a way to increase
the internal dynamic range of the processor.

8. Double-precision arithmetic such as that shown in Section 6.1.2 can be used to increase
the dynamic range of internal processing. Examine the computation and memory over-
head to perform a 10-tap FIR fi lter compared with the single-precision method.

9. A 120-dB, 24-bit ADC is used to digitize 24-bit samples in (1.23) format to a processor.
If the processor generates 4 bits of quantization noise, suggest a working precision in
the processor to ensure that quantization noise will never be seen by a 120-dB, 24-bit
DAC. How can we prevent multiplicative and accumulative overfl ows?

10. Figure 6.24 shows the various sources of quantization error for a direct-form FIR fi lter.
If the transposed-form FIR fi lter shown in Figure 6.37 is used, are the sources of quan-
tization errors similar or different from the direct-form FIR fi lter?

11. A typical MP3 player comes with the following features: (1) voice recording in MP3
format, (2) equalization of MP3 sound track, (3) image storage and display, (4) bass
enhancement of MP3 sound track, and (5) selection of sound track. State whether these
features require real-time or offl ine processing.

12. In a speech processing system, a 20-ms window is used to analyze the spectrum of the
speech signal sampled at 8 kHz. If 50% overlap of data samples are used, derive a
double-buffering technique for this digital system.

13. The deadline constraint of a digital system is set at 2.7 ms. A Blackfi n processor is
operating at a core clock frequency of 540 MHz. If a 128-tap FIR fi lter is profi led as
requiring 1,411,000 cycles, is there any violation of the real-time constraint? What
happens when the core clock frequency is reduced to 270 MHz?

14. Write a simple MATLAB program to convert any number into any fi xed-point format
specifi ed by the user. The input and output arguments for M-fi le should include the
following:

function [qnum,sat_flag, qerror] = quant(number,w,f)
% qnum = quantized number
% sat_flag = indicates whether saturation has occurred
% qerror = number - qnum

1−z

x(n)

y(n)

0b1b2b3b

1−z 1−z

Figure 6.37 A 4-tap transposed FIR fi lter

6.8 More Exercise Problems 271

TEAM LinG

272 Chapter 6 Real-Time DSP Fundamentals and Implementation Considerations

% number = scalar or vector of input numbers
% w = total wordlength in bits
% f = number of fractional bits

Test the function with different numbers and wave fi les under different fi xed-point
formats.

15. In Example 6.7, different norms have been applied to the 2nd-order IIR fi lters. Use the
MATLAB fi le given in Problem 14 to implement the fi xed-point version of the IIR fi lter
in (1.15) format. Verify whether the output of the fi lter (using different norms) will
overfl ow when a sine wave with a normalized frequency of 0.5 is input to the IIR fi lter.
Apply saturation or overfl ow mode when overfl ow occurs, and listen to the output
signal.

16. Repeat Problem 15 with the Blackfi n processor. A template project fi le is located in
directory c:\adsp\chap6\problem6_16\ to start this problem. The comments
inside the code provide guidelines for implementing the IIR fi lter to run on different
scaling norms. Verify whether overfl ow can still occur under different norms by using
graphical display.

17. Investigate the error performance of midtread and midrise quantizers for the (1.15)
format number range of −1.0 to +1.0 in steps of 0.1. Two MATLAB M-fi les, midtread_
q.m and midrise_q.m, are provided to implement midtread and midrise quantizers,
respectively. In addition, two other MATLAB M-fi les, midtread_dq.m and midrise_
dq.m, are available to dequantize the respective quantized values.

18. Generate a sine wave of f = 100 Hz @ fs = 1,000 Hz and save in (1.15) and (1.7) formats.
Perform FFT on these two sine waves and compare the quantization noise fl oor. Verify
whether there is a 48-dB difference in the quantization noise fl oor.

19. Generate a sine wave of f = 100 Hz @ fs = 1,000 Hz in (1.15) format. A signal can
be scaled by a small constant, α, and results in reduction of 20log10α dB SNR.
Determine the value of α that will result in the signal being buried under the quantiza-
tion noise.

20. Repeat Hands-On Experiment 6.7 with the Blackfi n BF533/BF537 simulator. Starting
from using (1.15) format for representation of the sine wave, use the built-in shift-right
function fract16 shr to simulate the quantization of the sine wave to 8, 4, and 2
bits.

21. Describe how biased and unbiased rounding is carried out on the Blackfi n processor.

22. In Section 6.1.2, 32-bit multiplication is carried out. Extend the operation to 64-bit
multiplication, using single-cycle 32-bit multiplications.

23. Design three-band IIR fi lters with fl oating-point arithmetic. The three-band fi lter split
the input signal sampled at 48 kHz into three bands: [0–7.5 kHz], [8–15.5 kHz], and
[16–24 kHz]. The output of each fi lter contains only the frequency components that fall
into that fi lter’s passband. This three-band fi lter can be extended to include adjustable
gain at the fi lter output to control the level of amplifi cation or attenuation. The passband
ripple and stopband attenuation are set to 1 and 50 dB, respectively.

24. Convert the fl oating-point IIR fi lters in Problem 23 into fi xed point. Take the necessary
steps in porting the coeffi cients into the Blackfi n memory using the (1.15) format. A
chirp signal saved in data fi le chirp_960.dat (using 960 samples or 20 ms @ fs =
48 kHz) can be used to verify these IIR fi lters.

TEAM LinG

25. IIR fi lter coeffi cients that are greater than 1 but less than 2 can be split into two equal
coeffi cients whose values are less than 1, as shown in Figure 6.38. This division of
selected coeffi cients allows all coeffi cients to be represented in (1.15) format.

Modify the program main_EQ.c in directory c:\adsp\chap6\exp6_16 to split
those coeffi cients that exceed 1 with the splitting approach. State the problem in doing
this splitting for the IIR fi lter-based eight-band graphic equalizer.

1.5

0.75

0.75

≡
+¥

¥
¥

Figure 6.38 Splitting of single multiplier into two

6.8 More Exercise Problems 273

TEAM LinG

Chapter 7

Memory System and
Data Transfer

We introduced several techniques to process digital signals in sample and block
processing modes in Chapter 6. This chapter describes how to transfer data between
the ADC and memory, within memory spaces, and between memory and peripher-
als with DMA. We present the unique caching mechanism of the Blackfi n processor
to speed up the transfer of program and data from external memory to internal
memory.

7.1 OVERVIEW OF SIGNAL ACQUISITION
AND TRANSFER TO MEMORY

This section presents the operations of the CODEC and its interface with the
Blackfi n processor. We use a simple talk-through program to illustrate a typical
real-time signal processing chain from converting analog signal to digital samples
to processing the data, and reconstructing the processed digital signal back to the
analog form.

7.1.1 Understanding the CODEC

A CODEC consists of both ADC and DAC with associated analog antialiasing and
reconstruction low-pass fi lters. For example, the Analog Devices AD1836A [41]
shown in Figure 7.1 is a single-chip CODEC that provides two stereo ADCs and three
stereo DACs. These ADCs and DACs can operate in 16-, 18-, 20-, or 24-bit resolution.
An N-bit ADC produces 2N digital output numbers, and an N-bit DAC has 2N analog
output levels. To achieve a fi ne resolution to encode a small signal, the value of N
must be carefully chosen. For example, a 5-V peak-to-peak (or full scale) signal can
be applied to a 16-bit CODEC to obtain a voltage resolution of 5/216 = 76.29 μV. This

274

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

7.1 Overview of Signal Acquisition and Transfer to Memory 275

resolution is 0.0015% (−96 dB) of full scale. The defi nitions of dynamic range,
signal-to-quantization noise, and precision are presented in Section 6.2.2.

A more accurate signal-to-quantization-noise ratio (SQNR) in decibels can be
expressed as

SQNR ,s= + + ()[]6 02 1 76 10 210. . logB f W (7.1.1)

where B is the number of bits, fs is the sampling frequency, and W is the signal
bandwidth. If fs is oversampled by M times, SQNR = 6.02B + 1.76 + 10log10(M).
Therefore, we can increase the SQNR by oversampling the analog signal. The
oversampling technique increases SQNR by spreading out the quantization noise
across a wider frequency band. Equation 7.1.1 shows that the quantization noise
power is reduced by a factor of 10log10(M) dB. For example, if the sampling
frequency is oversampled by M = 4, the quantization noise is reduced by 6 dB; this
is equivalent to an increase of 1-bit precision.

Four ADC channels on the AD1836A can be confi gured as primary ADC stereo
channels with differential inputs, a programmable secondary stereo pair with dif-
ferential mode, differential mode with programmable input gain of up to 12 dB,
and single-ended multiplex mode. The AD1836A can support time-division multi-
plex (TDM) mode, where receive or transmit data from different channels are allo-
cated at different time slots in a TDM frame. In the TDM mode, the AD1836A
operates at a 48-kHz sampling rate. The AD1836A also supports I2S mode, which
can operate at 96 kHz with only the stereo primary channels active.

The AD1836A CODEC contains six DAC channels, which are arranged as three
independent stereo channels. These channels are fully differential, and each channel

DLRCLK

ALRCLK
ABCLK

DBCLK
DSDATA1
DSDATA2

ASDATA1
ASDATA2

ADC1L

ADC2L1

ADC2R1
ADC2R2

CAPR2

ADC2L2

ADC1R

CAPL1

CAPL2
CAPR1

DSDATA3

SERIAL
DATA

I/O
PORT

CONTROL PORT CLOCK

Σ-Δ
DAC

Σ-Δ
DAC

Σ-Δ
DAC

Σ-Δ
ADC2R
48 kHz

DIGITAL
FILTER
48 kHz

Σ-Δ
ADC2L
48 kHz

Σ-Δ
ADC1L

48 kHz/96 kHz
Σ-Δ

ADC1L
48 kHz/96 kHz

DIGITAL
FILTER
48 kHz

DIGITAL
FILTER

48 kHz/96 kHz
DIGITAL
FILTER

48 kHz/96 kHz

PGA

PGA

M
U

X
M

U
X

MCLKCOUTCLATCHCDATACCLK

DAC1LDIGITAL
FILTER

DIGITAL
FILTER

DIGITAL
FILTER

PD/RST AVDD
2 4 3 2

AGND DVDD DGND

VREF

VOLUME

VOLUME

VOLUME

VOLUME

VOLUME

VOLUME

DAC1R

DAC2R

DAC2L

DAC3R

FILTD

FILTR

DAC3L

Figure 7.1 Functional block diagram of the AD1836A CODEC (courtesy of Analog Devices, Inc.)

TEAM LinG

276 Chapter 7 Memory System and Data Transfer

has its own programmable attenuator of up to 60-dB attenuation. The resolution of
the ADC and DAC in the AD1836A can be programmed as 16, 20, or 24 bits
(default). A set of ADC and DAC control registers is given in Table 7.1 to determine
the operation of the AD1836A.

HANDS-ON EXPERIMENT 7.1

This experiment uses the settings listed in Table 7.1 and the naming convention given in
Figure 2.23. Set switch pins 5 and 6 of SW9 on the BF533 EZ-KIT to OFF. Modify the
talk-through program in the project exp7_1.dpj (in directory c:\adsp\chap7\exp7_1)
for the following confi gurations:

1. Connect the input to the ADC2 and the output to the DAC2. Set the ADC2L
(left) gain to 0 dB and the ADC2R (right) gain to 12 dB. Verify these settings by
listening at both left and right channels. The addresses of the CODEC registers
are located in the talkthrough.h fi le, and the volume can be adjusted by chang-
ing the registers’ values in main.c. From Figure 7.1, note that only ADC2 has a
programmable gain amplifi er (PGA) that allows users to select the gain of the
ADC.

2. Reset ADC2R gain back to 0 dB. Attenuate DAC2L output to −10 dB and
leave DAC2R unchanged at 0 dB (or value 1023). Again, verify the settings by
listening. (Hint: Derive the volume value by taking the antilog of the desired dB
value.)

3. Read the ADC2L peak-level data registers by inputting a sine wave of 2-Vpp to the
ADC2L input of the EZ-KIT. The 2-Vpp signal can be derived from any signal gen-
erator. Extract bit 4 to bit 9 of the ADC2L peak-level data register and see whether
it is equal to −3.0 dBFS.

7.1.2 Connecting AD1836A to BF533 Processor

The BF533 processor has two serial ports: SPORT0 and SPORT1. Each serial port
provides synchronous serial data transfer and supports full-duplex communications
(i.e., simultaneous data transfer in both directions). Figure 7.2 shows the connection
between the AD1836A CODEC and the BF533 processor. SPORT0 receives serial
data on its primary (DR0PRI) and secondary (DR0SEC) inputs and transmits serial
data on its primary (DT0PRI) and secondary (DT0SEC) outputs simultaneously.
SPORT1 can provide another two input and two output channels. Together, these
two SPORTs support four input (stereo) channels and four output (stereo) channels.
Note that transmit data are synchronous to the transmit clock (TCLKx) and receive
data are synchronous to the receive clock (RCLKx), where x = 0 or 1 represents the
selected SPORT.

TEAM LinG

7.1 Overview of Signal Acquisition and Transfer to Memory 277

T
ab

le
 7

.1

C
on

tr
ol

 a
nd

 D
at

a
R

eg
is

te
rs

 f
or

 t
he

 A
D

18
36

A
 C

O
D

E
C

(a
)

D
A

C
 C

on
tr

ol
 R

eg
is

te
r

1

A
dd

re
ss

R

D
/W

R

R
es

er
ve

d
F

un
ct

io
n

D

e-
em

ph
as

is

S
er

ia
l

M
od

e
D

at
a-

W
or

d
Po

w
er

-D
ow

n
In

te
rp

ol
at

or

R
es

er
ve

d

W
id

th

M

od
e

15
, 1

4,
 1

3,
 1

2
11

10

9,

 8

7,
 6

, 5

4,
 3

2

1
0

00
00

0

0
00

 =
 N

on
e

00
0

=
I2 S

00
 =

 2
4

B
it

s
0

=
N

or
m

al

0
=

8×
 (

48
 k

H
z)

0

01

 =
 4

4.
1

kH
z

00
1

=
R

J
01

 =
 2

0
B

its

1
=

PW
R

D
W

N

1
=

4×
 (

96
 k

H
z)

10

 =
 3

2.
0

kH
z

01
0

=
D

SP

10
 =

 1
6

B
its

11

 =
 4

8.
0

kH
z

01
1

=
L

J
11

 =
 R

es
er

ve
d

10
0

=
Pa

ck
ed

 M
od

e
25

6

10

1
=

Pa
ck

ed
 M

od
e

12
8

11
0

=
R

es
er

ve
d

11
1

=
R

es
er

ve
d

(b
)

D
A

C
 C

on
tr

ol
 R

eg
is

te
r

2

A
dd

re
ss

R

D
/W

R

R
es

er
ve

d
D

A
C

 M
ut

e

D

A
C

3R

D
A

C
3L

D

A
C

2R

D
A

C
2L

D

A
C

1R

D
A

C
1L

15
, 1

4,
 1

3,
 1

2
11

10

, 9
, 8

, 7
, 6

5

4
3

2
1

0

00
01

0

00
00

0
 0

 =
 O

n
0

=
O

n
0

=
O

n
0

=
O

n
0

=
O

n
0

=
O

n

1
=

M
ut

e
1

=
M

ut
e

1
=

M
ut

e
1

=
M

ut
e

1
=

M
ut

e
1

=
M

ut
e

(c
on

ti
nu

ed
)

TEAM LinG

278 Chapter 7 Memory System and Data Transfer
T

ab
le

 7
.1

(c
on

ti
nu

ed
)

(c
)

D
A

C
 V

ol
um

e
R

eg
is

te
rs

A
dd

re
ss

R

D
/W

R

R
es

er
ve

d
F

un
ct

io
n

V

ol
um

e

15
, 1

4,
 1

3,
 1

2
11

10

9

: 0

00
10

:
D

A
C

1L

0
0

0
to

 1
,0

23
 i

n
1,

02
4

L
in

ea
r

St
ep

s
00

11
:

D
A

C
1R

01
00

:
D

A
C

2L
01

01
:

D
A

C
2R

01
10

:
D

A
C

3L
01

11
:

D
A

C
3R

(d
)

A
D

C
 C

on
tr

ol
 R

eg
is

te
r

1

A
dd

re
ss

R

D
/W

R

R
es

er
ve

d
F

un
ct

io
n

Fi

lte
r

Po
w

er
-D

ow
n

Sa
m

pl
e

R
at

e
L

ef
t

G
ai

n
R

ig
ht

 G
ai

n

15
, 1

4,
 1

3,
 1

2
11

10

, 9

8
7

6
5,

 4
, 3

2,

 1
, 0

11
00

0

00

0
=

D
C

0

=
N

or
m

al

0
=

48
 k

H
z

00
0

=
0

dB

00
0

=
0

dB

1
=

H
ig

h
Pa

ss

1
=

PW
R

D
W

N

1
=

96
 k

H
z

00
1

=
3

dB

00
1

=
3

dB

01

0
=

6
dB

01

0
=

6
dB

01
1

=
9

dB

01
1

=
9

dB

10

0
=

12
 d

B

10
0

=
12

 d
B

10
1

=
R

es
er

ve
d

10
1

=
R

es
er

ve
d

11
0

=
R

es
er

ve
d

11
0

=
R

es
er

ve
d

11
1

=
R

es
er

ve
d

11
1

=
R

es
er

ve
d

TEAM LinG

7.1 Overview of Signal Acquisition and Transfer to Memory 279
(e

)
A

D
C

 C
on

tr
ol

 R
eg

is
te

r
2

A
dd

re
ss

R

D
/W

R

R
es

er
ve

d
M

as
te

r/
Sl

av
e

SO
U

T
 M

od
e

W
or

d
W

id
th

A

D
C

 M
ut

e

A

U
X

 M
od

e

A

D
C

2R

A
D

C
2L

A

D
C

1R

A
D

C
1L

15
, 1

4,
 1

3,
 1

2
11

10

9

8,
 7

, 6

5,
 4

3

2
1

0

11
01

0

0
0

=
Sl

av
e

00
0

=
I2 S

00
 =

 2
4

B
it

s
0

=
O

n
0

=
O

n
0

=
O

n
0

=
O

n

1
=

M
as

te
r

 0
01

 =
 R

J
 01

 =
 2

0
B

its

1
=

M
ut

e
1

=
M

ut
e

1
=

M
ut

e
1

=
M

ut
e

 0
10

 =
 D

SP

 10
 =

 1
6

B
its

 0
11

 =
 L

J
 1

1
=

R
es

er
ve

d

 10

0
=

Pa
ck

ed
 M

od
e

25
6

 10
1

=
Pa

ck
ed

 M
od

e
12

8

 11

0
=

Pa
ck

ed
 M

od
e

A
U

X

(f
)

A
D

C
 C

on
tr

ol
 R

eg
is

te
r

3

A
dd

re
ss

R

D
/W

R

R
es

er
ve

d
C

lo
ck

 M
od

e
F

un
ct

io
n

L
ef

t
D

if
fe

re
nt

ia
l

R
ig

ht

L
ef

t
L

ef
t

M
U

X

R
ig

ht

R
ig

ht

I/

P
S

el
ec

t
D

if
fe

re
nt

ia
l

M
U

X
/P

G
A

I/

P
S

el
ec

t
M

U
X

/P
G

A

M
U

X
 I

/P

I/
P

S
el

ec
t

E
na

bl
e

E

na
bl

e
S

el
ec

t

15
, 1

4,
 1

3
12

11

10

, 9
, 8

7,

 6

5
4

3
2

1
0

11
10

0

00
0

00
 =

 2
56

 ×
 f

s
0

=
D

if
fe

re
nt

ia
l

0
=

D
if

fe
re

nt
ia

l
0

=
D

ir
ec

t
0

=
I/

P
0

0
=

D
ir

ec
t

0
=

I/
P

0

01
 =

 5
12

 ×
 f

s

P

G
A

 M
od

e

P

G
A

 M
od

e
1

=
M

U
X

/
1

=
I/

P
1

1
=

M
U

X
/

1
=

I/
P

1

P

G
A

P
G

A

10
 =

 7
68

 ×
 f

s
1

=
P

G
A

/M
U

X

1
=

P
G

A
/M

U
X

M
od

e

M
od

e

(S

in
gl

e-

(S
in

gl
e-

E
nd

ed

E
nd

ed

In
pu

t)

In
pu

t)

(c
on

ti
nu

ed
)

TEAM LinG

280 Chapter 7 Memory System and Data Transfer

T
ab

le
 7

.1
(c

on
ti

nu
ed

)

(g
)

A
D

C
 P

ea
k-

L
ev

el
 D

at
a

R
eg

is
te

rs

A
dd

re
ss

R

D
/W

R

R
es

er
ve

d
Pe

ak
 L

ev
el

 D
at

a
(1

0
B

its
)

6

D
at

a
B

its

4
Fi

xe
d

B
its

15
, 1

4,
 1

3,
 1

2
11

10

9

: 4

3
: 0

10
00

 =
 A

D
C

1L

1
0

00
00

00
 =

 0
.0

 d
B

F
S

00
00

10
01

 =
 A

D
C

1R

00
00

01
 =

−1
.0

 d
B

F
S

10
10

 =
 A

D
C

2L

00
00

10
 =

−2
.0

 d
B

F
S

10
11

 =
 A

D
C

2R

00
00

11
 =

−3
.0

 d
B

F
S

T
he

 4
 L

SB
s

ar
e

al
w

ay
s

ze
ro

.

11
11

00
 =

−6
0

dB
F

S
M

in

N
ot

e:
 d

B
F

S
re

fe
rs

 t
o

th
e

le
ve

l
in

 d
ec

ib
el

s
w

it
h

re
fe

re
nc

e
to

 t
he

 d
ig

it
al

 f
ul

l-
sc

al
e

le
ve

l.

C
ou

rt
es

y
of

 A
na

lo
g

D
ev

ic
es

, I
nc

.

TEAM LinG

7.1 Overview of Signal Acquisition and Transfer to Memory 281

Figure 7.2 shows that these serial clocks are input from the CODEC. In addition,
frame synchronization signals for receive (RFSx) and transmit (TFSx) are provided
by the external device to signal the start of serial data words. A serial peripheral
interface (SPI) port in the BF533 processor is used to program the internal control
registers of the CODEC with the confi guration listed in Table 7.1. The SPI control
port is a four-wire control port consisting of two data ports (MOSI and MISO), one
device select pin (SPISS), and a clock pin (SPICLK). Like SPORT, SPI supports
full-duplex operation. In the connection with the AD1836A shown in Figure 7.2,
SPI allows reading of the ADC peak signal levels through the ADC-peak level data
registers shown in Table 7.1(g). The DAC output level can be independently pro-
grammed with the DAC volume register shown in Table 7.1(c).

As explained in the previous section, the AD1836A CODEC can operate in the
TDM mode. In this mode, two ADC left channels (L0 and L1) and two right chan-
nels (R0 and R1) occupy slots #1, #2, #5, and #6 of ASDATA1, respectively, as
shown in Figure 7.3. Six DAC channels within the AD1836A occupy the six time
slots of DSDATA1 as shown in Figure 7.3. A special TDM auxiliary mode allows
two external stereo ADCs and one external stereo DAC to be interfaced to the
AD1836A to form a total of eight input and eight output transfers. These external
CODECs’ time slots are marked with “AUX.” Each time slot is 32 bits wide and is
most signifi cant bit (MSB) fi rst. Because AD1836A has a maximum of 24-bit resolu-
tion, the least signifi cant 8 bits in the time slot are fi lled with zeros.

By default, the frequency of the master clock, BCLK, is 32 bits/slot × 8 slot/
frame × 48 frame/s = 12.288 Mbits/s (or MHz). Therefore, the period of the frame
sync, FSTDM, is 20.8 μs (or fs = 48 kHz), and eight input and eight output data
streams can be received and transmitted during this period.

Besides the TDM mode, the data format of the AD1836A CODEC can also be
confi gured as I2S, right-justifi ed (RJ), left-justifi ed (LJ), or DSP mode according to

ADSP-BF533

TCLK0
TFS0

RCLK0
RFS0

DT0PRI
DR0PRI

DT0SEC
DR0SEC

SPISS
SPICLK

MOSI
MISO

AD1836 CODEC

DBCLK
DLRCLK
ABCLK
ALRCLK

DSDATA1
ASDATA1

DSDATA2
ASDATA2

CLATCH
CCLK
CDATA
COUT

SPORT0

SPI
interface

Figure 7.2 Serial connection between BF533 processor and AD1836A CODEC (only SPORT0 is
shown)

TEAM LinG

282 Chapter 7 Memory System and Data Transfer

ADC control register 2 and DAC control register 1, as shown in Table 7.1. By default,
the data format for the AD1836A is the I2S format. The I2S is a three-wire serial
bus standard protocol developed by Philips for transmission of two channels of pulse
code modulation (PCM) digital data. The I2S protocol is similar to the TDM mode,
with only two time slots for left and right channels.

HANDS-ON EXPERIMENT 7.2

This experiment compares the settings used in confi guring the AD1836A CODEC as TDM
mode or I2S mode. The project fi les exp7_2_tdm.dpj (in directory c:\adsp\chap7\
exp7_2_tdm) and exp7_2_i2s.dpj (in c:\adsp\chap7\exp7_2_i2s) confi gure the
CODEC to the TDM and I2S modes, respectively. In this experiment, we use the BF533
EZ-KIT. In the TDM mode, pins 5 and 6 of SW9 on the EZ-KIT are switched to the OFF
position, whereas pins 5 and 6 of SW9 are set to the ON position in the I2S mode. Note that
the BF533 EZ-KIT allows up to four input and six output channels in the TDM mode and
supports only four input and four output channels in the I2S mode. Examine the differences
in these two main.c fi les.

7.1.3 Understanding the Serial Port

This section examines the serial port (SPORT) of the BF533 processor [23]. Figure
7.4 shows a block diagram of a single SPORT. Serial data from the ADC are con-
nected to the primary receive (DRPRI) pin and secondary receive (DRSEC) pin and
shifted bit by bit into the receive-primary (RX PRI) shift register and receive-
secondary (RX SEC) shift register, respectively. The primary and secondary serial
data bits are synchronized to the receive clock (RCLK), which can be generated
from the internal clock generator in the processor or from an external clock source.

20.8 μsec
FSTDM

BCLK
TDM

MSB TDMMSB TDM

MSB TDM

STH
CH

1ST
CH

INTERNAL
ADC L0

INTERNAL
ADC L1

INTERNAL
ADC R1

INTERNAL
ADC R0AUX_ADC L0 AUX_ADC R0 AUX_ADC R1AUX_ADC L1

ASDATA1
TDM (OUT)

DSDATA1
TDM (IN)

ASDATA1

DSDATA1

MSB TDM
STH
CH

1ST
CH

32

32

INTERNAL
ADC L0

INTERNAL
ADC L1

INTERNAL
ADC L2

INTERNAL
DAC R1

INTERNAL
DAC R2

INTERNAL
DAC R0 AUX_DAC R0AUX_DAC L0

Figure 7.3 TDM timing diagram (courtesy of Analog Devices, Inc.)

TEAM LinG

7.1 Overview of Signal Acquisition and Transfer to Memory 283

The receive frame synchronization signal (RFS) indicates the start of the serial data.
An optional companding hardware block supports the A-law or μ-law companding
algorithm to reduce the number of bits before storing the received word in the RX
PRI and RX SEC data registers. The primary and secondary data can be stored in
the 8 × 16 bits (or 4 × 32 bits) receive fi rst-in fi rst-out (RX FIFO) in an interleaved
manner. Finally, the data can be retrieved by the data address generator (DAG).

The transmit section of the SPORT transmits data from the processor to the
DAC. Data from the Blackfi n register are written to the 8 × 16 bits (or 4 × 32 bits)
transmit fi rst-in fi rst-out (TX FIFO) in an alternating manner of primary-secondary
channel. Again, data from the TX PRI and TX SEC can be optionally compressed
by the companding hardware and transferred to the TX PRI and TX SEC shift
registers. Finally, the bits in the shift registers are shifted out to the DAC via
the data transmit-primary (DT PRI) and data transmit-secondary (DT SEC) pins.
The transmit clock (TCLK) synchronizes the transmit data bit, and the transmit
frame synchronization signal (TFS) indicates the start of transmission.

Both RX FIFO and TX FIFO are 16 bits wide and 8 words deep. These FIFOs
are common to both primary and secondary data arranged in an interleaved manner,
with primary fi rst and then secondary. Therefore, there are four possible data
arrangements for the FIFO:

1. When the data length is less than or equal to 16 bits and only the primary
channel is enabled, a total of 8 primary words can be stored into the
FIFO.

TX FIFO

4x32 or 8x16

TX SEC

Data Register

TX PRI

Data Register

TX SEC

Shift Register

TX PRI

Shift Register

Companding

Hardware

RX FIFO

4x32 or 8x16

RX SEC

Data Register

RX PRI

Data Register

RX SEC

Shift Register

RX PRI

Shift Register

Serial Control

Internal

CLK

Generator

Companding

Hardware

DAB

PAB

TFS TCLK RCLK RFSDT PRI DT SEC DR PRI DR SEC

TX FIFO

4x32 or 8x16

TX SEC

Data Register

TX PRI

Data Register

TX SEC

Shift Register

TX PRI

Shift Register

Companding

Hardware

RX FIFO

4x32 or 8x16

RX SEC

Data Register

RX PRI

Data Register

RX SEC

Shift Register

RX PRI

Shift Register

Serial Control

Internal

CLK

Generator

Companding

Hardware

Figure 7.4 SPORT block diagram (courtesy of Analog Devices, Inc.)

TEAM LinG

284 Chapter 7 Memory System and Data Transfer

2. When the data length is greater than 16 bits and only the primary channel
is enabled, a total of 4 primary words can be stored into the FIFO.

3. When the data length is less than or equal to 16 bits and both primary and
secondary channels are enabled, a total of 4 primary and 4 secondary words
can be stored into the FIFO.

4. When the data length is greater than 16 bits and both primary and secondary
channels are enabled, a total of 2 primary and 2 secondary words can be
stored into the FIFO.

The serial port must be confi gured before transmit or receive of data. There are
two transmit confi guration registers (SPORTx_TCR1 and SPORT_TCR2) per serial
port for setting up the SPORT transmit as shown in Figure 7.5. Similarly, two reg-
isters (SPORTx_RCR1 and SPORTx_RCR2) per serial port are used for confi guring
the receive side as shown in Figure 7.6. These confi guration registers can only be
changed while the SPORT is disabled by setting TSPEN/RSPEN = 0 (in TCR1
and RCR1 registers). From Figures 7.5 and 7.6, users can select the desired settings
for both transmit and receive operations. We use an example to set transmit and
receive confi guration registers.

EXAMPLE 7.1

Set transmit and receive channels of SPORT0 to operate on external clock and external frame
sync (active low) (see Fig. 7.5 and 7.6). Also, transmit the most signifi cant bit (MSB) of the
16-bit word fi rst and turn on the stereo frame sync. In addition, enable the secondary side
of the serial port. The settings are shown below:

write(SPORT0_TCR1, 0x5400) /* setup for TCR1 register */
write(SPORT0_TCR2, 0x030F) /* setup for TCR2 register */
write(SPORT0_RCR1, 0x5400) /* setup for RCR1 register */
write(SPORT0_RCR2, 0x030F) /* setup for RCR1 register */

Note that the serial wordlength = SLEN + 1. Therefore, the value of SLEN is set to 0xF for
16-bit word transmit/receive. SLEN is limited to a maximum of a 32-bit word and a minimum
of a 3-bit word. Refer to the Blackfi n processor hardware reference manual [23] for a more
in-depth defi nition of the settings.

An important block of the serial port is the transmit/receive clock. The serial
clock frequency can be generated from an internal source in the Blackfi n processor
or from an external source. The system clock (SCLK) is used for the internally
generated clock. The transmit/receive clock can be derived by dividing the SCLK
with the 16-bit serial clock divider register (SPORTx_TCLKDIV and SPORTx_
RCLKDIV) as follows:

SPORTx_TCLK frequency
SCLK frequency

SPORTx_TCLKDIV

SPORT

=
+()2 1

xx_RCLK frequency
SCLK frequency

SPORTx_RCLKDIV
=

+()2 1

(7.1.2)

TEAM LinG

7.1 Overview of Signal Acquisition and Transfer to Memory 285

These equations show that the maximum and minimum serial clock frequencies are
SCLK/2 and SCLK/(217), respectively.

In addition, the serial port generates internal frame syncs to initiate
periodic transfer of data in and out of the serial port. The number of transmit
serial cycles between frame sync pulses is SPORTx_TFSDIV + 1. Similarly, the
number of receive serial cycles between frame sync pulses is SPORTx_RFSDIV +
1. Figure 7.7 illustrates the clock and frame sync timing relationship. To fi nd the

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0¥0000

SPORTx Transmit Configuration 1 Register (SPORTx_TCR1)

SPORTx Transmit Configuration 2 Register (SPORTx_TCR2)

SPORT0:
 0xFFC0 0800
SPORT1:
 0xFFC0 0900

SPORT0:
 0xFFC0 0804
SPORT1:
 0xFFC0 0904

TRFST (Left/Right Order)
0 - Left stereo channel first
1 - Right stereo channel first

SLEN[4:0] (SPORT Word
Length)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

TCKFE (Clock Failing
Edge Select)
0 - Drive data and internal
 frame syncs with rising
 edge of TSCLK. Sample
 external frame syncs with
 failling edge of TSCLK.
1 - Drive data and internal
 frame syncs with falling
 edge of TSCLK. Sample
 external frame syncs with
 rising edge of TSCLK.

LATFS (Late Transmit
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

15

TSPEN (Transmit Enable)
0 - Transmit disabled
1 - Transmit enabled

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0¥0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TDTYPE[1:0] (Data Format-
ting Type Select)
00 - Normal operation
01 - Reserved
10 - Compand using μ-law
11 - Compand using A-law

LTFS (Low Transmit
Frame Sync Select)
0 - Active high TFS
1 - Active low TFS
DITFS (Data-Independent
Transmit Frame Sync Select)
0 - Data-dependent TFS generated
1 - Data-independent TFS generated

ITCLK (Internal Transmit
Clock Select)
0 - External transmit clock
 selected
1 - Internal transmit clock
 selected

TLSBIT (Transmit Bit Order)
0 - Transmit MSB first
1 - Transmit LSB first
ITFS (Internal Transmit
Frame Sync Select)
0 - External TFS used
1 - Internal TFS used
TFSR (Transmit Frame Sync
Required Select)
0 - Does not require TFS for
 every data word
1 - Required TFS for every
 data word

TSFSE (Transmit Stereo
Frame Sync Enable)
0 - Normal mode
1 - Frame sync becomes L/R clock

TXSE (TxSEC Enable)
0 - Secondary side disabled
1 - Secondary side enabled

Figure 7.5 SPORT transmit confi guration 1 and 2 registers (courtesy of Analog Devices, Inc.)

TEAM LinG

286 Chapter 7 Memory System and Data Transfer

desired frame sync frequencies for transmit and receive frames, we can use the
following equations:

SPORTx_TFS frequency
TCLK frequency

SPORTx_TFSDIV

SPORTx_RFS

=
+1

ffrequency
RCLK frequency

SPORTx_RFSDIV
=

+1

(7.1.3)

Note that the value of TFSDIV (or RFSDIV) must be greater than SLEN − 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0¥0000

SPORTx Receive Configuration 1 Register (SPORTx_RCR1)

SPORT0:
 0xFFC0 0820
SPORT1:
 0xFFC0 0920

SPORT0:
 0xFFC0 0824
SPORT1:
 0xFFC0 0924

RRFST (Left/Right Order)
0 - Left stereo channel first
1 - Right stereo channel first

SLEN[4:0] (SPORT Word
Length)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

RCKFE (Clock Failing
Edge Select)
0 - Drive internal frame sync
 on rising edge of RSCLK.
 Sample data and external
 frame sync with failling
 edge of RSCLK.
1 - Drive internal frame sync
 on falling edge of RSCLK.
 Sample data and external
 frame sync with rising
 edge of RSCLK.

LARFS (Late Receive
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

15

RSPEN (Receive Enable)
0 - Receive disabled
1 - Receive enabled

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0¥0000

SPORTx Receive Configuration 2 Register (SPORTx_RCR2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RDTYPE[1:0] (Data Format-
ting Type Select)
00 - Zero fill
01 - sign-extend
10 - Compand using μ-law
11 - Compand using A-law

IRCLK (Internal Receive
Clock Select)
0 - External receive clock
 selected
1 - Internal receive clock
 selected

RLSBIT (Receive Bit Order)
0 - Receive MSB first
1 - Receive LSB first
IRFS (Internal Receive Frame
Sync Select)
0 - External RFS used
1 - Internal RFS used

LRFS (Low Receive Frame
Sync Select)
0 - Active high RFS
1 - Active low RFS

RFSR (Receive Frame Sync
Required Select)
0 - Does not require RFS for
 every data word
1 - Require RFS for every data
 word

RSFSE (Receive Stereo
Frame Sync Enable)
0 - Normal mode
1 - Frame sync becomes L/R clock

RXSE (RxSEC Enable)
0 - Secondary side disabled
1 - Secondary side enabled

Figure 7.6 SPORT receive confi guration 1 and 2 registers (courtesy of Analog Devices, Inc.)

TEAM LinG

EXAMPLE 7.2

Compute the values to be written to the receive a serial clock divider register for a serial
port frequency of 13.3 MHz. The maximum SCLK of 133 MHz is used in the BF533 proces-
sor. If a 48-kHz receive frame sync rate is desired, the values of the frame sync divider
register are

SPORTx_RCLKDIV
MHz

MHz

SPORTx_RFSDIV
MHz

k

=
×

− =

=

133

2 13 3
1 4

13 3

48

.

.

HHz
− =1 276

7.2 DMA OPERATIONS AND PROGRAMMING

This section presents techniques for transferring data between SPORT and on-chip
memory. Data can be transferred in either single-word or block transfers with DMA.
In the single-word transfer, SPORT generates an interrupt every time it receives or
transmits a data word. The drawback of this approach is the frequent interruption
of the processing core, thus reducing the core’s ability to process more complicated
tasks. A more effi cient data transfer is to confi gure and enable the SPORT DMA
channel for receiving or transmitting an entire block or multiple blocks of data before
interrupting the core processor. Once a block of data is transmitted or received, the
interrupt service routine (ISR) can operate on the whole block of data (as shown in
Section 6.3.3) instead of a single sample mode.

In addition to transferring data between SPORT and internal memory via DMA,
the Blackfi n BF533 processor can also perform DMA transfers between (1) memory
and serial peripheral interface (SPI), (2) memory and the universal asynchronous
receive-transmit (UART) port, (3) memory and the parallel peripheral interface
(PPI), and (4) memory and memory. In the following sections, we use an example
to confi gure the SPORT DMA channel and describe the DMA operations. In Section
7.2.3, examples and exercises are given to explain memory DMA such as moving
program and data from external memory into the internal memory.

RSCLK/
TSCLK

RFS/TFS

Data

Number of cycles between frame sync pulses

TCLK/RCLK frequency

Figure 7.7 Timing diagram of clock and frame sync pulse

7.2 DMA Operations and Programming 287

TEAM LinG

288 Chapter 7 Memory System and Data Transfer

Figure 7.8 shows the connection of the DMA controller with the peripherals
and external and internal memories. The three DMA buses include the following.
(1) The DMA access bus (DAB) connects the peripheral to the DMA. (2) The DMA
core bus (DCB) connects the DMA to the core. (3) The DMA external bus (DEB)
connects external memory to the DMA. In some of the latest Blackfi n processors
such as BF561, an additional internal L2 memory is available and a DMA system
bus (DSB) is used to connect the core to the L2 memory. The BF533 processor
supports a total of six DMA-capable peripherals, including two SPORTs, one UART,
one SPI, one PPI, and one memory. A total of 12 DMA channels are available in
the BF533 processor as shown in Table 7.2. The BF537 processor has 4 more DMA
channels, including 12 peripheral DMA channels to support seven DMA-capable
peripherals of one Ethernet media access control, two SPORTs, two UARTs, one
SPI, and one PPI. In addition, there are four memory DMA channels for transferring
data between memories and between memory and off-chip peripherals. The latter
DMA transfer is called the handshaking memory DMA, which enables external
hardware to control the timing of individual data transfers or block transfers. This
type of DMA transfer is particularly useful for asynchronous FIFO-style devices
connected to the external memory bus.

Because the peripherals and memories are all connected to the DMA controller
in the BF533 processor, the priority system allows the highest-priority channel to
gain access to the DMA controller. As shown in Table 7.2, the BF533 processor
gives the highest priority to the PPI and the lowest priority to memory DMA1 RX
by default. The memory DMA channels are assigned to a lower priority than the
peripheral DMA channels. In addition, the default peripheral mapping can be reas-
signed for all peripherals, except for the four memory DMA streams (8–11) that are
rooted to the last four DMA channels. In the BF537 processor, the additional periph-
erals are Ethernet media access control and UART1, which have priority after PPI

Internal L1
memory

Blackfin core

DMA core bus (DCB) 16

Peripherals

SPORT SPI UART PPI

16DMA access bus (DAB)

External bus
interface unit
(EBIU)16

DMA ext. bus (DEB)
External
memory

Internal L2
memory

DMA system bus (DSB)

Only available on some
processors (e.g., BF561)

DMA
controller

Ethernet BF537
only

Figure 7.8 DMA controller and its connections

TEAM LinG

and UART0. Similar to the BF533 processor, the memory DMA of the BF537 has
the lower priority, and MDMA0 takes precedence over MDMA1.

7.2.1 DMA Transfer Confi guration

The Blackfi n processor provides two DMA transfer confi gurations: register mode
and descriptor mode. The register-based DMA transfers allow the user to program
the DMA control registers directly, whereas the descriptor-based DMA transfers
require a set of parameters to be stored in the memory to initiate a DMA sequence.
The latter transfer approach supports a sequence of multiple DMA transfers. Table
7.3 shows the DMA registers that are used to set up the DMA controller.

The register-based DMA provides two submodes: stop mode and autobuffer
mode. The control registers are automatically updated with their initialized values
(autobuffer mode) with zero overhead, or the DMA channel is automatically shut
off after a single pass of DMA transfer (stop mode). We examine the autobuffer
mode for handling the audio data streaming in and out of the processor in the next
section.

In the descriptor-based DMA transfers, users are given fl exibility in managing
the DMA transfer. The DMA channel can be programmed to perform different
DMA transfers in a sequential manner. There are three descriptor modes: descriptor
array mode, descriptor list (small model) mode, and descriptor list (big model)
mode. As shown in Figure 7.9, the descriptor array mode allows the descriptor to
reside in consecutive memory locations. Therefore, there is no need to initialize the
next descriptor pointer. However, in the descriptor list mode the descriptors are not
required to locate in a consecutive manner. If the descriptors are all located within
the 64K bytes in memory, a small-model descriptor list mode is used, where a single
16-bit fi eld of the next descriptor pointer is used. When the descriptors are located

Table 7.2 DMA Channels in the BF533 Processor and
Their Default Priorities

DMA Channel Default Peripheral Mapping

 0 (Highest priority) PPI
 1 SPORT0 RX
 2 SPORT0 TX
 3 SPORT1 RX
 4 SPORT1 TX
 5 SPI
 6 UART RX
 7 UART TX
 8 Memory DMA0 TX (destination)
 9 Memory DMA0 RX (source)
10 Memory DMA1 TX (destination)
11 (Lowest priority) Memory DMA1 RX (source)

7.2 DMA Operations and Programming 289

TEAM LinG

290 Chapter 7 Memory System and Data Transfer

Table 7.3 DMA Registers

Generic DMA Registers Description Mode
[memory-mapped register
name]

Start address (lower and Start address (source or Register and descriptor
 upper16 bits) destination)
 [DMAx_START_ADDR]
DMA confi guration Control information of DMA Register and descriptor
 [DMAx_CONFIG]
X_Count Number of transfers in inner Register and descriptor
 [DMAx_X_COUNT] loop
X_Modify Number of bytes-address Register and descriptor
 [DMAx_X_MODIFY] increments (signed and 2’s
 complement) in inner loop
Y_Count Number of transfers in outer Register and descriptor
 [DMAx_Y_COUNT] loop
Y_Modify Number of bytes between end Register and descriptor
 [DMAx_Y_MODIFY] of inner loop and start of
 outer loop (signed and 2’s
 complement)
Next descriptor pointer Address of next descriptor Only descriptor
 (lower and/or upper16 bits) (descriptor list mode)
 [DMAx_NEXT_DESC_PTR]

x denotes the DMA channel number (0, 1, . . . , 7).

(a) Descriptor array mode

Start_Addr[15:0]

Start_Addr[31:16

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Start_Addr[15:0]

Start_Addr[31:16

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Start_Addr[15:0]

Start_Addr[31:16

DMA_Config

……….………
…………………

….

Descriptor
Block 1

Descriptor
Block 2

Descriptor
Block 3

0x0

0x2

0x4

0x6

0x8

0xA

0xC

0xE

0x10

0x12

0x14

0x16

0x18

0x1A

0x1C

0x1E

0x20

(b) Descriptor list (small model) mode

Next_Desc_Ptr[15:0

Start_Addr[15:0]

Start_Addr[31:16]
DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Next_Desc_Ptr[15:0

Start_Addr[15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Next_Desc_Ptr[15:0

Start_Addr[15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

(c) Descriptor list (large model) mode

Next_Desc_Ptr[15:0]

Start_Addr[15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Next_Desc_Ptr[31:16

Next_Desc_Ptr[15:0]

Start_Addr[15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Next_Desc_Ptr[31:16
Next_Desc_Ptr[15:0]

Start_Addr[15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Modify

Y_Count

Next_Desc_Ptr[31:16

Figure 7.9 DMA descriptor modes for descriptor array (a), descriptor list (small model) (b), and
descriptor list (large model) (c) (courtesy of Analog Devices, Inc.)

TEAM LinG

across the 64K-byte boundary, a large-model descriptor list mode is used to provide
the full 32 bits for the next descriptor pointer as shown in Figure 7.9.

7.2.2 Setting Up the Autobuffer-Mode DMA

As stated above, the BF533 processor has 12 DMA channels. As shown in Figure
7.10, each DMA channel can be mapped to a different peripheral and memory
with the peripheral map register (CTYPE = 0) and memory DMA map register
(CTYPE = 1), respectively. In this section, we set up the DMA for transferring
data in and out of the AD1836A CODEC with the Blackfi n processor’s serial port
0 (SPORT0). Therefore, we set up DMA channel 0x1 for serial port 0 receive
(SPORT0 RX) and the DMA channel 0x2 for serial port 0 transmit (SPORT0 TX).
This default setup also implies that SPORT0 RX has a higher priority than SPORT0
TX. The setup instructions are listed as follows:

DMA1_PERIPHERAL_MAP = 0x1000; // channel 1 for SPORT0 RX
DMA2_PERIPHERAL_MAP = 0x2000; // channel 2 for SPORT0 TX

After the DMA channels have been mapped to the peripherals, they can be
confi gured by using their respective confi guration registers. As shown in Figure 7.11,
the 16-bit confi guration register DMAx_CONFIG allows selections such as DMA
transfer mode, data interrupt enable, transfer word size, DMA direction, DMA
channel enable (DMA_EN), etc. During initialization, DMA_EN must be disabled
and DMA parameters and modes are confi gured. The DMA channel can then be
turned on and made ready for operation by writing DMA_EN = 1.

CTYPE (DMA channel type) – RO
0 – Peripheral DMA
1 – Memory DMA

xxxxxxxxxxxxxxxx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMAP[3:0] (Peripheral mapped to this
channel by default. Can be re-assigned)
0000 – PPI
0001 – SPORT0 RX
0010 – SPORT0 TX
0011 – SPORT1 RX

0100 – SPORT1 TX
0101 – SPI
0110 – UART RX
0111 – UART TX

Figure 7.10 Peripheral map register (DMAx_PERIPHERAL_MAP and MDMA_yy_PERIPH-
ERAL_MAP, where x = 0, 1, . . . or 7, and yy = D0, S0, D1, or S1) (courtesy of Analog Devices, Inc.)

7.2 DMA Operations and Programming 291

EXAMPLE 7.3

Set up the DMA confi guration register (DMA1_CONFIG) to confi gure DMA channel 1 for
SPORT0 RX and DMA channel 2 for SPORT0 TX with autobuffer mode. The transfer word
size is set to 16 bits.

TEAM LinG

292 Chapter 7 Memory System and Data Transfer

7.2.2.1 Setting Up the Buffer Address,

DMA Count, and DMA Modify Registers

Figure 7.12 shows a block diagram of receiving (or transmitting) data between the
CODEC and the internal memory of the processor. SPORT0 (shown in Fig. 7.4) of
the Blackfi n processor is confi gured as the serial port for receiving and transmitting
data. The DMA transfers data to the receive buffer via the DMA channel. Once the
buffer is full, the DMA interrupts the processor core to process the received data.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0¥0000
15

FLOW[2:0] (Next
Operation)
0x0 - Stop
0x1 - Autobuffer mode
0x4 - Descriptor array
0x6 - Descriptor list (small model)
0x7 - Descriptor list (large model)

DMA_EN (DMA
Channel Enable)
0 - Disable DMA channel
1 - Enable DMA channel

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NDSIZE[3:0] (Flex Descriptor Size)
Size of next descriptor
0000 - Required if in Stop or Autobuffer mode
0001 - 1001 - Descriptor size
1010 - 1111 - Reserved
DI_EN (Data Interrupt Enable)
0 - Do not allow completion of
 work unit to generate an
 interrupt
1 - Allow completion of work unit
 to generate a data interrupt

WDSIZE [1:0] (Transfer Word
Size)
00 - 8-bit transfers
01 - 16-bit transfers
10 - 32-bit transfers
11 - Reserved

DI_SEL (Data Interrupt Timing Select)
Applies only when DMA2D = 1
0 - Interrupt after completing
 whole buffer (outer loop)
1 - Interrupt after completing
 each row (inner loop)

WNR (DMA Direction)
0 - DMA is a memory read
 (source) operation
1 - DMA is a memory write
 (destination) operation

DMA2D (DMA Mode)
0 - Linear (One-dimensional)
1 - Two-dimensional (2D)
RESTART (DMA Buffer Clear)
0 - Retain DMA FIFO data
 between work units
1 - Discard DMA FIFO before
 beginning work unit

Figure 7.11 DMA confi guration registers (DMAx_CONFIG or MDMA_yy_CONFIG, where
x = 0, 1, . . . or 7, and yy = D0, S0, D1, or S1) (courtesy of Analog Devices, Inc.)

// set DMA channel 1 for autobuffer mode, enable data inter-
rupt, retain DMA buffer
// one-dimensional DMA using 16-bit transfers, DMA is a memory
write, and
// DMA channel 1 is not enabled.
DMA1_CONFIG = 0001 0000 1000 0110b
// set DMA channel 2 for autobuffer mode, disable data inter-
rupt, retain DMA buffer
// one-dimensional DMA using 16-bit transfers, DMA is a memory
read, and
// DMA channel 2 is not enabled.
DMA2_CONFIG = 0001 0000 0000 0100b

Note that DMA channel 2 does not interrupt the processor on completion of sending a block
of data to the transmit register. This is due to the fact that receive and transmit channels are
synchronized with the receive DMA channel 1.

TEAM LinG

In the opposite direction, the processed data are moved to the transmit buffer. Once
the buffer is full, the data are transferred to SPORT0 via DMA with DMA channel
2. The transmit data is subsequently output to the CODEC. Because DMA operates
on the system peripheral, the system clock (SCLK) is used to manage the data
transfer. The SCLK is typically set up to 133 MHz and is lower than the core clock
(CCLK), which can exceed 600 MHz. The peripheral DMA channels have a
maximum transfer rate of one 16-bit word per two system clocks, per channel, in
either direction. Therefore, if the SCLK = 133 MHz, DMA transfer rate = 16 ×
133 M/2 = 1.064 Gbps.

After setting up the DMA confi guration registers as shown in Example 7.3, we
defi ne the start addresses of the source and destination. In our case, the DMA
channel 1 start address register, DMA1_START_ADDR, is set to a memory starting
at the receive (Rx) buffer (sDataBufferRX), which is the destination address.
The DMA channel 2 start address register, DMA2_START_ADDR, is set to a
memory starting at the transmit (Tx) buffer (sDataBufferTX), which is the
source address.

The X_COUNT register specifi es the number of transfers that are required, and
the X_MODIFY register specifi es the number of byte increments after every data
transfer. Note that the data transfer can be in 8, 16, or 32 bits. Therefore, X_COUNT
is related to the number of words, and the word can be 8, 16, or 32 bits. However,
X_MODIFY is always expressed in number of bytes. Blackfi n processors allow
one-dimensional (1D) and two-dimensional (2D) DMA modes. When the DMAx_
CONFIG register shown in Figure 7.11 is set to operate in 1D mode, only the X_
COUNT and X_MODIFY registers need to be set up. Otherwise, when 2D mode
is set, Y_COUNT and Y_MODIFY registers must also be set up in addition to the
X_COUNT and X_MODIFY registers. The 2D DMA can be considered as a nested
loop, where X_COUNT and X_MODIFY specify the inner loop and Y_COUNT
and Y_MODIFY specify the outer loop. The 2D DMA is particularly useful in
implementing double buffers for block processing mode and in addressing 2D data
like images. We show more examples on how to set up 2D DMA in Hands-On
Experiments 7.4 and 7.5.

SPORT0CODEC

Rx

Tx
DMA

DMA channel #1

DMA channel #2

Rx buffer

Processor
core

Tx buffer
Blackfin processor

Interrupt

Figure 7.12 Block diagram of use of DMA for connecting CODEC and internal memory

7.2 DMA Operations and Programming 293

TEAM LinG

294 Chapter 7 Memory System and Data Transfer

HANDS-ON EXPERIMENT 7.3

This experiment examines the DMA setup for connecting an external AD1836A CODEC with
the BF533 processor on the BF533 EZ-KIT. We use a simple talk-through program in the
project fi le exp7_3.dpj (located in directory c:\adsp\chap7\exp7_3) to acquire four
input channels (L0, R0, L1, R1) from the CODEC. Similarly, four output channels are used to
send the processed signals from the processor to the CODEC. The initialize.c fi le
initializes the DMA as follows:

void Init_DMA(void)
{
 // set DMA1 to SPORT0 RX
 *pDMA1_PERIPHERAL_MAP = 0x1000;

 // configure DMA1
 // configure DMA1
 // 16-bit transfers, interrupt on completion, autobuffer mode
 *pDMA1_CONFIG = WNR | WDSIZE_16 | DI_EN | FLOW_1;

 // start address of data buffer
 *pDMA1_START_ADDR = sDataBufferRX;
 // DMA inner loop count
 *pDMA1_X_COUNT = 4;
 // inner loop address increment
 *pDMA1_X_MODIFY = 2;

 // set up DMA2 to transmit
 // map DMA2 to Sport0 TX
 *pDMA2_PERIPHERAL_MAP = 0x2000;

 // configure DMA2
 // 16-bit transfers, autobuffer mode
 *pDMA2_CONFIG = WDSIZE_16 | FLOW_1;
 // start address of data buffer
 *pDMA2_START_ADDR = sDataBufferTX;
 // DMA inner loop count
 *pDMA2_X_COUNT = 4;
 // inner loop address increment
 *pDMA2_X_MODIFY = 2;
}

SPORT0 RX and SPORT0 TX use 1D DMA. X_COUNT = 4 is used to defi ne the
four input and four output channels, whereas X_MODIFY = 2 is used to indicate a 2-byte
increment for a 16-bit word transfer. An additional internal memory (sCh0LeftIn,
sCh0RightIn, sCh1LeftIn, and sCh1RightIn) must also be used to move data
from sDataBufferRX into these memory locations. Similarly, internal memory
(sCh0LeftOut, sCh0RightOut, sCh1LeftOut, and sCh1RightOut) are used
to transfer processed data to the sDataBufferTX memory. The processor’s timing diagram
is shown in Figure 7.13, which shows the operations within the ISR, including copy data into
local memory, processing, and copy the processed data out of the processor. As explained
in Section 6.3.2, this is the sample-by-sample processing mode. The real-time constraint
for the sample processing mode is TISR ≤ Ts, where TISR is the cycle time needed for complet-
ing the ISR plus the overhead of reading and writing data. This mode has higher overhead
time compared to the block processing mode. In this experiment, we increase the processing
load by increasing the loop counter in process_data.c as shown in Table 7.4. Do you

TEAM LinG

observe any distortion of the output audio when increasing the loop counter? Profi le the cycle
time taken to run the ISR and use CCLK = 270 MHz to compute the time required to perform
the loop N times. Compare this cycle time with the sampling period of 1/48,000 = 20.83 μs
and note the percentage of computation load. Complete the ISR cycle count in Table 7.4.
Also, turn on the statistical profi ler by clicking on Tools → Statistical Profi ling to view the
percentage of workload.

It is observed in Hands-On Experiment 7.3 that the overhead time associated
with the sample-by-sample mode is longer compared to the block processing mode,
which reduces overhead by performing setup and function call once every block.
The following experiment uses block processing on the BF537 EZ-KIT.

HANDS-ON EXPERIMENT 7.4

As explained in Section 6.3.3, the block processing mode is more effi cient for processing,
but at the expense of higher memory usage. This experiment modifi es the project fi le in
Hands-On Experiment 7.3 with a double-buffer block processing mode. The program can be
found in the project fi le, exp7_4.dpj, which is located in directory c:\adsp\chap7\
exp7_4. Perform the following tasks:

Read data from
sDataBufferRX
to local memory

Processing
data

Write processed
data from local
memory to
sDataBufferTX

Sampling period, Ts

Cycle time to run ISR, TISR

Tsp Tin Tout

Figure 7.13 Sample-by-sample processing (input, process, and output 4 data channels within 1
sampling period)

Table 7.4 Benchmark Results of Sample-by-Sample Processing Mode

Loop Counter, N ISR Processing Cycle Time % of Sampling Period
 (sample by sample)

 1
 10
 100
1,000
 Starts to fail

7.2 DMA Operations and Programming 295

TEAM LinG

296 Chapter 7 Memory System and Data Transfer

1. Change the DMA from 1D to 2D.

In init.c, change bit 4 of the DMA1_CONFIG registers to 1 (2D DMA). Set DMA1_
X_COUNT = 4×INPUT_SIZE, where INPUT_SIZE = 100, to input 100 samples
from L0in, R0in, L1in, and R1in (the CODEC on the BF533 EZ-KIT takes in 4
inputs). In other words, a window length of 100 samples is acquired for every block
and put into the top row of the data buffer (Buffer A) as shown in Figure 7.14. Set
DMA1_X_MODIFY = 2 to move from one 16-bit data to another. After the block of
100 data samples are acquired, an interrupt is generated to ask the processor to operate
on these 100 samples. The DMA controller continues to bring in new samples and put
them into the bottom row of data buffer (Buffer B). In this case, we need another set
of registers (DMA1_Y_COUNT = 2 and DMA1_Y_MODIFY = 2) to specify the dual
buffers and its selection between Buffer A and Buffer B. After Buffer B has been fi lled
up, it generates another interrupt to ask the processor to operate on the new data set.
Because the DMA is confi gured in autobuffer mode, the DMA1 _ X _ COUNT and
DMA1_Y_COUNT registers will be reloaded with the initialized values. A similar setup
is used in the output data buffer to transfer the processed data with the DMA. Refer
to the confi guration for DMA channel 2 in init.c.

2. Transfer data from data buffer to local buffer for processing.

After the input data have been transferred into the data buffer, sDataBufferRX
can be reloaded into the local buffers sCh0LeftIn[i], sCh0RightIn[i],
sCh1LeftIn[i], and sCh1RightIn[i], as shown in ISR.c. These four sets of
memory contain 100 × 16-bit data samples of L0, L1, R0 and R1. Therefore, the
programmer can process these data channels independently. A total of 3 × (4 ×
INPUT_SIZE) memory locations are required to store the incoming data samples in
double-buffering mode. Another 3 × (4 × INPUT_SIZE) memory locations are
required for saving processed data before passing out from the processor.

3. Processing in a block manner.

The fi nal change to the program is the use of block processing. Here, the processing
needs to be repeated for the number of data samples in the block (INPUT_SIZE),
as shown in the fi le process.c. The user can profi le the time needed to process
100 samples and use Table 7.5 to document the results. A dummy inner loop is used
to compare the same workload used in the sample-by-sample processing mode listed
in Table 7.4. Change the inner-loop counter and observe when the block processing
program starts to distort.

This experiment can also be carried out with the BF537 EZ-KIT in problems listed at the
end of this chapter (see Problem 5).

L0 R0 L1 R1 L0 R0 L1 R1
……

X_COUNT = 4 × INPUT_SIZE

L0 R0 L1 R1 L0 R0 L1 R1
……

X_MODIFY

2
=

T
N

U
O

C_
Y

Buffer B

Buffer A

Y_MODIFY

Figure 7.14 2D data buffer setup for moving data from DMA into the internal memory

TEAM LinG

EXERCISE 7.1

Ping-pong (or double) buffering is the standard method of transferring a block
of data samples from CODEC to the internal memory via DMA. As shown in
Hands-On Experiment 7.4, this approach uses two buffers at the receive end and
another two buffers at the transmit end. We can eliminate two buffers from the
transmit end (sDataBufferTx) if we perform in-place DMA transfer. That is,
only two buffers are required to save both the input data samples and the processed
output data.

1. Modify the program in exp7_4.dpj to implement in-place buffering and
computation in the BF533 EZ-KIT.

2. Perform the same for the BF537 EZ-KIT.

7.2.3 Memory DMA Transfer

Memory DMA transfers data between internal memory and external memory. A
single memory DMA transfer requires a pair of DMA channels: one channel for
source memory and the other for destination memory. In the BF533 processor, a
total of four memory DMA channels (as shown in Table 7.2) are used for two simul-
taneous memory-to-memory DMA transfers. In addition, an 8-entry, 16-bit FIFO
buffer is available for the source and destination channels to provide an effi cient
data transfer. A memory DMA is particularly useful in transferring data from the
larger external memory to the smaller internal memory. This memory transfer avoids
the need for stopping the processor from the current operation and fetching data
from external memory.

Compared with the peripheral DMA, the memory DMA occupies the lowest
priority as shown in Table 7.2. Also, we cannot reconfi gure the priority of the
memory DMA. In the BF533 processor, a round-robin access is provided in the
memory DMA to allow one channel to gain access to the bus for a number of cycles
before surrendering the bus access to the next channel. An added feature in the
BF537 processor is the ability to program the DMA request enable (DRQ) bit fi eld
in the handshake memory DMA control register to make the priority become
urgent.

Table 7.5 Benchmark Results of Block Processing Mode

Loop Counter ISR Processing Cycle Time % of Sampling Period
(outer loop × inner (block processing time/
loop) INPUT_SIZE)

 100 (100 × 1)
 1,000 (100 × 10)
10,000 (100 × 100)
 Starts to fail

7.2 DMA Operations and Programming 297

TEAM LinG

298 Chapter 7 Memory System and Data Transfer

In the following sections, we use examples and experiments to show how to set
up the memory DMA and move data between memories with 1D and 2D memory
DMA transfers.

7.2.4 Setting Up Memory DMA

As shown in Figure 7.10, the peripheral map registers in the BF533 processor for
the memory DMA can be confi gured as follows:

MDMA_D0_PERIPHERAL_MAP = 0x0040; // memory DMA desti-
nation D0

MDMA_S0_PERIPHERAL_MAP = 0x0040; // memory DMA source
S0

MDMA_D1_PERIPHERAL_MAP = 0x0040; // memory DMA desti-
nation D1

MDMA_S1_PERIPHERAL_MAP = 0x0040; // memory DMA source
S1

In the memory DMA, destination stream 0 (D0) has the highest priority, and source
stream 1 (S1) has the lowest priority.

Similar to the peripheral DMA, the memory DMA channels can be confi gured
with the MDMA_yy_CONFIG (yy = D0, S0, D1, or S1) registers shown in Figure
7.11. However, the DMA confi guration register for the source channel must be
written before the DMA confi guration register for the destination channel. The other
parameter registers to be set up in the memory DMA channels are:

1. MDMA_yy_START_ADDR registers specify the start address of the data
buffer for DMA access.

2. MDMA_yy_X_COUNT registers specify the number of elements (8, 16, or
32 bit) to be transferred. A value of 0x0 in this register corresponds to 65536
elements. X_COUNT is not necessarily the same as the number of bytes to
be transferred.

3. MDMA_yy_X_MODIFY registers contain a signed, 2’s complement byte-
address increment. These registers allow different parts of elements to be
extracted. In the 2D DMA confi guration, the X_MODIFY register is not
increased after the last element in each inner loop. The Y_MODIFY register
is applied instead.

4. MDMA_yy_Y_COUNT registers are used only for 2D DMA. These regis-
ters specify the outer loop count.

5. MDMA_yy_Y_MODIFY registers are used only for 2D DMA. These reg-
isters specify a byte-address increment and are applied after each decrement
of the Y_COUNT except for the last item in the 2D array.

7.2.5 Examples of Using Memory DMA

This section uses several experiments to illustrate how to move data around the
internal memory without the intervention of the core processor.

TEAM LinG

HANDS-ON EXPERIMENT 7.5

This experiment uses the VisualDSP++ BF533/BF537 simulator. In the project fi le exp7_
5.dpj (located in directory c:\adsp\chap7\exp7_5), a set of 15 (16 bit) sequential
numbers is generated as shown in Figure 7.15. These numbers are saved in the source memory
s_MemDMA0_Src_Array.

This experiment uses memory DMA to transfer data from the source memory
to the destination memory at s_MemDMA0_Dst_Array with different transfer
modes. Note that the memory DMA transfers below are confi gured as stop mode,
8-bit data transfers, and no interrupt enabled.

1. Using 1D-to-1D memory DMA transfer.

Set *pMDMA_S0_CONFIG = 0x0061 and *pMDMA_D0_CONFIG = 0x0063 for
source and destination memory channels, respectively. Because both memory DMA
channels are confi gured as 1D, the Y_COUNT and Y_MODIFY registers are not
used. Use X _ COUNT = 0X10 and X_MODIFY = 0x2 for both source and destina-
tion channels. Modify the main.c with the above settings and build the program.
Run and then halt the program. Click on Memory → Blackfi n Memory and type
in s_MemDMA0_Src_Array in the Blackfi n Memory window to view the memory
of the source and destination addresses. Observe the data in the source and destina-
tion memory.

Change the destination modifi er to pMDMA_D0_X_MODIFY = 0x1 (0x3 or
0x4). What happens to the destination memory? How can we modify the DMA
setting for copying only the fi rst 8 data from the source to the destination?

2. Using 1D-to-2D memory DMA transfer.

The 1D-to-1D data transfer above can be modifi ed to a 1D-to-2D data transfer by
changing the *pMDMA_D0_CONFIG = 0x0073. Keep the source count and modify
registers unchanged. Change the destination registers as follows:

 *pMDMA_D0_X_COUNT =0x8;
 *pMDMA_D0_Y_COUNT =0x2;
 *pMDMA_D0_X_MODIFY =0x2;
 *pMDMA_D0_Y_MODIFY =0x2;

0x01

0x00

0x02

0x00

:

:

0x10

0x00

s_MemDMA0_Src_Array

0x01

0x00

0x02

0x00

:

:

0x10

0x00

1D-to-1D
1D-to-2D
2D-to-1D
2D-to-2D

Possible
memory DMA
transfers

s_MemDMA0_Dst_Array

Figure 7.15 Memory DMA transfer from source memory to destination memory with different
memory DMA transfers

7.2 DMA Operations and Programming 299

TEAM LinG

300 Chapter 7 Memory System and Data Transfer

Do you observe the same destination memory as in Part 1 for the 1D-to-1D DMA
memory? Now change the destination registers as follows:

*pMDMA_D0_X_COUNT =0x8;
*pMDMA_D0_Y_COUNT =0x2;
*pMDMA_D0_X_MODIFY =0x2;
*pMDMA_D0_Y_MODIFY =0xFFF3; // move back 13 bytes

What happens to the destination memory? It is important to make sure that the total
number of bytes transferred on each side (source and destination) of the DMA
channel are the same.

3. Using 2D-to-1D memory DMA transfer.

If we need to access all odd numbers of data that follow an even number of data, we
can use 2D memory DMA at the source memory to pick up the right set of data. Set
up 2D-to-1D memory DMA as follows: *pMDMA_S0_CONFIG = 0x0071 and
*pMDMA_D0_CONFIG = 0x0063. Change the source and destination registers as
follows:

*pMDMA_S0_X_COUNT = 0x8;
*pMDMA_S0_Y_COUNT = 0x2;
*pMDMA_S0_X_MODIFY = 0x4;
*pMDMA_S0_Y_MODIFY = 0xFFE6; // move back 26 bytes

*pMDMA_D0_X_COUNT =0x10;
*pMDMA_D0_X_MODIFY =0x2;

Do you observe the right sequence being displayed in the destination memory?

4. Using 2D-to-2D memory DMA transfer.

We can move the data in the source memory to the destination memory with the
2D-to-2D memory DMA as shown in Figure 7.16.

The source and destination registers can be initialized as follows:

*pMDMA_S0_X_COUNT = 0x5;
*pMDMA_S0_Y_COUNT = 0x3;
*pMDMA_S0_X_MODIFY = 0x6;
*pMDMA_S0_Y_MODIFY = 0xFFEA; // -22 bytes

*pMDMA_D0_X_COUNT =0x5;
*pMDMA_D0_Y_COUNT =0x3;
*pMDMA_D0_X_MODIFY =0x1;
*pMDMA_D0_Y_MODIFY =0x6;

0x1 0x0 0x2 0x0 0x3 0x0

0x4 0x0 0x5 0x0 0x6 0x0

0x7 0x0 0x8 0x0 0x9 0x0

0xA 0x0 0xB 0x0 0xC 0x0

0xD 0x0 0xE 0x0 0xF 0x0

s_MemDMA0_Src_Array

0x1 0x4 0x7 0xA 0xD

0x0 0x0 0x0 0x0 0x0

0x2 0x5 0x8 0xB 0xE

0x0 0x0 0x0 0x0 0x0

0x3 0x6 0x9 0xC 0xF

0x0 0x0 0x0 0x0 0x0

s_MemDMA0_Dst_Array

2D-to-
2D

Figure 7.16 Source and destination memory data arrangements

TEAM LinG

The 2D-to-2D memory DMA provides fl exibility in defi ning data transfer from the source
memory to the destination memory. Change the DMA data transfer above to 16 bits and 32
bits to observe any differences in the destination memory.

The above hands-on experiments show examples of moving data from the
source memory to the destination memory. We further illustrate real-world applica-
tions in the following examples.

EXAMPLE 7.4

A video frame buffer of size 320 × 240 has a total of 76,800 pixels. Use a 2D DMA to
retrieve a block of 16 × 8 bytes as shown in Figure 7.17.

The memory DMA registers for the source memory can be initialized as follows:

X_COUNT = 16

X_MODIFY = 1

Y_COUNT = 8

Y_MODIFY = 320–15 = 305

1 2 3 …. 16 ………. 320
321 322… 336 ……… 640
641 642 … 656………. 960
: :
: :
2241 2242.. 2256 ……... 2560
:
:
:
76480… ……….. 76800

320

8

16

240

Figure 7.17 A video frame buffer of 320 × 240 pixels, where a block of 16 × 8 pixels are
extracted into the data memory

7.2 DMA Operations and Programming 301

EXAMPLE 7.5

A video data stream of bytes consists of red (R), green (G), and blue (B) of a color image of
size N × M pixels as shown in Figure 7.18. It is desired to extract the R, G, and B of the cor-
responding pixels into destination memory as shown in the right-hand side of Figure 7.18.

The memory DMA registers for the source memory can be initialized as follows:

Source DMA Destination DMA

X_COUNT = 3 X_COUNT = 3

X_MODIFY = N×M X_MODIFY = 1

Y_COUNT = N×M Y_COUNT = N×M

Y_MODIFY = −2(N×M) + 1 Y_MODIFY = 1

TEAM LinG

302 Chapter 7 Memory System and Data Transfer

HANDS-ON EXPERIMENT 7.6

This experiment fi lls a large section of memory with some predefi ned values. A simple
approach is to use the processor core for memory copy; thus the processor will not able to
perform other tasks. A more effi cient approach is to perform a 1D DMA in stop mode. The
source memory DMA can be set up by fetching the predefi ned value (for example, 0x33)
continuously, X_COUNT = number of transfer, and X_MODIFY = 0x0 to ensure that the
source pointer keeps pointing to the predefi ned value. The destination memory DMA can
be set up with X_COUNT = number of transfer and X_MODIFY = 0x1 for 1 byte/transfer.
Modify main.c in the project fi le exp7_6.dpj located in directory c:\adsp\chap7\
exp7_6 to initialize 128 bytes of destination memory with a value of 0x33. Create a new
project and run it on the BF533/BF537 simulator to verify the results.

7.2.6 Advanced Features of DMA

We have introduced several DMA features including prioritizing DMA channels in
previous sections to meet peripheral task requirements. For example, the parallel
port DMA channel is given a higher priority (lower number DMA channel) over the
serial port DMA channel. However, users have fl exibility in confi guring the priority
of these DMA channels to optimize the data transfer fl ow in the system. Some of
the latest Blackfi n processors (such as the BF561) have multiple DMA controllers
for transferring data to multiple processing cores.

The memory DMA channels always have lower priority than the peripheral
DMA channels. Therefore, when both peripheral and memory DMA transfers exist,
the memory DMA transfer can only take place during the unused time slots of the
peripheral DMA. In addition, if more than one memory DMA transfer is enabled,
only the highest-priority memory DMA channel is granted access. To allow the

N

M

R1 GN.M+1 B2N.M+1

R2 GN.M+2 B2N.M+2

: : :

: : :

RN.M G2N..M B3N.M

G N.M+1

 G2N..M

R1

 RN.M

B2N.M+1

 B3N.M

N

N

2D-to-2D

Source memory Destination memory

Figure 7.18 Transfer of R, G, and B data to the destination memory with 2D memory DMA

TEAM LinG

lower-priority memory DMA channel to gain access to the DMA bus, a round-robin
period mechanism is available in the Blackfi n processor to allow each memory
DMA channel for a fi xed number of transfers.

As applications are becoming more complex and involve multiple bidirectional
data streams from audio and video devices, the DMA controller in the Blackfi n
processor provides advanced features such as a traffi c controller to control the direc-
tion of data transfer. The reason for direction control is that each direction change
of data transfer can impose several cycles of delay. Traffi c can be independently
controlled for each of the three DMA buses DAB, DCB, and DEB by using simple
counters in the DMA traffi c control counter period register, DMA_TC_PER. These
counters state the cycle count for performing DMA data transfer in the same direc-
tion as the previous transfer. In other words, the DMA controller grants a DMA bus
to peripherals and memory performing the same read/write direction for a period
cycle count, until the counter time out occurs, or until the traffi c changes direction.
After the period counter decrements to zero, the preference is changed to the oppo-
site fl ow direction.

Program and data can also be moved from the external memory to the internal
memory with the cache mechanism. In the following section, we discuss cache
memory concepts and how instruction and data caching can be carried out in the
Blackfi n processor. The comparison between cache and DMA access provides some
guidelines in choosing between DMA and cache.

7.3 USING CACHE IN THE BLACKFIN PROCESSOR

We briefl y introduced different types of memory in the Blackfi n processors in
Chapter 5. We described the internal program and data memories and split these
memories between SRAM and cache. In this section, we examine the cache memory
of the Blackfi n processor in detail. Cache memory [46] can be thought of as copying
a block of external memory to the internal memory that is closer to the core in order
to speed up the memory access. Different methods are used for instruction and data
caches, and these methods predict which blocks of memory need to be copied into
the cache memory for optimum performance. The following sections explain cache
memory concepts, cache terminology, the instruction cache, the data cache, and the
memory management unit.

7.3.1 Cache Memory Concepts

The BF53x processor provides separate Level 1 (L1) caches for data and instruction.
For time-critical applications, data and instructions are stored in the on-chip SRAM,
which can be accessed in a single core clock (CCLK) cycle. However, if code and
data are too large to fi t into the internal memory, they are stored in larger but slower
off-chip memory. Data transfer between internal and external memories can be
carried out by using the DMA, as explained in the previous sections. Alternatively,
some internal memories can be confi gured as cache to allow data transfer between

7.3 Using Cache in the Blackfi n Processor 303

TEAM LinG

304 Chapter 7 Memory System and Data Transfer

cache and external memories. Figure 7.19 shows the memory confi guration of the
Blackfi n processor. As shown in the BF533’s memory map (Fig. 5.17), the memory
address from 0xFFA1 0000 to 0xFFA1 3FFF can be confi gured as either instruction
SRAM or instruction cache. Similarly, the data memory address from 0xFF80 4000
to 0xFF80 7FFF and from 0xFF90 4000 to 0xFF90 7FFF can be confi gured as data
SRAM or data cache. The rest of the internal memory of the BF533 processor can
only be confi gured as SRAM. Note that the size of the cache is small (16 Kbytes).
This small-size cache allows quick checking and fi nding of data/instruction.

The main reason for using cache is to reduce the movement of instructions and
data into the processor’s internal memory. Cache simplifi es the programming model
once it is properly set up. However, in many time-critical signal processing tasks,
most programmers tend to avoid confi guring memory as cache. The reason for this
is to avoid movement of data and program code in and out of the internal memory
that may degrade realtime performance, or even violate the real-time constraint. To
solve this real-time issue for hard real-time code, the Blackfi n processor provides a
cache-locking mechanism that can lock time-critical code in the cache such that this
code cannot be replaced. Other soft real-time code can be unlocked for possible
cache fi ll. This caching mechanism is highlighted in subsequent sections.

If the entire program code and data can be fi tted into the internal memory, there
is no need to confi gure internal memory as cache. The cache is only confi gured if
large program code or data needs to be extracted from the external memory. The
cache memory system is able to manage the movement of program code and data
from the external memory into the cache without any intervention from the pro-
grammer. This is unlike the memory DMA, where data transfer between external
and internal memories is handled by the DMA controller. In addition, program
overlay can be carried out by using the memory DMA to move code from external

Programs

Data

External memory

Data SRAM

Data cache

Instruction
cache

Internal memory

DMA

Cache
fill

Cache
fill

Figure 7.19 Memory confi guration of the Blackfi n processor

TEAM LinG

memory to internal memory when needed. Therefore, there is a need to understand
the strengths and weaknesses of using cache and DMA and formulate a good strat-
egy in selecting cache and DMA for data and code transfer. This issue is discussed
in Section 7.4.

7.3.2 Terminology in Cache Memory

To discuss the cache mechanism in the Blackfi n processor in detail, we need to
understand some basic concepts and terms that are commonly used in describing
cache memory. This introduction will be “just enough” to understand the operations
of the cache mechanism and to set up the cache memory in the Blackfi n processor.

Several memory spaces can be confi gured as cache or SRAM. The cache
memory space can be divided into several fi xed-size blocks, commonly known as
cache lines. A cache line is the smallest unit of memory to be transferred from
external memory to the cache memory on a cache miss. Figure 7.20 shows an
example in which the cache memory is divided into six cache lines and maps to a
bigger cacheable external memory that has 18 memory blocks (lines). Every cache
line and memory line has the same number of bytes. In the Blackfi n cache organiza-
tion, each cache line has 32 bytes.

A “cache hit” occurs when the processor references a memory block that is
already placed in the cache. The processor will access the data or instruction from
the internal cache memory, instead of accessing from the external memory. In con-
trast, a “cache miss” occurs when the processor references a memory block that is
not inside the cache. The consequence of a cache miss is that the cache controller
needs additional access time to move the referenced memory block from the external
memory into the cache memory. This process is called a cache line fi ll. Sub-
sequently, when the same memory block is referenced by the processor again, the
access will be from the faster cache memory.

Because the external memory is larger than the cache memory, there is a need
to understand different ways of mapping the external memory to the cache memory.
There are three schemes for mapping the external memory into the cache memory.

External
memory

Cache
memory Transfer data

from external
memory to
cache upon
cache miss

Cache
line

Memory
block/line

Internal
memory

32 bytes

1
2

1

6

:
:

18

Figure 7.20 Fixed-size block/line for external memory and cache

7.3 Using Cache in the Blackfi n Processor 305

TEAM LinG

306 Chapter 7 Memory System and Data Transfer

1. Direct-mapped cache: In this mapping, every block in the external memory
has only a fi xed destination line in the cache. However, other blocks in the
external memory can also share the same destination line in the cache.
Therefore, this many-to-one mapping scheme is not suitable for control
application, where the program constantly switches from one section to
another, and results in many cache misses.

2. Fully associative cache: In this caching scheme, a block in the external
memory can be mapped to any line in the cache memory. This mapping
scheme is the opposite extreme of the direct-mapped cache, and has the least
number of missing cache lines.

3. Set-associative cache: This caching scheme is used in the Blackfi n
processor. The cache memory is arranged as sets, and one set consists of
several cache lines. For example, the Blackfi n processor has four cache lines
per set in the instruction cache, and this instruction cache is called a four-
way set-associative cache. Therefore, any external instruction memory can
be cached into any of the four cache lines within a set, as shown in Figure
7.21. The data cache in the Blackfi n processor is a two-way set-associative
cache.

The next commonly asked question is how the processor knows whether there
is a cache hit or a cache miss. The answer can be derived by examining the tag fi eld
of the cache line. The 20-bit tag fi eld (or address) is stored along with the cached
data line to identify the specifi c address source in memory that represents the cache
line. If the tag address matches the external memory, the processor checks the valid-
ity bit, which is a single bit that determines whether the cache line is valid or not.
Only a valid cache line can be used directly. In subsequent sections, we will show
in detail how to cache data and instructions into the internal memory.

Another question is what happens when all the cache lines are valid and a cache
miss occurs. In this case, some of the cache lines need to be replaced, but how do

Set #0

Line #0 Line #1 Line #2 Line #3

Set #1

Line #0 Line #1 Line #2 Line #3

:
:

External
memory Instruction cache

Figure 7.21 Caching of external memory into instruction cache using 4-way set-associative
memory

TEAM LinG

we select and replace these cache lines? Some possible cache line replacement
strategies are summarized as follows:

1. Random replacement: The destination cache line to be replaced is ran-
domly selected from all participating cache lines. This strategy is the sim-
plest but least effi cient.

2. FIFO replacement: The oldest cache line is replaced fi rst.

3. Least recently used (LRU) replacement: This method is based on the fre-
quency of a cache line being accessed by the processor core. A recently used
cache line is more likely to be used again. The replaced cache line is the one
that has not been accessed for the longest time, or the least recently used.

4. Modifi ed LRU replacement: Every cache line is assigned a low or high
priority. If the incoming block from external memory is a low-priority block,
only low-priority cache lines can be replaced. If the incoming block is a
high-priority block, all low-priority cache lines are replaced fi rst, followed
by high-priority cache lines. This replacement strategy is only used in the
instruction cache line.

In the following sections, we explain the detailed features of the instruction and
data caches in the BF533 processor. The BF537 processor has the same cache
memory and mechanism as the BF533 processor.

7.3.3 Instruction Cache

The BF533 processor has 80K bytes of on-chip instruction memory, in which 64K
bytes can only be set as SRAM and the remaining 16K bytes (located at address
0xFFA1 0000 to 0xFFA1 3FFF) can be confi gured as either SRAM or cache. When
the 16K bytes are enabled as cache, the cache is further arranged as four 4K-byte
subbanks; each subbank consists of 32 sets, each set has four cache lines, and each
cache line is 32 bytes, as shown in Figure 7.22. When the cache is disabled, only a
single 64-bit instruction is transferred into the SRAM at a time. When the cache is
enabled, instruction is fetched from the external memory via the 64-bit bus. Because
the cache line is 32 bytes long, a burst of 4 × 64-bit (or 32 bytes) instruction data
is transferred at a time.

When replacing the cache line from external memory during a cache miss,
the cache line fi ll returns four 64-bit words, starting from the address of the
missed instruction, and the next three words are fetched in sequential address
order, as shown in Table 7.6. The advantage of using this fetching arrangement is
to allow the processor to start executing the target instruction without waiting for
the three unwanted instructions. This is made possible by the 4 × 64-bit line fi ll
buffer.

As explained in the previous section, the tag fi eld of the cache line consists of
the tag address and the valid bit. In addition to this information, the tag fi eld of the
instruction cache line also consists of the LRU state fi eld and the LRU priority

7.3 Using Cache in the Blackfi n Processor 307

TEAM LinG

308 Chapter 7 Memory System and Data Transfer

(LRUPRIO) bit. The LRU state fi eld is used by the cache controller to indicate the
frequency of the cache lines, and it replaces the cache line that is the least used.
The LRU priority bit is used to assign a priority to each of the cache lines, and this
scheme allows the high-priority cache line to be protected from replacement. The
cache controller of the Blackfi n processor can be confi gured to use either the modi-
fi ed LRU scheme or the LRU scheme for cache line replacement.

When addressing the instruction located in external memory, the 32-bit address
(A0–A31) is partitioned into the following fi elds:

1. Twenty address bits, A31–A14 and A11-A10, are used to compare with the
20-bit tag address in the cache.

2. Two address bits, A13 and A12, are used to select one of the four 4K byte
subbanks.

3. Five address bits, A9–A5, are used to select one of the 32 cache lines.

4. Five address bits, A4–A0, are used to select a byte within a given 32-byte
cache line.

Way3

Way2

Way1

Subbank 0
(4 Kbyte)

Subbank 1
(4 Kbyte)

Subbank 2
(4 Kbyte)

Subbank 3
(4 Kbyte)

Line fill
buffer
(4 × 64 bits)

Way0
(1 Kbyte)

tag Data (32 bytes) Line0

tag Data (32 bytes) Line1

tag Data (32 bytes) Line31

:

4:1 MUX

64-bit

:

Each set has 4 lines.
32 sets in total.

Figure 7.22 4-Way set-associative instruction cache of the BF533 processor

Table 7.6 Cache Line Word Fetching Order

Target Word Fetching Order for Next Three Words

WD0 WD1, WD2, WD3
WD1 WD2, WD3, WD0
WD2 WD3, WD0, WD1
WD3 WD0, WD1, WD2

TEAM LinG

EXAMPLE 7.6

An access to an external memory at address 0x2010 2836 will result in the comparison of
the tag address and cache selection as shown in Figure 7.23. By converting the hexadecimal
address into its binary equivalent, the 20-bit address 0x20102 is compared to the tag
addresses of the four cache lines in set 1 (out of the possible 32 sets) from subbank 2 (out
of the possible 4 subbanks). If there is a match, a cache hit occurs and the 22nd byte of the
selected cache line is accessed by the processor.

Example 7.6 showed how to select a cache line for comparison. However, if
there is a cache miss, a cache line fi ll access is used to retrieve the cache line from
the external memory. The cache line replacement unit is used to determine which
cache line in the selected set can be replaced. The cache replacement scheme can
be carried out in the following cases:

1. When only one invalid way is available in the set, the incoming external
memory block replaces this cache line in the invalid way.

2. When more than one invalid way is available in the set, the incoming exter-
nal memory block replaces the cache line in the following order of priority:
Way0, Way1, Way2, and Way3.

3. If there is no invalid way in the cache, the LRU scheme explained above is
used to replace the least recently used way. However, if the modifi ed
LRU scheme is used, ways with high priority cannot be replaced by the low-
priority memory block. If all ways are high priority, the low-priority blocks
cannot be cached, but high-priority blocks can be cached with the LRU
scheme.

Finally, a particular way can be locked by using the instruction memory control
register. The advantage of using this locking mechanism is to keep the time-critical
code in one of the ways and allow the other three ways to response to a cache
miss.

0010 0000 0001 0000 0010 1000 0011 0110

 2 0 1 0 2 8 3 6 Hex

Binary

0x20102 is used to
compare with the tag
address of the cache

Select
subbank
2

Select
set 1

Select 22nd
byte of the
cache line

Figure 7.23 Mapping the external memory address space into the instruction cache memory
space

7.3 Using Cache in the Blackfi n Processor 309

TEAM LinG

310 Chapter 7 Memory System and Data Transfer

HANDS-ON EXPERIMENT 7.7

This experiment demonstrates the concept of locking a particular way in the instruction cache
memory. This locking concept is analogous to luring a mouse into the desired mouse trap.
Suppose Way0 (the desired mouse trap) is to be locked and Way1, Way2, and Way3 are to
be unlocked. This can be done by fi rst unlocking Way0 (i.e., putting bait in Way0) and
locking the remaining three ways. A dummy call to the time-critical function will force the
function into Way0. This is similar to forcing the mouse into the Way0 trap. Subsequently,
lock Way0 (to trap the mouse) and unlock the other ways. Any subsequent cache miss can
only be channeled into Way1, Way2, or Way3 (i.e., other mice will be lured to other traps).

This concept is illustrated in main.c in the project exp7_7.dpj located in directory
c:\adsp\chap7\exp7_7. Load this project fi le into the VisualDSP++ simulator and
examine the following:

1. Lock_Control settings in main.c.

2. Use the Blackfi n Memory window to locate the instructions in the external memory
(0x0000 0000) and the internal memory (0xFFA1 0000).

3. Run the program and check the internal memory (0xFFA1 0000) again. Explain your
observations.

4. Note that the ILOC bits in the IMEM_CONTROL register are used to control which
way is to be locked. The program listing is shown in config_I_cache.c.

7.3.4 Data Cache

This section introduces the data cache confi guration of the BF53x processor, which
has 64K bytes of on-chip data memory. Half of the memory (32K bytes) is SRAM,
and the other half can be confi gured as either SRAM or cache. The memory that
can be confi gured as cache is separated into two independent memory banks of 16K
bytes. The bank A address starts from 0xFF80 4000 to 0xFF80 7FFF, and bank B
starts from 0xFF90 4000 to 0xFF90 7FFF. Therefore, these two banks can be sepa-
rately confi gured as cache or SRAM, with the exception that bank B cannot be
confi gured as cache if bank A is already confi gured as SRAM.

Unlike the instruction cache, the data cache is a two-way set-associative memory.
Figure 7.24 shows the confi guration of the data cache memory. The 16K-byte cache
bank is confi gured as four 4K-byte subbanks. Unlike the instruction cache, each
subbank in the data cache has 2 ways (2K bytes for each way) and consists of 64
cache lines per way. Similar to the instruction cache, each cache line has 32
bytes.

Like the instruction cache, the tag fi eld of the data cache consists of the address
tag, the valid bit, and the LRU fi eld. However, the tag fi eld of the data cache does
not include LRUPRIO bits; instead, a dirty bit is included to indicate whether the
cache line has been modifi ed. Using the valid bit and dirty bit, the data cache line
can occur in the following states: (a) invalid, (b) valid and clean, and (c) valid and
dirty.

TEAM LinG

When addressing the data in external memory, the 32-bit address (A0–A31) is
partitioned into the following fi elds:

1. Nineteen address bits, A31–A14 and A11, are used to compare with the
19-bit tag address in the cache.

2. Two address bits, A13–A12, are used to select one of the four (4K byte)
subbanks.

3. Six address bits, A10–A5, are used to select one of the 64 cache lines.

4. Five address bits, A4–A0, are used to select a byte within a given 32-byte
cache line.

5. If both data banks A and B are enabled as cache, bit 14 or bit 23 is used to
determine which data bank.

Compared to the instruction cache, the data cache needs more complex pro-
gramming tasks. These complexities are due to the read and write operations in the
data cache. In addition to the line fi ll buffer (8 × 32 bits) for reading data from the
external memory, the data cache has an extra victim buffer (8 × 32 bits) for writing
data back to the external memory.

Two cache-write policies (write-through and write-back) are commonly used.
In the write-through policy (also known as store through), data are written to both
the cache line and the (external) source memory. Modifi cation in the cache will also
be written to the source memory as shown in Figure 7.25(a). However, when there
is a data cache miss (the cache line is invalid), the write-through data cache only
replaces the cache line and does not update the source memory.

Way1
(2 Kbyte)

tag

tag

tag

:

Subbank 0
(4 Kbyte)

Subbank 1
(4 Kbyte)

Subbank 2
(4 Kbyte)

Subbank 3
(4 Kbyte)

Line fill
buffer
(8 × 32 bits)

Way0
(2 Kbyte)

tag Data (32 bytes) Line0

tag Data (32 bytes) Line1

tag Data (32 bytes) Line63

:

2:1 MUX

64-bit

:

Each set has 2 lines.
64 sets in total.

Victim
buffer
(8 × 32 bits)

write

read

Figure 7.24 Two-way set-associative data cache of the BF533 processor

7.3 Using Cache in the Blackfi n Processor 311

TEAM LinG

312 Chapter 7 Memory System and Data Transfer

In contrast, in the write-back policy (also known as copy-back), data are only
written to the cache line. The modifi ed cache line is written to source memory only
when it is being replaced, as shown in Figure 7.25(b). Therefore, as long as there is
a cache hit, data are only modifi ed in the cache line. When the cache entry is
replaced during a cache miss, the source memory will also be updated. The dirty
bit in the address tag of each cache line is used to indicate that the cache contains
the only valid copy of the data, and these data must be copied back to the external
memory before the new data are written into the cache line. The victim buffer shown
in Figure 7.24 is used to hold the data that need to be written back while the proces-
sor writes the new data in the cache line.

A comparison between the two cache-write policies shows that the write-
through mode allows source memory to be coherent (or consistent) with cache
memory; thus multiple processors can access the updated data in the source memory.
However, in the write-through mode, cache-write results in more communication
overhead in transferring data between cache and source memory. The write-back
mode is usually faster because of the fewer writes to the source memory unless the
cache is being replaced. Nevertheless, the choice between write-through and write-
back is not clear cut, and depends on applications. Therefore, the best approach in
selecting a suitable mode is to test them separately for a given application.

HANDS-ON EXPERIMENT 7.8

This experiment uses the BF533 (or BF537) EZ-KIT to investigate the cycles needed to run
an assembly program under different instruction and data cache modes. The project fi le
exp7_8_533.dpj (or exp7_8_537.dpj) is located in directory c:\adsp\chap7\exp7_
8_533 (or c:\adsp\chap7\exp7_8_537). Build the project and set a break point at the
line “end:idle;” in main.asm. Click on Register → Core → Data Register File to open
the Data Register File window. Change the format of display to Unsigned Integer

32-bit and observe the value of registers R0 (low word) and R1 (high word). These
registers contain the cycle count to run myprogram.asm. By commenting out the selected

Processor core

Data cache

Source
memory

(external)

Processor core

Data cache

Source
memory

(external)

(a) Write-through (b) Write-back

Update
together

Update only
when cache line
being replaced

Figure 7.25 Write-through and write-back data cache

TEAM LinG

instruction in the header fi le, cache_init.h, various cache modes can be selected, and
cycle counts are tabulated in Table 7.7. Comment on the performance.

7.3.5 Memory Management Unit

The Blackfi n processor includes a memory management unit (MMU) that controls
how to set up and access memory in the processor. However, the MMU is an optional
feature that is disabled on reset. The MMU is important in embedded applications
because it provides a means to protect memory at a page level and determines
whether a memory page is cacheable.

The MMU in Blackfi n processors consists of the cacheability and protection
look-aside buffers (CPLBs). The BF533 processor has a total of 32 CPLBs, including
16 ICPLBs for instruction memory and 16 DCPLBs for data memory. The ICPLBs
and DCPLBs are enabled by setting the appropriate bits in the L1 instruction
memory control register (IMEM_CONTROL) and L1 data memory control
(DMEM_CONTROL). A memory page size can be defi ned as 1K, 4K, 1M or 4M
bytes. Therefore, users can program different pages in the Blackfi n memory with
different cacheability and protection properties. In a simple application, 32 CPLBs
are suffi cient to cover the entire addressable space of the application. This type of
defi nition is referred to as the static memory management model. A quick calcula-
tion will show that we cannot specify all the 4G bytes of address of the Blackfi n
processor with just 16 pages of data and 16 pages of instruction, with a maximum
page size of 4 Mbytes each. There will be instances when the processor accesses to
a location without a valid CPLB. In this case, an exception error will occur and the
exception routine must free up one CPLB and reinitialize the CPLB to that location.
In a more complex application, a page descriptor table is often used to describe
different memory management models. All the potentially required CPLBs are
stored in the page descriptor table, and the relevant CPLBs are selected by the
MMU.

Each CPLB has two associated registers: (a) start address for instruction
(ICPLB_ADDRn) and data (DCPLB_ADDRn) pages and (b) instruction cache/
protection properties (ICPLB_DATAn) and data cache/protection properties

Table 7.7 Cycle Counts of Different Cache Modes

Mode Cycle Count Comment

Only data cache enable (default write through)
Only data cache enable (write back)
Only instruction cache enable
Both data and instruction cache enable
Data bank A and bank B as cache

7.3 Using Cache in the Blackfi n Processor 313

TEAM LinG

314 Chapter 7 Memory System and Data Transfer

(DCPLB_DATAn). The letter “n” in the registers indicates page numbers 0, 1, . . . ,
15 of the 16 pages. Typically, there are some rules for setting up the CPLBs:

1. Default CPLBs are set up for the system memory mapped registers and
scratchpad memory. There is no need to use additional CPLB to set up these
regions of memory.

2. CPLB must be confi gured for L1 data and L1 instruction memory as
noncacheable.

3. Disable all memory other than the desired memory space.

4. Pages must be aligned on page boundaries that are integer multiples of their
size.

Figure 7.26 and Figure 2.27 show the various bit fi elds and their functionalities
in the ICPLB_DATA and DCPLB_DATA registers, respectively.

The VisualDSP++ IDDE allows users to set up a startup code when creating a
new project. A startup code is a procedure that initializes and confi gures the proces-
sor on reset. One of these initialization routines is the confi guration of the proces-
sor’s cache and memory protection. The window shown in Figure 7.28 is obtained
when a startup code option is enabled. In the Cache and Memory Protection

31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0¥0000 0000

PAGE_SIZE[1:0]
00 - 1 K byte page size
01 - 4 K byte page size
10 - 1 M byte pate size
11 - 4 M byte page size

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15

CPLB_L1_CHBL
Clear this bit wherever L1 memory
is configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

CPLB_VALID
0 - Invalid (disabled) CPLB
 entry
1 - Valid (enabled) CPLB
 entry

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPLB_USER_RD
0 - User mode read access
 generates protection
 violation exception
1- User mode read access
 permitted

CPLB_LOCK
Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can
 be replaced
1 - Locked, CPLB entry should
 not be replaced

CPLB LRUPRIO
0 - Low importance
1 - High importance

Figure 7.26 32-bit ICPLB_DATA register (courtesy of Analog Devices, Inc.)

TEAM LinG

option, users can specify the instruction cache memory and data cache memory
options. There are three options under the instruction cache memory: (1) RAM with
no memory protection, (2) RAM with memory protection, and (3) instruction cache.
Under the data cache memory, there are four options: (1) RAM with no memory
protection, (2) RAM with memory protection, (3) data cache (bank A), (4)
data cache (banks A and B). The basiccrt.s fi le, which contains the user-speci-
fi ed memory settings and known machine states, is created in the new project fi le
under the Generated Files folder.

7.4 COMPARING AND CHOOSING
BETWEEN CACHE AND MEMORY DMA

As long as memory can be fi tted into the internal memory of the processor, cache
and memory DMA should not be used. However, in cases where data and/or program
are larger than the available internal memory, part of the code or data must be

31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0¥0000 0000

PAGE_SIZE[1:0]
00 - 1 K byte page size
01 - 4 K byte page size
10 - 1 M byte pate size
11 - 4 M byte page size

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15

CPLB_L1_AOW
Valid only if write
through cacheable
(CPLB_VALID = 1,
CPLB_WT = 1)
0 - Allocate cache lines
 on reads only
1 - Allocate cache lines
 on reads and writes

CPLB_VALID
0 - Invalid (disabled) CPLB entry
1 - Valid (enabled) CPLB entry

CPLB_L1_CHBL
Clear this bit when L1 memory is
configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1
CPLB_DIRTY
Valid only if write back cacheable (CPLB_VALID = 1,
CPLB_WT = 0, and CPLB_L1_CHBL = 1)
0 - Clean
1 - Dirty
A protection violation exception is generated on store
accesses to this page when this bit is 0. The state of
this bit is modified only by writes to this register. The
exception service routine must set this bit.

CPLB_WT
Operates only in cache mode
0 - Write back
1 - Write through

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPLB_SUPV_WR
0 - Supervisor mode write
 access generates protection
 violation exception
1 - Supervisor mode write
 access permitted

CPLB_USER_WR
0 - User mode write access
 generates protection
 violation exception
1 - User mode write access
 permitted

CPLB_USER_RD
0 - User mode read access
 generates protection
 violation exception
1- User mode read access
 permitted

CPLB_LOCK
Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can
 be replaced
1 - Locked, CPLB entry should
 not be replaced

Figure 7.27 32-bit DCPLB_DATA register (courtesy of Analog Devices, Inc.)

7.4 Comparing and Choosing Between Cache and Memory DMA 315

TEAM LinG

316 Chapter 7 Memory System and Data Transfer

allocated in external memory. Therefore, there is a need to decide whether DMA or
cache is a better way of moving data or program into the internal memory of the
processor. In this section, we analyze different cases for selecting cache or DMA
as the memory transfer mode.

Case 1: When an application is required to move a large amount of data from
external to internal memory, the memory DMA should be used because the
cache memory is limited and DMA also prevents the intervention of the
processor core.

Case 2: When data is static, data should be mapped into cacheable memory.

Case 3: If DMA is not part of the programming model, use cache memory.

Case 4: In the case of moving program into the internal memory, the preferred
method is to use the instruction cache. However, when instruction cache
(even with locking lines in critical code) fails to provide an acceptable per-
formance, program code overlay via DMA is used.

Case 5: When a highly deterministic system is required, instruction and data
DMA are the preferred option.

Case 6: When a system has no hard real-time constraints, it is preferred to use
instruction cache and data DMA or data cache.

These cases are just for reference, and there is no perfect answer for selecting
the right mode. A more detailed description of this topic can be found in [43]. For

Figure 7.28 Startup code settings: Cache and Memory Protection window

TEAM LinG

a more accurate evaluation of the DMA and cache performance, the statistical pro-
fi ler in VisualDSP++ should be used on the actual application code.

7.5 SCRATCHPAD MEMORY
OF BLACKFIN PROCESSOR

The scratchpad memory in the Blackfi n processor is a dedicated internal memory.
The BF53x processor has 4K bytes of scratchpad memory, which cannot be confi g-
ured as cache or DMA access. Therefore, scratchpad memory is commonly used to
house the user and supervisor stacks for fast context saving during interrupts. Alter-
natively, scratchpad memory can be used to store small program code.

7.6 SIGNAL GENERATOR USING
BLACKFIN SIMULATOR

In this section, we implement the signal generator (as shown in Fig. 7.29) in the
Blackfi n VisualDSP++ simulator by using a look-up table stored in a data fi le. This
application is important for generating digital signals internally to test a digital
system without an external signal generator. A signal generator is programmed to
take in the user selections and display the generated waveform with VisualDSP++
graphical display.

One period of 1-kHz sine wave samples (sampled at 48 kHz) are stored in a
data fi le. These samples are extracted to form the desired waveform. For example,
to form a 2-kHz sinewave, every other sample in the table is extracted. This tech-
nique can be applied to generate any sine wave at a multiple integer of the funda-
mental frequency.

To generate a sawtooth waveform, we add the fundamental frequency with
several scaled harmonics as follows:

sawtooth x x x x x() = () + () + () + () +sin sin sin sin . . .
1

2
2

1

3
3

1

4
4 , (7.6.1)

Signal generator

User input:
1: Sinewave (1–20 kHz, step of 1 kHz)
2: Sawtooth wave (1–5 kHz, step of 1 kHz)
3: Square wave (1–3 kHz, step of 1 kHz)

Graphical display
Look-up

table

Figure 7.29 Signal generator for sine, sawtooth, and square waveforms at different frequencies

7.6 Signal Generator Using Blackfi n Simulator 317

TEAM LinG

318 Chapter 7 Memory System and Data Transfer

where x = 2πf0/fs and f0 is the fundamental frequency. Similarly, a square waveform
can be generated as follows:

square x x x x x() = () + () + () + () +sin sin sin sin . . .
1

3
3

1

5
5

1

7
7 , (7.6.2)

In this section, we program the Blackfi n processor to generate sine, sawtooth,
and square waves. The Blackfi n processor (BF533/BF537) provides a built-in func-
tion for performing circular addressing that can be effectively used in indexing the
look-up table. We will use the circular buffer discussed in Section 5.1.3.2 in the
signal generator program.

HANDS-ON EXPERIMENT 7.9

This experiment uses the project fi le exp7_9.dpj located in directory c:\adsp\chap7\
exp7_9 to perform signal generation. There are three options: (1) a sine wave whose fre-
quency can be varied from 1 to 20 kHz, (2) a sawtooth wave whose frequency can be varied
from 1 to 3 kHz, and (3) a square wave whose frequency can be varied from 1 to 5 kHz. The
frequency increment step is 1 kHz, and the sampling frequency is fi xed at 48 kHz.

The main program main.c uses a look-up table stored in the fi le sine1k_halved.
dat. As shown in Figure 7.30, the look-up table consists of one period of 1-kHz sine wave
with 48 samples. By extracting every other sample in a 1-kHz sine wave, we can generate a
2-kHz sine wave with a period of 24 samples. In theory, we can continue this process of
generating a sine wave up to 24 kHz, which is the Nyquist frequency. However, only zero-

Look-up table
2

1.5

1

0.5

0

A
m

p
lit

u
d
e

–0.5

–1

–2
0 5 10 15 20 25

Time index, n
30 35 40 45 50

–1.5

× 104

Figure 7.30 One period of a 1-kHz sine wave sampled at 48 kHz

TEAM LinG

value samples are extracted from the 1-kHz sine wave table to generate a 24-kHz sine wave.
Therefore, we limit our highest sine wave frequency to 20 kHz.

Activate the VisualDSP++ BF533 (or BF537) simulator and load and build the project.
Make sure that the correct processor target is selected under Project Options Set a
breakpoint at the “nop” operation at the end of the while loop before running the project.
Select a particular sine wave frequency and view the graph with the waveout.vps fi le.
Verify that the generated waveform is correct by viewing the FFT magnitude plot.

Examine the program section that generates the waveout array as shown below:

 for (i=0; i<SAMPLESIZE; i++)
 {
 waveout[i] = lookup_table[idx];
 idx = circindex(idx, freq, DATASIZE);
 }

The build-in function circindex controls the step used to extract the samples from the
sine wave table. The index idx wraps around once it exceeds 48 samples (DATASIZE) to
form a circular buffer. The argument freq specifi es the increment of the index.

We can generate other waveforms such as sawtooth and square waves by combining the
sine wave with its harmonics as shown in Equations 7.6.1 and 7.6.2, respectively. However,
because of the constraint of the Nyquist frequency, we can only combine a certain number
of harmonics. Scaling of the harmonics can be done by multiplying the harmonic with the
corresponding fractional value instead of performing division. The fractional value repre-
sented in (1.15) format is stored in a data fi le, scaler.dat. Verify the correctness of the
generated waveform by examining the time-domain and frequency-domain plots as shown
in Figure 7.31.

EXERCISE 7.2

Modify the main program (main.c) to implement the following tasks:

1. Cosine waveform
2. Dual tones of 1 kHz and 3 kHz
3. Triangular waveform

7.7 SIGNAL GENERATOR
USING BF533/BF537 EZ-KIT

This section performs real-time implementation of the signal generator using the
BF533/BF537 EZ-KIT to generate sine, sawtooth, and square waves. We can select
the waveform and its frequency on the fl y without reloading the program. In the
EZ-KIT experiment, a linearly swept chirp signal is also generated.

HANDS-ON EXPERIMENT 7.10

Activate VisualDSP++ for the BF533 (or BF537) EZ-KIT and open exp7_10_533.dpj (or
exp7_10_537.dpj) in directory c:\adsp\chap7\exp7_10_533 (or c:\adsp\chap7\

7.7 Signal Generator Using BF533/BF537 EZ-KIT 319

TEAM LinG

320 Chapter 7 Memory System and Data Transfer

(a)

(b)

(c)

0 1 2 3 4 5 6 7 8 9 10 11

Time (Sec)

Output

2*104

1*104

0*100

A
m

pl
itu

de

–1*104

–2*104

*10–3

Frequency (Hz)

Output

4*100

3*106

2*106

A
m

pl
itu

de

1*106

0*100

0.0*100 5.0*103 1.0*104 1.5*104 2.0*104 2.5*104

0 1 2 3 4 5 6 7 8 9 10 11

Time (Sec)

Output

2.5*104

A
m

pl
itu

de

0.0*100

–2.5*104

*10–3

Frequency (Hz)

Output

2.5*104

A
m

pl
itu

de

0.0*100

0.0*100 5.0*103 1.0*104 1.5*104 2.0*104 2.5*104

0 1 2 3 4 5 6 7 8 9 10 11

Time (Sec)

Output

1*104

2*104

A
m

pl
itu

de

0*100

–2*104

–1*104

*10–4

Frequency (Hz)

Output

2.5*104

A
m

pl
itu

de

0.0*100

0.0*100 5.0*103 1.0*104 1.5*104 2.0*104 2.5*104

Figure 7.31 Generation of (a) 1-kHz sine wave (fs = 48 kHz) and its frequency magnitude,
(b) 1-kHz sawtooth wave (fs = 48 kHz) and its frequency magnitude, (c) 1-kHz square wave (fs =
48 kHz) and its frequency magnitude

TEAM LinG

exp7_10_537). The waveform selection and frequency adjustment are carried out with the
switches on the EZ-KIT as listed in Table 7.8.

An additional feature of this program running on the EZ-KIT is the generation of
quadrature outputs (right channel is 90° phase shift with reference to the left channel) to the
stereo output port of the EZ-KIT. Use a headphone to listen to the signals from the left and
right channels. Alter the program such that the right channel is in phase with the left channel.
Build the program and listen to the generated stereo signal again. Comment on any percep-
tual difference.

EXERCISE 7.3

Using the project fi les given in the preceding hands-on experiments, perform the
following tasks:

1. Generate a pair of sine waves with the right channel 180° phase shifted with
reference to the left channel. Connect the left and right channels to a pair of
loudspeakers and face these two loudspeakers toward each other. Do you
hear any reduction in volume? Explain the outcome.

2. Repeat Exercise 1 with no phase shift between the left and right channels.

7.8 SIGNAL GENERATION WITH LABVIEW
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

In previous chapters, we acquired input signals with the ADC, processed the sampled
signals, and output them with the DAC. In this section, we create signals on the
Blackfi n EZ-KIT that can be used as test signals for other systems. Test signals are
typically generated to contain specifi c frequency information or simulate real-world
signals. These user-defi ned signals allow engineers to test systems for specifi c

Table 7.8 Switch Control for Signal Generator

Mode BF533 BF537
 (control by SW7) (control by SW13)

 LED #8 LED #9 LED #5 LED #6

Sine wave Off On Off On
Sawtooth wave On Off On Off
Square wave On On On On
Chirp (linearly sweep from 0 to 10 kHz) Off Off Off Off
Increase frequency* SW4 SW10
Decrease frequency* SW5 SW11

* Not applicable for chirp signal.

7.8 Signal Generation with LabVIEW Embedded Module for Blackfi n Processors 321

TEAM LinG

322 Chapter 7 Memory System and Data Transfer

performance or real-world behavior while still in the lab. For instance, communica-
tion signals can be generated based on input data and adhering to a common stan-
dard agreed upon by both the transmitter and the receiver. Another usage of signal
generation is the creation of control signals. For example, a pulse-width modulated
(PWM) square wave can be used to control motor speed or heater voltage (or tem-
perature) in an experiment.

In the following experiments, we focus on dual-tone multifrequency (DTMF)
communication signals. DTMF is the standard protocol used for routing numbers
pressed on a touch-tone telephone. A typical DTMF keypad is divided into rows
and columns, where each row and column contains its own unique frequency as
shown in Figure 7.32. When a key is pressed, two single-frequency signals are gen-
erated and added together to create the touch tone.

In this experiment, LabVIEW is used to simulate custom frequency DTMF
generator (or encoder) and a DTMF receiver (or decoder). Each signal consists of
two specifi c tonal frequencies that uniquely identify it. The LabVIEW Embedded
Module for Blackfi n Processors is then used to prototype and deploy a DTMF
encoder on the Blackfi n EZ-KIT. The interactive LabVIEW graphical interface is
used for live debugging and interaction with the DTMF generator running on the
Blackfi n processor.

HANDS-ON EXPERIMENT 7.11

The purpose of this exercise is to gain an intuitive understanding of how a DTMF
signal generator works and an understanding of its time- and frequency-domain character-
istics. LabVIEW and the LabVIEW Embedded Module for Blackfi n Processors are
capable of generating many types of signals in addition to these sine waves and DTMF
signals.

row 1 697 Hz 1

4

7 8 9

5 6

2 3 A

B

C

D#0*

column 1
1209 Hz

column 2
1336 Hz

column 3
1477 Hz

column 4
1633 Hz

row 2 770 Hz

row 3 852 Hz

row 4 941 Hz

Figure 7.32 Touch-tone phone DTMF mapping

TEAM LinG

Open the program DTMF_Encoder_Sim.exe located in directory c:\adsp\chap7\
exp7_11 to see the user interface shown in Figure 7.33. The array of 16 buttons is arranged
in a 4-by-4 matrix as shown in Figure 7.32. Each row and column has a unique frequency
assignment giving it a distinct dual-tone combination. Two tonal signals are added together
to create a DTMF signal. The column and row tonal frequencies can be customized, although
they may not be interpreted properly by most phone receivers. Note that we use different
frequencies in Figure 7.33 instead of the standard DTMF frequencies defi ned in
Figure 7.32.

In Figure 7.33, button “6” is pressed, causing sine waves of frequencies 800 and
1,400 Hz to be combined into a single signal. The resulting time-domain and frequency-
domain responses can be seen in their respective graphs on the right side of Figure 7.33. Test
other buttons to verify that the time-domain signal contains the correct corresponding fre-
quencies. Attach loudspeakers or headphones to the audio output of the sound card to hear
the resulting DTMF tones.

Now open the DTMF_Decoder_Sim.exe application located in directory c:\adsp\
chap7\exp7_11. The interface shown in Figure 7.34 decodes DTMF signals according to
the default frequencies specifi ed in Figure 7.33.

The sound card output can be connected to the computer audio/microphone input to
create a loop-back for the DTMF communications. This allows generating and decoding of
signals when both simulations are running concurrently. The DTMF decoder interprets the
detected frequencies as a row and a column in the format of Figure 7.33 and displays the
corresponding button value. Both the time- and frequency-domain signals are shown on their
respective graphs, and cursors show the values of the last acquired frequency spikes. Device
ID specifi es which sound card to use if more than one is detected in your machine. Number

Figure 7.33 DTMF encoder (user interface for DTMF_Encoder_Sim.exe)

7.8 Signal Generation with LabVIEW Embedded Module for Blackfi n Processors 323

TEAM LinG

324 Chapter 7 Memory System and Data Transfer

of Samples/ch can be varied to detect different pulse durations. Finally, Threshold is used
for noise immunity and can be adjusted to reduce false readings.

Note that the acquired signals are not necessarily identical to those generated in each
row and column combination. Experiment with different values for the DTMF encoder
frequencies and listen to the tones with loudspeakers (or headphones). Are these results
expected? Can the two frequencies for a button be placed too close together such that they
are not distinguishable by the decoder? Explain.

HANDS-ON EXPERIMENT 7.12

This experiment implements the DTMF encoder on the Blackfi n EZ-KIT using the LabVIEW
Embedded Module for Blackfi n Processors. Running the project in debug mode on the
target gives us the ability to interact with the graphical front panel interface and
dictate which tones are generated by the Blackfi n processor. We can then use the DTMF

Figure 7.34 DTMF decoder (user interface for DTMF_Decoder_Sim.exe)

TEAM LinG

decoder application from Hands-On Experiment 7.11 to receive and decode the resulting
touch-tone signals.

Open the DTMF-BF5xx.lep project located in directory c:\adsp\chap7\exp7_12.
Note that there are four VIs in the project and the top-level VI is DTMF-BF5xx.vi. Double-
click on this VI to open its front panel as shown in Figure 7.35.

Debug mode allows users to press one of the 16 Boolean buttons within the Boolean
array input and generate the corresponding dual-tone signal. Open the block diagram for
DTMF-BF5xx.vi to see how the DTMF encoder is implemented in the graphical LabVIEW
code, as shown in Figure 7.36. Wires on the block diagram can also be probed to view the
data being passed along them.

The data fl ow determines the execution order, which is generally from left to right. The
process for outputting a key pressed on the keypad on the front panel follows several distinct
steps. First, the program evaluates whether a key has been pressed by calculating a Boolean

Figure 7.35 Blackfi n DTMF encoder (front panel for DTMF-BF5xx.vi)

Figure 7.36 Blackfi n DTMF encoder (block diagram for DTMF-BF5xx.vi)

7.8 Signal Generation With Labview Embedded Module for Blackfi n Processors 325

TEAM LinG

326 Chapter 7 Memory System and Data Transfer

logical OR of every element in the buttom array. If the result is true, the key press is detected
and the resulting signals are combined and sent to the DAC output buffer. The buffer is
allowed to output for the 500 ms, and then the output buffer is set to zero. In this instance,
data fl ow is used to implement a 500-ms delay between the two output buffer write VIs by
preventing the program from continuing until the timer within the sequence structure is
complete. In this main VI, open each of the three subVIs one by one and explore their block
diagrams to see how their functionality contributes to the overall DTMF encoder.

Execute the application on the Blackfi n EZ-KIT in debug mode, and make sure that the
audio output is wired to speakers (or headphones). Press buttons on the front panel to hear
the tones created by the Blackfi n processor. Next, wire the audio out from the Blackfi n
processor to the audio/microphone input on the computer. Open DTMF_Decoder_Sim.
exe, which was used in the previous experiment to view and decode the signals generated
by the Blackfi n processor. Alternatively, implement the Blackfi n DTMF decoder with the
LabVIEW Embedded Module for Blackfi n Processors and connect the audio out from the
encoder to the audio in of the decoder in the Blackfi n EZ-KIT.

7.9 MORE EXERCISE PROBLEMS

1. An FFT measurement of a single sine wave is commonly used to assess the performance
of the ADC. A theoretical SQNR of a 16-bit ADC is 96 dB. However, an N-point FFT
is used as an N-band spectrum analyzer; therefore, there is a processing gain of the FFT
that pushes the noise fl oor lower than the ADC noise fl oor. Use Equation 7.1.1 to compute
the overall noise fl oor. Determine the minimum level of distortion that can be picked
up by a 1024-point FFT.

2. The SQNR of Equation 7.1.1 is based on the assumption that the input signal, xin, is equal
to the full-scale level of xmax. However, if the input signal is less than xmax, a new SQNR
must be derived. In general, the quantization error power can be stated as σ2

e ≈ x2
max/

(3 × 22B). If the input signal power is x2
in, derive the general expression of SQNR.

(a) Plot the SQNR (in dB) versus input level (in dB) for 8-bit and 16-bit quantizers. The
input power should range from −50 dB to 0 dB.

(b) Explain the relationship between SQNR and signal power. Why is there a change
of SQNR beyond −4.77 dB?

3. The BF537 EZ-KIT uses separate ADC (AD1871) and DAC (AD1854). The data speci-
fi cation of these ADC and DAC can be found in the ADI website. Examine their con-
nections to the BF537 processor in the EZ-KIT and answer the following questions:

(a) What are the resolutions and sampling frequencies of the ADC and DAC?

(b) What are the possible gain settings of the ADC?

(c) Draw the circuit connection from the ADC to the serial port of the BF537.

(d) Draw the circuit connection from the serial port of the BF537 to the DAC.

(e) Is the SPI port being used to program the ADC/DAC?

(f) Examine and explain the timing diagrams of interface formats.

4. A pass-through project of the BF537 is provided in the fi le problem7_4.dpj located
in directory c:\adsp\chap7\problem7_4. The ADC and DAC in the BF537 EZ-KIT

TEAM LinG

are confi gured for 24-bit receive and transmit. Subsequently, the received 24-bit data
from the DMA receive buffer (iRxBuffer1) is truncated to 16-bit data before storing
into the input memory. A simple block copy from the input memory to the output
memory is performed in the fi le process_data.c. Finally, the 16-bit data from the
output memory is extended to 24 bits before sending to the DMA transmit buffer
(iTxBuffer1). Unlike the BF533 EZ-KIT, we cannot control the volume of the ADC
and the DAC in the BF537 EZ-KIT as the confi guration pins are hardwired to either Vcc
or ground. Build and run the pass-through project in the BF537 EZ-KIT. Comment on
the differences between the pass-through programs used in the BF533 and BF537
EZ-KITs.

5. Using the project fi les given in problem7_4.dpj located in directory c:\adsp\
chap7\problem7_4, modify the program and repeat the same sample-by-sample
processing and block processing experiments in Hands-On Experiments 7.3 and 7.4,
respectively, with the BF537 EZ-KIT. Note that the ADC/DAC in the BF537 EZ-KIT
is operating at 24-bit, and 32-bit DMA transfer is used.

6. In the digital domain, a 0 dBFS corresponds to 0x7FFF for the 16-bit wordlength. There-
fore, any value with reference to full scale has a negative value of dBFS.

(a) What is the dBFS for a value of 0.5 in (1.15) format?

(b) What is the smallest dBFS for the (1.15) format number?

7. Explain why the instruction cache has more cache lines per set compared to the data
cache.

8. This problem examines the different modes of using data and instruction caches in the
BF533 processor. An FIR fi lter program is written with its code and data located in the
external memory. The user can select one of the fi ve cases shown in Table 7.9. Under
the main.c fi le, select the cases one at a time and observe the cycle count after build-
ing and running c_cache_data.dpj in directory c:\adsp\chap7\problem7_8.
In addition, choose different CPLB_DMYCACHE options in the cplbtab533.s fi le
when data cache is used to examine the cycle counts of write-through and write-back
cache. Discuss the performance of using different cache modes. Enable the Cache
Viewer window (View→ Debug Windows→ Cache Viewer) in VisualDSP++ to visu-
alize the activities of the processor’s cache in simulation mode.

9. In Hands-On Experiment 7.10, the signal is generated continuously. Modify the program
such that all signals are limited to 3 s.

10. Instead of storing a complete period (48 samples) of the sine wave, a quarter of the sine
wave (i.e., only 12 samples) can be stored to reduce the memory usage. Modify the
program in Hands-On Experiment 7.10 to implement a sine wave generator (based on

Table 7.9 Cycle Count of Different Cache Modes

Case Cycle Count

Disable data and instruction cache
Enable instruction cache only
Enable instruction cache and data cache bank A
Enable instruction cach e and data cache banks A and B
Enable data cache bank A only

7.9 More Exercise Problems 327

TEAM LinG

328 Chapter 7 Memory System and Data Transfer

partial data storage) with variable frequency from 1 to 20 kHz. What is the trade-off of
using a quarter-period of data samples?

11. The touch-tone keypad was shown in Figure 7.32. The keypad numbers are encoded with
combinations from the low-frequency group and the high-frequency group. A DTMF
generation can be computed with the look-up table in Section 7.8 provided in LabVIEW
software. Instead of using a look-up table to generate DTMF tone, we can design a pair
of IIR fi lters that oscillate at the desired frequencies. See [11] for a detailed description
of the implementation. A Blackfi n program is written to perform this task on the
BF533 (or BF537) EZ-KIT. These project fi les are located in directories c:\adsp\
chap7\problem7_11_533 and c:\adsp\chap7\problem7_11_537 for the
BF533 and BF537 EZ-KITs, respectively. Build and run the project. Read the comment
section of the main.c fi le for the function of switch settings to test the DTMF gen-
erator. Determine the duration of the tones set in the program. Modify the program to
construct a piano keyboard.

12. Besides using the IIR fi lters to generate the DTMF tone in Problem 11, we can also use
a polynomial expansion for sine wave generation. A Blackfi n program is also written to
perform this task on the BF533 and BF537 EZ-KITs. These project fi les are located in
directories c:\adsp\chap7\problem7_12_533 and c:\adsp\chap7\problem7_
12_537 for the BF533 and BF537 EZ-KITs, respectively. Build and run the project.
Examine how fi xed-point polynomial expansion can be carried out with fi xed-point
arithmetic, and determine its computational load in the fi xed-point Blackfi n processor.

13. Three techniques of sine wave generation, look-up table (Section 7.6), IIR oscillator
(Problem 11), and polynomial expansion (Problem 12), have been implemented in the
Blackfi n processor. State the advantages and disadvantages of using these techniques.
In particular, examine and comment on the cycle count and memory requirement for
each technique.

14. A 200-tap FIR low-pass fi lter is programmed to remove high-frequency noise; 256
samples are acquired every block, and the sampling frequency is 48 kHz. The FIR fi lter
benchmark on the Blackfi n processor is given as: [(number of samples/block)/2] *
[number of taps +7] cycles.

(a) What is the block rate? In other words, how many times is the buffer full per
second?

(b) How many MIPS does this FIR fi ltering algorithm require. When the Blackfi n
processor is operating at 300 MHz?

(c) What is the percentage of the MIPS being used by the FIR fi ltering algorithm?

(d) How many channels of simultaneous processing can be performed by the
processor?

The above questions only evaluate the CPU performance of the processor. The I/O that
brings in the data from external devices must also be fast enough to handle the multiple
channels. Analog signal is sampled and quantized with the ADC, and transfers to the
internal memory via the serial port.

(e) Compute the bit rate required for the serial port to handle the maximum channel
density.

(f) The serial port is operated at full duplex of 50 Mbps. Can the processor handle the
maximum bit rate computed in (e)?

TEAM LinG

(g) There is another data movement from the serial port to the internal memory of the
DSP processor via DMA. Can the DMA move the samples from serial port to the
memory fast enough? The peripheral DMA transfer rate is around 1 Gbps, as stated
in Section 7.2.2.1.

(h) If double buffering is implemented in the block FIR fi ltering above, compute the
internal data memory required. All the coeffi cients and data samples are stored as
16-bit words.

(i) Is the internal data memory suffi cient to meet the maximum channel density above?
If not, what is your recommendation?

15. If the FIR fi ltering in Problem 14 is performed in sample processing mode, compute the
following:

(a) Processing MIPS with sample processing mode. Comment on any difference from
processing MIPS with block processing mode.

(b) Determine the maximum channel density with sample processing mode.

(c) Determine the memory required with sample processing mode and check whether
it is able to fi t into the internal data memory of the Blackfi n processor.

7.9 More Exercise Problems 329

TEAM LinG

Chapter 8

Code Optimization and
Power Management

We have introduced arithmetic, memory architecture, programming, and real-time
implementation issues for the Blackfi n processors in previous chapters. This chapter
focuses on code optimization and power management for developing effi cient
embedded systems with the Blackfi n processor. We explore how to optimize a
program with faster execution speed, effi cient resource utilization, and power-saving
features. At the end of the chapter, an FIR fi lter for sampling rate conversion is used
for hands-on experiments.

8.1 CODE OPTIMIZATION

Because most embedded systems are real-time systems, code optimization in term
of execution speed is an important performance index. Increasing execution speed
with code optimization will result in decreasing power consumption; however, this
may come at the cost of increasing memory usage. In other situations, reducing
memory usage will result in lower power consumption due to fewer memory accesses,
but may increase execution time. Speed, memory, and power optimizations deter-
mine the overall cost of the embedded systems. For example, speed optimization
allows the choice of a slower but less expensive processor; memory optimization
reduces external memory size; and power optimization means fewer cooling require-
ments and cheaper power supply.

In previous chapters, we have used a simple technique for optimizing C pro-
grams by turning on the Enable optimization option in the C compiler. In this
chapter, we further optimize C programs by using special optimization settings and
understanding the different optimization levels. We compare the execution speed
and memory requirement of using normal C code versus using intrinsic functions.
In addition, we explore different low-level assembly programming techniques that

330

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

8.2 C Optimization Techniques 331

can further optimize the code. We use an FIR fi lter as an example to investigate the
performance of these code optimization techniques.

C code optimization is very important in developing embedded systems. It is
always easier to use the C compiler for optimization. For example, we can simply
choose the optimization options in VisualDSP++ and rebuild the project for better
performance. The performance gain from using C code optimization can be signifi -
cant. However, in cases in which we have to save more processing MIPs and
memory, assembly code optimization is the only way to achieve this level of
performance. However, the development cost of writing the overall program with
100% assembly code far exceeds the performance gain. A better approach is to
start with writing the code in C, perform a detail profi ling to identify the time-criti-
cal sections of the code, and replace those code segments with assembly program-
ming. A common 80/20% rule states that 80% of the processing time is spent on
the 20% of the code. Therefore, if we can identify that 20% of the code and optimize
it with assembly programming, signifi cant performance gain can be achieved.
A method to identify the hot spot of the workload is through the statistical profi ler
(for an EZ-KIT) or linear profi ler (for a simulator) in the VisualDSP++
environment.

We use the FIR fi ltering to illustrate the concepts of optimizing both C and
assembly programs. A pseudo code for implementing the FIR fi lter is shown
below:

void firc (input, output, filter state)
 // FIR filter initialization
 // declare filter coefficients
 // declare pointer for reading delay buffer
 // declare pointer for updating delay buffer
 // declare number of input samples
 // perform multiply-add in a loop for N taps
 // update delay buffer

This pseudo code serves as a guideline to implement the FIR fi lter with different
programming languages and styles. Both C and assembly programs are bench-
marked in terms of execution cycles, processing time, and memory (data and code)
usage. In implementing an FIR fi lter, the 20% of code that consumes 80% of the
processing time comes from the multiply-accumulate operations and updating the
delay buffer. Therefore, the optimization effort is concentrated on these bottlenecks.
In the following sections, several versions of optimized C and assembly codes are
developed and compared with the reference C and assembly programs without
optimization.

8.2 C OPTIMIZATION TECHNIQUES

Hands-on experiments given in Chapters 5 and 6 show a large difference of execu-
tion speed between the C code with and without optimization. In particular, the IIR
fi lter-based eight-band equalizer fails to operate properly when the compiler

TEAM LinG

332 Chapter 8 Code Optimization and Power Management

optimization is disabled. This is because the execution time exceeds the real-time
constraint. The VisualDSP++ compiler’s optimizer [35] is designed to generate
effi cient executable code for the program that has been written in a straightforward
and simple manner. We discuss important programming guidelines and consider-
ations in writing an effi cient C program in the following sections.

8.2.1 C Compiler in VisualDSP++

Figure 8.1 shows the Code Generation window under the C compiler (Compile:
General(1) option) of Project Options . . . in VisualDSP++. Not that we can select
the following parameters in the code optimization options:

1. Enable optimization. Turn on the optimization of C code. It is related to
the sliding bar at the right column in Figure 8.1. The number indicates the
optimization level, where [100] represents optimization for speed and [0]
represents optimization for size. Other values of optimization lie between
100 and 0.

2. Automatic inlining. The compiler automatically inlines C/C++ functions
that are not declared as inline in the source code. When this option is turned
on, the compiler inlines the C/C++ function only when there is a reduction
in execution time. More details on inlining are given in Section 8.2.4.

3. Interprocedural optimization. Most programs consist of more than one
function, and it is advantageous for the compiler to perform optimization
over the entire program. A two-stage compilation is performed when the
interprocedural optimization is turned on. The fi rst stage compiles the
program and extracts information from all functions. In the second stage,
the compiler is called from the linker stage to compile the program with the
information obtained from the fi rst stage.

4. Generate debug information. Allows users to debug programs and set
breakpoints in C source code.

These optimizations can be applied to all functions in the project fi les. Some-
times, it may be useful that different optimization schemes are applied to different
sections of the code. For example, a particular section of the code is optimized for
memory usage, while another section is optimized for execution speed as shown
below:

Figure 8.1 Code generation options in the Project Option menu

TEAM LinG

8.2 C Optimization Techniques 333

#pragma optimize_for_space
void op_for_size() // code optimized for memory usage
#pragma optimize_for_speed
void op_for_speed() // code optimized for speed
// subsequent function declarations optimized for speed
#pragma optimize off // optimization is turned off

The symbol #pragma {instruction} is placed before the code to be opti-
mized. This symbol is called pragma, and it is an implementation-specifi c directive
that modifi es the compiler’s behavior. Note that pragma does not produce any object
code. The Blackfi n C/C++ compiler supports many pragmas as user-specifi ed
instructions to the compiler for producing a more effi cient code. These pragmas
perform the following functions:

1. Align data.

2. Defi ne functions that act as interrupt handler.

3. Change the optimization level in different sections of the program.

4. Change how to link an external function.

5. Loop optimization.

6. Header fi le confi gurations and properties.

7. Memory bank usage.

Some of these pragmas are discussed further in the following sections.

8.2.2 C Programming Considerations

This section examines several important C programming considerations [42] for the
Blackfi n processors.

8.2.2.1 Array versus Pointers

C uses an index or pointer to access a sequence of data from an array. There is no
clear advantage in using one over the other, but the index is easier to understand.
The pointer introduces additional variables that need more memory space. In con-
trast, the index must be transformed to a pointer by the compiler, which may degrade
the performance. Therefore, the best strategy is to start with index style and move
to pointer style if the former does not provide a good result.

HANDS-ON EXPERIMENT 8.1

This experiment examines the performance difference between the index-style and pointer-
style FIR fi lter routines. The C program process_data.c implements the index-style FIR
fi lter, which is located in directory c:\adsp\chap8\exp8_1a_533 for the BF533 EZ-KIT

TEAM LinG

334 Chapter 8 Code Optimization and Power Management

(or c:\adsp\chap8\exp8_1a_537 for the BF537). A section of the FIR fi ltering program
for indexing array is listed below. Note that there is a need to perform a right shift of 15 bits
to save the 16 most signifi cant bits (excluding the extra sign bit) of the fract32 variable
acc to the fract16 variable out. The updating of the delay buffer is carried out by
shifting the data in the wdelaybuf array iteratively.

for (i=0; i<IP_SIZE; i++)
 {
 wdelaybuf[0]=in[i];
 for (j=0; j<nc; j++) // perform MAC
 {
 acc+=coef[j]*wdelaybuf[j];
 }
 out[i] = (fract16) (acc >> 15);
 for (k=(nc-1); k>=1; k–) // update delay buffer
 {
 wdelaybuf[k]=wdelaybuf[k-1];
 }
 acc = 0;
 }

In the case of the pointer-style FIR fi lter, pointers point to the coeffi cient and delay
buffers. However, pointers introduce additional variables that need extra memory locations.
A section of the pointer-style FIR fi lter program is shown below. The project fi le is located
in directory c:\adsp\exp8_1b_533 for the BF533 EZ-KIT (or c:\adsp\exp8_1b_537
for the BF537).

for (i=0; i<IP_SIZE; i++)
 {
 *wdelaybuf=in[i];
 for (j=0; j<nc-1; j++) // perform MAC
 {
 acc += *coef++ * (*rdelaybuf++);
 }
 acc += *coef * (*rdelaybuf);
 out[i] = (fract16) (acc >> 15);
 tempdelaybuf = rdelaybuf; // update delay buffer
 rdelaybuf-=1;
 for (k=(nc-1); k>=1; k−−)
 {
 *tempdelaybuf−− = *rdelaybuf––;
 }
 acc = 0;
 coef=state.h;
 rdelaybuf=state.d;
 }

Build the project based on the index-style 32-tap FIR fi lter with 32 samples per block
without optimization. The cycle count needed to perform 32 samples of FIR fi ltering is
recorded by clicking on View Æ Debug Windows Æ BTC Memory. Select Cycle Counter
from the BTC Memory window and select display format to hex32. Enable Auto Refresh
and run the project. Click on SW6 for the BF533 (or SW11 for the BF537) to enable the FIR
fi ltering. Now, select Enable optimization[100] and repeat the build and benchmark pro-
cesses. Record the cycle count in Table 8.1. Repeat the experiment for the pointer-style FIR
fi lter.

TEAM LinG

8.2 C Optimization Techniques 335

HANDS-ON EXPERIMENT 8.2

The preceding experiment benchmarks the execution speed based on cycle count. This
experiment uses VisualDSP++ to benchmark the memory usage of the program and data.
Click on Project Æ Project Options . . . Æ Link Æ General and enable Generate symbol
map. An XML document containing the memory information will be generated after the
build process. This fi le can be found in directory ..\Debug. Open the .map fi le and search
for the FIR fi lter program memory as shown in Figure 8.2(a), the data memory as shown in
Figure 8.2(b), and the buffer memory as shown in Figure 8.2(c).

Note that the size stated in the table is in byte units. Determine the length of the FIR
fi lter and the number of data samples acquired per block. Benchmark the code size for the
index-style and pointer-style FIR fi lters given in Hands-On Experiment 8.1. Experiment with
different levels of optimization for execution speed and memory size and fi ll in the results
in Table 8.2.

Table 8.1 Cycle Count Benchmark for 32-Tap FIR Filter (with 32 Data Samples/Block)

FIR Filter Program in C Cycle Count

 Optimization On Optimization Off

Index style
Pointer style

Symbol Demangled Name Address Size Binding

Address Size

_firc firc 0xffa0119c 0xc6 GLOBAL

_Process_Data Process_Data 0xffa01262 0x168 GLOBAL

(a) Input section .\Debug\Process_data.doj(program)

Symbol Demangled Name Binding

__btc_nNumBtcMapEntries _btc_nNumBtcMapEntries 0xff8002bc 0x0 GLOBAL

_lpf lpf 0xff8002c0 0x40 GLOBAL

_ldelay ldelay 0xff800300 0x40 GLOBAL

_rdelay rdelay 0xff800340 0x40 GLOBAL

(b) Input section .\Debug\main.doj(data1)

Symbol Demangled Name Address Size Binding

_iTxBuffer1 iTxBuffer1 0xff902234 0x200 GLOBAL

_iRxBuffer1 iRxBuffer1 0xff902434 0x200 GLOBAL

(c) Input section .\Debug\main.doj(bsz)

Figure 8.2 Memory information for FIR fi lter program (a), data for FIR fi lter (b), and data for
input and output block buffer (c)

TEAM LinG

336 Chapter 8 Code Optimization and Power Management

8.2.2.2 Using Loop Optimization Pragmas

In general, it is most effective to apply loop pragmas to the innermost loops. The
loop pragmas are placed before the loop statement to supply additional information
to the compiler to perform a more aggressive optimization. For example,

#pragma vector_for
for (i=0; i < 100; i++)
 a[i] = b[i]

. . .

The pragma directive notifi es the optimizer that it is safe to execute two iterations
of the loop in parallel. However, this pragma does not force the compiler to vectorize
the loop. The fi nal decision is still determined by the optimizer.

As seen in previous chapters, DSP algorithms usually involve extensive looping.
Therefore, it is very important that the compiler can optimize the loop operations.
The Blackfi n C compiler can automatically perform loop unrolling and use multiple
arithmetic units for loop optimization.

8.2.2.3 Using Data Alignment Pragmas

The data alignment pragmas are used for the compiler to arrange data within the
processor’s memory. For example, the following pragmas are used to align data to
different byte boundaries:

#pragma align 1
char a; // 1-byte alignment
#pragma align 2
short b; // 2-byte alignment
#pragma align 4
int c; // 4-byte (or 32-bit) alignment
#pragma align 8
int d; // 8-byte (or 64-bit) alignment

In the Blackfi n processor, a word is defi ned as 32-bit data. Data are often fetched
with 32-bit loads and must be word (or 32-bit)—aligned to generate effi cient
code. In other words, the last two bits of the starting address of the data must
be zero. Because data and coeffi cients in the FIR fi lter are 16 bits, we can use
#pragma align 2 to align these variables to a 2-byte boundary. Figure 8.3

Table 8.2 Memory Benchmark for 32-Tap FIR Filter (Using 32 Data Samples/Block)

FIR Filter Program in C (firc) Code Size in Bytes

 Optimization On Optimization Off

Index style
Pointer style

TEAM LinG

8.2 C Optimization Techniques 337

shows the possible starting addresses for the array aligned to 2-byte and 4-byte
boundaries.

8.2.2.4 Using Different Memory Banks

The memory bank pragma allows the compiler to assume that groups of
memory accesses in a loop based on different pointers reside in different memory
banks. This pragma will improve memory access because the processor is capable
of accessing multiple data from different banks in a single instruction. For
example,

#pragma different_banks
for (i=0; i < 100; i++)
 a[i] = b[i]

. . .

The above pragma uses different memory banks to allow simultaneous accesses to
arrays a and b.

8.2.2.5 No Aliasing

#pragma no_alias tells the compiler that the following loop has no load or
store instruction that accesses the same memory. Using the no alias pragma leads
to a better code because it allows any number of iterations (instead of two at a time)
to be performed simultaneously.

HANDS-ON EXPERIMENT 8.3

This experiment investigates the performance gain from using some of the pragmas intro-
duced in the preceding subsections. We use the index-style FIR fi lter example in Hands-On

0x0000 0000

0x0000 0002

0x0000 0004

0x0000 0006

0x0000 0008

0x0000 000A
 :
 :

Array or data
must start from
one of the
address

align 2:
Last bit of starting
address must be zero.

0x0000 0000

0x0000 0004

0x0000 0008
 :
 :

align 4:
Last 2 bits of starting address
must be zero

Figure 8.3 Data alignment for 2-byte and 4-byte boundaries

TEAM LinG

338 Chapter 8 Code Optimization and Power Management

Experiment 8.1 to test the optimization performance. Note that optimization must be
turned on for the pragmas to be effective. Open the project fi le exp8_3_533.dpj for the
BF533 EZ-KIT (or exp8_3_537.dpj for the BF537). This fi le is located in directory
c:\adsp\chap8\exp8_3_533 (or c:\adsp\chap8\exp8_3_537). Examine the
Process_data.c fi le to see the additional pragma instructions. Benchmark the perfor-
mance gain of the optimized C code with pragmas as comparing with the C code without
optimization. Note that the instruction __builtin_aligned() is similar to the data
alignment pragma. Change the data alignment to four bytes and observe any difference in
performance. Comment out the pragmas and rebuild the project with optimization. Observe
any change in performance.

8.2.2.6 Volatile and Static Data Types

When declaring variables in the C source fi le, a volatile data type is declared to
ensure that the optimizer is aware that their values may be changed externally at
any time. The volatile data type is important for peripheral-related registers and
interrupt-related data. For example, in the previous experiment, the transmit buffer
iTxBuffer and the receive buffer iRxBuffer are declared as volatile because
these variables are constantly updated by the DMA.

Static variables can only be accessed by the function in which they were
declared as local variables. The static variable is not erased on exit from the func-
tion; instead, its value is preserved and is available when the function is called again.
For example, the index variables, j and k, in the EX_INTERRUPT_HANDLER are
declared as static because these values must be correctly maintained in the interrupt
service routine.

8.2.2.7 Global versus Local Variables

Local variables are normally aliased to the core registers or internal memory. Local
variables have an advantage over the global variables because the compiler does not
need to maintain the local variables outside the scope. However, global variables
reduce the size of the stack.

8.2.2.8 Arithmetic Data Types

As shown in Chapter 6, we use integer data types to represent fractional numbers
for the fi xed-point Blackfi n processor. In Table 6.7, we observe that the integers can
be represented as char (8 bit), short (16 bit), int (32 bit), and their unsigned
formats. We can also use fract16 and fract32, which are mainly reserved for
fractional built-in or intrinsic functions. These data types are described in the next
section.

For example, the following code performs a 256-tap FIR fi lter using the integer
data type:

TEAM LinG

8.2 C Optimization Techniques 339

int filter(short *in, short *coeff)
{
 int i;
 int acc=0;
 for (i=0; i<128; i++) {
 acc += ((in[i]*coeff[i])>>15);
 }
 return acc;
}

Floating-point arithmetic is usually avoided for the Blackfi n processor because
it requires much a longer processing time. If fl oating-point arithmetic is required in
certain sections of the code, it can be implemented with library routines. However,
the optimizer is ineffective for optimizing fl oating-point code.

8.2.3 Using Intrinsics

The VisualDSP++ compiler supports intrinsic functions for effi cient use of the
Blackfi n’s hardware resources. These built-in C-callable functions generate assem-
bly instructions that are designed to optimize the code produced by the compiler,
or to effectively access system hardware. The intrinsic functions generally operate
on single 16- or 32-bit values, and they support the following operations and
functions:

1. Fractional value built-in functions

2. European Telecommunications Standard Institution (ETSI) support

3. Complex fractional data and operations

4. Viterbi history and decoding functions

5. Circular buffer functions

6. Endian-swapping functions

7. System built-in functions

8. Video operation functions

9. Misaligned data functions

Refer to the VisualDSP++ 4.0 C/C++ Compiler and Library Manual for Blackfi n
Processors [35] for details on using intrinsic function. In the following, we briefl y
introduce some of intrinsic functions.

The fractional value built-in function provides access to fractional arithmetic
and the parallel 16-bit operations supported by the Blackfi n instructions. For
example, the intrinsic functions add_fr1x32() and mult_fr1x32() perform
add and multiply of 32-bit fractional data, respectively. By using the intrinsic func-
tions, the compiler can perform different optimization techniques to speed up the
execution. In addition, the intrinsic functions support saturation arithmetic that
prevents overfl ow. This is in contrast to the standard C program, which needs addi-
tional routines for checking overfl ows and setting saturation arithmetic.

TEAM LinG

340 Chapter 8 Code Optimization and Power Management

The FIR fi lter routine using intrinsic functions can be written as follows:

#include <fract.h>
fract32 filter(fract16 *in, fract16 *coeff)
{
 int i;
 fract32 acc=0;
 for (i=0; i<128; i++) {
 acc = add_fr1x32(acc,mult_fr1x32(in[i],coeff[i]));
 }
 return acc;
}

The use of the intrinsic functions to implement the FIR fi ltering routine is illustrated
in Hands-On Experiment 8.4.

HANDS-ON EXPERIMENT 8.4

This experiment evaluates the performance improvement using the intrinsic functions for
implementing FIR fi lter on the Blackfi n processor. The experiment fi les can be found in
directory c:\adsp\chap8\exp8_4_533 for the BF533 EZ-KIT (or c:\adsp\chap8\
exp8_4_537 for the BF537). Turn on the optimization option before building the project.
Benchmark the cycle count and memory size of the C code using intrinsics and record the
results in Table 8.3. Compare the performance with the index-style C code with optimization
given in Hands-On Experiment 8.1.

In previous hands-on experiments, we used several intrinsic functions to perform
fractional arithmetic such as addition, multiplication, absolute value, and shift. These
intrinsic functions are categorized under the fractional value functions that support
fractional arithmetic and parallel 16-bit operations. Special C data types are used with
these built-in functions. Table 8.4 lists the fractional value C data types. The fract.h
header fi le provides access to the defi nitions of the fractional value built-in functions.

Table 8.3 Cycle Count and Code Size for the C Code
with Intrinsics

C Code Using Intrinsics (with optimization)

Cycle count

Code size (in byte) (firc)

Table 8.4 Fractional Value C Data Types

C Type Number Representation

fract16 Single 16-bit signed fractional value in (1.15) format
fract32 Single 32-bit signed fractional value in (1.31) format
fract2x16 Double 16-bit signed fractional value in (1.15) format

TEAM LinG

8.2 C Optimization Techniques 341

Some of the commonly used fractional 16-bit and 32-bit functions are listed in
Table 8.5.

The ETSI build-in functions are included in the libetsi.h header fi le. Similar to the
fractional value built-in functions, the ETSI functions operate on both 16-bit and 32-bit
fractional data. The ETSI functions include fractional multiply-accumulate, multiply-sub-
tract, and divide.

The complex fractional built-in functions consist of complex_fract16 and complex_
fract32 data types and support complex fractional multiply and accumulate, square, and
distance. The header fi le complex.h must be included in the program to use these complex
data types.

The VisualDSP++ compiler also provides intrinsic functions for automatic circular
buffer generation, circular indexing, and circular pointer reference. These built-in functions
are defi ned in the ccblkfn.h header fi le. Circular indexing was used in the previous
hands-on experiment to update the pointer for a circular buffer. For example, the function
circindex(index, incr, nitems) is used in the signal generator experiment in Section
7.6. The index and incr arguments are the circular buffer index and the step increment,
respectively. The nitems argument is the length of the circular buffer. In addition, Visu-
alDSP++ includes a function that performs a circular buffer increment of a pointer as follows:

void *circptr(void *ptr, long incr, void *base, unsigned long
buflen);

Note that both incr and buflen are specifi ed in bytes.

Table 8.5 Fractional 16-Bit and 32-Bit Built-In Functions

Built-in Functions Operations

fract16 add_fr1x16 Add two 16-bit fractional numbers.
fract16 mult_fr1x16 Multiply two 16-bit fractional numbers. The result is
 truncated to 16 bits.
fract32 mult_fr1x32 Multiply two 16-bit fractional numbers and return the
 32-bit result.
fract16 abs_fr1x16 Perform absolute value of the input number.
fract16 shl_fr1x16 Perform arithmetic left shift with sign extension for
 signed number.
fract16 shr_fr1x16 Perform arithmetic right shift.
fract32 add_fr1x32 Add two 32-bit fractional numbers.
fract32 Multiply two 32-bit fractional numbers. The result is
 mult_fr1x32x32 rounded to 32 bits.
fract16 sat_fr1x32 Saturate a 32-bit fractional number to 0x7FFF or 0x8000.
 Otherwise, return the lower 16 bits of the number.
fract16 round_fr1x32 Rounds a 32-bit number to 16-bit using biased rounding.
fract2x16 mult_fr2x16 Multiply two packed 16-bit fractional numbers, and

truncate the result to 16 bits. Note that the fract2x16
 type represents two fractional 16-bit numbers packed
 into upper and lower halves and makes use of the dual
 multipliers.

* All fractional built-in functions are in saturation mode.

TEAM LinG

342 Chapter 8 Code Optimization and Power Management

HANDS-ON EXPERIMENT 8.5

In the previous experiments, the delay buffer was updated in a linear fashion as shown in
Figure 8.4(a). All data in the buffer must be physically shifted by one position downward after
the end of the multiply-accumulate operations of the FIR fi ltering. The oldest data are dis-
carded and the new data sample is inserted at the top of buffer. Figure 8.4(b) shows the cir-
cular buffer, which does not require the physical moving of data. Instead, the circular buffer
uses a pointer to replace the oldest data sample by the new data sample and updates the pointer
in modulo fashion (wrap back) once the pointer reaches the bottom of the circular buffer.

This experiment implements the circular buffers for the FIR fi ltering. The experiment
can be found in directory c:\adsp\chap8\exp8_5_533 for the BF533 EZ-KIT (or c:\
adsp\chap8\exp8_5_537 for the BF537). The FIR fi lter program using the circular buffer
is listed as follows:

for (i=0; i<IP_SIZE; i++)
 {
 *wdelaybuf = in[i];
 acc = mult_fr1x32(coef[0],*wdelaybuf);
 for (j=1; j<nc; j++)
 {
 wdelaybuf = circptr(wdelaybuf, 2, state.d, 2*TAPS);
 acc = add_fr1x32(acc,mult_fr1x32(coef[j],*wdelaybuf));
 }
 out[i] = (fract16)(acc >>15);
 acc = 0;
 }

This code uses the circular pointer to the delay buffer wdelaybuf. The pointer is
increased by 2 bytes, and the length of the buffer is 2*TAPS bytes. Build the project with
optimization and benchmark the performance against the FIR fi lter using a linear buffer in
Hands-On Experiment 8.4. Fill in the benchmark results in Table 8.6.

8.2.4 Inlining

VisualDSP++ supports an “inline assembly” feature that allows programmers
to insert small sections of assembly code within the C program. For example,

x(n)

x(n-1)

x(n-2)

x(n-3)

x(n-4)
(1) New data
replaces
oldest
sample

(2) Pointer
wraps back to
the beginning
of buffer

(b) Circular buffer(a) Linear buffer

discarded

x(n)

x(n-1)

x(n-2)

x(n-3)

x(n-4)

New
data

Figure 8.4 Linear buffer (a) and circular buffer (b)

TEAM LinG

8.2 C Optimization Techniques 343

the C statement asm(“nop;”) inserts a nop assembly instruction into the C code.
However, inline assembly must be avoided when built-in functions are available. In
addition, a volatil keyword is used to prevent an asm() instruction from being
moved, combined, or deleted, for example, asm volatile(“nop;”).

VisualDSP++ uses the keyword inline to indicate that functions should have
C code generated inline at the point of call. For example,

inline int mult(int a, int b) {
 return(a*b);
}

The use of this keyword has the advantages of reducing program-fl ow latencies,
function entry and exit instructions, and parameter passing overheads. However, this
keyword is only useful for small and frequently used functions, which gives the best
gain in execution speed with little increment in code size.

Inline code is often used instead of a subroutine because a subroutine incurs
overhead. Although a subroutine is more effi cient in code size, inline code gains in
execution speed. Therefore, software designers must make a careful decision on this
memory-speed trade-off.

8.2.5 C/C++ Run Time Library

The C/C++ run time library is the collection of functions, macros, and class tem-
plates. This library simplifi es the software development by providing many ready-
to-use functions such as standard I/O routines, character and string handling,
fl oating-point arithmetic emulation, mathematics, and others. Table 8.7 lists the
standard C run time library header fi les.

8.2.6 DSP Run Time Library

The DSP run time library supports many general-purpose DSP algorithms such as
fi lters, FFT, vector and matrix functions, math functions, statistical functions,
window functions, and others. Table 8.8 lists the DSP library functions and their
header fi les. These DSP functions were called from the main program in many

Table 8.6 Cycle Count and Code Size for the C Code
Using Circular Buffer Intrinsic Functions

C Code with Intrinsics with Optimization and Circular
Buffer

Cycle count

Code size (in byte) (firc)

TEAM LinG

344 Chapter 8 Code Optimization and Power Management

hands-on experiments in previous chapters. In addition, VisualDSP++ provides the
source code of these DSP functions, which can be found in directory c:\Program
Files\Analog Devices\VisualDSP 4.0\Blackfin\lib\src\libdsp.
These source codes are available with .asm and .c extensions.

These functions support different data types including float, double, long
double, and fract16. A detailed description of the DSP library functions can be
found in the VisualDSP++ 4.0 C/C++ Compiler and Library Manual for Blackfi n
Processors [35]. Table 8.9 shows the cycle count and the code size of some com-
monly used DSP library functions.

EXAMPLE 8.1

Using the FIR fi lter benchmark results listed in Table 8.9, we can determine the memory
required to perform a 256-tap FIR fi lter (with 16-bit arithmetic) using sample and block
processing modes as follows. The FIR fi lter is sampled at 48 kHz.

1. Sample processing. Data memory includes 256 × 2 bytes for the coeffi cient buffer,
255 × 2 bytes for the delay buffer, and 2 × 2 bytes for input and output. From the
benchmark results, 354 bytes are required for the code. Thus the total memory
needed is 1,380 bytes.

2. Block processing (using a block size of 32 samples). Data memory includes 512 bytes
for coeffi cients and 510 bytes for the delay buffer. There are 4 × 32 × 2 bytes required
for the input and output buffers in the ping-pong buffering scheme. Again, 354 bytes
are required for the code. Thus the total memory needed is 1,632 bytes.

Table 8.7 Standard C Run Time Library Header Files

Functions Header Files

Diagnostics assert.h

Character handling ctype.h

Macros and data structures for alternative device drivers device.h

Enumerations and prototypes for alternative device drivers device_int.h

Error handling errno.h

Floating point float.h

Boolean operation iso646.h

Limits limits.h

Localization locale.h

Mathematics math.h

Nonlocal jumps setjmp.h

Signal handling signal.h

Variable arguments stdarg.h

Standard defi nitions stdef.h

Input/output stdio.h

Standard library stdlib.h

String handling string.h

Date and time time.h

TEAM LinG

8.2 C Optimization Techniques 345

EXAMPLE 8.2

Based on Table 8.9, determine the cycle count and processing MIPS in implementing a 256-
tap FIR fi lter (with 16-bit arithmetic) using sample and block processing modes. The FIR
fi lter is sampled at 48 kHz.

1. Sample processing. The cycle count needed to perform FIR fi ltering for generating
one output sample ∼194 cycles. Thus MIPS needed for performing sample FIR fi lter-
ing ∼9.3 MIPS.

Table 8.8 DSP Library Functions and Header Files

Functions Header Files

Complex arithmetic function complex.h

Cycle count function cycles.h

Filters and transformations filter.h

Math functions math.h

Matrix functions matrix.h

Statistical functions stats.h

Vector functions vector.h

Window functions window.h

Table 8.9 Benchmark of Some DSP Library Functions

Functions Cycle Count Code Size (in bytes)

fir_fr16 ∼ 64 + Nb/2 × (3 + Nc) 354
FIR fi lter in (1.15) format
(Nb: number of input sample/block)
(Nc: number of coeffi cients)

iir_fr16 ∼ 58 + 3 ×Ni ×B + 1.5 ×Ni 384
IIR fi lter in (1.15) format
(B: number of biquad)

div16 ∼35 32
16-bit integer divide

sin_fr16 ∼25 78
Sine function in (1.15) format

sqrt_fr16 ∼ 33 + 8 × log4(8192/In) 116
Square root function in (1.15) format for positive input value
(In: input value in (1.15) integer)

mean_fr16 ∼ 20 + Nb 58
Mean function in (1.15) format
(Nb: number of samples)

Extracted from the comment section of ADI source codes.

TEAM LinG

346 Chapter 8 Code Optimization and Power Management

2. Block processing (using a block size of 32 samples). The cycle count needed to
perform FIR fi ltering on 32 samples ∼4,208 cycles. Thus, to perform 1 sample
requires ∼4,208/32 = 131.5 cycles. The required MIPS for performing the block FIR
fi lter ∼6.3 MIPS. Therefore, we can perform more tasks on the same processor with
the block processing mode.

HANDS-ON EXPERIMENT 8.6

The DSP library functions are hand-optimized in either assembly or C. This experiment
examines the performance of the FIR fi lter function fir_fr16 given in the run time
DSP library. This function has been used in many previous hands-on experiments. In this
experiment, we build the project and benchmark its cycle count and code size. The
experiment fi le is located in directory c:\adsp\chap8\exp8_6_533 for the BF533 EZ-
KIT (or c:\adsp\chap8\exp8_6_537 for the BF537). Fill in the results in Table 8.10 and
compare with the previous benchmark results using intrinsic functions. Comment on the
results.

Table 8.10 Cycle Count and Code Size for C Code Using
the Run Time DSP Library

C Code Using Run Time DSP Library Function fir_fr16

Cycle count

Code size (in byte) (fir_fr16)

8.2.7 Profi le-Guided Optimization

Profi le-guided optimization (PGO) allows the compiler to use data collected during
program execution for the optimization analysis. Representative data sets are passed
to the application program to profi le which sections of the code are executed most
frequently in order for the compiler to perform selective optimization. The process
of performing PGO is stated as follows:

1. Compile the application program to collect profi le information.

2. Run the application in the simulator using a representative data set.

3. The simulator accumulates the profi le data and identifi es the “hot spot” for
optimization.

4. Recompile the application program by using the collected profi le data.

TEAM LinG

8.2 C Optimization Techniques 347

In particular, PGO informs the compiler about the application that
affects branch prediction, improves loop transformation, and reduces code size.
Therefore, the compiler can perform more advanced and aggressive optimizations
by using profi ler statistics generated from running the application with representa-
tive data.

HANDS-ON EXPERIMENT 8.7

This experiment illustrates the process of using PGO in the VisualDSP++ simulator. This
simple program multiplies the positive and negative input samples with different gain values,
and the compiler decides the most common case in an if. . .else construct. Use the fol-
lowing steps to perform PGO experiment:

1. Activate the BF533 (or BF537) VisualDSP++ simulator and load the project
fi le exp8_7.dpj in directory c:\adsp\chap8\exp8_7. Make sure that the
target processor (in Project Options menu) matches the selected simulator
type.

2. The C program uses three input data fi les. The fi rst data fi le, dataset_1.dat, has
50% positive samples; the second fi le, dataset_2.dat, has 75% positive samples;
and the third fi le, dataset_3.dat, has 100% positive samples. Users can read
these data fi les by double-clicking on the fi lename. Because these fi les contain a bias
toward the positive samples, more execution time is needed for the if branch.
Therefore, this information will be used by the PGO to tune the compilation to
optimize the if branch.

3. The data sets must be fed into the PGO by clicking on Tools Æ PGO Æ
Manage Data Sets. Figure 8.5 shows the Manage Data Sets dialog box,
which allows users to control the optimization level. Set Optimization level to
Fastest Code. Click on New . . . to open the Edit Data Set dialog box. Replace
the Data set name with a more descriptive one such as 50%p50%n for a fi le
with 50% positive numbers. Type in the fi le name dataset_1.pgo in Output
fi lename.

4. Attach an input stream to the data set by clicking on the New . . . button in the
Edit Data Set dialog box. An Edit PGO Stream dialog box is opened as
shown in Figure 8.6. Key in the input fi le dataset_1.dat in the Filename
fi eld and other parameters as shown in Figure 8.6. Click on OK to return to the
Edit Data Set dialog box. Click on OK to save the data set and close the dialog
box.

5. Create the remaining two data sets by following Steps 3 and 4. We can also use the
Copy button in the Manage Data Set dialog box to speed up the creation of these
two data sets. Highlight the input fi le under Input Streams . . . and click on Edit to
enter a new name in Input Source File.

6. Once the data sets have been confi gured, we can optimize the program by clicking
on Tools Æ PGO Æ Execute Data Sets. Note that the project is built and run with
different data sets. The simulator will monitor the number of cycles and the execution

TEAM LinG

348 Chapter 8 Code Optimization and Power Management

path and store them in the respective .pgo fi les. Subsequently, the project is recom-
piled by using the information in the .pgo fi les to optimize the executable code.
Finally, the executable code is run again with the data sets to measure the speed gain
after optimization.

7. When the execution in Step 6 is completed, an XML report of the PGO result is
generated and displayed as shown in Figure 8.7.

Figure 8.5 Manage Data Sets and Edit Data Set dialog boxes

Figure 8.6 Edit PGO Stream dialog box

TEAM LinG

8.3 USING ASSEMBLY CODE
FOR EFFICIENT PROGRAMMING

We have used different C programming techniques to enhance the performance of
the C code. These techniques are under the fi rst level of optimization and have the
advantage of being easy to program and maintain. However, a C program does not
give the programmer complete control over using registers, addressing modes, paral-
lel instructions, zero-overhead loops, and managing multiple resources of the
processor. Therefore, a C program may produce a larger code size and a slower
execution speed.

The DSP run time library functions mentioned in Section 8.2.6 are mainly
written in optimized assembly to take advantage of the unique features of the
Blackfi n processors. These source codes serve as important references in learning
the art of optimizing the low-level programming in Blackfi n processors. Because

Command line:

Input stream:
File: C:\ADSP\CHAP8\exp8_7\DataSet1.dat
Device: 0xFFD00000-0xFFD00FFF

PGO output: C:\ADSP\CHAP8\exp8_7\dataset1.pgo

Before optimization: 7111 cycles

After optimization: 7111 cycles

Cycle reduction: 0.00%

Command line:

Input stream:
File: C:\ADSP\CHAP8\exp8_7\DataSet2.dat
Device: 0xFFD00000-0xFFD00FFF

PGO output: C:\ADSP\CHAP8\exp8_7\dataset2.pgo

Before optimization: 7943 cycles

After optimization: 6279 cycles

Cycle reduction: 20.95%

Command line:

Input stream:
File: C:\ADSP\CHAP8\exp8_7\DataSet3.dat
Device: 0xFFD00000-0xFFD00FFF

PGO output: C:\ADSP\CHAP8\exp8_7\dataset3.pgo

Before optimization: 8775 cycles

After optimization: 5447 cycles

Cycle reduction: 37.93%

Data Set: 50%p50%n

Data Set: 75%p25%n

Data Set: 100%p0%n

Figure 8.7 PGO results on the program in Hands-On Experiment 8.7

8.3 Using Assembly Code for Effi cient Programming 349

TEAM LinG

350 Chapter 8 Code Optimization and Power Management

an assembly code requires more time to write and maintain, a good practice is to
write the time-critical or resource-critical sections of code in assembly and leave
most of the housekeeping and initialization tasks in C. This hybrid C-and-assembly
code produces the best balance between development time and code effi ciency. As
discussed above, 20% of the code accounts for 80% of the execution time. This 20%
of code can be written in assembly to optimize the most critical portions of the
code.

In the following sections, we highlight some important optimization techniques
for assembly programming [28]. We benchmark the performance of these tech-
niques with the FIR fi lter. We begin by writing a linear assembly code without using
any special feature of the Blackfi n processor, and gradually add low-level optimiza-
tion techniques, one at a time, to show the corresponding improvement achieved by
different changes. Based on the pseudo code listed in Section 8.1, we can write the
assembly code in the following three parts:

1. Initialization. The data sample and the corresponding fi lter coeffi cient are
fetched to registers R0.L and R2.L, respectively. A delay line buffer is defi ned in
memory. The initialization code is listed as follows:

E_FIR_START: R0.L=W[P0++P3]; // fetch x(n) from input
array

 R2.L=W[I2]; // fetch filter coefficient
 I1=P4; // index to READ/WRITE pointer
 W[I0]=R0.L; // store input sample into delay

buffer
 // restore delay line address in I1

2. Multiply-accumulate operation. Multiply-accumulate is the key operation
in FIR fi ltering. The multiplication is carried out between the 16-bit data sample in
R0.L and the fi lter coeffi cient in R2.L, and the 32-bit result is accumulated in the
40-bit register A0. The multiply-accumulate operation is repeated for the number of
taps in the FIR fi lter. A software loop is used in the linear assembly code as
follows:

 R6=P2; // setup inner loop counter
E_MAC_ST: R2.L=W[I2++]; // input sample
 R0.L=W[I1++]; // filter coefficient
 A0+=R0.L*R2.L; // multiply add
 R6 += -1; // decrement loop counter
 CC=AZ; // is CC a zero?
E_MAC_END: if !CC JUMP E_MAC_ST;
 R3.L=A0(S2RND); // save in a register

Note that the register R6 is used as a counter for the software loop. This register is
decremented at every iteration, and the CC fl ag is compared with zero. If this fl ag is
not zero, the program returns to the start of the fi ltering loop (E_MAC_ST), and
repeats the multiply-accumulate operation of the next coeffi cient and the correspond-
ing data sample. This process continues until the loop counter equals the number of
fi lter taps. The fi nal fi ltering result in A0 is rounded and stored to register R3.L.

TEAM LinG

3. Update the delay line buffer. The fi nal part of FIR fi ltering is to update
the delay line implemented as the linear buffer. A software loop that performs the
buffer update as follows:

R6=P2; // loop counter to update buffer
UPDATE_BUF_ST: W[I0–]=R1.L; // update input samples
 I0-=2;
 R1.L=W[I0++];
 R6 += -1; // decrement loop counter
 CC=AZ; // is CC a zero?
UPDATE_BUF_END: if !CC JUMP UPDATE_BUF_ST;

Again, the counter R6 is initialized to the total number of taps. The oldest data
sample is replaced by the next data sample in the delay line via register R1.L, and
this linear replacement (or shifting) of the data samples is carried out until the end
of the buffer. This operation is shown in Figure 8.8.

HANDS-ON EXPERIMENT 8.8

This experiment examines the performance of the assembly code for implementing
the FIR fi lter. Open the project fi le exp8_8_533.dpj for the BF533 EZ-KIT (or exp8_
8_537.dpj for the BF537). The project fi le is located in directory c:\adsp\chap8\exp8_
8_533 (or c:\adsp\chap8\exp8_8_537). Build the project and benchmark the cycle
count and code size and write the results in Table 8.11.

The assembly program uses a conditional branch for looping. The branch is executed
based on the state of the CC bit. A conditional branch takes nine cycles to complete.
However, the Blackfi n processor provides a branch prediction that can accelerate the execu-
tion of a conditional branch. If the prediction is “branch taken”, the branch will be executed
and fi ve cycles are required; otherwise, nine cycles are required. If the prediction is “branch
not taken”, only one cycle is required; otherwise, nine cycles are required. To implement
branch prediction, the option bp is applied to the conditional branch instruction. For
example,

if !CC JUMP E_FIR_START (bp);

x(n)

x(n-1)

x(n-2)

x(n-N+1)

x(n-N+2)

R1.L

I0

Higher
memory
address

Figure 8.8 Updating of the linear delay line buffer

8.3 Using Assembly Code for Effi cient Programming 351

TEAM LinG

352 Chapter 8 Code Optimization and Power Management

Insert the branch prediction and note the changes in the cycle count and code size in the
second row of Table 8.11.

8.3.1 Using Hardware Loops

As mentioned in Chapter 5, the Blackfi n processor supports hardware loops. Unlike
the software loop that performs counter decrement and checks for loop completion
with a conditional branch, the hardware loop has zero overhead. The setup for the
hardware loop is explained in Example 5.15. Here, we apply the hardware loop to
the MAC operation and the delay buffer update as follows:

// perform MAC
LSETUP(E_MAC_ST,E_MAC_END)LC1=P2;
 // setup inner loop counter
 // P2 = number of filter taps
E_MAC_ST: R2.L=W[I2++]; // input sample
 R0.L=W[I1++]; // filter coefficient
E_MAC_END: A0+=R0.L*R2.L ; // MAC

// update delay line
LSETUP(UPDATE_BUF_ST,UPDATE_BUF_END)LC1=P2;
 // loop counter to update buffer
UPDATE_BUF_ST: W[I0–-]=R1.L; // update input samples
 I0-=2;
UPDATE_BUF_END: R1.L=W[I0++];

HANDS-ON EXPERIMENT 8.9

This experiment examines the performance of the assembly code that uses the hardware
loop instructions. Open the project fi le exp8_9_533.dpj for the BF533 EZ-KIT (or
exp8_9_537.dpj for the BF537). The project fi le is located in directory c:\adsp\
chap8\exp8_9_533 (or c:\adsp\chap8\exp8_9_537). Study the assembly program
fir_asm_hardware_loop.asm and identify the hardware loops for MAC and delay
line update. Build the project and benchmark the cycle count and code size to fi ll in
Table 8.12.

Table 8.11 Cycle Count and Code Size for the Linear Assembly Code

 Cycle Count Code Size in Bytes

Linear assembly (without
 branch prediction)
Linear assembly (with
 branch prediction)

TEAM LinG

8.3.2 Using Dual MACs

After optimizing the loop, we turn our attention to optimizing the MAC operations
in the assembly code. The Blackfi n processor consists of two MAC units as described
in Section 5.1.3. We can use these dual MAC units to speed up the MAC operations.
One possible approach is to halve the loop count and perform two MAC operations
in the loop as:

LSETUP(E_MAC_ST,E_MAC_END)LC1=P2>>1;
 // setup inner loop counter
E_MAC_ST: R2=[I2++]; // input samples
 R0=[I1++]; // filter coefficients
 A1+=R0.H*R2.H; // MAC1
E_MAC_END: A0+=R0.L*R2.L; // MAC2 -** UNROLL 2x **-

The loop counter LC1 is reduced by half or, equivalently, the loop is now unrolled
by a factor of two.

HANDS-ON EXPERIMENT 8.10

This experiment examines the cycle count and code size of the assembly program using the
hardware loop and dual MACs. The program can be found in directory c:\adsp\chap8\
exp8_10_533 for the BF533 EZ-KIT (or c:\adsp\chap8\exp8_10_537 for the BF537).
Fill in the performance in Table 8.13.

8.3.3 Using Parallel Instructions

The Blackfi n instructions can be executed in parallel. Up to three instructions can
be executed in a single cycle with some limitations. A multi-issue instruction is

Table 8.12 Cycle Count and Code Size for Assembly Code Using Hardware Loop

 Cycle Count Code Size in Bytes

Hardware loop

8.3 Using Assembly Code for Effi cient Programming 353

Table 8.13 Cycle Count and Code Size for Assembly Code with Hardware Loop and
Dual MACs

 Cycle Count Code Size in Bytes

Hardware loop and dual MACs

TEAM LinG

354 Chapter 8 Code Optimization and Power Management

64-bit long and consists of one 32-bit instruction and two 16-bit instructions as
shown in Figure 8.9.

There are three possible ways to form parallel instructions with following
syntaxes:

1. 32-bit ALU/MAC instruction || 16-bit instruction || 16-bit instruction.

2. 32-bit ALU/MAC instruction || 16-bit instruction.

3. MNOP || 16-bit instruction || 16-bit instruction.

The vertical bar (||) indicates that the instructions are issued in parallel. In Method
2, a 16-bit NOP is automatically inserted into the unused 16-bit slot. In Method 3, a
32-bit NOP instruction may be required in the parallel instruction, and the assembler
can automatically insert it if needed [37]. In addition, there are some restrictions to
the 16-bit instructions in a multi-issue instruction. Only one of the 16-bit instructions
can be a store instruction; however, it is possible to have two load instructions. In
addition, if these two 16-bit instructions are memory access instructions, one
memory access must be an I-register and the other can be either an I- or a
P-register.

We can further optimize the previous FIR fi ltering program by using parallel
instruction for loading input samples and fi lter coeffi cients as follows:

E_FIR_START: MNOP || R0.L=W[P0++P3] || R2.L=W[I2];
 // parallel fetch x(n) from input array
 // and fetch filter coefficient

and

E_MAC_ST: MNOP || R2=[I2++] || R0=[I1++];
 // parallel fetch input and filter coefficient

The above multi-issue instructions are executed in a single cycle.

HANDS-ON EXPERIMENT 8.11

This experiment examines the cycle count and code size of the assembly program using
multi-issue instructions, coupled with the hardware loop and dual MAC operations.
The program can be found in directory c:\adsp\chap8\exp8_11_533 for the BF533
EZ-KIT (or c:\adsp\chap8\exp8_11_537 for the BF537). Fill in the performance in
Table 8.14.

32-bit ALU/MAC instruction 16-bit instruction 16-bit instruction

Figure 8.9 Parallel issued combinations

TEAM LinG

8.3.4 Special Addressing Modes:
Separate Data Sections

As discussed in Section 5.1.4, the Blackfi n processor has separated data memory
banks A and B. Programmers can allocate different variables in different memory
banks and thus access data from these banks in a single cycle. In the case of the
FIR fi lter program, we can assign the delay buffer in data bank A (L1_data_a),
and the fi lter coeffi cients are placed in data bank B (L1_data_b). This arrange-
ment can be programmed in C as follows:

section (“L1_data_a”) fract16 ldelay[TAPS]={0};

section (“L1_data_b”) fract16 lpf[TAPS] = {
 #include “coef32.dat”
};

HANDS-ON EXPERIMENT 8.12

This experiment examines the performance improvement when variables are allocated in
different data banks. This optimization technique is applied to Hands-On Experiment 8.11.
The program can be found in directory c:\adsp\chap8\exp8_12_533 for the BF533
EZ-KIT (or c:\adsp\chap8\exp8_12_537 for the BF537). Fill in the performance
results in Table 8.15.

Examine the memory map of this project and note the starting address of the delay line
buffer ldelay and the fi lter coeffi cient buffer lpf. Refer to the memory map of the BF53x
processor and verify that different data banks are used for delay line and fi lter coeffi cient
buffers. This separated memory allocation allows simultaneous accesses to support a single-
cycle dual-MAC operation.

Table 8.14 Cycle Count and Code Size for Assembly Code with Multi-issue Instructions

 Cycle Count Code Size in Bytes

Hardware loop, dual MACs, and multi-issue
 instruction

Table 8.15 Cycle Count and Code Size for Assembly Code Using Different Memory
Banks

 Cycle Count Code Size in Bytes

Hardware loop, dual MACs, multi-issue instruction,
 and different data memory banks

8.3 Using Assembly Code for Effi cient Programming 355

TEAM LinG

356 Chapter 8 Code Optimization and Power Management

8.3.5 Using Software Pipelining

Software pipelining is a technique to optimize loop code to further maximize utili-
zation of the processor’s functional units. This technique can be used if one section
of the algorithm is not dependent on the others. For example, when performing the
multiply-accumulate operation in the FIR fi ltering loop, the current iteration is
independent of the previous one, and these two iterations can be overlapped.

We will use pseudo-assembly code to illustrate the performance of dual-MAC
operations with and without software pipeline. The fi rst pseudo code without using
any software pipeline is listed as follows:

// dual MAC operations without software pipeline

Loop_start
 MNOP || Load input || Load coef

Dual MAC
Store result

Loop end

Software pipeline can be used to schedule loop and functional units more effi -
ciently. Because the Blackfi n processor has multiple hardware resources that can be
operated in parallel, the programmer can enhance the parallelism by bringing the
load instructions outside the loop. The software pipeline for the FIR fi ltering is
shown in the following pseudo code:

// dual MAC operations with software pipeline

Prolog: MNOP || Load input || Load coef

Loop kernel: DualMAC || Load input || Load coef

Epilog: DualMAC || Load input || Load coef
 Store result

The software pipeline greatly improves the execution speed because the 32-bit
MNOP (no operation) instruction that wastes the processor cycle is no longer inside
the loop. As shown above, parallel-load instructions are carried out before entering
the loop kernel. This overhead period is called the prolog. The loop kernel now
contains only the dual-MAC operations in parallel with the loading of the next data
sample and coeffi cient. An epilog is an overhead period after the loop kernel that
is needed to complete the fi nal tap of the FIR fi ltering. As a trade-off, the software
pipeline technique has increased code size.

HANDS-ON EXPERIMENT 8.13

This experiment examines the cycle count and code size of the assembly program with the
software pipeline technique. The program can be found in directory c:\adsp\chap8\
exp8_13_533 for the BF533 EZ-KIT (or c:\adsp\chap8\exp8_13_537 for the BF537).
Fill in the performance results in Table 8.16.

TEAM LinG

EXERCISE 8.1

Modify the assembly program fir_asm_simple_pipeline.asm in Hands-On
Experiment 8.13 to further improve its cycle count and code size by using multi-issue
instructions inside the loop kernel.

EXERCISE 8.2

As discussed in Section 8.2.6, an optimized FIR fi lter function fir_fr16.asm is
provided in the run time DSP library. Compare the cycle count and code size of this
function (in Table 8.10) with that of the optimized assembly code in Hands-On
Experiment 8.13. Examine the fir_fr16.asm code and identify the optimization
techniques used in this function.

8.3.6 Summary of Execution Cycle Count
and Code Size for FIR Filter Implementation

We have studied different optimization techniques in assembly programming. A
faster execution speed can be achieved by using parallel instructions and multiple
hardware resources and applying software pipeline. The cycle counts and code size
for these techniques are summarized in Table 8.17.

Table 8.16 Cycle Count and Code Size for Assembly Code with Software Pipeline

 Cycle Count Code Size in Bytes

Hardware loop, dual MACs, multi-issue
 instruction, and software pipeline

8.3 Using Assembly Code for Effi cient Programming 357

Table 8.17 Summary of Execution Cycle Counts and Code Sizes for Different
Optimization Techniques

Optimization Technique Cycle Count (firc) Code Size (in bytes)

(a) Linear assembly code [28 × Nc + 22] × Nb + 66 140
(b) Linear assembly code with [20 × Nc + 18] × Nb + 66 140
 branch prediction
(c) Using hardware looping [6 × Nc + 11] × Nb + 66 128
(d) Using dual MACs and (c) [5 × Nc + 14] × Nb + 66 148
(e) Multiple instructions and (d) [4.5 × Nc + 9] × Nb + 67 148
(f) Separate data sections and (e) [4 × Nc + 10] × Nb + 67 148
(g) Software pipeline and (f) [3.5 × Nc + 10] × Nb + 69 160

TEAM LinG

358 Chapter 8 Code Optimization and Power Management

EXERCISE 8.3

Using the cycle count benchmark of Technique (g) in Table 8.17, tabulate the cycle
count and memory size (for both data and code) for implementing an Nc-tap FIR
fi lter using Nb samples per block as shown in Table 8.18(a) and (b), respectively.

8.4 POWER CONSUMPTION AND MANAGEMENT
IN THE BLACKFIN PROCESSOR

Power consumption and management are important design considerations in many
embedded systems, especially in portable devices where a battery is the energy
source. This section discusses the power consumption behavior and power-saving
features of the Blackfi n processors.

8.4.1 Computing System Power
in the Blackfi n Processor

This Section studies the total power consumption of the Blackfi n processors in
detail. The power performance evaluated with mW/MMAC (in Section 6.3.4) does

Table 8.18(a) Cycle Count for Implementing Optimized Assembly Code with
Optimization Technique (g)

Nb\ Nc 4 8 16 32 64 128 256 512 1024

 1

 2

 4

 8

 16

 32

 64

128

256

512

TEAM LinG

Table 8.18(b) Code and Data Sizes (in bytes) for Implementing Optimized Assembly
Code with Optimization Technique (g)

Nb\Nc 4 8 16 32 64 128 256 512 1024

 1

 2

 4

 8

 16

 32

 64

128

256

512

8.4 Power Consumption and Management in the Blackfi n Processor 359

not refl ect the actual operating conditions, in which cores, peripherals, and memory
are turned on and off according to the state of the application code.

There are three power domains that consume power: the internal voltage supply,
the external voltage supply, and the real-time clock supply. In the BF53x processors,
the core operates in the voltage range of 0.8 to 1.32 V with a nominal voltage of
1.2 V. The I/O circuitry supports a range of 2.25 to 3.6 V with a nominal voltage of
2.5 V or 3.3 V. The real-time clock (RTC) can either be powered from the I/O supply
or another external supply with the same nominal voltage.

Power dissipation is defi ned as the product of supply voltage and current drawn.
The total average power Ptot_av dissipated by the Blackfi n processor is defi ned as:

P P P Ptot_av int ext RTC,= + + (8.4.1)

where Pint = Vint × Iint is the internal core power, Pext = Vext × Iext is the external core
power, and PRTC is the RTC power. The terms Vint and Vext are internal and external
voltages, respectively. Similarly, Iint and Iext are internal and external currents,
respectively.

The internal power of the Blackfi n processor consists of static and dynamic
power components. The static component is derived from the leakage current when
the core processor is disabled. The leakage current is proportional to the supply
voltage and temperature. Therefore, we can save power by lowering the supply

TEAM LinG

360 Chapter 8 Code Optimization and Power Management

voltage when the core is disabled. On the other hand, the dynamic component is a
function of both supply voltage and switching frequency. Dynamic power dissipation
increases as the voltage and/or frequency increases.

The external power consumption is contributed by the number of enabled periph-
erals in the system. The equation for external power consumption is expressed as

P V C f O TR Uext ext ,= () × × × ×() ×2 2 (8.4.2)

where C is the load capacitance, f is the frequency at which the peripheral runs, O
is the number of output pins, TR is the number of pins toggling each clock cycle,
and U is the ratio of time that the peripheral is turned on.

EXAMPLE 8.3

The serial port is operating at 4 MHz and consists of two pins. The capacitance per pin is
0.3 pF, and the external supply voltage is 3.65 V. The utilization and toggle ratios are 1. This
implies that the output pin changes state every clock cycle. With Equation 8.4.2, the external
power dissipation is computed as 1.6 mW.

The fi nal source of power consumption in the Blackfi n processor comes from
the RTC power domain. Typically, the RTC can be powered between 2.25 and 3.6 V,
and the current drawn is in the range of 30 to 50 μA. Therefore, the worst-case power
consumption for the RTC is around 180 μW.

To compute the actual average power consumption, a statistical analysis of the
application program must also be performed to determine what percentage of time
(% time) the processor spends in each of the defi ned states (Pstate) in an application
(i). The total average power can then be derived as

P i P i
i

N

total state% time= () × ()
=
∑ .

1

(8.4.3)

This total average power only shows how much the Blackfi n processor is loading
the power source over time. However, the power supply must also support the worst-
case requirement of a given application.

8.4.2 Power Management
in the Blackfi n Processor

The Blackfi n processor provides several power-saving features that are commonly
used in embedded systems. These features include:

1. Powering down the peripherals and internal functional units when they are
not in use.

2. Reducing the power supply voltage.

3. Running the processor and peripherals at lower clock frequency.

TEAM LinG

The Blackfi n processor has a dynamic power management controller and a program-
mable phase-locked loop (PLL) to control the operating modes, dynamic voltage,
and frequency scaling of the core and the system. In the following sections, we
investigate the power-saving blocks and the power modes of the Blackfi n
processors.

8.4.2.1 Processor Clock

In the Blackfi n processor, a core clock (CCLK) and a system clock (SCLK) are
generated by the clock generation unit. The core clock is responsible for instruction
execution and data processing, and the system clock is used for the peripherals,
DMA, and external memory buses. As shown in Figure 8.10, the processor uses a
PLL with a programmable clock divider to set the clock frequencies for the core
and system. The PLL is a circuit that is used to generate multiple frequencies from
one or more reference frequencies. A fi xed-frequency reference CLKIN is connected
to a phase detect (or comparator) block, and the other phase detect input is driven
from a divide-by-N counter (divider), which is in turn driven by the voltage-con-
trolled oscillator (VCO). The input clock, CLKIN, which provides the necessary
clock frequency and duty cycle, is derived from a crystal oscillator in the range of
10 to 40 MHz.

The PLL circuit operates on negative feedback, which forces the output of the
internal loop fi lter to generate a frequency at VCO = N × CLKIN. The CCLK and
the SCLK are obtained by dividing the VCO frequency by their respective scalar
values, CSEL and SSEL. The divider ratio for the core clock CSEL (2 bits) can be
set to 1, 2, 4, or 8. However, the divider ratio for the system clock SSEL (4 bits) can
be set to a wider range of 1 to 15. These bits are located in the PLL divide register,

CLKIN

DF

MSEL[5:0]

SSEL[3:0]
CSEL[1:0]

BYPASS

DIVIDER

SCLK

CLOCK
DIVIDE

AND
MUX

VCOLOOP
FILTER

PHASE
DETECT

CCLK
/1 or /2

Figure 8.10 Functional blocks of the Blackfi n processor’s clock generation unit (courtesy of
Analog Devices, Inc.)

8.4 Power Consumption and Management in the Blackfi n Processor 361

TEAM LinG

362 Chapter 8 Code Optimization and Power Management

PLL_DIV, and they can be changed on the fl y to adjust the core and system clock
frequencies dynamically.

EXAMPLE 8.4

A 27-MHz oscillator is built into the BF533 EZ-KIT to drive the CLKIN of the
processor. If DF = 0 (i.e., no further divide of the CLKIN by 2) and MSEL = 14, the VCO
frequency = MSEL × CLKIN = 27 × 10 = 270 MHz. The CSEL and SSEL in the PLL_DIV
register are divided from the VCO frequency to obtain the CCLK and SCLK, respectively.
Note that SCLK should be less than or equal to 133 MHz, and it must be smaller than CCLK.
Therefore, SSEL must be set to a value of more than 2.

The dynamic power management controller allows users to program the proces-
sor in fi ve operating modes and different internal voltages and to disable the clock
to a disabled peripheral. In addition, the dynamic power management controller
works with the clock generation unit to control the CCLK and SCLK. In the fol-
lowing subsections, we discuss the fi ve operating modes and how to program the
voltage and frequency of the Blackfi n processor.

8.4.2.2 Power Modes

As stated in Section 6.3.4, the Blackfi n processor works in fi ve operating modes:
(1) full on, (2) active, (3) sleep, (4) deep sleep, and (5) hibernate. Each of
these modes has different power saving levels and clock activities as shown in
Table 8.19.

In the full-on mode, the processor and all peripherals run at full speed deter-
mined by the CCLK and SCLK, respectively. The PLL is enabled, and the CCLK
and SCLK are derived from the CLKIN and their respective divider ratios. DMA
access to the L1 memory is allowed in this mode. In the active mode, the PLL is
enabled but bypassed. Therefore, the CCLK and SCLK run at the same frequency
as CLKIN, which is around 30 MHz. DMA access to the L1 memory is also avail-

Table 8.19 Operating Characteristics of Different Power Modes

Operating Mode Power Saving Core Clock System Clock PLL

Full on None Enabled Enabled Enabled
Active Medium Enabled Enabled Enabled/disabled
 Bypass PLL
Sleep High Disabled Enabled Enabled
Deep sleep Maximum Disabled Disabled Disabled
Hibernate Maximum Off Off Off

TEAM LinG

able in this mode. The active mode is important because it allows the user to
program the PLL for different core and system frequencies.

In the sleep mode, signifi cant reduction in power consumption can be achieved
because the core clock is disabled. The system clock is still enabled, and DMA
access can only take place between peripherals and external memories. In the deep-
sleep mode, maximum power saving is achieved by disabling the PLL, CCLK, and
SCLK. In addition, the processor core and all peripherals, except the real-time clock,
are disabled. Therefore, DMA is not supported in this mode. The deep-sleep mode
can be awaked by an RTC interrupt or hardware reset. Power dissipation still occurs
through the processor leakage current. To further cut down the power dissipation,
the hibernate mode in the Blackfi n processor turns off the internal core voltage
supply, thus eliminating any leakage current. However, the internal state of the
processor must be written to external SDRAM before switching to the hibernate
mode. The SDRAM is set to self-refreshing mode before entering the hibernate
mode. Table 8.20 shows the possible mode transition between different
power modes. The PLL status register (PLL_STAT) indicates the status of the
operating mode.

Besides these different power modes, the Blackfi n processor allows peripherals
to be individually enabled or disabled. By default, all peripherals are enabled, but
they can be selectively disabled by controlling the respective bits of the peripheral
clock enable register PLL_IOCK.

8.4.2.3 Dynamic Voltage and Frequency Scaling

Power dissipation depends on clock frequency and voltage as stated in Equation
6.3.7. Changing the clock frequency (CCLK) affects the processing speed. A faster
clock frequency needs a shorter period to complete a given task, resulting in longer
idle time. We can set the device to sleep mode during this idle time, but power
consumption still occurs because of the leakage current. A better approach is to
reduce the idle time by lowering the clock frequency and complete the task in the
required time period. When the frequency is reduced, the supply voltage must also
be reduced. It is always recommended to use the lowest possible voltage that sup-
ports the required clock frequency. The lower voltage leads to signifi cant power
reduction, as power dissipation is proportional to the squared voltage.

Table 8.20 Allowed Power Mode Transition

New Mode Full On Active Sleep Deep Sleep

Current Mode

Full on — Allowed Allowed Allowed
Active Allowed — Allowed Allowed
Sleep Allowed Allowed — —
Deep sleep — Allowed — —

8.4 Power Consumption and Management in the Blackfi n Processor 363

TEAM LinG

364 Chapter 8 Code Optimization and Power Management

To implement the frequency-voltage scaling in a real-time system, we need to
examine the deadline and execution time to perform real-time processing. As
explained in Section 6.3, an event-triggered system (such as real-time audio process-
ing) needs to interrupt the processor at regular intervals. The deadline time is basi-
cally determined by the time needed to acquire N data samples for block processing.
For example, if the block size is set at 32 samples and the sampling frequency is
48 kHz, the deadline time is 666.67 μs. In the actual implementation, the deadline
can be expressed as deadline cycle, which is deadline time multiplied by the core
clock frequency as shown in Equation 6.3.4. For a core frequency of 270 MHz, the
deadline cycle is 180,000 cycles. Note that the deadline time is always constant for
the same sampling frequency and block size, but the deadline cycle varies with dif-
ferent core frequency. To guarantee real-time processing, the maximum execution
time must be bounded to the worst-case execution time (WCET), which is the
deadline time. The number of execution cycles needed for a given task is always
constant, whereas the execution time depends on the core clock frequency. Based
on the constant property of the deadline time tdeadline and execution cycle Nexe_cycle, a
suitable operating frequency Fcore can be determined as

F N tcore exe_cycle deadline= . (8.4.4)

Note that the number of execution cycles, Nexe_cycle, includes the cycles needed for
task initialization, overhead, and the actual task in the interrupt service routine. As
shown in Figure 8.10, the CCLK (or Fcore) and SCLK can be adjusted by changing
the value in the PLL divide register. The adjustment of CCLK is performed with
some fi xed integer divisor. Therefore, Fcore is quantized to some permissible operat-
ing frequencies.

The Blackfi n processor provides an on-chip switching regulator controller that
is used to generate internal voltage levels from the external voltage supply. There
are 10 internal voltage levels that can be programmed into the 4-bit internal voltage
level (VLEV) fi eld of the voltage regulator control register (VR_CTL) as shown in
Table 8.21. Once the core frequency has been selected, the minimum core voltage
can be obtained from the Blackfi n datasheet [26, 27]. In this way, the minimum
core frequency and voltage are used for a given processing task.

HANDS-ON EXPERIMENT 8.14

This experiment implements the frequency-voltage scaling technique [5] for running a pro-
cessing load. An FIR fi lter with variable fi lter length is implemented with a C program. The
processing load can be varied by using different fi lter lengths of 32, 128, 512, and 1,024.
Figure 8.11 shows the block diagram of this experiment. The setting of the DMA controller

Table 8.21 Voltage Selection Via VLEV

VLEV 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Voltage 0.85 V 0.90 V 0.95 V 1.00 V 1.05 V 1.10 V 1.15 V 1.20 V 1.25 V 1.30 V

TEAM LinG

provides the deadline time information to a dynamic frequency-voltage scaling routine. The
cycle count is benchmarked in real time and furnished to the frequency-voltage scaling
routine. Because we cannot benchmark the execution time on the same processing interval,
we benchmark the current execution time and use it as the estimated execution time of the
next processing frame. In this way, we are able to track the execution time of the processing
load and adjust the frequency and voltage accordingly.

The project fi le is located in directory c:\adsp\chap8\exp8_14_533 for the BF533
EZ-KIT (or c:\adsp\chap8\exp8_14_537 for the BF537). The maximum core clock
frequency is set to 459 MHz, and the core voltage is 1 V at startup.

Build and run the project. Enable the fi lter by pressing SW6 on the BF533 EZ-KIT (or
SW12 on the BF537). Vary the load of this program by pressing SW6 (or SW12). The execution
cycles are displayed in the BTC memory window. Users can check the core frequency in the
PLL_DIV register and the core voltage in the VR_CTL register. Click on Register Æ Core Æ
PLL Register File to display these registers. Complete the tasks listed in Table 8.22.

8.5 SAMPLE RATE CONVERSION
WITH BLACKFIN SIMULATOR

This section presents an application of the FIR fi lter for sample rate conversion. For
example, we change an incoming digital signal sampled at 48 kHz to 8 kHz. This

Task
request

Executing
task

Output

Dynamic
voltage &
frequency

scaling

DMA

Serial port

Memory

Deadline information

Figure 8.11 Block diagram of dynamic frequency-voltage scaling

Table 8.22 Benchmark Results of Execution Cycle, Core Frequency, and Voltage

Load (fi lter length) Execution Cycle Frequency Voltage Power Reduction

 32
 128
 512
1024

8.5 Sample Rate Conversion with Blackfi n Simulator 365

TEAM LinG

366 Chapter 8 Code Optimization and Power Management

signal can be mixed with another digital speech signal sampled at 8 kHz as shown
in Figure 8.12. The sample rate conversion block is downsampled (or decimated)
by a factor of D = 6 from 48 kHz to 8 kHz. The downsampling process can be
implemented by simply discarding every D−1 samples. However, decreasing the
sampling rate by the factor D reduces the bandwidth by the same factor. To prevent
aliasing, a low-pass fi lter with a cutoff frequency of fs /2D (4 kHz) must be applied
to the original high-rate signal before the downsampling process. The FIR fi lter
is commonly used to realize the low-pass fi lter for sampling rate conversion
applications.

The sampling rate can also be increased by an integer factor, U. This process
is called upsampling (or interpolation). For example, the sampling frequency of
the digital speech can be upsampled from 8 kHz to 48 kHz before mixing with the
audio signal sampled at 48 kHz. Upsampling can be realized by inserting additional
zero samples between successive samples of the original lower-rate signal. For
example, we insert U−1 samples when upsampling by a factor of U = 6 from 8 kHz
to 48 kHz. Again, a low-pass fi lter is required to smooth out the interpolated
samples.

This section investigates the decimation and interpolation processes with the
Blackfi n simulator. The run time DSP library provides several decimation and
interpolation FIR fi lter functions. However, users need to select and design a suitable
FIR fi lter before using these functions.

HANDS-ON EXPERIMENT 8.15

This experiment performs decimation and interpolation with the project fi le exp8_15.dpj
located in directory c:\adsp\chap8\exp8_15. A 1-kHz sine wave sampled at 48 kHz is
downsampled by a factor of 6 to 8 kHz, followed by upsampling to 16 kHz (by a factor of
2). This 16-kHz-sampled signal is further upsampled to 32 kHz by a factor of 2, and 48 kHz
by a factor of 3, as shown in Figure 8.13. The objective of this experiment is to check whether
the original signal sampling at 48 kHz can be recovered with decimation and a series of

Sample-rate
conversion

(Downsample by 6)

Analog speech
signal

ADC

Digital
speech
(fs = 8 kHz)

+

Audio signal
sampled at
48 kHz

Digital audio signal
sampled at 8 kHz

Mixed signal
at 8 kHz

Figure 8.12 Sample rate conversion and mixing of signals

TEAM LinG

interpolation processes. In addition, users can examine the signal sampled at different
frequencies.

Because the number of zeros introduced between successive samples of the input signal
during interpolation, only one out of every U samples input to the interpolation fi lter is
nonzero. To effi ciently implement the low-pass fi lter, we divide the FIR fi lter of length L to
form U FIR fi lters, each with a length of L/U. These smaller FIR fi lters operate at lower
sampling rate fs instead of Ufs after the upsampler. However, the interpolation fi lter coeffi -
cients must be rearranged for the smaller fi lters. These interpolation fi lters are provided
in data fi les interp_8kto16k_64taps.dat, interp_16kto32k_64taps.dat, and
interp_16kto48k_96taps.dat. Because the decimation FIR fi lter operates at the
original sampling frequency as the input signal, there is no need to rearrange the coeffi cients
of the fi lter.

The program main.c implements the decimation and interpolation processes shown in
Figure 8.13. The programming steps are listed below:

fir_decima_fr16(inp_arr, out8k, INPUTSIZE, &filter_state_dec);
fir_interp_fr16(out8k,out16k,INPUTSIZE/6,&filter_state_interp_
8to16);
fir_interp_fr16(out16k,out32k,2*INPUTSIZE/6,&filter_state_interp_
16to32);
fir_interp_fr16(out16k,out48k,2*INPUTSIZE/6,&filter_state_interp_
16to48);

Build and run the project. Display the input and output signals at different stages with
the plot feature in the debug window as shown in Figure 8.14.

Lowpass
filter

Down
sample

6:1

1 kHz
sinewave
sampled
@
48 kHz

Sinewave
sampled
@
8 kHz

Up
sample

1:2

Lowpass
filter

Up
sample

1:2

Lowpass
filter

Up
sample

1:3

Lowpass
filter

Sinewave
sampled
@
16 kHz

Sinewave
sampled
@
32 kHz

Sinewave
sampled
@
48 kHz

Decimator

1st Interpolator

 2nd Interpolator

3rd Interpolator

Figure 8.13 Downsampling and upsampling in Hands-On Experiment 8.15

8.5 Sample Rate Conversion with Blackfi n Simulator 367

TEAM LinG

368 Chapter 8 Code Optimization and Power Management

(a)

(b)

(c)

(d)

(e)

Figure 8.14 (a) Input sine wave (fs = 48 kHz), (b) decimator output (fs = 8 kHz), (c) 1st interpolator
output (fs = 16 kHz), (d) output of cascade of 1st and 2nd interpolators (fs = 32 kHz), and (e) output
of cascade of 1st and 3rd interpolators (fs = 48 kHz)

TEAM LinG

Figure 8.14 reveals some important observations:

1. The amplitude of the output signal from the interpolator has reduced compared
with the original signal. The magnitude reduction is in the order of 1/U. Users can
compensate this amplitude reduction by amplifying the interpolator output by a
gain of U.

2. The output from the decimator or interpolator has been delayed compared with the
original signal. This is due to the group delay introduced by the decimation and
interpolation fi lters.

Users can use the FFT with the correct sampling rate to verify the magnitude spectrum
of the signals at different stages. Instead of using 1-kHz sine wave sine1k.dat as the input,
generate a 5-kHz sine wave in MATLAB and save it in a data fi le, sine5k.dat. Repeat the
same experiments with the 5-kHz sine wave and comment on the results.

EXERCISE 8.4

Modify the main program main.c to implement the following tasks:

1. Add a 16-kHz sine wave sampled at 48 kHz to a 1-kHz sine wave sampled
at 8 kHz.

2. Mix the musical wave fi le liutm_48k_mono.wav sampled at 48 kHz with
the speech wave fi le timit.wav sampled at 8 kHz. Hint: Convert the wave
fi les into data fi les and make sure that the two data sequences have the same
length before adding.

8.6 SAMPLE-RATE CONVERSION
WITH BF533/BF537 EZ-KIT

This section implements sample rate conversion in real time with the Blackfi n
EZ-KIT. Because the CODEC in the EZ-KIT can only operate at either 48 kHz or
96 kHz, we sample the signal at 48 kHz and decimate it to different sampling fre-
quencies. The decimated signal can be displayed in the display window and played
via the computer sound card. In another experiment, we sample the signal at 48 kHz,
down sample to 8 kHz and mix it with an internally generated signal sampled at
8 kHz, and upsample the mixed signal to 48 kHz before sending it to the CODEC.
The input and output connections to the BF533 and BF537 EZ-KITs follow the
default settings described in previous chapters.

HANDS-ON EXPERIMENT 8.16

Activate VisualDSP++ for the BF533 (or BF537) EZ-KIT target and open exp8_16_533.
dpj (or exp8_16_537.dpj) in directory c:\adsp\chap8\exp8_16_533 (or c:\adsp\
chap8\exp8_16_537). This project samples the incoming signal at 48 kHz, downsamples

8.6 Sample-Rate Conversion with BF533/BF537 EZ-KIT 369

TEAM LinG

370 Chapter 8 Code Optimization and Power Management

it to 8 kHz, and upsamples it to 32 kHz. Because the sampling frequency of the EZ-KIT
is 48 kHz, we can only save the downsampled signals to a data fi le or display them on the
graphical display. In the main.c and interpolation.h fi les, determine the lengths and
durations of the decimated signals sampled at 8 and 32 kHz. Build and run the program, and
display the input signal at 48 kHz (48k.vps), downsampled signal at 8 kHz (8k.vps), and
downsampled signal at 32 kHz (32k.vps). Instead of listening to these signals directly from
the EZ-KIT, the downsampled signals can be exported to the sound card (steps explained in
Exercise 3.18) with proper sampling frequency settings for playback. Benchmark the cycle
count and memory size for implementing the interpolator and decimator.

HANDS-ON EXPERIMENT 8.17

In the second experiment, the project fi le exp8_17_533.dpj (or exp8_17_537.dpj)
located in directory c:\adsp\chap8\exp8_17_533 (or c:\adsp\chap8\exp8_17_
537) is used to mix an incoming signal sampled at 48 kHz with an internally generated 1-kHz
sine wave sampled at 8 kHz. The sine wave generation is based on the look-up table approach,
which is explained in Section 7.6. Build and run the project. The switch settings for the
BF533 and BF537 EZ-KITs are listed in Table 8.23.

Listen to the signals with the switch settings listed in Table 8.23. Do you hear any
difference between different modes?

Table 8.23 Switch Settings for Different Modes

Mode Switch on BF533 EZ-KIT Switch on BF537 EZ-KIT

(1) Pass-through SW4 SW10
(2) Downsample to 8 kHz SW5 SW11
 → Mixing at 8 kHz →
 Upsample to 48 kHz
(3) Downsample to 8 kHz SW6 SW12
 → Upsample to 48 kHz
 (without mixing)

EXERCISE 8.5

Based on the project fi les given in the preceding hands-on experiment and using
either the BF533 or the BF537 EZ-KIT, perform the following tasks:

1. Mix an incoming 1-kHz sine wave sampled at 48 kHz with an internally
generated 1-kHz sine wave sampled at 8 kHz. Both signals must be aligned
without any phase shift. Listen to the mixed signal at 48 kHz.

2. Similar to Task 1, mix the two sine waves but with one sine wave at 180°
out of phase with the other sine wave. Verify the result.

TEAM LinG

8.7 SAMPLE RATE CONVERSION WITH LABVIEW
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

In practical engineering applications, it is often necessary to change the sampling
rate of signals within a system. For example, the Blackfi n EZ-KIT operates with an
audio CODEC that digitizes signals at 48 kHz, which is a common rate for capturing
audio signals. It is often desirable to process signals with a lower sampling rate,
such as 8,000 Hz, which minimizes the amount of computation necessary by reduc-
ing the number of samples. Sample rate conversion is commonly used in industrial
applications for analyzing and manipulating communication signals, mixing signals
from multiple sources, and noise cancellation.

The following experiments use LabVIEW to illustrate the concepts of sample
rate conversion. We control the sampling rates of signals and observe what design
considerations are affected by resampling. The interactive simulation allows you to
see and hear how decimation and interpolation fi lters can be used to manipulate and
process audio signals. This understanding will further reinforce these concepts when
using the Blackfi n EZ-KIT target.

HANDS-ON EXPERIMENT 8.18

This experiment reinforces the concepts of sample rate conversion. This conversion allows
us to combine and process signals sampled at different rates within the same system. This
experiment begins with an input signal sampled at a frequency of 48 kHz and then analyzes
the results of applying decimation and interpolation fi lters to decrease and increase the
sampling rate, respectively. Remember from Section 8.5 that the downsampling process
requires low-pass fi ltering of the input signal to prevent aliasing by ensuring that the signal
satisfi es the Nyquist rate.

Open the compiled LabVIEW simulation Resample_Sim.exe located in directory
c:\adsp\chap8\exp8_18 to explore sample rate conversion. The graphical user interface
is similar to those in earlier chapters and is shown in Figure 8.15. The interface shares many
controls, indicators, and functions used in previous hands-on LabVIEW experiments.

The tabs on Tab control are unique, allowing the user to choose which signals to view,
including input, downsampled, and upsampled signals in both time and frequency domains.
The Upsampled Output tab enables the Upsample To rate selector, which allows each of
the upsampled rates to be seen and heard. The frequency slider allows the frequency of the
default test sine wave to be manipulated. The sine wave input signal is sampled at 48 kHz to
simulate that of the Blackfi n EZ-KIT, downsampled by a factor of 6 to 8 kHz, and then
upsampled to 16, 32, or 48 kHz. The 32-kHz and 48-kHz sampling rates are achieved by fi rst
upsampling by a factor of 2 to 16 kHz and then upsampling the resulting signal by a factor
of 2 or 3, respectively.

When you open the simulation, a default sine wave signal with 1-kHz frequency is used
as the input. Explore the different tabs to gain an understanding of how the signal changes
when decimation and interpolation fi lters are applied. Also, manipulate the signal frequency
while observing its time- and frequency-domain data. Pay attention to the effects of sample
rate conversion on audio bandwidth. What observations can you make about the time-domain
plots of the input signal after its sampling rate has been altered? Can you hear these effects

8.7 Sample Rate Conversion with LabVIEW Embedded Module 371

TEAM LinG

372 Chapter 8 Code Optimization and Power Management

when playing back the altered signals? Experiment with different input sine wave frequencies
by changing the value of the Sine Test Frequency slider control.

Now load an audio fi le to experiment with the effects of decimation and interpolation.
You can use the speech_tone_48k.wav fi le from Hands-On Experiment 2.5. Play the
signal at different sampling rates to determine how sample rate conversion affects the audio
quality. What observations can you make? How might consumer electronics, digital audio
media, or the music recording industry utilize these concepts?

HANDS-ON EXPERIMENT 8.19

This experiment examines a LabVIEW Embedded Module for Blackfi n Processors project
that uses decimation and interpolation fi lters to mix signals of different sampling rates.
LabVIEW programming structure and code are reused from previous exercises to maintain
a similar program structure and more effi ciently develop a sample rate conversion application
that can be deployed in the Blackfi n EZ-KIT.

Figure 8.15 User interface for Resample_Sim.exe

TEAM LinG

Open the Resample_Ex-BF5xx.lep project located in directory c:\adsp\chap8\
exp8_19. Open the top-level VI named Resample_Ex – BF5xx.vi and view its block
diagram, shown in Figure 8.16. This VI provides the ability to acquire live audio at 48 kHz,
downsample it by a factor of 6 to 8 kHz, mix the 8-kHz signal with a 1-kHz sine wave
sampled at 8 kHz, and then upsample back to 48 kHz for audio output. Which portions of
the block diagram look familiar?

Note that the structure for writing and reading audio is common to most pre-
vious LabVIEW Embedded Module for Blackfi n Processors audio exercises. In particular,
Init Audio BF5xx.vi and BF Audio Write-Read (BF5xx).vi set the audio buffer
sizes and generate and acquire the audio signals. After acquiring a buffer of data, the sample
rate is converted, mixed, and output in the next loop iteration. As in previous experiments,
the graphical program is logically organized with subVIs that allow program modules to be
reused, thus reducing development time.

The three custom subVIs, found in the lower left of the block diagram, initialize
the fi lters and sine wave generation before the While Loop begins. Init Decimation
Filter.vi and Init Interpolation Filter.vi both store fi lter coeffi cients and
create the necessary data buffers to perform the decimation and interpolation FIR fi ltering
inside the processing loop. A 1-kHz sine wave sampled at 8 kHz is generated from an eight-
point look-up table by Gen 1k Sine.vi and is mixed with the downsampled live audio
when the correct case is executed. These subVI functions are part of the project and can be
seen in the Embedded Project Manager window below the main VI.

The Case Structure in the processing loop determines which of the three processing
modes is used. The three modes include audio talk-through, resample, and resample with
mix. The button selections for the EZ-KIT are shown in Table 8.24.

The Case Structure in the center of the VI contains the three cases seen in Figure 8.17.
One of the three cases is executed in each iteration of the loop, depending on the button

Figure 8.16 Block diagram of Resample_Ex – BF5xx.vi

8.7 Sample Rate Conversion with LabVIEW Embedded Module 373

TEAM LinG

374 Chapter 8 Code Optimization and Power Management

combination being pressed. Several wires are required to confi gure the decimation and
interpolation fi lters, but the general fl ow of the input signal is easily followed.

Connect the audio input of the Blackfi n EZ-KIT to the computer sound card or CD
player. Then compile and run the LabVIEW Embedded project on the Blackfi n processor.
Press different switch combinations to hear each of the three audio modes. What differences
are heard between audio pass-through and the resampled audio signals? Explain. Can you
hear the mixed 1-kHz tone?

8.8 MORE EXERCISE PROBLEMS

1. In Hands-On Experiments 8.1 and 8.2, the implementation is carried out with a 32-tap
FIR fi lter with 32 samples per block. Benchmark the cycle count and code/data
size when implementing different fi lter lengths given in Table 8.25. These fi lter coeffi -
cients are also included in the project. Comment on the performance with different
fi lter taps.

2. Problem 1 uses block processing of 32 samples per block. The block size can be varied
by changing the value of IP_SIZE to 1 (sample mode), 4, 8, 16, 32, 64, and 128. The

Table 8.24 Switch Selections for Different Modes

Mode Switch on BF533 EZ-KIT Switch on BF537 EZ-KIT

1 Pass-through None None
2 Downsample to 8 kHz → SW4 and SW5 SW10/PB4 and SW11/PB3
 Mixing at 8 kHz → pressed together pressed together
 Upsample to 48 kHz
3 Downsample to 8 kHz → SW4 SW10/PB4
 Upsample to 48 kHz
 (without mixing)

Figure 8.17 Cases in the Resample_Ex – BF5xx.vi graphical code.

TEAM LinG

FIR fi lter length is fi xed at 32 taps. Fill in Table 8.26 and comment on the performance
versus the different block sizes.

3. Instead of using global optimization for the project in Hands-On Experiment 8.1,
implement local optimization (in Section 8.2.1) on the fi ltering and delay buffer update
sections of the code. Benchmark its performance and compare to the results in Table
8.1. Also, experiment with the loop optimization pragma in Section 8.2.2.2 and observe
its performance.

4. Extend Hands-On Experiment 8.6 for different samples per block and different fi lter
lengths. Comment on the following:

(a) Cycle count per sample for different block sizes

(b) Trade-off between processing gain and block size

(c) Filter length and block size

5. Implement a symmetric FIR fi lter based on Equation 2.3.10 in C with intrinsic functions
on the Blackfi n processor. Build the project by enabling the optimization in the Visu-
alDSP++ compiler. Benchmark on the cycle count, data, and code size of the symmetric
FIR fi lter and compare the results with the direct-form FIR fi lter. Does the symmetric
FIR fi lter always result in a better performance as compared to the direct-form FIR
fi lter? If not, why?

Table 8.25 Benchmark Table (IP_SIZE = 32 Samples/Block)

Number of Taps Index-Style C (optimize) Pointer-Style C (optimize)

 Cycle count Data and code Cycle count Data and code
 size (byte) size (byte)

 16
 32
 64
128
256

Table 8.26 Benchmark Table (Filter Taps = 32)

Number of Index-Style C (optimize) Pointer-Style C (optimize)

Samples per Cycle count Data and code Cycle count Data and code
Block (IP_SIZE) size (byte) size (byte)

 1
 4
 8
 16
 32
 64
128

8.8 More Exercise Problems 375

TEAM LinG

376 Chapter 8 Code Optimization and Power Management

6. Repeat Problem 5 by implementing the symmetric FIR fi lter with assembly
programming.

7. The cycle count for performing FIR fi lter in linear assembly code without branch predic-
tion is [28 × Nc +22] × Nb + 66 cycles, where Nc is the number of coeffi cients in the FIR
fi lter and Nb is the number of samples per block. The 66 cycles are overhead for setting
up the FIR fi lter. Compute the cycle count/input sample and processing time/input
sample (Table 8.27) in implementing a 32-tap FIR fi lter with different data samples per
block. The Blackfi n processor is operating at 270 MHz.

8. Open the optimized IIR fi lter function iir_fr16.asm in the run time DSP library.
Identify the techniques used in this optimized assembly code. How do these optimized
techniques differ from the FIR fi lter function fir_fr16.asm?

9. Open the optimized radix-2 FFT function r2fftnasm.asm in the run time DSP library.
Examine and list the techniques used in this optimized assembly code.

10. Compute the total external power of the Blackfi n processor based on the following
peripherals and their activities listed in Table 8.28.

11. Develop a real-time speech and audio recorder with playback using the BF533 or BF537
EZ-KIT. A microphone can be connected to the input port of the EZ-KIT. The output
port of the EZ-KIT is connected to loudspeakers or a headset. There are four operating
modes in this recorder:

Mode I: Normal pass-through mode without recording

Mode II: Normal recording

Mode III: Recording with low-pass fi ltering (cutoff frequency is 4 kHz)

Mode IV: Playback

Table 8.28 Total External Power Consumption

Peripheral Frequency No. of Capacitance/ Toggle Ratio of Vext External
 Pins Pin Ratio Time Power
 Peripheral
 Is On

PPI 27 MHz 9 30 pF 1 1 3.65 V
SPORT0 4 MHz 2 30 pF 1 1 3.65 V
UART 0.115 MHz 2 30 pF 1 0.25 3.65 V
SDRAM 133 MHz 36 30 pF 0.25 0.50 3.65 V

Total

Table 8.27 Benchmark Results Using 32-Tap FIR Filter

Nb = 1 8 16 32 64

Cycle count/input sample

Processing time/input sample

TEAM LinG

The switches and LEDs on the EZ-KIT are user control and indicator on the above
modes. In addition, the recorded data must be stored in the external SDRAM. Determine
the maximum recorded period at a sampling rate of 48 kHz. Downsample the signal to
8 kHz and determine the maximum recorded period. Finally, develop a stand-alone
system.

12. Perform cycle count and memory benchmark on the different modes in the recording
system developed in Problem 11.

8.8 More Exercise Problems 377

TEAM LinG

TEAM LinG

Part C

Real-World
Applications

TEAM LinG

TEAM LinG

Chapter 9

Practical DSP Applications:
Audio Coding and
Audio Effects

Audio coding exploits unique features of audio signals to compress audio data for
storage or transmission. Today, digital audio coding techniques are widely used in
consumer electronics such as portable audio players. This chapter introduces basic
concepts of audio coder and decoder (codec) based on moving pictures experts
group (MPEG) layer 3 (MP3) and implements a more recent, license-and-royalty-
free Ogg Vorbis decoder using the BF533/BF537 processors. In addition, two audio
effects and their implementations are presented and used for experiments.

9.1 OVERVIEW OF AUDIO COMPRESSION

The overall structure of audio codec is illustrated in Figure 9.1. An audio codec is
an algorithm or a device that compresses the original digital audio signal to a lower
bit rate and decompresses the coded data (bit stream) to produce a perceptually
similar version of the original audio signal. The goals of audio coding are to mini-
mize the bit rate required for representing the signal, to maximize the perceived
audio quality, and to reduce system cost in terms of memory and computational
requirements of codec. In general, bit rate, quality, and cost are confl icting issues,
and trade-offs must be resolved based on a given application.

The human ear can perceive frequencies of sound between 20 Hz and 20 kHz.
According to the sampling theorem defi ned in Equation 2.2.5, we have to sample a
sound (analog signal) at least twice the highest frequency component in the signal
to avoid aliasing. Therefore, the sampling frequency of 44.1 kHz is commonly used
in digital consumer products such as CD players; and 48 kHz is used in many pro-

381

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

382 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

fessional audio systems. In data converters, the signal amplitude is quantized into
a binary value represented by a fi nite number of bits. The noise introduced by this
quantization process is called quantization noise, which sets the maximum signal-
to-noise ratio (SNR) that can be achieved by representing analog signal with digital
values. This signal-to-quantization noise ratio (SQNR) stated in Equation 7.1.1 can
be approximated as

SQNR dB,= +()6 02 1 76. .N (9.1.1)

where N is the number of bits (wordlength) used to represent digital samples.
The bit rate of digital signals can be computed as

Bit rate bit s,s= × ×C N f (9.1.2)

where C is the number of channels and fs is the sampling rate. For example, music in
CDs is recorded at 44.1 kHz with 16 bits per sample, which requires a bit rate of 1,411.2
kilobits per seconds (kbit/s) for stereo (2 channels) audio. This bit rate poses a chal-
lenge on channel bandwidth or storage capacity for emerging digital audio applications
such as Internet delivery. The increasing demand for better-quality digital audio, such
as multichannel audio coding (5–7 channels) or higher sampling rate (96 kHz),
requires more sophisticated encoding and decoding techniques to minimize the trans-
mission cost and provide cost-effi cient storage. For example, the Ogg Vorbis coder is
typically used to encode audio at bit rates of 16–128 kbit/s per channel.

EXAMPLE 9.1

MPEG-1 has three operation modes for audio, layer 1, layer 2, and layer 3, with increasing
complexity and sound quality. MPEG-2 is the second phase of MPEG, which provides exten-
sion of MPEG-1 to support multichannel audio coding and lower sampling frequencies. MP3
is a popular digital audio encoding format standardized in 1991 for Internet audio delivery
and portable audio devices. A new standard called MPEG-2 AAC (advanced audio coding)
was developed in 1997 to improve coding effi ciency. More recent developments of audio
coding are based on AAC with enhanced quality.

MP3 supports variable bit rates and sampling frequencies for different sound fi les. Bit
rates available for MP3 are 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, and
320 kbit/s, and the available sampling frequencies are 32, 44.1, and 48 kHz. MP3 provides a
range of bit rates and supports the switching of bit rates between audio frames. MP3 at
320 kbit/s produces perceptually comparable quality with CD at 1,411.2 kbit/s. MP3 fi les
encoded with a lower bit rate will have a lower quality. A compression ratio of approximately
11 : 1 is most commonly used for MP3 to achieve a sampling rate of 44.1 kHz and a bit rate
of 128 kbit/s. Similar to MP3, the Ogg Vorbis coder is also a variable bit-rate codec, with
the bit rate varied from sample to sample.

Original
audio

Encoder
Storage or

transmission Decoder

Reconstructed
audio

Figure 9.1 An overall audio codec structure

TEAM LinG

9.1 Overview of Audio Compression 383

EXERCISE 9.1

1. Compute the number of bytes required to store an hour of music in the CD
format for stereo audio.

2. Redo Exercise 1 for MP3 music with the bit rates listed in Example 9.1.

3. Redo Exercise 1 for the most widely used multichannel audio coding with
the 5.1-channel confi guration.

In general, the effi cient speech coding techniques such as linear predictive
coding using a vocal track model are not applicable to audio signals. In addition,
we have to deal with stereo or multichannel signal presentations, higher sampling
rate, higher resolution, wider dynamic range, and higher listener expectation. There
are many different audio compressing standards, and most use the principles of
psychoacoustics [67]. That is, the hearing system adapts to dynamic variations in
the sounds, and these adaptations and masking effects form the basic principles of
psychoacoustics. The basic structure of the MP3 encoder illustrated in Figure 9.2
includes three important functions:

1. Filterbank splits the full-band signals into several subbands uniformly or
according to the critical band model of the human auditory system, and a
modifi ed discrete cosine transform (MDCT) converts time-domain signals
to frequency-domain coeffi cients. Note that MP3 uses a hybrid of fi lterbank
and MDCT, and MPEG-2 AAC and Ogg Vorbis use MDCT with a longer
length for splitting full-band signals.

2. The psychoacoustic model consists of critical bands, calculates the masking
threshold according to the human auditory masking effect from the spectral
coeffi cients, and uses the masking threshold to quantize the MDCT coeffi -
cients. Psychoacoustic analysis is done in the frequency domain with the
computational effi cient FFT introduced in Chapter 3.

3. Quantization allocates bits to indexes for quantizing the MDCT coeffi cients
at each subband based on the masking threshold provided by the
psychoacoustic model in the encoder and converts these indexes back to the
spectral coeffi cients in the decoder. The coded bit stream redundancy can
be further removed with entropy coding. For example, a fi xed Huffman
codebook is used in MP3. In contrast, the Ogg Vorbis coder does not defi ne
a set of precomputed codebooks. Instead, the quantized data are entropy

Filterbank &
transform

Digital
audio

Psychoacoustic
model

Quantization
Bitstream

Figure 9.2 Basic structure of audio encoder

TEAM LinG

384 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

coded with a codebook-based vector quantization algorithm, and codebooks
are transmitted as a part of the audio stream.

In addition, the output bit stream includes side information of bit allocation informa-
tion needed for the decoder, which is packed by a multiplexer.

The threshold of hearing is also called the absolute threshold in quiet, which
represents the lowest audible level of any sound at a given frequency. Sound lying
below the threshold curve cannot be perceived by our hearing, and thus can be
removed before quantization for reducing the bit rate. In addition, quantization noise
introduced by codec below this level will not be perceived by humans. This is the
fundamental principle of psychoacoustic compression, which permits more noise in
sounds close to strong masking sounds. Allowing additional noise in the sampling
process is equivalent to quantization with fewer bits, and this achieves data compres-
sion as shown in Equation 9.1.2.

The threshold of hearing can be approximated with the following equation
[67]:

T f f e ff
h ,() = () − + ()− − −() −3 64 1000 6 5 10 10000 8 0 6 1000 3 3 3 42

. (9.1.3)

where f is frequency in hertz.

EXAMPLE 9.2

This example demonstrates the threshold of hearing with example9_2.m. The plot of
human threshold in quiet is shown in Figure 9.3. It shows that human hearing is relatively
sensitive in the frequency range of 2 to 5 kHz, but we can tolerate more noise outside this
range. For example, this threshold increases rapidly at frequencies higher than 10 kHz and
changes slowly in the frequency range from 500 Hz to 2 kHz. Note that the threshold of
hearing changes with age and an older person has a higher threshold.

Every narrowband signal has a masking curve, and various spreading functions
can be used to estimate the masking capability of each tone. Typically, the masking
curves extend farther toward higher frequencies. The slope of the frequency-masking
curve depends on the sound pressure level (SPL) of the tone and the frequency at
which it is present [55]. A basic spreading function is a triangular function with a
steeper slope for lower frequencies and a negative, gradually falling slope for the
higher frequencies. For example, the Schroeder spreading function has been used
in [56], which can be expressed as:

10 15 81 7 5 0 474 17 5 1 0 47410
2 1 2

logF dz dz dz() = + +() − + +()() , (9.1.4)

where dz is the Bark scale difference between the maskee (neighboring frequencies)
and the masker (loud tone) frequency. The SPL of the tone is added to the spreading
function to obtain the masking curve [55]. The bark scale gives the conversion
between frequency in hertz and the critical bands of the human auditory system as
follows [56]:

TEAM LinG

9.1 Overview of Audio Compression 385

z f f f() = () + ()⎡⎣ ⎤⎦
− −13 0 00076 3 5 75001 1 2tan . . tan (9.1.5)

dz z f z f= () − ()maskee masker . (9.1.6)

EXAMPLE 9.3

With Equations 9.1.5 and 9.1.6, a simple MATLAB program, example9_3.m, can be
written to demonstrate frequency masking. As shown in Figure 9.4, the masker is a 1-kHz
tone. This tone generates a new masking curve, which makes frequency components that are
below this curve (two tones at 650 and 1,500 Hz) inaudible because their levels are below
the masking curve. The masking threshold can be used to eliminate redundant frequency
components and quantization noise to achieve higher coding effi ciency.

In addition to the steady-state frequency masking illustrated in Figure 9.4, the
temporal masking also occurs after the masker is not present. There are three tem-
poral regions: (1) premasking before the presentation of the masker, (2) simultaneous
masking at the start of the masker, and (3) postmasking after the stop of the masker.
The effective duration of premasking is relatively short at about 20 ms, whereas the
postmasking can last for about 100 to 200 ms. Simultaneous masking is dependent
on the relationship between frequencies and their relative volumes. For example, if a
stronger tonal component is played before a quiet sound, the quiet sound may not be
heard if it appears within the order of 50 to 200 ms. These three temporal masking
effects are considered in modern perceptual audio coding such as Ogg Vorbis.

–10

0

10

20

40

30

50

60

70
Auditory threshold of hearing

0.1 0.2 0.50.05 1 kHz 2

Frequency in log scale

S
ou

nd
 p

re
ss

ur
e

le
ve

l i
n

dB

5 10

Figure 9.3 A threshold of hearing curve in log scale

TEAM LinG

386 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

Several new audio coding techniques have been developed to improve MP3 by
using a better psychoacoustic model, temporal noise shaping, etc. These second-
generation techniques include MPEG-4 AAC [56], which is used by Apple’s iTunes
music store and iPod. MP3 and AAC depend on similar psychoacoustic models, and
key patents are held by many companies. Ogg Vorbis from the Xiph.org Foundation
is a free software and is patent free. This second-generation coding technique has
performance similar to MPEG-4 AAC and higher quality than MP3; however, the
computational cost of Ogg Vorbis is higher than MP3. Implementation issues are
discussed in [59] and [61]. In this chapter, we implement Ogg Vorbis decoder with
the BF537 processor.

9.2 MP3/OGG VORBIS AUDIO ENCODING

The basic idea of perceptual audio coding techniques is to split the time-domain
signal into its frequency components and to code its frequency component parame-
ters with the number of bits determined by the psychoacoustic model. Figure 9.5
illustrates the hybrid fi lterbank & transform block shown in Figure 9.2 for MP3
coding, which consists of cascade of polyphase fi lterbank and MDCT. First, the
audio signal is split into 32 subbands with a polyphase fi lterbank. Each subband is
critically sampled at a 1/32 sampling rate to minimize the bit rate, and 36 samples
are buffered into the block. To reduce block effects, the windowing technique intro-
duced in Section 3.3.4 plays an important role. Again, note that Ogg Vorbis only
uses large-size MDCT to function as a fi lterbank for splitting time-domain signals.
The MDCT uses the concept of time-domain aliasing cancellation, whereas the

–10

0

10

20

30

40

50

60

70

80

90

100
Auditory masking threshold

Threshold of hearing

Masker tone at 1 kHz

Masking curve

0.1 0.2 0.50.05 1 kHz 2
Frequency in log scale

S
P

L
in

 d
B

5 10

Figure 9.4 An example of frequency masking

TEAM LinG

quadrature mirror fi lterbank uses the concept of frequency-domain aliasing cancel-
lation. MDCT also cancels frequency-domain aliasing; thus MDCT achieves perfect
reconstruction.

The polyphase fi lterbank with N subbands and critically sampled at fs/N can be
designed with pseudo quadrature mirror fi lters [57], which exactly cancel the aliasing
from adjacent bands. The prototype low-pass fi lter with cutoff frequency at π/N and
impulse response h(n) of length L can be modulated to form N bandpass fi lters as [57]

h n h n
k n L

N
k k() = () + − −()

+⎡
⎣⎢

⎤
⎦⎥

cos
(/) (/)1

2 1 2 ϕ , (9.2.1)

for k = 0, 1, . . . , N − 1 and n = 0, 1, . . . , L − 1. The phase value ϕk is selected to
cancel aliasing between adjacent bands.

EXAMPLE 9.4

The MATLAB Filter Design Toolbox supports the design of the polyphase fi lterbank by
providing 11 functions to create multirate fi lter objects. For example, the following function

hm = mfilt.firdecim(N);

returns a direct-form FIR polyphase decimator object hm with a decimation factor of N. A
low-pass Nyquist fi lter of gain 1 and cutoff frequency of π/N is designed by default. The
magnitude response of the low-pass fi lter designed by example9_4.m with L = 512 and
N = 32 is shown in Figure 9.6.

As shown in Figure 9.5, the MP3 coder compensates for fi lterbank problems
by processing the subband signals with MDCT. Similar to the DFT defi ned in Equa-
tion 3.3.9, the discrete cosine transform (DCT) of signal x(n), n = 0, 1, . . . , N − 1,
can be expressed as

X k a k x n
n k

N
k N

n

N

() = () () +()⎡
⎣⎢

⎤
⎦⎥

= −
=

−

∑ cos . . .
π 2 1

2
0 1 1

0

1

, , , , , (9.2.2)

where X(k) is the kth MDCT coeffi cient, a k N() = 1 for k = 0, and a k N() = 2
for k = 1, 2, . . . N − 1. It is important to note that the DCT coeffi cient, X(k), is a
real number. MATLAB provides the following function for DCT:

Band 32

Digital
audio Bitstream

Band 1

Band 2
MDCT

MDCT

MDCT

Band 3 to band 31

knabretlif
esahpyloP

noitazitnau
Q

Figure 9.5 Block diagram of fi lterbank and transform in MP3

9.2 MP3/Ogg Vorbis Audio Encoding 387

TEAM LinG

388 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

y = dct(x);

MDCT is widely used for audio coding techniques. In addition to an energy
compaction capability similar to DCT, MDCT can simultaneously achieve critical
sampling and reduction of block effects. The MDCT of x(n), n = 0, 1, . . . , N − 1,
is expressed as

X k x n n
N

k
N

k N
n

N

() = () + +() +()⎡
⎣⎢

⎤
⎦⎥

=
=

−

∑ cos
2

4

1

2

2
0 1

0

1 π
, , , , 2-1 (9.2.3)

The inverse MDCT is defi ned as

x n
N

X k n
N

k
N

n N
k

N

() = () + +() +()⎡
⎣⎢

⎤
⎦⎥

= −
=

2 2

4

1

2

2
0 1 1

0

cos
π

, , , ,
2-11

∑ (9.2.4)

For real-valued signals, MDCT coeffi cients in Equation 9.2.3 can be calculated with
the FFT method. Similarly, IMDCT can be computed with FFT. Refer to Hands-On
Experiment 9.4 for the fast implementation of IMDCT.

A block of data is segmented with an appropriate window function. For imple-
mentation of time-domain aliasing cancellation, the window needs to satisfy the
following conditions to have perfect reconstruction: (1) The analysis and synthesis
windows must be equal, and the length N must be an even number. (2) The window
coeffi cients must be symmetric. There is a 50% overlap between two successive
windows for transform. MP3 uses a sine window expressed as [56]

w n
n

N
() = +()⎡

⎣⎢
⎤
⎦⎥

sin
.

.
π 0 5

2
(9.2.5)

–150

–50

0

–100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Frequency (xπ rad/sample)

Magnitude Response (dB)

M
ag

ni
tu

de
 (

dB
)

Figure 9.6 Magnitude response of prototype low-pass fi lter for 32-band fi lterbank

TEAM LinG

MP3 specifi es two different MDCT block lengths: a long block of 18 samples and
a short block of 6 samples. There is 50% overlap between successive windows, so
the window sizes are 36 and 12. The long block length allows better frequency reso-
lution for audio signals with stationary characteristics, and the short block length
provides better time resolution for transients.

AAC uses a Kaiser–Bessel derived window, and Ogg/Vorbis uses the following
Vorbis window [61]:

w n
n

N
() = +()()⎡

⎣⎢
⎤
⎦⎥

sin sin
.

.
π π
2

0 5

2
2 (9.2.6)

Ogg/Vorbis uses two window lengths between 64 and 8,192 and commonly uses
256 for the short window and 2,048 for the long window. Note that the windows
applied to MDCT are different from the windows introduced in Chapter 3 that are
used for other types of signal analysis. One of the reasons is that MDCT windows
are applied twice for both MDCT and the inverse MDCT.

EXAMPLE 9.5

Both the sine window given in Equation 9.2.5 and the Vorbis window for N = 32 are calcu-
lated in example9_5.m, which uses the GUI WVTool (window visualization tool) for
analyzing windows. These two windows and their magnitude responses are shown in Figure
9.7. The fi gure shows that the Vorbis window has better stopband attenuation.

EXERCISE 9.2

1. Evaluate the sine and Vorbis windows with different length L.

2. Use WINTool introduced in Chapter 3 to further analyze the sine and Vorbis
windows.

Figure 9.7 Sine and Vorbis windows

9.2 MP3/Ogg Vorbis Audio Encoding 389

TEAM LinG

390 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

Window function and length will affect the frequency response of the fi lterbank.
In general, a long window improves coding effi ciency for audio with complex spectra;
however, it may create problems for transient signals. The Ogg Vorbis encoder allows
smooth change of window length and the use of a transition window (long start, short
stop; or short start, long stop) to better adapt to input audio characteristics.

As shown in Figure 9.2, the psychoacoustic model analyzes the input audio
signal to determine the best quantization levels for encoding each frequency
band. The MDCT outputs are fed into the quantization block, which uses the psy-
choacoustic model to perform a bit allocation and quantization. To further compress
the bit rate, a lossless coding technique is used. Lossless audio coding uses entropy
code to further remove the redundancy of the coded data without any loss in
quality.

Huffman encoding is a lossless coding scheme that produces Huffman codes
from input symbols. Based on the statistic contents of the input sequence, the symbols
are mapped to Huffman codes. Symbols that occur more frequently are coded with
shorter codes, whereas symbols that occur less frequently are coded with longer
codes. On average, this will reduce the total number of bits if some combinations of
input sequences are more likely to appear than others. Huffman coding is extremely
fast because it utilizes a look-up table for mapping quantized coeffi cients to possible
Huffman codes. On average, an additional 20% of compression can be achieved.

9.3 MP3/OGG VORBIS AUDIO DECODING

Audio decoding is carefully defi ned in the standard. Actually, the Ogg/Vorbis stan-
dard only defi nes the decoding process. The basic structure of the MP3 decoder
illustrated in Figure 9.8 includes three important functions: (1) decoder, (2) inverse
quantization, and (3) synthesis fi lterbank. The synthesis fi lterbank can be obtained
from the analysis fi lterbank hk(n) defi ned in Equation 9.2.1 as follows:

g n h L nk k() = − −()1 . (9.3.1)

In the synthesis fi lterbank, the signal is upsampled by a factor N and fi ltered by the
set of fi lters, gk(n).

The encoded bit stream format for the compressed audio signal includes (1)
header containing the format of the frame; (2) optional cyclic redundancy checksum
(CRC) for error correcting; (3) side information containing information for decoding
and processing the main data; (4) main data consisting of coded spectral coeffi -
cients; and (5) ancillary data holding user-defi ned information such as song title.
The MP3 fi le has a standard format, which is a frame consisting of 384, 576, or
1,152 samples, and all the frames have associated header information (32 bits) and

Synthesis
filterbank

Decoding
Inverse

quantization

Bitstream
Audio
signal

Figure 9.8 Basic structure of MP3 decoder

TEAM LinG

side information (9, 17, or 32 bytes). The header and side information help the
decoder to decode the associated Huffman encoded data correctly.

The Ogg Vorbis bit stream consists of identifi cation, comment, setup, and audio
packets. The audio packet contains audio data, which can be decoded with the sim-
plifi ed diagram given in Figure 9.9. The decoding block consists of header decoding,
fl oor decoding, residue decoding, and channel decoupling. The fl oor is a smooth
curve to represent a spectral envelope, which is equivalent to the frequency response
of the linear predictive coding fi lter. The decoded residue values are added with the
decoded fl oor in the frequency-domain to complete the spectral reconstruction. The
resulting frequency-domain coeffi cients are transformed back to the time domain
with the inverse MDCT defi ned in Equation 9.2.4.

The Ogg Vorbis decoder is implemented with TMS320C55x in [61], which
shows that the inverse MDCT needs more than 50% of processing time, the most
time-consuming block of the decoder. Several implementations listed in [59] show
that the optimization of inverse MDCT can achieve an effi cient Ogg Vorbis decoder.
Effi cient implementations include using an optimized assembly routine for inverse
MDCT, exploiting the inverse MDCT with FFT, or implementing it with dedicated
hardware.

The inverse MDCT and windowing are performed to obtain time-domain audio
samples, where the window function is defi ned in Equation 9.2.6. The current
MDCT window is 50% overlapped with adjacent windows. As mentioned above,
Ogg Vorbis uses short and long windows with length (a power-of-two number) from
32 to 8,192.

9.4 IMPLEMENTATION OF OGG
VORBIS DECODER WITH BF537 EZ-KIT

This section implements the Ogg Vorbis decoder in real time with the Blackfi n
processor. This Ogg Vorbis decoder supports encoded fi les with different bit rates.
The Ogg Vorbis fi le is transferred from the computer to the Blackfi n memory. This
encoded bit stream is then decoded with the Ogg Vorbis decoding algorithm
explained in the previous sections and played back in real time with the EZ-KIT.

HANDS-ON EXPERIMENT 9.1

This experiment implements an Ogg Vorbis decoder on the BF537 EZ-KIT. Users who use
the BF533 EZ-KIT should refer to Application Project 1 at the end of this chapter for instruc-
tion. To run the Ogg Vorbis decoder with the BF537 EZ-KIT, turn all SW7 switches to ON,

WindowingDecoding
Inverse
MDCT

Audio
packet

Audio
signal

Figure 9.9 Simplifi ed Ogg Vorbis decoder

9.4 Implementation of Ogg Vorbis Decoder with BF537 EZ-KIT 391

TEAM LinG

392 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

and turn SW8 switches 1 and 2 to ON. Several Ogg Vorbis fi les (with .ogg extension)
have been created and stored in directory c:\adsp\chap9\chap9_1_537\Debug logg
files for experiment. In addition, users can convert a .wav fi le to an Ogg Vorbis fi le with
encoding software like OggdropXpd. This software may be downloaded from websites such
as http://www.rarewares.org/ogg.html.

The Ogg Vorbis decoder copies an Ogg Vorbis fi le from the host computer into the
Blackfi n memory and decodes and plays the audio output with the EZ-KIT. In directory
c:\adsp\chap9\chap9_1_537, there are two VisualDSP++ project fi les, Vorbis_
Player_BF537.dpj and libtremor537_lowmem.dpj. The fi rst fi le is the main
project fi le that sets up the audio driver and runs the Tremor library, and the second fi le
builds the Tremor library. The Tremor library code consists of the source code of the fi xed-
point Ogg Vorbis decoder, which is based on the open source code available on the website
http://xiph.org/. Only Vorbis_Player_BF537.dpj needs to be loaded in VisualDSP++,
because this project fi le is linked to the Tremor library. Build and run the project. When
prompted for the Ogg fi le to be loaded, type in liutm.ogg (or other Ogg Vorbis fi les). This
Ogg Vorbis fi le is encoded with a bit rate of 112 kbit/s. Do you hear any music coming out
from the headphones or loudspeakers? Reload the project and decode other Ogg Vorbis
fi les.

The default Ogg Vorbis decoder was built with optimization turned on. We can also
examine the difference when the optimizer is turned off. Load the project libtremor537_
lowmem.dpj into VisualDSP++ and rebuild with optimization turned off. Make sure that
the project fi le is Set as Active Project before building it. Next, build the project Vorbis_
Player_BF537.dpj and run the decoder again. In the decoder.c program, we have set
up a benchmark routine to measure the cycle counts (or MIPS) needed by the Ogg Vorbis
decoder to complete one second of decoding. The MIPS score is stored at the memory loca-
tion testsample.0, and this information can be viewed in the Blackfi n Memory window.
Load the Ogg Vorbis fi le liutm.ogg again and fi ll in the MIPS benchmark results with
and without optimization as shown in Table 9.1.

We can also examine the MIPS required to decode different Ogg Vorbis fi les encoded
at different bit rates. A set of Ogg Vorbis fi les shown in the fi rst column of Table 9.2 are

Table 9.1 MIPS Benchmark of Ogg Vorbis Decoder with
and without Optimization

 MIPS

Decoder (without optimization)

Decoder (with optimization)

Table 9.2 Bit Rate, MIPS, and Duration of the Decoded Ogg Vorbis Files

Filename Bit Rate (kbit/s) MIPS Duration (100,000 bytes)

liutm64.ogg 64
liutm128.ogg 128
liutm196.ogg 196
liutm256.ogg 256

TEAM LinG

encoded at different (average) bit rates of 64, 128, 192, and 256 kbit/s. Perform the MIPS
benchmark for these fi les and fi ll in the third column of Table 9.2. In addition, note that these
decoded music fi les vary in length. Why? Examine the main fi le decode.c again and note
that this program will transfer 100,000 bytes (determined by the constant NUM_BYTE_TO_
DECODE) of data from the fi le to the Blackfi n memory. Because these fi les are encoded at
different bit rates, the lengths of the decoded fi les are also different. Determine the duration
of the decoded music clips, and fi ll in the results in the last column of Table 9.2. Reload the
project for decoding a new Ogg Vorbis fi le. Verify the duration of the music playback. Users
can also increase the number of bytes to decode and verify the new duration of the decoded
music clip.

Examine the fi le size of the Ogg fi les shown in Table 9.2 and determine the compression
ratio of these fi les with reference to the original fi le that is sampled at 48 kHz with 16 bits
per sample. Also, perform a benchmark on the memory (data and instruction) used in the
Ogg Vorbis decoder when decoding the fi les listed in Table 9.2.

9.5 AUDIO EFFECTS

This section introduces three-dimensional (3D) audio and reverberation effects with
different combinations of FIR and IIR fi lters. We begin with an explanation of these
audio effects using block diagrams, move on to the MATLAB fl oating-point simula-
tions, and fi nally implement these audio effects in real time with the Blackfi n
processor.

9.5.1 3D Audio Effects

Unlike stereo sound, which only allows lateral listening, 3D sound enables sound to
be positioned around the listener’s head at different directions with only a pair of
loudspeakers or a headphone. This effect is achieved by using a set of FIR
fi lters, commonly called head-related impulse responses (HRIRs) in time domain or
head-related transfer functions (HRTFs) in frequency domain [58]. For example,
Figure 9.10 shows that a mono sound source can be perceived as coming from 30°
right with respect to the front of the listener by convolving (or fi ltering) the original
signal with the impulse responses of two HRIR fi lters (left and right) that correspond
to the 3D position of 30° right and 0° elevation. This simple fi ltering reconstructs the
acoustic pressures at the listener’s ears that would occur with a free-fi eld sound
source at the desired location. This system is commonly called the binaural
spatializer.

The HRIRs are usually measured with microphones inside the ears of a dummy
head and loudspeakers that are placed at different positions that emit white noise
[54]. A popular HRIR data set was measured by MIT Media Lab [58],which consists
of 710 different positions at elevations from −40° (i.e., 40° below the horizontal
plane) to +90° (directly overhead). At each elevation, 360° of azimuth was sampled

9.5 Audio Effects 393

TEAM LinG

394 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

in equal increments, and the defi nition of the angle of horizontal azimuth is shown
in Figure 9.10.

EXAMPLE 9.6

This example uses the MATLAB program example9_6.m to convolve a mono sound source
with a set of HRIR fi lters at an azimuth of 30° and 0° elevation. Plot the HRIR and note the
differences between the two HRIRs at an azimuth of 30° as shown in Figure 9.11. Note that
the right HRIR (bottom diagram) has a higher amplitude and responds earlier compared with
the left HRIR (top diagram). The HRIR at the azimuth of 30° is transformed to frequency
domain to obtain the HRTF plots as shown in Figure 9.12. Note that the right HRTF (solid
line) has a higher magnitude (>10 dB) than the left HRTF (dashed line), and the peaks and
notches of the HRTFs occur at different frequencies. These different spectral envelopes
contain important cues to convey the spatial information of the sound source. Listen to the
original and fi ltered signals with a headphone. Continue the experiment with different
azimuths of 0°, 60°, 90°, 120°, 150°, and 180°.

EXAMPLE 9.7

The previous example shows a single-source binaural spatializer. This system can be extended
to a multiple source spatializer that can localize different sound sources in 3D space. The
system simply convolves each source signal with a pair of HRIRs that corresponds to the
direction of the source. All the processed (left and right) signals are summed together to
form the left and right input of the fi nal binaural signals. For example, a two-source binau-
ral spatializer is shown in Figure 9.13. The gain settings at the output of the HRIR fi lters
provide further control of the perceived sound image. A MATLAB fi le, example9_7.m, is
written to perform this two-source binaural spatializer.

Left HRIR
at 30o

Right HRIR
at 30o

Mono sound source

Perceive mono sound
source coming from 30o

right and elevation of 0o.

0o

30o

60o

90o

120o

150o

180o
210o

240o

270o

300o

330o

Horizontal azimuth

Figure 9.10 3D audio fi ltering for a mono sound source

TEAM LinG

Figure 9.11 Two HRIRs at azimuth of 30°

–10

0

10

–20

–30

–40

–50
0 0.5 1 1.5

Frequency in Hz

HRTFs at 30 degree - (dash): left HRTF and (solid): right HRTF

M
ag

ni
tu

de
 in

 d
B

× 104

2 2.5

Figure 9.12 Two HRTFs at azimuth of 30°

9.5 Audio Effects 395

TEAM LinG

396 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

EXERCISE 9.3

1. In the previous two-source binaural spatializer, place the source x1 at 210°
instead of 30°. How do we derive the HRIR for azimuth at 210° if only the
HRIRs for the right hemisphere (0° to 180°) are measured?

2. Modify the two-source binaural spatializer to include distance information.
Assuming that sources x1 and x2 are located at one and two meters away
from the listener, respectively. Note that the signal strength of the sound
source is halved for every doubling of distance from the listener.

9.5.2 Implementation of 3D Audio
Effects with BF533/BF537 EZ-KIT

The Blackfi n EZ-KIT allows users to select and play back signals with different 3D
effects in real time. The audio signal can be continuously sampled at the audio input
channels of the Blackfi n processor, and 3D audio processing is carried out. The 3D
audio effects can be changed on the fl y by pressing different switches on the EZ-
KIT. This real-time processing platform supports a useful functionality test for
interactive applications.

HANDS-ON EXPERIMENT 9.2

This experiment implements a real-time binaural spatializer with the BF533 (or BF537) EZ-
KIT. A stereo or mono sound source is connected to the audio input channels of the EZ-KIT,
and the output of the EZ-KIT is connected to a headphone. The project fi les are located in
directory c:\adsp\chap9\exp9_2_533 for the BF533 EZ-KIT (or c:\adsp\chap9\
exp9_2_537 for the BF537). Load the project fi le and build and run the project. The default

Left HRIR
at 30o

Left HRIR
at 150o

Right HRIR
at 150o

Right HRIR
at 30o

x1

x2

+
gl2

+

gr1

gr2

gl1

Figure 9.13 Two-source binaural spatializer

TEAM LinG

starting mode of the spatializer is the “Static” mode, where sound can be moved from one
position to another with every press of a button as described in the second row of Table 9.3.
The signal source is considered as a mono sound source.

The second mode is the “Mixed” mode. To switch to this mode, press the switch SW4
for the BF533 EZ-KIT (or SW10 for the BF537). The “Mixed” mode implements the two-
source binaural spatializer as shown in Figure 9.13. A stereo wave fi le, mixed_48k_
stereo.wav, is available in directory c:\adsp\audio_files\ to test the 3D audio effects
in this mode. This binaural spatializer places two sound sources in symmetric locations, and
these sound sources can be perceived as moving clockwise or counterclockwise in tandem.
Press the switches indicated in Table 9.3 to perceive the movement of the two sound
sources.

The third mode is the “Pass-through” mode, which passes the left and right input chan-
nels to the output channels without processing. This mode is used to compare the differences
between the 3D audio effects and the “Pass-through” without processing. The fi nal “Dynamic”
mode in this project moves a single sound source around the head. The sound position is
automatically changed by 30° clockwise in every second. A cross-fading method is used in
this mode to avoid any sudden discontinuation that creates clicking distortion when moving
from one position to another. If the switch SW4 (for the BF533) or SW10 (for the BF537) is
pressed again, it will rotate back to the “Static” mode.

Table 9.3 Defi nition of LEDs and Switches for Different Operating Modes

Modes BF533 EZ-KIT BF537 EZ-KIT

Static (default LED4 off LED1 off
 when start) LED5–8 light up to indicate the LED2–5 light up to indicate the
 12 azimuth angles 12 azimuth angles
 SW5: Every press increases the SW11: Every press increases the
 angle by 30° clockwise angle by 30° clockwise
 SW6: Every press increases the SW12: Every press increases the
 angle by 30° counterclockwise angle by 30° counterclockwise

Mixed SW4 to switch to this mode SW10 to switch to this mode
 LED4 blinks LED1 blinks
 LED5–8 light up to indicate the LED2–5 light up to indicate the
 12 azimuth angles 12 azimuth angles
 SW5: Every press increases the SW11: Every press increases the
 angle by 30° clockwise angle by 30° clockwise
 SW6: Every press increases the SW12: Every press increases the
 angle by 30° counterclockwise angle by 30° counterclockwise

Pass-through SW4 to switch to this mode SW10 to switch to this mode

Dynamic SW4 to switch to this mode SW10 to switch to this mode
 LED4 off LED1 blinks
 LED5–8 rotate to indicate dynamic LED2–5 rotate to indicate
 movement of sound source dynamic movement of sound
 source

9.5 Audio Effects 397

TEAM LinG

398 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

9.5.3 Generating Reverberation Effects

Room reverberation [64] can be simulated with a set of IIR fi lters. The reverberation
algorithm simulates the sound refl ections in an enclosed environment such as rooms,
concert halls, etc. These audio effects enhance the listening experience of audio
playback in an environment with little or poor reverberation. For example, when
listening music with headphones, there is no reverberation from the surroundings
that is being added to the music. We can artifi cially add these reverberation effects
to the music and make it sound richer.

Reverberation consists of three components: direct sound, early refl ections, and
late refl ections (or reverberation). Direct sound takes a direct (shortest) path from
the sound source to the receiver (or listener). Early refl ections, which arrive within
10 to 100 msec after the direct sound, are caused by sound waves refl ected once
before reaching the listener. The late refl ection is produced after 100 msec and forms
the reverberation. The reverberation time t60 is defi ned as the time needed for the
impulse response to decay by 60 dB. Reverberation time is often used to characterize
the reverberation of an enclosed space. A large room such as a concert hall has a
long reverberation time between 1.5 and 2 s, whereas a small meeting room has a
reverberation of few hundredths of a millisecond.

A digital reverberation algorithm was proposed by Schroeder [64] to model the
reverberation effects in a room. As shown in Figure 9.14, this algorithm simulates
room reverberation with four comb fi lters C1(z), C2(z), C3(z), and C4(z) connected
in parallel, followed by two cascaded allpass fi lters A1(z) and A1(z).

The transfer function of the comb fi lter is expressed as

z-D1

a1

∑

C1(z)
b1

C2(z) with D2
and a2

b2

C3(z) with D3
and a3

b3

C4(z) with D4
and a4

b4

z-D5

a5

-a5

A5(z)

A6(z)
with a6

and D6

y(n)x(n)

Comb filters

Allpass filters

+

+ +

Figure 9.14 Block diagram of a digital reverberation algorithm

TEAM LinG

C z
a z

ii
i

Di
() =

−
=−

1

1
1 2 3 4, , , , , (9.5.1)

which is the IIR fi lter with Di poles equally spaced (2π/Di) on the unit circle. The
coeffi cient ai determines the decay rate of the impulse response for each comb fi lter.
The comb fi lter increases the echo density and gives the impression of the acoustics
environment and room size. However, it also causes distinct coloration of the incoming
signal. Allpass fi lters prevent such coloration and emulate more natural sound charac-
teristics in a real room. The transfer function of the allpass fi lter is expressed as

A z
a z

a z
ii

i
Di

i
Di

() =
− +

−
=

−

−1
5 6, , . (9.5.2)

By cascading the allpass fi lters with comb fi lters, the impulse response of the overall
system becomes more diffuse.

EXAMPLE 9.8

The digital reverberation algorithm shown in Figure 9.14 can be simulated with MATLAB.
Open the MATLAB fi le example9_8.m, which specifi es the time delays of 40, 44, 48, and
52 msec for the four comb fi lters. The allpass fi lter has a delay of 7 msec. The reverberation
algorithm is running at 48 kHz. Determine the length of the comb and allpass fi lters. Set all
feedback coeffi cients, ai, i = 1, . . . , 4, of the comb fi lters as 0.75. Run the simulation with
the input wave fi le liutm_48k_mono.wav, which is located in directory c:\adsp\
audio_files, and play back the processed signal output.wav in directory c:\adsp\
chap9\MATLAB_ex9. Do you perceive any reverberation effect? Use different time delays
and coeffi cients to create different effects.

EXERCISE 9.4

1. Examine the impulse and magnitude responses of the comb fi lters and
allpass fi lters separately. Compare the differences of using a longer delay
and a larger coeffi cient.

2. Use an impulse signal as input to the reverberation algorithm shown in
Figure 9.14 and save the impulse response. Examine the impulse and mag-
nitude responses of the cascade structure. Compute the reverberation time,
t60, based on the parameters given in Example 9.8.

9.5.4 Implementation of Reverberation
with BF533/BF537 EZ-KIT

This section implements the reverberation algorithm in real time with the Blackfi n
EZ-KIT. The performance of the previous fl oating-point MATLAB implementation
must be reevaluated with the fi xed-point (1.15) format before porting to the Blackfi n
processors. Refer to the fi xed-point design and implementation of the IIR fi lters in
Chapter 6 for details.

9.5 Audio Effects 399

TEAM LinG

400 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

HANDS-ON EXPERIMENT 9.3

This experiment implements the reverberation algorithm [47] with the Blackfi n processor.
The project fi le is located in directory c:\adsp\chap9\exp9_3_533 for the BF533 (or
c:\adsp\chap9\exp9_3_537 for the BF5337). In addition to the generation of rever-
beration shown in Figure 9.14, this project also implements the early refl ection portion and
direct path of the impulse response as shown in Figure 9.15. This reverberation structure,
proposed by Moorer [62], produces a more realistic reverberation sound than that proposed
by Schroeder (Fig. 9.14). Build and run the project. Connect stereo music to the audio input
port of the EZ-KIT. Press SW5 (for the BF533 EZ-KIT) or SW11 (for the BF537) to listen
to the reverberation version of the music and then press SW4 (for BF533) or SW10 (for
BF537) to switch back to the pass-through mode. Three gains (g1, g2, and g3) can be indi-
vidually controlled to emphasize the signifi cance of the early refl ection generator, rever-
beration, and direct path signals. We can also turn off the contribution of different paths by
setting the corresponding gains to zero.

9.6 IMPLEMENTATION OF MDCT WITH LABVIEW
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

MDCT divides the audio signal into overlapping frequency bands and later
recombines them using inverse MDCT (IMDCT) to reproduce the signal with
minimal distortion. In this experiment, we focus on IMDCT, which is used in
the Ogg Vorbis decoder. First, we analyze two methods of implementing the
IMDCT in LabVIEW: (1) direct implementation of IMDCT and (2) faster imple-
mentation using FFT. Next, the algorithms are benchmarked for both LabVIEW for
Windows and the Blackfi n EZ-KIT. Benchmarking is done by isolating IMDCT and
placing it in a simple structure that can be reused to study the performance of any
function within LabVIEW or the LabVIEW Embedded Module for Blackfi n
Processors.

Reverberation
generator

(in Figure 9.14)

Early reflection
generator

+

g1

g2

g3

y(n)x(n)

Direct path

Figure 9.15 Moorer’s digital reverberation structure

TEAM LinG

HANDS-ON EXPERIMENT 9.4

IMDCT is an overlapping algorithm that generates an output data set that is twice the size
of the input signal. The resulting signal is then overlapped and combined with the last 50%
of the previous packet and the fi rst 50% of the next packet to reconstruct the signal.

Launch LabVIEW and open the fi le Test_IMDCT_by_Eqn.llb located in directory
c:\adsp\chap9\exp9_4 to begin exploring IMDCT. Test_MDCT_Eqn.vi, inside the
.llb library, allows users to test and verify that the implementation of the IMDCT is correct.
The input signal is a sine wave as shown in Figure 9.16. This test signal is unique in that the
past, present, and next data packets are identical.

This input signal is passed through a Window function to remove the beginning and
ending discontinuities and then transformed with the MDCT defi ned in Equation 9.2.3. Next,
the IMDCT defi ned in Equation 9.2.4 is used to transform the DCT coeffi cients back to the
time domain. The windowing function is applied again to combine the past, present, and
next signal packets to complete the reconstruction of the original input signal.

Run the VI and verify that the input and output signals are identical. Open IMDCT
subVI shown in Figure 9.17 and analyze the graphical code used to implement the
algorithm.

As shown in Figure 9.17, the outer For Loop iterates 2N times, where N is the size of
the input signal, to generate each point of the output signal. Formula Node inside the inner
For Loop calculates and accumulates all of the values according to the IMDCT. Note that
the output of the algorithm has twice the number of points as the input signal.

FFT can be used to improve the speed of execution for computing IMDCT. Ideally,
when packets are created with a length that is a power of two, the radix-2 FFT algorithm

Figure 9.16 Direct implementation of MDCT and IMDCT, MDCT by Eqn.vi

Figure 9.17 Direct implementation of IMDCT, IMDCT.vi

9.6 Implementation of MDCT with LabVIEW Embedded Module 401

TEAM LinG

402 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

can be used. The calculation of IMDCT with inverse FFT is derived in the following three
equations. The detailed explanation can be found in [56]. Some additional processing is
necessary, as shown in the LabVIEW implementation in Figure 9.18.

′ () = ()X k X k e
j

N
kn

2
0

π

, (9.6.1)

x n X k() = ′ ()[]IFFT , (9.6.2)

 y n x n e
j

N
n n

() = ()
+()2

0
π

, (9.6.3)

where n
N

0
4

1

2
= +⎛

⎝
⎞
⎠ , N represents the number of samples to be recovered, k is the

frequency index, and n is the time index.
Modify Test_MDCT_Eqn.vi by replacing both MDCT.vi and IMDCT.vi with MDCT_

FFT.vi and IMDCT_FFT.vi, respectively. To do this, right-lick on MDCT.vi, select Replace
Æ Select A VI. . . , and navigate to MDCT_FFT.vi in directory c:\adsp\chap9\exp9_4\
Test_IMDCT_by_FFT.llb. Do the same for IMDCT_FFT.vi. Run the exercise again to
verify that this FFT implementation of IMDCT generates the same results as the direct
implementation of IMDCT.

HANDS-ON EXPERIMENT 9.5

In this experiment, we benchmark the performance of the IMDCT with a common architec-
ture that can be used to benchmark any function or algorithm in LabVIEW or the LabVIEW
Embedded Module for Blackfi n Processors. DSP algorithms typically execute very fast, with
submillisecond execution times. For this reason, we derive the average execution time by
running the algorithm several times while measuring the total execution time. When operat-
ing on the embedded target, the fi nal execution time is output to the standard output port
with One Button Dialog VI.

Open IMDCT_Benchmark.vi located in Bench_IMDCT.llb in directory c:\adsp\
chap9\exp9_5. This VI provides a common benchmarking architecture for testing
any application. Figure 9.19 shows that within the benchmarking VI, the data set Xk
simulates a 128-point packet of input data. The IMDCT has been placed in For Loop so
that it can execute several iterations in order to calculate an average execution time per
iteration.

Figure 9.18 FFT implementation of IMDCT, IMDCT_FFT.vi

TEAM LinG

Use Table 9.4 to record the execution results. Fill up the benchmark table by
running the VI shown in Figure 9.19 targeted to Windows. Record the resulting execution
time in the top left cell of Table 9.4. Then right-click on IMDCT.vi and replace it with
IMDCT_FFT.vi. Run the VI again and record the result.

After you have completed testing in Windows, change the execution target to the Black-
fi n EZ-KIT. Open the project IMDCT_Benchmark_Default_BF5xx.lep located in
directory c:\adsp\chap9\exp9_5. Execute the VI on the embedded target. The resulting
time should be sent back to the computer through the standard output port and can be seen
on the Output tab of the Processor Status window. Once you have tested IMDCT.vi, again
replace it with IMDCT_FFT.vi.

Finally, close the current project and open the new project IMDCT_Benchmark_
Optimized_BF5xx.lep located in directory c:\adsp\chap9\exp9_5. Execute the VI
on the embedded target and record the execution results. Again replace IMDCT.vi with
IMDCT_FFT.vi to test the execution time of both IMDCT computation methods. Examine
the confi gured Blackfi n Build Options from the Embedded Project Manager to see which
optimizations were enabled.

Once the table is complete, study the results. Which compiling optimizations effectively
reduce the execution time? What methods could be used to further increase the execution
speed of IMDCT? Explain. Also, consider data types and the analysis library used.

Figure 9.19 A benchmarking structure, IMDCT_Benchmark.vi

Table 9.4 Execution Time for Different Platforms

 Execution Time in Milliseconds

 Windows Blackfi n Default Blackfi n Optimized

IMDCT.vi

IMDCT_FFT.vi

9.6 Implementation of MDCT with LabVIEW Embedded Module 403

TEAM LinG

404 Chapter 9 Practical DSP Applications: Audio Coding and Audio Effects

9.7 MORE APPLICATION PROJECTS

1. The BF533 EZ-KIT can be used to perform the same Ogg Vorbis decoder defi ned in
Hands-On Experiment 9.1. However, it takes a longer time to load an Ogg Vorbis fi le
into the BF533 EZ-KIT. Load and build the project fi le Vorbis_Player_BF533.dpj
located in directory c:\adsp\chap9\project9_1. Perform the same operations
including benchmark measurements described in Hands-On Experiment 9.1.

2. In Hands-On Experiment 9.1, benchmarking is carried out on the entire decoding
process. It is useful to profi le the computational load for different modules in the decod-
ing process and identify the hot spot of the program. Activate the statistical profi ler and
examine the percentage of time spent in different modules. Which portion of the module
accounts for the majority of the cycle count?

3. For using loudspeakers to play back 3D sound, we need an additional processing block
called the cross talk canceller that cancels cross talk from the loudspeakers to the ears.
Refer to reference [54] for details on the cross talk canceller. Extend Hands-On Exper-
iment 9.2 to include the loudspeaker playback mode. Comment on the perception dif-
ferences between 3D audio listening with a headphone and loudspeakers.

4. Extend the MATLAB simulation of the reverberation algorithm given in Example 9.8,
using longer delays of 52, 56, 60, and 80 msec for the comb fi lters and delays of 10 msec
for the allpass fi lters. Determine the lengths of the delay buffer for implementing these
delays when sampling rate is 44.1 kHz.

5. The reverberation algorithm implemented in Hands-On Experiment 9.3 can be further
fi ne-tuned by programming a room selection option. Different sets of reverberation
parameters can be tabulated in the program for users to select the reverberation effects
that correspond to different room sizes and reverberation times. Modify the project in
Hands-On Experiment 9.3, which allows users to perform this selection on the fl y with
a switch on the EZ-KIT.

6. The reverberation algorithm can be integrated into the binaural spatializer to further
enhance the realism of spatial reproduction. A simplifi ed approach is to sum all the input
sources and use this combined signal as input to the reverberation algorithm described
in Example 9.8. The reverberation output can then be added to the output of the left and
right channels of the binaural spatializer. Implement this new structure by combining
and modifying the codes given in Hands-On Experiments 9.2 and 9.3.

7. Integrate the 3D audio and reverberation effects into the Ogg Vorbis decoder with the
BF537 EZ-KIT. Program the switch on the EZ-KIT to select different combinations of
audio effects.

8. The ability to select different audio enhancement modes is a common feature found in
most portable audio players. For example, the graphic equalizer introduced in Chapter
5 can be used to enhance the audio content in a portable audio player. Integrate the FIR
fi lter-based eight-band graphic equalizer into the Ogg Vorbis decoder project in Hands-
On Experiment 9.1.

9. In general, the bass perception from low-end loudspeakers and headphones is poor. This
is due to the poor frequency response of transducers at frequency below 200 Hz. A
simple way to overcome this is to boost up the low-frequency bands with a graphic
equalizer. However, this approach suffers from overdriving the loudspeakers and wasting
of energy. A better approach is called the virtual bass system [60], which creates the
low-frequency harmonics of the musical source and mixes these harmonics into the

TEAM LinG

original music. These harmonics will give the same pitch perception as the low-
frequency content, which can be reproduced accurately in most low-end loudspeakers
with moderate midfrequency response. For example, if the musical signal consists of a
prominent low-frequency component at 50 Hz, the virtual bass system generates fre-
quency harmonics at 100, 150, and 200 Hz. The interfrequency difference of these
harmonics will create a 100-Hz pitch that is perceived by the human ear based on psy-
choacoustic effects.

A simple virtual bass system can be developed as shown in Figure 9.20. It consists
of two low-pass and high-pass fi lters of cutoff frequency 150 Hz. The sampling
frequency is 48 kHz. The low-pass fi lter output is passed to a harmonic generator,
which creates the harmonics with a simple nonlinear function such as a power function,
y(n) = x2(n) + x3(n). These harmonics are then mixed with the high-frequency compo-
nents to form the enhanced bass system. Implement the virtual bass system the BF533/
BF537 EZ-KIT and evaluate its effects.

10. A set of audio fi les located in directory c:\adsp\audio_files\noisy_audio\ have
been severely distorted. Based on the techniques learned in preceding chapters, devise
a suitable technique to clean up these audio fi les. In some cases, advanced techniques
that are not described in this book must be explored. Users can refer to the textbooks
listed in the References or search the website for solutions. Implement the developed
algorithms on the BF533/BF537 EZ-KIT and test its real-time performance. Obtain the
signal-to-noise ratio measurements of the audio signal before and after enhancement and
comment on its performance.

Lowpass
filter

Harmonic
generator

Highpass
filter

+
x(n) y(n)

Figure 9.20 A simple virtual bass system

9.7 More Application Projects 405

TEAM LinG

Chapter 10

Practical DSP Applications:
Digital Image Processing

Image processing is an important application of two-dimensional (2D) signal pro-
cessing. Because of the developments of fast, low-cost, and power-effi cient embed-
ded signal processors for real-time processing, digital image processing is widely
used in portable consumer electronics such as digital cameras and picture phones.
This chapter introduces basic concepts of digital image processing and some simple
applications.

10.1 OVERVIEW OF IMAGE REPRESENTATION

A digital image (or picture) is visual information received, represented, processed,
stored, or transmitted by digital systems. With advancements in microelectronics,
digital image processing is widely used for applications such as enhancement, com-
pression, and recognition. Digital image processing has many characteristics in
common with one-dimensional (1D) signal processing introduced in previous
chapters.

As discussed in Chapter 2, 1D digital signals are denoted by x(n), which rep-
resents the value (amplitude) of signal x at discrete time n. Digital images are 2D
signals that consist of picture elements called pixels. Each pixel can be represented
as x(m,n), where m is the row (height) index from 0 to M − 1 (top to bottom), n is
the column (width) index from 0 to N − 1 (left to right), and x(m,n) is the value of
2D space function x at the pixel location (m,n). Therefore, each digital image can
be represented by M × N pixels. Similar to the 1D sampling theorem stated in
Chapter 2, the 2D sampling theorem indicates that a sequence of pixels x(m,n) can
represent the analog picture if the sampling is suffi ciently dense.

The digital image pixel coordinates are illustrated in Figure 10.1. For pixel
coordinate (m,n), the fi rst component m (row) increases downward, while the second

406

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

component n (column) increases to the right. For example, the data for the pixel in
the second row, third column is stored in the matrix element (1,2). Note that the
pixel coordinates used by MATLAB are integer values and range between 1 and M
or N. Therefore, the pixel in the second row, third column has coordinate (2,3) in
MATLAB.

Pixel values can be represented by integer or fi xed-point number. For a black-
and-white (B&W, or grayscale intensity) image, each pixel is represented by one
number that indicates the grayscale level of that pixel. The number of levels used
to represent a B&W image depends on the number of bits. For example, 8 bits (B =
8) are commonly used for 256 (2B) grayscale levels to display the intensity of B&W
images from 0 to 255, where “0” represents a black pixel and “255” corresponds to
a white pixel. Similar to the quantization noise of digitizing 1D analog signals,
encoding continuous grayscale with fi nite number of bits also results in quantization
errors. The resolution of digital images depends on the total number of pixels (M ×
N) and grayscale levels 2B.

The sensation of color is determined by the light frequency spectrum, from red
to violet. Each pixel of color image can be represented by three components: red
(R), green (G), and blue (B) and thus is called RGB data. Proper mixing of these
three basic colors can generate all other colors. Similar to B&W images, each color
can be represented with 8 bits, thus forming the commonly used 24-bit RGB data
(8 bits for R, 8 bits for G, and 8 bits for B). Color images are widely used in cameras,
televisions, and computer displays. For example, the traditional North American
television standard is 480 × 720 pixels. Most digital images are in the size of 764
× 1,024 pixels or larger for computers and high-defi nition televisions and 480 × 720
or smaller for real-time transmission via networks.

EXAMPLE 10.1

In most speech processing for telecommunications, speech is sampled at 8 kHz with 16-bit
resolution. Therefore, we have 8,000 signal samples to process in a second, and we need
16,000 bytes to store 1 second of digital speech. In video processing, we have 30 frames
(images) per second. Assuming that each B&W image has 764 × 1,024 pixels, we have more
than 23 million samples to process and store in a second. These requirements increase
dramatically for color images. Therefore, image or video processing requires higher com-
plexity in terms of computational power and memory requirements.

Column index, n

,x
ed

ni
s

wo
R

m

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

Figure 10.1 An example of 3 × 4 digital image pixel coordinates

10.1 Overview of Image Representation 407

TEAM LinG

408 Chapter 10 Practical DSP Applications: Digital Image Processing

MATLAB stores and represents B&W images as matrices, in which each
element of the matrix corresponds to a single pixel in the image. For example, an
image composed of M rows and N columns of different dots would be stored in
MATLAB as an M × N matrix. Color images require a three-dimensional array as
an M × N × 3 matrix, where the fi rst plane in the three-dimensional array represents
red, the second plane represents green, and the third plane represents blue. MATLAB
fi le formats store true-color images as 24-bit RGB images, where the red, green,
and blue components are 8 bits each. The three color components for each pixel are
stored along the third dimension of the data array. For example, the red, green, and
blue color components of the pixel (10,5) are stored in RGB(10,5,1), RGB(10,5,2),
and RGB(10,5,3), respectively.

MATLAB provides the function imread to read an image. This function can
read most image formats such as bmp (windows bitmap), gif (graphics interchange
format), jpg (Joint Photographic Experts Group, JPEG), tif (tagged image fi le
format, TIFF), etc. Most image fi le formats use 8 bits to store pixel values. When
these are read into memory, MATLAB stores them as class uint8. For fi le formats
that support 16-bit data, MATLAB stores the images as class uint16.

The Image Processing Toolbox [51] provides two image display functions,
imshow and imtool. The function imshow is the fundamental image display func-
tion, and the function imtool starts the Image Tool, which is an integrated environ-
ment for displaying images and performing some common image processing tasks.

EXAMPLE 10.2

The following MATLAB command

I = imread(filename,fmt);

reads a grayscale or color image from the fi le specifi ed by the string filename, and the
string fmt specifi es the format of the fi le. In example10_2.m, we read a JPEG
fi le, Disney.jpg, and display it with imtool as shown in Figure 10.2. The imtool
function integrates the image display tool with the pixel region tool, the image information
tool, and the adjust contrast tool. It can help explore large images, such as scroll bars, the
overview tool, pan tool, and zoom buttons. For example, the image tool displays Pixel
infor: (639,441)[143 111 90] at the bottom left corner, where (639,441) indicates
pixel location pointed at by the arrow (cursor), and [143 111 90] indicates the correspond-
ing R, G, B values. We can move the cursor to different locations for examining its pixel
values. We can also enter the whos command to see memory storage of image I as
follows:

>> whos
 Name Size Bytes Class
 I 480x640x3 921600 uint8 array
Grand total is 921600 elements using 921600 bytes

Intensity and true-color images can be uint8 (unsigned 8-bit integers), uint16
(unsigned 16-bit integers), int16 (16-bit signed integers), single (single precision), or
double (double precision). MATLAB supports conversion between the various image
types.

TEAM LinG

10.2 Image Processing with BF533/BF537 EZ-KIT 409

10.2 IMAGE PROCESSING WITH
BF533/BF537 EZ-KIT

VisualDSP++ IDE supports image fi les in different formats such as bmp, gif, jpg,
and tif to be loaded into the Blackfi n memory for processing. In the subsequent
experiments, we import an image and process this image with the Blackfi n processor.

HANDS-ON EXPERIMENT 10.1

This experiment loads an image from the computer to the Blackfi n memory with the Visu-
alDSP++ IDE. The BF533 (or BF537) EZ-KIT is used as a platform for loading images.
Click on View Æ Debug Windows Æ Image Viewer . . .; an Image Confi guration window
is opened as shown in Figure 10.3. Set Source location to File and type in the fi le name (for
example, c:\adsp\image_files\Disney.jpg) for the image to be loaded into the Black-
fi n memory. We set Start address to 0x0 with Memory stride of 1. This starting address
is the SDRAM memory of the Blackfi n processor. Click on OK to display the image in the
Image Viewer window. It takes a few minutes for transferring the image from the computer
to the Blackfi n via the USB port and displaying in the Image Viewer window.

Note that the image information is displayed in the Image Confi guration window. The
memory locations needed to store an image are determined by the size of the image (width ×
height). In addition, an RGB image takes three times the memory of a B&W image. Load dif-
ferent (B&W or color) images to the Blackfi n processor’s memory at different start addresses
and display them. Some sample images can be found in directory c:\adsp\image_files\.

Figure 10.2 An example of digital color image displayed by MATLAB

TEAM LinG

410 Chapter 10 Practical DSP Applications: Digital Image Processing

10.3 COLOR CONVERSION

Color is determined by the spectral distribution of the energy of illumination source
and the visual sensation of the human viewer. A color space represents colors with
digital pixels. A B&W image uses one number for each pixel, whereas a color image
needs multiple numbers per pixel. There are several different color spaces to repre-
sent color images. The Image Processing Toolbox represents colors as RGB values.
Because the image processing functions assume all color data as RGB, we can
process an image that uses a different color space by fi rst converting it to RGB data,
processing it, and then converting the processed image back to the original color
space.

The National Television System Committee (NTSC) color space is used in
televisions in the USA. In the NTSC format, color images consist of three compo-
nents: luminance (Y), hue (I), and saturation (Q); thus the NTSC format is also
called the YIQ format. The fi rst component, luminance, represents grayscale infor-
mation, and the last two components make up chrominance (color information). The
conversions between the RGB and YIQ color spaces are defi ned as [72]

Y
I
Q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − −
−

0 299 0 587 0 114
0 596 0 274 0 322
0 211 0 523 0 3

. . .

. . .

. . . 112

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R
G
B

. (10.3.1)

and

Figure 10.3 Image Confi guration window for loading image into Blackfi n memory

TEAM LinG

R
G
B

Y
I

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − −
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 0 956 0 621
1 0 273 0 647
1 1 104 1 701

. .
. .
. . QQ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. (10.3.2)

The Image Processing Toolbox provides functions for conversion between color
spaces. The function rgb2ntsc converts RGB images to the NTSC color space,
and the function ntsc2rgb performs the reverse operation. In addition, the func-
tion rgb2gray extracts the grayscale information from a color image.

EXAMPLE 10.3

In MATLAB code example10_3.m, we fi rst convert the color image shown in Figure 10.2
to a B&W image with the function rgb2gray. We then convert the color image from the
RGB data to the NTSC format. Because luminance is one of the components of the NTSC
format, we can isolate the grayscale level information in an image. The obtained B&W image
is shown in Figure 10.4. Finally, we store the B&W image back to disk fi le Disney_BW.
jpg using the function imwrite.

Human vision is more sensitive to brightness than color changes; thus humans
perceive a similar image even if the color varies slightly. This fact leads to the YCbCr
color space, which is widely used for digital video and computer images such as JPEG
and MPEG standards. In this format, luminance information is stored as a single
component Y, and chrominance information is stored as two color-difference com-
ponents Cb and Cr. The value Cb represents the difference between the blue compo-
nent and a reference value, and Cr represents the difference between the red component
and a reference value. The relation between the RGB color space and the YCbCr color
space can be expressed as

Y
Cb
Cr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − −
− −

0 257 0 504 0 098
0 148 0 291 0 439

0 439 0 368

. . .
. . .

. . 00 071

16
128
128.

.
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R
G
B

(10.3.3)

Figure 10.4 The B&W image obtained from the color image shown in Figure 10.2

10.3 Color Conversion 411

TEAM LinG

412 Chapter 10 Practical DSP Applications: Digital Image Processing

For uint8 images, the data range for Y is [16, 235], and the range for Cb and Cr
is [16, 240]. The MATLAB function rgb2ycbcr converts RGB images to the
YCbCr color space, and the function ycbcr2rgb performs the reverse operation.

10.4 COLOR CONVERSION
WITH BF533/BF537 EZ-KIT

We can perform color conversion with the BF533/BF537 EZ-KIT. In the following
experiments, we examine the C code that performs various color conversions.

HANDS-ON EXPERIMENT 10.2

In this experiment, we load a color image (e.g., Disney.jpg) into the Blackfi n memory at
the start address of 0x0 as shown in Hands-On Experiment 10.1. Three project fi les with
the same name, colorconversion.dpj, are located in separate directories c:\adsp\
chap10\exp10_2\rgb2xxxx (where xxxx represents ntsc, cbcr, and gray), and they
are used to perform different color conversion experiments (e.g., RGB image to NTSC, RGB
image to YCbCr, and RGB image to gray) on the BF533 (or BF537) EZ-KIT. The color
conversions are based on Equations 10.3.1 and 10.3.3. Assembly programs are written to
perform the color conversion, and the gray level is extracted by the C routine.

Build and run each project. From the C main function, note the location and size of the
original color image and the gray image in the Blackfi n memory and display them with the
VisualDSP++ image viewer as shown in Figure 10.5. Compare the color conversion results
with those obtained with MATLAB.

Figure 10.5 Image Viewer windows for both color and gray images

TEAM LinG

10.5 TWO-DIMENSIONAL DISCRETE
COSINE TRANSFORM

The discrete cosine transform (DCT) consists of a set of basis vectors that are cosine
functions. The DCT may also be computed with a fast algorithm such as FFT.
Comparing the DCT with the DFT introduced in Chapter 3, the DCT has advantage
that the transform is real valued. It is widely used in audio compression algorithms,
as introduced in Chapter 9. In this section, we expand it to 2D DCT, which represents
an image as a sum of sinusoids of varying magnitudes and frequencies. 2D DCT
and 2D inverse DCT (IDCT) [70] are widely used in many image and video com-
pression techniques such as JPEG and MPEG standards.

The 2D DCT of a rectangular M × N image is defi ned as

X i k C i C k x m n
m i

M

n k

N
, ,() = () () () +()⎡

⎣⎢
⎤
⎦⎥

+()⎡
⎣⎢

⎤
⎦

cos cos
2 1

2

2 1

2

π π
⎥⎥

=

−

=

−

∑∑ ,
n

N

m

M

0

1

0

1
(10.5.1)

for row i = 0, 1, . . . M − 1 and column k = 0, 1, . . . N − 1, and X(i,k) is the corre-
sponding DCT coeffi cient for the pixel value X(m,n). In Equation 10.5.1, the nor-
malization factors are defi ned as

C i
M i

M
() = =⎧

⎨
⎩
1 0

2

,

, otherwise
(10.5.2a)

C k
N k

N
() = =⎧

⎨
⎩
1 0

2

,

, otherwise
(10.5.2b)

The 2D DCT can be applied to the rows and then the columns or started from
columns to rows. For a typical image, most of the signifi cant information is concen-
trated in a few lower (smaller i and k) DCT coeffi cients. The 2D IDCT is defi ned
as

x m n C i C k X i k
m i

M

n k

N
, ,() = () () () +()⎡

⎣⎢
⎤
⎦⎥

+()⎡
⎣⎢

⎤
⎦

cos cos
2 1

2

2 1

2

π π
⎥⎥

=

−

=

−

∑∑ .
k

N

i

M

0

1

0

1
(10.5.3)

Most image compression algorithms use a square image with M = N = 8. For
example, JPEG image coding standard partitions the original image into 8 × 8 subim-
ages and processes these small blocks one by one. In addition, the original pixel values
of B&W images are subtracted by 128 to shift the grayscale levels from the original
range [0 to 255] to a symmetric range [−128 to 127] before performing DCT.

The dct2 function in the Image Processing Toolbox computes the 2D DCT of
an image. Again, note that matrix indices in MATLAB always start at 1 rather than
0; therefore, the MATLAB matrix elements X(1,1) correspond to the mathematical
quantity X(0,0).

10.5 Two-Dimensional Discrete Cosine Transform 413

TEAM LinG

414 Chapter 10 Practical DSP Applications: Digital Image Processing

EXAMPLE 10.4

The MATLAB command

X = dct2(x);

computes the 2D DCT of image matrix x to obtain the same size DCT coeffi cient matrix X.
In addition, the command x = idct2(X) performs the 2D IDCT of coeffi cient matrix X to
obtain the image matrix x. In example10_4a.m, we read the B&W image Disney_BW.jpg
created in Example 10.3 and perform 2D DCT of the image and IDCT of the DCT coeffi cients.
When executing the program, we are surprised to fi nd that we obtain a blank image. Why?

In JPEG compression, the original pixel values of B&W images are subtracted by 128
to shift the grayscale levels from the original [0 to 255] to [−128 to 127] before performing
DCT. The modifi ed program is given in example10_4b.m. Run the program, and the
recovered image is shown in Figure 10.6, which is different than the original B&W image
shown in Figure 10.4. Why?

In the imtool window, move the cursor around to examine pixel values at different
locations. We fi nd that the image shown in Figure 10.6 only consists of a few different values,
and this is caused by fi nite-precision effects. Therefore, we convert the image from 8-bit
integer to 32-bit fl oating-point format with the function im2single, perform DCT and
IDCT with fl oating-point arithmetic, and convert the recovered image back to integer format
with the function im2uint8. We run the program example10_4c.m. with fl oating-point
conversion, and we obtain a recovered image that is almost the same as the original one
shown in Figure 10.4.

EXAMPLE 10.5

As mentioned above, in many image compression standards the image is divided into 8 × 8
blocks and the 2D DCT is computed for each block. The resulting 64 DCT coeffi cients are
split into one DC (0,0) and 63 AC coeffi cients and then quantized, coded, and transmitted

Figure 10.6 A recovered B&W image after DCT and IDCT operations

TEAM LinG

or stored. The receiver decodes the quantized DCT coeffi cients, computes the 2D IDCT of
each block, and then reconstructs a single image. For typical images, many of the DCT
coeffi cients with large indexes (i,k) have values close to zero and thus can be discarded
without seriously affecting the quality of the reconstructed image.

The code example10_5.m (adapted from Help menu) computes the 2D DCT of 8 ×
8 blocks in the input image, saves only 10 DCT coeffi cients with small indexes (i,k) in each
block, and then reconstructs the image with the 2D IDCT of each block. In the code, we use
T = dctmtx(8) to obtain an 8 × 8 DCT transform matrix. If A is a square matrix, the 2D
DCT of A can be computed as T*A*T′. This computation is faster than using the dct2
function if we are computing a large number of small subimages. In the code, we also use
the function blkproc to implement distinct block processing for image. We use a mask to
keep only 10 DCT coeffi cients with the smallest indexes and clear other coeffi cients to zero
so they do not need to be transmitted or stored. This is the basic principle of image compres-
sion with DCT. The reconstructed image is displayed in Figure 10.7, which shows some loss
of quality compared with the original B&W image given in Figure 10.4; however, we only
code 10 DCT coeffi cients instead of 64. Note that we can use MATLAB function subimage
to display multiple images in a single fi gure. In this case, we can compare the original image
with the reconstructed image side by side.

The 1D N-point DFT defi ned in Chapter 4 can be extended to 2D (M,N)-point
DFT as follows:

X i k x m e en
j

M
im j

N
kn

n

N

m

M

, ,,() = ()
− −

=

−

=

−

∑∑
2 2

0

1

0

1 π π

(10.5.4)

where X(i,k) is a complex-valued number. Similarly, the 2D inverse DFT can be
expressed as

x m
MN

X i k e en
j

M
im j

N
kn

k

N

i

M

, ,() = ()
=

−

=

−

∑∑1
2 2

0

1

0

1 π π

. (10.5.5)

Figure 10.7 The reconstructed image using 2D DCT and block processing

10.5 Two-Dimensional Discrete Cosine Transform 415

TEAM LinG

416 Chapter 10 Practical DSP Applications: Digital Image Processing

MATLAB provides the functions fft2 and ifft2 to support the 2D DFT and the inverse
2D DFT, respectively.

10.6 TWO-DIMENSIONAL DCT/IDCT
WITH BF533/BF537 EZ-KIT

We have used an example to illustrate how to transform an image using 2D DCT,
retain only 10 DCT coeffi cients, and use IDCT to reconstruct the image. In this
section, we use a luminance quantization table recommended by the JPEG standard
[71] to remove insignifi cant coeffi cients based on the percentage of retained
coeffi cients.

A luminance quantization table for retaining approximately 50% of the DCT
coeffi cients is provided in Table 10.1. The quantized DCT coeffi cients can be derived
by dividing the DCT coeffi cients with the respective values in the quantized table,
and the results are truncated to the integer values.

A different quantization table can be derived from Table 10.1 by fi nding a scaling
factor that is proportional to the percentage of the retained DCT coeffi cients. This
scaling factor is then multiplied with the quantized values of Table 10.1 to retain a
different percentage of DCT coeffi cients. Depending on the percentage of DCT coef-
fi cients retained, the number of zeros in the quantized DCT coeffi cients will vary.

For example, to retain 1% to 50% of the DCT coeffi cients, the scaling factor is
computed as

Scaling factor =
50

. (10.6.1)

To retain 51% to 99% of the DCT coeffi cients, the scaling factor is computed as

Scaling factor =

50
. (10.6.2)

In a simple image compression scheme, we only transmit or store the nonzero DCT
coeffi cients. We will show how to transform, quantize, and inverse transform an
image with the Blackfi n processor.

Table 10.1 Luminance Quantization Table

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

From [71].

Percentage of DCT coeffi cients retained

100 − Percentage of DCT coeffi cients retained

TEAM LinG

HANDS-ON EXPERIMENT 10.3

This experiment implements the 2D DCT and the IDCT with the BF533/BF537 EZ-KIT. In
addition, we introduce a quantization process between the DCT and IDCT operations to
compress the image to different levels. The quantization table used in this experiment is
derived from the JPEG compression standard as shown in Table 10.1. Load a B&W image,
disney2.bmp, into the Blackfi n memory at address 0x0. Load the project fi le in directory
c:\adsp\chap10\exp10_3_BF533\exp10_3_BF533.dpj for the BF533 EZ-KIT (or
c:\adsp\chap10\exp10_3_BF537\exp10_3_BF537.dpj for the BF537) into Visu-
alDSP++. Note the size of the image by clicking on Confi gure . . . in the Image Viewer and
edit the picture height and width in dct.h. Build and run the project.

The settings for the switches on the BF533/BF537 EZ-KITs are shown in Table 10.2 for
selecting different compression ratios of the image. Press the switch of the EZ-KIT to select
the level of compression for the original image. One of the six LEDs will light up to indicate
the completion of the compress routine. Halt the program in order to view the reconstructed
image. The reconstructed image is located at address 0x80000. Use the Image Viewer in
VisualDSP++ to observe the reconstructed image. Instead of loading the image repeatedly

in the image viewer, simply click on the refresh icon in the Image Viewer window to
update the image, because all the reconstructed images are located at the same address.
Observe and comment on the quality of the reconstructed image.

This experiment can be extended to the compression of a color image by performing
the same compression of the chrominance components with the chrominance quantization
table listed in [71].

10.7 TWO-DIMENSIONAL FILTERING

The theory of 1D systems presented in previous chapters can be extended to 2D
systems. For example, digital convolution (or FIR fi ltering) introduced in Chapters
2 and 3 for 1D signal (such as speech) can be expanded to 2D convolution of images
with 2D impulse response (or convolution kernel) of fi lter. 2D fi ltering can reduce
noise and emphasize desired features of given images. In this section, we focus on
2D FIR fi lters.

Table 10.2 Switch Settings for Controlling Compression of B&W Image

Percentage of DCT BF533 EZ-KIT BF537 EZ-KIT
Coeffi cients Retained

100% SW4 SW10
 80% SW5 SW11
 50% SW6 SW12
 30% SW7 SW13

10.7 Two-Dimensional Filtering 417

TEAM LinG

418 Chapter 10 Practical DSP Applications: Digital Image Processing

10.7.1 2D Filtering

Similar to the 1D FIR fi lter, a 2D FIR fi lter has a fi nite length of impulse responses
that are also called fi lter coeffi cients. The impulse response of a 2D L1 × L2 FIR
fi lter can be represented by the following matrix:

h

h h h
h h

h h

l l

L

L L L

1 2

0 0 0 1 0 1

1 0 11

1 0 1 1

2

1 1 1

,

, ,

,

,

=

⎡

⎣

⎢
⎢
⎢

⎤−

− − −

,

,

,

�
�

� �
� ⎦⎦

⎥
⎥
⎥
. (10.7.1)

For example, the moving-average fi lter introduced in Equation 2.3.2 with impulse
response {1/L, 1/L, . . ., 1/L} can be extended to the 2D moving-average (mean)
fi lter. A 5 × 5 mean fi lter can be expressed as

hl l1 2
1

25

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

, =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. (10.7.2)

MATLAB provides the function freqz2 to compute 2D frequency response.
The following command

[H,Fx,Fy] = freqz2(h,Nx,Ny);

returns H, the frequency response of 2D fi lter h, and the frequency vectors Fx
(of length Nx) and Fy (of length Ny). Fx and Fy are normalized frequencies in
the range −1.0 to 1.0, where 1.0 corresponds to π radians. When used with
no output arguments, freqz2 produces a mesh plot of the 2D frequency
response.

Similar to the 1D FIR fi ltering defi ned in Equation 2.3.4, the I/O equation of
an L1 × L2 FIR fi lter can be expressed as

y m n h x m l n ll l
l

L

l

L

, ,,() = − −()
=

−

=

−

∑∑ 1 2
2 0

1

1 0

1

1 2
21

. (10.7.3)

The concept of linear convolution of 2D fi lter coeffi cients with the image x(m,n) is
similar to a 1D fi lter shown in Example 2.5. In 2D fi ltering, the image x(m,n) is
rotated by 180° about its center element, and this is equivalent to fl ipping the image
over the vertical axis and then fl ipping it again over the horizontal axis to obtain
x(−m,−n). The fi lter coeffi cient matrix hl1,l2 is shifted over the rotated image, multi-
plying the fi lter coeffi cients with the overlapped image pixels and summing the
products to obtain the fi ltered output at each point. A problem will occur close to
the edges of the image where the fi lter coeffi cients overlap with areas outside the
image. The simplest solution is to compute the fi lter output only when the fi lter
coeffi cients completely overlay with image pixels. However, this results in a smaller

TEAM LinG

size of the output image. The Image Processing Toolbox provides functions
imfilter for performing 2D fi ltering and conv2 for 2D convolution.

EXAMPLE 10.6

This example fi lters the B&W image shown in Figure 10.4 by the 5 × 5 moving-average fi lter
defi ned in Equation 10.7.2. This 2D fi ltering example is given in example10_6.m. The 5
× 5 mean fi lter can be constructed in MATLAB with the following command:

h = ones(5,5)/25;

The frequency response of the 2D fi lter is computed with the function freqz2, which is
illustrated in Figure 10.8. This fi gure clearly shows that the 5 × 5 moving-average fi lter is a
low-pass fi lter, which will attenuate high-frequency components.

The 2D fi ltering of input image x with fi lter h can be implemented as follows:

y = imfilter(x,h);

and the fi ltered image y is displayed in Figure 10.9. In most images, high-frequency compo-
nents are concentrated at the edges (or transition regions) of the image. Therefore, low-pass
fi ltering of images will blur the image by smearing its edges so the boundary will no longer
be as sharp as the original one.

In video processing, frame-to-frame averaging produces a similar effect as
low-pass fi ltering in time if the image is stationary. This temporal averaging tech-
nique effectively reduces noise without smearing the image.

0
1

1

0
0

Fx
Fy

0.5
0.5

–0.5 –0.5
–1 –1

0.2

0.4

0.6

M
ag

ni
tu

de

0.8

1

Figure 10.8 Magnitude response of 5 × 5 moving-average fi lter

10.7 Two-Dimensional Filtering 419

TEAM LinG

420 Chapter 10 Practical DSP Applications: Digital Image Processing

10.7.2 2D Filter Design

This section briefl y introduces the design of 2D digital fi lters [70], with focus on
designing FIR fi lters. Similar to 1D FIR fi lter design, the design of FIR fi lters with
the windowing method involves multiplying the ideal impulse response with a
window function to generate a corresponding fi lter, which tapers the ideal impulse
response with fi nite length. The windowing method produces a fi lter whose fre-
quency response approximates a desired frequency response. The Image Processing
Toolbox provides two functions, fwind1 and fwind2, for window-based fi lter
design. The function fwind1 designs a 2D fi lter with two 1D windows, and the
function fwind2 designs a 2D fi lter by a specifi ed 2D window directly. The fol-
lowing example uses fwind1 to create a 2D fi lter from the desired frequency
response Hd:

Hd = zeros(11,11); Hd(4:8,4:8) = 1;

The hamming function from the Signal Processing Toolbox is used to create a 1D
window. The fwind1 function then extends it to a 2D window as follows:

h = fwind1(Hd,hamming(11));

A more effective technique uses fi lter design methods introduced in Chapter 4
for designing a 1D FIR fi lter and then transforms it to a 2D FIR fi lter with the fre-
quency transformation method, which preserves the characteristics of the 1D fi lter
such as the transition width and ripples. The MATLAB Image Processing Toolbox
provides a function ftrans2 for designing a 2D FIR fi lter with frequency trans-
formation. For example, the following command

h = ftrans2(b);

Figure 10.9 Image fi ltered by an 5 × 5 moving-average (low-pass) fi lter

TEAM LinG

uses the McClellan transformation. The 1D fi lter b must be an odd-length (type I)
fi lter such as it can be designed by fir1, fir2, or remez in the Signal Processing
Toolbox.

EXAMPLE 10.7

In this example, we design a 2D high-pass fi lter. First, we use the remez function to design
a 1D fi lter as follows:

b = remez(10,[0 0.4 0.6 1],[0 0 1 1]);

This high-pass fi lter is transformed to a 2D fi lter, and its magnitude response is shown in
Figure 10.10. The MATLAB code is given in example10_7.m.

As shown in Equation 10.7.2, the sum of the fi lter coeffi cients usually equals 1
in order to keep the same image intensity. If the sum is larger than 1, the resulting
image will be brighter; otherwise, it will be darker. Because 2D fi ltering requires
intensive computation, most commonly used 2D fi lters are 3 × 3 kernels summarized
as follows [73]:

1. Moving-average fi lter: hl l1 2
1

9

1 1 1
1 1 1
1 1 1

, =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2. Sobel fi lter: hl l1 2

1 2 1
0 0 0
1 2 1

, =
− − −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 and hl l1 2

1 0 1
2 0 2
1 0 1

, =
−
−
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

0.5

1

1

0
0

Fx
Fy

0.5
0.5

–0.5 –0.5
–1 –1

M
ag

ni
tu

de

1.5

1

Figure 10.10 Magnitude response of the 2D high-pass fi lter

10.7 Two-Dimensional Filtering 421

TEAM LinG

422 Chapter 10 Practical DSP Applications: Digital Image Processing

3. Laplacian fi lter: hl l1 2

0 1 0

1 4 1

0 1 0
, =

−
− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Note that the Laplacian fi lter is a high-pass fi lter. When this fi lter moves over an image, the
output of the fi lter is a small value (darker) when the fi lter overlaps with a region of similar
grayscale levels. At the edges of the image, the output is large (brighter).

10.8 TWO-DIMENSIONAL FILTERING
WITH BF533/BF537 EZ-KIT

This section performs 2D fi ltering with the BF533/BF537 EZ-KIT. In particular, we
examine the effect of smoothing (low-pass fi ltering) and sharpening (high-pass fi lter-
ing). Smoothing fi lters are commonly used for noise reduction in images. For example,
the output of a mean fi lter is simply the average of the pixels in the neighborhood of
the fi lter mask. If the fi lter mask is 5 × 5, the output is the average over the 25 pixels.
Therefore, the smoothing fi lter results in an image that is less sharp. In contrast, sharp-
ening an image requires a high-pass fi lter. This sharpening fi lter is used to highlight
the fi ne detail (edges) in an image or enhance detail that has been blurred. The sharp-
ening fi lter kernel has a high magnitude in its center pixel compared to its neighboring
pixels. For example, the Laplacian fi lter is a high-pass sharpening fi lter.

HANDS-ON EXPERIMENT 10.4

This experiment fi rst performs the low-pass fi ltering of a B&W image. Load the image
disney2.bmp into the Blackfi n memory at starting address 0x0. Specify the correct proces-
sor type and load the project fi le in directory c:\adsp\chap10\exp10_4\exp10_4.dpj
into VisualDSP++. Perform 5 × 5 low-pass fi ltering on the image and observe the processed
image at starting address 0x130000. From the main C fi le, it is noted that the image is
declared as unsigned char (8-bit data type); however, the 2D convolution routine is
implemented with the (1.15) data format. Alternately, we can scale the 8-bit data to fi t the
16-bit data range of the (1.15) format by multiplying the grayscale data with 0x80. The
processed image can be scaled back to [0 to 255] by dividing with 0x80 and checking for
overfl ow or underfl ow. Change the fi lter mask to a 5 × 5 high-pass fi lter and perform image
fi ltering. Comment on the differences between low-pass and high-pass fi ltered images.

10.9 IMAGE ENHANCEMENT

Digital images are usually distorted by additive noises, linear and nonlinear distor-
tions. In this section, we introduce several image enhancement techniques to improve
the perception of the given image for human viewers. We will show that different
methods are required for different noises and distortions.

TEAM LinG

10.9.1 Gaussian White Noise and Linear Filtering

An image may be corrupted by noise generated by sensing, transmission, or storage
process. For example, noise generating from an electronic sensor usually appears
as random, uncorrelated, additive errors, which causes extreme pixel-to-pixel
changes rather than the small changes normally occurring in a natural picture. A
2D random sequence is called a random fi eld, and an identically distributed Gauss-
ian noise fi eld is called white noise when its mean is zero. The following MATLAB
function

J = imnoise(I,type, . . .);

adds noise of a given type to the image I, where type is a string that can have one
of these values:

‘gaussian’—Gaussian white noise with constant mean and
 variance
‘localvar’—Zero-mean Gaussian white noise with an
 intensity-dependent variance
‘poisson’—Poisson noise
‘salt & pepper’—“On and off” impulselike noise
‘speckle’—Multiplicative noise

EXAMPLE 10.8

Suppose the B&W image shown in Figure 10.4 is corrupted by Gaussian white noise. In
example10_8.m, we use the following command for adding Gaussian white noise of mean
m and variance v to the original image:

J = imnoise(I,’gaussian’,m,v);

An image corrupted by the Gaussian white noise with zero mean and variance 0.02 is shown
in Figure 10.11.

As discussed in Example 10.5, most images have energy concentrated in the
low-frequency range, whereas white noise is uniformly distributed over all frequen-
cies. At low frequencies, the energy of white noise is less than the image, whereas
the energy of noise is larger than the energy of the image at high frequencies.
Therefore, we may use a low-pass fi lter for enhancing an image that is corrupted by
Gaussian white noise.

EXAMPLE 10.9

In example10_9.m, the noisy image shown in Figure 10.11 is enhanced by the 5 × 5
moving-average fi lter defi ned in Equation 10.7.2. The fi ltered output image is shown in Figure
10.12. The fi gure clearly shows that the low-pass fi lter can reduce white noise at high
frequencies; however, it also degrades the image because the high-frequency components
presented at the edges are also smeared.

10.9 Image Enhancement 423

TEAM LinG

424 Chapter 10 Practical DSP Applications: Digital Image Processing

The Wiener fi lter is the optimal fi lter for attenuating noise if the spectra of the
image and noise can be estimated from the noisy image. Assume the noisy image
is expressed as

s m n x m n v m n, , , ,() = () + () (10.9.1)

where x(m,n) is the noise-free image and v(m,n) is the random noise fi eld. We further
assume that noise v(m,n) is zero-mean with variance σ2

v; the frequency response of
general 2D Wiener fi lter can be defi ned as

Figure 10.11 An image corrupted by Gaussian white noise

Figure 10.12 Enhanced image with a low-pass mean fi lter

TEAM LinG

H
S

S
i k

xx i k

xx i k v

ω ω
ω ω

ω ω σ
,

,

,
,() =

()
() + 2

(10.9.2)

where Sxx(ωi,ωk) is the power spectrum density of the desired image x(m,n). With
the knowledge of Sxx(ωi,ωk) and noise, we can design the optimum fi lter as described
in Equation 10.9.2 for reducing white noise.

EXAMPLE 10.10

The MATLAB function wiener2 designs and performs Wiener fi ltering of a noisy image
by partitioning the image into several small windows, estimating power spectrum density
and noise variance at each window, designing an adaptive Wiener fi lter based on statistics
estimated from the corresponding local neighborhood, and fi ltering the noisy image as the
fi lter slides across the image. When the local image variance is large, it performs little
smoothing; otherwise, it performs more smoothing. The MATLAB code example10_10.m
implements the Wiener fi lter to enhance the noisy image shown in Figure 10.11, and the
fi ltered image is shown in Figure 10.13. Compare it with the mean fi lter output in Figure
10.12. It clearly shows that the Wiener fi lter performs better than the moving-average for
removing Gaussian white noise by preserving edges and other high-frequency components
of an image.

10.9.2 Impulse Noise and Median Filtering

In Example 2.8, we show that a nonlinear median fi lter is effective for impulse-like
noises. In this section, we use a 2D median fi lter for removing impulse noises called
“salt & pepper” in images.

Figure 10.13 Enhanced image with Wiener fi lters adaptive to local statistics

10.9 Image Enhancement 425

TEAM LinG

426 Chapter 10 Practical DSP Applications: Digital Image Processing

EXAMPLE 10.11

In example10_11.m, we use the following command to add salt & pepper noise into the
B&W image I:

J = imnoise(I,’salt & pepper’,d);

where d is the noise density. The salt & pepper noise consists of random pixels with extreme
values close to white (salt, 255) or black (pepper, 0) for an 8-bit image, which is a good
mimic of impulse noise. An image corrupted by the salt & pepper noise with density d =
0.05 is shown in Figure 10.14.

In the program, we fi rst use the following command to design a 3 × 3 mean fi lter:

h = ones(3,3)/9;

We then use this linear smoothing fi lter for enhancing the corrupted image shown in Figure
10.14. The fi ltered output image is displayed in Figure 10.15, which shows that the “salt” and
“pepper” dots reduce their intensity by spreading out to become larger dots.

We introduced 1D median fi lters in Chapter 2 for effectively reducing impulse
noise and compared their performance with a moving-average fi lter. An N-point 1D
median fi lter ranks the samples in the buffer based on their values and outputs the
middle of the sequence in the buffer. Similarly, instead of smoothing a noisy image
by averaging the pixels in its neighborhood with a 2D moving-average fi lter, each
output pixel of the 2D median fi lter is the median of the values in the neighborhood
pixels after all numbers have been ranked.

Figure 10.14 An image corrupted by salt & pepper noise with density 0.05

TEAM LinG

EXAMPLE 10.12

In example10_12.m, we use a 3 × 3 median fi lter to remove the salt & pepper noise as
shown in Figure 10.14. MATLAB provides the function medfilt2 for implementing a 2D
median fi lter as follows:

Y = medfilt2(J_SP,[3 3]);

where J_SP is the image corrupted by the salt & pepper noise. The output image is shown
in Figure 10.16. Compare it with the linear fi lter output given in Figure 10.15. We show that
the 2D median fi lter has the ability to preserve edges and to remove impulse noises.

Figure 10.15 Reducing salt & pepper noise with a linear fi lter

Figure 10.16 Performance of median fi lter for reducing salt & pepper noise

10.9 Image Enhancement 427

TEAM LinG

428 Chapter 10 Practical DSP Applications: Digital Image Processing

HANDS-ON EXPERIMENT 10.5

This experiment performs low-pass and median fi ltering with the Blackfi n processor to
remove the salt & pepper noise shown in Figure 10.14. An image fi le (e.g., disney2.bmp)
is fi rst loaded into the Blackfi n memory, and the image is corrupted with salt & pepper noise.
Set the target processor in the Project Options and load the project fi le exp10_5.dpj in
directory c:\adsp\chap10\exp10_5 into VisualDSP++. Build and run the project.
Display the corrupted image at starting address 0x130000. Next, display the images after
low-pass fi ltering and median fi ltering at starting addresses 0xA30000 and 0xB30000,
respectively. These three displays are shown in Figure 10.17. Compare these to the results
obtained with the MATLAB program.

10.9.3 Contrast Adjustment

Adjustment of image intensity is very useful to enhance visual information from
images that are too bright (overexposed) or too dark (underexposed). We may
change the grayscale values and thus alter the contrast of the image with a linear or
nonlinear transformation. Useful information for contrast adjustment is the histo-
gram, which represents the distribution of pixel values. We can compute the histo-
gram of a given image and modify the grayscale values of the image. Basically, the
histogram counts the occurrence of gray levels in an image and plots it against the
gray level bin. MATLAB provides the function imhist for displaying the histo-
gram of an image. The following command

imhist(I);

(a) (b) (c)

Figure 10.17 Corrupted image (a) with salt & pepper noise, (b) after low-pass fi ltering, and
(c) after median fi ltering

TEAM LinG

displays a histogram for the image I whose number of bins are specifi ed by the image
type. If I is an 8-bit grayscale image, imhist uses 256 bins as a default value.

EXAMPLE 10.13

As shown in Figure 10.18, the original image of a dining room is underexposed; in particu-
lar, the tablecloth is too dark to reveal any detail. We use the MATLAB script example10_
13.m to display this B&W image and compute its histogram as shown in Figure 10.19. This
histogram shows that most pixel values are distributed in the range of 20 to 100, which
indicates that the image is too dark, as shown in Figure 10.18.

Histogram equalization enhances the contrast of images by equally distributing the
grayscale values so that the histogram of the output image approximately matches a specifi ed
histogram. Histogram processing is commonly used in image enhancement and image seg-
mentation. The Image Processing Toolbox provides the function histeq to enhance contrast
with histogram equalization.

Contrast adjustment can be done by mapping the original image to a new con-
trast range. The MATLAB function

J = imadjust(I,[low_in; high_in],[low_out; high_out]);

maps the pixel values in image I between low_in and high_in to new values
in J between low_out and high_out. Values below low_in and above high_
in are clipped, which eliminates extreme values. The principle of this intensity
adjustment is illustrated in Figure 10.20. As shown in the fi gure, pixel values
between [low_in; high_in] are mapped to [low_out; high_out]. If the slope
is less than unity, the image contrast in this range is compressed; if the slope is
greater than unity, the image contrast in this range is enhanced.

Figure 10.18 An underexposed dining room picture

10.9 Image Enhancement 429

TEAM LinG

430 Chapter 10 Practical DSP Applications: Digital Image Processing

EXAMPLE 10.14

As shown in Figure 10.19, the bin index 100 corresponds to the high_in value of 0.4. To
make the image brighter, we stretch it to the high_out value of 1. MATLAB code
example10_14.m adjusts the intensity of image with the following command:

K = imadjust(J,[0 0.4],[0 1]);

This command scales pixel values of 0.4 to 1, and this brightens the image. The enhanced
image is shown in Figure 10.21, which displays the details of the tablecloth after adjustment
of the image intensity. A histogram of the stretched image is shown in Figure 10.22. This
equalized histogram shows that the pixel values are distributed more evenly.

0

0

500

1000

1500

2000

2500

3000

3500

4000

4500

50 100 150 200 250

Figure 10.19 Histogram of image shown in Figure 10.18

Input Low-in High-in

wo
L

-
tu

o
hg

i
H

-
tu

o

Output

Figure 10.20 Adjustment of image intensity with clipping threshold

TEAM LinG

Figure 10.21 A corrected image with intensity adjustment

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250

Figure 10.22 Equalized histogram with contrast adjustment

10.9 Image Enhancement 431

TEAM LinG

432 Chapter 10 Practical DSP Applications: Digital Image Processing

The function imadjust also supports a nonlinear gamma correction using the
following command:

J = imadjust(I,[low_in; high_in],[low_out; high_out],
gamma);

This function maps the pixel values of I to new values in J using gamma to specify the
shape of the curve describing the nonlinear relation between the values in I and J. If
gamma is less than 1, the mapping is weighted toward higher (brighter) output values. If
gamma is greater than 1, the mapping is weighted toward lower (darker) output values.
In the MATLAB code, we also use a gamma value of 0.6 for brighter correction.

10.10 IMAGE ENHANCEMENT
WITH BF533/BF537 EZ-KIT

This section explores histogram equalization of a given image with the Blackfi n
processor. The fi rst step is to compute the histogram of an image. For a B&W image,
a 256-element array is set up to record the occurrence of the particular gray level
in the image.

The second step is to derive a mapping function. Instead of using the mapping
function as shown in Figure 10.20, we compute a mapping function that is based on
the normalized sum of the histogram. Here, we set up another array to store the sum
of all the histogram values. For example, element #1 of the array contains the sum
of histogram elements #0 and #1, and element #2 of the array contains the sum of
histogram elements #0 to #2, and so on for the rest of the elements in this array.
This array is then normalized with reference to the total number of pixels in the
image.

The last step in the histogram equalization is to map the input intensity to a
more uniformly spread output intensity with the mapping function derived in the
previous step. In the following experiment, we show the steps used to perform his-
togram equalization on the Blackfi n processor.

HANDS-ON EXPERIMENT 10.6

In this experiment, we load a new image truck.bmp into the Blackfi n memory. Build and
run the project fi le exp10_6.dpj in directory c:\adsp\chap10\exp10_6 with Visu-
alDSP++. A histogram equalization routine hist_eq.asm based on the normalized sum of
histogram is used in this project to enhance the original image in Figure 10.23(a) and produce
a clearer image in Figure 10.23(b). The enhanced image shows better contrast of the image
because the terrain features are clearly visible as compared to the original image. The his-
tograms of these images are also plotted in Figure 10.23(c) and 10.23(d) for the original
image and equalized image, respectively. These plots show that the histogram of the equal-
ized image has a more uniform distribution of gray levels, and this wider spread has led to
higher contrast in the image compared with the original image.

TEAM LinG

10.11 IMAGE PROCESSING WITH LABVIEW
EMBEDDED MODULE FOR BLACKFIN PROCESSORS

Images are commonly processed with the same signal processing principles we have
introduced in previous chapters. Image processing can be performed in real time,
for example, to compress live video to store it to disk, or as a postprocessing step
such as manually touching up a digital photo before printing.

The following experiments utilize graphical system design to prototype and
implement signal processing algorithms in Windows and then on the Blackfi n EZ-
KIT. First, we open the application and execute it with LabVIEW targeted to
Windows for conceptual analysis and development. The execution target is then
changed to the Blackfi n processor, allowing the execution of the same code on the
EZ-KIT. This ability to program and develop algorithms independent of the intended
hardware target is the basis for true graphical system design and code-sharing across
platforms.

(a) (b)

(c) (d)

Figure 10.23 (a) Original image, (b) enhanced image with histogram processing, (c) histogram of
original image, and (d) histogram of equalized image

10.11 Image Processing with LabVIEW Embedded Module for Blackfi n Processors 433

TEAM LinG

434 Chapter 10 Practical DSP Applications: Digital Image Processing

HANDS-ON EXPERIMENT 10.7

The extensive libraries of analysis functions in LabVIEW can be applied to both one- and
multidimensional data. In this experiment, we explore the effects of basic mathematical
operations on a 2D image. The subtraction operation is used to invert the image. Division
allows us to reduce the number of quantized values present in the image. Multiplication
affects the contrast. We also explore thresholding, which converts the grayscale image to
black and white. These types of operations are common when preparing an image for addi-
tional processing or to highlight specifi c details. For example, inverting an image can often
make dark or faint features easier to see with the human eye.

Open Basic Image Processing.vi located in directory c:\adsp\chap10\
exp10_7. Be sure that LabVIEW is targeted to Windows. The target can be changed by
selecting Switch Execution Target from the Operate menu. Open the block diagram and
examine the graphical code. Note that the original image, represented by an array, has 100
× 96 pixels with values ranging from 0 to 255. The value of the tab control is used to specify
which processing operation in the Case Structure is executed. Manually change the visible
case of the Case Structure to view the Invert case on the block diagram. Image inversion
is calculated with the following equation and implemented in Figure 10.24.

Inversed Image Input Image= −255 . (10.11.1)

Polymorphism allows the Subtract function to receive inputs of different representation
and dimensionality and handle them appropriately. The polymorphic Subtract function in
LabVIEW allows the original image to be subtracted from the scalar value by simply wiring
the two values to its inputs. The result is then displayed on the Image Result indicator. The
other processing cases contain algorithms that require some additional function blocks.
The Multiply case, for example, needs additional code to protect against numerical overfl ow.
The Threshold case uses the Greater Than or Equal To function to evaluate whether the
pixel value is above or below the specifi ed threshold. Each of these cases produces a result-
ing image that is displayed on the same Image Result intensity graph.

Figure 10.24 Block diagram for Basic Image Processing.vi

TEAM LinG

Run the VI from the Front Panel (Fig. 10.25). Move through the tabs one at a time and
examine the effects of each processing algorithm. Are the resulting images what you
expected?

A common form of image optimization is reducing the number of colors used to rep-
resent the image. Using the Divide tab, what value for Y produces a four-color image? Does
it correspond to the algebraic equation 255 / Y = 4, when you solve for Y?

Change the LabVIEW execution target to the BF53x and open the Embedded Project
Manager window. Open Basic Image Processing_BF5xx.lep located in directory
c:\adsp\chap10\exp10_7.

As discussed above, the input is an 8-bit grayscale image containing 100 × 96 pixels.
However, the default LabVIEW Embedded Module for Blackfi n Processors debugging mech-
anism only reports the fi rst 128 data points for any array. This number must be increased to
greater than 9,600 to properly see the results of the processed image. To change the default
debugging array size, navigate to Target Æ Confi gure Target Æ Debugging Options from
the Embedded Project Manager window. Increase Max Array Elements to 10000. This
will allow the entire image to be retrieved during debug execution. Increasing the Debug
update period to 1000 ms (1 s) will also improve performance by causing fewer interrupts
to the processor during execution. Click OK and return to the Embedded Project Manager
window.

Click on the Debug execution button to download, run, and link the processor to the
LabVIEW front panel. Click through the tabs to verify that the same results are achieved on

Figure 10.25 Front panel for Basic Image Processing.vi

10.11 Image Processing with LabVIEW Embedded Module for Blackfi n Processors 435

TEAM LinG

436 Chapter 10 Practical DSP Applications: Digital Image Processing

the Blackfi n processor as in Windows. This example demonstrates how LabVIEW abstracts
the hardware target from design and thus allows the user to focus on the algorithms and
concepts. Click on the Threshold tab. Can you calculate how much more data it takes to
represent a 100 × 100 pixel, 8-bit, 256-color level image in memory compared to a 1-bit,
2-color level image?

HANDS-ON EXPERIMENT 10.8

This experiment implements a 2D image fi lter that consists of a 3 × 3 kernel matrix. We
utilize the concepts of graphical system design to implement and test the fi lter in LabVIEW
targeted to Windows and then port the design to the Blackfi n processor.

Open the 2D Conv Image Processing-BF5xx.lep in directory c:\adsp\chap10\
exp10_8. As in Hands-On Experiment 10.7, this VI can be executed with the LabVIEW
Embedded when targeted to Windows or to the Blackfi n processor. When analyzing the
block diagram, we see that the image fi lter kernels are the same as those designed earlier in
Example 10.7.

The low-pass fi lter implementation is shown in Figure 10.26. 2D Convolution subVI
performs the point-by-point convolution of the image and the 3 × 3 fi lter kernel, and then
divides by the scalar (9 in this case). The scalar is used to reduce the overall multiplied effect
of the fi lter kernel to 1. Open 2D Convolution subVI to see how the graphical program
performs the 2D convolution.

Open the front panel and run the VI. Click on the Custom tab shown in Figure 10.27.
The Laplacian fi lter is performed by default. Change the fi lter to the Sobel fi lter with the
parameters found in Example 10.7. Note that there are two Sobel fi lter implementations,

Figure 10.26 Block diagram for 2D Convolution Image Processing.vi

TEAM LinG

which are not symmetric about both axes in contrast to the delta and low-pass fi lters. How
do the resulting images differ when the orientation of the Sobel fi lter is changed?

To run the project on the Blackfi n processor, change the execution target from Windows
to the Blackfi n EZ-KIT. Open the 2D Conv Image Processing-BF5xx.lep file in
directory c:\adsp\chap10\exp10_8 from the Embedded Project Manager window.

As discussed above, the input is an 8-bit grayscale image containing 100 × 96 pixels.
Again, the default LabVIEW Embedded Module for Blackfi n Processors debugging param-
eters must be changed properly to see the results of the processed image. In the project
Debugging Options, increase Max Array Elements to 10000 and Debug update period
to 1000 ms.

Run the VI on the Blackfi n by clicking on the Debug execution button. As in Hands-On
Experiment 10.7, be sure that the algorithms on the Blackfi n processor behaves the same as
they did in LabVIEW targeted to Windows.

Explore the values being passed through wires on the block diagram with probes. The
Custom tab is useful for testing common 3 × 3 image fi lter implementations as well as your
own designs. What 3 × 3 fi lter values allow you to invert the image as shown in Figure
10.25?

Figure 10.27 Front panel for 2D Convolution Image Processing.vi

10.11 Image Processing with LabVIEW Embedded Module for Blackfi n Processors 437

TEAM LinG

438 Chapter 10 Practical DSP Applications: Digital Image Processing

10.12 MORE APPLICATION PROJECTS

1. In this chapter, all the images used in examples and experiments are transferred from the
fi les in the computer to the SDRAM in the Blackfi n processor. The BF533 EZ-KIT comes
with a video connector that allows users to transfer images from the image/video captur-
ing devices such as digital cameras. A sample program from Analog Devices is provided
in directory c:\Program Files\Analog Devices\VisualDSP 4.0\Blackfin\
EZ-KITs\ADSP-BF533\Examples\Video Input to capture the image through the
parallel port interface of the Blackfi n processor. A peripheral DMA is set up as stop mode,
which stops capturing after 50,000 transfers to move the image from the PPI to the
SDRAM, and the PPI port is confi gured to ITU-656 input mode. Open the project
fi le BF533_EZ_KIT_Video_Receive_C.dpj in VisualDSP++. Before building the
project, make sure that switch #6 of SW3 in the BF533 EZ-KIT is set to ON. Build the
project. Connect the video NTSC/PAL composite video blanking sync (CVBS)
signal to the video input jack, which is located at the bottom right of the video in/out
connector (AVIN1) on the BF533 EZ-KIT. The CVBS combines the color, luminance,
and synchronization information into one signal. Click on the Run icon to start the
capture of the image from the imaging device. Click on the Halt icon to stop the proces-
sor. Open the image in the image viewer with the following parameters: Start address
= 0x1; Stride = 2; Horizontal pixels = 720; Vertical Pixels = 525; Pixel format = Gray

Scale (8-bit). Click OK to display the captured image from the camera. Capture
images under different lighting conditions and perform contrast adjustment to these
images.

2. The PPI of the Blackfi n processor can also be used to display an image from the SDRAM
to an external display monitor. In this project, we look into how to display a color bar
pattern stored in the SDRAM memory to the PPI, which in turn connects to the monitor.
Confi gure the peripheral DMA as 2D DMA, autobuffer, and 16-bit transmit DMA;
perform the data transfer from the SDRAM to the PPI. Load the project video_out.
dpj, which is located in directory c:\Program Files\Analog Devices\Visu-
alDSP 4.0\Blackfin\EZ-KITs\ADSP-BF533\Examples\Video Output. Make
sure that switch #6 of SW3 on the BF533 EZ-KIT is set to ON. Connect a video display
monitor to the video output jack (found on the top row of the video in/out connect) on
the BF533 EZ-KIT [29]. Run the project and see the color bar pattern displayed on the
video monitor. Overwrite the SDRAM with another image or sequence of images and
display them.

3. The gamma correction is commonly used in compensating the nonlinearity of display
devices. To display the image in linear output, the gamma correction prewraps the RGB
color image with a gamma value. For example, a gamma value of 2.2 is used in most
computer monitors. For an 8-bit RGB sample, a 256-value table is used to map the image.
The equations for gamma correction are given as follows:

R R , G G , B B ,g g gg g g= = =1 1 1γ γ γ (10.12.1)

where g is the conversion gain factor, γ is the gamma value, and RGB are the color com-
ponents. Implement the gamma correction on any RGB image and display the image on
the computer monitor by modifying the program in Project 2.

4. Modify the code in Hands-On Experiment 10.3 to compress a captured image from a
digital still camera in the BF533 processor. The compression ratio can be selected from
the switches in the BF533 EZ-KIT as indicated in Table 10.2. Use the image viewer in

TEAM LinG

VisualDSP++ to view the reconstructed image. In addition, perform low-pass fi ltering on
the reconstructed image to smooth out any blocking edges.

5. To estimate the quality of a reconstructed image compared with the original image, a
peak signal-to-noise ratio (PSNR) measurement is commonly used in image compression.
PSNR is computed from the mean square error (MSE) of the reconstructed image as
follows

MSE , , ,= () − ()[]
=

−

=

−

∑∑1 2

0

1

0

1

NM
x i j R i j

j

M

i

N

(10.12.2)

PSNR
MSE

,= ⎛
⎝⎜

⎞
⎠⎟

20
255

10log (10.12.3)

where x(i,j) is the original N × M image and R(i,j) is the reconstructed image obtained
by decoding the encoded version of x(i,j). Note that the error metrics are computed on
the luminance signal only and the peak image level is white (255). A detailed description
of PSNR and its application in image coding can be found in [68]. Compute and display
the PSNR for the reconstructed images in Hands-On Experiment 10.3 using the
EZ-KIT.

6. Extend Project 5 by displaying the pixel-by-pixel error image between the original image
and the reconstructed image. Use the image viewer of VisualDSP++ to display the error
image. Can you observe any difference as the compression ratio increases? Can you devise
a different error computation to increase the visible difference?

7. A color image is converted from RGB color space to YCbCr space as shown in Hands-On
Experiment 10.2. A 2D low-pass fi lter is then applied only to the luminance (Y) in the
YCbCr color space. After fi ltering, convert the YCbCr back to RGB color space and
display in the image viewer of VisualDSP++.

8. A set of noisy image fi les are located in directory c:\adsp\image_files\noisy_
image\. Based on the image processing techniques learned in this chapter, devise a
suitable technique to clean up each of these image fi les. In some cases, advanced tech-
niques that are not described in this book must also be explored. Users can refer to the
textbooks listed in the References or search the website for solutions. Implement the
algorithm with the BF533/BF537 EZ-KIT and test its performance. Compare the perfor-
mance with MATLAB simulations.

10.12 More Application Projects 439

TEAM LinG

TEAM LinG

Appendix A

An Introduction to Graphical
Programming with LabVIEW

Contributed by National Instruments

This appendix provides an overview of National Instruments LabVIEW and the
LabVIEW Embedded Module for Blackfi n Processors software.

A.1 WHAT IS LABVIEW?

LabVIEW is a full-featured graphical programming language and development
environment for embedded system design. LabVIEW provides a single graphical
design tool for algorithm development, embedded system design, prototyping, and
interfacing with real-world hardware. Additional modules have been designed to
expand the core functionalities of LabVIEW to real-time operating systems, DSP,
and FPGA programming, making LabVIEW an ideal platform for signal processing
algorithm design and implementation.

This section briefl y introduces the LabVIEW development environment from
installation and basic programming to system development. This material provides
a high-level overview of the concepts necessary to be successful with LabVIEW
and the LabVIEW Embedded Module for Blackfi n Processors. Additional references
to supplemental manuals and resources are provided for more in-depth
information.

A.1.1 A Picture Is Worth a Thousand Lines of Code

Graphical system design and prototyping opens the door to the masses in embedded
development. The industry is confi rming that higher levels of abstraction in

441

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

442 Appendix A An Introduction to Graphical Programming with LabVIEW

embedded tools are needed, suggesting electronic system-level (ESL) design is an
answer and citing concepts such as hardware/software co-design, predictive analy-
sis, transaction-level modeling, and others. Does this sound like simplifying the
problem or just making it more complex?

Fundamentally, the problem is that the domain experts—scientists, researchers,
and engineers developing new algorithms—are at the mercy of the relatively few
embedded system developers who are experienced in dealing with today’s complex
tools. The industry requires a fundamental change to empower the thousands of
domain experts to experiment and prototype algorithms for embedded systems
to prove success early before they are overtaken with the complexity of
implementation.

The test and measurement industry saw this same phenomenon. Using a
graphical modeling and programming approach, engineers can more quickly
represent algorithms and solve their problems through block diagrams. This is
especially true for embedded systems development. With a graphical programming
language, engineers succinctly embody the code that is actually running on the
hardware. For example, they can represent parallel executing loops simply by
placing two graphical loop structures next to each other on the diagram. How
many lines of code would it take to represent that in today’s tools? How many
domain experts could look at text code and quickly interpret exactly what is hap-
pening? Only a truly innovative user experience—like Windows for PCs or the
spreadsheet for fi nancial analysis—can truly empower the masses to move into a
new area.

Domain experts also need a simple and integrated platform for testing algo-
rithms with real-world I/O. The reason these embedded systems fail so often is
because there are so many unknowns during development that are not discovered
until the end of the development cycle.

After seeing this shift in the test and measurement industry from traditional
text-based programming approaches like BASIC and C to LabVIEW, it seems more
obvious than ever. Graphical system design is essential to open embedded systems
to more people.

Figure A.1 Graphical system design in LabVIEW

TEAM LinG

A.1 What Is LabVIEW? 443

A.1.2 Getting Started with LabVIEW

The LabVIEW development system is the core software with which other modules,
toolkits, and drivers can be installed to expand functionality and capability. For the
purposes of this book, the LabVIEW Embedded Module for Blackfi n Processors
should also be installed, adding the ability to generate Blackfi n-compatible C code
that can be targeted to the Blackfi n EZ-KIT using the Analog Devices VisualDSP++
tool chain under the hood.

A.1.3 Install Software

The installation order is as follows:

1. Install VisualDSP++ 4.0 for LabVIEW

2. Install the LabVIEW Embedded 7.1

3. Install the LabVIEW Embedded Module for Blackfi n Processors 1.0

A.1.4 Activating Software

The software will default to a 60 day evaluation version. If you have purchased a
copy of the software and have received an activation code, follow these steps to
activate both LabVIEW Embedded Module for Blackfi n Processors and Visual
DSP++ 4.0 at once.

1. Navigate to the NI License Manager. Start by selecting Start Æ Programs Æ
National Instruments Æ NI License Manager. The NI License Manager will
open, showing all NI software installed on the computer that can be activated.

2. Expand the LabVIEW category to expose the LabVIEW Embedded
Module.

3. Right click on the Embedded Module and select Activate. Follow the steps
provided in the NI Activation Wizard to activate the software.

A.1.5 Connecting Hardware

After the appropriate software has been installed, attach the power connector to the
Blackfi n EZ-KIT and then connect the EZ-KIT to the computer using the USB cable.
Windows will detect the EZ-KIT and install the appropriate driver.

A.1.6 Running an Example Program

Open and run the fi rst example program by opening LabVIEW Embedded Edition
and changing the execution target on the introduction screen from LabVIEW to the
appropriate Blackfi n EZ-KIT, labeled Analog Devices ADSP-BF5xx, VDK Module.

TEAM LinG

444 Appendix A An Introduction to Graphical Programming with LabVIEW

Open the Embedded Project Manager by selecting Tools Æ Embedded Project
Manager Æ File Æ Open Project. All examples can be found in the c:\Program
Files\National Instruments\LabVIEW 7.1 Embedded\examples\

lvemb\Blackfin directory. In the Embedded Project Manager, select File Æ
Open Project and navigate to the fundamentals directory to open the Pushbutton
- polling (BF5xx).lep project. Click on the Execute button to compile, link,
and download the application to the Blackfi n EZ-KIT. Refer to the Introduction to
LabVIEW Embedded Edition 7.1 and the LabVIEW Embedded Module for
Blackfi n Processors sections of this appendix for more information.

A.2 OVERVIEW OF LABVIEW

This section introduces the key components of the LabVIEW environment and
provides step-by-step experiments in developing LabVIEW programs and graphical
user interfaces.

A.2.1 The LabVIEW Environment

The LabVIEW development environment allows you to develop graphical programs
and graphical user interfaces easily and effectively. A program in LabVIEW is called
a Virtual Instrument (VI), and acts as an individual function similar to a function
defi ned in the C programming language. The main executable VI is called the top-
level VI and VIs used as modular subroutines are called subVIs. Every VI is made
of two key components, the front panel and block diagram, shown in Figure A.2.
The front panel is the graphical user interface and the block diagram contains the
graphical code that implements the functionality of the VI. Once you create and
save a VI, it can be used as a subVI in the block diagram of another VI, much like
a subroutine in a text based programming language.

A.2.2 Front Panel

The front panel contains objects known as controls and indicators. Controls are the
inputs that provide data to the block diagram as will be discussed in Section A.2.3,
while output data from the block diagram is viewed and reported on front panel
indicators. In Figure A.3(a), two numeric array controls, Vector A and Vector B,
allow the user to input two numeric vectors. The result of the dot product is displayed
as a single scalar value in the Dot Product Result numeric indicator. There is also
a Boolean control button that will stop the VI.

The Controls palette in Figure A.3 (b) contains all the front panel objects that
you can use to build or modify the user interface. To open the Controls palette,
right click on free space within the front panel. The Controls palette can remain

visible while you work by clicking on the pushpin icon in the upper left
corner.

TEAM LinG

Figure A.2 LabVIEW front panel and block diagram

(a) (b)

Figure A.3 (a) Front panel and (b) controls palette

A.2 Overview of LabVIEW 445

TEAM LinG

446 Appendix A An Introduction to Graphical Programming with LabVIEW

A.2.3 Block Diagram

The block diagram contains the graphical code that defi nes how the VI will operate.
Front panel controls and indicators have a corresponding terminal block on the block
diagram. The corresponding terminals for array controls Vector A, Vector B and
the Boolean stop button provide input to the block diagram, while the Dot Product
Result numeric indicator terminal allows the result of the algorithm to be
displayed.

Wires defi ne how data will fl ow between terminals and other nodes on the
block diagram. VIs execute based on the concept of data fl ow, meaning that a
node, subVI or structure will not execute until data is available at all its inputs.
Data wire color and thickness are used to show data type (fl oating point number,
integer number, Boolean, string, etc) and dimensionality (scalar or array). For
example, in Figure A.4 (a), the input vectors both enter the left side of the For Loop
with a thick orange wire representing double precision numeric 1D arrays. The wire
exiting the For Loop is a thin orange wire representing a double precision numeric
scalar.

When creating or modifying a block diagram, the Functions palette provides
access to all functions, structures, and subVIs available in LabVIEW. Right-click
on empty space on the block diagram to see the Functions palette, shown in Figure
A.4 (b). Again, the pushpin can be used to keep the palette from disappearing.

(a) (b)

Figure A.4 Functions palette for block diagram objects

TEAM LinG

A.2.4 Debugging in LabVIEW (Windows)

Many debugging features in LabVIEW make it ideal for designing and testing
algorithms before moving to a hardware target like the Blackfi n EZ-KIT. LabVIEW
continuously compiles code while it is being developed, allowing errors to be
detected and displayed before the application is executed. This method of error
checking provides immediate feedback by ensuring that subVIs and structures have
been wired properly during development. Programming errors are shown in the
form of broken or dashed wires or a broken Run arrow toolbar icon. When the Run
arrow toolbar icon appears broken and grey in color, click it to see the list of errors
preventing the VI from executing, shown in Figure A.5. Use the Show Error button
or double-click on the error description to highlight the problematic code on the
block diagram or the object on the front panel that is causing the error.

There are additional debugging features unique to LabVIEW that help you
understand the operation of a VI during runtime. The block diagram debugging
features include the use of breakpoints to pause code during execution, adding
probes to see the data value present on wires, and highlight execution mode, a
debugging feature that slows execution and shows the actual fl ow of data along wires
and through structures. These tools assist in understanding and confi rming program
logic and program fl ow.

A.2.5 Help

Several help options exist for programming and function reference. These features
can be accessed through the Help menu on both the front panel and block diagram
tool bar. Context Help can be activated by selecting Help Æ Show Context Help.
Context Help displays a fl oating help window that changes based on the current
block diagram or front panel element under the cursor. Launch the comprehensive
LabVIEW Help by selecting HelpÆVI, Function, & How-To Help. View the

Figure A.5 Debugging broken wires and using the Error List

A.2 Overview of LabVIEW 447

TEAM LinG

448 Appendix A An Introduction to Graphical Programming with LabVIEW

extensive library of LabVIEW manuals by selecting HelpÆSearch the LabVIEW
Bookshelf.

The National Instruments support website, www.ni.com, is also a great resource
for fi nding answers to questions. Thousands of KnowledgeBase entries and search-
able forums on the NI web site offer interactive up-to-date help resources.

HANDS-ON EXPERIMENT A.1

In this experiment, we will create the VI shown in Figure A.2 that performs the dot product
of two input vectors. This simple VI will introduce the concepts of datafl ow programming
in LabVIEW and graphical constructs such as arrays, looping structures, and shift registers.
Start by opening LabVIEW and creating a new VI. Notice that the front panel user interface
has a gray workspace and when the block diagram is opened, it has a white workspace. We
will begin by fi rst creating the user interface on the front panel and then coding the dot
product algorithm on the block diagram.

Begin on the front panel by right-clicking on the free space to display the Controls
palette. Click on the Pushpin to give the palette its own window. First, we will create Vector
A by placing an Array shell on the front panel. You will quickly become comfortable with
the location of controls and indicators in their respective palettes. For now, take advantage
of the palette search feature to fi nd functions and controls if you are not sure where they are
located. Find the Array shell by opening the Controls palette and clicking on Search,
located at the top of the palette. Type “array” in the search fi eld and note that as you type,
the list box populates with your search results. Locate the Array control in the list and
double-click on the entry. The window will change to the appropriate subpalette and the
Array shell will be highlighted. Click on the Array shell icon and drag your cursor where
you want to place it on the front panel. Arrays are created empty, that is, without an associ-
ated data type. Defi ne the array data type by dropping a numeric, Boolean, or string control
within the array shell. From the Numeric subpalette on the Controls palette, select a numeric
control and drop it into the Array shell, as shown in Figure A.6. The color indicates the data
type. In this case, orange indicates that the array holds double precision numbers. Double-
click on the Array label to change its text to Vector A. The array can be expanded vertically
or horizontally to show multiple elements at once. Expand Vector A horizontally to show
three elements.

Create Vector B by creating a copy of Vector A. You can click on the edge Vector A
to select it and then select Edit Æ Copy and then Edit Æ Paste to create a copy. Place the
copy below the original (see Fig. A.7). Change the label for this control to Vector B.

Figure A.6 Creating an Array control

TEAM LinG

Now that the controls, or inputs, to the VI have been created, we need an indicator to
show the output of the dot product operation. On the Controls palette, select the Numeric
Indicator, available by selecting Controls Æ Numeric Æ Numeric Indicator, and place it
on the front panel. Name this indicator Dot Product Result. Finally, place a Stop button on
the front panel so that the user can terminate the application. This control is found on the
Controls Æ Boolean subpalette.

After the front panel graphical user interface has been completed, we turn our attention
to completing the dot product functionality on the block diagram. If the block diagram is
not already open, select Window Æ Show Block Diagram. Block diagram code executes
based on the principle of datafl ow. The rule of datafl ow states that functions execute only
when all of their required inputs are populated with data. This programming architecture
allows both sequential and parallel execution to be easily defi ned graphically. When the
block diagram for the dot product is complete, as shown in Figure A.4(a), data passes from
the inputs on the left to the outputs on the right and follows the datafl ow imposed by the
wires connecting the block diagram objects. The next step is to create the block diagram by
fi rst placing the correct structures and functions and then connecting them together with the
appropriate wiring.

Place a For Loop available on the Structures palette in the center of the block diagram.
It may be necessary to move the controls and indicators out of the center to do so. A For
Loop in LabVIEW behaves like a for loop in most text based programming environments,

iterating an integer number of times as specifi ed by the input terminal N, .
After the For Loop has been placed and sized, the next step is to place both the

Multiply and the Add functions within the loop. Move Vector A and Vector B
to the left of the loop and begin wiring Vector A through the For Loop and into the top
input of the Multiply function. The mouse cursor automatically changes to the wiring tool
when it is placed above the input or output of an icon or another wire. Use the wiring tool
to connect inputs and outputs by clicking and drawing wires between them. Now, wire Vector
B to the bottom input of the Multiply function, and the output of the Multiply function to
the bottom input of the Add function. The product of each pair of multiplied values will be
cumulatively added by means of a shift register every time the loop iterates. Now create a
shift register on the left side of the For Loop by right-clicking and selecting Add Shift
Register. Shift registers will be added to each side of the loop automatically. A shift regis-
ter allows values from previous loop iterations to be used in the next iteration of the loop.
Wire the output of the add operation to the right shift register. The shift register will then
change to the color of the wire. Now right-click on the left shift register and create a con-
stant, wire the left shift register to the top of the add, and wire the right shift register to

Figure A.7 Copying objects holding CTRL while dragging the object

A.2 Overview of LabVIEW 449

TEAM LinG

450 Appendix A An Introduction to Graphical Programming with LabVIEW

the Dot Product Result. Notice in Figure A.8, the shift register input is initialized with
a value of zero, and during each iteration of the For Loop, the product of the elements from
Vector A and Vector B is summed and stored in the shift register . This stored value
will appear at the shift register input during the next iteration of the loop. When the For
Loop has iterated through all of the vector elements, the fi nal result will be passed from the
right shift register to the Dot Product Result. Can you now see how the graphical code
within this For Loop is performing the dot product of the two input arrays?

Finish the program by adding a While Loop, available on the Functions Æ Structures
subpalette that encloses all of the existing code on the block diagram. This structure will

allow the code inside to run continuously until the stop condition is met. For our VI,
wire the stop button to the stop condition so that it can be used to stop the loop from the
front panel thus, ending execution of the entire VI. Finally, we must add functionality in the
While Loop to keep it from running at the maximum speed of the computer’s processor.
Find the Wait Until Next ms Multiple function and wire in 100 ms of delay. This will
suspend execution of the VI for 100 ms so that the processor can handle other operations
and programs. Your VI should look similar to the completed block diagram shown in
Figure A.8.

If you have successfully completed the Dot Product VI, the Run arrow on the toolbar
should appear solid and white, indicating that there are no errors in the code that would
prevent the program from compiling. A broken Run arrow means that there is an error that
you can investigate and fi x by clicking on this error to report what is causing the problem.
Click on the Run arrow to run the VI and experiment by placing different values into Vector
A and Vector B. Compute the dot product of two small vectors by hand and compare the
results with VI you created. Do they match?

Click on the stop button to halt the VI execution. Click on View Æ Block Diagram to
switch to the block diagram. Enable the highlight execution feature by clicking on the

toolbar icon with the light bulb icon . Now press run again. What do you notice? How
can this feature help you during development? Right-click on a wire and select Probe. You
can now see a small dialog box that displays the data value of that wire as the VI executes.

Figure A.8 Block diagram of the vector dot product VI

TEAM LinG

Experiment with the other debugging features of the LabVIEW environment and save the
program when you are fi nished.

HANDS-ON EXPERIMENT A.2

In this experiment, you will create the VI as shown in Figure A.9. This VI generates a one-
second sinewave of a given frequency, displays its time-domain plot, and outputs the signal
to the sound card.

Open a new blank VI. Start by placing the Sine Waveform.vi on the block diagram.
Right-click on the frequency input of this function and select Create Æ Control. This
automatically creates a numeric control of double representation with the name frequency.
Switch to the front panel to see the actual control. Do the same for the amplitude input.
Finally, right-click on the Sampling Info input and select Create Æ Constant. This input
happens to be a cluster data type that allows you to specify the sampling frequency and the
number of samples for the generated sinewave. Clusters are a type of data unique to LabVIEW
but are similar to structures in text based programming. They allow you to bundle together
different data elements that are related in some way. Clusters can consist of the same or
different data types. Search the LabVIEW Help for more information on clusters. Change
both values within the cluster to 44,100. The fi rst is Fs, the sampling rate, and the second
is #s, the number of samples to generate. Setting both values to the same number generates
1 second of 44,100 sample/second data as shown in Figure A.9.

Now that we have all of the necessary inputs, navigate to the front panel and place a
Waveform Graph on the front panel. Navigate back to the block diagram and wire the signal
out terminal of the Sine Waveform VI to the Waveform Graph. The VI should now run.
Test it once. Zoom in on the graph to see a smaller piece of the data. Consider clicking and
changing the right-most value on the x axis to 0.005.

In order to play the sinewave on the sound card, we must use the Snd Write Wave-
form.vi. Right-click on the sound format input and select Create Æ Constant. The default
values will need to be changed to mono, 44100, and 16-bit. Then, wire the output signal to
the mono 16-bit input on the top right of the Snd Write Waveform VI. Finish the VI by

(a) (b)

Figure A.9 Screen shots of the (a) signal generator and (b) its block diagram

A.2 Overview of LabVIEW 451

TEAM LinG

452 Appendix A An Introduction to Graphical Programming with LabVIEW

enclosing the block diagram code with a While Loop so that it will run until the stop button
is pressed. Right-click the termination terminal of the loop and select Create Æ Control so
that a stop button appears on the front panel. Arrange the front panel objects so that they
look like those shown in Figure A.9.

As in the previous experiment, fi x any errors that might be causing the Run arrow to
be broken. Plug speakers or headphones into audio output of the computer so that you can
listen to the generated sinewave signal. Click on the Run button to start the VI. Experiment
by changing values of the input controls on the front panel. Does the VI behave as
expected?

A.3 INTRODUCTION TO THE LABVIEW EMBEDDED
MODULE FOR BLACKFIN PROCESSORS

This section examines the state-of-the-art software that allows algorithms to be
developed in the LabVIEW graphical environment and downloaded onto the Black-
fi n EZ-KITs.

A.3.1 What Is the LabVIEW Embedded Edition 7.1?

The LabVIEW Embedded Edition 7.1 adds the ability to cross-compile a LabVIEW
Embedded project for a specifi c embedded target. This is performed by integrating
LabVIEW Embedded and the tool chain specifi c to the embedded target. First,
LabVIEW analyzes the graphical block diagram code and instead of compiling it
directly for Windows, generates an ANSI C code representation for the top-level VI
and each subVI in the VI hierarchy. This task is performed by the LabVIEW C
Code Generator, which converts LabVIEW data wires and nodes into variables and
structures in their C code equivalent. The LabVIEW C Runtime Library is used
when functions cannot be simplifi ed to basic C constructs. The Inline C Node
generates C code identical to that entered on the LabVIEW block diagram. LabVIEW
Embedded Modules, such as the LabVIEW Embedded Module for Blackfi n Proces-
sors, integrate the processor specifi c tool chain allowing the generated C code to be
compiled and run on the Analog Devices Blackfi n processor.

A.3.2 What Is the LabVIEW Embedded
Module for Blackfi n Processors?

The LabVIEW Embedded Module for Blackfi n Processors allows programs written
in the LabVIEW to be executed and debugged on Blackfi n BF533 and BF537 pro-
cessors. The software was jointly developed by Analog Devices and National Instru-
ments, to take advantage of the NI LabVIEW Embedded technology and the
convergence of capabilities of the Blackfi n EZ-KIT, for control and signal process-
ing applications. With the LabVIEW Embedded Module for Blackfi n Processors,

TEAM LinG

you can design and test algorithms in Windows and then compile and run them on
the Blackfi n Processor. Advanced debugging features such as viewing of live front
panel updates via JTAG, serial, or TCP/IP, as well as single-stepping through code
with VisualDSP++ allow complex embedded systems to be rapidly designed, pro-
totyped, and tested.

A.3.3 Targeting the Blackfi n Processor

This section describes the process for changing the execution target and using the
LabVIEW Embedded Project Manager. Begin by launching LabVIEW 7.1
Embedded by navigating to Start Æ All Programs Æ National Instruments
LabVIEW 7.1 Embedded Edition. Once open, you will see the menu shown in
Figure A.10. Change the Execution Target option to the appropriate Blackfi n
processor.

Use the New button to create a new blank LabVIEW VI for the selected target;
however, when targeting embedded devices such as the BF533 or BF537, the Embed-
ded Project Manager should be opened fi rst. The Embedded Project Manager is
used to manage your LabVIEW application. Open the Embedded Project
Manager by selecting Tools Æ Embedded Project Manager. After the project
manager window opens, select File Æ Open Project and navigate to the project
fi le DotProd – BF5xx.lep located in the directory c:\adsp\chap1\exp1_4.
Note that LabVIEW embedded project fi les have “.lep” as the fi le extension. You
should see the embedded project as shown in Figure A.11.

Figure A.10 LabVIEW Embedded startup screen

A.3 Introduction to the LabVIEW Embedded Module for Blackfi n Processors 453

TEAM LinG

454 Appendix A An Introduction to Graphical Programming with LabVIEW

The Embedded Project Manager provides a way to manage the target settings
and all of the fi les included in the application. First, check the Target settings to
be sure the Blackfi n Target is set up appropriately. The two most important target
settings are Target Æ Build Options and Target Æ Confi gure Target. Settings
changed in the Confi gure Target dialog box are unique to the development machine,
while Build Options are unique to the individual LabVIEW Embedded project fi le.
Any time you switch between BF533 and BF537 targets, you will need to verify
target confi guration.

A.3.4 Build Options

The Build Options dialog box, shown in Figure A.12, is separated into three con-
fi gurations: General, Advanced, and Processor. The General tab allows the
Debugging mode to be confi gured and provides some options for code generation
optimizations. The Advanced tab provides higher level debugging and optimization
options to be set, as well as compiler and linker fl ag options for more experienced
users. The Processor tab contains additional processor specifi c options for advanced
users, including one of the most critical options for proper code compilation, the
Silicon revision. The silicon revison chosen in the project and that of your Blackfi n

Figure A.11 LabVIEW Embedded project manager

TEAM LinG

processor must match. The processor model and revision can be found on the silk-
screen of the Blackfi n chip at the center of the EZ-KIT circuit board.

A.3.5 Target Confi guration

The Target Confi guration dialog box is separated into two confi guration tabs,
Target Settings and Debug Options, as shown in Figure A.13. The Target Settings
must be verifi ed each time the target is changed from one processor type to another.
The Debug Options pane provides confi guration settings for update rate, commu-
nications port, and advanced debug options. Remember, these settings are unique
to the development machine, so they are not saved in the project fi le and not changed
when a new project fi le is loaded.

A.3.6 Running an Embedded Application

LabVIEW embedded applications can be executed by clicking on the Run button
in the Embedded Project Manager. Clicking the Run button on an individual VI
will bring the Project Manager window to the front or ask you to create a project
fi le if there is no project associated with the VI.

LabVIEW Embedded applications are fi rst translated from graphical LabVIEW
to C code, compiled, and then downloaded to the embedded controller for execution.

Figure A.12 LabVIEW Embedded target build options

A.3 Introduction to the LabVIEW Embedded Module for Blackfi n Processors 455

TEAM LinG

456 Appendix A An Introduction to Graphical Programming with LabVIEW

Using the buttons in the Embedded Project Manager window, you can specify
which steps in the embedded tool chain to complete. Refer to Figure A.14 for a
description of the Compile and Run button options. Each option will complete all
of the necessary tasks before it in the compilation chain. For example, the Compile
button will generate C and compile the fi les in the project, while the Debug button
will generate C, compile, download, run, and begin debugging.

For additional reference material and more specifi c help using LabVIEW
Embedded for Blackfi n Processors, refer to the Getting Started with the LabVIEW
Embedded Module for Analog Devices Blackfi n Processors manual [52] and the
LabVIEW Embedded Module for Analog Devices Blackfi n Processors Release

Figure A.13 LabVIEW Embedded target confi guration options

Figure A.14 LabVIEW Embedded target execution options

TEAM LinG

Notes [53]. These manuals are also installed in the National Instruments folder on
your computer and can be found at \National Instruments\LabVIEW 7.1
Embedded\manuals\Blackfin_Getting_Started.pdf and National
Instruments\manuals\Blackfin_Release_Notes.pdf. The manuals
can also be downloaded from http://ni.com/manuals.

A.3.7 Debugging in the LabVIEW Embedded
Module for Blackfi n Processors

Different debugging options are available when using the LabVIEW Embedded
Module for Blackfi n Processors to develop a Blackfi n application. Debugging modes
available in the module include the standard non-instrumented debugging that
employs the JTAG/EZ-KIT USB port, as well as a unique instrumented debugging
mode that uses the serial or TCP port. The debugging method can be selected using
the Target Æ Build Options Æ Debug Mode menu shown previously in Figure
A.12. Debugging provides a window into the processes and programs running on
the DSP during execution. The LabVIEW Embedded Module for Blackfi n Proces-
sors allows you to interact with and view the values of front panel controls and
indicators, as well as probed data wires on the block diagram. This type of debug-
ging control allows the programmer to visualize and understand every step of an
algorithm graphically, which can be more intuitive than conventional register-based
debugging. Data is transferred from the target to the Windows environment based
on the polling rate and vector size specifi ed in the Target Confi guration tab, shown
in Figure A.13.

A.3.7.1 Noninstrumented Debugging

Debug via JTAG/EZ-KIT USB is the same type of debugging available in the Visu-
alDSP++ environment, but with the added benefi t of LabVIEW’s interactive debug-
ging features. Keep in mind that JTAG mode interrupts the processor to perform
debug data transfers, which can disrupt real-time processes. The faster the update
rate and the more data transferred in each vector, the more JTAG debugging could
interfere with the execution of your process. For this reason, Instrumented Debug-
ging was developed for faster communication between the host and embedded
processor. Refer to the release notes for additional noninstrumented debugging
troubleshooting information.

A.3.7.2 Instrumented Debugging

Instrumented debugging allows the user to fully interact with a running embedded
application without disrupting the processor during execution. This feature, unique
to the LabVIEW 7.1 Embedded Edition, is achieved by adding additional code, as
much as a 40% increase in overall code size, to the application before compilation.

A.3 Introduction to the LabVIEW Embedded Module for Blackfi n Processors 457

TEAM LinG

458 Appendix A An Introduction to Graphical Programming with LabVIEW

This added code captures and transfers values over an interface other than USB,
such as serial or TCP ports. Occasionally, this form of debugging may slow down
a time critical process, but it is extremely useful for debugging applications at higher
data rates with the greatest ease and fl exibility. When using Instrumented Debug-
ging, the USB cable must remain attached for execution control and error checking
during debugging.

HANDS-ON EXPERIMENT A.3

In this experiment, you will create the VI shown in Figure A.15, which calculates the dot
product of two vectors and displays the result on the front panel. This VI will be compiled,
downloaded, and executed on the Blackfi n processor with front panel interaction available
through the debugging capabilities of the LabVIEW Embedded Module for Blackfi n Proces-
sors. The dot product result will also be passed back to the host computer through the
standard output port using the Inline C Node.

Open the Embedded Project Manager window by clicking on Tools Æ Embedded
Project Manager and create a new LabVIEW embedded project through the File Æ New
Project menu. Name the project dotproduct.lep and click OK. The LabVIEW execution
target should set to execute on the Blackfi n processor. Verify this by selecting Target Æ
Switch Execution Target, and make sure that the appropriate Blackfi n EZ-KIT is selected.
Next, add a new VI to the project by choosing File Æ New . . . , selecting the Blank VI
option and naming the fi le as DotProd.vi. Click OK. Notice that the fi le has been added
to your project and its front panel has been opened.

The next step is to recreate parts of the Hands-On Experiment A.1 following those
instructions, or you may start with a saved version of that VI. The goal is to modify the VI
to that found in Figure A.15. For the purposes of this exercise, we will replace the For Loop
implementation of the dot product with the dot product LabVIEW analysis function. The
controls and indicators will be identical to those used in the previous exercise and the outer
While Loop will be reused.

Once you have recreated the new DotProd.vi complete with controls, indicators, and
while loop, place the Dot Product.vi, located on the Analyze Æ Mathematics Æ Linear

Figure A.15 Dot product VI block diagram written in LabVIEW Embedded

TEAM LinG

Algebra palette, in the center of the VI. Click to select and then click to drop the Dot
Product.vi on the block diagram. Confi gure the function inputs and outputs by wiring
Vector A to the X array input, Vector B to the Y array input, and Dot Product Result to
the X*Y output of the Dot Product VI. Click and drag each of these icons to move and
arrange them as seen in Figure A.15.

Next, we will add console output capability to our application using an Inline C Node,
which will allow us to enter text-based C code directly into the LabVIEW application. Navi-
gate to the Structures palette, select the Inline C Node, and drag the mouse across the block
diagram to create a rectangular region roughly the size shown in Figure A.15. Click inside the
Inline C Node and enter printf(“The Dot Product is: %f \n”,value);, which
will output to the debugging window the value of the dot product during every iteration of the
While Loop. To pass the value of the dot product to this C code, right-click on the left border
of the Inline C Node and select Add Input. This creates a new input terminal for the C node,
which is named as value to match the name referenced in the C code.

Verify that you have enclosed the dot product controls and indicators with a While
Loop structure to allow the code to execute continuously. Finally, add time delay to the loop
if you have not already done so. Add a Wait (ms) function, located in the Time, Dialog &
Error palette and create a constant input of 100 milliseconds to provide a short pause
between the processing of each iteration of the loop.

After the VI has been wired correctly, clicking on the Run arrow will open the Embed-
ded Project Manager window. Select Build Option from the Target menu to open the
Blackfi n Build Options dialog box. You can choose what level of debugging support to
use, as well as various compilation options for the project. For Debug mode, choose Non-
instrumented (via JTAG/EZ-KIT USB) from the pull-down menu and make sure that the
Build confi guration is set to Debug. This option allows for debugging our application
without the need for any additional cables or hardware. You will also need to uncheck
Redirect stdout to serial port on the Advanced tab. Before running the application
open the Processor Status dialog box from the Target menu to view the console output
transferred over the standard output port from the application.

After the build options have been set for the project, click on the Debug button
to compile, build, download, run, and debug the application. Switch to the front panel and
observe how the calculated value for the dot product changes as you enter different values
for the input vectors. Note also the console output in the Processor Status dialog box. Do
the values calculated by this VI match those you calculated in Hands-on Experiment A.1?

HANDS-ON EXPERIMENT A.4

In this fi nal experiment, we will modify an audio pass-through example to generate and
output a custom sinewave to the audio out port of the Blackfi n EZ-KIT using the LabVIEW
code shown in Figure A.16. To begin, launch the Embedded Project Manager and open
the Audio Talkthrough – BF5XX.lep project fi le. Select File Æ Save Project As
and save the project as Sine Generator.lep. From the Embedded Project Manager
window, open Audio Talkthrough – BF53X.vi and select File Æ Save As to save
the VI as Sine Generator.vi in the same directory as your embedded project fi le. We
are now ready to add the sinewave generator functionality to the code.

A.3 Introduction to the LabVIEW Embedded Module for Blackfi n Processors 459

TEAM LinG

460 Appendix A An Introduction to Graphical Programming with LabVIEW

Start by fi rst adding the Sine Wave.vi, located on the Analyze Æ Signal Processing
Æ Signal Generation palette, to the block diagram. Place this VI outside of the While
Loop, below the Init Audio function. At this point you should expand the size of the While
Loop to make more room for additional code. This is easily done by placing the mouse over
the While Loop and dragging down the lower handle until the loop is approximately the
same size as shown in Figure A.16. Move the mouse over the sinewave output of Sine
Wave.vi, and notice that the terminal has an orange color, denoting a fl oating-point data
type. Because the Blackfi n processor is a fi xed-point processor, we need to convert the
fl oating-point array of samples into a fi xed-point format, as explained in Chapter 6. To
accomplish this, place a To Word Integer VI, located on the Numeric Æ Conversion
palette, next to the sine wave output terminal and wire them together. Next, a wire between
the output of the conversion function to the border of the While Loop. What data type is
this wire?

You must now defi ne the signal parameters for the sinewave you want to generate. To
ensure that the sinewave generated is the appropriate number of samples, connect a wire
between the samples input of the Sine Wave.vi and the Half buffer size output of the
Init Audio.vi. Refer to Figure A.16 if you need help locating the terminals. Next, defi ne
the amplitude of the sinewave by right-clicking the amplitude terminal and selecting Create
Æ Constant from the shortcut menu. The amplitude has a default value of 1. Finally, we
need to defi ne the frequency of sinewave. From the Numeric palette, place two numeric
constants and a Divide function and wire the constants to the inputs of the Divide function.
Wire the output of the Divide function to the Frequency input terminal of the Sine Wave.
vi. The units that this VI uses for frequency are cycles/sample, which we will calculate by
dividing the desired sinewave frequency in Hz by the sampling frequency of our audio
system. Use 1000 for the desired frequency and 48000 for the sampling frequency. At this
point, the block diagram should look like Figure A.17.

Now that the sinewave generation is implemented, we need to add in the ability to play
the signal using the audio capabilities built into the Blackfi n EZ-KIT when the user holds
down a push button. Place an Initialize Array function from the Array palette below the
Sine Wave function and wire the dimension size terminal to the half buffer size output of

Figure A.16 Completed Sine Generator.vi block diagram

TEAM LinG

the Init Audio.vi. You can connect to the same wire that connects the Init Audio and
Sine Wave VIs. Create a constant for the element input and change it to 0 of I16 data type
by right-clicking on the constant and selecting Representation Æ I16. This creates an empty
array of the same size as the generated sinewave that we can use to output a silent signal
when the button is not pressed. Connect the output of the Initialize Array function to the
border of the While Loop.

Right-click the tunnel created on the While Loop border and select Replace with Shift
Register, then wire the left shift register to the right shift register . Next, we need
to determine if a button has been pushed. Place a BF is Button Pushed VI, located on the
Blackfi n Æ EZ-KIT Æ Button palette, inside the While Loop and select the instance
appropriate for the hardware from the pull-down menu. This VI will return a Boolean output
telling us if a particular button is currently being pressed. To choose which button to monitor,
create a constant on the button number input. Valid ranges are 1–4 for the BF537 EZ-KIT
and 4–7 for the BF533 EZ-KIT, corresponding to the PB and SW numbers of the buttons,
respectively. To choose which signal to output, add a Select function located on the Com-
parison palette and wire the button pushed output to the s input of the Select function.
Now, wire the f input of the Select function to the wire connecting the two shift registers
we just created, and wire the t input of the Select function to the converted sine array. Delete
the connections between the right and left audio channel outputs of the BF Audio Write-
Read.vi and the right shift registers . Finally, connect the output of the Select function
to the right shift registers for both the right channel and the left channel. The block diagram
is now complete, and should match Figure A.15.

Compile, download, and run the application on the Blackfi n processor and test the VI
by pressing the button you chose to monitor and listen for the generated sinewave to be output
on the audio out line of the Blackfi n EZ-KIT. Experiment with generating different sinewave
frequencies. Can you hear the difference? Why do most combinations parameters distort the
audio tone? Consider the combination of buffer size, sampling rate, and the frequency of the
sinewave. How would you modify the VI to remove this phenomenon?

Figure A.17 Sinewave generator—intermediate stage

A.3 Introduction to the LabVIEW Embedded Module for Blackfi n Processors 461

TEAM LinG

Appendix B

Useful Websites

This Appendix provides many useful websites that are related to the contents of
this book. A companion website, www.ntu.edu.sg\home\ewsgan\esp_book.htm, has
been set up by the authors to provide more information and latest updates on soft-
ware tools, installations of software, more hands-on exercises, solutions to selected
problems, and many useful teaching and learning aids for instructors and
students.

Websites Details

www.analog.com Analog Devices Inc. (ADI) main
 website
www.intel.com/design/msa/index.htm Intel’s MSA website
www.analog.com/processors/index.html Tools and resources website for
 ADI processors
www.analog.com/processors/blackfi n/index.html Blackfi n processor main website
www.analog.com/processors/universityProgram/ ADI university program
 includedproducts.html
www.analog.com/processors/blackfi n/ ADI Blackfi n processor manuals
 technicalLibrary/manuals/index.html
www.analog.com/processors/blackfi n/ ADI Blackfi n technical library
 technicalLibrary/index.html
www.analog.com/processors/blackfi n/ VisualDSP++ development
 evaluationDevelopment/blackfi n software trial download for
 ProcessorTestDrive.html Blackfi n processors
www.analog.com/ee-notes Application notes
http://forms.analog.com/Form_Pages/support/ DSP technical support
 dsp/dspSupport.asp
www.analog.com/salesdir/continent.asp DSP sales and distributors

462

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

Appendix B Useful Websites 463

Websites Details

www.analog.com/processors/technicalSupport/ ADI hardware anormalies
 ICanomalies.html
www.analog.com/BOLD Blackfi n online learning and
 development (BOLD)
www.analog.com/visualaudio VisualAduio algorithm
 development tool
Processor.support@analog.com Technical support email
www.ni.com National Instruments (NI) main
 website
www.ni.com/labview/blackfi n/ NI LabVIEW Embedded website
www.mathworks.com The Mathworks main website
www.bdti.com/products/reports_msa.html BDTI MSA report

TEAM LinG

Appendix C

List of Files Used in
Hands-On Experiments
and Exercises

This appendix lists all the experiment and exercise fi les used in this book. The
book is written in such a way that the main text of each chapter is supplemented
with examples, quizzes, exercises, hands-on experiments, and exercise problems.
These fi les are located in the directories:

c:\adsp\chap{x}\exp{x}_{no.}_<option> for Blackfin and
 LabVIEW
 experiments

c:\adsp\chap{x}\exercise{x}_{no.} for Blackfin and
 LabVIEW
 exercises

c:\adsp\chap{x}\MATLAB_ex{x} for MATLAB
 examples and
 exercises

where {x} indicates the chapter number and {no.} indicates the experiment
number; <option> states the BF533 or BF537 EZ-KIT. To reference these supple-
mentary fi les, we tabulate them as shown below.

464

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

Appendix C List of Files Used in Hands-On Experiments and Exercises 465

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 1 Experiment 1.1 — Explore VisualDSP++ — Blackfi n simulator
 environment
 Experiment 1.2 — Vector addition — Blackfi n simulator
 Experiment 1.3 — Graphic display — Blackfi n simulator
 Experiment 1.4 — Dot product in — LabVIEW
 LabVIEW Embedded
 Embedded

 2 Experiment 2.1 — Explore SPTool — MATLAB (SPTool)
 Experiment 2.2 — Moving-average fi lter — MATLAB (SPTool)
 in MATLAB
 Experiment 2.3 — Moving-average fi lter — Blackfi n simulator
 in Blackfi n simulator
 Experiment 2.4 — Moving-average fi lter — EZ-KIT
 in EZ-KIT
 Experiment 2.5 — Moving-average fi lter — LabVIEW
 in LabVIEW
 Experiment 2.6 — Moving-average fi lter — LabVIEW
 in LabVIEW Embedded
 Embedded +EZ-KIT
 Exercise 2.1 — Generate sine wave — MATLAB
 and compute SNR
 Exercise 2.2 — Import and display — MATLAB (SPTool)
 signals
 Exercise 2.3 — Moving-average fi lter — MATLAB (SPTool)
 exercises
 Exercise 2.4 — Filter design exercises — MATLAB (SPTool)
 Exercise 2.5 — Draw signal-fl ow
 graph
 Exercise 2.6 — Compare moving- — MATLAB
 average and median (SPTool)
 fi lters
 Exercise 2.7 — Filters to remove hum — MATLAB (SPTool)
 Exercise 2.8 — Filters to remove — MATLAB (SPTool)
 noisy speech signal
 Exercise 2.9 — Filters to remove — MATLAB (SPTool)
 noisy square wave
 Exercise 2.10 — Moving-average fi lter — Blackfi n simulator
 in Blackfi n simulator
 Exercise 2.11 — Moving-average fi lter — EZ-KIT
 in EZ-KIT

 3 Experiment 3.1 — Explore fi lter — MATLAB (FVTool)
 visualization tool
 Experiment 3.2 — Frequency analysis in — MATLAB (SPTool)
 SPTool
 Experiment 3.3 — Explore window — MATLAB
 visualization tool (WVTool)

TEAM LinG

466 Appendix C List of Files Used in Hands-On Experiments and Exercises

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Experiment 3.4 — Filtering and analysis — MATLAB (SPTool)
 in SPTool
 Experiment 3.5 — Notch fi lter to — MATLAB (SPTool)
 attenuate undesired
 tone
 Experiment 3.6 — Frequency analysis in — Blackfi n simulator
 Blackfi n simulator
 Experiment 3.7 — Real-time frequency — EZ-KIT
 analyzer
 Experiment 3.8 — Windowing on — LabVIEW
 frequency analysis
 Experiment 3.9 — Windowing on — LabVIEW
 frequency analysis Embedded
 using LabVIEW + EZ-KIT
 Embedded
 Exercise 3.1 — Exercises on
 z-transform
 Exercise 3.2 — Exercises on
 z-transform of fi lters
 Exercise 3.3 — Exercises on transfer
 function
 Exercise 3.4 — Direct-form I and II
 IIR fi lters
 Exercise 3.5 — Stability of IIR fi lters
 Exercise 3.6 — Relate IIR fi lter to
 moving-average fi lter
 Exercise 3.7 — Transfer function and — MATLAB
 frequency response
 Exercise 3.8 — Compute gain and — MATLAB
 magnitude response
 Exercise 3.9 — DFT exercises
 Exercise 3.10 — Magnitude response — MATLAB
 Exercise 3.11 — Plotting magnitude — MATLAB
 spectrum
 Exercise 3.12 — Spectrum viewer in — MATLAB (SPTool)
 SPTool
 Exercise 3.13 — Window analysis in — MATLAB
 WINTool (WINTool)
 Exercise 3.14 — Exercises on notch — MATLAB
 fi lter
 Exercise 3.15 — More exercises on — MATLAB
 notch fi lter
 Exercise 3.16 — Exercises on IIR fi lter — MATLAB
 Exercise 3.17 — Tone generation using — MATLAB
 IIR fi lter
 Exercise 3.18 — Spectrogram in — Blackfi n simulator
 Blackfi n simulator

TEAM LinG

Appendix C List of Files Used in Hands-On Experiments and Exercises 467

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Exercise 3.19 — Real-time frequency — EZ-KIT
 analysis in EZ-KIT

 4 Experiment 4.1 — Filter design using — MATLAB
 FDATool (FDATool)
 Experiment 4.2 — Design bandpass FIR — MATLAB
 fi lter and export to fi le (FDATool)
 Experiment 4.3 — Design bandstop IIR — MATLAB
 fi lter (FDATool)
 Experiment 4.4 — Adaptive line — Blackfi n simulator
 enhancer using
 Blackfi n simulator
 Experiment 4.5 — Adaptive line — EZ-KIT
 enhancer using
 EZ-KIT
 Experiment 4.6 — Adaptive line — LabVIEW
 enhancer using
 LabVIEW
 Experiment 4.7 — Adaptive line — LabVIEW
 enhancer using Embedded +
 LabVIEW Embedded EZ-KIT
 Exercise 4.1 — Determine fi lter types
 and cutoff frequencies
 Exercise 4.2 — Design fi lters using — MATLAB
 FDATool (FDATool)
 Exercise 4.3 — Signal-fl ow graph
 exercise
 Exercise 4.4 — Design FIR fi lters — MATLAB
 Exercise 4.5 — Design bandpass FIR — MATLAB
 fi lters (FDATool)
 Exercise 4.6 — Filter to enhance — MATLAB
 speech signal (FDATool)
 Exercise 4.7 — Frequency response — MATLAB
 of Chebyshev IIR
 fi lter
 Exercise 4.8 — Design other IIR — MATLAB
 fi lters using FDATool (FDATool)
 Exercise 4.9 — System identifi cation — MATLAB
 Exercise 4.10 — Adaptive line — MATLAB
 enhancer
 Exercise 4.11 — Effect of step size on — MATLAB
 adaptive fi lter
 Exercise 4.12 — Adaptive noise — MATLAB
 cancellation
 Exercise 4.13 — Adaptive line — Blackfi n simulator
 enhancer in Blackfi n
 simulator

TEAM LinG

468 Appendix C List of Files Used in Hands-On Experiments and Exercises

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Exercise 4.14 — Adaptive line — EZ-KIT
 enhancer in EZ-KIT

 5 Experiment 5.1 — Assembly — Blackfi n simulator
 programming and
 debugging in Blackfi n
 Experiment 5.2 — Circular buffering in — Blackfi n simulator
 assembly
 Experiment 5.3 — Arithmetic and — Blackfi n simulator
 logical shifting in
 assembly
 Experiment 5.4 — Create linker — Blackfi n simulator
 description fi le using
 Expert Linker
 Experiment 5.5 — Design 8-band — MATLAB
 graphic equalizer (FDATool)
 (FIR) in fl oating point
 Experiment 5.6 — Converting fl oating — MATLAB
 point coeffi cients to (FDATool)
 fi xed point
 Experiment 5.7 — Design graphic — Blackfi n simulator
 equalizer using
 Blackfi n simulator
 Experiment 5.8 — Implement graphic — EZ-KIT
 equalizer using
 EZ-KIT
 Experiment 5.9 — Creating a stand- — EZ-KIT
 alone graphic
 equalizer
 Experiment 5.10 — Implement graphic — LabVIEW
 equalizer using
 LabVIEW.
 Experiment 5.11 — Implement graphic — LabVIEW
 equalizer using Embedded +
 LabVIEW Embedded EZ-KIT
 Exercise 5.1 — Addition operations — Blackfi n simulator
 in simulator
 Exercise 5.2 — Multiply operations — Blackfi n simulator
 in simulator
 Exercise 5.3 — More exercises on — Blackfi n simulator
 graphic equalizer
 Exercise 5.4 — Predefi ned gain — Blackfi n simulator
 control in graphic
 equalizer

 6 Experiment 6.1 — Add/Subtract and — Blackfi n simulator
 saturation in Blackfi n

TEAM LinG

Appendix C List of Files Used in Hands-On Experiments and Exercises 469

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Experiment 6.2 — Multiplication in — Blackfi n simulator
 Blackfi n
 Experiment 6.3 — Using the guard bits — Blackfi n simulator
 of the accumulator
 Experiment 6.4 — FIR fi ltering using — Blackfi n simulator
 multiply-add
 instruction
 Experiment 6.5 — Truncation and — Blackfi n simulator
 rounding modes
 Experiment 6.6 — 32-Bit multiplication — Blackfi n simulator
 Experiment 6.7 — Quantization of signal — MATLAB
 Experiment 6.8 — Quantization of FIR — MATLAB
 fi lter’s coeffi cients (FDATool)
 Experiment 6.9 — Quantization of IIR — MATLAB
 fi lter (FDATool)
 Experiment 6.10 — Limit cycle in IIR — MATLAB
 fi lter
 Experiment 6.11 — Benchmarking using — EZ-KIT
 BTC
 Experiment 6.12 — Statistical profi ling — EZ-KIT
 Experiment 6.13 — Code and data size — EZ-KIT
 Experiment 6.14 — Designing 8-band — MATLAB
 graphic equalizer (FDATool)
 (IIR) in fl oating
 point
 Experiment 6.15 — Converting fl oating- — MATLAB
 point to fi xed-point (FDATool)
 coeffi cients
 Experiment 6.16 — Implementing fi xed- — Blackfi n simulator
 point 8-band graphic
 equalizer
 Experiment 6.17 — Real-time graphic — EZ-KIT
 equalizer
 Experiment 6.18 — IIR graphic equalizer — LabVIEW
 in LabVIEW
 Experiment 6.19 — IIR graphic equalizer — LabVIEW
 in LabVIEW Embedded +
 Embedded EZ-KIT
 Exercise 6.1 — Exercises on graphic — Blackfi n simulator
 equalizer
 Exercise 6.2 — Benchmarking real- — EZ-KIT
 time performance of
 graphic equalizer

 7 Experiment 7.1 — Confi guring CODEC — BF533 EZ-KIT
 Experiment 7.2 — TDM and I2S modes — BF533 EZ-KIT

TEAM LinG

470 Appendix C List of Files Used in Hands-On Experiments and Exercises

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Experiment 7.3 — 1D DMA setup — BF533 EZ-KIT
 (sample mode)
 Experiment 7.4 — 2D DMA setup — BF533 EZ-KIT
 (block mode)
 Experiment 7.5 — Memory DMA — Blackfi n simulator
 transfer
 Experiment 7.6 — Memory fi ll using — Blackfi n simulator
 DMA
 Experiment 7.7 — Locking of way in — Blackfi n simulator
 instruction cache
 Experiment 7.8 — Cache modes — EZ-KIT
 Experiment 7.9 — Signal generation — Blackfi n simulator
 using look-up table
 Experiment 7.10 — Real-time signal — EZ-KIT
 generation
 Experiment 7.11 — DTMF tone — LabVIEW
 generation using
 LabVIEW
 Experiment 7.12 — DTMF tone — LabVIEW
 generation using Embedded +
 LabVIEW Embedded EZ-KIT
 Exercise 7.1 — Ping-pong buffering — EZ-KIT
 Exercise 7.2 — Exercises on signal — Blackfi n simulator
 generation
 Exercise 7.3 — Exercises on — EZ-KIT
 realtime signal
 generation

 8 Experiment 8.1 — Index versus point — EZ-KIT
 style
 Experiment 8.2 — Benchmarking — EZ-KIT
 memory
 Experiment 8.3 — Using pragmas — EZ-KIT
 Experiment 8.4 — Using intrinsic — EZ-KIT
 functions
 Experiment 8.5 — Circular buffering — EZ-KIT
 Experiment 8.6 — Using DSP library — EZ-KIT
 functions
 Experiment 8.7 — Profi le-guided — EZ-KIT
 optimization
 Experiment 8.8 — Linear assembly code — EZ-KIT
 Experiment 8.9 — Using hardware loop — EZ-KIT
 in assembly
 Experiment 8.10 — With dual MACs — EZ-KIT
 Experiment 8.11 — With multi-issue — EZ-KIT
 instructions

TEAM LinG

Appendix C List of Files Used in Hands-On Experiments and Exercises 471

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Experiment 8.12 — With separate data — EZ-KIT
 sections
 Experiment 8.13 — With software — EZ-KIT
 pipelining
 Experiment 8.14 — Voltage-frequency — EZ-KIT
 scaling
 Experiment 8.15 — Decimation and — Blackfi n simulator
 interpolation
 Experiment 8.16 — Real-time decimator — EZ-KIT
 and interpolator
 Experiment 8.17 — Real-time signal — EZ-KIT
 mixing
 Experiment 8.18 — Sample rate — LabVIEW
 conversion in
 LabVIEW
 Experiment 8.19 — Sample rate — LabVIEW
 conversion in Embedded
 LabVIEW Embedded + EZ-KIT
 Exercise 8.1 — Enhancing software — EZ-KIT
 pipelining
 Exercise 8.2 — Examining the DSP — EZ-KIT
 library FIR function
 Exercise 8.3 — Benchmarking block — EZ-KIT
 size and fi lter length
 Exercise 8.4 — Exercise on sample — Blackfi n simulator
 rate conversion
 Exercise 8.5 — Exercise on real-time — EZ-KIT
 signal mixing

 9 Experiment 9.1 — Ogg Vorbis decoding — BF537 EZ-KIT
 Experiment 9.2 — 3D audio effects — EZ-KIT
 Experiment 9.3 — Reverberation effects — EZ-KIT
 Experiment 9.4 — MDCT/IMDCT in — LabVIEW
 LabVIEW
 Experiment 9.5 — Benchmark IMDCT — LabVIEW
 Embedded +
 EZ-KIT
 Exercise 9.1 — Bit rate computation
 Exercise 9.2 — Window type and — MATLAB
 length for audio (WINTool)
 coding
 Exercise 9.3 — Binaural spatializer — MATLAB
 Exercise 9.4 — Reverberation effects — MATLAB

10 Experiment 10.1 — Display image in — EZ-KIT
 VisualDSP++
 Experiment 10.2 — Color conversion — EZ-KIT

TEAM LinG

472 Appendix C List of Files Used in Hands-On Experiments and Exercises

Chapter Experiments/ Brief Description Platform Needed
 Exercises

 Experiment 10.3 — 2D DCT, quantization — EZ-KIT
 and 2D IDCT
 Experiment 10.4 — 2D image fi ltering — EZ-KIT
 Experiment 10.5 — Image enhancement — EZ-KIT
 Experiment 10.6 — Contrast adjustment — EZ-KIT
 Experiment 10.7 — Mathematical — LabVIEW
 operations for image
 in LabVIEW
 Experiment 10.8 — 2D convolution in — LabVIEW
 LabVIEW Embedded Embedded +
 EZ-KIT

TEAM LinG

Appendix D

Updates of Experiments Using
VisualDSP++ V4.5

With the recent release of VisualDSP++ V4.5, there are some minor changes to
the experiments listed in this book. This appendix lists the differences and necessary
changes required in the Blackfi n programming code from VisualDSP ++ V4.0
(described in this book) to VisualDSP++ V4.5.

• The Create LDF Wizard option is no longer available for the VisualDSP++
V4.5 for Blackfi n processor. In order to add .ldf fi le in an existing project,
open the existing project in VisualDSP++ V4.5. Click on Project → Project
Options . . . and navigate down in the left window to enable Add Startup
Code/LDF. Select Add an LDF and startup code and click OK. A new
.ldf fi le with the same fi lename as the project is generated. Double click on
the .ldf fi le to assign the memory section and settings as described in V4.0
(described in this book).

• For those programs that defi ne the DMA settings in the init.c fi le. Type
mismatch error is reported when building these projects in V4.5. The error
message is described as “A value of type “volatile unsigned
short *” can’t be assigned to an entity of type “void

*”. ” Simply add (void *) before the variable. For example: change
“pDMA1_START_ADDR = sDataBufferRx” to “pDMA1_START_ADDR
= (void*)sDataBufferRx”.

• When defi ning the size of the BTC channel in V4.5, it is necessary to add in
8 more words, for example, fract16 BTC_CHAN0[VECTOR_SIZE+8].
In V4.0, 4 more words are used instead.

• In V4.5, a new BTC library, libbtc532.dlb is located in directory c:\
Program Files\Analog Devices\VisualDSP 4.5\Blackfin\

lib. Please use this new library when building project that uses BTC under
V4.5.

473

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

TEAM LinG

• In V4.5, the default .ldf fi les is found in directory c:\Program Files\
Analog Devices\VisualDSP 4.5\Blackfin\ldf.

• In V4.5, the fl ash drivers (mentioned in Chapter 5) for BF533 and BF537
are located at directories c:\Program Files\Analog Devices\

VisualDSP 4.5\Blackfin\Examples \ADSP-BF533 EZ-Kit Lite\

Flash Programmer \BF533EzFlashDriver.dxe and c:\Program
Files\Analog Devices\VisualDSP 4.5\Blackfin\Examples\

ADSP-BF537 EZ-Kit Lite\Flash Programmer\BF537EzFlash-

Driver.dxe.

• In V4.5, the DSP library function (mentioned in Chapter 8) is now located at
directory c:\Program Files\Analog Devices\VisualDSP 4.5\
zBlackfin\lib\src\libdsp.

• In V4.5, the sample program on capturing and displaying image (mentioned
in Chapter 10) through the parallel port are listed in directories c:\Program
Files\Analog Devices\VisualDSP 4.5\Blackfin\Examples\

ADSP-BF533 EZ-Kit Lite\Video Input (C) and c:\Program
Files\Analog Devices\VisualDSP 4.5\Blackfin\Examples\

ADSP-BF533 EZ-Kit Lite\Video Output (ASM), respectively.

474 Appendix D Updates of Experiments Using VisualDSP++ V4.5

TEAM LinG

References

475

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

References on Digital
Signal Processing and
DSP Processors

 [1] J. G. Ackenhusen, Real-Time Signal
Processing: Design and
Implementation of Signal Processing
Systems, Upper Saddle River, NJ:
Prentice Hall, 1999.

 [2] N. Ahmed and T. Natarajan,
Discrete-Time Signals and Systems,
Englewood Cliffs, NJ: Prentice Hall,
1983.

 [3] A Bateman and W. Yates, Digital
Signal Processing Design, New York,
NY: Computer Science Press, 1989.

 [4] D. Grover and J. R. Deller,
Digital Signal Processing and the
Microcontroller, Upper Saddle River,
NJ: Prentice Hall, 1999.

 [5] D. Harliono and W. S. Gan,
Implementation of dynamic voltage
and frequency scaling on blackfi n
processors, in Proc. Int. Symp.
Intelligent Signal Processing and
Communication Systems, pp. 193–196,
2005.

 [6] S. Haykin, Adaptive Filter Theory,
4th Ed., Upper Saddle River, NJ:
Prentice Hall, 2002.

 [7] IEEE, IEEE standard for binary
fl oating-point arithmetic, IEEE
Standard 754-1985, pp. 1–17, 1985.

 [8] N. Kehtarnavaz and N. J. Kim,
Digital Signal Processing System-

Level Design Using LabVIEW,
Newness Publisher, 2005.

 [9] S. M. Kuo and D. R. Morgan, Active
Noise Control Systems—Algorithms
and DSP Implementations, New York,
NY: Wiley, 1996.

[10] S. M. Kuo, B. H. Lee, and W. S.
Tian, Real-Time Digital Signal
Processing, 2nd Edition, Chichester:
Wiley 2006.

[11] S. M. Kuo and W. S. Gan, Digital
Signal Processors—Architectures,
Implementations, and Applications,
Upper Saddle River, NJ: Prentice
Hall, 2005.

[12] S. M. Kuo and C. Chen,
Implementation of adaptive fi lters with
the TMS320C25 or the TMS320C30,
in Digital Signal Processing
Applications with the TMS320 Family,
Vol. 3, P. Papamichalis, ed.,
Englewood Cliffs, NJ: Prentice Hall,
1990. pp. 191–271, Chap. 7.

[13] P. Lapsley, J. Bier, and A. Shoham,
DSP Processor Fundamentals:
Architectures and Features, New York
NY: IEEE Press, 1999.

[14] J. H. McClellan, R. W. Schafer,
and M. A. Yoder, DSP First: A
Multimedia Approach, 2nd Ed.,
Englewood Cliffs, NJ: Prentice Hall,
1998.

[15] S. K. Mitra, Digital Signal
Processing: A Computer-Based
Approach, 2nd Ed., New York, NY:
McGraw-Hill, 2001.

TEAM LinG

476 References

[16] A. V. Oppenheim, R. W. Schafer,
and J. R Buck, Discrete-Time Signal
Processing, 2nd Ed., Upper Saddle
River, NJ: Prentice Hall, 1999.

[17] S. J. Orfanidis, Introduction to
Signal Processing, Englewood Cliffs,
NJ: Prentice Hall, 1996.

[18] P. Peebles, Probability, Random
Variables, and Random Signal
Principles, New York, NY: McGraw-
Hill, 1980.

[19] J. G. Proakis and D. G. Manolakis,
Digital Signal Processing—
Principles, Algorithms, and
Applications, 3rd Ed., Englewood
Cliffs, NJ: Prentice Hall,
1996.

[20] J. R. Treichler, C. R. Johnson, JR.,
and M. G. Larimore, Theory and
Design of Adaptive Filters, New York,
NY: Wiley, 1987.

[21] B. Widrow, J. R. Glover, J. M.
McCool, J. Kaunitz, C. S.
Williams, R. H. Hern, J. R.
Zeidler, E. Dong, and R. C.
Goodlin, Adaptive noise canceling:
principles and applications, Proc.
IEEE, vol. 63, pp. 1692–1716, Dec.
1975.

[22] B. Widrow and S. D. Stearns,
Adaptive Signal Processing,
Englewood Cliffs, NJ: Prentice Hall,
1985.

References from
Analog Devices

[23] Analog Devices Inc., ADSP-BF533
Blackfi n Processor Hardware
Reference Manual, Rev 3.1, May
2005.

[24] Analog Devices Inc., ADSP-BF537
Blackfi n Processor Hardware
Reference, Rev 2.0, Dec. 2005.

[25] Analog Devices Inc., ADSP-BF53x/
BF561 Blackfi n Processor

Programming Reference, Rev 1.1, Feb.
2006.

[26] Analog Devices Inc., ADSP-BF533:
Blackfi n® Embedded Processor Data
Sheet, Rev. C, May 2006.

[27] Analog Devices Inc., ADSP-BF537:
Blackfi n® Embedded Processor Data
Sheet, Rev. 0, April 2006.

[28] Analog Devices Inc., Blackfi n
Processor Instruction Set Reference,
Rev 3.0, June 2004.

[29] Analog Devices Inc., ADSP-BF533
EZ-KIT Lite Evaluation System
Manual, Rev 2.0, Jan. 2005.

[30] Analog Devices Inc., ADSP-BF537
EZ-KIT Lite Evaluation System
Manual, Rev 1.1, Aug. 2005.

[31] Analog Devices Inc., Getting Started
with Blackfi n Processors, Rev 2.0,
Sept. 2005.

[32] Analog Devices Inc., Getting Started
with ADSP-BF537 EZ-KIT Lite, Rev
1.0, Jan. 2005.

[33] Analog Devices Inc., VisualDSP++
4.0 User’s Guide, Rev 1.0, Jan.
2005.

[34] Analog Devices Inc., VisualDSP++
4.0 Getting Started Guide, Rev 1.0,
Jan. 2005.

[35] Analog Devices Inc., VisualDSP++
4.0 C/C++ Compiler and Library
Manual for Blackfi n Processors, Rev
3.0, Jan. 2005.

[36] Analog Devices Inc., VisualDSP++
4.0 Linker and Utilities Manual, Rev
1.0, Jan. 2005.

[37] Analog Devices Inc, VisualDSP++
4.0 Assembler and Preprocessor
Manual, Rev.1.0, Jan. 2005.

[38] Analog Devices Inc., Workshop
Manual for the Blackfi n
Processor: Innovative Architecture
for Embedded Media Processing,
June 2004.

[39] Analog Devices Inc., Guide to
Blackfi n® Processor LDF

TEAM LinG

References 477

Files, Application Notes EE-237,
2004.

[40] Analog Devices Inc, Fast fl oating-
point arithmetic emulation on the
blackfi n processor platform, Engineer
To Engineer Note, EE-185, 2003.

[41] Analog Devices Inc, AD1836A:
Multichannel 96 kHz CODEC, Rev. 0,
2003.

[42] Analog Devices Inc, Turning C source
code for the Blackfi n processor
compiler, Application Note, EE-149,
2003.

[43] D. Katz and R. Gentile, Embedded
Media Processing, Newnes Publisher,
2005.

[44] W. Kester, Mixed-Signal and DSP
Design Techniques, Newnes Publisher,
2004.

[45] D. Katz, T. Lukasiak and R.
Gentile, Enhance processor
performance in open-source
applications, Analog Dialogue, vol.
39, Feb. 2005.

[46] K. Singh, Using cache memory on
Blackfi n processors, Analog Devices
Application Note, EE-271, 2005.

[47] J. Tomarakos, and D. Ledger, Using
the low-cost, high performance,
ADSP-21065 digital signal processor
for digital audio applications, Analog
Devices Application Note, 12/4/98.

References from the
MathWorks

[48] MathWorks Inc., Getting Started with
MATLAB, Version 7, 2004.

[49] MathWorks, Inc., Signal Processing
Toolbox User’s Guide, Version 6, 2004.

[50] MathWorks, Inc., Filter Design
Toolbox User’s Guide, Version 3,
2004.

[51] MathWorks Inc., Image Processing
Toolbox User’s Guide, Version 5,
2006.

References from National
Instruments

[52] National Instruments, Getting Started
with the LabVIEW Embedded Module
for Analog Devices Blackfi n
Processors, Part Number: 371655A-
01, Version 1.0, Feb. 2006.

[53] National Instruments, LabVIEW
Embedded Module for Analog
Devices Blackfi n Processors, Part
Number:371656A-01, 324214A-01,
Version 1.0, Feb. 2006.

References on Audio
Signal Processing

[54] D. R. Begault, 3-D Sound for
Virtual Reality and Multimedia,
Boston, MA: Academic Press, 1994.

[55] J. Boley, A perceptual audio coder
(and decoder), article available from
http://www.perceptualentropy.com/
coder.html.

[56] M. Bosi, Introduction to Digital
Audio Coding and Standard, New
York, NY: Springer, 2002.

[57] M. Bosi, Audio coding: basic
principles and recent developments, in
Proc. 6th HC Int. Conf., 2003, pp. 1–17.

[58] W. G. Gardner, and K. D. Martin,
HRTF measurements of a KEMAR,
Journal of the Acoustical Society of
America, vol. 97, pp. 3907–3908,
1995. HRTF measurements and other
data fi les can be downloaded from
MIT Media Lab, http://sound.media.
mit.edu/KEMAR.html.

[59] A. Kosaka, H. Okuhata, T. Onoye,
and I. Shirakawa, Design of Ogg
Vorbis decoder system for embedded
platform, IEICE Trans.
Fundamentals, vol. E88, pp. 2124–
2130, Aug. 2005.

[60] E. Larsen and E. M. Aarts, Audio
Bandwidth Extension, New York, NY:
Wiley, 2004.

TEAM LinG

[61] E. Montnemery and J. Sandvall,
Ogg/Vorbis in Embedded Systems,
MS Thesis, Lunds Universitet, 2004.

[62] J. A. Moorer, About the reverberation
business, Computer Music Journal,
vol. 3, pp. 13–28, 1979.

[63] D. Pan, A tutorial on MPEG/audio
compression, IEEE Multimedia,
vol. 2, pp. 60–74, 1995.

[64] M. R. Schroeder, Digital simulation
of sound transmission in reverberant
spaces, Journal of the Acoustical
Society of America, vol. 47, pp. 424,
1970.

[65] B. Wesén, A DSP-based
decompressor unit for high-fi delity
MPEG-audio over TCP/IP networks,
1997; available on http://www.sparta.
lu.se/~bjorn/whitney/compress.
htm#Psychoacoustics

[66] D. T. Yang, C. Kyriakakis, and C. J.
Kuo, High-Fidelity Multichannel
Audio Coding, New York, NY:
Hindawi Publishing, 2004.

[67] E. Zwicker and H. Fastl,
Psychoacoustics-Facts and Models.
Springer-Verlag, 1999.

References on Image
Processing

[68] V. Bhaskaran and K.
Konstantinides, Image and Video
Compression Standards—Algorithm
and Architectures, Norwell. MA:
Kluwer Academic Publisher, 1997.

[69] T. Bose, Digital Signal and Image
Processing, Hoboken, NJ: Wiley,
2004.

[70] R. C. Gonzalez and R. E. Woods,
Digital Image Processing, 2nd Ed.
Upper Saddler River, NJ, Prentice
Hall, 2002.

[71] ITU-T.81, Information Technology—
Digital Compression and Coding of
Continuous-Tone Still Images—
Requirements and Guidelines, 1993.

[72] J. S. Lim, Two-dimensional Signal
and Image Processing, Englewood
Cliffs, NJ: Prentice Hall, 1990.

[73] J. W. Woods, Multidimensional
Signal, Image, and Video Processing
and Coding, Burlington, MA:
Academic Press, 2006.

TEAM LinG

Index

479

Embedded Signal Processing with the Micro Signal Architecture. By Woon-Seng Gan and
Sen M. Kuo
Copyright © 2007 John Wiley & Sons, Inc.

2’s complement, 194, 218
2D

DCT, 413, 416
DFT, 415
DMA, 293, 296, 298, 301
fi lter, 418, 420, 422
inverse DCT, 413
inverse DFT, 415
signal, 406

3D audio, 393, 396

A
Accumulator (ACC0, ACC1), 165, 170–174,

194–195, 224, 225, 244, 249
A/D converter (conversion), see analog-to-

digital converter
Adaptive

algorithm, 139
channel equalization, 148
fi lter, 139, 142
linear prediction (predictor), 146
line enhancer (ALE), 146, 151, 152, 155
noise cancellation, 147, 150
system identifi cation, 143

Adders, 34, 41, 63, 133, 166
Address pointer register (P0–P5), 174
Addressing modes, 163, 175, 176, 199
Advanced audio coding (AAC), 382
Algebraic syntax, 167
Aliasing, 27, 366, 371, 387
Allpass fi lter, 398
Amplitude spectrum, see magnitude

spectrum
Analog fi lter, 129
Analog-to-digital converter (ADC), 28, 52,

57, 151, 207, 236–239, 249, 251–252,
274–282, 321

Ancillary data, 390

Antialiasing fi lter, 274
Anti-symmetric, 43, 121, 122
Application specifi c integrated circuits

(ASIC), 4
Arithmetic and logic unit (ALU), 4, 166,

169–170, 224, 354
Arithmetic

data type, 338
precision, 7
shift, 167, 193–194, 341

ASCII (text) format, 30, 47, 127
Assembly

code optimization, 331, 357
instruction, 339
programming (code), 330–331, 349–357

Audio codec, 381
Autocorrelation function, 28

B
Background telemetry channel (BTC),

102–103, 190, 208, 256–257, 334, 365
Band-limited, 200
Bandpass fi lter, 39, 40, 48, 113, 118, 124,

126–127, 138, 147, 150, 200, 268,
387

Bandstop (band-reject) fi lter, 39, 48, 113,
114, 118, 124, 130, 137

Bandwidth, 6, 27, 71, 84, 87, 91, 96, 114,
275, 371

Bark, 384
Barrel shifter, 166, 167
Benchmark, 331, 334, 335, 338, 340, 342,

344–346, 351, 352, 358, 365, 370
Biased rounding, see rounding
Bilinear transform, 130
Binary

fi le, 30
point, see radix point

TEAM LinG

480 Index

Biquad, 66, 260–261, 345
Bit rate, 381, 382, 384, 386, 391–393
Blackfi n

EZ-KIT, 12, 52, 102, 152, 206, 211,
294–296, 312, 319, 331, 333–334, 338,
340, 342, 346, 351–356, 362, 365,
369–374, 391, 396, 399, 409, 412, 416,
422, 432

LabVIEW Embedded Module, 18,
54, 105, 155, 211, 266, 321, 371, 400,
433

Simulator, 8, 14, 50, 54, 98, 151, 189,
195, 202, 261, 317, 365

Blackman window, 84
Block

FIR fi lter, 256
fl oating-point, 235
processing, 250, 252–254, 256, 258,

294–296, 344–346, 364
Boot load, 210
Branch, 179, 181
Breakpoint, 11, 192, 225, 226, 319, 332
Buses, 165–166, 183, 188, 288, 303, 361
Butterworth fi lter, 130, 132, 138

C
Cache

hit, 305, 306, 309, 312
line, 305–312
memory, 2, 5, 164, 182, 185, 186,

303–317
miss, 305, 306–307, 309–310, 311–312

Cacheability and protection look-aside
buffer(CPLB), 313–315

Canonical form, 133, 135
Cascade form, 47, 65, 67, 133, 134, 260,

262, 264, 268, 368, 386, 398, 399
Causal, 42, 60, 66
C compiler, 189, 204, 231, 233, 330–333,

336–339, 346–347
CD player, 26, 382
Center frequency, 114, 124, 147
Channel bandwidth, 382
Channel equalization, 139, 148
Chebyshev fi lter, 132
Chirp signal, 138
Circular

buffer, 174, 177, 178, 192, 339, 341–342
pointer (index), 341–342

Coeffi cient quantization, 241–242, 249,
260

Coder/decoder (CODEC), 13, 52, 103,
188, 274–276, 281–282, 291–297, 369,
371

Color conversion, 407, 410
Comb fi lter, 71, 75, 398–399
Compiler optimization, 331–332
Complex-conjugate, 77, 78, 91, 133
Complex instruction set computer (CISC),

255
Contrast adjustment, 428
Convergence,

factor, see step size
speed, 140, 141

Code optimization, 330–332
Core clock (CCLK), 183, 255, 257–259,

293, 295, 303, 361–364
Critical band, 383
Crosstalk, 148
Cutoff frequency, 67, 113, 124, 132, 268,

366, 387
Cycle

accurate, 8
count, 12, 14, 54, 198, 208, 256–257,

295, 312, 334, 340, 345, 351, 353, 354,
357, 365, 370

registers (CYCLES,CYCLES2), 208,
226, 255, 257

Cyclic redundancy checksum (CRC), 390

D
D/A converter (conversion), see digital-to-

analog converter
Data

address generator (DAG), 174, 177, 186,
283

alignment, 336–338
register (R0 to R7), 166
type, 338, 340–341, 344

Debugger (debugging), 189–190, 195, 198,
209, 213

Decimation, fi lter, 366–369, 371–374
Decoding, 3, 382, 390–393
Delay, 146, 252, 254

unit, 34, 41, 61
(line) buffer, 41, 64, 264, 331, 334, 342,

344, 350, 355
Descriptor mode, 289–290

TEAM LinG

Index 481

Digital
fi lter, 31, 34, 36, 37, 54, 64, 75, 112,

115, 124, 129–130, 136, 139, 146, 203,
241

full scale (dBFS), 276, 280
frequency, 26, 28
image, 406
signal, 26–28, 33, 47, 60, 70, 76, 236,

238, 240, 275, 317, 382, 406
signal processors, 4, 227, 256,
signal processing (DSP), 1, 6, 25, 31, 33,

41, 52, 61, 76, 113, 133, 163, 166, 189,
225, 251, 255, 336, 343, 402

Digital-to-analog converter (DAC), 28, 52,
57, 207, 239, 249, 251–253, 274–282,
321

Direct form, 65–66, 118, 133–135, 137,
260, 387

Direct memory access (DMA), 164, 186,
187, 287–303, 304–305, 315–317, 338,
362–363, 364,

access bus (DAB), 184, 188, 288, 303
core bus (DCB), 184, 188, 288, 303
external bus (DEB), 184, 188, 288, 303

Discrete
cosine transform (DCT), 387, 401
Fourier transform (DFT), 76, 78, 83,

387
Discrete-time

Fourier transform (DTFT), 70
Signal (sample), 27, 237

Double (ping pong) buffer, 252–254, 258,
293

DTMF (dual-tone multi-frequency)
frequencies, 323
receiver (or decoder), 322–323, 325–326
generator (or encoder), 322–324, 326

Dual MAC, 173, 353, 354–357
Dynamic range, 219–221, 231, 234–236,

238–241, 245, 249

E
Edge frequency, 115, 117
Elliptic fi lter, 130, 132, 137, 260
Embedded

system, 1, 7, 112, 164, 217, 255, 330–331,
358, 360

signal processing (processor), 1, 6, 18,
57, 189, 199, 203, 217

Encoding, 382, 390, 392, 407
Energy consumption, see power

consumption
Equiripple fi lter, 127, 206
Erasable programmable ROM (EPROM),

184
Error surface, 140
Excess mean-square error (MSE), 142, 149
Expectation

operation, 140
value, see mean

Expert linker, 195–196
Expressions window, 198
External

access bus, 188–189
bus interface unit (EBIU), 184, 188

F
Fast Fourier transform (FFT), 78, 238, 254,

264, 319, 343, 369, 383, 388, 391,
400–402, 413

Filter
design and analysis tool (FDATool), 117,

126, 137, 201, 203, 241, 243, 249,
260–262

design functions, 124, 131
specifi cations, 113, 115
visualization tool (FVTool), 72

Filterbank, 386, 390
Finite impulse response, see FIR fi lter
Finite wordlength (precision) effects, 67,

120, 133–134, 141, 414
FIR fi lter, 37, 62, 64, 120, 122, 200, 202,

205, 207, 211, 213, 226, 230, 241–242,
245, 249, 256–258, 260, 266, 331,
333–336, 337–339, 340–342, 344–346,
350–357, 364, 365–367, 373, 393, 417,
420

First-in fi rst-out (FIFO), 283–284, 288,
297, 307

Fixed-point, 5, 7, 164, 166, 202–205, 217,
222, 229, 231, 235, 240–244, 249, 260,
261, 263

Flash, 3, 13, 183, 190, 209, 210
programmer, 210

Floating-point, 5, 7, 201–203, 217, 231–234,
240–244, 255, 261, 265

Folding frequency, see Nyquist frequency
Fourier series (window) method, 124

TEAM LinG

482 Index

Fractional
arithmetic, 339, 340,
number (value), 5, 173, 204, 218–220,

223, 231, 319, 339, 340–341
Frame pointer (FP), 174
Frequency

index, 76, 78, 83, 99, 402
masking, 385
resolution, 76, 78, 99, 255, 389
response, 61, 70, 106, 113, 121, 206,

208, 241, 245–246, 267, 390, 418,
424

voltage scaling, 258, 363–365
warping, 130

G
Gamma correction, 438
General-purpose inputs/outputs (GPIO),

188
Gradient, 141–142
Grayscale, 407, 410, 413, 422, 428, 434,

437
Graphic equalizer, 200–201, 205–207,

211–216, 260–270
Graphical

development environment, 18
user interface, 18, 25, 72, 84, 117

Group delay, 72, 74, 120, 369
Guard bits, 224, 225

H
Hanning fi lter, 38, 47, 61, 201
Hardware loop, 352–357
Head-related

transfer function, 393
impulse response, 393–396

Hertz, 26
High-pass fi lter, 113, 121, 201, 421,

422
Hilbert transformer, 121
Histogram, 428
Huffman code, 390

I
I2S, 275, 281–282
Ideal fi lter, 113
IIR Filters, 64, 69, 88, 92, 96, 129, 133,

241–243, 246–248, 260–269, 331, 345,
398–399

Image
compression, 413–416
enhancement, 422, 432

Impulse
function, 37
noise, 45, 46, 425
response, 37, 62, 64, 120, 243, 245–246,

260, 264–265 268, 387, 393, 398–399,
400, 418, 420

Impulse-invariant method, 129
Infi nite impulse response, see IIR fi lters
Inline, 332, 342–343
Input

clock (CLKIN), 361–362
output (I/O), 1, 5, 7, 13, 34, 37, 52, 62,

65, 68, 112, 121, 133, 164, 343, 359,
418

vector, 140
Instruction

fetch, 180, 182
load/store, 354, 356

Integrated development of debugging
environment (IDDE), 7, 9, 190, 195,
200, 314

Interpolation, fi lter, 366–369, 371–374
Interprocedural optimization, 332
Interrupt service routine (ISR), 180, 188,

256, 287, 294–295
Intersymbol interference, 148
Intrinsics, 330, 338, 339–341, 346
Inverse

MDCT, 388, 391, 400–403
discrete Fourier transform (IDFT), 77
z-transform, 60, 63

J
Joint Test Action Group (JTAG), 20, 108
JPEG, 408, 411, 413, 416

K
Kaiser window, 86–87, 389

L
L1 memory, see cache memory
L2 memory, 182, 184, 288
Laplace transform, 129,
Laplacian fi lter, 422, 436
Latency, 251–252
Leakage factor, 142

TEAM LinG

Index 483

Leaky LMS algorithm, 142, 146
Learning curve, 142, 149
Least-mean-square, see LMS algorithm
Least recently used (LRU), 307–309
Least signifi cant bit (LSB), 218, 223, 227,

236–237, 240
Limit cycle oscillation, 247–248
Line-fi ll buffer, 186, 307, 311
Linear

convolution, 41–43, 62, 121, 418
phase fi lter, 72, 120, 121
profi ling, see Profi ling
time-invariant, 45, 63, 112
system, 44, 135

Linearity (superposition), 44
Linker, 189, 195–196, 332

description fi le, 189, 195
Little endian, 175, 197
LMS algorithm, 141, 143, 151, 154, 155
Loader fi le, 209–210
Logical shift, 193–194
Look-up table, 317–318, 370, 390
Loop

bottom (LB0, LB1), 178, 181
counter (LC0, LC1), 178, 181
top (LT0, LT1), 178, 181
optimization, 333, 336, 356

Low-pass fi lter, 88, 113, 115, 121, 201, 241,
268, 274, 366, 387, 419, 422, 428,
436

M
MAC unit, see multiply-accumulate
Magnitude

distortion, 115
(amplitude) response, 70–71, 89, 91, 96,

108, 113, 115, 124, 126, 130, 132, 137,
201, 213, 241, 243, 245, 260, 262, 387,
419, 421

spectrum, 77–78, 84, 99–100, 103, 114,
238, 369

Mapping properties, 129
Marginally stable, 67
Maskee, 384
Masker, 384–385
Masking threshold, 383, 385
Mean, 28, 29, 237, 247,
Mean-square error (MSE), 140, 142, 439
Median fi lter, 46, 59, 426, 428

Memory
bank, 185, 310, 333, 337, 355
buffer, 36, 252, 254
map, 182, 195, 196, 197, 258, 355
mapped I/O, 184
mapped register (MMR), 188, 290, 314
management unit (MMU), 164, 313

Micro signal architecture (MSA), 4, 5, 163,
164

Microcontrollers, 4, 163, 165
Million instructions per second (MIPS),

255–256, 331, 345, 392
Million multiply accumulate computation

(MMAC), 255, 259, 358
Modifi ed

DCT (MDCT), 383, 386–389, 400–403
Harvard architecture, 182

Most signifi cant bit (MSB), 218–219, 230,
281, 284

Moving average fi lter, 26, 34, 45, 47, 49,
50, 52, 54, 63, 67, 70, 88, 418, 421,
426

Moving window, 37
MPEG, 382–383, 411, 413
MP3, 1, 381–383, 386, 390
MSE surface, see error surface
MSE time constant, 142
Multipliers, 4, 41, 34, 63, 13, 165–166, 170
Multiply-accumulate (MAC), 164, 171,

226–227, 230, 256, 331, 341, 342, 350,
356

N
Negative symmetry, see anti-symmetric
Noise, 26, 200, 213, 384, 393, 423, 425
Nonlinear fi lters, 45
Norm, 245–246
Normalized,

(digital) frequency, 28, 81, 124, 246
LMS algorithm, 141, 154
step size, 141

Notch fi lter, 91, 94, 114
Nyquist frequency, 27, 99, 121, 124,

318–319

O
Offl ine processing, 250, 251
Ogg Vorbis, 3, 381–383, 386, 391
Operand, 170, 174, 229, 231

TEAM LinG

484 Index

Oscillatory behavior, 67, 243
Overfl ow, 169, 222–225, 236, 244–247,

339, 422, 434
Oversampling, 275

P
Parallel

form, 135
instruction, 172, 349, 353–354, 357,
peripheral interface (PPI), 164, 188,

287–288
Parametric equalizer, 96
Partial-fraction expansion, 135
Passband, 96, 113, 115–116, 132, 201

ripple, 116, 260, 268
Peak

fi lter, 96
signal-to-noise ratio (PSNR), 439

Performance
(or cost) function, 140
surface, 140

Peripheral access bus (PAB), 188
Phase,

distortion, 72, 120
lock loop (PLL), 361–365
response (shift), 70, 243, 260
spectrum, 78

Pipeline, 180, 181, 268,
Pipeline viewer, 190, 215
Pixel, 406
Polar form, 61
Pole, 66, 67, 91, 96, 132, 134–135, 261
Pole-zero cancellation, 67
Positive symmetric, see symmetric
Power, 30

consumption, 5, 190, 231, 255, 258–259,
330, 358–360, 363

spectrum density (PSD), 82, 425
estimator, 111, 141
management, 2, 164, 258, 360, 362
mode, 361–363

Pragma, 333, 336–338
Probe wire, 20
Processing time, 67, 123, 252, 294–297,

331, 339, 391
Profi ler (profi ling), 190, 198–199, 209, 266,

295–296, 317, 331, 347
Profi le-guided optimization (PGO), 190,

346–349

Program
counter, 178–180, 193
execution pipeline, see pipeline
fetch pipeline, see pipeline
sequencer, 178, 180

Pseudo code, 331, 350, 356
Psychoacoustics, 383

model, 383, 386, 390
masking, 383

Pulse code modulated (PCM), 3, 282
Pulse-width modulated (PWM), 322

Q
Quadrature mirror fi lterbank (QMF), 387
Quantization,

effect, 67, 241
errors (noise), 236, 237, 240–242, 247,

249, 260–261, 275, 407
parameter, 201, 204, 242–243, 261
step (interval, resolution), 236–237

R
Radix-2 FFT, 79
Radix point, 218–220, 232
Random-access memory (RAM), 2, 315
Random signals, 28, 423
Read-only memory (ROM), 2, 183–184
Realization of

FIR fi lter, 41, 122
IIR fi lter, 65, 67, 133, 135

Real-time
application, 164
clock (RTC), 164, 187, 359–360, 363
constraint, 2, 250, 252, 253, 294, 304,

316, 332
embedded system, 6, 250, 254, 330,

364
Receive clock (RCLK), 276, 282, 286
Reconstruction fi lter, 274
Rectangular window, 84
Recursive algorithm, 37, 63, 67, 140
Reduce-instruction-set-computer (RISC), 5,

164, 255
Region of convergence, 60
Register, 12, 165–178, 179–182, 188,

191–195, 198, 208, 223–230, 244, 257,
276–280, 282–286, 289–293, 296–303,
309–310, 312–315, 350–351, 354,
361–365

TEAM LinG

Index 485

Release
build, 209
mode, 213

Repeat operation, 123, 177, 179, 226–227,
350

Resonator (peaking) fi lter, 114
Return

from interrupt (RTI), 180
from subroutine (RTS), 179

Reverberation, 398–400
RGB color, 407, 411
Rounding, 167, 170, 227–229, 236, 240,

244, 247–249
Run time library, 207, 264, 343–344, 346,

349, 357, 366

S
Sample-by-sample (or sample) processing,

250–252, 256, 294–295, 344–346
Sample rate conversion, 365, 369, 371
Sampling

frequency (rate), 26, 78, 99, 124, 200,
255–256, 275, 365–369, 371–373, 382,
386

period, 26, 61, 99, 122, 250–252, 255,
295

theorem, 27, 406
Saturation

arithmetic, 167, 339
error, 249
fl ag, 167
mode, 222, 247, 249, 341

Sawtooth wave, 317–321
Scaling factor, 77, 84, 220–221, 238,

245–246, 416
Scratchpad memory, 182, 187, 314, 317
Serial

peripheral interface (SPI), 164, 188, 281,
287, 288–289

port (SPORT), 164, 188, 276, 281–289,
291–294

Set-associative, 306, 310
Settling time, 113
Short-time Fourier transform, 81
Sigma-delta ADC, see analog-to-digital

converter
Signal

buffer, 64, 121–123, 133, 249, 260
generator, 317–322

Signal-to-quantization-noise ratio (SQNR),
238, 239, 245, 275, 382

Signal-to-noise ratio, 30, 36, 89, 382
Signal processing tool (SPTool), 31, 38, 82,

89, 94, 117, 127, 383
Sign bit, 193–194, 203–204, 218, 223, 225,

230, 232, 234, 235–236, 334
Sine window, 388
Sine wave, 26, 27, 106, 317, 318–321,

322–323, 401
Single instruction, multiple data (SIMD),

164
Sinusoidal

signal, see sine wave
steady-state response, 74

Smoothing fi lter, see low-pass fi lter
SNR, see signal-to-noise ratio
Sober fi lter, 421, 436
Software

loop, 350–351
pipelining, 356–357

Sound pressure level (SPL), 384
Spectral leakage, 84, 87
Speech, 1, 6, 26, 28, 48, 251, 366, 407
Square wave, 49, 83, 317–321, 322
s-plane, 129–130
Stability, 61, 120, 139, 140, 156, 241

condition, 66, 67, 136
Stack, 174, 176, 182, 187, 338
Stack pointer (SP), 174, 176, 192
Stall condition, 181
Standard deviation, 29
Static RAM (SRAM), 182, 185, 186, 257,

303–305, 307, 310
Statistical profi ling, see profi ling
Status registers, 229, 363
Steady-state response, 74, 246
Steepest descent, 140
Step size, 140, 141, 148, 152
Stochastic gradient algorithm, see LMS

algorithm
Stopband, 113–115

ripple (or attenuation), 116, 201, 260,
268, 389

Successive approximation, see analog-to-
digital converter

Sum of products, 12, 121
Superposition, 44
Symmetry, 43, 78, 121, 122

TEAM LinG

486 Index

Synchronous dynamic RAM (SDRAM),
13, 184, 363, 409

System
Clock (SCLK), 184, 187, 258, 284–287,

293, 361–364
gain, 70, 75, 245

T
Tag fi eld (address), 306, 307–309,

310–311
Tapped-delay line, see delay buffer
Temporal masking, 385
Threshold of hearing, 384, 385
Throughput, 167, 168, 173 181
Time delay, 72, 120
Time division multiplex (TDM), 275,

281–282
Timer, 164, 188
TMS320C55x, 391
Transmit clock (TCLK), 276, 283, 286
Transfer function, 62, 64, 66, 70, 91, 96,

112, 133, 136, 148, 398
Transfer rate, 7, 293
Transient response, 113
Transition band, 115, 132, 265
Transversal fi lter, see FIR fi lter
Truncation, 227–229, 236, 240, 244,

247–249
Twiddle factor, 77

U
Unbiased rounding, see rounding
Uniform distribution, 29, 432
Unit circle, 61, 70, 129, 136, 139, 242,

399
Unit-impulse function, 37
Universal asynchronous receiver transmitter

(UART), 164, 188, 287–288
Univeral serial bus (USB), 14, 20, 108, 207,

209, 211, 409

V
Variance, 28, 29, 237, 247, 423, 424
Victim buffer, 186, 311–312
Video instructions, 174, 339
Virtual instruments (VI), 18, 213, 325–326,

373
VisualDSP++, 7, 51, 98, 102, 109, 152, 154,

190–191, 222, 224, 229, 258, 261, 264,
266, 268, 299, 317, 331–332, 335, 339,
341–342, 344, 347, 369, 392, 409, 412,
417, 422, 428, 432

Kernel (VDK), 190
Voltage-controlled oscillator (VCO), 361
Voltage regulator, 259, 364
Vorbis window, 389

W
Watchdog timer, 167, 187
Weight vector, 140–142
Wiener fi lter, 424
Window design and analysis tool

(WINTool), 84
Window function, 83, 343, 388, 390, 420
Wordlength, 169, 227, 236, 238–239, 241,

249
Worst-case execution time (WCET), 364
Write

back, 311–313
through, 311–313

Y
YCbCr color spaces, 411, 412
YIQ color spaces, 410

Z
Zero, 66, 67, 91, 96
Zero-mean, 29, 151
Zero-overhead loop, 178, 181, 349
Z-plane, 31, 70, 94, 129, 130
Z-transform, 60, 62, 64, 70, 76, 129

TEAM LinG

