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Preface

Metals are constituents of vital proteins that drive numerous critical biochemical activi-
ties essential for life. In addition, metallic elements have become integral parts of human 
civilization by virtue of their diverse applications and utility throughout society.

For the purposes of human health, metals are classified as ‘essential’ (e.g. cal-
cium, magnesium, manganese, selenium, zinc, iron, and copper) or non-essential. 
Non-essential metals include nickel, hexavalent chromium, cadmium, and arsenic 
(the latter, in the strict sense, a metalloid, but referred here as a metal for practical 
purposes). Both essential and non-essential metals can occur naturally in the envi-
ronment or via diverse routes of exposure such as from personal products from 
agricultural, commercial, and industrial applications. Advances in metal research 
have also revealed that several essential metals can pose health threats at certain 
dietary concentrations. Recent research also shed light on the therapeutic role that 
metal-based drugs can play in a variety of disease conditions including cancer. 
Metals can also prove helpful for prevention of disease under different levels of 
dietary intake and/or through interactions with the internal environment of the host. 
Each chapter in this book describes underlying molecular mechanisms and gene 
pathways associated with one or more of these effects. In addition, consideration is 
given to the cross talk among these pathways as elucidating the multifarious bio-
logical role(s) of these metals is an active area of research.

Though there are a number of excellent books on metal biology and health, this 
book provides a multi-disciplinary and integrative look at the diverse molecular 
pathways of metals focusing on ‘essential and non-essential metals, carcinogenesis, 
prevention and chemotherapy’. The nine chapters, contributed by renowned experts 
across the globe, detail the mechanistic pathways involved in metal carcinogenesis 
from an inter-disciplinary perspective including cancer prevention and applications 
in chemotherapy.

We believe this book caters to the intellectual appetite of metal biologists relent-
lessly pursuing the myriad of research and risk assessment questions which remain.

North Carolina, USA� Anuradha Mudipalli 
Tuxedo, USA	 Judith T. Zelikoff 
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Chapter 1
Calcium Channels and Pumps: Importance 
During Lactation as Potential Targets 
for Breast Cancer

Gregory R. Monteith and Teneale A. Stewart

Abstract  The enrichment of milk with calcium is critical for the survival of mam-
mals after birth. The process of transfer of calcium ions from the maternal blood 
supply into milk occurs through mammary alveolar epithelial cells. Recent research 
has provided deep mechanistic insight into these processes with candidates for the 
critical pathways involved in calcium transport identified. These proteins include 
the store-operated Ca2+ entry component Orai1 (basolateral Ca2+ influx), the secre-
tory pathway Ca2+-ATPase isoform 2 (SPCA2, secretion of Ca2+), and the plasma 
membrane Ca2+-ATPase isoform 2 (PMCA2, apical membrane Ca2+ efflux). 
Increased expression of Orai1, SPCA2, and PMCA2 has also been identified in 
breast cancer cells; however, the remodeling of these targets often demonstrates 
selectivity for specific clinical and/or molecular subtypes. Silencing of these targets 
has identified roles for these proteins in the proliferation and/or migration of some 
breast cancer cell lines.

Keywords  ATPase • Calcium • Cancer • Channel • Epithelial • Lactation • 
Mammary • Milk • Pump
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Abbreviations

ADP	 Adenosine diphosphate
ATP	 Adenosine triphosphate
Ca2+	 Calcium
CaSR	 Calcium-sensing receptor
CYT	 Cytosolic
HER2	 Human epidermal growth factor receptor 2
IGF1R	 Insulin-like growth factor 1 receptor
IP3	 Inositol 1,4,5-trisphosphate
MCU	 Mitochondrial uniporter
mM	 Millimolar
NCLX	 Mitochondrial sodium calcium exchanger
NCX	 Na+/Ca2+ exchanger
nM	 Nanomolar
PMCA	 Plasma membrane Ca2+-ATPase
SERCA	 Sarco-/endoplasmic reticulum Ca2+-ATPase
SPCA	 Secretory pathway Ca2+-ATPase
STIM1	 Stromal interaction molecule 1
STIM2	 Stromal interaction molecule 2
TRP	 Transient receptor potential

1.1  �Introduction

The Ca2+ ion is a key regulator of a variety of cellular processes. The events that the 
Ca2+ ion can regulate include muscle contraction, neurotransmitter release, and gene 
transcription. The ubiquity of the Ca2+ signal has required the evolution of pathways 
that can differentially respond to the diversity of the nature of increases in cytosolic-
free Ca2+ ([Ca2+]CYT). This diversity in the nature of calcium signals is reflected in 
Fig. 1.1, where transient and sustained global increases in [Ca2+]CYT, [Ca2+]CYT oscil-
lations and highly localized increases in [Ca2+]CYT are all illustrated. These differen-
tial changes in [Ca2+]CYT can be decoded by the cell to achieve specific cellular 
events [1]. Examples include the ability of sustained elevations in [Ca2+]CYT to 
induce cell death [2], the regulation of gene transcription by the frequency of 
[Ca2+]CYT oscillations [3], and the relaxation of smooth muscle cells through highly 
localized Ca2+ changes just beneath the plasma membrane [4]. Arguably, calcium is 
perhaps best known for its importance in bone and teeth. The central role for cal-
cium in the body means that there are complex mechanisms to transport Ca2+ ions 
across cell membranes. Indeed, epithelial cells of the gastrointestinal tract have 
pathways to ensure the absorption of calcium from the diet [5], and those in the 
mammary gland are responsible for the enrichment of milk with calcium, which is 
essential for the growing infant [6].

G.R. Monteith and T.A. Stewart
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In this chapter we will focus on the mechanisms by which milk is enriched with 
calcium. We will also discuss evidence that some of the proteins important in this 
biological process and/or their related isoforms, which have unique expression pat-
terns and function in breast cancer tissue, have been proposed as novel targets for 
some breast cancer subtypes.

1.2  �Ca2+ Transport Mechanisms in Epithelial Cells

Epithelial cells line the lumen of a variety of organs, including those of the intestine 
and mammary gland. Epithelial cells are often polarized with a basolateral and api-
cal membrane. The transport of ions and molecules is a key capability of epithelial 
cells, and this transport is important in processes as diverse as the absorption of ions 
and nutrients from the diet, the reabsorption of ions in the kidney, to the transport of 
key components into milk. The calcium channels, pumps, and exchangers expressed 
by epithelial cells can vary significantly depending on the organ; Fig. 1.2 provides 
an overview of the general classes of proteins which are often present in epithelial 
cells and contribute to changes in Ca2+ across the membrane of organelles or the 
plasma membrane.

Like other mammalian cells, there is a maintained Ca2+ concentration gradient in 
epithelial cells (~1.8 mM extracellular free Ca2+ vs~100 nM intracellular free Ca2+). 
An active Ca2+ transport protein, the plasma membrane Ca2+-ATPase (PMCA), is 
critical in maintaining this Ca2+ gradient (Fig. 1.2). PMCAs extrude Ca2+ ions across 
the plasma membrane against a concentration gradient through energy derived from 
the cleavage of ATP [7]. PMCAs have been established as an important mechanism 
by which epithelial cells return to resting levels of [Ca2+]CYT. Such increases in 
[Ca2+]CYT can occur following the release of Ca2+ from endoplasmic reticulum Ca2+ 
stores via inositol 1,4,5-trisphosphate (IP3) sensitive ion channels after activation of 
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Fig. 1.1  Examples of the diverse nature of intracellular calcium signals in mammalian cells. 
Cytosolic free Ca2+ increases may be (a) transient (represented by the dotted line) or sustained 
(represented by the solid line), or (b) oscillatory in nature, (c) while others may be highly localized 
within the cytosol (represented by the shaded area). Adapted from [57–59]
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many G-protein-coupled receptors (Fig. 1.2) [8]. Exchangers, such as the Na+/Ca2+ 
exchanger (NCX), can also expel Ca2+ from cells through a secondary active trans-
port mechanism where the Na+ gradient can drive Ca2+ efflux [8]; however, the con-
tribution of NCX in epithelial cells seems to be less than in other cell types (e.g., 
cardiac cells and neurons).

Nucleus

Golgi apparatus

Mitochondria

Endoplasmic
reticulum

ATP ADP

Ca2+

PMCA

Ca2+

Orai

SPCA

ATP ADP

Ca2+

[Ca2+] ª 100 nM[Ca2+] ª 1.8 mM

STIMCa2+

TRP channel 
e.g. TRPV1

MCU

Ca2+

Cytosol

Ca2+
SERCA

Ca2+

IP3R

Ca2+

RYR

ATP
ADP

NCLX

Ca2+ Na+

Ca2+ Na+

NCX

Ca2+binding protein
        e.g. calmodulin

Ca2+

Purinergic receptor
e.g. P2X5

        VGCC
e.g. L-type

Ca2+

GPCR

PLC

PIP2IP3

α
β γGTP

Fig. 1.2  Diagrammatic overview of the general classes of calcium signaling and transporting 
proteins, including channels, channel activators, pumps, and exchangers, often present in mam-
malian epithelial cells, which contribute to the regulation of cytosolic or organellar Ca2+. Major 
classes of calcium influx channels include the transient receptor potential (TRP) family (e.g., 
TRPV1), and the Orai family of store-operated calcium influx channels, which are activated by 
STIM proteins in response to endoplasmic reticulum Ca2+ store emptying. Purinergic receptors 
(e.g., P2X5) and voltage-gated calcium channels (VGCCs) (e.g., L-type) may also regulate epithe-
lial cell calcium influx. Activation of certain G-protein-coupled receptors (GPCRs) at the plasma 
membrane leads to the generation of the second messenger inositol 1,4,5-triphosphate (IP3) via 
protein lipase C (PLC), which subsequently activates endoplasmic reticulum localized IP3 recep-
tors (IP3Rs) resulting in Ca2+ store emptying. Ryanodine receptor (RYR) activation also contributes 
to endoplasmic reticulum store emptying, while the sarco-/endoplasmic reticulum Ca2+-ATPase 
(SERCA) facilitates store refilling. The plasma membrane Ca2+-ATPase (PMCA) family and 
sodium calcium exchanger (NCX) represent major calcium efflux pathways. The secretory path-
way Ca2+-ATPase (SPCA) family and mitochondrial uniporter (MCU) and mitochondrial sodium 
calcium exchanger (NCLX) play key roles in Golgi and mitochondrial calcium regulation, respec-
tively. ADP adenosine diphosphate, ATP adenosine triphosphate, PIP2 phosphatidylinositol 
4,5-bisphosphate. Adapted from [8, 9, 12, 59]

G.R. Monteith and T.A. Stewart



5

Elevations in [Ca2+]CYT can also occur through the opening of Ca2+ channels of 
the plasma membrane. Plasma membrane-localized channels can be activated by 
changes in membrane potential (voltage-gated) or via specific ligands such as the 
hot chili component capsaicin (transient receptor potential V1 ion channel) or ATP 
(P2X receptors), while other channels are activated by the depletion of endoplasmic 
reticulum Ca2+ stores (e.g., Orai1) [9] (Fig. 1.2). In addition to PMCAs and NCXs 
of the plasma membrane, normal resting [Ca2+]CYT is returned in part through the 
sequestration of Ca2+ into the endoplasmic reticulum Ca2+ store via the sarco-/endo-
plasmic reticulum Ca2+-ATPase (SERCA) [10]. The secretory pathway (e.g., Golgi) 
also has active transport mechanisms for Ca2+ sequestration, namely, the secretory 
pathway Ca2+-ATPase (SPCA), which also efficiently transports Mn2+ ions [10]. The 
mitochondria is also equipped with a complex system for regulating Ca2+ levels, and 
these recently defined processes have been reviewed elsewhere [11].

1.3  �Lactation

The supply of nutrient- and energy-rich milk to growing infants is one of the defin-
ing features of mammalian development. The process of lactation requires signifi-
cant developmental changes in the human breast. Milk is a rich source of lactose, 
lipids, vitamins, and calcium [6]. The components of milk can vary widely between 
mammalian species. The calcium content in milk is often high in animals with a 
fast-growing skeletal system, for example, the total calcium content of milk from 
whales exceeds 60  mM, while the calcium content of human milk is less than 
10 mM [6].

The powerhouses of lactation in animals are the mammary gland epithelial cells. 
Milk components accumulate in the lumen of mammary alveolar epithelial cells, 
while contraction of the myoepithelial cells that form a mesh network around the 
alveoli leads to the movement of milk through the mammary duct system and eventual 
expulsion through the nipple [6, 12, 13]. The contraction of myoepithelial cells and 
the letdown process is triggered by oxytocin via suckling and even infant crying [14].

1.4  �Ca2+ Transport During Lactation

Seminal early work on calcium transport during lactation provided compelling evi-
dence that Ca2+ ions made their way into milk through direct transport across mam-
mary gland epithelial cells [15]. Early studies provided evidence that a significant 
proportion of calcium is present in casein micelles, implicating an important role for 
the secretory pathway. However, the molecular components responsible for enabling 
the total calcium levels in milk (10–400  mM, depending on the species) [6] to 
exceed the total calcium level in the maternal blood supply are only now being fully 
identified and characterized.

1  Calcium Channels and Pumps
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The free Ca2+ concentration gradients between the maternal blood supply 
(~1.8 mM), the cytosol of the mammary alveolar epithelial cell (~100 nM), and 
milk (>3 mM [6]) provide insights into the types of proteins involved at each critical 
stage of the enrichment of milk with calcium. The higher concentration of free Ca2+ 
in the maternal blood supply, compared to that in the cytosol of alveolar epithelial 
cells, creates a Ca2+ gradient whereby the opening of a Ca2+ permeable ion channel 
on the basolateral membrane of alveolar epithelial cells represents the most efficient 
Ca2+ entry mechanism. The detection of Ca2+ in casein micelles of milk implicates 
involvement of secretory pathway Ca2+ pumps [6, 12]. The presence of free Ca2+ 
ions in milk at a level significantly higher than that of the cytosol of mammary 
alveolar epithelial cells is indicative of a plasma membrane localized active Ca2+ 
transport mechanism. Below, we outline and discuss the likely molecular candidates 
for the key processes required for the enrichment of milk with calcium, these are (1) 
Ca2+ influx across the basolateral membrane of mammary alveolar epithelial cells, 
(2) Ca2+ secretion into milk, and (3) the efflux of Ca2+ ions across the apical mem-
brane of mammary alveolar epithelial cells into milk.

1.4.1  �Basolateral Ca2+ Influx in Mammary Epithelial Cells 
During Lactation

Although it represents the first step in the transfer of calcium ions from the maternal 
blood supply to milk, the ion channel responsible for this step has been elusive [6]. 
Given its high Ca2+ selectivity and its essential role in the absorption of dietary Ca2+ 
[16], the transient receptor potential ion channel family member TRPV6 was pro-
posed as a likely candidate. However, it now appears that the mammary gland 
engages a different mechanism. One pathway arguably uniquely suited to supplying 
Ca2+ influx during lactation is store-operated Ca2+ entry, a pathway activated upon 
depletion of Ca2+ stores, involving the Ca2+ channel component Orai1 and the endo-
plasmic reticulum Ca2+ sensor STIM1 [17] as depicted in Fig. 1.3. McAndrew et al. 
reported a significant increase in the mRNA levels of Orai1  in samples from the 
mouse mammary gland during lactation compared to samples isolated from nullipa-
rous, pregnant, and weaning mice [18]. In contrast there was no significant increase 
in the related isoforms Orai2 and Orai3 [18]. In mouse HC11 mammary gland epi-
thelial cells, differentiation to a lactation phenotype is associated with an increase in 
non-stimulated Ca2+ influx [19]. This augmented Ca2+ influx is eliminated by Orai1 
silencing [19]. Similarly, non-stimulated Ca2+ influx is reduced by Orai1 silencing 
in mouse SCp2 mammary epithelial cells [20].

The most direct evidence for a role for Orai1 in basolateral Ca2+ influx during 
lactation are recent studies using Orai1 null mice [21]. As expected, the mammary 
luminal epithelial cells from Orai1 null mice have significantly reduced store-
operated Ca2+ entry [21]. Moreover, milk produced by Orai1 null mice has less than 
50% total calcium compared to wild-type mice. This effect is not due to general 
changes in Ca2+ homeostasis in the mother or milk quality, as maternal serum Ca2+ 

G.R. Monteith and T.A. Stewart
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and milk protein levels were not significantly altered in Orai1 null mice compared 
with wild type [21]. This was further supported by the reduced calcium content in 
milk collected from mice where Orai1 knockdown was more targeted to the mam-
mary gland using an MMTV-Cre system [21]. The studies of Davis et al. also identi-
fied an unexpected and vital role for Orai1 in lactation [21]. This work identified 
Orai1 as the mechanism for [Ca2+]CYT oscillations and maintained contractions 
induced by oxytocin in mammary myoepithelial cells, the consequence of which 
was a reduced ability to expel milk in Orai1 null mice [21]. Collectively, the afore-
mentioned studies identify Orai1-mediated Ca2+ influx as the mechanism for both 
the basolateral Ca2+ influx step for Ca2+ entry from the maternal blood supply and 
the contraction of myoepithelial cells required for milk expulsion (Fig. 1.4). Further 
studies are now required to explore any potential differences between mammals in 
this pathway and how such differences could be related to the variation in milk cal-
cium levels seen between some species. It is also still unclear how Orai1 is activated 
during lactation, with a variety of candidates suggested based on expression, in vitro 
models or overexpression models.

Ca2+ ions

a

b

Orai1

Stim1

Endoplasmic
reticulum 

Extracellular
space 

CytosolPlasma
membrane 

Calcium store depletion

Fig. 1.3  Simplified overview of store-operated calcium entry. (a) At rest where calcium stores 
(i.e., endoplasmic reticulum) are replete, the store-operated calcium channel, Orai1, and calcium 
store sensor, STIM1, are found dispersed throughout the plasma and endoplasmic reticular mem-
branes, respectively. (b) Following calcium store depletion (e.g., in response to receptor activa-
tion), Orai1 and STIM1 become juxtaposed, enabling Orai1 channel activation by STIM1, resulting 
in calcium influx and subsequent store refilling. Adapted from [60–63]
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1.4.2  �Ca2+ Secretion from Mammary Epithelial Cells 
During Lactation

The presence of calcium in casein micelles in milk is consistent with an important 
role for the secretory pathway [6, 12] and hence points to a pivotal role for SPCAs 
in lactation. Indeed, until the studies of PMCAs in lactation (discussed below), it 
was predicted that the vast majority of calcium that was present in milk was obtained 
through the secretory pathway. Early studies of lactation identified an upregulation 
of the calcium pump now known as SPCA1 [22]. SPCA1 has a wide tissue distribu-
tion and is present in most cells. However, the more recently identified and less 
widely expressed SPCA2 isoform has been found to undergo greater increases in 
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Fig. 1.4  Diagrammatic representation of a mammary alveolar epithelial cell and myoepithelial 
cell indicating localization of specific calcium channels and pumps known to play a role in lacta-
tion. The plasma membrane Ca2+-ATPase 2 (PMCA2) and its splice variant PMCA2bw play a key 
role in regulating calcium flux across the apical membrane and the enrichment of milk with cal-
cium during lactation. The calcium channel Orai1 plays a dual role in lactation by facilitating 
basolateral calcium entry into mammary alveolar epithelial cells and playing a critical role in 
myoepithelial cell contraction, a requirement for efficient milk ejection. Expression studies sug-
gest that the secretory pathway Ca2+-ATPase 2 (SPCA2) contributes to the secretion of Ca2+ into 
milk. ADP adenosine diphosphate, ATP adenosine triphosphate. Adapted from [12, 21, 23, 26]
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expression in the mammary glands of mice during lactation [23]. SPCA2 expression 
is highly localized to mammary epithelial cells, whereas SPCA1 expression is pres-
ent in a variety of cell types in the mammary gland.

SPCA1 and SPCA2 levels undergo pronounced decreases in expression after 
cessation of milk production, and this downregulation has been proposed to contrib-
ute (in addition to the downregulation of PMCA2, discussed below) to a Ca2+-
dependent apoptosis cascade during mammary gland involution [24]. SPCA2 has 
also been linked to other roles in lactation beyond Ca2+ accumulation in the Golgi. 
The reported ability of fragments of SPCA2 to activate Orai1 calcium influx (the 
protein linked to store-operated Ca2+ influx) has been put forward as a potential 
novel mechanism to match the Ca2+ supply (Ca2+ influx) with demand (Ca2+ secre-
tion) in mammary gland epithelial cells. In this context, SPCA2 has also been 
reported to regulate Orai1 trafficking [20]. However, further work is required given 
the inconsistent results in different in vitro lactation models. It should also be noted 
that in addition to SPCAs, the temporal upregulation of expression of the Ca2+/H+ 
antiporter TMEM165 has been proposed as indicative of a role for this protein in 
calcium transport in the secretory pathway during lactation [25]. Further studies 
focused on TMEM165 are now warranted, as are studies of lactation in SPCA2(−/−) 
and SPCA1(−/+) mice and the role of SPCA2 in Orai1 trafficking and activity during 
lactation in vivo.

1.4.3  �Ca2+ Efflux from Mammary Epithelial Cells 
During Lactation

The identification of pronounced upregulation of the PMCA isoform PMCA2 dur-
ing lactation [22], and the reduced (~60%) Ca2+ content of milk from PMCA2 null 
mice [26], defined a role for direct Ca2+ efflux and specifically PMCA2 in lactation. 
PMCA2, up until this time, had been associated with very specific processes consis-
tent with its relatively restricted tissue distribution [27]. For example, PMCA2 null 
mice were associated with hearing and balance defects but were otherwise relatively 
healthy [28]. Links between PMCA2 and hearing were further strengthened by the 
association between a PMCA2 mutation and a type of hereditary deafness in humans 
[29]. The use of PMCA2 in mammary alveolar epithelial cells during lactation is 
again indicative of the specific Ca2+ transport demands during lactation. Indeed the 
PMCA2 splice variant identified in the mammary gland during lactation (PMCA2bw) 
is a particularly specialized variant [26].

The association between PMCA2 and the transport of Ca2+ during lactation has 
been explored in mouse cell culture models [30] and a human sample undergoing 
lactational change [31]. There is also evidence that the calcium-sensing receptor 
(CaSR) is a regulator of PMCA2, suggesting a mechanism by which the maternal 
Ca2+ levels (supply) may be sensed by the mammary gland and Ca2+ transfer to milk 
adjusted accordingly [30]. The downregulation of PMCA2 expression during wean-
ing is one of the key mechanisms by which mammary gland epithelial cells become 
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sensitive to apoptotic signals and undergo subsequent involution [32]. The recent 
identification of the sensitivity of PMCA2 expression during lactation to serotonin 
deficiency [33] provides compelling evidence that the role of PMCA2 in processes 
in the breast is dynamic and needs to be further investigated.

In summary, the last decade has seen a much clearer picture of the proteins 
responsible for calcium transfer from the maternal blood supply to milk for infant 
development (Fig. 1.4). The proteins used in this process are those which have pre-
viously been linked to the immune system (Orai1) and the nervous system (PMCA2) 
or had physiological roles which were poorly understood (SPCA2). The use of these 
proteins in lactation highlights the unique demands that lactation places on calcium 
transport.

1.5  �Breast Cancer

The introduction of hormone-based therapy and the advent of agents targeting the 
human epidermal growth factor receptor 2 (HER2) oncogene have resulted in breast 
cancer now having one of the best survival rates of all cancers. However, triple-
negative breast cancers, many of which overlap with the molecularly defined basal 
subtype, lack effective molecularly targeted therapies and are associated with treat-
ments with severe side effects and which often have poor long-term effectiveness. 
The recent identification of a number of triple-negative breast cancer molecular 
subtypes [34] suggests that this type of breast cancer may require a variety of spe-
cific therapies, rather than a “one size fits all” approach, and may continue to repre-
sent treatment challenges. In the text below, we outline some of the recent work that 
has identified proteins involved in Ca2+ transport during lactation as potential thera-
peutic targets in breast cancer.

1.6  �Ca2+ Signaling and Transport and Breast Cancer

The regulation of many of the defined hallmarks of cancer [35] by calcium signaling 
(e.g., proliferation, death, metastasis [36]), and the remodeling of calcium signaling 
and/or calcium channel or pump expression in specific cancers [37], has led to the 
proposal that specific Ca2+ channels and pumps may represent novel therapeutic 
targets [38, 39].

A variety of calcium channels and pumps have been reported to have alterations 
in breast cancer. Examples include TRPV6, where gene copy number is increased 
in estrogen receptor-negative breast cancers and whose silencing reduces the prolif-
eration of a breast cancer cell line with endogenously high levels of TRPV6 [40]. 
However, in this chapter we will focus on studies of Ca2+ transport proteins with 
roles in calcium transport during lactation. Proteins involved in lactation may rep-
resent unique ways to target proliferative breast cancer cells in patients. Indeed, 
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such an approach has been highlighted in the context of iodide transporters in breast 
cancer [41]. As outlined below, the proteins involved in Ca2+ transport during lacta-
tion have been identified as characterizing features of some breast cancer 
subtypes.

1.6.1  �ORAI1 and Breast Cancer

Silencing of Orai1 has been shown to reduce the proliferation and migration of 
human breast cancer cells in vitro [18, 42] and the growth and metastasis of human 
breast cancer in vivo [42, 43]. Pharmacological inhibition of store-operated Ca2+ 
entry using SKF96365 also inhibits the development of lung metastasis in a mouse 
breast cancer model where immune function is intact [42].

Some proteins involved in breast cancer metastasis may in part be due to effects 
on Orai1-mediated Ca2+ influx. Such an association is evidenced by studies of the 
ether-à-go-go (hEag1) K+ channel in triple-negative basal-like MDA-MB-231 breast 
cancer cells [44]. The activation of receptors linked to migration (e.g., PAR-2) pro-
duces Ca2+ influx that is Orai1 sensitive in breast cancer cell lines [18]. Other exam-
ples of this link include the pro-migratory effects of metalloprotease-cleaved 
CD95L in basal-like MDA-MB-468 breast cancer cells, which involves an Orai1-
mediated Ca2+ influx pathway [45]. Similarly the pro-migratory effect of cell 
surface-associated enolase-1 in MDA-MB-231 involves effects on Orai1-mediated 
Ca2+ influx [46].

Store-operated Ca2+ entry and specifically Orai1-mediated Ca2+ influx may be 
particularly important in basal breast cancers. This association goes beyond the 
aforementioned studies of Orai1 in triple-negative breast cancer cell lines such as 
MDA-MB-231. Orai1 mRNA levels are higher in basal vs non-basal breast cancers, 
and basal breast cancers are associated with a significant relationship between 
STIM1 and STIM2 (activators of Orai1) compared to other breast cancer molecular 
subtypes, with high levels of STIM1 relative to STIM2 [18]. Indeed, breast cancers 
with high levels of STIM1 relative to STIM2 levels are associated with a poorer 
prognosis [18]. The association between basal breast cancers and Orai1 was at first 
surprising given Orai1’s proposed role in basolateral Ca2+ influx in alveolar mam-
mary epithelial cells during lactation, which could suggest a more luminal breast 
cancer molecular subtype expression signature. However, the identification of Orai1 
as a key regulator of the contraction of myoepithelial cells during lactation [21] and 
the association between basal breast cancers and some features of myoepithelial 
cells [47] may in part explain the association between the Orai1 Ca2+ influx pathway 
and basal breast cancers. The potential link between Orai1-mediated Ca2+ influx and 
triple-negative breast cancers is mirrored somewhat by the association between 
Orai3 and estrogen receptor-positive breast cancer cells. Orai3 has enhanced protein 
expression in estrogen receptor-positive breast cancer cell lines compared to estro-
gen receptor-negative breast cancer cell lines and is regulated by the estrogen recep-
tor [48]. Moreover, store-operated Ca2+ entry in estrogen receptor-positive but not 
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estrogen receptor-negative breast cancer cell lines is sensitive to Orai3 silencing 
[49]. Collectively these results highlight the need for the full characterization of 
Orai isoforms (their expression, regulation, and role) in different breast cancer sub-
type models and in clinical samples.

1.6.2  �SPCA2 and Breast Cancer

SPCA2 represents the most recently identified P-type Ca2+-ATPase, and soon after 
the first studies of SPCA2 [50, 51] came the first report of its upregulation in the 
mammary gland during lactation in mice [23]. SPCA2 is overexpressed in some 
luminal-like breast cancer cell lines (such as MCF-7) and a subset of clinical breast 
cancer cells compared to matched normal surrounding tissue [43]. Elevated SPCA2 
mRNA levels appear to be most associated with the ERBB2 molecular phenotype 
and are not associated with the basal breast cancer molecular subtype. Silencing of 
SPCA2 reduces the proliferation and growth in soft agar of MCF-7 breast cancer 
cells [43]. Consistent with a pro-proliferative role for SPCA2, overexpression in the 
nonmalignant MCF-10A breast cell line promotes proliferation and growth in soft 
agar [43]. Silencing of SPCA2 also reduces the in vivo growth of MCF-7 cells [43]. 
In addition to these effects being potentially mediated by effects on Ca2+ levels 
within the Golgi, the pro-proliferative effects of SPCA2 when overexpressed appear 
to occur in part through a novel mechanism involving activation of Orai1-mediated 
Ca2+ influx (also linked to breast cancer cell proliferation) [43]. SPCA2 activation of 
Orai1 occurs independently of the endoplasmic reticulum Ca2+ store sensors STIM1 
and STIM2 and involves the direct interaction between the amino terminus of SPCA2 
with Orai1 [43]. It is interesting to note that the related isoform SPCA1 has been 
linked to the basal breast cancer molecular phenotype [52]. In this case, the antipro-
liferative effects of SPCA1 silencing in MDA-MB-231 triple-negative breast cancer 
cells are likely due to effects on the activity of Ca2+-dependent enzymes residing in 
the Golgi lumen. These enzymes include proprotein convertases, which regulate key 
proteins such as insulin-like growth factor 1 receptor (IGF1R) [52]. Collectively 
these studies suggest that some breast cancers are associated with a remodeling of 
SPCAs and that this may be an opportunity for future therapeutic intervention.

1.6.3  �PMCA2 and Breast Cancer

The first Ca2+ transporter associated with lactation that was assessed in breast cancer 
was PMCA2. PMCA2 was found in a number of breast cancer cell lines [53], with 
elevated levels in breast cancer cell lines assessed compared to nonmalignant breast 
cell lines [54]. PMCA2 is expressed in a significant proportion of breast cancers, with 
reports of either a significant increase or trend toward greater PMCA2 protein levels 
in HER2 (ERBB2)-positive breast cancers [31, 32]. However, elevated mRNA levels 

G.R. Monteith and T.A. Stewart



13

appear to be a feature of the basal molecular subtype [31]. Forced overexpression of 
PMCA2 in luminal T47D breast cancer cells increases their ability to recover from 
ionomycin-mediated increases in [Ca2+]CYT, reduces both ionomycin- and docetaxel-
induced cell death [32], and increases T47D growth in vivo [55]. PMCA2 silencing 
also reduces the proliferation of MDA-MB-231 cells and augments the anti-prolifer-
ative effects of low concentrations of doxorubicin [31]. The identification that PMCA2 
is a regulator of HER2 protein localization in breast cancer cells and the observation 
that MMTV-Neu mice (a model of Erbb2-induced mammary cancer) are less likely to 
develop tumors if they are null for PMCA2 [55] provide more compelling evidence 
that PMCA2 inhibitors could have therapeutic potential in some breast cancers.

Despite the promising signs for PMCA2 as a drug target or biomarker in breast 
cancer (which include the viability of PMCA2 knockout animals and the highly 
restricted tissue distribution of PMCA2 [28]), there are still some key issues that 
will need to be addressed over the next decade. Firstly, PMCA2 inhibitors could 
have effects on balance and hearing [28], which may require targeting of specific 
splice variants or the use of agents more directed toward breast cancer cells. The 
relationship between PMCA2 and prognosis appears complex and related to spe-
cific patient cohorts. This is exemplified by high levels of PMCA2 being associated 
with poor prognosis in women under 50 years of age [32], yet in women with the 
basal-like or claudin-low breast cancer subtype, high levels of PMCA2 are associ-
ated with better survival [31]. Another layer of complexity regarding the potential 
targeting of PMCA2  in breast cancer is found in the ability of overexpressed 
PMCA2 fragments to reduce the viability of MCF-7, MDA-MB-231, T47-D, and 
ZR-75-1 breast cancer cells [56]. Hence, more studies are required to provide 
insight into the role and mechanism of the contribution of PMCA2 in breast cancer 
progression and the most effective way to therapeutically target this protein.

1.7  �Summary

Over recent years the components responsible for the accumulation of calcium into 
milk have slowly been identified. The use of Orai1 and Pmca2 null mice have helped 
identify a role for these proteins in basolateral Ca2+ influx and apical membrane Ca2+ 
efflux, respectively. Expression studies also suggest that SPCA2 is a key mechanism 
for Ca2+ secretion into milk. Orai1, PMCA2, and SPCA2 have also been linked to 
breast cancer, but their contributions appear to be very different, and studies so far 
suggest that their roles may be more evident in particular breast cancer subtypes.
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Chapter 2
Tumor Development Through 
the Mg2+nifying Glass

Valentina Trapani and Federica I. Wolf

Abstract  The last decades have witnessed a greater appreciation of the importance 
of magnesium for human health, but the relationship between magnesium and can-
cer development remains controversial. Here we review the current knowledge on 
the cellular and molecular mechanisms that underlie the manifold effects of magne-
sium during tumor progression. A complex picture emerges where the positive con-
sequences of low magnesium availability on tumor growth seem to be counterbalanced 
by negative outcomes in the very early and late stages of tumorigenesis; a concurrent 
immune-inflammatory response appears to contribute throughout the natural history 
of a tumor. We also discuss the debated interaction between magnesium status and 
the response to therapy and the potential application of the TRPM7 magnesium 
channel as a prognostic marker and a therapeutic target. A deeper understanding of 
magnesium homeostasis through the interaction of fundamental and clinical 
researchers is key to develop new strategies of cancer prevention and treatment.

Keywords  Carcinogenesis • Cancer therapy • Inflammation • Magnesium • 
Metastasis • TRPM7 • Tumor progression

2.1  �Introduction

Magnesium (Mg) has been recognized as an essential element for all living beings 
for over a century. An enormous amount is known about Mg: its requirement as a 
nutrient in all species; its role in enzymatic processes; its unique function in all reac-
tions that depend on ATP and nucleotides, including phosphorylation; its structural 
role in tissues, proteins, and membranes; and its role in modulating intracellular 
metabolism [1]. Our knowledge on the role of Mg in biology has advanced rapidly, 
particularly in the past two decades, and now encompasses fields of knowledge 
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from nutrition to molecular biology. This has paralleled a deeper understanding of 
the importance of Mg for human health and disease.

Mg has an important physiological role in many tissues, and not surprisingly, 
disturbances of Mg homeostasis have been implicated in the pathophysiology of a 
variety of diseases [2]. The World Health Organization listed magnesium among the 
nutrients consumed in amounts low enough to be of concern [3]. In particular, this 
occurs in Western (or “Westernized”) countries, where a modest to mild hypomag-
nesemia is thought to be widespread [4], due to soil impoverishment, but also to 
extensive food processing, and the preference for calorie-rich, micronutrient-poor 
foods.

Among the major public health concerns worldwide is the continuing increase in 
the global burden of cancer, which in the first place results from an aging popula-
tion, but also from the adoption of cancer-causing lifestyles, including diet [5]. 
Several epidemiological studies have found an inverse correlation between magne-
sium intake and the incidence of some types of cancer (for a review, see [6]), and a 
recent meta-analysis confirmed that a high dietary magnesium intake could have 
protective effects against the overall risk of developing a cancer, in particular for 
colorectal cancer [7].

In the face of a consistent and growing body of epidemiological evidence, the 
role of magnesium in cancer biology and therapy is nonetheless highly debated. In 
this chapter, we will focus on the cellular and molecular mechanisms that underlie 
the manifold effects of magnesium on tumor development. We will explore in detail 
each stage of this multistep process, namely, initiation, growth at the primary site, 
and formation of distant metastases. This will serve a thorough discussion on the 
still controversial function of magnesium in the response to therapy and the poten-
tial clinical implications. Finally, we will review the newest findings on the involve-
ment of the TRPM7 cation channel, which seems to offer the best therapeutic and 
diagnostic potential at the moment.

2.2  �Magnesium and Carcinogenesis

The protective effect of Mg in the early stages of carcinogenesis can be carried out 
via two main mechanisms: (1) by affecting oxidative stress and consequent oxida-
tive DNA modifications that might lead to mutagenesis and (2) by affecting DNA 
repair mechanisms that maintain genomic stability [8].

The first lines of evidence that link low magnesium availability to increased oxi-
dative stress date back to the early 1990s. Since then only sparse in vitro investiga-
tions have directly shown that depletion of extracellular Mg affected the levels of 
intracellular reactive oxygen species [9]. We found indirect evidence by cDNA 
array analysis of genes modulated by changes in extracellular magnesium availabil-
ity [10]. Among these genes, some were involved in antioxidant defense. Of particu-
lar interest was an inverse relation between magnesium availability and expression/
activity of radical scavenger enzymes such as glutathione S-transferase (GST), 
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which is consistent with the notion that low magnesium availability induces a pro-
oxidant condition. Overall, however, in vitro studies provided conflicting results, 
suggesting that the cellular response to Mg deficiency could be highly dependent on 
cell type or on other ancillary determinants ([10] and references therein). On the 
other hand, numerous in vivo investigations have consistently reported indexes of 
oxidative stress in Mg-deficient animals: enhanced tissue, erythrocyte and lipopro-
tein peroxidation, oxidative modifications of proteins, reduced antioxidant status, 
and increased plasma nitric oxide ([11] and references therein). The current view is 
that the major origin of the oxidative stress in vivo is the inflammatory response 
triggered by Mg deficiency. After a few days on an Mg-deprived diet, rodents 
develop an intense inflammatory syndrome characterized by leukocyte and macro-
phage activation, release of pro-inflammatory cytokines and acute-phase proteins, 
and excessive production of free radicals [11]. The molecular bases for this phe-
nomenon are not completely understood, but several mechanisms have been pro-
posed. A possible explanation might lie in a reduced extracellular magnesium/
calcium antagonism as a result of decreased plasma magnesium concentration. 
NMDA receptors have a threshold of activation that is lowered when extracellular 
Mg levels decrease. In addition, magnesium binds to the regulatory gates of calcium 
channels and limits calcium influx into the cell. Therefore, conditions of low Mg 
availability will lead to an increase in calcium influx through NMDA receptors and 
calcium channels; in turn, this will result in increased production and/or release of 
inflammatory mediators and neurotransmitters such as substance P, which will 
amplify the response [12]. Another major event involved in the initiation of the 
inflammatory response due to Mg deficiency could be the activation of NFκB. The 
NFκB family consists of a group of inducible transcription factors implicated in the 
regulation of crucial steps of immune and inflammatory responses through regula-
tion of the gene expression of a large number of cytokines and other immune 
response genes [13]. Indeed, activation of NFκB in conditions of low Mg availabil-
ity has been shown in endothelial [14] and vascular smooth muscle cells [15]. Most 
importantly, a low Mg status has been clearly associated with increased inflamma-
tory stress in humans [16], and the inflammation-cancer connection is a well-estab-
lished paradigm [13]. Inflammation is involved both in the early and late stages of 
tumor development. We will discuss in the following sections the contribution of the 
low Mg-induced inflammation to the creation of a favorable milieu for tumor pro-
gression. Here, in the context of carcinogenesis, we underline that inflammatory 
mediators, some of which are direct mutagens, also directly or indirectly downregu-
late DNA repair pathways and cell cycle checkpoints, thus destabilizing cell genome 
and contributing to the accumulation of random genetic alterations [17].

In addition to the indirect inflammation-mediated effects on genome stability, 
Mg could also have a direct role in maintaining genome fidelity. Magnesium has 
dual effects on nucleic acids: it stabilizes their structure [18] and serves an essential 
cofactor in almost all enzymatic systems involved in DNA processing, as well as in 
nucleotide excision repair, base excision repair, and mismatch repair [19]. In prac-
tice, however, very few investigations have been designed to explore the effect(s) of 
Mg deficiency on DNA repair and tumorigenesis in cellular or in  vivo systems. 
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Among these, a case-control study found that low Mg dietary intake was associated 
with poorer DNA repair capacity in lymphocytes and increased risk of lung cancer 
[20]. Nonetheless, most of the current knowledge is limited to structure-activity 
determinants of the interaction of Mg with defined repair enzymes (for recent exam-
ples, see [21, 22]).

In conclusion, low Mg availability might contribute to carcinogenesis by differ-
ent mechanisms, all of which converge onto genome instability. In vivo and clinical 
studies suggest that this could be ascribed to the generalized inflammatory condi-
tion driven by Mg deficiency. However, it must be noted that even though low mag-
nesium determines inflammation and increases the levels of free radicals, which 
both generate genetic instability, it is more likely that a low Mg status only contrib-
utes to tumorigenesis by synergizing with other factors [23].

2.3  �Magnesium and Primary Tumor Growth

The relationship between magnesium and cell proliferation has been well estab-
lished since the 1970s, thanks to the seminal work by Harry Rubin, who postulated 
the theory of “the coordinated control of cell proliferation” and proposed Mg as the 
key factor that regulated the different steps of this complex process [24]. The molec-
ular determinants were not identified until the late 1990s and later. It was shown that 
low magnesium availability inhibits cell cycle progression leading to a G0/G1 arrest 
through the upregulation of p27 [25, 26], p21 [27, 28], and p16 [28]. Magnesium-
dependent growth arrest is reversible: upon reintroducing magnesium, the percent-
age of cells in S-phase increases, and the levels of cell cycle inhibitory proteins 
decrease, which leads to an increase in the proliferation rate [10]. Proliferating cells 
contain more magnesium than resting ones, and the required amount can be retrieved 
irrespectively of extracellular availability over a wide range of concentrations [29]. 
In other words, no proliferation can occur without an adequate magnesium supply.

Extracellular Mg availability is likely to affect progression through the cell cycle 
by determining sizeable modifications of intracellular Mg pools that might alter 
Mg-dependent enzymatic activities. Rubin proposed that mTOR (mammalian target 
of rapamycin), a PI3K (phosphoinositide 3-kinase)-related kinase which initiates 
protein synthesis, might be the key activity modulating G1-phase protein synthesis, 
based on biochemical characteristics [30]. Since Mg-ATP2− is the only active form 
of ATP, the limiting step of mTOR-specific kinase reaction would be the full avail-
ability of Mg to form Mg-ATP2− at a concentration close to its Km for ATP, i.e., 
1  mmol/L [30]. Amazingly, more recent research findings support the view that 
extracellular magnesium availability is sensed and transduced into cell proliferative 
behavior by transporter molecules and that mTOR could be the magnesium-sensitive 
key regulator of protein synthesis associated with proliferative signals. In particular, 
the transient receptor potential melastatin type 7 (TRPM7) channel has been identi-
fied as the gatekeeper of cellular Mg homeostasis and has been shown to be essen-
tial for cell viability and growth [31]. Most relevantly to the present discussion, 
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TRPM7 is important for cell cycle progression during G1 phase [32], and TRPM7-
mediated Mg2+ influx seems to be associated to receptor-mediated mitogenic signal-
ing along the PI3K/Akt/mTOR protein translation cascade [33, 34].

The absolute requirement of Mg for cell proliferation seems to imply that highly 
proliferating tumor cells should be extremely avid for their Mg supply. Indeed, 
tumor cells have a higher intracellular magnesium content; however, they are more 
refractory to the growth inhibition induced by low Mg availability in comparison 
with normal cells [8, 23]. This apparent contradiction can be reconciled by increas-
ing experimental evidence showing that overexpression of TRPM7 is a common 
feature shared by several types of cancer and has an involvement in tumor develop-
ment and progression, as we will discuss in the dedicated section.

The role of magnesium in tumor growth is probably not confined just to the regu-
lation of cell proliferation, but might also be linked to cancer metabolic reprogram-
ming. The importance of metabolic alterations in proliferating tumor cells was first 
described by Otto Warburg in the 1920s [35] and has been lately reappraised [36]. 
Tumor cells display a high glucose consumption through the glycolytic pathway, 
even in the presence of oxygen (aerobic glycolysis), which results in increased lac-
tate production leading to acidification. Indeed, all dividing cells consume far more 
glucose than resting ones, as glycolysis provides extremely rapid ATP synthesis 
compared with oxidative phosphorylation, in spite of lower efficiency. Notably, 
most of the enzymes involved in glycolysis, the Krebs cycle, and the respiratory 
chain depend on magnesium as either an allosteric modulator or a cofactor [9]. An 
association between glucose transport and Mg fluxes across the cell membrane was 
suggested in early reports [1], and the underlying molecular mechanisms have been 
recently reviewed [37]. Alterations in tumor metabolism, referred to as “metabolic 
reprogramming,” address not only the need for rapid energy generation but also two 
other equally important needs: (1) increased biosynthesis of macromolecules and 
(2) tightened maintenance of appropriate cellular redox status [36]. Interestingly, 
aerobic glycolysis is associated with massive de novo expansion of the adenine 
nucleotide pool, resulting in generation of new molecules of ADP, each of which 
requires a new Mg2+ ion to be taken up from the extracellular milieu. Indeed, Mg 
uptake has been linked to metabolic transitions occurring in lymphocytes switching 
from a quiescent state to activation via PI3K/Akt/mTOR-dependent growth signal-
ing [33, 34]. It is intriguing to speculate that the same metabolic transitions associ-
ated with rapid proliferation might occur during malignant transformation. 
Furthermore, as we discussed in the previous section, magnesium might contribute 
to the maintenance of a proper redox balance.

A comprehensive overview of the role of Mg in tumor biology must nonetheless 
consider that a growing tumor is not simply a mass of proliferating tumor cells. 
Over the past decade, tumors have increasingly been recognized as organs whose 
complexity approaches and may even exceed that of normal healthy tissues. They 
are composed of multiple distinct cell types that participate in heterotypic interac-
tions with one another. Therefore, the biology of a tumor can only be understood by 
studying the individual specialized cell types within it, as well as the tumor micro-
environment that they construct during the course of multistep tumorigenesis [38]. 
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It is therefore worth noting that magnesium availability can modulate the functions 
of a variety of normal cells present in the tumor microenvironment. In particular, 
endothelial cells cultured in low magnesium release higher amounts of matrix 
metalloproteases (MMPs) and growth factors [14]. Similar results were obtained in 
cultured human fibroblasts [39]. In addition, low magnesium promotes endothelial 
and fibroblast senescence [39], and senescent cells can modify the tissue environ-
ment in a way that synergizes with oncogenic mutations to promote the progression 
of cancers [40]. On the other hand, however, one of the first needs that an enlarging 
tumor must address is the provision of nutrients and oxygen, as well as an ability to 
evacuate metabolic wastes and carbon dioxide, via induction of neo-angiogenesis, 
which is mainly carried out by microvascular endothelial cells. Low extracellular 
magnesium impairs acquisition of the angiogenic phenotype by microvascular 
endothelial cells, as it retards their proliferation, migration, and differentiation, 
without affecting MMP production and 3D organization [41]. Moreover, it has been 
shown that low Mg suppresses cellular response to hypoxia [42], which is a recog-
nized hallmark of cancer modulating angiogenesis as well as metabolic reprogram-
ming [43].

Keeping in mind these premises, it could be envisaged that overall magnesium 
availability should correlate with the rate of tumor growth also in  vivo. Indeed, 
Mg-deficient mice exhibited a striking 60% reduction in the growth of primary 
tumors in comparison with Mg-sufficient controls, which was reversed by reintro-
duction of Mg in the diet [44]. These experiments provided persuasive evidence that 
low magnesium availability does inhibit tumor growth in vivo; further investiga-
tions indicated that inhibition of tumor growth was accompanied by a decreased 
number of tumor vessels and an increased oxidative damage to DNA [45]. Such 
findings fit well with the role of Mg as a key regulator of cell proliferation, redox 
balance, and angiogenic switch, as emerged from in vitro studies. However, as dis-
cussed in the previous section, hypomagnesemia in rodents is always accompanied 
by leukocytosis and other markers of systemic inflammation [11], and it cannot be 
ruled out that such inflammatory condition could contribute to the overall inhibition 
of tumor growth.

2.4  �Magnesium and Tumor Metastasis

Both in vitro and in vivo data concur to delineate a sound picture in which magne-
sium promotes tumor growth, in line with its well-established role in modulating 
cell proliferation. Unexpectedly, the same animal studies drew attention to an alarm-
ing twist in the story: in spite of the smaller size of primary tumors and the low 
degree of neovascularization therein, mice on a low magnesium diet developed far 
more lung metastases than controls [44]. The multistep process of invasion and 
metastasis envisions a succession of events, beginning with local invasion, then 
intravasation by cancer cells into nearby blood and lymphatic vessels, transit of 
cancer cells through the lymphatic and hematogenous systems, followed by escape 
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of cancer cells from the lumina of such vessels into the parenchyma of distant tis-
sues (extravasation), the formation of small nodules of cancer cells (micrometasta-
ses), and finally the growth of micrometastatic lesions into macroscopic tumors, this 
last step being termed “colonization” [38]. Of note, magnesium deficiency triggers 
expression of several proteases both in the tumor [45] and the vasculature [46]. For 
example, low Mg conditions induce a marked increase in the total amounts and 
activity of MMP-2 and MMP-9 in endothelial cells [46]. These enzymes are able to 
degrade the matrix network and create tiny holes in the basal membrane and inter-
stitial stroma that allow the cells to migrate. Thus, low magnesium availability lays 
the requisites for an improved migration of tumor cells in the surrounding environ-
ment, by promoting local invasion and intravasation. Once in the bloodstream, 
tumor cells must interact with the endothelium of target organs before they extrava-
sate and grow. In the previous sections, we have already recalled the occurrence of 
an intense inflammatory response in Mg-deficient rodents [11] and the contribution 
of such condition to the initiation and growth of the primary tumor. Inflammation 
could also foster further cancer progression, due to the presence of inflammatory 
cells and mediators, forging the tumor microenvironment [13]. Tumor necrosis fac-
tor (TNF) α, interleukins (IL) 1 and 6, all induced under magnesium deprivation 
[11], augment the capacity of cancer cells to metastasize [13]. Lungs from mice on 
a magnesium-deficient diet exhibited upregulation of several genes of the inflamma-
tory response [47]. With particular regard to extravasation, both micro- and macro-
vascular endothelial cells cultured in low magnesium were found to upregulate 
vascular cell adhesion molecules (VCAMs) [27], which can facilitate the tethering 
of metastatic cells to the vessel wall, and their subsequent transmigration to and 
colonization of the adjacent tissues.

On a biochemical note, it should be kept in mind that magnesium ion is essential 
for the activity of countless enzymes and proteins. A possible link between low 
magnesium and metastasization is suggested by the absolute requirement of Mg for 
the function of the metastasis suppressor gene product NM23-H1 [48]. 
Hypomagnesemia might therefore mimic what happens in NM23-H1 knockout 
mice, which show accelerated and massive lung metastasis [49].

An intriguing association has been recently found between phosphatase of regen-
erating liver protein tyrosine phosphatase 2 (PRL-2) and the magnesium transporter 
CNNM3; a functional heterodimer of the two proteins seems to be involved in the 
regulation of intracellular magnesium homeostasis and the promotion of oncogen-
esis [50]. PRL tyrosine phosphatases are known to promote invasion and motility 
via modulation of rho family GTPases [51]. In particular, expression levels of 
PRL-2 correlate with tumor progression, being markedly elevated in metastatic 
lymph nodes compared with primary tumors [52]. Since PRL-2 expression is 
inversely regulated by dietary Mg levels [53], it can be hypothesized that low Mg 
conditions may boost metastatic potential by upregulating PRL-2.

In conclusion, while the near future could provide further molecular details link-
ing magnesium to tumor progression, the current state of the art delineates a com-
plex picture where the positive consequences of a low Mg availability (i.e., inhibition 
of primary tumor growth and neo-angiogenesis) seem to be counterbalanced by 
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negative outcomes in the very early and late stages of tumorigenesis (i.e., tumor 
initiation and stimulation of invasion and metastasis formation). The immune-
inflammatory response that complicates Mg deficiency appears as a recurrent theme 
playing throughout the natural history of a tumor, as demonstrated by animal studies 
and confirmed by clinical findings.

2.5  �Magnesium and Cancer Therapy

In the face of extensive in vitro and in vivo investigations on the role of Mg in tumor 
development, there is still very little information on this relationship in clinical set-
tings. In particular, because of the avidity of rapidly proliferating cells for Mg, it is 
often assumed that tumor growth can alter systemic Mg availability in a patient. 
Indeed, some reports showed that serum Mg concentrations are decreased in patients 
with solid tumors and that such decrease correlates to the stage of malignancy [54, 
55]. More relevantly, compelling evidence is accumulating that diverse therapeutic 
agents can affect serum Mg levels, but it is not clear whether and how treatment-
associated changes of magnesemia may influence tumor growth and dissemination. 
This is not a trivial point, as it raises a clinical dilemma circa the opportunity of 
correcting or not hypomagnesemia in cancer patients [56].

Body Mg balance can be disturbed by a broad variety of drugs, which can poten-
tially lead to symptomatic hypomagnesemia with tetany, seizures, and cardiac 
arrhythmias [57]. Among anticancer drugs, the widely used cisplatin has long been 
known to cause severe hypomagnesemia, due to its nephrotoxic effect, which results 
in renal magnesium wasting [58]. More recently, hypomagnesemia has also been 
found to occur in patients treated with the anti-epidermal growth factor receptor 
(EGFR) monoclonal antibody cetuximab, with a severity proportional to the dose 
and the duration of treatment [58]. In contrast to cisplatin, cetuximab impairs renal 
Mg reabsorption with no evident tubular damage. Cetuximab-induced Mg wasting 
is instead due to a specific molecular cross talk between EGF and the transient 
receptor potential melastatin TRPM 6 channel that plays a key role in Mg reabsorp-
tion in the distal convoluted tubule [59]. TRPM6 activity is increased upon binding 
of EGF to EGFR; thus, inhibition of EGFR activation by cetuximab results in 
decreased Mg uptake [60]. Panitumumab, which also targets the extracellular ligand 
binding domain of the EGFR, induces hypomagnesemia as well [61]. To date there 
are no reports of hypomagnesemia in patients treated with inhibitors of the intracel-
lular tyrosine kinase domain of the EGFR (such as erlotinib and gefitinib). However, 
a couple of animal studies have indicated that erlotinib may have a small effect on 
serum Mg levels [62, 63].

The effects of cisplatin or EGFR inhibitors on systemic Mg availability upturned 
the existing view, showing that treatment-related hypomagnesemia is caused by 
pharmacologic disturbances of Mg reabsorption rather than by magnesium seques-
tration and metabolic utilization by the tumor. Since tumor growth and Mg avail-
ability seem to be so strictly interdependent, we are confronted with an unavoidable 
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catch-22: should hypomagnesemia be corrected by appropriate supplementation to 
alleviate severe symptoms, or should it be considered an important factor contrib-
uting to the anticancer action of chemotherapeutics and as such tolerated? A pos-
sible association between hypomagnesemia and cetuximab efficacy was indeed 
proposed in advanced colorectal cancer patients. It was found that patients show-
ing an early ≥20% decrease in serum Mg levels during treatment with cetuximab 
plus irinotecan displayed longer median time to progression and overall survival 
compared to patients with a lower reduction in serum Mg [64]. These findings 
were confirmed in a cohort of patients selected for wild-type KRAS status, but 
stratified for a ≥50% decrease in serum Mg levels [65], and collectively led to the 
proposal that hypomagnesemia could be employed as an easy and inexpensive 
biomarker of efficacy and outcome for cetuximab therapy. However, this assump-
tion has been challenged by following reports, in which higher grade of hypomag-
nesemia during cetuximab monotherapy seemed to predict worse survival in a 
much larger group of patients [66]. Regardless of the potential application of hypo-
magnesemia as a prognostic marker, clinical studies do not address the fundamen-
tal question as to whether reduced serum Mg levels have a causal implication in the 
progression of the disease. For example, the effects of Mg supplementation have 
not been investigated. Ad hoc experimental studies are needed to fully explore the 
contribution of Mg to the response to treatment, keeping in mind that the outcome 
might differ substantially depending on the mode of action of a given drug and/or 
the pathophysiology of a given tumor. Two recent publications have cast some 
light on how altered Mg levels can affect efficacy and/or side effects of cisplatin 
[67, 68]. As already mentioned, the main dose-limiting toxicity of cisplatin is kid-
ney injury that is responsible for the insurgence of hypomagnesemia. The first 
paper by Dr. Metz and collaborators demonstrated that magnesium deficiency syn-
ergistically contributes to cisplatin nephrotoxicity, as cisplatin accumulation in 
kidney cells is amplified in Mg-deficient mice and is inhibited or reversed follow-
ing Mg supplementation, via modulating expression of the cisplatin efflux trans-
porter Abcc6 in renal cells [67]. Intriguingly, Mg status was found to differentially 
affect tumor vs. kidney cells in an ovarian tumor xenograft model: in addition to 
confirming that Mg supplementation improved renal function following cisplatin 
treatment, it was also shown that Mg status did not interfere with the chemothera-
peutic efficacy of cisplatin [68]. These findings support the notion that Mg defi-
ciency might affect the host rather than the neoplasia and that it might be 
recommended to supplement hypomagnesemic cancer patients to prevent or mini-
mize serious complications. Nonetheless, the pleiotropic effects of Mg and the 
diversity among drug classes should call for an extreme caution in generalizing the 
conclusions drawn from a single study. In contrast to the data on cisplatin, another 
recent report highlighted that magnesium supplementation can reduce intracellular 
doxorubicin accumulation in breast cancer cells and thus contributes to diminish 
cell sensitivity to the drug [69]. The discrepancy might be explained by bearing in 
mind that although in both cases Mg affects intracellular drug accumulation, the 
underlying mechanisms are different and strictly dependent on the chemical char-
acteristics of the drug molecule.
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In conclusion, little doubt remains that Mg acts as a chemopreventive agent, and 
optimizing Mg intake or normalizing Mg homeostasis when deranged could be an 
effective and low-cost measure to reduce cancer risk. However, when a tumor does 
develop, the picture becomes much more complex: Mg seems to exert both pro- and 
anticancer effects, and tipping of the balance could possibly depend on tumor stage, 
among other factors. The latest findings add still another layer of complexity, i.e., a 
potential interaction between Mg status and the response to therapy, which is likely 
modulated according to the specific characteristics of the drug (e.g., chemical struc-
ture, cellular access route, intracellular mode of action) and/or the tumor (e.g., tis-
sue origin, proliferative index, invasiveness, etc.). Figure 2.1 summarizes our current 
knowledge on how magnesium availability impacts on cancer progression. Clearly, 
we need more preclinical models of Mg deficiency and tumor progression, and 
more clinical investigations specifically designed to address these delicate issues, in 
order to translate our knowledge on the cancer-Mg connection into successful clini-
cal practice. In particular, the points that should be clarified include the following:

	1.	 Does inflammation play the same dual role in Mg-deficient human cancer 
patients as seen in rodent models [23]? Inflammation does occur in hypomagne-
semic subjects, but we do not know whether hypomagnesemia and inflammation 
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Fig. 2.1  Low magnesium availability can have both pro- and anticancer effects, depending on 
tumor stage. Magnesium deficiency is associated to increased cancer risk, due to direct or 
inflammation-mediated oxidative damage and impaired DNA repair capacity. Low magnesium 
conditions hinder primary tumor growth mainly by inhibiting cell proliferation and angiogenesis, 
but can result in increased formation of metastases, likely via induction of inflammatory cytokines. 
The contribution of magnesium to therapy outcome is still debated
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correlate in cancer patients, nor do we know whether and how this impacts on 
tumor progression.

	2.	 Would normalization of magnesemia in cancer patients lead to a burst of tumor 
growth similar to what happens in mice upon reintroducing magnesium in the 
diet [44]? At present, all clinical data derive from trials that were designed 
before knowledge of treatment-induced hypomagnesemia, and Mg supplemen-
tation was not mandated in the protocol. For the same reason, we do not know 
whether serum Mg levels really affect response to cetuximab, as it has been 
proposed [64, 65].

	3.	 Is Mg status a determinant for tumor response in patients treated with cisplatin 
and doxorubicin, as suggested by experimental models [68, 69]? What about 
chemotherapeutic drugs belonging to different classes?

2.6  �Involvement of the TRPM7 Cation Channel

As reviewed so far, the involvement of magnesium in the modulation of tumor 
development has long been postulated, and in the last decades, more and more epi-
demiological, experimental, and clinical data have accumulated and contributed to 
better define its pleiotropic effect. However, in many cases underlying molecular 
mechanisms have remained elusive. Extracellular magnesium availability is trans-
lated into intracellular Mg content (and eventual signaling) by specific molecules 
that regulate ion transport through the plasma membrane. Therefore, the absolute 
requirement of magnesium for cell growth implies that in tumor cells the regulation 
of magnesium transport must be more efficient to guarantee sufficient magnesium 
availability and to sustain cell proliferation. Recently this concept has been corrobo-
rated and expanded by an ever-increasing number of studies showing that the 
TRPM7 ion channel is involved in the regulation of numerous key features of cancer 
cells, including proliferation, adhesion, migration, and invasion, and suggesting that 
altered expression and/or activity of this channel could be a common signature of 
human tumors [70].

TRPM7 is permeable to Mg2+ as well as Ca2+ and is most unusual in having a 
carboxy-terminal atypical alpha-kinase domain coupled to the transmembrane 
channel pore; functional channels are most likely organized as either homo- or het-
erotetramers with its close homologue TRPM6, which have distinct electrophysical 
properties and functions [31]. These unique features caught the attention of 
researchers worldwide, as they offer fascinating avenues to explore that could com-
bine protein expression, ion entry, and signal transduction events. A plethora of 
functions have been ascribed to TRPM7 in normal cell physiology, but discussion 
of this issue is beyond the scope of the present chapter; for recent reviews, see, for 
example, [31, 71]. More relevant to our context, a role for TRPM7 has been invoked 
in each phase of multistep tumor development.

As to carcinogenesis, a single nucleotide polymorphism that substitutes TRPM7 
threonine 1482 (T1482) to isoleucine (T1482I) has been linked to the development 
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of adenomatous and hyperplastic polyps, which might eventually progress to carci-
noma [72]. The same SNP was found to be associated with breast cancer risk in a 
Chinese population [73]. TRPM7 T1482 is a potential site of autophosphorylation 
or phosphorylation by TRPM6. In vitro studies found that heterologously expressed 
T1482I leads to an elevated sensitivity to inhibition by intracellular Mg2+ [74], 
which suggests that (re)absorption of magnesium is more subject to inhibition 
among subjects bearing this substitution. A genomic analysis of 210 diverse human 
cancers found somatic mutations of TRPM7 in breast, gastric, and ovarian carci-
noma; out of the 518 protein kinase genes that were screened, TRPM7 figured 
among the approximately 130 genes showing evidence for bearing “driver” muta-
tions contributing to the development of the cancers studied [75]. Unfortunately, the 
functional consequences of the newly identified mutations have not been investi-
gated yet.

The role of TRPM7 in cancer development has been further supported by com-
parative transcriptomic analyses of TRPM7 expression in healthy vs. cancerous 
human tissues: altered expression of TRPM7 was detected in several carcinomas, 
being up- or downregulated depending on the tissue [76]. Overexpression of 
TRPM7 in human tumors has been validated by other approaches (e.g., Western blot 
or immunohistochemistry) in prostatic [77, 78], nasopharyngeal [79, 80], pancreatic 
[81, 82], breast [83, 84], and ovarian [85] cancers as well as in glioblastoma [86]. 
Moreover, in most of these studies, TRPM7 expression levels were correlated to 
clinical parameters such as Ki67 staining, tumor size, grade, or stage, and, most 
importantly, patient survival. In view of such findings, TRPM7 expression was actu-
ally proposed as a potential prognostic factor [87]. Not surprisingly, TRPM7 expres-
sion was also found to be in correlation with metastatic potential in nasopharyngeal 
[79], pancreatic [81], and breast [88, 89] carcinomas.

The dual nature of the TRPM7 molecule opens up intriguing scenarios with 
regard to the mechanisms that underlie its involvement in cancer growth and pro-
gression. It is still unclear whether the manifold roles of TRPM7 are to be attrib-
uted to channel activity or to kinase function, or rather to a combined action of 
cation transconductance and substrate phosphorylation. TRPM7 was shown to be 
essential for the proliferation of different cancer cells, including retinoblastoma, 
glioblastoma, leukemia, head and neck, lung, pancreas, stomach, and breast cancer 
cells, and TRPM7-like currents were convincingly associated to proliferation (for 
reviews, see [70, 87]). However, the transported cation species was not always 
identified. In many cases, Ca2+ fluxes received most of the scrutiny, as Ca2+ signal-
ing is central in normal as well as cancer cells [90]. Nonetheless, in some studies, 
Mg supplementation rescued the growth arrest induced by TRPM7 disruption, 
which strongly argues for an involvement of an Mg2+ influx [70]. It should be 
noted that recent research developments suggest that the extracellular Ca2+/Mg2+ 
ratio could be more important than Ca2+ and Mg2+ concentrations on their own 
[91]; intriguingly the T1482I SNP is associated to greater risk of adenomas and 
hyperplastic polyps especially in subjects consuming a diet with high Ca2+/Mg2+ 
intake [72], and an increase in the extracellular Ca2+/Mg2+ ratio activates TRPM7 
channel in prostate cancer cells [77]. Inhibition of channel expression and/or 
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activity by RNA interference and/or channel blockers disrupts cell cycle and pro-
liferative signals through various signaling cascades, including PI3K/Akt, MEK/
MAPK, JAK2/STAT3, and/or Notch pathways, depending on the cell type [87]. Of 
note, TRPM7-mediated Mg2+ influx is required for sustained PI3K/Akt/mTOR-
dependent growth signaling, leading to rapid quiescent/proliferative metabolic 
transitions [33, 34].

TRPM7-mediated fluxes were also found to modulate cell migration, in particu-
lar a Ca2+ influx in prostate [78] and nasopharyngeal [79] cancer cells, and an Mg2+ 
influx in pancreatic adenocarcinoma [82], but the latest findings indicate that modu-
lation of cell plasticity/motility by TRPM7 might be more dependent on its α-kinase 
activity. The relationship between the kinase activity and the channel function is 
still a matter of debate. The consensus in the field is that the kinase activity is not 
essential for opening of TRPM7 channels, but opening of TRPM7 channels could 
affect kinase function by causing a local increase in Ca2+ and/or Mg2+ concentration, 
which could possibly regulate kinase activity and/or the recruitment/targeting of 
TRPM7 kinase substrates [31]. Interestingly, TRPM7 kinase substrates include the 
three mammalian myosin II heavy chain isoforms, MHC-A, B, and C [92]. 
Consequently, TRPM7 kinase activity can affect actomyosin contractility that plays 
a key role in cell migration and invasion. Indeed, in a mouse xenograft model of 
human breast cancer, TRPM7 knockdown interfered with the metastatic potential of 
triple negative cells; mechanistic investigation revealed that TRPM7 regulated myo-
sin II-based cellular tension, thereby modifying the number of focal adhesions, cell-
cell adhesion, and polarized cell movement [88]. These results were confirmed by 
an independent study, which provided further evidence for the involvement of 
TRPM7 kinase domain and MHC-A phosphorylation [93]. In addition, in breast 
cancer cells, TRPM7 seems to play a role in the epithelial-mesenchymal transition 
(EMT), which represents a crucial switch toward an invasive phenotype [94]. 
TRPM7 also contributes to the invasive properties of neuroblastoma cells by affect-
ing invadosome formation [95]. Intriguingly, in the last two cited papers, although 
the role of TRPM7 kinase domain and/or activity was not directly investigated, the 
authors ruled out an involvement of Ca2+ fluxes. Thus, we are presented with two 
possibilities: (1) cation influx is dissociated from phosphotransferase activity, and 
the two different domains of the TRPM7 molecule simply coexist for an accidental 
evolutional step, but they in fact regulate different functions independently; or, more 
excitingly, (2) the fusion of a channel pore with a kinase domain represents an opti-
mized and integrated unit, being able to couple extracellular sensing to intracellular 
signaling. In this regard, it is worth recalling that Mg2+ is essential for transphos-
phorylation reactions, which are an integral part of signal transduction. One last 
remark concerns a possible involvement of the TRPM7 channel and/or kinase also 
in the response to doxorubicin. Both protein expression and Mg2+ fluxes were cor-
related to cell sensitivity to doxorubicin in two different cellular models [69, 96]. At 
present, the underlying molecular mechanisms are unknown, though two hypothe-
ses have been put forward: TRPM7 kinase could affect intracellular drug trafficking 
[69], or Mg availability modulated by TRPM7 could influence activity of drug 
efflux pumps [96].
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In conclusion, TRPM7 involvement seems to change during cancer progression, as 
shown in Fig. 2.2: in early-stage tumors, TRPM7 is involved in the regulation of cell 
proliferation mainly through cation homeostasis control, while cell migration and inva-
sion in advanced-stage and aggressive tumors require TRPM7 kinase activity and interac-
tion with cytoskeletal proteins, which could nonetheless depend on local ion concentrations 
[87]. Although more research efforts are certainly needed to fully elucidate the underlying 
molecular mechanisms, not only does TRPM7 appear as a promising prognostic marker 
but also as a potential therapeutic target to hamper cancer progression.

2.7  �Conclusion

The importance of magnesium homeostasis in tumor development has been disre-
garded for decades, often overwhelmed by an encumbering interest in calcium. The 
recently revived interest in the relationship between magnesium and tumors, both in 
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Fig. 2.2  The bifunctional TRPM7 chanzyme has been involved in the regulation of cell prolifera-
tion mainly through cation (Ca2+ and/or Mg2+) homeostasis control in several types of cancer cell 
lines and human tumors. It has also been shown to play a role in cell migration and invasion 
through its kinase activity and interaction with cytoskeletal proteins; kinase activity could depend 
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experimental and clinical oncology, has expanded our knowledge, but, at the same 
time, it has raised new urgent issues:

	1.	 As all available data concur to indicate Mg as a cancer-preventing agent, 
more public awareness on individual Mg status should be promoted. Mg lev-
els should be determined routinely in daily clinical practice, possibly by 
identifying novel parameters for the determination of status and dietary 
requirements for Mg. In addition, appropriate supplementation protocols 
should be defined.

	2.	 The sparse and controversial findings about the influence of Mg status on disease 
progression and therapy outcome call for more studies specifically designed to 
address this issue.

	3.	 The promising potential of TRPM7 as a therapeutic target needs to be explored 
by developing specific and efficient pharmacological tools to inhibit channel 
and/or kinase function to be tested in vitro and in vivo.

In tackling these points, interaction of fundamental and clinical researchers can 
be an extremely powerful engine to push forward our knowledge of Mg homeostasis 
and to exploit the possibility that optimizing Mg homeostasis might prevent cancer 
or help in its treatment.

References

	 1.	Romani AM. Cellular magnesium homeostasis. Arch Biochem Biophys. 2011;512:1–23.
	 2.	de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and dis-

ease. Physiol Rev. 2015;95:1–46.
	 3.	Cotruvo J, Bartram J, editors. Calcium and magnesium in drinking-water: public health signifi-

cance. Geneva: World Health Organization; 2009.
	 4.	Rosanoff A, Weaver CM, Rude RK. Suboptimal magnesium status in the United States: are the 

health consequences underestimated? Nutr Rev. 2012;70:153–64.
	 5.	Parkin DM, Boyd L, Walker LC. The fraction of cancer attributable to lifestyle and environ-

mental factors in the UK in 2010. Br J Cancer. 2011;105(Suppl 2):77–81.
	 6.	Blaszczyk U, Duda-Chodak A.  Magnesium: its role in nutrition and carcinogenesis. Rocz 

Panstw Zakl Hig. 2013;64:165–71.
	 7.	Ko HJ, Youn CH, Kim HM, Cho YJ, Lee GH, Lee WK. Dietary magnesium intake and risk of 

cancer: a meta-analysis of epidemiologic studies. Nutr Cancer. 2014;66:915–23.
	 8.	Wolf FI, Maier JA, Nasulewicz A, Feillet-Coudray C, Simonacci M, Mazur A, et al. Magnesium 

and neoplasia: from carcinogenesis to tumor growth and progression or treatment. Arch 
Biochem Biophys. 2007;458:24–32.

	 9.	Wolf FI, Trapani V. Cell (patho)physiology of magnesium. Clin Sci (Lond). 2008;114:27–35.
	10.	Wolf FI, Trapani V, Simonacci M, Boninsegna A, Mazur A, Maier JA. Magnesium deficiency 

affects mammary epithelial cell proliferation: involvement of oxidative stress. Nutr Cancer. 
2009;61:131–6.

	11.	Mazur A, Maier JA, Rock E, Gueux E, Nowacki W, Rayssiguier Y. Magnesium and the inflam-
matory response: potential physiopathological implications. Arch Biochem Biophys. 
2007;458:48–56.

	12.	Weglicki WB. Hypomagnesemia and inflammation: clinical and basic aspects. Annu Rev Nutr. 
2012;32:55–71.

2  Tumor Development Through the Mg2+nifying Glass



34

	13.	Mantovani A.  Molecular pathways linking inflammation and cancer. Curr Mol Med. 
2010;10:369–73.

	14.	Ferrè S, Baldoli E, Leidi M, Maier JA. Magnesium deficiency promotes a pro-atherogenic 
phenotype in cultured human endothelial cells via activation of NFkB. Biochim Biophys Acta. 
2010;1802:952–8.

	15.	Altura BM, Shah NC, Shah G, Zhang A, Li W, Zheng T, et al. Short-term magnesium deficiency 
upregulates ceramide synthase in cardiovascular tissues and cells: cross-talk among cytokines, 
Mg2+, NF-κB, and de novo ceramide. Am J Physiol Heart Circ Physiol. 2012;302:H319–32.

	16.	Nielsen FH. Effects of magnesium depletion on inflammation in chronic disease. Curr Opin 
Clin Nutr Metab Care. 2014;17:525–30.

	17.	Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the 
seventh hallmark of cancer: link to genetic instability. Carcinogenesis. 2009;30:1073–81.

	18.	Anastassopoulou J, Theophanides T. Magnesium-DNA interactions and the possible relation 
of magnesium to carcinogenesis. Irradiation and free radicals. Crit Rev Oncol Hematol. 
2002;42:79–91.

	19.	Hartwig A. Role of magnesium in genomic stability. Mutat Res. 2001;475:113–21.
	20.	Mahabir S, Wei Q, Barrera SL, Dong YQ, Etzel CJ, Spitz MR, et al. Dietary magnesium and 

DNA repair capacity as risk factors for lung cancer. Carcinogenesis. 2008;29:949–56.
	21.	Perera L, Freudenthal BD, Beard WA, Shock DD, Pedersen LG, Wilson SH. Requirement for 

transient metal ions revealed through computational analysis for DNA polymerase going in 
reverse. Proc Natl Acad Sci U S A. 2015;112:E5228–36.

	22.	Freudenthal BD, Beard WA, Wilson SH. New structural snapshots provide molecular insights 
into the mechanism of high fidelity DNA synthesis. DNA Repair (Amst). 2015;32:3–9.

	23.	Castiglioni S, Maier JA.  Magnesium and cancer: a dangerous liaison. Magnes Res. 
2011;24:S92–100.

	24.	Rubin H. Central role for magnesium in coordinate control of metabolism and growth in ani-
mal cells. Proc Natl Acad Sci U S A. 1975;72:3551–5.

	25.	Covacci V, Bruzzese N, Sgambato A, Di Francesco A, Russo MA, Wolf FI, et al. Magnesium 
restriction induces granulocytic differentiation and expression of p27Kip1 in human leukemic 
HL-60 cells. J Cell Biochem. 1998;70:313–22.

	26.	Sgambato A, Wolf FI, Faraglia B, Cittadini A. Magnesium depletion causes growth inhibition, 
reduced expression of cyclin D1, and increased expression of p27Kip1 in normal but not in 
transformed mammary epithelial cells. J Cell Physiol. 1999;180:245–54.

	27.	Ferré S, Mazur A, Maier JA. Low-magnesium induces senescent features in cultured human 
endothelial cells. Magnes Res. 2007;20:66–71.

	28.	Killilea DW, Ames BN.  Magnesium deficiency accelerates cellular senescence in cultured 
human fibroblasts. Proc Natl Acad Sci U S A. 2008;105:5768–73.

	29.	Wolf FI, Fasanella S, Tedesco B, Torsello A, Sgambato A, Faraglia B, et  al. Regulation of 
magnesium content during proliferation of mammary epithelial cells (HC-11). Front Biosci. 
2004;9:2056–62.

	30.	Rubin H. The logic of membrane, magnesium, mitosis (MMM) model for the regulation of 
animal cell proliferation. Arch Biochem Biophys. 2007;458:16–23.

	31.	Visser D, Middelbeek J, van Leeuwen FN, Jalink K. Function and regulation of the channel-
kinase TRPM7 in health and disease. Eur J Cell Biol. 2014;93:455–65.

	32.	Tani D, Monteilh-Zoller MK, Fleig A, Penner R. Cell cycle-dependent regulation of store-
operated I(CRAC) and Mg2+-nucleotide-regulated MagNuM (TRPM7) currents. Cell 
Calcium. 2007;41:249–60.

	33.	Sahni J, Scharenberg AM. TRPM7 ion channels are required for sustained phosphoinositide 
3-kinase signaling in lymphocytes. Cell Metab. 2008;8:84–93.

	34.	Sahni J, Tamura R, Sweet IR, Scharenberg AM. TRPM7 regulates quiescent/proliferative met-
abolic transitions in lymphocytes. Cell Cycle. 2010;9:3565–74.

	35.	Warburg O. On the origin of cancer cells. Science. 1936;123:309–14.

V. Trapani and F.I. Wolf



35

	36.	Pavlova NN, Thompson CB.  The emerging hallmarks of cancer metabolism. Cell Metab. 
2016;23:27–47.

	37.	Gommers LM, Hoenderop JG, Bindels RJ, de Baaij JH. Hypomagnesemia in type 2 diabetes: 
a vicious circle? Diabetes. 2016;65:3–13.

	38.	Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
	39.	Killilea DW, Maier JA. A connection between magnesium deficiency and aging: new insights 

from cellular studies. Magnes Res. 2008;21:77–82.
	40.	Decottignies A, d’Adda di Fagagna F. Epigenetic alterations associated with cellular senes-

cence: a barrier against tumorigenesis or a red carpet for cancer? Semin Cancer Biol. 
2011;21:360–6.

	41.	Baldoli E, Maier JA. Silencing TRPM7 mimics the effects of magnesium deficiency in human 
microvascular endothelial cells. Angiogenesis. 2012;15:47–57.

	42.	Torii S, Kobayashi K, Takahashi M, Katahira K, Goryo K, Matsushita N, et al. Magnesium 
deficiency causes loss of response to intermittent hypoxia in paraganglion cells. J Biol Chem. 
2009;284:19077–89.

	43.	LaGory EL, Giaccia AJ. The ever-expanding role of HIF in tumour and stromal biology. Nat 
Cell Biol. 2016;18:356–65.

	44.	Nasulewicz A, Wietrzyk J, Wolf FI, Dzimira S, Madej J, Maier JA, et al. Magnesium defi-
ciency inhibits primary tumor growth but favors metastasis in mice. Biochim Biophys Acta. 
2004;1739:26–32.

	45.	Maier JAM, Nasulewicz-Goldeman A, Simonacci M, Boninsegna A, Mazur A, Wolf 
FI.  Insights into the mechanisms involved in magnesium-dependent inhibition of primary 
tumor growth. Nutr Cancer. 2007;59:192–8.

	46.	Maier JA. Endothelial cells and magnesium: implications in atherosclerosis. Clin Sci (Lond). 
2012;122:397–407.

	47.	Nasulewicz A, Zimowska W, Bayle D, Dzimira S, Madej J, Rayssiguier Y, et al. Changes in 
gene expression in the lungs of Mg-deficient mice are related to an inflammatory process. 
Magnes Res. 2004;17:259–63.

	48.	Ma D, McCorkle JR, Kaetzel DM. The metastasis suppressor NM23-H1 possesses 3′-5′ exo-
nuclease activity. J Biol Chem. 2004;279:18073–84.

	49.	Boissan M, Wendum D, Arnaud-Dabernat S, Munier A, Debray M, Lascu I, et al. Increased 
lung metastasis in transgenic NM23-Null/SV40 mice with hepatocellular carcinoma. J Natl 
Cancer Inst. 2005;97:836–45.

	50.	Hardy S, Uetani N, Wong N, Kostantin E, Labbé DP, Bégin LR, et al. The protein tyrosine 
phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogene-
sis. Oncogene. 2015;34:986–95.

	51.	Fiordalisi JJ, Keller PJ, Cox AD. PRL tyrosine phosphatases regulate rho family GTPases to 
promote invasion and motility. Cancer Res. 2006;66:3153–61.

	52.	Hardy S, Wong NN, Muller WJ, Park M, Tremblay ML. Overexpression of the protein tyrosine 
phosphatase PRL-2 correlates with breast tumor formation and progression. Cancer Res. 
2010;70:8959–67.

	53.	Gungabeesoon J, Tremblay ML, Uetani N. Localizing PRL-2 expression and determining the 
effects of dietary Mg(2+) on expression levels. Histochem Cell Biol. 2016;146:99–111.

	54.	Kouloulias V, Tolia M, Tsoukalas N, Papaloucas C, Pistevou-Gombaki K, Zygogianni A, et al. 
Is there any potential clinical impact of serum phosphorus and magnesium in patients with 
lung cancer at first diagnosis? A multi-institutional study. Asian Pac J  Cancer Prev. 
2015;16:77–81.

	55.	Sartori S, Nielsen I, Tassinari D, Mazzotta D, Vecchiatti G, Sero A, et al. Serum and erythro-
cyte magnesium concentrations in solid tumours: relationship with stage of malignancy. 
Magnes Res. 1992;5:189–92.

	56.	Wolf FI, Cittadini AR, Maier JA.  Magnesium and tumors: ally or foe? Cancer Treat Rev. 
2009;35:378–82.

2  Tumor Development Through the Mg2+nifying Glass



36

	57.	Lameris AL, Monnens LA, Bindels RJ, Hoenderop JG.  Drug-induced alterations in Mg2+ 
homoeostasis. Clin Sci (Lond). 2012;123:1–14.

	58.	Wolf FI, Trapani V, Cittadini A, Maier JA. Hypomagnesaemia in oncologic patients: to treat or 
not to treat? Magnes Res. 2009;22:5–9.

	59.	van der Wijst J, Bindels RJ, Hoenderop JG. Mg2+ homeostasis: the balancing act of TRPM6. 
Curr Opin Nephrol Hypertens. 2014;23:361–9.

	60.	Groenestege WM, Thébault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S, et al. 
Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesaemia. 
J Clin Invest. 2007;117:2260–7.

	61.	Wang Q, Qi Y, Zhang D, Gong C, Yao A, Xiao Y, et al. Electrolyte disorders assessment in solid 
tumor patients treated with anti-EGFR monoclonal antibodies: a pooled analysis of 25 ran-
domized clinical trials. Tumour Biol. 2015;36:3471–82.

	62.	Mak IT, Kramer JH, Chmielinska JJ, Spurney CF, Weglicki WB. EGFR-TKI, erlotinib, causes 
hypomagnesemia, oxidative stress, and cardiac dysfunction: attenuation by NK-1 receptor 
blockade. J Cardiovasc Pharmacol. 2015;65:54–61.

	63.	Dimke H, van der Wijst J, Alexander TR, Meijer IM, Mulder GM, van Goor H, et al. Effects 
of the EGFR inhibitor erlotinib on magnesium handling. J  Am Soc Nephrol. 
2010;21:1309–16.

	64.	Vincenzi B, Santini D, Galluzzo S, Russo A, Fulfaro F, Silletta M, et al. Early magnesium 
reduction in advanced colorectal cancer patients treated with cetuximab plus irinotecan as 
predictive factor of efficacy and outcome. Clin Cancer Res. 2008;14:4219–24.

	65.	Vincenzi B, Galluzzo S, Santini D, Rocci L, Loupakis F, Correale P, et al. Early magnesium 
modifications as a surrogate marker of efficacy of cetuximab-based anticancer treatment in 
KRAS wild-type advanced colorectal cancer patients. Ann Oncol. 2011;22:1141–6.

	66.	Vickers MM, Karapetis CS, Tu D, O’Callaghan CJ, Price TJ, Tebbutt NC, et al. Association of 
hypomagnesemia with inferior survival in a phase III, randomized study of cetuximab plus 
best supportive care versus best supportive care alone: NCIC CTG/AGITG CO.17. Ann Oncol. 
2013;24:953–60.

	67.	Solanki MH, Chatterjee PK, Gupta M, Xue X, Plagov A, Metz MH, et al. Magnesium protects 
against cisplatin induced acute kidney injury by regulating platinum accumulation. Am 
J Physiol Renal Physiol. 2014;307:F369–84.

	68.	Solanki MH, Chatterjee PK, Xue X, Gupta M, Rosales I, Yeboah MM, et al. Magnesium pro-
tects against cisplatin-induced acute kidney injury without compromising cisplatin-mediated 
killing of an ovarian tumor xenograft in mice. Am J  Physiol Renal Physiol. 
2015;309:F35–47.

	69.	Trapani V, Luongo F, Arduini D, Wolf FI. Magnesium modulates doxorubicin activity through 
drug lysosomal sequestration and trafficking. Chem Res Toxicol. 2016;29:317–22.

	70.	Trapani V, Arduini D, Cittadini A, Wolf FI. From magnesium to magnesium transporters in 
cancer: TRPM7, a novel signature in tumour development. Magnes Res. 2013;26:149–55.

	71.	Komiya Y, Su LT, Chen HC, Habas R, Runnels LW. Magnesium and embryonic development. 
Magnes Res. 2014;27:1–8.

	72.	Dai Q, Shrubsole MJ, Ness RM, Schlundt D, Cai Q, Smalley WE, et al. The relation of mag-
nesium and calcium intakes and a genetic polymorphism in the magnesium transporter to 
colorectal neoplasia risk. Am J Clin Nutr. 2007;86:743–51.

	73.	Shen B, Sun L, Zheng H, Yang D, Zhang J, Zhang Q. The association between single-nucleotide 
polymorphisms of TRPM7 gene and breast cancer in Han Population of Northeast China. Med 
Oncol. 2014;31:51.

	74.	Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, et al. 
A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogen-
esis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci U S A. 
2005;102:11510–5.

	75.	Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et  al. Patterns of 
somatic mutation in human cancer genomes. Nature. 2007;446:153–8.

V. Trapani and F.I. Wolf



37

	76.	Park YR, Chun JN, So I, Kim HJ, Baek S, Jeon JH, et al. Data-driven analysis of TRP channels 
in cancer: linking variation in gene expression to clinical significance. Cancer Genomics 
Proteomics. 2016;13:83–90.

	77.	Sun Y, Selvaraj S, Varma A, Derry S, Sahmoun AE, Singh BB. Increase in serum Ca2+/Mg2+ 
ratio promotes proliferation of prostate cancer cells by activating TRPM7 channels. J Biol 
Chem. 2013;288:255–63.

	78.	Sun Y, Sukumaran P, Varma A, Derry S, Sahmoun AE, Singh BB. Cholesterol-induced activa-
tion of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells. 
Biochim Biophys Acta. 2014;1843:1839–50.

	79.	Chen JP, Wang J, Luan Y, Wang CX, Li WH, Zhang JB, et al. TRPM7 promotes the metastatic 
process in human nasopharyngeal carcinoma. Cancer Lett. 2015;356:483–90.

	80.	Qin Y, Liao ZW, Luo JY, Wu WZ, Lu AS, Su PX, et al. Functional characterization of TRPM7 in 
nasopharyngeal carcinoma and its knockdown effects on tumorigenesis. Tumour Biol. 
2016;37(7):9273–83. doi:10.1007/s13277-015-4636-z.

	81.	Yee NS, Kazi AA, Li Q, Yang Z, Berg A, Yee RK. Aberrant over-expression of TRPM7 ion 
channels in pancreatic cancer: required for cancer cell invasion and implicated in tumor growth 
and metastasis. Biol Open. 2015;4:507–14.

	82.	Rybarczyk P, Gautier M, Hague F, Dhennin-Duthille I, Chatelain D, Kerr-Conte J, et  al. 
Transient receptor potential melastatin-related 7 channel is overexpressed in human pancreatic 
ductal adenocarcinomas and regulates human pancreatic cancer cell migration. Int J Cancer. 
2012;131:E851–61.

	83.	Guilbert A, Gautier M, Dhennin-Duthille I, Haren N, Sevestre H, Ouadid-Ahidouch 
H. Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell 
Physiol. 2009;297:C493–502.

	84.	Dhennin-Duthille I, Gautier M, Faouzi M, Guilbert A, Brevet M, Vaudry D, et al. High expres-
sion of transient receptor potential channels in human breast cancer epithelial cells and tissues: 
correlation with pathological parameters. Cell Physiol Biochem. 2011;28:813–22.

	85.	Wang J, Xiao L, Luo CH, Zhou H, Hu J, Tang YX, et al. Overexpression of TRPM7 is associ-
ated with poor prognosis in human ovarian carcinoma. Asian Pac J  Cancer Prev. 
2014;15:3955–8.

	86.	Alptekin M, Eroglu S, Tutar E, Sencan S, Geyik MA, Ulasli M, et al. Gene expressions of TRP 
channels in glioblastoma multiforme and relation with survival. Tumour Biol. 
2015;36:9209–13.

	87.	Dhennin-Duthille I, Gautier M, Korichneva I, Ouadid-Ahidouch H. TRPM7 involvement in 
cancer: a potential prognostic factor. Magnes Res. 2014;27:103–12.

	88.	Middelbeek J, Kuipers AJ, Henneman L, Visser D, Eidhof I, van Horssen R, et al. TRPM7 is 
required for breast tumor cell metastasis. Cancer Res. 2012;72:4250–61.

	89.	Meng X, Cai C, Wu J, Cai S, Ye C, Chen H, et al. TRPM7 mediates breast cancer cell migration 
and invasion through the MAPK pathway. Cancer Lett. 2013;333:96–102.

	90.	Prevarskaya N, Ouadid-Ahidouch H, Skryma R, Shuba Y. Remodelling of Ca2+ transport in 
cancer: how it contributes to cancer hallmarks? Philos Trans R Soc Lond Ser B Biol Sci. 
2014;369:20130097.

	91.	Dai Q, Shu XO, Deng X, Xiang YB, Li H, Yang G, et al. Modifying effect of calcium/magne-
sium intake ratio and mortality: a population-based cohort study. BMJ Open. 2013;3(2):e002111.

	92.	Clark K, Middelbeek J, Dorovkov MV, Figdor CG, Ryazanov AG, Lasonder E, et  al. The 
alpha-kinases TRPM6 and TRPM7, but not eEF-2 kinase, phosphorylate the assembly domain 
of myosin IIA, IIB and IIC. FEBS Lett. 2008;582:2993–7.

	93.	Guilbert A, Gautier M, Dhennin-Duthille I, Rybarczyk P, Sahni J, Sevestre H, et al. Transient 
receptor potential melastatin 7 is involved in oestrogen receptor-negative metastatic breast 
cancer cells migration through its kinase domain. Eur J Cancer. 2013;49:3694–707.

	94.	Davis FM, Azimi I, Faville RA, Peters AA, Jalink K, Putney Jr JW, et al. Induction of epithelial-
mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene. 
2014;33:2307–16.

2  Tumor Development Through the Mg2+nifying Glass

http://dx.doi.org/10.1007/s13277-015-4636-z


38

	95.	Visser D, Langeslag M, Kedziora KM, Klarenbeek J, Kamermans A, Horgen FD, et al. TRPM7 
triggers Ca2+ sparks and invadosome formation in neuroblastoma cells. Cell Calcium. 
2013;54:404–15.

	96.	Castiglioni S, Cazzaniga A, Trapani V, Cappadone C, Farruggia G, Merolle L, et al. Magnesium 
homeostasis in colon carcinoma LoVo cells sensitive or resistant to doxorubicin. Sci Rep. 
2015;5:16538.

V. Trapani and F.I. Wolf



39© Springer International Publishing AG 2017 
A. Mudipalli, J.T. Zelikoff (eds.), Essential and Non-essential Metals, 
Molecular and Integrative Toxicology, DOI 10.1007/978-3-319-55448-8_3

Chapter 3
Selenium: Roles in Cancer Prevention 
and Therapies

Xiangrong Geng, Liu Liu, Kan-Jen Tsai, and Zijuan Liu

Abstract  Selenium is an essential mineral for all animals including humans. It is 
found in amino acids selenocysteine and selenomethionine, which usually forms 
active sites in selenoproteins. In humans, 25 selenoproteins have been identified, and 
most of them function as important antioxidant enzymes and play important roles in 
the detoxification of reactive oxygen species (ROS). Selenoproteins are critical for 
normal physiology. Dysregulation and malfunction of selenoproteins are associated 
with numerous human diseases, mostly cancers. The selenium levels are found to be 
associated with frequency of multiple cancer types, by clinical studies and experi-
mental data. In addition, multiple forms of small selenium compounds, such as inor-
ganic selenite and selenate and organic selenomethionine, Se-methyl-selenocysteine, 
and methyl-selenic acid, have been applied clinically for cancer prevention and 
treatment. These small selenium molecules share distinct function and mechanisms 
in the cellular signaling and effects. In this chapter, mechanisms involved in small 
selenium molecule cellular metabolism, regulation of cancer cell signaling, and their 
application in the cancer prevention and therapies are discussed.
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Antioxidant • Cancer • Prostate cancer • Inflammation
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MSC	 Se-methyl-selenocysteine
Se	 Selenium
SeCys	 Selenocysteine
SeMet	 Selenomethionine

3.1  �Selenium Is an Essential Element for Animals, 
and Selenium Deficiency Is Associated with Multiple 
Diseases

Selenium, as a nonmetal mineral, is an essential element for most eukaryotes and 
mammals. Selenium homeostasis affects immune system response, thyroid hor-
mone synthesis, and antioxidant effects in humans [1]. Selenium level in serum 
varies by areas and corresponds to intake, at least 8 μg/dL or higher in healthy 
people. Daily uptake of selenium is recommended to be 60 μg/day for men and 
53 μg/day for women [1]. Both excess and deficient uptakes of selenium cause dis-
eases in animals and humans. Although selenium toxicity is scarce and only hap-
pened accidentally, chronic selenium overdose has been observed in animals 
consuming selenium accumulator plants, with a symptom of alkali and blind stag-
ger disease [2]. Selenium toxicity in humans, with symptoms of brittle hair, nail 
discoloration, and gastrointestinal problems, often occurs when selenium is not 
appropriately added as nutrient supplement and in area with high selenium soil [3].

Selenium deficiency happens in human when diet lacks sufficient selenium, usually 
compromised with other factors. For example, an epidemiological disease reported in 
Northeast China, named Keshan disease, was identified to be associated with selenium-
deficient local diet and the presence of coxsackievirus B infection. The patients show 
different degrees of heart function insufficiency such as cardiogenic shock, severe 
arrhythmia, or more severe heart enlargement. Large scale of Se supplementation dra-
matically reduced disease incidence [4]. Moreover, selenium deficiency has been associ-
ated with disorders of the immune system (e.g., chronic inflammatory disorders), thyroid 
hormone metabolism (e.g., hypothyroidism), reproduction (e.g., preeclampsia), and 

Table 3.1  Diseases associated with insufficient selenium intake in human and animals

Victims Disease Symptom Treatment Ref.

Human Keshan disease Multiple focal myocardial 
necrosis, various degrees of 
fibrosis, and pulmonary edema

Sodium selenite [4]

Human Kashin-Beck 
disease

Stunting feet and hands or 
dwarfism

Sodium selenite 
Vitamins A, C, and 
E or iodine

[6]

Human Hypothyroidism Thyroiditis Selenium with or 
without iodide

[7]

Livestock White muscle 
disease

Muscular weakness and 
muscular dystrophy

Sodium selenite 
and vitamin E

[8]

Sheep/cattle/lambs Weaner ill thrift Poor growth rates, profuse 
diarrhea, unable to use feed

Sodium selenite or 
sodium selenate

[9]
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neurologic system (e.g., intractable epileptic seizures and Alzheimer’s) [5]. In general, 
selenium deficiency is epidemic and limited to regions with insufficient level of sele-
nium intake. In most selenium deficiency symptom, parental nutritional supplementa-
tion including selenium and antioxidants was used to prevent or mitigate the symptom 
[5]. We summarize the common diseases associated with selenium deficiency along 
with the treatment that can effectively prevent or reverse the symptom in Table 3.1.

3.2  �Naturally Occurring Selenium Compounds in Diet 
and Selenium in Supplements

Selenium (Se) is a rare element naturally found in soil and water system. It exists in 
many different forms with four oxidation states: selenate [Se(VI)], selenite [Se(IV)], 
elemental selenium [Se(0)], and selenide [Se(II)]. The most common natural organic 
selenium forms include selenomethionine (SeMet), selenocysteine (SeCys), 
γ-glutamyl-selenium-methyl-selenocysteine (GGMSC), and selenium-methyl-
selenocysteine (Se-MSC) [10].

Both inorganic and organic forms of Se can be utilized as mineral nutrition and 
some are the important components in Se supplement agents (reviewed in [11]). 
Naturally, the content and amount of selenium in the dietary supplements depend on 
foods consumed and the soil selenium content [12]. Animals and plants are able to 
nonspecifically incorporate SeMet into protein by replacement of methionine. 
SeCys is integrated into selenoproteins via the protein translation process, which is 
genetically encoded by a specific UGA codon [13]. In addition to dietary plants and 

Table 3.2  Selenium species in dietary plant, animals, fish, and selenoyeast

Plant sources Fish Animals Selenoyeast

Selenium 
species

Selenomethionine 
(SeMet)

SeCys SeMet- and 
SeCys-
bounded 
proteins

Selenomethionine

Selenocysteine 
(SeCys)

SeMet Selenocysteine

Se-containing 
proteins

Selenite GGMSC

Se-methyl-
selenocysteine 
(Se-MSC)

Selenate Se-MSC

γ-Glutamyl-Se-
methyl-
selenocysteine 
(GGMSC)

Selenobetaine Selenite

Selenate Selenate
Selenite
Selenoxide
γ-Glutamyl-Se-
methionine

3  Selenium: Roles in Cancer Prevention and Therapies



42

animals which contain a variety of different inorganic and organic selenium com-
pounds, selenium fortified yeast, named selenoyeast, is frequently used commercial 
product as an organic food-form selenium supplement for human and farming ani-
mals [11]. Table 3.2 lists the major selenium species being discovered from diet and 
applied as nutritional supplement.

3.3  �Cellular Metabolism of Selenium: Transport, 
Incorporation, Methylation, and Glutathiolation

Inorganic selenite and selenate, as small selenium molecules, are quickly trans-
formed and metabolized in tissues. Most of the inorganic and organic selenium mol-
ecules can be metabolized by reduction and methylation and eventually incorporated 
into selenoproteins [14]. However, there is limited knowledge about the biochemi-
cal conversion of the different selenium species in mammals, and selenium meta-
bolic pathway in tissue specificity remains uncertain. The major metabolic pathway 
of Se has been assumed to be analogous to the metabolic pathway of sulfur based on 
the similarity of the two elements thought without being experimentally verified. In 
the following, we summarize the major steps involved in selenium metabolism.

3.3.1  �Selenium Uptake

Uptake of selenium compounds is the first and the rate-limiting step for selenium 
function in cells. Organic selenium amino acids, SeMet and SeCys, are transported 
by the corresponding amino acid analog transporters. SeMet, the methionine ana-
log, is found to be taken up by the b0+rBAT system in intestinal cells and B0 in renal 
cells [15]. Selenolate, the physiological form of SeCys, competes with cysteine for 
excitatory amino acid transporters [16].

For inorganic selenium species selenite, a monocarboxylate transporter, Jen1, 
has been identified to control cellular accumulation and toxicity of selenite in yeast, 
serving as a direct selenite transporter [17]. In mammal cells, extracellular redox 
state could facilitate the selenite uptake based on observations that high-affinity 
uptake of selenite is achieved through the addition of extracellular glutathione 
(GSH) [18]. It is predicted that selenite is reduced to selenide HSe− by extracellular 
thiols and then transported by Xc

− cysteine/glutamate antiporter [19]. Selenite can 
also be symported with zinc and bicarbonate into mammal cells via a zinc trans-
porter ZIP8 [20]. Modification of ZIP8 activity or expression determined selenite 
toxicity and tolerance in mammal cells and mouse models, indicating ZIP8 is a 
major selenite transporter for mammals.

Inorganic selenate is predicted to be transported by sulfate transporters because 
selenate shares similar molecular structure with sulfate in microbes and plants [21]. 
Selenate uptake is via the sulfate ABC transporter complex in E. coli [22], and two 
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sulfate transporters Sul1p and Sul2p are good candidates for the selenate uptake in 
yeast based on the observation of the selenate resistance in sulfate transport mutants 
[23]. In mammal cells, selenate might be uptaken by the SLC26 multifunctional 
anion exchanger families in intestinal cells since the SLC26 inhibitor could inhibit 
selenate transport [24].

3.3.2  �Incorporation to Selenoproteins

Incorporation of selenium into protein produces physiological essential proteins: 
selenoproteins and selenoenzymes. The details involved in selenium incorporation 
into selenoproteins have been thoroughly studied and discussed in details [25, 
26]). To date, 25 human selenoproteins have been identified [27]. Instead of serv-
ing as a cofactor, selenium is cotranslationally incorporated into the polypeptide 
chain as part of the amino acid selenocysteine (SeCys). SeCys shares the common 
UGA codon, which, in most circumstances, signals translational termination. 
Though as a cysteine analog, the pKa of SeCys (pKa = 5.2) is different from that 
of cysteine (pKa = 8.3) under physiological condition [28]. Thus, SeCys, forming 
a negative-charged selenolate, is more reactive than cysteine with a protonated 
thiol group and a good redox candidate, making most selenoproteins functioning 
in the antioxidant system.

3.3.3  �Reduction and Conjugation of Selenium with GSH

Glutathione protects cells from oxidative damage via reduction and conjugation 
reactions with its function group sulfhydryl group (−SH) [29]. Selenide, as the most 
reduced form of selenium, is the converge point for protein assimilation of selenite 
and selenate. In mammals, inorganic selenite or selenate is reduced by GSH to sele-
nodiglutathione Se(GS)2, which is then converted to hydrogen selenide in reactions 
catalyzed by glutathione reductase or by thioredoxin reductase [30, 31], and sele-
nite can also be directly reduced to selenide by the Trx system [14]. However, GSH 
can enhance the toxicity of seleno-compounds based on the observation that 
selenite-mediated inhibition of protein and nucleic acid synthesis is potentiated by 
the addition of GSH [32].

3.3.4  �Methylation of Selenium

Selenium reduction by GSH generates reactive intermediates that are substrates 
for subsequent methylation. The methylation process is reviewed in [33]. In 
vivo, reductive metabolism and methylation of selenium are linked. The 
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reduced selenium intermediates may become precursors for methylation. Both 
selenite and selenate can be reduced by glutathione to yield selenodiglutathi-
one Se(GS)2 and then to hydrogen selenide. Hydrogen selenide is thought to be 
an intermediary metabolite that serves as a precursor for the synthesis of sele-
nocysteine and/or is methylated to methylselenol, CH3SeH; dimethylselenide, 
(CH3)2Se; and trimethylselenonium cation, (CH3)3Se+ [33]. CH3SeH is the first 
intermediate leading to other methylated metabolites. (CH3)2Se is a volatile 
metabolite that is expired from the lungs when the capacity for synthesis of 
urinary metabolite (CH3)3Se+ is exceeded [34, 35].

3.4  �Selenoproteins and Their Expression and Function 
in Cancers

3.4.1  �Selenoprotein Cellular Function

Many selenoproteins are oxidoreductases with unique synthesis mechanisms 
[36]. Selenocysteine is specifically incorporated into the active site of essential 
selenoproteins. Selenoproteins are of critical importance for normal cell func-
tion. Some well-studied selenoproteins include glutathione peroxidases (GPx), 
iodothyronine deiodinases (DIOs), and thioredoxin reductases (TrxR). Some 
selenoproteins have yet to have a characterized function. Here, we briefly sum-
marize the major selenoproteins and their functions identified in cells and model 
animals.

Glutathione peroxidase (GPX): Glutathione peroxidase plays an essential 
role in removing intracellular hydrogen peroxide, thus decreasing levels of 
reactive oxygen species (ROS). GPX1 is the major antioxidant protein in mam-
mals. It is involved in reduction of inflammation and infection-induced oxidant 
stress as well as regulation of glucose homeostasis and maintenance of intra-
cellular oxidation states [37–39]. GXP1 knockout mice were more susceptible 
to the diquat-induced oxidative stress, suggesting role of GPX1 under oxida-
tive stress [40]. GPX2 is highly expressed in gastrointestinal epithelium and 
cancers of epithelial origin [41–43]. GPX2 plays a physiological role in the 
self-renewal of the intestinal epithelium [44]. In GPX2 knockout mice, an 
increase of apoptotic cells at colonic crypt bases was observed and accompa-
nied by an increase in GPX1 [44]. The plasma GPX3 is the antioxidant and a 
tumor suppressor gene in prostate cancer [45]. GPX4 is a membrane-associated 
protein and has the ability to reduce hydroperoxides [46].

Thioredoxin reductases (TrxR or TRNRD): Thioredoxin reductases (TrxR) cata-
lyze reaction of reducing thioredoxin (TR). Three TrxRs have been identified in mam-
mals and each contains a selenocysteine in the C-terminal. TrxR1 is a cytoplasmic and 
nuclear protein. It has multiple physiological roles including regulation activity of 
transcription factors, cell proliferation, apoptosis, and tumor cell growth [47].
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Iodothyronine deiodinases (DIOs): There are three types of Se-dependent iodo-
thyronine deiodinases in mammals, which are involved in the maturation of thyroid 
hormones. Thyroid hormones are produced mainly in the inactive form, thyroxine 
(T4). Enzymes including DIO1 and DIO2 catalyze the formation of active hor-
mone triiodothyronine (T3) [48]. On the contrary, DIO3 inactivates T3 and T4, 
producing inactive T2 and reverse T3 (rT3), respectively. DIO3 demonstrates 
opposite effects on thyroid hormone function. Overexpression of DIO3  in basal 
cell carcinomas (BCCs) promoted cell proliferation due to inactivation of T3 and 
in vivo DIO3 knockdown in basal cell carcinoma cells decreased tumor formation 
in nude mice [49].

Selenoprotein P (Sel P): Selenoprotein P is a plasma selenoprotein, contain-
ing ten selenocysteine residues, and responsible for whole-body selenium 
metabolism [50]. “Sel P” bound to endothelial cells protected cells against tert-
butylhydroperoxide (t-BHP)-induced oxidative stress via upregulating glutathi-
one peroxidase and thioredoxin reductase activity [51]. SelP knockout mice 
showed decreased selenium levels in the testis, brain, and kidney with no change 
in the liver, indicating SelP involvement in transport hepatic selenium to other 
tissues [52]. The low-level concentration of SelP in plasma was related to the 
cancer morbidity [53].

Other selenoproteins: 15-kDa selenoprotein (Sep15) locates in the endoplas-
mic reticulum (ER) and affects glycoprotein folding by interacting with UDP-
glucose/glycoprotein glucosyltransferase (UGT) [54]. Mice deficient of Sep15 
developed cataracts caused by the improper lens glycoprotein folding [55]. 
Selenoprotein S (SelS) has anti-inflammatory role and links to the metabolic 
disease [56, 57]. It is involved in the retro-translocation process, removing the 
misfolded proteins from ER [58]. Selenoprotein N (SelN) is an ER glycoprotein. 
It is imperative for the muscle development through modulating ryanodine 
receptor calcium release channel [59]. Mutations in SelN cause multiminicore 
disease [60]. Selenoprotein M (SelM) is a low molecular weight Se-containing 
protein, located in ER, and reduces methionine-R-sulfoxide [61]. In primary 
neuronal cells, SelM can decrease the hydrogen peroxide-induced reactive oxy-
gen species and apoptotic cell death as well as calcium influx [62]. SelM knock-
out mice exhibited increased weight gain and adiposity, suggesting the role of 
SelM in regulation of body weight and energy metabolism [63]. Selenoprotein R 
(SelR) is the methionine sulfoxide reductase, reducing methionine-R-sulfoxides 
[64]. In vitro overexpression of SelR and clusterin (Clu) in Alzheimer’s disease 
model cell lines discovered the synergic interaction between these two proteins 
and significantly reduced the level of intracellular ROS [65]. Selenophosphate 
synthetase 2 (SPS2) serves as a selenium donor. It is an indispensable protein for 
the selenophosphate formation in mammals [66]. Selenoprotein W (SelW), a 
cytoplasmic protein, can decrease intracellular ROS using glutathione as an elec-
tron donor [67]. In developing myoblasts, SelW was engaged in muscle growth 
and differentiation, brain development, and embryogenesis serving as an antioxi-
dant [68, 69].
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3.4.2  �Roles of Selenoproteins in Cancer

Numerous studies and reviews have reported the expression, function, and path-
ological relation of selenoproteins [70, 71]. Selenoproteins collectively play an 
essential role in human physiology and function as important scavengers for 
reactive oxygen species (ROS). They also play a role in the prevention of cancer 
through their function as antioxidants. Lower level of selenium and abnormal 
selenoprotein expression are often observed to have association with multiple 
cancer incidence due to lack of protection of cells from excessive oxidation. 
Such protective roles of selenoproteins have been investigated in cells and ani-
mal models. For example, mice with knockout of glutathione peroxidases (GPX) 
were more susceptible to colon cancer induced by oxidative stress. GPX2 
knockout mice were more susceptible to develop UV-induced squamous cell 
carcinoma [72]. However, GPX2 was found to be upregulated in colon adeno-
carcinoma, Barrett’s esophagus, and squamous cell carcinoma [73–75], which 
implies its dual roles in cancer development. Mice with double knockout of 
GPX1 and GPX2 developed leo-colitis and intestinal cancer [76]. In prostate 
cancer, GPX3 was downregulated. Overexpression of GXP3 in prostate cancer 
cells decreased cell growth and invasiveness, which implies GPX3 might serve 
as a tumor suppressor [45].

Recent studies have shown that some selenoproteins may promote cancer 
growth. For example, selenoproteins serving as antioxidants could promote 
cancer cell proliferation and protect them from chemotherapy. There are reports 
that some selenoproteins are upregulated in cancer cells, which makes them as 
drug target(s) in the treatment. For example, selenium-binding protein 1 seems 
to be a tumor suppressor, and it can serve as a prognostic indicator of clinical 
outcome [77]. Two selenoproteins, thioredoxin reductase 1 (TrxR1) and sele-
noprotein 15 (Sep15), were proposed to have dual roles in preventing and pro-
moting cancer development. Similar to GPX2, TrxR1 expression was also 
increased in cancer cell lines and cancer tissues [78, 79]. Knockdown of TrxR1 
expression in mouse Lewis lung carcinoma (LLC1) cells decreased tumor 
growth and metastasis in vivo [80]. Sep15 is involved in progressing of colorec-
tal cancer. Inhibition of Sep15 in murine colon cancer cells reduced tumor for-
mation in  vivo [81]. Moreover, when these Sep15-downregulated cells are 
injected into BALB/c mice, lung metastatic lesions were significantly reduced. 
These examples implied that selenoproteins have different functions in differ-
ent stages of cancer development.

Cell culture and knockout mice have been created and used to investigate roles 
of these proteins through gain and loss of function. Salient among these researches 
are summarized in Table 3.3. For more information on the function of all selenopro-
teins, refer to other review articles [36].
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Table 3.3  Function of selenoproteins, tissue expression, function, and phenotypes in knockout 
mouse model

Gene/
protein

Tissue 
expression Function

Phenotype in knockout 
animals References

GPX1 Prostate, liver, 
kidney, heart, 
blood

Reduction of peroxides Lesions associated with 
prostate cancer 
progression

[82, 83]

GPX2 Colon, intestine, 
liver

Reduction of intracellular 
peroxides

UV-induced squamous 
cell carcinoma

[72]

GPX3 Plasma, kidney Reduction of peroxides Increased histological 
injury in Gpx3−/− colons

[84]

GPX4 Heart, liver, 
kidney, brain, 
testes

Reduction of phospholipid 
hydroperoxides

Sensitive to gamma 
irradiation

[85]

GPX6 Embryos and 
olfactory 
epithelium

Reduction of 
hydroperoxides

N/A [86]

TrxR1 Liver, embryos Cytoplasmic thioredoxin 
reductase

Increased liver/body ratio 
and hepatic lipidosis, 
defective morphology in 
TrxR1−/− embryos

[87]

TrxR2 Mitochondria Mitochondrial thioredoxin 
reductase

Absence of a discernible 
phenotype in 
heterozygous mice, 
homozygous mutant 
embryos were lethal

[88]

TrxR3 Testis Thioredoxin/glutathione 
reductase

Unavailable [89]

Dio1 Liver, kidney, 
thyroid, and 
pituitary

Production of 
iodothyronamine 
compounds, regulation 
serum T4 level

Increased body weight [90]

Dio2 Brown adipose 
tissue

Production of T3 Diet-induced obesity, 
liver steatosis, and 
glucose intolerance

[91, 92]

Dio3 Cerebrum, 
cerebellum, 
skin, liver, 
kidney, 
placenta, and 
intestine

Production of T3 Unavailable [93]

Sel P Brain, liver, 
kidney, testis, 
plasma, heart

Maintaining selenium 
content

Neurological defects [94]

SPS2 Embryos Selenophosphate 
synthetase

N/A [95]

(continued)
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Table 3.3  (continued)

Gene/
protein

Tissue 
expression Function

Phenotype in knockout 
animals References

Sep15 Colon, prostate, 
liver, kidney, 
testis, and brain

Glycoprotein folding Less aberrant crypt 
formation upon 
carcinogen treatment

[96, 97]

Sel K Intestine and 
spleen

Promoting Ca2+ flux Specific immune cell 
defects (T cells, 
neutrophils, and 
macrophages)

[98]

Sel N Skeletal muscle, 
heart, lung, 
brain, and 
kidney

Calcium and redox 
homeostasis, muscle 
development

Limited motility and 
body rigidity

[77]

Sel T Brain Brain ontogenesis, 
development

Neurodevelopmental 
abnormalities and 
hyperactive behavior

[99]

Sel V Testes Glutathione peroxidase 
and thioredoxin reductase

Unavailable [100]

Sel W Developing 
nervous system, 
muscles, heart, 
spleen, kidney, 
lung, liver, 
intestine, testis

Antioxidant actions and 
involved in muscle 
development

Unavailable [69]

Sel H Neuronal cells Mitochondrial biogenesis 
and reducing superoxide 
formation

Unavailable [101]

Sel I Neuronal cells Reduction of the levels of 
reactive oxygen species 
and apoptotic cell death, 
regulation of cytosolic 
calcium level

Unavailable [62]

Sel M Neuronal cells Protection of the brain 
against oxidative damage

Unavailable [62]

Sel O Mitochondria Kinase function Unavailable [102]
Sel R Liver, heart, 

lung, kidney, 
and testis

Redox control Increased levels of 
malondialdehyde, 
protein carbonyls, 
protein methionine 
sulfoxide, and oxidized 
glutathione; reduced 
levels of free and 
protein thiols in the liver 
and kidney

[103]

Sel S Adipose tissue, 
muscle, and 
liver

Associated with metabolic 
disease, elimination of 
misfolded proteins from 
ER

Unavailable [56, 104]
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3.5  �Association of Selenium Level/Selenoprotein SNPs 
with Cancer Pathologies

Epidemiological studies have showed a reverse correlation between selenium level 
and cancer risk. A large range of data from epidemiological studies, animal studies, 
and in vitro studies support the protective role of Se against cancer development. 
Those results form the basis of parental selenium administration in cancer 
prevention.

Prostate cancer: Several studies showed that selenium reduces the risk of 
prostate cancer [105]. In health professional follow-up study, high selenium, as 
indicated by toenail selenium levels, reduced the risk of prostate cancer [106]. 
In another prospective cohort study, high toenail selenium level was associated 
with decreased risk of prostate cancer [107]. But in a case-control study in 
British men, there was no association between selenium concentrations in toe-
nail and prostate cancer risk, although protective association was found in 
advanced prostate cancer patients with high selenium quintile compared with 
that in the lowest quintile (OR = 0.78, 95% CI, 0.27–2.25) [108]. The protec-
tive effect of serum selenium on risk of prostate cancer was found at concentra-
tion >135 μg/L in US men and especially in men with low serum α-tocopherol 
concentrations [109]. Physicians’ Health Study discovered the pre-diagnostic 
selenium levels could significantly reduce the risk of prostate cancer when 
prostate-specific antigen (PSA) level was >4  ng/mL, implying the effect of 
selenium on prostate cancer progression [110]. However, in Carotene and 
Retinol Efficacy Trial (CARET), there was no association between serum sele-
nium and prostate cancer incidence [111]. Nevertheless, most studies support 
the inverse relationship between low plasma selenium level and prostate cancer 
risk [112, 113]. Smoking is a factor that affects the protective role of Se. In 
ex-smokers with low toenail selenium level, Se has its strongest protective role 
[107]. And the inverse association between serum selenium and prostate cancer 
risk was pronounced in current and ex-smokers [112, 114].

Colorectal, esophageal cancer: In colorectal cancer patients, low serum 
selenium level was related to a lower mean survival time and a lower cumula-
tive cancer-related survival rate compared with high selenium level [115]. A 
pooled analysis of three studies (Wheat Bran Fiber Trial, Polyp Prevention 
Trial, and Polyp Prevention Study) proved high plasma selenium level could 
significantly reduce the recurrences of colorectal adenoma, supporting the pro-
tective and beneficial effects of high serum selenium level on the colorectal 
cancer risk [116].

Esophageal squamous cell carcinoma (ESCC) and gastric cardia cancer (GCC): 
One study conducted in Linxian, China, in which area populations had a high mor-
tality rate of ESCC and GCC and low selenium concentration, found a significant 
inverse association between low baseline serum selenium concentrations 
(mean = 73 μg/L) and high mortality for ESCC and GCC [117].
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Support of studies on selenoprotein gene variants associated with cancer 
growth and progression has emerged. Single nucleotide polymorphisms (SNPs), 
which affect expression and activity of selenoproteins, are associated with 
changes in selenium metabolism and found to be associated with cancer risks 
[118]. For example, a case-control study including 832 patients with colorectal 
cancer (CRC) and 705 controls in Czech populations discovered three SNPs 
(rs7579 (SEPP1), rs713041 (GPX4), and rs34713741 (SELS)) had an associa-
tion with CRC risk [119]. In addition, two-loci interactions between rs4880 
(SOD2), rs713041 (GPX4), and rs960531 (TXNRD2) and between SEPP1 and 
either SEP15 or GPX4 were statistically significant between patients and 
healthy controls, indicating interactions of selenoproteins involved in disease 
risk [119]. In a study conducted in Korean population, one SNP in promoter 
region of SELS (rs34713741) in men and two SNPs in 3’UTR of SEP15 (rs5845 
and rs5859) in women might have influenced CRC risk [120]. Also in Prostate, 
Lung, Colorectal, and Ovarian Trial, four SNPs in SEPP1 and one SNP in 
TrxR1 were significantly associated with the advanced colorectal adenoma 
[121]. In addition, the association of colorectal cancer risk and SNPs in 
GPX1–4 and SEPP1 were assayed in a case-control study nested within the 
Women’s Health Initiative Study [122]. Results identified one SNP in GPX4 
gene (rs8178974) and it was statistically significantly associated with colorec-
tal cancer risk. However, no association was observed between the overall vari-
ation in GPX4 gene and the risk of colorectal cancer. Individuals carrying T 
allele in GPX4 (rs34713741) had a greater risk of gastric cancer in Chinese and 
Japanese population [123, 124]. Using a tagged SNP method, Wang et al. found 
G allele of rs3805435, T allele of rs3828599, and A allele of rs2070593  in 
GPX3 could lower the risk for gastric cancer [125]. Interestingly, rs3828599, 
rs736775, and rs8177447 in GPX3 and rs4902347 in GPX2 could significantly 
decrease the risk of rectal cancer, but not colon cancer, suggesting different 
mechanisms of the function of selenoproteins in rectal and colon cancer [126]. 
rs1050450 (leucine to proline polymorphism at codon 198) in GPX1 is linked 
to the risk of lung, breast, and bladder cancer [127–129]. This variant could 
modulate the relationship between prostate cancer risk and serum selenium 
level due to altered GPX1 activity [130]. Moreover, the risk of prostate cancer 
was increased by the low serum selenium level together with the interaction 
between rs4880 in SOD2 and rs3877899 in SEPP1. Data from EPIC-Heidelberg 
study including 248 prostate cancer patients and 492 controls reported that the 
risk of prostate cancer was modified by a combination of low selenium level 
and SNPs in SELK (rs9880056), TXNRD2 (rs9605030 and rs9605031), and 
TXNRD1 (rs7310505) [131]. rs230812 and rs6865453 in SEPP1 were associ-
ated with the risk of breast cancer in women with a greater Native American 
ancestry [132].

These GWAS studies discover that SNPs in multiple selenoproteins are related to 
cancer risks. With the development of next-generation sequencing (NGS) tech-
nique, it is expected more association studies will be performed and will form bases 
for future personalized selenium application.
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3.6  �Clinical Application of Small Selenium Compounds 
in Cancer Prevention and Treatment

3.6.1  �Selenium Compounds Applied in Cancer Prevention 
and Treatment as Antioxidant

There is increasing evidence suggesting the vulnerability of cancer cells to 
oxidative stress; therefore, targeting the antioxidant capacity of tumor cells 
becomes promising therapeutic strategy [133]. Among cancer cell redox modu-
lators, selenium compounds gained substantial attention. Several human clini-
cal trials testing the ability of Se supplementation to prevent cancer had the 
mixed results. Selenium molecules have shown promises in the prevention and 
treatment of prostate, colon, liver, and lung cancer. A small-scale trial using 
pure selenite as the Se form found supplementation decreased hepatocellular 
carcinoma incidence in patients with hepatitis [134]. A landmark trial in sele-
nium cancer prevention was the Nutritional Prevention of Cancer (NPC) trial, 
published in 1996, in 1312 individuals, a 63% reduction in prostate cancer 
incidence, a 58% reduction in colon cancer, and a 46% reduction in lung can-
cer, as well as a 41% reduction in overall cancer-associated mortality [135]. 
The NPC trial was a double-blind placebo-controlled study that used selenized 
yeast, administered orally, and followed patients over 13 years at 200ug/day 
dosage. In a follow-up clinical trial, the Selenium and Vitamin E Cancer 
Prevention Trial (SELECT) tested selenomethionine and vitamin E, another 
nutrient believed to reduce prostate cancer incidence, together or alone. 
SELECT showed no difference in prostate cancer incidence between selenome-
thionine supplementation groups with the placebo group. It is believed that 
usage of selenomethionine as the Se form in SELECT demonstrated that the 
choice of chemical form of selenium is a crucial factor in cancer prevention 
[136]. These mixed results suggest that more study into the basic biology of Se 
is needed before the clinical benefits of Se can be understood and realized. In 
addition to these larger scales of clinical trials, some smaller size of trials were 
initiated in different countries in cancer prevention and treatment. For exam-
ple, in 2013, a clinical trial, SECAR, using selenite to treat existing cancer was 
initiated in Sweden [137].

Selenoprotein synthesis becomes saturated at nutritional levels below those 
required for the effects of clinical applications of selenium to occur; thus, low 
molecular weight selenium compounds are believed to play a role in selenium-
based therapy. As discussed above, multiple selenium compounds have been 
applied in cancer prevention or treatment, adjuvant treatment at elevated concen-
trations to exert the chemopreventive benefit independent of selenoprotein func-
tion. Each of their application with antiproliferative properties, their tumor 
selectivity, and mechanism of action through regulation of cell signaling are dis-
tinct. Clinical trials performed or ongoing along with their treatment effects are 
summarized in Table 3.4.
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Table 3.4  Clinical trials involve selenium compounds. Selenoyeast, selenomethione, and selenite 
have been applied in multiple clinical trials through dietary administration

Diseases
Selenium 
species Results

Dosage and 
adjuvant

Starting 
year

NPC Prostate, 
colorectal, lung 
cancer

Selenoyeast Reduce cancer 
mortality and 
incidence in male 
participants

200 μg selenium/
day

1983 
[138]

Cancer 
prevention in 
skin 
carcinoma

Lung, prostate 
cancer

Selenoyeast Reduce the 
secondary end 
point incidence of 
cancer

200ug selenium/
day

1983 
[135]

Nutrition 
intervention 
trials in 
Linxian, 
China

Stomach, 
esophagus, 
esophageal/
cardia cancer

Selenoyeast Reduce total 
cancer mortality, 
especially 
stomach cancer

50ug selenium, 
15 mg β-carotene 
and α-tocopherol/
day

1985 
[139]

Se prevention 
trial in Qidong 
County, China

Liver cancer Selenized 
yeast

Se had the 
protective role 
against hepatitis 
B virus (HBV) 
infection and 
primary liver 
cancer (PLC)

200 μg selenized 
yeast tablets/day

1993 
[134]

SU.VI.MAX 
trial

Prostate cancer N/A Reduce the rate of 
prostate cancer

120 mg vitamin C, 
30 mgα- tocopherol, 
6 mg 15 mg 
β-carotene, 100 μg 
selenium, and 20 mg 
zinc/day

1994 
[140]

SELECT Prostate cancer SeMet Fail to reduce the 
risk of prostate 
cancer (medium 
serum selenium 
136 μg/L)

200 μg selenium/
day

2001 
[141]

SECAR Carcinoma Selenite No symptoms of 
toxicity at dose 
<3 mg/m2, side 
effects at dose 
>4.5 mg/m2

N/A 2013 
[137]

3.6.2  �Small-Molecule Selenium Compounds Used in Cancer 
Prevention and Therapies

Except from serving as a micronutrient supplement, small-molecule selenium com-
pounds, including inorganic selenite, selenate, organic SeMet, SeCys, Se-MSC, 
MSA, and selenoyeast, can exert potential anticancer properties when used in high 
concentration. The concentration of toxicity on cancer cells and the mechanisms of 
anticancer activity are dependent on the selenium species [142].
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Selenite, as one of the most applied anticancer selenium compounds, has shown 
antitumor and anti-inflammation effects on numerous cancer cells and mouse mod-
els and has been applied in clinic. In vitro assays have confirmed its chemotherapeu-
tic potential against on a wide range of malignant cells, such as prostate cancer 
cells, lung cancer cells, colon cancer cells, ovarian cancer cells, leukemia cells, and 
cervical cancer cells (Table  3.5). Selenite can attack proteins with reduced thiol 
groups expressed on surface of tumor cells, inducing ROS-dependent cell apoptosis 
[173]. Inorganic selenate, a less reported and used anticancer form, has general 
lower cell toxicity than selenite and is quickly reduced to selenite to exert cellular 
function in cells with reducing environment.

Table 3.5  Selenium compounds used in cancer research and mouse models

Selenium species Used in studies Structures References

Selenite Lung cancer cells, prostate cancer 
cells, breast cancer cells, colorectal 
cancer cells, myeloid leukemia cells, 
malignant glioma cells, 
mesothelioma cells, colorectal 
carcinoma xenograft

-O

Se

O-

O [143–148]

Selenate Oral squamous cancer cells, prostate 
cancer, colon cancer cells

SeO

O

O-

O- [149–151]

Methylseleninic 
acid (MSA)

Prostate cancer cells, lung cancer 
cells, mouse mammary epithelial 
tumor cells, pancreatic cancer cells, 
triple-negative breast cancer, and 
colon cancer xenograft

Se
OH

O

H3C

[143, 
152–156]

Se-methyl-
selenocysteine 
(Se-MSC)

Ovarian cancer cells, prostate cancer 
cells, oral squamous cells, colon 
cancer cells, breast cancer cells, mouse 
mammary epithelial tumor cells, head 
and neck squamous cell xenograft

Se OH

O

NH2 [157–161]

Selenomethionine Prostate cancer cells, colon cancer 
cells, lung cancer cells, breast cancer 
cells, melanoma cells, colorectal 
carcinoma xenograft, squamous cell 
xenograft, and colon cancer xenograft

HO
Se

O

NH2

[148, 
162–166]

Selenocysteine Melanoma cells and lung tumors in 
mouse

OH

O

NH2

HSe

[167, 168]

Selenoyeast Mammary cancer, primary liver 
cancer, esophageal cancer, oral 
cancer, skin cancer

[135, 
169–172]
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Compared to inorganic selenium compounds, organic selenium compounds, 
including SeMet, SeCys, Se-MSC, and MSA, usually exhibit antitumor activity at 
much higher concentrations. Though SeMet is not an oxidizing agent, it can be 
metabolized to methylselenol, thus inducing cell cycle arrest, programmed cell 
death, and immune response [162, 174]. Methylselenol, as the common intermedi-
ate SeMet, Se-MSC, and MSA metabolism, can induce mitochondria dependent via 
producing oxidative stress. SeCys is a much safer reagent than SeMet in cancer 
research because SeMet can nonspecifically incorporate into proteins to replace 
methionine [175]. However, SeCys is chemically active, and thus, few chemothera-
peutic and chemopreventive researches focus on SeCys but on SeCys derivatives 
[176]. Se-MSC, a highly bioavailable selenium form, is effective in inhibiting cell 
proliferation in both solid and metastatic tumors via its anti-angiogenic effects 
[177]. In addition, Se-MSC is an excellent therapeutic adjuvant to enhance the effi-
cacy of anticancer drug since its anti-angiogenic effect is specific for tumors but not 
for normal organs [178]. MSA, an intermediate of SeMet and SeCys metabolism, 
can also be processed to methylselenol readily via cellular redox system, exerting 
significant chemopreventive effects and modulating tumor metastatic processes at 
low dosage [179]. Based on its ability to antitumor at a low dose, selenite could also 
serve as a therapeutic synergy compound to enhance the efficiency of other antican-
cer drugs, such as paclitaxel effects on breast cancers [152].

Selenoyeast, cultured in selenium-enriched medium, has achieved success in 
anticancer clinical trials. It contains a mixture of different selenium compounds 
including organic selenomethionine and a moiety of inorganic selenite along with 
uncharacterized selenium species [11]. However, the mechanism of selenoyeasts’ 
effects on anticancer activity is limited by the poor control of product speciation and 
purity [180]. The following table summarizes the selenium compounds and their 
usages in cancer cells and mouse models.

3.7  �Regulation of Oncology Signals by Selenium Compounds

Small selenium molecules show different effects in their clinical functions due to their 
distinct regulatory mechanisms in tumor and normal cells. Thus, the choice of selenium 
species is an important factor in the outcome of clinical trials. Meanwhile, dosage is 
another important clinical factor for treatment outcome. In this part, we summarize the 
mechanisms of major selenium molecules that have been clinically applied on cancers.

3.7.1  �Inorganic Selenite Signaling

The inorganic selenite exerts different effects on cells in a dose-dependent manner. In 
the high nanomolar to low micromolar range, selenite supports proliferation in nor-
mal conditions and cell survival in stress conditions, such as ischemia [181]. In high 
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micromolar, selenite inhibits many transcription factors involved in oncogenic path-
ways, such as vascular endothelial growth factor (VEGF)-mediated angiogenesis.

Selenite can oxidize both redox-active and redox-inert thiols in a wide range of 
cysteine containing proteins and produce ROS, leading to activation or inactivation 
of various pathways. Selenite can bind to redox-inert thiols in zinc finger proteins, 
which contain zinc-thiolate cysteines and are protected from oxidation by the intra-
cellular GSH or antioxidant protein thioredoxin [173]. For example, selenite can 
replace the zinc-bound thiols in SP1 and transcription factor IIIA, resulting in inhi-
bition of cell growth [182]. Its interaction with reactive thiol clusters has been iden-
tified in diverse signal proteins, such as inactivation of caspase-3 to protect normal 
cells from stress [183] and alteration of redox-sensitive factors activator protein 1 
(AP-1), NF-κB, and p53 to inhibit cell growth and induce caspase-mediated apop-
tosis in cancer cells [184, 185].

Selenite can also affect other signaling pathways through unknown and possibly 
different mechanisms. Selenite affects the phosphoinositide 3-kinase (PI3k)-serine-
threonine kinase Akt pathway and three major mammalian mitogen-activated pro-
tein kinase (MAPK) pathways: extracellular signal-regulated kinase (ERK) 1/2, 
c-Jun NH2-terminal kinase(JNK), and p38 in a dose-dependent manner [179, 186]. 
Though the basis for the interaction between selenite and these pathways is not well 
understood, it is known that MAPKs and PI3k can be activated by (1) ROS genera-
tion, which is mediated by superoxide production after oxidation of GSH; (2) the 
oxidation thioredoxin, which negatively regulates p38 and other factors; or (3) pos-
sibly the inhibition of certain phosphatases [187]. As for the dosage effects, selenite 
activates ERK1/2-mediated MAPK pathway and protects cell survival at dosage of 
2–8 μM [72] while selenite induces the p38/JNK pathway and initiates cell apopto-
sis at higher doses of 5–10 μM [186]. These data show that selenite can produce 
incompatible, sometimes directly opposite effects, depending on its concentration. 
However, the reasons for dose-dependent activation of certain signal pathways are 
complex, and there is no evidence that selenite preferentially reacts with certain 
pathways at lower concentration levels. It is possible that there are factors that affect 
the access of selenite to thiol proteins, such as their conformational state. And there 
must exist other unknown mechanisms of the concentration-dependent manner of 
selenite, given the multiple targets of selenite.

3.7.2  �Selenomethione (SeMet) Action in Cancer Cells

SeMet, the major component in selenoyeast, is non-redox active and non-DNA 
damaging compared to inorganic selenium, thus inducing antitumor activity at 
much higher concentration than that of selenite [176]. SeMet can achieve antitumor 
activity via inducing different pathways from that of selenite because of distinct 
metabolic pathways between selenite and organic selenium compounds in vivo. The 
major intermediate for SeMet in the liver is the redox-active methylselenol, which 
is toxic to cells by producing reactive oxygen species and inducing ROS-dependent 
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apoptosis [188]. The anticancer activity of SeMet is dependent on its ability to 
induce cell cycle arrest and apoptosis via p53-dependent pathway and associated 
with persistent activation of MAPK cascade and PARP cleavage in a dose-dependent 
manner [176]. In colon cancer cells, SeMet can induce S-G2/M cycle arrest at low 
concentration (22 μM) via ERK pathway-dependent histone H3 phosphorylation 
and induction of chromatin remodeling [189], while SeMet inhibit cell growth and 
induce apoptosis at higher doses (50–100 μM) by increasing p53 expression [164]. 
In addition, methioninase (METase) can enhance the anticancer effect of SeMet in 
prostate cancers by producing redox-active metabolites including methylselenol, 
thus increasing ROS and p53-dependent apoptosis [166]. Moreover, methylselenol 
generated from SeMet by METase in melanoma cells can induce cell detachment by 
decreasing integrin expression via activation of p38, protein kinase C (PKC)-δ, and 
NF-κB, leading to caspase-mediated apoptosis [162]. Except from studies in vitro, 
SeMet has been shown to be a low-toxic antitumor agent and a selective toxicity 
modulator of other anticancer drugs in human tumor xenografts [148, 163]. On 
colorectal carcinoma xenograft mice, SeMet treatment induces cell apoptosis in 
tumor tissue not in normal tissue by suppressing anti-apoptotic protein B-cell 
lymphoma-extra large (Bcl-xL) and activating caspase-9 cascade [148]. In xeno-
grafts bearing human squamous cell carcinoma of the head and neck and colon 
carcinoma, SeMet, at nontoxic dose, protects normal tissues against toxicity induced 
by chemotherapeutic agents without hampering their antitumor activities, such as 
irinotecan-induced programmed cell death [163].

3.7.3  �Se-Methyl-selenocysteine (Se-MSC) Action  
in Cancer Cells

The methylated selenium form MSC has been shown to be a potential chemopre-
ventive and chemotherapy agent in a wide variety of cancer cells and has attracted 
great attention as one of the most effective antitumor forms of selenium because of 
its good bioavailability, low toxicity, and readily metabolizing to redox-active meth-
ylselenol. The anticarcinogenic effect of MSC has been shown to block cell growth 
in S phase in mouse mammary epithelial tumor cells via deactivating PI3K-Akt and 
RAF kinase-mediated ERK signaling pathways [160, 190]. Cell apoptosis induced 
by death receptor (extrinsic) and mitochondrial (intrinsic) apoptotic pathways also 
contributes to the antitumor effect of MSC in dose- and time-dependent manners. At 
medium to high micromolar concentrations (100–400 μM), MSC has been reported 
to induce cytochrome c-independent apoptosis in ovarian cancer cells [161], while 
MSC induces ROS production and initiates cytochrome c-mediated caspase activa-
tion at 50 μM in promyelocytic leukemia cells [158]. Moreover, MSC, at 200 μM, 
induces apoptosis in colorectal adenocarcinoma cells by simultaneously increasing 
death receptor FasL-mediated, mitochondrial-dependent, and ER-stress-induced 
caspase activation [191]. In addition to stimulation of cell cycle arrest and apoptotic 
pathways, MSC exerts anti-angiogenic effects on cancer models both in vitro and 

X. Geng et al.



57

in vivo. In the colorectal cancer xenografts, non-toxic dose of MSC has been shown 
to inhibit tumor growth, reduce vessel formation, and increase chemotherapeutic 
efficacy of doxorubicin and irinotecan [177]. The anti-angiogenic effect of MSC is 
specific for tumor, and MSC can protect normal organs from toxicity of chemo-
therapeutic active agents, indicating MSC as a potent chemotherapeutic synergy for 
drug delivery to the tumor with no side effects [178]. When applied with irinotecan 
in human squamous carcinoma models, MSC enhances the cytotoxic activity of 
irinotecan in vitro and in vivo by inhibition of cyclooxygenase COX-2, iNOS, and 
HIF-1α-mediated neoangiogenesis [157, 192].

3.7.4  �Methylseleninic Acid (MSA) Action in Cancer Cells

MSA, a synthetic simplified version of MSC, can bypass the beta-lyase action and 
be reduced to methylselenol by cellular-reducing system [193]. MSA can induce 
cell cycle arrest and cell apoptosis in the low micromolecular range. It has been 
shown that MSA induces apoptosis and G1 cell cycle arrest in lung cancer cells by 
perturbing PI3K through Akt kinase and forkhead box O proteins (FOXO) dephos-
phorylation [154]. In addition, MSA, at low micromolecular concentration, has 
been reported to change cell cycle-regulated genes on transcriptional level, inducing 
G0/G1 accumulation, and induce apoptosis by caspase-mediated cleavage of PAPR 
along with G1 cell cycle arrest in prostate cancer cells [179]. Its ability to induce G1 
cell cycle arrest and cell apoptosis at low dosage has also been found in macrovas-
cular and microvascular endothelial cells via modulating cell cycle kinases and 
PI3K and ERK1/2 kinases, thus inhibiting tumor angiogenesis [194, 195]. MSA can 
also inhibit tumor angiogenesis by downregulation of cellular HIF-1α and VEGF 
via inhibiting histone deacetylases (HDAC) activity in diffuse large B-cell lym-
phoma cell lines [196] and esophageal squamous cell carcinoma [197]. Moreover, 
MSA has been shown to hamper hormone androgen receptor signaling with redox-
independent mechanism, making it a potential anticancer drug specific for prostate 
cancer cells with hormone refractory [143]. Compared to selenite and selenome-
thionine effects in vivo, MSA exerts superior inhibition of tumor proliferation and 
angiogenesis in lung carcinoma in mice and xenografts with human prostate cancer 
cells [198, 199].

3.8  �Perspectives: Future of Selenium Application in Cancer

Selenium is an essential micronutrient, while multiple small-molecule selenium 
compounds exhibit promising potentials in the prevention and treatment of can-
cers. Although the largest clinical trial SELECT failed to demonstrate preventa-
tive effects for prostate cancer while using selenomethionine, success of prior 
trials hinted that this may relate to the choice of selenium chemical forms. 
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Because selenium treatment displays large interindividual variation in pharmaco-
kinetics as well as treatment efficacy, more clinical trials with variation in choice 
of selenium compounds, dosages, etc. are required for future selenium applica-
tion. The leading medical opinion among clinicians is an optimal selenite dosage 
and administration must be developed.

Therefore, more understanding of fundamental selenium mechanism is needed 
for selenium therapies. For example, what is the cascade of selenium binding and 
affinity to proteins? How labile selenium and bounded selenium converted? What 
are the detailed mechanisms of small selenium function? What is the function of all 
selenoproteins? How to control pharmaceutical selenium dosage for disease treat-
ment? With the availability of personal genomic data from next-generation sequenc-
ing and improvement of proteomic identification of Se-binding proteins, along with 
better understanding in selenium biochemistry such as selenium uptake and metab-
olism, the factors affecting selenium pharmacokinetics can be explored and eventu-
ally integrated into selenium application. Overall, more studies are required in the 
understanding of selenium homeostasis and to maximize the application of sele-
nium as essential element, treatment reagent, or therapeutic adjuvant.
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Chapter 4
Zinc and Zinc-Dependent Proteins in Cancer 
and Chemotherapeutics

Jenna Guynn and Elizabeth A.W. Chan

Abstract  Zinc (Zn) is an essential element critical for numerous protein structures 
and catalytic functions. This chapter focuses on the importance of homeostatic con-
centrations and appropriate subcellular distributions of Zn within cells, as well as the 
structural and catalytic roles Zn plays for many important enzymes. The mecha-
nisms and factors by which homeostatic levels of intracellular Zn are maintained are 
discussed, as well as means by which Zn is distributed within the cell. In addition, 
several important proteins that require Zn for catalytic activity, such as matrix metal-
loproteinases and lysine deacetylases, and structural functions, such as the transcrip-
tion factor p53, are reviewed. Associations between the dysregulation of Zn-dependent 
proteins or intracellular Zn homeostasis and the development and progression of 
several cancers are detailed, with emphasis placed on mechanistic links related to 
Zn. Finally, the various chemotherapeutic strategies that have been developed to 
either modify intracellular Zn levels or directly target cancer-associated proteins that 
involve Zn and potential future chemotherapeutic targets are evaluated.

Keywords  Zinc • Carcinogenesis • Zinc finger • Matrix metalloproteinase • Lysine 
deacetylase
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GLI	 Glioma-associated oncogene
HAT	 Histone acetyltransferase
HCC	 Hepatocellular carcinoma
HDAC	 Histone deacetylase
Hh	 Hedgehog
IL-2	 Interleukin-2
KDAC	 Lysine deacetylase
MMP	 Matrix metalloproteinase
MT	 Metallothionein
mtp53	 Mutant p53
PML	 Promyelocytic leukemia gene
RAR-α	 Retinoic acid receptor α
ROS	 Reactive oxygen species
RRE	 Ras-responsive element
RREB1	 Ras-responsive element-binding protein 1
Snai1	 Snail homolog 1
Sp1	 Specificity protein 1
TGF-β	 Transforming growth factor β
TIMP	 Tissue inhibitor of metalloproteinase
ZIP	 Zrt-, Irt-related proteins
Zn	 Zinc
ZnT	 Zinc transporters

4.1  �Introduction

Zinc (Zn) is a naturally occurring and nutritionally essential element [1]. Trace 
amounts are required for the basic cellular function of all living things for various 
structural, regulatory, and catalytic biological processes. Zn-binding motifs, com-
mon structural protein domains found in ~10% of all proteins [2, 3], play critical 
roles in numerous cellular processes, including protein folding, enzymatic activity, 
immune function, macromolecule syntheses, DNA repair, and oxidative stress 
responses [4–7]. Zn is also involved in multiple essential regulatory functions 
through the modulation of gene expression, protein binding, apoptosis, DNA and 
RNA metabolism, synaptic plasticity, redox status, and intracellular signaling [8, 9]. 
In addition, over 300 enzymes utilize Zn as a catalytic cofactor to stabilize negative 
charges for substrate activation [10, 11]. For additional details regarding Zn physi-
ology, the reader is referred to other works on these matters [12–14].

Zn is not endogenously produced and must be obtained through diet. Humans 
consume Zn in a variety of foods, such as meats, seafood, dairy products, beans, and 
whole grains [15], or by dietary supplementation [16]. Within the average human, 
there is between 2 and 4 g of Zn, located mostly in the brain, eye, prostate, muscle, 
bones, kidney, and liver [3]. Intracellular influx of Zn is facilitated by Zrt-, Irt-
related proteins (ZIP), while organelle distribution and efflux to the extracellular 
matrix (ECM) are mediated by Zn transporters (ZnT). In mammalian cells, 
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approximately 30–45% of Zn is located in the nucleus, ~50% in the cytoplasm and 
other organelles, and the remaining ~5–15% is located in the cell membrane [17]. 
Total cellular Zn concentrations range from 100 to 500 μM, with most Zn tightly 
bound and unavailable for use in cellular reactions. In fact, only femto- or nanomo-
lar quantities of Zn are in the form of free cytosolic Zn2+ [18]. Homeostasis of intra-
cellular Zn is maintained through a buffering system of protein binding and vesicle 
sequestration. The metallothionein (MT) family proteins, which are cysteine rich 
and inducible, can bind Zn and other heavy metals in order to transport and buffer 
Zn levels, regulating various functions [19, 20]. Figure 4.1 summarizes Zn mobility 
inside and outside of cells, as well as certain Zn-related regulatory mechanisms.

The recommended daily allowance of Zn for adults in the United States is 11 and 
8 mg for males and females, respectively, and the tolerable upper intake level for 
adults is 40 mg [21]. In general, there is approximately 2–4 g of Zn in each human, 
although this amount varies by age [3]. Zn intake below the recommended daily 
allowance may be insufficient to meet altered physiological demands, whereas excess 
Zn intake, either due to accidental ingestion in occupational settings or altered 
homeostasis, can have deleterious effects on human health [21–23]. Inadequate Zn 
intake can lead to reproductive, neurological, and skin abnormalities, whereas excess 
intake can lead to effects such as copper deficiency, bone growth retardation, and 
metal fume fever [1, 21, 24–26]. Either insufficient or excess intake of Zn can lead to 
immune system dysfunction [27]. The major routes of entry for Zn into the human 
body are inhalation, ingestion, and absorption [1]. In addition to diet, Zn exposure 
can occur through occupational settings, environmental contamination, and the use of 
personal care products [28]. In addition, Zn exposure as a component of air pollution 
has been associated with adverse respiratory and cardiovascular effects [29–31].

Zn2+

Zn2+ Zn2+

Z
n
T

Z
IP

ZIP

ZnT

Transport through
plasma  membrane

Vesicular sequestration
Zn-binding proteins

Maintenance of cellular vitality Cell death

Zn
Zn Zn

Zn Zn

ZnZn
S

S

S S
S

S
S

Fig. 4.1  Zn transport through the plasma membrane of cells and the maintenance of intracellular 
Zn homeostasis. Zn transport through the plasma membrane and distribution into organelles are 
facilitated by ZIP importers and ZnT exporters. Homeostasis is regulated by vesicle sequestration 
and Zn-binding proteins, such as MT (Reproduced with copyright permission. Plum et al. Int J 
Environ Res Public Health. 2010;7(4):1342–65)
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Abundant evidence implicates Zn dysregulation in the development and progres-
sion of cancer [32]. Compared to normal tissues, both increased and decreased Zn 
concentrations have been observed in malignant tissues. Moreover, the dysregula-
tion of numerous proteins containing Zn2+ for catalytic and structural function is 
associated with the carcinogenic process in various cancers [33]. Taken together, 
these data provide a strong rationale for the development of chemotherapeutic strat-
egies aimed at modulating intracellular Zn concentration and/or availability. Specific 
mechanisms and roles that Zn and Zn-related proteins play in carcinogenesis, as 
well as potential roles for chemotherapeutic strategies involving Zn, are discussed 
in the following sections.

4.2  �Zn Homeostasis and Dysregulation

Homeostatic Zn levels, which differ by cell type, are required for appropriate cel-
lular function, such as preventing apoptosis in healthy cells and promoting apopto-
sis when advantageous to the organism [34]. Aberrant proliferation, a hallmark of 
carcinogenesis, requires the evasion of protective cell death mechanisms such as 
apoptosis [35]. Excess intracellular Zn can mediate pro-oxidant and pro-apoptotic 
effects [36] and has resulted in activation of apoptosis in vitro [37]. In living cells 
under surplus Zn conditions, Zn2+ translocates into the mitochondria and induces 
ROS production, via inhibition of cytochrome C oxidase [38, 39]. Evidence also 
implicates the dysregulation of intracellular Zn2+ homeostasis early in the carcino-
genic process, as a mechanism to facilitate proliferation through avoiding normal 
programmed cell death [40]. The following section addresses Zn dysregulation 
mediated by changes in Zn transport into and within cells.

4.2.1  �Zn Transporters

Transport of Zn across the cellular membrane and between the cytosol and organ-
elles is critical for cell function and survival. The two families of Zn transporters, 
ZIP and ZnT, belong to the solute carrier family [41, 42]. ZIP transporters mediate 
the movement of Zn both from the extracellular space and from organelles to the 
cytosol. Some of the 14 known ATP-dependent ZIP transporters (ZIP1–14) can also 
transport cadmium, iron, and manganese, in addition to Zn [43, 44]. Conversely, the 
movement of Zn from the cytosol to organelles or the extracellular space is medi-
ated by ten known ZnT (ZnT-1–10). ZnT are not ATP dependent but instead func-
tion by Zn2+/H+ exchange [45]. ZnT-1, the only known ZnT located primarily at the 
plasma membrane [46], is upregulated under high Zn conditions, presumably to 
facilitate Zn export [47, 48]. Interestingly, altered Zn levels in carcinogenic tumors 
as compared with healthy surrounding tissue have been reported, which suggested 
that Zn transporter expression may be involved in carcinogenesis [49, 50]. 
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Additionally, several members of these transporter families are associated with spe-
cific cancers (Table 4.1).

During malignancy, Zn levels in prostate tissue, which are normally ~10× higher 
(~1 mg of Zn per gram of dry tissue) than levels in other soft tissues [64], can be 
markedly reduced [65–67]. This is unsurprising, as reduced Zn levels are commonly 
found in neoplastic tissue [65–67]. Abnormally low Zn concentrations have also 
been observed in prostate intraepithelial neoplasia, an established premalignant 
state [68, 69]. Interestingly, expression levels of human zinc transporter 1 (hZIP1) 
in prostate glands correlated with Zn levels, suggesting that hZIP1 may regulate Zn 
accumulation in malignant prostate glands [69].

Investigation into the molecular mechanism responsible for reduced Zn concen-
trations in malignant prostatic tumors revealed the downregulation of ZIP1–3 trans-
porters [52, 55]. This downregulation was attributed to transcriptional inhibition of 
hZIP1 gene expression [53]. Interestingly, hZIP1 transcription is mediated by the 
Ras/Raf/MEK/ERK signaling pathway [52, 54], which is often upregulated in many 
types of cancer, including prostate [70]. However, in malignant prostatic tumor 
cells, reduced transcription is mediated by a Ras-responsive element (RRE) in the 
ZIP1 gene promoter region being bound by the Ras-responsive element-binding 
protein 1 (RREB1) [52, 54]. In turn, RREB1 itself is a Zn finger transcription factor, 
and can further reduced Zn levels in cells in which hZIP1 transcription. Furthermore, 
RREB1 can both activate and inhibit transcription of various target genes, depend-
ing on cell type, promoter, and co-binding proteins [71, 72].

Similar decreases in Zn levels have been found in pancreatic adenocarcinoma, an 
untreatable cancer with a low survival rate [56]. Zn deficiency is evident early in 
malignancy, for example, when pancreatic intraepithelial lesions first become present 
[57]. Decreased Zn levels in pancreatic adenocarcinoma tissue have been associated 
with reduced expression of the Zn importer ZIP3, which is present at the basilar 
membrane of normal ductal and acinar epithelium [56]. In contrast to prostate cancer, 
decreased RREB1 expression is associated with the downregulation of ZIP3 [57]. Zn 
supplementation inhibits malignant pancreatic cell proliferation, supporting the the-
ory that reduced Zn levels protect cancerous cells from Zn-mediated cytotoxicity and 
apoptosis [73, 74]. With regard to the functional effects of RREB1, it had previously 
been demonstrated capable of both transcriptional activation and inhibition of vari-
ous target genes, depending on cell type, promoter, and co-binding proteins [71, 72].

Table 4.1  Zn transporters deregulated in cancer

Transporter Cancer type Regulation Change in Zn level Reference

ZIP1 Prostate Down Reduced [51–54]
ZIP2 Prostate Down Reduced [55]
ZIP3 Prostate, pancreatic Down Reduced [55–58]
ZIP14 Hepatocellular Down Reduced [59]
ZIP6 Breast Up Increased [60]
ZIP10 Breast Up Increased [61]
ZnT-2 Breast Up Increased [62, 63]
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Altered Zn transporter levels have also been widely reported in hepatocellular 
carcinoma (HCC) tissue, as compared with normal liver samples [75]. Franklin 
et al. found reduced gene transcription and no expression of the Zn uptake trans-
porter protein ZIP14 in a HCC cell line [59]. The same group also assessed a second 
HCC cell line that did express ZIP14 and found that treatment with physiological 
levels of Zn reduced cellular proliferation [59]. Zn supplementation also reduced 
mitochondrial function in the ZIP14-expressing HCC cell line, via aconitase inhibi-
tion [76]. Therefore, studies of Zn levels in cancer cell lines suggest that reduced Zn 
levels can prevent cytotoxic effects. Of note, in situ tumors may exhibit distinct ZIP 
gene deletions/mutations from the cell lines used for in vitro studies [40, 56, 59, 77].

Conversely, it has been well established that cancerous breast tissues typically 
have higher Zn levels compared to healthy surrounding tissue [78–82]. In addition, 
estrogen receptor-positive (ER+) breast tumor samples exhibited significantly 
increased Zn compared with ER− tumor samples [83]. Increased expression of cer-
tain Zn transporters mediating increased Zn levels and rapid cellular proliferation 
has arisen as an explanation behind breast carcinogenesis [61, 84, 85]. In support of 
this, higher expression of ZIP10 has been observed in invasive and metastatic breast 
cancer cell lines, as compared with those that are less metastatic [61]. In addition, 
ZIP6 was originally identified as an estrogen-inducible gene when elevated levels 
were associated with breast carcinogenesis [86, 87]. Increased Zn levels can inhibit 
glycogen synthase kinase 3β, which downregulates expression of the adherence 
gene E-cadherin via nuclear translocation of the unphosphorylated Zn finger pro-
tein, Snai1 [88]. This downregulation may promote invasion and metastasis of 
tumor cells. However, ZIP6 has also been associated with better survival outcomes 
[84]. Additionally, to combat potential cytotoxicity by increased Zn intracellular 
free Zn2+, increased ZnT-2 may facilitate vesicle sequestration of Zn [62, 89].

4.2.2  �Metallothionein

MTs are cysteine-rich, low-molecular weight, metal-binding proteins that support 
various cellular functions related to the redox cycle and heavy metal homeostasis. 
The four major MT isoforms, 1–4, and seven MT-1 subtypes are present in the cyto-
plasm and in certain organelles, including mitochondria and lysosomes [90]. While 
MTs were first discovered as cadmium-binding proteins [91], they can also bind 
other metals, including Zn, copper, selenium, arsenic, mercury, and silver, making 
their role in cellular pathophysiology very complex [92]. Regarding Zn, cysteine 
thiols in MTs allow for binding of up to seven Zn2+ atoms per MT and facilitate cel-
lular distribution, as well as mitigate oxidative stress [92, 93]. Because MTs chelate 
Zn2+, aberrant expression can lead to the loss of Zn2+ from critical tumor suppressor 
proteins, including p53 [94]. The role of Zn2+ in the function of p53 will be dis-
cussed in the section on proteins that utilize Zn for structural purposes.

Various lines of research have supported the idea that cancer cells exploit MT abil-
ity to prevent metal- or reactive oxygen species (ROS)-mediated toxicity, allowing 
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for increased cell survival by inhibiting apoptosis and promoting proliferation, espe-
cially when exposed to chemotherapeutic agents [33]. Some of the first evidence 
implicating expression of MT in the carcinogenic process came from studies that 
found increased apoptosis and sensitivity to chemotherapeutics in MT-null cancer 
cells [95, 96]. In addition, MTs are frequently overexpressed in human breast, colon, 
lung, ovary, salivary, and bladder cancers [19, 97]. In nasopharyngeal tumor samples, 
MT expression was also correlated with increased proliferation, as well as a lower 
ratio of both cell deaths and apoptotic events [98, 99].

MT overexpression may also confer resistance to antineoplastic drugs and radio-
therapies [100–103]. For example, cultured cells with high MT levels were more 
resistant to treatment with a platinum-containing antitumor drug [100–103]. The 
mechanism behind this resistance may involve direct interaction with metal-
containing therapies or scavenging for free radicals. Chemotherapeutic strategies to 
silence MT genes have been investigated, although no human treatments are cur-
rently in use [104, 105].

4.2.3  �Role of Zn Homeostasis in Chemotherapeutics

Evidence has shown that Zn insufficiency is important for inhibiting apoptosis dur-
ing the carcinogenic process, suggesting that increasing the intracellular concentra-
tion of Zn could treat cancer [65–67]. Zn can also inhibit thioredoxin reductase, a 
key oxidative stress mediator often overexpressed in human cancers [106]. To 
increase intracellular Zn levels in many cancers that exhibit downregulation of Zn 
importers, both supplementation with or without Zn-specific ionophores and com-
pounds disrupting Zn homeostasis are used [40]. Zn supplementation alone in vivo 
increased tumor Zn levels and suppressed growth in a prostate cancer xenograft 
model [107]. While individual cases of Zn supplementation alone or in combination 
with other cancer therapeutics have been reported [108], no well-established treat-
ments currently exist.

The Zn-specific ionophore clioquinol reversibly binds Zn2+ ions, shielding the 
charge, which allows for transport across cellular membranes leading to an increase 
in the intracellular concentration of Zn [109]. Clioquinol had been shown to inhibit 
cancer cell growth in vitro and in vivo, likely via the increase in intracellular Zn 
[110]. In vitro, combination of clioquinol and Zn supplementation increased intra-
cellular Zn to cytotoxic levels and demonstrated that cytotoxicity was likely due to 
posttranscriptional effects of Zn, such as the downregulation of specific genes that 
regulate microRNA stability (e.g., Dicer and Ago2) and the global downregulated 
microRNA expression [111]. While the use of Zn and Zn-specific ionophores in the 
treatment of human cancers is currently not common, emerging evidence related to 
the safety of clioquinol and potential uses for Zn related to other carcinogenic 
mechanisms provides a promising avenue for treatment [112]. Many chemothera-
peutics used presently are accompanied by debilitating side effects; however, clio-
quinol has little or no cytotoxic effects at the therapeutic dose (0.3–2 g/day) [113].
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4.3  �Proteins Containing Catalytic Zn

4.3.1  �Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) are a class of >20 structurally similar endopep-
tidases that require Zn2+ for enzymatic activity [114]. MMPs are involved in a 
myriad of important biological processes, including the degradation of ECM pro-
teins (proteins secreted outside of the cell to structurally and biochemically support 
adjacent cells), cleavage of cell surface receptors, and inactivation of chemokines. 
Beginning with the N-terminus, MMPs generally consist of a ~80 amino acid pro-
peptide domain, a ~170 amino acid MP catalytic domain region dependent upon 
both Ca2+ and Zn2+, a 15–65 amino acid linker/hinge region, and a ~200 amino 
acid-long hemopexin domain [115]. The hemopexin domain is involved in binding 
to collagen and to other MMPs [116]. Within the catalytic domain, MMPs utilize 
three histidine residues to hold the catalytic Zn2+ ion in a specific configuration, 
which allows for the Zn2+-mediated catalytic cleavage of nonterminal amino acid 
peptide bonds [117]. There is also a second Zn2+ ion present in the catalytic domain, 
which stabilizes the overall structure [118]. Of the 24 human MMPs, 18 are 
secreted and six are membrane bound. Both secreted and membrane-bound forms 
exhibit overlapping substrate specificity for degrading chemicals, including cyto-
kines, collagens, and other ECM proteins such as fibronectin, plasminogen, and 
E-cadherin [119].

MMP catalytic activity is tightly regulated. For example, all known MMPs are 
initially expressed as latent and inactive proenzymes [120], due to the presence of a 
“cysteine switch,” composed of a cysteine-connected pro-domain sheath, which 
prevents substrate interaction with the catalytic Zn2+. To become active, the switch 
domain must be cleaved by other MMPs or proteases to release the pro-domain. The 
switch domain also prevents Zn2+ interaction with a water molecule, a required step 
for Zn2+-mediated catalysis. The water molecule, attracted to the Zn2+ cation, is 
efficiently deprotonated by the Zn2+ ion and produces a nucleophilic hydroxide ion. 
The nucleophilic hydroxyl ion then attacks and cleavages the peptide bond [118].

Even after switch cleavage, the Zn2+-mediated catalytic activity of MMPs can be 
regulated. Tissue inhibitors of metalloproteinases (TIMPs) are constitutively pro-
duced, endogenous protein inhibitors that bind to MMPs and prevent enzymatic 
function [121]. There are only four TIMPs (1–4), which regulate all MMPs [118, 
121]. Using X-ray crystallography techniques, TIMPs were demonstrated to be 
shaped like a wedge, which slide into the MMP active site and physically block 
Zn2+-mediated catalytic activity [122, 123].

The regulation of MMP Zn2+ catalytic activity is ultimately important for growth, 
tissue remodeling, angiogenesis, and immune system modulation. With such varied 
and important regulatory functions, it is unsurprising that dysregulation of MMPs 
has been linked to several types of cancer. In fact, abnormal MMP activity has been 
associated with lung, prostate, breast, ovarian, hematological, and colorectal cancer 
progression and metastasis [124, 125]. One mechanism by which MMPs support 
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cancer progression and metastasis is through overactive MMPs degrading sizeable 
amounts of the ECM, thereby providing a clear and unobstructed path for cancer 
cells to metastasize to other areas [126, 127]. It has also been proposed that dys-
regulated MMPs can support cancer progression in other capacities, such as tumor 
growth and tumor angiogenesis [126].

The abundance of evidence implicating MMP activity in carcinogenesis and 
malignancy also suggests that MMP inhibitors could be used as a successful strat-
egy to treat cancers and prevent metastasis. While MMP inhibition, via blocking 
catalytic activity through Zn2+ binding or altering protein conformation, has been 
investigated as a potential therapeutic strategy, little success has been achieved due 
to lack of MMP specificity and severe side effects [114, 128]. For example, several 
phase III clinical trials targeting pancreatic and non-small cell lung cancer with 
broad or limited specificity inhibitors showed no evidence of survival benefit or 
were halted due to reduced survival [129]. The lack of success has been attributed 
to the multifunctionality of MMPs [130], meaning that although the pathological 
activity of a subset of MMPs has been reduced or eliminated, there is also a loss of 
protective MMP functionality resulting from overall MMP inhibition.

4.3.2  �Lysine Deacetylases

Homeostatic control of histone acetylation is regulated by the activity of lysine 
deacetylases (KDACs, also known as histone deacetylases [HDACs]) and histone 
acetyltransferases (HATs). Appropriate histone acetylation is critical for chromatin 
structure, transcription factor accessibility, and gene expression [131, 132]. KDACs 
catalyze the removal of acetyl groups from lysine residues on both histone and non-
histone proteins [133, 134], whereas the acetylation of lysine residues can be per-
formed by HATs. Nearly all KDACs and some HATs require Zn to function. In 
chromatin, DNA is organized around lysine-containing histone proteins (Fig. 4.2a). 
In addition to supporting chromatin structure by providing a scaffold for DNA orga-
nization and packaging, histones can also regulate gene expression [135]. KDAC 
and HAT activity on histones can effectively turn expression off or on as depicted in 
Fig. 4.2b. Structurally, class I, II, and IV KDACs have a narrow hydrophobic tunnel 
leading to an active site containing Zn2+ coordinated to a histidine and two aspartic 
acid residues [136]. Class III KDACs (sirtuins) require NAD+ for catalytic activity 
and are implicated in cancer progression, as well as metabolism and aging [137, 
138]; however, sirtuins do not require Zn for catalytic function.

The acetylation of lysine residues on histones reduces the positive charge, 
decreases interaction with the negatively charged DNA phosphate backbone, and 
creates a more transcriptionally “open” histone conformation, known as euchroma-
tin [139]. Conversely, deacetylation by KDACs facilitates a tightly packed, “closed” 
heterochromatin structure, which can be unfavorable for gene transcription. 
Additionally, HATs and KDACs control the posttranslational modification of sev-
eral proteins, including transcription factors and DNA repair enzymes [140].
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Most tumors and hematopoietic malignancies attributed to KDAC activity arise from 
deregulation of KDAC expression or recruitment to target genes [141]. Excessive KDAC 
expression can tip the balance of acetylation homeostasis, altering tumor suppressor 
gene expression and signaling [142, 143]. Genes associated with aberrant KDAC activ-
ity include those regulating cell proliferation, differentiation, apoptosis, angiogenesis, 
and metastasis [144]. Several studies have reported increased expression of KDACs in 
tumors compared with normal tissue, which are often correlated with a worse prognosis 
[141]. For example, increased KDAC expression has been observed in gastric [145–
148], colon [149–151], and breast [152–154] carcinomas.

Fusion proteins present in leukemia can promote gene silencing, through a 
mechanism involving KDAC recruitment to target gene promoters. In acute promy-
elocytic leukemia, a chromosomal translocation results in expression of a retinoic 
acid receptor α (RAR-α) and promyelocytic leukemia (PML) gene fusion. The 
PML-RARα fusion protein blocks transcription of genes critical for differentiation 
through enhanced recruiting of KDACs and nuclear corepressors [155]. Additionally, 
KDACs can contribute to carcinogenesis through interaction with nonhistone pro-
teins. Acetylation of the tumor suppression protein p53 is involved in both protein 
activation and the prevention of subsequent ubiquitin-mediated degradation [156]. 
For example, HDAC1 deacetylation of p53 in vivo and in vitro has been demon-
strated to alter p53 stability, leading to changes in downstream tumor suppressor 
functions [157, 158].
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Fig. 4.2  The role of matrix metalloproteinases (MMPs) and histone acetylation in carcinogenesis. 
(a) Aberant MMP activity contributes to the activation of numerous pathways critical for tumor 
development and metastasis. (b) Decreased histone acetylation by KDACs results in transcrip-
tional repression of tumor suppressor genes, which can contribute to the carcinogenic process
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The role of KDACs in carcinogenicity has led to the development of KDAC 
inhibitors as an anticancer chemotherapeutic strategy [159, 160]. To date, four non-
specific KDAC inhibitors have been approved for the treatment of hematopoietic 
malignancies, including multiple myeloma, peripheral T-cell lymphoma, and cuta-
neous T-cell lymphoma [161]. Of note, the hydroxamic acid vorinostat can inhibit 
enzymatic activity by binding to the active site of KDACs and acting as a Zn2+ 
chelator [136, 162]. However, lack of KDAC-specific selectivity and a narrow thera-
peutic window has presented challenges to the development and approval process of 
several other KDAC inhibitors [163, 164].

4.4  �Proteins Containing Structural Zn

4.4.1  �Zn Finger Proteins

Zn finger proteins require Zn2+ coordinated to Cys/His residue pairs to maintain 
proper structural conformation. The tertiary protein structure formed by the most 
common Cys2His2 tetrahedral Zn2+ binding facilitates hydrogen bonding of the 
α-helical side chain residues to the base pairs in the major groove of DNA [165]. 
Over 500 proteins contain the classical Zn finger structure. Most of these proteins 
are able to bind DNA and function as transcription factors or DNA repair proteins 
[166]. In general, transcription factors enhance transcription by binding to site-
specific regions within gene promoters, where they interact with the RNA Pol II 
complex. Figure 4.3 depicts the Zn finger motif and Zn fingers binding DNA.

a b

Zn

Fig. 4.3  Structure of Zn finger motif (PDB ID: 1ZNF) (a) and molecular model of the interaction 
between a domain composed of three Zn fingers and DNA (PDB ID: 1A1J) (b) generated using PV 
- JavaScript Protein Viewer (http://biasmv.github.io/pv/, Reproduced with copyright permission of 
Pleiades Publishing, Ltd. and Springer. Razin et al. Biochemistry-Moscow. 2012;77(3):217–26)
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Numerous targeted therapies have been developed to counteract the aberrant 
gene activation resulting from the overexpression of Zn finger transcription factors 
[167]. For example, small-molecule therapeutics that interfere with RNA and DNA 
synthesis, primarily through inhibition of topoisomerase II, have been developed 
[168, 169]. Specific Zn finger proteins implicated in carcinogenesis are described 
below, as well as available targeted chemotherapeutic strategies.

�Specificity Protein 1

Specificity protein 1 (Sp1) is a transcription factor that can activate or repress the 
expression of numerous genes related to cell growth, differentiation, angiogenesis, 
apoptosis, and tumorigenesis [170–172]. Sp1 proteins contain three Zn finger motifs 
at the carboxy-terminal end, which mediate DNA binding to GC-rich DNA ele-
ments often present in gene promoters [173]. Sp1 protein overexpression has been 
observed in several cancers and has been correlated with higher tumor stage and 
lower survival [174–177]. Sp1 binding activity was also increased in malignant 
breast tumor samples compared with benign lesions [178].

Reducing Sp1-associated gene expression via the inhibition of Sp1-DNA bind-
ing has been proposed as a potential chemotherapeutic strategy. Mithramycin A and 
newer analogs bind to the putative Sp1 binding site within gene promoter regions in 
DNA, blocking Sp1 binding [179, 180]. This strategy has also been used in a non-
specific fashion, using chemotherapeutics such as anthracyclines that bind to 
CG-rich sites and impede Sp1-mediated DNA binding [181, 182].

�Snail Homolog 1

Snail homolog 1 (Snai1) is a Zn finger protein in the Snail family of transcriptional 
repressors [183]. While critical for normal epithelial to mesenchymal transition dur-
ing development, Snai1 and other Snail family members have also been associated 
with carcinogenesis, tumor invasion, and metastasis. The role of Snai1 in the carci-
nogenic process likely primarily results from transcriptional repression of the 
E-cadherin gene, CDH1, a tumor suppressor glycoprotein involved in cell-cell 
adhesion [184, 185]. The expression of Snai1 has been observed in numerous carci-
nomas, including breast, ovarian, colon, squamous cell, and hepatocellular [186]. In 
breast carcinomas, Snai1 expression was correlated with reduced E-cadherin levels, 
metastasis, and reduced survival. Additionally, increased Snai1 expression and 
CDH1 downregulation can be detected quite early in the carcinogenic process [187]. 
In addition to reduced E-cadherin, Snai1 expression has been correlated with 
reduced vitamin D receptor in colorectal cancer [188, 189]. Reestablishment of 
vitamin D receptor levels and supplementation with vitamin D have been explored 
as strategies for cancer prevention and treatment [190]. Snai1 expression can also 
initiate a positive feedback loop, as it can bind to its own gene promoter region and 
further activate transcription [191].
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Snai1 interacts with other Zn-related proteins associated with carcinogenesis. 
For example, Snai1 has been correlated with increased MMP expression in squa-
mous cell and HCC [192, 193]. In addition, Snail binding to target gene promoters 
has been shown to recruit HDACs and decrease gene transcription [186]. Despite 
the clear relationship between Snai1 and the carcinogenic process, no targeted che-
motherapeutic strategies are under widespread investigation.

�Glioma-Associated Oncogene

Aberrant activation of the hedgehog (Hh) signaling pathway, which is involved in 
normal development and tissue maintenance, has been associated with many can-
cers [194]. Glioma-associated oncogene (GLI) transcription factors are the final 
effectors of the Hh pathway. The three human GLI proteins, GLI1, GLI2, and GL3, 
each contain five conserved tandem Zn fingers. GLI activity is associated with 
expression of genes involved in epithelial to mesenchymal transition, survival, 
angiogenesis, and tumor cell invasion [168]. While GLI1 acts primarily as a tran-
scriptional activator, GLI2 and GLI3 serve as both transcriptional activators and 
repressors [195]. GLI1 was first identified as overexpressed in a glioma tumor sam-
ple [196]. Since then, increased expression of GLI1 and other GLI transcription 
factors has been observed in brain, muscle, breast, lung, liver, stomach, prostate, 
pancreas, and colorectal tumors [197].

To counteract aberrant activation of GLI proteins, Hh antagonists, including 
those targeting signaling pathway intermediaries, have been developed [168]. For 
example, a smoothened (SMO) protein inhibitor, vismodegib, recently received 
approval for treatment of basal cell carcinoma in the United States [198]. Direct 
GLI antagonists have been investigated in vitro and in vivo with promising results 
in pancreatic, lung, and colon cancer models [199–201]. The small-molecule 
GANT-61 binds between the second and third Zn finger motifs of GLI1 and inhibits 
GLI1-mediated transcription [202]. Overall, direct GLI inhibitors are most promis-
ing because of resistance to side effects with SMO antagonists [197].

4.4.2  �p53

p53, a tumor suppressor protein, is critical in protecting the genome from mutations 
resulting from normal cellular stress. Structurally, p53 is composed of four identical 
subunits, each of which requires one Zn2+ atom [203]. Zn2+ is required for the proper 
protein folding of p53, as well as for DNA binding and transcriptional activation by 
p53 [204]. The Zn2+ in p53 coordinates to Cys/His and Cys/Cys pairs, which are 
separated by a large section containing the minor-groove DNA-binding domain 
[205]. Relatively low p53 levels under normal conditions are mediated by MDM2, 
an E3 ubiquitin ligase that facilitates proteasomal degradation [206]. Under cellular 
stress conditions, p53 is activated though posttranslational modifications. Activated 
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p53 can then promote protection from deleterious mutations via either adaptation 
and recovery processes or cell death [207]. More than 50% of tumors contain mutant 
p53, suggesting that mutations of the TP53 gene support carcinogenic transforma-
tion [208, 209]. Figure 4.4 summarizes the molecular mechanisms of p53 altera-
tions related to carcinogenesis. Mutations or dysregulation of TP53 resulting in 
loss- or gain of function in human cancers has also been associated with increased 
resistance to chemo- and radiotherapeutic strategies [210]. Notably, at least 90% of 
TP53 mutations in tumor samples affect the DNA-binding domain [211].

Mutations resulting in the loss of p53 function inhibit tumor suppressor activities 
necessary for protection of the genome under cellular stress conditions, including 
the induction of genes responsible for cell cycle arrest and initiation of apoptosis. 
For example, many TP53 mutations can reduce or eliminate Zn2+ binding. The 
absence of Zn2+ can alter p53 function by reducing DNA-binding affinity [212] 
leading to protein aggregation or misfolding, both of which can prevent normal 
function [213, 214]. The effects of TP53 mutations altering Zn2+ binding residues 
are similar to the effects of removing Zn2+ through chelation, further highlighting 
the importance of Zn2+ for p53 function [215]. Notably, mutations in the Zn2+ bind-
ing loop of p53 are associated with poor prognosis in breast, prostate, non-small cell 
lung, and esophageal cancers [211].

Interestingly, gain-of-function TP53 mutations also contribute to the carcino-
genic process [216]. However, the mechanisms by which gain-of-function muta-
tions promote tumor formation and invasion differ from those of loss-of-function 
mutations. For example, pro-oncogenic mutations can lead to p53-p73 interactions, 
which prevent p73-mediated apoptosis [217, 218]. Mutant p53 (mtp53) can also 
induce expression of the tumor-promoting chemokine CXCL1, as well as other pro-
proliferative mediators such as c-MYC, MDR1, and NF-κB2 [219]. Overall, gain-
of-function TP53 mutations can produce alterations in DNA contact, protein 
conformation, and p53 protein levels [220].
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Fig. 4.4  The relationship between mutant p53 and development of cancer. Mutations in p53 pro-
tein often result in either the loss of normal tumor suppressor activity or the gain of new oncogenic 
functions, both of which can contribute to genomic instability and the carcinogenic process
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Numerous strategies have investigated restoring normal p53 function to malig-
nant cells. Regarding loss-of-function mutations, attempts have been made to use 
metallo-chaperones and small molecules to reactivate p53 [221–223]. Additionally, 
Zn2+ administration has been utilized to restore the active conformation of mis-
folded p53 proteins [224]. Importantly, Zn2+ administration in combination with 
other chemotherapeutics can enhance the antitumor effects [215, 225, 226]. For 
mutations related to p73 inhibition, small peptides have been used to disrupt the 
mtp53/p73 complex [227].

4.5  �Summary

Zn atoms support critical catalytic and structural roles, and the dysregulation of Zn 
homeostasis can contribute to carcinogenesis through various pathways. Intracellular 
Zn levels are often reduced in human cancers; as such, chemotherapeutic strategies 
aimed at increasing intracellular Zn2+ levels through supplementation with or with-
out the use of Zn-specific ionophores have been developed. In contrast, some tumors 
utilize increased Zn levels to promote proliferation. Increased expression and activ-
ity of catalytic Zn2+-dependent proteins eliciting tumorigenic proliferation and 
metastasis have been targeted with small-molecule inhibitors. While many Zn finger 
transcription factors are associated with carcinogenesis, directed chemotherapeutic 
strategies are limited. Available evidence thus far suggests that transcription factor 
p53 is a potential chemotherapeutic target, as increasing intracellular Zn levels may 
restore proper protein folding. In summary, Zn is involved in a vast number of bio-
logical processes relevant to carcinogenesis, which in turn can potentially be 
exploited by targeted therapeutic strategies.

Disclaimer  The study was reviewed by the National Center for Environmental Assessment of the 
US Environmental Protection Agency. Approval does not signify that the contents necessarily 
reflect the view and policies of the US Environmental Protection Agency.
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Chapter 5
Arsenic Carcinogenesis

J. Christopher States

Abstract  Arsenic is a Class I carcinogen causing cancer of the skin, lungs, bladder, 
liver, kidney, and probably prostate and ovary. Exposure can be by ingestion of 
contaminated drinking water or food, or by inhalation of fumes from burning coal. 
Arsenic does not induce point mutations like a classic DNA-damaging mutagen. 
The carcinogenic mechanism is unclear, but evidence exists supporting DNA repair 
inhibition, stem cell expansion, reactive oxygen generation, aneuploidy, and epi-
genetic dysregulation. The lack of UV signature mutation spectra in arsenic-induced 
skin cancers argues against DNA repair inhibition as a mechanism. Recent studies 
on epigenetic dysregulation point toward differential gene expression consistent 
with a role in arsenic carcinogenesis. Limited animal models for arsenic carcino-
genesis and limited studies conducted in human cancers caused by arsenic exposure 
limit the ability to elucidate mechanisms. Research focused on tumors from people 
suffering from arsenicosis is needed for a clearer understanding of molecular events 
underlying arsenic-induced carcinogenesis.

Keywords  Arsenic • Carcinogenesis • Aneuploidy • Epigenetics

5.1  �Introduction

Arsenic is the 20th most common element in the earth’s crust. Inhalation exposure 
can be occupational as in smelter work, or via exposure to burning hard coal. 
Historically, arsenicals were used as medicinals. In current times the most common 
exposure is via arsenic-contaminated drinking water. Most contamination is natu-
rally occurring and is dependent on the local geology of the aquifer [1]. Currently, 
it is estimated that 140 million people are chronically exposed to arsenic via con-
taminated drinking water worldwide. The largest population impacted is in the 
Ganges River delta region comprising Bangladesh and the state of West Bengal in 
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India where more than 70 million people are suffering from the effects of chronic 
arsenic exposure.

The International Agency for Research on Cancer (IARC) has determined 
arsenic to be a Class I human carcinogen [2]. Indications that arsenic ingestion 
was carcinogenic originally came from observations of patients treated with vari-
ous arsenicals. Hutchinson recognized the association of skin cancers subsequent 
to arsenical use in the 19th century [3–5]. In the mid-twentieth century, arsenic 
contamination of wine led to arsenicism and skin cancer [6, 7]. Chronic exposure 
to arsenic via inhalation causes lung cancer, and ingestion causes cancer of the 
skin, lung, bladder, liver, and kidney. Arsenic also may cause cancer of the pros-
tate and ovary. Dose-response relationships have been demonstrated between 
arsenic ingested in drinking water and lung, skin, bladder, and kidney cancers 
[8–10]. Long-term impact on incidence of lung cancer in people exposed in utero 
or during early childhood also has been demonstrated [11, 12]. Although it is 
clear that chronic arsenic exposure causes cancer, and there has been abundant 
research over the past two decades, no clear unifying mechanism for arsenic-
induced carcinogenesis has been shown.

Arsenic is referred to as a “non-genotoxic” carcinogen because it does not induce 
point mutations in in vitro test systems. Several hypotheses for mode of action have 
been proposed, and there are substantial data supporting each of these. Hypotheses 
include inhibition of DNA repair/co-mutagenesis, alteration of cell proliferation/
stem cell expansion, aneuploidy/clastogenesis, and alteration of epigenetics. Each 
of these hypotheses will be discussed in the following sections.

Arsenic can exist in multiple valence states. Environmental arsenic is most com-
monly present as As5+ or As3+ [1]. In groundwater, As3+ dominates in the form of 
arsenite. Arsenite is readily converted to arsenate (As5+) upon exposure to oxygen in 
air. Arsenite is metabolized by arsenic 3 methyltransferase (AS3MT) to a series of 
trivalent and pentavalent mono- and dimethylated species [13]. Generally, the triva-
lent species are more toxic than the pentavalent species. Monomethylarsonous acid 
is the most toxic metabolite. These trivalent arsenicals all bind sulfhydryl groups on 
proteins and other biological molecules. It is likely that the mechanisms of arsenic 
toxicity and carcinogenicity are a result of these interactions with sulfhydryls on 
key proteins [14]. The challenge has been to determine which molecules are the 
targets for interactions leading to cancer.

5.2  �Cancer Epidemiology

5.2.1  �Skin Cancers

Skin is a major target organ for arsenic-induced pathology. A variety of nonmalig-
nant lesions are commonly observed and are pathognomic for arsenicosis. These 
skin abnormalities include hyperpigmentation, raindrop lesions, and hyperkeratosis 
[15]. The hyperkeratoses are premalignant lesions that most commonly appear on 
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the palmar and plantar regions. However, they also have been reported on the trunk 
and in body areas not exposed to sunlight. Arsenic-induced hyperkeratoses gener-
ally are raised pigmented lesions, and individuals often exhibit multiple lesions. 
These premalignant lesions often give rise to both basal and squamous cell 
carcinomas.

Both squamous cell carcinoma and basal cell carcinoma are linked to chronic 
arsenic ingestion. The earliest reports suggesting a causal link were related to 
ingestion of arsenic-containing medicinals and are summarized by Hutchinson 
in 1911 [5]. These reports were followed by reports of skin and lung cancers 
following chronic exposure to arsenical pesticides in German wine workers [6, 
7] and respiratory cancers and skin lesions in patients treated with Fowler’s 
solution [16, 17].

Chronic exposure to arsenic from drinking water also is linked to skin cancer. 
Skin cancer as well as cancers of the bladder, kidney, and lung in both males 
and females and cancers of the prostate and liver in males were linked to arsenic 
in artesian well water in Taiwan [10]. Ecological studies showed dose response 
for squamous cell carcinoma and basal cell carcinoma [18] but no increase in 
malignant melanoma [19]. Chronic arsenicosis caused by chronic consumption 
of drinking water in West Bengal, India and Bangladesh came about as an unin-
tended consequence of tube wells installed by the World Health Organization to 
combat gastrointestinal disease caused by microbial contamination of surface 
water used for drinking [20–22]. Similar to the situation in Taiwan, individu-
als suffering from chronic arsenicosis in the Ganges delta region often develop 
basal and squamous cell carcinoma [23, 24]. Bowen’s disease which is squa-
mous cell carcinoma in situ also is common [25]. It is curious that although the 
premalignant hyperkeratoses are pigmented, they do not give rise to malignant 
melanoma.

Although arsenic in drinking water is regulated by the USEPA for public sup-
plies, private wells are not regulated. In many parts of the USA, groundwater tapped 
by private wells has elevated arsenic levels. Even relatively low exposures to arsenic 
in drinking water are linked to skin cancer in the USA [26].

5.2.2  �Lung Cancer

Lung cancer induced by arsenic exposure was first linked to inhalation by workers 
in arsenical pesticide manufacture and copper smelting [27]. Later epidemiological 
studies showed that ingestion of arsenic-contaminated water also could induce lung 
cancer [28] and also nonmalignant pulmonary disease [29–33]. Later studies of a 
cohort exposed to high arsenic levels in drinking water for a defined period in 
Antofagasta, Chile, showed that early life exposure could induce both lung cancer 
and nonmalignant pulmonary disease in adulthood [34]. Thus, regardless of the 
route of exposure, the lung is a target tissue for arsenic-induced pathology, and the 
latency period can be quite long.
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5.2.3  �Urinary Bladder and Kidney Cancer

Studies in Taiwan, Argentina, and Chile both linked increased incidence of death 
from urinary bladder and kidney cancers with high arsenic exposures [35–37]. 
Kidney cancers included renal cell carcinoma as well as transitional cell carcinoma 
of the renal pelvis [38]. The latter is also found in the urinary bladder [35]. Cohort 
and case control studies reported increased odds ratios for bladder and kidney can-
cers that showed dose response [11, 38]. These cancers appeared after long expo-
sure periods of up to 40 years [11]. Cohort studies showed correlation with higher 
MMAV in urine [39, 40].

5.2.4  �Liver and Prostate Cancers

Evidence from mortality and population studies suggests a link between chronic 
arsenic exposure and both liver and prostate cancers [8, 18, 41–43]. However, the 
studies of liver cancer are mainly from Taiwan where hepatitis virus infection is 
endemic [44]. Thus, a clear causal effect for arsenic exposure is confounded. 
Curiously, although both hepatitis virus infection and arsenic exposure cause hepa-
titis, arsenic exposure reduces hepatitis and cirrhosis in people chronically infected 
with hepatitis virus [45]. Liver cancer may require exposure to very high levels of 
arsenic in drinking water [46]. There also may be a differential susceptibility to 
arsenic-induced liver cancer by gender [47]. Thus, the particular population under 
study may not show an increase in liver cancer with arsenic exposure [48].

There is some evidence of a dose-response relationship for prostate cancer in the 
studies from Taiwan [8]. However, the studies from South America are inconsistent 
[36]. An ecological study found an association of prostate cancer with arsenic in 
drinking water in Illinois [49]. Increased mortality from prostate cancer was associ-
ated with arsenic exposure in the Strong Heart Study population [50]. Thus, although 
suggestive, clear causal relationships have not yet been established for liver and 
prostate cancers in humans.

5.3  �Arsenic Carcinogenesis in Laboratory Animals

Induction of cancer in adult laboratory animals by inorganic arsenic exposure has 
eluded investigators. A laboratory model of arsenic carcinogenesis by in utero expo-
sure of mice to arsenic via drinking water was developed in the Waalkes laboratory 
[51]. The model originally showed a decreased latency and increased multiplicity of 
tumors in C3H mice exposed in utero to high levels of arsenic in drinking water [52]. 
The model has since been refined and improved. Lower exposures and alternate 
mouse strains also result in increased carcinogenesis [53]. The introduction of “whole 
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life” exposure starting two weeks prior to conception and continuing on into adulthood 
in the exposed pups has dramatically improved the model [54]. The reader is referred 
to a recent thorough review of the development of this model [55].

5.4  �Cell Proliferation/Stem Cells

In vitro studies of the impact of arsenite exposure on cell cycle kinetics have yielded 
conflicting results. Under different conditions, arsenite stimulates cell proliferation 
[56–58], slows proliferation [56, 59, 60], or even induces cell cycle arrest [61–63]. 
It appears that both concentration and cell line are important in determining the 
impact of arsenic on cell cycle [64]. Mitotic arrest by arsenite is dependent on func-
tional spindle checkpoint [65]. Thus, some of the cell line specificity in cell cycle 
effect may be related to specific mutations present.

Expansion of stem cell populations has been observed both in  vitro [66] and 
in vivo [67]. This expansion may increase the target cell population for carcinogen-
esis. Alternatively, the increase in stem cells may be a consequence of decreased 
maturation and terminal differentiation thus contributing directly to carcinogenesis. 
The reader is referred to a recent review of arsenic targeting of stem cells as part of 
the mechanism of carcinogenesis [68].

5.5  �DNA Repair/Co-mutagenesis

Overexposure to the ultraviolet (UV) component of sunlight is well known to 
cause skin cancer [69]. Overexposure to sunlight causes all three major forms of 
skin cancer: squamous cell carcinoma, basal cell carcinoma, and malignant mel-
anoma. The mechanism of action is the induction of photodimers in the DNA 
leading to mutagenesis. Sunlight-induced SCC is driven by mutations resulting 
from photodimers in TP53 [70]. Thus, it was reasonable to investigate the poten-
tial of arsenic to induce mutations. Early studies showed that arsenic by itself did 
not cause mutations in standard mutagenesis assays such as HPRT [71]. However, 
arsenic exposure was able to increase mutagenesis by UV [72] and by MNNG 
[73]. Studies by another group included some intriguing results indicating that 
the order of exposure was important, in that arsenic exposure after the MNNG 
exposure did not increase the mutant fraction as did coexposure or preexposure 
[74] and that posttreatment with arsenite altered the UV mutational spectrum 
[75]. In vivo studies with UV and arsenic administered to mice via drinking 
water suggested that the arsenic exposure could enhance the yield of UV-induced 
skin tumors. These data were interpreted as arsenic being a co-mutagenic and 
likely to be inhibiting DNA repair. However, TP53 mutations in arsenic-induced 
skin cancers either are not present [76, 77] or did not result from photodimer 
damage [78].
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It was several years before a potential mechanism for arsenic inhibition of DNA 
repair began to appear. XPA plays an essential role in nucleotide excision repair 
[79], the DNA repair pathway responsible for removal of UV-induced photoprod-
ucts. Hartwig’s group showed that arsenite could displace the zinc from the zinc 
finger of XPA [80]. However, earlier reports from this group indicated that XPA 
binding of damaged DNA was not impaired by arsenite [81, 82]. Thus, it is not clear 
that arsenite targeting of XPA plays a role in inhibition of DNA repair.

Poly(ADP-ribose) polymerase 1 (PARP1) plays a key role in signaling DNA 
damage [83]. PARP1 plays a key role in base excision repair, the DNA repair 
system responsible for removal of oxidative DNA damage and of alkylation 
adducts [84]. Hartwig’s group showed that PARP could be inactivated by very low 
concentrations of arsenite [85]. A few years later, Liu’s group showed that arse-
nite could displace the zinc from PARP1 zinc finger [86]. This group also pub-
lished evidence suggesting that arsenite inhibits PARP1  in repair of oxidative 
damage [87] and UV photoproducts [88]. The cellular experiments were per-
formed with concentrations of arsenite well above in vivo levels of individuals 
suffering from arsenic exposure via drinking water [56]. The extreme sensitivity 
of PARP1 to arsenite suggests that arsenite targeting of PARP1 may be a mecha-
nism of DNA repair inhibition by arsenic. However, the situation is likely much 
more complicated. Chronic incubation of human keratinocytes with 100 nM arse-
nite suppresses global protein poly(ADP-ribosyl)ation but increases poly(ADP-
ribosyl)ation of TP53 and PARP1 levels [89].

Thus, it would appear that inhibition of DNA repair by arsenite may be a mecha-
nism whereby arsenic exposure could increase the mutagenic potential of sunlight 
and cause skin cancer. However, there is a clear difference in the spectrum of can-
cers caused by sunlight and chronic arsenic exposure. First, sunlight, but not arse-
nic, causes malignant melanoma. Chronic arsenic exposure causes only squamous 
cell carcinoma (SCC) and basal cell carcinoma (BCC). Furthermore, chronic arse-
nic exposure causes skin cancers in areas of the body not overexposed to sunlight. 
The premalignant lesions induced by the two agents also differ. Sunlight causes 
actinic keratosis which gives rise only to squamous cell carcinoma. Chronic arsenic 
exposure induces hyperkeratosis, which can give rise to both SCC and BCC [15]. 
Molecular epidemiology studies of sunlight-induced SCC and actinic keratosis 
show that mutation of TP53 is an early event and is present in the vast majority of 
lesions [70]. In contrast, careful study of TP53 mutation status in arsenic-induced 
skin cancers showed that TP53 mutation was rare [77]. Thus, TP53 mutation is not 
likely to be driving arsenic-induced skin cancer.

Another confounder of the inhibition of DNA repair hypothesis is that the arse-
nite concentrations used in vitro were above physiologic concentrations (2 μM vs. 
1–100 nM). Thus, it is possible that other more sensitive targets are disrupted by 
arsenite in persons consuming water with moderate to high levels of arsenic. These 
more sensitive targets may play a role in other pathways that contribute to carcino-
genesis. Thus, an alternative interpretation of the rodent studies of UV-induced skin 
cancer is that these alternate pathways, similar to those affected by tumor promoters 
like phorbol esters, are the targets for arsenic carcinogenesis.
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5.6  �Aneuploidy/Clastogenesis

It is well established that arsenic and its methylated metabolites can cause both 
numerical and structural chromosomal abnormalities [61, 90–92]. Aneuploidy, or 
numerical imbalances, causes imbalances in expression of components of multi-
protein complexes leading to malfunction and disruption of cellular homeostasis 
[93]. Clastogenesis, or chromosome breakage, can lead to structural abnormalities 
such as chromosomal translocations and gene fusions [94] contributing to cancer. 
Thus, chromosomal abnormalities induced by arsenic exposure are clearly a likely 
mechanism of carcinogenesis.

In vitro, arsenite exposure delays mitosis and induces aneuploidy in diploid human 
fibroblasts [95] and peripheral blood lymphocytes [96]. Increases in the frequency of 
micronuclei have been reported in lymphocytes and urothelial and buccal cells of peo-
ple chronically exposed to arsenic in drinking water [97]. Micronuclei containing cen-
tromeres indicating aneuploidogenic events and without centromeres indicating 
clastogenic events occur. Activity of TP53 and induction of CDKN1A appear to play a 
deciding role in whether the arsenite effect is aneuploidogenic or clastogenic [91].

5.7  �Epigenetics

Epigenetic effects of arsenic exposure also have been documented. These effects 
can be changes in DNA methylation patterns, changes in histone acetylation or 
methylation, and changes in miRNA expression profiles. There is a large body of 
literature linking epigenetic alterations with carcinogenesis.

5.7.1  �DNA Methylation

DNA methylation in promoter regions of RNA polymerase II transcribed genes 
generally is associated with gene silencing. Altered DNA methylation as a mecha-
nism of arsenic carcinogenesis was proposed in 1997 [98]. These authors reported 
dose-dependent increases in genome-wide DNA methylation and in specific hyper-
methylation of CpG sites in the TP53 promoter in human lung adenocarcinoma 
A549 cells treated with sodium arsenite or sodium arsenate, but not dimethylarsenic 
acid. Since then, there have been reports of both hypermethylation [99, 100] and 
hypomethylation [101–103] of key genes by arsenite exposure using in vitro and 
in vivo experimental systems. Chronically exposing human keratinocytes to low-
level arsenic caused decreases in S-adenosylmethionine (major methyl donor) and 
DNA methyltransferase gene expression (DNMT1 and DNMT3A) and decreased 
5-methylcytosine content in DNA [104] supporting the hypothesis that chronic arse-
nic exposure induces DNA hypomethylation.
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Studies using peripheral blood lymphocytes also have investigated arsenic 
exposure-related changes in DNA methylation. Hypermethylation of p16 gene 
(INK4A) was reported in DNA from whole blood leukocytes of persons exposed 
to high arsenic in drinking water (>0.05 mg/L, average = 0.6 mg/L) in Bameng, 
Inner Mongolia regardless of the presence of arsenicosis [105]. DNA repair genes 
ERCC1 and ERCC2 were shown to be hypermethylated in lymphocytes isolated 
from endemic arsenicosis patients in China [106]. However, a study conducted in 
West Bengal, India, showed that ERCC2 was hypomethylated [107]. Likewise, 
LINE-1 methylation was decreased in whole blood DNA from arsenic exposed 
children in West Bengal whose lymphocytes showed evidence of genotoxic stress 
indicated by increased micronucleus formation [108]. DNA methylation in exfo-
liated urothelial cells from patients in Chihuahua, Mexico showed arsenic-associ-
ated changes in 22 of 49 genes examined [109]. The genes showing differential 
methylation also are identified as differentially methylated in urinary bladder 
cancers in The Cancer Genome Atlas repository. This correlation supports the 
hypothesis that epigenetic changes induced by arsenic exposure are driving the 
carcinogenesis.

The impact of arsenic exposure on 5-hydroxymethylcytosine in DNA has been 
examined recently in a Bangladeshi cohort [110]. 5-Hydroxymethylcytosine is 
thought to lead to demethylation and gene activation. Quantitation of 
5-hydroxymethylcytosine in leukocyte DNA showed no association with arsenic 
exposure overall, whereas an earlier study saw a trend toward in inverse correlation 
in an American cohort [111]. However, when parsed by gender, it became apparent 
that 5-hydroxymethylcytosine had a positive association with arsenic exposure in 
males, but a negative association in females. This gender-specific epigenetic 
response to arsenic exposure has not yet been linked to carcinogenesis. However, 
these results correlate with an earlier report that early prenatal arsenic exposure 
appears to decrease DNA methylation in mononuclear cells from cord blood in 
boys, but not girls [110].

Most intriguing is a recent paper showing that a relatively short (48 h) incubation 
with physiologically relevant arsenite concentrations induces long-lasting DNA 
methylation and gene expression changes in human keratinocytes (HaCaT) [112]. 
These authors show that gene-specific hypermethylation occurs in spite of genome-
wide hypomethylation and that these patterns persist. They specifically examined 
DNA methyltransferase and mismatch repair genes and found that the hypermethyl-
ation and corresponding decreased gene expression occurs in a gene selective 
manner.

A study of urothelial carcinomas found significant associations between cumula-
tive arsenic exposure, and DNA methylation levels of 28 patients were observed in 
nine CpG sites of nine genes [113]. The small size of this study weakens any con-
clusions. Hypermethylation of death-associated protein kinase (DAPK) gene I in 
urothelial cancers arising in arsenic-contaminated areas in Taiwan compared to 
tumors from patients from noncontaminated areas links gene-specific hypermethyl-
ation with chronic arsenic exposure [114].
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5.7.2  �Histone Modification

DNA is packaged into chromatin, and transcriptional activity is modulated by 
changes in chromatin structure. The fundamental organizational unit of chromatin 
is the nucleosome in which 165 bp of DNA is wrapped around an octamer of the 
four core histones, two each of H2A, H2B, H3, and H4. Posttranslational modifica-
tions (PTMs) of histones govern chromatin structure and hence modulate gene 
expression. Histone PTMs include acetylation, methylation, phosphorylation, ADP-
ribosylation, and ubiquitination. Most research determining role of histone PTMs in 
gene expression has focused on acetylation of lysine residues and methylation of 
lysine and arginine residues in histone H3 and H4 tails. Arsenic exposure has been 
shown to affect these histone PTMs in vitro and in vivo. The reader is directed to 
recent reviews [115, 116] for broad discussion. Here we will highlight two exam-
ples of arsenic-exposure-induced changes in histone PTMs potentially related to 
carcinogenesis.

Canonical histone mRNAs are not polyadenylated but rather have a stem-loop 
structure in the 3′-untranslated region (3′-UTR) that is bound by stem-loop binding 
protein (SLBP) that directs the 3′-end maturation of histone mRNAs. An interesting 
secondary effect of arsenic-induced epigenetic changes is the observation that epi-
genetic silencing of SLBP expression results in polyadenylation of histone H3.1 
mRNA that accumulates [117]. The authors showed that overexpression of histone 
H3.1  in BEAS-2B cells results in increased ability to form colonies in soft agar 
consistent with a potential role in carcinogenesis.

Cell-type specificity in global H3K9Ac and H3K9me3 levels was observed 
in peripheral blood lymphocytes from women exposed to arsenic through 
drinking water in the Argentinean Andes [118]. CD4+ and CD8+ were sorted 
and H3K9Ac and H3K9me3 levels measured. The authors reported arsenic 
dose-dependent decrease in global H3K9me3  in CD4+ cells, but not CD8+ 
cells. In contrast to an earlier report of an inverse correlation of global H3K9Ac 
levels with arsenic exposure in peripheral blood mononuclear cells (PBMC) in 
Bangladeshi women [119], the Argentinean study saw no difference in H3K9Ac 
levels in CD4+ or CD8+ T-cells. PBMC include many other cell types besides 
CD4+ and CD8+ T-cells. It remains unclear whether the lack of correlation in 
findings between these two studies is due to a genetic basis or cell-type speci-
ficity of response.

A common finding has been discordance between global effects and gene-specific 
effects. For instance, global H3K9 hypoacetylation was induced by arsenite expo-
sure in HEK293 and UROtsa cells [120]. However, in the same experiments, H3K9 
hyperacetylation in the FOS gene was observed. Similar discordance between 
global and gene-specific changes in histone PTM levels has been observed for other 
PTMs as well indicating that in order to understand the mechanisms of PTM modi-
fication in relation to carcinogenesis, it is important to understand gene-specific 
effects.
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5.7.3  �miRNA

A third class of epigenetic elements is microRNA (miRNA). These are small (21–
22 nucleotide) RNAs that are posttranscriptional regulators of gene expression. 
Most often, miRNAs act by binding to target mRNAs and suppress translation and/
or promote mRNA degradation. Each miRNA may have thousands of target 
mRNAs, and each mRNA may have several miRNAs targeting it. Expression of 
miRNAs is cell-type specific, and the expression responds to environmental and 
developmental stimuli. Arsenic exposure and its impact on miRNA expression have 
been examined in a variety of in vitro and in vivo systems and related to a wide 
variety of arsenic-induced disease endpoints. We will present a few examples 
related to carcinogenesis.

Differential miRNA profiling was performed in HaCaT cells exposed to 0.5 μM 
sodium arsenite for 4 weeks [121]. Among the 30 miRNAs expressed at higher 
levels in arsenic-exposed cells were miR-21, miR-200a, and miR-141, all with 
known roles in carcinogenesis. In contrast, in arsenic-transformed human prostate 
epithelial cells, suppression of specific miRNA expression was correlated with 
increased KRAS expression and transformation of the cells [122]. Furthermore, res-
toration of miR-143 expression by lentiviral transduction reverted the cancer stem 
cell phenotype [123].

Profiling of miRNAs in cord blood revealed a panel of 12 miRNAs with expres-
sion positively correlating with urinary arsenic levels in the mothers [124]. Pathway 
analysis of the predicted targets of these miRNAs showed that they are involved in 
signaling pathways associated with cancer and diabetes mellitus.

5.8  �Conclusions

Clearly, arsenic exposure is carcinogenic to humans. There has been a great deal of 
research supporting a variety of potential carcinogenic mechanisms. Unfortunately, 
only a handful of studies have been performed using tumors from patients with 
arsenicosis. These studies using skin cancers have suggested that mutagenesis is not 
a driving force for arsenic carcinogenesis. A number of studies have been done in 
peripheral blood lymphocytes from arsenic-exposed people. These studies have 
pointed to epigenetic and aneuploidogenic mechanisms of carcinogenesis. Most of 
the published research has been performed using in vitro cell culture systems and 
used physiologically irrelevant concentrations of arsenic species that were much too 
high. These studies point to a myriad of effects that if operational at physiological 
exposures might play a role in carcinogenesis. More recent in vitro studies have 
used relevant concentrations (0.1–0.5 μM arsenite). The results of these latter stud-
ies point mostly toward epigenetic mechanisms, i.e., alterations in histone modifica-
tions, DNA methylation, and microRNA expression. Noticeably absent are studies 
of epigenetic alterations in arsenic-induced human tumors.
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Chapter 6
Cadmium Carcinogenesis 
and Mechanistic Insights

Anuradha Mudipalli

Abstract  The heavy metal cadmium is ubiquitous in the environment. 
Occupational exposures to cadmium have long been linked to cancers of various 
organs. Emerging epidemiological data, although often limited by study deficits, 
provide convincing evidence of lung, kidney, prostate, and breast cancers after 
cadmium exposure. Experimental evidences from animal models and in vitro cell 
culture systems aid in discerning the molecular pathways of these cancers and 
provide biological plausibility for cadmium carcinogenesis. The International 
Agency for Research on Cancer declared cadmium as group I carcinogen with 
sufficient evidence for cancer in humans. This chapter discusses the molecular 
pathways of cadmium carcinogenesis for specific organs followed by a brief dis-
cussion on general molecular pathways of cadmium-induced carcinogenesis. 
Finally, conclusions are drawn on the existing database in order to identify com-
mon and unique molecular pathways of these cancers and to infer biological 
plausibility.

Keywords  Cadmium exposure • Cancer • Organ-specific cancer mechanisms  
• General molecular mechanisms of carcinogenesis • Conclusions and perspectives
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AR	 Androgen receptor (AR)
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A. Mudipalli 
Hazardous Pollutants Assessment Group, National Center for Environmental Assessment, 
United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
e-mail: mudipalli.anu@epa.gov

mailto:mudipalli.anu@epa.gov


114

Bcl-xL	 B-cell lymphoma-extra-large
BER	 Base excision repair (BER)
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6.1  �Introduction

The ubiquitous, transition heavy metal cadmium (Cd), originally discovered in 
1817, has widespread industrial and agricultural applications. It exists both in 
organic and inorganic forms in nature. The concentration of cadmium in earth crust 
is estimated to be around 0.1–0.2 ppm [1]. The solubility of cadmium compounds 
varies widely, and this property, by virtue of differences in absorption, distribution, 
and bioaccumulation, contributes to their bioaccumulation. Environmental exposure 
to cadmium occurs through diverse routes (oral, dermal, and inhalation). 
Occupational exposures to cadmium happen through industrial processes such as 
pigment and dye industry, nickel and cadmium battery processing, and metal solder-
ing such as in the jewelry industry. Additional exposures take place via agricultural 
applications such as pesticide spraying and fertilization, diet (consumption of rice, 
fruits, and vegetables from contaminated soils), and involuntary exposures through 
smoking [1]. Cadmium accumulates and stays in the human body over a prolonged 
period of time (20–30 years) [1]. The adverse health effects to cadmium exposure 
are mostly attributed to its ionic form rather than as a salt. The toxic insult and resul-
tant pathophysiological changes due to cadmium exposure have been observed for 
several organ systems including the bone, liver, kidney, lung, bladder, and reproduc-
tive organs. In addition, environmental and occupational epidemiological studies 
carried out in the USA and Europe showed positive association of cadmium expo-
sure to cancers of various types such as the lung, bladder, kidney, prostate, pancreas, 
ovary, and endometrium. The 2014 National Health and Nutrition Examination 
Survey (NHANES) study showed a positive association between cadmium exposure 
and cancer mortality of the kinds studied, more specifically to prostate cancer mor-
tality in men. Such exposure-related positive association to cancer(s) was also dem-
onstrated by experimental animal studies with great mechanistic detail. The 
International Agency for Research on Cancer (IARC) has classified cadmium as a 
group I carcinogen, with sufficient evidence for carcinogenicity in humans [1].

Cadmium is designated as an indirect carcinogen and is recognized as a non-
mutagenic, non-genotoxic chemical. A large body of existing scientific studies, the 
majority of them utilizing in vitro and rodent animal models, suggest that the cadmium-
induced carcinogenic process is complex and involves multiple molecular pathways. 
This book chapter provides the current state of our understanding on cadmium-induced 
perturbations in the molecular pathways of carcinogenesis for specific organ systems 
such as the lung, bladder and kidney, prostate, breast, and pancreas with an effort to 
identify common and unique genes in these cadmium-induced cancers (Fig. 6.1 and 
Table  6.1). Additionally, an illustration of the general mechanisms and pathways 
underlying carcinogenic processes after metal exposures is provided in Fig. 6.2. The 
chapter will conclude with a perspective on how the available scientific evidence pro-
vides support for the positive association between cadmium exposure and cancer(s) 
from the mechanistic standpoint. The chapter also discusses the limitations in the 
database to answer the remaining questions on the modes of cadmium-induced cancer 
and the association to cancer from the environmental exposure to cadmium.
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Fig. 6.1  Venn diagram 
showing number of 
common genes altered in 
organ specific cancers 
induced by cadmium

Table 6.1  Common set of altered genes for different cadmium-induced cancers

Type of 
cancer

Common genes/
pathways Genes/pathways

Breast 11 PCNA, AP1, MAP kinases, C-Jun/c-Fos, Caspases, DNA 
damage repair, NF-kB, P53, MT, Cytokines, NRF2Lung

Prostate
Renal
Breast 3 E-cadherin, MMP, β-catenin
Lung
Renal
Breast 1 Hsp
Lung
Prostate
Breast 1 EGFR
Lung
Breast 2 EGF-R, PgR
Renal 3 m-TOR, Kim-1, Wnt/Notch-1

PCNA proliferating cell nuclear antigen, AP-1 activator protein1, MAP kinases mitogen activated 
protein kinase, c-jun cellular putative transforming virus of avian sarcoma virus 17, NF-kB nuclear 
factor kappa-light-chain-enhancer of activated B cells protein, p53 tumor suppressor p53, NRF2 
nuclear factor erythroid 2-related factor 2, Hsp heat shock protein, EGF epidermal growth factor 
receptor, PgR progesterone receptor, m-TOR mammalian target of rapamycin, Kim1 kidney injury 
molecule 1, Wnt/Notch-1 Wnt1 wingless-type MMTV integration site 1 protein, Notch1 a protein 
of transmembrane proteins with repeated extracellular EGF domains and the notch (or DSL) 
domains
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6.2  �Lung Cancer

The classification of cadmium as a human carcinogen arises from evidence of lung 
and renal cancer in humans reported at occupational and environmental levels [1–4]. 
Chronic and repeated exposure of human bronchial epithelial cells (16BHE) to cad-
mium chloride resulted in malignant transformation and tumor formation (poorly 
differentiated squamous cell carcinoma) in nude mice [5]. This is consistent with 
earlier observations of a malignant transformation of human cell lines [6] and initia-
tion of pulmonary adenomas in rodents [7].

The process of cadmium-mediated pulmonary carcinogenesis appears to be 
influenced by perturbations in genome stability, DNA damage repair, apoptosis and 
autophagy, EGF receptor, and related downstream signaling mechanisms.

6.2.1  �DNA Repair

Cadmium is not directly mutagenic and is not a direct DNA-damaging agent. 
However, alterations in several DNA repair genes were reported [8]. When human 
bronchial epithelial cells were exposed to a log range of cadmium concentrations, 
transcriptional and translational changes in several DNA repair genes as well as 
frameshift mutations in human mismatch repair protein homologue2 (hMSH2), 
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excision repair cross-complementing 1 (ERCC1), the human 8-oxoguanine DNA 
N-glycosylase 1 (hoGG1), and X-ray repair cross-complementing protein 1’ 
(XRCC1) were observed suggesting pro-mutagenic lesions, DNA damage, and 
genomic instability [8]. In addition, these observations lend support to the earlier 
observation of increased apoptosis, upregulation of p53, and Bax expressions in 
rat lung primary cells exposed to concentrations of cadmium in the range of 
1–10 μM [9].

6.2.2  �Apoptosis/Autophagy

Autophagy is a highly conserved catabolic process that targets cellular contents to 
lysosomal degradation [10] and has emerged often as a regulator of cellular inva-
sion, metastasis, and migration in the process of carcinogenesis by virtue of regulat-
ing cell growth and differentiation control [11]. Recent in  vitro evidence of 
cadmium-induced autophagy was reported from the increased accumulation of 
LC3-II, a light chain of the microtubule-associated protein 1 (eukaryotic analog of 
autophagy-related protein 8) in JB-6 mouse epidermal cells exposed to micromolar 
concentrations of cadmium [12]. In some cell lines, cadmium seems to regulate 
apoptosis or autophagy by the localization of enzymes. In HL60 “non-small lung 
cells,” it was demonstrated that the acquisition of cadmium resistance is through the 
interruption of GSK3α/β (glycogen synthase kinase-3α/β) phosphorylation and the 
change in the intracellular localization of p-SerGSK3 regulation of apoptosis and 
autophagy [13]. Similarly it is suggested that cadmium toxicity is regulated by the 
transcriptional regulation, stabilization, and subcellular redistribution of multidrug 
resistance protein, MRP1, via the posttranslational modification of GSK3αβ [14]. 
Cadmium-transformed cells acquire autophagy deficiency which led to overexpres-
sion of constitutive nucleoprin 62 (p62) and nuclear factor (erythroid-derived 2)-like 
2 (Nrf2). Additionally, this upregulated the antioxidant protein catalase superoxide 
dismutase (SOD) and the antiapoptotic proteins B-cell lymphoma2 (Bcl-2) and 
B-cell lymphoma-extra large (Bcl-xL). These changes resulted in decreased reac-
tive oxygen species (ROS) generation and apoptotic resistance which led to 
increased cell survival, proliferation, and tumorigenesis indicating the importance 
of apoptosis in the process of carcinogenesis [15].

6.2.3  �EGF Receptor (EGFR) and Cell Cycle Regulatory Genes 
in Cadmium-Induced Lung Cancers

Mutations in epidermal growth factor receptor (EGFR) are well documented and 
linked to several types of cancers (including environmentally related cancers), the 
most notable of which is lung cancer [16]. To date, about eight mutations in EGFR 
have been implicated in lung cancer. Functional alterations in EGFR and the sub-
sequent downstream cellular signaling cascade are linked to cadmium-mediated 
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cancers of other types which are detailed in the text on the organ-specific cancers. 
It is reported that cadmium chloride, when administered intraperitoneally in mice 
at a dose of (5 mg/kg), increased inflammation in lung cells along with an increase 
in several pro-inflammatory markers such as interleukin-6 (IL-6) and cyclooxy-
genase-2 (Cox2) indicating toxicity [16]. In addition, several cell cycle regulatory 
proteins were also expressed at higher levels in the treated group than in the con-
trols. In human lung epithelial carcinoma cells (A549 cells), the same author group 
demonstrated that cadmium treatment at a lower dose (2.5 μM) resulted in the 
proliferation of the transformed lung cells, while a higher dose (5 μM) resulted in 
cytotoxicity and cell death [17]. Cadmium at low doses resulted in EGF receptor 
activation, subsequently altering the downstream signaling events in cell cycle 
regulatory molecules such as the cell proliferative markers KI-67 (Ki67) and pro-
liferating cell nuclear antigen (PCNA) proteins, resulting in enhanced production 
of several pro-inflammatory cytokines such as interleukin-1 beta (IL-1β), IL-6, and 
tumor necrosis factor-alpha (TNF-α). Cadmium treatment also resulted in more 
cells in S-phase of the cell cycle [17]. EGFR signaling affects cyclin D1 expression 
as demonstrated by transcriptional regulation of cyclin D1 by EGFR cross signal-
ing [18]. When the A549 cells treated with cadmium were additionally treated with 
Gefitinib (EGFR tyrosine kinase inhibitor), both cyclin D1 and Cox2 expressions 
were blocked indicating these signaling alterations by cadmium occur via EGFR 
pathway [17].

6.3  �Renal Cancer

6.3.1  �Cadmium Uptake by Kidneys

Approximately 50% of cadmium found in the human body is found in the liver and 
kidney due to their high metallothionein (MT) (a high-affinity metal-binding pro-
tein) concentration [19]. Cadmium absorbed into the blood stream is transported to 
the gatekeeper tissue, the liver, for detoxification process that involves complex-
ation of cadmium with metallothionein (MT) and export of cadmium–metallothio-
nein complex (Cd-MT) back into the blood stream for removal by glomerular 
filtration. Although the Cd-MT complex is considered a major detoxification step, it 
has also been recognized that cadmium is loosely bound to albumin, peptides (glu-
tathione), and amino acid, cysteine, suggesting multiple mechanisms to enter proxi-
mal tubules [20, 21]. There is accumulating evidence that a variety of metal 
transporter proteins, such as ZIP8 (zinc ion transporter protein 8), and ion channels 
also participate in the uptake of cadmium by proximal tubules [21]. Irrespective of 
the method of uptake, chronic accumulation and prolonged retention of cadmium by 
proximal tubule epithelial cells is considered as the initial step for the nephrotoxic-
ity of cadmium [22–25]. Cadmium-induced proximal tubule dysfunction and subse-
quent renal cancer have been reported [26–28]. The experimental data from cell 
culture and animal models suggest diverse molecular mechanisms are involved in 
cadmium renal carcinogenesis.

6  Cadmium Carcinogenesis and Mechanistic Insights



120

6.3.2  �Apoptosis, Necrosis, and Autophagy in Proximal Tubule 
Epithelial Cells

The experimental evidence to date from rodent studies indicates that the accumula-
tion of cadmium in proximal tubule epithelial cells and subsequent nephrotoxic 
effects appear to involve apoptosis, necrosis, and autophagy mechanisms. It should 
also be noted that in a majority of the studies described below, either acute or 
chronic exposure to cadmium caused a small percentage of cell death. The early 
studies observed proximal tube epithelial injury to be mediated by apoptosis, but 
not necrosis [29–32], while other studies noted that not all proximal cells were 
apoptotic and some of these apoptotic cells were proliferative in response to apop-
totic injury [33]. It has also been observed that not all proximal epithelial cells 
become apoptotic, as kim-1-mediated tissue repair was found activated before 
apoptosis in some cells [34, 35]. Using an acute intraperitoneal exposure route of 
exposure in rats, activation of autophagic response in proximal tubule was reported 
[36] well before any evidence of apoptosis or tubule dysfunction was observed.

6.3.3  �Cell Survival Response

As discussed above, cadmium-induced cell death or apoptotic events simultaneously 
trigger cell survival signals in many instances. Cell culture studies using various cell 
types showed activation of phosphoinositide-3-kinase (PI3K) and its downstream 
serine/threonine kinase, Akt/protein kinase B [37–42]. The role of forkhead box 
class O (FOXO) subfamily of transcription factor was also studied in relation to cell 
survival signaling [43]. Utilizing a cell culture system of renal proximal cell line 
HK-2 [41] with a combination of diverse enzyme inhibitors has elegantly demon-
strated that cadmium-induced phosphorylation of FOXO3a (forkhead box class O 
transcription factor a) was inactivated, which played a significant role in determining 
the cell fate toward survival or apoptosis. Further, this process involved regulation of 
a complex set of downstream signaling molecules such as m-TOR (mammalian tar-
get of rapamycin), RSK2 (ribosomal s6 kinase2), and glycogen synthase kinase-3α 
(GSK-3α) in protecting HK2 cells from metal-induced cellular death/damage.

6.3.4  �Notch1, Wnt/β-Catenin, and E-Cadherin-Mediated Cell 
Signaling in Cadmium-Exposed Renal Proximal Cells 
and Carcinogenesis

Cadmium-induced disruption of cadherins and cell–cell communications are con-
sidered as a primary mechanism of toxicity and cancer in epithelial cells [44, 45]. 
Cadherins are important to maintain epithelial polarity and epithelial barrier 
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function, and cadmium-mediated disruption of cadherin affected these functions 
[46]. Consistent with the observations made in vitro, a pronounced change, specifi-
cally in N-cadherin localization patterns, was also reported in vivo in segments of 
the nephron [47, 48]. Sub-chronic nephrotoxicity of cadmium in rats also caused 
significant damage and fragmentation of DNA, depolymerization of microtubules, 
and loss of cadherin in the subapical domain of the proximal tubules [49, 50]. In 
cadmium-treated cells, the proximal tubule Na+-K+ ATPase located at the basolat-
eral surface of the epithelia, which plays an important role in sodium and fluid 
absorption, delocalizes to apical surfaces (labeled extensively in apical surfaces) 
affecting renal absorption [50]. Another sub-chronic cadmium exposure study 
investigated the potential role for Wnt signaling associated with perturbations in 
β-catenin and cadherins in mouse renal fibrosis. In this study, the authors report 
upregulation of cell proliferation and survival genes (c-Myc, cyclin D1, and the 
multidrug transporter P-glycoprotein Abcb1b) that are known to promote malig-
nancy [51].

Recent in  vitro studies investigated the role for other molecular mechanisms 
implicated in cadmium-induced cell damage, such as the Notch1 pathway. The 
Notch1pathway is an evolutionarily conserved signaling pathway involved in 
diverse biological processes ranging from cell fate, differentiation, proliferation, 
and death [52]. Cadmium-induced activation of Notch1 signaling pathway and its 
effect and interaction on other signaling pathways were studied using HK-2 human 
renal proximal tubule epithelial cells [53]. These studies suggested that cadmium-
induced activation of Notch1 signaling led to activation of p53 and PI3K/Akt sig-
naling pathways and together resulted in the expression of “snail”; a repressor of 
E-cadherin is another mechanism for cellular damage and decreased cell–cell adhe-
sion and thus affecting cell–cell communication and invasion.

6.4  �Prostate Cancer

A meta-analysis of 14 studies reported significantly higher levels of cadmium in the 
prostate tissue of prostate cancer patients than those in healthy controls [54]. 
Although, several epidemiological studies observed a positive association between 
cadmium levels and incidence of prostate cancer, such association was not demon-
strated conclusively at environmental exposure levels [54]. Animal toxicology stud-
ies have shown cadmium may be linked to prostate cancers, with supportive 
mechanistic data [55–58].

A majority of animal studies investigating the relationship between cadmium 
exposure and prostate cancer used the rat as a model due to similarities that exist 
between the conditions of dysplastic changes in rat prostate to the intraepithelial 
prostatic neoplasia observed in humans [55–58]. SV40 immortalized, non-
tumorigenic human prostate epithelial cells transformed with repeated exposure to 
cadmium exhibited anchorage-independent tumor growth in soft agar and formed 
poorly differentiated adenocarcinomas in severe combined immunodeficiency 
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(SCID) mice. These tumors exhibited enhanced expression of prostate- and tumor- 
specific markers such as prostate-specific antigen (PSA), androgen receptor (AR), 
prostate stem cell antigen (PSCA), the homeobox protein NKX3.1(NKX3.1), and 
cytokeratin 8 (CK8) suggesting direct relationship between cadmium and prostate 
cancer [59].

6.4.1  �Cell Transformation Studies

In cadmium-transformed prostate cells, genes relating to cell cycle, cell growth and 
differentiation, DNA repair and apoptosis, and potentially involved in prostate car-
cinogenesis were differentially expressed [60, 61]. Specifically, a more comprehen-
sive comparative gene expression analysis on cadmium-transformed prostate 
epithelial cells indicated downregulation of several proapoptotic genes [62]. Later 
studies that investigated the role of signaling pathways in cadmium-mediated apop-
totic resistance observed overexpression of Bcl-2 due to inhibition of JNK signal 
transduction pathways (decreased phosphorylation of JNK1/2 and JNK kinase 
activity) to be responsible for the lowered transcript and protein levels of Bax [63].

A number of studies that exposed diverse cell lines (normal prostate cells RWPE-
1,cadmium-transformed cell line CTPE, the primary adenocarcinoma cell line 
22Rv1 and CWR-R1 cells, LNcaP, PC-3, and DU145 metastatic cancer cell lines) 
to a broad range of cadmium concentrations (sub-micromolar to micromolar) for 
24 h observed dose- and cell line-dependent effects such as apoptosis; inhibition of 
cell proliferation, correlating with accumulation of functional p53; and overexpres-
sion of p21 in p53 wild-type cells [63]. Recently, El-Atta et al. reported that RWPE-1 
cells were more resistant to arsenic-induced caspase 3/glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) expression compared to cadmium exposure [64]. Both 
arsenic and cadmium were more resistant compared to chromium at low and moder-
ate concentrations. At the highest concentration, RWPE-1 cells were the most resis-
tant to cadmium-induced caspase 3/GAPDH expression when compared to arsenic 
and chromium, confirming the earlier reports that in prostatic cells, cadmium is both 
pro- and antiapoptotic depending on the concentration.

Rats treated with cadmium chloride in drinking water for 18 months exhibited a 
negative association for cell proliferation and apoptosis in the prostate tissue as 
evident by the differential expression of PCNA immune-reactive nuclei, bcl-2, and 
the numerical density of epithelial cells in the dysplastic prostatic acini compared to 
normal acini of treated rats and control animals. Also, the percentage of apoptotic 
nuclei in the ventral dysplastic acini was significantly decreased compared to that of 
normal acini [65]. This decrease in the apoptosis in the rat dysplastic prostatic 
hyperplasia seems to be different, as it does not occur in humans and it is likely 
mediated by enhanced bcl-2 expression.

In a 2-year study, where rats were exposed to cadmium in drinking water, preneo-
plastic morphology in the ventral prostate using immune histochemical approaches 
was investigated [66]. In this study there is a significant increase in the expression of 
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PCNA and of Bcl-2 in prostate L1 lobe due to cadmium exposure. In the same study, 
the authors also inquired on the potential role of Zn supplementation in drinking water 
on cadmium-induced neoplastic changes in prostate and found no protective effects.

The cadmium-induced dysplastic prostatic lesions demonstrated alterations in 
the expression of immune-reactive lysophosphatidic acid receptor (LPAR), a phos-
phatidic acid receptor [67]. This gene had been widely implicated in the cellular 
processes such as differentiation, angiogenesis, tumor invasion, etc. In these lesions, 
immune-reactive p53 expression was higher, while volume fraction of Bcl-2 (VFBcl-
2) was unaltered, and enhanced expression of PCNA in the prostatic lobe1(LIPCNA), 
marker of proliferation, was observed. A significant correlation between LILPA1 
and immune-reactive ubiquitin (LIUB1) observed in these lesions suggest potential 
involvement of ubiquitin pathway in mediating this pathology [68].

Pathway analysis of differentially expressed genes from transcriptomics data on 
normal prostate epithelial cells to low-dose cadmium (2.5 μM, 4–32 h) identified a 
greater representation of genes related to TNF family with known role in oncogenic 
potential and immunomodulatory functions [69]. The role for TNF in cadmium-
mediated apoptosis is further supported by downregulation of X-linked inhibitor of 
apoptosis protein (XIAP), in cadmium-treated prostate cells [70]. This downregula-
tion appears to occur at posttranscriptional level via NF-ƘB-independent, 
proteasome-mediated mechanism leading to TNF-α sensitive apoptosis.

In summary, as discussed above, cadmium-induced prostate carcinogenesis 
involved perturbations in cell cycle regulation, apoptosis or apoptotic resistance, 
and a potential for these events toward the progression of tumorigenic process.

6.5  �Breast Cancer

A number of epidemiological studies that evaluated the associations between the 
dietary cadmium intake, the urinary cadmium level, and the breast cancer risk did 
not find a strong correlation. In some studies, a significant association between the 
dietary cadmium intake and postmenopausal breast cancer risk is reported [71]. In 
comparison, a systematic meta-analysis of studies found a relationship which is not 
statistically significant [72]. However, epidemiological studies that evaluated the 
association between the urinary cadmium level and breast cancer risk concluded 
that women with higher urinary cadmium levels showed an increased risk for breast 
cancer with different grades [73–76]. A few other studies did show that the concen-
tration of cadmium found in the breast cancer tissues was higher than in the adjacent 
normal or benign breast tissue, suggesting that cadmium exposure may contribute 
to breast tumorigenesis [77–79].

A recent meta-analysis of several observational studies showed positive associa-
tions between breast cancer and environmental levels of cadmium [80]. In a study 
with rural Bangladeshi women, elevated levels of cadmium were found to interfere 
with transfer of zinc to the fetus and subsequent low concentration of zinc in breast 
milk [81]. A few studies observed consistently higher accumulation of cadmium in 
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cancerous breast tissue [77–79]. The breast density in the breast cancer patients was 
closely associated with cadmium exposure with stronger association shown between 
nulliparous women, current or former smokers [82]. A hospital-based case–control 
study of 585 cases and 1170 controls adjusted for age and other confounders 
reported positive association between creatinine-corrected urinary cadmium with 
greater risk of breast cancer both in ER (estrogen receptor) positive and human 
epidermal growth factor receptor 2 (HER2) positive patients [76].

While there is some inconsistency in the association between exposure to envi-
ronmental cadmium and breast cancer incidence from population studies, there is a 
wealth of accumulated scientific evidence from studies using cell culture and ani-
mal models. In vivo animal studies of cadmium exposure in mice demonstrate the 
possible mechanistic pathway that cadmium might interfere with mammary physi-
ology [83]. The reduced expression of secretory pathway Ca-ATPase (SPCA) by 
cadmium in the lactating mouse mammary gland led to decreased levels of β-casein 
in milk [83]. This and other studies suggest that cadmium may compete with trans-
port channels for essential metals like iron, zinc, and calcium accumulating in the 
mammary gland, affecting these physiological demands of the gland [83–85].

The next section will provide an overview on our current understanding of cel-
lular and molecular data supporting a defined role for cadmium-induced breast 
carcinogenesis.

6.5.1  �Estrogen and Estrogen Receptor

Estrogen is produced by female ovaries and plays a significant functional role both 
in the normal and neoplastic breast epithelium. The deregulation of estrogenic path-
ways can lead to molecular perturbations at the level of gene transcriptional and/or 
translational activity and associated downstream signaling pathways contributing to 
the development of cancer. It is clearly understood that overexposure to estrogen 
and overexpression of estrogen receptors can contribute to breast cancer [86].

In vitro estrogenic potency of cadmium had been tested in many breast cancer 
cells [87–99] such as MCF-7, T-47D, ZR-751, and SKBR3 with varied expression 
of estrogen receptors (ERs) and G protein-coupled receptor (GRP30). All these 
experiments have demonstrated that cadmium interacts and activates both kinds 
(endogenous and exogenous) of estrogen receptors, alters the expression and 
function of several downstream target genes, leads to the activation of several intra-
cellular signaling cascades similar to estrogen, and contributes to translational regu-
lation of estrogen-dependent proteins [87–99]. Aptly, based on these observations, 
cadmium is designated as a metalloestrogen [87].

One of the earliest pieces of evidence for the estrogenic potential of cadmium was 
the cadmium-induced estrogenic response through estrogen response element (ERE) 
in MCF-7 breast cancer cells [88]. These changes included the expression of certain 
estrogen-dependent genes as well as a 5.6-fold increase in the cell growth compared 
to estrogen-treated controls. A series of experiments revealed that cadmium in nano-
molar range activated estrogen receptor-α (ERα) and blocked binding of estradiol to 
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ERα in a noncompetitive manner [89]. This study further demonstrated the ability of 
cadmium to bind ERα and its various mutant forms. The study also showed that 
cadmium-induced estrogen activity was blocked by antiestrogen compounds (ICI-
164,384) and ER alpha-binding mutants (C381, C447, E523, H524, and D538) 
which are specific to cadmium-binding sites in the ligand-binding domain of ERα 
(cystein38, 44, glutamic acid 523, histidine 524, and aspartic acid 538). Estrogen 
mimicking activity of cadmium was also demonstrated in T47D breast adenoma 
cells transfected with triple estrogen response element (ERα,β and estradiol) lucifer-
ase construct in combination with antiestrogen compounds (ICI and genistein) [90].

Cadmium-induced proliferation in MCF-7 cells appears mediated by increased 
activity of ERK1/2 and AKT phosphorylation. In the experiment, these activities 
were blocked by antiestrogen compound (ICI182780) confirming that cadmium-
mediated cell growth was facilitated by binding to ERα and the resulting signaling 
cascade [91]. Cadmium stimulated the growth of three ER-positive breast cancer 
cells (MCF-7, T4D, and ZR-75-1) to a lesser degree than estrogen. Detailed molec-
ular characterization of this proliferative activity demonstrated involvement of a 
complex interaction of a cellular signaling cascade such as the interaction between 
c-jun and ERα, mobilization of the transcription factor complex to cyclin D and 
c-myc promoter, and resulting alterations of cell proliferation and cell survival [92].

The estrogenic activity of cadmium was found to involve induction of heat shock 
proteins Hsp22 [93] and Hsp27 [94] in estrogen receptor-positive human breast 
cancer cell line MCF-7, but not in ER-negative breast cancer cell line MDA-MB-231. 
It was also found that in addition to heat shock proteins, downregulation of cyto-
chrome oxidase subunits II and IV in MDA-MB-231 breast cancer cells led to dif-
ferential expression of p38 and accumulation of downstream proteins [95]. Cadmium 
induces Hsp22 in a manner similar to estrogen, which was blocked by antiestrogen 
compound ICI182780. Such induction was not observed in ER-negative breast can-
cer cell line MDA-MB-231 [93]. Cadmium strongly induced the activity of hTERT 
(the subunit that is principally involved in telomerase activity) transcription in an 
estrogen receptor-dependent manner [96].

A comparative transcriptomics analysis in five clonal cell lines of the human 
estrogen-positive breast cancer cell line MCF7, namely, MCF-7-cd4, MCF-7-cd6, 
MCF-7cd7, MCF-7cd8, and MCF-7cd12, indicated cadmium-induced differential 
gene expression profiles across the cell lines. A recent hierarchical gene clustering 
analysis demonstrated gene signatures associated with breast cancer were distinct 
and unique, from the control cells suggesting their potential role in breast cancer 
progression [97].

The estrogenic activity of cadmium is mediated through both nuclear and mem-
branous estrogen receptor-mediated signaling, and this is concentration-dependent 
[98]. When T47D breast cancer cells were exposed to pico-molar concentrations of 
cadmium, it led to induced expression of progesterone receptor (PgR) and/or ps2 
(two indices of responses mediated through nuclear ER); however, at nanomolar 
concentrations, it resulted in increased phosphorylation of ERK1and ERK2. 
However, cadmium at 1–3 μM induced activity and phosphorylation of ERK1/2 
kinases in MCF-7 cells appear to be mediated by EGFR and Src kinase, demonstrat-
ing that the membranous receptor is important in eliciting these responses [99].
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Animal studies also observed estrogenic activity of cadmium, for example, a 
single i.p. injection of cadmium (5 μg/kg) in ovariectomized SD (Sprague Dawley) 
rats, resulting in enhanced mammary epithelial density, formation of alveolar buds 
and side chain branches, and production of casein, whey acidic protein, progester-
one receptor, and complement component C3 [100]. Pubertal administration of cad-
mium resulted in less developed mammary glands in treated adult rats than controls. 
In control animals, where mammary gland was well developed, alveolar develop-
ment was comparable to the first day of pregnancy [101]. Similar to mammary 
gland, estrogenic effects of cadmium exposure were also reported in uterus and/or 
endometrium in rats and mice [100–103].

Two studies by [104, 105] looked at the role of GPR30 (membranous G protein-
coupled receptor) that can mediate estrogen (E2)-induced non-genomic signaling 
and its role in cadmium-induced signaling process in ERα- and β-negative SKBR3 
breast cancer cells [104]. While the former study demonstrated that GPR30 antago-
nizes the growth of ERα-positive breast cancer cells, the latter study demonstrated 
that cadmium-induced breast cancer cell proliferation is mediated by GPR30 activa-
tion, similar to estrogen by eliciting rapid activation of erk1/2, ribosomal S6 kinase, 
elk, etc. [105].

In MCF-7 cells treated with 1–3 μM cadmium, both ERK1/2 kinase activity and 
phosphorylation were increased. Blockage of cadmium entry into the cells by man-
ganese did not alter these responses, while inhibition of EGFR and the Src kinases 
completely abolished the ERK1/2 activity demonstrating that the membranous 
receptor is important in eliciting these responses. Either silencing or inhibition of 
ERα did inhibit cadmium-induced ERK activity, suggesting that both EGFR and ER 
are important in cadmium-mediated estrogenic responses and downstream signal-
ing cascades [99].

As discussed above, there is a clear biological basis for the estrogenic effects of 
cadmium. This suggests the potential for cadmium exposure to cause developmen-
tal and functional alterations to the mammary gland. Although epidemiological 
studies point to a positive association between breast cancer and cadmium expo-
sure, additional studies in a larger cohort with better study design and exposure 
characterization and relevant biomarkers for early detection may shed more light on 
the estrogenic role of cadmium.

6.5.2  �E-Cadherin, β-Catenin, and Associated Signaling Events

Selective higher accumulation of cadmium was reported in breast tumors compared 
to normal and benign mammary gland tissues [106]. Transformation of normal 
breast cells to a metastatic phenotype on repeated cadmium exposure was also 
reported. This observation led to further studies on the cadmium-induced disruption 
of cell-to-cell communication which potentially influences cell–cell adhesion and 
metastatic cell type [107]. One of the earliest reports of cadmium-mediated disrup-
tion of cell–cell communication suggested a role for an adhesion molecule, cad-
herin, in renal proximal tubule cells [44, 46, 108].
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Cadherins are a class of calcium-dependent cell adhesion molecules localized at 
epithelial junctions [44]. These molecules have both intra- and extracellular domains 
with extracellular regions for calcium-binding sites, and the intracellular domains 
are bound to β-catenin. The β-catenin is linked to α-catenin which is bound to actin 
cytoskeleton [109]. The β-catenin controls nuclear Wnt signaling pathway [44, 109, 
110]. Upon release from the junctional complexes to the cytosol, β-catenin can 
either get degraded by the proteasome or translocate to the nucleus, binding to tran-
scription factors such as T-cell factor-lymphocyte enhancer factor [44, 110]. 
Cadherins are primarily two types, namely, E-cadherin and N-cadherin. Cadmium 
had been demonstrated to disrupt both E- and N-cadherin junctions in many epithe-
lial cell types and vascular endothelial cadherin (VE cadherin) junctions in vascular 
endothelial cells [108]. It is clearly understood that disruption of E-cadherin leads 
to release of β-catenin and its subsequent translocation to nuclease functions as 
transcription factor and activates diverse cell proliferation and metastatic signals 
through NF-κB, c-myc, matrilysin, and c-Jun [111–116].

Initial observation of the relationship between cadmium and cleavage of E-cadherin 
in T47D breast cancer cell line exposed to cadmium was made by Park et al. [117]. In 
a presenilin 1 (PS1) gamma secretase-dependent manner as studies using mutant PS1 
and secretase inhibitors (DAPT), calcium chelator and antioxidants, cadmium-inhib-
ited cell motility and invasiveness of T47D breast cancer cells. Both short-term and 
repetitive exposures to low levels of cadmium have been found to initiate of E-cadherin 
protein degradation via ubiquitination pathway and translocation of β-catenin and 
transcriptional activation of TCF-4 and downstream genes such as c-jun and cyclin 
D1  in diverse breast cancer cell lines [118]. These studies suggest that cadmium-
induced cell proliferation and metastatic phenotype may include disruption of 
E-cadherin-mediated signaling pathways and cell-to-cell communication.

6.6  �Pancreatic Cancer

Chronic exposure of pancreatic cells to cadmium (micromolar concentrations) 
induced malignant phenotypes such as increased expression of matrix metalloprote-
ases-9, increased invasiveness, and anchorage-independent growth as well as increased 
expression genes involved in cell growth and metastasis genes, CD44, CCR4, OCT4, 
and S100P [119]. This observation along with reported positive association for pan-
creatic cancer in men in the recent meta-analysis of epidemiological studies suggests 
a possible relationship and is worth investigating further with relevant models.

6.7  �General Molecular Pathways of Cadmium-Mediated 
Carcinogenesis

The common pathways implicated in cadmium-mediated carcinogenic process are 
illustrated in Fig. 6.2 and are detailed below.
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6.7.1  �Oxidative Stress

Induction of oxidative stress is hallmark of cadmium toxicity. Induced expression of 
anti-oxidative response genes–glutathione peroxidase and reductase as an early 
response mechanism to mitigate toxicity and protection against cadmium-induced 
carcinogenesis has been observed both in cell culture and animal studies. This 
enhanced glutathione-related activity is demonstrated to occur in two ways. One is 
induction of gamma-glutamylcysteine synthetase resulting in enhanced glutathione 
synthesis and secondly by enhancing the induction of genes encoding glutathione 
S-transferase [120]. This detoxification mechanism, however, can be overridden 
sometimes by excessive cadmium exposure, resulting in toxicity and carcinogenesis.

6.7.2  �DNA Damage Repair Pathways

Several lines of evidence point to the fact that cadmium is not a direct genotoxicant, 
rather cadmium is recognized as a weak co-genotoxicant. In mammalian cells and 
bacterial mutagenic tests, cadmium was not identified as genotoxic. In in vitro test 
systems, a very high concentration of cadmium (in micromolar range) exhibited 
some genotoxicity, and the observed genotoxic effects were hypothesized to be the 
result of reactive oxygen species induced by high doses of cadmium [121, 122]. 
These studies further confirmed that the genotoxicity was elicited by cadmium-
induced generation of 8-OH guanine, and this was inhibited when the cells were 
treated with both the scavengers and modulators of free radicals.

Cadmium had been demonstrated in several studies [123–125] to inhibit DNA 
damage repair. In cadmium-exposed alveolar epithelial cells, a significant decrease 
in the activity of formamido-pyrimidine DNA glycosylase was reported [123]. This 
enzyme is responsible for the removal of DNA adducts such as 8-OH guanine and 
8-OH adenine [123]. In a panel study of workers exposed to cadmium and other 
metals, cobalt and lead, blood mononuclear cells exhibited an inverse association 
for DNA strand breaks and the repair capability of 8-oxoguanine (8-oxo-G) [124]. 
This may be due to cadmium exposure-related depletion of cellular glutathione and 
subsequent reduced repair of 8-OH guanine or increased formation of 8-oxoguanine 
[125]. The lesions caused by these adducts can become mutagenic if unrepaired.

To maintain the genome integrity, the cell is equipped with diverse DNA repair 
pathways, namely, base excision repair (BER), nucleotide excision pathway (NER) 
and mismatch repair (MMR), DNA strand cross-link repair, homologous recombi-
nation, and nonhomologous end-joining pathways. Cadmium has been found to 
interfere with at least three DNA repair pathways—BER, NER, and MMR.  To 
assess the effect of cadmium on DNA repair capacity in vitro, [126] used a focused 
microarray that can assess in parallel multiple DNA repair genes. This study 
reported that cadmium chloride differentially inhibited base and nuclear excision 
repair pathways. In addition, differential sensitivity of glycosylases toward uracil 
excision by cadmium was also observed.
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The tumor suppressor gene, p53, is known to influence BER activity by direct 
physical interactions with hOGG1, APE1, and Pol b protein constituents [127] and 
also indirectly by affecting the transcriptional regulation of a DNA glycosylase pro-
tein hOGG1, human apurinic/apyrimidinic endonuclease1(APE1) [127]. Cadmium 
is known to interfere with p53 function and oxoguanine glycosylase (OGG) activity 
[127]. To further understand the relationship between cadmium-induced perturba-
tions in p53 function and its effect on BER constituents, a series of experiments 
with cell extracts and isolated DNA repair proteins were carried out [127]. These 
experiments showed that cadmium is capable of interfering with the BER repair 
pathway by different mechanisms that include impairing the activity of DNA repair 
proteins hOGG1 and APE1 [127]. hoGG1, but not APE1 (another key enzyme in the 
BER pathway), was inactivated by increased oxidation and recruited to stress gran-
ules in cells treated with sublethal treatment of cadmium [128].

Studies using comet assay demonstrated that low (nano- and micromolar range) 
concentrations of cadmium inhibit DNA damage repair of NER pathway induced by 
UV radiation, methyl methanesulfonate (MMS), and N-methyl-N-nitrosourea (MNU) 
[129, 130]. Additional direct evidence for cadmium-induced inhibition of NER has 
been reported from studies, where the genotoxic potential of soluble and particulate 
cadmium was investigated using immortalized human lung epithelial cells. In these 
studies, inhibition of benzopyrene diol epoxide (BPDE)-induced bulky DNA adducts 
and UVC-induced photo lesions was observed in a dose-dependent manner at noncy-
totoxic concentrations of cadmium that correlated with the nuclear uptake of cad-
mium [131]. In the studies using only the soluble form of cadmium (cadmium 
chloride), it found decreased levels of the principle NER initiator protein, XPC lead-
ing to disturbance in the disassembly of xeroderma pigmentosum group A protein 
(XPA) and xeroderma pigmentosum, complementation group C (XPC) proteins were 
reported. These studies further support the earlier observations that cadmium treat-
ment results in conformational changes in the DNA-binding zinc finger domain of the 
tumor suppressor p53, which is a transcription factor for XPC [132, 133].

The process of cell division is equipped with DNA polymerase proofreading or 
by post-replication mismatch repair (MMR) to correct base pair mismatches that 
may occur during normal cell duplication event. Accumulating evidence points to 
potential involvement of MMR in cadmium-induced carcinogenesis. Earlier studies 
using yeast system demonstrated that chronic low-level exposure to cadmium inhib-
its repair of small misalignments and base–base mismatches [134]. Using human 
cell culture systems, these authors also showed cadmium-induced inhibition of at 
least one step of mismatch removal, leaving 20–50% of DNA unrepaired [135]. 
Later studies using model systems and in vitro culture studies demonstrated a direct 
binding of cadmium to specific proteins (MSH2–MSH6 heterodimer) resulting in 
blockage of DNA-binding and ATPase activities [136–139].

These observations provide experimental evidence that cadmium is capable of 
targeting DNA repair systems, resulting in diminished removal of endogenous and 
exogenous DNA damage resulting in increased frequency of genomic alterations. 
Current experimental evidence indicates that cadmium interferes with all major 
DNA repair pathways, and this appears to also involve direct interactions of cad-
mium with the DNA repair proteins.
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6.7.3  �Aberrant Gene Expression, Transcription, 
and Translation

Cadmium-induced aberrant gene expression appears to be one of the mechanisms 
implicated in carcinogenesis. Gene expression data derived from both in vitro and 
in  vivo studies using high-throughput expression systems indicated alteration of 
gene expression in a variety of genes such as early response genes, stress-related 
genes, and transcriptional and translational genes. Primary classes of stress response 
genes (genes that collectively work in combating stress) that are affected or elicited 
by cadmium exposure include those that are involved in oxidative stress, induction, 
and operation of metallothionein (MTs) [140–143] genes involved in glutathione 
synthesis and homeostasis and heat shock responsive genes [140]. The aberrant gene 
expression in the aforementioned gene types has been extensively covered under 
cadmium-induced organ-specific cancers that are described earlier in this chapter.

6.7.4  �Transcriptional and Translational Alterations

The AP-1 transcription factor (constituted of c-fos and c-jun) present in the pro-
moter regions of several genes involved in cell growth, cell cycle control, apoptosis, 
and autophagy had been found to be altered by the induction of c-fos and c-jun in 
cadmium-transformed prostate cell lines [144]. Both cadmium resistance and toxic-
ity involves altered DNA-binding activity and transcription of specificity 
protein1(Sp-1) and hypoxia inducible factor-1(HIF-1), two transcription factors, as 
well as expression of downstream genes associated with apoptosis and cell cycle 
regulation [145, 146]. The role for transcription factors NF-kB and NRf-2  in the 
expression of genes such as heme oxygenase, c-fos, and c-myc and the cell signal-
ing cascade of MAP kinases under the regulation of these transcription factors by 
means of upstream and downstream regulation has been implicated in cadmium-
induced oncogenic activation and apoptotic regulation [15, 147, 148].

Accumulated experimental data from studies in cadmium-transformed cell lines 
and analysis of tumor samples obtained from animal models suggest that in addition 
to transcription factors, discussed above, several translational factors also appear to 
play a defined role in cadmium-mediated carcinogenesis. The initial observation of 
a role for translational initiation factor (TIF3) and translational elongation factor 
1-delta (TIF1δ) came from the observation of their overexpression in the observed 
anchorage-independent growth and tumorigenesis for cadmium chloride-
transformed BALB/cT3 cells [149–151]. In this study the authors demonstrated the 
role for these translation factors by combination transfection studies using c-DNAs 
and antisense mRNA. Malignant transformation of NIHT3 cells exposed to cad-
mium appeared to be mediated by overexpression of TIF3 and TEF1δ. These cells 
also exhibited anchorage-independent growth and tumor formation in nude mouse 
and this phenomenon got nullified when the cells were transfected with antisense 
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mRNA for these translational factors [152]. Overall, the existing data, though lim-
ited and observed primarily in in vitro studies, suggests that exposure to cadmium 
results in alterations in the expression and/or function of several transcriptional and 
translational factors involved in the oncogenic pathway.

6.7.5  �Cell Proliferation and Cycle Regulation

A normal eukaryotic cell is equipped with a built-in network of pathways called cell 
cycle check points. Their primary goal is to accomplish two critical steps: to ensure 
normal propagation of cell division and to delay the cell cycle into the next phase by 
repairing any DNA damage. Elicit responses, such as apoptosis, senescence, 
autophagy, etc., eliminate surviving damaged cells, thereby ensuing genomic stabil-
ity. Studies using micromolar concentrations of cadmium have demonstrated inter-
ference with several cell cycle check points. The earliest study was the observation 
of cadmium-induced inhibition of cell cycle arrest at both G1 and G2/M phases in 
gamma-irradiated MCF-7 cells. This study also observed cadmium-induced confor-
mational changes to p53 zinc finger domain and impairment in function [132]. Such 
interference with cell cycle regulation by cadmium was observed in benzo[a]pyrene 
diol epoxide-treated fibroblasts, where the metal disrupted the expression of cyclin-
dependent kinase inhibitor P21WAF1. However, at low concentrations, p53 was not 
affected and these effects were attenuated at concentrations >40 μM [153].

Cadmium also had been shown to interfere with cell cycle in the absence of 
exogenous DNA-damaging agents. Studies on various cell lines that have constitu-
tionally expressed p53 have shown that cadmium-induced G1 and G2/M arrest 
involves activation of p53 leading to expression and/or function of several down-
stream genes [61, 154–157]. As noted above, cadmium is capable of disrupting p53 
conformation and subsequently inhibit its function. Studies carried out using 
p53-deficient cells helped to understand the role of other compensatory cycle regu-
latory pathways operate in cadmium-induced carcinogenesis. p53-inactivated kid-
ney proximal tubule cell line exposed to micromolar concentrations of cadmium 
resulted in cell cycle arrest in the G2/M phase mediated by cdc2 phosphorylation, 
facilitating these cells from premalignant to malignant state [158]. Together this 
evidence points out cadmium-mediated genomic instability as one of the mecha-
nisms of carcinogenesis mediated by this metal.

6.7.6  �Cadmium: Apoptosis and Autophagy in Carcinogenesis

The fine balance of apoptosis and apoptotic resistance is pivotal to cellular and tis-
sue homeostasis and integrity. Avoidance of apoptosis in fact is considered a hall-
mark of cancer [159]. The early observation of cadmium-induced apoptosis in the 
carcinogenic process comes from studies of cadmium-transformed prostate 
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epithelial cells [63, 160–162]. On the other hand, cadmium was also found to inhibit 
genotoxin-induced apoptosis at higher concentrations. In CHO (Chinese hamster 
ovary) cells, cadmium at concentrations between 5 and 20 μM inhibited apoptosis 
induced by hexavalent chromium, which was mediated through caspase 3 activities 
[161, 162]. Cadmium also had been shown to inhibit apoptosis induced by other 
metal and nonmetal toxins [61, 158]. In macrophages, cadmium induced apoptosis 
in a calcium-dependent manner trough oxidative stress [159]. The multifaceted role 
of cadmium in apoptosis was also demonstrated where cadmium had been shown to 
induce apoptosis by both caspase-dependent and caspase-independent mechanisms 
[160–162]. Cadmium plays a pivotal role in the carcinogenic process through pro- 
and antiapoptotic pathways by eliciting distinct genes in a concentration-dependent 
manner.

Several studies report cadmium exposure-related autophagy in a variety of cell 
lines such as PC12 cells, MES-13mesengial cells, epidermal skin cells, and vascular 
endothelial cells [12, 163–165]. Low levels of cadmium in several instances had 
been shown to inhibit apoptosis by the deprivation of serum basic fibroblast growth 
factor and induce autophagy [165]. Similarly, in some instances, low levels of 
cadmium elevate intracellular calcium, in turn activating ERK kinase leading to 
autophagy [163]. The mechanistic details on cadmium exposure culminating in 
autophagy had been reported in tumorigenesis of lung and renal cancers that are 
detailed earlier in this chapter.

6.7.7  �Epigenetics

Alterations in epigenetic events disturb cellular homeostasis and influence cellular 
transcription and translation [166]. Cadmium, depending on the dose and duration, 
is reported to have influenced both DNA hypo- and hypermethylation [167]. While 
acute exposures have been linked to inhibition of DNA methyltransferase activity 
that led to global DNA hypomethylation, long-term exposures result in DNA meth-
yltransferase activity and DNA hypermethylation [107, 168]. Life-long exposure to 
cadmium in women is evidenced by low-level urinary cadmium, inversely associ-
ated with a global DNA methylation marker, long interspersed nuclear element1 
(LINE-1) methylation, and expression of DNA methyltransferase3b (DNMT3b) 
which is involved in de novo CpG methylation. This change is of particular concern 
as such change has been implicated as a frequent epigenetic change in malignancies 
[169–171]. Compared to DNA methylation, the influence of cadmium on histone 
modifications has been studied in a very limited number of studies [172, 173, 174]. 
A number of studies have implicated alterations in miRNA expression under the 
influence of cadmium. Micro-RNAs, such as mir138, 15b, and mir-372, have been 
implicated in cadmium-induced tumorigenic process [166]. In summary, cadmium 
is involved in the epigenetic regulation of all the three pathways, namely, DNA 
methylation, histone modifications, and micro-RNA regulation. Dysregulation of 
each of these pathways had been demonstrated in the carcinogenic process of sev-
eral types of cancer including that of cadmium.
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6.8  �Conclusions and Perspectives

There is a growing body of epidemiological studies providing a positive association 
between exposure to cadmium and cancers of different organs, specifically the 
breast, renal, lung, and prostate. This association, although more robust in the occu-
pational exposure settings, is increasingly evident in a limited number of studies of 
environmentally relevant levels, suggesting causative role for cadmium in carcino-
genic effects at these levels as well. If one analyzes this data in the context of huge 
body of experimental data collected over two to three decades using defined cell 
culture and laboratory animal model systems, potential trends supporting biological 
plausibility are apparent. Although the initial experimental data were questioned for 
the high exposure concentrations used, recent data from studies with sub-micromo-
lar up to 10 μM concentrations of cadmium provided convincing evidence of posi-
tive association of cadmium and carcinogenesis.

The experimental data discussed in this chapter sums up to a pattern of certain com-
mon and unique mechanisms perturbed or initiated toward carcinogenic effects of cad-
mium and eventual malignancy in organs investigated. However, these molecular changes 
seem to be dependent upon cadmium concentration, route of exposure, the timing of 
exposure, and the experimental model. The common and specific genes altered in the 
major types of cancer induced by cadmium are captured in Fig. 6.1 and Table 6.1. A 
recent published study on the network analysis of cadmium-induced gene pathways in 
cancer also reported some of the genes (as identified in the present analysis) as common 
genetic alterations in cadmium-induced cancer process [175].

Recent IARC-led workshops of international experts identified key events char-
acteristic of human carcinogens as evidenced by systematic review of mechanistic 
data [176]. These workshops identified ten key characteristic properties of human 
carcinogens which include:

	 1.	 Is electrophilic or can be metabolically activated to electrophiles
	 2.	 Is the chemical genotoxic
	 3.	 Alters DNA repair or causes genomic instability
	 4.	 Induces epigenetic alterations
	 5.	 Induces oxidative stress
	 6.	 Induces chronic inflammation
	 7.	 Is immune suppressive
	 8.	 Modulates receptor-mediated effects
	 9.	 Causes immortalization
	10.	 Alters cell proliferation, cell death, or nutrient supply

The general carcinogenesis process as influenced by cadmium falls into the fol-
lowing common mechanisms: oxidative stress, aberrant gene expression, inhibition 
of DNA repair, modulation of receptor-mediated effects, cell death/apoptosis, cell 
proliferation and autophagy, and epigenetic (Fig. 6.2). In line with the analyses of 
Smith et al. [176] on the mechanistic cancer hallmarks, these data largely support 
the potential hazard by this metal as a human carcinogen. A careful review and 
analysis of the present data set for this chapter indicates that the molecular players 
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mediating these cellular processes and associated downstream molecular pathways 
are influenced by cadmium. Further, these processes and pathways are dependent 
upon cadmium concentration, route and timing of exposure, and the selected experi-
mental model.

The interaction among these key players and pathways should be understood to 
translate this information toward developing potential biomarkers for prognosis and 
prevention. To comprehend the resulting complex interplay and spatiotemporal 
dynamics of these events in the causation of cancer(s) by cadmium, both at occupa-
tional and environmental levels of exposure, it needs further active research. As in 
the case of any environmental public health areas of research, understanding the 
role of cadmium in the etiology of cancer requires more realistic human exposure 
scenarios including experimental studies using low-dose and chronic exposure 
regimens.
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Chapter 7
Molecular Mechanisms of Chromium-Induced 
Carcinogenesis

Cynthia L. Browning, Rachel M. Speer, and John Pierce Wise Sr.

Abstract  Hexavalent chromium (Cr(VI)) has been utilized for industrial applica-
tions for over 200 years. Due to its frequent use, workers in over 80 different indus-
tries are exposed to Cr(VI). Epidemiological studies indicate particulate Cr(VI) 
compounds are the most potent carcinogens, resulting in sinusoid and lung tumors 
following inhalation. Although Cr(VI) is well established as a human lung carcino-
gen, the mechanism of carcinogenesis remains unknown. Here, we examine the 
results of Cr(VI)-induced tumor, in  vivo, cell culture, and in vitro studies in the 
context of three major models of carcinogenesis: multistage carcinogenesis, 
genomic instability, and epigenetic modification. A wealth of data support the con-
clusion that genomic instability is a driving mechanism of Cr(VI)-induced carcino-
genesis. However, recent studies suggest epigenetic modifications also play a crucial 
role in its carcinogenic mechanism. Therefore, we propose a mechanism of Cr(VI)-
induced carcinogenesis that involves both genomic instability and epigenetic 
modification.
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Cr(VI)	 Hexavalent chromium
DNA	 Deoxyribonucleic acid
DSB	 DNA double-strand break
H3K4me3	 Trimethylated histone 3 at lysine 4
H3K9me2	 Dimethylated histone 3 at lysine 9
HR	 Homologous recombination
IF	 Immunofluorescence
miRNA	 MicroRNA
MMR	 Mismatch repair
NHEJ	 Nonhomologous end joining
NSCC	 Non-small cell carcinoma
SCC	 Small cell carcinoma
SqCC	 Squamous cell carcinoma
WB	 Western blot

7.1  �Chromium: History, Production, and Uses

Chromium (Cr) is a naturally occurring element found in the Earth’s crust. While Cr 
exists in oxidation states ranging from Cr(−2) to Cr(6+), only trivalent and hexavalent 
Cr are stable enough to occur in the environment. Cr(III) is found readily in nature, 
while Cr(VI) is mainly produced through industrial activities [1]. To extract chro-
mium, trivalent chromite ore is roasted with soda ash and sometimes lime in a furnace 
and purified to produce soluble sodium chromate. If lime is utilized in the extraction 
process, insoluble calcium chromate is also produced. Other chromate compounds 
can then be produced from sodium chromate or calcium chromate through reactions 
with acids or soluble forms of zinc, lead, strontium, or other metals [2].

Cr is a lustrous, hard metal that resists tarnishing and has a high melting point. 
Due to these properties, chromium is utilized to produce stainless steels, iron alloys, 
and nonferrous alloys [3, 4]. In fact, Cr is the component of stainless steel that 
makes it “stainless.” Worldwide, approximately 80% of the Cr mined is used for 
metallurgical applications, ranging from chrome plating to the production of chrome 
alloy hip replacements. Cr salts display a wide variety of bright colors, earning the 
metal its name derived from the Greek word “chroma,” meaning color. The bright 
colors of the Cr salts have led to its use in a variety of other applications, such as 
pigment production, leather tanning, and wood preservatives [3, 4].

7.2  �Cr Exposure and Evidence of Carcinogenesis

Over 80 occupations have been identified in which workers experience Cr exposure 
[2]. The majority of workplace exposures to Cr occur during welding and other 
types of “hot work” on stainless steel. Workers are also commonly exposed during 
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chromate metal and pigment production, ferrochrome alloy production, and while 
operating chrome plating baths [2, 5]. Cases of Cr-induced cancers within the respi-
ratory tract of chromate workers have been documented for over 125 years. The first 
epidemiological study on chromate workers in the United States in 1948 found 
21.8% of chromate worker deaths were attributed to respiratory cancers. This out-
come was 16 times higher than the ratio of respiratory cancers in the control popula-
tion [6]. Since then numerous epidemiological studies have shown an increased 
occurrence of lung cancer in Cr-exposed workers [7–11]. Ishikawa et al. [12] esti-
mated the lung cancer morbidity rate for ex-chromate workers to be 21.6 times 
higher than that of the general population. There is a strong relation between lung 
cancer risk and cumulative Cr(VI) exposure [7, 9, 10, 13]. Valence state and solubil-
ity also affect the carcinogenic potential of Cr. Machle and Gregorius [6] found no 
incidence of lung cancer in plants where workers only handled Cr(III) compounds, 
suggesting these compounds are not carcinogenic. This weight of evidence resulted 
in the determination of Cr(VI) compounds as Group 1 carcinogens, defined as “car-
cinogenic to humans” (IARC 1990).

7.3  �The Role of Physicochemical Properties in Cr-Induced 
Carcinogenesis

The physicochemical properties of Cr play an important role in the mechanism of 
Cr(VI)-induced carcinogenesis. Epidemiological studies suggest insoluble chro-
mate is more carcinogenic than soluble chromate, evidenced by a reduction in lung 
cancer rates in chromate workers after lime was removed from the production pro-
cess, thus eliminating the production of the insoluble calcium chromate [8]. In addi-
tion, several studies demonstrate particulate Cr(VI) induces tumor formation when 
administered by intrabronchial pellet implantation in rat lungs [14–16]. However, 
soluble Cr(VI) administered by intrabronchial implantation did not increase tumor 
formation [16]. Patierno et al. [17] supported these findings in C3H/10T1/2 cells, 
demonstrating particulate Cr(VI)-induced neoplastic transformation while soluble 
Cr(VI) did not.

As described above, Cr(VI) exposure has been associated with an increased risk 
of lung cancer, but Cr(III) is considered noncarcinogenic. Animal studies also sup-
port the valence state of Cr that plays an important role in its carcinogenic potential. 
No tumor formation occurred when rats were exposed to Cr(III) compounds, while 
Cr(VI) exposure increased the incidence of lung tumors [15, 16]. This difference is 
largely due to the poor cellular absorption of Cr(III). Cr(III) readily binds to ligands 
forming a hexacoordinate complex that is not easily taken up by the cell [18]. Cr(VI) 
closely resembles the structure of sulfate and phosphate ions, allowing its cellular 
uptake via the anion transport system. Thus, when Cr(VI) particle dissolves extra-
cellularly, the chromate anion enters the cell by facilitated transport [19, 20]. The 
chromate anion is rapidly reduced by ascorbate, glutathione, cysteine, and NADPH 
[21–26]. The combined activity of these reducing molecules reduces >95% of 
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Cr(VI) in vivo [27]. The reduction of the chromate anion results in the formation of 
Cr5+, Cr4+, and Cr3+ species as well as reactive oxygen species [28, 29]. These Cr 
intermediate species bind to the DNA phospholipid backbone, resulting in the for-
mation of bulky adducts and, subsequently, DNA damage [30–32].

Although the lung is the primary target organ of inhaled Cr(VI), the stomach and 
intestines may also be affected by ingested Cr(VI). Upon ingestion, Cr(VI) is 
reduced extracellularly by saliva and gastric fluids due to their low pH. Gastric juice 
alone is capable of reducing approximately 70% of Cr(VI) after 30 min [33]. This 
environment provides a protective mechanism against Cr(VI)-induced genotoxicity 
(DeFlora 2000). Recent studies demonstrate the intracellular presence of Cr in vari-
ous organs following ingestion, suggesting some Cr(VI) may escape detoxification 
and be absorbed [34, 35]. However, epidemiological evidence of Cr-induced health 
effects following ingestion is very limited, with only weak correlations found 
between oral Cr exposure and human health effects [36–38]. Only one animal study 
has shown the carcinogenicity of chronic Cr(VI) exposure via drinking water. This 
study exposed F344/N rats and B6C3F1 mice to high levels (up to 180 mg/L) of 
Cr(VI) for 2 years. Tumors in the oral cavity and small intestines only developed at 
the highest doses of Cr(VI) [39]. The environmental relevance of this study is con-
troversial, however, due to the high doses used to induce carcinogenesis and the 
high reducing properties of the human digestive tract. Since the inhalation of Cr(VI) 
provides much stronger evidence of carcinogenicity than oral exposure, the major-
ity of the research on the mechanism of Cr(VI)-induced carcinogenesis has been 
focused on this exposure route.

7.4  �Characteristics of Cr-Induced Lung Tumors

Cr particles lodge at bifurcation points of the bronchi, and these are the primary 
sites of Cr-induced tumor formation [40]. Kondo et al. [41] showed Cr deposited 
in the bronchial stroma, not the epithelium, and accumulated at higher levels in 
the bronchioles and subpleural regions of the lung. The majority of Cr-induced 
tumors were characterized as squamous cell carcinomas, with a small percentage 
of small cell carcinomas and adenocarcinomas reported [42–46]. There is a 
strong correlation between cumulative Cr exposure and lung cancer, with the 
lung cancer mortality rate increasing with the length of exposure (Davies 1984; 
[7], [9, 13]). For example, Davies [7] showed a significant increase in mortality 
in chromate workers employed for over 1 year, but not in workers employed for 
less. In addition, Cr accumulation significantly increased with the progression to 
malignancy [41].

Molecular studies of Cr-induced tumors show little evidence of mutations in 
key oncogenes or tumor suppressor genes. However, these tumors do exhibit 
genomic instability and epigenetic alterations (Table  7.1). For example, no 
mutations were found in the K-ras or H-ras oncogenes in tumors from ex-chro-
mate workers [42]. While p53 point mutations were detected in 20% of chro-
mate-induced tumors, this level was lower than that detected in non-chromate 
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Table 7.1  Characterization of Cr-induced tumors

Study population
Cr-exposed 
tumor class Summary of findings Reference

20 lung tumors from 19 
ex-chromate workers

85% SqCC
10% SCC
5% AC

p53 point mutations in 20% of tumors
Fewer p53 mutations in exposed tissue than 
controls
No association between p53 mutations and 
length of exposure

[46]

Four dysplastic lesions 
from three ex-chromate 
workers

100% SqCC p53 protein overexpression in 75% of lesions [47]

19 lung tumors from 
ex-chromate workers;
26 lung SqCC from 
non-exposed individuals

84.2% SqCC
10.5% AC
5.3% SCC

Significantly higher detection of cyclin D1 
expression in Cr-exposed tumors
No difference in Bcl2 and p53 expression 
between Cr-exposed and non-exposed tumors

[45]

38 lung tumors from 32 
ex-chromate workers

92.1% SqCC
5.3% AC
2.6% SCC

No point mutations found in critical positions 
of the Ki-ras or Ha-ras oncogenes

[42]

38 lung tumors from 28 
ex-chromate workers;
26 lung SqCC from 26 
non-exposed individuals

92.1% SqCC
5.3% AC
2.6% SCC

78.9% Cr-exposed tumors exhibit 
microsatellite instability
Higher frequency of microsatellite instability 
in Cr-exposed than non-exposed tumors.
Loss of heterozygosity comparable between 
Cr-exposed and non-exposed tumors

[44]

35 lung tumors from 26 
ex-chromate workers;
26 lung tumors from 
non-exposed individuals

100% SqCC Cr-exposed tumors displayed:
•  Microsatellite instability (78%)
•  Significantly higher repression rate of 

hMLH1 and hMLH2 protein
•  Methylation of hMLH1 promoter (62.5%)
•  Strong correlation between inactivation of 

hMLH1 and microsatellite instability

[48]

30 lung tumors from 23 
ex-chromate workers;
38 lung SqCC from 
non-exposed individuals

90% SqCC
6.7% AC
3.3% SCC

Methylation of p16 gene occurred more 
frequently in Cr-exposed tumors than 
non-exposed but the difference was not 
significant

[49]

31 lung tumors from 31 
ex-chromate workers

90.3% SqCC
6.45% AC
3.23% SCC

Surfactant protein B gene variants detected in 
61.3% Cr-exposed tumors

[43]

67 lung tumors from 67 
ex-chromate workers

74.6% 
NSCC
25.4% SCC

Survivin expression inhibited in SCC but not 
NSCC
Survival time not related to p53 or survivin 
expression

[50]

36 lung tumors from 
ex-chromate workers;
25 lung tumors from 
non-exposed individuals

Not 
described

Aberrant methylation of tumor suppressor 
genes more frequent in Cr-exposed tumors 
(95%) than non-exposed (52%)
Aberrant methylation occurred at multiple 
loci in 48% of Cr-exposed tumors
Methylation of APC (86%), hMLH1 (28%), and 
MGMT (20%) detected in Cr-exposed tumors
Methylation of hMLH1 and APC higher in 
Cr-exposed tumors than non-exposed
Methylation of MGMT gene same in 
Cr-exposed and non-exposed tumors

[51]
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tumors [46]. Two studies reported no difference in Bcl2 or p53 expression 
between chromate-exposed and non-exposed tumors [45, 50]. Although a third 
study found p53 overexpressed in three of four dysplastic lesions from ex-
chromate workers, dysplasia is considered a precancerous condition, and p53 
may be overexpressed in order to prevent the progression to a malignant tumor 
[47]. In addition, this study did not compare p53 levels in lesion from chromate 
workers with those from non-chromate workers. Therefore, it is unknown if the 
observed p53 overexpression was specific to chromate exposure or a character-
istic of dysplastic lesions in general.

Hirose et al. [44] showed loss of heterozygosity was comparable between 
chromate-exposed and non-exposed tumors, but Cr-exposed tumors exhibited a 
significantly higher frequency of microsatellite instability. A second study 
found microsatellite instability in 78% of Cr-exposed tumors and demonstrated 
a strong correlation between hMLH1 inactivation and microsatellite instability 
in these tumors [48]. Methylation of the hMLH1 gene promoter was detected 
in 62.5% of chromate-exposed tumors. hMLH1 and hMLH2 protein levels 
were both lower in Cr-exposed tumors than in non-exposed. [48]. Ali et al. [51] 
supported these findings, showing aberrant methylation of tumor suppressor 
genes that occurred at a higher frequency in chromate-exposed tumors, often 
occurring at multiple loci. Increased methylation of APC, hMLH1, and MGMT 
were detected in these tumors. Kondo et  al. [49] found methylation of p16 
occurred more frequently in chromate-exposed tumors, although the difference 
was not significant. Gene expression changes in cyclin D1 and survivin were 
also detected in Cr-exposed tumors. Cyclin D1 expression was significantly 
elevated in Cr-exposed tumors [45]. Survivin expression was inhibited in small 
cell carcinomas but not in non-small cell carcinomas, which include the sub-
type squamous cell carcinoma and make up the majority of the tumors ana-
lyzed [50]. A third study investigated the status of surfactant protein B in 
Cr-exposed tumors. Pulmonary surfactant protects the lungs from injuries and 
infections caused by inhaled particles by improving mucociliary transport and 
facilitating their removal [52]. Ewis et  al. [43] detected surfactant protein B 
gene variants in 61.3% of chromate-exposed tumors. The presence of surfac-
tant protein B variants correlated with the development of squamous cell carci-
noma in chromate workers.

7.5  �Potential Mechanisms of Cr(VI)-Induced Carcinogenesis

The mechanism of Cr(VI)-induced carcinogenesis is currently unknown. Over the 
past century, three models of carcinogenesis have become the major focus of 
research efforts. These models include multistage carcinogenesis, genomic instabil-
ity, and epigenetic modification. We will review the data on chromium in the context 
of each of these models to support or refute each as a potential model of chromium-
induced carcinogenesis.
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7.5.1  �Multistage Carcinogenesis

Multistage carcinogenesis is described as a progressive process consisting of initia-
tion, promotion, and progression to malignancy. The initiation step is defined as the 
acquisition of an irreversible, heritable genetic mutation [53]. As this model of car-
cinogenesis requires the acquisition of a genetic mutation, we will consider whether 
Cr(VI) induces base mutations.

One study investigated the mutagenic potential of Cr(VI) in animals (Table 7.2). 
Cheng et al. [54] exposed Big Blue transgenic mice to soluble Cr(VI) via intratra-
cheal installation and measured mutagenesis using a LacI mutagenesis assay. 
Deposition analysis demonstrated that 5% of Cr(VI) was retained in the mouse 
lung. This study showed a dose- and time-dependent increase in Cr-induced muta-
tion frequency, with a significant increase in mutation frequency occurring after 
2 weeks of exposure and at doses above 3 mg/kg.

The results of cellular mutagenesis studies are not consistent (Table 7.2). Snow et al. 
[58] showed Cr(VI) induced a twofold decrease in replication fidelity in NR9064 E. coli, 
resulting in mutagenesis. However, Quievryn et al. [23] found Cr–DNA adducts were not 
mutagenic in MBL50 E. coli. The difference in these results could possibly be due to dif-
ferences in the E. coli strains utilized in each study. Snow et al. [58] used a mismatch 
repair-deficient E. coli, which would be more sensitive to replication errors.

Two cell culture studies investigated the mutagenic potential of Cr(VI) [17, 56]. 
Both studies demonstrated Cr(VI) does not induce mutation to ouabain resistance, 
indicating Cr(VI) does not induce base substitutions. Patierno et al. [17] then showed 
soluble Cr(VI)-induced mutation to 6-thioguanine while particulate Cr(VI) did not. 
In contrast, Klein et al. [56] found both soluble and particulate Cr(VI)-induced muta-
tion to 6-thioguanine, reaching 3–3.5 times the level of background mutagenesis. 
However, the effect is not concentration dependent. The Cr(VI)-induced resistance to 
6-thioguanine suggests Cr(VI) can induce insertions, deletions, and frameshift muta-
tions. Differences between these two studies may be due to the cell lines utilized. 
Klein et al. [56] utilized G12 cells, which are transgenic and contain a gpt reporter 
gene, while Patierno et al. [17] used fibroblasts that utilize the endogenous hprt gene 
to detect mutations. Differences in mutation frequency could result from differences 
in Cr(VI)-induced mutations in exogenous versus endogenous genes.

Four studies performed by one research group utilized a shuttle vector mutagen-
esis assay to investigate the mutagenic potential of Cr(VI). All of these studies 
reacted DNA to Cr(VI) and a Cr(VI)-reducing agent extracellularly and then 
exposed human fibroblasts to the resulting Cr–DNA reaction products. A 
concentration-dependent increase in mutagenesis was detected in each study [23, 
24, 26, 55]. Additionally, Cr–DNA binding was required for mutagenesis [23, 24, 
55]. Zhitkovich et  al. [55] demonstrated ternary cysteine–Cr(III)–DNA adducts 
were four to five times more mutagenic than binary Cr(III)-DNA adducts. Likewise, 
Quievryn et al. [23] found ascorbate-Cr(III)-DNA adducts to be more mutagenic 
than Cr(III)-DNA adducts, accounting for over 90% of Cr-induced mutagenesis. 
While one study found single base substitutions at G/C pairs to be the predominant 

7  Molecular Mechanisms of Chromium-Induced Carcinogenesis



150

Table 7.2  Cr(VI)-induced mutations

Cr(VI) treatment Model system Assay(s) Summary of findings Reference

Calcium 
chromate
1–20 μM
Lead chromate
10–50 μM
5–24 h

CHO cells;
10T1/2 mouse 
embryo 
fibroblasts

6-Thioguanine 
resistance; 
ouabain 
resistance

Soluble Cr(VI)-induced 
mutation to 6-thioguanine 
but not to ouabain 
resistance
Particulate Cr(VI) did not 
induce mutation to 
6-thioguanine or ouabain 
resistance

[17]

51CrCl3

0.4–50 μM
0–30 min

M13mp20 
single-stranded 
DNA;
NR9064 
MMR-deficient 
E. coli

Mutagenesis 
assay in 
MMR-deficient 
E. coli

Twofold decrease in 
replication fidelity, resulting 
in mutagenesis

[58]

Potassium 
chromate
1.7–6.75 mg/kg
4 weeks 
intratracheal 
instillation

C57BL/6 Big 
Blue transgenic 
mice

LacI mutagenesis 
assay

Dose- and time-
dependent increase in 
mutation frequency in 
mouse lung
Significant increase 
in mutation frequency 
seen after 2 weeks 
of exposure and at 
doses above 3 mg/kg

[54]

Na2
51CrO4 or 

potassium 
chromate
25–200 μM
(100 mM 
cysteine)
1 h

ϕΧ174 and 
pSP189 DNA;
HF/SV human 
fibroblasts

Shuttle vector 
mutagenesis 
assay

Cr(VI) reduction by cysteine 
increased mutagenesis
Blocking Cr(III) and DNA 
binding 
eliminated Cr-induced 
mutagenesis
Cysteine–Cr(III)–DNA 
adducts were 4–5× more 
mutagenic than binary 
Cr(III)-DNA adducts
Single base substitutions at 
G/C pairs were the 
predominant form of 
Cr-induced mutations

[55]

Potassium 
chromate
5–50 μM
2 h
Barium 
chromate
0.05–0.25 μg/
cm2

24 h

G12 gpt+ cells 6-Thioguanine 
resistance
ouabain 
resistance

Soluble and particulate 
Cr(VI)-induced mutation to 
6-thioguanine resistance, 
up to 3–3.5× the 
background mutagenesis 
level
Peaks in mutagenesis levels 
were followed by a decline 
at higher Cr(VI) 
concentrations
No mutagenesis was 
detected by ouabain 
resistance for either Cr(VI) 
compound

[56]
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Table 7.2  (continued)

Cr(VI) treatment Model system Assay(s) Summary of findings Reference

Potassium 
chromate
25–200 μM
(2 mM cysteine)
1 h

pSP189 DNA;
human 
fibroblasts

Shuttle vector 
mutagenesis 
assay

Cr(III)–DNA adducts 
induced mutagenesis and 
inhibited replication

[26]

Potassium 
chromate
10–200 μM
(1 mM 
ascorbate)
30–120 min

pSP189 DNA;
HF/SV human 
fibroblasts;
MBL50 E. coli

Shuttle vector 
mutagenesis 
assay

Concentration-dependent 
increase in mutagenesis
Disruption of Cr–DNA 
binding abolished 
mutagenesis
Asc–Cr(III)–DNA crosslinks 
were more mutagenic than 
Cr(III)–DNA adducts and 
account for >90% of 
Cr-induced mutagenesis
Cr(VI) induced included an 
equal number of deletions 
and G/C point mutations
Cr–DNA adducts not 
mutagenic in E. coli cells

[23]

Potassium 
chromate
10–200 μM
(0.2 mM 
ascorbate)
30 min

pSP189 DNA;
HF/SV 
fibroblasts

Shuttle vector 
mutagenesis 
assay

Concentration-dependent 
increase in mutagenic DNA 
lesions required Cr–DNA 
binding

[24]

Potassium 
chromate
0–220 μM
(0.25–2 mM 
ascorbate)
3 h

CHO; V79 hprt mutagenesis 
assay

Cr(VI) non-mutagenic in 
control CHO and V79 cells 
(contain 15 μM Asc)
Raising ascorbate levels to 
0.45 mM induced a 3.8-fold 
increase in Hprt mutants
Preloading cells with 
1.4 mM Asc induced a linear 
increase in Hprt mutants

[57]

form of Cr-induced mutation, the other showed Cr induced an equal number of dele-
tions and G/C point mutations [23, 55].

Reynolds et al. [57] demonstrated a crucial role of Cr(VI) reduction in its mutagenesis. 
In this study, Chinese hamster ovary cells (CHO) and Chinese hamster lung (V79) cells 
were treated with Cr(VI), with and without the addition of ascorbate. Untreated, CHO 
and V79 cells contain low levels of ascorbate (15 μM). No Cr(VI)-induced mutagenesis 
was detected by the hprt mutagenesis assay when no ascorbate was added to the cells. 
However, a 3.8-fold increase in mutagenesis was detected once intracellular ascorbate 
levels were raised to 450 μM. Preloading the cells with 1400 μM ascorbate induced a 
concentration-dependent increase in mutagenesis [57]. These results suggest intracellular 
levels of Cr(VI)-reducing agents directly affect the mutagenic potential of Cr(VI).

Human lung tissue, the target site of Cr-induced carcinogenesis, contains much 
lower levels of ascorbate than required to induce mutagenesis in the aforementioned 
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studies. Ascorbate levels in adult lung tissue range from 0.045 to 0.065 mg/g which 
is approximately 256 μM [59]. Therefore, the ascorbate level required to induce 
mutagenesis in cellular and in vitro studies is two to five times higher than the level 
detected in human lung tissue. The results of animal mutagenesis studies may also 
not be relevant to human lung mutagenesis. While humans obtain ascorbate from 
food, rodents generate it in their liver, providing a fundamental difference in the 
availability of this reduction agent. In addition, while these studies have assessed the 
role of ascorbate in Cr-induced mutagenesis, they do not take into account other 
Cr-reducing agents such as glutathione or NADPH. The lack of mutations seen in 
Cr-induced tumors [42, 46] suggests Cr reduction in human lung tissue does not 
occur at levels necessary to induce mutagenesis. The initiation of multistage carcino-
genesis usually involves the mutation of a key oncogene or tumor suppressor gene. 
There is no evidence that Cr induces mutations in such genes. Additionally, any small 
frameshift mutations induced by Cr would occur randomly throughout the genome 
and have a low chance of occurring in one of these genes. Therefore, this model of 
carcinogenesis does not appear to be a good fit for Cr-induced carcinogenesis.

7.5.2  �Genomic Instability

The second model of carcinogenesis, genomic instability, is described as an 
increased occurrence of genomic alterations. Accumulation of genomic alterations 
can induce amplification of genetic sequences, insertions or deletions resulting in 
mutations, deletion, or rearrangement of chromosome segments and the gain or loss 
of entire chromosomes. Due to these major and frequent genetic alterations and the 
resulting misregulation of crucial signaling pathways, genomic instability is consid-
ered a major driving force of carcinogenesis [60]. Genomic instability is subdivided 
into microsatellite instability and chromosome instability.

Microsatellites are extensive repetitions of nucleotide motifs of up to six base 
pairs [61]. Microsatellite instability manifests as a change in the number of repeated 
DNA nucleotide motifs within the microsatellites [62]. Two studies documented 
microsatellite instability in 79% of tumors from ex-chromate workers [44, 48]. No 
animal or cell culture studies have been conducted to support the observations that 
Cr(VI) exposure induces microsatellite instability.

Microsatellite instability usually arises due to the incorporation of incorrect base 
pairs during replication. Mismatch repair corrects such replication-associated 
errors, keeping the spontaneous mutation rate low [61]. Microsatellite instability 
frequently arises when inactivation of a mismatch repair gene results in deficient 
mismatch repair. Takahashi et al. [48] showed the hMLH1 gene promoter methyl-
ated in 63% of tumors from ex-chromate workers. A recent study supported this 
result, finding increased methylation of hMLH1 in tumors from ex-chromate work-
ers, compared to non-exposed individuals [51]. Inactivation of hMLH1 expression 
strongly correlated with microsatellite instability [48].

Cell culture studies have utilized siRNAs and mismatch repair-deficient cell lines 
to investigate the role of mismatch repair in Cr-induced carcinogenesis (Table 7.3). 
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Table 7.3  Cr(VI)-induced genomic instability: the role of mismatch repair

Cr(VI) 
treatment Model system Assay(s) Summary of findings Reference

Potassium 
chromate
5–30 μM
3 h

A549; HCT116 
(MLH1−/−); 
HCT116 + ch3 
(MLH1+); DLD1 
(MSH6−/−); 
DLD1 + ch2 
(MSH6+)

Clonogenic survival 
assay; Annexin V/PI 
analysis with flow 
cytometry; WB for 
caspases 2 and 7, 
PARP, p53, 
p53ser15; IF for 
γH2AX, cyclin B1, 
BrdU incorporation

MMR-deficient cells 
are less sensitive to 
Cr(VI) than control 
cells
MMR status had no 
effect on the 
formation or removal 
of Cr–DNA adducts
MLH1:
•  Is required for 

Cr(VI)-dependent 
activation of 
caspases 2 and 7 
and the apoptotic 
cleavage of PARP

•  Inhibited DNA 
replication of 
Cr-modified 
templates

•  Deficiency 
suppressed 
γH2AX foci 
formation

Cr-induced apoptosis 
is primarily p53 
independent
Cr-induced γH2AX 
foci formation occurs 
in G2 and not 
S-phase

[63]

Potassium 
chromate
0.5–5 μM
(0.25–2 mM 
ascorbate)
3 h

IMR90 fibroblasts 
expressing MSH2 
or MLH1 shRNA

Micronucleus assay; 
IF for γH2AX foci

Depletion of either 
MLH1 or MSH:
•  Almost 

eliminated 
γH2AX foci 
formation in 
Cr(VI)- and 
Cr(VI)/
Asc-exposed cells

•  Decreased 
micronuclei 
formation in 
Cr(VI)- and 
Cr(VI)/
Asc-exposed cells

[57]

(continued)

7  Molecular Mechanisms of Chromium-Induced Carcinogenesis



154

Mismatch repair-deficient cells were less sensitive to Cr(VI) exposure, suggesting 
mismatch repair induces cell death after Cr(VI) exposure. In fact, MLH1 was 
required for cleavage of PARP and the activation of caspases 2 and 7 following 
Cr(VI) exposure [63]. This outcome is not surprising as mismatch repair has been 
previously shown to induce apoptosis after exposure to chemical carcinogens [66]. 
Reynolds et al. [64] showed MSH2 binds to Cr–DNA adducts. In addition, MSH2–
MSH6 and MSH2–MSH3 complexes recognize Cr–DNA adducts and are required 
for Cr-induced cytotoxicity [64]. However, Peterson-Roth et al. [63] showed mis-
match repair status had no effect on the formation or removal of Cr–DNA adducts. 
While mismatch repair proteins have the potential to recognize DNA adducts [67], 

Table 7.3  (continued)

Cr(VI) 
treatment Model system Assay(s) Summary of findings Reference

Potassium 
chromate
0–10 μmol/L
(0.5–2 mM 
ascorbate)
3 h

IMR90; H460; 
HCT116 
(MLH1−/−); 
DLD1 (MSH6−/−)

DNA-protein 
pulldown; WB for 
MLH1, MSH2, 
MSH3, and MSH6; 
IF for MSH6, 
MSH3, γH2AX, 
53BP1, cyclin B1

MSH2 bound to Cr–
DNA adducts
MSH2–MSH6 and 
MSH2–MSH3 
complexes:
•  Recognized 

Cr–DNA adducts
•  Were required for 

Cr-induced 
cytotoxicity

MSH6 showed 
stronger 
colocalization with 
γH2AX and 53BP1 
than MSH3
Cr(VI)-induced 
MSH6 and MSH3 
foci when replication 
was inhibited, before 
cells entered G2
MSH6 or MSH3 
knock down 
suppressed:
•  γH2AX foci 

formation
•  Micronuclei 

formation

[64]

Potassium 
chromate
5–30 μM
3 h

IMR90; HTC116 
(MLH1−/−); 
HCT116 + ch3 
(MLH1+)

Clonogenic survival 
assay; IF for 53BP1, 
γH2AX and 
RAD51;

MMR proteins are 
required for WRN 
retention in the 
nucleoplasm after 
Cr(VI) exposure
MMR-deficiency 
inhibited RAD51 
foci formation

[65]
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excision repair is thought to be primarily responsible for their detection and removal. 
The activity of excision repair may explain why mismatch repair status had no 
impact on the removal of Cr–DNA adducts in this study.

Active mismatch repair was also necessary for DNA replication inhibition, 
micronuclei formation, and DNA double-strand break (DSB) formation following 
Cr exposure [57, 63–65]. Reynolds et al. [64] demonstrated Cr(VI) stalled replica-
tion and induced MSH6 and MSH3 foci, suggesting that mismatch repair was 
active. Active mismatch repair was also required for Cr(VI)-induced micronuclei 
formation [57, 64].

Interestingly, mismatch repair status appears to play a role in DSB formation. 
Although an indirect measure, γH2AX foci are commonly utilized as an indicator 
of DNA double-strand breaks. MSH6, MSH3, or MLH1 deficiency all inhibited 
Cr(VI)-induced γH2AX foci formation, suggesting an inhibition of DSB [57, 63, 
64]. MLH1 was required for nuclear localization of WRN helicase and RAD51 foci 
formation after Cr(VI) exposure, indicating a role in the response of the high fidelity 
DSB repair pathway, homologous recombination [65]. These data suggest active 
mismatch repair is initially active following Cr exposure as it is required for 
Cr-induced DSB formation, a key step in the mechanism of Cr(VI)-induced carci-
nogenesis. The inhibition of mismatch repair demonstrated by Cr-induced tumors 
may be a later step in the carcinogenic mechanism that facilitates cell survival and 
microsatellite instability.

The second form of genomic instability, chromosome instability, is a hallmark of 
human tumors. Chromosome instability can be numerical or structural in nature. 
Numerical chromosome instability is described as an alteration in the number of 
chromosomes due to the gain or loss of entire chromosomes. Structural chromo-
some instability involves physical changes in the genome structure, often resulting 
from chromosome breaks, translocations, or unequal exchange of material between 
two chromosome regions [68].

Numerical chromosome instability has not been investigated in  vivo or in 
chromate-induced tumors. Cell culture studies show Cr(VI) induces aneuploidy 
(Table 7.4). Cr(VI)-induced numerical chromosome instability appears to be related 
to the length of exposure. Two studies investigated the ability of Cr(VI) to induce 
aneuploidy from 24 to 120 h, showing no effect after 24 h exposure but a concentra-
tion- and time-dependent increase in aneuploidy starting at 48 h exposure [72, 74]. 
Two different studies documented Cr(VI)-induced aneuploidy after only 30 h of 
exposure, the earliest recorded timepoint of Cr(VI)-induced aneuploidy [69, 70]. 
While the majority of the studies describing Cr(VI)-induced aneuploidy were con-
ducted in human lung cells, Wise et al. [76] showed chronic Cr(VI) exposure also 
induced this effect in human urothelial cells.

Cr(VI)-induced numerical chromosome instability was characterized by hypo-
diploidy, hyperdiploidy, polyploidy, and tetraploidy [70–72, 74]. Seone et al. (2002) 
documented the occurrence of lagging chromosomes and the formation of 
kinetochore-positive micronuclei, indicating these were formed following mitotic 
catastrophe. Holmes et al. [72] supports this finding, showing evidence of Cr(VI)-
induced abnormal mitotic figures, including disorganized anaphase and mitotic 

7  Molecular Mechanisms of Chromium-Induced Carcinogenesis



156

Table 7.4  Cr(VI)-induced numerical chromosome instability

Cr(VI) 
treatment Model system Assay(s) Summary of findings Reference

Potassium 
dichromate
0.25–1 μM
30 h

MRC-5 human 
lung fibroblasts

Chromosome 
counting

Cr(VI)-induced aneuploidy [69]

Potassium 
dichromate
1–4 μM
30 h

MRC-5 human 
lung fibroblasts

Chromosome 
counting; anaphase–
telophase assay; 
CRST-stained 
micronuclei analysis

Cr(VI)-induced aneuploidy, 
characterized by hypodiploidy 
and lagging chromosomes and 
the formation of kinetochore-
positive micronuclei

[70]

Lead 
chromate
0.1–1 μg/cm2

24–120 h

WTHBF-6 
human lung 
fibroblasts

Chromosome 
analysis for 
centromere 
spreading, 
premature anaphase, 
and premature 
centromere division; 
WB for Mad2

Chronic Cr(VI) exposure 
induced:
•  Spindle assembly 

checkpoint bypass
•  Decreased Mad2 protein l
•  Formation of tetraploid 

cells
Tetraploid cells survived to 
form colonies

[71]

Lead 
chromate
0.1–1 μg/cm2

24–120 h

WTHBF-6 
human lung 
fibroblasts

Chromosome 
counting; IF for 
centrosomes 
proteins; mitotic 
stage analysis

Concentration- and time-
dependent increase in 
aneuploidy (starting at 48 h 
exposure)
Aneuploid cells survived to 
form colonies
Centrosome amplification and 
aberrant mitosis occurred after 
96–120 h Cr(VI) exposure

[72]

Potassium 
dichromate
1 μM
Continuous 
exposure up 
to 41 
passages

BEAS-2B; 
BALB/c-nu/nu 
mice

Cytogenetic analysis 
with GTG-banding, 
microsatellite 
analysis;
gene expression 
analysis

Cr(VI)-induced aneuploidy and 
structural chromosome 
instability. Cr(VI)-aneuploid 
cloned cells exhibited:
•  Altered morphology
•  Karyotype drift
•  No microsatellite instability
Cr(VI)-aneuploid cloned cells 
induced tumors in nude mice

[73]

Zinc 
chromate
0.1–0.2 μg/
cm2

24–120 h

WTHBF-6 
human lung 
fibroblasts

Chromosome 
analysis for 
centromere 
spreading, premature 
anaphase, and 
premature centromere 
division; IF for 
centrosomes, 
microtubule, and 
centrin analysis

Concentration- and time-
dependent increase in 
Cr(VI)-induced aneuploidy 
starting at 72 h exposure
Cr(VI)-induced concentration 
and time-dependent increase in 
spindle assembly checkpoint 
bypass starting at 96 h exposure
Cr(VI) induced time-dependent 
increase in centrosome 
amplification and centriole 
defects

[74]
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catastrophe. As one would expect, when Cr(VI)-treated cells exhibiting aneuploidy 
were expanded into clonal cell lines, the cells exhibited altered morphology and 
karyotype drift, but no microsatellite instability [73]. In addition, Cr(VI)-aneuploid 
clonal cells exhibited signs of transformation, forming colonies [71, 72] and induc-
ing tumors when implanted into nude mice [73].

Mitosis is tightly regulated by the spindle assembly checkpoint to ensure proper 
centrosome formation, anchoring of the mitotic spindle to the chromosomal 
kinetochores, chromosome separation, and cytokinesis. Numerical chromosome 
instability can occur if any of these steps fails or if the spindle assembly check-
point is disrupted [77]. Two studies showed chronic Cr(VI) exposure induced cen-
tromere spreading, premature anaphase, and premature centromere division, all 
indicators of spindle assembly checkpoint bypass (Table 7.4) [71, 74]. Wise et al. 
[71] found chronic Cr(VI) exposure decreased Mad2, a key component of the spin-
dle assembly checkpoint. Holmes et  al. [74] investigated the effect of chronic 
Cr(VI) on the centrosomes, as supernumerary centrosomes has also been shown to 
induce numerical chromosome instability. This study found a time-dependent 
increase in centrosome amplification. After 120 h Cr(VI) exposure, up to 46% of 
mitotic cells exhibited centrosome amplification, with some cells containing as 
many as 14 centrosomes. Martino et al. [75] demonstrated Cr(VI)-induced centro-
some amplification correlated with numerical chromosome instability. All of the 
known mechanisms for centrosome amplification involve alterations in the number 
of centrioles. Holmes et al. [74] described a Cr(VI)-induced increase in mitotic 
cells containing an abnormal centriole number. Martino et  al. [75] also showed 
chronic Cr(VI) exposure induced centrosomes with supernumerary centrioles. 
Both studies also found Cr(VI) exposure can result in the formation of cells with a 
normal number of centrioles, but extra centrosomes. This outcome can occur if the 

Table 7.4  (continued)

Cr(VI) 
treatment Model system Assay(s) Summary of findings Reference

Zinc 
chromate
0.1–0.2 μg/
cm2

24–120 h

WTHBF-6 
human lung 
fibroblasts

IF for centrosomes, 
microtubule, 
centrin, and C-Nap1 
analysis

Cr(VI)-induced numerical CIN 
correlated with centrosome 
amplification
Chronic Cr(VI) induced:
•  Centrosomes with 

supernumerary centrioles
•  Premature centriole 

disengagement
•  Premature centrosome 

separation in interphase

[75]

Sodium 
chromate
1–5 μM
24 h and 
120 h

HUC; 
hTUC1-38 
hTERT-
immortalized 
human 
urothelial cells

Chromosome 
counting

Chronic Cr(VI) exposure 
induces a concentration-
dependent increase in 
aneuploidy
hTERT status did not affect 
levels of Cr-induced 
aneuploidy

[76]
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centrioles disengage prematurely (between S-phase and mitosis). Chronic Cr(VI) 
exposure induced premature centriole disengagement (in S, G2, and mitotic cells) 
[75]. In addition, chronic Cr(VI) exposure induced premature centrosome separa-
tion, suggesting the protein linker that normally holds duplicated centrosomes 
together until the G2/M transition may be either severed prematurely or not formed 
properly [75].

Structural chromosome instability has been investigated in chromate workers, 
using Giemsa staining and fluorescence in situ hybridization (FISH) technique to 
examine chromosome aberrations and translocations, respectively. Maeng et  al. 
[78] showed an increase in chromosome aberrations in Cr-exposed workers com-
pared to age-matched controls, although the increase was not significant. However, 
blood Cr concentrations were statistically correlated with both chromatid exchanges 
and chromosome aberrations. These results were supported by two other studies, 
which show modest increases in overall chromosome aberrations in Cr-exposed 
workers compared to controls, but positively correlate chromosome aberrations 
with the level of Cr in the blood [79, 80]. In addition, the frequency of transloca-
tions, insertions, and acentric fragments was significantly higher in Cr-exposed 
workers [78].

Cell culture studies provide a wealth of data that indicate Cr(VI) induces struc-
tural chromosome instability (Table 7.5). Both particulate and soluble Cr(VI) induce 
a concentration-dependent increase in chromosome aberrations [81, 82, 86, 88, 89, 
91]. While Qin et  al. [91] showed particulate Cr(VI) induced a time-dependent 
increase in chromosome aberrations, it is not clear whether this time-related effect 
holds for soluble Cr(VI). Wise et  al. [76] found sodium chromate induced more 
chromosome aberrations after 120 h exposure than 24 h exposure. However, Holmes 
et al. [87] showed a decrease in chromosome aberrations after chronic (up to 72 h) 
exposure to sodium chromate. Two differences between these studies may account 
for the difference in their results. First, Holmes et  al. [87] examined Cr-induced 
chromosome aberrations after 24, 48, and 72 h exposure, while Wise et  al. [76] 
examined this endpoint after 24 and 120 h exposure. It is possible the increase in 
chromosome instability is not induced by soluble Cr(VI) until after 72 h exposure 
and would not have been detected in the Holmes et al. [87] study. A second explana-
tion may be that the two studies utilized different cell lines. Wise et al. [76] utilized 
human urothelial cells while Holmes et al. [87] employed human lung fibroblasts. 
Xie et al. [92] demonstrated Cr(VI) can induce different levels of clastogenesis in 
different cell lines.

There are also differences in the clastogenic potential of the different particulate 
Cr(VI) compounds. Zinc chromate induced the highest level of chromosome aber-
rations, followed by barium chromate and lead chromate [85, 90]. For particulate 
Cr(VI), clastogenesis depends on the extracellular dissolution of the Cr particle 
rather than its internalization [20]. The chromate anion has been shown to be the 
proximate clastogenic species [84]. Reynolds et al. [57] showed preloading cells 
with ascorbate increased the yield of micronuclei 6.6-fold. These micronuclei were 
negative for kinetochore CREST staining, suggesting they resulted from chromo-
somal breaks. This outcome suggests the reduction of intracellular Cr(VI) is 
involved in Cr(VI)-induced clastogenesis.
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Table 7.5  Cr(VI)-induced structural chromosome instability

Cr(VI) treatment Model system Assay(s) Summary of findings Reference

Lead chromate
0.1–5 μg/cm2

24 h
Sodium chromate
1–10 μM
24 h

Primary human 
bronchial fibroblasts

Chromosome 
aberration assay

Particulate and soluble 
Cr induced a 
concentration-
dependent increase in 
chromosome 
aberrations

[81]

Barium chromate
0.01–0.5 μg/cm2

24 h

WTHBF-6 human 
lung fibroblasts

Chromosome 
aberration assay

Concentration-
dependent increase in 
chromosome 
aberrations

[82]

Lead chromate
0.1–5 μg/cm2

Sodium chromate
1–10 μM
24 h

Primary human lung 
fibroblasts; 
WTHBF-6 human 
lung fibroblasts

Chromosome 
aberration assay

Cr-induced 
clastogenesis 
comparable in primary 
and hTERT-
immortalized cells

[83]

Lead chromate
0.05–10 μg/cm2

Sodium chromate
0.25–2.5 μM
Lead glutamate
250–1000 μM
24 h

WTHBF-6 human 
lung fibroblasts

Chromosome 
aberration assay

The Cr anion and not 
the lead cation was the 
proximate clastogenic 
species

[84]

Lead chromate
Barium chromate
0.1–5 μg/cm2

24 h

WTHBF-6 human 
lung fibroblasts

Chromosome 
aberration assay; 
ICPMS

Barium chromate was 
more clastogenic than 
lead chromate even 
though intracellular Cr 
uptake is comparable

[85]

Lead chromate
0.1–10 μg/cm2

24 h

WTHBF-6 human 
lung fibroblasts

Chromosome 
aberration assay

Cr clastogenesis 
dependent on 
extracellular dissolution 
of the Cr particles

[20]

Lead chromate
0.1–5 μg/cm2

24 h

WTHBF-6 human 
lung fibroblasts

Chromosome 
aberration assay

Concentration-
dependent increase in 
chromosome 
aberrations

[86]

Lead chromate
0.1–1 μg/cm2

Sodium chromate
0.5–2.5 μM
24–72 h

WTHBF-6 human 
lung fibroblasts

Chromosome 
aberration assay

Chronic exposure to 
particulate Cr induced 
persistent levels of 
chromosome damage, 
while chromosome 
damage decreased with 
chronic exposure to 
soluble Cr

[87]

Lead chromate
0.5–50 μg/cm2

Sodium chromate
1–5 μM
24 h

BEP2D bronchial 
epithelial cells

Chromosome 
aberration assay

Particulate and soluble 
Cr(VI) induced a 
concentration-
dependent increase in 
chromosome 
aberrations

[88]
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Table 7.5  (continued)

Cr(VI) treatment Model system Assay(s) Summary of findings Reference

Potassium 
chromate
0.5–5 μM
(50–2000 μM 
ascorbate)
3 h

IMR90 human lung 
fibroblasts; HBE 
bronchial epithelial 
cells

Colocalization 
of γH2AX and 
53BP1 foci in 
cyclin B1 
expressing cells

Preloading cells with 
Asc increased the yield 
of micronuclei 6.6-fold
Micronuclei were 
negative for anti-
kinetochore CREST 
staining

[57]

Zinc chromate
0.1–0.5 μg/cm2

24 h

WTHBF-6 human 
lung fibroblasts

Chromosome 
aberration assay

Concentration-
dependent increase in 
chromosome 
aberrations

[89]

Barium chromate
Zinc chromate
0.01–0.5 μg/cm2

Lead chromate
0.01–1 μg/cm2

Sodium chromate
0.05–2.5 μM
24 h

WTHBF-6 human 
lung fibroblasts

Chromosome 
aberration assay

Zinc chromate was 
more clastogenic than 
barium chromate, lead 
chromate, or sodium 
chromate

[90]

Zinc chromate
0.1–0.2 μg/cm2

24–120 h

WTHBF-6 human 
lung fibroblasts

Chromosome 
aberration assay

Concentration- and 
time-dependent 
increase in 
chromosome 
aberrations

[91]

Lead chromate
0.1–1 μg/cm2

Sodium chromate
0.5–5 μM
24 h

WTHBF-6 human 
lung fibroblasts; 
BJhTERT human 
skin fibroblasts

Chromosome 
aberration assay

Soluble Cr induced 
comparable amounts of 
chromosome 
aberrations, while 
particulate Cr was more 
clastogenic to human 
skin cells than lung 
cells

[92]

Sodium chromate
1–5 μM
24 h and 120 h

HUC human 
urothelial cells; 
hTUC1-38 
hTERT-immortalized 
human urothelial 
cells

Chromosome 
aberration assay

hTERT status did not 
alter the amount of 
Cr-induced 
chromosome 
aberrations
Chronic exposure 
induced higher levels of 
Cr-induced 
chromosome 
aberrations than acute 
exposure

[76]
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The misrepair of DNA double-strand breaks (DSBs) is a major mechanism of 
structural chromosome instability. DSBs are a highly detrimental form of DNA dam-
age as incorrect rejoining of the broken DNA ends can introduce structural chromo-
some abnormalities such as deletions or translocations [77]. Although Cr(VI)-induced 
DSB formation has not been investigated in vivo, a multitude of cell culture studies 
demonstrate Cr(VI) induces DSB formation (Table 7.6). Using intracellular Cr con-
centrations, Wise et  al. [90] showed soluble and particulate Cr(VI) compounds 
induced similar levels of DSBs. Interestingly, Wise et al. [76] found Cr(VI)-induced 

Table 7.6  Cr(VI)-induced DNA double-strand breaks

Cr(VI) 
treatment Model system Assay(s) Summary of findings Reference

Sodium 
chromate
3–6 μM
1–3 h

Normal human 
dermal fibroblasts

Neutral comet 
assay; IF for 
γH2AX foci; 
cell cycle 
analysis

Concentration-
dependent increase in 
DSBs in S-phase cells
No increase in DSBs in 
G1 cells

[93]

Potassium 
chromate
10–40 μM
30 min to 
24 h

HeLa cells Neutral comet 
assay; IF for 
γH2AX foci

Cr exposure induced 
DSBs and γH2AX foci 
formation

[94]

Lead 
chromate
0.1–5 μg/cm2

24 h

WTHBF-6 human 
lung fibroblasts

Neutral comet 
assay; WB for 
pATM; IF for 
γH2AX foci

Concentration-
dependent increase in 
DSBs and activation of 
ATM and γH2AX 
proteins

[86]

Potassium 
chromate
0.5–5 μM
0.05–5 mM 
ascorbate
3 h

IMR90 human lung 
fibroblasts; human 
bronchial epithelial 
cells

IF for γH2AX 
and 53BP1 foci 
in cyclin B1 
expressing cells

DNA DSBs were 
generated in G2 phase
Preloading cells with 
Asc increased number 
of γH2AX and 
53BP1-containing cells

[57]

Lead 
chromate
0.1–1 μg/cm2

24 h

WTHBF-6 human 
lung fibroblasts

Neutral comet 
assay

Concentration-
dependent increase in 
DSBs

[95]

Zinc 
chromate
0.1–0.5 μg/
cm2

24 h

WTHBF-6 human 
lung fibroblasts

IF for γH2AX, 
flow cytometry 
for cell cycle, 
and γH2AX

Concentration-
dependent increase in 
γH2AX foci formation 
in G2/M phase
Chromium induced a 
G2 arrest

[89]

(continued)
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Table 7.6  (continued)

Cr(VI) 
treatment Model system Assay(s) Summary of findings Reference

Barium 
chromate
Lead 
chromate
0.01–1 μg/
cm2

Zinc 
chromate
0.1–0.5 μg/
cm2

Sodium 
chromate
0.05–5 μM
24 h

WTHBF-6 human 
lung fibroblasts

IF for γH2AX All Cr(VI) compounds 
induced a 
concentration-
dependent increase in 
γH2AX foci formation
All Cr(VI) compounds 
induced similar levels 
of DSBs at similar 
intracellular 
concentrations

[90]

Zinc 
chromate
0.1–0.3 μg/
cm2

24–120 h

WTHBF-6 human 
lung fibroblasts

Neutral comet 
assay

Concentration-
dependent but no 
time-dependent increase 
in DSB formation

[91]

Potassium 
chromate
5–20 μM
3–6 h

H460 ascorbate-
restored human 
lung epithelial 
cells; IMR90 
normal
human lung 
fibroblasts; MEFs

WB for 
γH2AX; IF for 
γH2AX, 53BP1 
and H3K9me3

Concentration-
dependent increase in 
γH2AX foci formation
Cr-induced DSBs 
developed in G2 phase
Cr-induced DSBs were 
located in euchromatic 
DNA

[96]

Sodium 
chromate
1–5 μM
24 and 120 h

HUC; hTERT-
immortalized 
human urothelial 
cells

IF for γH2AX Cr(VI) induced a 
concentration- and 
time-dependent increase 
in γH2AX foci 
formation
hTERT status did not 
alter the extent of 
Cr-induced DNA 
damage

[76]

DSB formation was time dependent while Qin et al. [91] did not. Both studies exam-
ined DSB formation at the same exposure times, spanning from 24 to 120 h. However, 
Wise et al. [76] utilized γH2AX foci as an indicator of DSBs, while Qin et al. [91] 
employed the neutral Comet assay, which may explain the difference in their results. 
The neutral Comet assay directly measures DSBs. In contrast, γH2AX foci are an 
indirect indicator of DSBs and also form in response to apoptosis (Rogakou et al. 
2000). Therefore, the increase in γH2AX foci observed in response to 120 h Cr(VI) 
exposure by Wise et al. [76] may actually be indicative of an increase in apoptosis. 
Additionally, these two studies utilized different cell lines, which may contribute to 
the observed difference in the effect of exposure time on DSB formation.
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Reynolds et  al. [57] found preloading lung fibroblasts with ascorbate 
increased the number of γH2AX and 53BP1 containing cells, indicating Cr(VI) 
reduction is related to DSB formation. Cr(VI)-induced DSBs developed in S 
and G2 cell cycle phases [57, 89, 93, 96]. Accordingly, Cr(VI) exposure induced 
a G2 arrest [89]. DeLoughery et  al. [96] demonstrated Cr(VI)-induced DSBs 
are localized to euchromatic DNA. Cr(VI)-induced DSBs were repaired within 
24 h [95, 97].

The two main DNA repair pathways that actively repair DSBs are nonho-
mologous end joining (NHEJ) and homologous recombination (HR). NHEJ is 
considered error prone as it processes the DNA ends and ligates them back 
together, resulting in the loss of several nucleotides. HR repair protects against 
structural chromosome instability by utilizing a homologous sequence to repair 
the DSB and maintain high genomic fidelity. Camyre et al. [98] showed although 
NHEJ-deficient cells were more sensitive to Cr(VI) exposure, NHEJ activity did 
not protect against Cr-induced chromosome instability. Three studies show HR 
deficiency results in increased Cr(VI) sensitivity and Cr(VI)-induced chromo-
some instability (Table 7.7). Bryant et al. [97] and Stackpole et al. [99] found 
increases in Cr(VI)-induced chromosome aberrations in BRCA2- and RAD51C-
deficient cell lines, respectively. Both of these proteins are crucial to the forma-
tion of the RAD51 nucleofilament, the defining biochemical step of HR. Tamblyn 
et  al. [100] further demonstrated the importance of HR repair in repairing 
Cr(VI)-induced DSBs, using cells deficient in Mus81. Mus81 is involved in 
resolving Holiday junctions and completing HR repair [101]. Cr(VI) induced 
higher levels of γH2AX foci formation in Mus81-deficient cells, suggesting inhi-
bition of the HR resolution step leads to an accumulation of DSBs. In addition, 
RAD51 foci removal was delayed in Mus81-deficient cells [100]. Together, these 
studies demonstrate the importance of HR in preventing Cr-induced structural 
chromosome instability.

Bryant et al. [97] showed acute Cr(VI) exposure (24 h) induces a concentration-
dependent increase in homologous recombination. In addition, the HR signaling 
proteins, γH2AX, ATM, and ATR were all phosphorylated in response to Cr(VI) 
exposure, indicating their activation [89, 91, 93–96]. Wakeman et al. [94] demon-
strated ATM was required for Cr(VI)-induced phosphorylation of SMC1, which 
promotes sister chromatid HR. In addition, Ha et al. [93] showed ATM was required 
for Cr(VI)-induced γH2AX foci formation. In direct contrast to this result, 
DeLoughery et  al. [96] showed suppressed ATM and DNA-PK did not affect 
Cr-induced γH2AX foci formation, while ATR inhibition completely abolished its 
response. There are two possible explanations for this discrepancy. First, DeLoughery 
et al. [96] preloaded the cells with ascorbate, increasing the level of Cr(VI) reduc-
tion, while Ha et al. [93] did not. Increasing the level of Cr(VI) reduction would 
alter levels of different Cr valence states and the level of ROS within the cell. 
Secondly, DeLoughery et  al. [96] inhibited ATM with the chemical inhibitors 
KU60019 and KU55933, while Ha et al. [93] used ATM-deficient fibroblasts. These 
chemical inhibitors have off-target effects, such as altering the cell cycle, which 
could impact γH2AX foci formation.
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Table 7.7  Cr(VI)-induced genomic instability: the role of DNA double-strand break repair

Cr(VI) 
treatment Model system Assay(s) Summary of findings Reference

Sodium 
chromate
6 μM
1–3 h

Normal human 
dermal fibroblasts; 
ATM-null 
fibroblasts

Neutral comet 
assay; γH2A.X

ATM is required for 
Cr(VI)-induced γH2AX foci 
formation

[93]

Potassium 
chromate
10 μM
30 min to 8 h

HeLa cells; 
SV40-transformed 
human fibroblasts 
and 
ATM−/− fibroblasts

WB for pATM 
and SMC1

pATM was induced by Cr
ATM is required for 
Cr-induced:
•  SMC1 phosphorylation

[94]

Sodium 
chromate
0.5–25 μM
24 h

AA8; SPD8; V3-3; 
VC8; VC8 + B2; 
UV4

IF for RAD51; 
pulse field gel 
electrophoresis; 
HPRT 
recombination 
assay

Cr-induced DSBs were 
repaired within 24 h
Cr exposure induced RAD51 
foci formation
Concentration-dependent 
increase in homologous 
recombination activity
HR-deficient and BER-
deficient cells were 
hypersensitive to Cr

[97]

Lead chromate
0.1–10 μg/cm2

24 h

CHO-K1; xrs-6; 2E Clonogenic 
survival assay; 
chromosome 
aberration assay

NHEJ-deficient cells were 
more sensitive to Cr
NHEJ did not protect against 
Cr-induced chromosome 
instability

[98]

Lead chromate
0.1–1 μg/cm2

24 h

AA8; irs1SF; 
1SFwt8; V79; irs3; 
irs3#6

Clonogenic 
survival assay; 
chromosome 
aberration assay

HR-deficient cells were more 
sensitive to Cr
HR-protected cells from 
Cr-induced chromosome 
instability

[99]

Lead chromate
0.1–1 μg/cm2

24 h

WTHBF-6 human 
lung fibroblasts; 
ATLD2 MRE11-
deficient human 
skin fibroblasts

Neutral comet 
assay; IF for 
γH2AX foci

Cr-induced DSBs were 
repaired within 24 h
MRE11 and pATM foci 
co-localized with Cr-induced 
γH2AX foci
Repair of Cr-induced DSBs 
was delayed in MRE11-
deficient cells

[95]

Sodium 
chromate
5–10 μM
6–48 h

Wild-type and 
Mus81−/− mouse 
fibroblasts

Clonogenic 
survival assay; 
BrdU 
incorporation; 
γH2AX analysis 
by flow 
cytometry; IF for 
RAD51; 
chromosome 
aberration assay

Mus81-deficient cells 
exhibit:
•  Increased sensitivity to 

Cr(VI)
•  Increased γH2AX 

response
•  Higher incidence of 

Cr-induced chromosome 
aberrations

RAD51 foci removal was 
delayed in Mus81-deficient 
cells

[100]
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Several studies showed the nuclease MRE11 responds following Cr(VI) expo-
sure, indicated by an increase in MRE11 foci [89, 91, 95]. Qin et al. [91] showed 
Cr(VI) induced a concentration- and time-dependent in MRE11 foci formation. Xie 
et al. [95] further demonstrated Cr(VI)-induced DSB repair was delayed in MRE11-
deficient cells. This outcome indicates HR is utilized to repair Cr(VI)-induced 
DSBs. The central HR protein, RAD51, also responds to Cr(VI)-induced DSBs [91, 
97]. Interestingly, while RAD51 foci formation increases after 24  h exposure, 
RAD51 foci levels decreased starting at 48 h exposure [91]. The RAD51 response 
was completely inhibited by 72  h exposure. RAD51 nuclear protein levels also 
decreased in a time-dependent manner [91]. Interestingly, Qin et al. [91] reported 
the presence of RAD51 agglomerates in the cytoplasm after chronic Cr(VI) expo-
sure, suggesting a problem with RAD51 nuclear transport. This Cr(VI)-induced 
inhibition of RAD51 indicates HR repair is inhibited by chronic Cr(VI) exposure. 
As such, the RAD51-dependent HR pathway that results in high fidelity DNA repair 
would not be available to repair Cr(VI)-induced DSBs. Recent studies indicate clas-
sical NHEJ repair cannot be utilized if HR has already been initiated, and the DNA 
ends have been resected to form single-stranded overhangs. In this case, alternative 
NHEJ or single-strand annealing can be utilized to repair the DSB [102]. These two 
repair processes have low fidelity, resulting in high levels of structural chromosome 
instability.

Cr(VI)-induced tumor characterization and epidemiological and cell culture 
studies show Cr(VI) induces genomic instability. However, more studies need to be 
completed to confirm the mechanism. Mismatch repair inactivation has been indi-
cated in Cr(VI)-induced microsatellite instability, but no studies elucidate the 

Table 7.7  (continued)

Cr(VI) 
treatment Model system Assay(s) Summary of findings Reference

Zinc chromate
0.1–0.5 μg/cm2

24 h

WTHBF-6 human 
lung fibroblasts

WB for pATM, 
pATR, and 
MRE11

Concentration-dependent 
increase in MRE11 and 
pATM levels. pATR was 
highest at low Cr levels

[89]

Zinc chromate
0.1–0.3 μg/cm2

24–120 h

WTHBF-6 human 
lung fibroblasts

WB for MRE11, 
pATM, and 
RAD51; IF for 
MRE11, pATM, 
and RAD51

Concentration- and 
time-dependent increase in 
MRE11 and pATM foci
Concentration-dependent 
increase in RAD51 foci at 
24 h
RAD51 foci formation 
decreased in a time-
dependent manner, starting at 
48 h exposure

[91]

Potassium 
chromate
5–20 μM
(0.5–1 mM)
3–6 h

H460 human lung 
epithelial cells; 
IMR90 human lung 
fibroblasts; MEFs

WB for γH2AX; 
IF for γH2A.X, 
53BP1, and 
H3K9me3

ATR inhibition completely 
abolished Cr(VI)-induced 
γH2AX formation
Suppressed ATM and 
DNA-PK did not affect 
γH2AX formation

[96]
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mechanism of how Cr(VI) inactivates mismatch repair. Substantial work has been 
done to identify the mechanisms of Cr(VI)-induced numerical and structural chro-
mosome instability. However, these mechanisms, namely, centrosome and centriole 
defects and RAD51 inhibition, need to be confirmed in vivo and in Cr(VI)-induced 
tumors. Considering the wealth of data showing Cr(VI) induces multiple forms of 
genomic instability, and new studies elucidating the mechanisms of Cr(VI) induced 
chromosome instability; the genomic instability model is a good fit for Cr(VI)-
induced carcinogenesis.

7.5.3  �Epigenetic Modification

Epigenetic modification is a third major model of carcinogenesis. Epigenetics is 
defined as a heritable change in gene expression that does not change the underlying 
DNA sequence. Epigenetic modifications involved in regulating gene expression 
can be grouped into four general categories: DNA methylation, covalent histone 
modifications (such as acetylation, methylation, and biotinylation), histone variants 
(i.e., γH2AX) and nucleosome repositioning, and miRNAs [103]. Epigenetic modi-
fication either induces or inhibits gene expression, often inducing altered expression 
of tumor suppressor genes or oncogenes. The result is the dysregulation of key cel-
lular regulatory and growth control pathways, leading to carcinogenesis [104].

Epigenetic modifications have been detected in Cr(VI)-induced tumors. Aberrant 
methylation of tumor suppressor genes was detected more frequently in Cr-exposed 
tumors than non-exposed, occurring at multiple loci in 48% of Cr-exposed tumors 
[51]. Methylation of the tumor suppressor genes APC, hMLH1, and p16 was 
detected in tumors from ex-chromate workers [48, 49, 51]. Cell culture studies 
describing Cr(VI)-induced epigenetic modifications and their effects on gene tran-
scription have been published at an increasing rate over the past 15 years. These 
studies showed Cr(VI) alters phosphorylation, methylation, acetylation, biotinyl-
ation, and microRNA levels (Table 7.8).

Two studies showed Cr(VI) exposure induced a concentration- and time-
dependent increase in phosphorylation [105, 107]. Qian et al. [105] demonstrated 
Cr(VI) induced phosphorylation of tyrosine residues. Cr(VI)-induced tyrosine 
phosphorylation resulted from H2O2 and OH radical production that resulted during 
intracellular Cr(VI) reduction. In the second study, Vasant et al. [107] demonstrated 
Cr(VI) and Cr(V) species both induce phosphorylation of the hydroxyl side groups 
of tyrosine and serine/threonine residues [107].

Three studies investigated the effect of Cr(VI) on methylation. The first study 
found soluble Cr(VI) induced aberrant DNA methylation, while particulate Cr(VI) 
did not [56]. The other two studies examined Cr(VI)-induced methylation of histone 
proteins. Histone modifications alter the accessibility of chromatin and the recruit-
ment of effector proteins. Histone methylation can induce transcriptional activation 
or repression depending on which residue is modified and the degree of methylation 
[103]. Interestingly, Cr(VI) induces histone methylation patterns that induce both 
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Table 7.8  Effects of Cr(VI) on epigenetic alterations

Cr(VI) 
treatment Model system Assay(s) Summary of findings Reference

Potassium 
dichromate
300 μM
5–60 min

A549 human 
lung carcinoma 
cells

WB for 
phosphotyrosine 
expression

Cr(VI) induced time-
dependent increase in 
tyrosine phosphorylation
Tyrosine phosphorylation 
resulted from H2O2 and OH 
radical production

[105]

Potassium 
chromate
5–50 μM
2 h
Barium 
chromate
0.05–0.25  

μg/cm2

24 h

V79-derived 
cells 
containing gpt 
reporter gene

Southern blot for 
methylation variants

Soluble Cr(VI) induced 
aberrant DNA methylation 
(detected at the gpt 
reporter)
Particulate Cr(VI) did not 
induce DNA methylation 
changes

[56]

Potassium 
chromate
50 μM
1 h

Hepa-1 cells 
containing a 
pAhRDT-
KLuc3 
luciferase 
reporter

Reporter system for 
AHR-dependent gene 
expression, RT-PCR

Cr(VI) increased the level of 
HDAC bound to Cyp1a1 
promoter chromatin, 
blocking the entry of p300 
and the transcriptional 
complex

[106]

Potassium 
dichromate
Cr(V) species
100–500 μM
2 min to 18 h

Bovine serum 
albumin and 
radiolabeled 
ATP

In vitro BSA 
phosphorylation

Concentration- and 
time-dependent increase in 
BSA phosphorylation 
induced by Cr(VI) and 
Cr(V)
Cr(V) induced higher BSA 
phosphorylation levels than 
Cr(VI)
Sites phosphorylated were 
the hydroxyl side groups of 
tyrosine and serine/threonine 
residues

[107]

Potassium 
chromate
50 μM
1.5 h

Mouse 
hepatoma 
Hepa-1c1c7 
cells

DNA adduct analysis, 
WB for Cyp1a1, 
qRT-PCR

Cr(VI) crosslinked 
HDAC1-DNMT1 complexes 
to Cyp1a1 promoter 
chromatin
Cr(VI) inhibited histone 
modifications including:
•  Phosphorylation of 

H3ser10
•  Trimethylation of H3K4
•  Acetylation marks in H3 

and H4
These changes inhibit RNA 
polymerase II recruitment 
and transcription of Cyp1a1

[108]

(continued)
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Table 7.8  (continued)

Cr(VI) 
treatment Model system Assay(s) Summary of findings Reference

Potassium 
chromate
0–10 μM
1 h

A549 human 
lung carcinoma 
cells

In vitro demethylase 
reaction, Northern 
blotting for mRNA, IF, 
WB

Cr(VI) increased levels of:
•  Di- and trimethylated 

H3K9 and H3K4
•  Methylation in the 

MLH1 gene promoter
•  G9a methyltransferase 

protein and mRNA
Cr(VI)-induced H3K9 
dimethylation correlated 
with decreased MLH1 
expression
Cr(VI) decreased 
trimethylated H3K27 and 
H3R2

[109]

Potassium 
chromate
5–10 μM
24 h

A549 human 
lung carcinoma 
cells

WB, IF Acute and chronic Cr(VI) 
exposure increased 
trimethylated H3K4 levels
Acute Cr(VI) exposure 
increased global H3K4 
trimethylation and H3K9 
dimethylation

[110]

Potassium 
chromate
1.56–12.5 μM
24 h

16HBE human 
bronchial 
epithelial cells

WB, qPCR Cr(VI) decreased biotinidase 
gene expression and protein 
levels in a concentration-
dependent manner
Chemically induced histone 
acetylation reversed 
Cr(VI)-induced inhibition of 
biotinidase, suggesting 
Cr(VI) may inhibit 
biotinidase expression by 
decreasing histone 
acetylation

[111]

Sodium 
dichromate
1 μM
6 months

BEAS-2B 
human lung 
epithelial cells

Colony formation in 
soft agar, qPCR, 
chorioallantoic 
membrane assay, IHC

miR-143 levels were 
reduced 35-fold in 
Cr(VI)-transformed cells
miR-143 repression induced:
•  Upregulation of IGF-IR 

and IRS1
•  ERK, HIP-1α, and 

NF-κB signaling
•  Angiogenic factor 

interleukin-8
•  Increased angiogenesis

[112]
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transcriptional silencing and activation. Zhou et al. [110] demonstrated acute Cr(VI) 
exposure increased global H3K4me3 and H3K9me2, while chronic Cr(VI) only 
increased H3K4me3 levels. The second study supported this result, showing 
increased di- and trimethylation of H3K4 and H3K9 after 1 h exposure to potassium 
chromate [109]. Cr(VI) exposure also induced an increase in mRNA and protein 
levels of G9a methyltransferase, which plays a dominant role in H3K9 methylation. 
Sun et al. [109] further investigated the effect of Cr(VI) methylation on the mis-
match repair gene, MLH1. Cr(VI) exposure increased methylation of the MLH1 
gene promoter and correlated H3K9 dimethylation with decreased MLH1 gene 
expression. Sun et al. [109] also found Cr(VI) decreased trimethylated H3K27 and 
H3R2. H3R2me3 abrogates H3K4 methylation, and, thus, the Cr(VI)-induced 
decrease in H3R2me3 and increase in H3K4 methylation makes sense. However, it 
is curious that Cr(VI) induces decreased H3K27me3. Along with H3K9me3, 

Table 7.8  (continued)

Cr(VI) 
treatment Model system Assay(s) Summary of findings Reference

Potassium 
chromate
0.3–5 μM
24 h

16HBE human 
bronchial 
epithelial cells

IF, WB Cr(VI)
•  Decreased H3 and H4 

acetylation
•  Increased HDAC2 and 

HDAC3 levels
•  Increased 

holocarboxylase 
synthetase protein levels

Biotinidase protein levels 
and histone biotinylation 
increased at low Cr(VI) 
concentration, but effect was 
lost at higher concentrations

[113]

Potassium 
dichromate
5–20 μg/mL
24–48 h

Drosophila 
melanogaster 
(midgut tissue)

miRNA microarray, 
qPCR

Cr(VI) induced expression 
changes of 28 miRNAs
Expression of 13 miRNAs 
increased in a concentration-
dependent manner
Expression of six miRNAs 
decreased in a 
concentration-dependent 
manner
Targets of misregulated 
miRNAs are involved in 
DNA repair, oxidation/
reduction, and stress-
activated MAPK cascade

[114]

Potassium 
dichromate
5–20 μg/mL
24–48 h

Drosophila 
melanogaster 
(midgut tissue)

qRT-PCR, WB Cr(VI) induced a 
concentration- and 
time-dependent inhibition of 
mus309 (Drosophila 
homologue of BLM)

[115]
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H3K27me3 is one of the strongest transcriptional repressors, producing a dramatic 
and predictable effect. It is interesting that Cr(VI) increases levels of one transcrip-
tional repressor (H3K9me3) but decreases levels of the other (H2K27me3). Further 
work needs to be done to investigate the effect of Cr(VI)-induced decreased 
H2K27me3 on oncogene activity.

In contrast to the previously discussed studies, Schnekenburger et  al. [108] 
showed Cr(VI) inhibited H3K4me3. However, this study was conducted in mouse 
hepatoma cells, while the others utilized A549 human lung carcinoma cells. The 
differences in the species and organ of origin of these cell lines may explain the dif-
ference in Cr(VI)-induced H3K4me3 levels. Schnekenburger et al. [108] also found 
reduced phosphorylation of H3Ser10 and acetylation of H3 and H4 following 
Cr(VI) exposure. This study went on to show Cr(VI) crosslinked HDAC1–DNMT1 
complexes to the promoter region of Cyp1a1. These epigenetic modifications 
resulted in the inhibition of RNA polymerase II recruitment to the promoter and 
reduced Cyp1a1 transcription. Wei et al. [106] also showed Cr(VI) increased HDAC 
levels at the Cyp1a1 promoter region. This blocked entry of the transcriptional co-
activator p300 and the transcriptional complex to the promoter region [106]. Cr(VI)-
induced reduced acetylation of H3 and H4 was supported by Xia et al. [113]. In 
accordance with this result, Cr(VI) increased histone deacetylase HDAC2 and 
HDAC3 levels [113].

Cr(VI)-induced histone acetylation inhibition was shown to be related to another 
epigenetic modification, histone biotinylation [111]. Biotinidase and holocarboxyl-
ase synthetase mediate the binding of biotin to histones. Xia et al. [111] showed 
Cr(VI) exposure decreased biotinidase gene expression and protein levels in a 
concentration-dependent manner. Cr(VI)-induced biotinidase inhibition correlated 
with decreased histone acetylation. However, when histone acetylation levels were 
restored, biotinidase levels recovered, indicating biotinidase reduction is a result of 
Cr(VI)-induced histone acetylation inhibition [111]. Protein levels of the other 
mediator of histone biotinylation, holocarboxylase synthetase, increased following 
Cr(VI) exposure [113]. Interestingly, histone biotinylation increased in response to 
low Cr(VI) concentrations, but the effect was lost at higher concentrations. It is pos-
sible biotinidase is the stronger mediator of histone biotinylation, and holocarbox-
ylase synthetase cannot keep biotinylation levels elevated once biotinidase levels 
are decreased by Cr(VI).

MicroRNAs (miRNAs) are short, noncoding small RNAs that repress the expres-
sion of genes by binding to and degrading target mRNAs [116]. This epigenetic 
factor has previously been shown to mediate mechanisms of toxicity in a wide spec-
trum of environmental chemicals [117]. Although miRNA levels have not been 
studied in Cr(VI)-induced tumors, plasma miRNA profiles have been described in 
chromate production workers. Of the miRNAs examined, Cr(VI) exposure induced 
decreased expression of miR-3940-5p, miR-3138, miR-4433-3p, and miR-2392 and 
increased expression of miR-590-5p [118]. After confounding factors were consid-
ered, only miR-3940-5p level was associated with blood Cr level. Plasma miR-
3940-5p level was associated with micronuclei frequency at high blood Cr levels. 
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Levels of HR proteins, XRCC2 and BRCC3, were also associated with miR-3940-5p 
levels. These results suggest miRNA may be involved in the regulation of DNA 
repair proteins following Cr(VI) exposure.

Two studies have investigated the effect of Cr(VI) on miRNA expression in 
Drosophila melanogaster (Table 7.8). The first study utilized global expression pro-
filing to examine the effect of Cr(VI) on a set of miRNAs, finding expression 
changes of 28 miRNAs. Expression levels of 13 miRNAs increased in a 
concentration-dependent manner, while six decreased in a concentration-dependent 
manner. The remaining nine miRNAs did not show a concentration-related effect 
[114]. The target genes of the Cr(VI)-misregulated miRNAs were aligned in three 
functional categories: DNA repair, oxidation/reduction, and the stress-activated 
MAPK cascade [114]. The second study focused on miR-314-3p, a miRNA signifi-
cantly upregulated by Cr(VI) exposure [114]. This study showed Cr(VI) induced a 
concentration- and time-dependent decrease in a target of miR-314-3p, mus309 
[115]. As mus309 is a homologue of the DNA repair protein BLM, this outcome 
suggests Cr(VI)-induced alterations in miRNA expression may inhibit DNA repair 
signaling.

To date, one study utilized cell culture to investigate Cr(VI)-altered miRNA 
expression [112]. This study transformed BEAS-2B human lung epithelial cells 
with chronic Cr(VI) and measured miRNA expression in transformed cells. Cr(VI)-
induced cellular transformation was supported by growth in soft agar and the ability 
to induce tumors when injected into nude mice. miRNA microarray analysis of 
miRNA profiles between BEAS-Cr cells and the parental cell line revealed miR-143 
was suppressed in BEAS-Cr cells. RT-qPCR analysis confirmed miR-143 was 
reduced 35-fold in the Cr(VI)-transformed cells. He et al. [112] showed the Cr(VI)-
induced repression of miR-143-induced upregulation of IGF-IR and IRS1 as well as 
ERK, HIP-1α, and NF-κB signaling. miR-143 inhibition was responsible for 
increased levels of angiogenic factor interleukin-8 and resulted in increased 
angiogenesis.

Altogether, these data show Cr(VI) induces epigenetic modifications. Evidence 
from Cr(VI)-induced tumors, Cr-exposed workers, and cell culture studies indicate 
Cr(VI)-induced epigenetic modifications impact tumor suppressor genes. Epigenetic 
modifications may be the underlying mechanism of many of the observed Cr(VI)-
induced changes in gene expression. Izzotti et  al. [119] showed Cr(VI) induced 
increased expression of 56 genes in lung tissue of Sprague-Dawley rats. The affected 
genes were involved in Cr(VI) metabolism, apoptosis, cell cycle regulation, stress 
response, DNA repair, and signal transduction. A wealth of cell culture studies sup-
port Cr(VI) that alters expression of genes involved in all of these cell regulation 
pathways. For example, Cr(VI) upregulates and activates the MAPK pathways: 
JNK, p38, and ERK, which promote cell survival [120–124]. More research is 
needed to further elucidate the consequences of Cr(VI)-induced epigenetic modifi-
cations on gene expression. While epigenetic modification is likely an important 
factor in Cr(VI)-induced carcinogenesis, it does not provide a mechanism for the 
profound effect of Cr(VI) on clastogenesis.
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7.6  �Mechanism of Cr(VI)-Induced Carcinogenesis

Based on the body of literature discussed here, we suggest Cr(VI)-induced carcino-
genesis does not adhere to just one model of carcinogenesis but involves both the 
genomic instability and epigenetic modification. Experimental evidence does not 
suggest a role of Cr(VI)-induced base mutations early in the carcinogenic pathway. 
However, such mutations undoubtedly occur as a result of Cr(VI)-induced DNA 
damage and the inhibition of high fidelity DNA repair. Thus, base mutations are 
likely to occur late in the carcinogenic pathway and would likely be seen in Cr(VI)-
induced tumors.

Figure 7.1 outlines our proposed mechanism of particulate Cr(VI)-induced car-
cinogenesis. Each step of this proposed mechanism is delineated with a number that 
corresponds to its position in Fig. 7.1. To begin, the particulate Cr(VI) particle (1) 
dissolves extracellularly into the chromate anion and cation (2). Intact Cr(VI) par-
ticles can enter the cell by phagocytosis (3) but have no apparent contribution toward 
carcinogenesis. Likewise, the cation can enter the cell through a calcium channel (4) 
but also does not appear to contribute to carcinogenesis. The chromate anion mimics 
the structure of phosphate and sulfate and enters via facilitated transport (5). The 
chromate anion is then reduced intracellularly, resulting in the formation of reactive 
oxygen species and Cr(VI)-reduction species, Cr5+, Cr4+, and Cr3+ (6). Both the reac-
tive oxygen and the Cr-reduction products can interact with DNA, forming adducts 
(7,8), which lead to stalled replication forks (9). The Cr–DNA adducts can be 
repaired through crosslink repair (10), which primarily relies upon nucleotide exci-
sion repair and results in the formation of DSBs (11). Mismatch repair can attempt 
to repair Cr–DNA adducts, but fails, undergoing a series of futile repair cycles that 
collapse the replication fork and result in a DSB (12). Oxidative damage can also 
result in the formation of DSBs if base excision repair fails (13). In response to DSB 
formation, Cr(VI) induces a G2 arrest (14). Prolonged Cr(VI) exposure, which 
would occur due to the Cr(VI) particle lodging within the bifurcation sites of the 
lung, results in premature centriole disengagement (15) resulting in centrosome 
amplification (16). Spindle assembly checkpoint bypass also results from chronic 
Cr(VI) exposure (17). We propose both centrosome amplification and spindle 
assembly checkpoint bypass lead to numerical chromosome instability (18). At the 
same time, prolonged Cr(VI) exposure induces a deficiency in high fidelity HR 
repair of DSBs (19), resulting in the use of low fidelity DNA repair pathways (20) 
and, ultimately, structural chromosome instability (21). Both structural and numeri-
cal chromosome instability lead to neoplastic transformation and cancer (22).

We propose Cr induces epigenetic modifications that contribute to the mecha-
nisms underlying structural and numerical chromosome instability (23,24). 
Methylation of the hMLH1 promoter may induce a defect in mismatch repair that 
induces microsatellite instability (25,26), contributing to neoplastic transformation 
(22). While there is some evidence that epigenetic modifications also influence 
signaling pathways regulating cell survival and growth, further research is needed 
to understand how these contribute to the mechanism of Cr(VI)-induced 
carcinogenesis.
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Chapter 8
Mechanisms of Nickel Carcinogenesis

Qiao Yi Chen, Jason Brocato, Freda Laulicht, and Max Costa

Abstract  Nickel (Ni) is a naturally occurring metal that is widely used in an array 
of industries such as nickel plating, refinery, welding, as well as in the manufactur-
ing of stainless steel, jewelry, coins, batteries, and medical devices. Despite tremen-
dous economic values, exposure to this carcinogenic metal either through acute 
dermal contact or chronic inhalation in occupational settings can elicit a wide range 
of health problems including contact dermatitis, cardiovascular diseases, and respi-
ratory tract cancer. Nickel-induced carcinogenesis has long been validated and stud-
ied by scientists; however despite extended studies in cell culture, animal, and 
epidemiology, the precise mechanism of Ni carcinogenesis is still uncertain. This 
chapter will seek to provide a comprehensive overview of the mechanistic roles, 
genetic and epigenetic alterations, in Ni carcinogenesis, as well as a review of recent 
advances in the area.

Keywords  Nickel • Carcinogenesis • Epigenetic alterations • Mutagenicity
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pri-miRNA	 Primary miRNA
PTEN	 Phosphatase and tensin homolog
RARB2	 Retinoic acid receptor beta
RASSF1A	 Ras association domain family 1 isoform A
RISC	 RNA-induced silencing complex
ROS	 Reactive oxygen species

8.1  �Introduction to Nickel

Nickel (Ni) was first isolated by Axel Fredrik Cronstedt in 1751. The silvery-white 
transition metal occurs naturally via forest fire, volcanic emission, and rock ero-
sion. Ni is found in 3% of the Earth’s total composition, ranking as the 24th most 
abundant element. Although no existing evidence indicates nutritional value of Ni 
in humans, it has been identified as an essential nutrient for some microorganisms, 
plants, and animal species [1]. Along with iron, cobalt, copper, zinc, and five other 
transition metals, nickel resides in the 3d orbital on the periodic table. Under normal 
environmental conditions, Ni mostly exists in the +2 valence state, although other 
oxidation states can also be found (−1, +1, +3, and +4) [1–3]. They are inherently 
resistant to corrosion and stable under extreme temperature fluctuations. Because 
of their exceptional physiochemical properties, nickel is widely used in an array of 
industries such as nickel plating, refinery, welding, as well as in the manufactur-
ing of stainless steel, jewelry, coins, batteries, and medical devices. Furthermore, 
nickel alloy constitutes approximate 50% of materials used in the production of 
plane engines [4]. Despite its economic importance in the world’s market, Ni is 
classified as a Group I carcinogen by the International Agency for Research on 
Cancer (IARC) and therefore poses immense environmental concerns due to its 
substantial commercial usage. Nickel can be found in water, air, soil, and other 
biological matters. The combustion of fuel, coal, and other waste materials pollutes 
the ambient air with nickel particulates [1, 2, 5–7]. Additionally, food-processing 
equipment made of stainless steel may contaminate the products with traces of Ni 
compounds [6, 7]. Although there are many routes of Ni exposure, inhalation is the 
most common form of exposure in occupational settings and has also been shown 
to be the primary path to Ni toxicity [8]. Despite the excessive presence of nickel in 
occupational settings, other than industrial workers, people living in the immediate 
proximity of the industrial areas and waste-receiving sites are also under the threat 
of Ni toxicity. Depending on the dose and length of exposure, as an immunotoxic 
agent and carcinogen, Ni can elicit a range of health effects such as contact der-
matitis, asthma, cardiovascular disease, lung fibrosis, and respiratory tract cancer 
[3, 6, 9]. Despite extended studies in cell culture, animal, and epidemiology, the 
precise mechanism of Ni carcinogenesis is still uncertain. This chapter will seek to 
provide a comprehensive overview of Ni carcinogenesis as well as review of recent 
advances in the area.
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8.2  �Overview of Cancer

There are trillions of cells in the human body. Normally, new cells evolve and 
old/damaged cells die. However, in the case of cancer formation, cells continu-
ously divide without stopping and eventually spread to neighboring tissues [10]. In 
other words, genetic alterations in cancer cells make them ignorant toward normal 
cell regulations such as apoptosis or programed cell death. Cell proliferation is 
tightly regulated by two major groups of genes: oncogenes and tumor suppressor 
genes [11]. Oncogenes such as Ras, Myc, and FLIP stimulate cell survival and 
proliferation. On the other hand, tumor suppressor genes like p53 and Rb inhibit 
cellular growth. The precise balance between cancer-promoting and cancer-inhib-
iting genes is nonetheless controlled by a sophisticated system of molecules and 
pathways. Dysregulation in important pathways such as cell cycle and mutation in 
DNA repair systems can lead to tumor initiation and eventually progression [12]. 
Although tumor cells can be simply defined as uncontrollable cell growth, their 
methods of manifestation and survival are less straightforward. Not only can can-
cer cells flourish by feeding off of normal surrounding cells through formation 
of blood vessels, they are also capable of evading immune responses. There are 
hundreds of different types of cancers, and none develops with the same specific 
set of rules. Although elucidating the mechanism of carcinogenesis is still over-
whelmingly difficult, studies show that genetic susceptibility and environmental 
exposure are conspicuous contributors of cancer. Today, more and more substances 
are found to be cancer causing, and these candidates are evaluated and categorized 
into five different groups by the IARC: carcinogenic to humans, probably carcino-
genic to humans, possibly carcinogenic to humans, carcinogenicity not classifiable, 
and probably not carcinogenic. There are 118 IARC-classified Group 1 substances, 
or identified human carcinogens, which include tobacco, radiation, processed meat, 
virus, etc. Most heavy metals are also considered to be carcinogens such as nickel, 
arsenic, chromium, cadmium, and beryllium. Due to their usefulness in many 
industrial processes, the opportunity for heavy metal exposure becomes increas-
ingly threatening to public health.

8.3  �Modes of Carcinogenesis

Cancer is an intricate disease that varies from person to person in development, 
appearance, and end point. Parallel to the disease complexity, cancer requires a 
multistep process for cells to undergo behavioral and metabolic changes, which 
will in turn prompt excessive and unnecessary growth and eventually lead to 
metastasis. The steps include mechanistic changes in the cells’ ability to evade 
the immune defense, cell cycle pathways, and interaction with adjacent cells. 
There are two major modifications that can lead to cancer: genetic and epigen-
etic. Genetic changes such as mutations, translocations, copy number variations, 
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sister chromatid exchanges, and karyotype variations are all important factors of 
cancer formation. Changes in the genetic sequence can accumulate and become 
permanent mutations, which can be neutral, harmful, or beneficial depending 
on the location and/or context [13]. In fact, mutations are indispensable for the 
diversity among organisms. However, if these permanent DNA changes occur 
in essential cell cycle regulators such as tumor suppressor and promoter genes, 
the effects may be detrimental. Cell programming can also be disrupted through 
epigenetic changes, where structure rather than sequence of the DNA is altered. 
There are several different types of epigenetic mechanisms that can impact gene 
expression including DNA methylation, histone modification, and RNA-mediated 
silencing. The essence of the epigenetic principle lies in the fact that all cells 
share an identical genome; yet cells are able to demonstrate remarkably different 
functional and structural characteristics. Therefore, the role of epigenetic altera-
tion on gene expression becomes ever so relevant. To date, the most common 
and well-understood epigenetic mechanism is DNA methylation, the addition of 
a methyl group to the 5-carbon position of the cytosine ring and in turn form-
ing 5-methylcytosine [14, 15]. Cancer is generally exhibited as gene-specific 
hypermethylation and global hypomethylation. Hypermethylation is defined by 
heightened methylation in the gene promoter region, which serves to silence the 
expression. Hypermethylation (silencing) of tumor suppressor genes and hypo-
methylation (activation) of proto-oncogenes can both contribute to carcinogenesis. 
Posttranslational modifications of histones are regulated by histone acetyltrans-
ferases (HAT) and deacetyltransferases (HDAC), which add and take away acetyl 
groups, respectively. The importance of histone modifications and the correlation 
to cancer have been reported by multiple studies [16–18]. One other form of epi-
genetic change is microRNA (miRNA). These small noncoding RNAs are thought 
to regulate up to 30% of protein-coding genes through targeted mRNA degrada-
tion and translational repression [19]. Unsurprisingly, miRNA plays an essential 
role in cell proliferation and apoptosis [20, 21]. The deregulation of miRNA has 
also been shown in several types of cancers [22–24]. Understanding the role of 
genetic and epigenetic changes in cancer has provided far-reaching knowledge 
not only for determining the mechanism of carcinogenesis but also the discovery 
of potential therapeutic targets.

8.4  �Environmental Exposure

The level of nickel found in the natural environment is usually low and of minor 
concern. Nickel is a very useful metal applicable in the production of batteries, 
jewelries, various alloys, nickel plating, and stainless steel [5, 20, 25, 26]. The 
assorted use of nickel also allows for multiple routes of exposure such as ingestion, 
inhalation, and dermal contact. Of all the sources of exposure, occupational inha-
lation from combustion of fossil fuels and nickel-related manufacturing factories 
is of utmost concern. Multiple studies have reported the detrimental effect of Ni 
on human and animal health [27–31]. Nickel refinery workers have been found to 
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experience very high incidences of lung, nasal, and pharyngeal cancers compared 
to the unexposed populations [32–34]. Figures 8.1 and 8.2 represent two separate 
literature searches on PubMed illustrating the growing wave of recognition and 
interest for nickel and its mechanistic pathways. The following sections will sum-
marize the epidemiological, animal, and in vitro investigations in review of nickel’s 
carcinogenic effects.
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Fig. 8.1  Increasing number of PubMed publications regarding Nickel, from 1882 to 2016. The 
first article to report on nickel was in 1882. Since then, there has been a steady growth in the num-
ber of publications regarding nickel. By 2016, a total of 39,599 articles had been published (Data 
and graph generated through PubMed search)
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Fig. 8.2  Increasing number of PubMed publications regarding the mechanistic pathways of 
Nickel, from 1947 to 2016. Sixty-five years after the first publication on nickel, in 1947, the first 
paper exploring mechanistic pathway of nickel was published. The following rapid increase in the 
number of publications in this area of research is indisputable. From 1947 to 2016, 2451 papers 
have been published (Data and graph generated through PubMed search)
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8.5  �Epidemiological Investigations

Back in 1949, the National Insurance of Great Britain and Minister of Pensions 
categorized respiratory diseases such as lung and nose cancers, as industrial dis-
eases due to the prominence in occupationally exposed nickel refinery workers [33]. 
Multiple lines of evidence have implicated nickel’s role in human lung cancer. 
A large retrospective cohort involving 5389 men carried out by a research team led 
by Grimsrud reported a dose-dependent association between water-soluble Ni and 
lung cancer. The investigators indicated an estimated population attributable risk of 
54%, suggesting that the excess number of lung cancer found in the cohort was due 
to occupational Ni exposure [31].

In a retrospective cohort study conducted in Sudbury, Ontario, and Canada, the 
researchers examined the cancer incidence and mortality rate of male nickel work-
ers [35]. There were a total of 10,253 participants in this study, all of which worked 
for Xstrata Nickel between 1928 and 2001. The study concluded that cancer inci-
dence and mortality rates significantly elevated in conjunction with increased num-
ber of working years. Although the study could not examine the specific exposure 
level of these workers, the results clearly indicate that the risk of nickel carcinogen-
esis is highly correlated with the exposure time.

In another investigation conducted in South Wales, researchers aimed to determine 
the risk of developing lung and nasal carcinoma of 845 men who have worked at least 
5 years in the nickel refinery prior to 1944 [36]. Inhalation is the primary route of expo-
sure in occupational settings, which explains high incidences of cancer in the lung and 
nasal sinuses. In this study, nasal carcinoma was found to persistently affect nickel refin-
ery workers even after exposure to the carcinogen has been eliminated for 15–42 years. 
On the other hand, lung cancer incidences decreased over time. This suggests that the 
site of primary exposure and, in this case nasal sinus, suffers from the greatest impact.

8.6  �Animal Bioassays

An in vitro study carried out by Sunderman and Donnelly back in 1965 studied the 
effect of nickel on metastasizing pulmonary tumors in rats [37]. The study was 
divided into six groups: three exposed groups and three control groups. The exposed 
groups were differentiated by the exposure dose and length: single dose of 80 parts 
per million for 30 min (Group I), single dose at 80 parts per million and additional 
“dithiocarb”(Group II), and 4 parts per million for 30 min for the rest of their lives 
(Group III). Within 3 weeks of the study, 72% of the rats in Group I died. After 
1 year, the rats in Group III (chronic low-level exposure) showed 25% mortality 
compared to 7% in the control group. After 2 years, 88% of the rats in Group III 
died compared to 30% in the control group. This strain of rats is known for its rarity 
in developing pulmonary tumors. Over a period of 12 years, not one rat in the con-
trol group developed tumor. On the other hand, six rats in the exposed group were 
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found to have developed pulmonary carcinoma with metastasis [37]. The study 
reveals that inhaled nickel carbonyl may be especially carcinogenic.

Another study led by Ottolenghi focused on pulmonary carcinogenesis in rats 
after chronic inhalation of nickel sulfide [38]. 226 and 241 F344 rats were randomly 
placed in the exposure and control groups, respectively. In the treatment group, the 
animals were exposed to nickel sulfide through inhalation 5 days per week, 6 h per 
day for 78 weeks. The control group rats were alternatively exposed to filtered air. 
After another 30-week period of observation, the rats were sacrificed and examined 
for tumor development. Overall, incidences of lung tumor in the control and treat-
ment groups were 1% and 14%, respectively. Furthermore, pulmonary inflamma-
tory response was also significantly increased in the exposed group.

Although lung carcinogenesis is predominantly studied in nickel exposure stud-
ies due to high occupational exposure, nickel is in fact detrimental to any exposed 
parts of the body. In a study done by Damjanov et al., various concentrations of 
nickel subsulfide were injected in the testis of Fischer rats. Rats injected with 0.6–
10 mg of nickel subsulfide showed immediate inflammatory reaction at the site of 
injection [39]. At doses of 5 or 10  mg, the testis displayed subtotal destruction, 
inability to regenerate the seminiferous tubules, and overall atrophy. The damage 
was remarkably specific to the site of exposure as the other testis showed no effect.

8.7  �In Vitro Investigations

Previous studies have confirmed that carcinogenic metals are capable of binding to 
the chromatin and proteins [40], and thereby inducing chromosomal aberrations, 
DNA-protein cross-links, and DNA single-strand breaks. In vitro studies also illus-
trated nickel’s ability to induce cell transformation and epigenetic changes.

Anchorage independent-growth is an important trait for carcinogenesis. 
Biedermann and Landolph studied the effect of three different types of nickel com-
pounds and their induction of anchorage-independent growth in human diploid 
foreskin fibroblasts cells (HFC). Cells were treated for 48 h with various metals 
including nickel sulfide (Ni3S2), nickel acetate (Ni(C2H3O2)), and nickel (II) sul-
fate (NiSO4). As a result, the cells treated with all three types of nickel compounds 
showed dose-dependent anchorage-independent growth. As another aspect of this 
study, the researchers also demonstrated dose-dependent cytotoxicity due to nickel 
treatment [41]. Because no detectable levels of mutations were found, the research-
ers believe that anchorage-independent growth may be due to chromosomal break-
age and/or gene amplification.

More and more emphasis is being placed on the epigenetic mechanism of nickel 
carcinogenesis. DNA methylation was found to inactivate the expression of a stably 
integrated reporter gene, gpt, near the telomeres of Chinese hamster cells [42]. It is 
thought that DNA methylation, and subsequently induced chromatin condensation, 
engulfed the nearby gpt gene, thereby inhibiting its expression. In turn, after reverse 
activation of gpt, DNA methylation and condensation were lost.
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Both oxidative stress and DNA methylation have been implicated in a study 
involving C57BL/6 and p53 heterozygous mice treated with nickel sulfide. After 
nickel sulfide injection, malignant fibrous histiocytomas were observed in all treated 
mice. DNA methylation of tumor suppressor gene p53 and activation of the mitogen-
activated protein kinase signaling pathways were detected in all tumors [43].

8.8  �Genetic Mechanisms Underlying Nickel Carcinogenesis

Due to weak mutagenic potential found in mammalian cells, and even weaker 
response in prokaryotic assays, nickel compounds have generally been considered 
to be weakly mutagenic [9, 44–48]. The lack of mutagenic activity of nickel com-
pounds in prokaryotic assays may be due to bacteria’s inability to induce phagocy-
tosis, a factor important for nickel toxicity. Another potential explanation for the 
stronger mutagenic potential found in mammalian cells is the number of DNA-
associated proteins. Nickel’s binding affinity for proteins is substantially higher 
than for DNA; thus the genotoxic effects would be greater in mammalian cells due 
to heightened interaction [44]. In these mammalian studies, nickel compounds have 
been found to induce both mutations and chromosomal aberrations.

Nickel compounds have been found to have slightly positive mutagenic effects in 
a number of forward mutation assays using various cell lines such as V79 and mouse 
lymphoma cells [3, 44, 49, 50]. Deletion mutations were detected from these studies 
and have been deemed as a potential mutagenic mechanism for nickel. Occurrence 
of mutagenesis on an autosomal gene is justifiable because allelic chromosome can 
compensate for the loss from large deletions. The finding that nickel sulfide induced 
strong mutagenic response in an autosomal gene, transfected bacteria gpt gene, sup-
ports this notion [44, 51, 52].

In addition to nickel’s ability to promote mutations, other potential genetic 
mechanisms of nickel carcinogenesis include chromosomal aberrations, DNA-
protein cross-links, and DNA base damage [53–57]. In a study conducted by 
Conway and Costa, anchorage-independent clones from nickel-transformed Chinese 
hamster cells were chosen and collected for karyotyping analysis [9]. Study results 
demonstrated abnormal structural and numerical chromosomal changes in all 
nickel-transformed cell lines [54]. Another study examined the effect of Ni (II) sul-
fate on cultured human lymphocytes and found an approximately twofold incre-
ment in sister chromatid exchanges [55].

8.9  �Epigenetic Mechanisms

Despite some evidence of nickel’s weak mutagenicity, the recent advances in under-
standing the mechanism of nickel carcinogenesis have shifted toward epigenetic 
alterations. Epigenetics is defined as the inheritable and reversible changes in gene 
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expression without changing the DNA sequence [58, 59]. DNA resides in a highly 
compact structure called the chromatin. The accessibility of the chromatin, depend-
ing on its closed or open structure, is essential for biological functions such as rep-
lication, translation, gene expression, etc. [58, 59]. Epigenetic alterations such as 
DNA methylation, histone modification, and small noncoding RNA are critical fac-
tors in inducing changes in the chromatin structure.

DNA methylation is correlated with repetitive sequence suppression, 
X-chromosome inactivation in imprinting, and long-term transcriptional silencing. 
Although methylation in the promoter region is linked to suppression due to inter-
ference with the binding of transcription factors, gene body methylation usually 
signifies activation. In mammalian cells, approximately 60–90% of 5′-cytosine-
phospate-guanine-3′ (CpGs) are methylated. DNA methyltransferases (DNMTs) 
are responsible for transferring a methyl group from S-adenosyl methionine to the 
fifth carbon of cytosine. CpG sites are regions of the DNA where cytosine is fol-
lowed by guanine. CpG islands contain methylated CpGs about every 15 nucleotides 
as opposed to the rest of the genome where CpGs occur every 80–100 nucleotides.

DNA methylation-induced gene inactivation is associated with numerous human 
diseases such as fragile X mental retardation and various types of cancers [42, 60–
64]. In a study conducted by Costa et al., nickel was shown to directly inhibit DNA 
methyltransferase activity [65]. 5-Azacytidine is another known inhibitor of DNA 
methyltransferases, but in contrast, the inhibitory effect of nickel seems only tran-
sient [65, 66]. More specifically, after a period of recovery following nickel expo-
sure, the methyltransferase activity will rebound slightly, while genome-wide DNA 
methylation levels will rise even higher than that of control cells [65]. Research 
suggests that the Ni-induced hypermethylation may be targeted toward tumor 
suppressor genes and/or senescence as part of its carcinogenesis mechanism [65, 
67]. Nickel-induced promoter hypermethylation has been observed both in  vitro 
and in  vivo. In human bronchial epithelial (BEAS-2B) cells, nickel induced the 
silencing of E-cadherin, a gene encoding for surface adhesion glycoprotein [68]. 
Furthermore, Ni treatment has also been shown to silence p16 gene through hyper-
methylation of CpG sites and subsequently bypassing cell senescence [69]. Studies 
using p53 heterozygous mice treated with nickel sulfide exhibited promoter hyper-
methylation of the tumor suppressor p16 gene. Similar results were also shown in 
studies involving Wistar rats, which showed promoter hypermethylation in p16, Ras 
association domain family 1 isoform A (RASSF1A), and retinoic acid receptor beta 
(RARB2) genes [43, 58, 70]. Early studies have demonstrated that instead of active 
euchromatic regions, nickel selectively targets the inactive heterochromatic regions 
such as the long arm of chromosome X in Chinese hamster ovary cells. One study 
demonstrated nickel’s heterochromatic-specific hypermethylation through inserting 
the glutamic-pyruvate transaminase (gpt) gene in two different locations of two dif-
ferent cell lines: G12 and G10. The gpt gene was inserted near an active euchromatic 
region in the G10 cell line, while in G12 cell line, the gene was close to the telomere 
[71]. If the gpt gene were silenced by Ni exposure, the cells would exhibit high-level 
resistance to 6TG. As results conclude, while Ni-induced gpt gene silencing could 
be observed in both G12 and G10 cells, the silencing was much more efficient in 
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G12 cells. Thus, the study supported previous findings indicating the importance of 
location for Ni-induced gene silencing. Heterochromatin is a highly compact region 
of the DNA characterized by late S-phase replication and minimal gene activity due 
to its condensed structure. The mechanism of gpt gene silencing in G12 cells dem-
onstrates the ability of Ni to spread heterochromatinization through DNA condensa-
tion [42]. The idea of position effect variegation such as heterochromatin spreading 
has been well studied in drosophila [42, 72, 73].

Nickel has also been found to inhibit dioxygenases, a family of enzymes essen-
tial for a balanced epigenetic landscape, and requires iron, oxygen, ascorbate, and 
alpha-ketoglutarates as cofactors [74]. Nickel has been shown to target the iron-
binding motif of dioxygenases due to its effectively higher affinity than iron. The 
resulting irreversible inhibition of dioxygenases led to remarkable increases in 
DNA methylation marks [74–77]. Previous studies have shown that nickel exposure 
inhibited Jumonji domain containing 1A (JMJD1A, demethylase) expression while 
at the same time increased H3K9me2 [77]. An even more recent study illustrated the 
effect of Ni on Jumonji domain containing 3 (JMJD3), another prominent demeth-
ylase. The study concluded that following nickel exposure, JMJD3 expression 
increased while H3K27me3 decreased. The reduction of H3K27me3 can stimulate 
gene activation and lead to various types of cancers such as gastric, colon, kidney, 
prostate, breast, and ovarian cancers [78–81].

8.9.1  �Acetylation

Other than DNA methylation, nickel can also trigger gene silencing through histone 
modifications. Histones are alkaline proteins in which the DNA winds around and 
forms nucleosomes, the basis of chromatin. There are five major families of his-
tones: H1, H2A, H2B, H3, and H4. H1 serves as the linker histone connecting 
nucleosomes and forming higher order structures, while the other four are essential 
core histones. The N-terminal tails protruding from the nucleosome beads have 
more than 60 different residues, each of which can be altered by posttranslational 
modifications such as acetylation, methylation, sumoylation, phosphorylation, bio-
tinylation, and ubiquitination [58, 82]. Of the above posttranslational modifications, 
histone acetylation is one of the most extensively studied topics. Histone acetylation 
is a very dynamic phenomenon and is balanced by the contrasting activities of his-
tone acetyltransferase (HAT) and histone deacetylase (HDAC). HAT serves to trans-
fer an acetyl group from acetyl coenzyme A (AcCoA) to an e-amino group of a 
lysine residue. Upon the acetylation of a lysine residue, the positive charge of the 
histone side chain is removed, subsequently decreasing histone’s affinity to the neg-
atively charged DNA. The loosely bound DNA will then become more accessible to 
transcriptional factors in the promoter region.

Ni exposure has been identified to reduce global histone acetylation levels both 
in vitro and in vivo [83–85]. In G12 cells, both H3 and H4 hypoacetylation were 
observed in the promoter of the gpt transgene [68]. Hepatoma cells exposed to Ni2+ 
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resulted in reduced histone acetylation levels. The reduction in histone acetylation 
may be due to two factors: inhibition of HAT and activation of HDAC. Since prior 
studies have shown that HDAC activity has no effect on Ni-induced histone hypo-
acetylation, the globally reduced acetylation levels must be triggered by HAT inhi-
bition [86, 87]. In vitro HAT and HDAC assays conducted by Kang et al. confirmed 
this idea through demonstrating that Ni2+ inhibited HAT activity in a dose-dependent 
manner while HDAC remained unaffected. The same study also confirmed the 
claim that Ni2+ may induce histone hypoacetylation through reactive oxygen spe-
cies (ROS) generation [83, 88, 89]. The in vitro results illustrated increase in ROS 
production after Ni exposure as well as dose-dependent decrease in HAT activity 
correlated with ROS levels [86]. Because ROS are extremely reactive and can bind 
to the DNA, histones, and surrounding proteins, it may play an important role in 
Ni-induced histone hypoacetylation and carcinogenesis.

Another interesting study demonstrated that carcinogenic nickel is capable of 
inducing alpha-helical conformation of the histone H4 tail. Because the secondary 
structure is similar to the effect of lysine acetylation, this phenomenon will prevent 
the transfer of an acetyl group to the lysine residue. In other words, carcinogenic 
nickel seems to have tricked the histone acetyltransferase into believing that the 
transfer of an acetyl group has already been done. Furthermore, if the histone modi-
fication by enzyme 1 is able to influence the activity of enzyme 2, then the Ni-induced 
alpha-helical structure will influence a spectrum of enzymatic changes acting on the 
histone tails [89].

8.9.2  �MicroRNA

MicroRNAs (miRNAs) are a family of small noncoding RNAs (18–25 nucleotides) 
important for many cellular processes such as metabolism, apoptosis, proliferation, 
and differentiation [90]. To date, more than 2000 mature miRNAs have been identi-
fied in the human genome each with unique functions in negatively regulating gene 
expression [58, 90, 91]. Forming mature miRNA requires a series of sophisticated 
micro-processing events. Primary miRNAs (pri-miRNA) stretching hundreds to 
thousands of nucleotides long are first transcribed in the nucleus by RNA poly-
merase II then capped, polyadenylated, and processed by Drosha, a type III RNase, 
into short (~70  nt) precursor miRNA (pre-miRNA) [92–94]. A complex formed 
with exportin-5 and Ran-GTP will assist in exporting the pre-miRNA into the cyto-
sol where it is further processed by RNase III Dicer into ~18–25 nucleotide long 
mature miRNAs [92, 95, 96]. Following the formation of mature miRNAs, one of 
the strands will typically be degraded and while the other single-stranded miRNAs 
will exert their regulatory functions through binding to the complementary 
sequences of coding as well as noncoding regions of target mRNAs. Incorporation 
of miRNA and aragonite protein into RNA-induced silencing complex (RISC) will 
direct the 3′ to 5′ binding to the mRNA and elicit target mRNA inhibition and/or 
degradation [58, 92].
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MiRNA dysregulation in cancer cells was first discovered by Calin et  al. [97]. 
Since then, multiple studies have confirmed and indicated that miRNA profiles sig-
nificantly differ between tumor and normal tissues [97–99]. Because miRNA is non-
specific and is able to bind to multiple mRNAs, dysregulation in these small noncoding 
RNAs may elicit tremendous effect on gene expression and ultimately carcinogenesis. 
MiRNA-21 is one of the most commonly upregulated miRNAs found in various types 
of cancers such as glioblastoma, stomach, lung, colon, ovarian, etc. [100, 101]. A new 
study recently reported that miR-21 expression levels found in nickel-induced human 
lung cancers increased in a dose-dependent manner. Clinically, patients with high 
nickel exposure and high miR-21 expression have significantly lower rate of survival. 
For example, the upregulation of miRNA-222 was observed in both Ni-transformed 
16HBE cells and rat rhabdomyosarcomas [102]. MiRNA-222 targets several impor-
tant cancer suppressor genes such as p57, p27, and phosphatase and tensin homolog 
(PTEN) and may play an important role in accelerating cell proliferation as observed 
in cell transformation and tumor growth. These results strongly indicate that miRNA 
may play important roles in Ni-induced carcinogenesis.

8.10  �Conclusion

Despite the importance and practicality of using nickel in various industrial settings, 
there are immense repercussions for people who are exposed to this carcinogenic 
metal. Exposure to nickel comes in many forms ranging from acute dermal contact 
to chronic inhalation in occupational environments. And depending on the dose and 
length of exposure, nickel can elicit a spectrum of health concerns such as contact 
dermatitis, cardiovascular diseases, and respiratory tract cancer. Nickel has long 
been known to induce chromosomal aberrations and DNA damage, with recent 
advances in epigenetic studies, research has further improved our understanding of 
nickel carcinogenesis. Nickel is able to silence genes near heterochromatin regions 
through initiating chromatin condensation, and depending on the effected gene, the 
suppression of gene expression may evoke initiation and/or progression of tumor 
formation. Furthermore, nickel has also been found to influence the epigenetic land-
scape through DNA methylation, histone acetylation, and miRNA. The downregu-
lation of important tumor suppression genes such as p16, PTEN, p57, etc. through 
epigenetic silencing and oncogene-specific activation may all contribute to nickel-
induced cancer initiation and progression.
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Chapter 9
Application of Metallomics 
and Metalloproteomics for Understanding 
the Molecular Mechanisms of Action  
of Metal-Based Drugs

Yuchuan Wang, Haibo Wang, Hongyan Li, and Hongzhe Sun

Abstract  Metals play a significant role in biological processes, and metal-based 
drugs nowadays have been commonly used for therapeutic and diagnostic purposes. 
However, due to severe side effects with metallodrugs and acquired drug resistance, 
more metallodrugs are being developed, with improved pharmacological profiles 
and less side effects. With the rapid development of metallomic strategies in under-
standing metals in complex biological systems, their successful application in the 
field of medicinal inorganic chemistry has led to significant progresses in under-
standing the mechanisms of actions of metal-based drugs. This chapter introduces 
the concepts and research techniques in metallomics and metalloproteomics and 
expatiates the fate of metal-based drugs as well as metallic nanoparticles in biologi-
cal systems revealed by metallomic studies.
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Abbreviations

16HBE	 Normal bronchial epithelial cells
2D-GE	 Two-dimensional gel electrophoresis
A549	 Human alveolar adenocarcinoma epithelial cells
APL	 Acute promyelocytic leukemia
ATO	 Arsenic trioxide
Au NRs	 Au nanorods
CBS	 Colloidal bismuth subcitrate
CE	 Capillary electrophoresis
ESI-MS	 Electrospray ionization mass spectrometry
GE-ICP-MS	 Online coupling of column-type gel electrophoresis with 

inductively coupled plasma-mass spectrometry
GO	 Gene ontology
H. pylori	 Helicobacter pylori
HF5	 Hollow fiber flow field-flow fractionation
HSAB	 Hard-soft acid-base
ICP-MS	 Inductively coupled plasma-mass spectrometry
ICP-TOF-MS	 Inductively coupled plasma time-of-flight mass spectrometry
IEC	 Ion-exchange chromatography
IEF	 Isoelectric focusing
IMAC	 Immobilized metal affinity chromatography
KP1019	 Trans-[Ru(III)(Ind)2Cl4][IndH]
LA-12	 (OC-6-43)-bis(acetato) (1-adamantylamine) amminedichloro-

platinum (IV)
LA-ICP-MS	 Laser ablation-inductively coupled plasma-mass 

spectrometry
LoVo	 Human colon carcinoma cell line
MALDI-TOF-MS	 Matrix-assisted laser desorption/ionization time-of-flight 

mass spectrometry
MAPK	 Mitogen-activated protein kinase
MRP	 Multidrug resistance protein
MS/MS	 Tandem mass spectrometry
MudPIT	 Multidimensional protein identification
NAMI-A	 Trans-[Ru(III)(dmso)(Im)Cl4][ImH]
NanoSIMS	 Nanoscale secondary ion mass spectrometry
NPs	 Nanoparticles
PAK	 Protein kinase
pIs	 Isoelectric points
PMH	 Primary hepatocytes
PTA	 1,3,5-Triaza-7-phosphatricyclo-[3.3.1.1]decane
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RBC	 Ranitidine bismuth citrate
RBP4	 Retinol-binding protein 4
RPLC	 Reversed-phase liquid chromatography
RPTECs	 Renal proximal tubule epithelial cells
SDS-PAGE	 Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEC	 Size-exclusion chromatography
SELDI-TOF-MS	 Surface-enhanced laser desorption/ionization time-of-flight 

mass spectrometry
SRIXE	 Synchrotron radiation-induced X-ray emission
SR-TXM	 Synchrotron radiation-beam transmission X-ray microscopy
SR-XANES	 SR-X-ray absorption near edge structure
SR-XRF	 Synchrotron radiation X-ray fluorescence
TEM	 Transmission electron microscopy
THP-1	 Human monocyte
WHO	 World Health Organization
XAS	 X-ray absorption spectroscopy

9.1  �Introduction

Metals are integral components of life and serve as essential cofactors of many 
enzymes involved in various biological processes such as respiration, gene tran-
scription, and cell proliferation [1, 2]. The introduction of metal ions into pharma-
ceuticals for therapeutic or diagnostic purposes constitutes the basic research 
issues in medicinal inorganic chemistry. Metal compounds provide an ideal plat-
form for the rational design of drug candidates with predictable pharmacodynam-
ics and pharmacokinetics due to the characteristic geometries, coordination 
numbers, and redox states that metals can offer [3–5]. The success of cisplatin and 
other platinum-based drugs in clinic has demonstrated great potentials of metal-
based compounds in cancer therapy [6]. However, due to severe side effects 
accompanying traditional platinum chemotherapy and the acquired drug resis-
tance, other classes of metal-based compounds, such as ruthenium, gold, gallium, 
and titanium, were developed and extensively studied in the search for a better 
drug with improved pharmacological profiles and less side effects [5, 7, 8]. 
Besides metal-based anticancer drugs, bismuth, silver, and gallium complexes 
have been used for decades owing to their antimicrobial properties [4, 9, 10]; the 
metalloid element arsenic in its inorganic form, i.e., arsenic trioxide (ATO, 
Trisenox®), has been successfully used in clinic for the treatment of patients suf-
fering from acute promyelocytic leukemia (APL) [11]. The choice of metals/met-
alloids with different chemical properties may result in different spectrum of 
anticancer or antimicrobial activities, enabling better therapeutic options (Fig. 9.1) 
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[4, 5, 12]. Meanwhile, nanotechnology is increasingly recognized with nanopar-
ticles being produced and utilized as widespread commercial products [13]. 
Despite their wide applications in healthcare and industry, it remains to be elusive 
whether increased in the exposure of human beings to these products leads to 
short- or long-term toxicity.

As the mode of action and the toxic mechanisms of many metal-based com-
pounds have not, or only partially, been elucidated even for those established treat-
ments, a precise knowledge of the molecular mechanisms of actions of metal-based 
drugs/agents including their physiological processes (e.g., cellular levels, distribu-
tion, biotransformation), molecular targets, and functional pathways is essential not 
only for the exploitation of the full therapeutic potential of a metallodrug but also 
for the design of novel metallodrug candidates with higher therapeutic efficacy but 
less side effects. Traditionally, the mechanism of action of a (metallo)drug is inter-
preted on the basis of accumulated experimental data, which were obtained from the 
in vitro studies of individual putative drug-targeting proteins or other biomolecules, 
and the real targets are often needed to differentiate from a false one by extensive 
research. However, considering the inherent complexity of the biological systems, 
such target-oriented studies are laborious to provide a holistic picture on the bio-
logical response of a (metallo)drug. An integrative “omics” approach is thus neces-
sary for the investigation of a (metallo)drug or a biologically active substance within 
the system biology perspective. With the rapid development of metallomic strate-
gies in understanding metals in complex biological systems, their successful appli-
cation in the field of medicinal inorganic chemistry has led to notable progresses in 
understanding the mechanisms of actions of metal-based drugs/agents [14–16].

In this chapter, the concepts and research techniques in metallomics and metal-
loproteomics will be first introduced. The fate of Pt-, Ru-, and Bi-based drugs/
agents as well as metallic nanoparticles in biological systems revealed by metallomic 
studies will be expatiated in the following sections.
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9.2  �Metallomics and Metalloproteomics: The Role 
in Metallodrug Research

9.2.1  �Definition and Research Subjects in Metallomics

Metallome refers to “an element distribution” in a cell which was initially proposed 
by R.J.P. Williams in 2001 [17]. Metallomics is an emerging research area aimed at 
the entirety of metal and metalloid species within a cell or tissue, with a goal to 
comprehensively analyze the physiological role of metals/metalloids as well as their 
functions associated with various biomolecules [18, 19]. In 2004, Hiroki Haraguchi 
first described metallomics as “integrated biometal science” [20], after which metal-
lomics has been receiving continuous attentions. As an interdisciplinary scientific 
filed, metallomics is anticipated to develop as a frontier of chemistry, complemen-
tary to genomics and proteomics (Fig. 9.2).

Metallomics covers a wide range of research subjects related to biometals, includ-
ing the distribution and chemical speciation of metals and metalloids in biological 
systems, identification of metal-binding proteins/enzymes, characterization of metal-
binding biomolecules, design of inorganic drugs for chemotherapy, and metabolisms 
of metals and biomolecules [20, 21]. Among them, the distribution and chemical spe-
ciation of metallome in biological samples are considered as the basic research issues 
in metallomics. In the field of medicinal inorganic chemistry, metallomics offers great 
tools for monitoring the cellular behavior of metal-based drugs/agents including their 
intracellular distribution, levels, biotransformation, and interference with other essen-
tial elements, which is critical for evaluation of drug efficacy and tolerance.

Genomics

Metabolomics

Proteomics

Bioinorganicbhemistry

Structural
biology

Fig. 9.2  The 
interdisciplinary feature  
of metallomics. 
Metallomics is an 
integrated biometal science 
that is complementary  
to genomics, proteomics, 
metabolomics, 
bioanalytical and 
bioinorganic chemistry, 
and structural biology of 
metalloproteins
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9.2.2  �Metalloproteomics

It is estimated that about a quarter to one third of all proteins and enzymes are asso-
ciated with metals in biological milieu [2]. Metalloproteins are defined as proteins 
whose function or structural stabilization is conferred by metal cofactors, while the 
concept of metalloproteins should be differentiated from metal-binding proteins, 
which refer to proteins that bind metal ions owing to favorable thermodynamic con-
ditions [22]. As defined by Sarkar et al., metalloproteome is the set of proteins with 
metal-binding capacity by being metalloproteins or possessing metal-binding sites. 
As a branch of metallomics, metalloproteomics aims to recognize the important 
relationship between biometals and proteins [23]. An interesting aspect of metallo-
proteomics is to identify metal-binding proteins, which would be an efficient way to 
reveal novel functions of proteins with metal-binding abilities.

Identification of drug-binding proteins is a critical step toward understanding the 
molecular mechanism of action of a drug. Different from organic compounds that 
often target on a single specific protein, metal-based compounds show strong incli-
nations to attack on multiple protein targets due to the versatile coordination num-
ber and geometry of a metal in complexation with proteins [12, 24]. It is thus 
important to identify the reliable druggable targets as comprehensively as possible 
and to unveil the complicated interactions established among the drug-targeting 
proteins and the large variety of biomolecules within a cell, in order to evaluate the 
full therapeutic potential of a metallodrug.

Conventional comparative proteomics is based on the comparison of the protein 
expression profiles of drug-treated and untreated samples analyzed by the well-
established proteomic techniques, in which the identified up- or downregulated 
proteins provide clues for the cellular responses to the drug [25]. With the aid of high-
throughput metal selection, detection, and characterization techniques developed in 
metallomics, unequivocal identification and characterization on a set of metallopro-
teins, metal-binding proteins, and their metal-binding motifs in a given biological 
sample could be successfully achieved nowadays [26–29]. Metalloproteomic study 
offers metal-specific and complementary information with regard to the metallodrug-
associated proteins at the proteome-wide scale, which enables a holistic picture to be 
obtained on the molecular mechanisms of action of a metallodrug.

9.3  �The Technical Platform in Metallomics 
and Metalloproteomics

As a promising interdisciplinary field, metallomics has manifested its potential in 
various research areas, such as biological chemistry, clinical chemistry, environ-
mental chemistry, and nutrition [19, 30, 31]. Meanwhile, significant progress has 
been made in this field, largely attributed to the rapid development of a variety of 
analytical techniques.
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9.3.1  �Chemical Speciation of Bioactive Metallome

The physiological functions of metals and metalloids (metallome) are substantially 
dependent on their chemical forms and the cellular biomolecules they are associated 
with. In analytical chemistry, quantification and identification of the chemical forms 
of metallic elements is defined as “chemical speciation” [20, 32]. Quantitative 
determination of trace elements in biological samples can be achieved by induc-
tively coupled plasma-mass spectrometry (ICP-MS), which is a highly sensitive and 
robust technique that is capable of detecting a wide range of metals and several 
nonmetals at low concentrations. ICP-MS has the advantage of detecting multiple 
elements simultaneously, making it particularly useful for monitoring metallodrug 
pharmacokinetics, i.e., quantification of metallodrug absorption and distribution in 
different cellular compartments [33, 34]. Recently, time-resolved ICP-MS has 
attracted much attention for elemental analysis in single cells, providing metallome 
information concerning cell-to-cell variations [35, 36]. By applying ICP time-of-
flight mass spectrometry (ICP-TOF-MS), multiparametric analysis of over 30 
receptors at the single-cell level can be achieved similar to that of cytometric analy-
sis, providing insights into a single cell’s response to therapeutics [37]. Hyphenation 
of laser ablation to ICP-MS (LA-ICP-MS) is a powerful tool for in situ probing of 
elemental distribution in biological samples with high spatial resolution (<1 μm) 
and is feasible for quantitative imaging [38]. It uses a high-powered laser to ablate 
the surface of solid samples, e.g., the surface of electrophoresis gels or biological 
tissues. The aerosols formed by the ablated analytes are swept into the ICP source 
by a continuous stream of argon, and the ions formed are analyzed by mass spec-
trometry [39].

Advanced nuclear analytical techniques have also been extensively applied to 
monitor the bioactive metallome [40]. Advances in instrumentation for the third-
generation synchrotron microprobe beamlines have allowed high-resolution spatial 
speciation analysis by synchrotron radiation X-ray fluorescence (SR-XRF) in tis-
sues, cellular compartments, or even individual cells. The X-ray microbeams can 
penetrate sample in depth with resolution up to 0.05 μm [41]. X-ray absorption 
spectroscopy (XAS) is a valuable tool for probing the changes in the chemical envi-
ronment of metal centers, such as metal oxidation states in cells, the coordination 
motif of the probed metal, and the identity and number of adjacent atoms [40, 42]. 
As a noninvasive technique, XAS has been successfully used to follow the biotrans-
formation of metallodrugs in biological fluids [43].

9.3.2  �Metalloproteome Separation and Identification

Many well-established proteomic approaches, in particular the platform for protein 
separation and identification, are applicable for metalloproteomics. However, separa-
tion and identification of metal-binding proteins from a complex biological sample 
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remains challenging since the non-covalently bound metal-protein complexes may 
readily dissociate during analysis, largely owing to the experimental conditions 
employed for better separation efficiencies, e.g., denaturing buffer conditions in the 
presence of detergents and denaturants, the high voltage applied for electrophoresis 
[44]. Moreover, given the complexity of biological samples, it is often necessary to 
perform several fractionation steps to achieve better resolution [45, 46].

Two-dimensional gel electrophoresis (2D-GE) is one of the most widely used 
high-resolution separation techniques in proteomics, although it cannot be coupled 
online to detectors. It separates protein mixtures in the first dimension according to 
the differences in protein isoelectric points (pIs) by isoelectric focusing (IEF), fol-
lowed by the second-dimensional SDS-PAGE (sodium dodecyl sulfate polyacryl-
amide gel electrophoresis) separation that separates proteins according to molecular 
masses. To preserve metal-protein interactions in metalloproteomic analysis, native 
IEF and non-denaturing PAGE separations were often employed. The latter includes 
native PAGE, in which SDS and reducing agents are excluded in the buffer system, 
and blue native (BN)-PAGE, in which coomassie blue dye provides the charges to 
protein complexes, as well as anodal native (AN)-PAGE that performs in a basic 
buffer [47]. The separated proteins are usually visualized by coomassie blue or sil-
ver staining, and the metallic elements on the unstained gels can be detected and 
quantified by LA-ICP-MS or SR-XRF, alongside protein identification by MS tech-
niques after tryptic digestion of the protein spots of interest.

Liquid-based separation techniques such as size-exclusion chromatography 
(SEC), capillary electrophoresis (CE), ion-exchange chromatography (IEC), and 
reversed-phase liquid chromatography (RPLC) employ much softer experimental 
conditions thus favoring the metal-protein integrity during separation [44]. These 
separation techniques are often coupled online/off-line with a variety of mass spec-
trometry [48], including electrospray ionization mass spectrometry (ESI-MS), 
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 
(MALDI-TOF-MS), tandem mass spectrometry (MS/MS), and ICP-MS, which 
allow the position, identity, and the elemental composition of a metalloprotein to be 
determined. Recently, continuous flow column-type gel electrophoresis coupled 
with ICP-MS (GE-ICP-MS) was developed and for the first time applied to complex 
biological samples, allowing the detection of metals and their associated cellular 
proteins simultaneously [28, 49]. Although liquid chromatography is inherently 
limited with regard to resolution, they could constitute one potential separation 
dimension in a multidimensional fractionation strategy [26, 50]. As demonstrated 
by Cvetkovic et al., improved resolution can be successfully achieved by employing 
multiple chromatographic steps for microbial metalloproteome separation, although 
sometimes substantial amounts of protein mixtures as starting materials are required 
(300 mg of total bacterial proteins in [26]).

Immobilized metal affinity chromatography (IMAC) is a metal-specific separa-
tion method for selective enrichment of proteins/peptides with metal-binding abili-
ties [51]. The interactions between proteins and the immobilized metal ions are 
mainly governed by coordination chemistry and the hard-soft acid-base (HSAB) 
theory. Numerous metal ions such as Ni2+, Cu2+, Zn2+, and Bi3+ being chelated on 
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IMAC columns have been applied for analyzing the bio-coordination of metals in 
cells and for exploring the roles of metal-binding proteins in metal homeostasis, 
metal-induced toxicities, protein phosphorylation, and so forth [52]. It is worth 
paying attention that IMAC is not selective to a specific class of proteins since all 
molecules presenting affinity for a specific metal ion have the chance to be retained 
on IMAC column, and proteins with occupied and buried metal-binding sites may 
not be captured by the immobilized metals. Thus, it is important to evaluate the 
possible interfering substances that would inhibit protein binding to the active site 
of the column.

Determining the exact mode of action of a metallodrug is not only to identify 
reliable druggable targets but also to understand the basis of the numerous interac-
tions established between the drug target and a large variety of biomolecules. The 
typical technological platforms for generating the complex sets of data to interpret 
the modes of action of metallodrugs are represented by the omics approaches, such 
as proteomics and genomics that are capable of providing large amounts of qualita-
tive and quantitative information of the proteins and genes in a biological sample, 
and bioinformatics can be subsequently applied to interpret the large collections of 
omics data by incorporating computer tools and statistical methods. However, com-
prehensive identification and functional annotation of proteins/genes are firstly 
needed for this type of analysis.

9.4  �Biotransformation, Cellular Distribution, and Molecular 
Targets of Pt-and Ru-Based Anticancer Drugs/Agents

9.4.1  �Platinum

Platinum-based drugs are nowadays essential components in cancer chemotherapy 
that are highly effective. Cisplatin, cis-diammine-dichloroplatinum(II), is the first 
metal-based drug to enter into clinical use worldwide for the treatment of various 
types of solid tumors. New-generation platinum anticancer drugs such as carbopla-
tin, oxaliplatin, nedaplatin, and satraplatin, which exhibit clinical activity against 
cisplatin-resistant cancers with less side effects, were subsequently developed and 
approved for clinical use [6].

It is well understood that cisplatin and its analogues enter cells by passive diffu-
sion and active transport with the aid of human copper transporter hCTR1, fol-
lowed by intracellular hydrolysis and activation, and subsequent formation of 
intra-strand cross-linked adducts with DNA [53–55]. The in situ cellular distribu-
tions of Pt within human cancer cells after treatment with cisplatin or other Pt-based 
compounds were monitored by synchrotron radiation-induced X-ray emission 
(SRIXE) and microprobe synchrotron radiation X-ray fluorescence (SR-XRF), 
which showed that Pt accumulated more in the cell nucleus than in the surrounding 
cytoplasm, indicating that DNA is the major target of Pt-based compounds, and 
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relatively stable Pt-based compounds may potentially overcome cellular toxicity 
induced by Pt binding to cytoplasmic proteins [56–58]. The complementary use of 
LA-ICP-MS and MALDI MS imaging analysis showed the differences in the pen-
etration and distribution of cisplatin and oxaliplatin in human tumor samples. 
Cisplatin was found to penetrate deeply into the tumors, whereas oxaliplatin was 
mostly identified at the periphery of the tumor tissues. However, results obtained 
from ICP and MALDI MS imaging were not much coherent in the case of cisplatin 
[59]. Very recently, the distribution of platinum-based compounds in multicellular 
tumor spheroids was assessed by LA-ICP-MS with optimized setup, demonstrat-
ing the feasibility of LA-ICP-MS in studying the spatially resolved metal distribu-
tion in a 3D tumor model [60]. Predominant platinum accumulation was found at 
the center as well as the periphery of the spheroids, which corresponds to the 
necrotic core and the proliferating outermost layers of cells, respectively (Fig. 9.3a). 
The deep penetration of platinum into tumor spheroids indicates an increased 
chance of drug damaging nonproliferating tumor cells, which could be taken as a 
criterion for preclinical drug selection [60].

To gain information on the in  vivo distribution of platinum-based anticancer 
agents, quantitative LA-ICP-MS was applied to the tumor and kidney sections of 
platinum-treated mice bearing the preclinical CT-26 tumor model [61]. Correlated 
analysis of the platinum distribution in tumor samples obtained by LA-ICP-MS 
with the histological pictures of a consecutive H&E-stained cryosection showed 
that much higher amounts of platinum were found in areas of (loose) soft tissues 
than in the malignant parts of the tumor samples (Fig. 9.3b). As the extent of drug 
penetration into cancerous tissue is important in estimating the potential of antitu-
mor drug candidates, data on average platinum uptake determined by ICP-MS may 
sometimes lead to biased conclusions. A combined imaging approach consisting of 
LA-ICP-MS, nanoscale secondary ion mass spectrometry (NanoSIMS), and trans-
mission electron microscopy (TEM) was recently applied to the tissue samples of 
tumor-bearing mice upon administration of platinum(IV) compounds, showing 
uneven platinum distribution in the organs [62]. Further subcellular-scale imaging 
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with NanoSIMS and TEM revealed that platinum accumulated mainly in sulfur-rich 
organelles such as lysosomal in the tumor, which is in good agreement with a gener-
ally high affinity of platinum to sulfur.

Platinum(IV) compounds have been extensively explored to replace cisplatin, as 
they are usually more inert than their platinum(II) analogues and have the potential 
to be more resistant to nonspecific bio-interactions. Metal-based compounds with 
high oxidation states are always speculated to be reduced to active species in vivo 
due to the intracellular reduction atmosphere. Indeed, the intracellular reduction of 
Pt(IV) compounds was first observed by using XANES [63]. The proportions of 
Pt(II) and Pt(IV) present in A2780 ovarian cancer cells determined from the peak-
height ratios of XANES spectra revealed that, after 24 h incubation, all Pt in the +IV 
oxidation state was fully reduced to the +II oxidation state. However, the rapid and 
premature reduction of Pt(IV) complexes in vivo is a major impediment to reduce 
the selectivity and activity of Pt(IV) prodrugs toward cancer cells. Nevertheless, by 
use of XANES spectroscopy, Pt(IV) complexes with dicarboxylato equatorial 
ligands were observed to exhibit more inert kinetic properties than their analogous 
with dichloride ligands in the reduced biological context, providing an important 
basis on the design of novel platinum(IV) prodrugs [64].

Although DNA has long been believed to be the primary target of platinum, sev-
eral proteins/enzymes have recently been proposed to be involved in the antitumor 
activities of platinum compounds [65]. The first cisplatin-binding protein in E. coli 
cell extracts was successfully identified using 1D-SDS-PAGE off-line coupled with 
LA-ICP-MS [66]. The protein band corresponding to the most intense Pt peaks was 
found to contain outer membrane protein A, which acted as an ion channel with 
potential relevance for cisplatin uptake. With the aid of LA-ICP-MS, cisplatin-
binding proteins in rat serum and renal proximal tubule epithelial cells (RPTECs) 
were also tracked [67]. A number of proteins such as transferrin, serum albumin, 
α-2-macroglobulin, α and β hemoglobin subunits were identified in the serum sample 
from an in vivo cisplatin-treated rat, which were in accordance with those reported 
cisplatin-binding serum proteins obtained from in  vitro studies. Several proteins 
from RPTECs were identified to contain Pt, including core histones (H2A, H2B, H3, 
H4), 40S and 60S ribosomal proteins, and enzymes such as malate dehydrogenase, 
glyceraldehyde 3-phosphate dehydrogenase, enolase and elongation factor Tu, etc., 
which may have a connection with cisplatin-induced cell type-specific nephrotoxic-
ity. Recently, surface-enhanced laser desorption/ionization time-of-flight mass spec-
trometry (SELDI-TOF-MS) was applied to measure the plasma proteomic profiles of 
rats in response to a new platinum anticancer agent (OC-6-43)-bis(acetato)(1-ada-
mantylamine) ammine dichloroplatinum (IV) (LA-12) [68]. By analyzing 72 rat 
plasma samples randomized according to the LA-12 administration dosages and 
time, the level of retinol-binding protein 4 (RBP4) was identified to be significantly 
correlated with LA-12 level in treated rats. RBP4 could thus serve as a serum marker 
for LA-12 activity. Moreover, in view of the decreased expression level of RBP4 in a 
number of human cancers and the importance of retinol in controlling cellular dif-
ferentiation, the induction of RBP4 levels upon LA-12 treatment may indicate the 
restoration of retinol-induced signaling pathways in cancer cells.
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To obtain a systemic view on the mechanisms of cisplatin toxicity, an integrated 
genomic and proteomic analysis of cisplatin-treated mouse primary hepatocytes 
(PMH) was performed, which enabled the identification of 19 pathways that were 
simultaneously altered, providing novel insights into the possible pathways of 
cisplatin-induced hepatotoxicity [69]. The pathway map constituted by cisplatin-
regulated proteins and genes clearly illustrated that cisplatin perturbs several well-
known pathways such as oxidative stress, drug metabolism, fatty acid metabolism, 
glycolysis and TCA cycle, and also some less known pathways such as urea cycle 
and inflammation metabolism. Alteration of these interconnecting pathways would 
inevitably lead to deleterious effects on human hepatocytes.

9.4.2  �Ruthenium

Ruthenium compounds are regarded as promising alternatives to platinum com-
pounds, as they are often identified as less toxic and generally more selective to 
tumors. Two Ru(III) compounds, trans-[Ru(III)(dmso)(Im)Cl4][ImH] (NAMI-A, 
Im  =  imidazole, dmso  =  dimethylsulfoxide) and trans-[Ru(III)(Ind)2Cl4][IndH] 
(KP1019, Ind = indazole), have successfully completed phase I clinical trials. The 
antitumor activities of other Ru compounds with similar groups of ligands but dif-
ferent modes of reactivity in biological media, such as polypyridyls, arenes, and 
ammines, are attracting great attention as well [70, 71]. Transportation of ruthenium 
compounds into tumor cells via the transferrin pathways serves as an important step 
toward their therapeutic activities, as the transferrin receptors are often overex-
pressed in tumor cells [72].

The first XRF imaging of cellular distribution of Ru in single human neuroblas-
toma cells revealed the distinct cellular fates of KP1019 and NAMI-A [73]. 
Colocalization of Ru with Fe in both the cytosol and nuclear regions could be 
observed after treatment with KP1019. In contrast, no Ru could be visualized in 
cells after treatment with NAMI-A, which is in accordance with the proposed 
membrane-binding mechanism of action of NAMI-A. XRF analysis of analogues of 
KP1019 containing iodinated indazole ligands revealed the identical cellular distri-
butions of Ru and I in single A549 cells [74], indicating the conservation of the 
intact Ru-N bonds in the studied complexes after a series of biological interactions. 
Comparative analysis of the biotransformation of NAMI-A and KP1019 under bio-
logical relevant conditions by XAS suggested that the higher cytotoxicity of KP1019 
than NAMI-A is most likely due to its slower extracellular decomposition, resulting 
in enhanced cellular uptake through passive diffusion [75].

RAPTA (ruthenium organometallic complex based on 1,3,5-triaza-7-
phosphaadamantane) complexes with a general formula of [Ru(arene)(PTA)X2] 
(PTA = 1,3,5-triaza-7- phosphatricyclo-[3.3.1.1]decane, X = halogenide or biscar-
boxylate) are a class of organometallic ruthenium (II) compounds, which exhibit 
remarkable in  vitro and in  vivo antimetastatic effects [76]. A combined metallo-
mics and proteomics study of RAPTA-T (T = chloride) in human ovarian cancer 
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cells revealed the distinct physiological properties of RAPTA-T in comparison 
to cisplatin. The compound is less affected than the platinum-based drugs by the 
detoxification mechanisms in cisplatin-resistant cell lines, evidenced by the altered 
uptake, cellular distribution, and metallation of DNA of RAPTA-T in A2780cisR 
cells [77]. The molecular targets of RAPTA compounds were recently revealed 
by a metallodrug pull-down study [78]. By passing cancer cell lysates through 
RAPTA-analogue-immobilized beads, the high-affinity drug-binding proteins were 
comparatively identified in the presence of a competitive binder (Fig. 9.4). Among 
them a number of cancer-related proteins, including cytokines midkine, pleiotrophin, 
and fibroblast growth factor-binding proteins 3, are identified, which may be asso-
ciated with the antimetastatic and antiproliferative activity of RAPTA compounds.

Owing to the different pharmacokinetic, the combination therapy of Pt- and 
Ru-based drugs is considered of great potential to circumvent drug resistance and 
increase the effectiveness of treatment [79, 80]. Analysis of the binding preference 
of NAMI-A and cisplatin in human plasma by metallomic approaches revealed that 
both drugs interact with essentially the same proteins such as human serum albumin 
precursor, macroglobulin α2, and human serotransferrin precursor, without affect-
ing each other’s metabolism [79, 81]. Cisplatin interacts with proteins much stron-
ger, while the interactions of NAMI-A with proteins are largely reversible, which 
may be contributed to the significantly lower toxicity of NAMI-A [79]. Along with 
the demonstrated efficacy of Pt and Ru drug combination in mice experiments, 
metallomics data provided more mechanistic insights to support further exploration 
of the combination therapy in clinical studies.
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9.5  �Multi-targeted Bi-Based Antimicrobial Drugs

Helicobacter pylori (H. pylori), a transmissible human pathogen strongly related 
to gastrointestinal diseases, is now infecting over half of the world’s population 
[82]. Epidemiological data in 1990, 2002, and 2008 revealed that more than 5% 
global cancer burden was attributable to the infections of H. pylori [83–85], and 
the bacterium was designated as class I carcinogen by the World Health Organization 
(WHO) [86]. Bismuth, the heaviest stable element in the periodic table with a 
highly variable coordination number from 3 to 10, exhibits strong affinities to thio-
late sulfur and oxygen but can be well tolerated by human even at high doses [87]. 
Bismuth-based triple or quadruple therapies, such as colloidal bismuth subcitrate 
(CBS, De-Nol®) and ranitidine bismuth citrate (RBC, Tritec® or Pylorid®) com-
bined with antibiotics, have been commonly recommended for eradicating H. 
pylori in clinic [9].

The uptake of bismuth by H. pylori cells can be rapidly monitored by time-
resolved ICP-MS at the single-cell level [36]. Intact cells are directly introduced 
into ICP-MS, producing spike signals with intensities proportional to the quantity 
of the analyte ions in single cells. The large variation of the observed 209Bi spike 
intensities revealed the significant cellular heterogeneity (Fig. 9.5a), suggesting the 
cells growing at different cell cycle stages that led to distinct cellular responses to 
the metallodrug. CBS-treated H. pylori deposited ca. 1.0 × 106 Bi atoms/cell and the 
uptake process took ~3 h to reach the half maximum (Fig. 9.5b). Interference of 
ferric ions on bismuth uptake was also observed, indicative of competitive transport 
pathways between Bi and Fe (Fig. 9.5c).

Albeit the clinical usage of bismuth-based antimicrobial agents for decades, sur-
prisingly no resistance of H. pylori to bismuth drugs has ever been reported [88]. 
Accumulative studies indicated that the binding of bismuth to multiple proteins, 
particularly some key enzymes, might contribute to their antimicrobial effects. 
Bi-binding proteins in H. pylori have been systematically analyzed by different 
metalloproteomic approaches (Fig.9.6), including Bi-IMAC in combination with 
2-DE [89], partial denatured 1D SDS-PAGE coupled with LA-ICP-MS [90], and 
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the recently developed robust strategy based on online coupling of column-type gel 
electrophoresis with ICP-MS (GE-ICP-MS) [28, 91]. Several common but also 
unique Bi-binding proteins were dug out by different methods, indicating the reli-
ability and complementarity of these strategies. Using GE-ICP-MS, the profile of 
bismuth-associated proteins in H. pylori was established for the first time, and the 
protein fractions corresponding to the major bismuth peaks were subsequently col-
lected and identified by MALDI-TOF-MS. Seven Bi-binding proteins were unequiv-
ocally identified (Fig.  9.6c), including five previously reported proteins UreA, 
UreB, TsaA, CeuE, and Ef-Tu that related to the colonization, antioxidation, and 
translational process of the bacterium, as well as two newly identified proteins 
HP1286 and cell-binding factor 2, involving isoprenoid quinone metabolism and 
toll-like receptor 4 binding, respectively. The observed profile of Bi-binding pro-
teins in H. pylori verified that Bi exhibited its antimicrobial activity via a multi-
targeted mode of action [28].

Bi-IMAC on-column digestion coupled with high-throughput LC-MS generates 
rich information on Bi-protein-binding interfaces [29]. Over 300 nonredundant 
Bi-binding peptides from 166 proteins in H. pylori were identified by 
Bi-IMAC.  Bi(III) exhibits high selectivity toward peptides rich in cysteines and 
histidines with the dominated motif patterns of CXnC, CXnH, and HXnH (Fig. 9.7) 
and may broadly interfere with protein functions. Gene ontology (GO) enrichment 
analysis further characterized the GO categories that enriched by the identified pro-
teins. The identified putative Bi-binding proteins are mainly involved in protein 
metabolic process, GTP catabolic process, and oxidation-reduction process, with 
the functions of RNA binding, transition metal ion binding, protein binding, and 
GTPase activity. Any malfunctions of the related proteins might lead to the bacte-
rium to be eradicated. The versatile modes of action proposed in this study provide 
a rational basis for the high efficacy and low resistance of Bi-based antimicrobials.

Intriguingly, bismuth drugs rarely exert acute toxicity in human. A recent 
systematic pharmacological study offers a potential explanation for the selective 
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action of bismuth on certain pathogens [92]. Quantitative analysis of bismuth 
metabolism in human cells revealed that over 90% of bismuth was passively 
absorbed, conjugated to glutathione, and transported into vesicles via multidrug 
resistance protein (MRP) transporter. The consumption of intracellular glutathione 
activates de novo biosynthesis of glutathione, which subsequently facilitates the 
passive uptake of bismuth and thus completes a self-propelled positive feedback 
loop. This mechanism robustly removes bismuth from both intra- and extracellular 
space, protecting cells from acute toxicity. Glutathione is thus the key for the selec-
tivity of bismuth drugs between human and pathogens that lack of glutathione, for 
instance H. pylori.

9.6  �Cytotoxicity of Metallic Nanoparticles

The number of publications dealing with the toxicity of nanoparticles (NPs) is 
increasing steadily. Applications of NPs in medicine as diagnostic and therapeutic 
agents [13, 93], the interactions of NPs with proteins and other biomolecules [94, 
95], as well as the advanced analytical techniques [64, 96] developed for nanotoxi-
cology have been well summarized and critically commented in many reviews. 
Herein, we will focus on the uptake, distribution, transformation, and bio-nano 
interactions as revealed by metallomics and metalloproteomics.

Understanding the chemical transformation during intracellular processes of 
NPs is vital to evaluate their toxicity. However, it is a great challenge to capture 
image of metallic NPs with high resolution in a single cell and to monitor the chemi-
cal transformation of intracellular NPs. By integrating synchrotron radiation-beam 
transmission X-ray microscopy (SR-TXM) and SR-X-ray absorption near edge 
structure (SR-XANES) spectroscopy, 3D spatial distribution of AgNPs inside single 
human monocyte (THP-1) cells and the chemical transformation of silver were cap-
tured (Fig. 9.8). It was found that the cytotoxicity of AgNPs was largely due to the 
chemical transformation of silver from elemental silver (Ag0)n to Ag+ ions and 
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Ag-O-, then Ag-S- species, which provides direct evidence for the long-lasting 
debate on whether the nanoscale or the ionic form dominates the cytotoxicity of 
silver nanoparticles [97]. Furthermore, the present approach together with physio-
logical tests provides an integrated strategy capable of exploring the chemical trans-
formation and cytotoxicity in metallic nanoparticles in general.

Apart from the in situ monitoring of the distribution and transformation of metallic 
nanoparticles, approaches to simultaneously separate and quantify metallic nanopar-
ticles and free metal ions are also necessary. Full spectrum separation, characterization, 
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and quantification of various Ag+ species (i.e., free Ag+, weak and strong Ag+ com-
plexes) and AgNPs with different sizes were achieved by online coupling of hollow 
fiber flow field-flow fractionation (HF5) and minicolumn concentration with multiple 
detectors (including UV-vis spectrometry, dynamic light scattering, as well as 
ICP-MS) [98]. Among the multiple components of the hyphenated device, HF5 was 
employed for filtration and fractionation of AgNPs (>2 nm), while the minicolumn 
packed with Amberlite IR120 resin was used to trap free Ag+ or weak Ag+ complexes 
from the radical flow of HF5 together with the strong Ag+ complexes and tiny AgNPs 
(<2 nm), which were further discriminated in the second run of focusing by aiming to 
oxidize more than 90% of tiny AgNPs to free Ag+ and trapped in the minicolumn. The 
feasibility of the new method was well verified by comparison with the results 
obtained from transmission electron microscopy and further confirmed the satisfac-
tory recoveries for seven silver species, including Ag+, Ag+-cysteine, and five AgNPs 
with diameters of 1.4 nm, 10 nm, 20 nm, 40 nm, and 60 nm in surface water samples. 
This approach has a great potential to study the fate and transformation of AgNPs and 
Ag+, as well as other engineered NPs in environment and healthcare.

Considering the synchrotron radiation-based facilities are not readily accessible, 
LA-ICP-MS is a good alternative for elemental bioimaging in cell/tissue due to its 
convenience, high sensitivity, as well as spatial resolution. LA-ICP-MS was utilized 
for subcellular mapping of the distribution of AgNPs and AuNPs in single fibroblast 
cells [99]. High spatial resolution with visualization of subcellular structures was 
achieved after optimization of ablation/scanning parameters, i.e., scan speed, abla-
tion frequency, and laser energy, and the results demonstrated that nanoparticles 
were accumulated in the perinuclear region with a dose and time dependence. The 
precise quantification of the number of AgNPs and AuNPs at the single-cell level 
was achieved with a matrix-matched calibration using nitrocellulose membranes 
doped with nanoparticle suspension, which can be further extended to the quantifi-
cation of other metallic nanoparticles.

Systematic investigation of the cellular response of nanoparticles at metabolomics 
level is another useful approach to evaluate toxicity of nanoparticles. NMR, GC-MS, 
and CE-LC-MS are the main techniques involved in analyzing metabolic alterations 
upon treatment of NPs systematically. The comparative responses of human alveolar 
adenocarcinoma epithelial cells (A549) and normal bronchial epithelial cells 
(16HBE) exposed to Au nanorods (Au NRs) showed that Au NRs are translocated 
from the lysosome to the mitochondria in A549 cells but not in normal 16HBE cells. 
NMR-based metabolomic technique was also applied to analyze the metabolic 
changes in Au NR-induced A549 and 16HBE cells, revealing time-dependent and 
cell-specific metabolic response of tumor cells and normal cells to protein-coated Au 
NR exposure [100]. Modulation of the microenvironment by suppressing the levels 
of lactate as well as induction of severe oxidative stress and subsequent cell death in 
tumor cells compared with normal 16HBE cells might be the main factors involved 
in selectivity and cell-specific toxicity of the protein-coated Au NRs, demonstrating 
the potential of metabolomic techniques in screening anticancer nanodrug candidates 
and elucidating molecular mechanisms of their action.

Besides the uptake, transformation, and distribution of NPs, there is an urgent 
need to investigate the molecular targets and mechanisms underlying the cellular 
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responses that might be triggered by NPs. Conventional 2-DE combined with 
MALDI-TOF-MS has been extensively applied in identification of up- or down-
regulated proteins in different organisms post to metallic NPs [101]; however, only 
limited information has been obtained due to the compromised separating resolu-
tion of 2-DE. Using MS-based shotgun proteomics and quantifying peptides with 
labeling of iTRAQ could be a better option to gain an insight into the alteration of 
protein levels induced by NPs. The toxicity of AgNPs evaluated in human colon 
carcinoma cell line (LoVo), an in vitro model of the human intestinal tract by iTRAQ 
[102] showed that some unique cellular processes are driven by the size of NPs. The 
20 nm nanoparticles induced direct effects on cellular stress, including generation 
of reactive oxygen species and protein carbonylation. In addition, proteins involved 
in SUMOylation were upregulated after exposure to 20 nm AgNPs, whereas the 
100  nm nanoparticles exerted indirect effects via serine/threonine protein kinase 
(PAK), mitogen-activated protein kinase (MAPK), and phosphatase 2A pathways. 
MS-based proteomics are capable of accurately identifying and quantifying pro-
teins involved in cellular events, providing information about protein-protein inter-
actions, which cannot be achieved by other nuclear techniques.

Despite of the extensive researches on the underlying mechanisms of nanotox-
icity, there is still a paucity of comprehensive biological and toxicological informa-
tion in this area. To facilitate the study of toxicity of NPs, it is necessary to develop 
novel techniques with non-destructiveness, high sensitivity for in situ monitoring 
of their bio-interactions [64]. Additionally, integrated methodologies to reveal the 
nanotoxicity at genome, transcriptome, proteome, metabolome, and metallome 
levels will allow to gain a whole scenario on their toxicological mechanisms. A 
good showcase study is to investigate how Chlamydomonas reinhardtii responses 
to silver contamination at proteome, transcriptome, and cellular levels by microar-
ray and multidimensional protein identification (MudPIT) [103]. Such information 
is particularly important to assess potential health risks arising from the use of NPs 
and for rational design of novel NPs for clinical application. Besides, scientists 
from different disciplines of materials, chemistry, physics, biology, microbiology, 
and medicine can work together to tackle the crisis caused by the increasing usage 
of NPs [95].

9.7  �Conclusion and Perspective

Metallomics and metalloproteomics in combination with chemical biology and bio-
informatics approaches have significantly facilitated the in-depth understanding of 
the cellular fate of metallodrugs, as well as the functional connections between 
metallodrugs and numerous biomolecules. Such knowledge combined with clinical 
data would allow more effective metallodrugs with low toxicity and high therapeu-
tic indices to be rationally designed. Many methodologies have been implemented 
into metallomics and metalloproteomics as described in this chapter, with pros and 
cons for each of them. In spite of remarkable progress being made, the exact mode 
of action and toxic mechanisms of many metal-based drugs/agents are still elusive, 
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largely owing to the intrinsic complex nature of the biological system. Continuous 
efforts are required to improve the current analytical approaches and to introduce 
innovative methodologies in the hope of establishing an integrated platform to 
unveil the role of metals in biology.
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