Professional

SharePoint 2007 Web
Content Management
Development

Building WCM Sites with Office SharePoint Server

Andressy Connell, Spencer Harbar

Professional

SharePoint® 2007 Web Content
Management Development

Building Publishing Sites with Office SharePoint
Server 2007

Andrew Connell

WILEY
Wiley Publishing, Inc.

Professional

SharePoint® 2007 Web Content
Management Development

0T =TT o xxiii
INtroductioncccciiiiiiir i na XXV
Chapter 1: Embarking on Web Content Management Projects..........ccccemunnnene 1
Chapter 2: Windows SharePoint Server 3.0 Development Primerccceuueus 19
Chapter 3: Overview of Web Content Management in Microsoft Office
SharePoint Server 2007cccirrmirrmireresmresrrss s snsas 39
Chapter 4: SharePoint Features and the Solution Framework......................... 51
Chapter 5: Minimal Publishing Site Definitioncccovimiiiiiciinciin e 69
Chapter 6: Site Columns, Content Types, and Listsccccevmvmicvrerrnnnnnnnanes 89
Chapter 7: Master Pages and Page Layouts.........c.ccccveimimimimnnnenecesnsssnsanases 109
Chapter 8: Navigation.......c.ccimimiiiiiiiiiir s s e 137
Chapter 9: Accessibility.....cccoimiiiiiiiiirr 145
Chapter 10: Field Types and Field Controls..........ccccermimrmimrminrminsresnrnsnncnns 157
Chapter 11: Web Partsccccciiimiiimiiiinir s s ss s s s s s s s snssssnsnnss 179
Chapter 12: Leveraging Workflow.........ccccviiiieimreimsresmresnssssssesssssssssassasanss 211
Chapter 13: SearChcccccieiiirirrire s s s s s s s s s s s s mnmnmnmnnss 241
Chapter 14: Authoring Experience Extensibilityccecviiiiiiiiiiiinnaane, 269
Chapter 15: Authentication and Authorization..........c.cvcveieeciiicrcre e e e 291
Chapter 16: Implementing Sites with Multiple Languages and Devices........ 305
Chapter 17: Content Deploymentcccoiimiieimirinsrrn s s rnn s 321
Chapter 18: Offline Authoring with Document Converters.........ccccevrevernnnnns 345
Chapter 19: Performance Tips, Tricks, and Traps.......cccvcvirirermraresnsssrararasannns 369
Chapter 20: Incorporating ASP.NET 2.0 Applications.........ccccvvmimiminnnrereinnnns 385

Professional

SharePoint® 2007 Web Content
Management Development

Building Publishing Sites with Office SharePoint
Server 2007

Andrew Connell

WILEY
Wiley Publishing, Inc.

Professional SharePoint® 2007 Web Content Management
Development: Building Publishing Sites with
Office SharePoint Server 2007

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-22475-5

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data:

Connell, Andrew, 1976~
Professional SharePoint 2007 Web content management development : building publishing sites with
Office SharePoint server 2007 / Andrew Connell.
. om.
Includes index.
ISBN 978-0-470-22475-5 (paper /website)
1. Web site development—Computer programs. 2. Web sites—Management.
3. Database management. 4. Microsoft Office SharePoint server. 1. Title.
TK5105.8885.M54C66 2008 006.7'8—dc22
2008016811

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is
referred to in this work as a citation and /or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may make. Further,
readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. Microsoft and SharePoint are registered trademarks of Microsoft
Corporation in the United States and/or other countries. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

To my lovely and inspiring wife, Meredith, and my son, Steven, who always manages
to put a smile on my face. I'm truly a lucky man.
—AC

About the Author

Andrew Connell has a background in content management solutions and Web development that spans
back to his time as a student at the University of Florida in the late 1990s managing class sites. He has
consistently focused on the challenges facing businesses to maintain a current and dynamic online
presence without having to rely constantly on Web developers or have a proficiency in Web technologies.

In 2005 and 2006 he was designated a Microsoft Most Valuable Professional (MVP) for Microsoft Content
Management Server for his contributions to the MCMS community. When the functionality of MCMS
was merged into the SharePoint platform, he became a MOSS MVP (2007 and 2008). Andrew has
contributed to numerous MCMS and SharePoint books over the years.

He has spoken on the subject of MOSS 2007 development and WCM at various events and national
conferences such as TechEd, SharePoint Connections, VSLive, Office Developer Conference, and the
Microsoft SharePoint Conference.

Technology is not only Andrew’s job, but also a personal passion: He thrives on expanding his technical
knowledge. When not in front of his computer, he enjoys football, golf, the beach, and spending time
with his family. He lives in Jacksonville, Florida, with his wife, Meredith, his son, Steven, and their two
dogs. You can always find Andrew online at his SharePoint development and WCM-focused blog at
www . andrewconnell.com/blog.

About the Technical Editors

The technical editing of this book was performed by quite a few industry experts, all of whom served
a pivotal role in ensuring that the content and code samples in this book are factually correct:

Q J. Dan Attis (www.devcow.com/blogs/jdattis), Microsoft MVP for Windows SharePoint
Services, has been heavily involved in the local developer community in the Atlanta, Georgia
area for nine years. He has been known to spend many nights and weekends working to
promote SharePoint in the community as a development platform. He is a stickler for details
and an ideal choice for editing the book.

Q Jason Conway (http://weblogs.asp.net/jasonconway) is a senior application developer
and team lead for Ascentium, with over a decade of experience delivering custom solutions in
a large range of markets and industries. He now applies that experience to designing and
developing solutions for corporate intranets and extranets using SharePoint 2007.

Q Stefan Gordon (www.stefangordon.com) is a software architect with Ascentium, an avid
blogger, and a dedicated SharePoint evangelist.

Q Cale Hoopes (http://calehoopes.blogspot.com) is a mountaineer, application developer
with Ascentium, SharePoint enthusiast, musician, gamer, and beloved husband.

Q Jared Lasater is an application developer with Ascentium. He has been working with SharePoint
2007 since Beta 2 and has developed a wide range of enterprise solutions for clients, including
intranets, extranets, and collaboration and publishing portals.

About the Technical Editors

viii

a

George Olson is a developer in the portals and collaboration practice at Ascentium and is an
expert in designing and developing custom SharePoint workflows as part of large enterprise
solutions.

Michael Panciroli is a solutions architect with Ascentium who successfully delivered the first
Technology Adoption Program (TAP) project for Office SharePoint Server. He architects custom
enterprise solutions with SharePoint to deliver corporate intranets and partner extranets in the
health care, automotive, and online retail verticals.

Brendon Schwartz (http://blogs.sharepointguys.com/brendon) is a principal consultant
in Atlanta, Georgia, specializing in SharePoint 2007. A Microsoft MVP for Microsoft Office
SharePoint Server, Brendon is also a co-author of Professional SharePoint 2007 Development (Wiley,
2007), author of several magazine articles, a conference speaker, and co-founder of the Atlanta
.NET Regular Guys, which is hosted at DevCow (www . devcow . com).

Clint Simon (www . ascentium.com/blog/sp) is a technology lead with Ascentium who draws
on his vast experience with SharePoint to create innovative development and platform tools for
SharePoint; his advancements extend and enhance SharePoint as a custom application
development platform.

Patrick Tisseghem (www.u2u.info/Blogs/Patrick) is a managing partner at U2U,

a SharePoint training company in Belgium. Patrick is also a Microsoft MVP for Windows
SharePoint Services and author of Inside Microsoft Office SharePoint Server 2007 (Microsoft
Press, 2007).

Roxana Tzau has many years of experience as a Web developer and helped build one of the
largest corporate intranet portals within Microsoft using SharePoint Server 2007 with
Ascentium. She continues to develop solutions for enterprise corporate intranets by extending
the SharePoint platform.

Thomas Wyrick is a Senior Software Engineer at the Ascentium Corporation and has had part in
delivering enterprise class solutions on the Microsoft platform.

Acquisitions Editor
Katie Mohr

Development Editor

Kenyon Brown

Technical Editors
J. Dan Attis

Jason Conway
Stefan Gordon
Cale Hoopes
Jared Lasater
George Olson
Michael Panciroli
Brendon Schwartz
Clint Simon
Patrick Tisseghem
Roxana Tzau
Thomas Wyrick

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Credits

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Jennifer Larsen, Word One

Indexer
Robert Swanson

Acknowledgments

No project of this size can come be completed in a vacuum. I asked some of my trusted associates to
contribute to the book by writing a few of the chapters. First and foremost, I want to thank Spencer
Harbar (www.harbar .net), MVP for Office SharePoint Server, a good friend who I met in the days of
Microsoft Content Management Server 2002. Spencer was instrumental in developing the structure and
approach of this book, acting as a sounding board for various decision points in the process. He also
contributed Chapter 3, “Overview of Office SharePoint Server 2007 and Web Content Management,”
and Chapter 17, “Content Deployment.” Bob German (http: //blogs.msdn.com/bobgerman)
contributed Chapter 1, “Embarking on Web Content Management Projects,” and Chapter 16,
“Implementing Sites with Multiple Languages and Devices.” Matt McDermott (http://blogs
.catapultsystems.com/matthew), MVP for Office SharePoint Server, contributed Chapter 13,
“Search,” and John Holliday (www.johnholliday.net), MVP for Office SharePoint Server, contributed
Chapter 5, “Minimal Publishing Site Definition.”

I also want to thank those at Microsoft who provided support, as well as those who assisted in
answering some of the technical questions: Arpan Shah, Ryan Duguid, Lawrence Liu, Jim Masson,
George Perantatos, and Tyler Butler.

No technical book is complete without a solid review to ensure that the code compiles and the text in the
chapters is factually correct. Many members of Ascentium were instrumental in reviewing the book.
Ascentium is an interactive marketing and technology consultancy that delivers solutions ranging from
interactive marketing, customer relationship management, business intelligence, portals, and
collaboration to application and product development and infrastructure management. A special thanks
to Jason Conway, who coordinated the review efforts of Stefan Gordon, Cale Hoops, Jared Lasater,
George Olson, Michael Panciroli, Clint Simon, Roxana Tzau, and Thomas Wyrick. I'd also like to thank
my fellow SharePoint MVPs Patrick Tisseghem and especially Dan Attis and Brendon Schwartz, who
reviewed a handful of chapters in a very short amount of time.

I'would like to thank everyone at Wiley Publishing who helped me get this book to you. Like all projects
of this magnitude, the original plans were thrown out the window a few times when unexpected turns
presented themselves. Katie Mohr, Jim Minatel, and Kenyon Brown made this a fun and rewarding
experience.

In addition, I'd like to thank all of my former students who spent a week with me attending my Office
SharePoint Server 2007 Web Content Management class for developers (www.andrewconnell. com/
go/299), and those who left comments on my blog (www . andrewconnell.com/blog). All of you were
instrumental in helping with the development of the presentation of topics covered in this book and

I greatly appreciate the dialog we have shared.

Finally, Id like to thank those in the MVP SharePoint community for the energetic, passionate,
challenging, and at times insane discussions that we share on a private distribution list. I cannot express
how privileged I feel to be among some of the best and brightest minds in the SharePoint field. Hats off
to April Spence, Melissa Travers, and Lawrence Liu at Microsoft for all they have done to help build,
facilitate, and bring this community together.

Contents

Foreword xxiii
Introduction XXV

Chapter 1: Embarking on Web Content Management Projects 1
The Web Content Management Experience 2
Authors and Editors 2
Designers and Developers 4
Designing and Planning a Successful WCM Solution 7
Use Case Scenarios 7
Site Structure and Navigation 7
Page Layouts and Content Types 10
Supporting Content: Images, Attachments and Reusable Content 11
Site Definitions 12
Roles and Permissions 13
User Profiles and Targeting 14
Search Strategy 15
Summary 16
Chapter 2: Windows SharePoint Server 3.0 Development Primer 19
SharePoint Architecture 19
SharePoint on the File System and in Internet Information Services 21
SharePoint Site Topology 22
SharePoint Administration 24
Central Administration 24
Site Settings 24
List Settings 25
STSADM.EXE 26
WSS 3.0 and ASP.NET 2.0 Development 27
Like ASP.NET 2.0 27
Unlike ASP.NET 2.0 29
Types of Pages 31
Site Pages 31

Application Pages 32

Contents

Uncustomized Versus Customized Files 32
Customization versus Development 34
SharePoint Customization 34
SharePoint Development 35
Introducing the Microsoft.SharePoint Namespace 36
Debugging in WSS 3.0 37
Summary 38
Chapter 3: Overview of Web Content Management in Microsoft
Office SharePoint Server 2007 39
Web Content Management on the Microsoft Platform 39
Microsoft Office SharePoint Server 40
The ABCs of Web Content Management 42
Authoring 42
Branding 43
Controlled Publishing 43
Publishing Sites 44
Site Collections 46
Shared Services Providers 46
Microsoft.SharePoint.Publishing Namespace 47
Summary 49
Chapter 4: SharePoint Features and the Solution Framework 51
Overview of SharePoint Features 51
Anatomy of a Feature 52
Feature Scope 53
Element Manifests 54
Feature Receivers 55
Feature Administration 56
Feature Dependencies and Stapling Features 57
Creating Features Using Visual Studio 59
Overview of WSS Solution Packages 59
Anatomy of a WSS Solution Package 60
Solution Deployment 63
Creating WSS Solution Packages 63
Summary 67

Xiv

Contents

Chapter 5: Minimal Publishing Site Definition 69
Elements of a Publishing Site 70
The Pages Library 70
Styles and Images 70
Master Pages and Page Layouts 70
Content Types 71
Examining the Publishing Portal Site Definition 71
Publishing Feature PublishingWeb 72
Publishing Feature Publishing 72
Publishing Feature PublishingSite 73
Publishing Feature PublishingPrerequisites 73
Publishing Feature PublishingResources 73
Publishing Feature PublishinglLayouts 73
Publishing Feature Navigation 74
Publishing Feature PublishingStapling 74
The Challenge with the Publishing Portal Site Definition 74
Creating a Publishing Site Definition 74
The Significance of Site Definitions 75
Custom Site Provisioning 76
The WEBTEMP File 79
The ONET.XML File 80
The Feature Manifest 87
The Feature Elements 88
Deploying and Testing the Custom Site Definition 88
Summary 88
Chapter 6: Site Columns, Content Types, and Lists 89
Site Columns 90
Site Column Names and IDs 90
Creating Site Columns 91
Content Types 94
Content Type IDs 95
Creating Content Types 96
Role of Site Columns and Content Types in Publishing Sites 929
Lists 100
Special Publishing Lists 100
Creating Lists 102
Accessing Lists via the SharePoint API 106
Summary 107

XV

Contents

Chapter 7: Master Pages and Page Layouts 109
Page Rendering Process Overview 109
Master Pages in Publishing Sites 110

Types of Master Pages 110
Master Page Tokens 113
Creating Master Pages 115
Incorporating Design Elements 123
Page Layouts 124
Creating Page Layouts 124
Adding Content Regions: Field Controls and Web Part Zones 130
Building Master Pages and Page Layouts As Templates 133
Delegate Controls 133
Creating Delegate Controls 134
Summary 136

Chapter 8: Navigation 137
ASP.NET 2.0 Navigation Provider Model 137
Customizing Site Navigation 138

Browser-Based Customizations 138
Customizing the Navigation Control 139
Customizing the Navigation Site Map Data Source 140
Customizing the Navigation Provider 140
Customizing Navigation with the API 141
Creating Custom Navigation Components 142
Performance and Usability Considerations 142
PortalSiteMapProvider 142
Table of Contents Web Part 144
Summary 144

Chapter 9: Accessibility 145
What Is an Accessible Web Site? 145
Measuring Accessibility 146

WCAG 1.0 147
WCAG 2.0 149
United States Rehabilitation Act of 1973 Section 508 150
W3C Markup Validation Service 151
Advantages to Creating Accessible Web Sites 151
Creating Accessible SharePoint Sites 152
Challenges to Creating Accessible SharePoint Sites 153

Xvi

Contents

Accessibility Kit for SharePoint 154
Position and Goals of the AKS 155
Installation and Implementation 155

Summary 156

Chapter 10: Field Types and Field Controls 157

Overview of All the Moving Parts 158

Creating Custom Field Types and Controls 159
Creating a Custom Field Type 160
Creating a Custom Field Type Definition 160
Creating a Custom Field Value 162
Creating a Custom Field Control 164
Adding Design-Time Rendering Preview 170
Adding Custom Data Validation 172

Creating Custom Field Controls without Custom Field Types 173

Implementing Custom Field Controls in Page Layouts 177

Summary 178

Chapter 11: Web Parts 179

Adding Web Parts to Web Part Zones 180
Using Web Parts in Publishing Sites 180

Creating Custom Web Parts 181
Creating ASP.NET Web Parts, Not SharePoint Web Parts 182
Advanced Web Part Techniques 182
Creating a Weather News Web Part 184
Making ASP.NET Web Parts Work in SharePoint Sites 191
SharePoint Web Part Deployment Options 192

MOSS 2007 Publishing Web Parts 195
Summary Links Web Part (and Field Control) 196
Table of Contents Web Part 197
Content Query Web Part 197
Advanced Content Query Web Part Customization 199
Implementing a Customized CQWP Solution 204
Deploying Customized Content Query Web Part Customizations and Renderings 207

Summary 208

Chapter 12: Leveraging Workflow 211

Understanding Windows Workflow Foundation 211

Windows Workflow Foundation Terminology and Architecture 212

xvii

Contents

Activities 214
Types of Workflows 214
Creating Custom Workflows 215
Developing Custom Workflows with Visual Studio 215
Overview of SharePoint’s Workflow Proposition 215
Architecture 216
Terminology 216
History and Task Lists 218
Interacting with Users with Forms 219
Workflow in SharePoint Publishing Sites 220
Overview of the Parallel Approvers Workflow 220
Creating Custom Workflows for SharePoint Publishing Sites 221
Creating Workflows with SharePoint Designer 221
Creating Workflows with Visual Studio 221
Summary 240
Chapter 13: Search 241
Planning for Search 242
Issues 242
Questions to Ask 242
Search Is a Business Problem 244
Search Center Design and Configuration 244
Search Center vs. Search Site 244
Results Page Anatomy 247
Search Results Configuration 248
Enhancing Search Results with Pivot 250
Adding Fields to the Results 252
Empty Results 256
Search Administration and Configuration 256
Central Administration 258
Site Collection Search Settings 258
Thesaurus File Configuration 259
Thesaurus Files 259
Noise Word Configuration 261
Advertising OpenSearch Capability 261
Telling the Browser Where to Search 262
Telling Applications Where to Search 264
Custom Enhancements for Search 265
BDC Integration with Search 265
Business Value from Structured Data 266
Microsoft Search Server 2008 Express 266
Summary 267

xviii

Contents

Chapter 14: Authoring Experience Extensibility

269

Customizing SharePoint Navigation with Custom Actions
Offline Authoring with Document Converters
Edit Model Panel
Customizing the HTML Editor Field Control
Enabling and Disabling Buttons
Adding Custom Buttons
Customizing Available CSS Classes
Telerik RadEditor Lite for MOSS
Customizing the Page Editing Toolbar
Creating Page Editing Toolbar Actions
Adding Items to the PET Page Editing Menu
Adding Buttons to the PET Quick Access Buttons
Deploying Page Editing Toolbar Customizations
Summary

Chapter 15: Authentication and Authorization

269
271
272
273
273
274
278
279
280
281
283
284
285
289

291

SharePoint Security Components

Permission Rights

Permission Levels

SharePoint Groups

Securable Objects

Additional Publishing Security Components
SharePoint Security via the API
Alternate Access Mappings
Authentication Provider Model

Configuring Forms-Based Authentication
Anonymous Access
Summary

291
291
292
293
293
293
295
296
296
297
302
304

Chapter 16: Implementing Sites with Multiple Languages and Devices 305

Developing Multilingual Web Sites
Installing the Language Packs
Using Variations
Building Language-Agile Features
Targeting Devices with Variations
Creating Variations for Mobile Devices
Redirecting Mobile Users
Master Pages, Page Layouts, and Style Sheets
Summary

305
307
308
311
318
318
318
319
319

Xix

Contents

Chapter 17: Content Deployment 321
Content Deployment Fundamentals 322
Paths 323
Jobs 324
Quick Deploy Jobs 324
Configuring Content Deployment 325
Content Deployment Walkthrough 327
Example Scenario 327
Creating Paths 328
Creating Jobs 330
Running Jobs 334
Leveraging Quick Deploy Jobs 337
Using the Content Deployment API 337
Using the Content Migration API 339
Incremental Deployment 342
Summary 344
Chapter 18: Offline Authoring with Document Converters 345
Document Converter User Experience 346
Overview of the Document Converter Architecture 347
Updating Copy Files Post-Conversion and File Linkages 348
Conversion Priorities 349
Using Document Converters to Create Publishing Pages 349
Document Converter Configuration 350
Configuring Document Converter Services 350
Configuring Document Converter Content Types 352
Out-of-the-Box Document Converters 352
Word Document and Word Document with Macros to Web Page 352
InfoPath Form to Web Page 353
XML to Web Page 353
Creating Custom Document Converters 353
Creating the Document Converter 354
Creating the Document Converter Application 354
Deploying Custom Document Converters 359
Adding Settings to Document Converters 360
Working with Document Converters via the Object Model 366
Summary 367

XX

Contents

Chapter 19: Performance Tips, Tricks, and Traps 369
SharePoint Caching Options 370
Page Output Caching 370
Object Caching 371
Disk-Based Caching (BLOB Cache) 372
Limiting the Page Payload 372
SharePoint’s CORE.JS 374
Browser Cache and Content Expiration 378
Performance Programming Techniques 378
.NET Framework Disposable Objects 379
Working with SharePoint Disposable Objects 380
Working with Collections 381
Querying/Aggregating Data via the API 382
Summary 383
Chapter 20: Incorporating ASP.NET 2.0 Applications 385
Each Component Adds More Value 386
What ASP.NET 2.0 Brings to the Table 386
What WSS 3.0 Brings to the Table 387
What MOSS 2007 Brings to the Table 388
Advantages to Using SharePoint As an Application Development Platform 389
Incorporating Applications into SharePoint Sites 390
Implementing One or More Web Parts 390
Provisioning Site Pages 391
Application Pages 392
Data Storage Options 392
SharePoint Lists 392
External Database 394
Application Configuration Options 394
Utilizing SharePoint Components in Custom Applications 396
SharePoint Navigation 396
Leveraging SPGridView 397
Creating and Managing Custom Security Roles 399
Summary 401
Index 403

XXi

Foreword

The importance of Web technology has increased tremendously over the last few years. People rely on
the Internet to find and research information, interact with applications, connect with people, and make
purchases. In a world where storage is becoming cheaper and broadband access is becoming increasingly
ubiquitous, companies both small and large are competing for the attention of an entire generation that
has grown up with applications such as MSN, Facebook, and YouTube. The ability of a corporation to
deliver a compelling Web experience is not just important, but essential to stay alive. If your content is
not relevant, then you'll lose your business to your competitors with a simple Internet search.

For more than a decade, many software vendors have addressed the Web content management (WCM)
need with specialized, vertical software. I remember when Microsoft acquired NCompass Labs in 2001
for its WCM technology and released subsequent versions of Microsoft Content Management Server
(MCMS). In fact, that’s when I first met Andrew, when he was working closely with MCMS 2002 and
developing cutting-edge applications. While MCMS met the needs for WCM, the consistent feedback
from customers was that Web content management was a misnomer. It’s not “Web content”
management; it’s content management for Web applications. This means it’s important for a technology
to really take a look at the entire life cycle of all content that eventually makes its way to the Web —
intranet, extranet, or Internet site.

We listened and made the decision to merge the MCMS and SharePoint teams to deliver on the vision of
a single platform for managing enterprise content. In late 2006, we released Microsoft Office SharePoint
Server (MOSS) 2007, which not only provides rich out-of-the-box WCM capabilities, but also provides a
platform for end-to-end enterprise content management. With its rich set of APIs and extension points, it
can be extended in many ways to meet very specific customer needs. Of course, as Stan Lee, creator of
Spider-Man, appropriately stated, “With great power comes great responsibility” — it’s important to
understand when and how to extend the platform.

In this book, Andrew has done an excellent job of stepping through all the different ways you can extend
and customize MOSS to meet your specific WCM needs. His in-depth experience and knowledge really
shine as he covers topics from development methodology and content deployment to tips and tricks.
That makes Professional SharePoint 2007 Web Content Management Development a must-have book not only
for every SharePoint developer interested in WCM, but also for all SharePoint developers.

Arpan Shah

Director, SharePoint Technical Product Management
Microsoft Corporation
http://blogs.msdn.com/arpans

Introduction

In late 2003 I joined a Fortune 500 in Jacksonville, Florida, as your typical .NET developer, focusing
mostly on ASP.NET. I was immediately assigned the role of technical lead on the new corporate Internet
site that would be implemented using Microsoft Content Management Server (MCMS) 2002. Up to that
point I had worked with many homegrown content management systems in previous jobs. I quickly
latched on and really enjoyed the flexibility of MCMS. Once that project was launched, I moved into the
role of technical lead for our new corporate intranet site, which was to be implemented using SharePoint
Portal Server 2003. We quickly had a need for both content management and collaboration, and merged
the two products together to create a very impressive implementation for our customer base.

I find it amusing that at the same time we were doing this, the wheels were in motion at Microsoft to
take the best concepts and capabilities from MCMS and implement them on the SharePoint platform,
resulting in Office SharePoint Server’s (MOSS) Web Content Management (WCM) capabilities. After
watching the void for a good book on MOSS WCM development topics sit unfilled, and after many
people at conferences and community events asked me, “Where is your WCM book?”, I decided to do
something about it, which resulted in what you are holding in your hands. I am incredibly proud of both
this book and those who were involved in the project.

One approach I took in this book was not to dwell on the more common minutia of creating projects in
Visual Studio, or the huge topics of core Windows SharePoint Services (WSS) 3.0 development or
SharePoint administration. These topics warrant their own books, and throughout this book you will
find recommended resources for these topics. This book does cover some subjects that have their roots in
WSS, but they are presented within the context of a Publishing site.

Finally, this book approaches every topic of implementation from the perspective of SharePoint
customization and SharePoint development. While one implementation may seem to be better than the
other, I take no position on either, as my goal is to simply educate readers about the advantages and
disadvantages of each. These concepts are defined in Chapter 2, “Windows SharePoint Services 3.0
Development Primer.”

Who This Book Is For

This book is for SharePoint developers working with Publishing sites — sites that leverage MOSS 2007
WCM capabilities. It does not cover administrative topics in any great detail, only where absolutely
necessary. For the most part, no two chapters are dependent upon each other, so each chapter can be
used as a reference independently of the others. Readers need not have any development experience
with SharePoint, but they should have some experience with and a working knowledge of ASPNET 2.0
development practices and topics. Of course, it is beneficial if the reader does have at least a working
knowledge of what SharePoint is all about.

Introduction

How This Book Is Structured

This book covers MOSS 2007 WCM Publishing sites. You will find some chapters that seem to cover
general WSS 3.0 topics, but everything is treated in the context of a Publishing site. While the chapters
are arranged in a logical order, it is not necessary to read the book from cover to cover in a linear fashion.
The following is a brief description of each chapter:

a

XXVi

Chapter 1, “Embarking on Web Content Management Projects” — This chapter explains what
this book is all about, who the target audience is, and who will benefit most from the book. It
also details what the reader needs in terms of a local development environment in order to
implement the solutions. In addition, each of the subsequent chapters is explained very briefly
to provide an overview and clarify how each chapter fits in.

Chapter 2, “Windows SharePoint Services 3.0 Development Primer” — This chapter covers the
fundamentals of WSS, including definitions of terms such as farm, Web application, site
collection, site, list, and document library, and the general architecture of WSS. Some basic object
model techniques are demonstrated in this chapter.

Chapter 3, “Overview of Office SharePoint Server 2007 and Web Content Management” — This
chapter briefly explains each of the various components that make up MOSS. In addition, while
the book is development-focused, the “ABCs” of content-centric Internet sites is covered.

Chapter 4, “SharePoint Features and the Solution Framework” — Both new to WSS 3.0, the
SharePoint Feature and solution frameworks are covered in great detail in this chapter, as well
as a process for automatically creating WSS solution packages on every project build.

Chapter 5, “Minimal Publishing Site Definition” — Many users create new WCM sites by using
the Publishing Portal template. Unfortunately, this adds quite a bit of unnecessary content to the
site. This chapter picks apart the Publishing Portal template and Publishing Features and
demonstrates how to create a minimal Publishing Portal template.

Chapter 6, “Site Columns, Content Types, and Lists” — Three core components to every WSS 3.0
site — site columns, content types, and lists — are covered in this chapter.

Chapter 7, “Master Pages and Page Layouts” — This chapter covers everything you need to
know about creating, editing, and leveraging master pages and page layouts within Publishing
sites.

Chapter 8, “Navigation” — While WSS 3.0’s navigation is founded on the ASP.NET 2.0
navigation provider framework, there are a few SharePoint-specific topics, which are covered in
this chapter.

Chapter 9, “Accessibility” — If it’s not already, accessibility is becoming an increasingly
important topic with regard to Web sites. This chapter explains the different levels of
accessibility and discusses some techniques and tools developers can leverage to create sites for
users with disabilities.

Chapter 10, “Field Types and Field Controls” — Although it’s a WSS 3.0 concept, field types and
field controls are covered in this chapter in the context of a Publishing site. This includes
creating custom field types with custom values types and controls, as well as custom field
controls that leverage existing field types.

Introduction

Q Chapter 11, “Web Parts” — This chapter covers creating custom Web Parts and some advanced
topics related to custom Web Part development, such as Editor Parts, customizing the Verbs
menu, and leveraging asynchronous programming techniques. This chapter also covers the
three Publishing-specific Web Parts and some advanced customization and styling options of
the Content Query Web Part.

Q Chapter 12, “Leveraging Workflow” — The Windows Workflow Foundation, part of the NET
Framework 3.0, is fully leveraged by WSS 3.0 and MOSS 2007. This chapter explains how to
create custom workflows using Visual Studio and leveraging InfoPath Web-rendered forms.

Q Chapter 13, “Search” — Every content-centric site needs a robust search offering. This chapter
explains the different components of MOSS search, as well as many customization opportunities
such as modifying the search results.

Q Chapter 14, “Authoring Experience Extensibility” — While the authoring experience in
Publishing sites is quite robust, at times developers need to extend this offering for specific
content owner requirements. This chapter covers this, including customizing the Page Editing
Toolbar and the Rich Text Editor HTML field control.

Q Chapter 15, “Authentication and Authorization” — This chapter covers everything you need to
know about the ASP.NET 2.0 authentication provider model SharePoint fully leverages.

Q Chapter 16, “Implementing Sites with Multiple Languages and Devices” — This chapter covers
the topic of maintaining sites that need to offer their content in multiple languages, as well as
developing custom Web Parts that are multilingual aware.

Q Chapter 17, “Content Deployment” — A common request for larger content-centric Web sites is to
have an internal authoring environment for content and then push the changed content out to a
destination site, either in an organization’s DMZ or at a co-location facility. This chapter describes
the content deployment capability in MOSS designed to handle such business requirements.

Q Chapter 18, “Offline Authoring with Document Converters” — While MOSS 2007 Publishing
sites offer a very robust Web-based content authoring experience, SharePoint provides a way to
author content offline using tools such as Microsoft Word or InfoPath. This chapter explains
what you need to know about configuring the document converter infrastructure and creating
custom document converters.

Q Chapter 19, “Performance Tips, Tricks, and Traps” — Internet-facing content-centric sites built
on the SharePoint platform need to be designed and developed with performance in mind. This
chapter provides numerous guidelines and tips that developers can leverage to create the most
performant sites.

Q Chapter 20, “Incorporating ASPNET 2.0 Applications” — SharePoint (both WSS 3.0 and MOSS
2007) is not an end-to-end solution but an application platform. While it provides a significant
amount of functionality out of the box, developers can leverage this platform in building custom
applications. This chapter discusses some techniques that can be used for such tasks.

What You Need to Use This Book

To get the most out of this book, readers should have a SharePoint development environment in which
they can work through the chapters. Active Directory is not required. This book was written and tested
using Windows Server 2003 R2 Standard Edition with Service Pack 2, Office SharePoint Server 2007 with
Service Pack 1, and Visual Studio 2008.

XXVii

Embarking on Web Content
Management Projects

Ever since the advent of the World Wide Web in the early 1990s, there has been a focus on
publishing information. Indeed, the very first Web sites were set up by scientists at CERN, the
European Organization for Nuclear Research, so physicists around the world could publish
information in a consistently accessible way. Since then, the Web has moved to more than
publishing; this started with transactional Web sites, and led to collaboration, social networking,
and aggregation-focused sites, to name a few, and all of these are addressed by Microsoft Office
SharePoint Server (MOSS) 2007, if not by this book.

Even as the technology has evolved, the need for Web publishing remains pervasive. For example,
transactional Web sites publish catalogs and terms of sale; collaboration and social networking
sites publish usage guides and ground rules. Therefore, Web publishing remains a core function of
any public, extranet or intranet Web site, even if it is more than just “brochureware.”

Take a moment to consider this book, which is the product of a modern and technically advanced
publishing company. In addition to the authors, there are many other contributors to this book.
Someone selected the topic as part of the publisher’s catalog and developed the title and “brand”
for the book; other people designed the cover and page layout; editors checked for quality and
consistency, and still other people typeset and printed the book.

Publishing a Web site is no different: People in specialized roles each want to control particular
aspects of the final product. However, unlike a book, the Web site is being constantly updated, and
people associated with the site want the freedom necessary to change their aspects of the site
without affecting one another. For example, an author may want to add a new page, an editor may
want to reorganize several pages, and a branding manager may want to change the colors and logo
of all pages, all at the same time. The final “product” — a connected set of Web pages — needs to
reflect the input of each of these contributors at any given point in time.

Chapter 1: Embarking on Web Content Management Projects

This is the problem solved by Web Content Management (WCM). A WCM system organizes the content
and design from all of the site’s contributors, allows for versioning, editing, and moderation, and stitches
it all together for the end user.

Consider a typical Web page. The banner, color scheme, and general look and feel are part of the
branding of the site. Some sort of navigation is probably visible, revealing the organization of the site. In
addition to the site navigation, there may be listings of content such as a “front page” list of articles or
other topics. These are another form of navigation, one which cuts across the formal structure of the site
to highlight contextually relevant content. Authored content — that is, content written by an author and
possibly run through an editorial process — may appear in one or more sections of the page, along with
images that may require acquisition and approval. Syndicated content, such as news feeds and
advertisements, might also appear. Down at the bottom, in the fine print, there may be a legal notice or
other disclaimer. Within a typical organization that has a Web site, different people will want to manage
each of these aspects of the same Web page, all while the site is up and serving customers.

In the bad old days, the approach to managing a Web site was to edit Web pages and associated files on
the file system of each Web server. This approach is simple enough at first, but makes it very hard to
modify things such as branding, navigation, or legal disclaimers that appear repeatedly on many Web
pages. Moreover, if the authored content is stored in the same files as branding, navigation, and other
page features, in the course of editing a paragraph an author could accidentally modify the wrong thing
and break the page entirely. This led to the role of Webmaster, a person to whom all Web site content and
other changes are fed, and who knows the intricacies of HTML and CSS and any other page
programming. The Webmaster’s job quickly became a tedious one — copying, pasting, and reformatting
content submitted via e-mail and in documents. As the single gatekeeper for all aspects of a Web site,
Webmasters often were seen as bottlenecks by contributors whose changes had to wait at the end of

the queue.

As a WCM system, MOSS 2007 provides flexibility and independent control over all these aspects of a
Web page. The Webmaster bottleneck is largely eliminated by giving control over the many aspects of
a site directly to business users, information architects, developers, and designers. Instead of endlessly
copying and pasting content, Webmasters can focus on system administration, site design, and
development, enabling them to have a much greater impact than ever before.

The Web Content Management Experience

To better understand the use cases for WCM, this section will follow a couple of typical users through
their interaction with the system. At first the focus is on authors and editors who produce the authored
content on the site. Then the focus shifts to the role of designers and developers, who have a very
different kind of interaction with the site.

Authors and Editors

The scenario opens with a product marketing manager who is about to launch a new product and wants
to add some information about it to her company’s Web site. Rather than having to ask someone to

do this for her, she can simply edit the Web site directly, as shown in Figure 1-1. She navigates to the Web
site (possibly using a special, internal URL that allows the necessary authentication) and adds a few
pages. She enters the product information based on her knowledge as product manager, and is able to

Chapter 1: Embarking on Web Content Management Projects

format the text as she likes, as long as she stays within company style guidelines. Next, she posts some
product images to the site’s image library and uses them in the pages as well. She sets each page’s start
date to the product launch date, which is a couple of weeks in the future, and submits the pages for
approval.

Figure 1-1

Next, an editor gets an e-mail notifying him that there are new Web pages awaiting approval. He clicks a
URL in the e-mail and is led to the pages the product manager just created. He makes a few minor
changes and approves the pages. The author is then notified that the pages have been approved, and she
checks them over one more time to ensure that they look right. However, only she, the editor, and a few
other privileged users can see the pages; the general public will get to see them when the product is
launched.

On the product launch day, the marketing manager is busy at a big press event, but knows that her

new Web pages went live at 8:00 A.M. that morning, and that she has carefully reviewed them in her own
Web browser. Furthermore, the pages will automatically appear in the site navigation and on summary
pages at the moment the pages go live.

Chapter 1: Embarking on Web Content Management Projects

Designers and Developers

The new product was so successful that the company has decided to expand, and has just merged with
one of their best partners. The merger will result in a new company, with a new brand. A complete
overhaul of the Web site is in order. All the existing Web site content is still relevant — it just needs a new
look and branding,.

The marketing manager hires a Web design firm to help them create their new site. An information
architect draws up a series of wire-frame diagrams showing the new page layouts, while a graphics
designer starts working on a look for the new site in the form of mock-ups, which are really just image
files showing what the site will look like. Ultimately, the marketing manager agrees to an approach, and
chooses one of the mock-ups and a set of wire frames for the new site.

Because the designer’s mock-up is just an image file, the next step is to translate it into HTML with
Cascading Style Sheets (CSS) and a bunch of smaller image files that will make up each kind of page on
the site, resulting in an HTML mock-up. So far, the steps for the new MOSS site branding resemble those
that would be used in any Web site.

Next, a SharePoint developer takes the HTML mock-up and merges it with a SharePoint blank master
page she downloaded from the Microsoft Web site. This provides the basis for all the newly branded
Web pages, with placeholders for all the SharePoint functionality to show through. She packages the
master page, CSS, and supporting image files into a SharePoint solution package and checks it into

the source control system.

Meanwhile, the information architect wants to change the page layouts to match the new wire-frame
diagrams. To do this, she creates (or modifies existing) MOSS page layouts, which define where fields
should appear on each type of page. For example, she might specify that all product pages should have a
title at the top, followed by the model number and list price, and that the main body of the page will
have a large floating image on the right. A developer translates this into a page layout, which contains an
HTML fragment with the structure of the page. The HTML fragment includes field controls, which
alternately render or allow editing of the content. The properties of each field control define what text
formatting and CSS styles are permitted in each field.

The master page and page layouts could be developed using SharePoint Designer 2007 directly on the
production servers (so they would be treated as part of the site content), or they could be developed
using Visual Studio and included in a solution package. The fundamental difference between these
approaches is that a Visual Studio solution package is installed on the file system of each of the
SharePoint Web servers in a farm, whereas SharePoint Designer modifies the SharePoint content
database. SharePoint Designer can customize SharePoint pages, which means that at runtime, the
customized page from the database is substituted for any original page that may have been on the Web
servers (or the customized page may only exist in the database, with no file-system-based counterpart at
all). Because content is not subject to the same release cycle as code, this often means that SharePoint
Designer customizations — which are really content changes, as they are in the content database — are
put directly into production, whereas SharePoint solution packages can go through a regular software
development life cycle, including controlled releases through a formal testing process. The latter is

the recommended approach. Keep in mind that SharePoint Designer is still useful as a developer tool,
enabling developers to start with customized pages on a development server, and then migrate the
markup into Visual Studio; it is also useful to allow business users to customize their sites directly.

Chapter 1: Embarking on Web Content Management Projects

In the scenario, it is determined that the new branding on the site is core functionality and that it should
be subject to a controlled release cycle. The SharePoint solution package is part of a Visual Studio
solution stored in a source control system, and installed on servers in development, quality assurance
(QA)/staging, and ultimately production. In this case, the package deploys the master page, page
layouts, and dependent files to every Web server in the farm. Once the new master page is enabled, the
new branding appears on all the site’s Web pages. The new page layouts also take effect, even on
existing pages if they used the same layout name and set of fields (or content type).

After thorough testing, development releases the new solution package to a system administrator who
installs it on the production SharePoint farm and switches the site to use the new master page.
Immediately, the new look and feel takes effect, even on existing pages. In other words, a new site was
not really needed after all — the infrastructure and existing content were all reused. Only the branding
and layout were changed, without affecting other aspects of the Web site.

Developers can go much further in customizing and extending the WCM system, using solution
packages that are listed in the following table:

Extension Description Example of Use Chapter
Custom site A set of XML-based A starting point for a specific 5
definitions instructions for creating a class of site, such as a product

new site with specific information site, a job posting

settings and initial content. site, a business partner site, etc.

Note that in MOSS, a site

refers to a container in a

larger site collection, not

what users consider to be a

whole “Web site.”
Custom site columns, A set of XML-based For a product information site, 6
content types, and instructions for creating new a site column could be created
lists site columns (to store for each product attribute to be

specific kinds of displayed, and a new “product

information), content types page” content type would be

(groups of columns to use in created with these and some of

a list or library), including the built-in columns.

when a site is created or a

Feature is activated
Master pages and As described above, master For a product information site, 7
page layouts pages provide the branding there might be a master page

and overall page structure, with the overall branding, and

and page layouts define the a page layout defining how

position of field controls on the product page’s columns

the page. should be displayed.

Table continued on following page

Chapter 1: Embarking on Web Content Management Projects

editing Web pages

content insertion, or other
tasks on the page.

Extension Description Example of Use Chapter
Custom navigation Anew and different way to A new MOSS WCM site is 8
render site navigation, or being set up alongside an
custom links added to the existing site that is not going
navigation across many to be changed; navigation for
pages or sites the old site needs to be
stitched into the MOSS site to
make a consistent user
experience.
Custom field types A custom field type isanew Fields requiring custom 10
and field controls data type, which may inherit storage and/or rendering
one of the existing types, and might lead to a custom field
can be used in site columns. type, such as a page rating or a
A field control is an ASP. compound part number. Field
NET Web control that controls are used for custom
renders and allows editing and out-of-the-box field types
of a particular field type. whenever any special
rendering or editing is
required. For example, a
complex field might be stored
as XML, edited using a grid
control, and rendered using an
XSLT style sheet.
Custom Web Parts An ASP.NET Web control Display external information 11
that renders external or such as a weather report or
internal site content stock feed; display lists of
items or search-driven results.
Custom workflow A workflow definition for A more complex approval 12
and forms managing content and workflow than is built into
content-related work, with MOSS, with special business
forms to capture rules or exceptions.
information from end users
Custom Authoring Additional menu options or A simple option is added to 14
Console formatting capabilities when perform common formatting,

Chapter 1: Embarking on Web Content Management Projects

Designing and Planning a Successful
WCM Solution

Anyone who has tried to find their way around a new city knows that the experience varies considerably
between a planned city, such as most of New York or Washington, DC, versus an unplanned city such as
London or Boston. A planned city has some kind of logical organization or grid layout that makes
navigation much easier, whereas an unplanned city may seem like a twisting maze of confusing
passages, presenting quite a challenge for newcomers. A Web site is no different, and a little planning
and forethought will go a long way in terms of site usability and control.

Information architecture is the emerging field of designing the structure of shared information
environments, such as Web sites, to improve usability and facilitate the finding of information.
Professional information architects often have a background in library science or cognitive psychology;
and depending on the scope of a project, it may be desirable to enlist such a specialist to lead the effort.
On smaller projects, or projects for which the basic structure is well understood, the information
architecture may be created by the analysts and design team, with input from developers, users, and
other stakeholders.

It is important to remember that every WCM solution has an information architecture, whether it is designed
to be compelling and intuitive or left to evolve randomly.

MOSS comes loaded with a very simple information architecture and visual design that is set up when a
Publishing site is created. The out-of-the-box Publishing site definition offers a choice of about half a
dozen master pages, basic layouts for welcome and article pages, and a simple navigation structure with
a home page and a child site for press releases. This is great for getting a quick start, and indeed some of
the default settings may prove useful. However, it is worth at least considering each aspect of the WCM
solution and deciding which of the defaults to keep and which to augment or replace.

The sections that follow describe the major areas to consider, along with general best practices and ideas
about how to get started.

Use Case Scenarios

As with any system, the first step is to identify the site’s target users and determine the major use cases
for the site — for example, “a reseller looks up product specifications,” “a patient looks up side-effects of
a prescription drug,” or “a recruiter posts a new job opening.” Answering this question should produce
an idea of who the users are, their degree of expertise, and what it is that they want to do. Don’t forget to
include internal as well as external users, such as content contributors and editors. Prioritize the uses
cases and make them the basis for the decisions that follow.

Site Structure and Navigation

Navigation begins with the overall site structure or a site map, and this is a good place to start the
information architecture. SharePoint sites are always part of a site collection, which has a single parent or
top-level site. The top-level site can have any number of child sites, grandchildren, and so on, and each
site will have one or more pages in a page library. The site structure is therefore based on pages (the leaf

Chapter 1: Embarking on Web Content Management Projects

nodes, which are viewable by end users) and sites (the containers, each of which has at least one default
page to display). This is illustrated in Figure 1-2.

Page
Site Top Level P

Collection Site age

—
Page
Web Page

Application
Page
. Page
Site Top Level
F Collection Site

—
. Page
Page

Web Site Top Level
Application Collection Site

—
Page
Page

Figure 1-2

Begin with the logical site structure or site map. The site map is generally determined based on weighing
a number of considerations, including the following:

0O What is the most logical browsing structure for end users? This is certainly the most important
consideration, but not an end-all, as other forms of navigation can short-circuit the site’s
structure, such as the Content Query Web Part (these are discussed in general later in this
section and in greater detail in Chapter 11, “Web Parts”).

0O What permissions will be set on the sites? By default, SharePoint sites inherit their permissions
from their parent site, so grouping sites with the same permissions (who can author, edit, etc.)
under a common parent simplifies managing the permissions.

Chapter 1: Embarking on Web Content Management Projects

Q What is the look and feel of the sites? By default, SharePoint sites inherit their master page
settings and Cascading Style Sheets from their parent site, so grouping sites with the same look
and feel under a common parent simplifies configuration and provides a more consistent
browsing experience.

QO What information might need to be queried within the sites? This refers not to search queries,
which can span site collections and even external content, but to the Content Query Web Part
and similar Web Parts developers create using the SPQuery object in the Windows SharePoint
Services (WSS) object model. These queries are more like database queries that retrieve items
based on their location, type, and property values, as long as they are within the same site
collection. For example, a content query might locate Web pages on a particular topic, events in
a particular location, or tasks assigned to a particular user. Content queries can be set to scan a
site and all its descendents, so if the content to be queried is grouped within the same site
hierarchy, the queries are easier to set up and maintain.

Site Collection Boundaries

In many cases, the entire site structure can be contained in a single site collection, and indeed this is
convenient because the built-in navigation is based on the sites and pages within the collection. In
addition, content queries, content types, storage quotas, and numerous other SharePoint capabilities are
scoped at a site collection, so there is a tendency to design large site collections to make them work over
a large set of content. However, sometimes it makes sense to break the solution down into multiple site
collections. The primary reasons are as follows:

Q Asite collection is always stored in a single SharePoint content database, although a content
database can contain many site collections. If the site collection becomes too large — this
includes all the content, such as documents, images, and videos, along with the Web pages —
then the database can become unwieldy and hard to back up and restore in a timely manner.
Therefore, many SharePoint administrators limit site collections to 50-200GB, and place large
site collections in their own, dedicated content database.

Q SharePoint’s built-in groups (for permissions) are scoped at the site-collection level, so if
separate sets of groups are desired for administrative control, separate site collections will be
necessary.

Q Some SharePoint Features are scoped at the site collection level, and if these Features are desired
in some areas but not others, then the areas need to be in different site collections. For example,
the WCM capabilities are controlled by a site collection Feature called “Office SharePoint Server
Publishing Infrastructure,” so team collaboration sites that don’t need WCM Features could be
kept in a separate site collection.

Q Anonymous access is scoped at the site collection level, so if part of a Web site is to be open to
anonymous users, whereas another part forces a login, these sections should be in separate site
collections.

SharePoint makes it very easy to reorganize sites within a site collection, but not so easy to move them to
a new site collection, so it is worth thinking through the site collection boundaries up front. A common
pitfall is to build a solution with one giant site collection and then find out months or years later that the
database has become too large to restore from backup within the service-level agreement, or that very
expensive backup solutions are needed to handle it. If a site will contain large items such as videos, then
consider putting them in separate site collection(s) and linking to them to divide the storage.

Chapter 1: Embarking on Web Content Management Projects

Navigation and Page Listings

The built-in navigation is based on the site hierarchy and the pages within each site in a site collection.
Two views of the navigation are shown: global navigation (by default at the top of the page, the global
navigation starts at the top-level site, or wherever the inheritance is broken) and current navigation (by
default on the left of the page, the current navigation starts at the current site). It is easy to add arbitrary
links to the navigation, or to hide sites and pages that should not be displayed. The navigation system
can be fully customized; for details see Chapter 8, “Navigation.”

Two other types of “navigation,” which are really just ways of listing links to relevant pages, are also
provided out of the box (OOTB):

QO Summary Link fields — These manage a list of hyperlinks as content, and provide navigation
to related pages, both within and beyond the WCM solution. These hyperlinks become part of
the “authored content” and are thus subject to the normal page approval workflow.

QO Content Query Web Parts — These dynamically query a site collection for content matching key
criteria, such as “press releases issued this year” or “events in Oklahoma.” They provide links to
cross-sections of site content based on the query settings, and have the advantage that they are
updated automatically as new content is added.

Combined with the built-in navigation, these features enable placement of relevant links. In general, try
to logically group links, and keep in mind that people tend to stop reading after the first four or five
links in a list. In addition, they will only click a few levels deep, so this can limit the practical size of the
site map. If the site map becomes unwieldy, consider breaking the solution down into multiple Web sites
or Web applications, each with its own URL, and enable users to begin by selecting an appropriate starting
point (e.g., sales information versus support). The same SharePoint farm can host these applications and
provide a common search infrastructure that spans them all, so choose a structure that is logical from a
usability and maintenance point of view.

Page Layouts and Content Types

10

Just as navigation planning begins with the site map, the page layout planning begins with page
wireframes. A wireframe is simply a sketch indicating how information will be laid out on each type of
page. This includes welcome pages (as they are called in the MOSS-provided templates), which are
intended to provide summary information on a site or section of a site, and detail pages (“article” detail
pages are in the MOSS-provided templates).

In general, for each type of page identified in the wireframes, there is a single page layout. The page
layout consists of an HTML fragment that defines the layout itself (often this is an HTML table). Places
for content are inserted as needed within the HTML, and can include any combination of the following;:

Q Field controls — Each field control displays a piece of content that is stored in a field of each
page that uses the page layout. The content in these fields is approved and versioned along with
the rest of the page. Field controls are provided for HTML content (and text), images, and
summary links; and as shown in Chapter 10, “Field Types and Field Controls,” it is easy to
create your own for other types of information. Field controls are the most common way
to present content in a MOSS WCM site.

Chapter 1: Embarking on Web Content Management Projects

QO Web Part zones — Web Part zones enable authors and editors to place Web Parts on the page.
This is very useful for adding functionality, such as Content Queries, RSS feeds, or KPI lists.
However, note that Web Parts are part of the ASP.NET 2.0 infrastructure, and therefore are not
aware of the MOSS publishing system.

A common confusion arises because Web Part zones store the Web Part placements and
metadata in a separate Web Part store, not in fields of the page. As a result, changes to Web
Parts within a zone are subject to approval along with the page, but not to versioning. Therefore,
the expected approval behavior will work fine, but if a page is rolled back to a previous
version, the Web Part zones won'’t be affected. For this reason, Web Parts are best used to add
functionality, rather than pure content to a page. For example, the Content Editor Web Part
might seem to be the same as a Rich HTML field control but it is not, because the Web Part’s
content is not versioned along with the page.

0 Web Parts and ASP.NET controls — Web Parts and other ASPNET controls can be embedded
directly in the page layout. As such, they cannot be edited on the individual page instances; this
can be quite useful to ensure that certain information is always displayed in a certain way.

Page layouts are closely related to the use of content types. A content type is simply a set of columns and
policy settings that define some kind of content, be it a catalog page, a contract document, or a calendar
event. Content types can share columns — for example, an article page, a press release page, and a
product description page might all contain an Author column, and by mapping them all to the same
Author site column, MOSS realizes that they are the same information when performing queries,
constructing views of content, and so on.

The fields available for use in a page layout depend on its underlying content type. It is entirely possible
to have multiple page layouts for a single content type; for example, the built-in MOSS page layouts
include three layouts (ArticleLeft.aspx, ArticleRight.aspx and ArticleLinks.aspx), which are
all layouts of the same content type (“article page”). This enables the page layout to be changed
independently of the content — for example, an article page could be changed from ArticleLeft.aspx
to ArticleRight.aspx in order to move its image to the right of the main text on the page.

It is useful to group the page layouts from your wireframe into content types, and to identify the site
columns that will make up the fields of each page layout. If multiple page layouts can share a content
type, this will provide more flexibility later. Keep in mind that some page layouts may not expose all the
fields in the content type. Moreover, it’s possible to put field controls inside an Edit Mode Panel control
to make them appear only when the page is edited. This can be useful to capture metadata that will be
shown in summaries (via the Content Query Web Part) without showing it on the detail page.

For planning purposes, understanding these distinctions and sketching out the wireframes should be
sufficient; for details about how to implement page layouts, see Chapter 7, “Master Pages and Page
Layouts.”

Supporting Content: Images, Attachments
and Reusable Content

MOSS field controls will place much of the page content directly in fields of the page, but there will
inevitably be other content that needs to be managed outside of the page. For example, the image field
control does not store an image but a link to an image that is stored elsewhere. Likewise, a Web author

11

Chapter 1: Embarking on Web Content Management Projects

Si

12

may want to include attachment links to downloadable documents, but where do the documents
themselves reside?

The natural answer is to store this supporting content right in MOSS, where it will be easily accessible,
subject to the same business rules and permissions, and backed up in the same content database. The image
field control looks for image libraries named Images in the current and top-level site of the site collection,
and these libraries are convenient places to store images. Policy and permissions can be set on these
libraries to allow only selected people to add images and to require an approval before they are available.
This can be very useful in enforcing site policy and avoiding the problem of authors who might upload
unlicensed images for use on the site.

Part of the information architecture includes providing places to store images and other supporting
content, such as documents, on the site. In general, it is a good idea to store assets at the root of the
hierarchy in which they will be used. For example, general company images might be stored on the top-
level site for use throughout all the child sites, and images relating to a particular product line might be
stored on that product’s site, which has all the related sites underneath it.

Reusable content is a MOSS feature for managing snippets of content, such as legal disclaimers and
trademark declarations, which must appear on many or all pages. These snippets are kept in a special
list, aptly named Reusable Content, in the top-level site. Authors can insert the reusable content on their
pages, and rather than copy the content into the page, a reference to the content is stored and replaced
with the snippet at runtime. This enables the reusable content to be changed in one place for every page
in which it is used. Planning this up front is a good idea, before the site contains thousands of copy-
and-paste snippets (each of which would have to be updated individually).

te Definitions

With a site navigation structure, wireframes for the page layouts, and a plan to store supporting content,
turn to the containers that will hold the pages and other content. These are MOSS sites, and if the
Publishing site definitions that come with MOSS provide everything you need, then no additional work
is required here.

However, it may be desirable to allow users to create a site that has certain lists, content, or features
already set up. This is most common in collaboration scenarios, but it sometimes is useful in publishing
scenarios as well. For example, a product site might contain a specific set of pre-defined pages ready to
fill with content, an image library for product pictures, and a special workflow associated with the page
library.

To automate this, it’s possible to create a new site definition, which tells MOSS how to create the new
product sites. For planning purposes, determine what site definitions will be needed and what they need
to do.

For details on implementation, see Chapter 5, “Minimal Publishing Site Definition.”

Note that WSS has a similar concept called site templates, which can be created by simply clicking Save
Site as Template on the Site Settings page. This link is not available for Publishing sites, and it would not
be a good idea to use it if it were because site templates, like customized pages, live in the content
database and cannot easily be staged and tested in a software release cycle. Instead, it is better to create a
new site definition in Visual Studio and use your normal release cycle to test and deploy it.

Chapter 1: Embarking on Web Content Management Projects

Roles and Permissions

Another planning activity is designing the security settings for your WCM solution. MOSS provides a
number of authentication options; for details see Chapter 15, “Authentication and Authorization.” It is
also possible to manage the content on one physical infrastructure and deploy it to a separate hosting
environment; this is detailed in Chapter 17, “Content Deployment.” However, it is authorization that is
of the greatest concern to the information architecture, as it is directly related to content.

MOSS provides just two levels of groups, SharePoint groups and permission levels, as shown in Figure 1-3.

Just to be clear, in previous versions of SharePoint, groups were called “cross-site groups” and
permission levels were called “site groups.”

In addition, an ASP.NET role provider can add additional levels of grouping stored outside of
SharePoint; out of the box, MOSS supports Active Directory (AD) groups in this manner, so with no code
or extra effort, developers can use AD groups freely in MOSS. Here, the term “role provider group” is
used to highlight the fact that it can be any external directory or other data source that has an ASP.NET
role provider.

User
User
\ SharePoint
/ Group
User
Permission
N Level
\ Role Provider
Group \ -
User / ShgrePomt Permission
/ eup Permission
User Permission
Permission
Role Provider
User
Group
Figure 1-3

Permission levels are stored at the site level, though by default they are inherited from the parent site.
Out of the box, a Publishing site has eight permission levels: Full Control, Design, Manage Hierarchy,
Approve, Contribute, Read, Restricted Read, and Limited Access. Each of these has a set of fine-grained
permissions associated with it, such as permission to view, add, edit, or delete items; the ability to add
pages and child sites, and so on.

Permission levels grant their granular permissions on a site to a specific set of users, SharePoint groups
and role provider groups. Within a site, the permission levels for these users and groups will apply to all
the lists, libraries, folders, and items in the site, unless explicit permission levels are assigned to an
object. For example, the user Joe may have Restricted Read access to the site, but Full Control over a
particular folder of documents, and no access at all to a specific security Web page.

13

Chapter 1: Embarking on Web Content Management Projects

It is possible to create custom permission levels, or to edit the granular permissions of the OOTB ones,
except for Full Control and Limited Access. Full Control always allows complete access to the site, and
Limited Access allows no direct access to site content at all, but is intended to allow users to traverse the
site in order to access items within it that they have explicit permission to see. For example, a user might
have access only to one page of a site, but still need access to style sheets and other supporting site
infrastructure in order to view it; in that case, the user would need Limited Access permission on the site
and Restricted Read access to the page.

The other groups within MOSS are SharePoint groups, which are more traditional groupings. SharePoint
groups cannot be nested, but can contain external role provider groups. Note that SharePoint groups are
stored at the site-collection level; this makes the same groups available in all sites in the site collection.
This can be good or bad; it is convenient to have groups that apply across many sites, but sometimes it
would be nice to have a second level of grouping (other than permission levels) within a site.

More details about permissions and groups can be found in the WSS documentation at
www . andrewconnell.com/go/200.

The task then is to design the setup of permission levels, SharePoint groups, and role provider groups
and how they will apply to the content in the site map. Think of the permission levels as roles — going
back to the use cases, who are the actors, and what roles will they take on with respect to the various
sites and content in the system? Those roles will end up reflecting the permission levels. The OOTB
levels may be fine, but walk through them and see whether they make sense.

In general, it is better to grant permissions to SharePoint or role provider groups, rather than to
individual users, as it is a lot easier to edit a group membership when you have organizational changes
than it is to remember all the permissions that need to be set. The built-in SharePoint groups are also role
oriented, but these are roles that extend throughout the site collection. This is a good approach, but a
large site will probably need to have more explicit groups, such as Marketing Page Approvers or Product
Site Authors, to easily manage different permissions in various parts of the site collection.

If you are using AD (or another role provider) and have the authority to create groups there, then groups
can be nested as much as desired. This can be used, for example, to manage organizational groups — for
example, if all the design engineers are already in a Design Engineers AD group, and these are the same
people who can approve specification changes, then the existing Design Engineers AD group can be
placed into a Specification Approvers SharePoint group.

A common pitfall is developing a solution in an environment where everybody has full control, only to
later discover in system testing that it does not work in production, where more restrictive permissions
are in place. Planning the permissions up front and making them part of unit testing is much less painful
in the long run!

User Profiles and Targeting

If users are authenticated, then MOSS can do more than just set permissions for them. MOSS also
contains a user profile system to store information about users, and a targeting system to automatically
select relevant content based on the user’s profile.

User profiles can be configured in the shared service provider (SSP) to have whatever properties are of
interest. The usual approach is to populate the profile database by periodically importing data from the

14

Chapter 1: Embarking on Web Content Management Projects

directory service and to allow users to modify their profiles in their My Sites, although profiles can also
be created and updated programmatically.

SharePoint audiences select users based on rules about their user profiles — for example, users whose
country is equal to Australia, whose list of interests includes the word “boating” or who are members of
the Top Partners group in AD. Content, including Web pages, can be targeted to specific audiences by
placing a list of audiences in the Target Audiences field. The Content Query Web Part can be set to
respect these audience settings, so users are presented only with content that matches the query and the
user’s audiences. Note that audience targeting is different from security; users can still get to content via
navigation, search, or an explicit URL, even if they are not in the target audience. Rather than security,
targeting is intended to highlight content of interest to users.

Search Strategy

Site users expect to be able to both search for content and navigate to it, and fortunately MOSS has a
great built-in search engine to accommodate their needs. MOSS search is a huge topic that is beyond the
scope of this book, but it is worth pointing out some of the possibilities.

In addition to indexing MOSS content, the MOSS search engine can index external file shares, Microsoft
Exchange public folders, and Lotus Notes databases. It can also crawl any Web site, which can be useful
when there are related sites that are not in MOSS.

Here are some strategies for optimizing MOSS search in a WCM solution:

Q Branding — Naturally, the search pages inherit the master page and Cascading Style Sheets
(CSS) along with the rest of the site. Further customizations are easy, but the search user
interface is comprised of Web Parts that can be reconfigured and rearranged to meet your needs.

Q Search scopes — A search scope is basically a set of partial queries called scope rules that narrow
down a user’s search. Users normally see scopes in a drop-down list next to the search box, or
as tabs on the results page. For example, a News search might show only news stories matching
the user’s query, and the scope rule behind it could select the news based on Web address,
content source, or other properties.

When planning a search scope that is not based on the location of the content, the scope needs to
be based on a property of some kind. One of the built-in properties is contentclass, which
contains the name of the content type; therefore, if there is a content type for press releases, then
making a Press Releases search scope would be easy.

In other cases, it may be necessary to include a property in the page content type, visible only at
editing time, that puts pages into the scope. For example, if a random cross-section of pages con-
tains medical information, and Medical search scope is planned, placing the word Medical in a
hidden field would enable these pages to be selected in a search scope.

Search scopes can be set up in the SSP administration site.

Q Authoritative pages — Search relevancy can be adjusted by specifying authoritative pages in
the search catalog. Pages can be designated as most, second, or third most authoritative, and
their relevancy is adjusted upwards; pages can also be designated as non-authoritative and their
relevancy is demoted. This can be useful when areas of a site contain information that needs to

15

Chapter 1: Embarking on Web Content Management Projects

be highlighted (authored information, for example) or pushed to the bottom (such as old or less
popular content). Note that an authoritative page also affects the pages to which it links: For
example, a product summary page that links to all products could be marked as authoritative to
raise the relevancy of all the product pages, as well as the summary. Authoritative pages can be
set up in the SSP administration site.

0 Keywords/best bets — Pages can be designated as best bets and associated with keywords.
When the keyword is included in a search query, any related best bets will show up in their own
section of the search results page. Keywords can be set up as best bets in the top-level site
settings of each site collection.

A best practice is to monitor the Search Usage reports (in the SSP administration sites) and look
at the Search Results report called Queries with Zero Results. Guess what? There is a frustrated
user behind every one of those queries! These are candidates for keywords and best bets.

Traditional Web sites place metadata in META tags, but this isn’t necessary for the MOSS search engine
to pick up the metadata when crawling MOSS content; it can query the metadata directly. However, it
may be desirable to include META tags in order to allow external search engines to crawl a WCM
solution. This can be accomplished by incorporating a custom control or Web Part in the master page,
which emits the desired META tags based on the page content (some of which may be hidden from
site visitors by placing it within an Edit Mode Panel so they only appear when the page is being
edited). An example of such a control, called MetaTagsGenerator, is available on CodePlex at

www . andrewconnell.com/go/201.

Summary

16

WCM removes bottlenecks in the process of Web publishing by enabling business users to directly
author and edit content independently of one another and of site designers. Similarly, site designers can
work independently of the content creators, and can update existing content with new branding and
other visual changes.

WCM can also improve the quality and consistency of a Web site by providing a structure, but only if the
solution has the structure implemented as part of the design. Here is a checklist of planning activities:
Q Use case scenarios defining both internal and external actors and how they will use the site

Q Overall site map showing the site structure, including the placement of site collections if there is
more than one

Q Image, and eventually HTML mock-ups, of the visual design

QO Wireframe representations of desired page layouts, mapped to documented content types that
will define the fields used to store the data

Q Alist of required custom features for development based on the wireframe representations and
visual design

Q Defined locations for supporting content such as images and attached documents

Q Astructure for SharePoint groups and permission levels, perhaps color coded to sites on the
site map

Chapter 1: Embarking on Web Content Management Projects

Remember that your Web site will have information architecture, just as every city has a street map.
Whether yours will be easy or confusing depends on the planning and thought that goes into the
solution. Keep in mind that the real point of Web publishing is not the cool technology, but the content
itself. Organizing the content in the most helpful way possible will do more for a site’s success than any
other factor, and a well designed WCM site will make that easy.

The following two resources are useful for designing usable Web sites:

Q Improving Web Site Usability and Appeal: www . andrewconnell.com/go/202

Q Step-by-Step Usability Guide: www.andrewconnell.com/go/203

17

|

Windows SharePoint
Server 3.0 Development
Primer

Before digging into Microsoft Office SharePoint Server 2007 (MOSS) Web Content Management
(WCM) development topics, developers must have a firm understanding of Windows SharePoint
Services 3.0 (WSS). Of course, it is not possible to fully cover the subject of WSS development in

a single chapter. It is a very large and far-reaching topic, as it is the foundation for everything

in the SharePoint product stack. This chapter touches on some of the more important and relevant
topics in WSS that are relevant to the WCM /Publishing topics covered in this book.

For in-depth development and architecture coverage of Windows SharePoint Services 3.0, see
Inside Microsoft Windows SharePoint Services 3.0 by Ted Pattison and Dan Larson
(Microsoft Press, 2007).

SharePoint Architecture

In WSS 2.0, SharePoint was integrated into ASPNET 1.1 via an ISAPI filter (see Figure 2-1). This
ISAPI filter was needed because ASP.NET 1.1 had no mechanism that enabled applications to
reroute how the source of a file was retrieved: ASPNET 1.1 always assumed the files lived on the
file system. This ISAPI filter presented many challenges in WSS 2.0, specifically in the areas of
performance and extensibility. It was not easy to do things such as add custom HTTP handlers or
modules, leverage custom user controls (ASCXs), or plug custom code into the ASPNET page life
cycle, changing the execution process.

Chapter 2: Windows SharePoint Server 3.0 Development Primer

20

WSS v2 ISAPI Filter

ASP.NET WSS
vi.1 v2

Internet Information Services 6

Windows Server 2003

Figure 2-1

Thankfully, Microsoft dramatically changed the fundamental architecture of WSS 3.0 from the previous
release (WSS 2.0). This is largely due to the fact that the ASP.NET 2.0 team added functionality and
certain hooks that enable third-party developers to customize the ASP.NET 2.0 infrastructure. The most
significant addition to ASPNET 2.0 is the virtual path provider, which abstracts the location of the
requested files from ASP.NET. ASP.NET 2.0 utilizes a built-in virtual path provider that retrieves files
from the file system by default, but the virtual path provider enables developers to plug in custom
providers to customize the source of the requested files.

For more information on the virtual path provider, refer to the official documentation on MSDN
(www . andrewconnell.com/go/204) and the Microsoft Knowledge Base article #910441
(www . andrewconnell.com/go/205) for an example.

By adding the virtual path provider, the SharePoint team was able to completely implement

WSS 3.0 using a custom HTTP application, modules, and handlers; and route all requests for a
SharePoint site through ASPNET 2.0. The SharePoint team created a custom virtual path provider,
Microsoft.SharePoint.ApplicationRuntime.SPVirtualPathProvider, that supports
SharePoint’s concept of page customization, covered later in the chapter. This allowed Microsoft to
discard the ISAPI filter and the approach of integrating WSS 2.0 with ASPNET 1.1.

However, ASP.NET 2.0 is not the only part of the NET Framework that SharePoint relies upon. The other
main component is Windows Workflow Foundation (WF), one of the four components in addition to the
.NET 2.0 Framework included in the .NET 3.0 Framework (the others being Windows Communication
Foundation, Windows Presentation Foundation, and Windows CardSpace).

Due to the architectural changes and improvements to the ASPNET 2.0 platform, the SharePoint team
was able to build WSS 3.0 on top of the existing .NET Framework stack, as shown in Figure 2-2.

Chapter 2: Windows SharePoint Server 3.0 Development Primer

WSS v3

.NET Framework v3.0

Internet Information Services 6

Windows Server 2003

Figure 2-2

This new architecture also enables SharePoint to fully leverage and benefit from everything that
ASP.NET 2.0 has to offer, such as page output caching, user controls, server controls, and custom HTTP
handlers and modules.

Some of the ASP.NET 2.0 features that SharePoint leverages are covered in more detail later in the book,
such as master pages (see Chapter 7), the navigation provider model (see Chapter 8), Web Parts (see
Chapter 11), workflow (see Chapter 12) and the authentication provider model (see Chapter 15).

SharePoint on the File System and in Internet
Information Services

When installing SharePoint, all the application files are installed into a directory nested deep within the
Program Files path: c: \Program Files\Common Files\Microsoft Shared\web server
extensions\12. Throughout this book, this folder is referred to as the “SharePoint 12 folder” or
[..1\12\. The SharePoint 12 folder contains everything necessary to run MOSS and WSS, including
Features (covered in Chapter 4), images, Cascading Style Sheets (CSS), Web services, and all assemblies
containing the compiled logic necessary for SharePoint to execute. Most of the custom code solutions are
deployed to a folder nested somewhere in SharePoint’s 12 folder structure.

One thing that is not kept in this path is the root directory for each new Web application, or Web site,
created in Internet Information Services (IIS). By default, these are created in ¢ : \ Inetpub\wwwroot\
wss\VirtualDirectories\ [site’s host header] [site’s port number]. Web applications are used
as the HTTP entry point to a SharePoint site and define certain aspects that are shared across all
SharePoint sites hosted within the Web application, such as HTTP handlers and modules, authentication
configuration, and a list of which controls have been registered with SharePoint’s safe mode page parser.
Opening a SharePoint extended Web application in IIS exposes four virtual directories created by
SharePoint: _vti_bin, _controltemplates, _layouts, and _wpresources. Each virtual directory has
a specific use within a SharePoint Web application and is shared across all sites hosted within that Web
application:

Q _vti_bin — This exposes SharePoint Web services and assemblies to SharePoint and

non-SharePoint applications alike; this virtual directory points to the path c: \Program Files\
Common Files\Microsoft Shared\web server extensions\12\ISAPI.

21

Chapter 2: Windows SharePoint Server 3.0 Development Primer

Q _controltemplates — This points to a shared folder within the SharePoint 12 directory structure
that only contains ASP.NET 2.0 user controls; this virtual directory points to the path
c:\Program Files\Common Files\Microsoft Shared\web server extensions\
12\TEMPLATE\CONTROLTEMPLATES.

Q _layouts — This points to a shared folder within the SharePoint 12 directory structure
containing application pages, covered later in this chapter; this virtual directory points to the
path c:\Program Files\Common Files\Microsoft Shared\web server extensions\
12\TEMPLATE\LAYOUTS.

QO _wpresources — This points to a shared folder that contains resources used by Web Parts
deployed globally to the server; this virtual directory points to the path c: \Program Files\
Common Files\Microsoft Shared\web server extensions\wpresources.

SharePoint Site Topology

The topology and structure of a WSS site, as well as the site collection in which the site lives, is very
important to WCM developers. To best understand it, it is easiest to look at the topology of a WSS site
and site collection from the top-down approach. As shown in Figure 2-3, the entry point for all
SharePoint sites is the Web application. The previous section explained how a Web application is just
another name for an IIS Web site and the folder structure that makes up the Web application.

Web Application

Site Collection -

Site Collection

Site Collection

SharePoint Content Database SharePoint Content Database

Figure 2-3

Web applications host SharePoint site collections. Web applications can also contain more than one site
collection. Recall that a site collection is an administrative and management construct within SharePoint.
Many capabilities are scoped within a specific site collection and do not cross to other site collections,
such as the scope of a search query created using the Content Query Web Part in a WCM site (the
Content Query Web Part is covered in detail in Chapter 11).

Developers can use the Microsoft.SharePoint.Administration.SPWebApplication class to
obtain a reference to an existing SharePoint extended Web application to perform administrative tasks
such as setting the number of days the “New!” icon appears next to new list items and documents:

SPWebApplication webApp = SPWebApplication.Lookup (new Uri("http://wss"));
webApp . DaysToShowNewIndicator = 7;
webApp.Update () ;

22

Chapter 2: Windows SharePoint Server 3.0 Development Primer

While site collections are hosted by Web applications, they are stored within SharePoint content
databases — another name for a SharePoint-specific Microsoft SQL Server database. Administrators can
add multiple content databases to a Web application, but a site collection can only live within exactly one
content database. This highlights the fact that administrators need to plan the structure of a site
collection because the larger the site collection, the larger the SQL Server database. As a result, when a
site collection becomes extremely large, the site has to be taken offline while the database is backed up.
Although you shouldn’t fret too much over the size of a site collection in the early stages of a project, as
sites can be moved from one site collection to another using custom code and working with the
SharePoint API, spend some time planning for the site collection’s growth. Administrators can leverage
quotas to control how much a site collection can grow in terms of storage space. These quotas can be
defined when a site collection is created or on existing site collections.

As previously stated, site collections are used for both administrative and management purposes.
However, at their core, SharePoint site collections simply contain SharePoint sites. When a new site
collection is created, the user is immediately directed to enter information such as the display name, the
description, and the owner of the site. This site is called the top-level or root site within the site collection.
Each site collection can have one top-level site, with as many subsites as desired. Each site contains lists
and libraries that are the fundamental and lowest-level storage constructs within SharePoint . . . similar
to SQL Server database tables. Like records within a database table, SharePoint lists and libraries contain
list items and documents. A new feature of WSS 3.0 is that SharePoint lists can also contain folders
(previously, in WSS 2.0, only document libraries supported folders).

Chapter 6, “Site Columns, Content Types, and Lists,” takes a detailed look at SharePoint lists and
libraries.

Developers can use the Microsoft.SharePoint.SPSite class to obtain a reference to an existing site
collection, and Microsoft.SharePoint .SPWeb to obtain a reference to a site within a site collection.
The following code demonstrates obtaining a reference to a site collection and determining how many
lists the top-level site contains:

SPSite siteCollection = new SPSite("http://wss");

SPWeb topLevelSite = siteCollection.RootWeb;
Console.Out.WriteLine("Total lists in the top-level site: "
+topLevelSite.Lists.Count.ToString()) ;

In addition, developers can also use the classes Microsoft.SharePoint.SPList and Microsoft
.SharePoint . SPDocumentLibrary to interact with lists and libraries via the SharePoint API.

When a new site is created, an administrator is prompted to select a site template, including when
prompted to create the top-level site after creating a site collection. Site templates are used to define an
initial starting point for the SharePoint site. Templates can include things such as list templates, as well
as instances of those list templates (covered in Chapter 6), Web Parts (covered in Chapter 11), default
content, and Features that are activated by default (covered in Chapter 4), among other things. However,
administrators can also elect to start from the equivalent of a clean slate by creating a site based on the
Blank Site template, which only adds the absolute minimum components necessary for a site to function,
such as the site template, list template, and Web Part libraries.

Each of these different elements within the site topology is used within Publishing sites. Chapter 3

covers in greater depth how the various site topology objects — specifically, SPSite, SPWeb, SPList,
and sPListItem — are leveraged within Publishing sites.

23

Chapter 2: Windows SharePoint Server 3.0 Development Primer

SharePoint Administration

SharePoint includes various interfaces that enable administrators to manage a SharePoint
implementation, both for SharePoint farm administrators and SharePoint site administrators. There are
essentially four different administration interfaces within a SharePoint environment: Central
Administration, Site Settings, List Settings, and STSADM. EXE.

Keep one thing in mind with respect to administration: While the browser-based and command-line
administration experience provides a significant amount of administrative capability, everything is
implemented using the SharePoint APL Thus, the SharePoint API can do everything the browser-based
or command-line interface can do, as well as many other things.

Central Administration

When an administrator installs SharePoint for the first time and creates a new farm, the installer
automatically creates a special WSS 3.0 site called Central Administration (see Figure 2-4). This site is
primarily used by farm administrators to manage all the servers in the SharePoint server farm, as well as
the SharePoint services on those servers. Central Administration is also used to manage and create new
Web applications, which creates new IIS Web sites automatically extended with the necessary things for
SharePoint to function, manage, and create new site collections, manage the SharePoint farm’s solution
store (covered in Chapter 4), manage the security and authentication configuration for Web applications,
and configure farm settings such as e-mail settings, anti-virus settings, and diagnostic logging.

Figure 2-4

Site Settings

One thing notably missing from the Central Administration site is the capability to manage the settings
of specific site collections and sites within the SharePoint farm. This is by design, in order to accomplish
SharePoint’s goal of empowering end users. Users can be assigned as the owners of site collections, with
the authority to administer the site, but not granted rights to the Central Administration site.

24

Chapter 2: Windows SharePoint Server 3.0 Development Primer

With this separation of responsibility, each site contains an administrative capability accessible via a
special page named Site Settings. The Site Settings page is accessible from the Site Actions menu or by
entering the URL http://[site URL]/_layouts/settings.aspx.Itis from this page that site
owners can manage the security of a site, create new lists and libraries, customize the site’s navigation,
manage the site columns and content types, and activate/deactivate site-scoped Features. The top-level
site within a site collection contains an additional column of links to administer the entire site collection,
including things such as activating/deactivating site-collection-scoped Features, search settings, recycle
bin settings, and site collection usage reports (see Figure 2-5).

Figure 2-5

List Settings

Aside from the Site Settings administration page, a site contains a page that enables those with
appropriate rights to edit the settings of a list. While on a list view, the List Information page, shown in
Figure 2-6, is accessible from the Settings toolbar menu. It enables users to manage the list’s title,
description, navigation, version settings, audience targeting settings, views, and permissions. Users can
also manage the list’s columns, as well as its content types.

As previously mentioned, WSS 3.0 is built on top of the .NET 3.0 Framework and fully leverages
Windows Workflow Foundation. From the List Settings page, users can also configure the workflow
settings, such as associating workflow templates previously deployed to the site collection with the
list, and configure their startup options, such as automatically when new list items are created or
updated, or manually. Users can also remove workflows or keep new workflows from being started
on an association-by-association basis, from the Workflow Settings page accessible from the List
Settings page.

25

Chapter 2: Windows SharePoint Server 3.0 Development Primer

Figure 2-6

STSADM.EXE

STSADM. EXE is a command-line utility used for the administration of SharePoint sites and servers. Every
WSS 3.0 install includes STSADM . EXE, which can be found in the following directory: c¢: \Program
Files\Common Files\Microsoft Shared\web server extensions\12\bin\.STSADM.EXE is
based on the premise of operations. Administrators specify an operation to perform, followed by a series
of required or optional switches. For example, the following command lists all the InfoPath form
templates that have been deployed to the SharePoint farm’s Form Template library within Central
Administration:

stsadm.exe -o enumformtemplates

To retrieve a list of all the operations available, either execute STSADM . EXE using no parameters or with
the single ~help parameter. Get operation-specific help and syntax by specifying ~help and the name
of the operation, such as the following:

stsadm.exe -help enumformtemplates

As a SharePoint developer, it is beneficial to become very familiar with STSADM. EXE, as it provides
additional functionality not included (and sometimes not possible) through Central Administration or
Site Settings. Some of these exclusive STSADM . EXE operations include activating/deactivating hidden
Features, and adding or upgrading WSS solution packages to the SharePoint farm’s solution store.

STSADM. EXE is also extensible, enabling developers to add custom operations to the list of

available operations. Once a custom operation has been deployed, it will show up in the list of available
operations. For more information on extending STSADM . EXE, refer to the WSS 3.0 online help

on MSDN: www . andrewconnell.com/go/206.

26

Chapter 2: Windows SharePoint Server 3.0 Development Primer

WSS 3.0 and ASP.NET 2.0 Development

Because Microsoft changed the architecture approach of SharePoint by building on top of ASP.NET 2.0,
SharePoint development is very much like ASP.NET 2.0 development. Nearly everything available
within ASP.NET 2.0 is available within a SharePoint environment. Aside from the similarities, SharePoint
also adds some additional development opportunities above and beyond what is at the disposal of a
standard ASPNET 2.0 site. However, SharePoint is a separate product from ASPNET 2.0, so there are
some differences.

Like ASP.NET 2.0

This chapter previously explained how SharePoint — specifically, WSS 3.0 — is now built on top of
ASP.NET 2.0 and is implemented using a custom HTTP application, handlers, and modules. This new
approach enables all native ASPNET 2.0 concepts to bleed through for use within SharePoint. The
following few sections touch on some of the similarities between standard ASPNET 2.0 development
and SharePoint-specific development.

Master Pages

SharePoint heavily leverages ASP.NET 2.0 master pages. All SharePoint sites are based on the same
initial master page called default.master found in the [..]\12\TEMPLATE\GLOBAL directory. This
master page contains many content placeholders required in most master pages leveraged within
SharePoint. It also contains an instance of a special SharePoint implementation of the ASP.NET 2.0 Web
Part Manager control, which acts as the hub for the Web Part framework on all customizable pages and
imports the SharePoint-specific CSS files required to implement the SharePoint user experience (such as
the Web Part zones and Site Actions menu).

Developers are not limited to this single master page. Just like a typical ASPNET 2.0 Web

site, developers can customize the provided master page or create custom master pages for use within
SharePoint. For more information, refer to Chapter 7, “Master Pages and Page Layouts,” which covers
the creation and customization of new master pages in depth.

One minor difference is the utilization of master pages within an ASP.NET 2.0 Web site versus a
SharePoint site. In SharePoint, the master page is specified at the site level, and generally all pages
within that site leverage the selected master page; whereas in ASPNET 2.0, developers configure which
master page is utilized on a content-page by content-page basis.

Navigation Provider Model

In ASP.NET 2.0, Microsoft introduced the navigation provider model, which dramatically simplifies
creating custom navigation components, as well as plugging custom or third-party components into
ASP.NET 2.0 Web sites. Unlike its previous version, WSS 3.0 navigation is much easier to customize
because it is fully leverages the ASP.NET 2.0 navigation provider model. Microsoft includes some custom
navigation controls that can only be used within SharePoint sites, but it is incredibly easy to replace

these controls with a commercial or custom navigation rendering component if the need arises. Refer

to Chapter 8 for an in-depth discussion on customizing and working with navigation within a
SharePoint — and, specifically, a MOSS Publishing — site.

27

Chapter 2: Windows SharePoint Server 3.0 Development Primer

Membership Provider Model

Another addition to the .NET Framework was the inclusion of the membership provider model within
ASP.NET 2.0 Web sites. This abstracts the authentication mechanism and plumbing from an ASP.NET 2.0
application, simplifying development and configuration. It also makes it much easier to add new
authentication mechanisms to an existing application.

WSS 2.0 was, for the most part, restricted to Active Directory authentication. While it was possible to
hook into other authentication mechanisms such as a generic LDAP provider, enabling it required a lot
of work and it was problematic. Thanks to WSS 3.0’s ability to leverage everything ASPNET 2.0 has to
offer, a SharePoint site can now fully utilize the membership provider model and authenticate against
a virtually unlimited number of identity stores. Moreover, SharePoint provides an additional capability
that enables multiple entry points into a single site collection via different URLSs, each configured with
a different authentication mechanism, such as Active Directory, forms-based authentication, or LDAP.
Chapter 15, “Authentication and Authorization,” deals with SharePoint’s implementation of the
membership provider model and configuring authentication providers.

Server Controls and User Controls

ASP.NET 2.0 server controls are elements that encapsulate logic, functionality, and a user interface.
Developers can build custom ASP.NET 2.0 server controls for use within Web sites or they can leverage
one of the many included controls. User controls, commonly referred to as ASCX files, are server controls
that enable developers to describe the behavior and user interface of a server control declaratively. Some
examples of server controls include <asp:TextBox /> and <asp:DataGrid />.

Like ASP.NET 2.0, SharePoint ships with many server and user controls, and developers are free to build
custom server and user controls for use within SharePoint applications. In fact, many of the user
interface components developers build in SharePoint are server controls such as Web Parts and field
controls. One difference from leveraging server and user controls within SharePoint compared to
ASPNET 2.0 is that SharePoint runs in a lower level of trust (covered in the sections “Code Access
Security” and “Safe Mode Parser” later in this chapter), so assemblies need to be flagged as “safe” for
execution within a SharePoint site.

Web Parts

28

WSS 2.0 introduced the Web Part framework, and until ASP.NET 2.0 was released, the only way to
leverage Web Parts was within a SharePoint site. However, with the release of ASPNET 2.0, Microsoft
added the Web Part framework (albeit the implementation was a bit different from WSS 2.0) to non-
SharePoint sites. When the SharePoint team made the decision to change the fundamental architecture of
WSS 3.0 to be built on top of ASPNET 2.0, it also elected to rewire the SharePoint platform to leverage
the ASPNET 2.0 Web Part framework implementation as the recommended Web Part development
approach.

In addition, the older SharePoint-specific Web Part class and associated classes were redeveloped for
backward compatibility so that WSS 2.0 Web Parts would continue to function within WSS 3.0.
Regardless, the recommended approach for Web Part development within WSS 3.0 is now to build
ASP.NET 2.0 Web Parts, rather than SharePoint-specific Web Parts. Chapter 11, “Web Parts,” takes an
in-depth look at creating custom Web Parts.

Chapter 2: Windows SharePoint Server 3.0 Development Primer

Unlike ASP.NET 2.0

Although WSS 3.0 is built on top of the NET Framework 3.0, with many striking similarities between
ASP.NET 2.0 and SharePoint development, there are some unique differences between the two platforms.
The following sections outline a few of the more visible and glaring differences where the development
experience diverges.

Development Tools and Experience

ASP.NET 2.0 developers typically build sites using Microsoft Visual Studio. Visual Studio provides
multiple deployment methods, hosts a slimmed-down version of IIS (to reduce the surface area of
security-related attacks and compromises), and includes a rich designer interface that enables developers
to drag and drop controls onto the design surface when constructing new master pages, content pages,
and user controls.

Unfortunately, this rich design-time interface is generally not available within Visual Studio when
developing SharePoint assets. Instead, Microsoft encourages developers to use a new tool introduced in
the 2007 Office System called Office SharePoint Designer 2007. This tool is the successor to FrontPage
2003. Developers can use this tool to create new master pages and content pages visually with a rich
WYSIWYG design-time interface. However, this approach to development also has associated baggage
that developers should be aware of (see the section “Customization versus Development” later in this
chapter).

User controls are even more negatively affected by this, as SharePoint Designer does not provide a
development experience for these types of ASPNET 2.0 assets.

Even with these limitations, developers are not without options. Visual Studio can still be used to
develop master pages, content pages, page layouts (within the context of MOSS Publishing sites) and
user controls, although development must be done in the HTML or Code view, rather than the Design
view, and there is no live debugging experience: Components must be deployed and implemented
within a SharePoint site in order to be tested and debugged.

Code-Behind Files

Building off the previous section on the development tools and experience, SharePoint developers” use
of code-behind files within master pages, content pages, page layouts (within the context of MOSS
Publishing sites), and user controls differs from that within a pure ASP.NET 2.0 Web site. ASP.NET 2.0
developers can easily code-behind files to the aforementioned types of files: When in Design mode,
right-click the design surface and select View Code. Visual Studio handles the wiring up of the user
interface file (i.e., master, ASPX, or ASCX) and the code-behind class, and provides a nice expansion
experience within the Solution Explorer tool window.

Unfortunately, Visual Studio has no such integration within SharePoint. This does not mean that it isn’t
possible to have code-behind files within SharePoint files — this is a common misunderstanding for
those who are new to the SharePoint platform. Instead, developers simply need to wire the two files
together manually. The code-behind files containing classes inheriting from System.Web.UI.Page

(in the case of a content page) are compiled into assemblies using something like the Class Library
project template within Visual Studio. A developer would then wire up the two files by adding an
Inherits attribute to the Page (or Master or Control) directive in the source of the user interface file.
The Inherits attribute contains the five-part name of the class, which includes the full class, or type,

29

Chapter 2: Windows SharePoint Server 3.0 Development Primer

the name of the object containing the server-side logic for the type (e.g., namespace. typename), the
assembly containing the type, culture, and version, and the public key token of the signed assembly.

For example, consider the following class compiled into the assembly SharepointWebSite.dl1:

using System;
namespace WROX {
public class SomePage : System.Web.UI.Page ({
protected void OnLoad(object sender, EventArgs e) {
Response.Write(DateTime.Today.ToString()) ;
}
}
}

The ASPX file that is wired up to the code-behind containing the type for this page would contain a Page
directive like the following;:

<%@ Page Language="C#" Inherits="WROX.SomePage, SharePointWebSite, Culture=Neutral,
Version=1.0.0.0, PublicKeyToken=[...]" %>

Code Access Security

30

Code access security (CAS), included with the .NET Framework, enables developers and administrators
to grant specific permissions and rights to managed code. Another type of security most people are
familiar with is user-based security, whereby code assumes the rights and permissions that the current
user has been assigned. Using CAS effectively enables administrators to restrict what managed code is
allowed to do, limiting the surface area of attack and vulnerability on a system.

While not a SharePoint-specific topic by any means, many ASP.NET 2.0 developers are immune from
dealing with CAS in Web projects, as most sites run fully trusted by default. Some developers may be
familiar with running in what is referred to as medium trust, as that is what many shared hosting
providers are now using to exert more control over their assets hosting many Web sites for multiple
customers on the same hardware.

By default, new SharePoint Web applications are configured to run within a very low and restricted level
of trust called WSS_Minimal. For example, some things are not possible out-of-the-box (OOTB), such as
consuming a Web service that exists outside the current domain or connecting to a SQL Server database.
In order to perform these types of tasks, you must do one of the following;:

Q Create a custom CAS policy that assigns the necessary permissions to the assembly(s) containing
the managed code attempting to perform such an action.

Q Change the SharePoint Web application CAS policy from WSS_Minimal to WSS_Medium or Full
(which is the least secure and most pervasive). This affects all assemblies within the Web
application, not just the specific assembly needing elevated permissions.

Q Deploy the assembly containing the managed code attempting to perform such an action to
the server’s GAC, thus granting the assembly full trust and making it globally available
on the server.

Chapter 2: Windows SharePoint Server 3.0 Development Primer

Safe Mode Parser

While ASP.NET 2.0 sites generally live on the file system, SharePoint sites are virtualized within a
content database. These virtualized files exist in one of two states: customized or uncustomized. This
topic is covered in greater detail in the section “Uncustomized versus Customized Files” later in

the chapter. For now, understand that customized files are those for which the source lives within the
content database. SharePoint Designer enables developers and information workers to create and
customize files in existing SharePoint sites. This is not an issue within ASPNET 2.0 sites because end
users cannot easily open ASPX pages within a production site and randomly change the source of the
files. However, users with appropriate permissions can do this within SharePoint, so Microsoft needed
to add a control capability that enables administrators to restrict what end users can and cannot do.

For instance, consider an information worker within an organization who picked up a C# book for
beginners. The last thing that site owners — and, more important, administrators — want to allow is for
this person to add some custom inline code using the <script runat="server"> tag within an
existing site. If this were permitted, then there would be no way to control what managed code was
being executed within an environment, thus greatly increasing the attack surface area.

To address this, the SharePoint team included a safe mode parser in ASP.NET. All customized pages are
routed through the safe more parser that prohibits inline code within customized files. In addition, the
safe mode parser disallows adding controls to pages that have not been flagged as safe.

Types of Pages

While SharePoint is built on top of ASP.NET 2.0, it has a unique concept of two types of pages: site pages
and application pages. Both types of pages have unique characteristics and exist in every SharePoint site.
As a SharePoint developer, you should have a strong grasp of the two, where they are used, and what
can and cannot be done with each.

Site Pages

Site pages are those types of pages that support customization or personalization, and thus can be
themed and host Web Parts. These are the most common types of pages end users see in a SharePoint
site. These are also the types of pages that developers and designers can modify and edit within
SharePoint Designer, because they are virtualized within the site’s logical architecture and live within
the site collection’s content database either as customized or uncustomized pages.

As far as security goes, site pages should never contain inline script. While inline script will compile and
execute just fine when a page is uncustomized, after the page becomes customized it is passed through
SharePoint’s safe mode parser, which will throw a runtime exception if the page contains inline script.

A site page may or may not become customized, but the mere fact that it is possible should be reason
enough to avoid using inline script.

Note also that site pages typically use whichever master page their parent site has been configured
to use.

31

Chapter 2: Windows SharePoint Server 3.0 Development Primer

Application Pages

All application pages live within the _layouts virtual directory that exists within each SharePoint site.
Applications pages, unlike site pages, cannot be customized or personalized, as these files do not live
within a site’s content database. This explains why the _layouts virtual directory is not seen within
SharePoint Designer. All applications pages are shared and are available across all SharePoint sites living
on the same server. However, each page may hide some links via security trimming, as each page runs
within the context of a specific site.

Unlike site pages, all application pages leverage the same master page, application.master. Because
they all use the same master page, this means that all applications across all sites on a server have the
same user interface. SharePoint themes are the only supported customization technique for implementing
a different look and feel on application pages across different SharePoint sites on the same server.
Themes provide a way for developers and designers to customize the look and feel of a SharePoint site
using CSS and images.

A common example of an application page is the Site Settings page that exists for all sites. As a
developer, when creating custom application pages (described in Chapter 14, “Authoring Experience
Extensibility,” which covers extending the OOTB authoring experience), the custom pages should inherit
from Microsoft.SharePoint.WebControls.LayoutsPageBase.

Uncustomized Versus Customized Files

So far, this chapter has alluded to the customization of uncustomized files a few times. Now it is time for
a deeper explanation of the topic, as it is a recurring point of discussion throughout this book. SharePoint
developers should be intimately familiar with the difference between these two file types. Unfortunately,
most developers don't realize there is actually a difference, or the implications of that difference, until
they have progressed quite far into their project. Although a project is not stuck with the approach
originally taken, moving from one implementation to the other can become quite a daunting and time-
intensive task.

When a new SharePoint site is provisioned, either when it is created as the top-level site within a new
site collection or as a subsite within an existing site collection, most files start off in an uncustomized
state. This means that while the file lives within the logical structure of a SharePoint site and is seen from
within SharePoint Designer (and thus, is in the content database), the entry in the content database
simply points to the file it is based off of on the file system. This file is sometimes referred to as a template
file or file definition because by itself it is not very usable. However, when creating a new file based on

it within a SharePoint site, also referred to as provisioning the file, the file now acts as the source to the
one within the content database. The file remains in an uncustomized state as long as its source is not
modified using SharePoint Designer. Operations such as adding Web Parts using the browser interface
do not affect the customization state of the page.

There are a few different ways in which a file can become customized. The most common way to
customize a file is to open it in SharePoint Designer, make any changes, and then save the file. When
someone saves a file in SharePoint Designer, the source of the updated file is saved to the content
database. Subsequent requests for the file result in the SPVirtualPathProvider (SharePoint’s custom
virtual path provider) retrieving the source of the file from the content database, rather than the file
system. Once a file is customized, users with appropriate rights can undo the customization and perform

32

Chapter 2: Windows SharePoint Server 3.0 Development Primer

what is referred to in the browser and SharePoint Designer user experience as “reset to site definition.”
This deletes the customized version of the file and causes the file to be served from the file system again.

Another type of customized file is one that starts initially as customized, rather than being provisioned
from a template on the file system. This can be done by creating a new file in SharePoint Designer and
saving it to a site, creating a new page within the site’s browser interface or through the SharePoint API,
as shown in Listing 2-1. These types of pages cannot be reverted back to a site definition or the
underlying template file, because they were never based off one.

Listing 2-1: Creating a customized page in a SharePoint site using the
SharePoint API

using System;
using System.IO;
using Microsoft.SharePoint;

namespace Listing2_a {
class Program {
static void Main (string[] args) {

using (SPSite siteCollection = new SPSite("http://wss")) {
using (SPWeb site = siteCollection.RootWeb) {
MemoryStream fileStream = new MemoryStream() ;
StreamWriter fileWriter = new StreamWriter (fileStream) ;

// write the source of the page (include meta:progid so SharePoint
Designer understands this file

fileWriter.WriteLine("<%@ Page
MasterPageFile=\"~masterurl/default.master\"
meta:progid=\"SharePoint.WebPartPage.Document\" %>");

fileWriter.WriteLine("<asp:Content runat=\"server\"
ContentPlaceHolderID=\"PlaceHolderMain\">");

fileWriter.WriteLine ("<hl1>WROX</hl>");

fileWriter.WriteLine("</asp:Content>");

fileWriter.Flush();

// save the file to SharePoint
site.Files.Add("ApiGeneratedPage.aspx", fileStream);

// cleanup
fileWriter.Close();
fileWriter.Dispose() ;
fileStream.Close() ;
fileStream.Dispose() ;
} // SPWeb using statement
} // SPSite using statement

} // method "Main"

33

Chapter 2: Windows SharePoint Server 3.0 Development Primer

Developers can programmatically check whether a file is customized or uncustomized using the
Microsoft.SharePoint.SPFile.SPCustomizedPageStatus property and reset the file back to an
uncustomized state using the Microsoft.SharePoint.SPFile.RevertContentStream() method.
Listing 2-2 demonstrates the use of this property and method.

Listing 2-2: Checking the customization status of a file, removing any customization,
and reverting it back to the template file

using System;
using Microsoft.SharePoint;

namespace Listing2_b {
class Program {
static void Main (string[] args) {

using (SPSite siteCollection = new SPSite("http://wss")) {
using (SPWeb site = siteCollection.RootWeb) {

SPFile file = site.GetFile("default.aspx");

// if file is customized, revert to underlying template file
if (file.CustomizedPageStatus == SPCustomizedPageStatus.Customized)
file.RevertContentStream() ;

} // SPWeb using statement
} // SPSite using statement

} // method "Main"

What bearing does the customization status of a file have on a Publishing site? Consider SharePoint site
customization compared to development.

Customization versus Development

With an understanding of what it means when a file within a SharePoint site is uncustomized or
customized, let’s take a look at how that affects the development of a SharePoint site — specifically, a
Publishing site. Whereas many traditional SharePoint sites are used primarily for collaboration and are
inward facing (only company employees see and use them), publicly facing sites, which are what
Publishing sites are primarily intended to be used for, typically are created within a controlled
development environment, within which files are moved around for internal testing, quality assurance
and user acceptance testing, and staging, before being put into production.

SharePoint Customization

As previously covered, when files are customized, they exist within the SharePoint site’s content
database. While some may have originally been based on an underlying template, the source of the
customized file still lives within the database. Files living within the database present a challenge in

34

Chapter 2: Windows SharePoint Server 3.0 Development Primer

promoting them through the different environments. How can this occur within a site comprised simply
of customized files? While not impossible, it is a bit tedious to achieve. Consider the following options:

O One option would be to simply recreate the files in each environment manually, obviously a less
than ideal approach.

0 Another option would be to backup the content database from the development environment
and restore it into production. This method is not recommended. It may be acceptable when a
site is first launched, but it is not very viable over time, as future updates would overwrite
published content on the production site.

Q The development team could also leverage the Publishing site capability of content deployment,
which packages entire site collections (or, optionally, sites within a site collection) for
deployment to a destination server that is either connected or disconnected. Similar to the
previous option, using content deployment in this manner is only an option for the initial rollout
of a site because it is designed for deployment to a read-only destination server. Errors could
(and likely would) potentially occur if the destination site has changed since the last content
deployment job, which is almost guaranteed to be the case because content will likely have been
added or updated on the destination site. Chapter 17 provides a detailed look at content
deployment.

Q A fourth option is to write custom code or scripts that would automate the deployment of files
within the development environment to the target environment. While a viable option, this
produces custom code that must be maintained and well written to handle any exceptions that
might arise.

The customization approach of creating a Publishing site has associated baggage. Many of these points
are mitigated when developers make UI changes to files directly to the production environment using
tools such as SharePoint Designer. However, many larger organizations do not allow developers and
designers write access to a production environment.

SharePoint Development

Another approach to developing Publishing sites, or any SharePoint site for that matter, is to avoid
customizing any files and strive to have as many files as possible (if not all) exist within a Publishing site
in an uncustomized state. This approach involves working at a much lower level, the file system level,
compared to site customization done directly at the site level.

In order to keep files within a SharePoint site uncustomized, they must be created as physical files on the
file system. The challenge here is that developers have no rich preview experience of the changes, which
SharePoint Designer provides. After files have been created, how are they added to the SharePoint sites?
The answer lies within the SharePoint Feature framework. One of the schemas provided in Feature
element’s manifest files is the <Module> and its associated <File> element. Using this schema,
developers can provision files into SharePoint based off file templates that exist within the Feature.

This approach has added benefits that some developers may already be wondering about. One of the
most significant benefits is that it works well with those development teams that have a prescribed
process for all projects. This process is generally known as a Software Development Lifecycle (SDL),
which involves tasks such as real testing, and, more important, incorporating everything into some sort
of a source control management (SCM) system such as Microsoft’s Visual Studio Team Foundation
Server or the open-source SubVersion solution. When customizing files with SharePoint Designer in a

35

Chapter 2: Windows SharePoint Server 3.0 Development Primer

Publishing site, developers are required to check files in and out, and publish and approve changes to
files. Each of these steps permits users to specify comments on each check-in and approval. However,
this is not true source control; this is version control.

Source control includes things such as atomic commits of multiple files as a single action, branching
multiple lines of parallel development, and tagging/labeling /naming to indicate that the main line of
development (commonly referred to as the trunk) has reached a certain milestone (usually a release).
Unfortunately, SCM solutions do not integrate well with SharePoint without a lot of custom
development. However, in a site created using the SharePoint development approach, the files live on
the file system, which is exactly what virtually all SCM solutions understand and support.

Another thing to understand is that SharePoint development doesn’t only apply to files such as master
pages and ASPX files. It also applies to SharePoint-specific topics such as site columns, content types, list
templates, and workflows. Each of the topics covered in this book addresses the issue of SharePoint site
customization versus development. This provides developers with all the information necessary to
evaluate both approaches.

Please keep one thing in mind: While this book presents both approaches (customization and
development), it neither passes judgment on either approach nor concludes that one approach is better
or worse than the other. The goal is simply to educate SharePoint developers regarding all aspects of site
customization versus site development. One approach may be more familiar and preferred to some
developers, while the other approach is favored by others. The approach selected depends on the scope
of the project as well as the development team and process.

Introducing the Microsoft.SharePoint
Namespace

Thankfully, Microsoft shipped a very extensive and robust API that enables developers to write custom
code solutions to add, extend, and change functionality, as well as manage SharePoint. Keep in mind
that the SharePoint API is the only supported way to access data within SharePoint. Never go directly
to the SQL Server databases to make changes or select data — always use the SharePoint API. In
addition, the SharePoint API is how the provided tools and interfaces interact with SharePoint, including
the browser-based interface, the included Web services, and the command-line utility STSADM . EXE. Not
only did Microsoft use the SharePoint API that ships with WSS 3.0 and MOSS 2007 for all the included
administration interfaces, but there are additional things that the admin interfaces do not expose that
developers can implement using the SharePoint API.

The core of the SharePoint API is the Microsoft.SharePoint namespace, which is found in the
Microsoft.SharePoint.dll assembly located in [..]\12\ISAPI. All developer projects created in
Visual Studio need to contain a reference to this assembly, as all other SharePoint assemblies are
dependent upon the core Microsoft.SharePoint.dll assembly.

This chapter has already touched on some of the more important and common classes within the
Microsoft.SharePoint namespace, such as SPSite for site collections and Spweb for SharePoint sites.
Additional classes found in the root of the Microsoft.SharePoint namespace include SPList for lists,
SPListItem for items within lists, SPDocumentLibrary for documents within document libraries,

36

Chapter 2: Windows SharePoint Server 3.0 Development Primer

SPQuery for creating queries using Collaborative Markup Language (CAML), as well as SPGroup and
SPUser for SharePoint groups and users, respectively.

Debugging in WSS 3.0

One of the biggest differences between ASP.NET 2.0 development and SharePoint development is the
debugging experience. When developing an ASP.NET 2.0 application, Visual Studio dramatically
simplifies the debugging experience. Intuitive and straightforward, developers need only press the F5
key to automatically build the project and attach the debugger to the process hosting the ASPNET 2.0
application. Unfortunately, the default experience in Visual Studio is not the same when developing
SharePoint applications.

Visual Studio contains no special hooks into a SharePoint site. Thus, pressing F5 will result in an error
because the application must be running within the process hosting the SharePoint application (the
IIS application pool). The only time this isn’t the case is when developing console or Windows Forms
applications because they run within their own process.

So, how do developers debug assemblies designed to run within a SharePoint process, such as those
containing Web Parts, custom field types and controls, event receivers, and workflows? The answer is to
manually attach the debugger to the process hosting the application pool configured with the Web
application that contains the target SharePoint site. The difference between this process and F5
debugging is that the developer has to perform the steps of attaching the debugger to the process
manually; whereas with traditional ASPNET 2.0 applications, pressing F5 performs the steps for the
developer automatically, similar to a macro.

To manually attach the debugger, first build and deploy the custom assembly that will be debugged.
Next, within Visual Studio, select Debug, and then Attach to Process. In the Attach to Process dialog,
select the w3wp . exe process that is hosting the application pool and the Web application hosting the
target SharePoint site that contains the assembly to be debugged and click Attach.

If multiple w3wp . exe processes are running, the developer can attach to all of them. Use the identity the
application pool is running as in the User Name column or enter the following command at the
command line to view a list of all the running w3wp . exe processes, their respective process IDs (PIDs),
and the name of the application pool they are hosting (use the PID to find the process to attach to):

cscript.exe $windir%\system32\iisapp.vbs

Debugging assemblies deployed to the Global Assembly Cache (GAC) is a bit more challenging and
requires some additional work. Before attaching the debugger to the application pool process, the
debugger symbols (* . PDB files) must be copied to a specific directory. To find the directory, select
Start = Run and enter the following:

¥systemroot¥\Assembly\GAC
Next, open the directory with the same name of the assembly that contains the code to be debugged
and then select the subdirectory that is named in the following format: [AssemblyVersion]__

[AssemblyPublicKeyToken]. Copy the debugger symbols into that directory. Now the debugger can
be manually attached to the appropriate w3wp . exe process.

37

Chapter 2: Windows SharePoint Server 3.0 Development Primer

Summary

38

This chapter provided a high-level overview of WSS 3.0 from the perspective of a developer. One of the
most important points to take away from this chapter is the difference between uncustomized and
customized files, as well as SharePoint customization compared to SharePoint development. This
chapter also compared common ASP.NET 2.0 development topics to SharePoint development topics.
Although this chapter provided only an overview of WSS 3.0, as it is a very large topic that warrants a
book of its own, developers creating MOSS Publishing sites must have a good grasp of the fundamental
concepts covered in this chapter, as they are pervasive throughout the complete SharePoint product
stack, including Publishing sites.

Overview of Web Content
Management in Microsoft
Office SharePoint

Server 2007

The previous chapter explained how core Windows SharePoint Services (WSS) concepts embrace
and extend ASP.NET to provide the platform foundation upon which Office SharePoint Server
(MOSS) solutions, including Web Content Management (WCM), are built. This chapter explores
the additional functionality offered by MOSS, including aspects that are critical to a successful
WCM implementation.

Before looking at MOSS itself it is worth briefly considering the Microsoft precursors to MOSS
WCM, the lessons learned, which were applied to this release, the rationale for building WCM on
the SharePoint platform, and the considerable opportunities offered by such rich integration.

This chapter begins by looking at the different features and editions of MOSS and then drills down
into WCM-specific features. The WCM experience is demonstrated from the perspective of both
the author and the end user. Also covered are the ABCs of publishing. In addition, the Shared
Services Provider (SSP), a critical element of any Publishing site, is described. Finally, the chapter
concludes with a brief tour of the Microsoft.SharePoint.Publishing namespace, covering the
fundamental objects with examples of common uses within Publishing sites.

Web Content Management on the
Microsoft Platform

Prior to MOSS, Microsoft had separate, distinct offerings for WCM, portal content aggregation,
and search. The WCM offering came in the form of Content Management Server 2002 (MCMS).
MCMS provided traditional WCM functionality such as a templated page model, in-context

Chapter 3: Overview of Web Content Management

content authoring, and dynamic runtime compilation. MCMS provided a .NET-accessible Publishing API
and ASPNET integration, which enabled developers to build solutions on this framework. While
certainly a successful product in its own right, the architecture of MCMS was very different from
SharePoint and often constrained solutions development. Many organizations felt they had to choose
between the previous versions of SharePoint and MCMS when embarking on a Web site project, and
many chose to implement both with loose integration between them. Possibly the most common
example of such integration was that of a WSS document library being used for document collaboration
and versioning “inside the firewall,” with the result made accessible via the public Web site hosted on
MCMS. Unfortunately, there were core architectural differences between SharePoint and MCMS.

For example, MCMS did not embrace Internet Information Server 6.0’s (IIS) worker process isolation
mode and did not expose its security API to developers. Various SharePoint integration scenarios were
provided for by an add-on connector (“Spark”), but it was clear that this bolt-on to bridge the
architecture gap would not scale to meet growing customer demand for deep and rich SharePoint
integration.

Very much a toolkit with a blank canvas, MCMS provided a rich framework but at the same time
required a significant amount of repetitive custom code to achieve core WCM functionality such as site
navigation and content aggregation. While MCMS Service Pack 2 provided some support for ASPNET
2.0 enhancements such as master pages, navigation, and authentication providers, it was not uncommon
for such standard elements to be reimplemented for each individual Web site project. Freeing MCMS
developers from these costly, routine, and ineffective tasks was a main goal moving forward.

Key functional elements missing from MCMS, such as an integrated search capability, flexible
authentication mechanisms, and security APIs, also increased development time, cost, and support of
solutions.

Each of the these issues, along with a long list of common customer pain points, drove Microsoft to
consider leveraging SharePoint as the underlying platform of its next WCM offering. Following several
months of assessment, it was decided to build the next generation of MCMS upon the WSS 3.0 platform
as part of MOSS 2007.

Microsoft Office SharePoint Server

40

MOSS 2007 builds on the WSS 3.0 platform to offer six additional broad areas of functionality. As shown
in Figure 3-1, WSS provides the center circle of platform services and the collaboration slice. The
additional portal, search, content management, business forms, and business intelligence slices are
provided by MOSS.

Chapter 3: Overview of Web Content Management

Business

WBielligence Collaboration

Platform
Services

Business Workspaces, Portal
Forms Mgmt, Security,
Storage, Topology,
Site Model

Content

Management Scaigy

Figure 3-1

MOSS is available in three flavors, or SKUs. MOSS Standard Edition includes collaboration, portal,
search, and content management. MOSS Enterprise Edition adds business forms and business
intelligence. In addition, there is a MOSS for Internet Sites Edition, which featurewise is identical to
Enterprise but is licensed for the hosting of applications deployed to the Internet.

More information on MOSS licensing and which edition is appropriate can be found at
www . andrewconnell.com/go/207 and www.andrewconnell.com/go/208.

In brief, the key feature areas of MOSS include the following;:
Q Collaboration — Document libraries/tasks/calendars, blogs, wikis, e-mail integration, project
management “lite,” Office Outlook 2007 integration, offline documents, and lists.

Q Portal — Enterprise portal template, site directory, my sites, social networking, and privacy
control.

Q Search — Enterprise scalability, contextual relevance, rich people and business data search.

Q Content Management — Integrated document management, records management, WCM with
policies and workflow.

QO Business Forms — Rich and Web-forms-based front ends, line of business (LOB) actions,
pluggable single sign-on (SSO).

Q Business Intelligence — Server-based Office Excel 2007 spreadsheets and data visualization,
report center, BI Web Parts, key performance indicators (KPIs)/dashboards.

Building WCM on top of WSS as part of MOSS means that the WCM feature set is concentrated on its
core functionality, rather than infrastructure plumbing such as check in/check out, storage, security,
backup /restore, and so on. In addition, WCM can take advantage of advances in the WSS platform, such
as pluggable authentication and workflow. As a result of being freed from this infrastructure plumbing,

41

Chapter 3: Overview of Web Content Management

WCM has also delivered advanced functionality such as variations, which enable content to be
published to multilingual sites for translation.

Overall, MOSS provides an incredible breadth of functionality across popular business scenarios. WCM
is simply one part of the content management feature set. The Collaboration Portal site template,
primarily intended for an enterprise or departmental portal “within the firewall,” utilizes key WCM
features such as page layouts, field controls, document libraries, the page editing toolbar, versioning,
and workflow. In other words, WCM brings to MOSS some fundamental core features that greatly
enhance solutions within the portal space. Other examples of features brought to MOSS by WCM
include content deployment and advanced caching. By taking this approach, Microsoft has been able to
leverage WCM features to enable rich portal scenarios.

At its core, a Publishing site is just another SharePoint site, and as such it can integrate with the other
features with little or no code. Integrating a search capability previously required the purchase of an
additional product and significant custom integration code. With MOSS, a Publishing site essentially has
an extremely powerful and scalable search capability for free. Other examples include the capability to
richly target content to groups of users based upon profile information by leveraging audiences. MOSS is
also capable of integrating with external LOB data through the Business Data Catalog (BDC). Due to the
rich ASP.NET extensibility capabilities in MOSS, it is also possible to integrate with external systems
such as Microsoft Commerce Server, which is used to provide rich end-to-end WCM, including common
Internet scenarios such as e-commerce. This capability is one of the core assets of a MOSS-based WCM
solution, providing an extremely broad canvas for building integration solutions while reducing
significantly the amount of custom code required to do so.

The ABCs of Web Content Management

MOSS follows a traditional approach to the management of Web content by removing the IT bottleneck,
enabling content authors and owners to take control of the contribution, approval, and publishing of
content. MOSS provides a pipeline that is capable of managing complex interactions among contributors,
enforcing business rules, applying branding and content reuse, and aggregation. Microsoft refers to this
process as the ABCs of WCM, which neatly encapsulates the core WCM feature set in MOSS.

Authoring

42

Authoring is the process of content authors contributing content to a Publishing site. MOSS offers a
DHTML-based authoring environment that provides an in-context view of a Web page, including field
controls, where different types of content can be provided. These field controls include support for rich
HTML editing, images, attachments, and metadata. Even though the author can see and edit the
metadata while in Edit mode, the metadata is not displayed to the end user. In addition, the Web
browser interface includes a Page Editing Toolbar that enables users to perform common operations
such as check in or check out, spell check, and workflow management. Field controls are covered in
depth in Chapter 10. The Page Editing Toolbar is covered in depth in Chapter 14.

Reusable content provides the capability to store HTML content snippets for reuse across a site
collection. Examples of reusable content include copyright notices, legal disclaimers, and unmanaged
hyperlinks.

Chapter 3: Overview of Web Content Management

An alternative to the Web browser-based environment, MOSS allows content authoring from rich clients
such as Office Word 2007 and Office InfoPath 2007. This enables content authors to stay within their
familiar Office clients while still interacting with MOSS. Rich client authoring is covered in depth in
Chapter 14.

In addition, MOSS provides the capability to author content offline via the use of document converters,
which enable format translation from, for example, a Microsoft Word 2007 document (* . docx) to HTML.
Document converters are covered in depth in Chapter 18.

MOSS also provides a number of Web Parts, which are also useful within Publishing sites. One example
is the Content Query Web Part, which supports content aggregation or “roll-up” within a site collection.
The Content Query Web Part can be customized extensively to display various types of data. Web Parts
are covered in depth in Chapter 11.

Branding

Branding is the process of applying a consistent look and feel to a Publishing site, including navigation
and common content. A fundamental principle of WCM systems is the delivery of a lot of content using
only a few templates. MOSS leverages WSS’s support for ASP.NET master pages and combines them
with page layouts at runtime to assemble the HTML output.

The master page is responsible for providing a common look and feel, including the placement of
navigational elements. A page layout can be thought of as a content template that controls how specific
types of content are displayed. Master pages and page layouts are developed in a rich editor such as
Office SharePoint Designer 2007 or Visual Studio, which provides rich client Web editing. When content
authors create a new page, they select an available page layout and then enter the content using a Web
browser. This enables content authors to focus on the content, without worrying about styling, layout, or
any shared common elements. Master pages and page layouts are covered in depth in Chapter 7.

Controlled Publishing

Controlled publishing is the process of managing the content life cycle. Contributed content in MOSS is
simply items in a SharePoint list or document library. Each of these items can therefore utilize features
that control the life cycle of content. Examples include check in and check out, versioning, moderation,
and workflows.

MOSS provides approval and review workflows that can be configured to meet the vast majority of
WCM content approval scenarios. If this pre-fab workflow does not suit the project’s needs, custom
workflows can be created. Workflow tasks appear within a configured task list within the site. Workflow
is covered in depth in Chapter 12.

Contributed hyperlinks to other SharePoint content are managed hyperlinks within MOSS. Should
content be moved, all hyperlinks to it are automatically updated within other content or common
elements such as navigational controls. Navigation can also be manually configured or tweaked within
Site Settings to change the order of items or to include links external to MOSS within the main
navigation.

43

Chapter 3: Overview of Web Content Management

Content scheduling provides the capability to configure content to “go live” and expire at specified dates
and times. MOSS also offers a site management tool that provides a 10,000’ view, or holistic view, of a site
collection. This enables content to be bulk edited or moved around within the hierarchy.

Content deployment provides a capability to control the release into a production environment from a
staging environment. This is most often useful in a classic deployment scenario in which there are
separate authoring and read-only production environments. Content deployment is covered in depth in
Chapter 17.

Variations also play a role within controlled publishing, providing a framework for multiple versions of
the same content. Common examples here include multiple branding, multiple languages, or multiple
devices. In the case of multiple languages, the framework provides support for content exclusion or a
different page layout per variation. Workflows and variations can be combined to fire off human- or
software-based translation. Variations are covered in depth in Chapter 16.

Publishing Sites

44

At its core, a MOSS Publishing site is simply a SharePoint site that has had the Publishing Features
activated. The Publishing Features are scoped at the site collection level; and when these Features are
provisioned, a number of pre-defined elements such as the Pages list are added to the site. Once these
features are enabled, it is possible to create new Publishing pages within the site for the purposes of
WCM. MOSS provides a Publishing site template geared toward WCM scenarios, such as the Publishing
Portal, as a starting point for exploring the WCM capability. The Publishing Portal includes a home page,
a News section with some sample content, and pointers to common configuration steps necessary in a
WCM scenario. Figure 3-2 shows the Publishing Portal in Presentation mode, the view experienced by
read-only site visitors.

Figure 3-2

Chapter 3: Overview of Web Content Management

The same page in Edit mode as experienced by content authors is shown in Figure 3-3.

Figure 3-3

Figure 3-4 shows the Web design view of a page layout within Office SharePoint Designer 2007.

Figure 3-4

45

Chapter 3: Overview of Web Content Management

The following table provides a brief overview of each key element within a Publishing site:

Element Description

Publishing Page An item stored within the Pages List that contains the page content and
metadata.

Publishing Site A WSS site with the Publishing Features activated.

Content Type The definition of the page’s content and metadata. Think of this as the
definition of a page template.

Master Page An ASPNET master page, including various SharePoint and WCM-specific
controls.

Page Layout An ASP.NET page, including field controls and Web Parts, that provides the
template for content pages.

Field Controls Provides a design time and author time experience for the content elements
of a page.

Master Page Gallery Stores master pages and page layouts.

Image Library Stores images for the site in a managed fashion.

Documents Library Stores documents and other resources for the site in a managed fashion.

When a MOSS Publishing page is requested, the page layout associated with that page is looked up and
retrieved. In turn, the associated master page is retrieved along with the content of each field control.
The resultant composite of these elements is then assembled as HTML and returned to the end user.

Site Collections

As described in the previous chapter, site collections are the core content, security, and administration
boundary in WSS. Site collection design and their possible partitioning is a key design decision in
Publishing site projects. Many common tasks, such as applying a master page or functionality such as
variations and the Content Query Web Part, cannot be used across site collections. In addition, common
administrative functions such as caching configuration are applied at the site collection level, so it makes
sense for each Publishing site to reside within a single site collection. Conceptually, a single Web site
equals a single site collection. This is a key decision in the planning of a Publishing site. Generally, a
single site collection should be used unless there are specific requirements for multiple site collections
and the overhead of doing so is well understood.

Shared Services Providers

Every MOSS deployment, even if it is a single server deployment, must include at least one shared
service provider (SSP). While complete coverage of SSPs is beyond this book’s scope, it is critical to
understand the role played by this required component.

46

Chapter 3: Overview of Web Content Management

For more information on shared services providers, please see Beginning SharePoint 2007
Administration (Wrox, 2007) and Office SharePoint Server 2007 Administrators Companion
(Microsoft Press, 2007).

An SSP is itself a SharePoint Web application, primarily for administration purposes, alongside a non-
SharePoint IIS virtual Web site called “Office Server,” which hosts SSP-related Web services. In addition,
there are several Microsoft SQL Server databases for configuration and data storage.

The SSP provides application services and data, which are shared by one or more SharePoint Web
applications. These services and data are those which by nature are central and for which it does not
make sense to deploy them individually on each Web application. Examples of such application services
include search and indexing, user profiles, audiences, and session state.

Microsoft.SharePoint.Publishing Namespace

Before diving into building WCM solutions, it is good to have a broad view of the key Publishing APIs
provided by the Microsoft.SharePoint.Publishing namespace.

The Microsoft.SharePoint.Publishing namespace provides the cores classes and can be thought of
as the infrastructure plumbing for working within Publishing sites. Commonly used classes within this
namespace are described in the following table:

Class Description

Microsoft.SharePoint.Publishing.PublishingSite Provides access to Publishing
Features on a SPSite object.

Microsoft.SharePoint.Publishing.PublishingWeb Provides access to Publishing
Features on a SPwWeb object —e.g.,
accessing the pages collection,
accessing other objects in the
hierarchy, or executing queries
directly.

Microsoft.SharePoint.Publishing.PublishingPage Provides access to Publishing
Features on a SPListItem object.
A page is an extended SPList object.

47

Chapter 3: Overview of Web Content Management

The code in Listing 3-1 demonstrates how to enumerate a list of sites in the current site collection within
a Web control.

Listing 3-1: Enumerating Publishing sites

using System;

using System.ComponentModel;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using Microsoft.SharePoint;

using Microsoft.SharePoint.Publishing;

namespace EnumerateSites {
public class EnumerateSitesInSiteCollection : WebControl ({

protected void ListWebs (PublishingWeb pubWeb, HtmlTextWriter output) {
output.Write(string.Format ("{1}", pubWeb.Url,
pubWeb.Title)) ;
foreach (PublishingWeb childPubWeb in pubWeb.GetPublishingWebs ()) {
ListWebs (childPubWeb, output) ;
}
}

protected override void RenderContents (HtmlTextWriter output) {
using (SPSite site = SPContext.Current.Site) {
output.Write("<H1>Sites in Site Collection</H1>
") ;
foreach (SPWeb site in site.AllWebs) {
if (PublishingWeb.IsPublishingWeb(site)) {
PublishingWeb publishingWeb = PublishingWeb.GetPublishingWeb (site) ;
ListWebs (publishingWeb, output) ;

The code in Listing 3-2 demonstrates how to create a new Publishing site.

Listing 3-2: Creating Publishing sites

using (SPWeb web = SPControl.GetContextWeb (Context)) {
PublishingWeb pubWeb = PublishingWeb.GetPublishingWeb (web) ;
PublishingWeb newWeb = pubWeb.GetPublishingWebs () .Add("SiteName") ;
newWeb.Title = "Display Name";
newlWeb.Description = "Description of Site";
newWeb.Update() ;

48

Chapter 3: Overview of Web Content Management

Listing 3-3 demonstrates how to create a new Publishing page.

Listing 3-3: Creating Publishing pages

using (SPWeb web = SPControl.GetContextWeb (HttpContext.Current)) {
PublishingWeb pubWeb = PublishingWeb.GetPublishingWeb (web) ;
PageLayout layout = null;
SPContentTypeId contentType = new SPContentTypeId() ;
PageLayout[] layouts = pubWeb.GetAvailablePageLayouts (contentType) ;
if (layouts != null && layouts.Length > 0) {
layout = layouts[0];
PublishingPage newPage;
newPage = pubWeb.GetPublishingPages().Add("SiteName", layout);
newPage.Description = "Description of site";
newPage.ListItem["Page Content"] = " Sample Content Here";
newPage.Update () ;

The code in Listing 3-4 demonstrates how to set page properties and publish a page.

Listing 3-4: Setting properties and publishing pages

publishingPage = PublishingPage.GetPublishingPage (listItem) ;

if (publishingPage.ListItem.File.CheckOutStatus == SPFile.SPCheckOutStatus.None) {
publishingPage.CheckOut () ;

}

publishingPage.Title = "Title";
publishingPage.Description = "Description";
publishingPage.Update() ;

publishingPage.CheckIn ("Comments") ;

SPFile pageFile = publishingPage.ListItem.File;
pageFile.Publish(checkInComment) ;
pageFile.Approve (checkInComment) ;

Summary

This chapter has covered the core elements of WCM in MOSS, including the rationale and benefits of
building upon the WSS platform. As a part of MOSS, WCM solutions are capable of leveraging powerful
integration with other elements, such as search and the Business Data Catalog. In addition, WCM brings
to MOSS portals powerful Web content features and capabilities. MOSS WCM provides the core
capabilities, authoring, branding, and controlled publishing upon which Publishing sites can be
developed.

49

0

SharePoint Features and
the Solution Framework

In the second generation of SharePoint, Windows SharePoint Services 2.0 (WSS), Microsoft
provided many different opportunities for developers to customize sites as well as augment sites
using custom code. These various points of integration provided developers with many
opportunities, but seasoned SharePoint developers became familiar with a few pain points with
the second generation of SharePoint. These included issues such as promoting code reuse,
incorporating new functionality or changes in existing sites, empowering site owners to add/
remove this functionally without developer involvement, and deploying (as well as updating)
custom code and files.

Thankfully, in the latest SharePoint release, WSS 3.0, Microsoft addresses these issues in two ways:
Features and solutions. Features facilitate much more code reuse and provide developers with an
easy way to not only introduce new and updated components and functionality into existing
SharePoint sites, but also to empower site owners and administrators to implement it without
developer involvement. The solution framework provides developers and administrators with a
way to easily deploy custom code and files throughout a SharePoint implementation, including

a SharePoint farm containing multiple servers such as load-balanced Web front-end (WFE) servers.
This chapter explores the details of the Feature and solution frameworks, and provides some
guidance on how to best create Features and WSS solution packages.

Overview of SharePoint Features

Microsoft introduced the concept of Features in WSS 3.0 to address numerous challenges presented
in the previous version, as well as to provide additional functionality. The previous version of
SharePoint, WSS 2.0, did not provide an easy way to define a site element such as a list template
one time and reference it from multiple site templates. Instead, the list template definition had to
be copied to each and every site template where it was used. This does not adhere to good code
reuse practices and increases the possibility of the same template getting out of sync.

Chapter 4: SharePoint Features and the Solution Framework

Another challenge with WSS 2.0 was adding new elements or functionality to sites already created. WSS
2.0 did not offer an easy way to incorporate new functionality into existing sites; developers were forced
to craft a custom process such as a script that would add a new list template to each individual site in
WSS 2.0.

The cases presented here are just two examples illustrating why Microsoft added the Feature framework
to WSS 3.0. In addition to addressing WSS 2.0 challenges, Microsoft also added capabilities to the Feature
framework to deploy certain custom code solutions such as event receivers, document converters, and
custom workflow templates. This chapter covers the basics of SharePoint Features, although it does not
include an exhaustive analysis of all the things Features can do because Features are everywhere in
SharePoint and are covered throughout the book. For example, the deployment of custom workflow
templates created using Visual Studio is performed using Features. The same is true for provisioning
instances of file templates on the file system such as master pages and page layouts. Therefore, each
chapter in the book covers a specific capability of SharePoint Features as necessary.

Once a Feature has been created, it then needs to be activated. The activation of a Feature is dependent
upon the defined scope of the Feature (Feature scope is covered later in the chapter). When a Feature is
activated, SharePoint performs the work defined within the Feature. This activation and deactivation of
a Feature provides developers and site administrators with the capability to toggle functionality on or off
with ease via the browser interface.

Anatomy of a Feature

All SharePoint Features live in a special folder within the SharePoint 12 folder — specifically, in
[..]1\12\TEMPLATE\FEATURES. The FEATURES folder contains folders for each Feature that has been
deployed to the server. After a clean Office SharePoint Server (MOSS) 2007 installation, the FEATURES
folder will contain more than 130 folders, each signifying a Feature that is part of the out-of-the-box
(OOTB) MOSS 2007 installation. This is where developers create and/or deploy custom Features.

To create a new Feature, create a new folder in the FEATURES folder such as MyFirstFeature. Every
Feature must have a definition file containing all the information that SharePoint needs to know about
the Feature. This definition file is simply an XML file that is given the name feature.xml. The Feature
definition file contains information such as a unique identifier for the Feature, a title, a description, and
the scope and visibility of the Feature. The following Collaborative Application Markup Language
(CAML) contains what is quite possibly the simplest Feature definition, with the minimal information:

<?xml version="1.0" encoding="utf-8"?>

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
Id="32DECDEF-C37C-4AC3-BA65-D49639668E7C"
Title="My First Feature"
Description="The simplest Feature ever."
Hidden="FALSE"
Scope="Web">

</Feature>

Once the definition has been created and saved into a new folder within the FEATURES folder, SharePoint
must then be made aware of the Feature. This is done by installing the Feature using STSADM. EXE and

the installfeature operation:

stsadm.exe -o installfeature -name MyFirstFeature

52

Chapter 4: SharePoint Features and the Solution Framework

After SharePoint is made aware of the Feature, it can then be activated. In the case of MyFirstFeature,
activation can occur at the site level as defined by the scope of the Feature (Scope=ueb). To activate
MyFirstFeature, browse to any SharePoint site and select Site Actions = Site Settings and then select
Site Features under the Site Administration section to load the Site Features administration page. The
Feature should appear in the list as the title defined in the feature.xml file, My First Feature, with an
Activate button to the right. Click the Activate button to activate the Feature. Because this simple Feature
does not do anything important, nothing happens when the page refreshes from the postback. Notice,
though, that the page indicates that the Feature is now active, and the button has changed to Deactivate.

As demonstrated, the MyFirstFeature Feature does not do anything upon activation. In order for a
Feature to do something, it must contain one of two things: element manifests and/or a Feature receiver.
Before taking a look at element manifests and Feature receivers, it is important to understand the
concept of Feature scope.

Feature Scope

A very important aspect of Features is the concept of Feature scope. A Feature’s scope enables developers
to quantify how broad the effects of activating the Feature are. If a Feature is scoped at the site level, then
the activation affects only the SharePoint site it is activated within. However, if it is scoped at a site
collection level, then the activation affects all sites within the site collection.

For example, a project may require adding a new menu item to the Site Actions menu for a particular
site. A developer can create a Feature that uses the <Customaction> element type and set the scope to
Web (SharePoint site). However, if the menu item needs to be visible on all Site Action menus in all sites
within the site collection, then the scope can easily be changed to Site (site collection). To take it even
further, suppose a company wanted to add a menu item to all Site Action menus for all SharePoint sites
in the organization that displayed a privacy policy or emergency contact information. This could easily
be done with a single Feature with a scope of Farm.

The scope options for SharePoint site and site collections seems to be a point of confusion for many
developers new to the platform. An easy way to remember the difference is to think about the two within
the context of the SharePoint API. Remember from Chapter 2 that a SharePoint site is represented

by the spwieb object, and a site collection is represented by SPSite.

There are four different scope options for Features, listed in the following table:

Scope Description

Web (SharePoint site) ~ Applies to a specific SharePoint site.

Site (site collection) Applies to a SharePoint site collection and all SharePoint sites within the
site collection.

WebApplication Applies to a SharePoint extended Web application, all site collections within
the Web application, and all sites within those site collections.

Farm Applies to a SharePoint farm, all SharePoint extended Web applications, all
site collections, and all SharePoint sites within the SharePoint farm.

53

Chapter 4: SharePoint Features and the Solution Framework

Element Manifests

54

Element manifests, another type of XML file found in a Feature’s folder, contains CAML that defines site
elements. The SharePoint Feature schema contains many different types of site elements. As stated
previously, this chapter does not include an exhaustive discussion about each and every component of
the Feature schema because all of them are covered in more detail in respective chapters throughout the
book. The following table contains a list of all the Feature element types, including the chapter in which
a more in-depth discussion can be found, as well as the possible scoping options for each:

Scope: Scope: Scope: Scope:
Element Type Chapter Web Site WebApplication Farm
Content type and content Ch.6 X
type bindings
Custom actions Ch. 8 and Ch. 14 X X X
Delegate controls Ch.7 X X X X
Document converters Ch. 18 X
Event registrations Ch. 6 X
Feature site template Ch. 4 X X X
associations (stapling)
Field definitions (site Ch. 6 X
columns)
List templates and instances ~ Ch. 6 X X
Modules Ch.7 and Ch. 11 X X
Workflow Ch. 12 X

Once an element manifest file has been created, it needs to be associated with the Feature. To do this,
create a <ElementManifests> node that contains <ElementManifest> nodes containing a reference to
the element manifest files in the Feature. The <ElementManifests> node is then added to the
<Feature> node, as shown in Listing 4-1.

Listing 4-1: Feature definition file

<?xml version="1.0" encoding="utf-8"?>
<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
Id="32DECDEF-C37C-4ac3-BA65-D49639668E7C"
Title="My First Feature"
Description="The simplest Feature ever."
Hidden="FALSE"
Scope="Web">
<ElementManifests>
<ElementManifest Location="elements.xml"/>
</ElementManifests>

</Feature>

Chapter 4: SharePoint Features and the Solution Framework

For more information on the Feature schema, refer to the official documentation on MSDN
(www . andrewconnell.com/go/209).

Feature Receivers

The Feature site elements contained in element manifest files provide developers with a significant
amount of functionality, but what if they don’t meet existing business needs? For example, what if, upon
Feature activation, a project requires the creation of a child SharePoint site using a specific site template?
Thankfully, Microsoft anticipated such as scenario and added the capability for developers to write event
handlers for certain events within an assembly. The following table lists the four events exposed by
Features that developers can take advantage of:

Event Description

Featurelnstalled Raised after a Feature has been installed
FeatureActivated Raised after a Feature has been activated
FeatureDeactivating Raised before a Feature is deactivated
FeatureUninstalling Raised before a Feature is uninstalled

By using Feature receivers, developers can now achieve endless possibilities in the process of activating
or deactivating a Feature. In addition, this provides a vehicle for developers to offer additional
functionality to site owners, who can select — on a site-by-site basis or according to the specified scope
of the Feature — what they want to add to or remove from their site.

The class that contains the event handlers developers create for Feature events is called a Feature
receiver. In order to create a Feature receiver, developers must create a new class that inherits from
Microsoft.SharePoint.SPFeatureReceiver and implements all four events. This class needs to be
compiled into a signed assembly (to generate a strong name) and deployed by the assembly to the
Global Assembly Cache (GAC). Listing 4-2 contains an example of a Feature receiver that changes the
name of the current site with the current timestamp upon activation and sets the original name back
upon deactivation using the site’s property bag (SPWeb. Properties).

Listing 4-2: Using the FeatureActivated Feature receiver event

using System;
using Microsoft.SharePoint;

namespace WROX {
public class MyFirstFeatureReceiver : SPFeatureReceiver {

public override void FeatureActivated (
SPFeatureReceiverProperties properties) {
SPWeb site = properties.Feature.Parent as SPWeb;

// save current site's title
site.Properties["SiteTitle"] = site.Title;

(continued)

55

Chapter 4: SharePoint Features and the Solution Framework

Listing 4-2 (continued)
site.Properties.Update() ;

// change the site title
site.Title = DateTime.Now.ToString() ;
site.Update() ;

}

public override void FeatureDeactivating (
SPFeatureReceiverProperties properties) {
SPWeb site = properties.Feature.Parent as SPWeb;

// reset the site's title
site.Title = site.Properties["SiteTitle"].ToString() ;
site.Update() ;

public override void FeatureInstalled (
SPFeatureReceiverProperties properties) ({
// do nothing
}
public override void FeatureUninstalling (
SPFeatureReceiverProperties properties) ({
// do nothing

Once the assembly containing the Feature receiver has been compiled and deployed to the GAC, the
Feature must be configured to call the event handlers in the Feature receiver class. To do this, add two
new attributes to the <Feature> node in the feature.xml definition file: ReceiverAssembly, which
contains the assembly’s strong name (aka its four-part name) and the ReceivercClass, which contains a
fully qualified name to the Feature receiver, as shown in Listing 4-3.

Listing 4-3: Feature definition with a Feature receiver

<?xml version="1.0" encoding="utf-8"?>
<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
Id="32DECDEF-C37C-4ac3-BA65-D49639668E7C"
Title="My First Feature"
Description="The simplest Feature ever."
Hidden="FALSE"
Scope="Web"
ReceiverAssembly="MyFirstFeature, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c591e70cfdf9cedf"
ReceiverClass="WROX.MyFirstFeatureReceiver">

</Feature>

Feature Administration

In addition to Feature scope, developers and administrators should be aware of a few additional
administrative aspects to Features. The first involves Feature installation and uninstallation. Features can

56

Chapter 4: SharePoint Features and the Solution Framework

only be installed by SharePoint administrators who have access to the SharePoint server console. This is
because Features can only be installed in one of three ways: using STSADM. EXE, using WSS solution
packages (covered later in the chapter), or via the SharePoint API. As previously covered, once the
folders and files associated with a Feature have been copied to the necessary locations on the server,

the STSADM. EXE operation installfeature is used to install the Feature. Conversely, the STSADM . EXE
operation uninstallfeature is used to uninstall an installed Feature.

Unlike the installation and uninstallation of a Feature, activation and deactivation can occur either using
STSADM. EXE or using the browser interface. If activating a Feature using STSADM. EXE, use the operation
activatefeature

stsadm.exe -o activatefeature -name myfirstfeature -url http://wssl

As shown in the preceding command-line operation, activatefeature accepts additional parameters
such as —url. These are not always required; it depends on the scope of the Feature. The
MyFirstFeature is scoped at the site level (scope=Web), so a specific site must be provided upon
activating the Feature. Deactivation works the same way, using the operation deactivatefeature:

stsadm.exe -o deactivatefeature -name myfirstfeature -url http://wssl

Another capability at the disposal of SharePoint developers and administrators is the visibility of a
Feature. Within the Feature definition file, feature.xml, the <Feature Hidden=""> attribute can be
used to hide or show a Feature in the browser interface. By default, all Features are visible
(Hidden=FALSE). When would a Feature need to be hidden? Consider a Feature that added functionality
or a site element to a site collection; its activation state should not be delegated to site owners; instead,
SharePoint farm administrators should be the ones required to activate or deactivate this special Feature
for a site collection. Activation and deactivation for hidden Features must then be handled using
STSADM. EXE exclusively.

When creating a Feature that contains a Feature receiver performing certain tasks
that require special permissions, consider making it a hidden Feature, thereby
requiring activation via STSADM. EXE. Why? When a Feature is activated from the
browser interface, the code is executed within the context of the configured identity
of the application pool hosting the Web application containing the site collection.
This identity may not have the necessary permissions, such as writing to the file
system. However, when a Feature is activated using STSADM. EXE, the identity of

the user performing the command is used, who may have more permissions than the
application pool’s identity.

Feature Dependencies and Stapling Features

In addition to the activation and deactivation capabilities of Features previously covered, Features can
also be configured to activate other Features they are dependent upon. Developers can even

create Features that do nothing other than activate other Features — in fact, that is all the
publishingWeb Feature does! Activation dependency is also intelligently handled. For instance,
suppose Feature A activates Features X, Y, and Z. In addition, Feature B activates Features Y and Z.

If both Features A and B are activated, all three Features (X, Y, and Z) are activated, but if Feature B is
then deactivated, SharePoint is intelligent enough to see that Feature Y is also a dependent of Feature A,
leaving it activated).

57

Chapter 4: SharePoint Features and the Solution Framework

58

To create a Feature activation dependency, add an <ActivationDependencies> node containing
one or more <ActivationDependency> nodes referencing the ID of the Feature that should be
activated. For example, take the MyFirstFeature Feature. The Feature definition shown in
Listing 4-4 will now tell SharePoint to automatically activate Feature ContactList whose ID

is 00BFEA71-7E6D-4186-9BA8-C047AC750105.

Listing 4-4: Feature definition file with an activation dependency

<?xml version="1.0" encoding="utf-8"?>
<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
Id="32DECDEF-C37C-4ac3-BA65-D49639668E7C"
Title="My First Feature"
Description="The simplest Feature ever."
Hidden="FALSE"
Scope="Web">
<ElementManifests>
<ElementManifest Location="elements.xml"/>
</ElementManifests>
<ActivationDependencies>
<ActivationDependency FeatureId="00BFEA71-7E6D-4186-9BA8-C047AC750105" />
</ActivationDependencies>

</Feature>

Another technique the Feature framework provides is referred to as Feature stapling. One of the
challenges in WSS 2.0 was adding new functionality to existing site definitions and templates. This was
because the official guidance from Microsoft was to never edit an existing site definition or template
once sites have been provisioned using it, and that developers should not modify the site definitions
provided in the out-of-the-box installations, as future updates (hotfixes and service packs) could
overwrite the files. To address this, Microsoft added the capability of Feature stapling.

Feature stapling involves creating a special Feature, known as a stapling Feature, that associates a Feature
with an existing site template. Once a Feature has been stapled to a site template, any future sites
provisioned using the site template will automatically activate the stapled Feature. This enables
developers to customize site templates without actually changing the site template itself; instead they
can append functionality without touching the source files that make up the site template.

Stapling is achieved using the <FeatureSiteTemplateAssociation> site element. This element
accepts two attributes: 14, the ID of the Feature to be stapled, and TemplateName, the ID of the site
template. For example, the following CAML contained in a Feature element manifest file would staple
the MyFirstFeature to all future sites provisioned using the Blank Site site template (STS#1),
assuming the stapling Feature were activated:

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

<FeatureSiteTemplateAssociation Id="32DECDEF-C37C-4ac3-BA65-D49639668E7C"
TemplateName="STS#1" />

</Elements>

Removing a stapling reference is as easy as deactivating the Feature.

Chapter 4: SharePoint Features and the Solution Framework

While not required, typically developers give stapling Features the same name as the Feature they are
stapling but simply append “Stapling” to the name. For example, the name of the Feature that contains
the previous element manifest file would be called MyFirstFeatureStapling.

Creating Features Using Visual Studio

While Features can be created loosely by manually creating the folder in the [..]\12\TEMPLATE\
FEATURES folder and the necessary XML files, this is tedious and it poses challenges trying to keep all
the files involved in a single project together. Another approach is to leverage Visual Studio for Feature
development.

When using Visual Studio to create projects, use either the VB.NET/C# Class Library (when creating a
Feature that contains any compiled code) or the Empty Project template (when the Feature won’t contain
any compiled code). With a project created, mimic the folder structure under the SharePoint 12 folder in
the project. For example, in the case of the MyFirstFeature Feature, the project structure would look
similar to Figure 4-1.

Figure 4-1

In the case of MyFirstFeature, a C# Class Library project template was used to create the project and
sign it to generate the strong-named assembly. For deployment, files can be manually copied or a custom
command-line batch script can be written and added to the Post Build event in the project’s Properties
window that would add the assembly to the GAC, copy the necessary files to the SharePoint 12 folder,
and, optionally, install and activate the Feature.

Does that feel old school? Isn’t there a better and more efficient way to package files and custom code up
for deployment in SharePoint? Unfortunately, in WSS 2.0 there was no such mechanism, but this is yet
another area where Microsoft expended a considerable effort in the latest release of SharePoint: WSS 3.0.
The new mechanism for packaging files and custom code for deployment is the WSS solution package
framework.

Overview of WSS Solution Packages

Developers writing custom code and creating files for use within a WSS 2.0 site were left with the
challenges of deploying their custom code and files to SharePoint servers in homegrown ways. Some
developers used the manual deployment of copying files around and making manual edits to the

59

Chapter 4: SharePoint Features and the Solution Framework

web. config file. Others created scripts or installers that did everything for them, but these were tedious
to build and did not cleanly integrate with the SharePoint framework — basically, they were simply
scripted actions working with the object model and running STSADM. EXE batch commands. Deployment
of Web Parts in WSS 2.0 was a little better, as it included a tool that helped package up the files for
deployment. Called the Web Part Packager, this tool proved to be a bit buggy and Microsoft eventually
pulled support for it.

Fortunately, Microsoft expended considerable effort in this area in WSS 3.0 with the addition of the
solution framework and WSS solution packages. Think of the solution framework as SharePoint’s own
installer framework, similar to the Microsoft Installer files (* .MST). The solution framework enables
developers to collate custom code and files, among other things, into a single package and add an
instruction file to the package telling SharePoint what to do with the files. SharePoint then takes the
package and deploys all the changes, outlined in the instruction file, to servers in the farm at a scheduled
time. It is even intelligent enough to realize that multiple WFEs exist in the farm, and will deploy
necessary code to all of them at the same time.

Anatomy of a WSS Solution Package

A WSS solution package contains two things: all the files required in the deployment and an instruction
file telling SharePoint what to do with these files. Everything is packaged together into a Microsoft
cabinet file with a file extension of *.wsP (for WSS solution package). This package is then added to the
SharePoint farm’s solution store using STSADM . EXE.

What can be included in a WSS solution package? Essentially, four different things can be deployed
using WSS solution packages:

QO Assemblies — Many development tasks in SharePoint require custom code to be compiled into
assemblies and added to the server. These assemblies can be deployed to a particular SharePoint
extended Web application’s \bin folder or the server’s GAC.

Q Anything to the SharePoint 12 folder — While there are many options within the WSS solution
package schema, most boil down to deploying files to specific places in the SharePoint 12 folder
structure. When there is no schema option when a project requires deploying a file somewhere
in the SharePoint 12 folder structure, developers can always fall back on the <RootFiles>
element, which deploys files starting at the 12 folder.

O Custom Code Access Security policies — CAS policies are typically stored in the [..1\12\
CONFIG folder, but what is special about the WSS solution package deployment method is that
developers include what additions to make to a CAS policy and SharePoint adds the changes to
a copy of the currently used CAS policy. This automatically updates the SharePoint extended
Web application’s web. config file to contain a registration to the new CAS policy file, and
changes the trust level of the Web application all at once.

O Web Part definitions and resources — Deployment of Web Parts can include many different
files. Web Part definition files (* . webpart) can be deployed to a site collection’s Web Part
Gallery (to deploy a Web Part to a specific site collection) or to the wpcatalog directory within a
Web application’s webroot on the file system (to deploy the Web Part to all site collections
within a SharePoint extended Web application).

In addition, resource files, such as images, CSS files, JavaScript, and so on can be deployed to the
wpresources directory within a Web application’s webroot on the file system (making them available

60

Chapter 4: SharePoint Features and the Solution Framework

to all site collections in a SharePoint extended Web application) or to a special wpresources directory
that all Web applications share, thus deploying the resource files one time on a server. This folder can be
found parallel to the SharePoint 12 folder: c: \Program Files\Common Files\Microsoft Shared\
web server extensions\wpresources.

Packaging up all the files included in the WSS solution package is covered later in this chapter. For now,
focus on the instruction file included in the package SharePoint uses to determine what to do with all the
files. This instruction file SharePoint uses is called a solution manifest. It is simply an XML file named
manifest.xml that contains CAML and is added to the root of the solution.

The manifest.xml file contains some metadata about the solution for SharePoint, such as a unique ID
(GUID), whether the solution should be deployed to WFEs or application servers, and whether the
World Wide Web Publishing Services should be recycled upon completion of the deployment (required
for some things such as the deployment of custom field types). The minimal CAML required in a
manifest.xml file is shown in Listing 4-5. It provides SharePoint with just enough information it needs
about the solution, but it will not do anything.

Listing 4-5: WSS solution manifest.xml file

<?xml version="1.0" encoding="utf-8" ?>

<Solution xmlns="http://schemas.microsoft.com/sharepoint/"
SolutionId="AEF06666-1351-4E9D-A151-63032C94E2D6"
DeploymentServerType="WebFrontEnd"
ResetWebServer="FALSE">

</Solution>

The next step is to add instructions telling SharePoint what to do with the files included in the solution.
Using the MyFirstFeature that was created previously in this chapter, two things need to be deployed:
the Feature itself and the assembly containing the Feature receiver. First add the assembly. Remember
that the assembly needs to be added to the server’s GAC. This is done using the <Assemblies> element,
part of the WSS solution package schema, as shown in Listing 4-6.

Listing 4-6: WSS solution manfiest.xml file deploying an assembly

<?xml version="1.0" encoding="utf-8" ?>
<Solution xmlns="http://schemas.microsoft.com/sharepoint/"
SolutionId="AEF06666-1351-4E9D-A151-63032C94E2D6"
DeploymentServerType="WebFrontEnd"
ResetWebServer="FALSE">
<Assemblies>
<Assembly DeploymentTarget="GlobalAssemblyCache"
Location="MyFirstFeature.dll" />
</Assemblies>

</Solution>

Note that the assembly’s deployment location is the server’s GAC. The location of the assembly is the
relative path to the file within the package. Again, the process of packaging all the files up into a * .wsp
file is covered later in the chapter. In addition, if the assembly contains something that requires an entry
to the <SafeControls> collection in the targeted Web application’s web. config file, developers can
use the <SafeControls> element as a child node to the <Assembly> node in the manifest .xml file.
SharePoint automatically adds the <SafeControl> entry to web. config when deploying the package.

61

Chapter 4: SharePoint Features and the Solution Framework

Next, the Feature needs to be deployed. To do that, use the <FeatureManifests> element and other
components of the WSS solution package schema, as shown in Listing 4-7.

Listing 4-7: WSS solution manifest.xml file deploying a Feature

<?xml version="1.0" encoding="utf-8" ?>
<Solution xmlns="http://schemas.microsoft.com/sharepoint/"
SolutionId="AEF06666-1351-4E9D-A151-63032C94E2D6"
DeploymentServerType="WebFrontEnd"
ResetWebServer="FALSE">
<Assemblies>
<Assembly DeploymentTarget="GlobalAssemblyCache"
Location="MyFirstFeature.dll" />
</Assemblies>
<FeatureManifests>
<FeatureManifest Location="MyFirstFeature\feature.xml" />
</FeatureManifests>

</Solution>

Recall from the discussion about installation and activation of Features that in order for a Feature to be
available for activation, it must first be installed. Thankfully, SharePoint handles installation of the
Feature when it deploys it. Another aspect of Features with respect to WSS solution packages requires
some explanation. The MyFirstFeature Feature contained a reference to an element manifest file.
Notice how this file is not listed in the manifest .xml file. This is because SharePoint looks at the
Feature definition to determine what files are required by the Feature and automatically includes them
in the deployment.

However, element manifest files are not the only kind of file found in a Feature. Other types of files
include master pages, page layouts, images, and so on (this is very common in the provisioning of

files, as covered in Chapter 7). The WSS solution framework will not see these files referenced from
element manifest files; therefore, these files are not deployed. So how do they get deployed? One option
is to use the <TemplateFiles> element, part of the WSS solution package schema, to deploy the files,
but a much cleaner approach is to register the files within the Feature’s definition file using the
<ElementFile> element, part of the Feature schema. For example, suppose the MyFirstFeature
provisioned a new image to a SharePoint site using the <Module> element in an element manifest file.
In order to register the image, you add an <ElementFile> element to the feature.xml definition

file, as shown in Listing 4-8.

Listing 4-8: Feature definition leveraging the ElementFile element

<?xml version="1.0" encoding="utf-8"?>
<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
Id="32DECDEF-C37C-4ac3-BA65-D49639668E7C"
Title="My First Feature"
Description="The simplest Feature ever."
Hidden="FALSE"
Scope="Web"
ReceiverAssembly="MyFirstFeature, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c591e70cfdf9cedf"
ReceiverClass="WROX.MyFirstFeatureReceiver">
<ElementManifests>

62

Chapter 4: SharePoint Features and the Solution Framework

<ElementManifest Location="elements.xml"/>
<ElementFile Location="image.gif" />
</ElementManifests>
<ActivationDependencies>
<ActivationDependency FeatureId="00BFEA71-7E6D-4186-9BA8-C047AC750105" />
</ActivationDependencies>
</Feature>

Solution Deployment

Once the package has been added to the solution store, it can then be scheduled for immediate or future
deployment. If the package contains files or changes to a specific SharePoint site (such as adding an
entry to the <safeControls> section of web.config), the administrator is prompted to select which
SharePoint extended Web application the solution should be deployed to (or all Web applications can be
selected). This enables SharePoint to know which web. config file to update.

If, at some point in the future, the files need to be updated, an administrator can use the STSADM. EXE
operation upgradesolution. This re-adds the solution to the solution store, overwriting the previous
one after first backing it up (for rollback purposes, should things go wrong); if it was previously
deployed, it will be redeployed automatically.

In addition, if a solution needs to be rolled back for some reason, administrators can retract the solution
using either the browser interface in Central Administration or the STSADM. EXE operation
retractsolution.

Creating WSS Solution Packages

Now that you understand the anatomy and deployment process, it is time to learn how to create a WSS
solution package. As previously mentioned, a WSS solution package is a Microsoft cabinet file with a

* . wWsP filename extension. While there is a CAB Project template in Visual Studio, it is not a viable option
for creating * .wsP files. The primary reason is that * . wsPp files almost always contain subfolders for
things such as Features or localized files for multilingual solutions, and the Visual Studio CAB Project
template does not support subfolders.

In order to create Microsoft cabinet files, SharePoint developers can use the MakeCab. EXE utility
included in the Microsoft Cabinet SDK. The MakeCab . EXE command-line utility accepts a few
parameters. One parameter is the name of a file containing the instructions for MakeCab . EXE, such as
how to compress the files, subdirectories that should be created in the cabinet file, and the files that
should be included in the cabinet, including to which subfolders files should be added. This file is a
diamond directive file (* . DDF). Other parameters passed into MakeCab. EXE are for things such as the
name of the cabinet to create and where the file should be created.

The Microsoft Cabinet SDK is available from Microsoft’s Knowledge Base for download

(www . andrewconnell.com/go/210).

The first thing to create is the DDF file. Create a new text file in Visual Studio named
BuildSharePointPackage.ddf in a new folder called DeploymentFiles. This contains a few
configuration settings that are used for nearly all packages, followed by a list of all the files to include in
the package, including any subfolders that should be created. Each file listed in the DDF file points to the

63

Chapter 4: SharePoint Features and the Solution Framework

relative location of the file based on the location from which MakeCab . EXE is being executed. For
example, if MakeCab . EXE were executed from the root of the project, in order to include the assembly
created by building the project, the file would be listed in the following location:

bin\debug\MyFirstFeature.dll

To create a subfolder within a package, add a .Set command, changing the DestinationDir variable.
All files following the command are placed in the folder. Listing 4-9 shows the DDF file to create a WSP
file containing the MyFirstFeature Feature.

Listing 4-9: Diamond directive file

.OPTION Explicit

.Set DiskDirectoryTemplate=CDROM
.Set CompressionType=MSZIP

.Set UniqueFiles=0ff

.Set Cabinet=0n

IEEEEE S SRS SRS SRS SRS EEEEEEEEEEEEEEEEEEEEEEESEEEES]
’

bin\debug\MyFirstFeature.dll

.Set DestinationDir=MyFirstFeature
TEMPLATE\FEATURES\MyFirstFeature\feature.xml
TEMPLATE\FEATURES\MyFirstFeature\elements.xml

; ***End

There is another way to put files into folders within the * .WSP file. Instead of using the . Set
DestinationDir=[...] syntax, the source and target locations of the file are listed, separated with a
space. This is not recommended, however, because each line in a DDF file has a maximum length. Using
this method simply increases the chances of reaching the character limit. Instead, use the approach
outlined above.

The lines starting with a semicolon (;) are commented lines. Also notice that the full path to the files is
listed in the DDF file, assuming MakeCab . EXE will be executed from the root of the project (the same
folder where the project file, * . CSPROJ, is located).

The next thing to do is add the manifest.xml file to the DDF file. Keeping with the theme of using
Visual Studio projects to organize everything, put the manifest.xml file previously created in the folder
DeploymentFiles. Finally, add a line to the DDF file to include the manifest .xml file in the root of the
package, as shown in Listing 4-10.

Listing 4-10: Diamond directive file with solution manifest.xml

.OPTION Explicit

.Set DiskDirectoryTemplate=CDROM
.Set CompressionType=MSZIP

.Set UniqueFiles=0ff

.Set Cabinet=0n

PR EEE R R R R EEEE SRR R R EEEEEEEEEEEEEEEEREEEEEEEEEEEE S ST
’

DeploymentFiles\manifest.xml

64

Chapter 4: SharePoint Features and the Solution Framework

bin\debug\MyFirstFeature.dll

.Set DestinationDir=MyFirstFeature
TEMPLATE\FEATURES\MyFirstFeature\feature.xml
TEMPLATE\FEATURES\MyFirstFeature\elements.xml

; ***End

The Visual Studio project should now look like Figure 4-2.

Figure 4-2

Finally, open a command prompt and change directory to the root of the project. Enter the path to
MakeCab.EXE and the following parameters:

a /F DeploymentFiles\BuildSharePointPackage.ddf — Instructs MakeCab.EXE where to
find the DDF file containing some setting information for all the files and folders to include in
the package

d /D CabinetNameTemplate=MyFirstFeature.wsp — The name of the package to create

a /D DiskDirectoryl=wsp — Where to create the package. In this case, a new folder named wsp
is created at the root of the project.

MakeCab.exe /F DeploymentFiles\BuildSharePointPackage.ddf /D
CabinetNameTemplate=MyFirstFeature.wsp /D DiskDirectoryl=wsp

This will create a new package named MyFirstFeature.wsp located in the wsp folder within the same
folder containing the project. To add the solution to the SharePoint farm’s solution store, enter the
following command:

stsadm.exe -o addsolution -filename [path_to_package] \MyFirstFeature.wsp

To deploy the solution, browse to Central Administration = Operations => Solution management, select
themyfirstfeature.wsp solution, and deploy the solution immediately. The Feature can now be
deployed. To do so, browse to any SharePoint site and select Site Actions = Site Settings, and then select
Site Features under the Site Administration section to load the Site Features administration page. From
the Site Features page, MyFirstFeature is listed and available for activation.

65

Chapter 4: SharePoint Features and the Solution Framework

If an error occurs when deploying the solution, it is likely the Feature was not uninstalled and deleted

from the previous section covering Features. It is not possible to deploy a Feature on top of an existing
Feature. To resolve this, uninstall the Feature and delete the MyFirstFeature folder from the
[..]1\12\TEMPLATE\FEATURES folder.

Automating the Building of Solutions with MSBuild

Creating a WSS solution package does require a few extra steps after building the project in Visual
Studio. Some developers may realize they can create batch files, or post build actions, to automate the
process of creating and deploying the packages to the SharePoint farm’s solution store. Another option is
to leverage the NET Framework build process using MSBuild, the workhorse behind the build process
triggered by Visual Studio.

Entire books have been written about MSBuild, a subject beyond the focus of this chapter. For more
information on MSBuild, refer to the official documentation on MSDN (www . andrewconnell. com/
go/211) or the official MSBuild wiki on Channel9 (www .andrewconnell.com/go/212).

Instead of using a post build event script, add a custom MSBuild targets file to the project. This

targets file contains instructions telling MSBuild what to do. The advantage to using MSBuild

is that targets files are XML-based, thus providing a level of IntelliSense and validation when authoring
them, unlike command-line scripts. In addition, similar to post build events, targets files can leverage
some MSBuild reserved properties, such as replaceable tokens, for variable names.

In Visual Studio, create a new XML file named BuildSharePointPackage. targets and add it to the
DeploymentFiles folder. Add the XML shown in Listing 4-11 to the BuildSharePointPackage

. targets file (optionally, ignore the XML comments because they simply add documentation
explaining the different pieces of the file).

Listing 4-11: MSBuild targets file used to call MSBuild

<?xml version="1.0" encoding="utf-8" ?>
<Project DefaultTargets="BuildSharePointPackage"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<!-- Create a variable 'MakeCabPath' pointing to the location of MakeCab.EXE -->
<PropertyGroup>

<MakeCabPath>"C:\Program Files\Microsoft Cabinet SDK\BIN\MAKECAB.EXE"

</MakeCabPath>

</PropertyGroup>
<!-- Create a new target that will be called after the project has been build -->
<Target Name="BuildSharePointPackage">

<!-- Execute MakeCab.EXE from the root of the project directory,

passing in the DDF file,
creating the following package: wsp\ [project_name] .wsp -->
<Exec Command="S$ (MakeCabPath) /F DeploymentFiles\BuildSharePointPackage.ddf /D
CabinetNameTemplate=$ (MSBuildProjectName) .wsp /D DiskDirectoryl=wsp "/>
</Target>
</Project>

With the MSBuild targets file created, the next step is to configure the Visual Studio project to tell

MSBuild to call the custom target defined in the custom targets file after the project is successfully built.
In order to do this, the project file (*.CSPROJ) needs to be edited. This can be done from Visual Studio

66

Chapter 4: SharePoint Features and the Solution Framework

or from any text editor. From within Visual Studio, right-click the project name in the Solution Explorer
tool window in Visual Studio and select Unload Project.

If the option to unload a project isn't visible, Visual Studio probably isn’t configured to show solutions.
To change this, from within Visual Studio select Tools => Options, and then select Projects and
Solutions = General page. Check the Always Show Solution option and click OK.

Right-click the project name in the Solution Explorer tool window and select Edit [project name].csproj
and make the following changes:

1. At the end of the file some XML is commented out, preceded by an <Import> node. The
<Import> node imports MSBuild targets files. Notice how it is already importing the C# targets
file used to compile projects. Add a second <Import> node and set the Project attribute to
point to the custom targets file created previously:

<Import Project="DeploymentFiles\BuildSharePointPackage.targets" />

2. Delete the commented XML except for the <Target Name="AfterBuild"></Target> node.
This MSBuild target is called by MSBuild when the other targets have completed. Add a
<CallTarget> node to the <Target> node, instructing MSBuild to call the custom target
previously created:

<Target Name="AfterBuild">
<CallTarget Targets="BuildSharePointPackage" />
</Target>

Save all changes, right-click the project in the Solution Explorer tool window, and select Reload Project.
A security warning dialog will appear. This Visual Studio warning indicates that it is loading a project
file that does not match any of the installed templates. Select Load Project Normally, uncheck Ask Me for
Every Project in This Solution, and click OK.

Now, when the project is built in Visual Studio, MSBuild will automatically execute MakeCab . EXE

to create WSS solution packages. If the build process reports an error in Visual Studio, the best way to
debug the problem is to open the Output tool window in Visual Studio and inspect the error message
reported from MakeCab . EXE. The Error tool window in Visual Studio only shows the generic error code
returned by MakeCab . EXE, which is not very helpful in debugging the error.

Summary

This chapter covered WSS 3.0 Feature and solution frameworks, new additions to the SharePoint product
offering in the most recent release. The Feature framework not only addresses many pain points
associated with WSS 2.0, such as adding new functionality to existing sites and promoting code reuse, it
also adds numerous new capabilities. These new capabilities include deployment of some custom code
solutions such as event receivers, workflow templates created with Visual Studio, and providing even
more possibilities by offering four events that can be handled with custom code. SharePoint developers
will quickly find that a solid grasp of the WSS 3.0 Feature framework and creating custom Features is
essential for anyone developing against the platform.

67

Chapter 4: SharePoint Features and the Solution Framework

68

Addressing another pain point from WSS 2.0, Microsoft added the solution framework to the latest
release of SharePoint, WSS 3.0. The solution framework can be thought of as SharePoint’s internal
installer capability, providing developers and administrators with the ability to deploy custom code,
files, as well as some site changes (edits to the web.config and CAS policy files) natively through
SharePoint. The solution framework even accommodates a multi-server farm, deploying custom code
and files to all servers in the farm with no special input required by administrators. You also looked at
the ins and outs of the solution framework, and learned how to create a WSS solution package (* . WSP).

In addition to covering both the WSS 3.0 Feature and solution framework, this chapter also
demonstrated how to use Visual Studio as a development platform for building Features and
automatically creating WSS solution packages.

Minimal Publishing
Site Definition

Office SharePoint Server (MOSS) 2007 includes a Publishing Portal site definition that can be used
to create new Publishing site collections. It includes all of the elements required by the MOSS Web
Content Management (WCM) architecture, which consists of content types, master pages, page
layouts, style sheets, images, and Web Parts, which together are used to perform various
publishing tasks. It also includes a document library for holding the published pages, some default
field controls, and sample content. Creating a new Publishing site typically begins by creating a
new Publishing site collection based on the Publishing Portal site definition, and then carefully
removing the parts not needed. This can be a tedious, error-prone, and time-consuming process.

At first glance, it is not obvious which parts are extraneous and which parts are critical to the
underlying WCM framework. If the wrong file is deleted, either it has to be replaced or the process
has to start from scratch by creating the site collection again. What is needed is a minimal site
definition that can be used as a starting point to create new Publishing site collections. This template
would contain all the essential elements, excluding the extraneous sample content. That is what this
chapter is all about.

What are the available options for creating a minimal Publishing site definition? One approach
might be to create a new Publishing Portal site, remove the parts not needed, and then save it as a
site template from within the SharePoint browser interface. This is the general approach to use
when creating a reusable site template for other sites. Unfortunately, this approach won’t work, as
Publishing sites cannot be saved as site templates. In order to understand why, this chapter takes a
closer look at the fundamental elements of a Publishing site to see what happens when a new
Publishing site is created. During this process, the chapter develops an alternate approach that fully
leverages the tools provided by Windows SharePoint Services (WSS) 3.0 for building custom sites.
The custom site definition created will tap into the special extensions for provisioning new sites
that is used under the covers by the Publishing framework when a Publishing Portal is created.

Chapter 5: Minimal Publishing Site Definition

Elements of a Publishing Site

The first step in the process of creating a minimal Publishing site definition is to look at what is included
out-of-the-box (OOTB) with the Publishing framework in MOSS. When a new site collection is created
based on the Publishing Portal template, the default site definition creates the content shown in Figure 5-1.
Some of this content is critical to the operation of the Publishing sites within the collection, while other
content is extraneous and can be removed. The critical parts are described in the following sections.

Figure 5-1

The Pages Library

Every Publishing site needs a document library to store the actual pages that are created in the site. This
library is always called Pages so that it can be referenced easily from hyperlinks and other parts of the
portal. When the site is first created, the Pages library contains a single entry named default.aspx,
which defines the home page of the Publishing site. This page in turn references a page layout. As new
pages are added to the site, they are created as items in the Pages document library.

Styles and Images

M

70

Many of the CSS style sheets, XSLT style sheets, images, and other files are specific to the default
Publishing site definition and the sample content it includes. Of the 63 items in the default Style Library,
only the core styles (about three files) are really needed.

aster Pages and Page Layouts

The SharePoint Publishing framework operates by leveraging the ASPNET 2.0 architecture, which
introduced the concept of master pages. Every Publishing page is associated with a page layout, which
in turn is linked to a master page located in the master page gallery of the site collection. There can be
any number of page layout and master page files associated with a given Publishing site. These can

be viewed from the Site Settings => Master Pages and Page Layouts link in the Galleries section when a
Publishing site is created. Figure 5-2 shows the master pages and page layout files that are created by
default. Of these, the PageLayoutTemplate.aspx and the VariationRootPageLayout .aspx files are
required because they are referenced by name from within the framework. The default.master fileis
therefore also required because it is referenced by these files.

Chapter 5: Minimal Publishing Site Definition

Figure 5-2

Content Types

Content types, in the context of a Publishing site, are primarily used to define the schema or structure of
a type of a content page. Page layouts are then used, in conjunction with master pages, to define the
rendering of the page defined by the content type. Content types enable developers to link specific
workflows or policies with a type of a page regardless of where it is created throughout the site.

A page layout can only have one SharePoint content type associated with it. The only exception

is the PageLayoutTemplate.aspx file, which is used as a starting point for creating new page layouts.
Three content types are created by default: Welcome Page, Article Page, and Redirect Page. The
VariationRootPageLayout.aspx is based on the Redirect Page content type and therefore must be
accessible to all Publishing sites.

Examining the Publishing
Portal Site Definition

Before building a custom site definition for creating Publishing sites, it helps to look at the site definition
Microsoft provides OOTB to create Publishing sites: Publishing Portal. The site definition Microsoft
provides will be virtually the same as the one created in the following sections. It is the Features used

71

Chapter 5: Minimal Publishing Site Definition

that do most of the work. When a site collection is created using the Publishing Portal template, the
PublishingWeb Feature is activated. This Feature in turn activates other Features, which activate even
more Features, as shown in Figure 5-3.

PublishingStapling PublishingWeb
001F4BD7-746D-403b-AA09-A6CC43DE7942 94C94CA6-B32F-4da9-A9E3-1F3D343D7ECB
PublishingSite Publishing
F6924D36-2FA8-4f0b-B16D-06B7250180FA 22A9EF51-737B-4f2-9346-694633FE4416
3 PublishingPrerequisites
A392DA98-270B-4e85-9769-04COFDE267AA
3 PublishingResources
AEBC918D-B20F-4a11-A1DB-9ED84D79C87E
; PublishingLayouts
D3F51BE2-38A8-4e44-BA84-940D35BE1566
; Navigation

89E0306D-453B-4ec5-8D68-42067CDBFO8E

Figure 5-3

Each Feature is responsible for something different. The following sections describe the various things
for which each Feature is responsible.

Publishing Feature PublishingWeb

The PublishingWeb Feature has it easy — it is simply responsible for activating the PublishingSite
and Publishing Features and does nothing else.

Publishing Feature Publishing

The Publishing Feature adds the plumbing needed for a few of the unique capabilities of the
Publishing framework. A new link is added to the Edit Control Block (ECB) menu for documents in
document libraries to manage document conversions (covered in Chapter 18, “Offline Authoring with
Document Converters”). New links are also added to the Pages library’s General Settings page for
scheduling items and customizing the Site Actions menu.

Finally, a few additional changes are made to the Site Settings page, including hiding two links: Master
Pages (in the Gallery section) and Save Site as Template (in the Look and Feel section).

72

Chapter 5: Minimal Publishing Site Definition

Publishing Feature PublishingSite

Just like the PublishingWeb Feature, the PublishingSite Feature also has it easy, as it simply
activates four other Publishing Features and does nothing else: PublishingPrerequisites,
PublishingResources, PublishingLayouts, and Navigation.

Publishing Feature PublishingPrerequisites

The publishingPrerequisites Feature contains no element manifest files or activation dependencies;
it simply contains a Feature receiver. The receiver ensures that all of the necessary WSS core Features have
been activated. This includes the site collection Feature BasicWebParts and site Features CustomList,
DocumentLibrary, TasksList, and WorkflowHistoryList. These are actually activated by the
Publishing Portal site definition, and will also be activated by the Minimal Publishing Portal site definition.

Publishing Feature PublishingResources

The PublishingResources Feature adds a few components required for Publishing sites to function
properly. The PublishingColumns.xml element manifest creates all site columns needed in Publishing
sites for things such as chrome and page layouts, cache profiles, reusable content, and content query
columns. A few system content types are created as well, including System Page, Page, System Master
Page, Publishing Master Page, and Page Layout, among others.

After creating the site columns and content types, it then provisions a handful of files. Some of these are
required for Publishing sites (PageLayoutTemplate.aspx, PublishingMasterTemplate.aspx, and
VariationRootPageLayout.aspx) and one content page layout is used in many Publishing sites
(WelcomeLinks.aspx).

In addition to ASP.NET 2.0 pages, other files provisioned are the Web Part definitions for the specific
Publishing Web Parts such as the Table of Contents, Summary Links, and Content Query Web Parts,
which are provisioned into the site collection’s Web Part Gallery. The required XSLT style sheets used by
these Publishing Web Parts are also provisioned into the site collection’s Style Library.

Finally, the PublishingResources Feature also makes a few modifications to the Site Settings menu,
such as adding the Master Page, Searchable Columns and Content, and Structure Logs links, as well as
the following site collection links: Site Collection Output Cache, Variation Labels, Variation Logs, and
Translatable Columns.

Publishing Feature PublishingLayouts

The pPublishingLayouts Feature adds a few master pages, page layouts, style sheets, and a
considerable number of images. It is responsible for things such as the Article Page page layouts. In
addition, this Feature provisions eight master pages, including the default BlueBand.master master
page that all Publishing Portal site collections start with. Ultimately, this is the sole Feature that requires
the creation of a custom Minimal Publishing Portal site definition.

73

Chapter 5: Minimal Publishing Site Definition

Publishing Feature Navigation

The Navigation Feature primarily makes a few modifications to the Site Settings page, adding and
hiding some links.

Publishing Feature PublishingStapling

The PublishingStapling Feature uses the technique of Feature stapling to attach two of the Publishing
Features to many of the MOSS 2007 site templates. The two Features, Publishingieb and
pPublishingSite, are stapled to site definitions carried over from Microsoft SharePoint Portal Server
2003, the Collaboration Portal site definition, Search Center and Report Center site templates, Publishing
Site, and Publishing Site with Workflow templates.

The Challenge with the Publishing
Portal Site Definition

C

74

What is wrong with this site definition and the associated Features? One very common use for
Publishing sites is an Internet-facing content-centric site. These Internet-facing sites usually have their
own look and feel, which is customized quite a bit from the stock SharePoint design. To implement this
custom branding, developers have to first create the site collection using the Publishing Portal template
and then they usually remove all the branding files that were added as part of this template. This
includes things such as various images, style sheets, and master pages.

It would be much easier to create a new SharePoint site with the entire Publishing infrastructure and no
branding. This is the goal of the Minimal Publishing Portal site definition. How is it different from the
stock Publishing Portal site definition? Most everything can be traced back to the PublishingLayouts
Feature, which is responsible for adding most of the stock branding. Unfortunately, it is not terribly easy
or straightforward because, as previously shown in Figure 5-3, the PublishingLayouts Feature is
activated by another Feature, which is activated by yet another Feature, which is activated by the site
definition. This means a new Feature is needed that replaces some of these other Features. In addition,

it will add the minimal branding required to have a working site collection.

reating a Publishing Site Definition

A SharePoint site definition consists of a tree of CAML elements that describe the different parts of the
site and how they relate to one another. The topmost element is the template element. It is declared in a
special file called WEBTEMP, which contains one or more template Configuration elements that
reference associated site definition Configuration elements declared within the ONET . XML file
associated with the site definition. Figure 5-4 shows how these files are related.

Chapter 5: Minimal Publishing Site Definition

12\TEMPLATE\SiteTemplates\
PublishingMinimal \ XML\ ONET.XML

4 R
Configuration ID="0"
12\TEMPLATE\1033\XML\WEBTEMP.PublishingMinimal. XML 4)
1
Configuration ID="0" > "Pagle?_il;lfuts"
List "Pages"

Site Features

Web Features

Figure 5-4

When thinking about site definitions and how they are used, it is important to understand the difference
between template Configuration elements and site definition Configuration elements. When users
create a new SharePoint site or site collection through the user interface, they are given the opportunity
to select from the available site templates. What they are seeing onscreen are the visible template
Configuration elements as specified in the WEBTEMP . [name] . XML file, where [name] is the template
name. The site definition Configuration elements are contained within the ONET . XML file that
describes the actual components of the site.

The Significance of Site Definitions

This terminology can be a bit confusing. Sometimes site definitions are incorrectly called site templates
and vice versa. While both terms refer to the general capability provided by SharePoint to reuse a
particular configuration of lists and other content, the mechanisms are quite different.

SharePoint users can create site templates from the user interface to save an existing Web site into a file so
that it can be recreated easily at a different address. This is a powerful tool that makes it easy to set up a
site with all of the lists and other content needed to perform a given task. Site definitions are much more
powerful than site templates and are used primarily by developers to build SharePoint applications that
typically involve custom coding.

75

Chapter 5: Minimal Publishing Site Definition

Among the many pros and cons of using site definitions versus site templates to create reusable sites in
SharePoint, the most obvious are related to the relative complexity of the site to create. When doing
anything beyond simple content modification, site definitions are typically the best choice because they
offer much more flexibility and control. Conversely, sometimes simpler is better, especially in a case like
this where the primary goal is to reduce the content that is created by default.

Why won't a site template work just as well for creating a minimal Publishing site? The problem is the
complexity. First, many of the components that are used within a Publishing site are stored at the site
collection. For instance, the master pages and page layouts are all stored in the Master Page Gallery
associated with the site collection. These objects are then shared among all Publishing sites within the
collection, with only the actual published pages and other content stored at the site level.

Another issue is the need to use content types to define the page layouts used for the Publishing pages.
This requirement makes it impossible to simply use a site template to create a minimal Publishing site
because content types can only be declared in a site definition or created using custom code. The default
set of content types provided by the Publishing framework may still need to modify or extend or be
bound to custom lists. The only way to do this would be to use a site definition.

Custom Site Provisioning

76

Although not an absolute requirement for building a minimal Publishing site definition, it is worth
mentioning an additional capability that SharePoint provides for controlling how sites are created. Site
provisioning can be an essential tool for developers tasked with customizing OOTB functionality.

When a new Web site is created, the SharePoint site provisioning engine examines the selected template and
then finds and loads the corresponding ONET . XML file. Then it searches for a site definition Configuration
element within the project element that matches the ID of the template Configuration element
associated with the selected template.

As part of the template Configuration element, the name of a custom assembly can be specified such
that it contains a class derived from Microsoft.SharePoint.SPWebProvisioningProvider. When
specified, this class is called after the site is created to apply the appropriate configuration and to
perform any additional initialization needed for the site. To fully customize the initialization, pass a
string argument to the provisioning provider. The code in Listing 5-1 illustrates this approach by passing
the name of a separate XML configuration file containing post-site-creation options. Another idea would
be to control the site creation process using data stored in an external database. In that case, the string
argument might include the database connection details.

Listing 5-1: Creating a custom site provisioning engine

using System;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Publishing;

namespace WROX.ProMossWcm.Chapter05 {

public class ProvisioningEngine : SPWebProvisioningProvider ({
private const string TEMPLATE_ID = "0";
private const string TEMPLATE_NAME = "PublishingMinimal";

/// <summary>

Chapter 5: Minimal Publishing Site Definition

/// Called when a new site is created.
/// </summary>
public override void Provision (SPWebProvisioningProperties props) {
using (SPWeb site = props.Web) {
// Apply the actual Web template for the publishing portal.
site.ApplyWebTemplate (TEMPLATE _NAME + "#" + TEMPLATE_ID);

EnsureContentTypes (site, PublishingWeb.GetPagesListName (site)) ;

// props.Data = custom string passed in from ONET.XML file
InitializePortal (site, props.Data);

/// <summary>

/// Ensures the correct content types are added to the

/// Pages library associated with the Publishing Portal.

/// </summary>

private void EnsureContentTypes (SPWeb site, string pagesList) {
SPContentTypeCollection pageCTs = site.Lists[pagesList].ContentTypes;
foreach (SPContentType contentType in

site.Site.RootWeb.AvailableContentTypes) {
if (IsCustomContentType (contentType) && pageCTs[contentType.Name] == null)
pageCTs.Add (contentType) ;

/// <summary>
/// Determines whether a given content type is a custom type for this Feature.
/// </summary>
private bool IsCustomContentType (SPContentType contentType) {
if (contentType.Hidden) return false;
if (contentType.Group.ToUpper () != TEMPLATE NAME) return false;
return true;

/// <summary>
/// Initialize the portal based on settings provided in the configuration file
/// associated with the site definition.
/// </summary>
private void InitializePortal (SPWeb site, string configFilePath) {
// *** code omitted ***

Note a couple of gotchas related to using the built-in site provisioning Features to be aware of. First,
understand that the site provisioning class is expected to perform the important task of applying the Web
template to the new Web site. It is the SPweb . ApplyWebTemplate () method itself that determines
whether a custom site provisioning class is available, and then calls its SPWebProvisioningProvider
.Provision () method to apply the template. This means that when providing a custom site provisioning

77

Chapter 5: Minimal Publishing Site Definition

class, the template must be applied explicitly in code. Failure to do this will cause the site creation process
to fall into an infinite loop as it tries repeatedly to acquire the template when the root Web of the portal is
being created. It also means that the template configuration applied to the Web must not have a custom
site provisioning class associated with it.

The best way to handle this scenario is to declare two configurations as part of the site definition. The first
(zp="0") will be a hidden configuration that represents the actual template to be applied to the site. The
second (ID="1") will be the visible configuration that is associated with the custom site provisioning class.
When the SPitebProvisioningProvider.Provision () method is called, it applies the hidden
configuration to the Web, thereby avoiding an infinite loop when the SPieb . ApplyWebTemplate () method
searches for another provisioning provider. The diagram shown in Figure 5-5 illustrates this process.

12\TEMPLATE\SiteTemplates\
PublishingMinimal \ XML\ ONET.XML

")
Configuration ID="0"
12\TEMPLATE\1033\XML\WEBTEMP.PublishingMinimal.XML 4 N
1
— — | > Configuration ID="0" > "Pagecl)_i;futs"
Configuration ID="1"
List "Pages”
/—\

Web Features

N
{ SPWebProvisioningProvider.Provision() } - .

SPWeb.AppIyTempIate(:'PubIishingMinimaI#O") L /

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I \/ Site Features
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 5-5

Why use site provisioning instead of a Feature receiver? The main reason is that a Feature receiver is
called before the default lists and Web Parts, which are declared in the ONET . XML file, get created. This
means that the list contents cannot be modified from within a Feature receiver. In the case of a
Publishing Portal, it is precisely that content that may need to be modified in order for the Publishing
Features to be properly initialized. Consequently, the custom code needs to be called after the lists and
other components have been created. Some of those are custom components, but others are supplied by
the Publishing framework Features that are referenced from within the custom site definition.

78

Chapter 5: Minimal Publishing Site Definition

The following sections describe the different files and CAML elements needed to create a minimal
Publishing site; but before diving into the actual site definition, create a SharePoint solution package that
will tie everything together and act as a container for all the other files. Figure 5-6 shows the structure of
the custom site definition solution documented throughout the remainder of the chapter.

Figure 5-6

The WEBTEMP File

To create the Minimal Publishing Portal site definition, start by creating the WEBTEMP file (named
WEBTEMP . PublishingMinimal.xml), which describes the configurations that make up the site. The
configuration is not hidden from the user. It must not specify its own provisioning class because that
would cause an infinite loop as SharePoint tries to resolve the template to be applied to the Web site.
Instead, the ID attribute matches that of the complete configuration definition, which resides in

the ONET. XML file located in the matching [..]\12\TEMPLATE\SiteTemplates subfolder.

That configuration specifies the files and other Features of the new Web site. Listing 5-2 contains the
hidden configuration.

Listing 5-2: Minimal publishing site configuration

<Configuration ID="0"
Title="Minimal Publishing Site"
DisplayCategory="Publishing"
Hidden="FALSE"
ImageUrl="/_layouts/images/PublishingMinimal/Preview.png"
RootWebOnly="false"
SubWebOnly="true" />

79

Chapter 5: Minimal Publishing Site Definition

Next is the visible configuration that the user sees when creating the Publishing Portal. It has all of the
standard attributes such as ImageUrl, Description, DisplayCategory, and so on (see Listing 5-3). It
also specifies a custom provisioning class that is called after the site is created to apply the template for
the site. Once the template has been applied, then all of the lists and other Features of the site are created,
so the provisioning class can populate them with default data.

Listing 5-3: Visible minimal publishing configuration

<Configuration ID="1"
Title="Minimal Publishing Portal"
DisplayCategory="Publishing"
Hidden="FALSE"
ImageUrl="/_layouts/images/PublishingMinimal/Preview.png"
ProvisionAssembly="Chapter05MinimalSiteDefinition, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=c591e70cfdf9ce4f"
ProvisionClass="WROX.ProMossWcm.Chapter05.ProvisioningEngine"
ProvisionData="SiteTemplates\\PublishingMinimal\\XML\\PortalConfig.xml"
RootWebOnly="true"
SubWebOnly="false" />

This markup declares that the PublishingMinimal site definition has a single configuration that is visible
in the SharePoint user interface and is available for use to create a Publishing Portal. By setting the
RootWebOnly attribute to true, the template is limited such that only top-level sites can be created.

Finally, a site configuration is needed to create Publishing sites with workflow that will automatically
setup the Parallel Approval workflow association on the necessary libraries. Notice that
VisibleFeatureDependency specifies that the PublishingMinimal Feature must be active for this
configuration to be available. This Feature is defined later in the chapter.

Listing 5-4: Minimal Publishing Site with Workflow Configuration

<Configuration ID="2"

Title="Publishing Site with Workflow"

Hidden="FALSE"

ImageUrl="/_layouts/1033/images/PublishingSite.gif"

Description="A site for publishing Web pages on a schedule by using
approval workflows. It includes document and image libraries for storing Web
publishing assets. By default, only sites with this template can be created under
this site."

SubWebOnly="TRUE"

DisplayCategory="Publishing"

VisibilityFeatureDependency="54A92CA1-4E7C-4B73-B03A-E93955E4E560" />

As indicated earlier, the creation of a Publishing site requires special code to be run each time the portal
is provisioned. This code will create the additional elements that cannot be created via CAML.

The ONET.XML File

The ONET . XML file contains the CAML elements that declare the actual components that make up the
site. The top-level element is the project element, which points to the appropriate schemas and
provides a title for the site definition, as shown in Listing 5-5.

80

Chapter 5: Minimal Publishing Site Definition

Listing 5-5: ONET.XML project element

<?xml version="1.0" encoding="utf-8" ?>
<Project xmlns="http://schemas.microsoft.com/sharepoint/"
xmlns:ows="Microsoft SharePoint"
Title="Minimal Publishing Site">
<NavBars />
<ListTemplates />
<DocumentTemplates />
<Configurations />
<Modules />
</Project>

The NavBars element contains the individual navigation bar declarations. The NavBar elements shown
in Listing 5-6 are copied directly from the standard Publishing site definition to provide the same basic
navigation used for Publishing sites. No NavBars are needed in a Publishing site, so this node is empty.

Listing 5-6: ONET.XML NavBars element

<?xml version="1.0" encoding="utf-8" ?>

<Project xmlns="http://schemas.microsoft.com/sharepoint/"
xmlns:ows="Microsoft SharePoint"
Title="Minimal Publishing Site">

<NavBars Name="SharePoint Top Navbar" ID="1002">"></NavBars>

<ListTemplates />

<DocumentTemplates />

<Configurations />

<Modules />
</Project>

Because no custom list templates are needed for a Publishing site, leave the ListTemplates element
empty. Also include the standard set of document templates, as shown in Listing 5-7. Note that all are
declared as referencing the default STS path, which provides out-of-the-box support for Word, Excel,

PowerPoint, OneNote, FrontPage, and InfoPath documents.

Listing 5-7: ONET.XML DocumentTemplates element

<?xml version="1.0" encoding="utf-8" ?>
<Project xmlns="http://schemas.microsoft.com/sharepoint/"
xmlns:ows="Microsoft SharePoint"
Title="Minimal Publishing Site">
<NavBars />
<ListTemplates />
<DocumentTemplates>
<DocumentTemplate Path="STS" Name=""
DisplayName="S$Resources:core,doctemp_None;" ... />
<DocumentTemplate Path="STS" DisplayName="$Resources:core,doctemp_Word97;"

<DocumentTemplateFiles>
<DocumentTemplateFile Name="doctemp\word\wdtmpl.doc"

(continued)

81

Chapter 5: Minimal Publishing Site Definition

Listing 5-7 (continued)

TargetName="Forms/template.doc" Default="TRUE" />
</DocumentTemplateFiles>
</DocumentTemplate>
<!-- code omitted for readability -->
</DocumentTemplates>
<Configurations />
<Modules />
</Project>

Configuration Elements

A site definition may contain several configurations, each declared in a separate Configuration
element. This element declares the components that will be available within a given site definition as a
group of settings. Using configurations separates the list and module declarations from the actual
configuration of instances for a given site template within the site definition and makes it easy to reuse
the same settings in multiple templates.

The 1D attribute associates the ONET . XML Configuration instance with the WEBTEMP
Configuration reference. Within each Configuration element, additional sub-elements are used to
define individual site characteristics such as site Features, Web Features, modules, and property values
that will be associated with the site immediately after it is created.

Now declare three configurations: one to match the configuration that is applied to the new Publishing
Web site that mimics the Publishing Site without workflow site template; a second to match the visible
configuration that is displayed in the SharePoint user interface for creating a Publishing Portal; and a
third one to match the configuration that minics the Publishing Site with the workflow site template
(see Listing 5-8).

Listing 5-8: ONET.XML Configurations element

<?xml version="1.0" encoding="utf-8" ?>
<Project xmlns="http://schemas.microsoft.com/sharepoint/"
xmlns:ows="Microsoft SharePoint"
Title="Minimal Publishing Site">
<NavBars />
<ListTemplates />
<DocumentTemplates />
<Configurations>
<Configuration ID="-1" Name="NewWeb" />
<Configuration ID="1" Name="Provisioner" />
<Configuration ID="0" Name="PublishingMinimal">
<Lists/>
<Modules>
<Module Name="Default"/>
</Modules>
<SiteFeatures />
<WebFeatures />
</Configuration>
</Configurations>
<Modules />
</Project>

82

Chapter 5: Minimal Publishing Site Definition

The SiteFeatures and WebFeatures Elements

When creating a site definition, there may be additional Features that must be activated in order for the
site to work. Consequently, the SharePoint site provisioning engine needs to know which Features to
activate when the site is created and whether they must be activated at the site collection level or at the
Web level. This is an important distinction, because it also determines when the activation occurs.
Specifying them separately enables the provisioning engine to create the site more efficiently because it
doesn’t have to first load the Feature to determine its scope.

Use the <SiteFeatures> element to specify external Features that must be activated at the site
collection level, and the <webFeatures> element to specify Feature activation at the site level, as shown
in Listing 5-9. Include the 1D of the PublishingMinimal Feature that contains the custom master pages,
page layouts, and images.

Listing 5-9: ONET.XML SiteFeatures element

<?xml version="1.0" encoding="utf-8" ?>
<Project xmlns="http://schemas.microsoft.com/sharepoint/"
xmlns:ows="Microsoft SharePoint"
Title="Minimal Publishing Site">
<NavBars />
<ListTemplates/>
<DocumentTemplates />
<Configurations>
<Configuration ID="-1" Name="NewWeb" />
<Configuration ID="1" Name="Provisioner" />
<Configuration ID="0" Name="PublishingMinimal">
<Lists/>
<Modules />

<SiteFeatures>

<!-- Feature: PublishingMinimal -->

<Feature ID="54A92CA1-4E7C-4B73-B03A-E93955E4E560" />
</SiteFeatures>

<WebFeatures />
</Configuration>
</Configurations>
<Modules />
</Project>

Because the PublishingMinimal Feature is scoped to the site collection level, the other site collection
Features required by the Publishing framework using ActivationDependency elements in the Feature
definition itself can be included. This approach provides better Feature encapsulation, avoiding the need
to add those dependencies directly to each site definition.

Conversely, because the PublishingMinimal Feature is not scoped to Web, it cannot use activation
dependencies for the Web-scoped Publishing Features. Instead, it must specify them directly in the

ONET . xml file within the WwebFeatures element.

First, add support for custom lists, document libraries, picture libraries, task lists, collaboration lists, and
the workflow history list, as shown in Listing 5-10.

83

Chapter 5: Minimal Publishing Site Definition

Listing 5-10: Including site-scoped Features

<?xml version="1.0" encoding="utf-8" ?>
<Project xmlns="http://schemas.microsoft.com/sharepoint/"
xmlns:ows="Microsoft SharePoint"
Title="Minimal Publishing Site">
<NavBars />
<ListTemplates/>
<DocumentTemplates />
<Configurations>
<Configuration ID="-1" Name="NewWeb" />
<Configuration ID="1" Name="Provisioner" />
<Configuration ID="0" Name=" PublishingMinimal">
<Lists/>
<Modules />
<SiteFeatures />

<WebFeatures>
<!-- Feature: CustomLists -->
<Feature ID="00BFEA71-DE22-43B2-A848-C05709900100" />
<!-- Feature: DocumentLibrary -->
<Feature ID="00BFEA71-E717-4E80-AA17-D0C71B360101" />
<!-- Feature: PicturelLibrary -->
<Feature ID="00BFEA71-52D4-45B3-B544-B1C71B620109" />
<!-- Feature: TasksList -->
<Feature ID="00BFEA71-A83E-497E-9BA0-7A5C597D0107" />
<!-- Feature: TeamCollab -->
<Feature ID="00BFEA71-4EA5-48D4-A4AD-7EA5C011ABE5S" />
<!-- Feature: WorkflowHistoryList -->
<Feature ID="00BFEA71-4EA5-48D4-A4AD-305CF7030140" />
</WebFeatures>
</Configuration>
</Configurations>
<Modules />
</Project>

Next, add the Publishing-specific Features to the WebFeatures element. The Publishing and Navigation
Features support activation properties that enable values to be passed in to customize the Feature.

Feature Activation Properties

When activating a Feature from within a site definition, it is often necessary to provide additional
property values that the Feature uses during its activation sequence. These properties are passed to the
Feature receiver code so that it can initialize itself properly.

While this is a powerful capability of the Feature framework, it requires inside knowledge of how the
target Feature is written. This information is often difficult to obtain and may not be well documented.
If the target Feature changes, it may become necessary to modify the site definition to supply the correct
property values.

As shown in Listing 5-11, pass these properties by name using the Properties element inside the
Feature element, which configures the Office SharePoint Publishing Feature.

84

Chapter 5: Minimal Publishing Site Definition

Listing 5-11: Publishing Feature utilizing activation properties

<!-- Feature: Publishing -->
<Feature ID="22A9EF51-737B-4ff2-9346-694633FE4416">
<Properties xmlns="http://schemas.microsoft.com/sharepoint/">

<Property Key="ChromeMasterUrl"
Value="~SiteCollection/_catalogs/masterpage/PublishingMinimal .master" />

<Property Key="WelcomePageUrl"
Value="$Resources:cmscore,List_Pages_UrlName; /default.aspx"/>

<Property Key="PagesListUrl" Value=""/>

<Property Key="AvailableWebTemplates" Value="="*-PublishingMinimal#0;*-
PublishingMinimal#2"/>

<Property Key="AvailablePageLayouts"
Value="~SiteCollection/_catalogs/masterpage/Minimal.aspx"/>

<Property Key="AlternateCssUrl" Value="" />
<Property Key="SimplePublishing" Value="true" />
</Properties>
</Feature>

The activation properties of the Publishing Feature require a little more explanation:

0 ChromeMasterUrl — Used to specify the default master page that will be used for new pages in
the Publishing site. Unless this property is specified, the Publishing framework will use the
default.master. This way enables referencing the masterurl easily from within the custom
pages without having to use a hard-coded value. Changing it here changes it everywhere it is
referenced.

O wWelcomePageUrl — This is set to redirect the user to a specific page when the site’s URL is
requested.

0 PagesListUrl — Specifies the name of the Pages document library that holds the actual
Publishing pages. Leave the attribute blank to use the default value.

QO AvailableWebTemplates — Limit the Web templates that are available to users from within
this Web site by specifying a list of templates and configurations. The syntax of this attribute is
the locale identifier (LCID) followed by a hyphen, template name, and optional configuration.
To include all LCID values, use an asterisk for the LCID value, as shown here:

*-PublishingMinimal#0; 1033-BLANKINTERNET#2

This says to display the #3 configuration of the PublishingMinimal template for all available
locales, and to display the #2 configuration of the BLANKINTERNET template for LCID 1033.
Leave the attribute blank to specify the default value.

Q AvailablePageLayouts — Page layouts that should be displayed in the UI for selection can be
specified when the user creates a new Publishing page. This attribute also uses a special syntax
that must be a server-relative URL for each layout file, separated by a colon. To obtain the
server-relative URL, use the special ~SiteCollection token.

O AlternateCssUrl — Specify an alternate CSS URL to reference custom styles.

0 simplePublishing — Setting this property to true causes the Publishing framework to relax its
requirement that Published pages must go through an Approval workflow.

85

Chapter 5: Minimal Publishing Site Definition

There is a separate Feature that controls the portal navigation for Web sites derived from
PublishingWeb. Use it to set up the default navigation behavior of the portal. Turn on the
InheritGlobalNavigation, ShowSiblings, and IncludeSubSites flags, as shown in Listing 5-12.

Listing 5-12: Navigation Feature utilizing activation properties

<!-- Feature: Navigation -->
<Feature ID="541F5F57-C847-4el16-B59A-B31E90E6FIEA">
<Properties xmlns="http://schemas.microsoft.com/sharepoint/">
<Property Key="InheritGlobalNavigation" Value="true"/>
<Property Key="ShowSiblings" Value="true"/>
<Property Key="IncludeSubSites" Value="true"/>
</Properties>
</Feature>

The last configuration should be an exact copy of configuration #0 except its configuration ID should be
2 and the SimplePublishing property for the Publishing Feature should be set to false.

Enabling the Lockdown Feature

Under normal circumstances, a Publishing site has many more readers than contributors. This is the
typical scenario for content publishing whereby a select group of content authors publish information
for the rest of the world (readers) to consume. Because the readers are also using SharePoint, it may not
be desirable for them to have access to other parts of the portal such as lists and document libraries
unrelated to the published content. In order to support this scenario, the Publishing framework provides
a special Feature called ViewFormPagesLockDown that restricts access for anonymous users to published
content only. The lockdown Feature is explained in more detail in Chapter 15.

To activate the lockdown mode, include the ViewFormPagesLockdown Feature in the SiteFeatures
section using the appropriate GUID. The adjusted siteFeatures element is shown in Listing 5-13.

Listing 5-13: Including the lockdown Feature

<SiteFeatures>
<!-- Feature: PublishingMinimal -->
<Feature ID="54A92CA1-4E7C-4B73-B03A-E93955E4E560" />

<!-- Feature: ViewFormPagesLockdown -->
<Feature ID="7C637B23-06C4-472d-9A9A-7C175762C5C4" />
</SiteFeatures>
Modules

86

The Module element is used to declare a set of files that are automatically added to a site when it is
created. This element, in conjunction with the File element, enables specifying the template file on the
file system that will be used to create each file instance (in the content database). In the case of Web Part
pages, specify the initial collection of Web Parts and their properties.

The Module element can be used in more than one place. In the ONET . XML file it is used to declare the
home page for the site (default.aspx), as shown in Listing 5-14.

Chapter 5: Minimal Publishing Site Definition

Listing 5-14: Adding modules to the minimal site definition

<?xml version="1.0" encoding="utf-8" ?>
<Project xmlns="http://schemas.microsoft.com/sharepoint/"
xmlns:ows="Microsoft SharePoint"
Title="Minimal Publishing Site">
<NavBars />
<ListTemplates />
<DocumentTemplates />
<Configurations />
<Modules>
<Module Name="Default" Url="" Path="">
<File Url="default.aspx" NavBarHome="True" Type="Ghostable" />
</Module>
</Modules>

</Project>

The Feature Manifest

The final component is the custom Feature that is responsible for provisioning the master pages, page
layouts, and other files used in the site definition. It is also responsible for activating any additional
Features from the Publishing framework that may be required. The markup in Listing 5-15 shows

the Feature manifest needed to accomplish this.

Listing 5-15: Feature manifest for setting up publishing

<?xml version="1.0" encoding="utf-8"?>

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
Id="54A92CA1-4E7C-4B73-B03A-E93955E4E560"
Title=" Minimal Publishing Feature"
Version="1.0.0.0"
Scope="Site"
Hidden="FALSE">

<ActivationDependencies>
<!-- Feature: PublishingPrerequisites -->
<ActivationDependency FeatureId="A392DA98-270B-4e85-9769-04COFDE267AA"
<!-- Feature: PublishingResources -->
<ActivationDependency FeatureId="AEBC918D-B20F-4all-A1DB-9ED84D79C87E"
<!-- Feature: Navigation -->
<ActivationDependency FeatureId="89E0306D-453B-4ec5-8D68-42067CDBFI8E"
</ActivationDependencies>

<ElementManifests>
<ElementManifest Location="masterPages.xml" />
<ElementManifest Location="pageLayouts.xml" />
</ElementManifests>
</Feature>

/>

/>

/>

The first thing to note is that the Feature is scoped to Site. One reason for this is that the publishing
Features on which the site definition depends are also scoped to Site. In addition, the custom master
pages and page layouts associated with the Minimal Publishing Portal site definition must be placed into

87

Chapter 5: Minimal Publishing Site Definition

the Master Page and Page Layout Gallery associated with the site collection. Any custom content types
that need to be deployed would also have to be created at the site collection level.

The ActivationDependency elements refer to the three key publishing Features that must be activated
in order for the Publishing site to work: PublishingPrerequisites, PublishingResources, and
Navigation.

The Feature Elements

The Feature contains two element manifests that describe the remaining files that make up the solution:
a single master page (with associated preview image) and two page layouts (with associated preview
images). Refer to Chapter 7, “Master Pages and Page Layouts” or the code for this chapter for more
information on how these files are provisioned into the Publishing site.

Deploying and Testing the Custom Site Definition

With the Minimal Publishing Portal site definition created, it is now time to package everything up into a
WSS solution package for deployment. Like other chapters, this chapter uses the same automated
solution package creation process that leverages MSBuild as demonstrated in Chapter 4. Refer to the
code download associated with this chapter for the book to see the complete solution and sample WSP
file. Add the solution to the SharePoint farm’s solution store and deploy it. Finally, reset IIS in order to
make SharePoint see the new site definition and WEBTEMP file.

Now, when creating new site collections, a new option will be present on the Publishing tab: Minimal
Publishing Portal. After creating a new site collection using this site definition, the site will look virtually
identical to a site created using the Blank Site site definition. This is because the master page used here is
very slimmed down, taking the minimalist approach. However, a quick peek at the Site Actions menu
will make users feel much more at home in the Publishing environment, as all the usual stuff is now
visible. To validate this, check the Site Settings page to see the new cache and master page menus as well
as the Manage Content and Structure page.

Summary

88

This chapter explained the structure of standard WSS 3.0 site definitions and dissected the out-of-the-box
MOSS 2007 Publishing Portal site definition. In doing this, the challenge presented in most Publishing
sites was uncovered. The Publishing Portal site definition adds a lot of branding files and content that is
not needed or necessary within most Publishing sites. This extra content and files are typically cleaned
out prior to starting the development process in creating new Publishing sites. To alleviate this task, the
Minimal Publishing Portal site definition was described, including all the steps that need to be taken in
the process of creating this site definition.

Site Columns, Content
Types, and Lists

At the core, all content in a SharePoint site is stored in lists. This includes things such as master
pages, images, style sheets, XSL styles, and content pages; even page layouts (in the case of
Publishing sites) are stored in SharePoint lists. Similar to tables in a database, lists are composed of
columns, or fields.

One of the challenges with Windows SharePoint Services (WSS) 2.0 with respect to lists was that
the list templates were not very dynamic. In addition, many aspects of lists were not reusable.
Such is the case when defining types of data within a list as well as the columns in lists.
Microsoft addressed these issues by introducing a few new concepts. First, list columns can be
defined as site columns, or templates, that can be used across multiple lists. Second, the type of
data can be abstracted from a list into a new entity called a content type. Content types can then
be added to a list either through the definition of the list or through the browser interface, by a
site administrator. Lists can even contain multiple content types facilitating the storage of
heterogeneous types of data within a single list. Finally, list templates can now be associated
with sites not only at the point of site creation, but also at any time thereafter thanks to the
addition of Features.

This chapter covers each of these three site elements in depth, including a detailed look at the
different options available to administrators and developers for creating these different elements.

All three of these site elements are basic WSS 3.0 constructs found in all SharePoint sites.
Regardless, Publishing site developers must have a solid grasp of these concepts in order to create
professional solutions leveraging the capabilities of Microsoft Office SharePoint Server (MOSS)
2007 Web Content Management (WCM).

Chapter 6: Site Columns, Content Types, and Lists

Site Columns

Columns are not new to WSS 3.0, they have been around in SharePoint for a while. However,

site columns were introduced in WSS 3.0 in an effort to ease the maintenance of columns in a

SharePoint site collection. In WSS 2.0, users could add and edit columns on a list-by-list basis. The
challenge with this approach is that it was hard to standardize similar columns across lists. For example,
if the field “First Name” was defined in one list as a certain data type, configured to have a minimum
length, assigned a user-friendly description and default value, there was no easy way to ensure that
other lists containing a “First Name” column conformed to the same specifications. Not only would this
cause confusion with end users due to the lack of consistency, but it also created headaches for site
owners and administrators to manage the various instances.

To address this, Microsoft introduced site columns, which are reusable column definitions/templates in
WSS 3.0 that can be defined once in a SharePoint site and used in different lists in the same site or
subsites. These site columns can also be used within content types. While the site columns are defined at
the site level, they are available to all child sites of the site they are defined within. Therefore, creating
site columns within the top-level site in a site collection effectively creates a site column definition that
can be used throughout an entire site collection. All site column definitions are stored in the Site Column
Gallery, accessible via Site Settings = Site Columns.

For more information on site columns, refer to the official documentation on MSDN
(www . andrewconnell.com/go/213).

Site columns alone cannot be used to store data. Rather, they are simply definitions. To use a site column
it must be added to a list. This does not create a reference to the site column definition; SharePoint
creates a copy in the list known as a list column. From here, the column can be customized in the list
without affecting the underlying definition. Adding site columns to content types is treated a bit
differently and is addressed later in the chapter. However, when updating the site column definition,
users can propagate the changes everywhere the site column is being used.

Site Column Names and IDs

20

Site columns have two forms of identification: a unique name and a unique ID. The ID of a site column is
simply a GUID. The ID of a site column may or may not be defined by an administrator or developer
upon creation of the site column definition, depending on the method of creation. Each of the three
options for creating a site column is covered in a later section. The name of a site column is a little more
complex than the ID.

Site columns have two different names: an internal name and a display name. The display name is a user-
friendly name that is shown in the user interface in all forms (new/edit/display) and lists pages. The
display name can contain spaces, whereas the internal name cannot contain spaces. If the name entered
contains a space when creating a new field using the browser interface or through code, SharePoint
replaces the space with the hex value of the HTML space character: $20. This results in the string
x0020 in the middle of a site column’s internal name. If multiple spaces are entered as the name, it
will contain multiple instances of _x0020_.

For example, if a new site column is created through the browser named “Company Full Name,” the
resulting internal name is Company_x0020_Full_x0020_Name. Why does this matter? As covered later
in the chapter, the internal name is the one that is used when accessing a column in a list via the
SharePoint object model. While not a problem, it causes undue pain when typing the code, as it feels too

Chapter 6: Site Columns, Content Types, and Lists

cryptic. The section on creating site columns demonstrates a few different ways to avoid the _x0020_
value in the internal name of a site column, depending on the method used to create the site column.

Creating Site Columns

SharePoint provides three options for creating site column definitions, each with its own advantages and
disadvantages. Two of the options, creating site columns using the SharePoint browser interface or via
custom code, can be classified as SharePoint customization. Recall from Chapter 2 that SharePoint
customization is storing content within the content database. The third option for creating site column
definitions is using WSS Features. A Feature can be used to define the site column template and upon
Feature activation, the site column definition is created and added to the site’s site column gallery. As
covered in Chapter 2, the Feature approach is more along the lines of SharePoint development, making it
very easy to package into a WSS solution for deployment across various environments.

The following three sections demonstrate the various techniques to creating site columns. All three
techniques create the same site column, meaning if all three are performed on the same SharePoint site,
errors will likely occur. The goal here is to show the equivalent process/code between the different
approaches. In order to create or modify site columns, the user must have Design access rights to the site.
If the user does not have the necessary rights within a child site that utilizes the site column, the update
action does not succeed.

Creating Site Columns via the Browser Interface
Open a browser and navigate to a Publishing site. Select Site Actions = Site Settings = Modify All Site
Settings and then select Site Columns under the Galleries column on the Site Settings page. On the
Site Column Gallery page, select Create and use the following information to create a new site column:
Q Name and Type — Column name — Press Release ByLine
Q Name and Type — The type of information in this column is — Single line of text
Q Group — New Group: WROX
That is all there is to creating a new site column using the browser! While incredibly simple and fast, this
site column definition now only resides within the SharePoint content database. Create another site
column that will store the body of the press release in a rich text field using the following values:
QO Name and Type — Column name — Press Release Body

Q Name and Type — The type of information in this column is — Full HTML content with
formatting and constraints for publishing

QO Group — Existing Group: WROX

Q Require that this column contains information — Yes

Working Around _x0020_ in the Site Column Name

When creating a site column via the browser, the only name that can be specified is the display name.
Recall that SharePoint takes this name and uses it not only for the display name, but also for the internal
name; and if the name provided contains spaces, the spaces are converted to the hex value of $20. The
way to avoid this is to first create the site column using the name with no spaces. Once the site column is

91

Chapter 6: Site Columns, Content Types, and Lists

created, go back in and update the definition via the browser and change the name to include spaces.
This is effective because the internal name is never changed once the site column definition is created.

Creating Site Columns via Code

Creating the site column via code involves using the Microsoft.SharePoint.SPField and
Microsoft.SharePoint.SPFieldCollection classes (site columns are referred to as fields within the
SharePoint API). Each SharePoint site (SPWeb) contains a Fields property containing all site column
definitions in the site’s site column gallery. To add a site column definition to a site, use one of three
overloads of the Add () method, the two most common of which are as follows:

QO sSpPFieldCollection.Add(SPField siteColumnDefinition) — Adds an existing or
previously created site column to the site’s site column gallery.

a SPFieldCollection.Add(string siteColumnDisplayName, SPFieldType fieldType,
Boolean required) — Creates a new site column using the provided display name, field type,
and a flag indicating whether the site column is required or not.

Both overloads return a string value of the site column’s display name. Similar to creating a site column
using the browser interface, if any spaces are present in the display name when created, SharePoint will
replace them with the _x0020_ string. To avoid this, use a similar technique to the one just described:
Create the site column with a name containing no spaces and then immediately obtain a reference to it
and change the display name, as shown in Listing 6-1.

Listing 6-1: Creating site columns via code

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter06 {
class Program {
static void Main (string[] args) {

using (SPSite siteCollection = new SPSite("http://wcm")) {
using (SPWeb site = siteCollection.RootWeb) {
// create field using desired internal name (no spaces)
string prByLineFieldName = site.Fields.Add("PRByLine",
SPFieldType.Text, false);
site.Update() ;

// get reference to new site column
SPField prByLineField = site.Fields[prByLineFieldNanme] ;

// set display name & group
prByLineField.Title = "Press Release ByLine";
prByLineField.Group = "WROX";
prByLineField.Update () ;

92

Chapter 6: Site Columns, Content Types, and Lists

While providing additional flexibility and control in creating site columns over the browser, the site
column created in Listing 6-1 still lives only in the SharePoint content database.

Creating Site Column Definitions via Features

The only way to provide the most flexibility in terms of control over the settings of the site column
definition, promoting the easiest reuse, and portability to different environments is to use WSS Features.
The CAML in Listing 6-2 reflects the element manifest that defines two site columns within a Feature.
When the Feature that references this element manifest is activated, it is added to the SharePoint site.

Listing 6-2: Feature element manifest defining two site columns

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<Field SourceID="http://schemas.microsoft.com/sharepoint/3.0"
ID="{D8BCA662-8D3F-40B3-993D-408FF04FE264}"
Name="PRByLine"
DisplayName="Press Release ByLine"
Group="WROX"
Type="Text"
Required="FALSE"
ReadOnly="FALSE"
Sealed="FALSE"
Hidden="FALSE" />
<Field SourceID="http://schemas.microsoft.com/sharepoint/3.0"

ID="{249C1FED-EE2B-481A-89E0-A9041A359252}"
Name="PRBody"
DisplayName="Press Release Body"
Group="WROX"
Type="HTML"
Required="TRUE"
Sealed="FALSE"
ReadOnly="FALSE"
Hidden="FALSE" />

</Elements>

The site columns created in this listing are the same site columns created using the browser interface and
custom code. Notice that some additional attributes are specified. Many of these can be set in the
browser interface or custom code, as well as with a Feature. First, the Name (internal name) and
DisplayName attributes are used to explicitly set these two values. Using each property gives developers
full control without having to address the _x0020_ string in the internal name.

Two other attributes should stand out: Readonly and Sealed. A read-only site column is one that
cannot be updated through the browser user interface, but it can be altered programmatically. A sealed
site column is one that cannot be changed through the browser interface or programmatically; the only
way to change a sealed site column is by changing the CAML in the Feature.

93

Chapter 6: Site Columns, Content Types, and Lists

C

94

Trick: Generating Site Column Element Manifest Files for Features

Although creating site column definitions using Features provides the most flexibility,
reuse, and portability, the challenge is that it takes longer to create Features. This is
primarily so because of the lack of a “Feature designer”; all CAML must be written by
hand. The browser approach of creating site columns has a leg up on the Feature
approach because it is so much simpler. Thankfully, virtually everything in SharePoint
is accessible via the SharePoint API. This enables developers to write custom code
obtaining references to SharePoint objects — including site columns! Therefore, the
SharePoint browser interface can serve as the “designer” tool for creating site columns
in an isolated development environment; and with some custom code, the XML
necessary for element manifest files can be generated.

A sample project, AC’'s WCM Custom Commands for STSADM.EXE

(www . andrewconnell .com/go/214), includes a custom STSADM. EXE command:
GenSiteColumnsxml. After providing a few required and optional parameters, this
command generates an element manifest file containing the CAML representation of
site columns in the specified SharePoint site. The command does not produce the exact
CAML that would be used to create the site column, but it comes close. It follows the
80-20 rule whereby 80% of the work is automated, leaving 20% for developer
involvement.

ontent Types

Content types were introduced to the SharePoint platform in WSS 3.0. In previous versions of
SharePoint, each list schema was defined either in a template or on-the-fly. A limitation of this approach
is that lists could only contain a specific type of information, which was always tightly coupled with a
specific list. Microsoft added the concept of content types in WSS 3.0 to define the underlying schema,
business rules, and other metadata on a particular type of information while not explicitly tying it to a
specific list. Now a site owner can add multiple types of content to a list by adding content types to the
list. This means that now heterogeneous data can be added to the same list. For example, a list named
Proposals can now contain both Marketing Proposals and Sales Proposals, each having a unique schema
and metadata associated with it.

One very important thing to keep in mind about content types is that by themselves, they store no

data. In addition, content types are not defined within the scope of a SharePoint list. Instead, they

define the structure of data. It is only when a content type is added to a list that data can conform to the
content type. This separation of defining the schema of data from its storage facilitates more content
standardization across SharePoint sites. Like site columns, content types are scoped at the SharePoint site
level (spieb) and reside in a special gallery called the Site Content Type gallery.

For more information on content types, refer to the official documentation on MSDN
(www . andrewconnell.com/go/215).

All content types must inherit from another content type. The lone exception to this rule is the root
content type provided by Microsoft called System. The System content type is hidden from the SharePoint
browser user interface and is not available when selecting a content type to inherit from when creating a
new content type. It is recommended that content types be created to inherit not from System directly,
but from Item, which inherits from System. All provided content types ultimately inherit from Item.

Chapter 6: Site Columns, Content Types, and Lists

Developers can define various aspects of a content type. The most common things defined in a content
type are site columns, but developers can also define things such as workflows, event receivers, policies,
and even the document templates that should be loaded when a new item is created based on the
content type. The document template is a URL pointing to a specific file on the server. This file can be in
the format of a Microsoft Word template (as in the case of a marketing proposal) or a Web page (as in the
case of the Page content type, which points to the Create Page page, /_layouts/CreatePage.aspx.

Content Type IDs

Unlike site columns, content types only have one form of identification. A content type ID uniquely
identifies a content type within a site collection, as well as the lineage of that content type. Thankfully,
SharePoint handles the creation of content type IDs when creating content types using the browser
interface or with custom code. However, developers explicitly specify the content type ID when creating
content types via Features. It is beneficial for developers to understand how content type IDs are
structured in order to track the inheritance. By examining a content type’s ID, one can determine the
parent content type, its parent content type, and so on, going all the way back to the System content
type. Content type IDs follow one of two conventions:

Q [parent_content_type_ID] + [2-digit hex value not being “00]
Q [parent_content_type_ID] + 00 + [GUID with no curly brackets or hyphens]
Why two conventions? Simply put, it provides more flexibility. Content type IDs are limited to a length

of 1024 characters. The capability to include GUIDs in content type IDs provides the greatest flexibility,
as it minimizes the chances for content type ID collision.

Consider the Page content type created by the activation of the Publishing Features — specifically, the
Feature PublishingResources. Page layouts (used to create content/publishing pages) must use
content types that inherit from the Page content type, and they can easily be used to demonstrate how
the lineage is represented by the content type ID.

Figure 6-1 shows how the Page content type inherits from System Page (another content type created
by the PublishingResources Feature), then Document, Item, and ultimately System. Each content
type in the hierarchy has a specific purpose. For instance, the System Page content type defines the core
site columns required on all publishing pages, such as scheduling and content owner information; and
the Page content type defines the document template that should be loaded when a new item is created
based on this template.

0x010100C568DB52D9D0A14D9B2FDCCI6666E9F2007948130EC3DB064584E219954237AF39
\\‘ Document System Page Page

Iltem

System

Figure 6-1

95

Chapter 6: Site Columns, Content Types, and Lists

When should a custom content type use the two-digit hex value or GUID convention? Microsoft’s
recommendation is to use the GUID convention when creating a new content type that is based on a
provided content type — provided by either Microsoft or a third party. Therefore, when creating custom
content types for Publishing sites, it is recommended to start with the Page content type ID (to inherit
from Page) and use the GUID convention to create something unique to the specific project. Then, all
subsequent content types can use the two-digit hex convention. In effect, this creates a unique
namespace for all content types for a particular project.

The following three content type IDs demonstrate this approach for a given project. Note that the Page
content type is omitted for readability, the underlined portion represents the project uniqueness (or
namespace), and the bold portion is the uniqueness for each content type:

a Press Release — [Page content type ID]00242457EFB8B24247815D688C526CD44D01

0 Executive Biography — [Page content type ID]00242457EFB8B24247815D688
C526CD44D02

Q Product Detail — [Page content type ID]00242457EFB8B24247815D688C526CD44D03

Creating Content Types

SharePoint provides the same three options for creating content type definitions that are available to
create site columns. Just like site columns, the first two options (via the browser or custom code) store
the content type definitions in the SharePoint site’s content database, whereas the third option (via
Features) keeps the content type definition on the file system until the Feature is activated, thereby
offering the greatest reuse and portability. The following sections walk through the process of creating
content type definitions using each of the three options. Similar to site columns, the user must have
Design rights in order to create and manage site columns. All three options that follow create the same
content type, so testing all three on the same site collection could result in an error. This makes it easier
to see the differences between the various options.

Creating Content Types via the Browser Interface

96

Open a browser, navigate to a Publishing site’s Site Settings page and select Site Content Type Gallery
under the Galleries column. Then, from the Site Content Type Gallery page, select Create and use the
following information to create a new content type:

0O Name — Press Release

Q Select parent content type from — Publishing Content Types

O Parent Content Type — Page

0 Group — New Group: WROX
With a content type created, the next step is to add the site columns to the content type. To do this, from
the Site Content Type: Press Release page, select Add From Existing Site Columns at the bottom of the

page to select the site columns created previously in this chapter. On the Add Columns to Site Content
Type: Press Release page, select the two fields from the WROX group named Press Release ByLine and

Chapter 6: Site Columns, Content Types, and Lists

Press Release Body. These two columns should now appear in the list of the columns inherited from the
Page content type (specifically, the System Page content type), as well as the two columns just added (see
Figure 6-2).

Figure 6-2

At this point, the content type can now be used in association with a page layout to create new
publishing pages. This content type is used in Chapter 7 to create new page layouts.

Creating Content Types via Code

Creating content types with custom code involves the use of the Microsoft.SharePoint
.SPContentType and Microsoft.SharePoint.SPContentTypeCollection classes. Just like site
columns, each SharePoint site (SPWeb) contains a ContentTypes property containing all content type
definitions in the site’s content type gallery. To create a new site column in code, first obtain a reference
to the content type it inherits from, create the content type, add any desired site columns, and then add
the content type to the site’s ContentType collection, as shown in Listing 6-3.

Listing 6-3: Creating content types via code with site columns

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter06 {
class Program {
static void Main (string[] args) {
using (SPSite siteCollection = new SPSite("http://wcm")) {
using (SPWeb site = siteCollection.RootWeb) {
// get reference to "Page" content type this will inherit from
SPContentType pageContentType = site.AvailableContentTypes|["Page"];

// create new content type

(continued)

97

Chapter 6: Site Columns, Content Types, and Lists

Listing 6-3 (continued)

SPContentType prContentType = new SPContentType (pageContentType,

site.ContentTypes, "Press Release");
prContentType.Group = "WROX";

// add content type to the site
site.ContentTypes.Add (prContentType) ;
site.Update() ;

// add site columns to content type

SPField prByLineField = site.AvailableFields["Press Release ByLine"];
prContentType.FieldLinks.Add (new SPFieldLink (prByLineField)) ;

SPField prBodyField = site.AvailableFields|["Press Release Body"];
prContentType.FieldLinks.Add (new SPFieldLink (prBodyField)) ;

prContentType.Update () ;

As the code in Listing 6-3 demonstrates, to add site columns to a content type they must be added as
links, or references. This is done by obtaining a reference to an existing site column (SpField) and
adding it as a new link (SPFieldLink) to the content type. Unlike lists, columns cannot be created
within a content type on-the-fly — they must exist in the site column gallery and be referenced from a

content type.

Creating Content Type Definitions via Features
Yet again, for the most flexibility and portability, create site elements such as content types with Features.
Listing 6-4 shows the CAML in an element manifest in a Feature that, when activated, creates a new
content type definition in a site that inherits from the Page content type. Notice that the content type ID
inherits from the Page content type ID.

Listing 6-4: Feature element manifest defining a content type with two site columns

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<ContentType ID="0x010100C568DB52D9D0A14DIB2FDCCI96666E9F2007948130EC3DB064584E219
954237AF3900242457EFB8B24247815D688C526CD44D01"
Name="Press Release"
Group="WROX">
<FieldRefs>
<FieldRef ID="{D8BCA662-8D3F-40B3-993D-408FF04FE264}"
Name="PRByLine" DisplayName="Press Release ByLine" />
<FieldRef ID="{249C1FED-EE2B-481A-89E0-A9041A359252}"
Name="PRBody" DisplayName="Press Release Body" />
</FieldRefs>
</ContentType>
</Elements>

98

Chapter 6: Site Columns, Content Types, and Lists

Note two things from the CAML in Listing 6-4. First, when referencing a site column, both the site
column’s ID and Name (internal name) must be specified. Second, the content type can implement the

site column using a different Display Name than that which is specified in the site column definition. In
the case of Listing 6-4, the DisplayName attribute is not changed from the site column’s original definition.
This is where the Display Name can be overridden in the content type implementation of the site column.

Trick: Generating Content Type Element Manifest Files for Features

Similar to site columns, content types are also challenging to create using Features due
to the amount of manual CAML coding required in element manifest files. However,
like site columns, developers can use the browser interface as a designer for creating
content types and then leverage the SharePoint API to generate the necessary CAML
for use in Features. The same sample project mentioned previously in this chapter,
AC’s WCM Custom Commands for STSADM.EXE (www . andrewconnell . com/
go/214), contains a custom command for generating the CAML for content types:
GenSiteContentTypesXml. After providing a few required and optional parameters,
this command generates an element manifest file containing the CAML representation
of content types in the specified SharePoint site. It too follows the 80-20 rule that the
previous command abides by.

Role of Site Columns and Content Types
in Publishing Sites

While the title of this section might imply that site columns and content types have a special role or are
used in some special way in Publishing sites (compared to standard WSS 3.0 sites), that is not the case. It
is actually how content types are leveraged within a Publishing site — specifically, content pages — that
warrants a bit of explanation.

When a content owner creates a new page, one of the first things selected is the page layout (see
Figure 6-3). Selecting a page layout implicitly selects a content type as well: the content type the page
layout is associated with. In this pairing, the content type is defining the schema, or the data elements,
comprising the particular type of page. These data elements, or fields, are defined in the content type
using site columns. The page layout serves the role of defining the rendering (when combined with the
site’s selected master page).

Figure 6-3
929

Chapter 6: Site Columns, Content Types, and Lists

With content types defining the schema of the page, not only can developers specify the site columns
(also known as data elements) for a type of a page, everything else content types bring to the table can also
be leveraged. For instance, special workflows or event receivers can be associated with types of content,
not just the list the content resides within. This capability provides developers with the most control over
a site’s content.

Lists

The lowest level of a storage construct in SharePoint is a list. SharePoint lists are similar to database
tables in many ways. In terms of the structure, lists have fields (columns) and items (records) just like
databases. Database tables have triggers, events that fire under certain circumstances, such as when
records are added, updated, or deleted. SharePoint lists also have triggers, known as events, that enable
developers to write event handlers to execute custom code under certain circumstances. This analogy to
a database table should be taken very loosely though, as there are some significant differences. For
instance, database tables are optimized for multiple (and rapid) read /write operations, as well as to hold
vast amounts of data, unlike SharePoint lists.

SharePoint lists also contain some additional capabilities. All SharePoint lists are capable of delivering
their contents in the form of Really Simple Syndication (RSS), making it very easy to consume and
present data stored within lists in other applications. Administrators can also associate pre-defined
workflow templates with a list, as well as set unique permissions on the list, breaking the inheritance of
permissions from the site in which the list resides.

Lists also have versioning capabilities. SharePoint lists can be configured to create a new version when
an item is updated, optionally limiting how many versions can be retained. Document libraries, a type of
SharePoint list, have enhanced versioning capabilities that enable administrators to configure not only
whether the list allows versioning, but also the numbering scheme used. Administrators can elect to
create only major versions or create major.minor versions. The minor versions are referred to as draft
revisions. For instance, version 1.2 of a document means there is a published version (v1.#) of the
document, but an updated draft version that is on the second revision (v#.2). When the document is
published, the version is promoted to the next major version — 2.0.0 in this case.

All SharePoint sites contain at least a few core lists. Lists such as the Master Page Gallery, Web

Part Gallery, User Information List, Site Template Gallery, and List Template Gallery are found in every
single SharePoint site. These lists are created using the Global site definition that applies to all new
SharePoint sites.

Special Publishing Lists

In addition to all the stock lists that every SharePoint site contains, Publishing sites create a few
additional lists when the Publishing Features are activated. Some of these are special lists that reside
only in the top-level site of the Publishing site collection, whereas others are found in every site that has
the Publishing Feature activated.

Content and Structure Reports

The Content and Structure Reports list resides in the top-level site of the site collection. This list contains
pre-defined CAML queries with a user-friendly name that content owners and administrators can use to

100

Chapter 6: Site Columns, Content Types, and Lists

find content meeting specific criteria. For instance, content owners can quickly see a list of all the content
pages within a site that are checked out to them or those pages that are pending approval. Other reports
might include lists of all the pages that are going live within the next seven days, as well as those which
are expiring within seven days.

The reports contained in this list are available from the Site Actions menu for quick reference. Site
administrators and developers can create additional reports and store them in this list for future use.

Images and Documents (and Site Collection Documents and Images)

The Images and Documents libraries are created in every site for which the Publishing Features have
been activated. Content owners can manage the contents of these libraries, storing images used
throughout a site, as well as documents and media files such as Window Media files, Flash movies, and
ZIPs. When authoring a page, a content owner can select items from the Images and Documents libraries
within the same site where the page is being created; content owners cannot select items from the Images
and Documents in other sites, including parent sites.

While the restriction of only being able to select items from the same Images and Documents library is
helpful in many cases, sometimes sites need some content in the form of images, documents, or media to
be available across the entire site collection. To address this, the Publishing Features create two special
galleries in the top-level site of the Publishing site collection: Site Collection Images and Site Collection
Documents. Not only do content owners have access to the Images and Documents galleries within the
site where the page is being created, they can also select items from the two special site collection
galleries. These galleries are the ideal places to put things such as a company logo or a privacy policy.

Pages

The Pages list is created in every site where the Publishing Features have been activated. All content
pages created by content owners are stored in each site’s Pages list. Each content page, or list item, stored
in the Pages list contains the data elements for each page, the title of the page, the file name of the page
that appears in the URL, and the page layout selected to render the page.

Reusable Content

The Reusable Content list contains HTML or text content that can be added to content pages by content
owners. This capability facilitates content reuse across a site, minimizing duplication. Content reuse
enables site administrators to ensure that aspects of the site such as the company name, product name,
or employee names are consistent across the site. When a new reusable content item is created, the
creator has the option to automatically update the content in all pages where it is used. If this is selected,
when the content is added to a page by an author, a read-only reference is added. Otherwise, if the item
is not set to automatically update, the content is copied to the page, where it can then be updated. This
list can be found in the top-level site of the site collection.

Style Library

The Style Library list resides in the top-level site of the site collection and contains images, style sheets,
and XSL styles used throughout the site. Developers and designers should add files to this library that
are used either in the branding of a site, such as CSS files and images used in the chrome of the look and
feel, and XSL files that are used with the three Publishing Web Parts (covered in Chapter 11).

101

Chapter 6: Site Columns, Content Types, and Lists

Creating Lists

While SharePoint creates many lists automatically for every SharePoint site (as well as some special ones
depending on the type of site created, as in the case of a Publishing site), it also enables lists to be created
by administrators, developers, and end users — granted they have the necessary rights to do so
(specifically, Manage Lists). As with site columns, content types, and many other things within
SharePoint, there are various ways to create a list within a SharePoint site. Again, just like site columns
and content types, the way the list is created dictates how portable and reusable it is. The three options
for creating SharePoint lists are using the browser, creating it through custom code, or using SharePoint
Features to define the list schema and template, and optionally create an instance based on the template.

Creating Lists via the Browser Interface

To create a new list using the browser, navigate to a site and select Site Actions => Create or select Site
Actions = Site Settings and from the Site Settings page select Site Libraries and Lists = Create New
Content. The Create page contains a list of the various types of lists and libraries that can be created. The
items on the Create page are lists and library templates previously defined. If none of the provided lists
suit a project’s needs, select the Custom List link in the Custom Lists column to create a minimal list with
only a single column.

Next, on the New page, enter a title and optional description of the list and specify whether it should
appear in the Quick Launch menu (left-hand navigation) and click Create. With the list created, the next
step is to add some columns to it. With the list loaded in the browser, select Settings = List Settings to get
to the list customization page. On the Customization [list name] page, note that the minimal columns
have been added and some links are provided to add columns to the list. Adding columns to a list is
similar to adding site columns to a content type.

By default, the Custom List template is not set to allow content types to be managed. To enable the list
for content types, select Advanced Settings on the list’s customization page and toggle the Content Types
option at the top of the page.

Once a list has been created, it can be saved as a template for use in creating additional lists or to
move the list template from one site to another in the same or different environments. This is done by
selecting the Save List As Template option on the list customization page.

Creating Lists via Code

Creating a list via code involves using the Microsoft.SharePoint.SPList and
Microsoft.SharePoint.SPListTemplate classes. Lists are created within the context of a SharePoint
site. Therefore, the first step is to obtain a reference to a SharePoint site. Just like creating lists via the
browser, an existing list template must first be selected. Therefore, the next step is to obtain a reference to
an existing list template. Finally, create a new list using the SPListCollection.2dd () method, which
creates the list and returns the unique ID of the list. This unique ID, a GUID, can be used to obtain a
reference to the list.

With the list created, developers can then customize it using the provided properties, as well as
add columns to it. Columns can be added as list columns or as site columns. To add site columns,
obtain a reference to an existing column in the site column gallery for the site and pass it in when
creating the column.

102

Chapter 6: Site Columns, Content Types, and Lists

The following code in Listing 6-5 demonstrates how to create a list programmatically, add it to the site’s
Quick Launch navigation, and add a few columns to it.

Listing 6-5: Creating lists programmatically with custom code

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter06 {
class Program {
static void Main (string[] args) {
using (SPSite siteCollection = new SPSite("http://wcm")) {
using (SPWeb site = siteCollection.RootWeb) {
// get reference to the 'Custom Lists' template
SPListTemplate customListTemplate = site.ListTemplates["Custom List"];

// create a new list & retrieve a reference to that list

Guid wroxListID = site.Lists.Add("WROX Publications", "List of SharePoint
books by WROX", customListTemplate);

SPList wroxList = site.Lists[wroxListID];

// set list to appear in left-hand navigation
wroxList.OnQuickLaunch = true;

// add a few columns

wroxList.Fields.Add("ISBN", SPFieldType.Text, true);
wroxList.Fields.Add ("Authors", SPFieldType.Text, true);
wroxList.Fields.Add("BookURL", SPFieldType.URL, true);
wroxList.Update() ;

site.Upda te();

Creating List Templates and Instances via Features

Notice that when creating a list using either the SharePoint browser interface or with custom code, one
of the required first steps is to specify the template on which the list is based. How are these templates
defined? As covered earlier in the discussion on creating lists using the browser interface, once a list is
created it can be saved as a template. This template file is saved in the List Templates gallery and can be
exported for use in other SharePoint sites. However, the template cannot be easily customized because
it is packaged up into a SharePoint template file (* . STP), which is just a * . CaB file with a special
extension. The contents of this file, manifest.xml, contains all the details for the template. Editing this
file is quite challenging, however, and not a trivial task.

Another way to create list templates and instances is using a list schema: a sizeable CAML file defining the
structure of a list. List schemas can be deployed using site definitions, as performed in WSS 2.0, but this is
no longer recommended. The problem with this approach is that a list schema can only be added to a site
upon site provisioning. Instead, the new and recommended way is to register the schema with a site and
optionally create an instance of the list using Features. The Feature schema contains two site elements for

103

Chapter 6: Site Columns, Content Types, and Lists

use in element manifest files to create templates and instances based on templates: <ListTemplate />
and <ListInstance />.

The core piece of a list template is the list schema file: schema . xm1. This file resides within a subfolder
in the Feature that makes the site aware of the list template. The schema . xml file contains all the
information needed to define the characteristics of the list. At the root of the file is the <List />
element, which specifies the information about the list (see Listing 6-6).

Listing 6-6: List definition file — schema.xml

<?xml version="1.0" encoding="utf-8"7?>
<List xmlns:ows="Microsoft SharePoint"
xmlns="http://schemas.microsoft.com/sharepoint/"
Name="WroxPublications"
Title="WroxPublications"
BaseType="0"
Direction="LTR"
Url="Lists/WroxPublications">
<MetaData>
<ContentTypes />
<Fields />
<Views />
<Forms />
</MetaData>
</List>

In addition to basic information about the list contained in the schema.xm1 file, notice the <MetaData/>
section in Listing 6-6. Within this section, developers can specify content types automatically bound to
the list, all the fields within the list (including those defined in bound content types), all list views, and
finally the new, edit, and display forms to be used for the list.

Unfortunately, not all CAML markup is included in the code samples for creating list templates. This
is because list templates require a significant amount of CAML markup to define list views — so
much CAML that due to space constraints and readability, not all markup is included in this book.
The complete solution for creating the list template and instance by using Features is included. For
additional information on the list schema file, refer to the official documentation on MSDN

(www . andrewconnell.com/go/216).

With the list schema created, the next thing to create is the <ListTemplate /> element within the
Feature that, when activated, makes the SharePoint site aware of the new list template definition
(see Listing 6-7).

Listing 6-7: Element manifest for WroxPublications list template

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<ListTemplate Name="WroxPublications"
Type="10010"
BaseType="0"
DisplayName="WROX Publication List"
SecurityBits="11"

104

Chapter 6: Site Columns, Content Types, and Lists

VersioningEnabled="False"

Sequence="100"

Hidden="False"

Image="/_layouts/images/itcontct.gif" />
</Elements>

A few attributes in the <ListTemplate /> Listing 6-7 warrant some explanation:

Q Name — This is the unique name of the list template within the Feature. The value in this
attribute must match the name of the folder within the Feature containing the schema . xml
file. Upon Feature activation, SharePoint looks in this folder within the Feature for the list
schema file.

Q Type — The list type is a unique ID of the list template that can be used by this Feature, or by
other Features, to create list instances based on the template. It is recommended that you pick a
number greater than 10,000, as the first 10,000 IDs are reserved for Microsoft’s current and
future use.

Q BaseType — The value here points to the ID of an underlying list template on which the list is
based. In the case of Listing 6-7, the WroxPublications list template is based on the Custom List
(Type=0) template, which is the most bare-bones list template available and a great one to start
with for custom list templates.

Now that the SharePoint site is aware of the list schema thanks to the <ListTemplate /> node, the last
thing to add to the Feature is a <ListInstance /> site element, which creates an instance of the list
based on the specified template upon Feature activation. Like the <ListTemplate /> site element, add
the CAML shown in Listing 6-8 to an element manifest in the Feature.

Listing 6-8: Element manifest to create a list instance

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<ListInstance TemplateType="10010"
Id="WroxPublicationsList"
Title="Wrox Publications"
Url="Lists/WroxPublications"
OnQuickLaunch="True">
<Data>
<Rows>
<Row>
<Field Name="Title">Real World SharePoint 2007: Indispensable Experiences
From 16 MOSS and WSS MVPs</Field>
<Field Name="ISBN">978-0-470-16835-6</Field>
<Field Name="Authors">[... omitted for brevity ...]</Field>
<Field Name="BookURL">http://www.wrox.com/WileyCDA/WroxTitle/productCd-
0470168358 .html</Field>
</Row>
</Rows>
</Data>
</ListInstance>
</Elements>

105

Chapter 6: Site Columns, Content Types, and Lists

Notice the TemplateType attribute in the <ListInstance /> in Listing 6-8. This is the ID of the list
template defined in the <ListTemplate /> site element. In addition to creating instances of lists with
Features, the <ListInstance /> site element can also define the default data to load into a list using
the <Data /> node, as demonstrated in this listing.

Accessing Lists via the SharePoint API

One of the most common things SharePoint developers have to do is interact with lists programmatically
when writing custom code, as virtually all SharePoint data lives within SharePoint lists. There are
typically two ways to retrieve data from a SharePoint list programmatically: directly accessing the list or
issuing a query against the list. The samples in this section are written to work with the
WroxPublications list created in the previous section.

The first option, accessing a list directly, requires use of the SPList object. First a reference to the site
containing the list must be obtained and then a reference to the list itself. From there, list items can be
retrieved, created, or deleted. Keep in mind that any changes must be committed using the

Update () method, as shown in Listing 6-9.

Listing 6-9: Directly accessing SharePoint lists

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter06 {
class Program ({
static void Main (string[] args) {
using (SPSite siteCollection = new SPSite("http://wcm")) {
using (SPWeb site = siteCollection.RootWeb) {

// get reference to the list
SPList spWroxBooks = site.Lists["Wrox Publications"];

// add item

SPListItem newItem = spWroxBooks.Items.Add();

newltem["Title"] = "Professional SharePoint 2007 Web Content Management
Development";

newItem["Authors"] = "Andrew Connell";

newlItem["ISBN"] = "978-0-470-22475-5";

newItem["BookURL"] = "http://www.wrox.com/WileyCDA/WroxTitle/productCd-

0470224754 .html";
newlItem.Update () ;

// show all contents in the list

foreach (SPListItem item in spWroxBooks.Items) {
Console.Out.WriteLine(item.Title) ;
Console.Out.WriteLine(item["ISBN"].ToString());
Console.Out.WriteLine (Environment .NewLine) ;

}

Console.ReadLine() ;

106

Chapter 6: Site Columns, Content Types, and Lists

Notice the code in Listing 6-9 where the fields in specific list items are accessed. The name used is the
internal name. This is where the pains of the _x0020_ issue come into play, as this is the point where it
would need to be included when referencing a field.

The second way to retrieve data from a list is by issuing a query. The SharePoint API offers many
different options to query SharePoint lists. One way is using the Microsoft.SharePoint.SPQuery
object and retrieving a collection of matching Microsoft.SharePoint.SPListItem objects. The
SPQuery object enables developers to specify a CAML query and the maximum number of items to be
returned from the query, as shown in Listing 6-10.

Listing 6-10: Querying SharePoint lists

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter06 {
class Program {
static void Main (string[] args) {
using (SPSite siteCollection = new SPSite("http://wcm")) {
using (SPWeb site = siteCollection.RootWeb) {
// get reference to the list
SPList spWroxBooks = site.Lists["Wrox Publications"];

// create query

SPQuery query = new SPQuery();

query.Query = "<Where><Eg><FieldRef Name='ISBN'/><Value Type='Text'>978-
0-470-16835-6</Value></Eg></Where>";

query.RowLimit = 2;

// get and display results

SPListItemCollection results = spWroxBooks.GetItems (query) ;

foreach (SPListItem item in results) {
Console.Out.WriteLine(item.Title);
Console.Out.WriteLine (item["ISBN"].ToString()) ;
Console.Out.WriteLine (Environment .NewLine) ;

}

Console.ReadLine() ;

Summary

This chapter has covered the core components within any SharePoint site: site columns, content types,
and lists. Lists are the lowest-level storage construct within any SharePoint site, just as tables are in
databases. Lists are primarily composed of columns but they can have additional characteristics such as
custom workflows, event receivers, configurable versioning schemes, and policies. One of the challenges
associated with lists in WSS 2.0 was that lists typically could only contain one type of data. This is

107

Chapter 6: Site Columns, Content Types, and Lists

because the schema of a list was not very flexible or portable. To address this, Microsoft introduced
content types in WSS 3.0, which separate the schema of a type of information from the list. This enables
administrators and developers to define a type of data, including some business rules and a process
wrapped around it, that can then be associated with multiple lists.

All three of these different site elements (site columns, content types, and lists) can be created in various

ways, such as using the SharePoint browser interface, using custom code, and using Features. In all three
instances, however, Features provide the most code reuse and portability to implement the site elements

in different environments.

108

Master Pages and
Page Layouts

One of the biggest improvements to Windows SharePoint Services (WSS) 3.0 from the previous
version of SharePoint is the adoption and utilization of ASP.NET 2.0 master pages. In

previous versions of SharePoint, the look and feel customization of a site involved editing
numerous files — depending upon the level of customization, that could involve hundreds of
files! Thankfully, SharePoint’s adoption of master pages dramatically reduces the number of files
involved in customizing or branding a SharePoint site.

In addition to master pages, Microsoft had to come up with an easy way for content owners to
choose among different page types and renderings without developer involvement. In effect, the
content owner needed the capability to pick a template and fill in the content using a familiar

Web interface. To achieve this, Publishing sites leverage page layouts, which act as templates.
Developers and designers create page layouts that define where the editable regions of a page are
placed, as well as the overall rendering of the page. Content owners then choose from the available
page layouts when creating new pages.

This chapter covers the relationship of master pages and page layouts within Microsoft Office
SharePoint Server (MOSS) 2007 Publishing sites. It also takes a look at a new capability in WSS 3.0
that enables developers to easily add or remove components to and from pre-defined areas within
SharePoint sites.

Page Rendering Process Overview

Before jumping into master pages and page layouts, developers should understand how pages
are constructed within a Publishing site, as it is a bit different from a typical SharePoint site. All
content pages within a Publishing site are stored within a special list called Pages. This is the
reason why the URL of Publishing sites always has /Pages near the end, just before the name of
the requested page or file.

Chapter 7: Master Pages and Page Layouts

When a request is received for a URL within a Publishing site, SharePoint immediately goes to the list
item of the requested Pages list. This list item contains some critical information related to the
construction of the page:

QO Page Layout — URL of the page layout associated with this page.

0 Associated Content Type — Content type that defines the schema and business rules for a type
of page.

QO Name — URL name of the page requested (i.e., the default for the default.aspx requested
page).

QO Metadata — Data such as the page title, the description, the scheduling configuration, as well as
contact information for the owner of the page.

QO Content Fields — One or more fields containing content to be displayed on the page.

SharePoint first retrieves the URL of the page layout from the list item in the Pages list. Page layouts
inherit from a specific class, Microsoft.SharePoint.Publishing.PublishingLayoutPage, that
sets the master page for the request. Once SharePoint has retrieved both the page layout and the master
page, the two are merged together. Finally, SharePoint pulls the content from the list item based on the
various field controls defined in the page layout and adds it to the page.

Master Pages in Publishing Sites

Microsoft introduced master pages in ASP.NET 2.0. The concept is quite simple: A master page defines
the general look and feel of a site, including CSS references, navigation, search, and the common top-
branding most Web sites have. Master pages also contain content placeholders, which are sections of the
page that can be replaced at runtime with other content. Developers create content pages that reference a
specific master page, and the only markup these content pages contain are within content placeholders.
The content placeholders in the master page are replaced at runtime with the contents defined within the
content page.

SharePoint utilizes master pages a bit differently than a traditional ASP.NET 2.0 site. In ASP.NET 2.0,
the master page is defined on a page-by-page basis. Instead, site owners and administrators specify the
master page for a specific SharePoint site. All pages within that site are configured to use the master
page specified for the current site. This is done using special master page tokens, which are covered later
in the chapter. This advantage that SharePoint has over ASP.NET 2.0 enables site owners and
administrators to change the master page of a site without touching the files on the file system or
involving a developer.

Another difference between SharePoint’s implementation of master pages and that of ASP.NET 2.0 is that
the master pages in a SharePoint site are stored within a special document library: the Master Page
Gallery. This is different from an ASP.NET 2.0 site where master pages are stored on the file system with
the content pages. The Master Page Gallery is accessible by selecting Master Pages and Page Layouts
under the Galleries section of a Publishing site’s Site Settings page.

Types of Master Pages

Recall from Chapter 2 the discussion about two different types of pages within a SharePoint site: site
pages and application pages. This topic applies to master pages as well and has a significant impact on

110

Chapter 7: Master Pages and Page Layouts

the customization capabilities and limitations for SharePoint developers. As explained previously, unlike
ASP.NET 2.0, content pages do not explicitly specify which master page they implement. Instead, the
master page is set at the site level within a SharePoint site. This section explains how master pages are
stored within a SharePoint site (Microsoft.SharePoint. SPileb) and describes the two different types
of master pages.

MasterUrl and CustomMasterUrl

Similar to ASP.NET 2.0, SharePoint sites are not limited to a single master page per site. A SharePoint
site (Microsoft.SharePoint.SPieb) contains two master page properties: MasterUrl and
CustomMasterUrl. SPWeb. The MasterUrl property is used by all out-of-the-box (OOTB) content pages
within WSS 3.0 and is the property that is set when changing the master page 3.0 using SharePoint
Designer 2007. The sPweb. CustomMasterUrl property is provided as a way for developers to use a
different master page for custom content pages if desired.

Although WSS 3.0 sites do not utilize the SPileb. CustomMasterUrl property, MOSS 2007 Publishing
sites make heavy use of it. All page layouts are automatically configured to use the master page defined
in the SPWeb. CustomMasterUrl property when rendering the site. The master page defined in the
SPWeb.MasterUrl property is still used for standard SharePoint pages such as the list or form pages.

Unlike WSS 3.0 sites, Publishing sites contain a special Master Page Settings page, which is accessible
from the Master Page link on the Site Settings page under the Look and Feel section. From the Site
Master Page Settings page, shown in Figure 7-1, site owners and administrators can select a Site Master
Page (the sPweb. CustomMasterUrl property) and the System Master Page (the Spiieb.MasterUrl
property). The master pages available for selection on this page are stored in the Master Page Gallery.

Figure 7-1
111

Chapter 7: Master Pages and Page Layouts

Site Master Pages Versus the Application Master Page

Aside from the two different master pages that can be specified, there are also two very different
implementations of master pages within every SharePoint site. Recall from Chapter 2 that there are two
different types of pages: site pages and application pages. Site pages support personalization and
customization, can support themes, and contain Web Parts. The two master page properties on the
SPWeb object, MasterUrl and CustomMasterUrl, are site pages, meaning they can be customized on a
site-by-site basis. Application pages are found within http://site/_layouts and do not support
personalization or customization. Site pages are found virtually everywhere else in a SharePoint site,
such as list and form pages and Web Part pages. Site pages do support personalization and
customization.

The difference between site pages and application pages also has an impact on master pages within a
SharePoint site. As Chapter 2 explained, all application pages leverage the same master page, across all
sites on the server. The application pages, which reside within the [..]1\12\TEMPLATE\LAYOUTS folder,
all contain hard-coded references to a specific master page: application.master. Because all
SharePoint sites on a server share the same _layouts virtual directory path, does this mean that

all SharePoint sites on the same server will look identical? Not necessarily. Developers can utilize
SharePoint themes, a collection of CSS and image files, to influence the look and feel of application pages.
Granted, CSS and images can only be taken so far, and sometimes customization of the underlying
master page is the only option. Unfortunately, this is a limitation of application pages.

Are themes the only option for customizing application pages on a site-by-site basis due to the
application.master limitation? No. One of the more common approaches users take is to create a
copy of the [..]\12\TEMPLATE\LAYOUTS folder and change the _layouts virtual directory to point to
the copied folder. That way, changes to application.master affect only a specific Web application and
not all Web applications on a server. This option is not recommended because it has many downsides,
one of which is that the _layouts virtual directory is set at the Web application level, meaning it is not
possible to customize the application pages on a site-by-site or site collection-by-site collection basis: All
site collections and sites within the Web application use the same _layouts virtual directory, and
therefore the same master.

Another very large downside to this approach is that the _layouts folder is no longer in the SharePoint
12 folder structure. This means that any future hotfixes or service packs will not be applied to the copied
folder. In addition, the capability to deploy files using WSS solution packages that contain files to be
deployed to the [..]1\12\TEMPLATE\LAYOUTS folder will not work for the copied folder. In addition,
creating an additional copy of the _layouts folder is not supported by Microsoft.

Dynamically Switching application.master at Runtime

While there is no supported option for creating custom application.master pages
on a site-by-site basis, some alternatives do exist. If creating alternate application
.master pages is critical and necessary, consider creating a custom HTTP module that
dynamically switches the application.master page out at runtime. The advantages
to this approach are twofold: The original [. .]\12\TEMPLATE\LAYOUTS folder is
never moved, copied, or changed, and the HTTP module changes the master page at
runtime from using the OOTB application.master to a custom application
.master. Thus, no changes occur to the files contained in the SharePoint 12 folder.

112

Chapter 7: Master Pages and Page Layouts

An example of dynamically switching the application.master master page

at runtime in application pages using a HTTP module can be obtained from

www . andrewconnell . com/go/217. This sample not only contains an HTTP module
that handles the dynamic switching, but it also creates a browser-based interface that
enables site administrators to set the custom application.master page.

Be aware that this approach is not supported by Microsoft. This means if a SharePoint
customer engages Microsoft’s Customer Support Services (CSS) with a production
issue, CSS will require that SharePoint be set back to a supported state before opening
a case and investigating the issue. The advantage of using an HTTP module is that
returning to a supported state can be quickly achieved by removing the single HTTP
module registration line in the site’s web . config. Therefore, this approach has no
permanent downsides.

Master Page Tokens

As previously mentioned, SharePoint content pages do not contain references to explicit master pages.
Instead, the master page is set at the site level using either the MasterUr1l or the CustomMasterUrl
property. If this is a dynamic reference that SharePoint switches out at runtime, what is stored in the
content pages to tell SharePoint which master page to use? This is made possible using tokens that are
interpreted as instructions by SharePoint at runtime to determine the URL of the master page to use.
There are two types of tokens: dynamic and static.

Dynamic Master Page Tokens

Dynamic tokens are specific strings that tell SharePoint which master page to use — either the master
page referenced in the MasterUr1l property or the CustomMasterUrl property in the SharePoint site
(Microsoft.SharePoint.SPWeb). There are two dynamic master page tokens:

Q ~masterurl/default.master — This token references the Microsoft.SharePoint.SPileb
.MasterUrl property. The entire string is read as the token. All pages within a WSS 3.0 site,
OOTB, are configured to use this token by default. For example, if a content page has the
directive:

<%@ Page MasterPageFile="~masterurl/default.master" %>

SharePoint would switch the token out at runtime with the following, which is the path to the
default master page for an OOTB WSS 3.0 site:

<%@ Page MasterPageFile="_catalogs/masterpage/default.master" %>

Q ~masterurl/custom.master — This token references the Microsoft.SharePoint .SPileb
.CustomMasterUrl property. The entire string is read as the token. By default, no WSS 3.0
pages use this token, but developers are free to do so. However, this is not the case in Publishing
sites, where it is heavily used. The CustomMasterUrl is used by all page layouts to define the
look and feel of content pages.

113

Chapter 7: Master Pages and Page Layouts

Static Master Page Tokens

Static token strings, unlike the dynamic tokens, are not considered tokens; only the first part is considered
a replaceable token. At runtime, SharePoint evaluates the first part of the token and replaces it with the
URL specified, but it will not change the name of the master page. There are two different static tokens:

Q ~sitecollection/default.master

Q ~site/default.master
For example, if a content page had the following directive within the site http://site/subsite
<%@ Page MasterPageFile="~site/wrox.master" %>
SharePoint would switch the "~site" token out at runtime with the following;:

<%@ Page MasterPageFile="/subsite/wrox.master" %>

Master Page Content Placeholders

Before creating master pages, developers need to be familiar with the use of content placeholders in
creating master pages. In traditional ASP.NET 2.0 sites, developers define any number of content
placeholders as desired. The SharePoint default master page contains 32 different content placeholders
used by the content pages throughout SharePoint sites.

For a list of the content placeholders in the WSS 3.0 default master page, refer to the official
documentation on MSDN (www . andrewconnell.com/go/217).

Note that not all of the 32 placeholders are required in all custom master pages. In fact, the
eight provided master pages for Publishing sites only contain 21 of the 32 and one additional
content placeholder. The following table contains all the content placeholders found in the eight
provided Publishing master pages:

OSSConsole PlaceHolderNavSpacer
PlaceHolderAdditionalPageHead PlaceHolderPageDescription
PlaceHolderBodyAreaClass PlaceHolderPageImage
PlaceHolderBodyLeftBorder PlaceHolderPageTitle
PlaceHolderBodyRightMargin PlaceHolderPageTitleInTitleArea
PlaceHolderCalendarNavigator PlaceHolderSearchArea
PlaceHolderLeftActions PlaceHolderTitleAreaClass
PlaceHolderLeftNavBar PlaceHolderTitleAreaSeparator
PlaceHolderLeftNavBarTop PlaceHolderTitleBreadcrumb
PlaceHolderMain PlaceHolderTitleLeftBorder
PlaceHolderMiniConsole PlaceHolderTitleRightMargin

114

Chapter 7: Master Pages and Page Layouts

Some of the content placeholders listed in the preceding table, while included in the eight Publishing
master pages, are never rendered and shown. This is done by placing the content placeholders within an
ASP.NET panel control and setting the visibility to false, as shown in Listing 7-1.

Listing 7-1: Hiding content placeholder rendering

<asp:panel visible="false" runat="server">
<asp:ContentPlaceHolder ID="PlaceHolderPageImage" runat="server" />
<asp:ContentPlaceHolder ID="PlaceHolderBodyLeftBorder" runat="server" />
</asp:panel>

This technique enables site developers and designers to include content placeholders that are included
within content pages, but keep any of the content defined in the content pages from being rendered. This
is a common refactoring technique when implementing a rebranding campaign on a site. It enables
designers to hide content placeholders with one simple action in the master page without going through
all content pages to remove the content placeholder.

Creating Master Pages

Microsoft ships eight additional master pages with MOSS 2007 and provisions them into a new site
when the site is created using the Publishing Portal site template. While these offer various unique
layout and color schemes, the majority of MOSS Web Content Management customers will likely need to
create custom master pages based on certain project requirements. Recall from Chapter 2 the discussion
on customized versus uncustomized pages and SharePoint customization versus development. These
topics are applicable in the context of master pages just as they are with any other type of SharePoint
site. SharePoint master pages can be created in one of two ways: using SharePoint Designer or using
Visual Studio (or some other text editor) and provisioning them into a SharePoint site using Features.

The differences between the two options are quite significant. In Chapter 2 you learned that customized
files are those files whose source lives within the SharePoint site’s content database. This can present a
challenge for a large site, especially one in which the development process follows a structured software
development life cycle that moves files and code through various environments such as testing

and staging. When creating master pages with SharePoint Designer, the page starts as customized and
resides exclusively within the content database; this is referred to as SharePoint customization.

If a project requires more control over the source of the files, as well as adoption within a structured
software development life cycle and integration within a source control management system, developers
can elect to create master pages using more of a template, and uncustomized, approach. To achieve this,
developers create new master pages using a text editor, usually Visual Studio, and deploy using Features
and WSS solution packages.

The next two sections document the two different approaches to creating master pages. A sample master

page is provided in the code download associated with this book. The actual source of the master page is
not important at this point; what is important is the process of creating master pages.

115

Chapter 7: Master Pages and Page Layouts

Creating Master Pages SharePoint Designer 2007

Open SharePoint Designer and an existing Publishing site by selecting File = Open Site. To create a new
master page, select File New. In the New dialog, select the Page tab, then ASP.NET in the first column,
Master Page in the middle column, and finally click OK, as shown in Figure 7-2.

Figure 7-2

SharePoint Designer will create a new blank master page. One approach is to create the master page by
copying an existing master page and customizing it. Another, and easier approach, is to start with what
is commonly referred to as a “minimal master page.” These are master pages that have the absolute bare
minimum content and branding. Most contain the minimal CSS files to support the SharePoint
administration interface such as the Site Actions menu or Page Editing Toolbar. A quick Web search
using your search engine of choice will return numerous hits for some blogger’s favorite minimal
master. For simplicity, a minimal master page named minimal .master is included in the code
download for this book. Open the minimal .master, or any master obtained from a search, in a text
editor other than SharePoint Designer, select all the contents, and paste them into the master created by
SharePoint Designer.

Never Open Master Pages from the File System
Using SharePoint Designer

SharePoint Designer expects that all master pages it opens are contained within

a SharePoint site, which includes additional information in the header. When a master
page is opened from the file system, SharePoint Designer adds some extra code that it
expected to be present. This extra code will cause the master page to throw an error at
runtime in the SharePoint site. This is the source of a very common problem whereby a
developer opens the WSS 3.0 default.master master page, makes no changes, but
clicks Save regardless. The next time anyone browses to the SharePoint farm, nothing
works because SharePoint Designer added extra code that corrupted the master page.

116

Chapter 7: Master Pages and Page Layouts

With the master page now created with the minimal content, save the master page to the Master Page
Gallery by selecting File => Save As and browsing to http://[site]/_catalogs/masterpage.

At this point the master page is still checked out and unpublished. This is usually OK in a limited
development environment, but if the master page was created in an environment that many people have
access to, it is a good idea to check in and publish the page. Otherwise, after configuring the site to

use the new master page, everyone else will receive a runtime error because the page is not published
and thus they don’t have the necessary permissions to see the site. To check in and publish the file, right-
click the master page in the Folder List tool window and select Check In. Then select Publish a Major
Version and click OK. A dialog will appear with the option to view /modify the approval status of the
master page. Click Yes, which opens a new browser window that loads the Master Page Gallery with

the master page at the top of the list. From the ECB menu of the minimal master page, select Approve/
reject, as shown in Figure 7-3.

Figure 7-3

At this point the master page has been created, checked in, published, and approved, and can now be
seen by anyone browsing the site. Configure the site to use the new minimal master page by browsing to
the site and selecting Site Actions = Site Settings = Modify All Site Settings. On the Site Settings page,
select Master Page under the Look and Feel column, then select the filename of the master page just
created for the Site Master Page, and click OK. The Publishing site will now be using the new master
page! Browse to the home page of the site (leaving the http:// [site]/_layouts section) to see the
master page in action.

When selecting the master page from the Site Master Page Settings page, notice that all the master

pages had preview images associated with them, but the custom master page created with SharePoint
Designer had a stock preview image. This is because SharePoint Designer does not have the capability to
associate a preview image with a master page. After a master page has been created using SharePoint
Designer, a preview image can then be associated with it by going to the properties of the master page list
item within the Master Page Gallery and setting the Preview Image property to point to an existing image.

117

Chapter 7: Master Pages and Page Layouts

The master page created using SharePoint Designer resides exclusively within the SharePoint site’s
content database. The next section explains how to create a new master page as a file template living on
the file system and provision it into a SharePoint site using a Feature as an uncustomized page.

Creating Master Pages Using Visual Studio and Features

Although creating master pages using SharePoint Designer is quite straightforward and provides
developers and designers with a friendly WYSIWYG interface, it has its drawbacks. The most significant
downside to creating master pages exclusively in SharePoint Designer is that the pages initially start out
as customized, with no underlying template, meaning they reside exclusively within the database.

The other option is to go with more of the templated approach: Create the master page in a text
editor, create a Feature that contains the master page, and upon activation it provisions the master
pages as uncustomized instances into a SharePoint site, referencing the underlying template file

on the file system. This approach enables developers to package the Feature and master page(s),

as well as associated content, into WSS solution packages for easy deployment to other environments.
This section walks through the process of adding a master page previously created to a Feature for
deployment.

The first step is to create a new project in Visual Studio named Chapter7Pages for the Feature using the
C# Empty Project template, as no code will be compiled in this Feature. Next, as recommended in
Chapter 4, create the folder structure that will contain the Feature Chapter7pPages to mimic the
SharePoint 12 folder structure, as shown in Figure 7-4.

Figure 7-4

A sample master page, used throughout the remainder of the book, is included in the sample code
download for this book. This master page, ACMETmp . master, contains a very simple user interface. In
addition, a preview image named ACMEMasterPreviewTmp.gif is also included in the code download.
It will be used as the preview image for the master page. Add these two files to a folder within the
Chapter7pages Feature folder named MasterPages (refer to Figure 7-4).

Next, create a new Feature definition XML file named feature.xml in the folder Chapter7Pages and
add the CAML shown in Listing 7-2 to it.

118

Chapter 7: Master Pages and Page Layouts

Listing 7-2: Feature definition for the Chapter7Pages Feature

<?xml version="1.0" encoding="utf-8" ?>

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
Id="D56F0D2D-0107-424d-AA0D-7120329A23E6"
Title="Chapter 7 - Provisioning Master Pages and Page Layouts"
Hidden="FALSE"
Scope="Site"
Version="1.0.0.0">

<ElementManifests>
<ElementManifest Location="elements.xml" />
<ElementFile Location="MasterPages\ACMETmp.master" />
<ElementFile Location="MasterPages\ACMEMasterPreviewTmp.gif" />
</ElementManifests>

</Feature>

Note two things about the markup in Listing 7-2. First, the Scope attribute is set to Site (site collection)
because only one Master Page Gallery exists in a site collection. Therefore, this Feature should not be
available at each SharePoint site. Second, the <ElementFile> nodes are used to register the master page
and preview image with the Feature definition. This will save time when packaging the Feature into a
WSS solution package because each file won’t need to be defined within the manifest . xml file.

With the Feature created, now the elements manifest file that will provision the files into SharePoint
needs to be created. Create a new XML file named elements.xml in the Chapter7Pages Feature folder
where the existing feature.xml file is located. The elements file will first provision the preview image
and then the master page with a reference to the preview image. Add the CAML in Listing 7-3 to the
elements.xml file to provision the preview image into the Master Page Gallery.

Listing 7-3: Elements manifest file provisioning a preview image

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<Module Name="Master Page Preview Images"
Url="_catalogs/masterpage/Preview Images/WROX"
Path="MasterPages"
RootWebOnly="TRUE" >
<File Url="ACMEMasterPreviewTmp.gif"
Name="ACMEMasterPreview.gif"
Type="GhostableInLibrary">
<Property Name="Title"
Value="ACMEMasterPreview.gif" />
</File>
</Module>
</Elements>

The CAML in Listing 7-3 needs some explanation. The <Module> site element, also referred to as a file

set, groups similar files together. The attributes defined within the <Module> node are inherited by all
the child <File> nodes. The following table details the various attributes in the <Module> element.

119

Chapter 7: Master Pages and Page Layouts

Attribute Description
Name Name of the file set.
Url Site-relative path where the files will be provisioned. In Listing 7-3, the files will be

provisioned to the Master Page Gallery within the subfolders Preview Images/
WROX. If the folders are not present, SharePoint will automatically create them.

Path Feature-relative path where the source files within the Feature are located. In
Listing 7-3, the files are found within a subfolder named MasterPages within the
root of the Feature folder.

RootWebOnly When set to TRUE, the files in the file set are provisioned in the top-level site of the
site collection.

File sets contain one or more files, as shown in Listing 7-3. Each <File> element represents a separate file
to provision into a SharePoint site. The attributes in the <File> element are combined with those in the
parent <Module> element. While some of the attributes have similar names to those in the <Module>
element, they do not serve the same purpose. The following table details each of the attributes in the
<File> element.

Attribute Description

Url Feature-relative path to the file. This attribute is combined with the path attribute in
the <Module> element. In Listing 7-3, the preview image would be found within the
Feature at the following location: MasterPages\ACMEMasterPreviewTmp.gif.

Name The name to assign the file when provisioned into the SharePoint site. This name
becomes part of the URL to the file. In Listing 7-3, the URL for the file would be
http://[site]l/_catalogs/masterpage/Preview Images/WROX/
ACMEMasterPreview.gif.

Type When provisioning files into SharePoint libraries, this should always be set to
GhostableInLibrary. When provisioning files into a SharePoint site but not adding
the file to a library, this should be Ghostable.

The Master Page Gallery is just like any other SharePoint document library. It contains fields that are
used to store metadata for each document added to the library. <Property> elements are contained
within <File> elements. These elements are used to specify the value of the fields within the SharePoint
library to which the files are being provisioned, such as the Master Page Gallery. Developers can use the
<Property> element to set the values of the items added to the library. In the case of Listing 7-3, the
Title field is assigned the value of ACMEMasterPreview.gif.

With a preview image provisioned, now the master page needs to be added to the element manifest file.

Add the CAML shown in Listing 7-4 to the elements.xml file just after the <Module> element that
provisioned the image.

120

Chapter 7: Master Pages and Page Layouts

Listing 7-4: Elements manifest file provisioning a master page

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<Module Name="Master Page Preview Images"><!-- omitted for brevity --></Module>
<Module Name="Master Pages"
Url="_catalogs/masterpage"
Path="MasterPages"
RootWebOnly="TRUE" >
<File Url="ACMETmp.master"
Name="ACME.master"
Type="GhostableInLibrary">
<Property Name="ContentType"
Value="S$Resources:cmscore, contenttype_masterpage_name;" />
<Property Name="PublishingPreviewImage"
Value="~SiteCollection/_catalogs/masterpage/Preview
Images/WROX/ACMEMasterPreview.gif, ~SiteCollection/_catalogs/masterpage/Preview
Images/WROX/ACMEMasterPreview.gif" />
<Property Name="Title"
Value="ACME.master" />
</File>
</Module>
</Elements>

The CAML provisioning a master page shown in Listing 7-4 is very similar to the same CAML that
provisioned a preview image, with the exception of some extra field values being set. Two additional
fields are set: ContentType and PublishingPreviewImage. The ContentType field specifies the
content type of the master page list item in the Master Page Gallery (defining the schema and rules of
the list item). The PublishingPreviewImage is a field of type URL that contains two values: the text
value of a URL and the target of the URL. These two values are set by separating them with a comma.

Finally, with the Feature and necessary files created, the DDF file needs to be created in order to compile
the Feature into a WSS solution package. Add a new text file named BuildSharePointPackage.ddf to
a folder in the root of the project named DeploymentFiles and add the text in Listing 7-5 to it.

Listing 7-5: Diamond Directive File for Chapter7Pages Feature

.OPTION Explicit

.Set DiskDirectoryTemplate=CDROM
.Set CompressionType=MSZIP

.Set UniqueFiles=0ff

.Set Cabinet=0n

PR R I I I I R I R R R I I R R R
7

DeploymentFiles\manifest.xml

.Set DestinationDir=Chapter7Pages
TEMPLATE\FEATURES\Chapter7Pages\feature.xml
TEMPLATE\FEATURES\Chapter7Pages\elements.xml

.Set DestinationDir=Chapter7Pages\MasterPages

TEMPLATE\FEATURES\Chapter7Pages\MasterPages\ACMETmp .master
TEMPLATE\FEATURES\Chapter7Pages\MasterPages\ACMEMasterPreviewTmp.gif

121

Chapter 7: Master Pages and Page Layouts

Lastly, the manifest.xml file needs to be created and added to the project within the DeploymentFiles
folder in the Chapter7Pages project. Add the CAML in Listing 7-6 to the manifest .xml file.

Listing 7-6: Manifest.xml for Chapter7Pages Feature

<?xml version="1.0" encoding="utf-8" ?>
<Solution xmlns="http://schemas.microsoft.com/sharepoint/"
SolutionId="{7DFC3075-45C0-4946-9E5F-CA6BBC749C64}"
DeploymentServerType="WebFrontEnd"
ResetWebServer="FALSE">
<FeatureManifests>
<FeatureManifest Location="Chapter7Pages\feature.xml"/>
</FeatureManifests>
</Solution>

Package the Feature into a * . wsP file by typing the following on the command line (the following
assumes that it is being executed from the root of the project, the same place where the Chapter7pages
.csproj file is located):

[path_to_makecab] \MakeCab.exe /F DeploymentFiles/BuildSharePointPackage.ddf /D
CabinetNameTemplate=Chapter7.wsp /D DiskDirectoryl=wsp

Now add the package to the SharePoint farm’s solution store using STSADM . EXE (again, assuming it is
executed from the root of the project):

[path_to_stsadm] \STSADM.EXE -o addsolution -filename wsp/Chapter7.wsp

Finally, deploy the solution to a Publishing site, navigate to the site and select Site Actions = Site
Settings = Modify All Site Settings = Site Collection Features, and activate the Feature Chapter 7 -
Provisioning Master Pages and Page Layouts. This provisions the master page and preview image to
the Master Page Gallery, as shown in Figure 7-5, as uncustomized files referencing their templates
on the file system in the Chapter 7 Feature. In addition, because the master page’s Preview Image
field was set, the preview image will now appear when the master page is selected in the Site
Settings => Master Page administration page.

Figure 7-5
122

Chapter 7: Master Pages and Page Layouts

Incorporating Design Elements

Of course, provisioning a master page is helpful, but what about all the other files that make up the
branding of the site? The master page likely references images and at least one site-specific CSS file, so
how are these files added to the SharePoint site? Files related to branding, such as images and CSS files,
should be added to a special SharePoint library, called the Style Library, that exists in the top-level site.
This library has been assigned special permissions to ensure that even users with the most limited
permissions can access the contents, as the files within it are usually referenced throughout the entire
site topology.

Files can be added to the site collection’s Style Library gallery by uploading them through the browser
interface or using SharePoint Designer. Keep in mind that both of these techniques create customized
files that reside exclusively in the SharePoint site’s content database. The other approach is to provision
the files using a Feature, as previously shown. For example, to add both the CSS and image files used by
the sample master page included in the code download, add the two files (ACMETmp.css and
ACMETmp.gif) to a new folder named Styles within the Feature and add the code shown in Listing 7-7
to the elements.xml file.

Listing 7-7: Element manifest file with branding files added

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<Module Name="Master Page Preview Images"><!-- omitted for brevity --></Module>
<Module Name="Master Pages"><!-- omitted for brevity --></Module>
<Module Name="Styles"
Url="Style Library"
Path="Styles"
RootWebOnly="TRUE" >
<File Url="ACMETmp.css"
Name="ACME.css"
Type="GhostableInLibrary">
<Property Name="Title" Value="ACME.css" />
</File>
<File Url="ACMETmp.gif"
Name="ACME.gif"
Type="GhostableInLibrary">
<Property Name="Title" Value="ACME.gif" />
</File>
</Module>

</Elements>

When referencing files within the Style Library from the master page, it is best to use a utility called
SPUrl available to Publishing sites. SPUr1l takes a string as an input and will automatically replace one
of two tokens allowed with the URL equivalent: ~sitecollection (for site collections) or ~site (for
SharePoint sites). For example, in Listing 7-7 where the image is provisioned at the root of the Style
Library, use the following ASP.NET markup in the master page to reference the image:

<asp:image runat="server"
ImageUrl="<% S$SPUrl:~sitecollection/Style Library/ACME.gif%>" />

123

Chapter 7: Master Pages and Page Layouts

Page Layouts

The previous section covered master pages and a few different techniques for creating master pages in
Publishing sites. Master pages enable developers and designers to define the overall look and feel of the
Publishing site with just a single file, along with some additional branding files such as CSS or images.
Just as in ASP.NET 2.0 sites, SharePoint sites also leverage content pages that fill in the content
placeholders defined within a master page. Publishing sites take this a bit further by introducing a type
of content page called a page layout. Page layouts, when combined with the master page, define the
rendering and layout of a page. When the page layout is requested, SharePoint fetches the master page
referenced within the SPWeb. CustomMasterUrl property and merges the two together. Developers
and designers use page layouts to host editable regions of a page, implemented with Web Parts and
field controls.

Page layouts have a special relationship with content types within a Publishing site. Each page layout
must be associated with exactly one content type. This content type must inherit from the Page content
type found in the Publishing Content Types group. Content types are used in a Publishing site to define
the schema and rules for a particular type of content. For example, a Press Release content type may
have fields for the title and byline, the date of the release, the press release body, optionally some
reference links, as well as references with short bios for other companies mentioned in the press release.
In addition, it may also have a special workflow associated with it defining a special approval process
for the press release.

Keep in mind that the content type only defines the schema and rules for the type of content; it does not
address the presentation in any way. This is where page layouts come into play. Page layouts, when
combined with a master page, define the rendering/look and feel of a requested page. In addition,
developers can associate multiple page layouts with a single content type to give content owners the
utmost control in selecting different rendering options for a particular page type. When a content owner
initiates the process of creating a new page within a Publishing site, the first thing he or she has to do is
select a content type/page layout combination.

Moreover, content owners are not restricted to the page layout that is selected at the time of page
creation. At any point in the future, even after the page has been published, a content owner can edit the
page and change the selected page layout. The only limitation is that the only page layouts available are
those associated with the content type selected when the page was created. This is because a page’s
content type cannot be switched from one content type to another after it has been created. In addition,
page layouts can only be associated with exactly one content type; no one page layout can be associated
with more than one content type.

Creating Page Layouts

The process of creating custom page layouts is very similar to the process of creating custom master
pages. The same customization versus development or customized versus uncustomized debate comes
into play when creating page layouts as it does with master pages. All the same concepts apply, so
instead of rehashing them again, refer to the discussion earlier, as well as the full explanation in
Chapter 2.

Developers are provided with one of two ways to create custom page layouts: using SharePoint Designer
or using Visual Studio (or some other text editor) and provisioning them into a SharePoint site using

124

Chapter 7: Master Pages and Page Layouts

Features. Just like the previous sections on creating master pages, the following two sections cover both
approaches to creating page layouts.

Creating Page Layouts Using SharePoint Designer 2007

Open SharePoint Designer and open an existing Publishing site by selecting File = Open Site.

To create a new page layout, select File = New. In the New dialog, select the SharePoint Content tab,
then SharePoint Publishing in the first column, and Page Layout in the center column. Before SharePoint
Designer will create the page layout, it needs to know the filename, the name of the page layout, and the
content type associated with this page layout (what defines the schema of the page). This page layout
will be based on the Press Release content type created in Chapter 6, so use the following to complete the
New dialog and click OK (see Figure 7-6).

Q Content Type Group — WROX
Content Type Name — Press Release

a
Q URL Name — PressRelease.aspx
Q Title — Default Press Release

Figure 7-6

Now the page needs some structure. In the code download for this book, a sample page layout is
provided named ACMEPressTmp . aspx. Open this file in a text editor, copy all the contents of the file,
and paste it into the ASPX file SharePoint Designer created as the page layout while in the Code view of
the page, replacing everything SharePoint Designer created. For now, skip the process of adding editable
fields to the page, as the focus is on simply creating a new page layout. Adding editable regions to the
page layout is addressed later.

125

Chapter 7: Master Pages and Page Layouts

Save the changes to the page layout. Just like master pages created using SharePoint Designer, the

page layout is still checked out and unpublished. If development is happening in a local, isolated
environment, then it is not important to check in and publish the file. However, if this is a shared
development environment, then it is a good idea to go ahead and do so. Keep in mind that if the file is
not checked in and published, then the person who has it checked out is the only one who will be able to
render pages configured to use the page layout. The process of checking in and publishing the page
layout is no different from doing the same thing with master pages.

With the page layout in the Master Page Gallery, content owners can now create pages based on the page
layout and the associated content type. Browse to a Publishing site and select Site Actions => Create Page.
On the Create Page page, use the following information to create the new content page and click Create:

O Title — Press Release 1
Q0 URL Name — PressReleasel
0 Page Layout — (Press Release) Default Press Release

SharePoint will create the page and the browser will refresh with the new page in Edit mote. Select
Submit for Approval at the top of the page to start the page approval workflow process. On the Start
“Parallel Approval”: PressReleasel page, click Start. The page will then load with the Press Release 1
page in Design mode. To advance the page through the workflow, select the Approve button in the Page
Editing Toolbar. On the Workflow Tasks: Please approve DivisionArticlel page, optionally enter any
comments and click the Approve button. The page will refresh with the Press Release 1 page, published,
in Display mode.

Just as with the SharePoint Designer—created master page, note that when selecting the page layout
when creating a new page, all the page layouts had preview images associated with them, but the
custom page layout created with SharePoint Designer had a more stock preview image. The same
SharePoint Designer limitation exists with page layouts as with master pages. Therefore, to associate a
preview image with the page layout, developers need to go to the page layout list item within the Master
Page Gallery and set the Preview Image property manually.

Again, just like the master page created using SharePoint Designer, the page layout resides exclusively
within the SharePoint site’s content database. The next section describes how to create a new page layout
as a file template living on the file system and provision it into a SharePoint site using a Feature as an
uncustomized page.

Creating Page Layouts Using Visual Studio and Features

Like master pages, creating page layouts with SharePoint Designer is straightforward with the
WYSIWYG interface and live preview of the page against the SharePoint site. However, like everything
else that can be done in SharePoint Designer, it has a downside: All the assets created and modified are
stored in the SharePoint content database, making it a challenge to integrate files into an organization’s
source control management system and software development life cycle, or to package changes up to
move between environments. Again, just like master page development, another approach is to create
page layout files as templates and provision them to SharePoint sites from the file system using a
Feature. This section demonstrates how to provision a page layout using a Feature into a SharePoint site.

126

Chapter 7: Master Pages and Page Layouts

There are two files in the code download for this book that will be used in the provisioning of a page
layout: ACMEPressTmp . aspx and ACMEPressPreviewTmp. gif. Copy these two files to a new folder
named PageLayouts within the Chapter7Pages Feature folder in the Chapter7Pages project, as shown

in Figure 7-7.

Figure 7-7

Now that the files are in the Feature, the next step is to modify the element manifest file, as shown in
Listing 7-8. The section on master pages has already explained the different aspects of provisioning a

preview image,

so the focus is only on the page layout this time around.

Listing 7-8: Element manifest file provisioning page layouts

<?xml version="1.0" encoding="utf-8" ?>

<Elements
<Module
<Module
<Module

<Module

<File

xmlns="http://schemas.microsoft.com/sharepoint/">

Name="Master Page Preview Images"><!-- omitted for brevity --></Module>
Name="Master Pages"><!-- omitted for brevity --></Module>
Name="Styles"><!-- omitted for brevity --></Module>

Name="Page Layout Preview Images"
Url="_catalogs/masterpage/Preview Images/WROX"
Path="PageLayouts"

RootWebOnly="TRUE" >
Url="ACMEPressPreviewTmp.gif"
Name="ACMEPressPreview.gif"
Type="GhostableInLibrary">

<Property Name="Title"

Value="ACMEPressPreview.gif" />

</File>
</Module>

<Module

<File

Url="_catalogs/masterpage"
Path="PageLayouts"
RootWebOnly="TRUE" >
Url="ACMEPressTmp.aspx"
Name="ACMEPress.aspx"
Type="GhostableInLibrary">

<Property Name="PublishingAssociatedContentType"

Value="; #Press Release;#

(continued)

127

Chapter 7: Master Pages and Page Layouts

Listing 7-8 (continued)

0x010100C568DB52D9D0A14DIB2FDCCI6666E9F2007948130EC3DB064584E219954237AF3900242457E
FB8B24247815D688C526CD44D01; #" />
<Property Name="PublishingPreviewImage"
Value="~SiteCollection/_catalogs/masterpage/Preview
Images/WROX/ACMEPressPreview.gif, ~SiteCollection/_catalogs/masterpage/Preview
Images/WROX/ACMEPressPreview.gif" />
<Property Name="ContentType"
Value="$Resources:cmscore, contenttype_pagelayout_name;" />
<Property Name="Title"
Value="ACME Press Release" />
</File>
</Module>
</Elements>

Nearly everything in Listing 7-8 should be familiar with only one or two exceptions. First, the

value of the ContentType field is different because page layouts in the Master Page Gallery

conform to a different content type than master pages do. Second is the addition of a new field:
PublishingAssociatedContentType. Recall that page layouts must be associated with a content type
that defines the schema and rules of a particular page, while the page layout defines the rendering.
When creating a page layout using SharePoint Designer, the first thing a developer must do is specify the
associated content type. That is what the field PublishingAssociatedContentType does. This field
expects values within a “;#” delimited string. The first value, "Press Release, " as in Listing 7-8, is the
name of the content type, while the second value, "0x010100...", is the ID of the content type.

Next, add the new files to the DDF file to be included in the package, as shown in Listing 7-9.

Listing 7-9: Diamond Directive File for Chapter7Pages Feature

.OPTION Explicit

.Set DiskDirectoryTemplate=CDROM
.Set CompressionType=MSZIP

.Set UniqueFiles=0ff

.Set Cabinet=0n

PR R I I I R R I I S R R I S R R R I S R S
i

DeploymentFiles\manifest.xml

.Set DestinationDir=Chapter7Pages
TEMPLATE\FEATURES\Chapter7Pages\feature.xml
TEMPLATE\FEATURES\Chapter7Pages\elements.xml

.Set DestinationDir=Chapter7Pages\MasterPages
TEMPLATE\FEATURES\Chapter7Pages\MasterPages\ACMETmp .master
TEMPLATE\FEATURES\Chapter7Pages\MasterPages\ACMEMasterPreviewTmp.gif

.Set DestinationDir=Chapter7Pages\Styles
TEMPLATE\FEATURES\Chapter7Pages\Styles\ACMETmp.css
TEMPLATE\FEATURES\Chapter7Pages\Styles\ACMETmp.gif

.Set DestinationDir=Chapter7Pages\PageLayouts

TEMPLATE\FEATURES\Chapter7Pages\PageLayouts\ACMEPressTmp .aspx
TEMPLATE\FEATURES\Chapter7Pages\PageLayouts\ACMEPressPreviewTmp.gif

128

Chapter 7: Master Pages and Page Layouts

Finally, update the feature.xml file to include the additional files that have been added to the Feature,
as shown in Listing 7-10.

Listing 7-10: Feature definition for Chapter7Pages Feature

<?xml version="1.0" encoding="utf-8" ?>

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
Id="D56F0D2D-0107-424d-AA0D-7120329A23E6"
Title="Chapter 7 - Provisioning Master Pages and Page Layouts"
Hidden="FALSE"
Scope="Site"
Version="1.0.0.0">

<ElementManifests>
<ElementManifest Location="elements.xml" />
<ElementFile Location="MasterPages\ACMETmp.master" />
<ElementFile Location="MasterPages\ACMEMasterPreviewTmp.gif" />
<ElementFile Location="Styles\ACMETmp.css" />
<ElementFile Location="Styles\ACMETmp.gif" />
<ElementFile Location="PageLayouts\ACMEPressTmp.aspx" />
<ElementFile Location="PageLayouts\ACMEPressPreviewTmp.gif" />

</ElementManifests>

</Feature>

Follow the same steps as outlined earlier to create an updated WSP file, add it to the solution store,
deploy the solution, and activate the Feature. If the solution was deployed in the master page module,
use the STSADM. EXE operation upgradesolution to update what is already in the solution store.
Because the Feature has already been activated, perform a forced activation using the STSADM. EXE
operation activatefeature with an extra argument of -force, which reactivates the Feature even if
it is already active.

Now when a content owner creates a new page, the new page layout is available in the selector, complete
with a preview image, as shown in Figure 7-8.

Figure 7-8

129

Chapter 7: Master Pages and Page Layouts

Adding Content Regions: Field Controls
and Web Part Zones

A page layout with zero editable regions is pretty close to being utterly useless unless the page layout
contains some server controls that aggregate content or some static content. Therefore, with the page
layout created, usually the next task is to add some editable regions to the page. Two types of controls
can be added to a page: field controls and Web Parts.

Adding Web Parts to a page layout is no different than adding Web Parts to another SharePoint page or
even an ASPNET 2.0 page, for that matter: Add at least one Web Part zone to the page. A developer can
then optionally add Web Parts to the page layout, or leave the Web Part zone blank. Content owners
can drop Web Parts in the Web Part Gallery into the Web Part zone defined when creating and editing
pages. This enables developers to give the content owners some flexibility in managing content.

Field controls, conversely, provide an additional level of control than that of Web Parts. Field controls,
which are bound to a specific field in the Pages list, are added to a page layout by a developer. Content
owners have the capability to manage the content within those controls, but cannot add, remove, or
move the field controls around on the page layout. This enables developers to enforce a certain look and
feel for sites requiring a more structured approach.

Web Parts and field controls enable both developers and content owners different levels of control and
empowerment but there are many other differences between the two. The following table contains a list
of some additional differences between Web Parts and field controls.

Field Controls Web Parts

Content Storage In a field in the page’s underlying ~ Within the Web Part data of
SPListItem the page

Personalization No Yes

Versioning Versioning tied to the page with Versioning tied to page without
complete history history

Who has ultimate control? ~ Page designer/developer Page designer in placement of

Web Part zones; content owner
in managing of zone’s contents
(add/edit Web Parts within
Web Part zones)

When to use? Specific types of content must Structure of content on the
appear in specified places on a page (in part of a page) is not
page; structured formatting/ important; gives content
branding owners full control

While the preceding table contains a few differences between Web Parts and field controls, they all boil
down to one very core difference: the content within Web Parts is stored separate from the actual page
while content within field controls is stored within the page itself. Web Parts within a page layout,

130

Chapter 7: Master Pages and Page Layouts

or more specifically a Publishing site, are treated no differently than the rest of SharePoint . . . or
ASP.NET 2.0 for that matter. The data within a Web Part is stored separately from the page. When a page
is loaded, the Web Part Manager is responsible for retrieving the data from the personalization store
which is separate from the page. Field controls on the other hand store no data . . . they are used to
simply provide an editing and display experience for data stored within a specific field in the underlying
SPListItem of the page requested. When a page is updated, a new version is created. Because the data
in field controls is stored in fields, this data is versioned however since the data within Web Parts is
stored separately from the page, it is not versioned.

Where the data is stored with respect to Web Parts vs. field controls should be a very important factor for
developers when creating Publishing sites. If a project calls for page versions to be retained due to
industry regulation or company policy or if a project requires strict control of the placement and type of
content on the page, field controls should be used. However, if the versioning of pages is not as
important and / or content owners need to have an extra level of control on the content pages, then
using Web Parts may make more sense. In addition, both field controls and Web Parts can be used on the
same page layout.

The next two sections will demonstrate how to add Web Parts and field controls to page layouts. Later in
the book a full chapter is devoted to each topic (field controls in Chapter 10: Field Types and Field Controls,
Web Parts in Chapter 11: Web Parts) to go into more depth on such things like management, configuration
as well as creating custom Web Parts and field controls. While the next two sections demonstrate adding
Web Part zones and field controls to page layouts using SharePoint Designer, know that all SharePoint
Designer is doing is adding text to the source of the page layout file. Therefore, these same changes can
be made by hand to page layouts created as templates and provisioned into the Master Page Gallery
using Features.

Adding Web Parts

If one is not already open, open a page layout through an existing SharePoint site using SharePoint
Designer (using File = Open Site followed by opening the desired page layout. In order to add Web Part
zones to the page, the Web Parts task pane needs to be loaded. If it is not present in SharePoint Designer,
select Task Panes = Web Parts to load the Web Parts task pane. At the bottom of the page are two
buttons: one for adding Web Parts and another for adding Web Part zones. Place the cursor somewhere
on the design surface of the page layout where a Web Part zone is desired. Then click the New Web Part
Zone button within the Web Parts tool window. The properties of the new Web Part zone can be
modified using either the attributes on the <webPartPages:WebPartZone /> server control tag or the
Tag Properties task pane when the Web Part zone is selected.

Adding Field Controls

If one is not already open, open a page layout through an existing SharePoint site using SharePoint
Designer (using File &> Open Site followed by opening the desired page layout). All the fields that have
been defined in the content type associated with the page layout are displayed in the Toolbox task pane
in SharePoint. Toward the bottom of the SharePoint Controls section notice two groups: Page Fields and
Content Fields. The first group, Page Fields, contains a list of all the fields from content types the
associated content type inherits from. The second group, Content Fields, contains a list of all the fields
defined in the content type associated with the page layout.

131

Chapter 7: Master Pages and Page Layouts

Switch to Design view if it is not already selected and drag the Press Release Byline and Press Release
Body field controls into the PlaceholderMain content placeholder from the Content Fields group
within the SharePoint Controls section of the Toolbox task pane in SharePoint Designer, as shown in
Figure 7-9.

Figure 7-9

Switch back to the Code view and notice the server control tags added by SharePoint Designer.
SharePoint Designer uses the appropriate field control, which is used to edit and present the content
stored in a field, depending on the type of the field. For instance, if a field is a single line of text such as
the Press Release Byline, the <SharePointWebControls:TextField /> is used. However, in the case
of the Press Release Body field, which is of type Publishing HTML, SharePoint Designer adds the
<PublishingWebControls:RichHtmlField /> control. Notice that when the two controls were
added to the page, two <%@ Register %> directives were added to the top of the page layout by
SharePoint Designer. Like ASPNET 2.0 pages, this is necessary to tell the .NET Framework which
assembly contains the logic for the server controls on the page.

With the field controls added to the page layout, save all changes, check in, and publish the page. Using
the browser, go back to the page previously created using the page layout (or create a new one), and
switch to Edit mode by selecting Site Actions = Edit Page. Notice the two new editable areas on the page
added using the field controls!

132

Chapter 7: Master Pages and Page Layouts

When adding field controls to a page layout outside of SharePoint Designer, keep in mind that not only
are the server control tags for the field controls required, such as <SharePointWebControls:
TextField />, butthe <%@ Register %> directives for the added field controls are required as well.

Building Master Pages and Page
Layouts As Templates

This chapter has demonstrated two approaches to creating master pages and page layouts: one creating
customized instances using SharePoint Designer and the other creating uncustomized instances using
Visual Studio and Features. Thankfully, neither option is “right” nor “wrong,” as it depends entirely on
the project and development team implementing the Publishing site. However, some readers may
assume that while the uncustomized, template approach provides better portability, the loss of
WYSIWYG from the SharePoint Designer development approach is quite significant and therefore
discard the Visual Studio and Feature approach too quickly.

Recall from Chapter 2 that one of the most significant downsides to adopting the SharePoint
development approach (Visual Studio + Features) compared to the SharePoint customization approach
(SharePoint Designer) is the lack of tools supporting the development approach. However, don’t let this
fact lead you to simply eliminate one approach. Developers can still use SharePoint Designer as a
powerful development environment for creating new master pages, page layouts, CSS files, and other
assets in a localized development environment. Those same developers can then save those files straight
from the SharePoint site to the local file system, where they can be added to a Feature for provisioning.

Keep one thing in mind: The names of the files provisioned must be different from those that are already
present in the SharePoint site. One way to get around this is to add an underscore (“_") as the prefix of
the filename when creating files in SharePoint Designer. Then, when the files are saved locally and
added to a Feature, remove the underscore prefix. This way, developers do not have to go through the
process of cleaning up and removing files created in a development environment or maintaining two
separate development environments.

Delegate Controls

Chapter 4 presented Features as a way to address the limitation in previous versions of SharePoint of not
being able to easily attach new (or replace existing) functionality in SharePoint sites. Microsoft added yet
another capability to easily inject custom user controls or server controls into pages for new content or to
replace existing content defined by Microsoft in the out-of-the-box site templates or by custom
developed templates and pages.

These replaceable areas within pages (master pages, content pages, page layouts, etc.) are implemented
using delegate controls. Delegate controls are a special type of server control (<SharePoint:
DelegateControl />).Each delegate control has a unique ID, specified using the Control1d attribute.
This ID is used to register specific controls (user controls or server controls) using the site element
<Control /> within element manifest files in Features. The advantage of using Features is twofold.
First, because Features are scoped, a delegate control can be scoped, so the addition/replacement can be
as limited as the current site, or as far reaching as the entire SharePoint farm. Second, Features empower
site owners to add/replace functionality via Feature activation. When controls are registered via

133

Chapter 7: Master Pages and Page Layouts

Features, one of the properties that must be set is the order in which to add the control. This is specified
using the <Control Sequence="" /> attribute.

How does it work? When a page is requested, the delegate control server tag is encountered by the .NET
Framework when executing the compiled page. The delegate control looks at an internal list in
SharePoint for all the controls registered for the specific Control1d specified in the <SharePoint:
DelegateControl /> server control tag within the current scope (site, site collection, Web application,
or farm). If no controls are registered for the specific instance, then nothing is rendered and the delegate
control acts as if it were never on the page. If one or more controls are registered for the specific instance,
then the control with the lowest sequence number is added in place of the delegate control.

This enables developers to replace out-of-the-box functionality in SharePoint. In fact, this is exactly how
Microsoft implemented the Search box in the upper right-hand corner of a SharePoint site. A quick search of
the WSS 3.0 default.master page for the location of the Search box will yield no search-related controls;
instead, a delegate control named SmallSearchInputBox is present. A farm-scoped Feature named
ContentLightup registers the control [..]\12\TEMPLATE\ CONTROLTEMPLATES\SearchArea.ascx
with a sequence number of 100. When MOSS 2007 is installed and the Standard license is applied, a Web
application-scoped Feature named OSearchBasicFeature registers a server control with a sequence of 50.
This replaces the out-of-the-box WSS 3.0 Search box with a more full-featured search interface, as MOSS
2007 Standard adds additional search capabilities to WSS 3.0. In addition, when an Enterprise license is
applied to MOSS 2007, a Web application-scoped Feature named OSearchEnhancedFeature registers yet
another server control with a sequence of 25, providing even more functionality than the MOSS 2007
Standard search control provides.

Creating Delegate Controls

Creating controls for use within a delegate control is quite straightforward. In fact, it is virtually no
different from creating standard ASP.NET 2.0 user controls or server controls. Consider the following
user control that does nothing other than write out a simple string:

<%@ Control Language="C#" %>
<div>hello world</div>

The file this code is stored in, Chapter7DemoDelegateControl.ascx, should be deployed to the
[..]1\12\TEMPLATE\CONTROLTEMPLATES folder on the server. In order to register this control a new
Feature must be created. The Feature definition file contains nothing special, but the element manifest
referenced in the feature.xml file contains the CAML shown in Listing 7-11 to add the sample user
control in place of the existing search controls.

Listing 7-11: Feature registering a delegate control

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

<Control Id="SmallSearchInputBox"
Sequence="20"
ControlSrc="/_controltemplates/ProMossWcm/Chapter7DemoDelegateControl.ascx" />

</Elements>

134

Chapter 7: Master Pages and Page Layouts

Notice that the <Control /> Id attribute is the string corresponding to the search delegate control
defined in the default WSS 3.0 master page, and the Sequence is set to 20. This number will set the new
control in front of all other search controls until the Feature is deactivated or another control is registered
in front of this one with a lower sequence number.

What about using a server control as the delegate control? Consider if the code in Listing 7-12 is
compiled into a strong-named assembly and deployed to the server’s Global Assembly Cache (GAC).

Listing 7-12: Server control with public properties

namespace WROX.ProMossWcm.Chapter07 {
public class SampleServerDelegateControl : Control {
private string _textTitle = string.Empty;

protected override void CreateChildControls () {
base.CreateChildControls () ;

Label label = new Label();
label.Attributes.Add("style", "border: solid 1lpx navy;");
label.Text = "Server delegate control. Value TextTitle: " +_textTitle;

this.Controls.Add (label) ;
}

public string TextTitle {
set {
_textTitle = value;
}
get {
return _textTitle;
}

The element manifest registering the server control would look like the code shown in Listing 7-13.

Listing 7-13: Element manifest using server controls in a delegate control

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<Control Id="SmallSearchInputBox"
Sequence="15"

ControlAssembly="Chapter7, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c591e70cfdf9cedf"

ControlClass="WROX.ProMossWcm.Chapter07.SampleServerDelegateControl ">
<Property Name="TextTitle">Chapter 7</Property>
</Control>

</Elements>

Notice the <Property /> child element within the <Control /> element. If the server control contains
public properties, then the Feature can set the value of these public properties using this technique,

135

Chapter 7: Master Pages and Page Layouts

as shown here. Completing the Feature containing a server control delegate, control registration, deploying,
and activating it within a WSS 3.0 site will result in something similar to what is shown in Figure 7-10.

Figure 7-10

The complete code for both Features registering delegate controls using both user controls and server
controls can be found in the code download for this book. Note that delegate controls implemented with
server controls require the assembly containing the server control to be registered as a safe control in the
Web application’s web . config file.

Summary

This chapter explained how the plumbing works within SharePoint in the construction of a page when a
request is received for a page within a Publishing site. The construction process is a bit different from a
standard SharePoint request due to the addition of page layouts. Also covered in this chapter was master
pages and how Microsoft leverages the master page model within SharePoint. Some of the more
significant differences with master pages within a SharePoint site are that master pages are stored
(customized or uncustomized) in the Master Page Gallery, rather than the file system, and content pages
do not explicitly set the master page. Instead, dynamic tokens are used to tell SharePoint which master
page to use from one of two options set at the SharePoint site level.

In order to provide a template page creation and rendering approach for facilitating content-centric

sites on SharePoint, Microsoft added the concept of page layouts to MOSS 2007. Page layouts are used
to define the rendering of a specific type of page, defined using SharePoint content types. SharePoint
content types define the schema, special business rules, and workflow, while the page layout or multiple
page layouts are, when combined with master pages, used to define the rending and look and feel of

a page.

For both master pages and page layouts, two approaches were covered with respect to creating these
assets within a SharePoint site. The first option for both, creating master pages and page layouts using
SharePoint Designer, creates files within the SharePoint site as customized files residing exclusively
within the SharePoint content database. The second option involves using Visual Studio and Features to
define the files as templates and provision them into SharePoint sites as uncustomized files.

Finally, the chapter covered the concept of delegate controls, which provide developers with a very easy
way to either add or remove functionality to or from an existing SharePoint site, but without
customizing the original files provided by Microsoft out of the box. This approach, recommended by
Microsoft, protects developers from having their files overwritten when a hotfix, service pack, or new
version is released.

136

Navigation

Every Web site, regardless of the underlying technology used to implement it, uses some sort of
navigation. Properly implemented navigation makes a Web site usable and the content within the
site findable. SharePoint sites are no different, including Publishing sites. Thankfully, not much is
unique when it comes to navigation in sites based on Windows SharePoint Services (WSS) 3.0,
including Publishing sites, because SharePoint is completely dependent upon the navigation
provider model included in ASP.NET 2.0.

This chapter explains what the ASPNET 2.0 navigation provider model is and how SharePoint
implements it. Also covered in this chapter are the various customization options available to site
owners, administrators, developers, and designers. Because SharePoint is completely dependent
upon the ASPNET 2.0 navigation provider model, this chapter does not go into great depth about
creating custom navigation components. Instead, readers are encouraged to review ASPNET 2.0
documentation on this subject.

ASP.NET 2.0 Navigation Provider Model

Creating navigation components has traditionally been a requirement in every application. This
was because each navigation component was tightly coupled to the underlying site architecture.
For example, creating custom navigation components in WSS 2.0 sites was quite complicated, as
developers were required to write the code that would walk through the SharePoint object model
to determine the structure of the navigation.

The other component of all navigation controls was the rendering piece. This part was responsible
for taking the navigation data structure and generating the HTML used to render the navigation
control. Many third-party organizations were started that built navigation controls other
companies could purchase to implement sophisticated navigation implementations. Unfortunately,
these components were usually somewhat challenging to implement, as developers had to
incorporate them into a project’s code, which pulled the data part of the navigation out of the
underlying site structure.

Chapter 8: Navigation

Microsoft addressed this challenge in ASP.NET 2.0, adding something called the navigation provider model
to make it much easier to implement navigation in Web sites. The navigation provider model essentially
divides the navigation into two pieces: the rendering piece and the piece responsible for getting the data
from the underlying site architecture. Site map data sources are used to represent the hierarchical
structure of a site, exposing the structure as a SiteMapNodeCollection. The SiteMapDataSource
object is then associated with a navigation rendering control, which takes the SiteMapNodeCollection
and uses it to generate the HTML necessary to render the navigation.

Site map data sources get the data from the underlying site architecture using the provider model
approach. By default, ASPNET 2.0 sites use the Xm1siteMapProvider, which assumes the site
navigation is stored in the web. sitemap file.

Because WSS 3.0 is built on top of ASPNET 2.0, it can leverage this navigation provider model by
default. In the case of SharePoint, the navigation needs to be generated from the SharePoint site
structure. To achieve this, Microsoft created a few custom site map provider objects that know how to
walk the SharePoint object model. Specifically, WSS 3.0 includes a few providers, and installing Office
SharePoint Server (MOSS) 2007 adds a few additional providers.

One big advantage to this model is that now it is very easy to incorporate new navigation rendering
controls into a SharePoint site. Any navigation control that implements the ASPNET 2.0 navigation
provider model can now be used in a SharePoint site.

Customizing Site Navigation

While SharePoint’s navigation will meet the needs of many projects, it is unlikely to satisfy all business
requirements. Thankfully, SharePoint provides a few different vehicles for customizing the navigation,
especially in Publishing sites. Some of these include browser-based changes that can be made by site
owners, while others are things that can be done by designers or developers by modifying the markup of
site map data sources and rendering controls or even by administrators configuring the underlying
navigation providers.

Browser-Based Customizations

Publishing sites have an extra navigation customization capability that can be implemented by site
owners through the browser. Navigating to the site’s Site Settings page and selecting Navigation under
the Look and Feel section takes the user to the Site Navigation Settings page (see Figure 8-1). From this
page the site can be configured to include or exclude either subsites and/or pages from the main
navigation. In addition to the scoping options, owners can also elect to manually or automatically sort
the contents of the navigation.

138

Chapter 8: Navigation

Figure 8-1

Site owners can also manually augment both the global navigation (typically the top navigation)
and the current navigation (typically the left-hand navigation), such as manually reordering the
items, and adding custom headings (seen as sections) and links. This facilitates adding custom links
to the navigation that are not part of the existing site structure, such as links to partner companies or
news articles.

Customizing the Navigation Control

Another type of customization available to site developers and designers is customizing the navigation
rendering control and the site map data sources. This is done by customizing the markup associated
with the master page containing the controls. The first customizations that can be done are to the
rendering control. This does not affect what data is shown in the navigation; rather, it affects how the
data is displayed.

Microsoft has included a customized implementation of the Menu control that ships with ASP.NET 2.0
for SharePoint sites, known as the Microsoft.SharePoint.WebControls.AspMenu control. This
control directly inherits from the System.Web.UI.WebControls.Menu control. The reason for

the custom SharePoint implementation is to simply fix a few known issues with the ASP.NET 2.0 Menu
control, such as a localization issue whereby in right-to-left locales, the fly-out arrow continues to point
in the left-to-right locale. When working with the SharePoint AspMenu control, it is best to rely on the
ASPNET 2.0 documentation for the Menu control (www.andrewconnell.com/go/219), as it is more
complete and comprehensive.

139

Chapter 8: Navigation

Some of the customizations that can be implemented on the AspMenu control are to change the rendering
direction of the navigation to either horizontal or vertical using the Orientation attribute, setting the
number of levels to render using the StaticDisplayLevels attribute, and setting the number of levels
of fly-outs to include the MaximumDynamicDisplayLevels attribute. Designers can also customize the
rendering styles of the navigation control using CSS classes. All of these changes can be done in markup
with no compiled code.

Customizing the Navigation Site Map Data Source

In addition to customizing the navigation rendering control, developers and designers can also
customize the site map data source provided in SharePoint that is passed to the rendering controls.

The site map data source used in Publishing sites, Microsoft.SharePoint.Publishing.Navigation
.PortalsiteMapDataSource, has a few properties that are used to massage the site hierarchical data
returned from the navigation providers. Some of the attributes developers can configure are as follows:

0O ShowStartingNode — This attribute includes or excludes the starting node from the
navigation. The starting node is usually the root node of the site collection.

a StartFromCurrentNode — This attribute should always be left set to true, as this value tells
the data source to use its own logic to determine where to start.

0 TreatStartingNodeAsCurrent — This attribute determines whether the data source’s
starting node is treated as the current node in the navigation. This is helpful when a section of a
site needs to use its own navigation and not include portions of the site hierarchy above or
parallel to it.

Three additional attributes can be used to provide context and node-type trimming of the site hierarchy.
All accept a single value or a comma-delimited list of values. The values can be Area (meaning a
SharePoint site), Page (meaning a Publishing page), Heading (meaning a manually created heading on
the Site Settings = Navigation page), and AuthoredLink (meaning a manually created page on the Site
Settings = Navigation page). The attributes are as follows:

0 TrimNonCurrentTypes — The values listed in this attribute will remove those types of nodes
that are not present directly beneath the current node. In other words, it removes all of those
node types that are not in the child nodes collection of the current node.

0 TrimNonAncestorTypes — The values listed in this attribute will remove those types of nodes
that are not present directly beneath the current node or any of its ancestors.

Q TrimNonAncestorDescendentTypes — The values listed in this attribute will remove those
types of nodes that are not present directly beneath the current node or any of its ancestors or
descendents.

Customizing the Navigation Provider

The site map data sources get their data from the navigation providers that ship with SharePoint. The
WSS 3.0 installation contains a few navigation providers, but the ones included with MOSS should be
used in Publishing sites because they are the ones that leverage the highly performant
PortalSiteMapProvider object previously covered.

140

Chapter 8: Navigation

All the navigation providers are registered at the Web application level in the web. config file shared by
all site collections in the Web application. The primary job of the providers is to examine the SharePoint
site hierarchy and incorporate any changes made through the API or using the Site Navigation Settings
page in each site’s Site Settings page. In addition, they also perform any necessary security trimming on
the navigation hierarchy before passing the structure back to the site map data sources.

Microsoft provides a few variations of the PortalSsiteMapProvider control by passing in one of three
navigation types, set using the NavigationType attribute. The three values are Global, Current, and
Combined. Global is used to get the links from the top navigation bar collection. Current is used to
get the links from the Quick Launch navigation collection. Combined performs a union of the two
previous values.

Four additional public properties are available to configure what types of nodes are included in the
navigation data. First, the IncludeSubSites and IncludePages properties accept one of three
values: Always, PerWeb, and Never. These tell the navigation provider whether the settings on the
Site Navigation Settings page should be applied (Pertweb), or ignored (Always or Never). The
IncludeHeadings and IncludeAuthoredLinks properties are Boolean values that enable the site
administrator to allow or block the inclusion of custom links and headings in the navigation.

Customizing Navigation with the API

Another navigation customization option available to developers is to use the SharePoint API. Each
SharePoint site has a Navigation property that contains a reference to both the top navigation as
well as the Quick Launch navigation. Adding new items to the navigation involves creating new
Microsoft.SharePoint.Navigation.SPNavigationNode objects and adding them to the
appropriate navigation collection, as shown in Listing 8-1.

Listing 8-1: Adding nodes to the top and Quick Launch navigation
SPWeb site = SPContext.Current.Web;

// get a reference to the top navigation
SPNavigationNodeCollection topNavigation = site.Navigation.TopNavigationBar;

// or get a reference to the Quick Launch navigation
// SPNavigationNodeCollection quickLaunchNav = site.Navigation.QuickLaunch;

// create new drop down menu in the navigation

SPNavigationNode newMenu = new SPNavigationNode ("New Section", "", false);
// add the new menu to the end of the top nav bar

topNavigation.AddAsLast (newMenu) ;

// add a custom link

newMenu.Children.AddAsLast (new SPNavigationNode ("Some Custom Link",
"http://www.wrox.com", true)) ;

141

Chapter 8: Navigation

Creating Custom Navigation Components

At times the provided navigation rendering controls, site map data sources, and navigation providers
may not suit the project’s requirements. The most common custom development topic that comes up
involves creating custom navigation rendering controls. However, developers and those implementing
SharePoint sites should look to third-party component developers before building their own. The reason
is simple: Most navigation controls can be purchased for a fraction of what it would cost to actually
build the control. In addition, the purchased control usually provides significantly more functionality
than what would normally be built into a component. Usually the only exception to this rule is when
navigation uses images in the implementation, rather than text. No canned control can expect the exact
images to be used; therefore, these are usually built from scratch.

Thankfully, there is nothing special about building custom navigation components for SharePoint sites.
All the same rules apply that are involved when creating custom navigation controls for traditional
ASP.NET 2.0 Web sites. Therefore, the recommendation is to rely on the ASP.NET 2.0 documentation,
as well as any sources of assistance in creating custom components.

Performance and Usability Considerations

Because navigation controls appear on nearly every single page in a content-centric site, anyone
implementing Publishing sites should exercise caution when creating such sites. A poorly performing
navigation control can cripple a page and even an entire site. Attention should also be paid to the
usability of the navigation controls. If the site’s users cannot make sense of or easily use the site
navigation, it is not serving its purpose and should be addressed.

PortalSiteMapProvider

The navigation controls provided in MOSS — specifically, the navigation providers — utilize a

very powerful and performant object called Microsoft.SharePoint.Publishing.Navigation
.PortalsiteMapProvider. The job of the PortalSiteMapProvider is to expose the SharePoint site
hierarchy to site map data sources that can then massage the hierarchy before passing it along to

the rendering controls. One of the unique characteristics of the PortalsiteMapProvider is the
component’s performance. It boasts a sophisticated, built-in caching mechanism to ensure that
navigation controls are never the cause for a poorly performing site, and it has been optimized for
cross-list and cross-site queries. However, like many other things in SharePoint, it cannot cross the
boundaries of site collections.

When the PortalsiteMapProvider receives a request for data using one of the retrieval methods, it
queries the data in SharePoint to obtain a set of results. It inserts these results into cache so that the next
time the query is executed it will not have to issue the expensive results. Instead, it simply performs a
few checks on the data and uses the results of the previous query. The three retrieval nodes most
commonly used are as follows:

QO GetCachedList () — This method returns a single SharePoint list as a PortalListSiteMapNode
object.
0O GetCachedListItemsByQuery () — By far the most commonly used, this method returns a

collection of PortalListItemSiteMapNode objects from the results of a specific query passed
in using the SPQuery object.

142

Chapter 8: Navigation

Q GetCachedSiteDataQuery () — This method returns data from a specified SharePoint site as
an ADO.NET DataTable from the provided query specified using the SPSiteDataQuery
object.

These methods include all the necessary logic required to add and fetch the results from previously
executed queries, so developers are free to just use the PortalSiteMapProvider; no special
configuration is required. Using the PortalSiteMapProvider in code is fairly straightforward.
Listing 8-2 contains the code to select all the pages in the Press Releases subsite that have been
published since 2005.

Listing 8-2: Selecting all press releases published since 2005 with the
PortalSiteMapProvider

PortalSiteMapProvider psmp = PortalSiteMapProvider.CurrentNavSiteMapProvider;

// get instance of the Press Releases site
PortalWebSiteMapNode prNode = psmp.FindSiteMapNode ("/PressReleases") as
PortalWebSiteMapNode;

// get all Press Releases published since 2005

SPQuery query = new SPQuery () ;

query.Query = "<Where><Geg><FieldRef Name='ArticleStartDate'/><Value
Type='DateTime'>2005-01-01T12:00:00Z</Value></Geg></Where>"SiteMapNodeCollection
pages = psmp.GetCachedListItemsByQuery (prNode, "Pages", query,
SPContext.Current.Web) ;

When using the PortalsiteMapProvider, developers should consider a few things ahead of time, as
there are two occasions when it is not suitable. First, because the PortalsiteMapProvider internally
caches the results of previously run queries, it should only be used for queries that are run frequently,
where “frequently” is defined as an interval less than that of the duration something remains in cache
(by default, three minutes). Navigation fits this model very well, hence the reason why it is the
workhorse for the navigation controls in Publishing sites.

However, leveraging cache to reduce or eliminate round-trips to the database comes at a cost: The
results from previously executed queries are only kept in cache for a limited time. If the time between
two queries is greater than the time the results are kept in cache, then the PortalSiteMapProvider is
actually doing more harm than good. That’s because it is incurring the overhead of adding the results to
cache after retrieving them from the executed query. If the data in cache is invalidated before the query is
run again, then no benefit is being realized; and in fact the process is actually slower than not using the
PortalSiteMapProvider because it has the extra burden of dealing with the cache.

In addition, the PortalSiteMapProvider should not be used when the underlying data being queried
changes very frequently. The reason for this is related to the behavior of the PortalsiteMapProvider,
which checks the SharePoint change log to determine whether the data being queried has changed
before using the results stored in cache. If the data has changed, then it invalidates the results in cache
and reexecutes the query. If the underlying data is changing very frequently, then subsequent queries
will not pull data from the cache but instead always reexecute the query against the SharePoint

object model.

143

Chapter 8: Navigation

Table of Contents Web Part

Sometimes sections of a site can become quite populated with content. For example, the section that
contains company press releases would likely grow to have quite a few pages within it over time. Some
sites include the pages in the main navigation of the site. For sections with a large amount of content,
this is not the best practice because navigation can quickly become unusable by site visitors. In this case,
consider utilizing the Table of Contents Web Part on the default page of the site. Configure the main
navigation for the site to exclude pages but display a link to the section. Then, on the home page of that
section, configure the Table of Contents Web Part to show the content within the section.

Summary

This chapter has shown how to customize and manipulate SharePoint navigation in various ways,
available to individuals serving different roles with respect to a Publishing site. Administrators can control
the data passed back to the site map data sources through the providers, site owners can customize

the navigation using the Site Navigation Settings page, and developers and designers can customize the
actual rendering controls and data sources through markup. Developers can also create custom rendering
controls, site map data sources, or providers. However, it is recommended that you look to third-party
companies to purchase navigation rendering controls and to rely on the provided rendering controls.

144

Accessibility

Accessibility is a popular and relevant topic as more and more companies leverage the Internet as
a vehicle for their business. With the growing popularity of SharePoint — specifically, Microsoft
Office SharePoint Server (MOSS) 2007, used as both a collaboration tool and to facilitate the
creation of content-centric sites — accessibility is now a very important factor in evaluating
SharePoint for many organizations.

In the past, SharePoint has not had a great track record regarding creating accessible
implementations. One challenge involved in creating accessible SharePoint sites was that it
required modifying many files. In addition, some of the underlying rendering components could
not be customized easily — and often it was not even possible.

While the latest release of SharePoint does not ship conforming to any specific standards out-of-
the-box (OOTB), the new layered architecture makes it much easier to customize the rendered
output. This makes it possible to create accessible solutions that meet accepted guidelines. In
addition, Microsoft has teamed with one of their partners in order to provide a jump-start on
creating accessible sites. The Accessibility Kit for SharePoint provides not only a significant
number of components that can be reused, but also a fantastic educational opportunity to
understand some different approaches to creating accessible Publishing sites.

This chapter does not walk through the process of creating an accessible site — each site is very
different and such an exercise would turn into a discussion about HTML. Instead, the goal of this
chapter is to provide insight into what it means to create an accessible site, outline how to read and
understand the various guidelines, and suggest some techniques that can be leveraged in creating
accessible Publishing sites.

What Is an Accessible Web Site?

The primary motivation behind having an accessible site is to ensure that users with a disability
can consume a Web site without being put at a disadvantage. Disabilities in the context of Web
sites fall into two categories: visual and interactive. Visual disabilities, of course, refer to those users

Chapter 9: Accessibility

who are blind and cannot see the screen. These users typically use either screen readers that verbally
read aloud the content of a Web page for the user to hear or Braille displays.

Refer to the screen reader page on Wikipedia for more information on screen readers:
www . andrewconnell.com/go/220.

Another visual impairment affects those who have problems with contrast, so Web pages that utilize
different shades of colors that are not very distinct from one another can cause issues. Users may also be
prone to photosensitive epilepsy caused by pages that contain flickering or flashing content in the range
of three flashes per second (Hertz) or when screen elements change from dark to light very quickly.

The other types of impairment that accessibility covers involve interactive issues. For instance, users
may not be able to use a mouse. In this case, users rely on the keyboard for all interaction, including
navigating menus and entering values in forms. Other users may not have access to a keyboard and
have to speak commands.

Note that creating accessible sites so disabled or impaired users can have the same or near-identical
experience as those who are not impaired is not the only goal. Creating accessible sites also yields many
other advantages that can go straight to the bottom line and have an economic impact on a Web site.
These economic reasons are covered later in this chapter.

Many sites are not designed with accessibility in mind. However, many organizations and government
entities require sites to meet certain accessibility standards. Recently, some countries have even adopted
certain laws and standards that make a company liable if its site does not meet certain guidelines. With
so many organizations, governments, and companies requiring accessible sites, the World Wide Web
Consortium (W3C) has created a set of standards, or guidelines, for creating accessible Web sites. These
guidelines are generally accepted by the community at large to be the standard for all accessibility
requirements.

Keep one very important point in mind when creating accessible Web sites: It is not only developers and
designers who need to be aware of Web accessibility standards, but also the content owners. Subject
matter experts (SME) who author and edit content on Web sites need to be knowledgeable about what
can cause issues with users who have trouble consuming non-accessible Web sites.

Measuring Accessibility

As mentioned earlier, the World Wide Web Consortium (W3C) has crafted some guidelines, standards,
and measures for creating accessible Web sites, all published on their site: www . andrewconnell.com/
go/221. As stated on their Web site, the W3C is

... an international consortium where Member organizations, a full-time staff, and the
public work together to develop Web standards. W3C’s mission is: To lead the World Wide
Web to its full potential by developing protocols and guidelines that ensure long-term
growth for the Web.

146

Chapter 9: Accessibility

The consortium, through the hard work of many individuals, publishes standards otherwise known as
W3C recommendations that developers and designers alike can use to create what are generally referred to
as accessible or “valid” Web sites. It does so under the Web Accessibility Initiative (WAI), which works
with people all around the globe to create standards and guidelines to make Web sites more accessible to
people with disabilities. The WAI (www . andrewconnell. com/go/222) has identified three components
of accessibility:

QO Web Content Accessibility Guidelines (WCAG) — This set of guidelines is used by developers,
designers, and Web authoring and accessibility evaluation tools.

Q Authoring Tool Accessibility Guidelines (ATAG) — This set of guidelines pertains to Web
authoring tools.

0 User Agent Accessibility Guidelines (UAAG) — This set of guidelines is used by clients that
consume Web sites, such as browsers and media players, including screen readers.

Because this book is targeted to developers and the developer experience in creating MOSS 2007 Web
Content Management (WCM) Publishing sites, only the WCAG will be addressed.

The WCAG, originally published as v1.0 in 1999, will be replaced by the 2.0 version, which is in the late
stages of review. The more current 2.0 version is designed to be easier to use and understand as well as
easier to test with automated testing frameworks. However, because the WCAG 2.0 is so new, it is likely
many organizations will still refer to WCAG 1.0 when measuring Web sites for accessibility, so
developers should be familiar with both versions.

In addition to the WCAG, the United States (U.S.) government has something called Section 508, which
requires all U.S. agencies to make all technologies, including Web sites, accessible to those users with
disabilities.

With all these guidelines, determining whether a site meets specific requirements can become quite
challenging. While many validation tools exist, the W3C has a validator that is the most popular and is
the recommended validator to use.

WCAG 1.0

The Web Content Accessibility Guidelines (WCAG) 1.0 were approved in May 1999 and have been used
ever since as the standard for measuring the accessibility capabilities of a Web site. The WCAG 1.0
consists of a few different components, broken down hierarchically. Everything is based on the concept
of guidelines and checkpoints. The 14 guidelines in the WCAG 1.0 are as follows:

1. Provide equivalent alternatives to auditory and visual content — This includes instances
where images are used, as they should contain a text equivalent.

2. Don't rely on color alone — When color is used to convey information, ensure that the
information is available without using color as well.

3. Use markup and style sheets and do so properly — This includes the use of lists in HTML
markup, and stresses that when possible, CSS should be used for formatting. For instance,
bulleted lists should be represented with or elements and nested when appropriate.

4. Clarify natural language usage — Specify the natural language of the page and use the HTML
<ABBR> and <ACRONYM> elements when appropriate.

147

Chapter 9: Accessibility

5. Create tables that transform gracefully — This includes checkpoints that require the use of
table heading elements (<TH>), column groupings (<COLGROUP>), and indicators whereby the
table heading, body, and footer are <THEAD>, <TBODY>, and <TFOOT>, respectively.

6. Ensure that pages featuring new technologies transform gracefully — Specifies that pages
using newer technologies such as JavaScript or Flash operate and offer data in an equivalent
manner when these technologies are disabled or not available.

7. Ensure user control of time-sensitive content changes — Specifies that pages or elements
within them should not flicker or flash so much that they cause seizures for people with
photosensitive epilepsy. It also includes checkpoints to ensure that if the content on the page is
timed (such as scrolling news), the user has a way to stop it or go back.

8. Ensure direct accessibility of embedded user interfaces — This ensures that programmatic
elements such as client-side scripting are accessible. For instance, client-side image maps should
be used in favor of server-side image maps.

9. Design for device independence — This includes some overlap with guideline 8, but also
includes things such as using logical events — for instance, button click events instead of
device-dependent events.

10. Use interim solutions — When older clients do not support something, use an alternate
solution. For instance, do not create pop-up or spawned windows when only the more recent
browsers support blocking them.

11. Use W3C technologies and guidelines — This guideline recommends that only W3C approved
and recommended technologies are used, such as HTML, XHTML, CSS, and XML.

12. Provide context and orientation information — This ensures that when things such as
framesets are used, each frame has a title. It also recommends associating labels with the control
to which they are linked.

13. Provide clear navigation mechanisms — This ensures that navigation is not only intuitive and
easy to use, but also consistent.

14. Ensure that documents are clear and simple — Use the simplest language images to supple-
ment the content on the page. In addition, ensure that the styling, presentation, and branding is
consistent across all pages of the entire Web site.

Each guideline contains one or more checkpoints, which are used to measure a Web page for different
levels of conformity against the WCAG 1.0. Each checkpoint is assigned a priority level from 1 to 3, with
Priority 1 checkpoints having the most significance and Priority 3 checkpoints having the least
significance. According to the W3C, Priority 1 checkpoints are objectives developers must satisfy;
otherwise, those with some sort of a disability defined by the W3C will find it impossible to use the Web
site. Priority 2 checkpoints are objectives that developers should satisfy; otherwise, those with some sort
of disability will have difficulty using the Web site. Finally, Priority 3 checkpoints are objectives
developers may satisfy; otherwise, those with some sort of disability will find it somewhat difficult to
use the Web site.

Priority 1 checkpoints include things such as ensuring that all tags contain a text equivalent of the
image in the alt="" attribute and that all information conveyed using colors is also available without
color. Priority 2 checkpoints include things such as ensuring that when colors are used, there is sufficient
contrast such that someone who views pages in black and white is not put at a disadvantage.

148

Chapter 9: Accessibility

To help developers and designers, the W3C links various techniques that can be used to pass each
checkpoint in the WCAG 1.0 Technigues document. The W3C breaks techniques down into multiple
documents, such as core, CSS, and HTML techniques. In addition, developers and designers can work
off of a checklist, WCAG 1.0 Checklist, provided by the W3C to speed up the process of creating accessible
Web sites.

Conformance levels are used when defining the accessibility standards of a site. The W3C defines three
different levels of conformance for WCAG 1.0:

QO Conformance Level A — All Priority 1 checkpoints are satisfied.
QO Conformance Level AA — All Priority 1 and Priority 2 checkpoints are satisfied.
QO Conformance Level AAA — All Priority 1, Priority 2, and Priority 3 checkpoints are satisfied.

WCAG 1.0 References

0 WCAG 1.0 — www.andrewconnell.com/go/123
0O WCAG 1.0 Techniques — www. andrewconnell.com/go/124

d WCAG 1.0 Checklist — www . andrewconnell.com/go/125

WCAG 2.0

The W3C — specifically, the Web Accessibility Initiative — created the WCAG 2.0, which is designed to
build off the original WCAG 1.0 version. Differing from WCAG 1.0, the second version is intended to be
more readable and usable, to apply broadly to different present and future technologies used to create
Web sites, and, arguably most important, validated using a combination of automated test harnesses and
manual checks.

The WCAG 2.0 is not a generally accepted standard because it is still in the draft stages, albeit very late
in the process. However when it is ratified as an official W3C recommendation, it is likely that it the
WCAG 1.0 will still be referenced and used as the standard for many organizations. This is no fault of
the W3C or a slight to the WCAG 2.0 — history has just shown that standards take time to be generally
adopted by the community.

One of the most significant differences in the WCAG 2.0 compared to the previous version is the
structure of the guidelines. The WCAG 2.0 is organized around four design principles. Each design
principle provides guidelines, just as the WCAG 1.0 has checkpoints; and, similar to the WCAG 1.0, each
guideline is assigned a level of success criterion (see below). Also like the WCAG 1.0, the WCAG 2.0
includes a list of techniques that can be used in meeting the various guidelines outlined in the
recommendation.

The four design principles that make up the WCAG 2.0 specify that the site should conform to all of the
following;:

Q Perceivable — The content and user interface components on a Web page must be presented in
ways that a user can understand. This includes guidelines to use text equivalents for all images,
to make pages which leverage color implement a distinguishable contrast for users reading in
black and white, and to make the content adaptable such that it can be presented in different
ways without losing the data or structure.

149

Chapter 9: Accessibility

Q Operable — The user interface, including content areas and navigation, must be usable. For
instance, a user should be able to navigate and interact with a Web page without the use of a
mouse, and they should have enough time to read content that is timed or automatically
refreshed. Timed implementations should also enable a user to pause, adjust, or extend the
timer.

QO Understandable — The content and user interface components must be easily understood by
users. The site must be readable by both those who can see the page and those who are blind,
and include things such as programmatically setting the language of the page and using the
appropriate HTML markup for abbreviations and acronyms. In addition, the user interface of
the Web site should be predictable and consistent across all pages. Finally, when prompting the
user for input, the site should perform identifiable error checking and validation, as well as
suggest potential solutions to errors.

QO Conformance — A Web site’s content must be robust enough that it can be consumed not only

by unimpaired users but also by those who are disabled in one way or another.

Like the WCAG 1.0, conformance levels are used when defining the accessibility standards of a site. The
W3C defines three different levels of conformance for WCAG 2.0:

O Level A — Meets all Level A success criteria.

O Level AA — Meets all Level A and Level AA success criteria.

O Level AAA — Meets Levels A, AA, and AAA success criteria.
Similar to the WCAG 1.0, the conformance levels can be applied to a specific Web page or according to a

complete process, which is defined as a combination of Web pages used in a sequential process, such as
placing an order on an e-commerce Web site.

WCAG 2.0 References

0 WCAG 2.0 — www.andrewconnell.com/go/126

Q How WCAG 2.0 Differs from WCAG 1.0 — www.andrewconnell.com/go/127
O WCAG 2.0 Techniques — www . andrewconnell.com/go/128
a

WCAG 2.0 Quick Reference — www.andrewconnell.com/go/129

United States Rehabilitation Act of 1973 Section 508

While many companies, organizations, and governments meet the level of conformity requirements of
the WCAG 1.0 or 2.0 for accessible Web sites, some elect to build their own standards. The United
States (U.S.) is one such country that has elected to create their own standard. The U.S. first passed

the Rehabilitation Act of 1973, which guarantees certain rights to people with disabilities. Section 508
of the Rehabilitation Act of 1973 was amended in 1998 by the U.S. government to require, among other
things, that all U.S. federal agencies make Web sites accessible to those with disabilities.

Section 508 contains a series of standards that the U.S. Congress adopted for various forms of
communication. Subpart B: Technical Standards — specifically, Section 1194.22, Web-based Intranet and
Internet Information and Applications — applies to Web sites. This section contains 16 paragraphs, each
defining a rule that Web sites must abide by in order to be considered in compliance with the law.

150

Chapter 9: Accessibility

These paragraphs, noted with letters (a) through (p), contain references to the WCAG 1.0. In fact,
paragraphs (a) through (k) map directly to WCAG 1.0 Priority 1 checkpoints, as indicated in the
standards on the Section 508 Web site (see the following section for more information). The other
paragraphs can be loosely associated with other checkpoints in the WCAG 1.0.

Rehabilitation Act of 1973 Section 508 References

O Rehabilitation Act of 1973 — www . andrewconnell.com/go/230
O Rehabilitation Act of 1973, Section 508 — www . andrewconnell.com/go/231

O Rehabilitation Act of 1973, Section 508, Subpart B, Section 1944.22
Standards — www.andrewconnell.com/go/232

W3C Markup Validation Service

How are Web pages and sites validated? Thankfully, the W3C provides a free validation service on their
Web site (www . andrewconnell.com/go/233), including a list of other Web-based validators. The W3C
Markup Validation Service enables users to enter a publicly accessible link, upload a file, or even paste in
the raw markup to be processed and tested for validation against the W3C recommendations. When
issues are found, users are presented with a comprehensive list of errors and warnings, including the
exact markup that caused it.

Advantages to Creating Accessible
Web Sites

So far, this chapter has presented accessibility as it relates to mandated rules that organizations and
governments are required to follow in order to meet the needs of disabled users. However, accessibility
is not something that should be considered only because an entity or law dictates it. Creating accessible
Web sites actually yields numerous advantages for organizations, many of which are economic and can
directly affect the bottom line in many ways, including development and maintenance of the Web site, as
well as increased user traffic.

The most obvious advantage to creating accessible Web sites is that it makes them available to a larger
audience. Users who have a disability that impedes them from using a non-accessible site can now use
accessible sites. Consider an e-commerce site that is not accessible and doesn’t conform to any
recommendations. An entire segment of the potential customer base would be excluded from using the
site, something the owners of any business would surely not desire. One of the prime goals in any
business is to make it as easy as possible to a target customer demographic to buy the company’s goods
or services. Providing a Web site that conforms to generally accepted accessibility standards excludes no
one from visiting and interacting with the site.

Building off the “broader audience” theme, another benefit to creating accessible Web sites is that they
can be consumed by less mainstream devices. For example, as the use of mobile devices grew, the only
sites that were easily consumed in these devices were those built specifically for mobile devices and
accessible sites. For a site to be considered accessible, it must have well-formed HTML or XHTML.
Because XHTML is simply a subset of XML, it can be easily transformed into a format that a mobile
device can consume using extensible style sheets (XSL).

151

Chapter 9: Accessibility

Accessible Web sites are also considered “future friendly” in the sense that future clients will most likely
conform to accessibility standards and thus be able to read and render accessible Web sites. This is not
only a benefit for site users because they can use any browser client they choose (including beta releases
of new browser versions), it also means that an organization does not have to test and potentially modify
the Web site markup to work in new browsers. The elimination of Web site maintenance yields a direct
financial savings to an organization.

Keeping with the economic theme, following the best practices required for creating accessible Web sites
generally means that less code needs to be written. For example, early (and non-accessible) Web sites
used the HTML element to define the styling of specific content. Larger Web pages typically
contained numerous elements defining the style of the text within them, including the font size,
family, decoration, and color, to name a few. This bloated the page and made it very time-consuming to
alter the site’s appearance, such as changing a font size from 12-point to 10-point. Instead, accessible sites
leverage cascading style sheets (CSS) and the element, which enable referencing a style by name,
rather than duplicating the styling details repeatedly. This results in less markup in the source of the Web
page, dramatically reducing the amount of time required to modify the presentation of a site.

Because accessible sites generally require less markup in the source of a Web page, that translates into a
smaller page payload. The smaller the payload, the less markup there is to maintain for a developer and
designer. Moreover, it results in faster page download times and reduced bandwidth expense.

Building off the “less markup” concept, another added benefit affects search results, as the Web site is
indexed by the larger search engines. By centralizing the styling of a Web site to CSS files, which results
in less markup, search engines can more effectively parse and index the content of a Web page. This
results in better search results and higher page rankings.

Accessible Web sites are viewed by the general Web development community as the way things should
be done. Granted, many organizations may not care about “doing the right thing,” as they are more
concerned about the bottom line. As shown here, however, even companies lacking a sense of
responsibility can benefit from conforming to the accepted guidelines; and the goodwill created by
designing accessible Web sites, even when not required, can set many developers, designers, and Web
development firms apart from the crowd.

Creating Accessible SharePoint Sites

Enough about the advantages and details associated with creating accessible Web sites — this book is
about developing SharePoint sites, so let’s get to the part about implementing these techniques in MOSS
Publishing sites. Out-of-the-box (OOTB), SharePoint does not generate accessible HTML markup.
Accessible Web sites generally implement their layout using HTML <DIV> elements and CSS, compared
to the traditional <TABLE>-based layouts. The HTML generated by SharePoint by default is primarily
<TABLE>-based.

However, this is not just a SharePoint issue; the <TABLE>-based layout stems from the inherent
architecture of Windows SharePoint Services (WSS) 3.0: It is built on top of the NET Framework
(specifically, ASP.NET 2.0). The controls included in ASPNET 2.0, such as the Gridview and Menu
controls, are rendered using HTML <TABLE> elements. While it is possible to change the rendering
of controls in ASPNET 2.0 with control adapters, it is not a turnkey solution.

152

Chapter 9: Accessibility

The new WSS 3.0-based architecture built on top of ASP.NET 2.0 is not all bad news when accessibility is
considered. The fact that SharePoint can now fully leverage the master page model makes it much easier
to centrally control the rendering.

As previously covered, creating accessible Web sites does not just fall in the domain of developers and
designers. Content owners and editors also have a responsibility when managing content. For instance,
adding images to an article on a site without including a text equivalent of the image using the alt=""
attribute (breaking WCAG 1.0 checkpoint 1.1) is just as bad as a developer not including table column
headings (<TH>) in data tables (breaking WCAG 1.0 checkpoint 5.1), as both are WCAG 1.0 Priority

1 issues.

Challenges to Creating Accessible SharePoint Sites

Aside from the general accessibility guidelines that should be followed when creating Web sites, a few
aspects of SharePoint (and ASP.NET 2.0) present unique challenges.

First, consider ASP.NET 2.0. As previously mentioned, the ASP.NET 2.0 Web controls” default rendering
is HTML <TABLE>-based. Thankfully, ASP.NET 2.0 introduced a new model for rendering controls that
permits developers to plug in their own rendering implementation to change the default behavior. This
is achieved using a custom ControlAdapter. In late 2006, Microsoft announced the CSS control
adapters and eventually handed the project over to the community by posting the source on CodePlex:
www . andrewconnell . com/go/234. This project changes the rendering of some of the ASP.NET 2.0
controls from <TABLE>-based to CSS-based, making it much easier to facilitate an accessible site.
Unfortunately, the CSS control adapters do not include all ASP.NET 2.0 controls — and frankly, many
enterprises have strong concerns about implementing a project that is not backed or supported by a
sizeable entity.

Another issue with using a custom ControlAdapter deals with the ASP.NET 2.0 Web Part
infrastructure. Web Parts are rendered within a two-row HTML <TABLE>, with one cell in each row, as
shown in Figure 9-1. The top row contains the Web Part’s header, where the title and Verbs menu is
made available (depending on the WebPart . ChromeType property, as it may be set to not show a
header). The second row contains the actual rendered Web Part. Similar to the HTML document object
model (DOM), WSS 3.0 provides a SharePoint-specific DOM called the Web Part Page Services Component
(WPSC).

The WPSC can be leveraged by client-side script to listen for Web-Part-specific events, and to interact
with the Web Parts already on the page, such as setting the values of public properties. The HTML
<TABLE> containing the Web Part is assigned a unique ID, as is the <DIV> that contains the rendering of
the Web Part in the second row. The WPSC is written with the expectation that this <TABLE> is present,
so implementing a custom ControlAdapter for Web Parts that strips the <TABLE> rendering would
break the WPSC.

Each project team can debate whether solving one issue by introducing another is a valid solution, but
this simply demonstrates a challenge in creating accessible SharePoint sites. Granted, many Publishing
sites will utilize field controls instead of Web Parts, but a Publishing site with zero Web Parts is unlikely.

153

Chapter 9: Accessibility

Figure 9-1

One of the most challenging aspects of SharePoint sites deals with the navigation. Many of SharePoint’s
menus require JavaScript, such as the Site Actions menu, the Edit Control Block (ECB) menu, and
toolbar menus. These menus also facilitate a very mouse-centered user interface. Accessible sites should
provide a way to perform the same actions when JavaScript has been disabled, as some clients do. Some
of these menus are not as prevalent within Publishing sites for most site consumers because things such
as Site Actions are not visible or available to anonymous users, which Publishing sites typically have
more of compared to traditional collaborative SharePoint sites. However, the site authoring experience
in Publishing sites is still heavily driven by these JavaScript and mouse-driven menus.

Another issue with Publishing sites involves the content authoring components experience.

The Rich Text Editor (RTE) provided OOTB in Publishing sites is supported only when using Internet
Explorer. In addition, it does not produce compliant markup. Thankfully, this can be easily addressed
by implementing the Telerik RadEditor Lite for MOSS, which has a compliant interface and produces
compliant markup. However, the Telerik RadEditor Lite is not fully accessible in that it contains a
mouse-centered user interface and does not work when JavaScript has been disabled. Refer to
Chapter 14, “ Authoring Experience Extensibility,” for more information on the Telerik RadEditor

Lite for MOSS.

Aside from all these issues, one of the most significant things that will need to be done is to modify the
OOTB markup provided by the Publishing Portal template. While Chapter 5 and Chapter 7 demonstrate
how to create a minimal master page with no branding, the OOTB markup provided by the Publishing
Portal template is a perfect example of the work in store for developers and designers when creating
accessible Publishing sites. When validated using the W3C Markup Validation Service, the default
Publishing Portal template (with zero customizations after creating the site collection) yielded 102 errors.

In an effort to address accessibility issues and challenges with SharePoint — specifically, Publishing
sites — Microsoft teamed up with another vendor, HiSoftware, to offer ways to facilitate the creation of
accessible Publishing sites.

Accessibility Kit for SharePoint

While SharePoint does not ship OOTB conforming to any of the accessibility guidelines recommended
by the W3C, Microsoft teamed up with a partner, HiSoftware (www.hisoftware. com), to help make
WSS 3.0 and MOSS 2007 meet these requirements. The Accessibility Kit for SharePoint (AKS), the result of
this partnership, was created by HiSoftware on behalf of Microsoft and is available as a free download
and install. Using the AKS, developers and designers can learn how to create accessible SharePoint sites,
including Publishing sites. The AKS is available from CodePlex (www.codeplex.com).

154

Chapter 9: Accessibility

Position and Goals of the AKS

Before factoring the AKS into a project plan, it is important to understand the position and goals

of the AKS. First and foremost, the AKS is not intended to be used as a turnkey solution; simply
installing the AKS does not make a site accessible. Instead, it is better to think of the AKS as more of an
educational tool. It contains files and utilities that will help you create accessible SharePoint sites.

The stated goal of the AKS is to help build sites that meet the WCAG 1.0 AA standard, or sites that meet
all Priority 1 and Priority 2 checkpoints. Developers can use the files and utilities included in the AKS as
reference and sample materials in implementing accessible Publishing sites.

The AKS follows the recommendation of Microsoft in terms of not modifying the OOTB codebase
installed by SharePoint. Instead, it is non-invasive in that it simply adds extra files to a SharePoint
installation. This ensures that the AKS files will not be overwritten or modified by any service packs or
patches distributed by Microsoft. It also enables developers to select which pieces of the AKS are used in
a custom Publishing site.

The AKS is an open system in that it is fully documented and provides guidelines for developers and
designers creating accessible sites. It is completely extensible by developers.

Installation and Implementation

After obtaining the AKS, installation is extremely simple, as it uses a standard wizard-driven experience
with no prompts aside from the usual license acceptance screens. The installation will copy an AKS
site-collection-scoped Feature to the [..]\12\TEMPLATE\FEATURES directory, but it is not installed.

It also adds some PDFs containing documentation and the entire source of the AKS in a new directory in
c:\Program Files, as well as adding a new program group in the Start menu on the server. One of the
items in the new AKS program group is used to install the AKS Feature.

The AKS Feature provisions a handful of master pages and CSS files that mimic the OOTB files
provisioned by the Publishing Portal site definition. Once the AKS Feature is activated on a site
collection created using the Publishing Portal site definition, users can select one of the AKS-provided
master pages that use the AKS-provided CSS files. Developers can then pick through these files to see
how things were implemented.

The AKS contains sample files, code, utilities, and some reusable content. The sample files include
master pages, CSS files, and page layouts. One of the most significant parts of the AKS are custom
control adapters. As previously mentioned, these custom ControlAdapter classes enable developers to
see how the rendering of Web controls is modified from the default rendering options.

Developers and designers working on Publishing sites that require some sort of accessibility compliance

level should consider and spend time evaluating the AKS to determine whether it can help meet the
project’s demands.

155

Chapter 9: Accessibility

Summary

This chapter introduced the concept of accessible Web sites. Creating accessible Web sites is not only
something that should be considered to make the site more easily readable by users with disabilities.
Accessible Web sites also offer positive economic and performance benefits, such as easier maintenance
and better search capabilities. This chapter provided introductions to the most common Web accessibility
guidelines: the WCAG 1.0, the WCAG 2.0, and the United States Rehabilitation Act of 1973 Section 508.
Finally, the Accessibility Kit for SharePoint (AKS), backed by Microsoft and its partner HiSoftware, was
introduced as a fantastic learning aid, in addition to offering reusable components for developers and
designers embarking on creating accessible Publishing sites.

156

10

Field Types and
Field Controls

Windows SharePoint Services (WSS) 3.0 and Office SharePoint Server (MOSS) 2007 include many
common field types that can be used in site columns, content types, and lists. This list includes
types such as single line of text fields, choice fields, date/time fields and Boolean yes/no fields.
Chapter 6 demonstrated that developers must learn to utilize these fields in order to deliver the
required functionality in any SharePoint application.

Specific to Publishing sites, these field types are used in site column definitions, which are then
used within content types that define the schema for types of content pages created on the site. The
Publishing Features add additional fields to SharePoint, such as the Publishing HTML field that is
used to provide the rich text storage capabilities, or the Publishing Image field that stores an image
with specific formatting and settings within a content page. Thankfully, the same infrastructure
that Microsoft leverages when creating field types is available to developers to create custom field
types when the provided field types do not satisfy the needs of a project.

In addition to creating custom field types that are used to store data, developers can also create
custom field controls that define the presentation of certain fields and the editing experience.
This enables developers to create the most unique and user-friendly content entry experience for
content owners while at the same time optionally providing additional complex validation on the
field during editing.

Creating custom field types and controls is a complex and complicated subject that does not have a
vast amount of resources or documentation. Many aspects of this area — creating both field types
and field controls — are not heavily documented, if at all. This chapter demonstrates how to create
a custom field type that also contains a custom field control in order to define a customized editing
experience, as well as adding a design-time preview of the control and customized validation
upon saving data in the field type.

Chapter 10: Field Types and Field Controls

Overview of All the Moving Parts

Before diving into the complex (and seemingly confusing) world of custom field types and field controls,
it helps to put things in perspective. This area of SharePoint can be a bit intimidating when developers
first see all the moving parts: field type, field value type, field control, rendering control, and field type
definition. Understanding all of these terms and their relationships helps when building a custom field
type and control because it is easier to visualize the big picture — that is, how they all fit together.

Figure 10-1 shows the relationships between the different moving parts in a custom field type and

field control.

Wrox.dll

GAC
/ Field Value
—> Field Type

fldtypes wrox.xml

[..]\12\TEMPLATE\ XML Field Control

Field Rendering
Control

WroxControl.ascx
[..]\12\TEMPLATE\CONTROLTEMPLATES

Figure 10-1

Each element within a custom field type and field control serves a unique purpose. The “hub” of the
field type in Figure 10-1 is the field type class. This class is what SharePoint looks to for everything related
to the custom field type. If the field type stores data within a custom data structure, rather than a simple
string, the field type class will contain a reference to the field value class. To handle the editing experience,
the field type will also contain a reference to the field control class. The field control class may optionally
leverage a SharePoint RenderingTemplate found in an ASPNET 2.0 user control file known as the
rendering control.

With the field type, field value, and field control defined, SharePoint now needs to be made aware of the
custom field type. This responsibility falls on the field type definition file. The field type definition file, an
XML file containing CAML markup, provides SharePoint with enough meta information about the field
type, as well as a pointer to the class, and the assembly containing the class, that defines the custom field
type. SharePoint looks at all the field type definition files on the server when it initially loads (after
recycling the Web services on a server) to generate a list of the valid field types.

158

Chapter 10: Field Types and Field Controls

Creating Custom Field Types and Controls

Creating a custom field type and field control requires creating numerous classes and files, packaging
everything up, and deploying files to numerous locations. The following sections explain each of the
components in Figure 10-1 in more depth, as they demonstrate how to create a custom field type and
field control. First, it helps to see what the final result will look like and review the requirements for the
field type and control.

The custom field type (CountryRegionField) and control (CountryRegionControl) that are built in
this chapter enable a content author to select a country and then enter a state/region depending on the
country selected. Initially, no country or state/region is selected. In fact, when no country is selected, the
controls to select or enter the state/region are not shown. Upon selecting “United States,” the page will
issue a postback and refresh, presenting the content author with another selector to pick a state. If the
content owner selects a country other than “United States,” then the page issues a postback and renders
a textbox to enter the region/county, rather than select a state from a selector. Figures 10-2 and 10-3 show
what the field control looks like when editing a page in a Publishing site with “United States” or “United
Kingdom” selected as the country, respectively.

Figure 10-2

Figure 10-3

In Display mode (when a page is not in Edit mode), the state/region should be displayed followed by
the country, separated by a comma as shown in Figure 10-4.

Figure 10-4

The last requirement is that the field type should return its value as a custom object, rather than a
delimited string. Therefore, when accessing a field via the API — named Location, for example — the
code would look like what is shown in Listing 10-1.

Listing 10-1: Accessing a field of type CountryRegionField

SPListItem item = list.Items[0];

CountryRegionValue fieldvValue = (CountryRegionValue)item["Location"];
Console.WriteLine("The country selected is: " + fieldvalue.Country) ;
Console.WriteLine("The state/region selected is: " + fieldvValue.Region) ;

159

Chapter 10: Field Types and Field Controls

To create a new custom field type and control, start with a new C# project in Visual Studio using the
Class Library project template. Add references to Microsoft.SharePoint and System.Web and sign
the project to create an assembly with a strong name.

Creating a Custom Field Type

The first step in creating a custom field type and field control is to create the field type class — the hub of
everything related to the field. All field types must inherit from the Microsoft.SharePoint.SPField
class or one that is derived from it. The CountryRegionField field type will inherit from Microsoft
.SharePoint.SPFieldMultiColumn, which is an internal field that is not visible through the browser
interface. It enables developers to store columns of data within a single field and provide an easy way
(via the Microsoft.SharePoint.SPFieldMultiColumnvalue) to serialize/deserialize the data to/
from SharePoint into a custom value class.

The countryRegionField class acts as the hub for everything related to the field type. It

provides SharePoint with the desired value class, the rendering control that is used to generate the
editing experience, as well as any custom validation that needs to be executed before saving data to

the field. The class CountryRegionField inherits the Microsoft.SharePoint.SPFieldMultiColumn
class, which enables multiple columns of data to be stored within the field type. All fields that
implement the SPFieldMultiColumn class must have two constructors. Nicely, both constructors are
always the same across all fields that implement this class. Listing 10-2 shows the contents of the
CountryRegionField.cs file.

Listing 10-2: CountryRegionField.cs file containing the custom field type

using System;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace WROX.ProMossWcm.Chapterl0 {
public class CountryRegionField : SPFieldMultiColumn {
public CountryRegionField (SPFieldCollection fields, string fieldName)
: base(fields, fieldName) { }

public CountryRegionField (SPFieldCollection fields, string typeName, string
displayName)
: base(fields, typeName, displayName) { }

}

At this point, although the field type class has the minimal code it needs to function, it is not very useful.
Later it will need to override a property and a few methods that tell SharePoint about the custom value
and control classes, as well as implement the validation when saving data to the field. However, for now
it is good enough as it is because these capabilities will be added when necessary.

Creating a Custom Field Type Definition

With a field type class created, the next step is to create the field type definition that will make
SharePoint aware of the field. This is done by creating an XML file in the [..]\12\TEMPLATE\XML
folder. When SharePoint starts up (when the server is rebooted or when the Web process has been

160

Chapter 10: Field Types and Field Controls

recycled), it looks at the [. .]\12\TEMPLATE\XML folder and loads all the field type-defined files
named fldtypes[_*].xml. All the SharePoint fields provided in the WSS 3.0 install are found in the
fldtypes.xml file. Other fields are added based on the MOSS 2007 installation. For instance, all

the Publishing-specific fields are defined in the £1dtypes.publishing.xml file. One of the most
valuable aspects of this implementation is that developers have the source of the definitions for the
Microsoft-implemented controls, which can be used for reference — the best documentation around!

The field definition file tells SharePoint a few things about the field type, including the name of the field
and the underlying parent field type. The definition also tells SharePoint some of the rules associated
with the type, such as whether it can be used to create new site columns or columns within survey lists,
as well as the full name of the class and assembly containing the field type class. The other critical piece
of the field type definition is the inclusion of a rendering pattern. The display rendering pattern defines
how the field’s content should be rendered when in a list or display mode. The CAML markup is shown
in Listing 10-3.

Listing 10-3: CountryRegionField definition (fldtypes_wrox.xml)

<?xml version="1.0" encoding="utf-8" ?>
<FieldTypes>
<FieldType>
<Field Name="TypeName">CountryRegion</Field>
<Field Name="ParentType">MultiColumn</Field>
<Field Name="TypeDisplayName">Country, Region </Field>
<Field Name="TypeShortDescription">Country and state/region</Field>
<Field Name="UserCreatable">TRUE</Field>
<Field Name="FieldTypeClass">WROX.ProMossWcm.Chapterl0.CountryRegionField,
Chapterl0, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c591e70cfdf9cedf</Field>
<RenderPattern Name="DisplayPattern">

<Switch>
<Expr><Column /></ExXpr>
<Case Value="" />
<Default>

<Column SubColumnNumber="1" HTMLEncode="TRUE" />
<HTML><! [CDATA[,]] ></HTML>
<Column SubColumnNumber="0" HTMLEncode="TRUE" />
</Default>
</Switch>
</RenderPattern>
</FieldType>
</FieldTypes>

The first part of the field type definition (the <Field> elements) contains the metadata about the field that
SharePoint needs to know about up front. Although the list seems somewhat limited, there are quite a few
additional options that are not included in Listing 10-3. The following list explains each of the fields:

Q TypeName: This is the unique name of the field used when creating items such as site columns
using a Feature. For example, if a site column were created that was based on the field type
created in this chapter, the element manifest’s site element would look like the following

(omitting the other required attributes):

<Field ID="..." Name="..." DisplayName="..." Type="CountryRegion" />

161

Chapter 10: Field Types and Field Controls

Q ParentType: The parent type is the field type from which the custom field type is derived — in
this case, SPFieldMultiColumn or just MultiColumn.

Q TypeDisplayName: This name is used to display the field type on pages such as the Site
Column Gallery or a content type’s detail page.

QO TypeShortDescription: The short description is the string used to display the field type as an
option when creating new site or list columns (the long radio button list under the new column’s
title textbox).

Q UserCreatable: This Boolean property tells SharePoint whether the field type can be used in the
creation of a column in a list by a user. When false, developers can still use the field type in site
columns within the definition of list templates created using Features.

Q FieldTypeClass: This contains the strong name of the field type class and the assembly
containing the class. This is also referred to as the five-part name: namespace.type, Assembly,
Version, Culture, PublicKeyToken.

Following the fields is the rendering pattern. There are two rendering pattern options: DisplayPattern
and HeaderPattern. The display pattern is used when the field type is displayed on a page such as a
list view page or an item detail page. In Listing 10-3, the display pattern contains a CAML switch
statement, which is similar to C#’s switch statement. It first checks whether the current column contains
any data. If it is empty, nothing is rendered. Otherwise, the two values within the field (country and
state/region) are rendered, with a comma and nonbreaking space separating the two. Notice how the
<Column /> node contains an attribute SubColumnNumber. This tells SharePoint to use a value from a
specific column in this field type. The number to use is defined with the field type’s custom value class.

The custom field type definition should be added to the Visual Studio project in the following location:
\TEMPLATE\XML\ f1dtypes_wrox.xml.

Creating a Custom Field Value

One of the requirements of the ContryRegionField custom field type was to store the data within a
custom data structure. While it sounds a bit complex, it is actually very simple. The custom field value
class is very handy with field types that are derived from the SPFieldMultiColumn field because data
is stored in the SPFieldMultiColumn field as a special delimited string using ; # as the delimiter, and
not just between two values but surrounding them. For example, using the examples in Figures 10-2 and
10-3 shown earlier, the two strings containing the data would be as follows:

;#United States;#Florida;#
;#United Kingdom; #Edinburgh;#

While it is entirely possible to write code that parses these strings, developers should instead create a
custom field value class that knows not only how to serialize and deserialize the data between the raw
string and a strongly typed property bag, but also enables users to specify the data’s position within the
string. This is helpful, as the index of the data within the raw string is directly related to the <Column
SubColumnNumber="" /> CAML element used in the rendering pattern within the field type definition.

The custom field type value class, CountryRegionvalue, inherits from the Microsoft.SharePoint

.SPFieldMultiColumnvalue class. This class has three constructors but only two are necessary to
override. The default constructor that accepts no parameters should be overridden to call the base

162

Chapter 10: Field Types and Field Controls

constructor, passing in the number of data columns stored in the field. The second constructor
should take a string and pass it to the base constructor that accepts the string value to parse. The
SPFieldMultiColumnvValue class then internally splits the string into an array. The last part to

the custom value class adds properties that reference a specific position in the array representing the
data in the delimited strings. Listing 10-4 shows the contents of the CountryRegionvalue.cs file.

Listing 10-4: CountryRegionValue.cs file containing the field value

using System;
using Microsoft.SharePoint;
namespace WROX.ProMossWcm.Chapterl0 {
public class CountryRegionValue : SPFieldMultiColumnValue {
private const int NUM_FIELDS = 2;

public CountryRegionValue ()
: base (NUM_FIELDS) { }

public CountryRegionValue (string value)
: base(value) { }

public string Country ({
get { return this[0]; }
set { this[0] = value; }
}

public string Region {
get {return this[1];}
set { this[1l] = value; }
}

}

Although the value class is created, it is worthless until it is associated with the field type class. Refer
back to Figure 10-1, which illustrates the relationship between all the moving parts in the custom field
type and field value. In order to make the custom field type class aware of the custom value type, the
SPField.GetFieldvalue () method should be overridden; that should return an instance of the value
type. The code in Listing 10-5 should be added to the CountryRegionField class.

Listing 10-5: Wiring the field type and field value together

public override object GetFieldvalue (string value) ({
if (string.IsNullOrEmpty (value))
return null;
return new CountryRegionValue (value);

}

The next step is to create the control that will be used when interacting with the field type in Edit mode.

163

Chapter 10: Field Types and Field Controls

Creating a Custom Field Control

The requirements for the custom field type CountryRegionField are to have a customized and specific
editing experience for content authors. Refer back to Figures 10-2 and 10-3 to see what the interface
should look like. To add a custom editing experience for a custom field type, a developer would create a
custom field control class. This class contains all the necessary information about the field control.

Thankfully, Microsoft did not stop there and leave developers with only a server control model to create
the editing experience. The field control class can point to a new element called a SharePoint rendering
template. This rendering template, similar to an ASPNET 2.0 user control, enables developers to define
the editing experience declaratively, rather than doing everything in managed code. However, unlike
ASP.NET 2.0 user controls, the ASCX file is not loaded first, followed by the code-behind. Rather,

the field control class tells SharePoint which rendering template to load. This presents a bit of a challenge
for ASP.NET 2.0 developers who are used to the other model because it requires thinking a bit
backwards at times.

The first piece in a custom field control is the control class. This class must inherit from the
Microsoft.SharePoint.WebControls.BaseFieldControl class or one that derives from it. For the
CountryRegionField, the BaseFieldControl will work. The control class, CountryRegionControl,
will contain methods that override those defined in the BaseFieldControl class. At minimum, only
three methods and properties need to be overridden. First, the control needs to make SharePoint aware
of which rendering template to create by overriding the Defaul t TemplateName property, as shown in
Listing 10-6.

Listing 10-6: CountryRegionControl.cs custom field control

using System;
using Microsoft.SharePoint.WebControls;
using System.Web.UI.WebControls;

namespace WROX.ProMossWcm.Chapterl0 {
public class CountryRegionControl : BaseFieldControl {

private const string RENDERING_TEMPLATE = "ContryRegionControl";

protected override string DefaultTemplateName {
get { return RENDERING_TEMPLATE; }
}

Before going any further, it makes sense to switch gears here and create the rendering template —

the ASCX control that will be used to declaratively define the editing experience. This file,
CountryRegionControl.ascx, resides in the [..]\12\TEMPLATE\CONTROLTEMPLATES folder and
can contain one or more rendering templates. A good example can be found in the DefaultTemplates
.ascx, which contains WSS 3.0 field control rendering templates, and SharePoint_Publishing_
defaultformtemplates.ascx, which contains Publishing field control rendering templates included
with MOSS 2007. The name of the file doesn’t matter — what matters is the ID of the rendering template
within the file. It is this ID that is returned to SharePoint in the CountryRegionControl class using the
overridden DefaultTemplateName property. The contents of the CountryRegionControl.ascx file
are shown in Listing 10-7. (Some code is omitted here for readability. The full source can be found in the
downloadable code for the book.)

164

Chapter 10: Field Types and Field Controls

Listing 10-7: CountryRegionControl.ascx custom field control rendering template

<%@ Control Language="C#" %>

<%@ Assembly Name="Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c" %>

<%@ Register Assembly="Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c" Namespace="Microsoft.SharePoint.WebControls"
TagPrefix="SharePoint" %>

<SharePoint:RenderingTemplate id="CountryRegionControl" runat="server">
<Template>
<table class="ms-form">
<tr>

<td align="right">Country:</td>

<td><asp:DropDownList id="Country" runat="server" autopostback="true"
cssclass="ms-RadioText"><asp:ListItem>Select a
country...</asp:ListItem><asp:ListItem>United

States</asp:ListItem><asp:ListItem>Afghanistan</asp:ListItem><!-- omitted for
readability --><asp:ListItem>Zimbabwe</asp:ListItem></asp:DropDownList></td>
</tr>
<tr>

<td align="right"><asp:literal id="RegionInputLiteral" runat="server"
text="Region:" visible="false"/><asp:literal id="RegionSelectorLiteral"
runat="server" text="State:" visible="false"/></td>

<td><asp:textbox id="RegionInput" runat="server" visible="false"
cssclass="ms-input" /><asp:DropDownList id="RegionSelector" runat="server"
visible="false" cssclass="ms-RadioText"><asp:ListItem>Select a
state...</asp:ListItem><asp:ListItem>Alabama</asp:ListItem>

<asp:ListItem>Alaska</asp:ListItem><!-- omitted for readability -->
<asp:ListItem>Wyoming</asp:ListItem></asp:DropDownList></td>
</tr>
</table>
</Template>

</SharePoint:RenderingTemplate>

The rendering control contains a single HTML table. Within this table are two rows. The first row is
for the country selection. The first option in the DropDownList contains instructions for the user; the
second option contains the country “United States,” and all subsequent entries contain other countries
in the world. The second row is a bit more interesting. In the first cell, two Literal controls are used
to show labels for the second input: the state or the region. Both are initially set to be hidden
(visible="false"). The second cell in the second row contains both a TextBox control and
DropDownList. One is used by the contributor to select a state when the country “United States” is
selected, whereas the other is used to enter the region of the country as a free-form text entry. Each
Literal and entry control in the second row of the table is shown or hidden based on the selection of
the Country DropDownList. This is handled in the CountryRegionControl class.

Now that the rendering template has been created, it is time to jump back to the
CountryRegionControl class and add the necessary code to wire everything up. First, a few class-
scoped fields are needed that will be used to reference the Web controls in the rendering template. Add
two DropDownList controls, two Literals, and one TextBox to the class, as well as a single constant to
enforce consistency to the CountryRegionControl class, as shown in Listing 10-8.

165

Chapter 10: Field Types and Field Controls

Listing 10-8: CountryRegionControl.cs custom field control

namespace WROX.ProMossWcm.Chapterl0 {
public class CountryRegionControl : BaseFieldControl {
private const string RENDERING_TEMPLATE = "CountryRegionControl";

private const string UNITED_STATES = "United States";

protected DropDownList _country;
protected DropDownList _regionSelector;
protected Literal _regionSelectorLiteral;
protected Literal _regionInputLiteral;
protected TextBox _regionInput;

protected override string DefaultTemplateName {
get { return RENDERING_TEMPLATE; }
}

The next step is to override the CreateChildControls () method, something that is done in almost

all server controls. First, ensure that the current mode of the page is what is desired. In other words,

the rendering template is only used in rendering the editing experience, not the display experience. The
display experience is handled in the field type definition as outlined previously in Listing 10-3.
Therefore, if the page is not currently in Edit mode, the control should “short-circuit” or stop doing

any rendering.

Next, like all ASPNET 2.0 server controls, a call to the base class’ CreateChildControls ()should

be added before adding any custom logic. The main purpose of CreateChildControls ()in the
CountryRegionControl class is to wire up references of the Web controls in the class to those in

the rendering template. This is necessary so that values can be set and retrieved later. Unfortunately,
because the class is being processed before the ASCX file containing the rendering template,

ASPNET 2.0’s capability to automatically wire up the controls is not an option. Therefore, each control
must be retrieved and associated with the internal field created in Listing 10-8. This is done using the
BaseFieldControl.TemplateContainer.FindControl () method. This object, TemplateContainer,
is a reference to the template within the rendering template. After obtaining a reference, it is good
practice for developers to test whether it is valid. This is done by simply checking whether the control
retrieved is not equal to null. The CreateChildControls () method in the CountryRegionControl
class is shown in Listing 10-9.

Listing 10-9: CountryRegionControl CreateChildControls() method

protected override void CreateChildControls () {
if (this.Field == null ||
this.ControlMode == SPControlMode.Display ||
this.ControlMode == SPControlMode.Invalid)
return;

base.CreateChildControls() ;

// get reference to Country selector
_country = TemplateContainer.FindControl ("Country") as DropDownList;

166

Chapter 10: Field Types and Field Controls

if (_country == null)
throw new ArgumentException ("Country DropDownList not found. Possibly corrupt
control template.");

_country.SelectedIndexChanged += new EventHandler (Country_SelectedIndexChanged) ;

// get reference to State selector
_regionSelector = TemplateContainer.FindControl ("RegionSelector") as
DropDownList;
if (_regionSelector == null)
throw new ArgumentException("RegionSelector DropDownList not found. Possibly
corrupt control template.");

// get reference to State selector's label
_regionSelectorLiteral = TemplateContainer.FindControl ("RegionSelectorLiteral")
as Literal;
if (_regionSelectorLiteral == null)
throw new ArgumentException("RegionSelectorLiteral Literal not found. Possibly
corrupt control template.");

// get reference to Region textbox for free-form entry
_regionInput = TemplateContainer.FindControl ("RegionInput") as TextBox;
if (_regionInput == null)
throw new ArgumentException("RegionInput TextBox not found. Possibly corrupt
control template.");

// get reference to Region textbox's label
_regionInputLiteral = TemplateContainer.FindControl ("RegionInputLiteral") as
Literal;
if (_regionInputLiteral == null)
throw new ArgumentException("RegionInputLiteral Literal not found. Possibly
corrupt control template.");

}

Notice the highlighted line in Listing 10-9. This line is used to wire up a server-side event handler with
the country selector to handle when the value selected changes. This provides the capability to show and
hide the necessary state/region Web controls and labels. This event wiring must be done within the
CreateChildControls () method, rather than the markup within the rendering template, in order for
the event to be correctly registered in the ASPNET 2.0 page life cycle.

The next step in creating the field control is to override the BaseFieldControl.Value property. This
property is used by SharePoint to set the value of the control when loading it in Edit mode, as well as to
retrieve the values from the Web controls in the rendering template upon postbacks. When coding the
Value property’s get and set, developers should always call the EnsureChildControls () method
first. This method checks whether the CreateChildControls () method has been called. If it has not
been called, it is called at this time. It is only after an internal flag has been set in the NET Framework
indicating that CreateChildControls ()has been called that the code will continue after calling
EnsureChildControls (). Itis critical that EnsurechildControls ()is called first because the value
property is utterly useless without valid references to the Web controls in the rendering template.

The vValue property returns a value of type object. The object returned should be the same custom field

value that is part of the custom field type — CountryRegionvalue in the case of the field type created
in this chapter.

167

Chapter 10: Field Types and Field Controls

First create the Value’s get as shown in Listing 10-10. After a validation check, the purpose here is to
retrieve the values from the Web controls in the rendering template and store them into a new object of
type CountryRegionvalue, returning this object back to SharePoint.

Listing 10-10: CountryRegionControl.Value property’s get

public override object Value {
get {
EnsureChildControls () ;
CountryRegionValue field = new CountryRegionValue() ;

if (_country == null || _regionSelector == null || _regionInput == null) {
field.Country = String.Empty;
field.Region = String.Empty;
} else {
// set country value
if (_country.SelectedIndex == 0)
field.Country = String.Empty;
else
field.Country = _country.SelectedvValue;

// set region value
if (_country.SelectedValue == UNITED_STATES) {
if (_regionSelector.SelectedIndex == 0)
field.Region = String.Empty;

else
field.Region = _regionSelector.SelectedvValue;
} else
field.Region = _regionInput.Text.Trim() ;

}

return field;
}
set {...}

In the value’s set, shown in Listing 10-11, after a validation check the Web controls within the
rendering template are set using the values provided by the value passed in by SharePoint. The last step
in the set is to update the visibility of the controls. This is necessary because the editing experience
should show either a state selector if the country selected is “United States” or a free-form textbox if
some other country is selected.

Listing 10-11: CountryRegionControl.Value property’s set

public override object Value {
get {...}
set {
EnsureChildControls () ;

if (value != null && !string.IsNullOrEmpty (value.ToString())) {
CountryRegionValue field = new CountryRegionValue (value.ToString()) ;

_country.Selectedvalue = field.Country;
if (_country.SelectedIndex == 1) // if UNITED STATES selected

168

Chapter 10: Field Types and Field Controls

_regionSelector.Selectedvalue = field.Region;
else if (_country.SelectedIndex >= 2) // if any other country selected
_regionInput.Text = field.Region;
SetRegionControlVisibility (_country.SelectedIndex) ;
}

}

private void SetRegionControlVisibility (int countrySelectedIndex) {
switch (countrySelectedIndex) ({

case 0: // 1f none selected
_regionSelector.Visible = false;
_regionSelectorLiteral.Visible = false;
_regionInput.Visible = false;
_regionInputLiteral.Visible = false;
break;

case 1: // 1f UNITED STATES selected
_regionSelector.Visible = true;
_regionSelectorLiteral.Visible = true;
_regionInput.Visible = false;
_regionInputLiteral.Visible = false;
break;

default: // if any other country selected
_regionSelector.Visible = false;
_regionSelectorLiteral.Visible = false;
_regionInput.Visible = true;
_regionInputLiteral.Visible = true;
break;

The last thing that needs to be added to the CountryRegionControl class is the server-side event
handler that is called when the value of the country selector is changed, as shown in Listing 10-12.

Listing 10-12: Country selector event handler

protected void Country_SelectedIndexChanged (object sender, EventArgs e) {
EnsureChildControls () ;
SetRegionControlVisibility (_country.SelectedIndex) ;

}

With the field control finished, it now needs to be wired up to the field type (refer to Figure 10-1 at the
beginning of the chapter). This is done by overriding yet another property on the “hub” class of the field
type: CountryRegionField. The property, FieldRenderingControl, returns an object of type
BaseFieldControl back to SharePoint when called. This is how SharePoint knows to load the field
control for the custom field type. FieldRenderingControl is a read-only property, so only the get
portion needs to be completed. Note that the underlying BaseFieldControl.FieldName property
must be set with the internal name of the field instance that is using the custom field type. This is
demonstrated in Listing 10-13.

169

Chapter 10: Field Types and Field Controls

Listing 10-13: Wiring field controls to field types

public override BaseFieldControl FieldRenderingControl ({
get {
BaseFieldControl control = new CountryRegionControl () ;
control.FieldName = this.InternalName;
return control;
}
}

The only thing left to do with the field control is to add a design-time experience. At this point, Office
SharePoint Designer (SPD) 2007 doesn’t have a clue what to show as a preview for the custom field
control when it is dropped on the page. If the field control were dropped into a page layout in SPD and
viewed in Design mode, it would show up as a gray box with an error, as shown in Figure 10-5.

Figure 10-5

Adding Design-Time Rendering Preview

Figure 10-5 highlights the fact that page developers and designers will have no idea what the field
control will look like based on the preview in SPD’s Design mode as it is currently coded. The next step
is to add a design-time preview. The control’s Render () method is always called by SPD in an effort to
generate the HTML that is shown in Design mode. However, in the case of a Publishing site, field
controls are not going to be associated with any real underlying data in Design mode, as page layouts
are the “source” of the data — they are used in conjunction with a master page to define the rendering
of a page, which is just an item within the Pages list. Therefore, the Render () method is not ideal.
Instead, developers should create a customized view of the control whenever it is rendered in SPD’s
Design mode.

To create the custom HTML used in a design-time experience, the control must implement the
PMicrosoft.SharePoint.WebControls.IDesignTimeHtmlProvider interface. This interface
contains a single method, GetDesignTimeHtml (), which returns a string. This string should contain the
HTML used to render the control in SPD’s Design mode. While a custom design-time interface can be
implemented very easily with one line of code in GetDesignTimeHtml (), it would not provide a very
clean or consistent experience compared to the out-of-the-box (OOTB) field controls shipped in MOSS
2007. For instance, the following code would present the Design mode experience shown in Figure 10-6:

public string IDesignTimeHtmlProvider.GetDesignTimeHtml () {
return "Florida, United States";
}

170

Chapter 10: Field Types and Field Controls

Figure 10-6

Notice how the text “Florida, United States” seems to be just floating on the page? It looks out of place
compared to the other field controls. The design-time experience for these controls contains a significant
amount of additional HTML that creates the tabbed interface with a border surrounding it. How does
Microsoft do it with the OOTB field controls? Unfortunately, it is not possible to determine exactly how
this is done because the methods that generate this interface are obfuscated and thus not available.

See for yourself how this is hidden. The method that implements this tab-like interface is Render ().

Use the popular and free tool Reflector by Lutz Roeder (www .andrewconnell.com/go/237) to
disassemble the Microsoft.SharePoint.WebControls.BaseFieldControl.Render ()method
in the Microsoft.SharePoint.dll assembly found in the [. .]1\12\ISAPI folder.

However, with a bit of reverse engineering, by looking at the source of the rendered pages it is possible
to simulate the same experience in custom field controls. By wrapping the preview HTML up in a few
<DIV> tags and leveraging a few of the Microsoft- provided CSS classes, the CountryRegionControl’s
design-time experience can look just like any other control. The code in Listing 10-14 will create

the design-time experience in SPD shown in Figure 10-7. Note in particular that the interface name

has been added to the class declaration.

Listing 10-14: Adding a design-time experience to the CountryRegionControl
field control

public class CountryRegionControl : BaseFieldControl, IDesignTimeHtmlProvider {
// omitted for brevity

string IDesignTimeHtmlProvider.GetDesignTimeHtml () {
StringBuilder designTimePreview = new StringBuilder();
designTimePreview.Append("<div align=\"left\" class=\"ms-formfieldcontainer\">");

designTimePreview.Append ("<div class=\"ms-formfieldlabelcontainer\"
nowrap=\"nowrap\">") ;

designTimePreview.Append ("<span class=\"ms-formfieldlabel\"
nowrap=\"nowrap\">{0}") ;

designTimePreview.Append ("</div>") ;

designTimePreview.Append ("<div class=\"ms-formfieldvaluecontainer\">");
designTimePreview.Append ("{1}");

designTimePreview.Append ("</div>") ;

designTimePreview.Append ("</div>") ;

return string.Format (designTimePreview.ToString(),

this.Field.Title,
"Florida, " + UNITED_STATES);

171

Chapter 10: Field Types and Field Controls

Figure 10-7

Now the CountryRegionControl looks just like any other field control provided OOTB. This completes
the field control part of the custom field type. The CountryRegionField is almost finished. The last
thing that is needed is some custom validation.

Adding Custom Data Validation

The requirements for the CountryRegionField dictate that content owners should not be permitted to
select a country or region without selecting the other value. Fields marked as required that use the
CountryRegionField must take into account what “required” actually means within the context of the
field. In addition, whatever minimum information must be provided on nonrequired fields must still be
entered. For instance, if the field is required, then both country and state/region must be submitted.
However, if the field is not required, then the content owner can either leave both country and state/
region unspecified or enter both values. This is because simply entering the country is not enough —
even on optional fields, it is all or nothing.

Developers have two options in implementing validation of the data specified in the custom field type.
The first option is to use ASPNET 2.0 validation controls, either client-side or server-side, in the
rendering template to validate the information provided. While this option would work, it leaves open a
huge hole. What happens when a developer writes custom code that interacts with a field using the type
CountryRegionField? The validation in the field control is not even taken into account because this
approach of accessing the field through the API completely bypasses the field control that is only shown
in the browser experience.

The other option is to implement purely server-side validation within the field type itself. This validation
will be executed both when the field is accessed directly through the API and when content owners
interact with the field using the Web-based authoring experience. It is recommended, at a minimum, to
implement the second option in terms of validation on custom field types. The first approach, using ASP.
NET 2.0 validation controls in the rendering template, is optional and can simply provide a better
experience for content authors, as it can potentially eliminate the postback necessary to run the provided
data through the validation controls if they are implemented as client-side validation.

To implement the recommended option, another method on the CountryRegionField custom field
type class must be overridden. The Microsoft.SharePoint.SPField.GetValidatedString()
method takes a single parameter of type object, which is the field value in the field type, and returns a
string. It is the responsibility of this method to do all the validation checking; and if there is a problem
with the data, it should throw the exception Microsoft.SharePoint.SPFieldvalidationException.
When SharePoint receives this exception it displays a user-friendly exception notice containing the
message provided as a parameter when the exception is called. The code in Listing 10-15 contains the
logic for the CountryRegionField field type data validation.

172

Chapter 10: Field Types and Field Controls

Listing 10-15: CountryRegionField.GetValidatedString()

public override string GetValidatedString (object wvalue) {
if (value == null) {
if (this.Required) throw new SPFieldValidationException("Invalid value for
required field.");
return string.Empty;
} else {
CountryRegionValue field = value as CountryRegionValue;
// if no value obtained, error in the field
if (field == null) throw new ArgumentException("Invalid value.");
// if it is required...
if (this.Required) {
// make sure that both COUNTRY & REGION are selected
if (field.Country != string.Empty && field.Region != string.Empty)
throw new SPFieldvValidationException("Both Country and Region/State are
required.");
} else {
// else, even if not required, if one field is filled in, the other must be
as well
if (!string.IsNullOrEmpty(field.Country) !=
Istring.IsNullOrEmpty (field.Region))
throw new SPFieldvalidationException("Both Country and Region/State are
required if one value is entered.");
}
return value.ToString() ;

}

Notice that the code in the GetValidatedString () method takes into account whether the field is
required or not using the SPField.Required property. Developers that elect to implement custom
validation for the custom field type must take into account whether the field is required. If the value
passes all validation checks, then it is passed back to the caller: SharePoint.

Creating Custom Field Controls without
Custom Field Types

What happens when you need to simply provide a custom editing experience rather than a unique
storage mechanism? While this chapter has focused on creating a custom field control that is paired with
a custom field type, another option is to simply create a control that utilizes an existing field type. A
possible use of this is when one of the existing field types works just fine for storing the data, such as a
simple text field, but users want to modify the editing experience.

A classic example of this is the Telerik RadEditor Lite MOSS Editor control. This control is a feature
equivalent control to the RichEditField control included OOTB in MOSS 2007. The primary
difference between the two is that the RadEdi tor control supports multiple browsers, whereas the
RichEditField only supports Microsoft Internet Explorer. The RadEdi tor control, a custom field
control, utilizes the same Publishing HTML field type that the RichEditField does — the only
difference is in the editing experience.

173

Chapter 10: Field Types and Field Controls

The Telerik RadEditor Lite MOSS Editor control is covered in more detail in Chapter 14, “Authoring
Experience Extensibility.”

Creating a custom control that leverages an existing field type is much simpler than linking one with a
custom field type. Essentially, the only parts to build are the class that inherits from BaseFieldControl
and the rendering template. Once the field control is built and deployed, a developer or designer can
then manually add a <% @Register %> tag to a page layout and replace an existing field control with
the custom field control’s server tag.

For example, consider a project requirement to provide an editing experience that offers input fields for a
content owner to enter a URL and title for a book on WROX'’s Web site. If the title and URL are entered,
the display rendering should display the WROX logo followed by the book’s title hyperlinked to the
book’s page on WROX's site. Otherwise, nothing would be rendered. The OOTB field type to be used
would be the Hyperlink or Picture field type, as the only things that need to be stored are the book title
and URL.

The first step is to create the rendering template, WroxTemplates.ascx, a simple table consisting of two
textboxes, as shown in Listing 10-16.

Listing 10-16: WroxTemplates.ascx

<%@ Control Language="C#" %>

<%@ Assembly Name="Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcelll1e9429c" %>

<%@ Register Assembly="Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c" Namespace="Microsoft.SharePoint.WebControls"
TagPrefix="SharePoint" %>

<SharePoint:RenderingTemplate id="WroxBookControl" runat="server">
<Template>
<table class="ms-form">
<tr>
<td align="right">Book Title:</td>
<td><asp:textbox id="WroxBookTitle" runat="server" cssclass="ms-long" /></td>
</tr>
<tr>
<td align="right">Book URL:</td>
<td><asp:textbox id="WroxBookUrl" runat="server" cssclass="ms-long" /></td>
</tr>
</table>
</Template>
</SharePoint:RenderingTemplate>

Next, add the WROX logo to the root of a C# project and set the build action to Embedded Resource.
This will compile the image into the assembly. In order to retrieve the image out of the class library, it
must be registered using an assembly attribute within the AssemblyInfo.cs file by adding the
following code:

[assembly: System.Web.UI.WebResource ("WROX.ProMossWcm.Chapterl0.WROX.gif",
"image/Jjpg")]

174

Chapter 10: Field Types and Field Controls

With the rendering template and image addressed, the next thing to do is build the custom field control.
Similar to the field control built previously in this chapter, this field control will have the standard
protected fields used to reference the Web controls within the rendering template, the
DefaultRenderingTemplate and Value properties, as well as the CreateChildControls ()and
GetDesignTimeHTML () methods, as shown in Listing 10-17. (Some code is omitted here for readability,
but the full source can be found in the downloadable code for the book.)

Listing 10-17: WroxBookControl.cs

using System;

using System.Text;

using System.Web.UI.WebControls;

using Microsoft.SharePoint;

using Microsoft.SharePoint.WebControls;

namespace WROX.ProMossWcm.Chapterl0 {
public class WroxBookControl : BaseFieldControl, IDesignTimeHtmlProvider {
private const string RENDERING_TEMPLATE = "WroxBookControl";
private const string WROX_IMAGE_PATH = "WROX.ProMossWcm.Chapterl0.WROX.gif";

protected TextBox _wroxBookTitle;
protected TextBox _wroxBookUrl;

protected override string DefaultTemplateName {
// omitted from book for readability
}

protected override void CreateChildControls () {
// omitted from book for readability
}
public override object Value {
get {
EnsureChildControls () ;
SPFieldUrlvalue field = new SPFieldUrlValue();

if (_wroxBookTitle == null || _wroxBookUrl == null) {
field.Description = String.Empty;
field.Url = String.Empty;

} else {
field.Description = _wroxBookTitle.Text.Trim();
field.Url = _wroxBookUrl.Text.Trim() ;

}
return field;

}

set {
EnsureChildControls () ;

if (value != null && !string.IsNullOrEmpty(value.ToString())) {
SPFieldUrlValue field = new SPFieldUrlValue(value.ToString())

7

_wroxBookTitle.Text = field.Description;
(continued)

175

Chapter 10: Field Types and Field Controls

Listing 10-17 (continued)

_wroxBookUrl.Text = field.Url;
}

}

string IDesignTimeHtmlProvider.GetDesignTimeHtml () {
// omitted from book for readability
}

Finally, the last step is to implement the special rendering for the value in the control when the control is
in Display mode, as shown in Listing 10-18.

Listing 10-18: Implementing custom display mode rendering

protected override void RenderFieldForDisplay (System.Web.UI.HtmlTextWriter output)
{
// if nothing specified
if (this.ItemFieldValue == null ||
string.IsNullOrEmpty (this.ItemFieldValue.ToString())
return;

// get data from SharePoint
SPFieldUrlvValue field = new SPFieldUrlvValue(ItemFieldValue.ToString());

// create image control

Image wroxImage = new Image();

wroxImage.ImageUrl = Page.ClientScript.GetWebResourceUrl (this.GetTypel(),
WROX_IMAGE_PATH) ;

wroxImage.AlternateText = "WROX logo";

wroxImage.RenderControl (output) ;

output.Write(" ");

// create link to book

HyperLink bookLink = new HyperLink();

bookLink.Text = field.Description;
bookLink.NavigateUrl = field.Url;

bookLink.ToolTip = "WROX Book: " + field.Description;
bookLink.RenderControl (output) ;

The implementation of the custom field control, covered in the next section, should result in an editing
and display experience that look like Figures 10-8 and 10-9, respectively.

Figure 10-8 Figure 10-9

176

Chapter 10: Field Types and Field Controls

Implementing Custom Field Controls
in Page Layouts

With a custom field type and/or field control created, now everything needs to be deployed into the
proper locations before it can be used within content types and page layouts:
1. Deploy the assembly containing the field type, value, and control to the GAC.

2. Place the rendering template (CountryRegionControl.ascx) in the [..]\12\TEMPLATE\
CONTROLTEMPLATES folder.

3. Copy the field type definition (f1dtypes_wrox.xml) in the [..]\12\TEMPLATE\XML folder.
4. Add a safe control entry into the web . config file of the Web application of the site that will use
the field type to indicate to SharePoint that the objects in the deployed assembly are safe.

Another option is to deploy the field type and all associated files using WSS solution packages. The
downloadable code for the book demonstrates this approach.

After deploying all the necessary files related to the field type and/or control to the appropriate loca-
tions, recycle the Web services on the server by typing the following at a command prompt: iisreset exe.

Recycling the Web server rather than the application pool is necessary because SharePoint loads field
controls only when all the services start up. Once the Web services start, a developer can then designate
anew field as a site column and add it to a content type. The custom field type will appear in the radio
button list of field types when creating a new site column, as shown in Figure 10-10.

Figure 10-10

With the content type updated with the new site column using the field type CountryRegionField, the
last step is to add the column to a page layout. Open the page layout that uses the updated content type
in SPD. Drag the new site column onto a page layout in Design mode. The first time it is pulled in,

177

Chapter 10: Field Types and Field Controls

the control may render with the gray error box. If so, then save and close the page layout and reopen it.
The field type’s design-time rendering will now be shown when SPD is in Design mode, as previously
shown in Figure 10-7.

When a site column is dropped on the page layout, SPD does two things:

Q Itaddsa<% @Register %> directive to the top of the page layout for the new server control
(field control).

Q Itadds a server control tag for the field control and sets the FieldName attribute to the internal
name of the field.

The drag-and-drop approach does not work if a custom field control was created that leverages an existing
field type. Therefore, developers must perform these two steps manually. Add a < @Register %>
directive to the top of the page layout and replace the existing field [server] control tag in the page layout
to point to the custom field control. Listing 10-19 demonstrates the code that would be added for the
WroxBookControl field control previously created in this chapter.

Listing 10-19: WroxBookControl added to a page layout

<%@ Page language="C#" Inherits="..."
meta:progid="SharePoint.WebPartPage.Document" %>
<!-- omitted from book for readability -->
<%@ Register tagprefix="WROX"
namespace="WROX.ProMossWcm.Chapterl0"
assembly="Chapterl0WroxBookControl, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c591e70cfdf9cedf" %>

<!-- omitted from book for readability -->
<WROX :WroxBookControl FieldName="WroxLink"
runat="server" id="UrlFieldl"></WROX:WroxBookControl>

Summary

Creating a custom field type, field value, and field control is one of the more complicated and complex
SharePoint subjects. SharePoint ships with many OOTB field types, otherwise known as field controls.
Each has its own editing experience. While these field types provide solutions for many data storage
needs in SharePoint projects and applications, sometimes they don’t meet a project’s requirements. In
these cases, creating custom field types and controls makes the most sense.

This chapter explained how to create a custom field type that stores a complex data type. The two

values are country and state/region (depending on the country selected). The field type contains special

validation to ensure that the minimal and/or required fields are entered when editing a field that utilizes
the type. The complex field value is represented in a custom class that other developers can utilize when
interfacing with fields that use the custom field type.

To provide a custom editing experience, this chapter demonstrated how to create a custom field control.
Not only does the control include the capability to provide a unique editing experience for content
owners, it also includes a special rendering when the control is viewed in a design-time experience in a
tool such as SPD. In addition, this chapter demonstrated how to create a custom field control utilizing an
existing field type. After creating the custom field control, with either a custom or out-of-the-box field
type, the chapter demonstrated how to utilize the control within a page layout.

178

11

Web Parts

Microsoft first introduced Web Parts in Windows SharePoint Services (WSS) 2.0. Information
workers and developers quickly adopted Web Parts because they enable end users to modify the
content, appearance, and behavior of pages through a browser. Not only could users easily modify
the content and experience with the browser, but they could also modify pages for just their own
experience, rather everyone’s shared experience. In addition, developers could create two Web
Parts that could be connected and pass data back and forth. A common use of Web Part
connections is the Microsoft SQL Server Reporting Services Web Parts. One Web Part displayed a
list of the available reports while the other took the selected report from the first Web Part and
displayed the rendered report.

Web Parts became so popular that the ASP.NET team decided to add a Web Part Framework to
ASPNET 2.0. The ASP.NET 2.0 implementation is different from the WSS 2.0 implementation in
that ASPNET 2.0 adds a new component to the page: the WebPartManager. The WebPartManager
control is responsible for managing all aspects of Web Parts on the page. It knows what Web Parts
are allowed on the page, what Web Parts are already on the page and which Web Part zones they
are in, any connections that have been established between two Web Parts, as well as the
personalization data for each Web Part. Personalization data contains all the settings, or values, set
on the public properties, for a Web Part. This is very different from the WSS 2.0 Web Part
Framework in that each Web Part maintained its own connection and personalization information
and Web Part zones managed which Web Parts were in each zone.

With ASP.NET 2.0 adding a Web Part Framework, the SharePoint team had yet another reason why
they could change SharePoint’s architecture (specifically, WSS 3.0) to be built on

top of ASP.NET, rather than in a side-by-side model that was glued together using an ISAPI

filter, as covered in Chapter 2. However, Microsoft could not turn its back on all the Web Parts
developed for WSS 2.0, so it modified the existing webPart and associated classes in the
Microsoft.SharePoint namespace to serve as a backwardly compatibility wrapper to the new
ASP.NET 2.0 Web Part model. In fact, the Microsoft.SharePoint .WebPartPages.WebPart
class’ inheritance hierarchy has completely changed to inherit directly from the ASPNET 2.0
WebPart class, System.Web.UI.WebControls.WebParts.WebPart.

Chapter 11: Web Parts

Microsoft Office SharePoint Server (MOSS) 2007 includes three special Web Parts that are available
exclusively to Publishing sites. These three Web Parts are covered in the section “MOSS 2007 Publishing
Web Parts” later in the chapter.

Adding Web Parts to Web Part Zones

What happens when a Web Part is dropped into a Web Part zone on a page within a SharePoint site?
SharePoint adds some XML to the Web Part zone that contains information about the assembly
containing the Web Part and the Web Part class itself. This XML also contains the values of the public
properties on the Web Part class. This XML, shown in Listing 11-1, is then stored as personalization
information for a specific user (if the personalization scope is set to User) or for all users who access the
page (if the personalization scope is set to Shared) depending on the mode of the page. The next time a
page is requested, SharePoint loads the personalization information for the Web Part, which tells it
which class to load from which assembly and the values of the public properties to set on that class. The
Web Part is then loaded within the ASPNET 2.0 page life cycle, which generates the rendered HTML
output. Figure 11-1 demonstrates what the XML in Listing 11-1 would produce. Knowing how this
process works can prove to be a powerful tool for developers, as demonstrated later in this chapter.

Listing 11-1: XML in a Web Part zone for the WSS 3.0 Image Web Part

<WebPart xmlns="http://schemas.microsoft.com/WebPart/v2"
xmlns:iwp="http://schemas.microsoft.com/WebPart/v2/Image">
<Assembly>Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c</Assembly>
<TypeName>Microsoft.SharePoint.WebPartPages.ImageWebPart</TypeName>
<FrameType>None</FrameType>
<Title>Watch My Gears Run</Title>
<iwp:ImageLink>/_layouts/images/GEARS_AN.GIF</iwp:ImageLink>
</WebPart>

Figure 11-1

Using Web Parts in Publishing Sites

Web Parts are not only available within ASPNET 2.0 and WSS 3.0 sites, but within MOSS 2007 sites as well,
including Publishing sites! Although Web Parts are available within Publishing sites, developers and site
owners should carefully evaluate whether it makes sense (i.e., meets the business requirements) to leverage
them because Publishing site developers have another way to add content to pages that non-Publishing
sites do not have: field controls. Chapter 7, “Master Pages and Page Layouts,” covered the main differences
between field controls and Web Parts, such as storage and the retention of content in previous versions.

180

Chapter 11: Web Parts

When should Web Parts be used in a Publishing site? There is no correct or incorrect answer to this
question, but consider the following as prescriptive guidance based on real-world implementations
and deployments of Publishing sites by the authors of this book.

Most content-centric sites — specifically, MOSS 2007 Publishing sites — demand some level of
versioning or maintaining historical content. At times, project requirements dictate retaining a certain
number of versions or content over a period of time. For projects that require the retention of old, now
unpublished, content, best practice suggests using field controls for content and Web Parts for
functionality.

What does “functionality” mean? Because the data within Web Parts is not versioned, but just associated
with the page separately from the page itself, Web Parts should not be used to store data when the
history of a page is important within the scope of a project. Web Parts should instead be used to provide
some sort of functionality. Examples of this include content rollup Web Parts (the section “MOSS 2007
Publishing Web Parts” covers this in more depth later in this chapter), pulling live content from an
outside source such as a news RSS feed, or providing some sort of functionality to the consumer, such as
signing up for e-mail notifications when the page is updated. Another use for Web Parts in a Publishing
site is to target content to a specific audience, a capability of MOSS 2007. As covered in Chapter 7, Web
Parts support personalization of content, whereas field controls do not.

The only data stored in the Web Part should be settings or configuration information that the Web

Part uses to collect or display data, not actual content. Of course, developers are free to use Web Parts
however they choose within a Publishing site. Page layouts will often contain a mixture of field controls
and Web Parts, but typically field controls dominate the page to enforce and control branding by
developers and designers.

Creating Custom Web Parts

Like the previous version of SharePoint and ASPNET 2.0, developers are not limited to the Web Parts
provided “out of the box” (OOTB). Developers are free to create custom Web Parts — for use within
Publishing sites or any SharePoint site, for that matter.

Web Parts are ASP.NET 2.0 server controls, so creating Web Parts involves working in a pure code model,
rather than defining the presentation experience declaratively as is done with markup in * . ASpx and

* . ASCX files. This is often frustrating to ASP.NET 2.0 developers who are used to working with markup
or a design surface within Visual Studio. Even though Web Parts are server controls, developers are not
excluded from building Web Parts as ASPNET 2.0 user controls (* . ASCX). One option is to use the
SmartPart, an open-source project hosted at www.andrewconnell.com/go/238. The SmartPart is a Web
Part that acts as a wrapper for user controls. This project effectively lowers the bar of Web Part
development, enabling developers to work with visual designers creating user controls instead of
adding all rendering logic in a server control.

Jan Tielens, the developer behind the SmartPart, has written a fantastic chapter on the subject of

ASP.NET 2.0 user controls for use within Web Parts. See Chapter 7 of Real World SharePoint 2007:
Indispensable Experiences from 16 MOSS and WSS MVPs (Wrox, 2007).

181

Chapter 11: Web Parts

The other option is to create a custom Web Part wrapper for a specific user control. The custom Weather
News Web Part created in this chapter is built using the pure server control approach, rather than the
ASP.NET 2.0 user control approach.

Creating ASP.NET Web Parts, Not SharePoint Web Parts

The previous sections outlined the history of Web Parts as they were first introduced in WSS 2.0 and
ultimately moved to the ASP.NET 2.0 Framework. Thanks to backward compatibility, developers can
choose between two classes to inherit from when creating custom Web Parts:

U ASPNET 2.0 — System.Web.UI.WebControls.WebParts.WebPart

O WSS/ SharePoint 3.0 — Microsoft.SharePoint .WebPartPages.WebPart

Which one should developers inherit from? When creating a new Web Part, Microsoft’s recommendation
is to always create ASPNET 2.0 Web Parts instead of SharePoint-specific Web Parts. Remember that the
SharePoint Web Part class exists primarily for backward compatibility, so Web Parts developed for WSS
2.0 or SharePoint Portal Server (SPS) 2003 will still work in WSS 3.0 or MOSS 2007. The SharePoint Web
Part class does contain some additional functionality that the ASP.NET 2.0 Web Part class doesn’t, but
Microsoft’s advice is to not leverage those capabilities, such as connecting two Web Parts on different
pages or creating client-side connections.

Advanced Web Part Techniques

When creating custom Web Parts within a SharePoint site developers are often tasked with solving some
complex scenarios. In the case of Publishing sites, developers need to consider who will be responsible
for placing and configuring Web Parts on the page. Many traditional SharePoint sites, such as pure
collaboration team sites, assign to more sophisticated users the responsibility of managing the Web Parts
on the page. Publishing sites are a little different because the users who will be placing Web Parts on

the pages are the content owners. These content owners are frequently not as technically savvy as the
developers who wrote the Web Parts, so extra care must be exercised regarding design, creation, and
configuration management.

This section briefly discusses two techniques and how they relate to Publishing sites. Both techniques are
utilized in the custom Weather News Web Part created in this chapter.

Creating Custom Edit Mode Panels

All Web Parts accept some minimal parameters that are exposed as public properties on the
System.Web.UI.WebControls.WebParts.WebPart class. The default properties include things such
as appearance settings — e.g., whether the Web Part rendering should include a border, whether the Web
Part should be displayed minimized (only the header showing) or not, and so on. Developers can specify
additional public properties on the Web Part that are used within the custom code. An example of this is
the WSS 3.0 Image Web Part previously shown in Figure 11-1. The ImageLink property enables users to
specify the image that the Image Web Part will display.

Public properties on a Web Part are exposed by SharePoint in the task page as long as they are decorated
with the attribute System.Web.UI.WebControls.WebParts.WebBrowsableAttribute. This attribute
tells SharePoint to include the property in the generic Editor Part, a control used in the task pane to edit
Web Part properties. By default, all properties shown in the generic Editor Part are rendered as a

182

Chapter 11: Web Parts

standard input box unless the property is of type enum, in which case a selector is rendered. While this
may be acceptable for many Web Parts, Publishing site developers will likely want to present a more
robust and customized Web Part editing experience for end users, to minimize, if not eliminate, data
entry error and server-side validation.

Creating custom Editor Parts is very much like creating custom Web Parts in that they are also ASPNET
2.0 server controls. The primary difference is a little extra work required to associate the Editor Part with
a Web Part. This is done by first overriding the WwebPart .CreateEditorParts () method in the Web
Part, which will add the custom Editor Part to the collection of Editor Parts for the Web Part. Then,
within the Editor Part, two methods need to be overridden that will set/retrieve values to/from the Web
Part: EditorPart.ApplyChanges ()and EditorPart.SyncChanges (). The creation of a custom Editor
Part is demonstrated in the Weather News Web Part created in this chapter.

Leveraging Asynchronous Programming Techniques

Web Part development, like all ASPNET 2.0 server control development, introduces some additional
challenges that typical ASPNET 2.0 page developers do not need to be as concerned about. For example,
when developing a Web Part, the developer has no true way of knowing exactly where this Web Part
could be used. While it is true that a project plan may dictate that the Web Part will reside on a specific
page, the whole point of Web Parts is to provide modular functionality that end users can implement.
Furthermore, the developer may or may not be aware of the fact that the Web Part may exist on a page
with many other Web Parts — even multiple instances of the same Web Part.

What happens if the custom Web Part contains a long-running process such as a complex calculation,
retrieving data from a Web service or issuing a complex query against a database? That one Web Part
will hold up the processing of the entire page. If there are multiple instances of that Web Part on the
same page, a simple two-second task could now take up to eight or ten seconds just to run the long-
running task! This obviously presents a challenge for developers, as one Web Part can bring an entire
page to a crawl.

Developers need to create Web Parts with the mindset that they have no idea what else is going to be on
the page or how many instances of the Web Part will be on the page. Long-running operations should be
optimized to minimize their impact on the rest of the page. One approach to performing long-running
operations is to leverage asynchronous programming