

Wiley Publishing, Inc.

Professional
SharePoint® 2007 Web Content

Management Development
Building Publishing Sites with Office SharePoint

Server 2007

Andrew Connell

ffirs.indd iiiffirs.indd iii 5/8/08 5:14:10 PM5/8/08 5:14:10 PM

ffirs.indd iiffirs.indd ii 5/8/08 5:14:09 PM5/8/08 5:14:09 PM

Professional
SharePoint® 2007 Web Content

Management Development
Foreword ... xxiii

Introduction ... xxv

Chapter 1: Embarking on Web Content Management Projects 1

Chapter 2: Windows SharePoint Server 3.0 Development Primer 19

Chapter 3: Overview of Web Content Management in Microsoft Office
SharePoint Server 2007 .. 39

Chapter 4: SharePoint Features and the Solution Framework 51

Chapter 5: Minimal Publishing Site Definition ... 69

Chapter 6: Site Columns, Content Types, and Lists 89

Chapter 7: Master Pages and Page Layouts .. 109

Chapter 8: Navigation .. 137

Chapter 9: Accessibility ... 145

Chapter 10: Field Types and Field Controls ... 157

Chapter 11: Web Parts .. 179

Chapter 12: Leveraging Workflow ... 211

Chapter 13: Search ... 241

Chapter 14: Authoring Experience Extensibility .. 269

Chapter 15: Authentication and Authorization... 291

Chapter 16: Implementing Sites with Multiple Languages and Devices 305

Chapter 17: Content Deployment ... 321

Chapter 18: Offline Authoring with Document Converters 345

Chapter 19: Performance Tips, Tricks, and Traps ..369

Chapter 20: Incorporating ASP.NET 2.0 Applications385

Index ...403

ffirs.indd iffirs.indd i 5/8/08 5:14:08 PM5/8/08 5:14:08 PM

ffirs.indd iiffirs.indd ii 5/8/08 5:14:09 PM5/8/08 5:14:09 PM

Wiley Publishing, Inc.

Professional
SharePoint® 2007 Web Content

Management Development
Building Publishing Sites with Office SharePoint

Server 2007

Andrew Connell

ffirs.indd iiiffirs.indd iii 5/8/08 5:14:10 PM5/8/08 5:14:10 PM

Professional SharePoint® 2007 Web Content Management
Development: Building Publishing Sites with
Office SharePoint Server 2007
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-22475-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data:

Connell, Andrew, 1976-
 Professional SharePoint 2007 Web content management development : building publishing sites with
Office SharePoint server 2007 / Andrew Connell.
 p. cm.
 Includes index.
 ISBN 978-0-470-22475-5 (paper/website)
 1. Web site development—Computer programs. 2. Web sites—Management.
 3. Database management. 4. Microsoft Office SharePoint server. I. Title.
 TK5105.8885.M54C66 2008 006.7'8—dc22

2008016811

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may make. Further,
readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. Microsoft and SharePoint are registered trademarks of Microsoft
Corporation in the United States and/or other countries. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

ffirs.indd ivffirs.indd iv 5/8/08 5:14:10 PM5/8/08 5:14:10 PM

To my lovely and inspiring wife, Meredith, and my son, Steven, who always manages
to put a smile on my face. I’m truly a lucky man.

—AC

ffirs.indd vffirs.indd v 5/8/08 5:14:10 PM5/8/08 5:14:10 PM

ffirs.indd viffirs.indd vi 5/8/08 5:14:10 PM5/8/08 5:14:10 PM

About the Author
Andrew Connell has a background in content management solutions and Web development that spans
back to his time as a student at the University of Florida in the late 1990s managing class sites. He has
consistently focused on the challenges facing businesses to maintain a current and dynamic online
presence without having to rely constantly on Web developers or have a proficiency in Web technologies.

In 2005 and 2006 he was designated a Microsoft Most Valuable Professional (MVP) for Microsoft Content
Management Server for his contributions to the MCMS community. When the functionality of MCMS
was merged into the SharePoint platform, he became a MOSS MVP (2007 and 2008). Andrew has
contributed to numerous MCMS and SharePoint books over the years.

He has spoken on the subject of MOSS 2007 development and WCM at various events and national
conferences such as TechEd, SharePoint Connections, VSLive, Office Developer Conference, and the
Microsoft SharePoint Conference.

Technology is not only Andrew’s job, but also a personal passion: He thrives on expanding his technical
knowledge. When not in front of his computer, he enjoys football, golf, the beach, and spending time
with his family. He lives in Jacksonville, Florida, with his wife, Meredith, his son, Steven, and their two
dogs. You can always find Andrew online at his SharePoint development and WCM-focused blog at
www.andrewconnell.com/blog.

About the Technical Editors
The technical editing of this book was performed by quite a few industry experts, all of whom served
a pivotal role in ensuring that the content and code samples in this book are factually correct:

J. Dan Attis (www.devcow.com/blogs/jdattis), Microsoft MVP for Windows SharePoint
Services, has been heavily involved in the local developer community in the Atlanta, Georgia
area for nine years. He has been known to spend many nights and weekends working to
promote SharePoint in the community as a development platform. He is a stickler for details
and an ideal choice for editing the book.

Jason Conway (http://weblogs.asp.net/jasonconway) is a senior application developer
and team lead for Ascentium, with over a decade of experience delivering custom solutions in
a large range of markets and industries. He now applies that experience to designing and
developing solutions for corporate intranets and extranets using SharePoint 2007.

Stefan Gordon (www.stefangordon.com) is a software architect with Ascentium, an avid
blogger, and a dedicated SharePoint evangelist.

Cale Hoopes (http://calehoopes.blogspot.com) is a mountaineer, application developer
with Ascentium, SharePoint enthusiast, musician, gamer, and beloved husband.

Jared Lasater is an application developer with Ascentium. He has been working with SharePoint
2007 since Beta 2 and has developed a wide range of enterprise solutions for clients, including
intranets, extranets, and collaboration and publishing portals.

❑

❑

❑

❑

❑

ffirs.indd viiffirs.indd vii 5/8/08 5:14:11 PM5/8/08 5:14:11 PM

George Olson is a developer in the portals and collaboration practice at Ascentium and is an
expert in designing and developing custom SharePoint workflows as part of large enterprise
solutions.

Michael Panciroli is a solutions architect with Ascentium who successfully delivered the first
Technology Adoption Program (TAP) project for Office SharePoint Server. He architects custom
enterprise solutions with SharePoint to deliver corporate intranets and partner extranets in the
health care, automotive, and online retail verticals.

Brendon Schwartz (http://blogs.sharepointguys.com/brendon) is a principal consultant
in Atlanta, Georgia, specializing in SharePoint 2007. A Microsoft MVP for Microsoft Office
SharePoint Server, Brendon is also a co-author of Professional SharePoint 2007 Development (Wiley,
2007), author of several magazine articles, a conference speaker, and co-founder of the Atlanta
.NET Regular Guys, which is hosted at DevCow (www.devcow.com).

Clint Simon (www.ascentium.com/blog/sp) is a technology lead with Ascentium who draws
on his vast experience with SharePoint to create innovative development and platform tools for
SharePoint; his advancements extend and enhance SharePoint as a custom application
development platform.

Patrick Tisseghem (www.u2u.info/Blogs/Patrick) is a managing partner at U2U,
a SharePoint training company in Belgium. Patrick is also a Microsoft MVP for Windows
SharePoint Services and author of Inside Microsoft Office SharePoint Server 2007 (Microsoft
Press, 2007).

Roxana Tzau has many years of experience as a Web developer and helped build one of the
largest corporate intranet portals within Microsoft using SharePoint Server 2007 with
Ascentium. She continues to develop solutions for enterprise corporate intranets by extending
the SharePoint platform.

Thomas Wyrick is a Senior Software Engineer at the Ascentium Corporation and has had part in
delivering enterprise class solutions on the Microsoft platform.

❑

❑

❑

❑

❑

❑

❑

About the Technical Editors

viii

ffirs.indd viiiffirs.indd viii 5/8/08 5:14:11 PM5/8/08 5:14:11 PM

Acquisitions Editor
Katie Mohr

Development Editor
Kenyon Brown

Technical Editors
J. Dan Attis
Jason Conway
Stefan Gordon
Cale Hoopes
Jared Lasater
George Olson
Michael Panciroli
Brendon Schwartz
Clint Simon
Patrick Tisseghem
Roxana Tzau
Thomas Wyrick

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Credits
Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Jennifer Larsen, Word One

Indexer
Robert Swanson

ffirs.indd ixffirs.indd ix 5/8/08 5:14:11 PM5/8/08 5:14:11 PM

ffirs.indd xffirs.indd x 5/8/08 5:14:11 PM5/8/08 5:14:11 PM

Acknowledgments

No project of this size can come be completed in a vacuum. I asked some of my trusted associates to
contribute to the book by writing a few of the chapters. First and foremost, I want to thank Spencer
Harbar (www.harbar.net), MVP for Office SharePoint Server, a good friend who I met in the days of
Microsoft Content Management Server 2002. Spencer was instrumental in developing the structure and
approach of this book, acting as a sounding board for various decision points in the process. He also
contributed Chapter 3, “Overview of Office SharePoint Server 2007 and Web Content Management,”
and Chapter 17, “Content Deployment.” Bob German (http://blogs.msdn.com/bobgerman)
contributed Chapter 1, “Embarking on Web Content Management Projects,” and Chapter 16,
“Implementing Sites with Multiple Languages and Devices.” Matt McDermott (http://blogs
.catapultsystems.com/matthew), MVP for Office SharePoint Server, contributed Chapter 13,
“Search,” and John Holliday (www.johnholliday.net), MVP for Office SharePoint Server, contributed
Chapter 5, “Minimal Publishing Site Definition.”

I also want to thank those at Microsoft who provided support, as well as those who assisted in
answering some of the technical questions: Arpan Shah, Ryan Duguid, Lawrence Liu, Jim Masson,
George Perantatos, and Tyler Butler.

No technical book is complete without a solid review to ensure that the code compiles and the text in the
chapters is factually correct. Many members of Ascentium were instrumental in reviewing the book.
Ascentium is an interactive marketing and technology consultancy that delivers solutions ranging from
interactive marketing, customer relationship management, business intelligence, portals, and
collaboration to application and product development and infrastructure management. A special thanks
to Jason Conway, who coordinated the review efforts of Stefan Gordon, Cale Hoops, Jared Lasater,
George Olson, Michael Panciroli, Clint Simon, Roxana Tzau, and Thomas Wyrick. I’d also like to thank
my fellow SharePoint MVPs Patrick Tisseghem and especially Dan Attis and Brendon Schwartz, who
reviewed a handful of chapters in a very short amount of time.

I would like to thank everyone at Wiley Publishing who helped me get this book to you. Like all projects
of this magnitude, the original plans were thrown out the window a few times when unexpected turns
presented themselves. Katie Mohr, Jim Minatel, and Kenyon Brown made this a fun and rewarding
experience.

In addition, I’d like to thank all of my former students who spent a week with me attending my Office
SharePoint Server 2007 Web Content Management class for developers (www.andrewconnell.com/
go/299), and those who left comments on my blog (www.andrewconnell.com/blog). All of you were
instrumental in helping with the development of the presentation of topics covered in this book and
I greatly appreciate the dialog we have shared.

Finally, I’d like to thank those in the MVP SharePoint community for the energetic, passionate,
challenging, and at times insane discussions that we share on a private distribution list. I cannot express
how privileged I feel to be among some of the best and brightest minds in the SharePoint field. Hats off
to April Spence, Melissa Travers, and Lawrence Liu at Microsoft for all they have done to help build,
facilitate, and bring this community together.

ffirs.indd xiffirs.indd xi 5/8/08 5:14:11 PM5/8/08 5:14:11 PM

ffirs.indd xiiffirs.indd xii 5/8/08 5:14:12 PM5/8/08 5:14:12 PM

Contents

Foreword xxiii
Introduction xxv

Chapter 1: Embarking on Web Content Management Projects 1

The Web Content Management Experience 2
Authors and Editors 2
Designers and Developers 4

Designing and Planning a Successful WCM Solution 7
Use Case Scenarios 7
Site Structure and Navigation 7
Page Layouts and Content Types 10
Supporting Content: Images, Attachments and Reusable Content 11
Site Definitions 12
Roles and Permissions 13
User Profiles and Targeting 14
Search Strategy 15

Summary 16

Chapter 2: Windows SharePoint Server 3.0 Development Primer 19

SharePoint Architecture 19
SharePoint on the File System and in Internet Information Services 21

SharePoint Site Topology 22
SharePoint Administration 24

Central Administration 24
Site Settings 24
List Settings 25
STSADM.EXE 26

WSS 3.0 and ASP.NET 2.0 Development 27
Like ASP.NET 2.0 27
Unlike ASP.NET 2.0 29

Types of Pages 31
Site Pages 31
Application Pages 32

ftoc.indd xiiiftoc.indd xiii 5/9/08 5:13:05 PM5/9/08 5:13:05 PM

Contents

xiv

Uncustomized Versus Customized Files 32
Customization versus Development 34

SharePoint Customization 34
SharePoint Development 35

Introducing the Microsoft.SharePoint Namespace 36
Debugging in WSS 3.0 37
Summary 38

Chapter 3: Overview of Web Content Management in Microsoft
Office SharePoint Server 2007 39

Web Content Management on the Microsoft Platform 39
Microsoft Office SharePoint Server 40
The ABCs of Web Content Management 42

Authoring 42
Branding 43
Controlled Publishing 43

Publishing Sites 44
Site Collections 46
Shared Services Providers 46

Microsoft.SharePoint.Publishing Namespace 47
Summary 49

Chapter 4: SharePoint Features and the Solution Framework 51

Overview of SharePoint Features 51
Anatomy of a Feature 52
Feature Scope 53
Element Manifests 54
Feature Receivers 55
Feature Administration 56
Feature Dependencies and Stapling Features 57
Creating Features Using Visual Studio 59

Overview of WSS Solution Packages 59
Anatomy of a WSS Solution Package 60
Solution Deployment 63
Creating WSS Solution Packages 63

Summary 67

ftoc.indd xivftoc.indd xiv 5/9/08 5:13:06 PM5/9/08 5:13:06 PM

Contents

xv

Chapter 5: Minimal Publishing Site Definition 69

Elements of a Publishing Site 70
The Pages Library 70
Styles and Images 70
Master Pages and Page Layouts 70
Content Types 71

Examining the Publishing Portal Site Definition 71
Publishing Feature PublishingWeb 72
Publishing Feature Publishing 72
Publishing Feature PublishingSite 73
Publishing Feature PublishingPrerequisites 73
Publishing Feature PublishingResources 73
Publishing Feature PublishingLayouts 73
Publishing Feature Navigation 74
Publishing Feature PublishingStapling 74

The Challenge with the Publishing Portal Site Definition 74
Creating a Publishing Site Definition 74

The Significance of Site Definitions 75
Custom Site Provisioning 76
The WEBTEMP File 79
The ONET.XML File 80
The Feature Manifest 87
The Feature Elements 88
Deploying and Testing the Custom Site Definition 88

Summary 88

Chapter 6: Site Columns, Content Types, and Lists 89

Site Columns 90
Site Column Names and IDs 90
Creating Site Columns 91

Content Types 94
Content Type IDs 95
Creating Content Types 96

Role of Site Columns and Content Types in Publishing Sites 99
Lists 100

Special Publishing Lists 100
Creating Lists 102
Accessing Lists via the SharePoint API 106

Summary 107

ftoc.indd xvftoc.indd xv 5/9/08 5:13:07 PM5/9/08 5:13:07 PM

Contents

xvi

Chapter 7: Master Pages and Page Layouts 109

Page Rendering Process Overview 109
Master Pages in Publishing Sites 110

Types of Master Pages 110
Master Page Tokens 113
Creating Master Pages 115
Incorporating Design Elements 123

Page Layouts 124
Creating Page Layouts 124
Adding Content Regions: Field Controls and Web Part Zones 130

Building Master Pages and Page Layouts As Templates 133
Delegate Controls 133

Creating Delegate Controls 134
Summary 136

Chapter 8: Navigation 137

ASP.NET 2.0 Navigation Provider Model 137
Customizing Site Navigation 138

Browser-Based Customizations 138
Customizing the Navigation Control 139
Customizing the Navigation Site Map Data Source 140
Customizing the Navigation Provider 140
Customizing Navigation with the API 141
Creating Custom Navigation Components 142

Performance and Usability Considerations 142
PortalSiteMapProvider 142
Table of Contents Web Part 144

Summary 144

Chapter 9: Accessibility 145

What Is an Accessible Web Site? 145
Measuring Accessibility 146

WCAG 1.0 147
WCAG 2.0 149
United States Rehabilitation Act of 1973 Section 508 150
W3C Markup Validation Service 151

Advantages to Creating Accessible Web Sites 151
Creating Accessible SharePoint Sites 152

Challenges to Creating Accessible SharePoint Sites 153

ftoc.indd xviftoc.indd xvi 5/9/08 5:13:07 PM5/9/08 5:13:07 PM

Contents

xvii

Accessibility Kit for SharePoint 154
Position and Goals of the AKS 155
Installation and Implementation 155

Summary 156

Chapter 10: Field Types and Field Controls 157

Overview of All the Moving Parts 158
Creating Custom Field Types and Controls 159

Creating a Custom Field Type 160
Creating a Custom Field Type Definition 160
Creating a Custom Field Value 162
Creating a Custom Field Control 164
Adding Design-Time Rendering Preview 170
Adding Custom Data Validation 172

Creating Custom Field Controls without Custom Field Types 173
Implementing Custom Field Controls in Page Layouts 177
Summary 178

Chapter 11: Web Parts 179

Adding Web Parts to Web Part Zones 180
Using Web Parts in Publishing Sites 180

Creating Custom Web Parts 181
Creating ASP.NET Web Parts, Not SharePoint Web Parts 182
Advanced Web Part Techniques 182
Creating a Weather News Web Part 184
Making ASP.NET Web Parts Work in SharePoint Sites 191
SharePoint Web Part Deployment Options 192

MOSS 2007 Publishing Web Parts 195
Summary Links Web Part (and Field Control) 196
Table of Contents Web Part 197
Content Query Web Part 197
Advanced Content Query Web Part Customization 199
Implementing a Customized CQWP Solution 204
Deploying Customized Content Query Web Part Customizations and Renderings 207

Summary 208

Chapter 12: Leveraging Workflow 211

Understanding Windows Workflow Foundation 211
Windows Workflow Foundation Terminology and Architecture 212

ftoc.indd xviiftoc.indd xvii 5/9/08 5:13:08 PM5/9/08 5:13:08 PM

Contents

xviii

Activities 214
Types of Workflows 214

Creating Custom Workflows 215
Developing Custom Workflows with Visual Studio 215

Overview of SharePoint’s Workflow Proposition 215
Architecture 216
Terminology 216
History and Task Lists 218
Interacting with Users with Forms 219

Workflow in SharePoint Publishing Sites 220
Overview of the Parallel Approvers Workflow 220

Creating Custom Workflows for SharePoint Publishing Sites 221
Creating Workflows with SharePoint Designer 221
Creating Workflows with Visual Studio 221

Summary 240

Chapter 13: Search 241

Planning for Search 242
Issues 242
Questions to Ask 242
Search Is a Business Problem 244

Search Center Design and Configuration 244
Search Center vs. Search Site 244
Results Page Anatomy 247
Search Results Configuration 248
Enhancing Search Results with Pivot 250
Adding Fields to the Results 252
Empty Results 256

Search Administration and Configuration 256
Central Administration 258
Site Collection Search Settings 258

Thesaurus File Configuration 259
Thesaurus Files 259
Noise Word Configuration 261

Advertising OpenSearch Capability 261
Telling the Browser Where to Search 262

Telling Applications Where to Search 264
Custom Enhancements for Search 265
BDC Integration with Search 265

Business Value from Structured Data 266
Microsoft Search Server 2008 Express 266
Summary 267

ftoc.indd xviiiftoc.indd xviii 5/9/08 5:13:08 PM5/9/08 5:13:08 PM

Contents

xix

Chapter 14: Authoring Experience Extensibility 269

Customizing SharePoint Navigation with Custom Actions 269
Offline Authoring with Document Converters 271
Edit Model Panel 272
Customizing the HTML Editor Field Control 273

Enabling and Disabling Buttons 273
Adding Custom Buttons 274
Customizing Available CSS Classes 278

Telerik RadEditor Lite for MOSS 279
Customizing the Page Editing Toolbar 280

Creating Page Editing Toolbar Actions 281
Adding Items to the PET Page Editing Menu 283
Adding Buttons to the PET Quick Access Buttons 284
Deploying Page Editing Toolbar Customizations 285

Summary 289

Chapter 15: Authentication and Authorization 291

SharePoint Security Components 291
Permission Rights 291
Permission Levels 292
SharePoint Groups 293
Securable Objects 293
Additional Publishing Security Components 293

SharePoint Security via the API 295
Alternate Access Mappings 296
Authentication Provider Model 296

Configuring Forms-Based Authentication 297
Anonymous Access 302
Summary 304

Chapter 16: Implementing Sites with Multiple Languages and Devices 305

Developing Multilingual Web Sites 305
Installing the Language Packs 307
Using Variations 308
Building Language-Agile Features 311

Targeting Devices with Variations 318
Creating Variations for Mobile Devices 318
Redirecting Mobile Users 318
Master Pages, Page Layouts, and Style Sheets 319

Summary 319

ftoc.indd xixftoc.indd xix 5/9/08 5:13:08 PM5/9/08 5:13:08 PM

Contents

xx

Chapter 17: Content Deployment 321

Content Deployment Fundamentals 322
Paths 323
Jobs 324
Quick Deploy Jobs 324

Configuring Content Deployment 325
Content Deployment Walkthrough 327

Example Scenario 327
Creating Paths 328
Creating Jobs 330
Running Jobs 334
Leveraging Quick Deploy Jobs 337

Using the Content Deployment API 337
Using the Content Migration API 339

Incremental Deployment 342
Summary 344

Chapter 18: Offline Authoring with Document Converters 345

Document Converter User Experience 346
Overview of the Document Converter Architecture 347

Updating Copy Files Post-Conversion and File Linkages 348
Conversion Priorities 349
Using Document Converters to Create Publishing Pages 349

Document Converter Configuration 350
Configuring Document Converter Services 350
Configuring Document Converter Content Types 352

Out-of-the-Box Document Converters 352
Word Document and Word Document with Macros to Web Page 352
InfoPath Form to Web Page 353
XML to Web Page 353

Creating Custom Document Converters 353
Creating the Document Converter 354
Creating the Document Converter Application 354
Deploying Custom Document Converters 359
Adding Settings to Document Converters 360

Working with Document Converters via the Object Model 366
Summary 367

ftoc.indd xxftoc.indd xx 5/9/08 5:13:08 PM5/9/08 5:13:08 PM

Contents

xxi

Chapter 19: Performance Tips, Tricks, and Traps 369

SharePoint Caching Options 370
Page Output Caching 370
Object Caching 371
Disk-Based Caching (BLOB Cache) 372

Limiting the Page Payload 372
SharePoint’s CORE.JS 374
Browser Cache and Content Expiration 378

Performance Programming Techniques 378
.NET Framework Disposable Objects 379
Working with SharePoint Disposable Objects 380
Working with Collections 381

Querying/Aggregating Data via the API 382
Summary 383

Chapter 20: Incorporating ASP.NET 2.0 Applications 385

Each Component Adds More Value 386
What ASP.NET 2.0 Brings to the Table 386
What WSS 3.0 Brings to the Table 387
What MOSS 2007 Brings to the Table 388

Advantages to Using SharePoint As an Application Development Platform 389
Incorporating Applications into SharePoint Sites 390

Implementing One or More Web Parts 390
Provisioning Site Pages 391
Application Pages 392

Data Storage Options 392
SharePoint Lists 392
External Database 394

Application Configuration Options 394
Utilizing SharePoint Components in Custom Applications 396

SharePoint Navigation 396
Leveraging SPGridView 397
Creating and Managing Custom Security Roles 399

Summary 401

Index 403

ftoc.indd xxiftoc.indd xxi 5/9/08 5:13:09 PM5/9/08 5:13:09 PM

ftoc.indd xxiiftoc.indd xxii 5/9/08 5:13:09 PM5/9/08 5:13:09 PM

Foreword

The importance of Web technology has increased tremendously over the last few years. People rely on
the Internet to find and research information, interact with applications, connect with people, and make
purchases. In a world where storage is becoming cheaper and broadband access is becoming increasingly
ubiquitous, companies both small and large are competing for the attention of an entire generation that
has grown up with applications such as MSN, Facebook, and YouTube. The ability of a corporation to
deliver a compelling Web experience is not just important, but essential to stay alive. If your content is
not relevant, then you’ll lose your business to your competitors with a simple Internet search.

For more than a decade, many software vendors have addressed the Web content management (WCM)
need with specialized, vertical software. I remember when Microsoft acquired NCompass Labs in 2001
for its WCM technology and released subsequent versions of Microsoft Content Management Server
(MCMS). In fact, that’s when I first met Andrew, when he was working closely with MCMS 2002 and
developing cutting-edge applications. While MCMS met the needs for WCM, the consistent feedback
from customers was that Web content management was a misnomer. It’s not “Web content”
management; it’s content management for Web applications. This means it’s important for a technology
to really take a look at the entire life cycle of all content that eventually makes its way to the Web —
intranet, extranet, or Internet site.

We listened and made the decision to merge the MCMS and SharePoint teams to deliver on the vision of
a single platform for managing enterprise content. In late 2006, we released Microsoft Office SharePoint
Server (MOSS) 2007, which not only provides rich out-of-the-box WCM capabilities, but also provides a
platform for end-to-end enterprise content management. With its rich set of APIs and extension points, it
can be extended in many ways to meet very specific customer needs. Of course, as Stan Lee, creator of
Spider-Man, appropriately stated, “With great power comes great responsibility” — it’s important to
understand when and how to extend the platform.

In this book, Andrew has done an excellent job of stepping through all the different ways you can extend
and customize MOSS to meet your specific WCM needs. His in-depth experience and knowledge really
shine as he covers topics from development methodology and content deployment to tips and tricks.
That makes Professional SharePoint 2007 Web Content Management Development a must-have book not only
for every SharePoint developer interested in WCM, but also for all SharePoint developers.

Arpan Shah
Director, SharePoint Technical Product Management

Microsoft Corporation
http://blogs.msdn.com/arpans

flast.indd xxiiiflast.indd xxiii 5/8/08 6:53:35 PM5/8/08 6:53:35 PM

flast.indd xxivflast.indd xxiv 5/8/08 6:53:36 PM5/8/08 6:53:36 PM

 Introduction

 In late 2003 I joined a Fortune 500 in Jacksonville, Florida, as your typical .NET developer, focusing
mostly on ASP.NET. I was immediately assigned the role of technical lead on the new corporate Internet
site that would be implemented using Microsoft Content Management Server (MCMS) 2002. Up to that
point I had worked with many homegrown content management systems in previous jobs. I quickly
latched on and really enjoyed the flexibility of MCMS. Once that project was launched, I moved into the
role of technical lead for our new corporate intranet site, which was to be implemented using SharePoint
Portal Server 2003. We quickly had a need for both content management and collaboration, and merged
the two products together to create a very impressive implementation for our customer base.

 I find it amusing that at the same time we were doing this, the wheels were in motion at Microsoft to
take the best concepts and capabilities from MCMS and implement them on the SharePoint platform,
resulting in Office SharePoint Server ’ s (MOSS) Web Content Management (WCM) capabilities. After
watching the void for a good book on MOSS WCM development topics sit unfilled, and after many
people at conferences and community events asked me, “ Where is your WCM book? ” , I decided to do
something about it, which resulted in what you are holding in your hands. I am incredibly proud of both
this book and those who were involved in the project.

 One approach I took in this book was not to dwell on the more common minutia of creating projects in
Visual Studio, or the huge topics of core Windows SharePoint Services (WSS) 3.0 development or
SharePoint administration. These topics warrant their own books, and throughout this book you will
find recommended resources for these topics. This book does cover some subjects that have their roots in
WSS, but they are presented within the context of a Publishing site.

 Finally, this book approaches every topic of implementation from the perspective of SharePoint
customization and SharePoint development. While one implementation may seem to be better than the
other, I take no position on either, as my goal is to simply educate readers about the advantages and
disadvantages of each. These concepts are defined in Chapter 2 , “ Windows SharePoint Services 3.0
Development Primer. ”

 Who This Book Is For
 This book is for SharePoint developers working with Publishing sites — sites that leverage MOSS 2007
WCM capabilities. It does not cover administrative topics in any great detail, only where absolutely
necessary. For the most part, no two chapters are dependent upon each other, so each chapter can be
used as a reference independently of the others. Readers need not have any development experience
with SharePoint, but they should have some experience with and a working knowledge of ASP.NET 2.0
development practices and topics. Of course, it is beneficial if the reader does have at least a working
knowledge of what SharePoint is all about.

flast.indd xxvflast.indd xxv 5/8/08 6:53:36 PM5/8/08 6:53:36 PM

Introduction

xxvi

 How This Book Is Structured
 This book covers MOSS 2007 WCM Publishing sites. You will find some chapters that seem to cover
general WSS 3.0 topics, but everything is treated in the context of a Publishing site. While the chapters
are arranged in a logical order, it is not necessary to read the book from cover to cover in a linear fashion.
The following is a brief description of each chapter:

 Chapter 1 , “ Embarking on Web Content Management Projects ” — This chapter explains what
this book is all about, who the target audience is, and who will benefit most from the book. It
also details what the reader needs in terms of a local development environment in order to
implement the solutions. In addition, each of the subsequent chapters is explained very briefly
to provide an overview and clarify how each chapter fits in.

 Chapter 2 , “ Windows SharePoint Services 3.0 Development Primer ” — This chapter covers the
fundamentals of WSS, including definitions of terms such as farm, Web application, site
collection, site, list, and document library, and the general architecture of WSS. Some basic object
model techniques are demonstrated in this chapter.

 Chapter 3 , “ Overview of Office SharePoint Server 2007 and Web Content Management ” — This
chapter briefly explains each of the various components that make up MOSS. In addition, while
the book is development - focused, the “ ABCs ” of content - centric Internet sites is covered.

 Chapter 4 , “ SharePoint Features and the Solution Framework ” — Both new to WSS 3.0, the
SharePoint Feature and solution frameworks are covered in great detail in this chapter, as well
as a process for automatically creating WSS solution packages on every project build.

 Chapter 5 , “ Minimal Publishing Site Definition ” — Many users create new WCM sites by using
the Publishing Portal template. Unfortunately, this adds quite a bit of unnecessary content to the
site. This chapter picks apart the Publishing Portal template and Publishing Features and
demonstrates how to create a minimal Publishing Portal template.

 Chapter 6 , “ Site Columns, Content Types, and Lists ” — Three core components to every WSS 3.0
site — site columns, content types, and lists — are covered in this chapter.

 Chapter 7 , “ Master Pages and Page Layouts ” — This chapter covers everything you need to
know about creating, editing, and leveraging master pages and page layouts within Publishing
sites.

 Chapter 8 , “ Navigation ” — While WSS 3.0 ’ s navigation is founded on the ASP.NET 2.0
navigation provider framework, there are a few SharePoint - specific topics, which are covered in
this chapter.

 Chapter 9 , “ Accessibility ” — If it ’ s not already, accessibility is becoming an increasingly
important topic with regard to Web sites. This chapter explains the different levels of
accessibility and discusses some techniques and tools developers can leverage to create sites for
users with disabilities.

 Chapter 10 , “ Field Types and Field Controls ” — Although it ’ s a WSS 3.0 concept, field types and
field controls are covered in this chapter in the context of a Publishing site. This includes
creating custom field types with custom values types and controls, as well as custom field
controls that leverage existing field types.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

flast.indd xxviflast.indd xxvi 5/8/08 6:53:36 PM5/8/08 6:53:36 PM

Introduction

xxvii

 Chapter 11 , “ Web Parts ” — This chapter covers creating custom Web Parts and some advanced
topics related to custom Web Part development, such as Editor Parts, customizing the Verbs
menu, and leveraging asynchronous programming techniques. This chapter also covers the
three Publishing - specific Web Parts and some advanced customization and styling options of
the Content Query Web Part.

 Chapter 12 , “ Leveraging Workflow ” — The Windows Workflow Foundation, part of the .NET
Framework 3.0, is fully leveraged by WSS 3.0 and MOSS 2007. This chapter explains how to
create custom workflows using Visual Studio and leveraging InfoPath Web - rendered forms.

 Chapter 13 , “ Search ” — Every content - centric site needs a robust search offering. This chapter
explains the different components of MOSS search, as well as many customization opportunities
such as modifying the search results.

 Chapter 14 , “ Authoring Experience Extensibility ” — While the authoring experience in
Publishing sites is quite robust, at times developers need to extend this offering for specific
content owner requirements. This chapter covers this, including customizing the Page Editing
Toolbar and the Rich Text Editor HTML field control.

 Chapter 15 , “ Authentication and Authorization ” — This chapter covers everything you need to
know about the ASP.NET 2.0 authentication provider model SharePoint fully leverages.

 Chapter 16 , “ Implementing Sites with Multiple Languages and Devices ” — This chapter covers
the topic of maintaining sites that need to offer their content in multiple languages, as well as
developing custom Web Parts that are multilingual aware.

 Chapter 17 , “ Content Deployment ” — A common request for larger content - centric Web sites is to
have an internal authoring environment for content and then push the changed content out to a
destination site, either in an organization ’ s DMZ or at a co - location facility. This chapter describes
the content deployment capability in MOSS designed to handle such business requirements.

 Chapter 18 , “ Offline Authoring with Document Converters ” — While MOSS 2007 Publishing
sites offer a very robust Web - based content authoring experience, SharePoint provides a way to
author content offline using tools such as Microsoft Word or InfoPath. This chapter explains
what you need to know about configuring the document converter infrastructure and creating
custom document converters.

 Chapter 19 , “ Performance Tips, Tricks, and Traps ” — Internet - facing content - centric sites built
on the SharePoint platform need to be designed and developed with performance in mind. This
chapter provides numerous guidelines and tips that developers can leverage to create the most
performant sites.

 Chapter 20 , “ Incorporating ASP.NET 2.0 Applications ” — SharePoint (both WSS 3.0 and MOSS
2007) is not an end - to - end solution but an application platform. While it provides a significant
amount of functionality out of the box, developers can leverage this platform in building custom
applications. This chapter discusses some techniques that can be used for such tasks.

 What You Need to Use This Book
 To get the most out of this book, readers should have a SharePoint development environment in which
they can work through the chapters. Active Directory is not required. This book was written and tested
using Windows Server 2003 R2 Standard Edition with Service Pack 2, Office SharePoint Server 2007 with
Service Pack 1, and Visual Studio 2008.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

flast.indd xxviiflast.indd xxvii 5/8/08 6:53:36 PM5/8/08 6:53:36 PM

flast.indd xxviiiflast.indd xxviii 5/8/08 6:53:37 PM5/8/08 6:53:37 PM

 Embarking on Web Content
Management Projects

 Ever since the advent of the World Wide Web in the early 1990s, there has been a focus on
publishing information. Indeed, the very first Web sites were set up by scientists at CERN, the
European Organization for Nuclear Research, so physicists around the world could publish
information in a consistently accessible way. Since then, the Web has moved to more than
publishing; this started with transactional Web sites, and led to collaboration, social networking,
and aggregation - focused sites, to name a few, and all of these are addressed by Microsoft Office
SharePoint Server (MOSS) 2007, if not by this book.

 Even as the technology has evolved, the need for Web publishing remains pervasive. For example,
transactional Web sites publish catalogs and terms of sale; collaboration and social networking
sites publish usage guides and ground rules. Therefore, Web publishing remains a core function of
any public, extranet or intranet Web site, even if it is more than just “ brochureware. ”

 Take a moment to consider this book, which is the product of a modern and technically advanced
publishing company. In addition to the authors, there are many other contributors to this book.
Someone selected the topic as part of the publisher ’ s catalog and developed the title and “ brand ”
for the book; other people designed the cover and page layout; editors checked for quality and
consistency, and still other people typeset and printed the book.

 Publishing a Web site is no different: People in specialized roles each want to control particular
aspects of the final product. However, unlike a book, the Web site is being constantly updated, and
people associated with the site want the freedom necessary to change their aspects of the site
without affecting one another. For example, an author may want to add a new page, an editor may
want to reorganize several pages, and a branding manager may want to change the colors and logo
of all pages, all at the same time. The final “ product ” — a connected set of Web pages — needs to
reflect the input of each of these contributors at any given point in time.

c01.indd 1c01.indd 1 5/8/08 6:56:20 PM5/8/08 6:56:20 PM

Chapter 1: Embarking on Web Content Management Projects

2

 This is the problem solved by Web Content Management (WCM). A WCM system organizes the content
and design from all of the site ’ s contributors, allows for versioning, editing, and moderation, and stitches
it all together for the end user.

 Consider a typical Web page. The banner, color scheme, and general look and feel are part of the
branding of the site. Some sort of navigation is probably visible, revealing the organization of the site. In
addition to the site navigation, there may be listings of content such as a “ front page ” list of articles or
other topics. These are another form of navigation, one which cuts across the formal structure of the site
to highlight contextually relevant content. Authored content — that is, content written by an author and
possibly run through an editorial process — may appear in one or more sections of the page, along with
images that may require acquisition and approval. Syndicated content, such as news feeds and
advertisements, might also appear. Down at the bottom, in the fine print, there may be a legal notice or
other disclaimer. Within a typical organization that has a Web site, different people will want to manage
each of these aspects of the same Web page, all while the site is up and serving customers.

 In the bad old days, the approach to managing a Web site was to edit Web pages and associated files on
the file system of each Web server. This approach is simple enough at first, but makes it very hard to
modify things such as branding, navigation, or legal disclaimers that appear repeatedly on many Web
pages. Moreover, if the authored content is stored in the same files as branding, navigation, and other
page features, in the course of editing a paragraph an author could accidentally modify the wrong thing
and break the page entirely. This led to the role of Webmaster, a person to whom all Web site content and
other changes are fed, and who knows the intricacies of HTML and CSS and any other page
programming. The Webmaster ’ s job quickly became a tedious one — copying, pasting, and reformatting
content submitted via e - mail and in documents. As the single gatekeeper for all aspects of a Web site,
Webmasters often were seen as bottlenecks by contributors whose changes had to wait at the end of
the queue.

 As a WCM system, MOSS 2007 provides flexibility and independent control over all these aspects of a
Web page. The Webmaster bottleneck is largely eliminated by giving control over the many aspects of
a site directly to business users, information architects, developers, and designers. Instead of endlessly
copying and pasting content, Webmasters can focus on system administration, site design, and
development, enabling them to have a much greater impact than ever before.

 The Web Content Management Experience
 To better understand the use cases for WCM, this section will follow a couple of typical users through
their interaction with the system. At first the focus is on authors and editors who produce the authored
content on the site. Then the focus shifts to the role of designers and developers, who have a very
different kind of interaction with the site.

 Authors and Editors
 The scenario opens with a product marketing manager who is about to launch a new product and wants
to add some information about it to her company ’ s Web site. Rather than having to ask someone to
do this for her, she can simply edit the Web site directly, as shown in Figure 1 - 1 . She navigates to the Web
site (possibly using a special, internal URL that allows the necessary authentication) and adds a few
pages. She enters the product information based on her knowledge as product manager, and is able to

c01.indd 2c01.indd 2 5/8/08 6:56:21 PM5/8/08 6:56:21 PM

Chapter 1: Embarking on Web Content Management Projects

3

format the text as she likes, as long as she stays within company style guidelines. Next, she posts some
product images to the site ’ s image library and uses them in the pages as well. She sets each page ’ s start
date to the product launch date, which is a couple of weeks in the future, and submits the pages for
approval.

 Figure 1 - 1

 Next, an editor gets an e - mail notifying him that there are new Web pages awaiting approval. He clicks a
URL in the e - mail and is led to the pages the product manager just created. He makes a few minor
changes and approves the pages. The author is then notified that the pages have been approved, and she
checks them over one more time to ensure that they look right. However, only she, the editor, and a few
other privileged users can see the pages; the general public will get to see them when the product is
launched.

 On the product launch day, the marketing manager is busy at a big press event, but knows that her
new Web pages went live at 8:00 A.M. that morning, and that she has carefully reviewed them in her own
Web browser. Furthermore, the pages will automatically appear in the site navigation and on summary
pages at the moment the pages go live.

c01.indd 3c01.indd 3 5/8/08 6:56:21 PM5/8/08 6:56:21 PM

Chapter 1: Embarking on Web Content Management Projects

4

 Designers and Developers
 The new product was so successful that the company has decided to expand, and has just merged with
one of their best partners. The merger will result in a new company, with a new brand. A complete
overhaul of the Web site is in order. All the existing Web site content is still relevant — it just needs a new
look and branding.

 The marketing manager hires a Web design firm to help them create their new site. An information
architect draws up a series of wire - frame diagrams showing the new page layouts, while a graphics
designer starts working on a look for the new site in the form of mock - ups, which are really just image
files showing what the site will look like. Ultimately, the marketing manager agrees to an approach, and
chooses one of the mock - ups and a set of wire frames for the new site.

 Because the designer ’ s mock - up is just an image file, the next step is to translate it into HTML with
Cascading Style Sheets (CSS) and a bunch of smaller image files that will make up each kind of page on
the site, resulting in an HTML mock - up. So far, the steps for the new MOSS site branding resemble those
that would be used in any Web site.

 Next, a SharePoint developer takes the HTML mock - up and merges it with a SharePoint blank master
page she downloaded from the Microsoft Web site. This provides the basis for all the newly branded
Web pages, with placeholders for all the SharePoint functionality to show through. She packages the
master page, CSS, and supporting image files into a SharePoint solution package and checks it into
the source control system.

 Meanwhile, the information architect wants to change the page layouts to match the new wire - frame
diagrams. To do this, she creates (or modifies existing) MOSS page layouts, which define where fields
should appear on each type of page. For example, she might specify that all product pages should have a
title at the top, followed by the model number and list price, and that the main body of the page will
have a large floating image on the right. A developer translates this into a page layout, which contains an
HTML fragment with the structure of the page. The HTML fragment includes field controls, which
alternately render or allow editing of the content. The properties of each field control define what text
formatting and CSS styles are permitted in each field.

 The master page and page layouts could be developed using SharePoint Designer 2007 directly on the
production servers (so they would be treated as part of the site content), or they could be developed
using Visual Studio and included in a solution package. The fundamental difference between these
approaches is that a Visual Studio solution package is installed on the file system of each of the
SharePoint Web servers in a farm, whereas SharePoint Designer modifies the SharePoint content
database. SharePoint Designer can customize SharePoint pages, which means that at runtime, the
customized page from the database is substituted for any original page that may have been on the Web
servers (or the customized page may only exist in the database, with no file - system - based counterpart at
all). Because content is not subject to the same release cycle as code, this often means that SharePoint
Designer customizations — which are really content changes, as they are in the content database — are
put directly into production, whereas SharePoint solution packages can go through a regular software
development life cycle, including controlled releases through a formal testing process. The latter is
the recommended approach. Keep in mind that SharePoint Designer is still useful as a developer tool,
enabling developers to start with customized pages on a development server, and then migrate the
markup into Visual Studio; it is also useful to allow business users to customize their sites directly.

c01.indd 4c01.indd 4 5/8/08 6:56:22 PM5/8/08 6:56:22 PM

Chapter 1: Embarking on Web Content Management Projects

5

 In the scenario, it is determined that the new branding on the site is core functionality and that it should
be subject to a controlled release cycle. The SharePoint solution package is part of a Visual Studio
solution stored in a source control system, and installed on servers in development, quality assurance
(QA)/staging, and ultimately production. In this case, the package deploys the master page, page
layouts, and dependent files to every Web server in the farm. Once the new master page is enabled, the
new branding appears on all the site ’ s Web pages. The new page layouts also take effect, even on
existing pages if they used the same layout name and set of fields (or content type).

 After thorough testing, development releases the new solution package to a system administrator who
installs it on the production SharePoint farm and switches the site to use the new master page.
Immediately, the new look and feel takes effect, even on existing pages. In other words, a new site was
not really needed after all — the infrastructure and existing content were all reused. Only the branding
and layout were changed, without affecting other aspects of the Web site.

 Developers can go much further in customizing and extending the WCM system, using solution
packages that are listed in the following table:

Extension Description Example of Use Chapter

Custom site
definitions

A set of XML-based
instructions for creating a
new site with specific
settings and initial content.
Note that in MOSS, a site
refers to a container in a
larger site collection, not
what users consider to be a
whole “Web site.”

A starting point for a specific
class of site, such as a product
information site, a job posting
site, a business partner site, etc.

5

Custom site columns,
content types, and
lists

A set of XML-based
instructions for creating new
site columns (to store
specific kinds of
information), content types
(groups of columns to use in
a list or library), including
when a site is created or a
Feature is activated

For a product information site,
a site column could be created
for each product attribute to be
displayed, and a new “product
page” content type would be
created with these and some of
the built-in columns.

6

Master pages and
page layouts

As described above, master
pages provide the branding
and overall page structure,
and page layouts define the
position of field controls on
the page.

For a product information site,
there might be a master page
with the overall branding, and
a page layout defining how
the product page’s columns
should be displayed.

7

Table continued on following page

c01.indd 5c01.indd 5 5/8/08 6:56:22 PM5/8/08 6:56:22 PM

Chapter 1: Embarking on Web Content Management Projects

6

Extension Description Example of Use Chapter

Custom navigation A new and different way to
render site navigation, or
custom links added to the
navigation across many
pages or sites

A new MOSS WCM site is
being set up alongside an
existing site that is not going
to be changed; navigation for
the old site needs to be
stitched into the MOSS site to
make a consistent user
experience.

8

Custom field types
and field controls

A custom field type is a new
data type, which may inherit
one of the existing types, and
can be used in site columns.
A field control is an ASP.
NET Web control that
renders and allows editing
of a particular field type.

Fields requiring custom
storage and/or rendering
might lead to a custom field
type, such as a page rating or a
compound part number. Field
controls are used for custom
and out-of-the-box field types
whenever any special
rendering or editing is
required. For example, a
complex field might be stored
as XML, edited using a grid
control, and rendered using an
XSLT style sheet.

10

Custom Web Parts An ASP.NET Web control
that renders external or
internal site content

Display external information
such as a weather report or
stock feed; display lists of
items or search-driven results.

11

Custom workflow
and forms

A workflow definition for
managing content and
content-related work, with
forms to capture
information from end users

A more complex approval
workflow than is built into
MOSS, with special business
rules or exceptions.

12

Custom Authoring
Console

Additional menu options or
formatting capabilities when
editing Web pages

A simple option is added to
perform common formatting,
content insertion, or other
tasks on the page.

14

c01.indd 6c01.indd 6 5/8/08 6:56:23 PM5/8/08 6:56:23 PM

Chapter 1: Embarking on Web Content Management Projects

7

 Designing and Planning a Successful
WCM Solution

 Anyone who has tried to find their way around a new city knows that the experience varies considerably
between a planned city, such as most of New York or Washington, DC, versus an unplanned city such as
London or Boston. A planned city has some kind of logical organization or grid layout that makes
navigation much easier, whereas an unplanned city may seem like a twisting maze of confusing
passages, presenting quite a challenge for newcomers. A Web site is no different, and a little planning
and forethought will go a long way in terms of site usability and control.

 Information architecture is the emerging field of designing the structure of shared information
environments, such as Web sites, to improve usability and facilitate the finding of information.
Professional information architects often have a background in library science or cognitive psychology;
and depending on the scope of a project, it may be desirable to enlist such a specialist to lead the effort.
On smaller projects, or projects for which the basic structure is well understood, the information
architecture may be created by the analysts and design team, with input from developers, users, and
other stakeholders.

 It is important to remember that every WCM solution has an information architecture , whether it is designed
to be compelling and intuitive or left to evolve randomly.

 MOSS comes loaded with a very simple information architecture and visual design that is set up when a
Publishing site is created. The out - of - the - box Publishing site definition offers a choice of about half a
dozen master pages, basic layouts for welcome and article pages, and a simple navigation structure with
a home page and a child site for press releases. This is great for getting a quick start, and indeed some of
the default settings may prove useful. However, it is worth at least considering each aspect of the WCM
solution and deciding which of the defaults to keep and which to augment or replace.

 The sections that follow describe the major areas to consider, along with general best practices and ideas
about how to get started.

 Use Case Scenarios
 As with any system, the first step is to identify the site ’ s target users and determine the major use cases
for the site — for example, “ a reseller looks up product specifications, ” “ a patient looks up side - effects of
a prescription drug, ” or “ a recruiter posts a new job opening. ” Answering this question should produce
an idea of who the users are, their degree of expertise, and what it is that they want to do. Don ’ t forget to
include internal as well as external users, such as content contributors and editors. Prioritize the uses
cases and make them the basis for the decisions that follow.

 Site Structure and Navigation
 Navigation begins with the overall site structure or a site map, and this is a good place to start the
information architecture. SharePoint sites are always part of a site collection, which has a single parent or
 top - level site . The top - level site can have any number of child sites, grandchildren, and so on, and each
site will have one or more pages in a page library . The site structure is therefore based on pages (the leaf

c01.indd 7c01.indd 7 5/8/08 6:56:23 PM5/8/08 6:56:23 PM

Chapter 1: Embarking on Web Content Management Projects

8

nodes, which are viewable by end users) and sites (the containers, each of which has at least one default
page to display). This is illustrated in Figure 1 - 2 .

Page

Page

Page

Page

Page

Site
Collection

Site
Collection

Web
Application

Web
Application

Farm

Site
Collection

Top Level
Site

Top Level
Site

Top Level
Site

Page

Page Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Site

Site

Site

Site

Page

Site

Figure 1-2

 Begin with the logical site structure or site map. The site map is generally determined based on weighing
a number of considerations, including the following:

 What is the most logical browsing structure for end users? This is certainly the most important
consideration, but not an end - all, as other forms of navigation can short - circuit the site ’ s
structure, such as the Content Query Web Part (these are discussed in general later in this
section and in greater detail in Chapter 11 , “ Web Parts ”).

 What permissions will be set on the sites? By default, SharePoint sites inherit their permissions
from their parent site, so grouping sites with the same permissions (who can author, edit, etc.)
under a common parent simplifies managing the permissions.

❑

❑

c01.indd 8c01.indd 8 5/8/08 6:56:23 PM5/8/08 6:56:23 PM

Chapter 1: Embarking on Web Content Management Projects

9

 What is the look and feel of the sites? By default, SharePoint sites inherit their master page
settings and Cascading Style Sheets from their parent site, so grouping sites with the same look
and feel under a common parent simplifies configuration and provides a more consistent
browsing experience.

 What information might need to be queried within the sites? This refers not to search queries,
which can span site collections and even external content, but to the Content Query Web Part
and similar Web Parts developers create using the SPQuery object in the Windows SharePoint
Services (WSS) object model. These queries are more like database queries that retrieve items
based on their location, type, and property values, as long as they are within the same site
collection. For example, a content query might locate Web pages on a particular topic, events in
a particular location, or tasks assigned to a particular user. Content queries can be set to scan a
site and all its descendents, so if the content to be queried is grouped within the same site
hierarchy, the queries are easier to set up and maintain.

 Site Collection Boundaries
 In many cases, the entire site structure can be contained in a single site collection, and indeed this is
convenient because the built - in navigation is based on the sites and pages within the collection. In
addition, content queries, content types, storage quotas, and numerous other SharePoint capabilities are
scoped at a site collection, so there is a tendency to design large site collections to make them work over
a large set of content. However, sometimes it makes sense to break the solution down into multiple site
collections. The primary reasons are as follows:

 A site collection is always stored in a single SharePoint content database, although a content
database can contain many site collections. If the site collection becomes too large — this
includes all the content, such as documents, images, and videos, along with the Web pages —
 then the database can become unwieldy and hard to back up and restore in a timely manner.
Therefore, many SharePoint administrators limit site collections to 50 – 200GB, and place large
site collections in their own, dedicated content database.

 SharePoint ’ s built - in groups (for permissions) are scoped at the site - collection level, so if
separate sets of groups are desired for administrative control, separate site collections will be
necessary.

 Some SharePoint Features are scoped at the site collection level, and if these Features are desired
in some areas but not others, then the areas need to be in different site collections. For example,
the WCM capabilities are controlled by a site collection Feature called “ Office SharePoint Server
Publishing Infrastructure, ” so team collaboration sites that don ’ t need WCM Features could be
kept in a separate site collection.

 Anonymous access is scoped at the site collection level, so if part of a Web site is to be open to
anonymous users, whereas another part forces a login, these sections should be in separate site
collections .

 SharePoint makes it very easy to reorganize sites within a site collection, but not so easy to move them to
a new site collection, so it is worth thinking through the site collection boundaries up front. A common
pitfall is to build a solution with one giant site collection and then find out months or years later that the
database has become too large to restore from backup within the service - level agreement, or that very
expensive backup solutions are needed to handle it. If a site will contain large items such as videos, then
consider putting them in separate site collection(s) and linking to them to divide the storage.

❑

❑

❑

❑

❑

❑

c01.indd 9c01.indd 9 5/8/08 6:56:24 PM5/8/08 6:56:24 PM

Chapter 1: Embarking on Web Content Management Projects

10

 Navigation and Page Listings
 The built - in navigation is based on the site hierarchy and the pages within each site in a site collection.
Two views of the navigation are shown: global navigation (by default at the top of the page, the global
navigation starts at the top - level site, or wherever the inheritance is broken) and current navigation (by
default on the left of the page, the current navigation starts at the current site). It is easy to add arbitrary
links to the navigation, or to hide sites and pages that should not be displayed. The navigation system
can be fully customized; for details see Chapter 8 , “ Navigation. ”

 Two other types of “ navigation, ” which are really just ways of listing links to relevant pages, are also
provided out of the box (OOTB):

 Summary Link fields — These manage a list of hyperlinks as content, and provide navigation
to related pages, both within and beyond the WCM solution. These hyperlinks become part of
the “ authored content ” and are thus subject to the normal page approval workflow.

 Content Query Web Parts — These dynamically query a site collection for content matching key
criteria, such as “ press releases issued this year ” or “ events in Oklahoma. ” They provide links to
cross - sections of site content based on the query settings, and have the advantage that they are
updated automatically as new content is added.

 Combined with the built - in navigation, these features enable placement of relevant links. In general, try
to logically group links, and keep in mind that people tend to stop reading after the first four or five
links in a list. In addition, they will only click a few levels deep, so this can limit the practical size of the
site map. If the site map becomes unwieldy, consider breaking the solution down into multiple Web sites
or Web applications, each with its own URL, and enable users to begin by selecting an appropriate starting
point (e.g., sales information versus support). The same SharePoint farm can host these applications and
provide a common search infrastructure that spans them all, so choose a structure that is logical from a
usability and maintenance point of view.

 Page Layouts and Content Types
 Just as navigation planning begins with the site map, the page layout planning begins with page
wireframes. A wireframe is simply a sketch indicating how information will be laid out on each type of
page. This includes welcome pages (as they are called in the MOSS - provided templates), which are
intended to provide summary information on a site or section of a site, and detail pages (“ article ” detail
pages are in the MOSS - provided templates).

 In general, for each type of page identified in the wireframes, there is a single page layout. The page
layout consists of an HTML fragment that defines the layout itself (often this is an HTML table). Places
for content are inserted as needed within the HTML, and can include any combination of the following:

 Field controls — Each field control displays a piece of content that is stored in a field of each
page that uses the page layout. The content in these fields is approved and versioned along with
the rest of the page. Field controls are provided for HTML content (and text), images, and
summary links; and as shown in Chapter 10 , “ Field Types and Field Controls, ” it is easy to
create your own for other types of information. Field controls are the most common way
to present content in a MOSS WCM site.

❑

❑

❑

c01.indd 10c01.indd 10 5/8/08 6:56:24 PM5/8/08 6:56:24 PM

Chapter 1: Embarking on Web Content Management Projects

11

 Web Part zones — Web Part zones enable authors and editors to place Web Parts on the page.
This is very useful for adding functionality, such as Content Queries, RSS feeds, or KPI lists.
However, note that Web Parts are part of the ASP.NET 2.0 infrastructure, and therefore are not
aware of the MOSS publishing system.

 A common confusion arises because Web Part zones store the Web Part placements and
 metadata in a separate Web Part store, not in fields of the page. As a result, changes to Web
Parts within a zone are subject to approval along with the page, but not to versioning. Therefore,
the expected approval behavior will work fine, but if a page is rolled back to a previous
version, the Web Part zones won ’ t be affected. For this reason, Web Parts are best used to add
 functionality, rather than pure content to a page. For example, the Content Editor Web Part
might seem to be the same as a Rich HTML field control but it is not, because the Web Part ’ s
content is not versioned along with the page.

 Web Parts and ASP.NET controls — Web Parts and other ASP.NET controls can be embedded
directly in the page layout. As such, they cannot be edited on the individual page instances; this
can be quite useful to ensure that certain information is always displayed in a certain way.

 Page layouts are closely related to the use of content types. A content type is simply a set of columns and
policy settings that define some kind of content, be it a catalog page, a contract document, or a calendar
event. Content types can share columns — for example, an article page, a press release page, and a
product description page might all contain an Author column, and by mapping them all to the same
Author site column, MOSS realizes that they are the same information when performing queries,
constructing views of content, and so on.

 The fields available for use in a page layout depend on its underlying content type. It is entirely possible
to have multiple page layouts for a single content type; for example, the built - in MOSS page layouts
include three layouts (ArticleLeft.aspx , ArticleRight.aspx and ArticleLinks.aspx), which are
all layouts of the same content type (“ article page ”). This enables the page layout to be changed
independently of the content — for example, an article page could be changed from ArticleLeft.aspx
to ArticleRight.aspx in order to move its image to the right of the main text on the page.

 It is useful to group the page layouts from your wireframe into content types, and to identify the site
columns that will make up the fields of each page layout. If multiple page layouts can share a content
type, this will provide more flexibility later. Keep in mind that some page layouts may not expose all the
fields in the content type. Moreover, it ’ s possible to put field controls inside an Edit Mode Panel control
to make them appear only when the page is edited. This can be useful to capture metadata that will be
shown in summaries (via the Content Query Web Part) without showing it on the detail page.

 For planning purposes, understanding these distinctions and sketching out the wireframes should be
sufficient; for details about how to implement page layouts, see Chapter 7 , “ Master Pages and Page
Layouts. ”

 Supporting Content: Images, Attachments
and Reusable Content

 MOSS field controls will place much of the page content directly in fields of the page, but there will
inevitably be other content that needs to be managed outside of the page. For example, the image field
control does not store an image but a link to an image that is stored elsewhere. Likewise, a Web author

❑

❑

c01.indd 11c01.indd 11 5/8/08 6:56:25 PM5/8/08 6:56:25 PM

Chapter 1: Embarking on Web Content Management Projects

12

may want to include attachment links to downloadable documents, but where do the documents
themselves reside?

 The natural answer is to store this supporting content right in MOSS, where it will be easily accessible,
subject to the same business rules and permissions, and backed up in the same content database. The image
field control looks for image libraries named Images in the current and top - level site of the site collection,
and these libraries are convenient places to store images. Policy and permissions can be set on these
libraries to allow only selected people to add images and to require an approval before they are available.
This can be very useful in enforcing site policy and avoiding the problem of authors who might upload
unlicensed images for use on the site.

 Part of the information architecture includes providing places to store images and other supporting
content, such as documents, on the site. In general, it is a good idea to store assets at the root of the
hierarchy in which they will be used. For example, general company images might be stored on the top -
 level site for use throughout all the child sites, and images relating to a particular product line might be
stored on that product ’ s site, which has all the related sites underneath it.

 Reusable content is a MOSS feature for managing snippets of content, such as legal disclaimers and
trademark declarations, which must appear on many or all pages. These snippets are kept in a special
list, aptly named Reusable Content, in the top - level site. Authors can insert the reusable content on their
pages, and rather than copy the content into the page, a reference to the content is stored and replaced
with the snippet at runtime. This enables the reusable content to be changed in one place for every page
in which it is used. Planning this up front is a good idea, before the site contains thousands of copy -
and - paste snippets (each of which would have to be updated individually).

 Site Definitions
 With a site navigation structure, wireframes for the page layouts, and a plan to store supporting content,
turn to the containers that will hold the pages and other content. These are MOSS sites, and if the
Publishing site definitions that come with MOSS provide everything you need, then no additional work
is required here.

 However, it may be desirable to allow users to create a site that has certain lists, content, or features
already set up. This is most common in collaboration scenarios, but it sometimes is useful in publishing
scenarios as well. For example, a product site might contain a specific set of pre - defined pages ready to
fill with content, an image library for product pictures, and a special workflow associated with the page
library.

 To automate this, it ’ s possible to create a new site definition, which tells MOSS how to create the new
product sites. For planning purposes, determine what site definitions will be needed and what they need
to do.

 For details on implementation, see Chapter 5 , “ Minimal Publishing Site Definition. ”

 Note that WSS has a similar concept called site templates, which can be created by simply clicking Save
Site as Template on the Site Settings page. This link is not available for Publishing sites, and it would not
be a good idea to use it if it were because site templates, like customized pages, live in the content
database and cannot easily be staged and tested in a software release cycle. Instead, it is better to create a
new site definition in Visual Studio and use your normal release cycle to test and deploy it.

c01.indd 12c01.indd 12 5/8/08 6:56:25 PM5/8/08 6:56:25 PM

Chapter 1: Embarking on Web Content Management Projects

13

 Roles and Permissions
 Another planning activity is designing the security settings for your WCM solution. MOSS provides a
number of authentication options; for details see Chapter 15 , “ Authentication and Authorization. ” It is
also possible to manage the content on one physical infrastructure and deploy it to a separate hosting
environment; this is detailed in Chapter 17 , “ Content Deployment. ” However, it is authorization that is
of the greatest concern to the information architecture, as it is directly related to content.

 MOSS provides just two levels of groups, SharePoint groups and permission levels, as shown in Figure 1 - 3 .

 Just to be clear, in previous versions of SharePoint, groups were called “ cross - site groups ” and
permission levels were called “ site groups. ”

 In addition, an ASP.NET role provider can add additional levels of grouping stored outside of
SharePoint; out of the box, MOSS supports Active Directory (AD) groups in this manner, so with no code
or extra effort, developers can use AD groups freely in MOSS. Here, the term “ role provider group ” is
used to highlight the fact that it can be any external directory or other data source that has an ASP.NET
role provider.

User

User

User

User

User

User

User
Role Provider

Group

SharePoint
Group

Permission
Level

Permission
Permission
Permission
Permission

SharePoint
Group

Role Provider
Group

Figure 1-3

 Permission levels are stored at the site level, though by default they are inherited from the parent site.
Out of the box, a Publishing site has eight permission levels: Full Control, Design, Manage Hierarchy,
Approve, Contribute, Read, Restricted Read, and Limited Access. Each of these has a set of fine - grained
permissions associated with it, such as permission to view, add, edit, or delete items; the ability to add
pages and child sites, and so on.

 Permission levels grant their granular permissions on a site to a specific set of users, SharePoint groups
and role provider groups. Within a site, the permission levels for these users and groups will apply to all
the lists, libraries, folders, and items in the site, unless explicit permission levels are assigned to an
object. For example, the user Joe may have Restricted Read access to the site, but Full Control over a
particular folder of documents, and no access at all to a specific security Web page.

c01.indd 13c01.indd 13 5/8/08 6:56:25 PM5/8/08 6:56:25 PM

Chapter 1: Embarking on Web Content Management Projects

14

 It is possible to create custom permission levels, or to edit the granular permissions of the OOTB ones,
except for Full Control and Limited Access. Full Control always allows complete access to the site, and
Limited Access allows no direct access to site content at all, but is intended to allow users to traverse the
site in order to access items within it that they have explicit permission to see. For example, a user might
have access only to one page of a site, but still need access to style sheets and other supporting site
infrastructure in order to view it; in that case, the user would need Limited Access permission on the site
and Restricted Read access to the page.

 The other groups within MOSS are SharePoint groups, which are more traditional groupings. SharePoint
groups cannot be nested, but can contain external role provider groups. Note that SharePoint groups are
stored at the site - collection level; this makes the same groups available in all sites in the site collection.
This can be good or bad; it is convenient to have groups that apply across many sites, but sometimes it
would be nice to have a second level of grouping (other than permission levels) within a site.

 More details about permissions and groups can be found in the WSS documentation at
www.andrewconnell.com/go/200 .

 The task then is to design the setup of permission levels, SharePoint groups, and role provider groups
and how they will apply to the content in the site map. Think of the permission levels as roles — going
back to the use cases, who are the actors, and what roles will they take on with respect to the various
sites and content in the system? Those roles will end up reflecting the permission levels. The OOTB
levels may be fine, but walk through them and see whether they make sense.

 In general, it is better to grant permissions to SharePoint or role provider groups, rather than to
individual users, as it is a lot easier to edit a group membership when you have organizational changes
than it is to remember all the permissions that need to be set. The built - in SharePoint groups are also role
oriented, but these are roles that extend throughout the site collection. This is a good approach, but a
large site will probably need to have more explicit groups, such as Marketing Page Approvers or Product
Site Authors, to easily manage different permissions in various parts of the site collection.

 If you are using AD (or another role provider) and have the authority to create groups there, then groups
can be nested as much as desired. This can be used, for example, to manage organizational groups — for
example, if all the design engineers are already in a Design Engineers AD group, and these are the same
people who can approve specification changes, then the existing Design Engineers AD group can be
placed into a Specification Approvers SharePoint group.

 A common pitfall is developing a solution in an environment where everybody has full control, only to
later discover in system testing that it does not work in production, where more restrictive permissions
are in place. Planning the permissions up front and making them part of unit testing is much less painful
in the long run!

 User Profiles and Targeting
 If users are authenticated, then MOSS can do more than just set permissions for them. MOSS also
contains a user profile system to store information about users, and a targeting system to automatically
select relevant content based on the user ’ s profile.

 User profiles can be configured in the shared service provider (SSP) to have whatever properties are of
interest. The usual approach is to populate the profile database by periodically importing data from the

c01.indd 14c01.indd 14 5/8/08 6:56:26 PM5/8/08 6:56:26 PM

Chapter 1: Embarking on Web Content Management Projects

15

directory service and to allow users to modify their profiles in their My Sites , although profiles can also
be created and updated programmatically.

 SharePoint audiences select users based on rules about their user profiles — for example, users whose
country is equal to Australia, whose list of interests includes the word “ boating ” or who are members of
the Top Partners group in AD. Content, including Web pages, can be targeted to specific audiences by
placing a list of audiences in the Target Audiences field. The Content Query Web Part can be set to
respect these audience settings, so users are presented only with content that matches the query and the
user ’ s audiences. Note that audience targeting is different from security; users can still get to content via
navigation, search, or an explicit URL, even if they are not in the target audience. Rather than security,
targeting is intended to highlight content of interest to users.

 Search Strategy
 Site users expect to be able to both search for content and navigate to it, and fortunately MOSS has a
great built - in search engine to accommodate their needs. MOSS search is a huge topic that is beyond the
scope of this book, but it is worth pointing out some of the possibilities.

 In addition to indexing MOSS content, the MOSS search engine can index external file shares, Microsoft
Exchange public folders, and Lotus Notes databases. It can also crawl any Web site, which can be useful
when there are related sites that are not in MOSS.

 Here are some strategies for optimizing MOSS search in a WCM solution:

 Branding — Naturally, the search pages inherit the master page and Cascading Style Sheets
(CSS) along with the rest of the site. Further customizations are easy, but the search user
interface is comprised of Web Parts that can be reconfigured and rearranged to meet your needs.

 Search scopes — A search scope is basically a set of partial queries called scope rules that narrow
down a user ’ s search. Users normally see scopes in a drop - down list next to the search box, or
as tabs on the results page. For example, a News search might show only news stories matching
the user ’ s query, and the scope rule behind it could select the news based on Web address,
content source, or other properties.

 When planning a search scope that is not based on the location of the content, the scope needs to
be based on a property of some kind. One of the built - in properties is contentclass , which
contains the name of the content type; therefore, if there is a content type for press releases, then
making a Press Releases search scope would be easy.

 In other cases, it may be necessary to include a property in the page content type, visible only at
editing time, that puts pages into the scope. For example, if a random cross - section of pages con-
tains medical information, and Medical search scope is planned, placing the word Medical in a
hidden field would enable these pages to be selected in a search scope.

 Search scopes can be set up in the SSP administration site.

 Authoritative pages — Search relevancy can be adjusted by specifying authoritative pages in
the search catalog. Pages can be designated as most, second, or third most authoritative, and
their relevancy is adjusted upwards; pages can also be designated as non - authoritative and their
relevancy is demoted. This can be useful when areas of a site contain information that needs to

❑

❑

❑

c01.indd 15c01.indd 15 5/8/08 6:56:26 PM5/8/08 6:56:26 PM

Chapter 1: Embarking on Web Content Management Projects

16

be highlighted (authored information, for example) or pushed to the bottom (such as old or less
popular content). Note that an authoritative page also affects the pages to which it links: For
example, a product summary page that links to all products could be marked as authoritative to
raise the relevancy of all the product pages, as well as the summary. Authoritative pages can be
set up in the SSP administration site.

 Keywords/best bets — Pages can be designated as best bets and associated with keywords.
When the keyword is included in a search query, any related best bets will show up in their own
section of the search results page. Keywords can be set up as best bets in the top - level site
settings of each site collection.

 A best practice is to monitor the Search Usage reports (in the SSP administration sites) and look
at the Search Results report called Queries with Zero Results. Guess what? There is a frustrated
user behind every one of those queries! These are candidates for keywords and best bets.

 Traditional Web sites place metadata in META tags, but this isn ’ t necessary for the MOSS search engine
to pick up the metadata when crawling MOSS content; it can query the metadata directly. However, it
may be desirable to include META tags in order to allow external search engines to crawl a WCM
solution. This can be accomplished by incorporating a custom control or Web Part in the master page,
which emits the desired META tags based on the page content (some of which may be hidden from
site visitors by placing it within an Edit Mode Panel so they only appear when the page is being
edited). An example of such a control, called MetaTagsGenerator , is available on CodePlex at
www.andrewconnell.com/go/201 .

 Summary
 WCM removes bottlenecks in the process of Web publishing by enabling business users to directly
author and edit content independently of one another and of site designers. Similarly, site designers can
work independently of the content creators, and can update existing content with new branding and
other visual changes.

 WCM can also improve the quality and consistency of a Web site by providing a structure, but only if the
solution has the structure implemented as part of the design. Here is a checklist of planning activities:

 Use case scenarios defining both internal and external actors and how they will use the site

 Overall site map showing the site structure, including the placement of site collections if there is
more than one

 Image, and eventually HTML mock - ups, of the visual design

 Wireframe representations of desired page layouts, mapped to documented content types that
will define the fields used to store the data

 A list of required custom features for development based on the wireframe representations and
visual design

 Defined locations for supporting content such as images and attached documents

 A structure for SharePoint groups and permission levels, perhaps color coded to sites on the
site map

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 16c01.indd 16 5/8/08 6:56:26 PM5/8/08 6:56:26 PM

Chapter 1: Embarking on Web Content Management Projects

17

 Remember that your Web site will have information architecture, just as every city has a street map.
Whether yours will be easy or confusing depends on the planning and thought that goes into the
solution. Keep in mind that the real point of Web publishing is not the cool technology, but the content
itself. Organizing the content in the most helpful way possible will do more for a site ’ s success than any
other factor, and a well designed WCM site will make that easy.

 The following two resources are useful for designing usable Web sites:

 Improving Web Site Usability and Appeal: www.andrewconnell.com/go/202

 Step - by - Step Usability Guide: www.andrewconnell.com/go/203

❑

❑

c01.indd 17c01.indd 17 5/8/08 6:56:27 PM5/8/08 6:56:27 PM

c01.indd 18c01.indd 18 5/8/08 6:56:27 PM5/8/08 6:56:27 PM

 Windows SharePoint
Server 3.0 Development

Primer

 Before digging into Microsoft Office SharePoint Server 2007 (MOSS) Web Content Management
(WCM) development topics, developers must have a firm understanding of Windows SharePoint
Services 3.0 (WSS). Of course, it is not possible to fully cover the subject of WSS development in
a single chapter. It is a very large and far - reaching topic, as it is the foundation for everything
in the SharePoint product stack. This chapter touches on some of the more important and relevant
topics in WSS that are relevant to the WCM/Publishing topics covered in this book.

 For in - depth development and architecture coverage of Windows SharePoint Services 3.0, see
 Inside Microsoft Windows SharePoint Services 3.0 by Ted Pattison and Dan Larson
(Microsoft Press, 2007).

 SharePoint Architecture
 In WSS 2.0, SharePoint was integrated into ASP.NET 1.1 via an ISAPI filter (see Figure 2 - 1). This
ISAPI filter was needed because ASP.NET 1.1 had no mechanism that enabled applications to
reroute how the source of a file was retrieved: ASP.NET 1.1 always assumed the files lived on the
file system. This ISAPI filter presented many challenges in WSS 2.0, specifically in the areas of
performance and extensibility. It was not easy to do things such as add custom HTTP handlers or
modules, leverage custom user controls (ASCXs), or plug custom code into the ASP.NET page life
cycle, changing the execution process.

c02.indd 19c02.indd 19 5/8/08 7:02:13 PM5/8/08 7:02:13 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

20

 Thankfully, Microsoft dramatically changed the fundamental architecture of WSS 3.0 from the previous
release (WSS 2.0). This is largely due to the fact that the ASP.NET 2.0 team added functionality and
certain hooks that enable third - party developers to customize the ASP.NET 2.0 infrastructure. The most
significant addition to ASP.NET 2.0 is the virtual path provider, which abstracts the location of the
requested files from ASP.NET. ASP.NET 2.0 utilizes a built - in virtual path provider that retrieves files
from the file system by default, but the virtual path provider enables developers to plug in custom
providers to customize the source of the requested files.

 For more information on the virtual path provider, refer to the official documentation on MSDN
(www.andrewconnell.com/go/204) and the Microsoft Knowledge Base article #910441
(www.andrewconnell.com/go/205) for an example.

 By adding the virtual path provider, the SharePoint team was able to completely implement
WSS 3.0 using a custom HTTP application, modules, and handlers; and route all requests for a
SharePoint site through ASP.NET 2.0. The SharePoint team created a custom virtual path provider,
 Microsoft.SharePoint.ApplicationRuntime.SPVirtualPathProvider , that supports
SharePoint ’ s concept of page customization, covered later in the chapter. This allowed Microsoft to
discard the ISAPI filter and the approach of integrating WSS 2.0 with ASP.NET 1.1.

 However, ASP.NET 2.0 is not the only part of the .NET Framework that SharePoint relies upon. The other
main component is Windows Workflow Foundation (WF), one of the four components in addition to the
.NET 2.0 Framework included in the .NET 3.0 Framework (the others being Windows Communication
Foundation, Windows Presentation Foundation, and Windows CardSpace).

 Due to the architectural changes and improvements to the ASP.NET 2.0 platform, the SharePoint team
was able to build WSS 3.0 on top of the existing .NET Framework stack, as shown in Figure 2 - 2 .

WSS v2 ISAPI Filter

ASP.NET
v1.1

WSS
v2

Internet Information Services 6

Windows Server 2003

Figure 2-1

c02.indd 20c02.indd 20 5/8/08 7:02:14 PM5/8/08 7:02:14 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

21

 This new architecture also enables SharePoint to fully leverage and benefit from everything that
ASP.NET 2.0 has to offer, such as page output caching, user controls, server controls, and custom HTTP
handlers and modules.

 Some of the ASP.NET 2.0 features that SharePoint leverages are covered in more detail later in the book,
such as master pages (see Chapter 7), the navigation provider model (see Chapter 8), Web Parts (see
Chapter 11), workflow (see Chapter 12) and the authentication provider model (see Chapter 15).

 SharePoint on the File System and in Internet
Information Services

 When installing SharePoint, all the application files are installed into a directory nested deep within the
Program Files path: c:\Program Files\Common Files\Microsoft Shared\web server
extensions\12 . Throughout this book, this folder is referred to as the “ SharePoint 12 folder ” or
 [..]\12\ . The SharePoint 12 folder contains everything necessary to run MOSS and WSS, including
Features (covered in Chapter 4), images, Cascading Style Sheets (CSS), Web services, and all assemblies
containing the compiled logic necessary for SharePoint to execute. Most of the custom code solutions are
deployed to a folder nested somewhere in SharePoint ’ s 12 folder structure.

 One thing that is not kept in this path is the root directory for each new Web application, or Web site,
created in Internet Information Services (IIS). By default, these are created in c:\Inetpub\wwwroot\
wss\VirtualDirectories\[site ’ s host header][site ’ s port number] . Web applications are used
as the HTTP entry point to a SharePoint site and define certain aspects that are shared across all
SharePoint sites hosted within the Web application, such as HTTP handlers and modules, authentication
configuration, and a list of which controls have been registered with SharePoint ’ s safe mode page parser.
Opening a SharePoint extended Web application in IIS exposes four virtual directories created by
SharePoint: _vti_bin , _controltemplates , _layouts , and _wpresources . Each virtual directory has
a specific use within a SharePoint Web application and is shared across all sites hosted within that Web
application:

 _vti_bin — This exposes SharePoint Web services and assemblies to SharePoint and
non - SharePoint applications alike; this virtual directory points to the path c:\Program Files\
Common Files\Microsoft Shared\web server extensions\12\ISAPI .

❑

WSS v3

.NET Framework v3.0

Internet Information Services 6

Windows Server 2003

Figure 2-2

c02.indd 21c02.indd 21 5/8/08 7:02:14 PM5/8/08 7:02:14 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

22

 _controltemplates — This points to a shared folder within the SharePoint 12 directory structure
that only contains ASP.NET 2.0 user controls; this virtual directory points to the path
c:\Program Files\Common Files\Microsoft Shared\web server extensions\
12\TEMPLATE\CONTROLTEMPLATES .

 _layouts — This points to a shared folder within the SharePoint 12 directory structure
containing application pages, covered later in this chapter; this virtual directory points to the
path c:\Program Files\Common Files\Microsoft Shared\web server extensions\
12\TEMPLATE\LAYOUTS .

 _wpresources — This points to a shared folder that contains resources used by Web Parts
deployed globally to the server; this virtual directory points to the path c:\Program Files\
Common Files\Microsoft Shared\web server extensions\wpresources .

 SharePoint Site Topology
 The topology and structure of a WSS site, as well as the site collection in which the site lives, is very
important to WCM developers. To best understand it, it is easiest to look at the topology of a WSS site
and site collection from the top - down approach. As shown in Figure 2 - 3 , the entry point for all
SharePoint sites is the Web application. The previous section explained how a Web application is just
another name for an IIS Web site and the folder structure that makes up the Web application.

❑

❑

❑

Web Application

SharePoint Content Database

Site Collection

Site Collection

SharePoint Content Database

Site Collection

Figure 2-3

 Web applications host SharePoint site collections. Web applications can also contain more than one site
collection. Recall that a site collection is an administrative and management construct within SharePoint.
Many capabilities are scoped within a specific site collection and do not cross to other site collections,
such as the scope of a search query created using the Content Query Web Part in a WCM site (the
Content Query Web Part is covered in detail in Chapter 11).

 Developers can use the Microsoft.SharePoint.Administration.SPWebApplication class to
obtain a reference to an existing SharePoint extended Web application to perform administrative tasks
such as setting the number of days the “ New! ” icon appears next to new list items and documents:

SPWebApplication webApp = SPWebApplication.Lookup(new Uri(“http://wss”));
webApp.DaysToShowNewIndicator = 7;
webApp.Update();

c02.indd 22c02.indd 22 5/8/08 7:02:15 PM5/8/08 7:02:15 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

23

 While site collections are hosted by Web applications, they are stored within SharePoint content
databases — another name for a SharePoint - specific Microsoft SQL Server database. Administrators can
add multiple content databases to a Web application, but a site collection can only live within exactly one
content database. This highlights the fact that administrators need to plan the structure of a site
collection because the larger the site collection, the larger the SQL Server database. As a result, when a
site collection becomes extremely large, the site has to be taken offline while the database is backed up.
Although you shouldn ’ t fret too much over the size of a site collection in the early stages of a project, as
sites can be moved from one site collection to another using custom code and working with the
SharePoint API, spend some time planning for the site collection ’ s growth. Administrators can leverage
quotas to control how much a site collection can grow in terms of storage space. These quotas can be
defined when a site collection is created or on existing site collections.

 As previously stated, site collections are used for both administrative and management purposes.
However, at their core, SharePoint site collections simply contain SharePoint sites. When a new site
collection is created, the user is immediately directed to enter information such as the display name, the
description, and the owner of the site. This site is called the top - level or root site within the site collection.
Each site collection can have one top - level site, with as many subsites as desired. Each site contains lists
and libraries that are the fundamental and lowest - level storage constructs within SharePoint . . . similar
to SQL Server database tables. Like records within a database table, SharePoint lists and libraries contain
list items and documents. A new feature of WSS 3.0 is that SharePoint lists can also contain folders
(previously, in WSS 2.0, only document libraries supported folders).

 Chapter 6 , “ Site Columns, Content Types, and Lists, ” takes a detailed look at SharePoint lists and
libraries.

 Developers can use the Microsoft.SharePoint.SPSite class to obtain a reference to an existing site
collection, and Microsoft.SharePoint.SPWeb to obtain a reference to a site within a site collection.
The following code demonstrates obtaining a reference to a site collection and determining how many
lists the top - level site contains:

SPSite siteCollection = new SPSite(“http://wss”);
SPWeb topLevelSite = siteCollection.RootWeb;
Console.Out.WriteLine(“Total lists in the top-level site: “
+topLevelSite.Lists.Count.ToString());

 In addition, developers can also use the classes Microsoft.SharePoint.SPList and Microsoft
.SharePoint.SPDocumentLibrary to interact with lists and libraries via the SharePoint API.

 When a new site is created, an administrator is prompted to select a site template, including when
prompted to create the top - level site after creating a site collection. Site templates are used to define an
initial starting point for the SharePoint site. Templates can include things such as list templates, as well
as instances of those list templates (covered in Chapter 6), Web Parts (covered in Chapter 11), default
content, and Features that are activated by default (covered in Chapter 4), among other things. However,
administrators can also elect to start from the equivalent of a clean slate by creating a site based on the
Blank Site template, which only adds the absolute minimum components necessary for a site to function,
such as the site template, list template, and Web Part libraries.

 Each of these different elements within the site topology is used within Publishing sites. Chapter 3
covers in greater depth how the various site topology objects — specifically, SPSite , SPWeb , SPList ,
and SPListItem — are leveraged within Publishing sites.

c02.indd 23c02.indd 23 5/8/08 7:02:15 PM5/8/08 7:02:15 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

24

 SharePoint Administration
 SharePoint includes various interfaces that enable administrators to manage a SharePoint
implementation, both for SharePoint farm administrators and SharePoint site administrators. There are
essentially four different administration interfaces within a SharePoint environment: Central
Administration, Site Settings, List Settings, and STSADM.EXE .

 Keep one thing in mind with respect to administration: While the browser - based and command - line
administration experience provides a significant amount of administrative capability, everything is
implemented using the SharePoint API. Thus, the SharePoint API can do everything the browser - based
or command - line interface can do, as well as many other things.

 Central Administration
 When an administrator installs SharePoint for the first time and creates a new farm, the installer
automatically creates a special WSS 3.0 site called Central Administration (see Figure 2 - 4). This site is
primarily used by farm administrators to manage all the servers in the SharePoint server farm, as well as
the SharePoint services on those servers. Central Administration is also used to manage and create new
Web applications, which creates new IIS Web sites automatically extended with the necessary things for
SharePoint to function, manage, and create new site collections, manage the SharePoint farm ’ s solution
store (covered in Chapter 4), manage the security and authentication configuration for Web applications,
and configure farm settings such as e - mail settings, anti - virus settings, and diagnostic logging.

Figure 2-4

 Site Settings
 One thing notably missing from the Central Administration site is the capability to manage the settings
of specific site collections and sites within the SharePoint farm. This is by design, in order to accomplish
SharePoint ’ s goal of empowering end users. Users can be assigned as the owners of site collections, with
the authority to administer the site, but not granted rights to the Central Administration site.

c02.indd 24c02.indd 24 5/8/08 7:02:16 PM5/8/08 7:02:16 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

25

 With this separation of responsibility, each site contains an administrative capability accessible via a
special page named Site Settings. The Site Settings page is accessible from the Site Actions menu or by
entering the URL http://[site URL]/_layouts/settings.aspx . It is from this page that site
owners can manage the security of a site, create new lists and libraries, customize the site ’ s navigation,
manage the site columns and content types, and activate/deactivate site - scoped Features. The top - level
site within a site collection contains an additional column of links to administer the entire site collection,
including things such as activating/deactivating site - collection - scoped Features, search settings, recycle
bin settings, and site collection usage reports (see Figure 2 - 5).

Figure 2-5

 List Settings
 Aside from the Site Settings administration page, a site contains a page that enables those with
appropriate rights to edit the settings of a list. While on a list view, the List Information page, shown in
Figure 2 - 6 , is accessible from the Settings toolbar menu. It enables users to manage the list ’ s title,
description, navigation, version settings, audience targeting settings, views, and permissions. Users can
also manage the list ’ s columns, as well as its content types.

 As previously mentioned, WSS 3.0 is built on top of the .NET 3.0 Framework and fully leverages
Windows Workflow Foundation. From the List Settings page, users can also configure the workflow
settings, such as associating workflow templates previously deployed to the site collection with the
list, and configure their startup options, such as automatically when new list items are created or
updated, or manually. Users can also remove workflows or keep new workflows from being started
on an association - by - association basis, from the Workflow Settings page accessible from the List
Settings page.

c02.indd 25c02.indd 25 5/8/08 7:02:16 PM5/8/08 7:02:16 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

26

 STSADM.EXE
 STSADM.EXE is a command - line utility used for the administration of SharePoint sites and servers. Every
WSS 3.0 install includes STSADM.EXE , which can be found in the following directory: c:\Program
Files\Common Files\Microsoft Shared\web server extensions\12\bin\ . STSADM.EXE is
based on the premise of operations. Administrators specify an operation to perform, followed by a series
of required or optional switches. For example, the following command lists all the InfoPath form
templates that have been deployed to the SharePoint farm ’ s Form Template library within Central
Administration:

stsadm.exe – o enumformtemplates

 To retrieve a list of all the operations available, either execute STSADM.EXE using no parameters or with
the single – help parameter. Get operation - specific help and syntax by specifying – help and the name
of the operation, such as the following:

stsadm.exe – help enumformtemplates

 As a SharePoint developer, it is beneficial to become very familiar with STSADM.EXE , as it provides
additional functionality not included (and sometimes not possible) through Central Administration or
Site Settings. Some of these exclusive STSADM.EXE operations include activating/deactivating hidden
Features, and adding or upgrading WSS solution packages to the SharePoint farm ’ s solution store.

 STSADM.EXE is also extensible, enabling developers to add custom operations to the list of
available operations. Once a custom operation has been deployed, it will show up in the list of available
 operations. For more information on extending STSADM.EXE , refer to the WSS 3.0 online help
on MSDN: www.andrewconnell.com/go/206 .

Figure 2-6

c02.indd 26c02.indd 26 5/8/08 7:02:17 PM5/8/08 7:02:17 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

27

 WSS 3.0 and ASP.NET 2.0 Development
 Because Microsoft changed the architecture approach of SharePoint by building on top of ASP.NET 2.0,
SharePoint development is very much like ASP.NET 2.0 development. Nearly everything available
within ASP.NET 2.0 is available within a SharePoint environment. Aside from the similarities, SharePoint
also adds some additional development opportunities above and beyond what is at the disposal of a
standard ASP.NET 2.0 site. However, SharePoint is a separate product from ASP.NET 2.0, so there are
some differences.

 Like ASP.NET 2.0
 This chapter previously explained how SharePoint — specifically, WSS 3.0 — is now built on top of
ASP.NET 2.0 and is implemented using a custom HTTP application, handlers, and modules. This new
approach enables all native ASP.NET 2.0 concepts to bleed through for use within SharePoint. The
following few sections touch on some of the similarities between standard ASP.NET 2.0 development
and SharePoint - specific development.

 Master Pages
 SharePoint heavily leverages ASP.NET 2.0 master pages. All SharePoint sites are based on the same
initial master page called default.master found in the [..]\12\TEMPLATE\GLOBAL directory. This
master page contains many content placeholders required in most master pages leveraged within
SharePoint. It also contains an instance of a special SharePoint implementation of the ASP.NET 2.0 Web
Part Manager control, which acts as the hub for the Web Part framework on all customizable pages and
imports the SharePoint - specific CSS files required to implement the SharePoint user experience (such as
the Web Part zones and Site Actions menu).

 Developers are not limited to this single master page. Just like a typical ASP.NET 2.0 Web
site, developers can customize the provided master page or create custom master pages for use within
SharePoint. For more information, refer to Chapter 7 , “ Master Pages and Page Layouts, ” which covers
the creation and customization of new master pages in depth.

 One minor difference is the utilization of master pages within an ASP.NET 2.0 Web site versus a
SharePoint site. In SharePoint, the master page is specified at the site level, and generally all pages
within that site leverage the selected master page; whereas in ASP.NET 2.0, developers configure which
master page is utilized on a content - page by content - page basis.

 Navigation Provider Model
 In ASP.NET 2.0, Microsoft introduced the navigation provider model, which dramatically simplifies
creating custom navigation components, as well as plugging custom or third - party components into
ASP.NET 2.0 Web sites. Unlike its previous version, WSS 3.0 navigation is much easier to customize
because it is fully leverages the ASP.NET 2.0 navigation provider model. Microsoft includes some custom
navigation controls that can only be used within SharePoint sites, but it is incredibly easy to replace
these controls with a commercial or custom navigation rendering component if the need arises. Refer
to Chapter 8 for an in - depth discussion on customizing and working with navigation within a
SharePoint — and, specifically, a MOSS Publishing — site.

c02.indd 27c02.indd 27 5/8/08 7:02:17 PM5/8/08 7:02:17 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

28

 Membership Provider Model
 Another addition to the .NET Framework was the inclusion of the membership provider model within
ASP.NET 2.0 Web sites. This abstracts the authentication mechanism and plumbing from an ASP.NET 2.0
application, simplifying development and configuration. It also makes it much easier to add new
authentication mechanisms to an existing application.

 WSS 2.0 was, for the most part, restricted to Active Directory authentication. While it was possible to
hook into other authentication mechanisms such as a generic LDAP provider, enabling it required a lot
of work and it was problematic. Thanks to WSS 3.0 ’ s ability to leverage everything ASP.NET 2.0 has to
offer, a SharePoint site can now fully utilize the membership provider model and authenticate against
a virtually unlimited number of identity stores. Moreover, SharePoint provides an additional capability
that enables multiple entry points into a single site collection via different URLs, each configured with
a different authentication mechanism, such as Active Directory, forms - based authentication, or LDAP.
Chapter 15 , “ Authentication and Authorization, ” deals with SharePoint ’ s implementation of the
membership provider model and configuring authentication providers.

 Server Controls and User Controls
 ASP.NET 2.0 server controls are elements that encapsulate logic, functionality, and a user interface.
Developers can build custom ASP.NET 2.0 server controls for use within Web sites or they can leverage
one of the many included controls. User controls, commonly referred to as ASCX files, are server controls
that enable developers to describe the behavior and user interface of a server control declaratively. Some
examples of server controls include < asp:TextBox / > and < asp:DataGrid / > .

 Like ASP.NET 2.0, SharePoint ships with many server and user controls, and developers are free to build
custom server and user controls for use within SharePoint applications. In fact, many of the user
interface components developers build in SharePoint are server controls such as Web Parts and field
controls. One difference from leveraging server and user controls within SharePoint compared to
ASP.NET 2.0 is that SharePoint runs in a lower level of trust (covered in the sections “ Code Access
Security ” and “ Safe Mode Parser ” later in this chapter), so assemblies need to be flagged as “ safe ” for
execution within a SharePoint site.

 Web Parts
 WSS 2.0 introduced the Web Part framework, and until ASP.NET 2.0 was released, the only way to
leverage Web Parts was within a SharePoint site. However, with the release of ASP.NET 2.0, Microsoft
added the Web Part framework (albeit the implementation was a bit different from WSS 2.0) to non -
 SharePoint sites. When the SharePoint team made the decision to change the fundamental architecture of
WSS 3.0 to be built on top of ASP.NET 2.0, it also elected to rewire the SharePoint platform to leverage
the ASP.NET 2.0 Web Part framework implementation as the recommended Web Part development
approach.

 In addition, the older SharePoint - specific Web Part class and associated classes were redeveloped for
backward compatibility so that WSS 2.0 Web Parts would continue to function within WSS 3.0.
Regardless, the recommended approach for Web Part development within WSS 3.0 is now to build
ASP.NET 2.0 Web Parts, rather than SharePoint - specific Web Parts. Chapter 11 , “ Web Parts, ” takes an
in - depth look at creating custom Web Parts.

c02.indd 28c02.indd 28 5/8/08 7:02:17 PM5/8/08 7:02:17 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

29

 Unlike ASP.NET 2.0
 Although WSS 3.0 is built on top of the .NET Framework 3.0, with many striking similarities between
ASP.NET 2.0 and SharePoint development, there are some unique differences between the two platforms.
The following sections outline a few of the more visible and glaring differences where the development
experience diverges.

 Development Tools and Experience
 ASP.NET 2.0 developers typically build sites using Microsoft Visual Studio. Visual Studio provides
multiple deployment methods, hosts a slimmed - down version of IIS (to reduce the surface area of
security - related attacks and compromises), and includes a rich designer interface that enables developers
to drag and drop controls onto the design surface when constructing new master pages, content pages,
and user controls.

 Unfortunately, this rich design - time interface is generally not available within Visual Studio when
developing SharePoint assets. Instead, Microsoft encourages developers to use a new tool introduced in
the 2007 Office System called Office SharePoint Designer 2007. This tool is the successor to FrontPage
2003. Developers can use this tool to create new master pages and content pages visually with a rich
WYSIWYG design - time interface. However, this approach to development also has associated baggage
that developers should be aware of (see the section “ Customization versus Development ” later in this
chapter).

 User controls are even more negatively affected by this, as SharePoint Designer does not provide a
development experience for these types of ASP.NET 2.0 assets.

 Even with these limitations, developers are not without options. Visual Studio can still be used to
develop master pages, content pages, page layouts (within the context of MOSS Publishing sites) and
user controls, although development must be done in the HTML or Code view, rather than the Design
view, and there is no live debugging experience: Components must be deployed and implemented
within a SharePoint site in order to be tested and debugged.

 Code - Behind Files
 Building off the previous section on the development tools and experience, SharePoint developers ’ use
of code - behind files within master pages, content pages, page layouts (within the context of MOSS
Publishing sites), and user controls differs from that within a pure ASP.NET 2.0 Web site. ASP.NET 2.0
developers can easily code - behind files to the aforementioned types of files: When in Design mode,
right - click the design surface and select View Code. Visual Studio handles the wiring up of the user
interface file (i.e., master, ASPX, or ASCX) and the code - behind class, and provides a nice expansion
experience within the Solution Explorer tool window.

 Unfortunately, Visual Studio has no such integration within SharePoint. This does not mean that it isn ’ t
possible to have code - behind files within SharePoint files — this is a common misunderstanding for
those who are new to the SharePoint platform. Instead, developers simply need to wire the two files
together manually. The code - behind files containing classes inheriting from System.Web.UI.Page
(in the case of a content page) are compiled into assemblies using something like the Class Library
project template within Visual Studio. A developer would then wire up the two files by adding an
 Inherits attribute to the Page (or Master or Control) directive in the source of the user interface file.
The Inherits attribute contains the five - part name of the class, which includes the full class, or type,

c02.indd 29c02.indd 29 5/8/08 7:02:18 PM5/8/08 7:02:18 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

30

the name of the object containing the server - side logic for the type (e.g., namespace.typename), the
assembly containing the type, culture, and version, and the public key token of the signed assembly.

 For example, consider the following class compiled into the assembly SharepointWebSite.dll :

using System;
namespace WROX {
 public class SomePage : System.Web.UI.Page {
 protected void OnLoad(object sender, EventArgs e){
 Response.Write(DateTime.Today.ToString());
 }
 }
}

 The ASPX file that is wired up to the code - behind containing the type for this page would contain a Page
directive like the following:

 < %@ Page Language=”C#” Inherits=”WROX.SomePage, SharePointWebSite, Culture=Neutral,
Version=1.0.0.0, PublicKeyToken=[...]” % >

 Code Access Security
 Code access security (CAS), included with the .NET Framework, enables developers and administrators
to grant specific permissions and rights to managed code. Another type of security most people are
familiar with is user - based security, whereby code assumes the rights and permissions that the current
user has been assigned. Using CAS effectively enables administrators to restrict what managed code is
allowed to do, limiting the surface area of attack and vulnerability on a system.

 While not a SharePoint - specific topic by any means, many ASP.NET 2.0 developers are immune from
dealing with CAS in Web projects, as most sites run fully trusted by default. Some developers may be
familiar with running in what is referred to as medium trust, as that is what many shared hosting
providers are now using to exert more control over their assets hosting many Web sites for multiple
customers on the same hardware.

 By default, new SharePoint Web applications are configured to run within a very low and restricted level
of trust called WSS_Minimal . For example, some things are not possible out - of - the - box (OOTB), such as
consuming a Web service that exists outside the current domain or connecting to a SQL Server database.
In order to perform these types of tasks, you must do one of the following:

 Create a custom CAS policy that assigns the necessary permissions to the assembly(s) containing
the managed code attempting to perform such an action.

 Change the SharePoint Web application CAS policy from WSS_Minimal to WSS_Medium or Full
(which is the least secure and most pervasive). This affects all assemblies within the Web
application, not just the specific assembly needing elevated permissions.

 Deploy the assembly containing the managed code attempting to perform such an action to
the server ’ s GAC, thus granting the assembly full trust and making it globally available
on the server.

❑

❑

❑

c02.indd 30c02.indd 30 5/8/08 7:02:18 PM5/8/08 7:02:18 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

31

 Safe Mode Parser
 While ASP.NET 2.0 sites generally live on the file system, SharePoint sites are virtualized within a
content database. These virtualized files exist in one of two states: customized or uncustomized. This
topic is covered in greater detail in the section “ Uncustomized versus Customized Files ” later in
the chapter. For now, understand that customized files are those for which the source lives within the
content database. SharePoint Designer enables developers and information workers to create and
customize files in existing SharePoint sites. This is not an issue within ASP.NET 2.0 sites because end
users cannot easily open ASPX pages within a production site and randomly change the source of the
files. However, users with appropriate permissions can do this within SharePoint, so Microsoft needed
to add a control capability that enables administrators to restrict what end users can and cannot do.

 For instance, consider an information worker within an organization who picked up a C# book for
beginners. The last thing that site owners — and, more important, administrators — want to allow is for
this person to add some custom inline code using the < script runat= ” server ” > tag within an
existing site. If this were permitted, then there would be no way to control what managed code was
being executed within an environment, thus greatly increasing the attack surface area.

 To address this, the SharePoint team included a safe mode parser in ASP.NET. All customized pages are
routed through the safe more parser that prohibits inline code within customized files. In addition, the
safe mode parser disallows adding controls to pages that have not been flagged as safe.

 Types of Pages
 While SharePoint is built on top of ASP.NET 2.0, it has a unique concept of two types of pages: site pages
and application pages . Both types of pages have unique characteristics and exist in every SharePoint site.
As a SharePoint developer, you should have a strong grasp of the two, where they are used, and what
can and cannot be done with each.

 Site Pages
 Site pages are those types of pages that support customization or personalization, and thus can be
themed and host Web Parts. These are the most common types of pages end users see in a SharePoint
site. These are also the types of pages that developers and designers can modify and edit within
SharePoint Designer, because they are virtualized within the site ’ s logical architecture and live within
the site collection ’ s content database either as customized or uncustomized pages.

 As far as security goes, site pages should never contain inline script. While inline script will compile and
execute just fine when a page is uncustomized, after the page becomes customized it is passed through
SharePoint ’ s safe mode parser, which will throw a runtime exception if the page contains inline script.
A site page may or may not become customized, but the mere fact that it is possible should be reason
enough to avoid using inline script.

 Note also that site pages typically use whichever master page their parent site has been configured
to use.

c02.indd 31c02.indd 31 5/8/08 7:02:18 PM5/8/08 7:02:18 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

32

 Application Pages
 All application pages live within the _layouts virtual directory that exists within each SharePoint site.
Applications pages, unlike site pages, cannot be customized or personalized, as these files do not live
within a site ’ s content database. This explains why the _layouts virtual directory is not seen within
SharePoint Designer. All applications pages are shared and are available across all SharePoint sites living
on the same server. However, each page may hide some links via security trimming, as each page runs
within the context of a specific site.

 Unlike site pages, all application pages leverage the same master page, application.master . Because
they all use the same master page, this means that all applications across all sites on a server have the
same user interface. SharePoint themes are the only supported customization technique for implementing
a different look and feel on application pages across different SharePoint sites on the same server.
Themes provide a way for developers and designers to customize the look and feel of a SharePoint site
using CSS and images.

 A common example of an application page is the Site Settings page that exists for all sites. As a
developer, when creating custom application pages (described in Chapter 14 , “ Authoring Experience
Extensibility, ” which covers extending the OOTB authoring experience), the custom pages should inherit
from Microsoft.SharePoint.WebControls.LayoutsPageBase .

 Uncustomized Versus Customized Files
 So far, this chapter has alluded to the customization of uncustomized files a few times. Now it is time for
a deeper explanation of the topic, as it is a recurring point of discussion throughout this book. SharePoint
developers should be intimately familiar with the difference between these two file types. Unfortunately,
most developers don ’ t realize there is actually a difference, or the implications of that difference, until
they have progressed quite far into their project. Although a project is not stuck with the approach
originally taken, moving from one implementation to the other can become quite a daunting and time -
 intensive task.

 When a new SharePoint site is provisioned, either when it is created as the top - level site within a new
site collection or as a subsite within an existing site collection, most files start off in an uncustomized
state. This means that while the file lives within the logical structure of a SharePoint site and is seen from
within SharePoint Designer (and thus, is in the content database), the entry in the content database
simply points to the file it is based off of on the file system. This file is sometimes referred to as a template
file or file definition because by itself it is not very usable. However, when creating a new file based on
it within a SharePoint site, also referred to as provisioning the file, the file now acts as the source to the
one within the content database. The file remains in an uncustomized state as long as its source is not
modified using SharePoint Designer. Operations such as adding Web Parts using the browser interface
do not affect the customization state of the page.

 There are a few different ways in which a file can become customized. The most common way to
customize a file is to open it in SharePoint Designer, make any changes, and then save the file. When
someone saves a file in SharePoint Designer, the source of the updated file is saved to the content
database. Subsequent requests for the file result in the SPVirtualPathProvider (SharePoint ’ s custom
virtual path provider) retrieving the source of the file from the content database, rather than the file
system. Once a file is customized, users with appropriate rights can undo the customization and perform

c02.indd 32c02.indd 32 5/8/08 7:02:19 PM5/8/08 7:02:19 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

33

what is referred to in the browser and SharePoint Designer user experience as “ reset to site definition. ”
This deletes the customized version of the file and causes the file to be served from the file system again.

 Another type of customized file is one that starts initially as customized, rather than being provisioned
from a template on the file system. This can be done by creating a new file in SharePoint Designer and
saving it to a site, creating a new page within the site ’ s browser interface or through the SharePoint API,
as shown in Listing 2 - 1 . These types of pages cannot be reverted back to a site definition or the
underlying template file, because they were never based off one.

 Listing 2 - 1: Creating a customized page in a SharePoint site using the
SharePoint API

using System;
using System.IO;
using Microsoft.SharePoint;

namespace Listing2_a {
 class Program {
 static void Main (string[] args) {

 using (SPSite siteCollection = new SPSite(“http://wss”)) {
 using (SPWeb site = siteCollection.RootWeb) {
 MemoryStream fileStream = new MemoryStream();
 StreamWriter fileWriter = new StreamWriter(fileStream);

 // write the source of the page (include meta:progid so SharePoint
Designer understands this file
 fileWriter.WriteLine(“ < %@ Page
MasterPageFile=\”~masterurl/default.master\”
meta:progid=\”SharePoint.WebPartPage.Document\” % > ”);
 fileWriter.WriteLine(“ < asp:Content runat=\”server\”
ContentPlaceHolderID=\”PlaceHolderMain\” > ”);
 fileWriter.WriteLine(“ < h1 > WROX < /h1 > ”);
 fileWriter.WriteLine(“ < /asp:Content > ”);
 fileWriter.Flush();

 // save the file to SharePoint
 site.Files.Add(“ApiGeneratedPage.aspx”, fileStream);

 // cleanup
 fileWriter.Close();
 fileWriter.Dispose();
 fileStream.Close();
 fileStream.Dispose();
 } // SPWeb using statement
 } // SPSite using statement

 } // method “Main”
 }
}

c02.indd 33c02.indd 33 5/8/08 7:02:19 PM5/8/08 7:02:19 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

34

 Developers can programmatically check whether a file is customized or uncustomized using the
 Microsoft.SharePoint.SPFile.SPCustomizedPageStatus property and reset the file back to an
uncustomized state using the Microsoft.SharePoint.SPFile.RevertContentStream() method.
Listing 2 - 2 demonstrates the use of this property and method.

 Listing 2 - 2: Checking the customization status of a file, removing any customization,
and reverting it back to the template file

using System;
using Microsoft.SharePoint;

namespace Listing2_b {
 class Program {
 static void Main (string[] args) {

 using (SPSite siteCollection = new SPSite(“http://wss”)) {
 using (SPWeb site = siteCollection.RootWeb) {

 SPFile file = site.GetFile(“default.aspx”);

 // if file is customized, revert to underlying template file
 if (file.CustomizedPageStatus == SPCustomizedPageStatus.Customized)
 file.RevertContentStream();

 } // SPWeb using statement
 } // SPSite using statement

 } // method “Main”
 }
}

 What bearing does the customization status of a file have on a Publishing site? Consider SharePoint site
customization compared to development.

 Customization versus Development
 With an understanding of what it means when a file within a SharePoint site is uncustomized or
customized, let ’ s take a look at how that affects the development of a SharePoint site — specifically, a
Publishing site. Whereas many traditional SharePoint sites are used primarily for collaboration and are
inward facing (only company employees see and use them), publicly facing sites, which are what
Publishing sites are primarily intended to be used for, typically are created within a controlled
development environment, within which files are moved around for internal testing, quality assurance
and user acceptance testing, and staging, before being put into production.

 SharePoint Customization
 As previously covered, when files are customized, they exist within the SharePoint site ’ s content
database. While some may have originally been based on an underlying template, the source of the
customized file still lives within the database. Files living within the database present a challenge in

c02.indd 34c02.indd 34 5/8/08 7:02:19 PM5/8/08 7:02:19 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

35

promoting them through the different environments. How can this occur within a site comprised simply
of customized files? While not impossible, it is a bit tedious to achieve. Consider the following options:

 One option would be to simply recreate the files in each environment manually, obviously a less
than ideal approach.

 Another option would be to backup the content database from the development environment
and restore it into production. This method is not recommended. It may be acceptable when a
site is first launched, but it is not very viable over time, as future updates would overwrite
published content on the production site.

 The development team could also leverage the Publishing site capability of content deployment,
which packages entire site collections (or, optionally, sites within a site collection) for
deployment to a destination server that is either connected or disconnected. Similar to the
previous option, using content deployment in this manner is only an option for the initial rollout
of a site because it is designed for deployment to a read - only destination server. Errors could
(and likely would) potentially occur if the destination site has changed since the last content
deployment job, which is almost guaranteed to be the case because content will likely have been
added or updated on the destination site. Chapter 17 provides a detailed look at content
deployment.

 A fourth option is to write custom code or scripts that would automate the deployment of files
within the development environment to the target environment. While a viable option, this
produces custom code that must be maintained and well written to handle any exceptions that
might arise.

 The customization approach of creating a Publishing site has associated baggage. Many of these points
are mitigated when developers make UI changes to files directly to the production environment using
tools such as SharePoint Designer. However, many larger organizations do not allow developers and
designers write access to a production environment.

 SharePoint Development
 Another approach to developing Publishing sites, or any SharePoint site for that matter, is to avoid
customizing any files and strive to have as many files as possible (if not all) exist within a Publishing site
in an uncustomized state. This approach involves working at a much lower level, the file system level,
compared to site customization done directly at the site level.

 In order to keep files within a SharePoint site uncustomized, they must be created as physical files on the
file system. The challenge here is that developers have no rich preview experience of the changes, which
SharePoint Designer provides. After files have been created, how are they added to the SharePoint sites?
The answer lies within the SharePoint Feature framework. One of the schemas provided in Feature
element ’ s manifest files is the < Module > and its associated < File > element. Using this schema,
developers can provision files into SharePoint based off file templates that exist within the Feature.

 This approach has added benefits that some developers may already be wondering about. One of the
most significant benefits is that it works well with those development teams that have a prescribed
process for all projects. This process is generally known as a Software Development Lifecycle (SDL),
which involves tasks such as real testing, and, more important, incorporating everything into some sort
of a source control management (SCM) system such as Microsoft ’ s Visual Studio Team Foundation
Server or the open - source SubVersion solution. When customizing files with SharePoint Designer in a

❑

❑

❑

❑

c02.indd 35c02.indd 35 5/8/08 7:02:20 PM5/8/08 7:02:20 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

36

Publishing site, developers are required to check files in and out, and publish and approve changes to
files. Each of these steps permits users to specify comments on each check - in and approval. However,
this is not true source control; this is version control.

 Source control includes things such as atomic commits of multiple files as a single action, branching
multiple lines of parallel development, and tagging/labeling/naming to indicate that the main line of
development (commonly referred to as the trunk) has reached a certain milestone (usually a release).
Unfortunately, SCM solutions do not integrate well with SharePoint without a lot of custom
development. However, in a site created using the SharePoint development approach, the files live on
the file system, which is exactly what virtually all SCM solutions understand and support.

 Another thing to understand is that SharePoint development doesn ’ t only apply to files such as master
pages and ASPX files. It also applies to SharePoint - specific topics such as site columns, content types, list
templates, and workflows. Each of the topics covered in this book addresses the issue of SharePoint site
customization versus development. This provides developers with all the information necessary to
evaluate both approaches.

 Please keep one thing in mind: While this book presents both approaches (customization and
development), it neither passes judgment on either approach nor concludes that one approach is better
or worse than the other. The goal is simply to educate SharePoint developers regarding all aspects of site
customization versus site development. One approach may be more familiar and preferred to some
developers, while the other approach is favored by others. The approach selected depends on the scope
of the project as well as the development team and process.

 Introducing the Microsoft.SharePoint
Namespace

 Thankfully, Microsoft shipped a very extensive and robust API that enables developers to write custom
code solutions to add, extend, and change functionality, as well as manage SharePoint. Keep in mind
that the SharePoint API is the only supported way to access data within SharePoint. Never go directly
to the SQL Server databases to make changes or select data — always use the SharePoint API. In
addition, the SharePoint API is how the provided tools and interfaces interact with SharePoint, including
the browser - based interface, the included Web services, and the command - line utility STSADM.EXE . Not
only did Microsoft use the SharePoint API that ships with WSS 3.0 and MOSS 2007 for all the included
administration interfaces, but there are additional things that the admin interfaces do not expose that
developers can implement using the SharePoint API.

 The core of the SharePoint API is the Microsoft.SharePoint namespace, which is found in the
 Microsoft.SharePoint.dll assembly located in [..]\12\ISAPI . All developer projects created in
Visual Studio need to contain a reference to this assembly, as all other SharePoint assemblies are
dependent upon the core Microsoft.SharePoint.dll assembly.

 This chapter has already touched on some of the more important and common classes within the
 Microsoft.SharePoint namespace, such as SPSite for site collections and SPWeb for SharePoint sites.
Additional classes found in the root of the Microsoft.SharePoint namespace include SPList for lists,
 SPListItem for items within lists, SPDocumentLibrary for documents within document libraries,

c02.indd 36c02.indd 36 5/8/08 7:02:20 PM5/8/08 7:02:20 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

37

 SPQuery for creating queries using Collaborative Markup Language (CAML), as well as SPGroup and
 SPUser for SharePoint groups and users, respectively.

 Debugging in WSS 3.0
 One of the biggest differences between ASP.NET 2.0 development and SharePoint development is the
debugging experience. When developing an ASP.NET 2.0 application, Visual Studio dramatically
simplifies the debugging experience. Intuitive and straightforward, developers need only press the F5
key to automatically build the project and attach the debugger to the process hosting the ASP.NET 2.0
application. Unfortunately, the default experience in Visual Studio is not the same when developing
SharePoint applications.

 Visual Studio contains no special hooks into a SharePoint site. Thus, pressing F5 will result in an error
because the application must be running within the process hosting the SharePoint application (the
IIS application pool). The only time this isn ’ t the case is when developing console or Windows Forms
applications because they run within their own process.

 So, how do developers debug assemblies designed to run within a SharePoint process, such as those
containing Web Parts, custom field types and controls, event receivers, and workflows? The answer is to
manually attach the debugger to the process hosting the application pool configured with the Web
application that contains the target SharePoint site. The difference between this process and F5
debugging is that the developer has to perform the steps of attaching the debugger to the process
manually; whereas with traditional ASP.NET 2.0 applications, pressing F5 performs the steps for the
developer automatically, similar to a macro.

 To manually attach the debugger, first build and deploy the custom assembly that will be debugged.
Next, within Visual Studio, select Debug, and then Attach to Process. In the Attach to Process dialog,
select the w3wp.exe process that is hosting the application pool and the Web application hosting the
target SharePoint site that contains the assembly to be debugged and click Attach.

 If multiple w3wp.exe processes are running, the developer can attach to all of them. Use the identity the
application pool is running as in the User Name column or enter the following command at the
command line to view a list of all the running w3wp.exe processes, their respective process IDs (PIDs),
and the name of the application pool they are hosting (use the PID to find the process to attach to):

cscript.exe %windir%\system32\iisapp.vbs

 Debugging assemblies deployed to the Global Assembly Cache (GAC) is a bit more challenging and
requires some additional work. Before attaching the debugger to the application pool process, the
debugger symbols (*.PDB files) must be copied to a specific directory. To find the directory, select
Start Run and enter the following:

%systemroot%\Assembly\GAC

 Next, open the directory with the same name of the assembly that contains the code to be debugged
and then select the subdirectory that is named in the following format: [AssemblyVersion]__
[AssemblyPublicKeyToken] . Copy the debugger symbols into that directory. Now the debugger can
be manually attached to the appropriate w3wp.exe process.

c02.indd 37c02.indd 37 5/8/08 7:02:20 PM5/8/08 7:02:20 PM

Chapter 2: Windows SharePoint Server 3.0 Development Primer

38

 Summary
 This chapter provided a high - level overview of WSS 3.0 from the perspective of a developer. One of the
most important points to take away from this chapter is the difference between uncustomized and
customized files, as well as SharePoint customization compared to SharePoint development. This
chapter also compared common ASP.NET 2.0 development topics to SharePoint development topics.
Although this chapter provided only an overview of WSS 3.0, as it is a very large topic that warrants a
book of its own, developers creating MOSS Publishing sites must have a good grasp of the fundamental
concepts covered in this chapter, as they are pervasive throughout the complete SharePoint product
stack, including Publishing sites.

c02.indd 38c02.indd 38 5/8/08 7:02:21 PM5/8/08 7:02:21 PM

 Overview of Web Content
Management in Microsoft

Office SharePoint
Server 2007

 The previous chapter explained how core Windows SharePoint Services (WSS) concepts embrace
and extend ASP.NET to provide the platform foundation upon which Office SharePoint Server
(MOSS) solutions, including Web Content Management (WCM), are built. This chapter explores
the additional functionality offered by MOSS, including aspects that are critical to a successful
WCM implementation.

 Before looking at MOSS itself it is worth briefly considering the Microsoft precursors to MOSS
WCM, the lessons learned, which were applied to this release, the rationale for building WCM on
the SharePoint platform, and the considerable opportunities offered by such rich integration.

 This chapter begins by looking at the different features and editions of MOSS and then drills down
into WCM - specific features. The WCM experience is demonstrated from the perspective of both
the author and the end user. Also covered are the ABCs of publishing. In addition, the Shared
Services Provider (SSP), a critical element of any Publishing site, is described. Finally, the chapter
concludes with a brief tour of the Microsoft.SharePoint.Publishing namespace, covering the
fundamental objects with examples of common uses within Publishing sites.

 Web Content Management on the
Microsoft Platform

 Prior to MOSS, Microsoft had separate, distinct offerings for WCM, portal content aggregation,
and search. The WCM offering came in the form of Content Management Server 2002 (MCMS).
MCMS provided traditional WCM functionality such as a templated page model, in - context

c03.indd 39c03.indd 39 5/8/08 7:02:40 PM5/8/08 7:02:40 PM

Chapter 3: Overview of Web Content Management

40

content authoring, and dynamic runtime compilation. MCMS provided a .NET - accessible Publishing API
and ASP.NET integration, which enabled developers to build solutions on this framework. While
certainly a successful product in its own right, the architecture of MCMS was very different from
SharePoint and often constrained solutions development. Many organizations felt they had to choose
between the previous versions of SharePoint and MCMS when embarking on a Web site project, and
many chose to implement both with loose integration between them. Possibly the most common
example of such integration was that of a WSS document library being used for document collaboration
and versioning “ inside the firewall, ” with the result made accessible via the public Web site hosted on
MCMS. Unfortunately, there were core architectural differences between SharePoint and MCMS.

 For example, MCMS did not embrace Internet Information Server 6.0 ’ s (IIS) worker process isolation
mode and did not expose its security API to developers. Various SharePoint integration scenarios were
provided for by an add - on connector (“ Spark ”), but it was clear that this bolt - on to bridge the
architecture gap would not scale to meet growing customer demand for deep and rich SharePoint
integration.

 Very much a toolkit with a blank canvas, MCMS provided a rich framework but at the same time
required a significant amount of repetitive custom code to achieve core WCM functionality such as site
navigation and content aggregation. While MCMS Service Pack 2 provided some support for ASP.NET
2.0 enhancements such as master pages, navigation, and authentication providers, it was not uncommon
for such standard elements to be reimplemented for each individual Web site project. Freeing MCMS
developers from these costly, routine, and ineffective tasks was a main goal moving forward.

 Key functional elements missing from MCMS, such as an integrated search capability, flexible
authentication mechanisms, and security APIs, also increased development time, cost, and support of
solutions.

 Each of the these issues, along with a long list of common customer pain points, drove Microsoft to
consider leveraging SharePoint as the underlying platform of its next WCM offering. Following several
months of assessment, it was decided to build the next generation of MCMS upon the WSS 3.0 platform
as part of MOSS 2007.

 Microsoft Office SharePoint Server
 MOSS 2007 builds on the WSS 3.0 platform to offer six additional broad areas of functionality. As shown
in Figure 3 - 1 , WSS provides the center circle of platform services and the collaboration slice. The
additional portal, search, content management, business forms, and business intelligence slices are
provided by MOSS.

c03.indd 40c03.indd 40 5/8/08 7:02:41 PM5/8/08 7:02:41 PM

Chapter 3: Overview of Web Content Management

41

 MOSS is available in three flavors, or SKUs. MOSS Standard Edition includes collaboration, portal,
search, and content management. MOSS Enterprise Edition adds business forms and business
intelligence. In addition, there is a MOSS for Internet Sites Edition, which featurewise is identical to
Enterprise but is licensed for the hosting of applications deployed to the Internet.

 More information on MOSS licensing and which edition is appropriate can be found at
www.andrewconnell.com/go/207 and www.andrewconnell.com/go/208 .

 In brief, the key feature areas of MOSS include the following:

 Collaboration — Document libraries/tasks/calendars, blogs, wikis, e - mail integration, project
management “ lite, ” Office Outlook 2007 integration, offline documents, and lists.

 Portal — Enterprise portal template, site directory, my sites, social networking, and privacy
control .

 Search — Enterprise scalability, contextual relevance, rich people and business data search .

 Content Management — Integrated document management, records management, WCM with
policies and workflow .

 Business Forms — Rich and Web - forms - based front ends, line of business (LOB) actions,
pluggable single sign - on (SSO) .

 Business Intelligence — Server - based Office Excel 2007 spreadsheets and data visualization,
report center, BI Web Parts, key performance indicators (KPIs)/dashboards .

 Building WCM on top of WSS as part of MOSS means that the WCM feature set is concentrated on its
core functionality, rather than infrastructure plumbing such as check in/check out, storage, security,
backup/restore, and so on. In addition, WCM can take advantage of advances in the WSS platform, such
as pluggable authentication and workflow. As a result of being freed from this infrastructure plumbing,

❑

❑

❑

❑

❑

❑

Collaboration

Portal

Search
Content

Management

Business
Forms

Business
Intelligence

Platform
Services

Workspaces,
Mgmt, Security,

Storage, Topology,
Site Model

 Figure 3 - 1

c03.indd 41c03.indd 41 5/8/08 7:02:41 PM5/8/08 7:02:41 PM

Chapter 3: Overview of Web Content Management

42

WCM has also delivered advanced functionality such as variations, which enable content to be
published to multilingual sites for translation.

 Overall, MOSS provides an incredible breadth of functionality across popular business scenarios. WCM
is simply one part of the content management feature set. The Collaboration Portal site template,
primarily intended for an enterprise or departmental portal “ within the firewall, ” utilizes key WCM
features such as page layouts, field controls, document libraries, the page editing toolbar, versioning,
and workflow. In other words, WCM brings to MOSS some fundamental core features that greatly
enhance solutions within the portal space. Other examples of features brought to MOSS by WCM
include content deployment and advanced caching. By taking this approach, Microsoft has been able to
leverage WCM features to enable rich portal scenarios.

 At its core, a Publishing site is just another SharePoint site, and as such it can integrate with the other
features with little or no code. Integrating a search capability previously required the purchase of an
additional product and significant custom integration code. With MOSS, a Publishing site essentially has
an extremely powerful and scalable search capability for free. Other examples include the capability to
richly target content to groups of users based upon profile information by leveraging audiences. MOSS is
also capable of integrating with external LOB data through the Business Data Catalog (BDC). Due to the
rich ASP.NET extensibility capabilities in MOSS, it is also possible to integrate with external systems
such as Microsoft Commerce Server, which is used to provide rich end - to - end WCM, including common
Internet scenarios such as e - commerce. This capability is one of the core assets of a MOSS - based WCM
solution, providing an extremely broad canvas for building integration solutions while reducing
significantly the amount of custom code required to do so.

 The ABCs of Web Content Management
 MOSS follows a traditional approach to the management of Web content by removing the IT bottleneck,
enabling content authors and owners to take control of the contribution, approval, and publishing of
content. MOSS provides a pipeline that is capable of managing complex interactions among contributors,
enforcing business rules, applying branding and content reuse, and aggregation. Microsoft refers to this
process as the ABCs of WCM, which neatly encapsulates the core WCM feature set in MOSS.

 Authoring
 Authoring is the process of content authors contributing content to a Publishing site. MOSS offers a
DHTML - based authoring environment that provides an in - context view of a Web page, including field
controls, where different types of content can be provided. These field controls include support for rich
HTML editing, images, attachments, and metadata. Even though the author can see and edit the
metadata while in Edit mode, the metadata is not displayed to the end user. In addition, the Web
browser interface includes a Page Editing Toolbar that enables users to perform common operations
such as check in or check out, spell check, and workflow management. Field controls are covered in
depth in Chapter 10 . The Page Editing Toolbar is covered in depth in Chapter 14 .

 Reusable content provides the capability to store HTML content snippets for reuse across a site
collection. Examples of reusable content include copyright notices, legal disclaimers, and unmanaged
hyperlinks.

c03.indd 42c03.indd 42 5/8/08 7:02:41 PM5/8/08 7:02:41 PM

Chapter 3: Overview of Web Content Management

43

 An alternative to the Web browser – based environment, MOSS allows content authoring from rich clients
such as Office Word 2007 and Office InfoPath 2007. This enables content authors to stay within their
familiar Office clients while still interacting with MOSS. Rich client authoring is covered in depth in
Chapter 14 .

 In addition, MOSS provides the capability to author content offline via the use of document converters,
which enable format translation from, for example, a Microsoft Word 2007 document (*.docx) to HTML.
Document converters are covered in depth in Chapter 18 .

 MOSS also provides a number of Web Parts, which are also useful within Publishing sites. One example
is the Content Query Web Part, which supports content aggregation or “ roll - up ” within a site collection.
The Content Query Web Part can be customized extensively to display various types of data. Web Parts
are covered in depth in Chapter 11 .

 Branding
 Branding is the process of applying a consistent look and feel to a Publishing site, including navigation
and common content. A fundamental principle of WCM systems is the delivery of a lot of content using
only a few templates. MOSS leverages WSS ’ s support for ASP.NET master pages and combines them
with page layouts at runtime to assemble the HTML output.

 The master page is responsible for providing a common look and feel, including the placement of
navigational elements. A page layout can be thought of as a content template that controls how specific
types of content are displayed. Master pages and page layouts are developed in a rich editor such as
Office SharePoint Designer 2007 or Visual Studio, which provides rich client Web editing. When content
authors create a new page, they select an available page layout and then enter the content using a Web
browser. This enables content authors to focus on the content, without worrying about styling, layout, or
any shared common elements. Master pages and page layouts are covered in depth in Chapter 7 .

 Controlled Publishing
 Controlled publishing is the process of managing the content life cycle. Contributed content in MOSS is
simply items in a SharePoint list or document library. Each of these items can therefore utilize features
that control the life cycle of content. Examples include check in and check out, versioning, moderation,
and workflows.

 MOSS provides approval and review workflows that can be configured to meet the vast majority of
WCM content approval scenarios. If this pre - fab workflow does not suit the project ’ s needs, custom
workflows can be created. Workflow tasks appear within a configured task list within the site. Workflow
is covered in depth in Chapter 12 .

 Contributed hyperlinks to other SharePoint content are managed hyperlinks within MOSS. Should
content be moved, all hyperlinks to it are automatically updated within other content or common
elements such as navigational controls. Navigation can also be manually configured or tweaked within
Site Settings to change the order of items or to include links external to MOSS within the main
navigation.

c03.indd 43c03.indd 43 5/8/08 7:02:42 PM5/8/08 7:02:42 PM

Chapter 3: Overview of Web Content Management

44

 Content scheduling provides the capability to configure content to “ go live ” and expire at specified dates
and times. MOSS also offers a site management tool that provides a 10,000 ' view, or holistic view, of a site
collection. This enables content to be bulk edited or moved around within the hierarchy.

 Content deployment provides a capability to control the release into a production environment from a
staging environment. This is most often useful in a classic deployment scenario in which there are
separate authoring and read - only production environments. Content deployment is covered in depth in
Chapter 17 .

 Variations also play a role within controlled publishing, providing a framework for multiple versions of
the same content. Common examples here include multiple branding, multiple languages, or multiple
devices. In the case of multiple languages, the framework provides support for content exclusion or a
different page layout per variation. Workflows and variations can be combined to fire off human - or
software - based translation. Variations are covered in depth in Chapter 16 .

 Publishing Sites
 At its core, a MOSS Publishing site is simply a SharePoint site that has had the Publishing Features
activated. The Publishing Features are scoped at the site collection level; and when these Features are
provisioned, a number of pre - defined elements such as the Pages list are added to the site. Once these
features are enabled, it is possible to create new Publishing pages within the site for the purposes of
WCM. MOSS provides a Publishing site template geared toward WCM scenarios, such as the Publishing
Portal, as a starting point for exploring the WCM capability. The Publishing Portal includes a home page,
a News section with some sample content, and pointers to common configuration steps necessary in a
WCM scenario. Figure 3 - 2 shows the Publishing Portal in Presentation mode, the view experienced by
read - only site visitors.

 Figure 3 - 2

c03.indd 44c03.indd 44 5/8/08 7:02:42 PM5/8/08 7:02:42 PM

Chapter 3: Overview of Web Content Management

45

 The same page in Edit mode as experienced by content authors is shown in Figure 3 - 3 .

 Figure 3 - 3

 Figure 3 - 4

 Figure 3 - 4 shows the Web design view of a page layout within Office SharePoint Designer 2007.

c03.indd 45c03.indd 45 5/8/08 7:02:42 PM5/8/08 7:02:42 PM

Chapter 3: Overview of Web Content Management

46

 The following table provides a brief overview of each key element within a Publishing site:

 Element Description

 Publishing Page An item stored within the Pages List that contains the page content and
metadata .

 Publishing Site A WSS site with the Publishing Features activated .

 Content Type The definition of the page ’ s content and metadata. Think of this as the
definition of a page template.

 Master Page An ASP.NET master page, including various SharePoint and WCM - specific
controls .

 Page Layout An ASP.NET page, including field controls and Web Parts, that provides the
template for content pages .

 Field Controls Provides a design time and author time experience for the content elements
of a page .

 Master Page Gallery Stores master pages and page layouts .

 Image Library Stores images for the site in a managed fashion .

 Documents Library Stores documents and other resources for the site in a managed fashion .

 When a MOSS Publishing page is requested, the page layout associated with that page is looked up and
retrieved. In turn, the associated master page is retrieved along with the content of each field control.
The resultant composite of these elements is then assembled as HTML and returned to the end user.

 Site Collections
 As described in the previous chapter, site collections are the core content, security, and administration
boundary in WSS. Site collection design and their possible partitioning is a key design decision in
Publishing site projects. Many common tasks, such as applying a master page or functionality such as
variations and the Content Query Web Part, cannot be used across site collections. In addition, common
administrative functions such as caching configuration are applied at the site collection level, so it makes
sense for each Publishing site to reside within a single site collection. Conceptually, a single Web site
equals a single site collection. This is a key decision in the planning of a Publishing site. Generally, a
single site collection should be used unless there are specific requirements for multiple site collections
and the overhead of doing so is well understood.

 Shared Services Providers
 Every MOSS deployment, even if it is a single server deployment, must include at least one shared
service provider (SSP). While complete coverage of SSPs is beyond this book ’ s scope, it is critical to
understand the role played by this required component.

c03.indd 46c03.indd 46 5/8/08 7:02:43 PM5/8/08 7:02:43 PM

Chapter 3: Overview of Web Content Management

47

 For more information on shared services providers, please see Beginning SharePoint 2007
 Administration (Wrox, 2007) and Office SharePoint Server 2007 Administrators Companion
(Microsoft Press, 2007).

 An SSP is itself a SharePoint Web application, primarily for administration purposes, alongside a non -
 SharePoint IIS virtual Web site called “ Office Server, ” which hosts SSP - related Web services. In addition,
there are several Microsoft SQL Server databases for configuration and data storage.

 The SSP provides application services and data, which are shared by one or more SharePoint Web
applications. These services and data are those which by nature are central and for which it does not
make sense to deploy them individually on each Web application. Examples of such application services
include search and indexing, user profiles, audiences, and session state.

 Microsoft.SharePoint.Publishing Namespace
 Before diving into building WCM solutions, it is good to have a broad view of the key Publishing APIs
provided by the Microsoft.SharePoint.Publishing namespace.

 The Microsoft.SharePoint.Publishing namespace provides the cores classes and can be thought of
as the infrastructure plumbing for working within Publishing sites. Commonly used classes within this
namespace are described in the following table:

 Class Description

 Microsoft.SharePoint.Publishing.PublishingSite Provides access to Publishing
Features on a SPSite object .

 Microsoft.SharePoint.Publishing.PublishingWeb Provides access to Publishing
Features on a SPWeb object — e.g.,
accessing the pages collection,
accessing other objects in the
hierarchy, or executing queries
directly .

 Microsoft.SharePoint.Publishing.PublishingPage Provides access to Publishing
Features on a SPListItem object.
A page is an extended SPList object.

c03.indd 47c03.indd 47 5/8/08 7:02:44 PM5/8/08 7:02:44 PM

Chapter 3: Overview of Web Content Management

48

 The code in Listing 3 - 1 demonstrates how to enumerate a list of sites in the current site collection within
a Web control.

 Listing 3 - 1: Enumerating Publishing sites

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Publishing;

namespace EnumerateSites {
 public class EnumerateSitesInSiteCollection : WebControl {

 protected void ListWebs (PublishingWeb pubWeb, HtmlTextWriter output) {
 output.Write(string.Format(“ < A href=\”{0}\” > {1} < /A > ”, pubWeb.Url,
pubWeb.Title));
 foreach (PublishingWeb childPubWeb in pubWeb.GetPublishingWebs()) {
 ListWebs(childPubWeb, output);
 }
 }

 protected override void RenderContents (HtmlTextWriter output) {
 using (SPSite site = SPContext.Current.Site) {
 output.Write(“ < H1 > Sites in Site Collection < /H1 > < BR > ”);
 foreach (SPWeb site in site.AllWebs) {
 if (PublishingWeb.IsPublishingWeb(site)) {
 PublishingWeb publishingWeb = PublishingWeb.GetPublishingWeb(site);
 ListWebs(publishingWeb, output);
 }
 }
 }
 }
 }
}

 The code in Listing 3 - 2 demonstrates how to create a new Publishing site.

 Listing 3 - 2: Creating Publishing sites

using (SPWeb web = SPControl.GetContextWeb(Context)) {
 PublishingWeb pubWeb = PublishingWeb.GetPublishingWeb(web);
 PublishingWeb newWeb = pubWeb.GetPublishingWebs().Add(“SiteName”);
 newWeb.Title = “Display Name”;
 newWeb.Description = “Description of Site”;
 newWeb.Update();
}

c03.indd 48c03.indd 48 5/8/08 7:02:44 PM5/8/08 7:02:44 PM

Chapter 3: Overview of Web Content Management

49

 Listing 3 - 3 demonstrates how to create a new Publishing page.

 Listing 3 - 3: Creating Publishing pages

using (SPWeb web = SPControl.GetContextWeb(HttpContext.Current)) {
 PublishingWeb pubWeb = PublishingWeb.GetPublishingWeb(web);
 PageLayout layout = null;
 SPContentTypeId contentType = new SPContentTypeId();
 PageLayout[] layouts = pubWeb.GetAvailablePageLayouts(contentType);
 if (layouts != null & & layouts.Length > 0) {
 layout = layouts[0];
 PublishingPage newPage;
 newPage = pubWeb.GetPublishingPages().Add(“SiteName”, layout);
 newPage.Description = “Description of site”;
 newPage.ListItem[“Page Content”] = “ Sample Content Here”;
 newPage.Update();
 }
}

 The code in Listing 3 - 4 demonstrates how to set page properties and publish a page.

 Listing 3 - 4: Setting properties and publishing pages

publishingPage = PublishingPage.GetPublishingPage(listItem);
if (publishingPage.ListItem.File.CheckOutStatus == SPFile.SPCheckOutStatus.None) {
 publishingPage.CheckOut();
}

publishingPage.Title = “Title”;
publishingPage.Description = “Description”;
publishingPage.Update();

publishingPage.CheckIn(“Comments”);
SPFile pageFile = publishingPage.ListItem.File;
pageFile.Publish(checkInComment);
pageFile.Approve(checkInComment);

 Summary
 This chapter has covered the core elements of WCM in MOSS, including the rationale and benefits of
building upon the WSS platform. As a part of MOSS, WCM solutions are capable of leveraging powerful
integration with other elements, such as search and the Business Data Catalog. In addition, WCM brings
to MOSS portals powerful Web content features and capabilities. MOSS WCM provides the core
capabilities, authoring, branding, and controlled publishing upon which Publishing sites can be
developed.

c03.indd 49c03.indd 49 5/8/08 7:02:44 PM5/8/08 7:02:44 PM

c03.indd 50c03.indd 50 5/8/08 7:02:45 PM5/8/08 7:02:45 PM

 SharePoint Features and
the Solution Framework

 In the second generation of SharePoint, Windows SharePoint Services 2.0 (WSS), Microsoft
provided many different opportunities for developers to customize sites as well as augment sites
using custom code. These various points of integration provided developers with many
opportunities, but seasoned SharePoint developers became familiar with a few pain points with
the second generation of SharePoint. These included issues such as promoting code reuse,
incorporating new functionality or changes in existing sites, empowering site owners to add/
remove this functionally without developer involvement, and deploying (as well as updating)
custom code and files.

 Thankfully, in the latest SharePoint release, WSS 3.0, Microsoft addresses these issues in two ways:
Features and solutions. Features facilitate much more code reuse and provide developers with an
easy way to not only introduce new and updated components and functionality into existing
SharePoint sites, but also to empower site owners and administrators to implement it without
developer involvement. The solution framework provides developers and administrators with a
way to easily deploy custom code and files throughout a SharePoint implementation, including
a SharePoint farm containing multiple servers such as load - balanced Web front - end (WFE) servers.
This chapter explores the details of the Feature and solution frameworks, and provides some
guidance on how to best create Features and WSS solution packages.

 Overview of SharePoint Features
 Microsoft introduced the concept of Features in WSS 3.0 to address numerous challenges presented
in the previous version, as well as to provide additional functionality. The previous version of
SharePoint, WSS 2.0, did not provide an easy way to define a site element such as a list template
one time and reference it from multiple site templates. Instead, the list template definition had to
be copied to each and every site template where it was used. This does not adhere to good code
reuse practices and increases the possibility of the same template getting out of sync.

c04.indd 51c04.indd 51 5/8/08 7:03:47 PM5/8/08 7:03:47 PM

Chapter 4: SharePoint Features and the Solution Framework

52

 Another challenge with WSS 2.0 was adding new elements or functionality to sites already created. WSS
2.0 did not offer an easy way to incorporate new functionality into existing sites; developers were forced
to craft a custom process such as a script that would add a new list template to each individual site in
WSS 2.0.

 The cases presented here are just two examples illustrating why Microsoft added the Feature framework
to WSS 3.0. In addition to addressing WSS 2.0 challenges, Microsoft also added capabilities to the Feature
framework to deploy certain custom code solutions such as event receivers, document converters, and
custom workflow templates. This chapter covers the basics of SharePoint Features, although it does not
include an exhaustive analysis of all the things Features can do because Features are everywhere in
SharePoint and are covered throughout the book. For example, the deployment of custom workflow
templates created using Visual Studio is performed using Features. The same is true for provisioning
instances of file templates on the file system such as master pages and page layouts. Therefore, each
chapter in the book covers a specific capability of SharePoint Features as necessary.

 Once a Feature has been created, it then needs to be activated. The activation of a Feature is dependent
upon the defined scope of the Feature (Feature scope is covered later in the chapter). When a Feature is
activated, SharePoint performs the work defined within the Feature. This activation and deactivation of
a Feature provides developers and site administrators with the capability to toggle functionality on or off
with ease via the browser interface.

 Anatomy of a Feature
 All SharePoint Features live in a special folder within the SharePoint 12 folder — specifically, in
 [..]\12\TEMPLATE\FEATURES . The FEATURES folder contains folders for each Feature that has been
deployed to the server. After a clean Office SharePoint Server (MOSS) 2007 installation, the FEATURES
folder will contain more than 130 folders, each signifying a Feature that is part of the out - of - the - box
(OOTB) MOSS 2007 installation. This is where developers create and/or deploy custom Features.

 To create a new Feature, create a new folder in the FEATURES folder such as MyFirstFeature . Every
Feature must have a definition file containing all the information that SharePoint needs to know about
the Feature. This definition file is simply an XML file that is given the name feature.xml . The Feature
definition file contains information such as a unique identifier for the Feature, a title, a description, and
the scope and visibility of the Feature. The following Collaborative Application Markup Language
(CAML) contains what is quite possibly the simplest Feature definition, with the minimal information:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”32DECDEF-C37C-4AC3-BA65-D49639668E7C”
 Title=”My First Feature”
 Description=”The simplest Feature ever.”
 Hidden=”FALSE”
 Scope=”Web” >
 < /Feature >

 Once the definition has been created and saved into a new folder within the FEATURES folder, SharePoint
must then be made aware of the Feature. This is done by installing the Feature using STSADM.EXE and
the installfeature operation:

stsadm.exe – o installfeature – name MyFirstFeature

c04.indd 52c04.indd 52 5/8/08 7:03:48 PM5/8/08 7:03:48 PM

Chapter 4: SharePoint Features and the Solution Framework

53

 After SharePoint is made aware of the Feature, it can then be activated. In the case of MyFirstFeature ,
activation can occur at the site level as defined by the scope of the Feature (Scope=Web). To activate
 MyFirstFeature , browse to any SharePoint site and select Site Actions Site Settings and then select
Site Features under the Site Administration section to load the Site Features administration page. The
Feature should appear in the list as the title defined in the feature.xml file, My First Feature, with an
Activate button to the right. Click the Activate button to activate the Feature. Because this simple Feature
does not do anything important, nothing happens when the page refreshes from the postback. Notice,
though, that the page indicates that the Feature is now active, and the button has changed to Deactivate.

 As demonstrated, the MyFirstFeature Feature does not do anything upon activation. In order for a
Feature to do something, it must contain one of two things: element manifests and/or a Feature receiver.
Before taking a look at element manifests and Feature receivers, it is important to understand the
concept of Feature scope.

 Feature Scope
 A very important aspect of Features is the concept of Feature scope. A Feature ’ s scope enables developers
to quantify how broad the effects of activating the Feature are. If a Feature is scoped at the site level, then
the activation affects only the SharePoint site it is activated within. However, if it is scoped at a site
collection level, then the activation affects all sites within the site collection.

 For example, a project may require adding a new menu item to the Site Actions menu for a particular
site. A developer can create a Feature that uses the < CustomAction > element type and set the scope to
 Web (SharePoint site). However, if the menu item needs to be visible on all Site Action menus in all sites
within the site collection, then the scope can easily be changed to Site (site collection). To take it even
further, suppose a company wanted to add a menu item to all Site Action menus for all SharePoint sites
in the organization that displayed a privacy policy or emergency contact information. This could easily
be done with a single Feature with a scope of Farm .

 The scope options for SharePoint site and site collections seems to be a point of confusion for many
developers new to the platform. An easy way to remember the difference is to think about the two within
the context of the SharePoint API. Remember from Chapter 2 that a SharePoint site is represented
by the SPWeb object, and a site collection is represented by SPSite .

 There are four different scope options for Features, listed in the following table:

 Scope Description

 Web (SharePoint site) Applies to a specific SharePoint site .

 Site (site collection) Applies to a SharePoint site collection and all SharePoint sites within the
site collection .

 WebApplication Applies to a SharePoint extended Web application, all site collections within
the Web application, and all sites within those site collections .

 Farm Applies to a SharePoint farm, all SharePoint extended Web applications, all
site collections, and all SharePoint sites within the SharePoint farm .

c04.indd 53c04.indd 53 5/8/08 7:03:49 PM5/8/08 7:03:49 PM

Chapter 4: SharePoint Features and the Solution Framework

54

 Element Manifests
 Element manifests, another type of XML file found in a Feature ’ s folder, contains CAML that defines site
elements. The SharePoint Feature schema contains many different types of site elements. As stated
previously, this chapter does not include an exhaustive discussion about each and every component of
the Feature schema because all of them are covered in more detail in respective chapters throughout the
book. The following table contains a list of all the Feature element types, including the chapter in which
a more in - depth discussion can be found, as well as the possible scoping options for each:

 Element Type Chapter
 Scope:
Web

 Scope:
Site

 Scope:
WebApplication

 Scope:
Farm

 Content type and content
type bindings

 Ch. 6 X

 Custom actions Ch. 8 and Ch. 14 X X X X

 Delegate controls Ch. 7 X X X X

 Document converters Ch. 18 X

 Event registrations Ch. 6 X

 Feature site template
associations (stapling)

 Ch. 4 X X X

 Field definitions (site
columns)

 Ch. 6 X

 List templates and instances Ch. 6 X X

 Modules Ch. 7 and Ch. 11 X X

 Workflow Ch. 12 X

 Once an element manifest file has been created, it needs to be associated with the Feature. To do this,
create a < ElementManifests > node that contains < ElementManifest > nodes containing a reference to
the element manifest files in the Feature. The < ElementManifests > node is then added to the
 < Feature > node, as shown in Listing 4 - 1 .

 Listing 4 - 1: Feature definition file

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”32DECDEF-C37C-4ac3-BA65-D49639668E7C”
 Title=”My First Feature”
 Description=”The simplest Feature ever.”
 Hidden=”FALSE”
 Scope=”Web” >

 < ElementManifests >
 < ElementManifest Location=”elements.xml”/ >
 < /ElementManifests >

 < /Feature >

c04.indd 54c04.indd 54 5/8/08 7:03:49 PM5/8/08 7:03:49 PM

Chapter 4: SharePoint Features and the Solution Framework

55

 For more information on the Feature schema, refer to the official documentation on MSDN
(www.andrewconnell.com/go/209).

 Feature Receivers
 The Feature site elements contained in element manifest files provide developers with a significant
amount of functionality, but what if they don ’ t meet existing business needs? For example, what if, upon
Feature activation, a project requires the creation of a child SharePoint site using a specific site template?
Thankfully, Microsoft anticipated such as scenario and added the capability for developers to write event
handlers for certain events within an assembly. The following table lists the four events exposed by
Features that developers can take advantage of:

 Event Description

 FeatureInstalled Raised after a Feature has been installed

 FeatureActivated Raised after a Feature has been activated

 FeatureDeactivating Raised before a Feature is deactivated

 FeatureUninstalling Raised before a Feature is uninstalled

 By using Feature receivers, developers can now achieve endless possibilities in the process of activating
or deactivating a Feature. In addition, this provides a vehicle for developers to offer additional
functionality to site owners, who can select — on a site - by - site basis or according to the specified scope
of the Feature — what they want to add to or remove from their site.

 The class that contains the event handlers developers create for Feature events is called a Feature
receiver . In order to create a Feature receiver, developers must create a new class that inherits from
 Microsoft.SharePoint.SPFeatureReceiver and implements all four events. This class needs to be
compiled into a signed assembly (to generate a strong name) and deployed by the assembly to the
Global Assembly Cache (GAC). Listing 4 - 2 contains an example of a Feature receiver that changes the
name of the current site with the current timestamp upon activation and sets the original name back
upon deactivation using the site ’ s property bag (SPWeb.Properties).

 Listing 4 - 2: Using the FeatureActivated Feature receiver event

using System;
using Microsoft.SharePoint;

namespace WROX {
 public class MyFirstFeatureReceiver : SPFeatureReceiver {

 public override void FeatureActivated (
 SPFeatureReceiverProperties properties) {
 SPWeb site = properties.Feature.Parent as SPWeb;

 // save current site’s title
 site.Properties[“SiteTitle”] = site.Title;

(continued)

c04.indd 55c04.indd 55 5/8/08 7:03:49 PM5/8/08 7:03:49 PM

Chapter 4: SharePoint Features and the Solution Framework

56

Listing 4 - 2 (continued)

 site.Properties.Update();

 // change the site title
 site.Title = DateTime.Now.ToString();
 site.Update();
 }

 public override void FeatureDeactivating (
 SPFeatureReceiverProperties properties) {
 SPWeb site = properties.Feature.Parent as SPWeb;

 // reset the site’s title
 site.Title = site.Properties[“SiteTitle”].ToString();
 site.Update();
 }

 public override void FeatureInstalled (
 SPFeatureReceiverProperties properties) {
 // do nothing
 }
 public override void FeatureUninstalling (
 SPFeatureReceiverProperties properties) {
 // do nothing
 }
 }
}

 Once the assembly containing the Feature receiver has been compiled and deployed to the GAC, the
Feature must be configured to call the event handlers in the Feature receiver class. To do this, add two
new attributes to the < Feature > node in the feature.xml definition file: ReceiverAssembly , which
contains the assembly ’ s strong name (aka its four - part name) and the ReceiverClass , which contains a
fully qualified name to the Feature receiver, as shown in Listing 4 - 3 .

 Listing 4 - 3: Feature definition with a Feature receiver

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”32DECDEF-C37C-4ac3-BA65-D49639668E7C”
 Title=”My First Feature”
 Description=”The simplest Feature ever.”
 Hidden=”FALSE”
 Scope=”Web”

 ReceiverAssembly=”MyFirstFeature, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c591e70cfdf9ce4f”
 ReceiverClass=”WROX.MyFirstFeatureReceiver” >

 < /Feature >

 Feature Administration
 In addition to Feature scope, developers and administrators should be aware of a few additional
administrative aspects to Features. The first involves Feature installation and uninstallation. Features can

c04.indd 56c04.indd 56 5/8/08 7:03:50 PM5/8/08 7:03:50 PM

Chapter 4: SharePoint Features and the Solution Framework

57

only be installed by SharePoint administrators who have access to the SharePoint server console. This is
because Features can only be installed in one of three ways: using STSADM.EXE , using WSS solution
packages (covered later in the chapter), or via the SharePoint API. As previously covered, once the
folders and files associated with a Feature have been copied to the necessary locations on the server,
the STSADM.EXE operation installfeature is used to install the Feature. Conversely, the STSADM.EXE
operation uninstallfeature is used to uninstall an installed Feature.

 Unlike the installation and uninstallation of a Feature, activation and deactivation can occur either using
 STSADM.EXE or using the browser interface. If activating a Feature using STSADM.EXE , use the operation
 activatefeature :

stsadm.exe -o activatefeature -name myfirstfeature -url http://wss1

 As shown in the preceding command - line operation, activatefeature accepts additional parameters
such as – url . These are not always required; it depends on the scope of the Feature. The
 MyFirstFeature is scoped at the site level (scope=Web), so a specific site must be provided upon
activating the Feature. Deactivation works the same way, using the operation deactivatefeature :

stsadm.exe -o deactivatefeature -name myfirstfeature -url http://wss1

 Another capability at the disposal of SharePoint developers and administrators is the visibility of a
Feature. Within the Feature definition file, feature.xml , the < Feature Hidden= ” ” > attribute can be
used to hide or show a Feature in the browser interface. By default, all Features are visible
(Hidden=FALSE). When would a Feature need to be hidden? Consider a Feature that added functionality
or a site element to a site collection; its activation state should not be delegated to site owners; instead,
SharePoint farm administrators should be the ones required to activate or deactivate this special Feature
for a site collection. Activation and deactivation for hidden Features must then be handled using
 STSADM.EXE exclusively.

When creating a Feature that contains a Feature receiver performing certain tasks
that require special permissions, consider making it a hidden Feature, thereby
requiring activation via STSADM.EXE. Why? When a Feature is activated from the
browser interface, the code is executed within the context of the configured identity
of the application pool hosting the Web application containing the site collection.
This identity may not have the necessary permissions, such as writing to the file
 system. However, when a Feature is activated using STSADM.EXE, the identity of
the user performing the command is used, who may have more permissions than the
application pool’s identity.

 Feature Dependencies and Stapling Features
 In addition to the activation and deactivation capabilities of Features previously covered, Features can
also be configured to activate other Features they are dependent upon. Developers can even
create Features that do nothing other than activate other Features — in fact, that is all the
 PublishingWeb Feature does! Activation dependency is also intelligently handled. For instance,
suppose Feature A activates Features X, Y, and Z. In addition, Feature B activates Features Y and Z.
If both Features A and B are activated, all three Features (X, Y, and Z) are activated, but if Feature B is
then deactivated, SharePoint is intelligent enough to see that Feature Y is also a dependent of Feature A,
leaving it activated).

c04.indd 57c04.indd 57 5/8/08 7:03:50 PM5/8/08 7:03:50 PM

Chapter 4: SharePoint Features and the Solution Framework

58

 To create a Feature activation dependency, add an < ActivationDependencies > node containing
one or more < ActivationDependency > nodes referencing the ID of the Feature that should be
activated. For example, take the MyFirstFeature Feature. The Feature definition shown in
Listing 4 - 4 will now tell SharePoint to automatically activate Feature ContactList whose ID
is 00BFEA71 - 7E6D - 4186 - 9BA8 - C047AC750105.

 Listing 4 - 4: Feature definition file with an activation dependency

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”32DECDEF-C37C-4ac3-BA65-D49639668E7C”
 Title=”My First Feature”
 Description=”The simplest Feature ever.”
 Hidden=”FALSE”
 Scope=”Web” >
 < ElementManifests >
 < ElementManifest Location=”elements.xml”/ >
 < /ElementManifests >

 < ActivationDependencies >
 < ActivationDependency FeatureId=”00BFEA71-7E6D-4186-9BA8-C047AC750105” / >
 < /ActivationDependencies >

 < /Feature >

 Another technique the Feature framework provides is referred to as Feature stapling . One of the
challenges in WSS 2.0 was adding new functionality to existing site definitions and templates. This was
because the official guidance from Microsoft was to never edit an existing site definition or template
once sites have been provisioned using it, and that developers should not modify the site definitions
provided in the out - of - the - box installations, as future updates (hotfixes and service packs) could
overwrite the files. To address this, Microsoft added the capability of Feature stapling.

 Feature stapling involves creating a special Feature, known as a stapling Feature, that associates a Feature
with an existing site template. Once a Feature has been stapled to a site template, any future sites
provisioned using the site template will automatically activate the stapled Feature. This enables
developers to customize site templates without actually changing the site template itself; instead they
can append functionality without touching the source files that make up the site template.

 Stapling is achieved using the < FeatureSiteTemplateAssociation > site element. This element
accepts two attributes: Id , the ID of the Feature to be stapled, and TemplateName , the ID of the site
template. For example, the following CAML contained in a Feature element manifest file would staple
the MyFirstFeature to all future sites provisioned using the Blank Site site template (STS#1),
assuming the stapling Feature were activated:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >

 < FeatureSiteTemplateAssociation Id=”32DECDEF-C37C-4ac3-BA65-D49639668E7C”
 TemplateName=”STS#1” / >

 < /Elements >

 Removing a stapling reference is as easy as deactivating the Feature.

c04.indd 58c04.indd 58 5/8/08 7:03:51 PM5/8/08 7:03:51 PM

Chapter 4: SharePoint Features and the Solution Framework

59

 While not required, typically developers give stapling Features the same name as the Feature they are
stapling but simply append “ Stapling ” to the name. For example, the name of the Feature that contains
the previous element manifest file would be called MyFirstFeatureStapling .

 Creating Features Using Visual Studio
 While Features can be created loosely by manually creating the folder in the [..]\12\TEMPLATE\
FEATURES folder and the necessary XML files, this is tedious and it poses challenges trying to keep all
the files involved in a single project together. Another approach is to leverage Visual Studio for Feature
development.

 When using Visual Studio to create projects, use either the VB.NET/C# Class Library (when creating a
Feature that contains any compiled code) or the Empty Project template (when the Feature won ’ t contain
any compiled code). With a project created, mimic the folder structure under the SharePoint 12 folder in
the project. For example, in the case of the MyFirstFeature Feature, the project structure would look
similar to Figure 4 - 1 .

Figure 4-1

 In the case of MyFirstFeature , a C# Class Library project template was used to create the project and
sign it to generate the strong - named assembly. For deployment, files can be manually copied or a custom
command - line batch script can be written and added to the Post Build event in the project ’ s Properties
window that would add the assembly to the GAC, copy the necessary files to the SharePoint 12 folder,
and, optionally, install and activate the Feature.

 Does that feel old school? Isn ’ t there a better and more efficient way to package files and custom code up
for deployment in SharePoint? Unfortunately, in WSS 2.0 there was no such mechanism, but this is yet
another area where Microsoft expended a considerable effort in the latest release of SharePoint: WSS 3.0.
The new mechanism for packaging files and custom code for deployment is the WSS solution package
framework.

 Overview of WSS Solution Packages
 Developers writing custom code and creating files for use within a WSS 2.0 site were left with the
challenges of deploying their custom code and files to SharePoint servers in homegrown ways. Some
developers used the manual deployment of copying files around and making manual edits to the

c04.indd 59c04.indd 59 5/8/08 7:03:51 PM5/8/08 7:03:51 PM

Chapter 4: SharePoint Features and the Solution Framework

60

 web.config file. Others created scripts or installers that did everything for them, but these were tedious
to build and did not cleanly integrate with the SharePoint framework — basically, they were simply
scripted actions working with the object model and running STSADM.EXE batch commands. Deployment
of Web Parts in WSS 2.0 was a little better, as it included a tool that helped package up the files for
deployment. Called the Web Part Packager, this tool proved to be a bit buggy and Microsoft eventually
pulled support for it.

 Fortunately, Microsoft expended considerable effort in this area in WSS 3.0 with the addition of the
solution framework and WSS solution packages. Think of the solution framework as SharePoint ’ s own
installer framework, similar to the Microsoft Installer files (*.MSI). The solution framework enables
developers to collate custom code and files, among other things, into a single package and add an
instruction file to the package telling SharePoint what to do with the files. SharePoint then takes the
package and deploys all the changes, outlined in the instruction file, to servers in the farm at a scheduled
time. It is even intelligent enough to realize that multiple WFEs exist in the farm, and will deploy
necessary code to all of them at the same time.

 Anatomy of a WSS Solution Package
 A WSS solution package contains two things: all the files required in the deployment and an instruction
file telling SharePoint what to do with these files. Everything is packaged together into a Microsoft
cabinet file with a file extension of *.WSP (for WSS solution package). This package is then added to the
SharePoint farm ’ s solution store using STSADM.EXE .

 What can be included in a WSS solution package? Essentially, four different things can be deployed
using WSS solution packages:

 Assemblies — Many development tasks in SharePoint require custom code to be compiled into
assemblies and added to the server. These assemblies can be deployed to a particular SharePoint
extended Web application ’ s \bin folder or the server ’ s GAC.

 Anything to the SharePoint 12 folder — While there are many options within the WSS solution
package schema, most boil down to deploying files to specific places in the SharePoint 12 folder
structure. When there is no schema option when a project requires deploying a file somewhere
in the SharePoint 12 folder structure, developers can always fall back on the < RootFiles >
element, which deploys files starting at the 12 folder.

 Custom Code Access Security policies — CAS policies are typically stored in the [..]\12\
CONFIG folder, but what is special about the WSS solution package deployment method is that
developers include what additions to make to a CAS policy and SharePoint adds the changes to
a copy of the currently used CAS policy. This automatically updates the SharePoint extended
Web application ’ s web.config file to contain a registration to the new CAS policy file, and
changes the trust level of the Web application all at once.

 Web Part definitions and resources — Deployment of Web Parts can include many different
files. Web Part definition files (*.webpart) can be deployed to a site collection ’ s Web Part
Gallery (to deploy a Web Part to a specific site collection) or to the wpcatalog directory within a
Web application ’ s webroot on the file system (to deploy the Web Part to all site collections
within a SharePoint extended Web application).

 In addition, resource files, such as images, CSS files, JavaScript, and so on can be deployed to the
 wpresources directory within a Web application ’ s webroot on the file system (making them available

❑

❑

❑

❑

c04.indd 60c04.indd 60 5/8/08 7:03:51 PM5/8/08 7:03:51 PM

Chapter 4: SharePoint Features and the Solution Framework

61

to all site collections in a SharePoint extended Web application) or to a special wpresources directory
that all Web applications share, thus deploying the resource files one time on a server. This folder can be
found parallel to the SharePoint 12 folder: c:\Program Files\Common Files\Microsoft Shared \
 web server extensions \ wpresources .

 Packaging up all the files included in the WSS solution package is covered later in this chapter. For now,
focus on the instruction file included in the package SharePoint uses to determine what to do with all the
files. This instruction file SharePoint uses is called a solution manifest . It is simply an XML file named
 manifest.xml that contains CAML and is added to the root of the solution.

 The manifest.xml file contains some metadata about the solution for SharePoint, such as a unique ID
(GUID), whether the solution should be deployed to WFEs or application servers, and whether the
World Wide Web Publishing Services should be recycled upon completion of the deployment (required
for some things such as the deployment of custom field types). The minimal CAML required in a
 manifest.xml file is shown in Listing 4 - 5 . It provides SharePoint with just enough information it needs
about the solution, but it will not do anything.

 Listing 4 - 5: WSS solution manifest.xml file

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Solution xmlns=”http://schemas.microsoft.com/sharepoint/”
 SolutionId=”AEF06666-1351-4E9D-A151-63032C94E2D6”
 DeploymentServerType=”WebFrontEnd”
 ResetWebServer=”FALSE” >
 < /Solution >

 The next step is to add instructions telling SharePoint what to do with the files included in the solution.
Using the MyFirstFeature that was created previously in this chapter, two things need to be deployed:
the Feature itself and the assembly containing the Feature receiver. First add the assembly. Remember
that the assembly needs to be added to the server ’ s GAC. This is done using the < Assemblies > element,
part of the WSS solution package schema, as shown in Listing 4 - 6 .

 Listing 4 - 6: WSS solution manfiest.xml file deploying an assembly

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Solution xmlns=”http://schemas.microsoft.com/sharepoint/”
 SolutionId=”AEF06666-1351-4E9D-A151-63032C94E2D6”
 DeploymentServerType=”WebFrontEnd”
 ResetWebServer=”FALSE” >

 < Assemblies >
 < Assembly DeploymentTarget=”GlobalAssemblyCache”
 Location=”MyFirstFeature.dll” / >
 < /Assemblies >

 < /Solution >

 Note that the assembly ’ s deployment location is the server ’ s GAC. The location of the assembly is the
relative path to the file within the package. Again, the process of packaging all the files up into a *.WSP
file is covered later in the chapter. In addition, if the assembly contains something that requires an entry
to the < SafeControls > collection in the targeted Web application ’ s web.config file, developers can
use the < SafeControls > element as a child node to the < Assembly > node in the manifest.xml file.
SharePoint automatically adds the < SafeControl > entry to web.config when deploying the package.

c04.indd 61c04.indd 61 5/8/08 7:03:52 PM5/8/08 7:03:52 PM

Chapter 4: SharePoint Features and the Solution Framework

62

 Next, the Feature needs to be deployed. To do that, use the < FeatureManifests > element and other
components of the WSS solution package schema, as shown in Listing 4 - 7 .

 Listing 4 - 7: WSS solution manifest.xml file deploying a Feature

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Solution xmlns=”http://schemas.microsoft.com/sharepoint/”
 SolutionId=”AEF06666-1351-4E9D-A151-63032C94E2D6”
 DeploymentServerType=”WebFrontEnd”
 ResetWebServer=”FALSE” >
 < Assemblies >
 < Assembly DeploymentTarget=”GlobalAssemblyCache”
 Location=”MyFirstFeature.dll” / >
 < /Assemblies >

 < FeatureManifests >
 < FeatureManifest Location=”MyFirstFeature\feature.xml” / >
 < /FeatureManifests >

 < /Solution >

 Recall from the discussion about installation and activation of Features that in order for a Feature to be
available for activation, it must first be installed. Thankfully, SharePoint handles installation of the
Feature when it deploys it. Another aspect of Features with respect to WSS solution packages requires
some explanation. The MyFirstFeature Feature contained a reference to an element manifest file.
Notice how this file is not listed in the manifest.xml file. This is because SharePoint looks at the
Feature definition to determine what files are required by the Feature and automatically includes them
in the deployment.

 However, element manifest files are not the only kind of file found in a Feature. Other types of files
include master pages, page layouts, images, and so on (this is very common in the provisioning of
files, as covered in Chapter 7). The WSS solution framework will not see these files referenced from
element manifest files; therefore, these files are not deployed. So how do they get deployed? One option
is to use the < TemplateFiles > element, part of the WSS solution package schema, to deploy the files,
but a much cleaner approach is to register the files within the Feature ’ s definition file using the
 < ElementFile > element, part of the Feature schema. For example, suppose the MyFirstFeature
provisioned a new image to a SharePoint site using the < Module > element in an element manifest file.
In order to register the image, you add an < ElementFile > element to the feature.xml definition
file, as shown in Listing 4 - 8 .

 Listing 4 - 8: Feature definition leveraging the ElementFile element

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”32DECDEF-C37C-4ac3-BA65-D49639668E7C”
 Title=”My First Feature”
 Description=”The simplest Feature ever.”
 Hidden=”FALSE”
 Scope=”Web”
 ReceiverAssembly=”MyFirstFeature, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c591e70cfdf9ce4f”
 ReceiverClass=”WROX.MyFirstFeatureReceiver” >
 < ElementManifests >

c04.indd 62c04.indd 62 5/8/08 7:03:52 PM5/8/08 7:03:52 PM

Chapter 4: SharePoint Features and the Solution Framework

63

 < ElementManifest Location=”elements.xml”/ >

 < ElementFile Location=”image.gif” / >

 < /ElementManifests >
 < ActivationDependencies >
 < ActivationDependency FeatureId=”00BFEA71-7E6D-4186-9BA8-C047AC750105” / >
 < /ActivationDependencies >
 < /Feature >

 Solution Deployment
 Once the package has been added to the solution store, it can then be scheduled for immediate or future
deployment. If the package contains files or changes to a specific SharePoint site (such as adding an
entry to the < SafeControls > section of web.config), the administrator is prompted to select which
SharePoint extended Web application the solution should be deployed to (or all Web applications can be
selected). This enables SharePoint to know which web.config file to update.

 If, at some point in the future, the files need to be updated, an administrator can use the STSADM.EXE
operation upgradesolution . This re - adds the solution to the solution store, overwriting the previous
one after first backing it up (for rollback purposes, should things go wrong); if it was previously
deployed, it will be redeployed automatically.

 In addition, if a solution needs to be rolled back for some reason, administrators can retract the solution
using either the browser interface in Central Administration or the STSADM.EXE operation
 retractsolution .

 Creating WSS Solution Packages
 Now that you understand the anatomy and deployment process, it is time to learn how to create a WSS
solution package. As previously mentioned, a WSS solution package is a Microsoft cabinet file with a
 *.WSP filename extension. While there is a CAB Project template in Visual Studio, it is not a viable option
for creating *.WSP files. The primary reason is that *.WSP files almost always contain subfolders for
things such as Features or localized files for multilingual solutions, and the Visual Studio CAB Project
template does not support subfolders.

 In order to create Microsoft cabinet files, SharePoint developers can use the MakeCab.EXE utility
included in the Microsoft Cabinet SDK. The MakeCab.EXE command - line utility accepts a few
parameters. One parameter is the name of a file containing the instructions for MakeCab.EXE , such as
how to compress the files, subdirectories that should be created in the cabinet file, and the files that
should be included in the cabinet, including to which subfolders files should be added. This file is a
 diamond directive file (*.DDF). Other parameters passed into MakeCab.EXE are for things such as the
name of the cabinet to create and where the file should be created.

 The Microsoft Cabinet SDK is available from Microsoft ’ s Knowledge Base for download
(www.andrewconnell.com/go/210).

 The first thing to create is the DDF file. Create a new text file in Visual Studio named
 BuildSharePointPackage.ddf in a new folder called DeploymentFiles . This contains a few
configuration settings that are used for nearly all packages, followed by a list of all the files to include in
the package, including any subfolders that should be created. Each file listed in the DDF file points to the

c04.indd 63c04.indd 63 5/8/08 7:03:52 PM5/8/08 7:03:52 PM

Chapter 4: SharePoint Features and the Solution Framework

64

relative location of the file based on the location from which MakeCab.EXE is being executed. For
example, if MakeCab.EXE were executed from the root of the project, in order to include the assembly
created by building the project, the file would be listed in the following location:

bin\debug\MyFirstFeature.dll

 To create a subfolder within a package, add a . Set command, changing the DestinationDir variable.
All files following the command are placed in the folder. Listing 4 - 9 shows the DDF file to create a WSP
file containing the MyFirstFeature Feature.

 Listing 4 - 9: Diamond directive file

.OPTION Explicit

.Set DiskDirectoryTemplate=CDROM

.Set CompressionType=MSZIP

.Set UniqueFiles=Off

.Set Cabinet=On
;**
bin\debug\MyFirstFeature.dll

.Set DestinationDir=MyFirstFeature
TEMPLATE\FEATURES\MyFirstFeature\feature.xml
TEMPLATE\FEATURES\MyFirstFeature\elements.xml

;***End

 There is another way to put files into folders within the *.WSP file. Instead of using the .Set
 DestinationDir=[...] syntax, the source and target locations of the file are listed, separated with a
space. This is not recommended, however, because each line in a DDF file has a maximum length. Using
this method simply increases the chances of reaching the character limit. Instead, use the approach
o utlined above.

 The lines starting with a semicolon (;) are commented lines. Also notice that the full path to the files is
listed in the DDF file, assuming MakeCab.EXE will be executed from the root of the project (the same
folder where the project file, *.CSPROJ , is located).

 The next thing to do is add the manifest.xml file to the DDF file. Keeping with the theme of using
Visual Studio projects to organize everything, put the manifest.xml file previously created in the folder
 DeploymentFiles . Finally, add a line to the DDF file to include the manifest.xml file in the root of the
package, as shown in Listing 4 - 10 .

 Listing 4 - 10: Diamond directive file with solution manifest.xml

.OPTION Explicit

.Set DiskDirectoryTemplate=CDROM

.Set CompressionType=MSZIP

.Set UniqueFiles=Off

.Set Cabinet=On
;**

DeploymentFiles\manifest.xml

c04.indd 64c04.indd 64 5/8/08 7:03:53 PM5/8/08 7:03:53 PM

Chapter 4: SharePoint Features and the Solution Framework

65

bin\debug\MyFirstFeature.dll

.Set DestinationDir=MyFirstFeature
TEMPLATE\FEATURES\MyFirstFeature\feature.xml
TEMPLATE\FEATURES\MyFirstFeature\elements.xml

;***End

 The Visual Studio project should now look like Figure 4 - 2 .

Figure 4-2

 Finally, open a command prompt and change directory to the root of the project. Enter the path to
 MakeCab.EXE and the following parameters:

 /F DeploymentFiles\BuildSharePointPackage.ddf — Instructs MakeCab.EXE where to
find the DDF file containing some setting information for all the files and folders to include in
the package

 /D CabinetNameTemplate=MyFirstFeature.wsp — The name of the package to create

 /D DiskDirectory1=wsp — Where to create the package. In this case, a new folder named wsp
is created at the root of the project.

MakeCab.exe /F DeploymentFiles\BuildSharePointPackage.ddf /D
CabinetNameTemplate=MyFirstFeature.wsp /D DiskDirectory1=wsp

 This will create a new package named MyFirstFeature.wsp located in the wsp folder within the same
folder containing the project. To add the solution to the SharePoint farm ’ s solution store, enter the
following command:

stsadm.exe -o addsolution -filename [path_to_package]\MyFirstFeature.wsp

 To deploy the solution, browse to Central Administration Operations Solution management, select
the myfirstfeature.wsp solution, and deploy the solution immediately. The Feature can now be
deployed. To do so, browse to any SharePoint site and select Site Actions Site Settings, and then select
Site Features under the Site Administration section to load the Site Features administration page. From
the Site Features page, MyFirstFeature is listed and available for activation.

❑

❑

❑

c04.indd 65c04.indd 65 5/8/08 7:03:53 PM5/8/08 7:03:53 PM

Chapter 4: SharePoint Features and the Solution Framework

66

 If an error occurs when deploying the solution, it is likely the Feature was not uninstalled and deleted
from the previous section covering Features. It is not possible to deploy a Feature on top of an existing
Feature. To resolve this, uninstall the Feature and delete the MyFirstFeature folder from the
 [..]\12\TEMPLATE\FEATURES folder.

 Automating the Building of Solutions with MSBuild
 Creating a WSS solution package does require a few extra steps after building the project in Visual
Studio. Some developers may realize they can create batch files, or post build actions, to automate the
process of creating and deploying the packages to the SharePoint farm ’ s solution store. Another option is
to leverage the .NET Framework build process using MSBuild, the workhorse behind the build process
triggered by Visual Studio.

 Entire books have been written about MSBuild, a subject beyond the focus of this chapter. For more
information on MSBuild, refer to the official documentation on MSDN (www.andrewconnell.com/
go/211) or the official MSBuild wiki on Channel9 (www.andrewconnell.com/go/212).

 Instead of using a post build event script, add a custom MSBuild targets file to the project. This
targets file contains instructions telling MSBuild what to do. The advantage to using MSBuild
is that targets files are XML - based, thus providing a level of IntelliSense and validation when authoring
them, unlike command - line scripts. In addition, similar to post build events, targets files can leverage
some MSBuild reserved properties, such as replaceable tokens, for variable names.

 In Visual Studio, create a new XML file named BuildSharePointPackage.targets and add it to the
 DeploymentFiles folder. Add the XML shown in Listing 4 - 11 to the BuildSharePointPackage
.targets file (optionally, ignore the XML comments because they simply add documentation
explaining the different pieces of the file).

 Listing 4 - 11: MSBuild targets file used to call MSBuild

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Project DefaultTargets=”BuildSharePointPackage”
xmlns=”http://schemas.microsoft.com/developer/msbuild/2003” >
 < !-- Create a variable ‘MakeCabPath’ pointing to the location of MakeCab.EXE -- >
 < PropertyGroup >
 < MakeCabPath > ”C:\Program Files\Microsoft Cabinet SDK\BIN\MAKECAB.EXE”
< /MakeCabPath >
 < /PropertyGroup >

 < !-- Create a new target that will be called after the project has been build -- >
 < Target Name=”BuildSharePointPackage” >
 < !-- Execute MakeCab.EXE from the root of the project directory,
 passing in the DDF file,
 creating the following package: wsp\[project_name].wsp -- >
 < Exec Command=”$(MakeCabPath) /F DeploymentFiles\BuildSharePointPackage.ddf /D
CabinetNameTemplate=$(MSBuildProjectName).wsp /D DiskDirectory1=wsp “/ >
 < /Target >
 < /Project >

 With the MSBuild targets file created, the next step is to configure the Visual Studio project to tell
MSBuild to call the custom target defined in the custom targets file after the project is successfully built.
In order to do this, the project file (*.CSPROJ) needs to be edited. This can be done from Visual Studio

c04.indd 66c04.indd 66 5/8/08 7:03:53 PM5/8/08 7:03:53 PM

Chapter 4: SharePoint Features and the Solution Framework

67

or from any text editor. From within Visual Studio, right - click the project name in the Solution Explorer
tool window in Visual Studio and select Unload Project.

 If the option to unload a project isn ’ t visible, Visual Studio probably isn ’ t configured to show solutions.
To change this, from within Visual Studio select Tools Options, and then select Projects and
Solutions General page. Check the Always Show Solution option and click OK.

 Right - click the project name in the Solution Explorer tool window and select Edit [project name].csproj
and make the following changes:

 1. At the end of the file some XML is commented out, preceded by an < Import > node. The
 < Import > node imports MSBuild targets files. Notice how it is already importing the C# targets
file used to compile projects. Add a second < Import > node and set the Project attribute to
point to the custom targets file created previously:

 < Import Project=”DeploymentFiles\BuildSharePointPackage.targets” / >

 2. Delete the commented XML except for the < Target Name= “ AfterBuild ” > < /Target > node.
This MSBuild target is called by MSBuild when the other targets have completed. Add a
 < CallTarget > node to the < Target > node, instructing MSBuild to call the custom target
 previously created:

 < Target Name=”AfterBuild” >
 < CallTarget Targets=”BuildSharePointPackage” / >
 < /Target >

 Save all changes, right - click the project in the Solution Explorer tool window, and select Reload Project.
A security warning dialog will appear. This Visual Studio warning indicates that it is loading a project
file that does not match any of the installed templates. Select Load Project Normally, uncheck Ask Me for
Every Project in This Solution, and click OK.

 Now, when the project is built in Visual Studio, MSBuild will automatically execute MakeCab.EXE
to create WSS solution packages. If the build process reports an error in Visual Studio, the best way to
debug the problem is to open the Output tool window in Visual Studio and inspect the error message
reported from MakeCab.EXE . The Error tool window in Visual Studio only shows the generic error code
returned by MakeCab.EXE , which is not very helpful in debugging the error.

 Summary
 This chapter covered WSS 3.0 Feature and solution frameworks, new additions to the SharePoint product
offering in the most recent release. The Feature framework not only addresses many pain points
associated with WSS 2.0, such as adding new functionality to existing sites and promoting code reuse, it
also adds numerous new capabilities. These new capabilities include deployment of some custom code
solutions such as event receivers, workflow templates created with Visual Studio, and providing even
more possibilities by offering four events that can be handled with custom code. SharePoint developers
will quickly find that a solid grasp of the WSS 3.0 Feature framework and creating custom Features is
essential for anyone developing against the platform.

c04.indd 67c04.indd 67 5/8/08 7:03:54 PM5/8/08 7:03:54 PM

Chapter 4: SharePoint Features and the Solution Framework

68

 Addressing another pain point from WSS 2.0, Microsoft added the solution framework to the latest
release of SharePoint, WSS 3.0. The solution framework can be thought of as SharePoint ’ s internal
installer capability, providing developers and administrators with the ability to deploy custom code,
files, as well as some site changes (edits to the web.config and CAS policy files) natively through
SharePoint. The solution framework even accommodates a multi - server farm, deploying custom code
and files to all servers in the farm with no special input required by administrators. You also looked at
the ins and outs of the solution framework, and learned how to create a WSS solution package (*.WSP).

 In addition to covering both the WSS 3.0 Feature and solution framework, this chapter also
demonstrated how to use Visual Studio as a development platform for building Features and
automatically creating WSS solution packages.

c04.indd 68c04.indd 68 5/8/08 7:03:54 PM5/8/08 7:03:54 PM

 Minimal Publishing
Site Definition

 Office SharePoint Server (MOSS) 2007 includes a Publishing Portal site definition that can be used
to create new Publishing site collections. It includes all of the elements required by the MOSS Web
Content Management (WCM) architecture, which consists of content types, master pages, page
layouts, style sheets, images, and Web Parts, which together are used to perform various
publishing tasks. It also includes a document library for holding the published pages, some default
field controls, and sample content. Creating a new Publishing site typically begins by creating a
new Publishing site collection based on the Publishing Portal site definition, and then carefully
removing the parts not needed. This can be a tedious, error - prone, and time - consuming process.

 At first glance, it is not obvious which parts are extraneous and which parts are critical to the
underlying WCM framework. If the wrong file is deleted, either it has to be replaced or the process
has to start from scratch by creating the site collection again. What is needed is a minimal site
definition that can be used as a starting point to create new Publishing site collections. This template
would contain all the essential elements, excluding the extraneous sample content. That is what this
chapter is all about.

 What are the available options for creating a minimal Publishing site definition? One approach
might be to create a new Publishing Portal site, remove the parts not needed, and then save it as a
site template from within the SharePoint browser interface. This is the general approach to use
when creating a reusable site template for other sites. Unfortunately, this approach won ’ t work, as
Publishing sites cannot be saved as site templates. In order to understand why, this chapter takes a
closer look at the fundamental elements of a Publishing site to see what happens when a new
Publishing site is created. During this process, the chapter develops an alternate approach that fully
leverages the tools provided by Windows SharePoint Services (WSS) 3.0 for building custom sites.
The custom site definition created will tap into the special extensions for provisioning new sites
that is used under the covers by the Publishing framework when a Publishing Portal is created.

c05.indd 69c05.indd 69 5/8/08 7:04:31 PM5/8/08 7:04:31 PM

Chapter 5: Minimal Publishing Site Defi nition

70

 Elements of a Publishing Site
 The first step in the process of creating a minimal Publishing site definition is to look at what is included
out - of - the - box (OOTB) with the Publishing framework in MOSS. When a new site collection is created
based on the Publishing Portal template, the default site definition creates the content shown in Figure 5 - 1 .
Some of this content is critical to the operation of the Publishing sites within the collection, while other
content is extraneous and can be removed. The critical parts are described in the following sections.

Figure 5-1

 The Pages Library
 Every Publishing site needs a document library to store the actual pages that are created in the site. This
library is always called Pages so that it can be referenced easily from hyperlinks and other parts of the
portal. When the site is first created, the Pages library contains a single entry named default.aspx ,
which defines the home page of the Publishing site. This page in turn references a page layout. As new
pages are added to the site, they are created as items in the Pages document library.

 Styles and Images
 Many of the CSS style sheets, XSLT style sheets, images, and other files are specific to the default
Publishing site definition and the sample content it includes. Of the 63 items in the default Style Library,
only the core styles (about three files) are really needed.

 Master Pages and Page Layouts
 The SharePoint Publishing framework operates by leveraging the ASP.NET 2.0 architecture, which
introduced the concept of master pages. Every Publishing page is associated with a page layout, which
in turn is linked to a master page located in the master page gallery of the site collection. There can be
any number of page layout and master page files associated with a given Publishing site. These can
be viewed from the Site Settings Master Pages and Page Layouts link in the Galleries section when a
Publishing site is created. Figure 5 - 2 shows the master pages and page layout files that are created by
default. Of these, the PageLayoutTemplate.aspx and the VariationRootPageLayout.aspx files are
required because they are referenced by name from within the framework. The default.master file is
therefore also required because it is referenced by these files.

c05.indd 70c05.indd 70 5/8/08 7:04:32 PM5/8/08 7:04:32 PM

Chapter 5: Minimal Publishing Site Defi nition

71

Figure 5-2

 Content Types
 Content types, in the context of a Publishing site, are primarily used to define the schema or structure of
a type of a content page. Page layouts are then used, in conjunction with master pages, to define the
rendering of the page defined by the content type. Content types enable developers to link specific
workflows or policies with a type of a page regardless of where it is created throughout the site.

 A page layout can only have one SharePoint content type associated with it. The only exception
is the PageLayoutTemplate.aspx file, which is used as a starting point for creating new page layouts.
Three content types are created by default: Welcome Page, Article Page, and Redirect Page. The
 VariationRootPageLayout.aspx is based on the Redirect Page content type and therefore must be
accessible to all Publishing sites.

 Examining the Publishing
Portal Site Definition

 Before building a custom site definition for creating Publishing sites, it helps to look at the site definition
Microsoft provides OOTB to create Publishing sites: Publishing Portal. The site definition Microsoft
provides will be virtually the same as the one created in the following sections. It is the Features used

c05.indd 71c05.indd 71 5/8/08 7:04:32 PM5/8/08 7:04:32 PM

Chapter 5: Minimal Publishing Site Defi nition

72

that do most of the work. When a site collection is created using the Publishing Portal template, the
 PublishingWeb Feature is activated. This Feature in turn activates other Features, which activate even
more Features, as shown in Figure 5 - 3 .

PublishingWeb
94C94CA6-B32F-4da9-A9E3-1F3D343D7ECB

PublishingStapling
001F4BD7-746D-403b-AA09-A6CC43DE7942

PublishingSite
F6924D36-2FA8-4f0b-B16D-06B7250180FA

Publishing
22A9EF51-737B-4ff2-9346-694633FE4416

PublishingPrerequisites
A392DA98-270B-4e85-9769-04C0FDE267AA

PublishingResources
AEBC918D-B20F-4a11-A1DB-9ED84D79C87E

PublishingLayouts
D3F51BE2-38A8-4e44-BA84-940D35BE1566

Navigation
89E0306D-453B-4ec5-8D68-42067CDBF98E

Figure 5-3

 Each Feature is responsible for something different. The following sections describe the various things
for which each Feature is responsible.

 Publishing Feature PublishingWeb
 The PublishingWeb Feature has it easy — it is simply responsible for activating the PublishingSite
and Publishing Features and does nothing else.

 Publishing Feature Publishing
 The Publishing Feature adds the plumbing needed for a few of the unique capabilities of the
Publishing framework. A new link is added to the Edit Control Block (ECB) menu for documents in
document libraries to manage document conversions (covered in Chapter 18 , “ Offline Authoring with
Document Converters ”). New links are also added to the Pages library ’ s General Settings page for
scheduling items and customizing the Site Actions menu.

 Finally, a few additional changes are made to the Site Settings page, including hiding two links: Master
Pages (in the Gallery section) and Save Site as Template (in the Look and Feel section).

c05.indd 72c05.indd 72 5/8/08 7:04:33 PM5/8/08 7:04:33 PM

Chapter 5: Minimal Publishing Site Defi nition

73

 Publishing Feature PublishingSite
 Just like the PublishingWeb Feature, the PublishingSite Feature also has it easy, as it simply
activates four other Publishing Features and does nothing else: PublishingPrerequisites ,
 PublishingResources , PublishingLayouts , and Navigation .

 Publishing Feature PublishingPrerequisites
 The PublishingPrerequisites Feature contains no element manifest files or activation dependencies;
it simply contains a Feature receiver. The receiver ensures that all of the necessary WSS core Features have
been activated. This includes the site collection Feature BasicWebParts and site Features CustomList ,
 DocumentLibrary , TasksList , and WorkflowHistoryList . These are actually activated by the
Publishing Portal site definition, and will also be activated by the Minimal Publishing Portal site definition .

 Publishing Feature PublishingResources
 The PublishingResources Feature adds a few components required for Publishing sites to function
properly. The PublishingColumns.xml element manifest creates all site columns needed in Publishing
sites for things such as chrome and page layouts, cache profiles, reusable content, and content query
columns. A few system content types are created as well, including System Page, Page, System Master
Page, Publishing Master Page, and Page Layout, among others.

 After creating the site columns and content types, it then provisions a handful of files. Some of these are
required for Publishing sites (PageLayoutTemplate.aspx , PublishingMasterTemplate.aspx , and
 VariationRootPageLayout.aspx) and one content page layout is used in many Publishing sites
(WelcomeLinks.aspx).

 In addition to ASP.NET 2.0 pages, other files provisioned are the Web Part definitions for the specific
Publishing Web Parts such as the Table of Contents, Summary Links, and Content Query Web Parts,
which are provisioned into the site collection ’ s Web Part Gallery. The required XSLT style sheets used by
these Publishing Web Parts are also provisioned into the site collection ’ s Style Library.

 Finally, the PublishingResources Feature also makes a few modifications to the Site Settings menu,
such as adding the Master Page, Searchable Columns and Content, and Structure Logs links, as well as
the following site collection links: Site Collection Output Cache, Variation Labels, Variation Logs, and
Translatable Columns.

 Publishing Feature PublishingLayouts
 The PublishingLayouts Feature adds a few master pages, page layouts, style sheets, and a
considerable number of images. It is responsible for things such as the Article Page page layouts. In
addition, this Feature provisions eight master pages, including the default BlueBand.master master
page that all Publishing Portal site collections start with. Ultimately, this is the sole Feature that requires
the creation of a custom Minimal Publishing Portal site definition.

c05.indd 73c05.indd 73 5/8/08 7:04:33 PM5/8/08 7:04:33 PM

Chapter 5: Minimal Publishing Site Defi nition

74

 Publishing Feature Navigation
 The Navigation Feature primarily makes a few modifications to the Site Settings page, adding and
hiding some links.

 Publishing Feature PublishingStapling
 The PublishingStapling Feature uses the technique of Feature stapling to attach two of the Publishing
Features to many of the MOSS 2007 site templates. The two Features, PublishingWeb and
 PublishingSite , are stapled to site definitions carried over from Microsoft SharePoint Portal Server
2003, the Collaboration Portal site definition, Search Center and Report Center site templates, Publishing
Site, and Publishing Site with Workflow templates.

 The Challenge with the Publishing
Portal Site Definition

 What is wrong with this site definition and the associated Features? One very common use for
Publishing sites is an Internet - facing content - centric site. These Internet - facing sites usually have their
own look and feel, which is customized quite a bit from the stock SharePoint design. To implement this
custom branding, developers have to first create the site collection using the Publishing Portal template
and then they usually remove all the branding files that were added as part of this template. This
includes things such as various images, style sheets, and master pages.

 It would be much easier to create a new SharePoint site with the entire Publishing infrastructure and no
branding. This is the goal of the Minimal Publishing Portal site definition. How is it different from the
stock Publishing Portal site definition? Most everything can be traced back to the PublishingLayouts
Feature, which is responsible for adding most of the stock branding. Unfortunately, it is not terribly easy
or straightforward because, as previously shown in Figure 5 - 3 , the PublishingLayouts Feature is
activated by another Feature, which is activated by yet another Feature, which is activated by the site
definition. This means a new Feature is needed that replaces some of these other Features. In addition,
it will add the minimal branding required to have a working site collection.

 Creating a Publishing Site Definition
 A SharePoint site definition consists of a tree of CAML elements that describe the different parts of the
site and how they relate to one another. The topmost element is the template element. It is declared in a
special file called WEBTEMP , which contains one or more template Configuration elements that
reference associated site definition Configuration elements declared within the ONET.XML file
associated with the site definition. Figure 5 - 4 shows how these files are related.

c05.indd 74c05.indd 74 5/8/08 7:04:34 PM5/8/08 7:04:34 PM

Chapter 5: Minimal Publishing Site Defi nition

75

Configuration ID�"0"

12\TEMPLATE\1033\XML\WEBTEMP.PublishingMinimal.XML

Module
"PageLayouts"

List "Pages"

Site Features

Web Features

12\TEMPLATE\SiteTemplates\
PublishingMinimal\XML\ONET.XML

Configuration ID�"0"

Figure 5-4

 When thinking about site definitions and how they are used, it is important to understand the difference
between template Configuration elements and site definition Configuration elements. When users
create a new SharePoint site or site collection through the user interface, they are given the opportunity
to select from the available site templates. What they are seeing onscreen are the visible template
 Configuration elements as specified in the WEBTEMP.[name].XML file, where [name] is the template
name. The site definition Configuration elements are contained within the ONET.XML file that
describes the actual components of the site.

 The Significance of Site Definitions
 This terminology can be a bit confusing. Sometimes site definitions are incorrectly called site templates
and vice versa. While both terms refer to the general capability provided by SharePoint to reuse a
particular configuration of lists and other content, the mechanisms are quite different.

 SharePoint users can create site templates from the user interface to save an existing Web site into a file so
that it can be recreated easily at a different address. This is a powerful tool that makes it easy to set up a
site with all of the lists and other content needed to perform a given task. Site definitions are much more
powerful than site templates and are used primarily by developers to build SharePoint applications that
typically involve custom coding.

c05.indd 75c05.indd 75 5/8/08 7:04:34 PM5/8/08 7:04:34 PM

Chapter 5: Minimal Publishing Site Defi nition

76

 Among the many pros and cons of using site definitions versus site templates to create reusable sites in
SharePoint, the most obvious are related to the relative complexity of the site to create. When doing
anything beyond simple content modification, site definitions are typically the best choice because they
offer much more flexibility and control. Conversely, sometimes simpler is better, especially in a case like
this where the primary goal is to reduce the content that is created by default.

 Why won ’ t a site template work just as well for creating a minimal Publishing site? The problem is the
complexity. First, many of the components that are used within a Publishing site are stored at the site
collection. For instance, the master pages and page layouts are all stored in the Master Page Gallery
associated with the site collection. These objects are then shared among all Publishing sites within the
collection, with only the actual published pages and other content stored at the site level.

 Another issue is the need to use content types to define the page layouts used for the Publishing pages.
This requirement makes it impossible to simply use a site template to create a minimal Publishing site
because content types can only be declared in a site definition or created using custom code. The default
set of content types provided by the Publishing framework may still need to modify or extend or be
bound to custom lists. The only way to do this would be to use a site definition.

 Custom Site Provisioning
 Although not an absolute requirement for building a minimal Publishing site definition, it is worth
mentioning an additional capability that SharePoint provides for controlling how sites are created. Site
provisioning can be an essential tool for developers tasked with customizing OOTB functionality.

 When a new Web site is created, the SharePoint site provisioning engine examines the selected template and
then finds and loads the corresponding ONET.XML file. Then it searches for a site definition Configuration
element within the project element that matches the ID of the template Configuration element
associated with the selected template.

 As part of the template Configuration element, the name of a custom assembly can be specified such
that it contains a class derived from Microsoft.SharePoint.SPWebProvisioningProvider . When
specified, this class is called after the site is created to apply the appropriate configuration and to
perform any additional initialization needed for the site. To fully customize the initialization, pass a
string argument to the provisioning provider. The code in Listing 5 - 1 illustrates this approach by passing
the name of a separate XML configuration file containing post - site - creation options. Another idea would
be to control the site creation process using data stored in an external database. In that case, the string
argument might include the database connection details.

 Listing 5 - 1: Creating a custom site provisioning engine

using System;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Publishing;

namespace WROX.ProMossWcm.Chapter05 {

 public class ProvisioningEngine : SPWebProvisioningProvider {
 private const string TEMPLATE_ID = “0”;
 private const string TEMPLATE_NAME = “PublishingMinimal”;

 /// < summary >

c05.indd 76c05.indd 76 5/8/08 7:04:34 PM5/8/08 7:04:34 PM

Chapter 5: Minimal Publishing Site Defi nition

77

 /// Called when a new site is created.
 /// < /summary >
 public override void Provision (SPWebProvisioningProperties props) {
 using (SPWeb site = props.Web) {
 // Apply the actual Web template for the publishing portal.
 site.ApplyWebTemplate(TEMPLATE_NAME + “#” + TEMPLATE_ID);

 EnsureContentTypes(site, PublishingWeb.GetPagesListName(site));

 // props.Data = custom string passed in from ONET.XML file
 InitializePortal(site, props.Data);
 }
 }

 /// < summary >
 /// Ensures the correct content types are added to the
 /// Pages library associated with the Publishing Portal.
 /// < /summary >
 private void EnsureContentTypes (SPWeb site, string pagesList) {
 SPContentTypeCollection pageCTs = site.Lists[pagesList].ContentTypes;
 foreach (SPContentType contentType in
site.Site.RootWeb.AvailableContentTypes) {
 if (IsCustomContentType(contentType) & & pageCTs[contentType.Name] == null)
 pageCTs.Add(contentType);
 }
 }

 /// < summary >
 /// Determines whether a given content type is a custom type for this Feature.
 /// < /summary >
 private bool IsCustomContentType (SPContentType contentType) {
 if (contentType.Hidden) return false;
 if (contentType.Group.ToUpper() != TEMPLATE_NAME) return false;
 return true;
 }

 /// < summary >
 /// Initialize the portal based on settings provided in the configuration file
 /// associated with the site definition.
 /// < /summary >
 private void InitializePortal (SPWeb site, string configFilePath) {
 // *** code omitted ***
 }
 }

}

 Note a couple of gotchas related to using the built - in site provisioning Features to be aware of. First,
understand that the site provisioning class is expected to perform the important task of applying the Web
template to the new Web site. It is the SPWeb.ApplyWebTemplate() method itself that determines
whether a custom site provisioning class is available, and then calls its SPWebProvisioningProvider
.Provision() method to apply the template. This means that when providing a custom site provisioning

c05.indd 77c05.indd 77 5/8/08 7:04:35 PM5/8/08 7:04:35 PM

Chapter 5: Minimal Publishing Site Defi nition

78

class, the template must be applied explicitly in code. Failure to do this will cause the site creation process
to fall into an infinite loop as it tries repeatedly to acquire the template when the root Web of the portal is
being created. It also means that the template configuration applied to the Web must not have a custom
site provisioning class associated with it.

 The best way to handle this scenario is to declare two configurations as part of the site definition. The first
(ID= “ 0 “) will be a hidden configuration that represents the actual template to be applied to the site. The
second (ID= “ 1 “) will be the visible configuration that is associated with the custom site provisioning class.
When the SPWebProvisioningProvider.Provision() method is called, it applies the hidden
configuration to the Web, thereby avoiding an infinite loop when the SPWeb.ApplyWebTemplate() method
searches for another provisioning provider. The diagram shown in Figure 5 - 5 illustrates this process.

Configuration ID�"0"

Configuration ID�"1"

{ SPWebProvisioningProvider.Provision() }

12\TEMPLATE\1033\XML\WEBTEMP.PublishingMinimal.XML

Module
"PageLayouts"

List "Pages"

Site Features

Web Features

12\TEMPLATE\SiteTemplates\
PublishingMinimal\XML\ONET.XML

Configuration ID�"0"

SPWeb.ApplyTemplate("PublishingMinimal#O")

Figure 5-5

 Why use site provisioning instead of a Feature receiver? The main reason is that a Feature receiver is
called before the default lists and Web Parts, which are declared in the ONET.XML file, get created. This
means that the list contents cannot be modified from within a Feature receiver. In the case of a
Publishing Portal, it is precisely that content that may need to be modified in order for the Publishing
Features to be properly initialized. Consequently, the custom code needs to be called after the lists and
other components have been created. Some of those are custom components, but others are supplied by
the Publishing framework Features that are referenced from within the custom site definition.

c05.indd 78c05.indd 78 5/8/08 7:04:35 PM5/8/08 7:04:35 PM

Chapter 5: Minimal Publishing Site Defi nition

79

 The following sections describe the different files and CAML elements needed to create a minimal
Publishing site; but before diving into the actual site definition, create a SharePoint solution package that
will tie everything together and act as a container for all the other files. Figure 5 - 6 shows the structure of
the custom site definition solution documented throughout the remainder of the chapter.

Figure 5-6

 The WEBTEMP File
 To create the Minimal Publishing Portal site definition, start by creating the WEBTEMP file (named
 WEBTEMP.PublishingMinimal.xml), which describes the configurations that make up the site. The
configuration is not hidden from the user. It must not specify its own provisioning class because that
would cause an infinite loop as SharePoint tries to resolve the template to be applied to the Web site.
Instead, the ID attribute matches that of the complete configuration definition, which resides in
the ONET.XML file located in the matching [..]\12\TEMPLATE\SiteTemplates subfolder.
That configuration specifies the files and other Features of the new Web site. Listing 5 - 2 contains the
hidden configuration.

 Listing 5 - 2: Minimal publishing site configuration

 < Configuration ID=”0”
 Title=”Minimal Publishing Site”
 DisplayCategory=”Publishing”
 Hidden=”FALSE”
 ImageUrl=”/_layouts/images/PublishingMinimal/Preview.png”
 RootWebOnly=”false”
 SubWebOnly=”true” / >

c05.indd 79c05.indd 79 5/8/08 7:04:36 PM5/8/08 7:04:36 PM

Chapter 5: Minimal Publishing Site Defi nition

80

 Next is the visible configuration that the user sees when creating the Publishing Portal. It has all of the
standard attributes such as ImageUrl , Description , DisplayCategory , and so on (see Listing 5 - 3). It
also specifies a custom provisioning class that is called after the site is created to apply the template for
the site. Once the template has been applied, then all of the lists and other Features of the site are created,
so the provisioning class can populate them with default data.

 Listing 5 - 3: Visible minimal publishing configuration

 < Configuration ID=”1”
 Title=”Minimal Publishing Portal”
 DisplayCategory=”Publishing”
 Hidden=”FALSE”
 ImageUrl=”/_layouts/images/PublishingMinimal/Preview.png”

 ProvisionAssembly=”Chapter05MinimalSiteDefinition, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=c591e70cfdf9ce4f”
 ProvisionClass=”WROX.ProMossWcm.Chapter05.ProvisioningEngine”
ProvisionData=”SiteTemplates\\PublishingMinimal\\XML\\PortalConfig.xml”

 RootWebOnly=”true”
 SubWebOnly=”false” / >

 This markup declares that the PublishingMinimal site definition has a single configuration that is visible
in the SharePoint user interface and is available for use to create a Publishing Portal. By setting the
 RootWebOnly attribute to true , the template is limited such that only top - level sites can be created.

 Finally, a site configuration is needed to create Publishing sites with workflow that will automatically
setup the Parallel Approval workflow association on the necessary libraries. Notice that
 VisibleFeatureDependency specifies that the PublishingMinimal Feature must be active for this
configuration to be available. This Feature is defined later in the chapter.

 Listing 5 - 4: Minimal Publishing Site with Workflow Configuration

 < Configuration ID=”2”
 Title=”Publishing Site with Workflow”
 Hidden=”FALSE”
 ImageUrl=”/_layouts/1033/images/PublishingSite.gif”
 Description=”A site for publishing Web pages on a schedule by using
approval workflows. It includes document and image libraries for storing Web
publishing assets. By default, only sites with this template can be created under
this site.”
 SubWebOnly=”TRUE”
 DisplayCategory=”Publishing”
 VisibilityFeatureDependency=”54A92CA1-4E7C-4B73-B03A-E93955E4E560” / >

 As indicated earlier, the creation of a Publishing site requires special code to be run each time the portal
is provisioned. This code will create the additional elements that cannot be created via CAML.

 The ONET.XML File
 The ONET.XML file contains the CAML elements that declare the actual components that make up the
site. The top - level element is the project element, which points to the appropriate schemas and
provides a title for the site definition, as shown in Listing 5 - 5 .

c05.indd 80c05.indd 80 5/8/08 7:04:36 PM5/8/08 7:04:36 PM

Chapter 5: Minimal Publishing Site Defi nition

81

 Listing 5 - 5: ONET.XML project element

 < ?xml version=”1.0” encoding=”utf-8” ? >

 < Project xmlns=”http://schemas.microsoft.com/sharepoint/”
 xmlns:ows=”Microsoft SharePoint”
 Title=”Minimal Publishing Site” >

 < NavBars / >
 < ListTemplates / >
 < DocumentTemplates / >
 < Configurations / >
 < Modules / >
 < /Project >

 The NavBars element contains the individual navigation bar declarations. The NavBar elements shown
in Listing 5 - 6 are copied directly from the standard Publishing site definition to provide the same basic
navigation used for Publishing sites. No NavBars are needed in a Publishing site, so this node is empty.

 Listing 5 - 6: ONET.XML NavBars element

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Project xmlns=”http://schemas.microsoft.com/sharepoint/”
 xmlns:ows=”Microsoft SharePoint”
 Title=”Minimal Publishing Site” >

 < NavBars Name=”SharePoint Top Navbar” ID=”1002” > ” > < /NavBars >

 < ListTemplates / >
 < DocumentTemplates / >
 < Configurations / >
 < Modules / >
 < /Project >

 Because no custom list templates are needed for a Publishing site, leave the ListTemplates element
empty. Also include the standard set of document templates, as shown in Listing 5 - 7 . Note that all are
declared as referencing the default STS path, which provides out - of - the - box support for Word, Excel,
PowerPoint, OneNote, FrontPage, and InfoPath documents.

 Listing 5 - 7: ONET.XML DocumentTemplates element

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Project xmlns=”http://schemas.microsoft.com/sharepoint/”
 xmlns:ows=”Microsoft SharePoint”
 Title=”Minimal Publishing Site” >
 < NavBars / >
 < ListTemplates / >

 < DocumentTemplates >
 < DocumentTemplate Path=”STS” Name=””
DisplayName=”$Resources:core,doctemp_None;” ... / >
 < DocumentTemplate Path=”STS” DisplayName=”$Resources:core,doctemp_Word97;” ...
 >
 < DocumentTemplateFiles >
 < DocumentTemplateFile Name=”doctemp\word\wdtmpl.doc”

(continued)

c05.indd 81c05.indd 81 5/8/08 7:04:36 PM5/8/08 7:04:36 PM

Chapter 5: Minimal Publishing Site Defi nition

82

TargetName=”Forms/template.doc” Default=”TRUE” / >
 < /DocumentTemplateFiles >
 < /DocumentTemplate >
 < !-- code omitted for readability -- >
 < /DocumentTemplates >

 < Configurations / >
 < Modules / >
 < /Project >

 Configuration Elements
 A site definition may contain several configurations, each declared in a separate Configuration
element. This element declares the components that will be available within a given site definition as a
group of settings. Using configurations separates the list and module declarations from the actual
configuration of instances for a given site template within the site definition and makes it easy to reuse
the same settings in multiple templates.

 The ID attribute associates the ONET.XML Configuration instance with the WEBTEMP
 Configuration reference. Within each Configuration element, additional sub - elements are used to
define individual site characteristics such as site Features, Web Features, modules, and property values
that will be associated with the site immediately after it is created.

 Now declare three configurations: one to match the configuration that is applied to the new Publishing
Web site that mimics the Publishing Site without workflow site template; a second to match the visible
configuration that is displayed in the SharePoint user interface for creating a Publishing Portal; and a
third one to match the configuration that minics the Publishing Site with the workflow site template
(see Listing 5 - 8).

 Listing 5 - 8: ONET.XML Configurations element

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Project xmlns=”http://schemas.microsoft.com/sharepoint/”
 xmlns:ows=”Microsoft SharePoint”
 Title=”Minimal Publishing Site” >
 < NavBars / >
 < ListTemplates / >
 < DocumentTemplates / >

 < Configurations >
 < Configuration ID=”-1” Name=”NewWeb” / >
 < Configuration ID=”1” Name=”Provisioner” / >
 < Configuration ID=”0” Name=”PublishingMinimal” >
 < Lists/ >

 < Modules >
 < Module Name=”Default”/ >
 < /Modules >
 < SiteFeatures / >
 < WebFeatures / >
 < /Configuration >
 < /Configurations >

 < Modules / >
 < /Project >

Listing 5-7 (continued)

c05.indd 82c05.indd 82 5/8/08 7:04:37 PM5/8/08 7:04:37 PM

Chapter 5: Minimal Publishing Site Defi nition

83

 The SiteFeatures and WebFeatures Elements
 When creating a site definition, there may be additional Features that must be activated in order for the
site to work. Consequently, the SharePoint site provisioning engine needs to know which Features to
activate when the site is created and whether they must be activated at the site collection level or at the
Web level. This is an important distinction, because it also determines when the activation occurs.
Specifying them separately enables the provisioning engine to create the site more efficiently because it
doesn ’ t have to first load the Feature to determine its scope.

 Use the < SiteFeatures > element to specify external Features that must be activated at the site
collection level, and the < WebFeatures > element to specify Feature activation at the site level, as shown
in Listing 5 - 9 . Include the ID of the PublishingMinimal Feature that contains the custom master pages,
page layouts, and images.

 Listing 5 - 9: ONET.XML SiteFeatures element

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Project xmlns=”http://schemas.microsoft.com/sharepoint/”
 xmlns:ows=”Microsoft SharePoint”
 Title=”Minimal Publishing Site” >
 < NavBars / >
 < ListTemplates/ >
 < DocumentTemplates / >
 < Configurations >
 < Configuration ID=”-1” Name=”NewWeb” / >
 < Configuration ID=”1” Name=”Provisioner” / >
 < Configuration ID=”0” Name=”PublishingMinimal” >
 < Lists/ >
 < Modules / >

 < SiteFeatures >
 < !-- Feature: PublishingMinimal -- >
 < Feature ID=”54A92CA1-4E7C-4B73-B03A-E93955E4E560” / >
 < /SiteFeatures >

 < WebFeatures / >
 < /Configuration >
 < /Configurations >
 < Modules / >
 < /Project >

 Because the PublishingMinimal Feature is scoped to the site collection level, the other site collection
Features required by the Publishing framework using ActivationDependency elements in the Feature
definition itself can be included. This approach provides better Feature encapsulation, avoiding the need
to add those dependencies directly to each site definition.

 Conversely, because the PublishingMinimal Feature is not scoped to Web, it cannot use activation
dependencies for the Web - scoped Publishing Features. Instead, it must specify them directly in the
 ONET.xml file within the WebFeatures element.

 First, add support for custom lists, document libraries, picture libraries, task lists, collaboration lists, and
the workflow history list, as shown in Listing 5 - 10 .

c05.indd 83c05.indd 83 5/8/08 7:04:37 PM5/8/08 7:04:37 PM

Chapter 5: Minimal Publishing Site Defi nition

84

 Listing 5 - 10: Including site - scoped Features

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Project xmlns=”http://schemas.microsoft.com/sharepoint/”
 xmlns:ows=”Microsoft SharePoint”
 Title=”Minimal Publishing Site” >
 < NavBars / >
 < ListTemplates/ >
 < DocumentTemplates / >
 < Configurations >
 < Configuration ID=”-1” Name=”NewWeb” / >
 < Configuration ID=”1” Name=”Provisioner” / >
 < Configuration ID=”0” Name=” PublishingMinimal” >
 < Lists/ >
 < Modules / >
 < SiteFeatures / >

 < WebFeatures >
 < !-- Feature: CustomLists -- >
 < Feature ID=”00BFEA71-DE22-43B2-A848-C05709900100” / >
 < !-- Feature: DocumentLibrary -- >
 < Feature ID=”00BFEA71-E717-4E80-AA17-D0C71B360101” / >
 < !-- Feature: PictureLibrary -- >
 < Feature ID=”00BFEA71-52D4-45B3-B544-B1C71B620109” / >
 < !-- Feature: TasksList -- >
 < Feature ID=”00BFEA71-A83E-497E-9BA0-7A5C597D0107” / >
 < !-- Feature: TeamCollab -- >
 < Feature ID=”00BFEA71-4EA5-48D4-A4AD-7EA5C011ABE5” / >
 < !-- Feature: WorkflowHistoryList -- >
 < Feature ID=”00BFEA71-4EA5-48D4-A4AD-305CF7030140” / >
 < /WebFeatures >

 < /Configuration >
 < /Configurations >
 < Modules / >
 < /Project >

 Next, add the Publishing - specific Features to the WebFeatures element. The Publishing and Navigation
Features support activation properties that enable values to be passed in to customize the Feature.

 Feature Activation Properties
 When activating a Feature from within a site definition, it is often necessary to provide additional
property values that the Feature uses during its activation sequence. These properties are passed to the
Feature receiver code so that it can initialize itself properly.

 While this is a powerful capability of the Feature framework, it requires inside knowledge of how the
target Feature is written. This information is often difficult to obtain and may not be well documented.
If the target Feature changes, it may become necessary to modify the site definition to supply the correct
property values.

 As shown in Listing 5 - 11 , pass these properties by name using the Properties element inside the
 Feature element, which configures the Office SharePoint Publishing Feature.

c05.indd 84c05.indd 84 5/8/08 7:04:37 PM5/8/08 7:04:37 PM

Chapter 5: Minimal Publishing Site Defi nition

85

 Listing 5 - 11: Publishing Feature utilizing activation properties

 < !-- Feature: Publishing -- >
 < Feature ID=”22A9EF51-737B-4ff2-9346-694633FE4416” >
 < Properties xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < Property Key=”ChromeMasterUrl”
Value=”~SiteCollection/_catalogs/masterpage/PublishingMinimal.master” / >
 < Property Key=”WelcomePageUrl”
Value=”$Resources:cmscore,List_Pages_UrlName;/default.aspx”/ >
 < Property Key=”PagesListUrl” Value=””/ >
 < Property Key=”AvailableWebTemplates” Value=”=”*-PublishingMinimal#0;*-
PublishingMinimal#2”/ >
 < Property Key=”AvailablePageLayouts”
Value=”~SiteCollection/_catalogs/masterpage/Minimal.aspx”/ >
 < Property Key=”AlternateCssUrl” Value=”” / >
 < Property Key=”SimplePublishing” Value=”true” / >
 < /Properties >
 < /Feature >

 The activation properties of the Publishing Feature require a little more explanation:

 ChromeMasterUrl — Used to specify the default master page that will be used for new pages in
the Publishing site. Unless this property is specified, the Publishing framework will use the
 default.master . This way enables referencing the masterurl easily from within the custom
pages without having to use a hard - coded value. Changing it here changes it everywhere it is
referenced.

 WelcomePageUrl — This is set to redirect the user to a specific page when the site ’ s URL is
requested.

 PagesListUrl — Specifies the name of the Pages document library that holds the actual
Publishing pages. Leave the attribute blank to use the default value.

 AvailableWebTemplates — Limit the Web templates that are available to users from within
this Web site by specifying a list of templates and configurations. The syntax of this attribute is
the locale identifier (LCID) followed by a hyphen, template name, and optional configuration.
To include all LCID values, use an asterisk for the LCID value, as shown here:

*-PublishingMinimal#0;1033-BLANKINTERNET#2

 This says to display the #3 configuration of the PublishingMinimal template for all available
locales, and to display the #2 configuration of the BLANKINTERNET template for LCID 1033.
Leave the attribute blank to specify the default value.

 AvailablePageLayouts — Page layouts that should be displayed in the UI for selection can be
specified when the user creates a new Publishing page. This attribute also uses a special syntax
that must be a server - relative URL for each layout file, separated by a colon. To obtain the
server - relative URL, use the special ~SiteCollection token.

 AlternateCssUrl — Specify an alternate CSS URL to reference custom styles.

 SimplePublishing — Setting this property to true causes the Publishing framework to relax its
requirement that Published pages must go through an Approval workflow.

❑

❑

❑

❑

❑

❑

❑

c05.indd 85c05.indd 85 5/8/08 7:04:38 PM5/8/08 7:04:38 PM

Chapter 5: Minimal Publishing Site Defi nition

86

 There is a separate Feature that controls the portal navigation for Web sites derived from
 PublishingWeb . Use it to set up the default navigation behavior of the portal. Turn on the
 InheritGlobalNavigation , ShowSiblings , and IncludeSubSites flags, as shown in Listing 5 - 12 .

 Listing 5 - 12: Navigation Feature utilizing activation properties

 < !-- Feature: Navigation -- >
 < Feature ID=”541F5F57-C847-4e16-B59A-B31E90E6F9EA” >
 < Properties xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < Property Key=”InheritGlobalNavigation” Value=”true”/ >
 < Property Key=”ShowSiblings” Value=”true”/ >
 < Property Key=”IncludeSubSites” Value=”true”/ >
 < /Properties >
 < /Feature >

 The last configuration should be an exact copy of configuration #0 except its configuration ID should be
 2 and the SimplePublishing property for the Publishing Feature should be set to false .

 Enabling the Lockdown Feature
 Under normal circumstances, a Publishing site has many more readers than contributors. This is the
typical scenario for content publishing whereby a select group of content authors publish information
for the rest of the world (readers) to consume. Because the readers are also using SharePoint, it may not
be desirable for them to have access to other parts of the portal such as lists and document libraries
unrelated to the published content. In order to support this scenario, the Publishing framework provides
a special Feature called ViewFormPagesLockDown that restricts access for anonymous users to published
content only. The lockdown Feature is explained in more detail in Chapter 15 .

 To activate the lockdown mode, include the ViewFormPagesLockdown Feature in the SiteFeatures
section using the appropriate GUID. The adjusted SiteFeatures element is shown in Listing 5 - 13 .

 Listing 5 - 13: Including the lockdown Feature

 < SiteFeatures >
 < !-- Feature: PublishingMinimal -- >
 < Feature ID=”54A92CA1-4E7C-4B73-B03A-E93955E4E560” / >

 < !-- Feature: ViewFormPagesLockdown -- >
 < Feature ID=”7C637B23-06C4-472d-9A9A-7C175762C5C4” / >

 < /SiteFeatures >

 Modules
 The Module element is used to declare a set of files that are automatically added to a site when it is
created. This element, in conjunction with the File element, enables specifying the template file on the
file system that will be used to create each file instance (in the content database). In the case of Web Part
pages, specify the initial collection of Web Parts and their properties.

 The Module element can be used in more than one place. In the ONET.XML file it is used to declare the
home page for the site (default.aspx), as shown in Listing 5 - 14 .

c05.indd 86c05.indd 86 5/8/08 7:04:38 PM5/8/08 7:04:38 PM

Chapter 5: Minimal Publishing Site Defi nition

87

 Listing 5 - 14: Adding modules to the minimal site definition

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Project xmlns=”http://schemas.microsoft.com/sharepoint/”
 xmlns:ows=”Microsoft SharePoint”
 Title=”Minimal Publishing Site” >
 < NavBars / >
 < ListTemplates / >
 < DocumentTemplates / >
 < Configurations / >

 < Modules >
 < Module Name=”Default” Url=”” Path=”” >
 < File Url=”default.aspx” NavBarHome=”True” Type=”Ghostable” / >
 < /Module >
 < /Modules >

 < /Project >

 The Feature Manifest
 The final component is the custom Feature that is responsible for provisioning the master pages, page
layouts, and other files used in the site definition. It is also responsible for activating any additional
Features from the Publishing framework that may be required. The markup in Listing 5 - 15 shows
the Feature manifest needed to accomplish this.

 Listing 5 - 15: Feature manifest for setting up publishing

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”54A92CA1-4E7C-4B73-B03A-E93955E4E560”
 Title=” Minimal Publishing Feature”
 Version=”1.0.0.0”
 Scope=”Site”
 Hidden=”FALSE” >

 < ActivationDependencies >
 < !-- Feature: PublishingPrerequisites -- >
 < ActivationDependency FeatureId=”A392DA98-270B-4e85-9769-04C0FDE267AA” / >
 < !-- Feature: PublishingResources -- >
 < ActivationDependency FeatureId=”AEBC918D-B20F-4a11-A1DB-9ED84D79C87E” / >
 < !-- Feature: Navigation -- >
 < ActivationDependency FeatureId=”89E0306D-453B-4ec5-8D68-42067CDBF98E” / >
 < /ActivationDependencies >

 < ElementManifests >
 < ElementManifest Location=”masterPages.xml” / >
 < ElementManifest Location=”pageLayouts.xml” / >
 < /ElementManifests >
 < /Feature >

 The first thing to note is that the Feature is scoped to Site . One reason for this is that the publishing
Features on which the site definition depends are also scoped to Site . In addition, the custom master
pages and page layouts associated with the Minimal Publishing Portal site definition must be placed into

c05.indd 87c05.indd 87 5/8/08 7:04:38 PM5/8/08 7:04:38 PM

Chapter 5: Minimal Publishing Site Defi nition

88

the Master Page and Page Layout Gallery associated with the site collection. Any custom content types
that need to be deployed would also have to be created at the site collection level.

 The ActivationDependency elements refer to the three key publishing Features that must be activated
in order for the Publishing site to work: PublishingPrerequisites , PublishingResources , and
 Navigation .

 The Feature Elements
 The Feature contains two element manifests that describe the remaining files that make up the solution:
a single master page (with associated preview image) and two page layouts (with associated preview
images). Refer to Chapter 7 , “ Master Pages and Page Layouts ” or the code for this chapter for more
information on how these files are provisioned into the Publishing site.

 Deploying and Testing the Custom Site Definition
 With the Minimal Publishing Portal site definition created, it is now time to package everything up into a
WSS solution package for deployment. Like other chapters, this chapter uses the same automated
solution package creation process that leverages MSBuild as demonstrated in Chapter 4 . Refer to the
code download associated with this chapter for the book to see the complete solution and sample WSP
file. Add the solution to the SharePoint farm ’ s solution store and deploy it. Finally, reset IIS in order to
make SharePoint see the new site definition and WEBTEMP file.

 Now, when creating new site collections, a new option will be present on the Publishing tab: Minimal
Publishing Portal . After creating a new site collection using this site definition, the site will look virtually
identical to a site created using the Blank Site site definition. This is because the master page used here is
very slimmed down, taking the minimalist approach. However, a quick peek at the Site Actions menu
will make users feel much more at home in the Publishing environment, as all the usual stuff is now
visible. To validate this, check the Site Settings page to see the new cache and master page menus as well
as the Manage Content and Structure page.

 Summary
 This chapter explained the structure of standard WSS 3.0 site definitions and dissected the out - of - the - box
MOSS 2007 Publishing Portal site definition. In doing this, the challenge presented in most Publishing
sites was uncovered. The Publishing Portal site definition adds a lot of branding files and content that is
not needed or necessary within most Publishing sites. This extra content and files are typically cleaned
out prior to starting the development process in creating new Publishing sites. To alleviate this task, the
Minimal Publishing Portal site definition was described, including all the steps that need to be taken in
the process of creating this site definition.

c05.indd 88c05.indd 88 5/8/08 7:04:39 PM5/8/08 7:04:39 PM

 Site Columns, Content
Types, and Lists

 At the core, all content in a SharePoint site is stored in lists. This includes things such as master
pages, images, style sheets, XSL styles, and content pages; even page layouts (in the case of
Publishing sites) are stored in SharePoint lists. Similar to tables in a database, lists are composed of
columns, or fields.

 One of the challenges with Windows SharePoint Services (WSS) 2.0 with respect to lists was that
the list templates were not very dynamic. In addition, many aspects of lists were not reusable.
Such is the case when defining types of data within a list as well as the columns in lists.
Microsoft addressed these issues by introducing a few new concepts. First, list columns can be
defined as site columns, or templates, that can be used across multiple lists. Second, the type of
data can be abstracted from a list into a new entity called a content type . Content types can then
be added to a list either through the definition of the list or through the browser interface, by a
site administrator. Lists can even contain multiple content types facilitating the storage of
heterogeneous types of data within a single list. Finally, list templates can now be associated
with sites not only at the point of site creation, but also at any time thereafter thanks to the
addition of Features.

 This chapter covers each of these three site elements in depth, including a detailed look at the
different options available to administrators and developers for creating these different elements.

 All three of these site elements are basic WSS 3.0 constructs found in all SharePoint sites.
Regardless, Publishing site developers must have a solid grasp of these concepts in order to create
professional solutions leveraging the capabilities of Microsoft Office SharePoint Server (MOSS)
2007 Web Content Management (WCM).

c06.indd 89c06.indd 89 5/8/08 7:05:34 PM5/8/08 7:05:34 PM

Chapter 6: Site Columns, Content Types, and Lists

90

 Site Columns
 Columns are not new to WSS 3.0, they have been around in SharePoint for a while. However,
site columns were introduced in WSS 3.0 in an effort to ease the maintenance of columns in a
SharePoint site collection. In WSS 2.0, users could add and edit columns on a list - by - list basis. The
challenge with this approach is that it was hard to standardize similar columns across lists. For example,
if the field “ First Name ” was defined in one list as a certain data type, configured to have a minimum
length, assigned a user - friendly description and default value, there was no easy way to ensure that
other lists containing a “ First Name ” column conformed to the same specifications. Not only would this
cause confusion with end users due to the lack of consistency, but it also created headaches for site
owners and administrators to manage the various instances.

 To address this, Microsoft introduced site columns, which are reusable column definitions/templates in
WSS 3.0 that can be defined once in a SharePoint site and used in different lists in the same site or
subsites. These site columns can also be used within content types. While the site columns are defined at
the site level, they are available to all child sites of the site they are defined within. Therefore, creating
site columns within the top - level site in a site collection effectively creates a site column definition that
can be used throughout an entire site collection. All site column definitions are stored in the Site Column
Gallery, accessible via Site Settings Site Columns.

 For more information on site columns, refer to the official documentation on MSDN
(www.andrewconnell.com/go/213).

 Site columns alone cannot be used to store data. Rather, they are simply definitions. To use a site column
it must be added to a list. This does not create a reference to the site column definition; SharePoint
creates a copy in the list known as a list column . From here, the column can be customized in the list
without affecting the underlying definition. Adding site columns to content types is treated a bit
differently and is addressed later in the chapter. However, when updating the site column definition,
users can propagate the changes everywhere the site column is being used.

 Site Column Names and ID s
 Site columns have two forms of identification: a unique name and a unique ID. The ID of a site column is
simply a GUID. The ID of a site column may or may not be defined by an administrator or developer
upon creation of the site column definition, depending on the method of creation. Each of the three
options for creating a site column is covered in a later section. The name of a site column is a little more
complex than the ID.

 Site columns have two different names: an internal name and a display name . The display name is a user -
 friendly name that is shown in the user interface in all forms (new/edit/display) and lists pages. The
display name can contain spaces, whereas the internal name cannot contain spaces. If the name entered
contains a space when creating a new field using the browser interface or through code, SharePoint
replaces the space with the hex value of the HTML space character: %20 . This results in the string
x0020 in the middle of a site column ’ s internal name. If multiple spaces are entered as the name, it
will contain multiple instances of _x0020_ .

 For example, if a new site column is created through the browser named “ Company Full Name, ” the
resulting internal name is Company_x0020_Full_x0020_Name . Why does this matter? As covered later
in the chapter, the internal name is the one that is used when accessing a column in a list via the
SharePoint object model. While not a problem, it causes undue pain when typing the code, as it feels too

c06.indd 90c06.indd 90 5/8/08 7:05:35 PM5/8/08 7:05:35 PM

Chapter 6: Site Columns, Content Types, and Lists

91

cryptic. The section on creating site columns demonstrates a few different ways to avoid the _x0020_
value in the internal name of a site column, depending on the method used to create the site column.

 Creating Site Columns
 SharePoint provides three options for creating site column definitions, each with its own advantages and
disadvantages. Two of the options, creating site columns using the SharePoint browser interface or via
custom code, can be classified as SharePoint customization. Recall from Chapter 2 that SharePoint
customization is storing content within the content database. The third option for creating site column
definitions is using WSS Features. A Feature can be used to define the site column template and upon
Feature activation, the site column definition is created and added to the site ’ s site column gallery. As
covered in Chapter 2 , the Feature approach is more along the lines of SharePoint development, making it
very easy to package into a WSS solution for deployment across various environments.

 The following three sections demonstrate the various techniques to creating site columns. All three
techniques create the same site column, meaning if all three are performed on the same SharePoint site,
errors will likely occur. The goal here is to show the equivalent process/code between the different
approaches. In order to create or modify site columns, the user must have Design access rights to the site.
If the user does not have the necessary rights within a child site that utilizes the site column, the update
action does not succeed.

 Creating Site Columns via the Browser Interface
 Open a browser and navigate to a Publishing site. Select Site Actions Site Settings Modify All Site
Settings and then select Site Columns under the Galleries column on the Site Settings page. On the
Site Column Gallery page, select Create and use the following information to create a new site column:

 Name and Type — Column name — Press Release ByLine

 Name and Type — The type of information in this column is — Single line of text

 Group — New Group: WROX

 That is all there is to creating a new site column using the browser! While incredibly simple and fast, this
site column definition now only resides within the SharePoint content database. Create another site
column that will store the body of the press release in a rich text field using the following values:

 Name and Type — Column name — Press Release Body

 Name and Type — The type of information in this column is — Full HTML content with
formatting and constraints for publishing

 Group — Existing Group: WROX

 Require that this column contains information — Yes

 Working Around _x0020_ in the Site Column Name
 When creating a site column via the browser, the only name that can be specified is the display name.
Recall that SharePoint takes this name and uses it not only for the display name, but also for the internal
name; and if the name provided contains spaces, the spaces are converted to the hex value of %20 . The
way to avoid this is to first create the site column using the name with no spaces. Once the site column is

❑

❑

❑

❑

❑

❑

❑

c06.indd 91c06.indd 91 5/8/08 7:05:35 PM5/8/08 7:05:35 PM

Chapter 6: Site Columns, Content Types, and Lists

92

created, go back in and update the definition via the browser and change the name to include spaces.
This is effective because the internal name is never changed once the site column definition is created.

 Creating Site Columns via Code
 Creating the site column via code involves using the Microsoft.SharePoint.SPField and
 Microsoft.SharePoint.SPFieldCollection classes (site columns are referred to as fields within the
SharePoint API). Each SharePoint site (SPWeb) contains a Fields property containing all site column
definitions in the site ’ s site column gallery. To add a site column definition to a site, use one of three
overloads of the Add() method, the two most common of which are as follows:

 SPFieldCollection.Add(SPField siteColumnDefinition) — Adds an existing or
previously created site column to the site ’ s site column gallery .

 SPFieldCollection.Add(string siteColumnDisplayName, SPFieldType fieldType,
Boolean required) — Creates a new site column using the provided display name, field type,
and a flag indicating whether the site column is required or not .

 Both overloads return a string value of the site column ’ s display name. Similar to creating a site column
using the browser interface, if any spaces are present in the display name when created, SharePoint will
replace them with the _x0020_ string. To avoid this, use a similar technique to the one just described:
Create the site column with a name containing no spaces and then immediately obtain a reference to it
and change the display name, as shown in Listing 6 - 1 .

 Listing 6 - 1: Creating site columns via code

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter06 {
 class Program {
 static void Main (string[] args) {

 using (SPSite siteCollection = new SPSite(“http://wcm”)) {
 using (SPWeb site = siteCollection.RootWeb) {

 // create field using desired internal name (no spaces)
 string prByLineFieldName = site.Fields.Add(“PRByLine”,
SPFieldType.Text, false);
 site.Update();

 // get reference to new site column
 SPField prByLineField = site.Fields[prByLineFieldName];

 // set display name & group
 prByLineField.Title = “Press Release ByLine”;
 prByLineField.Group = “WROX”;
 prByLineField.Update();

 }
 }

 }
 }
}

❑

❑

c06.indd 92c06.indd 92 5/8/08 7:05:35 PM5/8/08 7:05:35 PM

Chapter 6: Site Columns, Content Types, and Lists

93

 While providing additional flexibility and control in creating site columns over the browser, the site
column created in Listing 6 - 1 still lives only in the SharePoint content database.

 Creating Site Column Definitions via Features
 The only way to provide the most flexibility in terms of control over the settings of the site column
definition, promoting the easiest reuse, and portability to different environments is to use WSS Features.
The CAML in Listing 6 - 2 reflects the element manifest that defines two site columns within a Feature.
When the Feature that references this element manifest is activated, it is added to the SharePoint site.

 Listing 6 - 2: Feature element manifest defining two site columns

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < Field SourceID=”http://schemas.microsoft.com/sharepoint/3.0”
 ID=”{D8BCA662-8D3F-40B3-993D-408FF04FE264}”
 Name=”PRByLine”
 DisplayName=”Press Release ByLine”
 Group=”WROX”
 Type=”Text”
 Required=”FALSE”
 ReadOnly=”FALSE”
 Sealed=”FALSE”
 Hidden=”FALSE” / >
 < Field SourceID=”http://schemas.microsoft.com/sharepoint/3.0”
 ID=”{249C1FED-EE2B-481A-89E0-A9041A359252}”
 Name=”PRBody”
 DisplayName=”Press Release Body”
 Group=”WROX”
 Type=”HTML”
 Required=”TRUE”
 Sealed=”FALSE”
 ReadOnly=”FALSE”
 Hidden=”FALSE” / >
 < /Elements >

 The site columns created in this listing are the same site columns created using the browser interface and
custom code. Notice that some additional attributes are specified. Many of these can be set in the
browser interface or custom code, as well as with a Feature. First, the Name (internal name) and
 DisplayName attributes are used to explicitly set these two values. Using each property gives developers
full control without having to address the _x0020_ string in the internal name.

 Two other attributes should stand out: ReadOnly and Sealed . A read - only site column is one that
cannot be updated through the browser user interface, but it can be altered programmatically. A sealed
site column is one that cannot be changed through the browser interface or programmatically; the only
way to change a sealed site column is by changing the CAML in the Feature.

c06.indd 93c06.indd 93 5/8/08 7:05:36 PM5/8/08 7:05:36 PM

Chapter 6: Site Columns, Content Types, and Lists

94

 Content Types
 Content types were introduced to the SharePoint platform in WSS 3.0. In previous versions of
SharePoint, each list schema was defined either in a template or on - the - fly. A limitation of this approach
is that lists could only contain a specific type of information, which was always tightly coupled with a
specific list. Microsoft added the concept of content types in WSS 3.0 to define the underlying schema,
business rules, and other metadata on a particular type of information while not explicitly tying it to a
specific list. Now a site owner can add multiple types of content to a list by adding content types to the
list. This means that now heterogeneous data can be added to the same list. For example, a list named
Proposals can now contain both Marketing Proposals and Sales Proposals, each having a unique schema
and metadata associated with it.

 One very important thing to keep in mind about content types is that by themselves, they store no
data. In addition, content types are not defined within the scope of a SharePoint list. Instead, they
define the structure of data. It is only when a content type is added to a list that data can conform to the
content type. This separation of defining the schema of data from its storage facilitates more content
standardization across SharePoint sites. Like site columns, content types are scoped at the SharePoint site
level (SPWeb) and reside in a special gallery called the Site Content Type gallery.

 For more information on content types, refer to the official documentation on MSDN
(www.andrewconnell.com/go/215).

 All content types must inherit from another content type. The lone exception to this rule is the root
content type provided by Microsoft called System . The System content type is hidden from the SharePoint
browser user interface and is not available when selecting a content type to inherit from when creating a
new content type. It is recommended that content types be created to inherit not from System directly,
but from Item, which inherits from System. All provided content types ultimately inherit from Item.

Trick: Generating Site Column Element Manifest Files for Features
Although creating site column definitions using Features provides the most flexibility,
reuse, and portability, the challenge is that it takes longer to create Features. This is
primarily so because of the lack of a “Feature designer”; all CAML must be written by
hand. The browser approach of creating site columns has a leg up on the Feature
approach because it is so much simpler. Thankfully, virtually everything in SharePoint
is accessible via the SharePoint API. This enables developers to write custom code
obtaining references to SharePoint objects — including site columns! Therefore, the
SharePoint browser interface can serve as the “designer” tool for creating site columns
in an isolated development environment; and with some custom code, the XML
necessary for element manifest files can be generated.

A sample project, AC’s WCM Custom Commands for STSADM.EXE
(www.andrewconnell.com/go/214), includes a custom STSADM.EXE command:
GenSiteColumnsXml. After providing a few required and optional parameters, this
command generates an element manifest file containing the CAML representation of
site columns in the specified SharePoint site. The command does not produce the exact
CAML that would be used to create the site column, but it comes close. It follows the
80-20 rule whereby 80% of the work is automated, leaving 20% for developer
involvement.

c06.indd 94c06.indd 94 5/8/08 7:05:36 PM5/8/08 7:05:36 PM

Chapter 6: Site Columns, Content Types, and Lists

95

 Developers can define various aspects of a content type. The most common things defined in a content
type are site columns, but developers can also define things such as workflows, event receivers, policies,
and even the document templates that should be loaded when a new item is created based on the
content type. The document template is a URL pointing to a specific file on the server. This file can be in
the format of a Microsoft Word template (as in the case of a marketing proposal) or a Web page (as in the
case of the Page content type, which points to the Create Page page, /_layouts/CreatePage.aspx .

 Content Type ID s
 Unlike site columns, content types only have one form of identification. A content type ID uniquely
identifies a content type within a site collection, as well as the lineage of that content type. Thankfully,
SharePoint handles the creation of content type IDs when creating content types using the browser
interface or with custom code. However, developers explicitly specify the content type ID when creating
content types via Features. It is beneficial for developers to understand how content type IDs are
structured in order to track the inheritance. By examining a content type ’ s ID, one can determine the
parent content type, its parent content type, and so on, going all the way back to the System content
type. Content type IDs follow one of two conventions:

 [parent_content_type_ID] + [2 - digit hex value not being ‘ 00 ’]

 [parent_content_type_ID] + 00 + [GUID with no curly brackets or hyphens]

 Why two conventions? Simply put, it provides more flexibility. Content type IDs are limited to a length
of 1024 characters. The capability to include GUIDs in content type IDs provides the greatest flexibility,
as it minimizes the chances for content type ID collision.

 Consider the Page content type created by the activation of the Publishing Features — specifically, the
Feature PublishingResources . Page layouts (used to create content/publishing pages) must use
content types that inherit from the Page content type, and they can easily be used to demonstrate how
the lineage is represented by the content type ID.

 Figure 6 - 1 shows how the Page content type inherits from System Page (another content type created
by the PublishingResources Feature), then Document, Item, and ultimately System. Each content
type in the hierarchy has a specific purpose. For instance, the System Page content type defines the core
site columns required on all publishing pages, such as scheduling and content owner information; and
the Page content type defines the document template that should be loaded when a new item is created
based on this template.

❑

❑

0x010100C568DB52D9D0A14D9B2FDCC96666E9F2007948130EC3DB064584E219954237AF39

Document System Page Page

Item

System

 Figure 6 - 1

c06.indd 95c06.indd 95 5/8/08 7:05:36 PM5/8/08 7:05:36 PM

Chapter 6: Site Columns, Content Types, and Lists

96

 When should a custom content type use the two - digit hex value or GUID convention? Microsoft ’ s
recommendation is to use the GUID convention when creating a new content type that is based on a
provided content type — provided by either Microsoft or a third party. Therefore, when creating custom
content types for Publishing sites, it is recommended to start with the Page content type ID (to inherit
from Page) and use the GUID convention to create something unique to the specific project. Then, all
subsequent content types can use the two - digit hex convention. In effect, this creates a unique
namespace for all content types for a particular project.

 The following three content type IDs demonstrate this approach for a given project. Note that the Page
content type is omitted for readability, the underlined portion represents the project uniqueness (or
namespace), and the bold portion is the uniqueness for each content type:

 Press Release — [Page content type ID]00242457EFB8B24247815D688C526CD44D01

 Executive Biography — [Page content type ID]00242457EFB8B24247815D688
C526CD44D02

 Product Detail — [Page content type ID]00242457EFB8B24247815D688C526CD44D03

 Creating Content Types
 SharePoint provides the same three options for creating content type definitions that are available to
create site columns. Just like site columns, the first two options (via the browser or custom code) store
the content type definitions in the SharePoint site ’ s content database, whereas the third option (via
Features) keeps the content type definition on the file system until the Feature is activated, thereby
offering the greatest reuse and portability. The following sections walk through the process of creating
content type definitions using each of the three options. Similar to site columns, the user must have
Design rights in order to create and manage site columns. All three options that follow create the same
content type, so testing all three on the same site collection could result in an error. This makes it easier
to see the differences between the various options.

 Creating Content Types via the Browser Interface
 Open a browser, navigate to a Publishing site ’ s Site Settings page and select Site Content Type Gallery
under the Galleries column. Then, from the Site Content Type Gallery page, select Create and use the
following information to create a new content type:

 Name — Press Release

 Select parent content type from — Publishing Content Types

 Parent Content Type — Page

 Group — New Group: WROX

 With a content type created, the next step is to add the site columns to the content type. To do this, from
the Site Content Type: Press Release page, select Add From Existing Site Columns at the bottom of the
page to select the site columns created previously in this chapter. On the Add Columns to Site Content
Type: Press Release page, select the two fields from the WROX group named Press Release ByLine and

❑

❑

❑

❑

❑

❑

❑

c06.indd 96c06.indd 96 5/8/08 7:05:37 PM5/8/08 7:05:37 PM

Chapter 6: Site Columns, Content Types, and Lists

97

 At this point, the content type can now be used in association with a page layout to create new
publishing pages. This content type is used in Chapter 7 to create new page layouts.

 Creating Content Types via Code
 Creating content types with custom code involves the use of the Microsoft.SharePoint
.SPContentType and Microsoft.SharePoint.SPContentTypeCollection classes. Just like site
columns, each SharePoint site (SPWeb) contains a ContentTypes property containing all content type
definitions in the site ’ s content type gallery. To create a new site column in code, first obtain a reference
to the content type it inherits from, create the content type, add any desired site columns, and then add
the content type to the site ’ s ContentType collection, as shown in Listing 6 - 3 .

 Listing 6 - 3: Creating content types via code with site columns

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter06 {
 class Program {
 static void Main (string[] args) {
 using (SPSite siteCollection = new SPSite(“http://wcm”)) {
 using (SPWeb site = siteCollection.RootWeb) {

 // get reference to “Page” content type this will inherit from
 SPContentType pageContentType = site.AvailableContentTypes[“Page”];

 // create new content type

 Figure 6 - 2

Press Release Body. These two columns should now appear in the list of the columns inherited from the
Page content type (specifically, the System Page content type), as well as the two columns just added (see
Figure 6 - 2).

(continued)

c06.indd 97c06.indd 97 5/8/08 7:05:37 PM5/8/08 7:05:37 PM

Chapter 6: Site Columns, Content Types, and Lists

98

 Listing 6-3 (continued)

 SPContentType prContentType = new SPContentType(pageContentType,
site.ContentTypes, “Press Release”);
 prContentType.Group = “WROX”;

 // add content type to the site
 site.ContentTypes.Add(prContentType);
 site.Update();

 // add site columns to content type
 SPField prByLineField = site.AvailableFields[“Press Release ByLine”];
 prContentType.FieldLinks.Add(new SPFieldLink(prByLineField));
 SPField prBodyField = site.AvailableFields[“Press Release Body”];
 prContentType.FieldLinks.Add(new SPFieldLink(prBodyField));

 prContentType.Update();

 }
 }
 }
 }
}

 As the code in Listing 6 - 3 demonstrates, to add site columns to a content type they must be added as
links, or references. This is done by obtaining a reference to an existing site column (SPField) and
adding it as a new link (SPFieldLink) to the content type. Unlike lists, columns cannot be created
within a content type on - the - fly — they must exist in the site column gallery and be referenced from a
content type.

 Creating Content Type Definitions via Features
 Yet again, for the most flexibility and portability, create site elements such as content types with Features.
Listing 6 - 4 shows the CAML in an element manifest in a Feature that, when activated, creates a new
content type definition in a site that inherits from the Page content type. Notice that the content type ID
inherits from the Page content type ID.

 Listing 6 - 4: Feature element manifest defining a content type with two site columns

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < ContentType ID=”0x010100C568DB52D9D0A14D9B2FDCC96666E9F2007948130EC3DB064584E219
954237AF3900242457EFB8B24247815D688C526CD44D01”
 Name=”Press Release”
 Group=”WROX” >
 < FieldRefs >
 < FieldRef ID=”{D8BCA662-8D3F-40B3-993D-408FF04FE264}”
 Name=”PRByLine” DisplayName=”Press Release ByLine” / >
 < FieldRef ID=”{249C1FED-EE2B-481A-89E0-A9041A359252}”
 Name=”PRBody” DisplayName=”Press Release Body” / >
 < /FieldRefs >
 < /ContentType >
 < /Elements >

c06.indd 98c06.indd 98 5/8/08 7:05:38 PM5/8/08 7:05:38 PM

Chapter 6: Site Columns, Content Types, and Lists

99

 Note two things from the CAML in Listing 6 - 4 . First, when referencing a site column, both the site
column ’ s ID and Name (internal name) must be specified. Second, the content type can implement the
site column using a different Display Name than that which is specified in the site column definition. In
the case of Listing 6 - 4 , the DisplayName attribute is not changed from the site column ’ s original definition.
This is where the Display Name can be overridden in the content type implementation of the site column.

 Trick: Generating Content Type Element Manifest Files for Features
 Similar to site columns, content types are also challenging to create using Features due
to the amount of manual CAML coding required in element manifest files. However,
like site columns, developers can use the browser interface as a designer for creating
content types and then leverage the SharePoint API to generate the necessary CAML
for use in Features. The same sample project mentioned previously in this chapter,
AC ’ s WCM Custom Commands for STSADM.EXE (www.andrewconnell.com/
go/214), contains a custom command for generating the CAML for content types:
 GenSiteContentTypesXml . After providing a few required and optional parameters,
this command generates an element manifest file containing the CAML representation
of content types in the specified SharePoint site. It too follows the 80 - 20 rule that the
previous command abides by.

 Role of Site Columns and Content Types
in Publishing Sites

 While the title of this section might imply that site columns and content types have a special role or are
used in some special way in Publishing sites (compared to standard WSS 3.0 sites), that is not the case. It
is actually how content types are leveraged within a Publishing site — specifically, content pages — that
warrants a bit of explanation.

 When a content owner creates a new page, one of the first things selected is the page layout (see
Figure 6 - 3). Selecting a page layout implicitly selects a content type as well: the content type the page
layout is associated with. In this pairing, the content type is defining the schema, or the data elements,
comprising the particular type of page. These data elements, or fields, are defined in the content type
using site columns. The page layout serves the role of defining the rendering (when combined with the
site ’ s selected master page).

 Figure 6 - 3

c06.indd 99c06.indd 99 5/8/08 7:05:38 PM5/8/08 7:05:38 PM

Chapter 6: Site Columns, Content Types, and Lists

100

 With content types defining the schema of the page, not only can developers specify the site columns
(also known as data elements) for a type of a page, everything else content types bring to the table can also
be leveraged. For instance, special workflows or event receivers can be associated with types of content,
not just the list the content resides within. This capability provides developers with the most control over
a site ’ s content.

 Lists
 The lowest level of a storage construct in SharePoint is a list. SharePoint lists are similar to database
tables in many ways. In terms of the structure, lists have fields (columns) and items (records) just like
databases. Database tables have triggers, events that fire under certain circumstances, such as when
records are added, updated, or deleted. SharePoint lists also have triggers, known as events, that enable
developers to write event handlers to execute custom code under certain circumstances. This analogy to
a database table should be taken very loosely though, as there are some significant differences. For
instance, database tables are optimized for multiple (and rapid) read/write operations, as well as to hold
vast amounts of data, unlike SharePoint lists.

 SharePoint lists also contain some additional capabilities. All SharePoint lists are capable of delivering
their contents in the form of Really Simple Syndication (RSS), making it very easy to consume and
present data stored within lists in other applications. Administrators can also associate pre - defined
workflow templates with a list, as well as set unique permissions on the list, breaking the inheritance of
permissions from the site in which the list resides.

 Lists also have versioning capabilities. SharePoint lists can be configured to create a new version when
an item is updated, optionally limiting how many versions can be retained. Document libraries, a type of
SharePoint list, have enhanced versioning capabilities that enable administrators to configure not only
whether the list allows versioning, but also the numbering scheme used. Administrators can elect to
create only major versions or create major.minor versions. The minor versions are referred to as draft
revisions . For instance, version 1.2 of a document means there is a published version (v1.#) of the
document, but an updated draft version that is on the second revision (v#.2). When the document is
published, the version is promoted to the next major version — 2.0.0 in this case.

 All SharePoint sites contain at least a few core lists. Lists such as the Master Page Gallery, Web
Part Gallery, User Information List, Site Template Gallery, and List Template Gallery are found in every
single SharePoint site. These lists are created using the Global site definition that applies to all new
SharePoint sites.

 Special Publishing Lists
 In addition to all the stock lists that every SharePoint site contains, Publishing sites create a few
additional lists when the Publishing Features are activated. Some of these are special lists that reside
only in the top - level site of the Publishing site collection, whereas others are found in every site that has
the Publishing Feature activated.

 Content and Structure Reports
 The Content and Structure Reports list resides in the top - level site of the site collection. This list contains
pre - defined CAML queries with a user - friendly name that content owners and administrators can use to

c06.indd 100c06.indd 100 5/8/08 7:05:39 PM5/8/08 7:05:39 PM

Chapter 6: Site Columns, Content Types, and Lists

101

find content meeting specific criteria. For instance, content owners can quickly see a list of all the content
pages within a site that are checked out to them or those pages that are pending approval. Other reports
might include lists of all the pages that are going live within the next seven days, as well as those which
are expiring within seven days.

 The reports contained in this list are available from the Site Actions menu for quick reference. Site
administrators and developers can create additional reports and store them in this list for future use.

 Images and Documents (and Site Collection Documents and Images)
 The Images and Documents libraries are created in every site for which the Publishing Features have
been activated. Content owners can manage the contents of these libraries, storing images used
throughout a site, as well as documents and media files such as Window Media files, Flash movies, and
ZIPs. When authoring a page, a content owner can select items from the Images and Documents libraries
within the same site where the page is being created; content owners cannot select items from the Images
and Documents in other sites, including parent sites.

 While the restriction of only being able to select items from the same Images and Documents library is
helpful in many cases, sometimes sites need some content in the form of images, documents, or media to
be available across the entire site collection. To address this, the Publishing Features create two special
galleries in the top - level site of the Publishing site collection: Site Collection Images and Site Collection
Documents. Not only do content owners have access to the Images and Documents galleries within the
site where the page is being created, they can also select items from the two special site collection
galleries. These galleries are the ideal places to put things such as a company logo or a privacy policy.

 Pages
 The Pages list is created in every site where the Publishing Features have been activated. All content
pages created by content owners are stored in each site ’ s Pages list. Each content page, or list item, stored
in the Pages list contains the data elements for each page, the title of the page, the file name of the page
that appears in the URL, and the page layout selected to render the page.

 Reusable Content
 The Reusable Content list contains HTML or text content that can be added to content pages by content
owners. This capability facilitates content reuse across a site, minimizing duplication. Content reuse
enables site administrators to ensure that aspects of the site such as the company name, product name,
or employee names are consistent across the site. When a new reusable content item is created, the
creator has the option to automatically update the content in all pages where it is used. If this is selected,
when the content is added to a page by an author, a read - only reference is added. Otherwise, if the item
is not set to automatically update, the content is copied to the page, where it can then be updated. This
list can be found in the top - level site of the site collection.

 Style Library
 The Style Library list resides in the top - level site of the site collection and contains images, style sheets,
and XSL styles used throughout the site. Developers and designers should add files to this library that
are used either in the branding of a site, such as CSS files and images used in the chrome of the look and
feel, and XSL files that are used with the three Publishing Web Parts (covered in Chapter 11).

c06.indd 101c06.indd 101 5/8/08 7:05:39 PM5/8/08 7:05:39 PM

Chapter 6: Site Columns, Content Types, and Lists

102

 Creating Lists
 While SharePoint creates many lists automatically for every SharePoint site (as well as some special ones
depending on the type of site created, as in the case of a Publishing site), it also enables lists to be created
by administrators, developers, and end users — granted they have the necessary rights to do so
(specifically, Manage Lists). As with site columns, content types, and many other things within
SharePoint, there are various ways to create a list within a SharePoint site. Again, just like site columns
and content types, the way the list is created dictates how portable and reusable it is. The three options
for creating SharePoint lists are using the browser, creating it through custom code, or using SharePoint
Features to define the list schema and template, and optionally create an instance based on the template.

 Creating Lists via the Browser Interface
 To create a new list using the browser, navigate to a site and select Site Actions Create or select Site
Actions Site Settings and from the Site Settings page select Site Libraries and Lists Create New
Content. The Create page contains a list of the various types of lists and libraries that can be created. The
items on the Create page are lists and library templates previously defined. If none of the provided lists
suit a project ’ s needs, select the Custom List link in the Custom Lists column to create a minimal list with
only a single column.

 Next, on the New page, enter a title and optional description of the list and specify whether it should
appear in the Quick Launch menu (left - hand navigation) and click Create. With the list created, the next
step is to add some columns to it. With the list loaded in the browser, select Settings List Settings to get
to the list customization page. On the Customization [list name] page, note that the minimal columns
have been added and some links are provided to add columns to the list. Adding columns to a list is
similar to adding site columns to a content type.

 By default, the Custom List template is not set to allow content types to be managed. To enable the list
for content types, select Advanced Settings on the list ’ s customization page and toggle the Content Types
option at the top of the page.

 Once a list has been created, it can be saved as a template for use in creating additional lists or to
move the list template from one site to another in the same or different environments. This is done by
selecting the Save List As Template option on the list customization page.

 Creating Lists via Code
 Creating a list via code involves using the Microsoft.SharePoint.SPList and
Microsoft.SharePoint.SPListTemplate classes. Lists are created within the context of a SharePoint
site. Therefore, the first step is to obtain a reference to a SharePoint site. Just like creating lists via the
browser, an existing list template must first be selected. Therefore, the next step is to obtain a reference to
an existing list template. Finally, create a new list using the SPListCollection.Add() method, which
creates the list and returns the unique ID of the list. This unique ID, a GUID, can be used to obtain a
reference to the list.

 With the list created, developers can then customize it using the provided properties, as well as
add columns to it. Columns can be added as list columns or as site columns. To add site columns,
obtain a reference to an existing column in the site column gallery for the site and pass it in when
creating the column.

c06.indd 102c06.indd 102 5/8/08 7:05:39 PM5/8/08 7:05:39 PM

Chapter 6: Site Columns, Content Types, and Lists

103

 The following code in Listing 6 - 5 demonstrates how to create a list programmatically, add it to the site ’ s
Quick Launch navigation, and add a few columns to it.

 Listing 6 - 5: Creating lists programmatically with custom code

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter06 {
 class Program {
 static void Main (string[] args) {
 using (SPSite siteCollection = new SPSite(“http://wcm”)) {
 using (SPWeb site = siteCollection.RootWeb) {

 // get reference to the ‘Custom Lists’ template
 SPListTemplate customListTemplate = site.ListTemplates[“Custom List”];

 // create a new list & retrieve a reference to that list
 Guid wroxListID = site.Lists.Add(“WROX Publications”, “List of SharePoint
books by WROX”, customListTemplate);
 SPList wroxList = site.Lists[wroxListID];

 // set list to appear in left-hand navigation
 wroxList.OnQuickLaunch = true;

 // add a few columns
 wroxList.Fields.Add(“ISBN”, SPFieldType.Text, true);
 wroxList.Fields.Add(“Authors”, SPFieldType.Text, true);
 wroxList.Fields.Add(“BookURL”, SPFieldType.URL, true);
 wroxList.Update();

 site.Upda te();

 }
 }
 }
 }
}

 Creating List Templates and Instances via Features
 Notice that when creating a list using either the SharePoint browser interface or with custom code, one
of the required first steps is to specify the template on which the list is based. How are these templates
defined? As covered earlier in the discussion on creating lists using the browser interface, once a list is
created it can be saved as a template. This template file is saved in the List Templates gallery and can be
exported for use in other SharePoint sites. However, the template cannot be easily customized because
it is packaged up into a SharePoint template file (*.STP), which is just a *.CAB file with a special
extension. The contents of this file, manifest.xml , contains all the details for the template. Editing this
file is quite challenging, however, and not a trivial task.

 Another way to create list templates and instances is using a list schema: a sizeable CAML file defining the
structure of a list. List schemas can be deployed using site definitions, as performed in WSS 2.0, but this is
no longer recommended. The problem with this approach is that a list schema can only be added to a site
upon site provisioning. Instead, the new and recommended way is to register the schema with a site and
optionally create an instance of the list using Features. The Feature schema contains two site elements for

c06.indd 103c06.indd 103 5/8/08 7:05:40 PM5/8/08 7:05:40 PM

Chapter 6: Site Columns, Content Types, and Lists

104

use in element manifest files to create templates and instances based on templates: < ListTemplate / >
and < ListInstance / > .

 The core piece of a list template is the list schema file: schema.xml . This file resides within a subfolder
in the Feature that makes the site aware of the list template. The schema.xml file contains all the
information needed to define the characteristics of the list. At the root of the file is the < List / >
element, which specifies the information about the list (see Listing 6 - 6).

 Listing 6 - 6: List definition file — schema.xml

 < ?xml version=”1.0” encoding=”utf-8”? >

 < List xmlns:ows=”Microsoft SharePoint”
 xmlns=”http://schemas.microsoft.com/sharepoint/”
 Name=”WroxPublications”
 Title=”WroxPublications”
 BaseType=”0”
 Direction=”LTR”
 Url=”Lists/WroxPublications” >

 < MetaData >
 < ContentTypes / >
 < Fields / >
 < Views / >
 < Forms / >
 < /MetaData >
 < /List >

 In addition to basic information about the list contained in the schema . xml file, notice the < MetaData/ >
section in Listing 6 - 6 . Within this section, developers can specify content types automatically bound to
the list, all the fields within the list (including those defined in bound content types), all list views, and
finally the new, edit, and display forms to be used for the list.

 Unfortunately, not all CAML markup is included in the code samples for creating list templates. This
is because list templates require a significant amount of CAML markup to define list views — so
much CAML that due to space constraints and readability, not all markup is included in this book.
The complete solution for creating the list template and instance by using Features is included. For
additional information on the list schema file, refer to the official documentation on MSDN
(www.andrewconnell.com/go/216).

 With the list schema created, the next thing to create is the < ListTemplate / > element within the
Feature that, when activated, makes the SharePoint site aware of the new list template definition
(see Listing 6 - 7).

 Listing 6 - 7: Element manifest for WroxPublications list template

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < ListTemplate Name=”WroxPublications”
 Type=”10010”
 BaseType=”0”
 DisplayName=”WROX Publication List”
 SecurityBits=”11”

c06.indd 104c06.indd 104 5/8/08 7:05:40 PM5/8/08 7:05:40 PM

Chapter 6: Site Columns, Content Types, and Lists

105

 VersioningEnabled=”False”
 Sequence=”100”
 Hidden=”False”
 Image=”/_layouts/images/itcontct.gif” / >
 < /Elements >

 A few attributes in the < ListTemplate / > Listing 6 - 7 warrant some explanation:

 Name — This is the unique name of the list template within the Feature. The value in this
attribute must match the name of the folder within the Feature containing the schema.xml
file. Upon Feature activation, SharePoint looks in this folder within the Feature for the list
schema file.

 Type — The list type is a unique ID of the list template that can be used by this Feature, or by
other Features, to create list instances based on the template. It is recommended that you pick a
number greater than 10,000, as the first 10,000 IDs are reserved for Microsoft ’ s current and
future use.

 BaseType — The value here points to the ID of an underlying list template on which the list is
based. In the case of Listing 6 - 7 , the WroxPublications list template is based on the Custom List
(Type=0) template, which is the most bare - bones list template available and a great one to start
with for custom list templates.

 Now that the SharePoint site is aware of the list schema thanks to the < ListTemplate / > node, the last
thing to add to the Feature is a < ListInstance / > site element, which creates an instance of the list
based on the specified template upon Feature activation. Like the < ListTemplate / > site element, add
the CAML shown in Listing 6 - 8 to an element manifest in the Feature.

 Listing 6 - 8: Element manifest to create a list instance

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >

 < ListInstance TemplateType=”10010”
 Id=”WroxPublicationsList”
 Title=”Wrox Publications”
 Url=”Lists/WroxPublications”
 OnQuickLaunch=”True” >

 < Data >
 < Rows >
 < Row >
 < Field Name=”Title” > Real World SharePoint 2007: Indispensable Experiences
From 16 MOSS and WSS MVPs < /Field >
 < Field Name=”ISBN” > 978-0-470-16835-6 < /Field >
 < Field Name=”Authors” > [... omitted for brevity ...] < /Field >
 < Field Name=”BookURL” > http://www.wrox.com/WileyCDA/WroxTitle/productCd-
0470168358.html < /Field >
 < /Row >
 < /Rows >
 < /Data >
 < /ListInstance >
 < /Elements >

❑

❑

❑

c06.indd 105c06.indd 105 5/8/08 7:05:40 PM5/8/08 7:05:40 PM

Chapter 6: Site Columns, Content Types, and Lists

106

 Notice the TemplateType attribute in the < ListInstance / > in Listing 6 - 8 . This is the ID of the list
template defined in the < ListTemplate / > site element. In addition to creating instances of lists with
Features, the < ListInstance / > site element can also define the default data to load into a list using
the < Data / > node, as demonstrated in this listing.

 Accessing Lists via the SharePoint API
 One of the most common things SharePoint developers have to do is interact with lists programmatically
when writing custom code, as virtually all SharePoint data lives within SharePoint lists. There are
typically two ways to retrieve data from a SharePoint list programmatically: directly accessing the list or
issuing a query against the list. The samples in this section are written to work with the
 WroxPublications list created in the previous section.

 The first option, accessing a list directly, requires use of the SPList object. First a reference to the site
containing the list must be obtained and then a reference to the list itself. From there, list items can be
retrieved, created, or deleted. Keep in mind that any changes must be committed using the
 Update() method, as shown in Listing 6 - 9 .

 Listing 6 - 9: Directly accessing SharePoint lists

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter06 {
 class Program {
 static void Main (string[] args) {
 using (SPSite siteCollection = new SPSite(“http://wcm”)) {
 using (SPWeb site = siteCollection.RootWeb) {

 // get reference to the list
 SPList spWroxBooks = site.Lists[“Wrox Publications”];

 // add item
 SPListItem newItem = spWroxBooks.Items.Add();
 newItem[“Title”] = “Professional SharePoint 2007 Web Content Management
Development”;
 newItem[“Authors”] = “Andrew Connell”;
 newItem[“ISBN”] = “978-0-470-22475-5”;
 newItem[“BookURL”] = “http://www.wrox.com/WileyCDA/WroxTitle/productCd-
0470224754.html”;
 newItem.Update();

 // show all contents in the list
 foreach (SPListItem item in spWroxBooks.Items) {
 Console.Out.WriteLine(item.Title);
 Console.Out.WriteLine(item[“ISBN”].ToString());
 Console.Out.WriteLine(Environment.NewLine);
 }

 Console.ReadLine();
 }
 }
 }
 }
}

c06.indd 106c06.indd 106 5/8/08 7:05:41 PM5/8/08 7:05:41 PM

Chapter 6: Site Columns, Content Types, and Lists

107

 Notice the code in Listing 6 - 9 where the fields in specific list items are accessed. The name used is the
internal name. This is where the pains of the _x0020_ issue come into play, as this is the point where it
would need to be included when referencing a field.

 The second way to retrieve data from a list is by issuing a query. The SharePoint API offers many
different options to query SharePoint lists. One way is using the Microsoft.SharePoint.SPQuery
object and retrieving a collection of matching Microsoft.SharePoint.SPListItem objects. The
 SPQuery object enables developers to specify a CAML query and the maximum number of items to be
returned from the query, as shown in Listing 6 - 10 .

 Listing 6 - 10: Querying SharePoint lists

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter06 {
 class Program {
 static void Main (string[] args) {
 using (SPSite siteCollection = new SPSite(“http://wcm”)) {
 using (SPWeb site = siteCollection.RootWeb) {

 // get reference to the list
 SPList spWroxBooks = site.Lists[“Wrox Publications”];

 // create query
 SPQuery query = new SPQuery();
 query.Query = “ < Where > < Eq > < FieldRef Name=’ISBN’/ > < Value Type=’Text’ > 978-
0-470-16835-6 < /Value > < /Eq > < /Where > ”;
 query.RowLimit = 2;

 // get and display results
 SPListItemCollection results = spWroxBooks.GetItems(query);
 foreach (SPListItem item in results) {
 Console.Out.WriteLine(item.Title);
 Console.Out.WriteLine(item[“ISBN”].ToString());
 Console.Out.WriteLine(Environment.NewLine);
 }

 Console.ReadLine();
 }
 }
 }
 }
}

 Summary
 This chapter has covered the core components within any SharePoint site: site columns, content types,
and lists. Lists are the lowest - level storage construct within any SharePoint site, just as tables are in
databases. Lists are primarily composed of columns but they can have additional characteristics such as
custom workflows, event receivers, configurable versioning schemes, and policies. One of the challenges
associated with lists in WSS 2.0 was that lists typically could only contain one type of data. This is

c06.indd 107c06.indd 107 5/8/08 7:05:41 PM5/8/08 7:05:41 PM

Chapter 6: Site Columns, Content Types, and Lists

108

because the schema of a list was not very flexible or portable. To address this, Microsoft introduced
content types in WSS 3.0, which separate the schema of a type of information from the list. This enables
administrators and developers to define a type of data, including some business rules and a process
wrapped around it, that can then be associated with multiple lists.

 All three of these different site elements (site columns, content types, and lists) can be created in various
ways, such as using the SharePoint browser interface, using custom code, and using Features. In all three
instances, however, Features provide the most code reuse and portability to implement the site elements
in different environments.

c06.indd 108c06.indd 108 5/8/08 7:05:41 PM5/8/08 7:05:41 PM

 Master Pages and
Page Layouts

 One of the biggest improvements to Windows SharePoint Services (WSS) 3.0 from the previous
version of SharePoint is the adoption and utilization of ASP.NET 2.0 master pages. In
previous versions of SharePoint, the look and feel customization of a site involved editing
numerous files — depending upon the level of customization, that could involve hundreds of
files! Thankfully, SharePoint’s adoption of master pages dramatically reduces the number of files
involved in customizing or branding a SharePoint site.

 In addition to master pages, Microsoft had to come up with an easy way for content owners to
choose among different page types and renderings without developer involvement. In effect, the
content owner needed the capability to pick a template and fill in the content using a familiar
Web interface. To achieve this, Publishing sites leverage page layouts, which act as templates.
Developers and designers create page layouts that define where the editable regions of a page are
placed, as well as the overall rendering of the page. Content owners then choose from the available
page layouts when creating new pages.

 This chapter covers the relationship of master pages and page layouts within Microsoft Office
SharePoint Server (MOSS) 2007 Publishing sites. It also takes a look at a new capability in WSS 3.0
that enables developers to easily add or remove components to and from pre-defined areas within
SharePoint sites.

 Page Rendering Process Overview
 Before jumping into master pages and page layouts, developers should understand how pages
are constructed within a Publishing site, as it is a bit different from a typical SharePoint site. All
content pages within a Publishing site are stored within a special list called Pages. This is the
reason why the URL of Publishing sites always has /Pages near the end, just before the name of
the requested page or file.

c07.indd 109c07.indd 109 5/8/08 7:06:15 PM5/8/08 7:06:15 PM

Chapter 7: Master Pages and Page Layouts

110

 When a request is received for a URL within a Publishing site, SharePoint immediately goes to the list
item of the requested Pages list. This list item contains some critical information related to the
construction of the page:

 Page Layout — URL of the page layout associated with this page .

 Associated Content Type — Content type that defines the schema and business rules for a type
of page .

 Name — URL name of the page requested (i.e., the default for the default.aspx requested
page) .

 Metadata — Data such as the page title, the description, the scheduling configuration, as well as
contact information for the owner of the page .

 Content Fields — One or more fields containing content to be displayed on the page .

 SharePoint first retrieves the URL of the page layout from the list item in the Pages list. Page layouts
inherit from a specific class, Microsoft.SharePoint.Publishing.PublishingLayoutPage , that
sets the master page for the request. Once SharePoint has retrieved both the page layout and the master
page, the two are merged together. Finally, SharePoint pulls the content from the list item based on the
various field controls defined in the page layout and adds it to the page.

 Master Pages in Publishing Sites
 Microsoft introduced master pages in ASP.NET 2.0. The concept is quite simple: A master page defines
the general look and feel of a site, including CSS references, navigation, search, and the common top-
branding most Web sites have. Master pages also contain content placeholders, which are sections of the
page that can be replaced at runtime with other content. Developers create content pages that reference a
specific master page, and the only markup these content pages contain are within content placeholders.
The content placeholders in the master page are replaced at runtime with the contents defined within the
content page.

 SharePoint utilizes master pages a bit differently than a traditional ASP.NET 2.0 site. In ASP.NET 2.0,
the master page is defined on a page-by-page basis. Instead, site owners and administrators specify the
master page for a specific SharePoint site. All pages within that site are configured to use the master
page specified for the current site. This is done using special master page tokens, which are covered later
in the chapter. This advantage that SharePoint has over ASP.NET 2.0 enables site owners and
administrators to change the master page of a site without touching the files on the file system or
involving a developer.

 Another difference between SharePoint’s implementation of master pages and that of ASP.NET 2.0 is that
the master pages in a SharePoint site are stored within a special document library: the Master Page
Gallery. This is different from an ASP.NET 2.0 site where master pages are stored on the file system with
the content pages. The Master Page Gallery is accessible by selecting Master Pages and Page Layouts
under the Galleries section of a Publishing site’s Site Settings page.

 Types of Master Pages
 Recall from Chapter 2 the discussion about two different types of pages within a SharePoint site: site
pages and application pages. This topic applies to master pages as well and has a significant impact on

❑

❑

❑

❑

❑

c07.indd 110c07.indd 110 5/8/08 7:06:16 PM5/8/08 7:06:16 PM

Chapter 7: Master Pages and Page Layouts

111

the customization capabilities and limitations for SharePoint developers. As explained previously, unlike
ASP.NET 2.0, content pages do not explicitly specify which master page they implement. Instead, the
master page is set at the site level within a SharePoint site. This section explains how master pages are
stored within a SharePoint site (Microsoft.SharePoint.SPWeb) and describes the two different types
of master pages.

 MasterUrl and CustomMasterUrl
 Similar to ASP.NET 2.0, SharePoint sites are not limited to a single master page per site. A SharePoint
site (Microsoft.SharePoint.SPWeb) contains two master page properties: MasterUrl and
 CustomMasterUrl . SPWeb . The MasterUrl property is used by all out-of-the-box (OOTB) content pages
within WSS 3.0 and is the property that is set when changing the master page 3.0 using SharePoint
Designer 2007. The SPWeb.CustomMasterUrl property is provided as a way for developers to use a
different master page for custom content pages if desired.

 Although WSS 3.0 sites do not utilize the SPWeb.CustomMasterUrl property, MOSS 2007 Publishing
sites make heavy use of it. All page layouts are automatically configured to use the master page defined
in the SPWeb.CustomMasterUrl property when rendering the site. The master page defined in the
 SPWeb.MasterUrl property is still used for standard SharePoint pages such as the list or form pages.

 Unlike WSS 3.0 sites, Publishing sites contain a special Master Page Settings page, which is accessible
from the Master Page link on the Site Settings page under the Look and Feel section. From the Site
Master Page Settings page, shown in Figure 7-1 , site owners and administrators can select a Site Master
Page (the SPWeb.CustomMasterUrl property) and the System Master Page (the SPWeb.MasterUrl
property). The master pages available for selection on this page are stored in the Master Page Gallery.

Figure 7-1

c07.indd 111c07.indd 111 5/8/08 7:06:17 PM5/8/08 7:06:17 PM

Chapter 7: Master Pages and Page Layouts

112

 Site Master Pages Versus the Application Master Page
 Aside from the two different master pages that can be specified, there are also two very different
implementations of master pages within every SharePoint site. Recall from Chapter 2 that there are two
different types of pages: site pages and application pages. Site pages support personalization and
customization, can support themes, and contain Web Parts. The two master page properties on the
 SPWeb object, MasterUrl and CustomMasterUrl , are site pages, meaning they can be customized on a
site-by-site basis. Application pages are found within http://site/_layouts and do not support
personalization or customization. Site pages are found virtually everywhere else in a SharePoint site,
such as list and form pages and Web Part pages. Site pages do support personalization and
customization.

 The difference between site pages and application pages also has an impact on master pages within a
SharePoint site. As Chapter 2 explained, all application pages leverage the same master page, across all
sites on the server. The application pages, which reside within the [..]\12\TEMPLATE\LAYOUTS folder,
all contain hard-coded references to a specific master page: application.master . Because all
SharePoint sites on a server share the same _layouts virtual directory path, does this mean that
all SharePoint sites on the same server will look identical? Not necessarily. Developers can utilize
SharePoint themes, a collection of CSS and image files, to influence the look and feel of application pages.
Granted, CSS and images can only be taken so far, and sometimes customization of the underlying
master page is the only option. Unfortunately, this is a limitation of application pages.

 Are themes the only option for customizing application pages on a site-by-site basis due to the
 application.master limitation? No. One of the more common approaches users take is to create a
copy of the [..]\12\TEMPLATE\LAYOUTS folder and change the _layouts virtual directory to point to
the copied folder. That way, changes to application.master affect only a specific Web application and
not all Web applications on a server. This option is not recommended because it has many downsides,
one of which is that the _layouts virtual directory is set at the Web application level, meaning it is not
possible to customize the application pages on a site-by-site or site collection-by-site collection basis: All
site collections and sites within the Web application use the same _layouts virtual directory, and
therefore the same master.

 Another very large downside to this approach is that the _layouts folder is no longer in the SharePoint
 12 folder structure. This means that any future hotfixes or service packs will not be applied to the copied
folder. In addition, the capability to deploy files using WSS solution packages that contain files to be
deployed to the [..]\12\TEMPLATE\LAYOUTS folder will not work for the copied folder. In addition,
creating an additional copy of the _layouts folder is not supported by Microsoft.

Dynamically Switching application.master at Runtime
While there is no supported option for creating custom application.master pages
on a site-by-site basis, some alternatives do exist. If creating alternate application
.master pages is critical and necessary, consider creating a custom HTTP module that
dynamically switches the application.master page out at runtime. The advantages
to this approach are twofold: The original [..]\12\TEMPLATE\LAYOUTS folder is
never moved, copied, or changed, and the HTTP module changes the master page at
runtime from using the OOTB application.master to a custom application
.master. Thus, no changes occur to the files contained in the SharePoint 12 folder.

c07.indd 112c07.indd 112 5/8/08 7:06:17 PM5/8/08 7:06:17 PM

Chapter 7: Master Pages and Page Layouts

113

 Master Page Tokens
 As previously mentioned, SharePoint content pages do not contain references to explicit master pages.
Instead, the master page is set at the site level using either the MasterUrl or the CustomMasterUrl
property. If this is a dynamic reference that SharePoint switches out at runtime, what is stored in the
content pages to tell SharePoint which master page to use? This is made possible using tokens that are
interpreted as instructions by SharePoint at runtime to determine the URL of the master page to use.
There are two types of tokens: dynamic and static .

 Dynamic Master Page Tokens
 Dynamic tokens are specific strings that tell SharePoint which master page to use — either the master
page referenced in the MasterUrl property or the CustomMasterUrl property in the SharePoint site
(Microsoft.SharePoint.SPWeb). There are two dynamic master page tokens:

 ~masterurl/default.master — This token references the Microsoft.SharePoint.SPWeb
.MasterUrl property. The entire string is read as the token. All pages within a WSS 3.0 site,
OOTB, are configured to use this token by default. For example, if a content page has the
directive :

<%@ Page MasterPageFile=”~masterurl/default.master” %>

 SharePoint would switch the token out at runtime with the following, which is the path to the
default master page for an OOTB WSS 3.0 site:

<%@ Page MasterPageFile=”_catalogs/masterpage/default.master” %>

 ~masterurl/custom.master — This token references the Microsoft.SharePoint.SPWeb
.CustomMasterUrl property. The entire string is read as the token. By default, no WSS 3.0
pages use this token, but developers are free to do so. However, this is not the case in Publishing
sites, where it is heavily used. The CustomMasterUrl is used by all page layouts to define the
look and feel of content pages.

❑

❑

An example of dynamically switching the application.master master page
at runtime in application pages using a HTTP module can be obtained from
www.andrewconnell.com/go/217. This sample not only contains an HTTP module
that handles the dynamic switching, but it also creates a browser-based interface that
enables site administrators to set the custom application.master page.

Be aware that this approach is not supported by Microsoft. This means if a SharePoint
customer engages Microsoft’s Customer Support Services (CSS) with a production
issue, CSS will require that SharePoint be set back to a supported state before opening
a case and investigating the issue. The advantage of using an HTTP module is that
returning to a supported state can be quickly achieved by removing the single HTTP
module registration line in the site’s web.config. Therefore, this approach has no
permanent downsides.

c07.indd 113c07.indd 113 5/8/08 7:06:18 PM5/8/08 7:06:18 PM

Chapter 7: Master Pages and Page Layouts

114

 Static Master Page Tokens
 Static token strings, unlike the dynamic tokens, are not considered tokens; only the first part is considered
a replaceable token. At runtime, SharePoint evaluates the first part of the token and replaces it with the
URL specified, but it will not change the name of the master page. There are two different static tokens:

 ~sitecollection/default.master

 ~site/default.master

 For example, if a content page had the following directive within the site http://site/subsite

 <%@ Page MasterPageFile=”~site/wrox.master” %>

 SharePoint would switch the ” ~site” token out at runtime with the following:

<%@ Page MasterPageFile=”/subsite/wrox.master” %>

 Master Page Content Placeholders
 Before creating master pages, developers need to be familiar with the use of content placeholders in
creating master pages. In traditional ASP.NET 2.0 sites, developers define any number of content
placeholders as desired. The SharePoint default master page contains 32 different content placeholders
used by the content pages throughout SharePoint sites.

 For a list of the content placeholders in the WSS 3.0 default master page, refer to the official
 documentation on MSDN (www.andrewconnell.com/go/217).

 Note that not all of the 32 placeholders are required in all custom master pages. In fact, the
eight provided master pages for Publishing sites only contain 21 of the 32 and one additional
content placeholder. The following table contains all the content placeholders found in the eight
provided Publishing master pages:

OSSConsole PlaceHolderNavSpacer

PlaceHolderAdditionalPageHead PlaceHolderPageDescription

PlaceHolderBodyAreaClass PlaceHolderPageImage

PlaceHolderBodyLeftBorder PlaceHolderPageTitle

PlaceHolderBodyRightMargin PlaceHolderPageTitleInTitleArea

PlaceHolderCalendarNavigator PlaceHolderSearchArea

PlaceHolderLeftActions PlaceHolderTitleAreaClass

PlaceHolderLeftNavBar PlaceHolderTitleAreaSeparator

PlaceHolderLeftNavBarTop PlaceHolderTitleBreadcrumb

PlaceHolderMain PlaceHolderTitleLeftBorder

PlaceHolderMiniConsole PlaceHolderTitleRightMargin

❑

❑

c07.indd 114c07.indd 114 5/8/08 7:06:18 PM5/8/08 7:06:18 PM

Chapter 7: Master Pages and Page Layouts

115

 Some of the content placeholders listed in the preceding table, while included in the eight Publishing
master pages, are never rendered and shown. This is done by placing the content placeholders within an
ASP.NET Panel control and setting the visibility to false , as shown in Listing 7-1 .

 Listing 7-1: Hiding content placeholder rendering

 <asp:panel visible=”false” runat=”server”>
 <asp:ContentPlaceHolder ID=”PlaceHolderPageImage” runat=”server” />
 <asp:ContentPlaceHolder ID=”PlaceHolderBodyLeftBorder” runat=”server” />
</asp:panel>

 This technique enables site developers and designers to include content placeholders that are included
within content pages, but keep any of the content defined in the content pages from being rendered. This
is a common refactoring technique when implementing a rebranding campaign on a site. It enables
designers to hide content placeholders with one simple action in the master page without going through
all content pages to remove the content placeholder.

 Creating Master Pages
 Microsoft ships eight additional master pages with MOSS 2007 and provisions them into a new site
when the site is created using the Publishing Portal site template. While these offer various unique
layout and color schemes, the majority of MOSS Web Content Management customers will likely need to
create custom master pages based on certain project requirements. Recall from Chapter 2 the discussion
on customized versus uncustomized pages and SharePoint customization versus development. These
topics are applicable in the context of master pages just as they are with any other type of SharePoint
site. SharePoint master pages can be created in one of two ways: using SharePoint Designer or using
Visual Studio (or some other text editor) and provisioning them into a SharePoint site using Features.

 The differences between the two options are quite significant. In Chapter 2 you learned that customized
files are those files whose source lives within the SharePoint site’s content database. This can present a
challenge for a large site, especially one in which the development process follows a structured software
development life cycle that moves files and code through various environments such as testing
and staging. When creating master pages with SharePoint Designer, the page starts as customized and
resides exclusively within the content database; this is referred to as SharePoint customization.

 If a project requires more control over the source of the files, as well as adoption within a structured
software development life cycle and integration within a source control management system, developers
can elect to create master pages using more of a template, and uncustomized, approach. To achieve this,
developers create new master pages using a text editor, usually Visual Studio, and deploy using Features
and WSS solution packages.

 The next two sections document the two different approaches to creating master pages. A sample master
page is provided in the code download associated with this book. The actual source of the master page is
not important at this point; what is important is the process of creating master pages.

c07.indd 115c07.indd 115 5/8/08 7:06:18 PM5/8/08 7:06:18 PM

Chapter 7: Master Pages and Page Layouts

116

 Creating Master Pages SharePoint Designer 2007
 Open SharePoint Designer and an existing Publishing site by selecting File Open Site. To create a new
master page, select File New. In the New dialog, select the Page tab, then ASP.NET in the first column,
Master Page in the middle column, and finally click OK, as shown in Figure 7-2 .

Figure 7-2

 SharePoint Designer will create a new blank master page. One approach is to create the master page by
copying an existing master page and customizing it. Another, and easier approach, is to start with what
is commonly referred to as a “minimal master page.” These are master pages that have the absolute bare
minimum content and branding. Most contain the minimal CSS files to support the SharePoint
administration interface such as the Site Actions menu or Page Editing Toolbar. A quick Web search
using your search engine of choice will return numerous hits for some blogger’s favorite minimal
master. For simplicity, a minimal master page named minimal.master is included in the code
download for this book. Open the minimal.master , or any master obtained from a search, in a text
editor other than SharePoint Designer, select all the contents, and paste them into the master created by
SharePoint Designer.

Never Open Master Pages from the File System
Using SharePoint Designer

SharePoint Designer expects that all master pages it opens are contained within
a SharePoint site, which includes additional information in the header. When a master
page is opened from the file system, SharePoint Designer adds some extra code that it
expected to be present. This extra code will cause the master page to throw an error at
runtime in the SharePoint site. This is the source of a very common problem whereby a
developer opens the WSS 3.0 default.master master page, makes no changes, but
clicks Save regardless. The next time anyone browses to the SharePoint farm, nothing
works because SharePoint Designer added extra code that corrupted the master page.

c07.indd 116c07.indd 116 5/8/08 7:06:19 PM5/8/08 7:06:19 PM

Chapter 7: Master Pages and Page Layouts

117

 With the master page now created with the minimal content, save the master page to the Master Page
Gallery by selecting File Save As and browsing to http://[site]/_catalogs/masterpage .

 At this point the master page is still checked out and unpublished. This is usually OK in a limited
development environment, but if the master page was created in an environment that many people have
access to, it is a good idea to check in and publish the page. Otherwise, after configuring the site to
use the new master page, everyone else will receive a runtime error because the page is not published
and thus they don’t have the necessary permissions to see the site. To check in and publish the file, right-
click the master page in the Folder List tool window and select Check In. Then select Publish a Major
Version and click OK. A dialog will appear with the option to view/modify the approval status of the
master page. Click Yes, which opens a new browser window that loads the Master Page Gallery with
the master page at the top of the list. From the ECB menu of the minimal master page, select Approve/
reject, as shown in Figure 7-3 .

Figure 7-3

 At this point the master page has been created, checked in, published, and approved, and can now be
seen by anyone browsing the site. Configure the site to use the new minimal master page by browsing to
the site and selecting Site Actions Site Settings Modify All Site Settings. On the Site Settings page,
select Master Page under the Look and Feel column, then select the filename of the master page just
created for the Site Master Page, and click OK. The Publishing site will now be using the new master
page! Browse to the home page of the site (leaving the http://[site]/_layouts section) to see the
master page in action.

 When selecting the master page from the Site Master Page Settings page, notice that all the master
pages had preview images associated with them, but the custom master page created with SharePoint
Designer had a stock preview image. This is because SharePoint Designer does not have the capability to
associate a preview image with a master page. After a master page has been created using SharePoint
Designer, a preview image can then be associated with it by going to the properties of the master page list
item within the Master Page Gallery and setting the Preview Image property to point to an existing image.

c07.indd 117c07.indd 117 5/8/08 7:06:19 PM5/8/08 7:06:19 PM

Chapter 7: Master Pages and Page Layouts

118

 The master page created using SharePoint Designer resides exclusively within the SharePoint site’s
content database. The next section explains how to create a new master page as a file template living on
the file system and provision it into a SharePoint site using a Feature as an uncustomized page.

 Creating Master Pages Using Visual Studio and Features
 Although creating master pages using SharePoint Designer is quite straightforward and provides
developers and designers with a friendly WYSIWYG interface, it has its drawbacks. The most significant
downside to creating master pages exclusively in SharePoint Designer is that the pages initially start out
as customized, with no underlying template, meaning they reside exclusively within the database.

 The other option is to go with more of the templated approach: Create the master page in a text
editor, create a Feature that contains the master page, and upon activation it provisions the master
pages as uncustomized instances into a SharePoint site, referencing the underlying template file
on the file system. This approach enables developers to package the Feature and master page(s),
as well as associated content, into WSS solution packages for easy deployment to other environments.
This section walks through the process of adding a master page previously created to a Feature for
deployment.

 The first step is to create a new project in Visual Studio named Chapter7Pages for the Feature using the
C# Empty Project template, as no code will be compiled in this Feature. Next, as recommended in
Chapter 4 , create the folder structure that will contain the Feature Chapter7Pages to mimic the
SharePoint 12 folder structure, as shown in Figure 7-4 .

Figure 7-4

 A sample master page, used throughout the remainder of the book, is included in the sample code
download for this book. This master page, ACMETmp.master , contains a very simple user interface. In
addition, a preview image named ACMEMasterPreviewTmp.gif is also included in the code download.
It will be used as the preview image for the master page. Add these two files to a folder within the
 Chapter7Pages Feature folder named MasterPages (refer to Figure 7-4).

 Next, create a new Feature definition XML file named feature.xml in the folder Chapter7Pages and
add the CAML shown in Listing 7-2 to it.

c07.indd 118c07.indd 118 5/8/08 7:06:20 PM5/8/08 7:06:20 PM

Chapter 7: Master Pages and Page Layouts

119

 Listing 7-2: Feature definition for the Chapter7Pages Feature

 <?xml version=”1.0” encoding=”utf-8” ?>
<Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”D56F0D2D-0107-424d-AA0D-7120329A23E6”
 Title=”Chapter 7 - Provisioning Master Pages and Page Layouts”
 Hidden=”FALSE”
 Scope=”Site”
 Version=”1.0.0.0”>

 <ElementManifests>
 <ElementManifest Location=”elements.xml” />
 <ElementFile Location=”MasterPages\ACMETmp.master” />
 <ElementFile Location=”MasterPages\ACMEMasterPreviewTmp.gif” />
 </ElementManifests>

</Feature>

 Note two things about the markup in Listing 7-2 . First, the Scope attribute is set to Site (site collection)
because only one Master Page Gallery exists in a site collection. Therefore, this Feature should not be
available at each SharePoint site. Second, the <ElementFile> nodes are used to register the master page
and preview image with the Feature definition. This will save time when packaging the Feature into a
WSS solution package because each file won’t need to be defined within the manifest.xml file.

 With the Feature created, now the elements manifest file that will provision the files into SharePoint
needs to be created. Create a new XML file named elements.xml in the Chapter7Pages Feature folder
where the existing feature.xml file is located. The elements file will first provision the preview image
and then the master page with a reference to the preview image. Add the CAML in Listing 7-3 to the
 elements.xml file to provision the preview image into the Master Page Gallery.

 Listing 7-3: Elements manifest file provisioning a preview image

 <?xml version=”1.0” encoding=”utf-8” ?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <Module Name=”Master Page Preview Images”
 Url=”_catalogs/masterpage/Preview Images/WROX”
 Path=”MasterPages”
 RootWebOnly=”TRUE”>
 <File Url=”ACMEMasterPreviewTmp.gif”
 Name=”ACMEMasterPreview.gif”
 Type=”GhostableInLibrary”>
 <Property Name=”Title”
 Value=”ACMEMasterPreview.gif” />
 </File>
 </Module>
</Elements>

 The CAML in Listing 7-3 needs some explanation. The <Module> site element, also referred to as a file
set, groups similar files together. The attributes defined within the <Module> node are inherited by all
the child <File> nodes. The following table details the various attributes in the <Module> element.

c07.indd 119c07.indd 119 5/8/08 7:06:20 PM5/8/08 7:06:20 PM

Chapter 7: Master Pages and Page Layouts

120

Attribute Description

Name Name of the file set.

Url Site-relative path where the files will be provisioned. In Listing 7-3, the files will be
provisioned to the Master Page Gallery within the subfolders Preview Images/
WROX. If the folders are not present, SharePoint will automatically create them.

Path Feature-relative path where the source files within the Feature are located. In
Listing 7-3, the files are found within a subfolder named MasterPages within the
root of the Feature folder.

RootWebOnly When set to TRUE, the files in the file set are provisioned in the top-level site of the
site collection.

 File sets contain one or more files, as shown in Listing 7-3 . Each <File> element represents a separate file
to provision into a SharePoint site. The attributes in the <File> element are combined with those in the
parent <Module> element. While some of the attributes have similar names to those in the <Module>
element, they do not serve the same purpose. The following table details each of the attributes in the
 <File> element.

Attribute Description

Url Feature-relative path to the file. This attribute is combined with the Path attribute in
the <Module> element. In Listing 7-3, the preview image would be found within the
Feature at the following location: MasterPages\ACMEMasterPreviewTmp.gif.

Name The name to assign the file when provisioned into the SharePoint site. This name
becomes part of the URL to the file. In Listing 7-3, the URL for the file would be
http://[site]/_catalogs/masterpage/Preview Images/WROX/
ACMEMasterPreview.gif.

Type When provisioning files into SharePoint libraries, this should always be set to
GhostableInLibrary. When provisioning files into a SharePoint site but not adding
the file to a library, this should be Ghostable.

 The Master Page Gallery is just like any other SharePoint document library. It contains fields that are
used to store metadata for each document added to the library. <Property> elements are contained
within <File> elements. These elements are used to specify the value of the fields within the SharePoint
library to which the files are being provisioned, such as the Master Page Gallery. Developers can use the
 <Property> element to set the values of the items added to the library. In the case of Listing 7-3 , the
 Title field is assigned the value of ACMEMasterPreview.gif .

 With a preview image provisioned, now the master page needs to be added to the element manifest file.
Add the CAML shown in Listing 7-4 to the elements . xml file just after the <Module> element that
provisioned the image.

c07.indd 120c07.indd 120 5/8/08 7:06:21 PM5/8/08 7:06:21 PM

Chapter 7: Master Pages and Page Layouts

121

 Listing 7-4: Elements manifest file provisioning a master page

 <?xml version=”1.0” encoding=”utf-8” ?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <Module Name=”Master Page Preview Images”><!-- omitted for brevity --></Module>

 <Module Name=”Master Pages”
 Url=”_catalogs/masterpage”
 Path=”MasterPages”
 RootWebOnly=”TRUE”>
 <File Url=”ACMETmp.master”
 Name=”ACME.master”
 Type=”GhostableInLibrary”>
 <Property Name=”ContentType”
 Value=”$Resources:cmscore,contenttype_masterpage_name;” />
 <Property Name=”PublishingPreviewImage”
 Value=”~SiteCollection/_catalogs/masterpage/Preview
Images/WROX/ACMEMasterPreview.gif, ~SiteCollection/_catalogs/masterpage/Preview
Images/WROX/ACMEMasterPreview.gif” />
 <Property Name=”Title”
 Value=”ACME.master” />
 </File>
 </Module>

 </Elements>

 The CAML provisioning a master page shown in Listing 7-4 is very similar to the same CAML that
provisioned a preview image, with the exception of some extra field values being set. Two additional
fields are set: ContentType and PublishingPreviewImage . The ContentType field specifies the
content type of the master page list item in the Master Page Gallery (defining the schema and rules of
the list item). The PublishingPreviewImage is a field of type URL that contains two values: the text
value of a URL and the target of the URL. These two values are set by separating them with a comma.

 Finally, with the Feature and necessary files created, the DDF file needs to be created in order to compile
the Feature into a WSS solution package. Add a new text file named BuildSharePointPackage.ddf to
a folder in the root of the project named DeploymentFiles and add the text in Listing 7-5 to it.

 Listing 7-5: Diamond Directive File for Chapter7Pages Feature

 .OPTION Explicit
.Set DiskDirectoryTemplate=CDROM
.Set CompressionType=MSZIP
.Set UniqueFiles=Off
.Set Cabinet=On
;**
DeploymentFiles\manifest.xml

.Set DestinationDir=Chapter7Pages
TEMPLATE\FEATURES\Chapter7Pages\feature.xml
TEMPLATE\FEATURES\Chapter7Pages\elements.xml

.Set DestinationDir=Chapter7Pages\MasterPages
TEMPLATE\FEATURES\Chapter7Pages\MasterPages\ACMETmp.master
TEMPLATE\FEATURES\Chapter7Pages\MasterPages\ACMEMasterPreviewTmp.gif

c07.indd 121c07.indd 121 5/8/08 7:06:21 PM5/8/08 7:06:21 PM

Chapter 7: Master Pages and Page Layouts

122

 Lastly, the manifest.xml file needs to be created and added to the project within the DeploymentFiles
folder in the Chapter7Pages project. Add the CAML in Listing 7-6 to the manifest.xml file.

 Listing 7-6: Manifest.xml for Chapter7Pages Feature

 <?xml version=”1.0” encoding=”utf-8” ?>
<Solution xmlns=”http://schemas.microsoft.com/sharepoint/”
 SolutionId=”{7DFC3075-45C0-4946-9E5F-CA6BBC749C64}”
 DeploymentServerType=”WebFrontEnd”
 ResetWebServer=”FALSE”>
 <FeatureManifests>
 <FeatureManifest Location=”Chapter7Pages\feature.xml”/>
 </FeatureManifests>
</Solution>

 Package the Feature into a *.WSP file by typing the following on the command line (the following
assumes that it is being executed from the root of the project, the same place where the Chapter7Pages
.csproj file is located):

 [path_to_makecab]\MakeCab.exe /F DeploymentFiles/BuildSharePointPackage.ddf /D
CabinetNameTemplate=Chapter7.wsp /D DiskDirectory1=wsp

 Now add the package to the SharePoint farm’s solution store using STSADM.EXE (again, assuming it is
executed from the root of the project):

 [path_to_stsadm]\STSADM.EXE -o addsolution -filename wsp/Chapter7.wsp

 Finally, deploy the solution to a Publishing site, navigate to the site and select Site Actions Site
Settings Modify All Site Settings Site Collection Features, and activate the Feature Chapter 7 -
Provisioning Master Pages and Page Layouts . This provisions the master page and preview image to
the Master Page Gallery, as shown in Figure 7-5 , as uncustomized files referencing their templates
on the file system in the Chapter 7 Feature. In addition, because the master page’s Preview Image
field was set, the preview image will now appear when the master page is selected in the Site
Settings Master Page administration page.

Figure 7-5

c07.indd 122c07.indd 122 5/8/08 7:06:21 PM5/8/08 7:06:21 PM

Chapter 7: Master Pages and Page Layouts

123

 Incorporating Design Elements
 Of course, provisioning a master page is helpful, but what about all the other files that make up the
branding of the site? The master page likely references images and at least one site-specific CSS file, so
how are these files added to the SharePoint site? Files related to branding, such as images and CSS files,
should be added to a special SharePoint library, called the Style Library, that exists in the top-level site.
This library has been assigned special permissions to ensure that even users with the most limited
permissions can access the contents, as the files within it are usually referenced throughout the entire
site topology.

 Files can be added to the site collection’s Style Library gallery by uploading them through the browser
interface or using SharePoint Designer. Keep in mind that both of these techniques create customized
files that reside exclusively in the SharePoint site’s content database. The other approach is to provision
the files using a Feature, as previously shown. For example, to add both the CSS and image files used by
the sample master page included in the code download, add the two files (ACMETmp . css and
 ACMETmp . gif) to a new folder named Styles within the Feature and add the code shown in Listing 7-7
to the elements.xml file.

 Listing 7-7: Element manifest file with branding files added

 <?xml version=”1.0” encoding=”utf-8” ?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <Module Name=”Master Page Preview Images”><!-- omitted for brevity --></Module>
 <Module Name=”Master Pages”><!-- omitted for brevity --></Module>

 <Module Name=”Styles”
 Url=”Style Library”
 Path=”Styles”
 RootWebOnly=”TRUE”>
 <File Url=”ACMETmp.css”
 Name=”ACME.css”
 Type=”GhostableInLibrary”>
 <Property Name=”Title” Value=”ACME.css” />
 </File>
 <File Url=”ACMETmp.gif”
 Name=”ACME.gif”
 Type=”GhostableInLibrary”>
 <Property Name=”Title” Value=”ACME.gif” />
 </File>
 </Module>

</Elements>

 When referencing files within the Style Library from the master page, it is best to use a utility called
 SPUrl available to Publishing sites. SPUrl takes a string as an input and will automatically replace one
of two tokens allowed with the URL equivalent: ~sitecollection (for site collections) or ~site (for
SharePoint sites). For example, in Listing 7-7 where the image is provisioned at the root of the Style
Library, use the following ASP.NET markup in the master page to reference the image:

 <asp:image runat=”server”
 ImageUrl=”<% $SPUrl:~sitecollection/Style Library/ACME.gif%>” />

c07.indd 123c07.indd 123 5/8/08 7:06:22 PM5/8/08 7:06:22 PM

Chapter 7: Master Pages and Page Layouts

124

 Page Layouts
 The previous section covered master pages and a few different techniques for creating master pages in
Publishing sites. Master pages enable developers and designers to define the overall look and feel of the
Publishing site with just a single file, along with some additional branding files such as CSS or images.
Just as in ASP.NET 2.0 sites, SharePoint sites also leverage content pages that fill in the content
placeholders defined within a master page. Publishing sites take this a bit further by introducing a type
of content page called a page layout . Page layouts, when combined with the master page, define the
rendering and layout of a page. When the page layout is requested, SharePoint fetches the master page
referenced within the SPWeb.CustomMasterUrl property and merges the two together. Developers
and designers use page layouts to host editable regions of a page, implemented with Web Parts and
field controls.

 Page layouts have a special relationship with content types within a Publishing site. Each page layout
must be associated with exactly one content type. This content type must inherit from the Page content
type found in the Publishing Content Types group. Content types are used in a Publishing site to define
the schema and rules for a particular type of content. For example, a Press Release content type may
have fields for the title and byline, the date of the release, the press release body, optionally some
reference links, as well as references with short bios for other companies mentioned in the press release.
In addition, it may also have a special workflow associated with it defining a special approval process
for the press release.

 Keep in mind that the content type only defines the schema and rules for the type of content; it does not
address the presentation in any way. This is where page layouts come into play. Page layouts, when
combined with a master page, define the rendering/look and feel of a requested page. In addition,
developers can associate multiple page layouts with a single content type to give content owners the
utmost control in selecting different rendering options for a particular page type. When a content owner
initiates the process of creating a new page within a Publishing site, the first thing he or she has to do is
select a content type/page layout combination.

 Moreover, content owners are not restricted to the page layout that is selected at the time of page
creation. At any point in the future, even after the page has been published, a content owner can edit the
page and change the selected page layout. The only limitation is that the only page layouts available are
those associated with the content type selected when the page was created. This is because a page’s
content type cannot be switched from one content type to another after it has been created. In addition,
page layouts can only be associated with exactly one content type; no one page layout can be associated
with more than one content type.

 Creating Page Layouts
 The process of creating custom page layouts is very similar to the process of creating custom master
pages. The same customization versus development or customized versus uncustomized debate comes
into play when creating page layouts as it does with master pages. All the same concepts apply, so
instead of rehashing them again, refer to the discussion earlier, as well as the full explanation in
Chapter 2 .

 Developers are provided with one of two ways to create custom page layouts: using SharePoint Designer
or using Visual Studio (or some other text editor) and provisioning them into a SharePoint site using

c07.indd 124c07.indd 124 5/8/08 7:06:22 PM5/8/08 7:06:22 PM

Chapter 7: Master Pages and Page Layouts

125

Features. Just like the previous sections on creating master pages, the following two sections cover both
approaches to creating page layouts.

 Creating Page Layouts Using SharePoint Designer 2007
 Open SharePoint Designer and open an existing Publishing site by selecting File Open Site.
To create a new page layout, select File New. In the New dialog, select the SharePoint Content tab,
then SharePoint Publishing in the first column, and Page Layout in the center column. Before SharePoint
Designer will create the page layout, it needs to know the filename, the name of the page layout, and the
content type associated with this page layout (what defines the schema of the page). This page layout
will be based on the Press Release content type created in Chapter 6 , so use the following to complete the
New dialog and click OK (see Figure 7-6).

 Content Type Group — WROX

 Content Type Name — Press Release

 URL Name — PressRelease.aspx

 Title — Default Press Release

❑

❑

❑

❑

Figure 7-6

 Now the page needs some structure. In the code download for this book, a sample page layout is
provided named ACMEPressTmp.aspx . Open this file in a text editor, copy all the contents of the file,
and paste it into the ASPX file SharePoint Designer created as the page layout while in the Code view of
the page, replacing everything SharePoint Designer created. For now, skip the process of adding editable
fields to the page, as the focus is on simply creating a new page layout. Adding editable regions to the
page layout is addressed later.

c07.indd 125c07.indd 125 5/8/08 7:06:22 PM5/8/08 7:06:22 PM

Chapter 7: Master Pages and Page Layouts

126

 Save the changes to the page layout. Just like master pages created using SharePoint Designer, the
page layout is still checked out and unpublished. If development is happening in a local, isolated
environment, then it is not important to check in and publish the file. However, if this is a shared
development environment, then it is a good idea to go ahead and do so. Keep in mind that if the file is
not checked in and published, then the person who has it checked out is the only one who will be able to
render pages configured to use the page layout. The process of checking in and publishing the page
layout is no different from doing the same thing with master pages.

 With the page layout in the Master Page Gallery, content owners can now create pages based on the page
layout and the associated content type. Browse to a Publishing site and select Site Actions Create Page.
On the Create Page page, use the following information to create the new content page and click Create:

 Title — Press Release 1

 URL Name — PressRelease1

 Page Layout — (Press Release) Default Press Release

 SharePoint will create the page and the browser will refresh with the new page in Edit mote. Select
Submit for Approval at the top of the page to start the page approval workflow process. On the Start
“Parallel Approval”: PressRelease1 page, click Start. The page will then load with the Press Release 1
page in Design mode. To advance the page through the workflow, select the Approve button in the Page
Editing Toolbar. On the Workflow Tasks: Please approve DivisionArticle1 page, optionally enter any
comments and click the Approve button. The page will refresh with the Press Release 1 page, published,
in Display mode.

 Just as with the SharePoint Designer–created master page, note that when selecting the page layout
when creating a new page, all the page layouts had preview images associated with them, but the
custom page layout created with SharePoint Designer had a more stock preview image. The same
SharePoint Designer limitation exists with page layouts as with master pages. Therefore, to associate a
preview image with the page layout, developers need to go to the page layout list item within the Master
Page Gallery and set the Preview Image property manually.

 Again, just like the master page created using SharePoint Designer, the page layout resides exclusively
within the SharePoint site’s content database. The next section describes how to create a new page layout
as a file template living on the file system and provision it into a SharePoint site using a Feature as an
uncustomized page.

 Creating Page Layouts Using Visual Studio and Features
 Like master pages, creating page layouts with SharePoint Designer is straightforward with the
WYSIWYG interface and live preview of the page against the SharePoint site. However, like everything
else that can be done in SharePoint Designer, it has a downside: All the assets created and modified are
stored in the SharePoint content database, making it a challenge to integrate files into an organization’s
source control management system and software development life cycle, or to package changes up to
move between environments. Again, just like master page development, another approach is to create
page layout files as templates and provision them to SharePoint sites from the file system using a
Feature. This section demonstrates how to provision a page layout using a Feature into a SharePoint site.

❑

❑

❑

c07.indd 126c07.indd 126 5/8/08 7:06:23 PM5/8/08 7:06:23 PM

Chapter 7: Master Pages and Page Layouts

127

 There are two files in the code download for this book that will be used in the provisioning of a page
layout: ACMEPressTmp.aspx and ACMEPressPreviewTmp.gif . Copy these two files to a new folder
named PageLayouts within the Chapter7Pages Feature folder in the Chapter7Pages project, as shown
in Figure 7-7 .

Figure 7-7

 Now that the files are in the Feature, the next step is to modify the element manifest file, as shown in
Listing 7-8 . The section on master pages has already explained the different aspects of provisioning a
preview image, so the focus is only on the page layout this time around.

 Listing 7-8: Element manifest file provisioning page layouts

 <?xml version=”1.0” encoding=”utf-8” ?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <Module Name=”Master Page Preview Images”><!-- omitted for brevity --></Module>
 <Module Name=”Master Pages”><!-- omitted for brevity --></Module>
 <Module Name=”Styles”><!-- omitted for brevity --></Module>

 <Module Name=”Page Layout Preview Images”
 Url=”_catalogs/masterpage/Preview Images/WROX”
 Path=”PageLayouts”
 RootWebOnly=”TRUE”>
 <File Url=”ACMEPressPreviewTmp.gif”
 Name=”ACMEPressPreview.gif”
 Type=”GhostableInLibrary”>
 <Property Name=”Title”
 Value=”ACMEPressPreview.gif” />
 </File>
 </Module>
 <Module Url=”_catalogs/masterpage”
 Path=”PageLayouts”
 RootWebOnly=”TRUE”>
 <File Url=”ACMEPressTmp.aspx”
 Name=”ACMEPress.aspx”
 Type=”GhostableInLibrary”>
 <Property Name=”PublishingAssociatedContentType”
 Value=”;#Press Release;#

(continued)

c07.indd 127c07.indd 127 5/8/08 7:06:23 PM5/8/08 7:06:23 PM

Chapter 7: Master Pages and Page Layouts

128

Listing 7-8 (continued)

0x010100C568DB52D9D0A14D9B2FDCC96666E9F2007948130EC3DB064584E219954237AF3900242457E
FB8B24247815D688C526CD44D01;#” />
 <Property Name=”PublishingPreviewImage”
 Value=”~SiteCollection/_catalogs/masterpage/Preview
Images/WROX/ACMEPressPreview.gif, ~SiteCollection/_catalogs/masterpage/Preview
Images/WROX/ACMEPressPreview.gif” />
 <Property Name=”ContentType”
 Value=”$Resources:cmscore,contenttype_pagelayout_name;” />
 <Property Name=”Title”
 Value=”ACME Press Release” />
 </File>
 </Module>

 </Elements>

 Nearly everything in Listing 7-8 should be familiar with only one or two exceptions. First, the
value of the ContentType field is different because page layouts in the Master Page Gallery
conform to a different content type than master pages do. Second is the addition of a new field:
 PublishingAssociatedContentType . Recall that page layouts must be associated with a content type
that defines the schema and rules of a particular page, while the page layout defines the rendering.
When creating a page layout using SharePoint Designer, the first thing a developer must do is specify the
associated content type. That is what the field PublishingAssociatedContentType does. This field
expects values within a “;#” delimited string. The first value, “ Press Release ,” as in Listing 7-8 , is the
name of the content type, while the second value, “ 0x010100 ...”, is the ID of the content type.

 Next, add the new files to the DDF file to be included in the package, as shown in Listing 7-9 .

 Listing 7-9: Diamond Directive File for Chapter7Pages Feature

 .OPTION Explicit
.Set DiskDirectoryTemplate=CDROM
.Set CompressionType=MSZIP
.Set UniqueFiles=Off
.Set Cabinet=On
;**
DeploymentFiles\manifest.xml

.Set DestinationDir=Chapter7Pages
TEMPLATE\FEATURES\Chapter7Pages\feature.xml
TEMPLATE\FEATURES\Chapter7Pages\elements.xml

.Set DestinationDir=Chapter7Pages\MasterPages
TEMPLATE\FEATURES\Chapter7Pages\MasterPages\ACMETmp.master
TEMPLATE\FEATURES\Chapter7Pages\MasterPages\ACMEMasterPreviewTmp.gif

.Set DestinationDir=Chapter7Pages\Styles
TEMPLATE\FEATURES\Chapter7Pages\Styles\ACMETmp.css
TEMPLATE\FEATURES\Chapter7Pages\Styles\ACMETmp.gif

.Set DestinationDir=Chapter7Pages\PageLayouts
TEMPLATE\FEATURES\Chapter7Pages\PageLayouts\ACMEPressTmp.aspx
TEMPLATE\FEATURES\Chapter7Pages\PageLayouts\ACMEPressPreviewTmp.gif

c07.indd 128c07.indd 128 5/8/08 7:06:24 PM5/8/08 7:06:24 PM

Chapter 7: Master Pages and Page Layouts

129

 Finally, update the feature.xml file to include the additional files that have been added to the Feature,
as shown in Listing 7-10 .

 Listing 7-10: Feature definition for Chapter7Pages Feature

 <?xml version=”1.0” encoding=”utf-8” ?>
<Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”D56F0D2D-0107-424d-AA0D-7120329A23E6”
 Title=”Chapter 7 - Provisioning Master Pages and Page Layouts”
 Hidden=”FALSE”
 Scope=”Site”
 Version=”1.0.0.0”>

 <ElementManifests>
 <ElementManifest Location=”elements.xml” />
 <ElementFile Location=”MasterPages\ACMETmp.master” />
 <ElementFile Location=”MasterPages\ACMEMasterPreviewTmp.gif” />
 <ElementFile Location=”Styles\ACMETmp.css” />
 <ElementFile Location=”Styles\ACMETmp.gif” />

 <ElementFile Location=”PageLayouts\ACMEPressTmp.aspx” />
 <ElementFile Location=”PageLayouts\ACMEPressPreviewTmp.gif” />

 </ElementManifests>

</Feature>

 Follow the same steps as outlined earlier to create an updated WSP file, add it to the solution store,
deploy the solution, and activate the Feature. If the solution was deployed in the master page module,
use the STSADM.EXE operation upgradesolution to update what is already in the solution store.
Because the Feature has already been activated, perform a forced activation using the STSADM.EXE
operation activatefeature with an extra argument of –force , which reactivates the Feature even if
it is already active.

 Now when a content owner creates a new page, the new page layout is available in the selector, complete
with a preview image, as shown in Figure 7-8 .

Figure 7-8

c07.indd 129c07.indd 129 5/8/08 7:06:24 PM5/8/08 7:06:24 PM

Chapter 7: Master Pages and Page Layouts

130

 Adding Content Regions: Field Controls
and Web Part Zones

 A page layout with zero editable regions is pretty close to being utterly useless unless the page layout
contains some server controls that aggregate content or some static content. Therefore, with the page
layout created, usually the next task is to add some editable regions to the page. Two types of controls
can be added to a page: field controls and Web Parts.

 Adding Web Parts to a page layout is no different than adding Web Parts to another SharePoint page or
even an ASP.NET 2.0 page, for that matter: Add at least one Web Part zone to the page. A developer can
then optionally add Web Parts to the page layout, or leave the Web Part zone blank. Content owners
can drop Web Parts in the Web Part Gallery into the Web Part zone defined when creating and editing
pages. This enables developers to give the content owners some flexibility in managing content.

 Field controls, conversely, provide an additional level of control than that of Web Parts. Field controls,
which are bound to a specific field in the Pages list, are added to a page layout by a developer. Content
owners have the capability to manage the content within those controls, but cannot add, remove, or
move the field controls around on the page layout. This enables developers to enforce a certain look and
feel for sites requiring a more structured approach.

 Web Parts and field controls enable both developers and content owners different levels of control and
empowerment but there are many other differences between the two. The following table contains a list
of some additional differences between Web Parts and field controls.

Field Controls Web Parts

Content Storage In a field in the page’s underlying
SPListItem

Within the Web Part data of
the page

Personalization No Yes

Versioning Versioning tied to the page with
complete history

Versioning tied to page without
history

Who has ultimate control? Page designer/developer Page designer in placement of
Web Part zones; content owner
in managing of zone’s contents
(add/edit Web Parts within
Web Part zones)

When to use? Specific types of content must
appear in specified places on a
page; structured formatting/
branding

Structure of content on the
page (in part of a page) is not
important; gives content
owners full control

 While the preceding table contains a few differences between Web Parts and field controls, they all boil
down to one very core difference: the content within Web Parts is stored separate from the actual page
while content within field controls is stored within the page itself. Web Parts within a page layout,

c07.indd 130c07.indd 130 5/8/08 7:06:24 PM5/8/08 7:06:24 PM

Chapter 7: Master Pages and Page Layouts

131

or more specifically a Publishing site, are treated no differently than the rest of SharePoint . . . or
ASP.NET 2.0 for that matter. The data within a Web Part is stored separately from the page. When a page
is loaded, the Web Part Manager is responsible for retrieving the data from the personalization store
which is separate from the page. Field controls on the other hand store no data . . . they are used to
simply provide an editing and display experience for data stored within a specific field in the underlying
 SPListItem of the page requested. When a page is updated, a new version is created. Because the data
in field controls is stored in fields, this data is versioned however since the data within Web Parts is
stored separately from the page, it is not versioned.

 Where the data is stored with respect to Web Parts vs. field controls should be a very important factor for
developers when creating Publishing sites. If a project calls for page versions to be retained due to
industry regulation or company policy or if a project requires strict control of the placement and type of
content on the page, field controls should be used. However, if the versioning of pages is not as
important and / or content owners need to have an extra level of control on the content pages, then
using Web Parts may make more sense. In addition, both field controls and Web Parts can be used on the
same page layout .

 The next two sections will demonstrate how to add Web Parts and field controls to page layouts. Later in
the book a full chapter is devoted to each topic (field controls in Chapter 10 : Field Types and Field Controls ,
Web Parts in Chapter 11 : Web Parts) to go into more depth on such things like management, configuration
as well as creating custom Web Parts and field controls. While the next two sections demonstrate adding
Web Part zones and field controls to page layouts using SharePoint Designer, know that all SharePoint
Designer is doing is adding text to the source of the page layout file. Therefore, these same changes can
be made by hand to page layouts created as templates and provisioned into the Master Page Gallery
using Features.

 Adding Web Parts
 If one is not already open, open a page layout through an existing SharePoint site using SharePoint
Designer (using File Open Site followed by opening the desired page layout. In order to add Web Part
zones to the page, the Web Parts task pane needs to be loaded. If it is not present in SharePoint Designer,
select Task Panes Web Parts to load the Web Parts task pane. At the bottom of the page are two
buttons: one for adding Web Parts and another for adding Web Part zones. Place the cursor somewhere
on the design surface of the page layout where a Web Part zone is desired. Then click the New Web Part
Zone button within the Web Parts tool window. The properties of the new Web Part zone can be
modified using either the attributes on the <WebPartPages:WebPartZone /> server control tag or the
Tag Properties task pane when the Web Part zone is selected.

 Adding Field Controls
 If one is not already open, open a page layout through an existing SharePoint site using SharePoint
Designer (using File Open Site followed by opening the desired page layout). All the fields that have
been defined in the content type associated with the page layout are displayed in the Toolbox task pane
in SharePoint. Toward the bottom of the SharePoint Controls section notice two groups: Page Fields and
Content Fields. The first group, Page Fields, contains a list of all the fields from content types the
associated content type inherits from. The second group, Content Fields, contains a list of all the fields
defined in the content type associated with the page layout.

c07.indd 131c07.indd 131 5/8/08 7:06:25 PM5/8/08 7:06:25 PM

Chapter 7: Master Pages and Page Layouts

132

 Switch to Design view if it is not already selected and drag the Press Release Byline and Press Release
Body field controls into the PlaceholderMain content placeholder from the Content Fields group
within the SharePoint Controls section of the Toolbox task pane in SharePoint Designer, as shown in
Figure 7-9 .

Figure 7-9

 Switch back to the Code view and notice the server control tags added by SharePoint Designer.
SharePoint Designer uses the appropriate field control, which is used to edit and present the content
stored in a field, depending on the type of the field. For instance, if a field is a single line of text such as
the Press Release Byline, the <SharePointWebControls:TextField /> is used. However, in the case
of the Press Release Body field, which is of type Publishing HTML, SharePoint Designer adds the
 <PublishingWebControls:RichHtmlField /> control. Notice that when the two controls were
added to the page, two <%@ Register %> directives were added to the top of the page layout by
SharePoint Designer. Like ASP.NET 2.0 pages, this is necessary to tell the .NET Framework which
assembly contains the logic for the server controls on the page.

 With the field controls added to the page layout, save all changes, check in, and publish the page. Using
the browser, go back to the page previously created using the page layout (or create a new one), and
switch to Edit mode by selecting Site Actions Edit Page. Notice the two new editable areas on the page
added using the field controls!

c07.indd 132c07.indd 132 5/8/08 7:06:25 PM5/8/08 7:06:25 PM

Chapter 7: Master Pages and Page Layouts

133

 When adding field controls to a page layout outside of SharePoint Designer, keep in mind that not only
are the server control tags for the field controls required, such as <SharePointWebControls:
TextField /> , but the <%@ Register %> directives for the added field controls are required as well.

 Building Master Pages and Page
Layouts As Templates

 This chapter has demonstrated two approaches to creating master pages and page layouts: one creating
customized instances using SharePoint Designer and the other creating uncustomized instances using
Visual Studio and Features. Thankfully, neither option is “right” nor “wrong,” as it depends entirely on
the project and development team implementing the Publishing site. However, some readers may
assume that while the uncustomized, template approach provides better portability, the loss of
WYSIWYG from the SharePoint Designer development approach is quite significant and therefore
discard the Visual Studio and Feature approach too quickly.

 Recall from Chapter 2 that one of the most significant downsides to adopting the SharePoint
development approach (Visual Studio + Features) compared to the SharePoint customization approach
(SharePoint Designer) is the lack of tools supporting the development approach. However, don’t let this
fact lead you to simply eliminate one approach. Developers can still use SharePoint Designer as a
powerful development environment for creating new master pages, page layouts, CSS files, and other
assets in a localized development environment. Those same developers can then save those files straight
from the SharePoint site to the local file system, where they can be added to a Feature for provisioning.

 Keep one thing in mind: The names of the files provisioned must be different from those that are already
present in the SharePoint site. One way to get around this is to add an underscore (“_”) as the prefix of
the filename when creating files in SharePoint Designer. Then, when the files are saved locally and
added to a Feature, remove the underscore prefix. This way, developers do not have to go through the
process of cleaning up and removing files created in a development environment or maintaining two
separate development environments.

 Delegate Controls
 Chapter 4 presented Features as a way to address the limitation in previous versions of SharePoint of not
being able to easily attach new (or replace existing) functionality in SharePoint sites. Microsoft added yet
another capability to easily inject custom user controls or server controls into pages for new content or to
replace existing content defined by Microsoft in the out-of-the-box site templates or by custom
developed templates and pages.

 These replaceable areas within pages (master pages, content pages, page layouts, etc.) are implemented
using delegate controls. Delegate controls are a special type of server control (<SharePoint:
DelegateControl />). Each delegate control has a unique ID, specified using the ControlId attribute.
This ID is used to register specific controls (user controls or server controls) using the site element
 <Control /> within element manifest files in Features. The advantage of using Features is twofold.
First, because Features are scoped, a delegate control can be scoped, so the addition/replacement can be
as limited as the current site, or as far reaching as the entire SharePoint farm. Second, Features empower
site owners to add/replace functionality via Feature activation. When controls are registered via

c07.indd 133c07.indd 133 5/8/08 7:06:25 PM5/8/08 7:06:25 PM

Chapter 7: Master Pages and Page Layouts

134

Features, one of the properties that must be set is the order in which to add the control. This is specified
using the <Control Sequence=”” /> attribute.

 How does it work? When a page is requested, the delegate control server tag is encountered by the .NET
Framework when executing the compiled page. The delegate control looks at an internal list in
SharePoint for all the controls registered for the specific ControlId specified in the <SharePoint:
DelegateControl /> server control tag within the current scope (site, site collection, Web application,
or farm). If no controls are registered for the specific instance, then nothing is rendered and the delegate
control acts as if it were never on the page. If one or more controls are registered for the specific instance,
then the control with the lowest sequence number is added in place of the delegate control.

 This enables developers to replace out-of-the-box functionality in SharePoint. In fact, this is exactly how
Microsoft implemented the Search box in the upper right-hand corner of a SharePoint site. A quick search of
the WSS 3.0 default.master page for the location of the Search box will yield no search-related controls;
instead, a delegate control named SmallSearchInputBox is present. A farm-scoped Feature named
 ContentLightup registers the control [..]\12\TEMPLATE\ CONTROLTEMPLATES\SearchArea.ascx
with a sequence number of 100. When MOSS 2007 is installed and the Standard license is applied, a Web
application–scoped Feature named OSearchBasicFeature registers a server control with a sequence of 50.
This replaces the out-of-the-box WSS 3.0 Search box with a more full-featured search interface, as MOSS
2007 Standard adds additional search capabilities to WSS 3.0. In addition, when an Enterprise license is
applied to MOSS 2007, a Web application–scoped Feature named OSearchEnhancedFeature registers yet
another server control with a sequence of 25, providing even more functionality than the MOSS 2007
Standard search control provides.

 Creating Delegate Controls
 Creating controls for use within a delegate control is quite straightforward. In fact, it is virtually no
different from creating standard ASP.NET 2.0 user controls or server controls. Consider the following
user control that does nothing other than write out a simple string:

 <%@ Control Language=”C#” %>
<div>hello world</div>

 The file this code is stored in, Chapter7DemoDelegateControl.ascx , should be deployed to the
 [..]\12\TEMPLATE\CONTROLTEMPLATES folder on the server. In order to register this control a new
Feature must be created. The Feature definition file contains nothing special, but the element manifest
referenced in the feature.xml file contains the CAML shown in Listing 7-11 to add the sample user
control in place of the existing search controls.

 Listing 7-11: Feature registering a delegate control

 <?xml version=”1.0” encoding=”utf-8” ?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>

 <Control Id=”SmallSearchInputBox”
 Sequence=”20”
 ControlSrc=”/_controltemplates/ProMossWcm/Chapter7DemoDelegateControl.ascx” />

</Elements>

c07.indd 134c07.indd 134 5/8/08 7:06:26 PM5/8/08 7:06:26 PM

Chapter 7: Master Pages and Page Layouts

135

 Notice that the <Control /> Id attribute is the string corresponding to the search delegate control
defined in the default WSS 3.0 master page, and the Sequence is set to 20 . This number will set the new
control in front of all other search controls until the Feature is deactivated or another control is registered
in front of this one with a lower sequence number.

 What about using a server control as the delegate control? Consider if the code in Listing 7-12 is
compiled into a strong-named assembly and deployed to the server’s Global Assembly Cache (GAC).

 Listing 7-12: Server control with public properties

 namespace WROX.ProMossWcm.Chapter07 {
 public class SampleServerDelegateControl : Control {
 private string _textTitle = string.Empty;

 protected override void CreateChildControls () {
 base.CreateChildControls();

 Label label = new Label();
 label.Attributes.Add(“style”,”border: solid 1px navy;”);
 label.Text = “Server delegate control. Value TextTitle: “ +_textTitle;

 this.Controls.Add(label);
 }

 public string TextTitle {
 set {
 _textTitle = value;
 }
 get {
 return _textTitle;
 }
 }
 }
}

 The element manifest registering the server control would look like the code shown in Listing 7-13 .

 Listing 7-13: Element manifest using server controls in a delegate control

 <?xml version=”1.0” encoding=”utf-8” ?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>

 <Control Id=”SmallSearchInputBox”
 Sequence=”15”
 ControlAssembly=”Chapter7, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c591e70cfdf9ce4f”
 ControlClass=”WROX.ProMossWcm.Chapter07.SampleServerDelegateControl”>
 <Property Name=”TextTitle”>Chapter 7</Property>
 </Control>

</Elements>

 Notice the <Property /> child element within the <Control /> element. If the server control contains
public properties, then the Feature can set the value of these public properties using this technique,

c07.indd 135c07.indd 135 5/8/08 7:06:26 PM5/8/08 7:06:26 PM

Chapter 7: Master Pages and Page Layouts

136

as shown here. Completing the Feature containing a server control delegate, control registration, deploying,
and activating it within a WSS 3.0 site will result in something similar to what is shown in Figure 7-10 .

Figure 7-10

 The complete code for both Features registering delegate controls using both user controls and server
controls can be found in the code download for this book. Note that delegate controls implemented with
server controls require the assembly containing the server control to be registered as a safe control in the
Web application’s web.config file.

 Summary
 This chapter explained how the plumbing works within SharePoint in the construction of a page when a
request is received for a page within a Publishing site. The construction process is a bit different from a
standard SharePoint request due to the addition of page layouts. Also covered in this chapter was master
pages and how Microsoft leverages the master page model within SharePoint. Some of the more
significant differences with master pages within a SharePoint site are that master pages are stored
(customized or uncustomized) in the Master Page Gallery, rather than the file system, and content pages
do not explicitly set the master page. Instead, dynamic tokens are used to tell SharePoint which master
page to use from one of two options set at the SharePoint site level.

 In order to provide a template page creation and rendering approach for facilitating content-centric
sites on SharePoint, Microsoft added the concept of page layouts to MOSS 2007. Page layouts are used
to define the rendering of a specific type of page, defined using SharePoint content types. SharePoint
content types define the schema, special business rules, and workflow, while the page layout or multiple
page layouts are, when combined with master pages, used to define the rending and look and feel of
a page.

 For both master pages and page layouts, two approaches were covered with respect to creating these
assets within a SharePoint site. The first option for both, creating master pages and page layouts using
SharePoint Designer, creates files within the SharePoint site as customized files residing exclusively
within the SharePoint content database. The second option involves using Visual Studio and Features to
define the files as templates and provision them into SharePoint sites as uncustomized files.

 Finally, the chapter covered the concept of delegate controls, which provide developers with a very easy
way to either add or remove functionality to or from an existing SharePoint site, but without
customizing the original files provided by Microsoft out of the box. This approach, recommended by
Microsoft, protects developers from having their files overwritten when a hotfix, service pack, or new
version is released.

c07.indd 136c07.indd 136 5/8/08 7:06:26 PM5/8/08 7:06:26 PM

 Navigation

 Every Web site, regardless of the underlying technology used to implement it, uses some sort of
navigation. Properly implemented navigation makes a Web site usable and the content within the
site findable. SharePoint sites are no different, including Publishing sites. Thankfully, not much is
unique when it comes to navigation in sites based on Windows SharePoint Services (WSS) 3.0,
including Publishing sites, because SharePoint is completely dependent upon the navigation
provider model included in ASP.NET 2.0.

 This chapter explains what the ASP.NET 2.0 navigation provider model is and how SharePoint
implements it. Also covered in this chapter are the various customization options available to site
owners, administrators, developers, and designers. Because SharePoint is completely dependent
upon the ASP.NET 2.0 navigation provider model, this chapter does not go into great depth about
creating custom navigation components. Instead, readers are encouraged to review ASP.NET 2.0
documentation on this subject.

 ASP . NET 2.0 Navigation Provider Model
 Creating navigation components has traditionally been a requirement in every application. This
was because each navigation component was tightly coupled to the underlying site architecture.
For example, creating custom navigation components in WSS 2.0 sites was quite complicated, as
developers were required to write the code that would walk through the SharePoint object model
to determine the structure of the navigation.

 The other component of all navigation controls was the rendering piece. This part was responsible
for taking the navigation data structure and generating the HTML used to render the navigation
control. Many third - party organizations were started that built navigation controls other
companies could purchase to implement sophisticated navigation implementations. Unfortunately,
these components were usually somewhat challenging to implement, as developers had to
incorporate them into a project ’ s code, which pulled the data part of the navigation out of the
underlying site structure.

c08.indd 137c08.indd 137 5/8/08 7:07:06 PM5/8/08 7:07:06 PM

Chapter 8: Navigation

138

 Microsoft addressed this challenge in ASP.NET 2.0, adding something called the navigation provider model
to make it much easier to implement navigation in Web sites. The navigation provider model essentially
divides the navigation into two pieces: the rendering piece and the piece responsible for getting the data
from the underlying site architecture. Site map data sources are used to represent the hierarchical
structure of a site, exposing the structure as a SiteMapNodeCollection . The SiteMapDataSource
object is then associated with a navigation rendering control, which takes the SiteMapNodeCollection
and uses it to generate the HTML necessary to render the navigation.

 Site map data sources get the data from the underlying site architecture using the provider model
approach. By default, ASP.NET 2.0 sites use the XmlSiteMapProvider , which assumes the site
navigation is stored in the web.sitemap file.

 Because WSS 3.0 is built on top of ASP.NET 2.0, it can leverage this navigation provider model by
default. In the case of SharePoint, the navigation needs to be generated from the SharePoint site
structure. To achieve this, Microsoft created a few custom site map provider objects that know how to
walk the SharePoint object model. Specifically, WSS 3.0 includes a few providers, and installing Office
SharePoint Server (MOSS) 2007 adds a few additional providers.

 One big advantage to this model is that now it is very easy to incorporate new navigation rendering
controls into a SharePoint site. Any navigation control that implements the ASP.NET 2.0 navigation
provider model can now be used in a SharePoint site.

 Customizing Site Navigation
 While SharePoint ’ s navigation will meet the needs of many projects, it is unlikely to satisfy all business
requirements. Thankfully, SharePoint provides a few different vehicles for customizing the navigation,
especially in Publishing sites. Some of these include browser - based changes that can be made by site
owners, while others are things that can be done by designers or developers by modifying the markup of
site map data sources and rendering controls or even by administrators configuring the underlying
navigation providers.

 Browser - Based Customizations
 Publishing sites have an extra navigation customization capability that can be implemented by site
owners through the browser. Navigating to the site ’ s Site Settings page and selecting Navigation under
the Look and Feel section takes the user to the Site Navigation Settings page (see Figure 8 - 1). From this
page the site can be configured to include or exclude either subsites and/or pages from the main
navigation. In addition to the scoping options, owners can also elect to manually or automatically sort
the contents of the navigation.

c08.indd 138c08.indd 138 5/8/08 7:07:07 PM5/8/08 7:07:07 PM

Chapter 8: Navigation

139

 Site owners can also manually augment both the global navigation (typically the top navigation)
and the current navigation (typically the left - hand navigation), such as manually reordering the
items, and adding custom headings (seen as sections) and links. This facilitates adding custom links
to the navigation that are not part of the existing site structure, such as links to partner companies or
news articles.

 Customizing the Navigation Control
 Another type of customization available to site developers and designers is customizing the navigation
rendering control and the site map data sources. This is done by customizing the markup associated
with the master page containing the controls. The first customizations that can be done are to the
rendering control. This does not affect what data is shown in the navigation; rather, it affects how the
data is displayed.

 Microsoft has included a customized implementation of the Menu control that ships with ASP.NET 2.0
for SharePoint sites, known as the Microsoft.SharePoint.WebControls.AspMenu control. This
control directly inherits from the System.Web.UI.WebControls.Menu control. The reason for
the custom SharePoint implementation is to simply fix a few known issues with the ASP.NET 2.0 Menu
control, such as a localization issue whereby in right - to - left locales, the fly - out arrow continues to point
in the left - to - right locale. When working with the SharePoint AspMenu control, it is best to rely on the
ASP.NET 2.0 documentation for the Menu control (www.andrewconnell.com/go/219), as it is more
complete and comprehensive.

 Figure 8 - 1

c08.indd 139c08.indd 139 5/8/08 7:07:07 PM5/8/08 7:07:07 PM

Chapter 8: Navigation

140

 Some of the customizations that can be implemented on the AspMenu control are to change the rendering
direction of the navigation to either horizontal or vertical using the Orientation attribute, setting the
number of levels to render using the StaticDisplayLevels attribute, and setting the number of levels
of fly - outs to include the MaximumDynamicDisplayLevels attribute. Designers can also customize the
rendering styles of the navigation control using CSS classes. All of these changes can be done in markup
with no compiled code.

 Customizing the Navigation Site Map Data Source
 In addition to customizing the navigation rendering control, developers and designers can also
customize the site map data source provided in SharePoint that is passed to the rendering controls.
The site map data source used in Publishing sites, Microsoft.SharePoint.Publishing.Navigation
.PortalSiteMapDataSource , has a few properties that are used to massage the site hierarchical data
returned from the navigation providers. Some of the attributes developers can configure are as follows:

 ShowStartingNode — This attribute includes or excludes the starting node from the
navigation. The starting node is usually the root node of the site collection.

 StartFromCurrentNode — This attribute should always be left set to true , as this value tells
the data source to use its own logic to determine where to start.

 TreatStartingNodeAsCurrent — This attribute determines whether the data source ’ s
starting node is treated as the current node in the navigation. This is helpful when a section of a
site needs to use its own navigation and not include portions of the site hierarchy above or
parallel to it.

 Three additional attributes can be used to provide context and node - type trimming of the site hierarchy.
All accept a single value or a comma - delimited list of values. The values can be Area (meaning a
SharePoint site), Page (meaning a Publishing page), Heading (meaning a manually created heading on
the Site Settings Navigation page), and AuthoredLink (meaning a manually created page on the Site
Settings Navigation page). The attributes are as follows:

 TrimNonCurrentTypes — The values listed in this attribute will remove those types of nodes
that are not present directly beneath the current node. In other words, it removes all of those
node types that are not in the child nodes collection of the current node.

 TrimNonAncestorTypes — The values listed in this attribute will remove those types of nodes
that are not present directly beneath the current node or any of its ancestors.

 TrimNonAncestorDescendentTypes — The values listed in this attribute will remove those
types of nodes that are not present directly beneath the current node or any of its ancestors or
descendents.

 Customizing the Navigation Provider
 The site map data sources get their data from the navigation providers that ship with SharePoint. The
WSS 3.0 installation contains a few navigation providers, but the ones included with MOSS should be
used in Publishing sites because they are the ones that leverage the highly performant
 PortalSiteMapProvider object previously covered.

❑

❑

❑

❑

❑

❑

c08.indd 140c08.indd 140 5/8/08 7:07:07 PM5/8/08 7:07:07 PM

Chapter 8: Navigation

141

 All the navigation providers are registered at the Web application level in the web.config file shared by
all site collections in the Web application. The primary job of the providers is to examine the SharePoint
site hierarchy and incorporate any changes made through the API or using the Site Navigation Settings
page in each site ’ s Site Settings page. In addition, they also perform any necessary security trimming on
the navigation hierarchy before passing the structure back to the site map data sources.

 Microsoft provides a few variations of the PortalSiteMapProvider control by passing in one of three
navigation types, set using the NavigationType attribute. The three values are Global , Current , and
 Combined . Global is used to get the links from the top navigation bar collection. Current is used to
get the links from the Quick Launch navigation collection. Combined performs a union of the two
previous values.

 Four additional public properties are available to configure what types of nodes are included in the
navigation data. First, the IncludeSubSites and IncludePages properties accept one of three
values: Always , PerWeb , and Never . These tell the navigation provider whether the settings on the
Site Navigation Settings page should be applied (PerWeb), or ignored (Always or Never). The
 IncludeHeadings and IncludeAuthoredLinks properties are Boolean values that enable the site
administrator to allow or block the inclusion of custom links and headings in the navigation.

 Customizing Navigation with the API
 Another navigation customization option available to developers is to use the SharePoint API. Each
SharePoint site has a Navigation property that contains a reference to both the top navigation as
well as the Quick Launch navigation. Adding new items to the navigation involves creating new
 Microsoft.SharePoint.Navigation.SPNavigationNode objects and adding them to the
appropriate navigation collection, as shown in Listing 8 - 1 .

 Listing 8 - 1: Adding nodes to the top and Quick Launch navigation

SPWeb site = SPContext.Current.Web;

// get a reference to the top navigation

SPNavigationNodeCollection topNavigation = site.Navigation.TopNavigationBar;

// or get a reference to the Quick Launch navigation
// SPNavigationNodeCollection quickLaunchNav = site.Navigation.QuickLaunch;

// create new drop down menu in the navigation

SPNavigationNode newMenu = new SPNavigationNode(“New Section”, “”, false);

// add the new menu to the end of the top nav bar

topNavigation.AddAsLast(newMenu);

// add a custom link

newMenu.Children.AddAsLast(new SPNavigationNode(“Some Custom Link”,
“http://www.wrox.com”,true));

c08.indd 141c08.indd 141 5/8/08 7:07:08 PM5/8/08 7:07:08 PM

Chapter 8: Navigation

142

 Creating Custom Navigation Components
 At times the provided navigation rendering controls, site map data sources, and navigation providers
may not suit the project ’ s requirements. The most common custom development topic that comes up
involves creating custom navigation rendering controls. However, developers and those implementing
SharePoint sites should look to third - party component developers before building their own. The reason
is simple: Most navigation controls can be purchased for a fraction of what it would cost to actually
build the control. In addition, the purchased control usually provides significantly more functionality
than what would normally be built into a component. Usually the only exception to this rule is when
navigation uses images in the implementation, rather than text. No canned control can expect the exact
images to be used; therefore, these are usually built from scratch.

 Thankfully, there is nothing special about building custom navigation components for SharePoint sites.
All the same rules apply that are involved when creating custom navigation controls for traditional
ASP.NET 2.0 Web sites. Therefore, the recommendation is to rely on the ASP.NET 2.0 documentation,
as well as any sources of assistance in creating custom components.

 Performance and Usability Considerations
 Because navigation controls appear on nearly every single page in a content - centric site, anyone
implementing Publishing sites should exercise caution when creating such sites. A poorly performing
navigation control can cripple a page and even an entire site. Attention should also be paid to the
usability of the navigation controls. If the site ’ s users cannot make sense of or easily use the site
navigation, it is not serving its purpose and should be addressed.

 PortalSiteMapProvider
 The navigation controls provided in MOSS — specifically, the navigation providers — utilize a
very powerful and performant object called Microsoft.SharePoint.Publishing.Navigation
.PortalSiteMapProvider . The job of the PortalSiteMapProvider is to expose the SharePoint site
hierarchy to site map data sources that can then massage the hierarchy before passing it along to
the rendering controls. One of the unique characteristics of the PortalSiteMapProvider is the
component ’ s performance. It boasts a sophisticated, built - in caching mechanism to ensure that
navigation controls are never the cause for a poorly performing site, and it has been optimized for
cross - list and cross - site queries. However, like many other things in SharePoint, it cannot cross the
boundaries of site collections.

 When the PortalSiteMapProvider receives a request for data using one of the retrieval methods, it
queries the data in SharePoint to obtain a set of results. It inserts these results into cache so that the next
time the query is executed it will not have to issue the expensive results. Instead, it simply performs a
few checks on the data and uses the results of the previous query. The three retrieval nodes most
commonly used are as follows:

 GetCachedList() — This method returns a single SharePoint list as a PortalListSiteMapNode
object.

 GetCachedListItemsByQuery() — By far the most commonly used, this method returns a
collection of PortalListItemSiteMapNode objects from the results of a specific query passed
in using the SPQuery object.

❑

❑

c08.indd 142c08.indd 142 5/8/08 7:07:08 PM5/8/08 7:07:08 PM

Chapter 8: Navigation

143

 GetCachedSiteDataQuery() — This method returns data from a specified SharePoint site as
an ADO.NET DataTable from the provided query specified using the SPSiteDataQuery
object.

 These methods include all the necessary logic required to add and fetch the results from previously
executed queries, so developers are free to just use the PortalSiteMapProvider ; no special
configuration is required. Using the PortalSiteMapProvider in code is fairly straightforward.
Listing 8 - 2 contains the code to select all the pages in the Press Releases subsite that have been
published since 2005.

 Listing 8 - 2: Selecting all press releases published since 2005 with the
PortalSiteMapProvider

PortalSiteMapProvider psmp = PortalSiteMapProvider.CurrentNavSiteMapProvider;

// get instance of the Press Releases site
PortalWebSiteMapNode prNode = psmp.FindSiteMapNode(“/PressReleases”) as
PortalWebSiteMapNode;

// get all Press Releases published since 2005
SPQuery query = new SPQuery();
query.Query = “ < Where > < Geq > < FieldRef Name=’ArticleStartDate’/ > < Value
Type=’DateTime’ > 2005-01-01T12:00:00Z < /Value > < /Geq > < /Where > ”SiteMapNodeCollection
pages = psmp.GetCachedListItemsByQuery (prNode, “Pages”, query,
SPContext.Current.Web);

 When using the PortalSiteMapProvider , developers should consider a few things ahead of time, as
there are two occasions when it is not suitable. First, because the PortalSiteMapProvider internally
caches the results of previously run queries, it should only be used for queries that are run frequently,
where “ frequently ” is defined as an interval less than that of the duration something remains in cache
(by default, three minutes). Navigation fits this model very well, hence the reason why it is the
workhorse for the navigation controls in Publishing sites.

 However, leveraging cache to reduce or eliminate round - trips to the database comes at a cost: The
results from previously executed queries are only kept in cache for a limited time. If the time between
two queries is greater than the time the results are kept in cache, then the PortalSiteMapProvider is
actually doing more harm than good. That ’ s because it is incurring the overhead of adding the results to
cache after retrieving them from the executed query. If the data in cache is invalidated before the query is
run again, then no benefit is being realized; and in fact the process is actually slower than not using the
 PortalSiteMapProvider because it has the extra burden of dealing with the cache.

 In addition, the PortalSiteMapProvider should not be used when the underlying data being queried
changes very frequently. The reason for this is related to the behavior of the PortalSiteMapProvider ,
which checks the SharePoint change log to determine whether the data being queried has changed
before using the results stored in cache. If the data has changed, then it invalidates the results in cache
and reexecutes the query. If the underlying data is changing very frequently, then subsequent queries
will not pull data from the cache but instead always reexecute the query against the SharePoint
object model.

❑

c08.indd 143c08.indd 143 5/8/08 7:07:08 PM5/8/08 7:07:08 PM

Chapter 8: Navigation

144

 Table of Contents Web Part
 Sometimes sections of a site can become quite populated with content. For example, the section that
contains company press releases would likely grow to have quite a few pages within it over time. Some
sites include the pages in the main navigation of the site. For sections with a large amount of content,
this is not the best practice because navigation can quickly become unusable by site visitors. In this case,
consider utilizing the Table of Contents Web Part on the default page of the site. Configure the main
navigation for the site to exclude pages but display a link to the section. Then, on the home page of that
section, configure the Table of Contents Web Part to show the content within the section.

 Summary
 This chapter has shown how to customize and manipulate SharePoint navigation in various ways,
available to individuals serving different roles with respect to a Publishing site. Administrators can control
the data passed back to the site map data sources through the providers, site owners can customize
the navigation using the Site Navigation Settings page, and developers and designers can customize the
actual rendering controls and data sources through markup. Developers can also create custom rendering
controls, site map data sources, or providers. However, it is recommended that you look to third - party
companies to purchase navigation rendering controls and to rely on the provided rendering controls.

c08.indd 144c08.indd 144 5/8/08 7:07:09 PM5/8/08 7:07:09 PM

 Accessibility

 Accessibility is a popular and relevant topic as more and more companies leverage the Internet as
a vehicle for their business. With the growing popularity of SharePoint — specifically, Microsoft
Office SharePoint Server (MOSS) 2007, used as both a collaboration tool and to facilitate the
creation of content - centric sites — accessibility is now a very important factor in evaluating
SharePoint for many organizations.

 In the past, SharePoint has not had a great track record regarding creating accessible
implementations. One challenge involved in creating accessible SharePoint sites was that it
required modifying many files. In addition, some of the underlying rendering components could
not be customized easily — and often it was not even possible.

 While the latest release of SharePoint does not ship conforming to any specific standards out - of -
 the - box (OOTB), the new layered architecture makes it much easier to customize the rendered
output. This makes it possible to create accessible solutions that meet accepted guidelines. In
addition, Microsoft has teamed with one of their partners in order to provide a jump - start on
creating accessible sites. The Accessibility Kit for SharePoint provides not only a significant
number of components that can be reused, but also a fantastic educational opportunity to
understand some different approaches to creating accessible Publishing sites.

 This chapter does not walk through the process of creating an accessible site — each site is very
different and such an exercise would turn into a discussion about HTML. Instead, the goal of this
chapter is to provide insight into what it means to create an accessible site, outline how to read and
understand the various guidelines, and suggest some techniques that can be leveraged in creating
accessible Publishing sites.

 What Is an Accessible Web Site?
 The primary motivation behind having an accessible site is to ensure that users with a disability
can consume a Web site without being put at a disadvantage. Disabilities in the context of Web
sites fall into two categories: visual and interactive . Visual disabilities, of course, refer to those users

c09.indd 145c09.indd 145 5/8/08 7:07:28 PM5/8/08 7:07:28 PM

Chapter 9: Accessibility

146

who are blind and cannot see the screen. These users typically use either screen readers that verbally
read aloud the content of a Web page for the user to hear or Braille displays.

 Refer to the screen reader page on Wikipedia for more information on screen readers:
www.andrewconnell.com/go/220 .

 Another visual impairment affects those who have problems with contrast, so Web pages that utilize
different shades of colors that are not very distinct from one another can cause issues. Users may also be
prone to photosensitive epilepsy caused by pages that contain flickering or flashing content in the range
of three flashes per second (Hertz) or when screen elements change from dark to light very quickly.

 The other types of impairment that accessibility covers involve interactive issues. For instance, users
may not be able to use a mouse. In this case, users rely on the keyboard for all interaction, including
navigating menus and entering values in forms. Other users may not have access to a keyboard and
have to speak commands.

 Note that creating accessible sites so disabled or impaired users can have the same or near - identical
experience as those who are not impaired is not the only goal. Creating accessible sites also yields many
other advantages that can go straight to the bottom line and have an economic impact on a Web site.
These economic reasons are covered later in this chapter.

 Many sites are not designed with accessibility in mind. However, many organizations and government
entities require sites to meet certain accessibility standards. Recently, some countries have even adopted
certain laws and standards that make a company liable if its site does not meet certain guidelines. With
so many organizations, governments, and companies requiring accessible sites, the World Wide Web
Consortium (W3C) has created a set of standards, or guidelines, for creating accessible Web sites. These
guidelines are generally accepted by the community at large to be the standard for all accessibility
requirements.

 Keep one very important point in mind when creating accessible Web sites: It is not only developers and
designers who need to be aware of Web accessibility standards, but also the content owners. Subject
matter experts (SME) who author and edit content on Web sites need to be knowledgeable about what
can cause issues with users who have trouble consuming non - accessible Web sites.

 Measuring Accessibility
 As mentioned earlier, the World Wide Web Consortium (W3C) has crafted some guidelines, standards,
and measures for creating accessible Web sites, all published on their site: www.andrewconnell.com/
go/221 . As stated on their Web site, the W3C is

 . . . an international consortium where Member organizations, a full - time staff, and the
public work together to develop Web standards. W3C ’ s mission is: To lead the World Wide
Web to its full potential by developing protocols and guidelines that ensure long - term
growth for the Web.

c09.indd 146c09.indd 146 5/8/08 7:07:29 PM5/8/08 7:07:29 PM

Chapter 9: Accessibility

147

 The consortium, through the hard work of many individuals, publishes standards otherwise known as
 W3C recommendations that developers and designers alike can use to create what are generally referred to
as accessible or “ valid ” Web sites. It does so under the Web Accessibility Initiative (WAI), which works
with people all around the globe to create standards and guidelines to make Web sites more accessible to
people with disabilities. The WAI (www.andrewconnell.com/go/222) has identified three components
of accessibility:

 Web Content Accessibility Guidelines (WCAG) — This set of guidelines is used by developers,
designers, and Web authoring and accessibility evaluation tools.

 Authoring Tool Accessibility Guidelines (ATAG) — This set of guidelines pertains to Web
authoring tools.

 User Agent Accessibility Guidelines (UAAG) — This set of guidelines is used by clients that
consume Web sites, such as browsers and media players, including screen readers.

 Because this book is targeted to developers and the developer experience in creating MOSS 2007 Web
Content Management (WCM) Publishing sites, only the WCAG will be addressed.

 The WCAG, originally published as v1.0 in 1999, will be replaced by the 2.0 version, which is in the late
stages of review. The more current 2.0 version is designed to be easier to use and understand as well as
easier to test with automated testing frameworks. However, because the WCAG 2.0 is so new, it is likely
many organizations will still refer to WCAG 1.0 when measuring Web sites for accessibility, so
developers should be familiar with both versions.

 In addition to the WCAG, the United States (U.S.) government has something called Section 508, which
requires all U.S. agencies to make all technologies, including Web sites, accessible to those users with
disabilities.

 With all these guidelines, determining whether a site meets specific requirements can become quite
challenging. While many validation tools exist, the W3C has a validator that is the most popular and is
the recommended validator to use.

 WCAG 1.0
 The Web Content Accessibility Guidelines (WCAG) 1.0 were approved in May 1999 and have been used
ever since as the standard for measuring the accessibility capabilities of a Web site. The WCAG 1.0
consists of a few different components, broken down hierarchically. Everything is based on the concept
of guidelines and checkpoints. The 14 guidelines in the WCAG 1.0 are as follows:

 1. Provide equivalent alternatives to auditory and visual content — This includes instances
where images are used, as they should contain a text equivalent.

 2. Don ’ t rely on color alone — When color is used to convey information, ensure that the
information is available without using color as well.

 3. Use markup and style sheets and do so properly — This includes the use of lists in HTML
markup, and stresses that when possible, CSS should be used for formatting. For instance,
bulleted lists should be represented with < UL > or < OL > elements and nested when appropriate.

 4. Clarify natural language usage — Specify the natural language of the page and use the HTML
 < ABBR > and < ACRONYM > elements when appropriate.

❑

❑

❑

c09.indd 147c09.indd 147 5/8/08 7:07:29 PM5/8/08 7:07:29 PM

Chapter 9: Accessibility

148

 5. Create tables that transform gracefully — This includes checkpoints that require the use of
table heading elements (< TH >), column groupings (< COLGROUP >), and indicators whereby the
table heading, body, and footer are < THEAD > , < TBODY > , and < TFOOT > , respectively.

 6. Ensure that pages featuring new technologies transform gracefully — Specifies that pages
using newer technologies such as JavaScript or Flash operate and offer data in an equivalent
manner when these technologies are disabled or not available.

 7. Ensure user control of time - sensitive content changes — Specifies that pages or elements
within them should not flicker or flash so much that they cause seizures for people with
photosensitive epilepsy. It also includes checkpoints to ensure that if the content on the page is
timed (such as scrolling news), the user has a way to stop it or go back.

 8. Ensure direct accessibility of embedded user interfaces — This ensures that programmatic
elements such as client - side scripting are accessible. For instance, client - side image maps should
be used in favor of server - side image maps.

 9. Design for device independence — This includes some overlap with guideline 8, but also
includes things such as using logical events — for instance, button click events instead of
device - dependent events.

 10. Use interim solutions — When older clients do not support something, use an alternate
solution. For instance, do not create pop - up or spawned windows when only the more recent
browsers support blocking them.

 11. Use W3C technologies and guidelines — This guideline recommends that only W3C approved
and recommended technologies are used, such as HTML, XHTML, CSS, and XML.

 12. Provide context and orientation information — This ensures that when things such as
framesets are used, each frame has a title. It also recommends associating labels with the control
to which they are linked.

 13. Provide clear navigation mechanisms — This ensures that navigation is not only intuitive and
easy to use, but also consistent.

 14. Ensure that documents are clear and simple — Use the simplest language images to supple-
ment the content on the page. In addition, ensure that the styling, presentation, and branding is
consistent across all pages of the entire Web site.

 Each guideline contains one or more checkpoints, which are used to measure a Web page for different
levels of conformity against the WCAG 1.0. Each checkpoint is assigned a priority level from 1 to 3, with
Priority 1 checkpoints having the most significance and Priority 3 checkpoints having the least
significance. According to the W3C, Priority 1 checkpoints are objectives developers must satisfy;
otherwise, those with some sort of a disability defined by the W3C will find it impossible to use the Web
site. Priority 2 checkpoints are objectives that developers should satisfy; otherwise, those with some sort
of disability will have difficulty using the Web site. Finally, Priority 3 checkpoints are objectives
developers may satisfy; otherwise, those with some sort of disability will find it somewhat difficult to
use the Web site.

 Priority 1 checkpoints include things such as ensuring that all < img > tags contain a text equivalent of the
image in the alt= “ ” attribute and that all information conveyed using colors is also available without
color. Priority 2 checkpoints include things such as ensuring that when colors are used, there is sufficient
contrast such that someone who views pages in black and white is not put at a disadvantage.

c09.indd 148c09.indd 148 5/8/08 7:07:29 PM5/8/08 7:07:29 PM

Chapter 9: Accessibility

149

 To help developers and designers, the W3C links various techniques that can be used to pass each
checkpoint in the WCAG 1.0 Techniques document. The W3C breaks techniques down into multiple
documents, such as core, CSS, and HTML techniques. In addition, developers and designers can work
off of a checklist, WCAG 1.0 Checklist , provided by the W3C to speed up the process of creating accessible
Web sites.

 Conformance levels are used when defining the accessibility standards of a site. The W3C defines three
different levels of conformance for WCAG 1.0:

 Conformance Level A — All Priority 1 checkpoints are satisfied.

 Conformance Level AA — All Priority 1 and Priority 2 checkpoints are satisfied.

 Conformance Level AAA — All Priority 1, Priority 2, and Priority 3 checkpoints are satisfied.

 WCAG 1.0 References
 WCAG 1.0 — www.andrewconnell.com/go/123

 WCAG 1.0 Techniques — www.andrewconnell.com/go/124

 WCAG 1.0 Checklist — www.andrewconnell.com/go/125

 WCAG 2.0
 The W3C — specifically, the Web Accessibility Initiative — created the WCAG 2.0, which is designed to
build off the original WCAG 1.0 version. Differing from WCAG 1.0, the second version is intended to be
more readable and usable, to apply broadly to different present and future technologies used to create
Web sites, and, arguably most important, validated using a combination of automated test harnesses and
manual checks.

 The WCAG 2.0 is not a generally accepted standard because it is still in the draft stages, albeit very late
in the process. However when it is ratified as an official W3C recommendation, it is likely that it the
WCAG 1.0 will still be referenced and used as the standard for many organizations. This is no fault of
the W3C or a slight to the WCAG 2.0 — history has just shown that standards take time to be generally
adopted by the community.

 One of the most significant differences in the WCAG 2.0 compared to the previous version is the
structure of the guidelines. The WCAG 2.0 is organized around four design principles. Each design
principle provides guidelines, just as the WCAG 1.0 has checkpoints; and, similar to the WCAG 1.0, each
guideline is assigned a level of success criterion (see below). Also like the WCAG 1.0, the WCAG 2.0
includes a list of techniques that can be used in meeting the various guidelines outlined in the
recommendation.

 The four design principles that make up the WCAG 2.0 specify that the site should conform to all of the
following:

 Perceivable — The content and user interface components on a Web page must be presented in
ways that a user can understand. This includes guidelines to use text equivalents for all images,
to make pages which leverage color implement a distinguishable contrast for users reading in
black and white, and to make the content adaptable such that it can be presented in different
ways without losing the data or structure.

❑

❑

❑

❑

❑

❑

❑

c09.indd 149c09.indd 149 5/8/08 7:07:30 PM5/8/08 7:07:30 PM

Chapter 9: Accessibility

150

 Operable — The user interface, including content areas and navigation, must be usable. For
instance, a user should be able to navigate and interact with a Web page without the use of a
mouse, and they should have enough time to read content that is timed or automatically
refreshed. Timed implementations should also enable a user to pause, adjust, or extend the
timer.

 Understandable — The content and user interface components must be easily understood by
users. The site must be readable by both those who can see the page and those who are blind,
and include things such as programmatically setting the language of the page and using the
appropriate HTML markup for abbreviations and acronyms. In addition, the user interface of
the Web site should be predictable and consistent across all pages. Finally, when prompting the
user for input, the site should perform identifiable error checking and validation, as well as
suggest potential solutions to errors.

 Conformance — A Web site ’ s content must be robust enough that it can be consumed not only
by unimpaired users but also by those who are disabled in one way or another.

 Like the WCAG 1.0, conformance levels are used when defining the accessibility standards of a site. The
W3C defines three different levels of conformance for WCAG 2.0:

 Level A — Meets all Level A success criteria.

 Level AA — Meets all Level A and Level AA success criteria.

 Level AAA — Meets Levels A, AA, and AAA success criteria.

 Similar to the WCAG 1.0, the conformance levels can be applied to a specific Web page or according to a
 complete process, which is defined as a combination of Web pages used in a sequential process, such as
placing an order on an e - commerce Web site.

 WCAG 2.0 References
 WCAG 2.0 — www.andrewconnell.com/go/126

 How WCAG 2.0 Differs from WCAG 1.0 — www.andrewconnell.com/go/127

 WCAG 2.0 Techniques — www.andrewconnell.com/go/128

 WCAG 2.0 Quick Reference — www.andrewconnell.com/go/129

 United States Rehabilitation Act of 1973 Section 508
 While many companies, organizations, and governments meet the level of conformity requirements of
the WCAG 1.0 or 2.0 for accessible Web sites, some elect to build their own standards. The United
States (U.S.) is one such country that has elected to create their own standard. The U.S. first passed
the Rehabilitation Act of 1973, which guarantees certain rights to people with disabilities. Section 508
of the Rehabilitation Act of 1973 was amended in 1998 by the U.S. government to require, among other
things, that all U.S. federal agencies make Web sites accessible to those with disabilities.

 Section 508 contains a series of standards that the U.S. Congress adopted for various forms of
communication. Subpart B: Technical Standards — specifically, Section 1194.22, Web - based Intranet and
Internet Information and Applications — applies to Web sites. This section contains 16 paragraphs, each
defining a rule that Web sites must abide by in order to be considered in compliance with the law.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 150c09.indd 150 5/8/08 7:07:30 PM5/8/08 7:07:30 PM

Chapter 9: Accessibility

151

These paragraphs, noted with letters (a) through (p), contain references to the WCAG 1.0. In fact,
paragraphs (a) through (k) map directly to WCAG 1.0 Priority 1 checkpoints, as indicated in the
standards on the Section 508 Web site (see the following section for more information). The other
paragraphs can be loosely associated with other checkpoints in the WCAG 1.0.

 Rehabilitation Act of 1973 Section 508 References
 Rehabilitation Act of 1973 — www.andrewconnell.com/go/230

 Rehabilitation Act of 1973, Section 508 — www.andrewconnell.com/go/231

 Rehabilitation Act of 1973, Section 508, Subpart B, Section 1944.22
Standards — www.andrewconnell.com/go/232

 W3C Markup Validation Service
 How are Web pages and sites validated? Thankfully, the W3C provides a free validation service on their
Web site (www.andrewconnell.com/go/233), including a list of other Web - based validators. The W3C
Markup Validation Service enables users to enter a publicly accessible link, upload a file, or even paste in
the raw markup to be processed and tested for validation against the W3C recommendations. When
issues are found, users are presented with a comprehensive list of errors and warnings, including the
exact markup that caused it.

 Advantages to Creating Accessible
Web Sites

 So far, this chapter has presented accessibility as it relates to mandated rules that organizations and
governments are required to follow in order to meet the needs of disabled users. However, accessibility
is not something that should be considered only because an entity or law dictates it. Creating accessible
Web sites actually yields numerous advantages for organizations, many of which are economic and can
directly affect the bottom line in many ways, including development and maintenance of the Web site, as
well as increased user traffic.

 The most obvious advantage to creating accessible Web sites is that it makes them available to a larger
audience. Users who have a disability that impedes them from using a non - accessible site can now use
accessible sites. Consider an e - commerce site that is not accessible and doesn ’ t conform to any
recommendations. An entire segment of the potential customer base would be excluded from using the
site, something the owners of any business would surely not desire. One of the prime goals in any
business is to make it as easy as possible to a target customer demographic to buy the company ’ s goods
or services. Providing a Web site that conforms to generally accepted accessibility standards excludes no
one from visiting and interacting with the site.

 Building off the “ broader audience ” theme, another benefit to creating accessible Web sites is that they
can be consumed by less mainstream devices. For example, as the use of mobile devices grew, the only
sites that were easily consumed in these devices were those built specifically for mobile devices and
accessible sites. For a site to be considered accessible, it must have well - formed HTML or XHTML.
Because XHTML is simply a subset of XML, it can be easily transformed into a format that a mobile
device can consume using extensible style sheets (XSL).

❑

❑

❑

c09.indd 151c09.indd 151 5/8/08 7:07:30 PM5/8/08 7:07:30 PM

Chapter 9: Accessibility

152

 Accessible Web sites are also considered “ future friendly ” in the sense that future clients will most likely
conform to accessibility standards and thus be able to read and render accessible Web sites. This is not
only a benefit for site users because they can use any browser client they choose (including beta releases
of new browser versions), it also means that an organization does not have to test and potentially modify
the Web site markup to work in new browsers. The elimination of Web site maintenance yields a direct
financial savings to an organization.

 Keeping with the economic theme, following the best practices required for creating accessible Web sites
generally means that less code needs to be written. For example, early (and non - accessible) Web sites
used the HTML < FONT > element to define the styling of specific content. Larger Web pages typically
contained numerous < FONT > elements defining the style of the text within them, including the font size,
family, decoration, and color, to name a few. This bloated the page and made it very time - consuming to
alter the site ’ s appearance, such as changing a font size from 12 - point to 10 - point. Instead, accessible sites
leverage cascading style sheets (CSS) and the < SPAN > element, which enable referencing a style by name,
rather than duplicating the styling details repeatedly. This results in less markup in the source of the Web
page, dramatically reducing the amount of time required to modify the presentation of a site.

 Because accessible sites generally require less markup in the source of a Web page, that translates into a
smaller page payload. The smaller the payload, the less markup there is to maintain for a developer and
designer. Moreover, it results in faster page download times and reduced bandwidth expense.

 Building off the “ less markup ” concept, another added benefit affects search results, as the Web site is
indexed by the larger search engines. By centralizing the styling of a Web site to CSS files, which results
in less markup, search engines can more effectively parse and index the content of a Web page. This
results in better search results and higher page rankings.

 Accessible Web sites are viewed by the general Web development community as the way things should
be done. Granted, many organizations may not care about “ doing the right thing, ” as they are more
concerned about the bottom line. As shown here, however, even companies lacking a sense of
responsibility can benefit from conforming to the accepted guidelines; and the goodwill created by
designing accessible Web sites, even when not required, can set many developers, designers, and Web
development firms apart from the crowd.

 Creating Accessible SharePoint Sites
 Enough about the advantages and details associated with creating accessible Web sites — this book is
about developing SharePoint sites, so let ’ s get to the part about implementing these techniques in MOSS
Publishing sites. Out - of - the - box (OOTB), SharePoint does not generate accessible HTML markup.
Accessible Web sites generally implement their layout using HTML < DIV > elements and CSS, compared
to the traditional < TABLE > - based layouts. The HTML generated by SharePoint by default is primarily
 < TABLE > - based.

 However, this is not just a SharePoint issue; the < TABLE > - based layout stems from the inherent
architecture of Windows SharePoint Services (WSS) 3.0: It is built on top of the .NET Framework
(specifically, ASP.NET 2.0). The controls included in ASP.NET 2.0, such as the GridView and Menu
controls, are rendered using HTML < TABLE > elements. While it is possible to change the rendering
of controls in ASP.NET 2.0 with control adapters, it is not a turnkey solution.

c09.indd 152c09.indd 152 5/8/08 7:07:31 PM5/8/08 7:07:31 PM

Chapter 9: Accessibility

153

 The new WSS 3.0 – based architecture built on top of ASP.NET 2.0 is not all bad news when accessibility is
considered. The fact that SharePoint can now fully leverage the master page model makes it much easier
to centrally control the rendering.

 As previously covered, creating accessible Web sites does not just fall in the domain of developers and
designers. Content owners and editors also have a responsibility when managing content. For instance,
adding images to an article on a site without including a text equivalent of the image using the alt= “ ”
attribute (breaking WCAG 1.0 checkpoint 1.1) is just as bad as a developer not including table column
headings (< TH >) in data tables (breaking WCAG 1.0 checkpoint 5.1), as both are WCAG 1.0 Priority
1 issues.

 Challenges to Creating Accessible SharePoint Sites
 Aside from the general accessibility guidelines that should be followed when creating Web sites, a few
aspects of SharePoint (and ASP.NET 2.0) present unique challenges.

 First, consider ASP.NET 2.0. As previously mentioned, the ASP.NET 2.0 Web controls ’ default rendering
is HTML < TABLE > - based. Thankfully, ASP.NET 2.0 introduced a new model for rendering controls that
permits developers to plug in their own rendering implementation to change the default behavior. This
is achieved using a custom ControlAdapter . In late 2006, Microsoft announced the CSS control
adapters and eventually handed the project over to the community by posting the source on CodePlex:
 www.andrewconnell.com/go/234 . This project changes the rendering of some of the ASP.NET 2.0
controls from < TABLE > - based to CSS - based, making it much easier to facilitate an accessible site.
Unfortunately, the CSS control adapters do not include all ASP.NET 2.0 controls — and frankly, many
enterprises have strong concerns about implementing a project that is not backed or supported by a
sizeable entity.

 Another issue with using a custom ControlAdapter deals with the ASP.NET 2.0 Web Part
infrastructure. Web Parts are rendered within a two - row HTML < TABLE > , with one cell in each row, as
shown in Figure 9 - 1 . The top row contains the Web Part ’ s header, where the title and Verbs menu is
made available (depending on the WebPart.ChromeType property, as it may be set to not show a
header). The second row contains the actual rendered Web Part. Similar to the HTML document object
model (DOM), WSS 3.0 provides a SharePoint - specific DOM called the Web Part Page Services Component
(WPSC) .

 The WPSC can be leveraged by client - side script to listen for Web - Part - specific events, and to interact
with the Web Parts already on the page, such as setting the values of public properties. The HTML
 < TABLE > containing the Web Part is assigned a unique ID, as is the < DIV > that contains the rendering of
the Web Part in the second row. The WPSC is written with the expectation that this < TABLE > is present,
so implementing a custom ControlAdapter for Web Parts that strips the < TABLE > rendering would
break the WPSC.

 Each project team can debate whether solving one issue by introducing another is a valid solution, but
this simply demonstrates a challenge in creating accessible SharePoint sites. Granted, many Publishing
sites will utilize field controls instead of Web Parts, but a Publishing site with zero Web Parts is unlikely.

c09.indd 153c09.indd 153 5/8/08 7:07:31 PM5/8/08 7:07:31 PM

Chapter 9: Accessibility

154

 One of the most challenging aspects of SharePoint sites deals with the navigation. Many of SharePoint ’ s
menus require JavaScript, such as the Site Actions menu, the Edit Control Block (ECB) menu, and
toolbar menus. These menus also facilitate a very mouse - centered user interface. Accessible sites should
provide a way to perform the same actions when JavaScript has been disabled, as some clients do. Some
of these menus are not as prevalent within Publishing sites for most site consumers because things such
as Site Actions are not visible or available to anonymous users, which Publishing sites typically have
more of compared to traditional collaborative SharePoint sites. However, the site authoring experience
in Publishing sites is still heavily driven by these JavaScript and mouse - driven menus.

 Another issue with Publishing sites involves the content authoring components experience.
The Rich Text Editor (RTE) provided OOTB in Publishing sites is supported only when using Internet
Explorer. In addition, it does not produce compliant markup. Thankfully, this can be easily addressed
by implementing the Telerik RadEditor Lite for MOSS, which has a compliant interface and produces
compliant markup. However, the Telerik RadEditor Lite is not fully accessible in that it contains a
mouse - centered user interface and does not work when JavaScript has been disabled. Refer to
Chapter 14 , “ Authoring Experience Extensibility, ” for more information on the Telerik RadEditor
Lite for MOSS.

 Aside from all these issues, one of the most significant things that will need to be done is to modify the
OOTB markup provided by the Publishing Portal template. While Chapter 5 and Chapter 7 demonstrate
how to create a minimal master page with no branding, the OOTB markup provided by the Publishing
Portal template is a perfect example of the work in store for developers and designers when creating
accessible Publishing sites. When validated using the W3C Markup Validation Service, the default
Publishing Portal template (with zero customizations after creating the site collection) yielded 102 errors.

 In an effort to address accessibility issues and challenges with SharePoint — specifically, Publishing
sites — Microsoft teamed up with another vendor, HiSoftware, to offer ways to facilitate the creation of
accessible Publishing sites.

 Accessibility Kit for SharePoint
 While SharePoint does not ship OOTB conforming to any of the accessibility guidelines recommended
by the W3C, Microsoft teamed up with a partner, HiSoftware (www.hisoftware.com), to help make
WSS 3.0 and MOSS 2007 meet these requirements. The Accessibility Kit for SharePoint (AKS), the result of
this partnership, was created by HiSoftware on behalf of Microsoft and is available as a free download
and install. Using the AKS, developers and designers can learn how to create accessible SharePoint sites,
including Publishing sites. The AKS is available from CodePlex (www.codeplex.com).

 Figure 9 - 1

c09.indd 154c09.indd 154 5/8/08 7:07:31 PM5/8/08 7:07:31 PM

Chapter 9: Accessibility

155

 Position and Goals of the AKS
 Before factoring the AKS into a project plan, it is important to understand the position and goals
of the AKS. First and foremost, the AKS is not intended to be used as a turnkey solution; simply
installing the AKS does not make a site accessible. Instead, it is better to think of the AKS as more of an
educational tool. It contains files and utilities that will help you create accessible SharePoint sites.

 The stated goal of the AKS is to help build sites that meet the WCAG 1.0 AA standard, or sites that meet
all Priority 1 and Priority 2 checkpoints. Developers can use the files and utilities included in the AKS as
reference and sample materials in implementing accessible Publishing sites.

 The AKS follows the recommendation of Microsoft in terms of not modifying the OOTB codebase
installed by SharePoint. Instead, it is non - invasive in that it simply adds extra files to a SharePoint
installation. This ensures that the AKS files will not be overwritten or modified by any service packs or
patches distributed by Microsoft. It also enables developers to select which pieces of the AKS are used in
a custom Publishing site.

 The AKS is an open system in that it is fully documented and provides guidelines for developers and
designers creating accessible sites. It is completely extensible by developers.

 Installation and Implementation
 After obtaining the AKS, installation is extremely simple, as it uses a standard wizard - driven experience
with no prompts aside from the usual license acceptance screens. The installation will copy an AKS
site - collection - scoped Feature to the [..]\12\TEMPLATE\FEATURES directory, but it is not installed.
It also adds some PDFs containing documentation and the entire source of the AKS in a new directory in
 c:\Program Files , as well as adding a new program group in the Start menu on the server. One of the
items in the new AKS program group is used to install the AKS Feature.

 The AKS Feature provisions a handful of master pages and CSS files that mimic the OOTB files
provisioned by the Publishing Portal site definition. Once the AKS Feature is activated on a site
collection created using the Publishing Portal site definition, users can select one of the AKS - provided
master pages that use the AKS - provided CSS files. Developers can then pick through these files to see
how things were implemented.

 The AKS contains sample files, code, utilities, and some reusable content. The sample files include
master pages, CSS files, and page layouts. One of the most significant parts of the AKS are custom
control adapters. As previously mentioned, these custom ControlAdapter classes enable developers to
see how the rendering of Web controls is modified from the default rendering options.

 Developers and designers working on Publishing sites that require some sort of accessibility compliance
level should consider and spend time evaluating the AKS to determine whether it can help meet the
project ’ s demands.

c09.indd 155c09.indd 155 5/8/08 7:07:32 PM5/8/08 7:07:32 PM

Chapter 9: Accessibility

156

 Summary
 This chapter introduced the concept of accessible Web sites. Creating accessible Web sites is not only
something that should be considered to make the site more easily readable by users with disabilities.
Accessible Web sites also offer positive economic and performance benefits, such as easier maintenance
and better search capabilities. This chapter provided introductions to the most common Web accessibility
guidelines: the WCAG 1.0, the WCAG 2.0, and the United States Rehabilitation Act of 1973 Section 508.
Finally, the Accessibility Kit for SharePoint (AKS), backed by Microsoft and its partner HiSoftware, was
introduced as a fantastic learning aid, in addition to offering reusable components for developers and
designers embarking on creating accessible Publishing sites.

c09.indd 156c09.indd 156 5/8/08 7:07:32 PM5/8/08 7:07:32 PM

 Field Types and
Field Controls

 Windows SharePoint Services (WSS) 3.0 and Office SharePoint Server (MOSS) 2007 include many
common field types that can be used in site columns, content types, and lists. This list includes
types such as single line of text fields, choice fields, date/time fields and Boolean yes/no fields.
Chapter 6 demonstrated that developers must learn to utilize these fields in order to deliver the
required functionality in any SharePoint application.

 Specific to Publishing sites, these field types are used in site column definitions, which are then
used within content types that define the schema for types of content pages created on the site. The
Publishing Features add additional fields to SharePoint, such as the Publishing HTML field that is
used to provide the rich text storage capabilities, or the Publishing Image field that stores an image
with specific formatting and settings within a content page. Thankfully, the same infrastructure
that Microsoft leverages when creating field types is available to developers to create custom field
types when the provided field types do not satisfy the needs of a project.

 In addition to creating custom field types that are used to store data, developers can also create
custom field controls that define the presentation of certain fields and the editing experience.
This enables developers to create the most unique and user - friendly content entry experience for
content owners while at the same time optionally providing additional complex validation on the
field during editing.

 Creating custom field types and controls is a complex and complicated subject that does not have a
vast amount of resources or documentation. Many aspects of this area — creating both field types
and field controls — are not heavily documented, if at all. This chapter demonstrates how to create
a custom field type that also contains a custom field control in order to define a customized editing
experience, as well as adding a design - time preview of the control and customized validation
upon saving data in the field type.

c10.indd 157c10.indd 157 5/8/08 7:08:29 PM5/8/08 7:08:29 PM

Chapter 10: Field Types and Field Controls

158

 Overview of All the Moving Parts
 Before diving into the complex (and seemingly confusing) world of custom field types and field controls,
it helps to put things in perspective. This area of SharePoint can be a bit intimidating when developers
first see all the moving parts: field type, field value type, field control, rendering control, and field type
definition. Understanding all of these terms and their relationships helps when building a custom field
type and control because it is easier to visualize the big picture — that is, how they all fit together.
Figure 10 - 1 shows the relationships between the different moving parts in a custom field type and
field control.

Field Value

Field Type

S
h
a
r
e
P
o
i
n
t

Field Rendering
Control

WroxControl.ascx
[..]\12\TEMPLATE\CONTROLTEMPLATES

Field Type
Definition

fldtypes_wrox.xml
[..]\12\TEMPLATE\XML Field Control

Wrox.dll
GAC

 Figure 10 - 1

 Each element within a custom field type and field control serves a unique purpose. The “ hub ” of the
field type in Figure 10 - 1 is the field type class. This class is what SharePoint looks to for everything related
to the custom field type. If the field type stores data within a custom data structure, rather than a simple
string, the field type class will contain a reference to the field value class. To handle the editing experience,
the field type will also contain a reference to the field control class. The field control class may optionally
leverage a SharePoint RenderingTemplate found in an ASP.NET 2.0 user control file known as the
 rendering control .

 With the field type, field value, and field control defined, SharePoint now needs to be made aware of the
custom field type. This responsibility falls on the field type definition file. The field type definition file, an
XML file containing CAML markup, provides SharePoint with enough meta information about the field
type, as well as a pointer to the class, and the assembly containing the class, that defines the custom field
type. SharePoint looks at all the field type definition files on the server when it initially loads (after
recycling the Web services on a server) to generate a list of the valid field types.

c10.indd 158c10.indd 158 5/8/08 7:08:30 PM5/8/08 7:08:30 PM

Chapter 10: Field Types and Field Controls

159

 Creating Custom Field Types and Controls
 Creating a custom field type and field control requires creating numerous classes and files, packaging
everything up, and deploying files to numerous locations. The following sections explain each of the
components in Figure 10 - 1 in more depth, as they demonstrate how to create a custom field type and
field control. First, it helps to see what the final result will look like and review the requirements for the
field type and control.

 The custom field type (CountryRegionField) and control (CountryRegionControl) that are built in
this chapter enable a content author to select a country and then enter a state/region depending on the
country selected. Initially, no country or state/region is selected. In fact, when no country is selected, the
controls to select or enter the state/region are not shown. Upon selecting “ United States, ” the page will
issue a postback and refresh, presenting the content author with another selector to pick a state. If the
content owner selects a country other than “ United States, ” then the page issues a postback and renders
a textbox to enter the region/county, rather than select a state from a selector. Figures 10 - 2 and 10 - 3 show
what the field control looks like when editing a page in a Publishing site with “ United States ” or “ United
Kingdom ” selected as the country, respectively.

 Figure 10 - 2

 Figure 10 - 3

 Figure 10 - 4

 In Display mode (when a page is not in Edit mode), the state/region should be displayed followed by
the country, separated by a comma as shown in Figure 10 - 4 .

 The last requirement is that the field type should return its value as a custom object, rather than a
delimited string. Therefore, when accessing a field via the API — named Location, for example — the
code would look like what is shown in Listing 10 - 1 .

 Listing 10 - 1: Accessing a field of type CountryRegionField

SPListItem item = list.Items[0];
CountryRegionValue fieldValue = (CountryRegionValue)item[“Location”];
Console.WriteLine(“The country selected is: “ + fieldValue.Country);
Console.WriteLine(“The state/region selected is: “ + fieldValue.Region);

c10.indd 159c10.indd 159 5/8/08 7:08:31 PM5/8/08 7:08:31 PM

Chapter 10: Field Types and Field Controls

160

 To create a new custom field type and control, start with a new C# project in Visual Studio using the
Class Library project template. Add references to Microsoft.SharePoint and System.Web and sign
the project to create an assembly with a strong name.

 Creating a Custom Field Type
 The first step in creating a custom field type and field control is to create the field type class — the hub of
everything related to the field. All field types must inherit from the Microsoft.SharePoint.SPField
class or one that is derived from it. The CountryRegionField field type will inherit from Microsoft
.SharePoint.SPFieldMultiColumn , which is an internal field that is not visible through the browser
interface. It enables developers to store columns of data within a single field and provide an easy way
(via the Microsoft.SharePoint.SPFieldMultiColumnValue) to serialize/deserialize the data to/
from SharePoint into a custom value class.

 The CountryRegionField class acts as the hub for everything related to the field type. It
provides SharePoint with the desired value class, the rendering control that is used to generate the
editing experience, as well as any custom validation that needs to be executed before saving data to
the field. The class CountryRegionField inherits the Microsoft.SharePoint.SPFieldMultiColumn
class, which enables multiple columns of data to be stored within the field type. All fields that
implement the SPFieldMultiColumn class must have two constructors. Nicely, both constructors are
always the same across all fields that implement this class. Listing 10 - 2 shows the contents of the
 CountryRegionField.cs file.

 Listing 10 - 2: CountryRegionField.cs file containing the custom field type

using System;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace WROX.ProMossWcm.Chapter10 {
 public class CountryRegionField : SPFieldMultiColumn {

 public CountryRegionField (SPFieldCollection fields, string fieldName)
 : base(fields, fieldName) { }

 public CountryRegionField (SPFieldCollection fields, string typeName, string
displayName)
 : base(fields, typeName, displayName) { }

 }
}

 At this point, although the field type class has the minimal code it needs to function, it is not very useful.
Later it will need to override a property and a few methods that tell SharePoint about the custom value
and control classes, as well as implement the validation when saving data to the field. However, for now
it is good enough as it is because these capabilities will be added when necessary.

 Creating a Custom Field Type Definition
 With a field type class created, the next step is to create the field type definition that will make
SharePoint aware of the field. This is done by creating an XML file in the [..]\12\TEMPLATE\XML
folder. When SharePoint starts up (when the server is rebooted or when the Web process has been

c10.indd 160c10.indd 160 5/8/08 7:08:31 PM5/8/08 7:08:31 PM

Chapter 10: Field Types and Field Controls

161

recycled), it looks at the [..]\12\TEMPLATE\XML folder and loads all the field type - defined files
named fldtypes[_*].xml . All the SharePoint fields provided in the WSS 3.0 install are found in the
 fldtypes.xml file. Other fields are added based on the MOSS 2007 installation. For instance, all
the Publishing - specific fields are defined in the fldtypes.publishing.xml file. One of the most
valuable aspects of this implementation is that developers have the source of the definitions for the
Microsoft - implemented controls, which can be used for reference — the best documentation around!

 The field definition file tells SharePoint a few things about the field type, including the name of the field
and the underlying parent field type. The definition also tells SharePoint some of the rules associated
with the type, such as whether it can be used to create new site columns or columns within survey lists,
as well as the full name of the class and assembly containing the field type class. The other critical piece
of the field type definition is the inclusion of a rendering pattern. The display rendering pattern defines
how the field ’ s content should be rendered when in a list or display mode. The CAML markup is shown
in Listing 10 - 3 .

 Listing 10 - 3: CountryRegionField definition (fldtypes _ wrox.xml)

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < FieldTypes >
 < FieldType >
 < Field Name=”TypeName” > CountryRegion < /Field >
 < Field Name=”ParentType” > MultiColumn < /Field >
 < Field Name=”TypeDisplayName” > Country, Region < /Field >
 < Field Name=”TypeShortDescription” > Country and state/region < /Field >
 < Field Name=”UserCreatable” > TRUE < /Field >
 < Field Name=”FieldTypeClass” > WROX.ProMossWcm.Chapter10.CountryRegionField,
 Chapter10, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=c591e70cfdf9ce4f < /Field >
 < RenderPattern Name=”DisplayPattern” >
 < Switch >
 < Expr > < Column / > < /Expr >
 < Case Value=”” / >
 < Default >
 < Column SubColumnNumber=”1” HTMLEncode=”TRUE” / >
 < HTML > < ![CDATA[, & nbsp;]] > < /HTML >
 < Column SubColumnNumber=”0” HTMLEncode=”TRUE” / >
 < /Default >
 < /Switch >
 < /RenderPattern >
 < /FieldType >
 < /FieldTypes >

 The first part of the field type definition (the < Field > elements) contains the metadata about the field that
SharePoint needs to know about up front. Although the list seems somewhat limited, there are quite a few
additional options that are not included in Listing 10 - 3 . The following list explains each of the fields:

 TypeName: This is the unique name of the field used when creating items such as site columns
using a Feature. For example, if a site column were created that was based on the field type
created in this chapter, the element manifest ’ s site element would look like the following
(omitting the other required attributes):

 < Field ID=”...” Name=”...” DisplayName=”...” Type=”CountryRegion” / >

❑

c10.indd 161c10.indd 161 5/8/08 7:08:32 PM5/8/08 7:08:32 PM

Chapter 10: Field Types and Field Controls

162

 ParentType: The parent type is the field type from which the custom field type is derived — in
this case, SPFieldMultiColumn or just MultiColumn .

 TypeDisplayName: This name is used to display the field type on pages such as the Site
Column Gallery or a content type ’ s detail page.

 TypeShortDescription: The short description is the string used to display the field type as an
option when creating new site or list columns (the long radio button list under the new column ’ s
title textbox).

 UserCreatable: This Boolean property tells SharePoint whether the field type can be used in the
creation of a column in a list by a user. When false , developers can still use the field type in site
columns within the definition of list templates created using Features.

 FieldTypeClass: This contains the strong name of the field type class and the assembly
containing the class. This is also referred to as the five - part name: namespace.type, Assembly,
Version, Culture, PublicKeyToken .

 Following the fields is the rendering pattern. There are two rendering pattern options: DisplayPattern
and HeaderPattern . The display pattern is used when the field type is displayed on a page such as a
list view page or an item detail page. In Listing 10 - 3 , the display pattern contains a CAML switch
statement, which is similar to C# ’ s switch statement. It first checks whether the current column contains
any data. If it is empty, nothing is rendered. Otherwise, the two values within the field (country and
state/region) are rendered, with a comma and nonbreaking space separating the two. Notice how the
 < Column / > node contains an attribute SubColumnNumber . This tells SharePoint to use a value from a
specific column in this field type. The number to use is defined with the field type ’ s custom value class.

 The custom field type definition should be added to the Visual Studio project in the following location:
 \TEMPLATE\XML\fldtypes_wrox.xml .

 Creating a Custom Field Value
 One of the requirements of the ContryRegionField custom field type was to store the data within a
custom data structure. While it sounds a bit complex, it is actually very simple. The custom field value
class is very handy with field types that are derived from the SPFieldMultiColumn field because data
is stored in the SPFieldMultiColumn field as a special delimited string using ;# as the delimiter, and
not just between two values but surrounding them. For example, using the examples in Figures 10 - 2 and
 10 - 3 shown earlier, the two strings containing the data would be as follows:

;#United States;#Florida;#
;#United Kingdom;#Edinburgh;#

 While it is entirely possible to write code that parses these strings, developers should instead create a
custom field value class that knows not only how to serialize and deserialize the data between the raw
string and a strongly typed property bag, but also enables users to specify the data ’ s position within the
string. This is helpful, as the index of the data within the raw string is directly related to the < Column
SubColumnNumber= “ ” / > CAML element used in the rendering pattern within the field type definition.

 The custom field type value class, CountryRegionValue , inherits from the Microsoft.SharePoint
.SPFieldMultiColumnValue class. This class has three constructors but only two are necessary to
override. The default constructor that accepts no parameters should be overridden to call the base

❑

❑

❑

❑

❑

c10.indd 162c10.indd 162 5/8/08 7:08:32 PM5/8/08 7:08:32 PM

Chapter 10: Field Types and Field Controls

163

constructor, passing in the number of data columns stored in the field. The second constructor
should take a string and pass it to the base constructor that accepts the string value to parse. The
 SPFieldMultiColumnValue class then internally splits the string into an array. The last part to
the custom value class adds properties that reference a specific position in the array representing the
data in the delimited strings. Listing 10 - 4 shows the contents of the CountryRegionValue.cs file.

 Listing 10 - 4: CountryRegionValue.cs file containing the field value

using System;
using Microsoft.SharePoint;
namespace WROX.ProMossWcm.Chapter10 {
 public class CountryRegionValue : SPFieldMultiColumnValue {
 private const int NUM_FIELDS = 2;

 public CountryRegionValue ()
 : base(NUM_FIELDS) { }

 public CountryRegionValue (string value)
 : base(value) { }

 public string Country {
 get { return this[0]; }
 set { this[0] = value; }
 }

 public string Region {
 get {return this[1];}
 set { this[1] = value; }
 }
 }
}

 Although the value class is created, it is worthless until it is associated with the field type class. Refer
back to Figure 10 - 1 , which illustrates the relationship between all the moving parts in the custom field
type and field value. In order to make the custom field type class aware of the custom value type, the
 SPField.GetFieldValue() method should be overridden; that should return an instance of the value
type. The code in Listing 10 - 5 should be added to the CountryRegionField class.

 Listing 10 - 5: Wiring the field type and field value together

public override object GetFieldValue (string value) {
 if (string.IsNullOrEmpty(value))
 return null;
 return new CountryRegionValue(value);
}

 The next step is to create the control that will be used when interacting with the field type in Edit mode.

c10.indd 163c10.indd 163 5/8/08 7:08:32 PM5/8/08 7:08:32 PM

Chapter 10: Field Types and Field Controls

164

 Creating a Custom Field Control
 The requirements for the custom field type CountryRegionField are to have a customized and specific
editing experience for content authors. Refer back to Figures 10 - 2 and 10 - 3 to see what the interface
should look like. To add a custom editing experience for a custom field type, a developer would create a
custom field control class. This class contains all the necessary information about the field control.

 Thankfully, Microsoft did not stop there and leave developers with only a server control model to create
the editing experience. The field control class can point to a new element called a SharePoint rendering
template . This rendering template, similar to an ASP.NET 2.0 user control, enables developers to define
the editing experience declaratively, rather than doing everything in managed code. However, unlike
ASP.NET 2.0 user controls, the ASCX file is not loaded first, followed by the code - behind. Rather,
the field control class tells SharePoint which rendering template to load. This presents a bit of a challenge
for ASP.NET 2.0 developers who are used to the other model because it requires thinking a bit
backwards at times.

 The first piece in a custom field control is the control class. This class must inherit from the
Microsoft.SharePoint.WebControls.BaseFieldControl class or one that derives from it. For the
 CountryRegionField , the BaseFieldControl will work. The control class, CountryRegionControl ,
will contain methods that override those defined in the BaseFieldControl class. At minimum, only
three methods and properties need to be overridden. First, the control needs to make SharePoint aware
of which rendering template to create by overriding the DefaultTemplateName property, as shown in
Listing 10 - 6 .

 Listing 10 - 6: CountryRegionControl.cs custom field control

using System;
using Microsoft.SharePoint.WebControls;
using System.Web.UI.WebControls;

namespace WROX.ProMossWcm.Chapter10 {
 public class CountryRegionControl : BaseFieldControl {

 private const string RENDERING_TEMPLATE = “ContryRegionControl”;

 protected override string DefaultTemplateName {
 get { return RENDERING_TEMPLATE; }
 }

 }
}

 Before going any further, it makes sense to switch gears here and create the rendering template —
 the ASCX control that will be used to declaratively define the editing experience. This file,
 CountryRegionControl.ascx , resides in the [..]\12\TEMPLATE\CONTROLTEMPLATES folder and
can contain one or more rendering templates. A good example can be found in the DefaultTemplates
.ascx , which contains WSS 3.0 field control rendering templates, and SharePoint_Publishing_
defaultformtemplates.ascx , which contains Publishing field control rendering templates included
with MOSS 2007. The name of the file doesn ’ t matter — what matters is the ID of the rendering template
within the file. It is this ID that is returned to SharePoint in the CountryRegionControl class using the
overridden DefaultTemplateName property. The contents of the CountryRegionControl.ascx file
are shown in Listing 10 - 7 . (Some code is omitted here for readability. The full source can be found in the
downloadable code for the book.)

c10.indd 164c10.indd 164 5/8/08 7:08:33 PM5/8/08 7:08:33 PM

Chapter 10: Field Types and Field Controls

165

 Listing 10 - 7: CountryRegionControl.ascx custom field control rendering template

 < %@ Control Language=”C#” % >
 < %@ Assembly Name=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c” % >
 < %@ Register Assembly=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c” Namespace=”Microsoft.SharePoint.WebControls”
TagPrefix=”SharePoint” % >

 < SharePoint:RenderingTemplate id=”CountryRegionControl” runat=”server” >
 < Template >
 < table class=”ms-form” >
 < tr >
 < td align=”right” > Country: < /td >
 < td > < asp:DropDownList id=”Country” runat=”server” autopostback=”true”
cssclass=”ms-RadioText” > < asp:ListItem > Select a
country... < /asp:ListItem > < asp:ListItem > United
States < /asp:ListItem > < asp:ListItem > Afghanistan < /asp:ListItem > < !-- omitted for
readability -- > < asp:ListItem > Zimbabwe < /asp:ListItem > < /asp:DropDownList > < /td >
 < /tr >
 < tr >
 < td align=”right” > < asp:literal id=”RegionInputLiteral” runat=”server”
text=”Region:” visible=”false”/ > < asp:literal id=”RegionSelectorLiteral”
runat=”server” text=”State:” visible=”false”/ > < /td >
 < td > < asp:textbox id=”RegionInput” runat=”server” visible=”false”
cssclass=”ms-input” / > < asp:DropDownList id=”RegionSelector” runat=”server”
visible=”false” cssclass=”ms-RadioText” > < asp:ListItem > Select a
state... < /asp:ListItem > < asp:ListItem > Alabama < /asp:ListItem >
< asp:ListItem > Alaska < /asp:ListItem > < !-- omitted for readability -- >
 < asp:ListItem > Wyoming < /asp:ListItem > < /asp:DropDownList > < /td >
 < /tr >
 < /table >
 < /Template >
 < /SharePoint:RenderingTemplate >

 The rendering control contains a single HTML table. Within this table are two rows. The first row is
for the country selection. The first option in the DropDownList contains instructions for the user; the
second option contains the country “ United States, ” and all subsequent entries contain other countries
in the world. The second row is a bit more interesting. In the first cell, two Literal controls are used
to show labels for the second input: the state or the region. Both are initially set to be hidden
(visible= “ false ”). The second cell in the second row contains both a TextBox control and
 DropDownList . One is used by the contributor to select a state when the country “ United States ” is
selected, whereas the other is used to enter the region of the country as a free - form text entry. Each
 Literal and entry control in the second row of the table is shown or hidden based on the selection of
the Country DropDownList . This is handled in the CountryRegionControl class.

 Now that the rendering template has been created, it is time to jump back to the
 CountryRegionControl class and add the necessary code to wire everything up. First, a few class -
 scoped fields are needed that will be used to reference the Web controls in the rendering template. Add
two DropDownList controls, two Literals , and one TextBox to the class, as well as a single constant to
enforce consistency to the CountryRegionControl class, as shown in Listing 10 - 8 .

c10.indd 165c10.indd 165 5/8/08 7:08:33 PM5/8/08 7:08:33 PM

Chapter 10: Field Types and Field Controls

166

 Listing 10 - 8: CountryRegionControl.cs custom field control

namespace WROX.ProMossWcm.Chapter10 {
 public class CountryRegionControl : BaseFieldControl {
 private const string RENDERING_TEMPLATE = “CountryRegionControl”;

 private const string UNITED_STATES = “United States”;

 protected DropDownList _country;
 protected DropDownList _regionSelector;
 protected Literal _regionSelectorLiteral;
 protected Literal _regionInputLiteral;
 protected TextBox _regionInput;

 protected override string DefaultTemplateName {
 get { return RENDERING_TEMPLATE; }
 }
 }
}

 The next step is to override the CreateChildControls() method, something that is done in almost
all server controls. First, ensure that the current mode of the page is what is desired. In other words,
the rendering template is only used in rendering the editing experience, not the display experience. The
display experience is handled in the field type definition as outlined previously in Listing 10 - 3 .
Therefore, if the page is not currently in Edit mode, the control should “ short - circuit ” or stop doing
any rendering.

 Next, like all ASP.NET 2.0 server controls, a call to the base class ’ CreateChildControls() should
be added before adding any custom logic. The main purpose of CreateChildControls() in the
 CountryRegionControl class is to wire up references of the Web controls in the class to those in
the rendering template. This is necessary so that values can be set and retrieved later. Unfortunately,
because the class is being processed before the ASCX file containing the rendering template,
ASP.NET 2.0 ’ s capability to automatically wire up the controls is not an option. Therefore, each control
must be retrieved and associated with the internal field created in Listing 10 - 8 . This is done using the
BaseFieldControl . TemplateContainer . FindControl() method. This object, TemplateContainer ,
is a reference to the template within the rendering template. After obtaining a reference, it is good
practice for developers to test whether it is valid. This is done by simply checking whether the control
retrieved is not equal to null . The CreateChildControls() method in the CountryRegionControl
class is shown in Listing 10 - 9 .

 Listing 10 - 9: CountryRegionControl CreateChildControls() method

protected override void CreateChildControls () {
 if (this.Field == null ||
 this.ControlMode == SPControlMode.Display ||
 this.ControlMode == SPControlMode.Invalid)
 return;

 base.CreateChildControls();

 // get reference to Country selector
 _country = TemplateContainer.FindControl(“Country”) as DropDownList;

c10.indd 166c10.indd 166 5/8/08 7:08:33 PM5/8/08 7:08:33 PM

Chapter 10: Field Types and Field Controls

167

 if (_country == null)
 throw new ArgumentException(“Country DropDownList not found. Possibly corrupt
control template.”);

 _country.SelectedIndexChanged += new EventHandler(Country_SelectedIndexChanged);

 // get reference to State selector
 _regionSelector = TemplateContainer.FindControl(“RegionSelector”) as
DropDownList;
 if (_regionSelector == null)
 throw new ArgumentException(“RegionSelector DropDownList not found. Possibly
corrupt control template.”);

 // get reference to State selector’s label
 _regionSelectorLiteral = TemplateContainer.FindControl(“RegionSelectorLiteral”)
as Literal;
 if (_regionSelectorLiteral == null)
 throw new ArgumentException(“RegionSelectorLiteral Literal not found. Possibly
corrupt control template.”);

 // get reference to Region textbox for free-form entry
 _regionInput = TemplateContainer.FindControl(“RegionInput”) as TextBox;
 if (_regionInput == null)
 throw new ArgumentException(“RegionInput TextBox not found. Possibly corrupt
control template.”);

 // get reference to Region textbox’s label
 _regionInputLiteral = TemplateContainer.FindControl(“RegionInputLiteral”) as
Literal;
 if (_regionInputLiteral == null)
 throw new ArgumentException(“RegionInputLiteral Literal not found. Possibly
corrupt control template.”);
}

 Notice the highlighted line in Listing 10 - 9 . This line is used to wire up a server - side event handler with
the country selector to handle when the value selected changes. This provides the capability to show and
hide the necessary state/region Web controls and labels. This event wiring must be done within the
CreateChildControls() method, rather than the markup within the rendering template, in order for
the event to be correctly registered in the ASP.NET 2.0 page life cycle.

 The next step in creating the field control is to override the BaseFieldControl.Value property. This
property is used by SharePoint to set the value of the control when loading it in Edit mode, as well as to
retrieve the values from the Web controls in the rendering template upon postbacks. When coding the
 Value property ’ s get and set , developers should always call the EnsureChildControls() method
first. This method checks whether the CreateChildControls() method has been called. If it has not
been called, it is called at this time. It is only after an internal flag has been set in the .NET Framework
indicating that CreateChildControls() has been called that the code will continue after calling
 EnsureChildControls() . It is critical that EnsureChildControls() is called first because the Value
property is utterly useless without valid references to the Web controls in the rendering template.

 The Value property returns a value of type object . The object returned should be the same custom field
value that is part of the custom field type — CountryRegionValue in the case of the field type created
in this chapter.

c10.indd 167c10.indd 167 5/8/08 7:08:34 PM5/8/08 7:08:34 PM

Chapter 10: Field Types and Field Controls

168

 First create the Value ’ s get as shown in Listing 10 - 10 . After a validation check, the purpose here is to
retrieve the values from the Web controls in the rendering template and store them into a new object of
type CountryRegionValue , returning this object back to SharePoint.

 Listing 10 - 10: CountryRegionControl.Value property ’ s get

public override object Value {

get {
 EnsureChildControls();
 CountryRegionValue field = new CountryRegionValue();

 if (_country == null || _regionSelector == null || _regionInput == null) {
 field.Country = String.Empty;
 field.Region = String.Empty;
 } else {
 // set country value
 if (_country.SelectedIndex == 0)
 field.Country = String.Empty;
 else
 field.Country = _country.SelectedValue;

 // set region value
 if (_country.SelectedValue == UNITED_STATES) {
 if (_regionSelector.SelectedIndex == 0)
 field.Region = String.Empty;
 else
 field.Region = _regionSelector.SelectedValue;
 } else
 field.Region = _regionInput.Text.Trim();
 }

 return field;
 }

 set {...}

 In the Value ’ s set , shown in Listing 10 - 11 , after a validation check the Web controls within the
rendering template are set using the values provided by the value passed in by SharePoint. The last step
in the set is to update the visibility of the controls. This is necessary because the editing experience
should show either a state selector if the country selected is “ United States ” or a free - form textbox if
some other country is selected.

 Listing 10 - 11: CountryRegionControl.Value property ’ s set

public override object Value {
 get {...}

 set {
 EnsureChildControls();

 if (value != null & & !string.IsNullOrEmpty(value.ToString())) {
 CountryRegionValue field = new CountryRegionValue(value.ToString());

 _country.SelectedValue = field.Country;
 if (_country.SelectedIndex == 1) // if UNITED STATES selected

c10.indd 168c10.indd 168 5/8/08 7:08:34 PM5/8/08 7:08:34 PM

Chapter 10: Field Types and Field Controls

169

 _regionSelector.SelectedValue = field.Region;
 else if (_country.SelectedIndex > = 2) // if any other country selected
 _regionInput.Text = field.Region;
 SetRegionControlVisibility(_country.SelectedIndex);
 }
 }

}

private void SetRegionControlVisibility (int countrySelectedIndex) {
 switch (countrySelectedIndex) {
 case 0: // if none selected
 _regionSelector.Visible = false;
 _regionSelectorLiteral.Visible = false;
 _regionInput.Visible = false;
 _regionInputLiteral.Visible = false;
 break;
 case 1: // if UNITED STATES selected
 _regionSelector.Visible = true;
 _regionSelectorLiteral.Visible = true;
 _regionInput.Visible = false;
 _regionInputLiteral.Visible = false;
 break;
 default: // if any other country selected
 _regionSelector.Visible = false;
 _regionSelectorLiteral.Visible = false;
 _regionInput.Visible = true;
 _regionInputLiteral.Visible = true;
 break;
 }
}

 The last thing that needs to be added to the CountryRegionControl class is the server - side event
handler that is called when the value of the country selector is changed, as shown in Listing 10 - 12 .

 Listing 10 - 12: Country selector event handler

protected void Country_SelectedIndexChanged (object sender, EventArgs e) {
 EnsureChildControls();
 SetRegionControlVisibility(_country.SelectedIndex);
}

 With the field control finished, it now needs to be wired up to the field type (refer to Figure 10 - 1 at the
beginning of the chapter). This is done by overriding yet another property on the “ hub ” class of the field
type: CountryRegionField . The property, FieldRenderingControl , returns an object of type
 BaseFieldControl back to SharePoint when called. This is how SharePoint knows to load the field
control for the custom field type. FieldRenderingControl is a read - only property, so only the get
portion needs to be completed. Note that the underlying BaseFieldControl.FieldName property
must be set with the internal name of the field instance that is using the custom field type. This is
demonstrated in Listing 10 - 13 .

c10.indd 169c10.indd 169 5/8/08 7:08:34 PM5/8/08 7:08:34 PM

Chapter 10: Field Types and Field Controls

170

 Listing 10 - 13: Wiring field controls to field types

public override BaseFieldControl FieldRenderingControl {
 get {
 BaseFieldControl control = new CountryRegionControl();
 control.FieldName = this.InternalName;
 return control;
 }
}

 The only thing left to do with the field control is to add a design - time experience. At this point, Office
SharePoint Designer (SPD) 2007 doesn ’ t have a clue what to show as a preview for the custom field
control when it is dropped on the page. If the field control were dropped into a page layout in SPD and
viewed in Design mode, it would show up as a gray box with an error, as shown in Figure 10 - 5 .

 Figure 10 - 5

 Adding Design - Time Rendering Preview
 Figure 10 - 5 highlights the fact that page developers and designers will have no idea what the field
control will look like based on the preview in SPD ’ s Design mode as it is currently coded. The next step
is to add a design - time preview. The control ’ s Render() method is always called by SPD in an effort to
generate the HTML that is shown in Design mode. However, in the case of a Publishing site, field
controls are not going to be associated with any real underlying data in Design mode, as page layouts
are the “ source ” of the data — they are used in conjunction with a master page to define the rendering
of a page, which is just an item within the Pages list. Therefore, the Render() method is not ideal.
Instead, developers should create a customized view of the control whenever it is rendered in SPD ’ s
Design mode.

 To create the custom HTML used in a design - time experience, the control must implement the
 PMicrosoft.SharePoint.WebControls.IDesignTimeHtmlProvider interface. This interface
contains a single method, GetDesignTimeHtml() , which returns a string. This string should contain the
HTML used to render the control in SPD ’ s Design mode. While a custom design - time interface can be
implemented very easily with one line of code in GetDesignTimeHtml() , it would not provide a very
clean or consistent experience compared to the out - of - the - box (OOTB) field controls shipped in MOSS
2007. For instance, the following code would present the Design mode experience shown in Figure 10 - 6 :

public string IDesignTimeHtmlProvider.GetDesignTimeHtml () {
 return “Florida, United States”;
}

c10.indd 170c10.indd 170 5/8/08 7:08:35 PM5/8/08 7:08:35 PM

Chapter 10: Field Types and Field Controls

171

 Notice how the text “ Florida, United States ” seems to be just floating on the page? It looks out of place
compared to the other field controls. The design - time experience for these controls contains a significant
amount of additional HTML that creates the tabbed interface with a border surrounding it. How does
Microsoft do it with the OOTB field controls? Unfortunately, it is not possible to determine exactly how
this is done because the methods that generate this interface are obfuscated and thus not available.

 See for yourself how this is hidden. The method that implements this tab - like interface is Render() .
Use the popular and free tool Reflector by Lutz Roeder (www.andrewconnell.com/go/237) to
disassemble the Microsoft.SharePoint.WebControls.BaseFieldControl.Render() method
in the Microsoft.SharePoint.dll assembly found in the [..]\12\ISAPI folder.

 However, with a bit of reverse engineering, by looking at the source of the rendered pages it is possible
to simulate the same experience in custom field controls. By wrapping the preview HTML up in a few
 < DIV > tags and leveraging a few of the Microsoft - provided CSS classes, the CountryRegionControl ’ s
design - time experience can look just like any other control. The code in Listing 10 - 14 will create
the design - time experience in SPD shown in Figure 10 - 7 . Note in particular that the interface name
has been added to the class declaration.

 Listing 10 - 14: Adding a design - time experience to the CountryRegionControl
field control

public class CountryRegionControl : BaseFieldControl, IDesignTimeHtmlProvider {
 // omitted for brevity

string IDesignTimeHtmlProvider.GetDesignTimeHtml () {
StringBuilder designTimePreview = new StringBuilder();
 designTimePreview.Append(“ < div align=\”left\” class=\”ms-formfieldcontainer\” > ”);

 designTimePreview.Append(“ < div class=\”ms-formfieldlabelcontainer\”
nowrap=\”nowrap\” > ”);
 designTimePreview.Append(“ < span class=\”ms-formfieldlabel\”
nowrap=\”nowrap\” > {0} < /span > ”);
 designTimePreview.Append(“ < /div > ”);

 designTimePreview.Append(“ < div class=\”ms-formfieldvaluecontainer\” > ”);
 designTimePreview.Append(“{1}”);
 designTimePreview.Append(“ < /div > ”);

 designTimePreview.Append(“ < /div > ”);

 return string.Format(designTimePreview.ToString(),
 this.Field.Title,
 “Florida, “ + UNITED_STATES);
 }

}

 Figure 10 - 6

c10.indd 171c10.indd 171 5/8/08 7:08:35 PM5/8/08 7:08:35 PM

Chapter 10: Field Types and Field Controls

172

 Now the CountryRegionControl looks just like any other field control provided OOTB. This completes
the field control part of the custom field type. The CountryRegionField is almost finished. The last
thing that is needed is some custom validation.

 Adding Custom Data Validation
 The requirements for the CountryRegionField dictate that content owners should not be permitted to
select a country or region without selecting the other value. Fields marked as required that use the
 CountryRegionField must take into account what “ required ” actually means within the context of the
field. In addition, whatever minimum information must be provided on nonrequired fields must still be
entered. For instance, if the field is required, then both country and state/region must be submitted.
However, if the field is not required, then the content owner can either leave both country and state/
region unspecified or enter both values. This is because simply entering the country is not enough —
 even on optional fields, it is all or nothing.

 Developers have two options in implementing validation of the data specified in the custom field type.
The first option is to use ASP.NET 2.0 validation controls, either client - side or server - side, in the
rendering template to validate the information provided. While this option would work, it leaves open a
huge hole. What happens when a developer writes custom code that interacts with a field using the type
 CountryRegionField ? The validation in the field control is not even taken into account because this
approach of accessing the field through the API completely bypasses the field control that is only shown
in the browser experience.

 The other option is to implement purely server - side validation within the field type itself. This validation
will be executed both when the field is accessed directly through the API and when content owners
interact with the field using the Web - based authoring experience. It is recommended, at a minimum, to
implement the second option in terms of validation on custom field types. The first approach, using ASP.
NET 2.0 validation controls in the rendering template, is optional and can simply provide a better
experience for content authors, as it can potentially eliminate the postback necessary to run the provided
data through the validation controls if they are implemented as client - side validation.

 To implement the recommended option, another method on the CountryRegionField custom field
type class must be overridden. The Microsoft.SharePoint.SPField.GetValidatedString()
method takes a single parameter of type object , which is the field value in the field type, and returns a
string. It is the responsibility of this method to do all the validation checking; and if there is a problem
with the data, it should throw the exception Microsoft.SharePoint.SPFieldValidationException .
When SharePoint receives this exception it displays a user - friendly exception notice containing the
message provided as a parameter when the exception is called. The code in Listing 10 - 15 contains the
logic for the CountryRegionField field type data validation.

 Figure 10 - 7

c10.indd 172c10.indd 172 5/8/08 7:08:36 PM5/8/08 7:08:36 PM

Chapter 10: Field Types and Field Controls

173

 Listing 10 - 15: CountryRegionField.GetValidatedString()

public override string GetValidatedString (object value) {
 if (value == null) {
 if (this.Required) throw new SPFieldValidationException(“Invalid value for
required field.”);
 return string.Empty;
 } else {
 CountryRegionValue field = value as CountryRegionValue;
 // if no value obtained, error in the field
 if (field == null) throw new ArgumentException(“Invalid value.”);
 // if it is required...
 if (this.Required) {
 // make sure that both COUNTRY & REGION are selected
 if (field.Country != string.Empty & & field.Region != string.Empty)
 throw new SPFieldValidationException(“Both Country and Region/State are
required.”);
 } else {
 // else, even if not required, if one field is filled in, the other must be
as well
 if (!string.IsNullOrEmpty(field.Country) !=
!string.IsNullOrEmpty(field.Region))
 throw new SPFieldValidationException(“Both Country and Region/State are
required if one value is entered.”);
 }
 return value.ToString();
 }
}

 Notice that the code in the GetValidatedString() method takes into account whether the field is
required or not using the SPField.Required property. Developers that elect to implement custom
validation for the custom field type must take into account whether the field is required. If the value
passes all validation checks, then it is passed back to the caller: SharePoint.

 Creating Custom Field Controls without
Custom Field Types

 What happens when you need to simply provide a custom editing experience rather than a unique
storage mechanism? While this chapter has focused on creating a custom field control that is paired with
a custom field type, another option is to simply create a control that utilizes an existing field type. A
possible use of this is when one of the existing field types works just fine for storing the data, such as a
simple text field, but users want to modify the editing experience.

 A classic example of this is the Telerik RadEditor Lite MOSS Editor control. This control is a feature
equivalent control to the RichEditField control included OOTB in MOSS 2007. The primary
difference between the two is that the RadEditor control supports multiple browsers, whereas the
 RichEditField only supports Microsoft Internet Explorer. The RadEditor control, a custom field
control, utilizes the same Publishing HTML field type that the RichEditField does — the only
difference is in the editing experience.

c10.indd 173c10.indd 173 5/8/08 7:08:36 PM5/8/08 7:08:36 PM

Chapter 10: Field Types and Field Controls

174

 The Telerik RadEditor Lite MOSS Editor control is covered in more detail in Chapter 14 , “ Authoring
Experience Extensibility. ”

 Creating a custom control that leverages an existing field type is much simpler than linking one with a
custom field type. Essentially, the only parts to build are the class that inherits from BaseFieldControl
and the rendering template. Once the field control is built and deployed, a developer or designer can
then manually add a < % @Register % > tag to a page layout and replace an existing field control with
the custom field control ’ s server tag.

 For example, consider a project requirement to provide an editing experience that offers input fields for a
content owner to enter a URL and title for a book on WROX ’ s Web site. If the title and URL are entered,
the display rendering should display the WROX logo followed by the book ’ s title hyperlinked to the
book ’ s page on WROX ’ s site. Otherwise, nothing would be rendered. The OOTB field type to be used
would be the Hyperlink or Picture field type, as the only things that need to be stored are the book title
and URL.

 The first step is to create the rendering template, WroxTemplates.ascx , a simple table consisting of two
textboxes, as shown in Listing 10 - 16 .

 Listing 10 - 16: WroxTemplates.ascx

 < %@ Control Language=”C#” % >
 < %@ Assembly Name=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c” % >
 < %@ Register Assembly=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c” Namespace=”Microsoft.SharePoint.WebControls”
TagPrefix=”SharePoint” % >

 < SharePoint:RenderingTemplate id=”WroxBookControl” runat=”server” >
 < Template >
 < table class=”ms-form” >
 < tr >
 < td align=”right” > Book Title: < /td >
 < td > < asp:textbox id=”WroxBookTitle” runat=”server” cssclass=”ms-long” / > < /td >
 < /tr >
 < tr >
 < td align=”right” > Book URL: < /td >
 < td > < asp:textbox id=”WroxBookUrl” runat=”server” cssclass=”ms-long” / > < /td >
 < /tr >
 < /table >
 < /Template >
 < /SharePoint:RenderingTemplate >

 Next, add the WROX logo to the root of a C# project and set the build action to Embedded Resource.
This will compile the image into the assembly. In order to retrieve the image out of the class library, it
must be registered using an assembly attribute within the AssemblyInfo.cs file by adding the
following code:

[assembly: System.Web.UI.WebResource(“WROX.ProMossWcm.Chapter10.WROX.gif”,
“image/jpg”)]

c10.indd 174c10.indd 174 5/8/08 7:08:36 PM5/8/08 7:08:36 PM

Chapter 10: Field Types and Field Controls

175

 With the rendering template and image addressed, the next thing to do is build the custom field control.
Similar to the field control built previously in this chapter, this field control will have the standard
protected fields used to reference the Web controls within the rendering template, the
 DefaultRenderingTemplate and Value properties, as well as the CreateChildControls() and
GetDesignTimeHTML() methods, as shown in Listing 10 - 17 . (Some code is omitted here for readability,
but the full source can be found in the downloadable code for the book.)

 Listing 10 - 17: WroxBookControl.cs

using System;
using System.Text;
using System.Web.UI.WebControls;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace WROX.ProMossWcm.Chapter10 {
 public class WroxBookControl : BaseFieldControl, IDesignTimeHtmlProvider {
 private const string RENDERING_TEMPLATE = “WroxBookControl”;
 private const string WROX_IMAGE_PATH = “WROX.ProMossWcm.Chapter10.WROX.gif”;

 protected TextBox _wroxBookTitle;
 protected TextBox _wroxBookUrl;

 protected override string DefaultTemplateName {
 // omitted from book for readability
 }

 protected override void CreateChildControls () {
 // omitted from book for readability
 }
 public override object Value {
 get {
 EnsureChildControls();
 SPFieldUrlValue field = new SPFieldUrlValue();

 if (_wroxBookTitle == null || _wroxBookUrl == null) {
 field.Description = String.Empty;
 field.Url = String.Empty;
 } else {
 field.Description = _wroxBookTitle.Text.Trim();
 field.Url = _wroxBookUrl.Text.Trim();
 }
 return field;
 }
 set {
 EnsureChildControls();

 if (value != null & & !string.IsNullOrEmpty(value.ToString())) {
 SPFieldUrlValue field = new SPFieldUrlValue(value.ToString());

 _wroxBookTitle.Text = field.Description;

(continued)

c10.indd 175c10.indd 175 5/8/08 7:08:37 PM5/8/08 7:08:37 PM

Chapter 10: Field Types and Field Controls

176

Listing 10 - 17 (continued)

 _wroxBookUrl.Text = field.Url;
 }
 }
 }

 string IDesignTimeHtmlProvider.GetDesignTimeHtml () {
 // omitted from book for readability
 }
 }
}

 Finally, the last step is to implement the special rendering for the value in the control when the control is
in Display mode, as shown in Listing 10 - 18 .

 Listing 10 - 18: Implementing custom display mode rendering

protected override void RenderFieldForDisplay (System.Web.UI.HtmlTextWriter output)
{
 // if nothing specified
 if (this.ItemFieldValue == null ||
string.IsNullOrEmpty(this.ItemFieldValue.ToString()))
 return;

 // get data from SharePoint
 SPFieldUrlValue field = new SPFieldUrlValue(ItemFieldValue.ToString());

 // create image control
 Image wroxImage = new Image();
 wroxImage.ImageUrl = Page.ClientScript.GetWebResourceUrl(this.GetType(),
WROX_IMAGE_PATH);
 wroxImage.AlternateText = “WROX logo”;
 wroxImage.RenderControl(output);

 output.Write(“ & nbsp;”);

 // create link to book
 HyperLink bookLink = new HyperLink();
 bookLink.Text = field.Description;
 bookLink.NavigateUrl = field.Url;
 bookLink.ToolTip = “WROX Book: “ + field.Description;
 bookLink.RenderControl(output);
}

 The implementation of the custom field control, covered in the next section, should result in an editing
and display experience that look like Figures 10 - 8 and 10 - 9 , respectively.

 Figure 10 - 8 Figure 10 - 9

c10.indd 176c10.indd 176 5/8/08 7:08:37 PM5/8/08 7:08:37 PM

Chapter 10: Field Types and Field Controls

177

 Implementing Custom Field Controls
in Page Layouts

 With a custom field type and/or field control created, now everything needs to be deployed into the
proper locations before it can be used within content types and page layouts:

 1. Deploy the assembly containing the field type, value, and control to the GAC.

 2. Place the rendering template (CountryRegionControl.ascx) in the [..]\12\TEMPLATE\
CONTROLTEMPLATES folder.

 3. Copy the field type definition (fldtypes_wrox.xml) in the [..]\12\TEMPLATE\XML folder.

 4. Add a safe control entry into the web.config file of the Web application of the site that will use
the field type to indicate to SharePoint that the objects in the deployed assembly are safe.

 Another option is to deploy the field type and all associated files using WSS solution packages. The
downloadable code for the book demonstrates this approach.

 After deploying all the necessary files related to the field type and/or control to the appropriate loca-
tions, recycle the Web services on the server by typing the following at a command prompt: iisreset exe .

 Recycling the Web server rather than the application pool is necessary because SharePoint loads field
controls only when all the services start up. Once the Web services start, a developer can then designate
a new field as a site column and add it to a content type. The custom field type will appear in the radio
button list of field types when creating a new site column, as shown in Figure 10 - 10 .

 Figure 10 - 10

 With the content type updated with the new site column using the field type CountryRegionField , the
last step is to add the column to a page layout. Open the page layout that uses the updated content type
in SPD. Drag the new site column onto a page layout in Design mode. The first time it is pulled in,

c10.indd 177c10.indd 177 5/8/08 7:08:37 PM5/8/08 7:08:37 PM

Chapter 10: Field Types and Field Controls

178

the control may render with the gray error box. If so, then save and close the page layout and reopen it.
The field type ’ s design - time rendering will now be shown when SPD is in Design mode, as previously
shown in Figure 10 - 7 .

 When a site column is dropped on the page layout, SPD does two things:

 It adds a < % @Register % > directive to the top of the page layout for the new server control
(field control).

 It adds a server control tag for the field control and sets the FieldName attribute to the internal
name of the field.

 The drag - and - drop approach does not work if a custom field control was created that leverages an existing
field type. Therefore, developers must perform these two steps manually. Add a < % @Register % >
directive to the top of the page layout and replace the existing field [server] control tag in the page layout
to point to the custom field control. Listing 10 - 19 demonstrates the code that would be added for the
 WroxBookControl field control previously created in this chapter.

 Listing 10 - 19: WroxBookControl added to a page layout

 < %@ Page language=”C#” Inherits=”...”
 meta:progid=”SharePoint.WebPartPage.Document” % >
 < !-- omitted from book for readability -- >
 < %@ Register tagprefix=”WROX”
 namespace=”WROX.ProMossWcm.Chapter10”
assembly=”Chapter10WroxBookControl, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c591e70cfdf9ce4f” % >

 < !-- omitted from book for readability -- >
 < WROX:WroxBookControl FieldName=”WroxLink”
 runat=”server” id=”UrlField1” > < /WROX:WroxBookControl >

 Summary
 Creating a custom field type, field value, and field control is one of the more complicated and complex
SharePoint subjects. SharePoint ships with many OOTB field types, otherwise known as field controls.
Each has its own editing experience. While these field types provide solutions for many data storage
needs in SharePoint projects and applications, sometimes they don ’ t meet a project ’ s requirements. In
these cases, creating custom field types and controls makes the most sense.

 This chapter explained how to create a custom field type that stores a complex data type. The two
values are country and state/region (depending on the country selected). The field type contains special
validation to ensure that the minimal and/or required fields are entered when editing a field that utilizes
the type. The complex field value is represented in a custom class that other developers can utilize when
interfacing with fields that use the custom field type.

 To provide a custom editing experience, this chapter demonstrated how to create a custom field control.
Not only does the control include the capability to provide a unique editing experience for content
owners, it also includes a special rendering when the control is viewed in a design - time experience in a
tool such as SPD. In addition, this chapter demonstrated how to create a custom field control utilizing an
existing field type. After creating the custom field control, with either a custom or out - of - the - box field
type, the chapter demonstrated how to utilize the control within a page layout.

❑

❑

c10.indd 178c10.indd 178 5/8/08 7:08:38 PM5/8/08 7:08:38 PM

 Web Parts

 Microsoft first introduced Web Parts in Windows SharePoint Services (WSS) 2.0. Information
workers and developers quickly adopted Web Parts because they enable end users to modify the
content, appearance, and behavior of pages through a browser. Not only could users easily modify
the content and experience with the browser, but they could also modify pages for just their own
experience, rather everyone ’ s shared experience. In addition, developers could create two Web
Parts that could be connected and pass data back and forth. A common use of Web Part
connections is the Microsoft SQL Server Reporting Services Web Parts. One Web Part displayed a
list of the available reports while the other took the selected report from the first Web Part and
displayed the rendered report.

 Web Parts became so popular that the ASP.NET team decided to add a Web Part Framework to
ASP.NET 2.0. The ASP.NET 2.0 implementation is different from the WSS 2.0 implementation in
that ASP.NET 2.0 adds a new component to the page: the WebPartManager . The WebPartManager
control is responsible for managing all aspects of Web Parts on the page. It knows what Web Parts
are allowed on the page, what Web Parts are already on the page and which Web Part zones they
are in, any connections that have been established between two Web Parts, as well as the
personalization data for each Web Part. Personalization data contains all the settings, or values, set
on the public properties, for a Web Part. This is very different from the WSS 2.0 Web Part
Framework in that each Web Part maintained its own connection and personalization information
and Web Part zones managed which Web Parts were in each zone.

 With ASP.NET 2.0 adding a Web Part Framework, the SharePoint team had yet another reason why
they could change SharePoint ’ s architecture (specifically, WSS 3.0) to be built on
top of ASP.NET, rather than in a side - by - side model that was glued together using an ISAPI
filter, as covered in Chapter 2 . However, Microsoft could not turn its back on all the Web Parts
developed for WSS 2.0, so it modified the existing WebPart and associated classes in the
 Microsoft.SharePoint namespace to serve as a backwardly compatibility wrapper to the new
ASP.NET 2.0 Web Part model. In fact, the Microsoft.SharePoint.WebPartPages.WebPart
class ’ inheritance hierarchy has completely changed to inherit directly from the ASP.NET 2.0
 WebPart class, System.Web.UI.WebControls.WebParts.WebPart .

c11.indd 179c11.indd 179 5/8/08 7:09:50 PM5/8/08 7:09:50 PM

Chapter 11: Web Parts

180

 Microsoft Office SharePoint Server (MOSS) 2007 includes three special Web Parts that are available
exclusively to Publishing sites. These three Web Parts are covered in the section “ MOSS 2007 Publishing
Web Parts ” later in the chapter.

 Adding Web Parts to Web Part Zones
 What happens when a Web Part is dropped into a Web Part zone on a page within a SharePoint site?
SharePoint adds some XML to the Web Part zone that contains information about the assembly
containing the Web Part and the Web Part class itself. This XML also contains the values of the public
properties on the Web Part class. This XML, shown in Listing 11 - 1 , is then stored as personalization
information for a specific user (if the personalization scope is set to User) or for all users who access the
page (if the personalization scope is set to Shared) depending on the mode of the page. The next time a
page is requested, SharePoint loads the personalization information for the Web Part, which tells it
which class to load from which assembly and the values of the public properties to set on that class. The
Web Part is then loaded within the ASP.NET 2.0 page life cycle, which generates the rendered HTML
output. Figure 11 - 1 demonstrates what the XML in Listing 11 - 1 would produce. Knowing how this
process works can prove to be a powerful tool for developers, as demonstrated later in this chapter.

 Listing 11 - 1: XML in a Web Part zone for the WSS 3.0 Image Web Part

 < WebPart xmlns=”http://schemas.microsoft.com/WebPart/v2”
 xmlns:iwp=”http://schemas.microsoft.com/WebPart/v2/Image” >
 < Assembly > Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c < /Assembly >
 < TypeName > Microsoft.SharePoint.WebPartPages.ImageWebPart < /TypeName >
 < FrameType > None < /FrameType >
 < Title > Watch My Gears Run < /Title >
 < iwp:ImageLink > /_layouts/images/GEARS_AN.GIF < /iwp:ImageLink >
 < /WebPart >

Figure 11-1

 Using Web Parts in Publishing Sites
 Web Parts are not only available within ASP.NET 2.0 and WSS 3.0 sites, but within MOSS 2007 sites as well,
including Publishing sites! Although Web Parts are available within Publishing sites, developers and site
owners should carefully evaluate whether it makes sense (i.e., meets the business requirements) to leverage
them because Publishing site developers have another way to add content to pages that non - Publishing
sites do not have: field controls. Chapter 7 , “ Master Pages and Page Layouts, ” covered the main differences
between field controls and Web Parts, such as storage and the retention of content in previous versions.

c11.indd 180c11.indd 180 5/8/08 7:09:51 PM5/8/08 7:09:51 PM

Chapter 11: Web Parts

181

 When should Web Parts be used in a Publishing site? There is no correct or incorrect answer to this
question, but consider the following as prescriptive guidance based on real - world implementations
and deployments of Publishing sites by the authors of this book.

 Most content - centric sites — specifically, MOSS 2007 Publishing sites — demand some level of
versioning or maintaining historical content. At times, project requirements dictate retaining a certain
number of versions or content over a period of time. For projects that require the retention of old, now
unpublished, content, best practice suggests using field controls for content and Web Parts for
functionality.

 What does “ functionality ” mean? Because the data within Web Parts is not versioned, but just associated
with the page separately from the page itself, Web Parts should not be used to store data when the
history of a page is important within the scope of a project. Web Parts should instead be used to provide
some sort of functionality. Examples of this include content rollup Web Parts (the section “ MOSS 2007
Publishing Web Parts ” covers this in more depth later in this chapter), pulling live content from an
outside source such as a news RSS feed, or providing some sort of functionality to the consumer, such as
signing up for e - mail notifications when the page is updated. Another use for Web Parts in a Publishing
site is to target content to a specific audience, a capability of MOSS 2007. As covered in Chapter 7 , Web
Parts support personalization of content, whereas field controls do not.

 The only data stored in the Web Part should be settings or configuration information that the Web
Part uses to collect or display data, not actual content. Of course, developers are free to use Web Parts
however they choose within a Publishing site. Page layouts will often contain a mixture of field controls
and Web Parts, but typically field controls dominate the page to enforce and control branding by
developers and designers.

 Creating Custom Web Parts
 Like the previous version of SharePoint and ASP.NET 2.0, developers are not limited to the Web Parts
provided “ out of the box ” (OOTB). Developers are free to create custom Web Parts — for use within
Publishing sites or any SharePoint site, for that matter.

 Web Parts are ASP.NET 2.0 server controls, so creating Web Parts involves working in a pure code model,
rather than defining the presentation experience declaratively as is done with markup in *.ASPX and
 *.ASCX files. This is often frustrating to ASP.NET 2.0 developers who are used to working with markup
or a design surface within Visual Studio. Even though Web Parts are server controls, developers are not
excluded from building Web Parts as ASP.NET 2.0 user controls (*.ASCX). One option is to use the
 SmartPart, an open - source project hosted at www.andrewconnell.com/go/238 . The SmartPart is a Web
Part that acts as a wrapper for user controls. This project effectively lowers the bar of Web Part
development, enabling developers to work with visual designers creating user controls instead of
adding all rendering logic in a server control.

 Jan Tielens, the developer behind the SmartPart, has written a fantastic chapter on the subject of
ASP.NET 2.0 user controls for use within Web Parts. See Chapter 7 of Real World SharePoint 2007:
Indispensable Experiences from 16 MOSS and WSS MVPs (Wrox, 2007).

c11.indd 181c11.indd 181 5/8/08 7:09:52 PM5/8/08 7:09:52 PM

Chapter 11: Web Parts

182

 The other option is to create a custom Web Part wrapper for a specific user control. The custom Weather
News Web Part created in this chapter is built using the pure server control approach, rather than the
ASP.NET 2.0 user control approach.

 Creating ASP.NET Web Parts, Not SharePoint Web Parts
 The previous sections outlined the history of Web Parts as they were first introduced in WSS 2.0 and
ultimately moved to the ASP.NET 2.0 Framework. Thanks to backward compatibility, developers can
choose between two classes to inherit from when creating custom Web Parts:

 ASP.NET 2.0 — System.Web.UI.WebControls.WebParts.WebPart

 WSS / SharePoint 3.0 — Microsoft.SharePoint.WebPartPages.WebPart

 Which one should developers inherit from? When creating a new Web Part, Microsoft ’ s recommendation
is to always create ASP.NET 2.0 Web Parts instead of SharePoint - specific Web Parts. Remember that the
SharePoint Web Part class exists primarily for backward compatibility, so Web Parts developed for WSS
2.0 or SharePoint Portal Server (SPS) 2003 will still work in WSS 3.0 or MOSS 2007. The SharePoint Web
Part class does contain some additional functionality that the ASP.NET 2.0 Web Part class doesn ’ t, but
Microsoft ’ s advice is to not leverage those capabilities, such as connecting two Web Parts on different
pages or creating client - side connections.

 Advanced Web Part Techniques
 When creating custom Web Parts within a SharePoint site developers are often tasked with solving some
complex scenarios. In the case of Publishing sites, developers need to consider who will be responsible
for placing and configuring Web Parts on the page. Many traditional SharePoint sites, such as pure
collaboration team sites, assign to more sophisticated users the responsibility of managing the Web Parts
on the page. Publishing sites are a little different because the users who will be placing Web Parts on
the pages are the content owners. These content owners are frequently not as technically savvy as the
developers who wrote the Web Parts, so extra care must be exercised regarding design, creation, and
configuration management.

 This section briefly discusses two techniques and how they relate to Publishing sites. Both techniques are
utilized in the custom Weather News Web Part created in this chapter.

 Creating Custom Edit Mode Panels
 All Web Parts accept some minimal parameters that are exposed as public properties on the
System.Web.UI.WebControls.WebParts.WebPart class. The default properties include things such
as appearance settings — e.g., whether the Web Part rendering should include a border, whether the Web
Part should be displayed minimized (only the header showing) or not, and so on. Developers can specify
additional public properties on the Web Part that are used within the custom code. An example of this is
the WSS 3.0 Image Web Part previously shown in Figure 11 - 1 . The ImageLink property enables users to
specify the image that the Image Web Part will display.

 Public properties on a Web Part are exposed by SharePoint in the task page as long as they are decorated
with the attribute System.Web.UI.WebControls.WebParts.WebBrowsableAttribute . This attribute
tells SharePoint to include the property in the generic Editor Part, a control used in the task pane to edit
Web Part properties. By default, all properties shown in the generic Editor Part are rendered as a

❑

❑

c11.indd 182c11.indd 182 5/8/08 7:09:52 PM5/8/08 7:09:52 PM

Chapter 11: Web Parts

183

standard input box unless the property is of type enum , in which case a selector is rendered. While this
may be acceptable for many Web Parts, Publishing site developers will likely want to present a more
robust and customized Web Part editing experience for end users, to minimize, if not eliminate, data
entry error and server - side validation.

 Creating custom Editor Parts is very much like creating custom Web Parts in that they are also ASP.NET
2.0 server controls. The primary difference is a little extra work required to associate the Editor Part with
a Web Part. This is done by first overriding the WebPart.CreateEditorParts() method in the Web
Part, which will add the custom Editor Part to the collection of Editor Parts for the Web Part. Then,
within the Editor Part, two methods need to be overridden that will set/retrieve values to/from the Web
Part: EditorPart.ApplyChanges() and EditorPart.SyncChanges() . The creation of a custom Editor
Part is demonstrated in the Weather News Web Part created in this chapter.

 Leveraging Asynchronous Programming Techniques
 Web Part development, like all ASP.NET 2.0 server control development, introduces some additional
challenges that typical ASP.NET 2.0 page developers do not need to be as concerned about. For example,
when developing a Web Part, the developer has no true way of knowing exactly where this Web Part
could be used. While it is true that a project plan may dictate that the Web Part will reside on a specific
page, the whole point of Web Parts is to provide modular functionality that end users can implement.
Furthermore, the developer may or may not be aware of the fact that the Web Part may exist on a page
with many other Web Parts — even multiple instances of the same Web Part.

 What happens if the custom Web Part contains a long - running process such as a complex calculation,
retrieving data from a Web service or issuing a complex query against a database? That one Web Part
will hold up the processing of the entire page. If there are multiple instances of that Web Part on the
same page, a simple two - second task could now take up to eight or ten seconds just to run the long -
 running task! This obviously presents a challenge for developers, as one Web Part can bring an entire
page to a crawl.

 Developers need to create Web Parts with the mindset that they have no idea what else is going to be on
the page or how many instances of the Web Part will be on the page. Long - running operations should be
optimized to minimize their impact on the rest of the page. One approach to performing long - running
operations is to leverage asynchronous programming techniques. Asynchronous programming involves
firing off a long - running operation in parallel to existing processing. For instance, a query that takes five
seconds to execute can be issued asynchronously, which would enable ASP.NET 2.0 to continue
processing the rest of the page, including other Web Parts. When the long - running operation completes,
ASP.NET 2.0 calls a method, a callback method, that picks up where it left off. When ASP.NET 2.0 reaches
the OnPreRender() method in the ASP.NET 2.0 page life cycle, it waits for all pending asynchronous
operations to either complete or timeout.

 If a custom Web Part contains any complex calculations, database queries, Web service requests, or
anything else that takes a considerable amount of time to process, then it is a good practice for
developers to utilize asynchronous programming techniques to ensure that their Web Part is not the
reason a page takes too long to load. Asynchronous programming is demonstrated in the Weather News
Web Part created in the next section.

c11.indd 183c11.indd 183 5/8/08 7:09:53 PM5/8/08 7:09:53 PM

Chapter 11: Web Parts

184

 Creating a Weather News Web Part
 This section demonstrates how to create a custom Web Part. The Web Part will be a 100% true ASP.NET
2.0 Web Part that works in an ASP.NET 2.0 Web site, but it will be deployed and tested within a
SharePoint site. After creating an ASP.NET 2.0 Web Part, developers need to do a few extra things to
make it function within a SharePoint site, as well as address deployment.

 A common need people have for content sites is a weather Web Part. SharePoint used to include
news, weather, and stock ticker Web Parts in SPS 2003 but they were dropped in the latest release of
SharePoint. The Weather News Web Part, shown in Figure 11 - 2 , will have a special capability to show a
list of the last five weather reports in a Really Simple Syndication (RSS) feed, and when a user places the
mouse over one of the reports, the contents of the report are shown below the reports.

Figure 11-2

 Users that add the Web Part to the page will be permitted to specify the URL of the RSS feed used to
retrieve the weather reports and the degree of measurement: Fahrenheit or Celsius. This Web Part needs
to take into account that the weather RSS feed may be not be returned in a timely manner; and if that is
the case, the Web Part should not be responsible for holding up the processing of the entire page.

 The first step is to create a new C# Class Library project in Visual Studio, add a reference to the
System.Web assembly, and sign the project to create an assembly with a strong name. Next, create the
Web Part by creating a new class named WeatherWebPart that inherits directly from the ASP.NET 2.0
 System.Web.UI.WebControls.WebParts.WebPart class, as shown in Listing 11 - 2 .

 Listing 11 - 2: WeatherWebPart.cs file containing the WeatherWebPart class

using System;
using System.Collections.Generic;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml;

namespace WROX.ProMossWcm.Chapter11 {

 public class WeatherWebPart : WebPart {

 }
}

c11.indd 184c11.indd 184 5/8/08 7:09:53 PM5/8/08 7:09:53 PM

Chapter 11: Web Parts

185

 Because the requirements of the Weather News Web Part dictate that it not hold up page processing
while it retrieves the specified RSS feed, the Web Part will leverage asynchronous programming
techniques. Although ASP.NET 2.0 pages have an Async attribute on the Page directive that developers
can use to set the page to act as an asynchronous handler, it is not available within SharePoint sites when
building Web Parts. The Async attribute defaults to false , and Web Part developers cannot tell users
who add the Web Part to SharePoint sites to ensure that every page has this attribute set. Therefore,
developers need to come up with another approach.

 One solution is to use the PageAsyncTask class. This class enables developers to register tasks with the
page to be processed asynchronously. The PageAsyncTask constructor requires a few parameters. These
parameters include three callback methods, an object that represents the state of the task, and a Boolean
value specifying whether the task should be processed in parallel with other tasks. When using the
 PageAsyncTask class, it is recommended that you create a worker class that contains the callback
methods and provides an easy way to retrieve the results of the task. Putting this code in a separate class
facilitates maintenance and readability.

 Create a new class named WorkerTask in the project and create three callback methods, as shown in
Listing 11 - 3 .

 Listing 11 - 3: WorkerTask.cs file containing the WorkerTask class

using System;
using System.Xml;

namespace WROX.ProMossWcm.Chapter11 {
 internal class WorkerTask {
 private XmlNodeList _taskResults;
 delegate void WorkerTaskDelegate ();
 private WorkerTaskDelegate _task;

 private void ExecuteTask () {
 }

 internal IAsyncResult OnBegin (object sender, EventArgs e, AsyncCallback cb,
object data) {
 _task = new WorkerTaskDelegate(ExecuteTask);
 return _task.BeginInvoke(cb, data);
 }

 internal void OnEnd (IAsyncResult result) {
 _task.EndInvoke(result);
 }

 internal void OnTimeout (IAsyncResult result) {
 _taskResults = null;
 }

 }
}

c11.indd 185c11.indd 185 5/8/08 7:09:53 PM5/8/08 7:09:53 PM

Chapter 11: Web Parts

186

 The WorkerTask class is responsible for fetching the provided Weather RSS feed and returning the items
within the feed. The three callback methods in the class are called under specific conditions:

 OnBegin() — This method is called when the asynchronous task is executed.

 OnEnd() — This method is called when the task completes.

 OnTimeout() — This method is called when the task does not complete in a timely manner.

 The method ExecuteTask() is called via a delegate from within the onbegin() callback method. In
addition, this class also needs to provide a way for the caller to specify the URL of the weather RSS feed.
This is done using an internal field and forcing the caller to provide the URL when creating the object.
The WorkerTask class needs to have a way to return the contents of the RSS feed. This is done using a
public read - only property as shown in Listing 11 - 4 .

 Listing 11 - 4: Setting and retrieving values in the WorkerTask class

internal class WorkerTask {

 private string _rssFeedUrl = string.Empty;

 private XmlNodeList _taskResults;
 delegate void WorkerTaskDelegate ();
 private WorkerTaskDelegate _task;

 public WorkerTask (string rssFeedUrl) {
 if (string.IsNullOrEmpty(rssFeedUrl))
 throw new ArgumentException(“The RSS feed URL must not be empty”);
 _rssFeedUrl = rssFeedUrl;
 }

 public XmlNodeList TaskResults {
 get { return _taskResults; }
 }

 private void ExecuteTask () {
 }

 // omitted from book for readability
}

 Finally, the WorkerTask needs to actually do some work when it is kicked off asynchronously. The
 ExecuteTask() method previously created is called when the task is started. This is where the real work
happens, as shown in Listing 11 - 5 .

 Listing 11 - 5: WorkerTask.ExecuteTask()

private void ExecuteTask () {

 // fetch RSS feed
 XmlDocument rssFeed = new XmlDocument();
 rssFeed.Load(_rssFeedUrl);

 // get all items from the feed
 _taskResults = rssFeed.DocumentElement.SelectNodes(“channel/item”);

}

❑

❑

❑

c11.indd 186c11.indd 186 5/8/08 7:09:53 PM5/8/08 7:09:53 PM

Chapter 11: Web Parts

187

 With the worker class complete, it can now be used within the Web Part. All the work of the
 WeatherWebPart class happens in the CreateChildControls() method. This method creates
the asynchronous task, registers and fires it off, retrieves the results, and then creates the rendering
experience based on the values returned. The requirements specified that the user of the Web Part needs
to be able to specify the URL of the RSS feed as well as the degree measurement. These two values are
stored in local fields (ignore the public properties that will expose these fields to the end users for now).
The code in Listing 11 - 6 demonstrates creating a new instance of the worker class and using it to create
an asynchronous task that is immediately executed.

 Listing 11 - 6: Creating and executing asynchronous tasks in WeatherWebPart

public class WeatherWebPart : WebPart {

 private string _rssFeed = String.Empty;
 private bool _metricMeasurement = false;

 private string GetRssFeedUrl () {
 string result;

 if (_metricMeasurement) {
 result = _rssFeed + “ & weadegreetype=C”;
 } else
 result = _rssFeed + “ & weadegreetype=F”;

 return result;
 }

 protected override void CreateChildControls () {

 // if no RSS feed specified, do nothing
 if (String.IsNullOrEmpty(_rssFeed)) return;

 base.CreateChildControls();

 // create async task to go get RSS feed
 WorkerTask task = new WorkerTask(GetRssFeedUrl());
 PageAsyncTask asyncTask = new PageAsyncTask(task.OnBegin,
 task.OnEnd,
 task.OnTimeout,
 “RssFetcherTask”,
 true);
 Page.RegisterAsyncTask(asyncTask);
 Page.ExecuteRegisteredAsyncTasks();

 }
}

 The last step is to retrieve the results from the asynchronous task and render the HTML presentation.
Each post in the Weather RSS feed is represented with a HyperLink control. As stated in the
requirements, when the user hovers over a link, the contents of the post should be shown below the list
of weather posts. Add the code in Listing 11 - 7 to the end of the CreateChildControls() method.

c11.indd 187c11.indd 187 5/8/08 7:09:54 PM5/8/08 7:09:54 PM

Chapter 11: Web Parts

188

 Listing 11 - 7: Rendering code in CreateChildControls()

protected override void CreateChildControls () {
 // omitted from book for readability

 Page.RegisterAsyncTask(asyncTask);
 Page.ExecuteRegisteredAsyncTasks();

 // loop through posts and display
 int postCounter = 0;
 HyperLink link;
 string displayID = “_WPQID_WeatherDisplay”;
 if (task.TaskResults != null & & task.TaskResults.Count > 0)
 foreach (XmlNode post in task.TaskResults) {
 postCounter++;

 // create new link
 link = new HyperLink();
 link.NavigateUrl = post.SelectSingleNode(“link”).InnerText;
 link.Text = post.SelectSingleNode(“title”).InnerText;

 // add rollover effects
 link.Attributes.Add(“onMouseOver”, “document.all.” + displayID
 + “.innerHTML=’” + post.SelectSingleNode(“description”).InnerText
 + “’;”);
 link.Attributes.Add(“onMouseOut”, “document.all.” + displayID
 + “.innerHTML=”;”);

 Controls.Add(new LiteralControl(“ & raquo; & nbsp;”));
 Controls.Add(link);
 Controls.Add(new LiteralControl(“ < br / > ”));

 // only show last 5 posts in the feed
 if (postCounter > = 5) break;
 }

 // weather feed entry contents
 Controls.Add(new LiteralControl(“ < div id=\”” + displayID + “\” > < /div > ”));

}

 Note the generation of the < DIV > element ’ s ID. The ID of an object on an HTML page must be unique in
order to access it the way the rollover effects do using document.all.[id] . The code in Listing 11 - 7
uses the string _WPQID_WeatherDisplay as the unique identifier. The _WPQID_ makes it unique, as
SharePoint will replace that token at runtime with the Web Part ’ s unique client - side ID. This token is one
of a few tokens that can be used that are part of the Web Part Page Services Component (WPSC). The
WPSC acts as a SharePoint - specific Document Object Model (DOM) on top of the existing HTML DOM.

 For more information on SharePoint ’ s Web Part Page Services Component, refer to the official
 documentation on MSDN (www.andrewconnell.com/go/239).

 At this point the Web Part is now complete, but users of the Web Part need a way to manage the URL of
the weather RSS feed, as well as specify the degree measurement. This is done by exposing the two local
fields in the Web Part as public properties. If these properties were decorated with the WebBrowsable

c11.indd 188c11.indd 188 5/8/08 7:09:54 PM5/8/08 7:09:54 PM

Chapter 11: Web Parts

189

attribute, they would appear in the generic Editor Part in the task pane. Instead, these will not be
decorated; they will be managed from a custom Editor Part. Therefore, create public properties that
encapsulate the private fields, as shown in Listing 11 - 8 .

 Listing 11 - 8: Public accessors for Weather Web Part settings

public class WeatherWebPart : WebPart {
 private string _rssFeed = String.Empty;
 private bool _metricMeasurement = false;

 public string RssFeed {
 get { return _rssFeed; }
 set { _rssFeed = value; }
 }

 public bool MetricMeasurement {
 get { return _metricMeasurement; }
 set { _metricMeasurement = value; }
 }

}

 In order to maintain complete control over how users will manage this data and to provide the
most elegant experience, a custom Editor Part will be used for this task. As covered earlier in
this chapter, Editor Parts are just ASP.NET 2.0 server controls. Thus, like other server controls,
the rendering is defined within the CreateChildControls() method. Create a new class,
 WeatherEditorPart , that inherits from System.Web.UI.WebControls.WebParts.EditorPart
and add a CreateChildControls() method that displays an input control for managing the RSS feed
URL, and a selector for picking the degree measurement, as shown in Listing 11 - 9 .

 Listing 11 - 9: WeatherEditorPart.cs file containing the WeatherEditorPart class

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace WROX.ProMossWcm.Chapter11 {
 public class WeatherEditorPart : EditorPart {

 private DropDownList _degreeUnit;
 private TextBox _rssFeedInput;

 public WeatherEditorPart () {
 this.Title = “Weather Web Part Settings”;
 }

 protected override void CreateChildControls () {
 base.CreateChildControls();

 // create textbox for RSS feed:
 Controls.Add(new LiteralControl(“MSN Weather RSS Feed: < br / > ”));
 _rssFeedInput = new TextBox();

(continued)

c11.indd 189c11.indd 189 5/8/08 7:09:54 PM5/8/08 7:09:54 PM

Chapter 11: Web Parts

190

Listing 11 - 9 (continued)

 _rssFeedInput.Width = new Unit(“90%”);
 Controls.Add(_rssFeedInput);

 Controls.Add(new LiteralControl(“ < br/ > < br/ > ”));

 // create degree measurement selector
 Controls.Add(new LiteralControl(“Unit of measure to display: < br / > ”));
 _degreeUnit = new DropDownList();
 _degreeUnit.Items.Add(new ListItem(“Fahrenheit”, “F”));
 _degreeUnit.Items.Add(new ListItem(“Celsius”, “C”));
 Controls.Add(_degreeUnit);
 }

 }
}

 With the core of the WeatherEditorPart created, it now needs a way to communicate back and forth
with the WeatherWebPart . This is done via two methods:

 SyncChanges() — This is called when the Editor Part is first loaded into the task pane. Use this
method to retrieve the values of the settings currently set on the Web Part.

 ApplyChanges() — This is called when either the OK button or the Apply button is clicked in
the task pane, effectively setting the values on the Web Part.

 In each of these methods it is important to first call EnsureChildControls() to verify that all controls
in the Editor Part have been created before setting or reading their properties, as well as to get a
reference to the Web Part the Editor Part is associated with, as shown in Listing 11 - 10 .

 Listing 11 - 10: Setting and retrieving settings from the Web Part within the Editor Part

public class WeatherEditorPart : EditorPart {
 // omitted from book for readability

 public override bool ApplyChanges () {
 EnsureChildControls();
 WeatherWebPart webPart = WebPartToEdit as WeatherWebPart;

 // get values from controls and set on Web Part
 webPart.RssFeed = _rssFeedInput.Text;
 webPart.MetricMeasurement = _degreeUnit.SelectedValue == “C” ? true : false;

 return true;
 }

 public override void SyncChanges () {
 EnsureChildControls();
 WeatherWebPart webPart = WebPartToEdit as WeatherWebPart;

 // set values within controls
 if (!string.IsNullOrEmpty(webPart.RssFeed))

❑

❑

c11.indd 190c11.indd 190 5/8/08 7:09:55 PM5/8/08 7:09:55 PM

Chapter 11: Web Parts

191

 _rssFeedInput.Text = webPart.RssFeed;
 _degreeUnit.SelectedValue = webPart.MetricMeasurement ? “C” : “F”;
 }

}

 Last but not least, the Editor Part needs to be associated with the Web Part in some way
because at present, the Web Part has no knowledge of the Editor Part. To do this, override the
 CreateEditorParts() method on the Web Part, as shown in Listing 11 - 11 . The job of this method is to
return a collection of Editor Parts back to the Web Part Framework. To get the new Editor Part added
to the collection, create a new instance of the part and add it to the collection of existing Editor Parts.

 Listing 11 - 11: Adding custom Editor Parts to Web Parts

public class WeatherWebPart : WebPart {
 // omitted from book for readability

 public override EditorPartCollection CreateEditorParts () {
 List < EditorPart > parts = new List < EditorPart > (1);

 EditorPart part = new WeatherEditorPart();
 part.ID = this.ID + “_EditorPart”;
 parts.Add(part);

 return new EditorPartCollection(base.CreateEditorParts(), parts);
 }

}

 That ’ s it! The custom Weather News Web Part and associated Editor Part are now complete. At this point
the Web Part and Editor Part can be used within an ASP.NET 2.0 Web site.

 Making ASP.NET Web Parts Work in SharePoint Sites
 As previously stated, it is recommended that you build ASP.NET 2.0 Web Parts when building Web Parts
for SharePoint sites. These Web Parts will run within SharePoint without a problem — well, except for
one small issue: SharePoint typically runs in a lower level of trust than ASP.NET 2.0 Web sites do. This
lower level of trust is managed using code access security (CAS).

 For more information on CAS, refer to Chapter 2 , “ Windows SharePoint Services 3.0 Development
Primer. ”

 The .NET Framework does not allow an assembly that is not fully trusted to call another assembly that
is not fully trusted. This is the case with custom Web Parts — they are not fully trusted and thus cannot
be called. To get around this issue, Microsoft provides an assembly attribute that developers can add
to their projects to tell the .NET Framework that it is OK for assemblies that are not fully trusted to call
their assembly. This attribute, System . Security . AllowPartiallyTrustedCallers , is typically added
to the AssemblyInfo.cs code file in a project. Add this attribute to the AssemblyInfo.cs file in the
project that contains the WeatherWebPart class:

[assembly:System.Security.AllowPartiallyTrustedCallers]

c11.indd 191c11.indd 191 5/8/08 7:09:55 PM5/8/08 7:09:55 PM

Chapter 11: Web Parts

192

 In addition to decorating the assembly with an attribute so it can be called in a SharePoint site,
SharePoint also needs to be explicitly told that the class within the assembly is safe. SharePoint ’ s safe
mode parser checks every class loaded in every page to ensure that it has been marked as OK to load in
the site. Skipping this verification would open SharePoint sites up to a world of undesirable possibilities,
as someone within an organization using SharePoint Designer could add a reference to a user control
that has not been approved by the SharePoint farm administrators.

 For more information on the safe mode parser, refer to Chapter 2 .

 Therefore, in order for the Weather News Web Part to run properly within a SharePoint site, SharePoint
needs to be made aware that it is a safe control. This is done by adding a < SafeControl / > entry to the
site ’ s hosting Web application ’ s web.config file. Rather than do this manually, it should be done using
WSS solution package deployment, as covered in the next section.

 SharePoint Web Part Deployment Options
 The last step in creating a custom Web Part is the deployment process. Deploying a custom Web Part
involves four steps, two required and two optional.

 The required steps are as follows:

 1. Deploy the assembly containing the Web Part class to the site ’ s hosting Web application ’ s \BIN
directory or to the server ’ s GAC.

 2. Add a < SafeControl / > entry to the site ’ s hosting Web application ’ s web.config file, telling
SharePoint the control has been approved to run in SharePoint sites hosted within that Web
application.

 Here are the optional steps:

 3. Deploy any resource files (images, CSS, JS, etc.) used by the Web Part.

 4. Make the Web Part discoverable within SharePoint so users can add it to SharePoint pages
within sites.

 The last optional step may cause a double - take. How else would it get on a page? Recall what happens
when a Web Part is added to a Web Part zone on a page from the section “ Overview of Web Parts ” at the
beginning of this chapter: XML is added to the Web Part zone. Provided a Web Part has been deployed
and marked as safe, someone with the Add and Customize Pages permission can import a Web Part
definition file into a specific page without selecting it from the catalog. This is a neat technique, enabling
site owners to strategically place Web Parts on specific pages but allowing those with the Add and
Customize Pages permission to add a specific Web Part from the Web Part Gallery.

 In order to make the Web Part discoverable, or enable users to pick the Web Part from a list of available
Web Parts, a Web Part definition file must exist in one of two places: the Web Part Gallery in a top - level
site of a site collection or the \wpcatalog folder within the Web root of a site ’ s hosting Web application.
If the Web Part definition is deployed to the \wpcatalog folder, all sites within all site collections within
the Web application will have access to the Web Part. However, if the Web Part definition is added to the
Web Part Gallery, a special document library in the top - level site of a site collection, only the sites within
that site collection will be able to add the Web Part to their pages.

c11.indd 192c11.indd 192 5/8/08 7:09:55 PM5/8/08 7:09:55 PM

Chapter 11: Web Parts

193

 The Web Part definition file for the Weather News Web Part is shown in Listing 11 - 12 .

 Listing 11 - 12: Weather News Web Part definition file

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < webParts >
 < webPart xmlns=”http://schemas.microsoft.com/WebPart/v3” >
 < metaData >
 < type name=”WROX.ProMossWcm.Chapter11.WeatherWebPart,
Chapter11WeatherWebPart, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c591e70cfdf9ce4f” / >
 < importErrorMessage > Error importing the Web Part. < /importErrorMessage >
 < /metaData >
 < data >
 < properties >
 < property name=”Title” type=”string” > Weather News Web Part < /property >
 < /properties >
 < /data >
 < /webPart >
 < /webParts >

 The Web Part definition file tells SharePoint the name of the class and assembly containing the class
for the Web Part. The < Properties > section enables developers to set the values of the Web Part ’ s
public properties.

 To deploy the Web Part definition to the entire Web application, use the < DwpFiles > element within the
WSS solution package manifest.xml file. DWP files are what Web Part definition files were called in
WSS 2.0, hence the name. However, this is not recommended because it is considered the WSS 2.0 way to
deploy Web Parts. The recommended approach is to provision Web Part definitions to the Web Part
Gallery using Features.

 The other option is to deploy the Web Part to the Web Part Gallery. Deploying the Web Part definition to
the Web Part Gallery is very similar to provisioning master pages and page layouts to the Master Page
Gallery. WSS 3.0 Features are used to provision an uncustomized instance of the Web Part definition into
the Web Part Gallery. Features also enable developers to specify the group within which the Web Part
should be displayed in the Add Web Parts pop - up dialog that appears when adding a Web Part to a page
in a SharePoint site. Listing 11 - 13 contains the CAML markup of an element manifest file used to
provision the Weather News Web Part to the Web Part Gallery in a site collection.

 Listing 11 - 13: Feature element manifest provisioning Web Part definition into the web
part gallery

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < Module Url=”_catalogs/wp” RootWebOnly=”TRUE” >
 < File Url=”WeatherWebPart.webpart” Type=”GhostableInLibrary” >
 < Property Name=”Group”
 Value=”WROX Professional MOSS 2007 WCM Development” / >
 < /File >
 < /Module >
 < /Elements >

c11.indd 193c11.indd 193 5/8/08 7:09:56 PM5/8/08 7:09:56 PM

Chapter 11: Web Parts

194

 The last step is to ensure that the Web Part runs correctly within a SharePoint site. This Web Part has an
extra deployment requirement in that it will not run in a SharePoint site that has been created using the
default settings with no modifications. The Weather News Web Part retrieves the news via a remote RSS
feed. The default CAS policy for SharePoint sites, WSS_Minimal , does not permit Web requests outside
of the current domain. Therefore, in order for the Weather News Web Part to properly function, either
the code access security (CAS) policy must be changed or the trust level needs to be changed to
something more permissive.

 The easy fix is to bump the trust level up to WSS_Medium or Full , but that changes the security settings
for all assemblies in the site. The much more secure way to do it is to customize the CAS policy to grant
the necessary permissions only to the Weather News Web Part without affecting anything else.
Thankfully, WSS solution packages provide a way to modify the CAS policy. The CAML markup in
Listing 11 - 14 demonstrates how to modify the CAS policy within the WSS solution package
manifest.xml file.

 Listing 11 - 14: Customizing CAS policy files via manifest.xml

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Solution xmlns=”http://schemas.microsoft.com/sharepoint/”
 SolutionId=”AD86F73D-BA51-4918-98AD-97611A64CF90”
 DeploymentServerType=”WebFrontEnd”
 ResetWebServer=”TRUE” >
 < Assemblies >
 < Assembly DeploymentTarget=”WebApplication”
 Location=”Chapter11WeatherWebPart.dll” >
 < SafeControls >
 < SafeControl Namespace=”WROX.ProMossWcm.Chapter11”
 Safe=”True” TypeName=”*” / >
 < /SafeControls >
 < /Assembly >
 < /Assemblies >
 < CodeAccessSecurity >
 < PolicyItem >
 < Assemblies >
 < Assembly
PublicKeyBlob=”0024000004800000940000000602000000240000525341310004000001000100e976
fa6a4eee88a3c45604062a386210b1d51cfad35e83a9f3447c3e692c65db877bebff48056ab87f316be
505e15e8ec77353b748832ae16553b7e35dbb825b1d95b8c007a3003706544956b3add805d12d8ee9ec
d54f9051b306dcac388f20f861384594bdb05084eb27ee89e4ae3e76259d11b3a796779178f2ef807c7
2c8”/ >
 < /Assemblies >
 < PermissionSet class=”NamedPermissionSet”
 Description=”ProMossWcmDevelopment” version=”1” >
 < IPermission class=”System.Web.AspNetHostingPermission, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
 Level=”Minimal”
 version=”1” / >

c11.indd 194c11.indd 194 5/8/08 7:09:56 PM5/8/08 7:09:56 PM

Chapter 11: Web Parts

195

 < IPermission class=”System.Net.WebPermission, System, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089”
 Unrestricted=”true”
 version=”1” / >
 < IPermission class=”System.Security.Permissions.SecurityPermission,
mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
 Flags=”AllFlags”
 version=”1” / >
 < /PermissionSet >
 < /PolicyItem >
 < /CodeAccessSecurity >

 < FeatureManifests >
 < FeatureManifest Location=”Chapter11WeatherWebPart\feature.xml” / >
 < /FeatureManifests >
 < /Solution >

 The full source, including a Feature that deploys the Weather Web Part to the Web Part Gallery upon
activation and the files needed to create the WSS solution package, can be found in the associated code
download for this book.

 MOSS 2007 Publishing Web Parts
 The beginning of the chapter mentioned that Microsoft included three Publishing - specific Web Parts in
MOSS 2007. These three Web Parts, Summary Links, Table of Contents, and Content Query are available
only within sites that have the Publishing Features activated because they have a dependency on some
XSL files provisioned in the activation of these Features. Two of these Web Parts are primarily used for
rolling up links to content — to promote content reuse rather than content duplication. The other,
Summary Links, is used primarily to add some ad hoc links to a page on a site. The following sections
discuss and demonstrate each of these in more detail.

 All three Web Parts can have the rendering styles customized beyond what is available out of the box.
The most extensible and powerful of the three, the Content Query Web Part, provides some very
advanced customization techniques that can eliminate most custom - built content rollup Web Parts that
developers are building today. While this chapter only covers in detail some advanced customization
techniques with the Content Query Web Part, the techniques demonstrated can be applied to all three,
including the rendering style customization options.

 All three Web Parts work the same way under the hood. Depending on the Web Part, it retrieves the
links that should be shown as an XML structure. The Summary Links Web Part retrieves the links stored
within the Web Part, whereas the other two (Table of Contents and Content Query) use the settings
specified by the content owner to retrieve links to pages within the site. That XML structure is then
processed with XSLT to generate the resulting HTML used for rendering the output.

c11.indd 195c11.indd 195 5/8/08 7:09:56 PM5/8/08 7:09:56 PM

Chapter 11: Web Parts

196

 Summary Links Web Part (and Field Control)
 The Summary Links Web Part is provided for developers and designers to enable content authors to add
ad - hoc links to a content page. This simple Web Part enables content owners to enter headings and links
and modify some settings on each. The sorting can be set to manual or automatic. If automatic is
selected, the author specifies which field is used to base the automatic sorting logic on.

 When is the Summary Links Web Part useful? Consider a product page on a Publishing site. Many of the
product pages on the various sites today contain links to things such as press releases, news articles, and
case studies related to the product. The Summary Links Web Part is ideal for this type of a requirement.

 After adding the Web Part to a Web Part zone within a page layout, the authoring experience looks like
what is shown in Figure 11 - 3 . This editing experience enables content authors to add new links and
groups (headings), reorder the links, and set the style rendering options. When creating links, content
owners can also specify the tooltip shown when hovering over the link, as well as the Alt=”” attribute
for accessibility needs and an image URL to be associated with the link.

Figure 11-3

 Creating Placeholder Data for Testing Rollup Web Parts
 When working with the Publishing Web Parts — specifically, the Table of Contents Web
Part and the Content Query Web Part — it helps to have some pages already created
that can be used in querying, filtering, grouping, and styling the content. The code
download for this book includes a sample project, WidgetContentBuilder , that
creates a new subsite within a site collection called Widgets , new site columns, a new
content type, Widget Product Page, and page layout ProductPageLeft.aspx , which
implements the Widget Product Page content type — all deployed using a WSS 3.0
Feature: Widget Content Builder Feature . When this Feature is activated, it not only
creates the subsite and site artifacts, it also creates ten content pages using the content
type and page layout within the Widgets subsite. These pages are all checked in and
published and can be used for testing the configuration options of the Table of
Contents and Content Query Web Parts.

 Not only is this a helpful Feature for creating random content for testing, it is also a
good code demonstration of how to programmatically create pages, check them in, and
publish and approve them.

 One thing unique about the Summary Links Web Part compared to the other two Publishing Web Parts
is that it is provided not only as a Web Part but also as a field control. This flexibility enables developers
to place the Summary Links field control on a page and associate it with a field in the page ’ s content
type. That way, the links entered in the control are versioned with the page, restricting content authors
from add/removing/moving it on the page.

c11.indd 196c11.indd 196 5/8/08 7:09:57 PM5/8/08 7:09:57 PM

Chapter 11: Web Parts

197

 Table of Contents Web Part
 The Table of Content Web Part is primarily used to keep the main navigation in a site from becoming too
crowded or busy. Typically used on the home page of a site within the Publishing site collection, the
Table of Contents Web Part displays links to pages within the site. It can be configured to show pages
from a specific site and a set number of subsites (defined by an optional number of levels to include).

 Content authors can elect to include hidden sites and pages in the results. This might seem a bit odd at
first, but it enables content authors to hide links that would normally show in the main navigation and
instead show them within the Table of Contents Web Part. Like the Summary Links Web Part and field
control, content authors can specify sorting options and rendering styles, and the number of columns of
links to show. Figure 11 - 4 shows the editing experience for the Table of Contents Web Part.

Figure 11-4

 Content Query Web Part
 Last but certainly not least in the trio of Publishing Web Parts is the Content Query Web Part (CQWP).
This Web Part is by far the most powerful and flexible of all three Publishing Web Parts; think of the
CQWP as the silver bullet for Publishing sites. Why? Many custom rollup Web Parts can be eliminated
using the CQWP. This is very beneficial to a project, as it results in less custom code that needs to be
maintained. The CQWP leverages some robust caching and performance optimization techniques to
make it the most performant Web Part possible. If developers build custom rollup Web Parts, they need
to include this caching infrastructure in their own custom code to achieve the same performance.

 One of the caching and performance techniques the CQWP leverages is the Microsoft
. SharePoint.Publishing.Navigation.PortalSiteMapProvider class. This class can
be used by developers in custom code, as demonstrated in Chapter 19 , “ Performance Tips, Tricks,
and Traps. ”

 In order to achieve the many different customization needs required for individual projects, developers
need to be familiar with and proficient in the different customization capabilities and techniques
available within a CQWP. However, before jumping into the advanced customization techniques take a
look at what the CQWP can offer OOTB.

c11.indd 197c11.indd 197 5/8/08 7:09:57 PM5/8/08 7:09:57 PM

Chapter 11: Web Parts

198

 The CQWP is optimized to pull data from SharePoint lists across sites within a site collection. This means
it can very quickly be configured to retrieve a certain type of pages no matter where the pages are within
a site collection and regardless of where the CQWP is used. Once a CQWP is dropped into a Web Part
Zone, content authors can configure multiple settings to customize the content that is displayed. The
following list details the major functionality provided by the CQWP OOTB, and Figure 11 - 5 shows the
configuration experience available in the task pane when editing the Web Part ’ s settings:

 Query Scope — Set the scope of the query used to retrieve the data for the CQWP. The scope
can be set to the entire site collection, a specific subsite (and all subsites within the specified
subsite), or a specific list within a specific site.

 List Type — Retrieve data from a specific type of a list. This selector includes all list templates
available within the site collection. When a template is selected, only content from that list is
included in the query result set.

 Content Type — Filter the result set to optionally include content conforming to a specific
content type and optionally all content types that are derived from the selected content type.

 Audience Targeting — Optionally include audience targeting when the query is executed; and,
optionally, include items in the result set that are not targeted for the current user.

 Custom Filters — Similar to SharePoint list views, add up to three additional filters on specific
fields to apply when executing the query to generate the result set.

 Grouping and Sorting — Similar to SharePoint list views, apply sorting and grouping logic on
the result set returned by the query.

❑

❑

❑

❑

❑

❑

Figure 11-5

c11.indd 198c11.indd 198 5/8/08 7:09:58 PM5/8/08 7:09:58 PM

Chapter 11: Web Parts

199

 The CQWP, like the other Publishing Web Parts, also has styling options content authors can select.
Both the group and item style can be configured using one of the OOTB styles. Developers are free to
create custom styles as well. This is covered later in the chapter in the section “ Implementing Custom
Style Rendering Options. ”

 The CQWP has one last capability that the other Publishing Web Parts lack: The results of the query can
be published as an RSS feed. Site users can then subscribe to the RSS feed of the CQWP in their offline
newsreaders, such as Office Outlook 2007. Developers can also use this RSS feed in other parts of the
Publishing site, consuming it using either the XML Web Part and transforming the feed using XSL into
HTML or in custom Web Parts.

 Configuration of the CQWP is self - explanatory so this chapter instead focuses on advanced
customization that can be implemented using the CQWP.

 Advanced Content Query Web Part Customization
 While the CQWP is quite powerful and flexible in most situations, developers will likely encounter
business requirements that require some advanced customization of the CQWP. First, recall the
discussion already covered in this chapter regarding how Web Parts are added to pages. The section
 “ Overview of Web Parts ” explained how adding a Web Part to a Web Part zone actually results in adding
a block of XML that tells the Web Part Framework where the Web Part class and assembly containing the
class can be found, as well as all the values of the Web Part ’ s public properties. When the Web Part is
loaded by the Web Part Framework, these values defined in the XML are assigned to the public
properties, which the Web Part uses to create the desired rendering. All Web Parts work this way,
including the CQWP.

 How does this little bit of knowledge empower a Publishing site developer? Not all public properties of
the CQWP are made available for editing in the task pane when modifying the Web Part. The trick is
figuring out how to edit these values. Many developers first look to a custom code solution such as
wrapping the CQWP up in a Web Part and setting these properties, but that just creates more custom
code that needs to be maintained, deployed, and marked as safe.

 There is a much easier way! Add the CQWP to a Web Part zone and make all necessary changes through
the task pane. Then, after committing the changes, the next step is to get the XML that was added to the
Web Part zone, the same XML that contains the values of all the properties just set in the task pane. To do
this, when in Edit mode, click the downward - facing arrow in the upper - right corner of the CQWP (this is
known as the Web Part Verbs menu) and select Export, as shown in Figure 11 - 6 .

Figure 11-6

c11.indd 199c11.indd 199 5/8/08 7:09:58 PM5/8/08 7:09:58 PM

Chapter 11: Web Parts

200

 Internet Explorer will display a prompt to save a file named [CQWP_Name].webpart . Save this file
and open it in a text editor. This is a Web Part definition file for the configured CQWP that is currently
on the page! Notice the long list of properties, a significantly longer list than the Web Part definition for
the custom Weather News Web Part created previously in this chapter. Armed with this Web Part
definition, how can it be used? As shown earlier when creating the custom Weather News Web Part, it
can be packaged into a Feature for deployment. Alternately, a developer can add it directly to the page.
To do this, while in Edit mode, select Page Add Web Parts Import from the Page Editing toolbar,
as shown in Figure 11 - 7 . In the task pane, browse to the *.webpart file and click the Upload button.
This adds the Web Part to the task pane, as shown in Figure 11 - 8 , so it can be dragged back into a Web
Part zone.

Figure 11-7

Figure 11-8

 This technique provides developers with three very powerful capabilities. First, with access to all the
custom properties, developers can now customize the CQWP beyond what is provided in the task pane.
Some customizations are demonstrated later in this section. Second, the CQWP changes can be versioned
and retained in source control because they are now refactored out of SharePoint and down to the file
system. Once the file is on the file system, it can be added to any source control system — Visual Source
Safe ™ , Team Foundation System ™ , Subversion . . . any SCM! Third, as demonstrated earlier when
creating the custom Weather News Web Part, the Web Part definition file can be provisioned to the Web
Part Gallery using a Feature and packaged using a WSS solution package. This enables developers to
create predefined CQWP configurations that are easily deployable across sites and environments!

c11.indd 200c11.indd 200 5/8/08 7:09:59 PM5/8/08 7:09:59 PM

Chapter 11: Web Parts

201

 Modifying the CQWP Web Part Definition
 Now it is time to dig in and learn how to customize the Web Part definition file for a CQWP. There are
89 properties that can be customized when the CQWP Web Part definition is exported from the browser.
The following list contains some of the popular properties available for customization in the CQWP Web
Part definition:

 Height and Width — When specified, the CQWP will occupy the set amount of space both
vertically and horizontally on the page.

 Title — Name of the CQWP, shown in the Web Part header .

 DisplayColumns — Sets the number of columns to display the results within .

 UseCache — Boolean value specifying whether the CQWP should use the cache to retrieve
results, or always perform live queries .

 ListOverride — Indicates to the CQWP what type of lists to filter by. Values here can be either
the list ’ s BaseType (e.g., Pages list = 1), ID (e.g., GUID of the list) or server template Type
(e.g., Pages list = 850).

 QueryOverride — Provides developers with a way to use a custom CAML query instead of
allowing the CQWP to create the query based on the values specified in the properties or
task pane.

 WebsOverride — When specified, the CQWP does or does not recurse subsites, and only
retrieves its results from the specified site.

 HeaderXslLink , ItemXslLink , and MainXslLink — Used to specify a custom XSL file that
contains styles used in rendering (see the section “ Implementing Custom Style Rendering ” later
in this chapter for more information on this).

 GroupStyle and ItemStyle — Specifies the style within the XSL file to use in creating the
HTML used for rendering the results .

 CommonViewFields — Enables developers to specify additional fields beyond what the CQWP
automatically retrieves. This property can contain multiple fields.

 ViewFieldsOverride — Enables developers to specify the exact fields to be returned by the
query, rather than get the default queries returned by the CQWP.

 For more information on the Content Query Web Part properties available for customization, refer to
the official documentation on MSDN (www.andrewconnell.com/go/240). In addition, the
MSDN article “ How to: Customize the Content Query Web Part by using Custom Properties ”
(www.andrewconnell.com/go/241) contains additional information on using the filtering
properties.

 Setting the values on many of these properties is fairly straightforward, but others are not so obvious.
For instance, using the ListOverride property is not a matter of simply entering the list ’ s type within
the value of the XML node in the Web Part definition. The ListOverride property is expecting a CAML
string. The following example is setting the CQWP to only retrieve data from the Pages list type:

 < property name=”ListOverride” type=”string” >
 < ![CDATA[< Lists ServerTemplate=”850” > < /Lists >]] > < /property >

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 201c11.indd 201 5/8/08 7:09:59 PM5/8/08 7:09:59 PM

Chapter 11: Web Parts

202

 The WebsOverride property is another one that needs a bit of explanation, as it is not as simple as
setting it to a Boolean value. CAML is used to set the value, just like the ListOverride property.
To retrieve data from the site(s) specified, use the following:

 < property name=”WebsOverride” type=”string” > < ![CDATA[< Webs / >]] > < /property >

 If the CQWP should retrieve the data from the subsites of the site selected, then use the following:

 < property name=”WebsOverride” type=”string” >
 < ![CDATA[< Webs Recursive=”True” / >]] > < /property >

 To retrieve specific fields using the CommonViewFields property, the internal name of the field and field
type need to be included in the property. For instance, if the CQWP needed to pull the field Page Content
(with an internal name of PublishingPageContent) from a page created using the Article Page
template, the property would look like the following:

 < property name=”CommonViewFields”
type=”string” > PublishingPageContent,RichHTML < /property >

 Finally, if the ViewFieldsOverride property is used to select explicit fields for use in the display
rendering, CAML similar to the CAML used to define the fields included in content types when creating
content types via Features is used, such as the following:

 < property name=”ViewFieldsOverride” type=”string” >
 < ![CDATA[
 < FieldRef Name=”PublishingPageContent” Type=”HTML” / >
 < FieldRef Name=”SummaryLinks” Type=”SummaryLinks” / >
]] >
 < /property >

 Many of the files in the preceding list are demonstrated in the section “ Implementing a Customized
CQWP Solution, ” which creates a customized instance of the CQWP with custom styles. Before building
a custom solution though, it is necessary to understand how the Publishing Web Parts are rendered
using the different style options, including modifying and creating custom styles.

 Customizing the CQWP Style Rendering
 As previously explained, the Publishing Web Parts first create an XML structure of the content to be
displayed. This XML structure is then run through the specified XSL file and template to generate the
HTML (or RSS) that is used to render the results. These specified style sheets are all provisioned from the
file system into a special gallery in the top - level site in a Publishing site collection: Style Library. These
style sheets (XSL files) are all stored in the XSL Style Sheets folder in the Style Library.

 When editing the CQWP properties through the browser in the task pane, two of the presentation
options are Group Style and Item Style. The items listed in the Group Style selector are actually XSL
templates defined in the http://[..]/Style Library/XSL Style Sheets/Header.xsl file. The
items listed in the Item Style selector are XSL templates defined in the http://[..]/Style Library/
XSL Style Sheets/ItemStyle.xsl file. The relationship between all the files is shown in Figure 11 - 9 .

c11.indd 202c11.indd 202 5/8/08 7:10:00 PM5/8/08 7:10:00 PM

Chapter 11: Web Parts

203

 All three Publishing Web Parts use the same Header.xsl and ItemStyle.xsl file in their rendering
(the Table of Contents Web Part uses another style sheet, LevelStyle.xsl , to define the different level
styling options), but as expected, each Web Part has some subtle differences that need to be taken into
account. This is all handled by special style sheets created for each Web Part.

 Take a look in the ItemStyle.xsl file. This file contains a handful of < xsl:template > nodes that
match the options in the Item Style selector in the task pane, as shown in Figure 11 - 9 . The first portion of
each template defines a handful of variables using the < xsl:variable > node. Within those variables,
 < xsl:call-template > nodes are used to execute XSL functions defined somewhere else. It is these
functions that are defined within the special Web Part – specific style sheets. All the Web Part – specific
style sheets reside in the same location as the other style sheets and are named for the Web Part they
are used with: ContentQueryMain.xsl , SummaryLinkMain.xsl , and TableOfContentsMain.xsl .
Each Web Part loads the appropriate XSL file so this is not something the developer needs to be
aware of, although it is something that can be changed. To change the Web Part – specific style sheet, use
the property MainXslLink in the Web Part definition file. For instance, to use the style sheet
 CustomMain.xsl found in the same location as the other style sheets, use the following code:

 < property name=”MainXslLink” type=”string” > /Style Library/XSL Style Sheets/
CustomMain.xsl < /property >

 The documentation Microsoft provides explains how to customize the existing styles using the existing
XSL style sheets. This will work, but it isn ’ t recommended. Why? Consider the following situation:
A developer is working on a fairly large Publishing site implementation. Like most Publishing sites, this
one uses multiple instances of the CQWP. However, one section needs to have a fairly customized
CQWP implementation with some custom rendering. If the developer implemented this custom

Figure 11-9

c11.indd 203c11.indd 203 5/8/08 7:10:00 PM5/8/08 7:10:00 PM

Chapter 11: Web Parts

204

rendering by modifying one of the existing styles, all the other CQWP implementations on the site that
use the modified style will get the same style customizations. Maybe that was not intended.

 The other option would be to simply create a new template in the ItemStyle.xsl file and only select it
in the customized CQWP implementation, but other implementations could also use it, which might not
be desired. In addition, customizing the XSL file using SharePoint Designer, as demonstrated in the
official MSDN documentation, is not easily replicated across multiple environments.

 Instead of customizing the existing styles, it is recommended that you create brand - new XSL style
sheets and configure the CQWP ’ s properties to import the custom XSL file. This is demonstrated in the
next section.

 Implementing a Customized CQWP Solution
 The next logical step is a demonstration of the advanced CQWP customization and styling options in
order to see how all this works. A common requirement for companies is to create a rollup page that lists
[x] number of product pages for a specific division (in the case of the demonstration, the division is North
America). In addition, the rollup should show the name of the division of the product. OOTB, the CQWP
cannot satisfy this requirement, but with a little customization and styling it is possible!

 The CQWP customization demonstration that follows uses the content created by the
WidgetContentBuilder Feature mentioned earlier in the chapter. This Feature creates
some sample content in a new subsite within a Publishing site collection.

 Before going further, take a look at what needs to be implemented. Figure 11 - 10 shows what the resulting
CQWP should look like.

Figure 11-10

 The first step is to add a CQWP to an existing page. By default, it will pull all the pages from the entire
site collection, which is not what you want. Modify the CQWP ’ s settings in the task pane by setting the
following values (leaving everything not mentioned at their default):

 Source — Show items from the following site and all subsites: Widgets

 List Type — Show items from this list type: Pages Library

 Content Type — Group = Widget Content Builder; Content Type = Widget Product Page

❑

❑

❑

c11.indd 204c11.indd 204 5/8/08 7:10:00 PM5/8/08 7:10:00 PM

Chapter 11: Web Parts

205

 Next, sort the result set by expanding the Grouping and Sorting section and set the following values:

 Group items by — None

 Sort items by — Name

 Show items in ascending order

 Limit the number of items to display — Checked

 Item limit — 4

 After setting the minimal configuration settings on the CQWP, apply the changes by clicking OK at the
bottom of the task pane. The resulting CQWP should look like Figure 11 - 11 — not what is required, as
there is no mention of the division, but this is as much as you can do through the browser.

❑

❑

❑

❑

❑

Figure 11-11

 To display the product division it needs to be retrieved from the page. This is done by adding the field to
the CQWP properties. Export the CQWP to a Web Part definition file and open the file in a text editor
such as Visual Studio. To tell the CQWP to pull another field in addition to the other fields, use the
 CommonViewFields property, which should be on or near line 68. The body of the page is stored in the
field named Division, which happens to be the same as the internal name of the field. The internal
name is what is needed. The field type of the field is Choice. Modify the CommonViewFields property
node in the CQWP definition as follows:

 < property name=”CommonViewFields” type=”string” > Division_WCB,Choice; < /property >

 Now that the CQWP is pulling the necessary field, it needs to display it. This is done within the style
rendering. Instead of modifying an existing style, because this CQWP is so specific to this one part of the
site, it makes more sense to create a completely new style. This involves doing two things: creating a new
style and configuring the CQWP so that it is aware of the custom style sheet.

 Create a copy of the ItemStyle.xsl file, as it is pretty close to what is desired — it ’ s always easier
to start with a copy than to start from scratch. Save this new XSL style sheet as WroxCh11.xsl in
 http://[..]/Style Library/XSL Style Sheets . The new style sheet contains more
templates than necessary, so delete all the templates except the one named Default. Rename the
template to WroxCh11.xsl and change the match attribute on the < xsl:template > node to
Row[@Style= ‘ WidgetProductList ’] . The (George) file should now look similar to the markup in
Listing 11 - 15 (the attributes in the opening < xsl:stylesheet > node have been omitted here for
readability).

c11.indd 205c11.indd 205 5/8/08 7:10:01 PM5/8/08 7:10:01 PM

Chapter 11: Web Parts

206

 Listing 11 - 15: WroxCh11.xsl

 < xsl:stylesheet >

 < xsl:template name=”WidgetProductList” match=”Row[@Style=’WidgetProductList’]”
mode=”itemstyle” >

 < xsl:variable name=”SafeLinkUrl” > < !-- omitted -- > < /xsl:variable >
 < xsl:variable name=”SafeImageUrl” > < !-- omitted -- > < /xsl:variable >
 < xsl:variable name=”DisplayTitle” > < !-- omitted -- > < /xsl:variable >
 < xsl:variable name=”LinkTarget” > < !-- omitted -- > < /xsl:variable >
 < div id=”linkitem” class=”item” >
 < xsl:if test=”string-length($SafeImageUrl) != 0” >
 < div class=”image-area-left” >
 < a href=”{$SafeLinkUrl}” target=”{$LinkTarget}” >
 < img class=”image” src=”{$SafeImageUrl}”
alt=”{@ImageUrlAltText}” / >
 < /a >
 < /div >
 < /xsl:if >
 < div class=”link-item” >
 < xsl:call-template
name=”OuterTemplate.CallPresenceStatusIconTemplate”/ >
 < a href=”{$SafeLinkUrl}” target=”{$LinkTarget}”
title=”{@LinkToolTip}” >
 < xsl:value-of select=”$DisplayTitle”/ >
 < /a >
 < div class=”description” >
 < xsl:value-of select=”@Description” / >
 < /div >
 < /div >
 < /div >
 < /xsl:template >
 < /xsl:stylesheet >

 With the style sheet created, it is best to integrate it with the CQWP definition to ensure that the basics
are working before adding any custom rendering logic. With the WroxCh11.xsl style sheet in the Style
Library, the CQWP definition needs to be made aware of it. Go back to the definition file and find the
 ItemXslLink property. This property is used by the CQWP to load a custom style sheet in addition to
the ones defined in ItemStyles.xsl . Modify the ItemXslLink property to point to the absolute URL
of the style sheet, as follows:

 < property name=”ItemXslLink” type=”string” > /Style Library/XSL Style
Sheets/WroxCh11.xsl < /property >

 In addition, the CQWP needs to be configured to use the new (or renamed) style in the XSL style sheet.
Find the ItemStyle property and change the value to be the name of the new style:

 < property name=”ItemStyle” type=”string” > WidgetProductList < /property >

c11.indd 206c11.indd 206 5/8/08 7:10:01 PM5/8/08 7:10:01 PM

Chapter 11: Web Parts

207

 Save the changes, import the CQWP *.webpart definition file to the SharePoint site where it
was exported, and add it to a Web Part zone. The new Web Part should look identical to the one that was
exported. This is because although a new field is being pulled, the field is not being displayed in the
rendering. To include the field in the rendering of the CQWP it must be added to the style.

 Because the WroxCh11.xsl style sheet is a copy of the ItemStyle.xsl style sheet, it still contains a
section where it displays the description of the product page returned in the results. This can be
modified to display the content of the extra field Division that is retrieved by the CQWP. Find the
following markup in the WroxCh11.xsl style sheet, which renders the Description field from
the page:

 < div class=”description” >
 < xsl:value-of select=”@Description” / >
 < /div >

 Change it to return the field Division :

 < div class=”description” >
 < em > Division: < xsl:value-of select=”@Division_WCB” / > < /em >
 < /div >

 The @ symbol is used to retrieve the value of a node in the XML that is transformed to HTML with the
XSL. In other words, the @ selects the fields from the item in the result set of the query. After saving
the changes, testing the page with the CQWP will show the results, as shown in Figure 11 - 12 .

Figure 11-12

 With the CQWP definition configured with the necessary settings and the custom style rendering
created, the next step is to package everything up for deployment .

 Deploying Customized Content Query Web Part
Customizations and Renderings

 The deployment of a custom CQWP definition is no different than deploying a custom Web Part
definition file. The advantage with a custom CQWP is that there is no assembly to deploy and thus
no safe control entry to add because the CQWP assembly has already been deployed as part of the
MOSS installation. The only thing that is necessary is to provision the Web Part definition file into
the Web Part Gallery for the site collection. The CAML markup in Listing 11 - 16 contains the contents of a
site collection – scoped Feature ’ s element manifest that provisions the Web Part definition into the Web
Part Gallery.

c11.indd 207c11.indd 207 5/8/08 7:10:02 PM5/8/08 7:10:02 PM

Chapter 11: Web Parts

208

 Listing 11 - 16: Feature element manifest file provisioning a customized CQWP
definition

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >

 < Module Url=”_catalogs/wp”
 RootWebOnly=”TRUE” >
 < File Url=”WidgetRollupWithDivision.webpart”
 Type=”GhostableInLibrary” >
 < Property Name=”Group”
 Value=”WROX Professional MOSS 2007 WCM Development” / >
 < /File >
 < /Module >

 < /Elements >

 Finally, the custom rendering style needs to be deployed as well. This is no different than provisioning
the Web Part definition file to the Web Part Gallery or master pages, or page layouts to the Master Page
Gallery, as shown in Listing 11 - 17 .

 Listing 11 - 17: Feature element manifest file provisioning a custom CQWP rendering
style sheet

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < Module Url=”_catalogs/wp”
 RootWebOnly=”TRUE” >
 < File Url=”WidgetRollupWithDivision.webpart”
 Type=”GhostableInLibrary” >
 < Property Name=”Group”
 Value=”WROX Professional MOSS 2007 WCM Development” / >
 < /File >
 < /Module >

 < Module Url=”Style Library/XSL Style Sheets”
 RootWebOnly=”TRUE” >
 < File Url=”WroxCh11.xsl”
 Type=”GhostableInLibrary” >
 < /File >
 < /Module >

 < /Elements >

 The complete code for the Feature and WSS solution package used to deploy this customized CQWP and
style is included in the code download for this book.

 Summary
 Microsoft introduced the Web Part Framework in WSS 2.0 and later moved it to ASP.NET 2.0. By
changing the architecture to build WSS 3.0 on top of ASP.NET 2.0 (compared to the previous
architecture), Microsoft no longer needed to rely on SharePoint for the Web Part infrastructure but
instead made it more broadly available. SharePoint developers benefit from this move, as many things in
the Web Part Framework were simplified in the ASP.NET 2.0 version.

c11.indd 208c11.indd 208 5/8/08 7:10:02 PM5/8/08 7:10:02 PM

Chapter 11: Web Parts

209

 While most SharePoint 3.0 sites still use Web Parts quite extensively, MOSS 2007 Publishing sites offer an
additional editing control for developers and content authors alike: field controls. This does not mean
that Web Parts are no longer used in Publishing sites, but they are typically not used nearly as much as
they are in traditional collaboration SharePoint sites. Instead, Web Parts serve more of a functional role,
rather than storing content. This chapter demonstrated how to create a custom ASP.NET 2.0 Web Part
that can be used within an ASP.NET 2.0 Web site, a WSS 3.0 site, or a Publishing site. It also
demonstrated a few advanced techniques that developers may want to consider when implementing
custom Web Parts such as custom Editor Parts and asynchronous programming techniques.

 MOSS 2007 Publishing sites include a trio of Web Parts used primarily to aggregate content on a single
page for navigation and organizational purposes, as well as to provide ad hoc links on a page without
modifying the site ’ s navigation. All three Web Parts — Summary Links, Table of Contents, and Content
Query — retrieve the results to be displayed as XML. This XML is internally run through an XSL
transformation to generate HTML that is used to render the results. Developers can tap into this process
and customize the way these three Web Parts retrieve, filter, group, and sort the resulting data, as well as
the rendering options for each.

c11.indd 209c11.indd 209 5/8/08 7:10:02 PM5/8/08 7:10:02 PM

c11.indd 210c11.indd 210 5/8/08 7:10:02 PM5/8/08 7:10:02 PM

 Leveraging Workflow

 Workflow has always been an important subject in the context of enterprise applications.
Unfortunately, developers have historically been mostly limited to working with large and
expensive workflow systems. Applications that did not rely on these third - party workflow engines
required some form of workflow engine to be devised as their own implementations. These factors
combined to make the workflow development story very murky for .NET developers.

 Thankfully, Microsoft created the Windows Workflow Foundation (WF). Not only can WF be
shared across applications, but developers can also utilize it within their own custom applications.
Windows SharePoint Services (WSS) 3.0 is a prime example of this in that it added workflow to the
SharePoint platform by leveraging WF.

 This chapter begins by explaining the concepts and motivations behind WF in general. It then
moves into the SharePoint WF story and how WF is incorporated within SharePoint. Finally, the
steps for creating and deploying a custom workflow for use in a SharePoint Publishing site are
covered. What this chapter does not contain is an in - depth discussion about WF or creating custom
workflows that can be used outside of a SharePoint environment. Additional resources are
provided at the end of the “ Creating Custom Workflows ” section for readers who want more
information on WF or creating custom workflows.

 The workflow development story within a SharePoint environment does not vary much between
versions of Visual Studio (2005 vs. 2008). When appropriate, any differences between the two are
described.

 Understanding Windows Workflow
Foundation

 Before diving into how to leverage existing workflows or developing custom workflows, it is
important for developers to have a solid grasp of WF and the motivation behind it. As with any
software company, product teams develop new capabilities as they are needed within each

c12.indd 211c12.indd 211 5/8/08 7:10:44 PM5/8/08 7:10:44 PM

Chapter 12: Leveraging Workfl ow

212

product. At times this can result in two or more groups developing a similar component for use in
different applications. The concept of workflow falls squarely in this camp. Applications such as WSS 2.0
and Content Management Server (MCMS) 2002 both had a need for workflow. At the time, the best
option for adding extensible workflow to these products was to purchase a third - party solution that
integrated into each of them. This was a costly proposition, both in terms of configuration and
implementation, as workflow engines are typically quite sophisticated applications.

 Microsoft recognized this problem of applications either developing their own workflow engine or
having to rely on third parties. The logical solution was to create a core workflow engine that all
applications could leverage and extend for their own specific uses and implementations. This was the
motivation behind WF: to create a robust and extensible workflow engine that could be utilized not only
by Microsoft ’ s products but also by other independent software vendors (ISVs) and developers. The first
release of WF was included in the .NET Framework 3.0 and is the primary reason why one of the few
prerequisites of WSS 3.0 is installing the .NET 3.0 Framework.

 The very core of the .NET Framework, the common language runtime (CLR), makes development easier
in that it manages all memory tasks for the developer. When a developer creates a new object, the CLR
allocates the necessary memory to create the object; and when the object is no longer used or is out of
scope, the garbage collector (GC) handles releasing memory back to the system for other uses.

 The challenge with building .NET applications is maintaining state across sessions. Consider an
application that needs to run over an extended period of time. Traditional .NET development would
usually involve creating some sort of loop that would constantly check for certain conditions. The
challenge with this approach is that the process cannot sustain a server reboot, something that causes
the process to stop and is not very scalable. To address this, developers would create a custom
persistence engine that would store the state of the application so that the application could be
interrupted and pick up where it left off. As previously mentioned in this chapter, different developers
on various product teams (and in some cases, the same team) had varying implementations of this
persistence. What WF brings to the table is the ability to create more reactive, or episodic, programs in
the .NET Framework, building off the managed memory offering. Before diving into the architecture,
however, it is helpful to understand some terminology in WF.

 Windows Workflow Foundation Terminology
and Architecture

 Windows Workflow Foundation, included in the .NET Framework 3.0, is comprised of a few different
components, as shown in Figure 12 - 1 . The primary component is the WF runtime engine . The runtime is
what oversees the execution and provides services to the running workflows. It is the runtime that
initiates new instances of workflow programs, registers and fires specific events the workflow subscribes
to, and manages the serialization and deserialization of the workflow to a persistent storage medium,
enabling the workflow to exist across process interruptions.

c12.indd 212c12.indd 212 5/8/08 7:10:45 PM5/8/08 7:10:45 PM

Chapter 12: Leveraging Workfl ow

213

 The WF runtime cannot operate independently. It requires an application to act as the host for the
runtime. Both the application and the WF runtime execute within the same .NET AppDomain .
Developers can create custom workflow programs by arranging a series of reusable components to
perform the required task. These reusable components are called activities . The WF includes core
activities, the base activity library (BAL), required to build most workflow programs. When the hosting
application starts a workflow, it essentially hands a collection of activities (the workflow program) to the
workflow runtime. The runtime in turn creates a new instance of the workflow.

 The workflow runtime also provides four services that the hosting application can leverage:

 The scheduling service facilitates running workflows, by default, on asynchronous threads, and
queues workflows that are waiting to be run. Developers can override the scheduling service to
execute workflows in a synchronous manner by relegating all workflows to run on a single
thread.

 The CommitWorkBatch service enables developers to configure how data is persisted. The
runtime handles the persisting of data in the workflow, but by leveraging the service
architecture it enables developers to implement custom logic for when the data is persisted.

 The persistence service enables the workflow runtime to persist workflows so that the workflow
does not have to remain in memory until it terminates — for scalability reasons (as workflow
instances can only execute on one server) and to survive periods when the host process recycles
or terminates.

 The tracking service provides the workflow runtime with the capability to record
performance and state information for monitoring the health of workflows. WF ships with
default service implementations, but all of them are extensible, enabling developers to create
their own implementation. For instance, the out - of - the - box (OOTB) implementation of the
persistence and scheduling services included in the WF installation persists workflow data to
a SQL Server database.

❑

❑

❑

❑

Workflow Runtime Workflow Instance

Activity

Activity

Activity

CommitWorkBatch
Service

Scheduler
Service

Tracking
Service

Persistence
Service

Host .NET Application

 Figure 12 - 1

c12.indd 213c12.indd 213 5/8/08 7:10:45 PM5/8/08 7:10:45 PM

Chapter 12: Leveraging Workfl ow

214

 Activities
 All workflows are comprised of activities. Activities are atomic units that perform a specific function. For
instance, an activity may write a message to a log file, execute a command against a database, or send an
e - mail message. Activities are similar to Windows Forms or ASP.NET 2.0 UI controls such as a TextBox
or GridView or even an HTTP context in that they have states and parameters that are unique to the
current point in time. These controls have been built by third parties and can be reused in other
applications. They contain all the logic for both a design time and runtime experience as well as what to
do when the activity is executed.

 Activities can be as simple as performing a single action, such as pausing the workflow for a period of
time (as in the DelayActivity), or complex, such as containing other activities. These complex
activities, known as composite activities, include behaviors such as control loops, as in the case of
 WhileActivity , or they may control the execution of multiple activities such as the
 SequentialActivity , which requires that all child activities complete before moving on to the next
activity. Each activity has properties that can be set through code or the designer interface, and an
associated invocation event that developers can override in the workflow ’ s code - behind file.

 Developers use these activities to create a workflow program. Workflows are composed of activities that
are arranged in a hierarchical tree formation. Each activity performs a specific function. In addition,
developers are not limited to the activities provided by the WF. Similar to Windows Forms and ASP.NET
2.0 controls, developers are free to create custom activities and use them across an unlimited number of
workflows. In fact, developers can share custom activities with other developers on the .NET 3.0
Framework community site (www . andrewconnell . com/go/242) .

 Types of Workflows
 The WF supports building two different types of workflows in the context of SharePoint: sequential and
state machine. A sequential workflow has one starting point, follows a generally predictable path or
multiple paths, and may or may not have a termination point. These types of workflows resemble a
flowchart. A state machine workflow is more suited to modeling real - world scenarios, as many business
processes cannot be modeled using a flowchart. State machine workflows differ from sequential
workflows in that they do not have a predefined path of execution. Instead, they rely more on the
concept of conditions, and transition from one state to another.

 At times it can be quite challenging to decide what type of workflow to build given a specific business
case. One way to determine whether a sequential or state machine workflow is suitable is to ask who is
in control of the business process. If the workflow is in control, such as when two people need to approve a
page in a specific order before it is published, then a sequential workflow makes the most sense. This is
because the workflow is defining the structure and linear flow of the process. However, if the user or
external inputs are in control, such as when placing an order on an e - commerce site, a state machine
workflow makes the most sense because the state of the order — such as Order Submitted, Inventory on
Backorder, Pick List Submitted, and Order Fulfilled — is marked by transitions based on user input and
input from other external systems.

c12.indd 214c12.indd 214 5/8/08 7:10:46 PM5/8/08 7:10:46 PM

Chapter 12: Leveraging Workfl ow

215

 Creating Custom Workflows
 The WF does not provide a way to create custom workflows; instead, it simply acts as the host for the
creation of instances of prebuilt workflows. This is similar to the .NET Framework, which does not
provide a way to create custom applications. Instead, developers need to use some extra components to
create custom workflows. The development experience varies a bit depending on the version of Visual
Studio being used. Visual Studio 2005 was released well ahead of the general availability of WF, so extra
components were needed for it to be used to develop custom workflows. Conversely, Visual Studio 2008
coincided with the .NET Framework 3.5 release, which included the WF and therefore the necessary
hooks and components to create custom workflows.

 Developing Custom Workflows with Visual Studio
 When using Visual Studio 2005, developers need to download and install the Visual Studio 2005 for
.NET Framework 3.0 (Windows Workflow Foundation): www.andrewconnell.com/go/243 (VSeWWF).
The VSeWWF adds a few things to Visual Studio to enable developers to create custom workflows:

 A workflow designer interface that provides developers with a similar experience to building
ASP.NET 2.0 or Windows Forms applications. Developers can easily drag and drop activities
from the Visual Studio Toolbox onto the design surface and link them together.

 An activity data - bound parameter creator/binder wizard that makes it easy to bind the
parameters of an activity to fields defined in the workflow class.

 It adds the base activity library, all activities included in the WF installation, to the Visual Studio
Toolbox.

 The capability to create code - behind files associated with workflows and to override methods
on the activity .

 It adds the capability to debug workflows.

 Thankfully, Visual Studio 2008 does not require an extra download. It includes everything necessary to
create custom workflows out - of - the - box. In fact, as covered later in the chapter, the entire process of creating
and deploying the workflow in a development environment is much easier than in Visual Studio 2005.

 For more information on Windows Workflow Foundation, see the official MSDN documentation at
 www.andrewconnell.com/go/244 . In addition, the following books are recommended: Microsoft
Windows Workflow Foundation Step by Step by Kenn Scribner (Microsoft Press, 2007) and
 Professional Windows Workflow Foundation by Todd Kitta (Wiley, 2007).

 Overview of SharePoint ’ s Workflow
Proposition

 With a high - level review of the core WF concepts covered, it is time to shift attention to the SharePoint
aspects of workflow. One of the biggest requests from customers using WSS 2.0 or SPS 2003 was for a
much more robust and extensible workflow capability in the SharePoint platform. During the planning
of WSS 3.0 and Microsoft Office SharePoint Server (MOSS) 2007, Microsoft was developing the WF,
which was a logical platform on which the SharePoint team could base the next version. Microsoft ’ s
adoption of WF in SharePoint was driven by two design goals.

❑

❑

❑

❑

❑

c12.indd 215c12.indd 215 5/8/08 7:10:46 PM5/8/08 7:10:46 PM

Chapter 12: Leveraging Workfl ow

216

 First, users needed the capability to easily tie workflows to documents and items in SharePoint
document libraries and lists. This is accomplished by associating workflows within the context of a
specific list, something covered later in the chapter.

 Second, users needed the capability to interact and monitor the status of running workflows. Due to
SharePoint ’ s collaborative nature, most if not virtually all workflows have some sort of human element
to them. At the very least, workflows can only exist within the context of items or documents in
SharePoint lists or libraries. List items and documents are usually added to lists and libraries by a
person, not a process. Users need to be able to not only complete a form when the workflow starts, but
also to view the status of the workflow instance during its execution. They also need the capability to
modify a workflow instance during execution and interact with tasks associated with it. To accomplish
this, Microsoft created a status page for each running workflow instance. It provides links to do all of the
things mentioned here, as well as view a log of the workflow history.

 Microsoft ships one workflow with WSS 3.0 (Three - state) and another four with MOSS (Approval,
Collect Feedback, Collect Signatures, and Disposition Approval).

 Architecture
 Earlier, you looked at the overall architecture of WF and what is needed to create and execute workflow
instances within a .NET application. Specifically, the workflow runtime must be hosted by a .NET
application and either utilize the out - of - the - box WF services or register custom implementations of its
services. SharePoint meets these needs by acting as the hosting application for the workflow runtime.
This saves developers the work of creating an instance and hosting the runtime within their custom code
written for SharePoint — an added value to core workflow development.

 SharePoint also handles customization of the runtime services. For example, SharePoint contains its own
persistence service, SPWinOePersistanceService , which tells the workflow runtime to persist
workflows that are not currently running to the current SharePoint site ’ s content database instead of
some external database. This is similar to the Web Part Framework implementation in SharePoint
whereby the Web Part personalization data is stored within the content databases instead of an external
database, as in a traditional ASP.NET 2.0 site. This is a fantastic demonstration of how pluggable and
extensible the WF architecture really is!

 Microsoft also adds a handful of SharePoint - specific activities to the WF. These activities are primarily
used to interact with tasks created by the workflow (more on tasks in the “ History and Task Lists ”
section) or to interact with SharePoint directly from the workflow program. For example, one activity,
 SendEmail , does not require the developer to provide the e - mail server or logon credentials to send
e - mail messages. This information is automatically pulled from the Web application containing the site
collection that contains the list the workflow template has been associated with.

 Terminology
 Before going too much further into SharePoint ’ s implementation of the WF it is important to grasp a few
concepts that are specific to SharePoint workflows. However, it helps to first review how traditional
.NET applications utilize the WF. A .NET application hosts the workflow runtime. Developers can then
build workflow programs that are created as new instances in the hosted workflow runtime and started.
Because SharePoint adds a significant human element to workflow, Microsoft ’ s implementation of the
WF in SharePoint is a little different.

c12.indd 216c12.indd 216 5/8/08 7:10:47 PM5/8/08 7:10:47 PM

Chapter 12: Leveraging Workfl ow

217

 First, developers create a new workflows as a workflow template . These workflow templates are essentially
the same as the workflow programs created for standard .NET applications. However, instead of
creating workflow instances based on the template, SharePoint adds a layer of abstraction. Recall
that SharePoint workflows are associated with items and documents within SharePoint lists and
libraries; workflows running within the context of SharePoint must be tied to a list item or
document. Workflow templates are installed and registered in a SharePoint site collection using site
collection – scoped Features.

 Once a workflow template has been installed and registered within a site collection, someone with
the necessary permissions can then go into the settings for a list and create a workflow association . The
workflow association is a named link that pairs the workflow template with a specific list, as shown in
Figure 12 - 2 . Associations also contain some parameters that are specific to the particular link. For
instance, an administrator can specify whether the workflow can be started automatically when items
are added or updated in a list or library or whether the workflow can be started manually. Developers
can optionally create a special kind of form that the user creating the association must complete to
provide information required by the workflow at the time of association.

 Note that a workflow template can be associated with a SharePoint list multiple times because each
association is seen as a separate entity in SharePoint. What makes the associations different is defined by
the name given to the association, as well as the extra data collected by a custom form. Workflow
associations are not exclusively tied to SharePoint lists. They can also be associated with SharePoint
content types, enabling the workflow association to travel with the content type wherever it is used
throughout the site collection.

Figure 12-2

c12.indd 217c12.indd 217 5/8/08 7:10:47 PM5/8/08 7:10:47 PM

Chapter 12: Leveraging Workfl ow

218

 With the workflow template associated with a particular list, users can then start workflows (depending
on the configuration options selected during the association) on specific items and documents within
SharePoint lists and libraries. These running workflows are referred to as workflow instances . An item or
document in SharePoint can have any number of workflow instances running at any given time.

 History and Task Lists
 One way SharePoint adds the human element to the WF is by heavily utilizing tasks. Because workflows
are exclusively tied to specific list items and documents in SharePoint, users are generally going to
assign tasks to someone as part of the workflow. While not required, it is by far one of the most common
aspects for all workflows developed for use within SharePoint. Because SharePoint workflows make
heavy use of tasks and even include special activities for interacting with tasks, one of the steps in
associating a workflow template with a list is to specify the SharePoint task list where tasks will
be created. If a task list does not exist when the workflow association is created, SharePoint
automatically creates one. Now, when developers use the task - based activities within a workflow
template, they don ’ t have to worry about specifying the site or task list in which the tasks should be
created. SharePoint handles this by saving that information as part of the association.

 Another human element to SharePoint workflows is the history list. The history list gives developers a
way to log information from the workflow that users can read to monitor the status and state of the
workflow. This history information is shown on the workflow status page, another thing specific to
the SharePoint implementation of workflow. Figure 12 - 3 shows an example of a SharePoint status page.
One of the activities added to the WF by SharePoint is the LogToHistoryListActivity . This activity
enables developers to write an outcome and description of a log message to the history. If a history list
does not exist when creating the workflow association, SharePoint automatically creates it.

Figure 12-3

c12.indd 218c12.indd 218 5/8/08 7:10:47 PM5/8/08 7:10:47 PM

Chapter 12: Leveraging Workfl ow

219

 Interacting with Users with Forms
 What may be the biggest human element and value - added aspect of SharePoint within the context of the
WF is the concept of adding forms to workflows. Developers are free to create workflow input forms
that administrators can use when associating the workflow template with a list (workflow association form)
or to modify a workflow instance when it is running (workflow modification form), a special form users are
presented with when the workflow is started on a list item or document (workflow initiation form), and
another form users are presented with when working with tasks created by the workflow (workflow task
form), replacing the out - of - the - box task edit form. Not all forms are required and developers are free to
implement none or multiple forms.

 Note that if a workflow association is configured to start automatically when an item in the list or library
is created or changed, the workflow initiation form is not displayed. The workflow initiation form is
only shown when the workflow is started manually. Therefore, it is recommended to always create a
workflow association form if the workflow template contains a workflow initiation form. The workflow
association form should collect default information that the initiation form also collects so that even if
the workflow is started automatically, the workflow template will still have the required information.

 Developers have two options in creating workflow forms: ASP.NET 2.0 pages and InfoPath 2007 forms.
Workflow forms created as ASP.NET 2.0 pages should be created as application pages that are deployed
to a subfolder in the [..]\12\TEMPLATE\LAYOUTS folder and inherit the LayoutsPageBase class.
Creating custom application pages is covered in detail in Chapter 2 , “ Windows SharePoint Server 3.0
Development Primer. ” ASP.NET 2.0 forms used in workflows must manually handle the serialization
and deserialization of data from the form back to SharePoint from the page ’ s code - behind. In addition,
the workflow association form must also handle the case when the task list and workflow history list
need to be created. That is, it must create those lists.

 Using ASP.NET 2.0 pages for SharePoint workflows requires the developer to write a fair amount of
custom code. One advantage of using ASP.NET 2.0 forms is that it enables the workflow to be used in
any version of SharePoint derived from WSS 3.0, including MOSS 2007. However, the amount of custom
code that needs to be written is an obvious disadvantage to using ASP.NET 2.0 pages as SharePoint
workflow forms.

 The other option is to create the workflow forms using Office InfoPath 2007. These forms are rendered
in the browser using the MOSS 2007 Forms Services component. While Forms Services is only available
for general use in MOSS 2007 Enterprise Edition, if the forms are used in the context of a SharePoint
workflow form, they can be used in MOSS 2007 Standard as well without breaking Microsoft ’ s
licensing policies.

 It is critical to understand this distinction: Only InfoPath 2007 forms used as SharePoint workflow
forms can be used in any version of MOSS 2007, but if the InfoPath form is rendered in the browser for
any other purpose, the MOSS 2007 Enterprise license is required.

 When InfoPath forms are used in SharePoint workflows, they are rendered in the browser and hosted
within special ASP.NET 2.0 pages provided by Microsoft as part of the MOSS 2007 installation. There are
many advantages to using InfoPath forms in SharePoint workflows. First, InfoPath forms require
significantly less code than ASP.NET 2.0 forms. This is because SharePoint knows how to handle the
serialization and deserialization of the data between the InfoPath form and SharePoint. This includes
the creation of the task and history lists, as SharePoint handles this for the developer.

c12.indd 219c12.indd 219 5/8/08 7:10:48 PM5/8/08 7:10:48 PM

Chapter 12: Leveraging Workfl ow

220

 Second, compared to ASP.NET 2.0 pages, InfoPath forms can be constructed very quickly using the
Office InfoPath 2007 client. InfoPath 2007 provides a rich design experience for developers.

 Third, if users interacting with the workflow are using the Office 2007 clients, the clients can render the
form without opening a browser. For instance, if a task is created and assigned to a user, that user is sent
an e - mail notifying them of the assigned task. The user can then, from within Outlook 2007, interact with
the workflow task form and complete the task — all without leaving Outlook 2007!

 Because the focus of this book is MOSS 2007 Web Content Management and Publishing sites, only
InfoPath 2007 forms are covered in detail; ASP.NET 2.0 pages used as workflow forms are omitted. When
developing workflows exclusively for use in Publishing sites, it is recommended that you use InfoPath
2007 as the workflow forms technology.

 For more information on using ASP.NET 2.0 pages in SharePoint workflow forms, the following
books are recommended: Inside Windows SharePoint Services 3.0 by Ted Pattison and Dan Larson
(Microsoft Press, 2007) and Workflow in the 2007 Microsoft Office System by David Mann
(Apress, 2007).

 Workflow in SharePoint Publishing Sites
 The site template Publishing Portal creates a new MOSS 2007 Web Content Management Publishing site.
This is the common starting place most developers use when creating new Publishing sites. This
template creates a new site and subsite (Press Releases) using the template Publishing Site with Workflow .
This template is essentially an exact copy of a similar template, Publishing Site . The primary differences
are that the Publishing Site with Workflow template simply turns on content approval for the Pages list and
adds content scheduling.

 It is the Feature receiver defined within the Publishing Feature that creates a workflow named Parallel
Approvers that associates the Approval workflow template with the Pages list in Publishing sites.

 Overview of the Parallel Approvers Workflow
 The Parallel Approvers workflow association created on all Pages lists in a Publishing site when
using the Publishing Portal site template forces all pages to go through an approval process before
publishing the page. The workflow association dictates that the Approvers SharePoint group is assigned
the task of approving the page. When the page is submitted for approval, a task is created and assigned
to the Approvers SharePoint group. Someone from that group must then either approve or reject the
page. When the page is approved, the content approval flag on the list item is set to Approved, which
increments the version of the page to the next major whole number version, making the page published.

 The Approval workflow template, added to the site collection from the Routing Workflows Feature
(Feature ID 02464c6a - 9d07 - 4f30 - ba04 - e9035cf54392 found in [..]\12\TEMPLATE\FEATURES\
ReviewWorkflows), contains a few InfoPath forms. One form is used as the workflow association form,
another is used for the workflow initiation form, and a handful of other forms are used as the workflow
modification forms and the workflow task forms.

c12.indd 220c12.indd 220 5/8/08 7:10:48 PM5/8/08 7:10:48 PM

Chapter 12: Leveraging Workfl ow

221

 Creating Custom Workflows for SharePoint
Publishing Sites

 While the Approval workflow template is very useful within Publishing sites, at times business
requirements dictate a more complex solution than what is provided in MOSS 2007. In these cases,
developers are free to create custom workflow templates for use within Publishing sites. Developers
have two options when it comes to creating workflows in SharePoint sites (not just Publishing sites):
creating workflows using Office SharePoint Designer (SPD) 2007 or Visual Studio 2005/2008. Each tool
has advantages and disadvantages associated with it.

 Creating Workflows with SharePoint Designer
 As far as workflow development is concerned, SPD is targeted to information workers or those creating
simple, one - off workflows. Workflows created with SPD are not templates; they are associated with a
SharePoint list at design time. The first thing the user must do when creating a new workflow in SPD is
to select the list it is associated with. SPD doesn’t provide a way to either save the workflow to another
list or copy it for use in another list. The workflow wizard SPD is very much like the Rules wizard
Outlook offers when creating rules for e - mail. While workflows can be created fairly quickly and easily,
in many ways they are limited when compared to those created using Visual Studio.

 Workflows created in SPD are bound to a specific list at design time. This means that the workflows
cannot be duplicated without manually repeating the same steps on another list or in another
environment. In addition, SPD is limited to creating only sequential workflows; it cannot create state
machine workflows. If users have trouble with the workflow, the only troubleshooting option is to
monitor the inputs and outputs of the workflow, as SPD workflows are black boxes. This is very different
from Visual Studio, which permits granular debugging by setting breakpoints and stepping through
code. Two other important distinctions of SPD - created workflows is that they can only utilize ASP.NET
2.0 pages for workflow forms and they do not support any custom code.

 SPD is not nearly as powerful as a workflow development environment as Visual Studio. The vast
majority of workflows created for use in Publishing sites are built using Visual Studio. The rest of this
chapter covers how to create workflows using Visual Studio, rather than SPD.

 Creating Workflows with Visual Studio
 Custom workflow templates can be created using either Visual Studio 2005 or Visual Studio 2008. The
majority of the workflow development story is the same in Visual Studio 2008 as it is in Visual Studio
2005, but there are a few subtle differences. The steps and figures in this chapter demonstrate the process
of creating workflows using Visual Studio 2008, but it is not reasonable to assume that everyone will be
able to start using Visual Studio 2008 in their environment at the time this book is published. Therefore,
any differences between the two versions are noted.

 Neither version of Visual Studio has the limitations of SPD. For instance, developers are free to create
either sequential or state machine workflows, as well as add custom code in a code - behind model similar
to ASP.NET 2.0 pages. Visual Studio also provides a rich debugging experience for developers to
troubleshoot defects in a custom workflow by setting breakpoints and watches, and stepping through
code line by line. Workflows created using Visual Studio can also leverage either ASP.NET 2.0 pages or
InfoPath 2007 forms as the workflow forms technology.

c12.indd 221c12.indd 221 5/8/08 7:10:48 PM5/8/08 7:10:48 PM

Chapter 12: Leveraging Workfl ow

222

 The biggest advantage to creating workflows with Visual Studio over SPD is that workflows developed
with Visual Studio are templates that can be easily deployed to multiple sites or environments.

 Required Components
 In order to create workflows using Visual Studio 2005, developers need a few things. First, the .NET
Framework 3.0 must be installed to provide the workflow runtime. Next, the Visual Studio extensions
for Windows Workflow Foundation (VSeWWF) need to be downloaded and installed (www.microsoft
.com/downloads). This adds the workflow designer and debugging capabilities, and add activities from
the base activity library to the Visual Studio Toolbox.

 At this point, developers can create the simplest workflows for the WF, but not within a SharePoint
environment. The next step is to download and install the WSS 3.0 SDK (www.andrewconnell/go/245)
and/or the MOSS 2007 SDK (www.andrewconnell.com/go/246). The two SDKs do a few things. First,
they add SharePoint - specific activities to the Visual Studio Toolbox. They each also add two new project
templates: one for creating sequential workflows for SharePoint sites and another for creating state
machine workflows for SharePoint sites. Note that each SDK installs two templates each. The WSS 3.0
SDK project templates assume that ASP.NET 2.0 pages will be used for the workflow forms technology,
whereas the MOSS 2007 SDK project templates assume that InfoPath 2007 forms will be used.

 How is the Visual Studio 2008 experience different? Visual Studio 2008 was released in November 2007,
well after the release of the .NET Framework 3.0 and WSS 3.0/MOSS 2007. This timeline enabled
the Visual Studio team — specifically, the Visual Studio Tools for Office (VSTO) team — to include the
necessary components and project templates into the most recent release. This means that developers
only need to install Visual Studio 2008; they do not need to install anything else such as the VSeWWF
extensions or the SharePoint SDKs.

 Creating the Dual Approvers Workflow
 Enough talk about the WF, workflow in SharePoint, and the different options developers have to create
workflows! It is time to create something. The rest of the chapter demonstrates how to create a workflow
that requires two people to approve a publishing request for a new page to be posted on a SharePoint
site. The steps outlined assume that the developer is using Visual Studio 2008. However, extra notes are
included when the experience or steps are dramatically different from Visual Studio 2008.

 The primary difference between Visual Studio 2005 and Visual Studio 2008 is the testing experience. In
Visual Studio 2005, the developer needs to manually deploy the workflow using a site - collection - scoped
Feature (optionally using a WSS solution package or by copying the files into the necessary locations),
manually install and activate the Feature, and then create the workflow association on a SharePoint list
or document library to test it. Visual Studio 2008 gives developers the option to allow the IDE to do this
for them. Regardless of the version used, developers need to package the workflow for deployment for use
in production (or the central build server, staging server, etc.). Visual Studio 2008 just speeds up this
process a bit.

 Create a new Visual Studio 2008 project using the SharePoint 2007 Sequential Workflow project template
found under Visual C#\Office\2007 , as shown in Figure 12 - 4 . This project template is only visible
when the .NET Framework 3.5 is targeted.

c12.indd 222c12.indd 222 5/8/08 7:10:49 PM5/8/08 7:10:49 PM

Chapter 12: Leveraging Workfl ow

223

 Set the name of the workflow to Chapter12DualApprovers and specify the URL of a local site to use in
debugging to a Publishing site URL (e.g., http :// wcm/PressReleases). In the next dialog, leave the
Automatically Associate Workflow box checked to enable Visual Studio to create the workflow
association automatically when F5 is pressed. Set the list to test the workflow to Pages and leave the
history and task lists to the default values. Finally, set the configuration when the workflow should start.
When testing within a Publishing site many people find it easy to only start the workflows manually.

Figure 12-4

Visual Studio 2005 Experience
Creating a new workflow project in Visual Studio 2005 involves fewer steps because it
doesn’t have the capability to handle creating the workflow association automatically.
The project template to use in Visual Studio 2005 is the SharePoint Server Sequential
Workflow, which is found under Visual C#\SharePoint.

 The workflow project created in this chapter, like all the other chapters, is available in the download
associated with this book from the publisher ’ s Web site. Also implemented with this project is the
approach of using MSBuild to package the workflow into a WSS solution package automatically with
each project build for easy deployment. Unfortunately, the Visual Studio 2008 project expects the
feature.xml definition to be at the root of the project in order for the F5 debugging technique to
work. For the sake of consistency, the downloadable project matches the others in terms of structure and
therefore will not work with the F5 debugging capability offered in Visual Studio 2008.

c12.indd 223c12.indd 223 5/8/08 7:10:49 PM5/8/08 7:10:49 PM

Chapter 12: Leveraging Workfl ow

224

 After creating the workflow, an optional step is to rename the Workflow1 class to a more meaningful
name. In this case, rename the workflow to DualApprovers.cs . This will likely cause some validation
errors. Search the partial class DualApprovers.Design.cs for instances of Workflow1 (even string
references) and change them to DualApprovers . In addition, change the namespace in both the
 DualApprovers.cs and DualApprovers.Design.cs files to WROX.ProMossWcm.Chapter12 :

namespace WROX.ProMossWcm.Chapter12 {

 public sealed partial class DualApprovers : SequentialWorkflowActivity {
 // existing code
 }

}

 With the project now created, the next step is to model the workflow in the designer.

 Modeling the Workflow Template
 After creating the project, modeling the workflow is the best approach to make sure everything is well
planned out. This is similar to using a modeling tool such as Office Visio 2007. The process of modeling
the workflow involves dropping activities from the Toolbox onto the design surface. In addition to
modeling the workflow, properties and correlation tokens should be created and set because it simplifies
the process of adding code later. New workflows based on one of the SharePoint project templates start
with the OnWorkflowActivated activity. This is how SharePoint initiates the workflow. The first thing
the workflow will do is create two tasks, one for each person who needs to approve the page submitted
for publishing.

 Add a Parallel activity and two CreateTask activities within each branch, naming them
 createAlphaTask and createBetaTask . The Parallel activity will force all activities within it to
complete before proceeding. Notice how both the CreateTask activities have a little red error icon in the
upper right - hand corner. This is because they have no correlation tokens set. Correlation tokens enable
workflows to create multiple tasks and keep related activities associated with specific tasks. Create a
correlation token for each task (aphaTaskToken and betaTaskToken) by simply typing it into the
 CorrelationToken property in the Properties tool window. This will not eliminate the error, however,
because correlation tokens also need owner activities. Set the owner activity for each activity to the name
of the workflow class.

 There is one more thing to do: set the TaskID and TaskProperties properties. The former is used to
give the task a unique ID that can be used later in the workflow, and the latter enables the workflow to
set specific values on the task that will be created. Click the builder button, the one with the ellipse, next
to the TaskID property of the createAlphaTask activity to bring up the property binder. This dialog
gives the developer a chance to create new public fields or properties in the workflow class and bind it to
a property on the activity. Click the Bind to a New Member tab, enter the name alphaTaskID , and select

c12.indd 224c12.indd 224 5/8/08 7:10:50 PM5/8/08 7:10:50 PM

Chapter 12: Leveraging Workfl ow

225

 With the tasks created, the workflow should provide a little feedback by writing to the history list. Drag
a LogToHistoryListActivity after the Parallel activity and the properties HistoryOutcome and
 HistoryDescription , the same way the TaskID property was set previously.

 Now the workflow should go to sleep and wait for the two tasks to be completed. Add another
 Parallel activity and drop two OnTaskChanged activities onto it. Associate one of the OnTaskChanged
activities to the alpha task by selecting the alphaTaskToken on one correlation token and the
 betaTaskToken on the other correlation token.

Sequential Workflow

onWorkflowActivat
ed1

parallelActivity1

sequenceActivity2sequenceActivity1

createAlphaTask createBetaTask

Figure 12-5

the radio button Create Field. Fields should be chosen over properties because the data in a public field
will be persisted to the content database. Do the same thing for the TaskProperties property on the
 createAlphaTask .

 The workflow should now look like Figure 12 - 5 .

c12.indd 225c12.indd 225 5/8/08 7:10:50 PM5/8/08 7:10:50 PM

Chapter 12: Leveraging Workfl ow

226

parallelActivity2

sequenceActivity4sequenceActivity3

onAlphaTaskChang
ed

onBetaTaskChange
d

logToHistoryListActi
vity1

createAlphaTask createBetaTask

Figure 12-6

 Also bind the previously created fields alphaTaskID and betaTaskID to the TaskID properties on
each activity. Because the workflow needs to get values from the task after it has been modified,
the code needs to get the values back from the AfterTaskProperties property on each
 OnTaskChanged activity. The AfterTaskProperties contains a snapshot of the task ’ s properties
after it has been changed. The BeforeTaskProperties contains a snapshot of the task ’ s properties
before it was changed.

 Create two new fields (alphaTaskAfterProperties and betaTaskAfterProperties) and bind them
to the TaskAfterProperties on the associated OnTaskChanged activity. After renaming the
 OnTaskChanged activities, the workflow should now look like Figure 12 - 6 .

 Finally, approve or deny the publishing request depending on the responses of the two tasks. Add an
 IfElse activity that contains two Code activities, one for each branch. Name these two Code activities
 approveCodeActivity and denyCodeActivity . Don ’ t worry about the issues on these last three
activities, as they can only be addressed by adding custom code, which will be handled later. The final
workflow should look like Figure 12 - 7 .

c12.indd 226c12.indd 226 5/8/08 7:10:50 PM5/8/08 7:10:50 PM

Chapter 12: Leveraging Workfl ow

227

 With the workflow modeled and fields bound to the various activity properties, the next step is
to create the forms.

Creating the Workflow InfoPath Forms
 The workflow needs some extra information passed into it from the user initiating it. Specifically, it
needs to know which two users will be assigned the tasks. In addition, it would be nice to collect some
instructions from the person initiating the workflow to display to the two people who will be assigned
the approval or denial tasks. The two users should also have the ability to enter some comments when
approving or denying the task.

 To satisfy these requirements, it makes the most sense to create a few forms. This workflow needs an
initiation form and a task edit form. It should also have an association form to collect some default data
for the initiation form in case the workflow is configured to start automatically, but in this case it will
be omitted.

 First create the initiation form. In InfoPath 2007, create a new form by selecting Design a Form Template
in the Getting Started dialog. In the Design a Form Template dialog, select Form Template, Based on:
Blank and check the option Enable Browser - Compatible Features Only. The first thing to do when
creating an InfoPath form is to define the data structure of the form. This is done by selecting Data
Source in the task pane on the right - hand side of InfoPath. Right - click the myFields node . . . properties
and rename it to InitForm . Create a new field by right - clicking InitForm and selecting Add. Set the

ifElseActivity1

ifElseBranchActivity2ifElseBranchActivity1

approveCodeActivit
y

denyCodeActivity

onAlphaTaskChang
ed

onBetaTaskChange
d

Figure 12-7

c12.indd 227c12.indd 227 5/8/08 7:10:51 PM5/8/08 7:10:51 PM

Chapter 12: Leveraging Workfl ow

228

Name to alphaApprover , the Type to Field (element), and the Data Type to Text (string); and Cannot
Be Blank (*) should be checked. Repeat these steps for the beta approver field (betaApprover) as well.

 Next, create the layout for the form. The quick way to do this is to right - click the InitForm node in the
Data Source task pane and select Controls. Add a button control and then rearrange the form to make it
look something like the layout shown in Figure 12 - 8 .

Figure 12-8

 Now it is time to add some logic to the form. Right - click the button control and select Button Properties.
Then select Click Rules Add. On the Rule dialog, click Add Action. On the Action dialog, select Action:
Submit Using a Data Connection, and then click Add. On the Data Connection Wizard, select Create a
New Connection To: Submit Data and click Next. Then select To the Hosted Environment, such as an
ASP.NET Page or Hosting Application, followed by Next and Finish. Click Add Action Close the Form
and click OK. Finally, click OK out of the dialogs.

 The last thing to do is configure the security on the form so it can run within SharePoint. Select Tools
 Form Options. In the Category for Security and Trust, uncheck Automatically Determine Security Level
and select Domain, followed by OK. Save the form to a new folder in the Visual Studio project named
 Forms_Design . This retains the designed form for future updates. This is not the form that will be used
in the workflow.

 Publish the form by selecting File Publish. In the Publishing Wizard, select To a Network Location and
click Next. Browse to a new folder in the Visual Studio project named Forms . This is the form that will be
used by the workflow. When prompted for a place to publish the form, use a different path than where the
designed form was saved. It is recommended to publish forms to a subfolder named Forms within the
Feature that will be used to add the workflow template to a site collection. When prompted by the wizard
to enter the Alternate Access Path, clear the value and click Next. Ignore the warning InfoPath may
display; if the warning does not appear, then the security was not set to Domain. Finally, select Publish.
Include the new files in the Visual Studio project so that the project looks something like Figure 12 - 9 .

c12.indd 228c12.indd 228 5/8/08 7:10:51 PM5/8/08 7:10:51 PM

Chapter 12: Leveraging Workfl ow

229

 The data collected in the InitForm will be passed from InfoPath into the workflow by SharePoint and
Forms Services. The data is passed into the workflow as XML. Because the XML conforms to the schema
defined in the form, the data can be deserialized into a class to make it easier to work with. To do this,
the schema needs to be extracted from the form, and the xsd.exe tool provided in the .NET Framework
SDK is used to generate the class file. To extract the schema, select File Save as Source Files (with the
form open in Design mode in InfoPath). Save the source files to the Forms_Design folder the form
was originally saved to. Rename the myschema.xsd file to InitFormSchema.xsd . To create the class
that will be used in the project, open a Visual Studio 2008 Command Prompt window and enter the
following command:

xsd.exe [path to /InitFormSchema.xsd]/InitFormSchema.xsd /c

 Add the generated InitFormSchema.cs file to the root of the Chapter12 project open in Visual Studio.
Add the InitForm class in the InitFromSchema.cs file to the same namespace as the workflow in
Listing 12 - 1 .

 Listing 12 - 1: Adding the InitFormSchema - generated class to the project namespace

using System.Xml.Serialization;

//
// This source code was auto-generated by xsd, Version=2.0.50727.1432.
//

namespace WROX.ProMossWcm.Chapter12 {

 /// < remarks/ >
 [System.CodeDom.Compiler.GeneratedCodeAttribute(“xsd”, “2.0.50727.1432”)]
 [System.SerializableAttribute()]
 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.ComponentModel.DesignerCategoryAttribute(“code”)]
 [System.Xml.Serialization.XmlTypeAttribute(AnonymousType = true, Namespace =
“http://schemas.microsoft.com/office/infopath/2003/myXSD/2007-12-30T05:14:38”)]
 [System.Xml.Serialization.XmlRootAttribute(Namespace =
“http://schemas.microsoft.com/office/infopath/2003/myXSD/2007-12-30T05:14:38”,
IsNullable = false)]

Figure 12-9

(continued)

c12.indd 229c12.indd 229 5/8/08 7:10:52 PM5/8/08 7:10:52 PM

Chapter 12: Leveraging Workfl ow

230

Listing 12 - 1 (continued)

 public partial class InitForm {
 // existing generated code
 }

}

 Now the task edit form needs to be created. Go back to InfoPath 2007 and create a new form the same
way the InitForm was created. Rename the myFields node to TaskForm and add three fields to the
schema of the new file as shown in the following table.

 Name Type Data Type Cannot be Blank

 Instructions Field (element) Text (string) checked

 Comments Field (element) Text (string) checked

 Decision Field (element) Text (string) checked

 Next, design the form as shown in Figure 12 - 10 .

Figure 12-10

 Unlike the initialization form, the task form needs some extra work in order for SharePoint to pass data
back to it. This is because the form cannot know about any changes to the task list that may occur after
development. This is done with an XML file named ItemMetadata.xml . Within Visual Studio, create
the new ItemMetadata.xml file at the root of the project and add the following XML to it:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < z:row xmlns:z=”#RowsetSchema” ows_instructions=”” / >

c12.indd 230c12.indd 230 5/8/08 7:10:52 PM5/8/08 7:10:52 PM

Chapter 12: Leveraging Workfl ow

231

 Notice the field prefixed with ows_ . This is the field used in the form that needs to be passed in by
SharePoint. Now that the XML file is created, it needs to be added to the task form as a new data source.
Jump back to InfoPath 2007 and select Tools Data Connections Add. Select Create a New Connection
to: Receive Data and click Next. Specify that the form should receive data from an XML document and
select Next. Click Resource Files Add and then browse to and select the XML file. Select OK and Next
to exit the wizard, accepting all the defaults.

 With the data source created, the form needs to be configured to pull the instructions from the XML file
and insert them into the field in the form. Right - click the instructions textbox and select Properties. Click
the function button (shown in Figure 12 - 11) to the right of the Value textbox in the Default Value section.

Figure 12-11

 Click the Insert Field or Group, change the Data Source to ItemMetadata (Secondary), select
:ows_instructions , and then OK to exit the dialog. From the Text Box Properties on the Display
tab, check the Read - only checkbox, as those who are assigned the task should not be able to change
the instructions.

 Now some logic needs to be added to the two buttons. Each button will set the value of the decision
field to approved or rejected and submit the data back to SharePoint. Right - click the Approve button
and select Button Properties. Click Rules Add Add Action. Select the Action: to Set a Field ’ s
Value, pick the decision field from the Main data source, and click OK. In the Value textbox, type
 approve and click OK. Click Add Action on the Action dialog, and select Action: Submit Using a Data
Connection Add. From the Data Connection Wizard, select Create a New Connection To: Submit
Data and click Next. Then select To the Hosting Environment, such as an ASP.NET Page or Hosting
Application, and click Next followed by Finish. Now select Add Action Close the Form and click OK
to exit the dialogs. Repeat the same steps with the Decline button, setting the value of the decision
field to decline .

 Like the initialization form, set the security of the form to Domain by selecting Tools Form Options
 Security and Trust panel. Save the form to the Forms_Design folder as TaskForm.xsn . Then Publish the
form using the same steps as the initialization form, making sure the alternate access textbox is cleared,
to the Forms folder in the Feature.

 Now both forms have been created and published for use in SharePoint and the workflow. The next step
is to write the necessary code in the workflow to get the data back from the forms and perform all other
custom coding tasks, such as setting field values and approving or declining the page.

c12.indd 231c12.indd 231 5/8/08 7:10:53 PM5/8/08 7:10:53 PM

Chapter 12: Leveraging Workfl ow

232

Adding Code to the Workflow Template
 With the workflow modeled, properties bound to fields, and the forms created, the next step is to add
custom code that will perform all the business logic necessary in the workflow. Switch back over to
Visual Studio, right - click the onWorkflowActivitated1 activity, and select Generate Handlers. Within
this method, add the code that will deserialize the data from the initialization form passed by SharePoint
to the workflow through the workflowProperties.InitializationData property. Using the
previously created class from the form ’ s schema file, this task will be much easier. However, you first
need to create a few class - scoped private fields that will be used to store the values from the form.
Add the following fields to the class:

 private string _instructions = default(string);
 private string _alphaApprover = default(string);
 private string _betaApprover = default(string);

 private void onWorkflowActivated1_Invoked (object sender, ExternalDataEventArgs
e) {
 }

 Now add two using statements to the top of the class file for the namespaces System.Xml and System
.Xml.Serialization , and then add the code in Listing 12 - 2 to the onWorkflowActivated_Invoked()
 method to pull the data submitted by the initialization form out of SharePoint and set the values of the
local fields.

 Listing 12 - 2: onWorkflowActivated1_Invoked() Method

private void onWorkflowActivated_Invoked (object sender, ExternalDataEventArgs e) {

 // load the data from the IP form ‘ InitForm ’ into a local object
 XmlSerializer serializer = new XmlSerializer(typeof(InitForm));
 XmlTextReader xrInitForm = new XmlTextReader(new
System.IO.StringReader(workflowProperties.InitiationData));
 InitForm frmInit = serializer.Deserialize(xrInitForm) as InitForm;

 // get approvers submitted
 this._alphaApprover = frmInit.alphaApprover;
 this._betaApprover = frmInit.betaApprover;

 // get instructions
 this._instructions = frmInit.instructions;
}

 This code could be a bit more robust in confirming that the user is a valid user in the current site, but for
the sake of brevity that step is omitted. The code also assumes that the user initiating the workflow is
entering a fully qualified account name, such as DOMAIN \ johndoe . Note also the highlighted lines in
Listing 12 - 2 . These four lines are deserializing the data provided by the initialization form into the class
created using the XSD.EXE tool and the schema file from the initialization form.

c12.indd 232c12.indd 232 5/8/08 7:10:53 PM5/8/08 7:10:53 PM

Chapter 12: Leveraging Workfl ow

233

 The next step is to create the two tasks and assign them to the two users entered in the initialization
form. The two tasks are created by the CreateTask activities. These activities have bound properties to
fields in the workflow class. Because the handler method in action activities is executed before the
activity, this is the best place to set values on the fields used to create the tasks. Right - click the activity
 createAlphaTask and select Generate Handlers, adding the code in Listing 12 - 3 to initialize the
 alphaTaskID and alphaTaskProperties .

 Listing 12 - 3: createAlphaTask_MethodInvoking() Method

private void createAlphaTask_MethodInvoking (object sender, EventArgs e) {
 this.alphaTaskId = Guid.NewGuid();

 this.alphaTaskProperties.Title = “Approval requested for “ +
workflowProperties.Item.Title;
 this.alphaTaskProperties.Description = “Please review the item, then approve or
reject it.”;
 this.alphaTaskProperties.AssignedTo = this._alphaApprover;
 this.alphaTaskProperties.PercentComplete = 0;
 this.alphaTaskProperties.StartDate = DateTime.Today;
 this.alphaTaskProperties.DueDate = DateTime.Today.AddDays(7);
 this.alphaTaskProperties.ExtendedProperties[“instructions”] = this._instructions;
}

 Do the same thing for the createBetaTask activity, substituting the appropriate fields, as shown in
Listing 12 - 4 .

 Listing 12 - 4: createBetaTask_MethodInvoking() Method

private void createBetaTask_MethodInvoking (object sender, EventArgs e) {
 this.betaTaskId = Guid.NewGuid();

 this.betaTaskProperties.Title = “Approval requested for “ +
workflowProperties.Item.Title;
 this.betaTaskProperties.Description = “Please review the item, then approve or
reject it.”;
 this.betaTaskProperties.AssignedTo = this._betaApprover;
 this.betaTaskProperties.PercentComplete = 0;
 this.betaTaskProperties.StartDate = DateTime.Today;
 this.betaTaskProperties.DueDate = DateTime.Today.AddDays(7);
 this.betaTaskProperties.ExtendedProperties[“instructions”] = this._instructions;
}

 With the tasks created, the next step in the workflow is to write some information to the history list so
the user can see that the two tasks were created. Create a handler for the logToHistoryListActivity1
activity and set the values of the history outcome and description by adding the code in Listing 12 - 5 to
the handler.

c12.indd 233c12.indd 233 5/8/08 7:10:53 PM5/8/08 7:10:53 PM

Chapter 12: Leveraging Workfl ow

234

 Listing 12 - 5: logToHistoryListActivity1_MethodInvoking() Method

private void logToHistoryListActivity1_MethodInvoking (object sender, EventArgs e)
{
 this.HistoryOutcome = string.Format(“Tasks created and assigned to ‘ {0} ’ and
 ‘ {1}’.”,
 this._alphaApprover,
 this._betaApprover);
 this.HistoryDescription = string.Format(“Approval task created and assigned to
users ‘ {0} ’ and ‘ {1}’. Both task due dates are set for {2}. The tasks contained the
following instructions: {3}”,
 this._alphaApprover,
 this._betaApprover,
 DateTime.Today.AddDays(7),
 this._instructions);
}

 Now that the tasks have been created and an entry has been added to the history log, the workflow
should go to sleep and wait for both tasks to be updated. The two OnTaskChanged activities are used for
this purpose. However, before adding the necessary logic for these activities, create an enumeration to
help determine the result of each task, as shown in Listing 12 - 6 .

 Listing 12 - 6: ApprovalDecision enumeration

using System;

namespace WROX.ProMossWcm.Chapter12 {
 public enum ApprovalDecision {
 Approved,
 Rejected,
 NoAnswer
 }
}

 Next, a few class - scoped fields are needed to retain the answers of the tasks. In addition, add the handler
for the onAlphaTaskChanged activity and pull the values from the task and save them locally into these
fields, as shown in Listing 12 - 7 . Keep in mind that the handlers for event - driven activities such as the
 OnTaskChanged activity are run after the activity is executed. This means that when the code runs,
the local fields bound to the properties on the activity (such as AfterTaskProperties) will already be
set so they can be referenced in the handler.

 Listing 12 - 7: Code to acquire the values from the Alpha Task

private ApprovalDecision alphaTaskAnswer = ApprovalDecision.NoAnswer;
private ApprovalDecision betaTaskAnswer = ApprovalDecision.NoAnswer;

private void onAlphaTaskChanged_Invoked (object sender, ExternalDataEventArgs e) {
 // check if the task was approved
 string taskResult =
this.alphaTaskAfterProperties.ExtendedProperties[“decision”].ToString();

 if (taskResult.ToLower() == “approve”)
 this.alphaTaskAnswer = ApprovalDecision.Approved;

c12.indd 234c12.indd 234 5/8/08 7:10:54 PM5/8/08 7:10:54 PM

Chapter 12: Leveraging Workfl ow

235

 else
 this.alphaTaskAnswer = ApprovalDecision.Rejected;
}

 Add similar code in the highlighted method in Listing 12 - 7 for the onBetaTaskChanged activity handler.

 At this point, everything has been handled except for the final piece: determining whether the two users
assigned to the approval tasks either approved or rejected the page subject to the workflow. This is
handled in the last portion: the IfElse and two Code activities. Conditional activities such as the
 IfElse have a Condition property that, depending on the Boolean result, determines the path to take.
There are two types of Conditions:

 Code Condition — This requires a method that returns a Boolean value.

 Declarative Rule Condition — This creates a named rule based on properties, fields, or
methods in the current class.

 For the condition in the Dual Approvers workflow, select the if - else branch for the
 approvalCodeActivity activity and set the Condition property to Declarative Rule Condition , as
shown in Figure 12 - 12 .

❑

❑

Figure 12-12

 Now click the builder on the ConditionName property nested under Condition to bring up the Select
Condition dialog. Click New and enter the following into the available field to determine whether both
tasks were approved, because any other result should cause the publishing request to be rejected:

this.alphaTaskAnswer == ApprovalDecision.Approved & & this.betaTaskAnswer ==
ApprovalDecision.Approved

 Rename the condition to Both Tasks Approved and click OK to exit the dialog, setting the Both
Tasks Approved condition on the Approved if - else branch. Repeat the same steps for the
 denyCodeActivity branch using the following as the contents of a new condition called Both Tasks
Not Approved :

this.alphaTaskAnswer != ApprovalDecision.Approved || this.betaTaskAnswer !=
ApprovalDecision.Approved

 Finally, the last step is to add the code that approves or denies the publishing request. Create handlers
for the two Code activities and add the code shown in Listing 12 - 8 to the handlers.

c12.indd 235c12.indd 235 5/8/08 7:10:54 PM5/8/08 7:10:54 PM

Chapter 12: Leveraging Workfl ow

236

 Listing 12 - 8: Code to approve or deny the publishing request

private void approveCodeActivity_ExecuteCode (object sender, EventArgs e) {

 workflowProperties.Item.File.Approve(“Approved by Dual Approvers workflow.”);

}

private void denyCodeActivity_ExecuteCode (object sender, EventArgs e) {

 workflowProperties.Item.File.Deny(“Denied by Dual Approvers workflow.”);

}

 At this point, the workflow has been completely modeled, forms have been built, and the necessary
business logic has been added. Everything should compile without errors. The next step is to package
and deploy the workflow for testing.

 Deploying the Dual Approvers Workflow
 As previously mentioned, Visual Studio 2008 includes a new capability: If the Feature definition file
exists in the root of the project, then the developer can press F5 and the IDE will deploy and create
the association automatically. That process is very straightforward, so this chapter instead presents the
full life cycle of the workflow — including development, which involves packaging, deploying, and
 activating the Feature manually, followed by creating the association. What follows will work in both
Visual Studio 2005 and Visual Studio 2008.

 Deploying a workflow involves creating a Feature that is scoped for a site collection, as workflow
templates must be deployed to a site collection; they cannot be deployed to a single SharePoint site. The
workflow project templates in both Visual Studio 2005 (after installing the WSS 3.0/MOSS 2007 SDK)
and Visual Studio 2008 include some boilerplate markup for both the Feature definition and the element
manifest file.

 First add the code in Listing 12 - 9 to the Feature definition file, feature.xml .

 Listing 12 - 9: Feature definition for the Dual Approvers workflow

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”4BDA238A-3B95-4974-8762-08B14A26656D”
 Title=”Chapter12 - Dual Approvers workflow”

 Scope=”Site”

 Hidden=”False”
 Version=”1.0.0.0”

 ReceiverAssembly=”Microsoft.Office.Workflow.Feature, Version=12.0.0.0,
Culture=neutral, PublicKeyToken=71e9bce111e9429c”
 ReceiverClass=”Microsoft.Office.Workflow.Feature.WorkflowFeatureReceiver” >

 < ElementManifests >
 < ElementManifest Location=”workflow.xml” / >
 < ElementFile Location=”Forms\InitForm.xsn” / >
 < ElementFile Location=”Forms\TaskForm.xsn” / >

c12.indd 236c12.indd 236 5/8/08 7:10:54 PM5/8/08 7:10:54 PM

Chapter 12: Leveraging Workfl ow

237

 < /ElementManifests >
 < Properties >

 < Property Key=”GloballyAvailable” Value=”true” / >
 < Property Key=”RegisterForms” Value=”Forms*.xsn” / >

 < /Properties >
 < /Feature >

 Note a few things about the Feature definition file shown in Listing 12 - 9 :

 The Feature is scoped for a site collection. This is a requirement for Features used in adding
workflow templates to SharePoint.

 A specific Feature receiver is used when the workflow contains InfoPath 2007 forms. This
receiver is provided by Microsoft and does the work of uploading the forms using the values in
the < Properties > section of the Feature definition.

 The GloballyAvailable property tells the Feature receiver that the workflow forms should be
shared across all SharePoint sites using the workflow. This should always be set to true .

 The RegisterForms property tells the Feature receiver where to find the forms, relative to the
root of the Feature. In the case of the Dual Approvers workflow, the forms are in a subfolder
named Forms .

 Next, create the element manifest. Add the code in Listing 12 - 10 to the element manifest file,
workflow.xml .

 Listing 12 - 10: Element manifest for the Dual Approvers workflow

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < Workflow Id=”1BF29AF9-70D5-4DF8-BC22-837F4523902C”

 Name=”Dual Approvers”
 CodeBesideClass=”WROX.ProMossWcm.Chapter12.DualApprovers”
 CodeBesideAssembly=”Chapter12DualApprovers, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=c591e70cfdf9ce4f”
 AssociationUrl=”_layouts/CstWrkflIP.aspx”
 InstantiationUrl=”_layouts/IniWrkflIP.aspx”
 ModificationUrl=”_layouts/ModWrkflIP.aspx”
 StatusUrl=”_layouts/WrkStat.aspx”
 TaskListContentTypeId=”0x01080100C9C9515DE4E24001905074F980F93160” >

 < Categories / >
 < MetaData >

 < Instantiation_FormURN > < /Instantiation_FormURN >
 < Task0_FormURN > < /Task0_FormURN >

 < StatusPageUrl > _layouts/WrkStat.aspx < /StatusPageUrl >
 < /MetaData >
 < /Workflow >
 < /Elements >

❑

❑

❑

❑

c12.indd 237c12.indd 237 5/8/08 7:10:55 PM5/8/08 7:10:55 PM

Chapter 12: Leveraging Workfl ow

238

 Note the following about the element manifest in Listing 12 - 10 :

 The Name attribute of the Workflow node is what will appear in the list of available workflow
templates when creating a workflow association.

 The CodeBesideClass and CodeBesideAssembly point to the class in the assembly of the
workflow template.

 The AssociationUrl , InstantiationUrl , and ModificationUrl attributes point to the
URLs of the pages that contain the different workflow forms. When using InfoPath forms, these
values should always be the same as what is shown in Listing 12 - 9 . These three pages host the
browser - rendered InfoPath forms. The form that is loaded is determined by values defined in
the < MetaData > section of the element manifest.

 The StatusUrl is used to point to the status page in the workflow. Unless the workflow uses a
custom status page, always use the value in Listing 12 - 9 , which is the default status page
provided by the SharePoint installation.

 TaskListContentTypeId refers to the content type of the task item to use in the task list. The
one shown in Listing 12 - 9 is the default task list type to use for InfoPath forms.

 The FormURN nodes in the < MetaData > section point to the specific InfoPath forms that are used
as the workflow forms. The forms are not referenced by an URL, but as unique IDs in the form.
To get the unique ID of a form, open it in InfoPath in Design mode. The easiest way to do this is
to right - click the published form in Windows Explorer and select Design. With the form open in
InfoPath, select File Properties. The FormURN is in the ID field. Copy this value into the
appropriate FormURN node in the element manifest.

 The last step is to do the necessary things to package the workflow into a WSS solution package. Make
sure the assembly is deployed to the server ’ s GAC. Refer to the associated download for this book for
the full source of the project. Add the WSS solution package to the SharePoint farm ’ s solution store and
deploy it. Once deployed, activate the Feature on the desired site collection.

 Incorporating and Testing the Dual Approvers Workflow
in a SharePoint Publishing Site

 With the workflow deployed and added to a site collection, it can finally be tested. To test it, the
workflow needs to be associated with a list. This can be a bit challenging with a Publishing site, as
the Pages list is not the easiest one to access. Navigate to a Publishing site ’ s Manage Content and
Structure page, select the Pages library in the site, and select Edit Properties from the drop - down menu
on the list itself in the Folder pane. On the Customize Pages page, select Workflow Settings. When
working with a Publishing site ’ s list that already has the Parallel Approvers workflow association, it can
be challenging to test the custom workflow. To make life easier, configure the Parallel Approvers
workflow to create no more new instances by clicking Remove a Workflow. On the Remove Workflow:
Pages page, select No New Instances for the Parallel Approvers association and click OK.

 Now create an association using the Dual Approvers template. Click Add a Workflow, select Dual
Approvers and give it a name, leave the default list settings alone, and set the workflow to only start
manually. Test the workflow by going to a page in the current site, checking it out, checking it back in,
and then selecting Workflow Start a Workflow from the Page Editing Toolbar menu. Select the
workflow association previously created. The workflow should then load the initialization InfoPath
form, as shown in Figure 12 - 13 .

❑

❑

❑

❑

❑

❑

c12.indd 238c12.indd 238 5/8/08 7:10:55 PM5/8/08 7:10:55 PM

Chapter 12: Leveraging Workfl ow

239

 Before submitting this form, make sure two users are entered using their login accounts (such as
 DOMAIN\johndoe) and that they have access to the site containing the list. Once the workflow initiation
form has been submitted, the workflow will start, the tasks will be created and assigned to the two users,
and the page will return to the page that started the workflow. Because two tasks were created and
assigned to two individuals, those individuals are sent an e - mail notifying them of the tasks.

 To see the status page of the workflow, select Workflow View Status from the Page Editing Toolbar on
the page used to test the workflow. Click the running instance of the workflow to see a page that contains
some information about the current workflow instance. The top portion of the page contains some
general information about the workflow; the middle section contains a list of all the associated tasks; and
the bottom section contains the contents of the workflow history list associated with this workflow
instance. Clicking on a task will take the user to the workflow task edit form, shown in Figure 12 - 14 .

Figure 12-13

Figure 12-14

 Debugging the Workflow Template
 Sometimes a workflow needs to be debugged because of a code defect or to monitor it in the
development phase. Debugging a workflow is very similar to any other type of debugging done with
SharePoint projects. The developer must attach the Visual Studio debugger to a process manually and set

c12.indd 239c12.indd 239 5/8/08 7:10:55 PM5/8/08 7:10:55 PM

Chapter 12: Leveraging Workfl ow

240

a few breakpoints. Developers can even set breakpoints on the activities in the workflow designer! Refer
to Chapter 2 for more information on attaching the debugger and debugging custom code in SharePoint
environments.

 Summary
 This chapter covered the overall architecture and concepts of Windows Workflow Foundation (WF), a
new component added to the .NET Framework in the 3.0 release. Microsoft realized over time that more
and more of their products, as well as applications built by developers, required some form of workflow.
At the time, products and developers were creating their own implementation or relying on expensive
third - party solutions. Ultimately, Microsoft elected to build a free workflow engine so that applications
could host workflows, as well as a framework for building custom workflow programs.

 The SharePoint team, flush with customer experiences and requests for a robust workflow story included
out - of - the - box, elected to leverage the WF as the workflow engine for the latest release: WSS 3.0. Taking
the WF one step further, SharePoint hosts the workflow runtime and provides all the necessary services.
In addition, SharePoint adds a human element to the WF by associating workflows with list items and
documents, adding tasks and a history log, and introducing the concept of workflow forms, which
facilitate user interaction with running workflows.

 This chapter demonstrated the process of creating a custom workflow using Visual Studio. The
workflow, Dual Approvers, is useful when a new page in a Publishing site requires signoff by two
people before being published.

c12.indd 240c12.indd 240 5/8/08 7:10:56 PM5/8/08 7:10:56 PM

 Search

 Search is often an afterthought in an Office SharePoint Server (MOSS) 2007 Web Content
Management (WCM) project. While the out - of - the - box (OOTB) features provided by SharePoint
are a significant improvement over no search at all, understanding and planning the end user
search experience will result in a search site that help users find not only what they are looking for
but what site owners want them to find.

 The decision to add search to a site should be considered carefully. Search is not a crutch to
compensate for a poorly architected site. Proper planning of the site ’ s hierarchy is vital to the user
experience. A site that is hard to navigate by browsing will inevitably be a challenge to search.
Conversely, a site that is well thought out and logically structured may not even need search.
Consider that implementing search badly is worse than not providing search at all.

 Properly implemented search is an opportunity for advertising and intelligence gathering. Think
of search as a site ’ s personal greeter, the nice person standing at the door saying, “ Hi! What can
I help you find today? ” Visitors to the site will enter terms in the search box for things they want
from the site whether it is provided or not! On an Internet site, this may present a competitive
advantage and feature ideas; on an intranet it provides site managers with insight into what
employees are looking for and thinking. For example, an employee who is searching for
information about medical coverage for pregnancy may be considering expanding his or
her family.

 Because a well - planned search site helps users find what they are looking for and shows them
what they should look for, this chapter dives into the issues related to implementing search as
part of a WCM project, whether it is Internet facing or a corporate intranet.

c13.indd 241c13.indd 241 5/8/08 7:11:24 PM5/8/08 7:11:24 PM

Chapter 13: Search

242

 Planning for Search
 Planning a search site may be as simple as testing the OOTB site and deciding to use it as is or as
detailed as gathering user requirements and developing an enterprise search strategy. This section covers
the issues and questions that should be considered before embarking on a search implementation.

 Issues
 SharePoint is usually implemented by IT and then released to the corporation. Little thought is given to
search. In some cases the planning for search starts with the question “ What do we index? ” Because
SharePoint enables organizations to index SharePoint sites, file shares, Exchange Public Folders, and
Lotus Notes databases, the most common answer is “ everything! ” The challenge for the user trying to
find a specific document is that quantity of search results does not equal quality of search results.

 Consider what users are looking for. This question drives the analysis of content sources and content
types. One of the most powerful features of SharePoint search is the capability to filter a search result by
metadata properties. Consider the different approaches of two searchers: the salesperson and the
technical developer. The salesperson wants documents to help support a sale, whereas the developer
seeks technical documentation. If users are offered an interface tailored for their particular role, they will
be far more effective, and their search results will be far more relevant.

 Questions to Ask
 When planning for search, the project team should ask questions that help determine the scope of the
search features. This means site owners should gather requirements for the search project. Sometimes
the user community doesn ’ t know what they want, in which case site owners may need to run a proof of
concept and test ideas on a sample of users.

 Who Are We As a Company?
 This surprisingly simple question can reveal a lot about how search should be implemented. For a sales -
 driven, document - oriented company, intranet search should focus on sales documents. For a product
company, Internet search should help users find product information. Frequently, Internet - facing sites
offer a “ search the Web ” option on their home page. These companies are not search engines; they sell
stuff. When searching the Web from their site, the results include their competitors! Search should focus
the user on the site.

 What Should Users Find?
 SharePoint can index a great deal of content. The OOTB search results can be confusing to new users.
This question can be asked another way: “ Do we want our users to find list items and Web folders or
should we tune the crawl rules and search results so the users only find pages and documents? ”

c13.indd 242c13.indd 242 5/8/08 7:11:25 PM5/8/08 7:11:25 PM

Chapter 13: Search

243

 Can SharePoint Find the Content?
 Are there security or network barriers that prevent the use of crawling and indexing to find content? If
the content is not stored in MOSS and the crawler cannot discover it, then the content cannot be indexed.
One solution to this is to create links to the content in MOSS. Consider whether large binary files that
were not stored in MOSS should be included in the search results. These files are 10 – 20GB in size and
reside on a file share. Rather than crawl the file share, create links to the files in SharePoint and add
verbose descriptions and keywords to the links to make them more findable.

 Can SharePoint Read the Content?
 Does the site contain standard document types that can be read by SharePoint or proprietary file types?
If they are proprietary file types, then an IFilter may need to be either obtained or written to index the
contents of those files. The alternative is to use SharePoint metadata to describe the content.

 An IFilter is used by SharePoint to read the contents of a particular file type. The job of the IFilter is to
extract the contents of a particular file type and return it to the search indexing engine.

 How Should Results Be Handled?
 How should users act on the information they find? The presentation of the search results can enable
users to act on the results of their search. Properly managed search results can reduce additional work —
 for example, including a telephone number in company intranet search results can eliminate the need for
a separate employee phone list.

 What if no results are found? Often the empty result set is not considered in search implementations.
Thankfully, SharePoint takes this case into account. When users can ’ t find what they are looking for, it
can be a minor inconvenience or a major hassle. One major e - commerce company offers a 10% discount
if no results are found from a search query. To receive the discount, the user must call the company and
speak to a representative about the zero result. If the company can find the item, then the user gets the
discount. This is a great example of a company putting their money where their search is.

 Where Do Users Go to Search?
 While small organizations may have only one SharePoint site and one search center, large, geographically
distributed organizations with more than one SharePoint farm may choose to have several distributed
search centers. Each of these centers would index local content; the organization may implement a central
 “ master ” search center that indexes content from all regions on a regular basis. An organization may
choose to have the search center as a subsite of the intranet http://intranet.mycompany.com/search
or a separate site collection at http://search.mycompany.com . The great thing about SharePoint is that
site owners have the flexibility to configure search for any of these scenarios.

 Multiple search centers can be confusing to users. If the local index model is selected, developers should
plan to implement search centers that provide options for “ up - scoping. ” Up - scoping informs the user
about local search center results and enables users to send their search to the master search site to
broaden the scope of the query to the entire organization.

c13.indd 243c13.indd 243 5/8/08 7:11:25 PM5/8/08 7:11:25 PM

Chapter 13: Search

244

 Search Is a Business Problem
 So far this chapter has pointed out how organizations can go wrong when creating a search
infrastructure. The bottom line is that search is a business problem, not a technical problem. The
enterprise knows it cannot find anything. Users fight entering metadata because they don ’ t see the value.
A search project should advertise that it is planning to implement search. Additionally, it should
demonstrate how tagging a document makes it more relevant and findable. Making a case to the
stakeholder that metadata is valuable is a key consideration. The search project team needs to
understand the following:

 What do we need to search? — Content sources, crawl rules .

 How do we search? — Search scopes, Search Center tabs, user interface, user experience .

 What do we do with the results? — Actions, search results configuration, keywords,
and best bets .

 Search Center Design and Configuration
 The OOTB search experience for SharePoint is impressive. The search sites provided by SharePoint can
be used without any additional configuration, though with very little effort the search site can be
improved to provide users with a search experience that makes sense in the context of a site. The
configuration of the search site depends on the results of the planning session.

 Search Center vs. Search Site
 SharePoint ships with two search site templates: Search Center (shown in Figure 13 - 1) and Search Center
with Tabs (shown in Figure 13 - 2). The fundamental difference between the two site templates is that
Search Center with Tabs is designed with the Publishing Features activated, meaning it is ready to accept
the master page from the outset. A master page can be applied to the Search Center through the Site
Settings page of the site.

❑

❑

❑

Figure 13-1

c13.indd 244c13.indd 244 5/8/08 7:11:25 PM5/8/08 7:11:25 PM

Chapter 13: Search

245

 Creating a Search Center with Tabs Site on the Publishing
Portal Template

 New users are often confused by the use of the Search Center on the Publishing Portal template. When
they try to create a Search Center with Tabs, the site template is not present in the list of available sites.
A combination of settings and a Feature is required in order to enable the Search Center with Tabs site
template on a Publishing site:

 1. Select Site Settings Modify All Site Settings Site Collection Features in the Site Collection
Administration section. Activate the Office SharePoint Server Standard Site Collection Feature.

 2. Select Site Settings Modify All Site Settings Page Layouts and Site Templates in the Look
and Feel section. Ensure that Search Center with Tabs is an available site template by moving
Search Center with Tabs from the left text box to the right text box with the Add button.

 3. Create a new search site using the Search Center with Tabs template on the Enterprise tab.

 4. Optionally delete the original search site provisioned by the Publishing Portal template.

 Page Layouts in the Search Center with Tabs
 Once activated, the Office SharePoint Server Standard Site Collection Feature provisions four page
layouts in the site collection. Each of the page layouts corresponds to a page in the search center. As the
search center is enhanced by adding tabs and pages, the following page layouts are used (or, optionally,
developers can create custom ones):

 SearchMain.aspx — The search center home page default.aspx with tabs for All Sources
and People .

 SearchResults.aspx — The search center results page results.aspx .

❑

❑

Figure 13-2

c13.indd 245c13.indd 245 5/8/08 7:11:26 PM5/8/08 7:11:26 PM

Chapter 13: Search

246

 PeopleSearchResults.aspx — The results page for the People tab peopleresults.aspx .

 AdvancedSearchLayout.aspx — The advanced search page advanced.aspx sends the
advanced query to results.aspx . .

 The default Search Center and Search Center with Tabs use page layouts to control the positioning of the
Web Parts zones. If the master page designer does not understand how the default page layouts are
constructed, SharePoint will encounter problems with the search center. For example, the content
placeholder PlaceHolderTitleBreadcrumb is used to contain the Search Box Web Part on the search
pages. Listing 13 - 1 demonstrates the Search Box in the PlaceHolderTitleBreadcrumb .

 Listing 13 - 1: Search box in the PlaceHolderTitleBreadcrumb content placeholder

 < asp:Content ContentPlaceHolderID=”PlaceHolderTitleBreadcrumb” runat=”server” >
 < A name=”mainContent” > < /A >
 < div style=”height:100%;” align=”center” >
 < div style=”width:390px” >
 < SPSWC:ListBoundTabStrip ID=”Tab” runat=”server” ... / >
 < WebPartPages:WebPartZone runat=”server” ... >
 < ZoneTemplate >
 < SPSWC:SearchBoxEx runat=”server” WebPart=”true” ... >
 < WebPart ... >
 < Title > Search Box < /Title >
 < /WebPart >
 < /SPSWC:SearchBoxEx >
 < /ZoneTemplate >
 < /WebPartPages:WebPartZone >
 < /div >
 < /div >
 < /asp:Content >

 While some designers may not want to use the breadcrumb control, removing the
 PlaceHolderTitleBreadcrumb placeholder causes the search pages to lose their search box.
Developers have two options if the site is not going to use the PlaceHolderTitleBreadcrumb
placeholder:

 Hide it on the master and update all of the search page layouts, moving the Search Box Web Part
into a visible section of the page.

 Simply remove the content from the PlaceHolderTitleBreadcrumb and leave the placeholder
on the page for the Search site to use.

 The control can be left on the master page by removing the content and closing the tag:

 < asp:ContentPlaceHolder id=”PlaceHolderTitleBreadcrumb” runat=”server” / >

 CSS Issues
 The Publishing Portal and Collaboration Portal templates use the Search Box Web Parts in the master
page and in the Search Center pages. These controls share the same CSS classes, thus any CSS changes
made to customize the OOTB search control will affect the controls on the search center. It is not

❑

❑

❑

❑

c13.indd 246c13.indd 246 5/8/08 7:11:26 PM5/8/08 7:11:26 PM

Chapter 13: Search

247

uncommon to create a separate CSS file for the search center to undo all the styling on the master page.
Simply create a new CSS file and save it to the Style Library. Then edit each search page layout by
adding a link like the following to the PlaceHolderAdditionalPageHead placeholder:

 < link rel=”stylesheet” type=”text/css” href=”/Style Library/search.css” / >

 Results Page Anatomy
 The Search Center pages default, results, and advanced contain Web Part zones that are pre - populated
with the Search Box Web Parts. Placing the page in Edit mode reveals the Web Parts, enabling you to
change the user interface of all of the pages, as shown in Figure 13 - 3 .

Figure 13-3

 The standard results page for the Search Center is composed of eight Web Parts that work in concert to
deliver the end user search experience. Each Web Part plays a role in delivering results to the user. While
most of the time is spent working with the Search Core Results Web Part, it is good to understand how
the other components work. The following table lists the MOSS OOTB Search Web Parts.

c13.indd 247c13.indd 247 5/8/08 7:11:26 PM5/8/08 7:11:26 PM

Chapter 13: Search

248

 Web Part Name Purpose

 Search Box Accepts user - entered queries and sends them to the results page
address configured in the Web Part .

 Search Summary Provides summary information about the search and offers “ Did
you mean? ” suggestions .

 Search Action Links Links to Alert Me, RSS, and ordering results by relevance or date .

 Search Statistics Displays the count of results and the time to query .

 Search Paging When search results span multiple pages, this Web Part
facilitates the navigation from page to page.

 Search High Confidence Results Similar to the Best Bets, this Web Part displays exact matches on
People results. It can be configured to return other classes of
content.

 Search Core Results Search results are returned by this Web Part. This is the most
important component of the results page.

 Search Best Bets Query terms that match best bets or synonyms are returned in
this Web Part.

 Search Results Configuration
 Much of the work performed to customize the Search Center is done in the Search Core Results Web
Part. The process involves editing XSLT to achieve the desired results. While it is possible to edit the
search results Web Part XSLT in the editor dialog of the Web Part, this process is cumbersome and error
prone. It is recommended that you use the XSL Link property of the Search Core Results Web Part to
point to an XSL file in the site collection Style Library and edit the file with SharePoint Designer. This
technique provides the benefits of SharePoint Designer ’ s XSL editor, version control, and publishing.

 One such change is to apply bold formatting and highlighting to the search results. First, set up the
Search Core Results Web Part to use a file in the Style Library:

 1. Execute a search that returns results on the search results page (results.aspx).

 2. Switch to Edit mode by choosing Site Actions Edit Page.

 3. Edit the Search Core Results Web Part by choosing Modify Shared Web Part from the Web Part ’ s
Edit menu.

 4. Click the XSL Editor button to display the default XSL for the Web Part.

 5. Copy the entire contents of the Web Part to the clipboard and click Cancel to close the dialog.

 6. In SharePoint Designer, create a new file in the Style Library\XSL Style Sheets folder.
Name the file defaultresults.xsl and paste the XSL from the previous step into the file. Save
and check in the file, publishing a major version.

c13.indd 248c13.indd 248 5/8/08 7:11:27 PM5/8/08 7:11:27 PM

Chapter 13: Search

249

 7. Return to the Search results page (still in Edit mode) and expand the Miscellaneous section of
the task pane. Enter the path to the new XSL file in the XSL Link property:

/Style Library/XSL Style Sheets/defaultresults.xsl

 8. Click Ok to save to the changes and return to the search center results page. The results should
look the same as before.

 9. Return to SharePoint Designer, and open and check out the defaultresults.xsl file.

 10. Edit the XSL file to change the hit highlighting by locating the section of templates that include
the following code:

 < xsl:template match=”c0” >
 < b > < xsl:value-of select=”.”/ > < /b >
 < /xsl:template >

 11. Change each bold element to a < span > tag with a background color style as follows:

 < xsl:template match=”c0” >
 < span style=”background-color:lime; font-weight:bold” > < xsl:value-of
select=”.”/ > < /span >
 < /xsl:template >

 12. Save the file and refresh the results page. The resulting hit highlighting is shown in Figure 13 - 4 .

Figure 13-4

 Just the Facts!
 When working with the Search Core Results Web Part, it is helpful to see the details of the raw XML
returned by the search engine. The markup in Listing 13 - 2 will return the search results in a nicely
formatted style.

 Listing 13 - 2: XSL used to display the raw XML query results

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” >
 < xsl:output method=”xml” version=”1.0” encoding=”UTF-8” indent=”yes”/ >
 < xsl:template match=”/” >
 < xmp > < xsl:copy-of select=”*”/ > < /xmp >
 < /xsl:template >
 < /xsl:stylesheet >

c13.indd 249c13.indd 249 5/8/08 7:11:27 PM5/8/08 7:11:27 PM

Chapter 13: Search

250

 1. Create a new file in the Style Library/XSL Style Sheets folder in the site and copy the
code in Listing 13 - 2 into the file. Name the file rawxml.xsl . Save and check in the file.

 2. Return to the Search Center and edit the results page. Set the XSL Link property of the Core
Results Web Part to point to /Style Library/XSL Style Sheets/rawxml.xsl . Click OK to
apply the change.

 The output should look like Figure 13 - 5 .

Figure 13-5

 Search Term Stemming
 The SharePoint search engine provides for search term stemming although the capability is turned off by
default. The search term stemmer neutralizes the plurality and tense of a word. For example, a query for
 “ work ” will return results for “ work, ” “ works, ” “ working, ” and “ worked, ” as the word variations are
based on the same root.

 1. Edit the search results page (Site Actions Edit page).

 2. Locate the Search Core Results Web Part. From the Edit button, select Modify Shared Web Part.

 3. In the task pane in the Results Query Options section, check Enable Search Term Stemming.
Click OK to save the changes.

 Sentences
 The default Search Core results Web Part returns three sentences in the search results. This property can
be changed when the need to display more content in the search results arises. To do this, change the
Sentences in Summary property in the Search Core Results Web Part task pane.

 Enhancing Search Results with Pivot
 After executing a search, users may want to narrow their search based on the results received. For
example, after seeing the results of the search, they may decide that they would like to see results only

c13.indd 250c13.indd 250 5/8/08 7:11:28 PM5/8/08 7:11:28 PM

Chapter 13: Search

251

for a particular file extension. This process is called a pivot . Pivots can be created by adding a pivot link
on any property returned in the search results.

 The search results XSL contains several templates that are used to transform the results XML and render
the search results. The primary section that is called by every result begins with the following:

 < xsl:template match=”Result” >

 The lines that follow the template declaration determine how the search results are rendered. For
example, the following code calls a template that displays the author name:

 < xsl:call-template name=”DisplayString” >
 < xsl:with-param name=”str” select=”author” / >
 < /xsl:call-template >

 The actual work is performed by the following template, whose results are shown in Figure 13 - 6 .

 < xsl:template name=”DisplayString” >
 < xsl:param name=”str” / >
 < xsl:if test=’string-length($str) & gt; 0’ >
 - < xsl:value-of select=”$str” / >
 < /xsl:if >
 < /xsl:template >

Figure 13-6

 The next few examples build up the XSLT templates and call - templates blocks to add more
functions to the search results. Each template block should be added into its own space in the file, not
inside another template. The call - template block should be added inside a template where the
capability should appear.

 Author Pivot
 Create a pivot on the author with the following template:

 < xsl:template name=”SearchAuthor” >
 < xsl:param name=”str” / >
 < xsl:if test=’string-length($str) & gt; 0’ >
 - < a title=”Filter by author”
href=”javascript:window.location=’?k=’+getParameter(window.location.search, ‘k’)
+’+author:{$str}’” > < xsl:value-of select=”$str” / > < /a >
 < /xsl:if >
 < /xsl:template >

c13.indd 251c13.indd 251 5/8/08 7:11:28 PM5/8/08 7:11:28 PM

Chapter 13: Search

252

 Call the template by adding the following code to the result template (see Figure 13 - 7):

 < xsl:call-template name=”SearchAuthor” >
 < xsl:with-param name=”str” select=”author” / >
 < /xsl:call-template >

Figure 13-7

 Adding Fields to the Results
 As the search project evolves, the fields returned by the default Search Core Results Web Part may not
satisfy your requirements. Any managed property can be used in the XSL as long as it is included in
the Web Part ’ s Selected Columns property. The XML in Listing 13 - 3 can be found in the Search Core
Results Web Part tool pane under the Results Query Options section inside the Selected Columns
property. The default columns are shown here.

 Listing 13 - 3: Default columns in the search results

 < root xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” >
 < Columns >
 < Column Name=”WorkId”/ >
 < Column Name=”Rank”/ >
 < Column Name=”Title”/ >
 < Column Name=”Author”/ >
 < Column Name=”Size”/ >
 < Column Name=”Path”/ >
 < Column Name=”Description”/ >
 < Column Name=”Write”/ >
 < Column Name=”SiteName”/ >
 < Column Name=”CollapsingStatus”/ >
 < Column Name=”HitHighlightedSummary”/ >
 < Column Name=”HitHighlightedProperties”/ >
 < Column Name=”ContentClass”/ >
 < Column Name=”IsDocument”/ >
 < Column Name=”PictureThumbnailURL”/ >
 < /Columns >
 < /root >

 Managed properties are configured in the Shared Services Provider Search Settings under Metadata
Property Mappings.

 File Extension Pivot
 The following template is used to create a link for pivoting the search by file extension. Add the File
Extension property to the Search Core Results Web Part. Open the tool pane, find the Results Query
Options section, expand it, and add the following XML node to the Selected Columns XML property
as follows:

c13.indd 252c13.indd 252 5/8/08 7:11:28 PM5/8/08 7:11:28 PM

Chapter 13: Search

253

 < Column Name=”FileExtension”/ >

 Add the code in Listing 13 - 4 to the Search Core Results Web Part XSL file after any
 < /xsl:template > tag.

 Listing 13 - 4: Creating a file extension pivot

 < xsl:template name=”DisplayExt” >
 < xsl:param name=”str” / >
 < xsl:param name=”imageurl” / >
 < xsl:if test= ’ string-length($str) & gt; 0’ >
 < span class=”srch-Icon” >
 < xsl:text > - < /xsl:text >
 < a href=”javascript:window.location=’?k=’
+getParameter(window.location.search, ‘k’) +’+fileextension:{$str}’” title=”Filter
on documents of type: {$str}” >
 < img align=”absmiddle” src=”{$imageurl}” border=”0” alt=”Filter on documents
of type: {$str}” / >
 < /a >
 < /span >
 < /xsl:if >
 < /xsl:template >

 Call the template by adding the following line to the result template. Add this code into the XSL file after
the closing tag of the < xsl:call - template name= “ DisplayString “ > template that displays the field
 “ write, ” as shown in Figure 13 - 8 . Notice that the FileExtension column includes the file extension and any
query string parameters that are part of the search result link. Therefore, if the file type is ”htm” and the
URL for the result is actually http://localhost/default.htm?profile=sales & departmentname=
service , then the value of FileExtension will be HTM?PROFILE=SALES & DEPARTMENTNAME=SERVICE .
Add some XSL in order to ignore and fix query string values:

 < xsl:call-template name=”DisplayExt” >
 < xsl:with-param name=”str” select=”fileextension”/ >
 < xsl:with-param name=”imageurl” select=”imageurl” / >
 < /xsl:call-template >

Figure 13-8

 More from This Site
 Add the Site Title property to the site columns by adding the following node to the Selected Columns
property:

 < Column Name=”SiteTitle”/ >

c13.indd 253c13.indd 253 5/8/08 7:11:29 PM5/8/08 7:11:29 PM

Chapter 13: Search

254

 Use the template in Listing 13 - 5 to display a link that filters the results on the site only from the results.

 Listing 13 - 5: Adding a filter for the current site

 < xsl:template name=”DisplaySiteTitle” >
 < xsl:param name=”id”/ >
 < xsl:param name=”sitename”/ >
 < xsl:param name=”sitetitle”/ >
 < xsl:if test=”string-length($sitetitle) & gt; 0” >
 < div class=”srch-SiteName” >
 < a href=”javascript:window.location=’?k=’
+getParameter(window.location.search, ‘k’) +’ & amp;u={$sitename}’”
id=”{concat(‘CSR_’,$id)}” title=”{$sitename}” > More results from < xsl:value-of
select=”$sitetitle”/ > < /a >
 < /div > < br / >
 < /xsl:if >
 < /xsl:template >

 Call the template with the following code (see Figure 13 - 9):

 < xsl:call-template name=”DisplaySite” >
 < xsl:with-param name=”title” select=”title” / >
 < xsl:with-param name=”url” select=”sitename” / >
 < xsl:with-param name=”isdocument” select=”isdocument” / >
 < /xsl:call-template >

Figure 13-9

 Go to Site
 Often, it is useful to locate a site based on the results of a search. The documents and list items retrieved
from a site provide valuable information about the site. A searcher wants an easy way to go straight to
the site that contains the document. The code in Listing 13 - 6 demonstrates this process and accounts for
the possibility that the “ site ” is actually a folder on a file share.

 Listing 13 - 6: Adding a link to the hit result ’ s containing site

 < !-- Display the Site url as a clickable image -- >
 < xsl:template name=”DisplaySite” >
 < xsl:param name=”title”/ >
 < xsl:param name=”url” / >
 < xsl:param name=”isdocument” / >
 < xsl:if test=’$isdocument = 1’ >
 < xsl:variable name=”siteUrl” select=”foo”/ >
 < xsl:if test= ’ string-length($url) & gt; 0’ >
 < xsl:choose >

c13.indd 254c13.indd 254 5/8/08 7:11:29 PM5/8/08 7:11:29 PM

Chapter 13: Search

255

 < xsl:when test=”starts-with($url, ‘file://’)” >
 - < xsl:element name=”a” > < xsl:attribute name=”href” >
 < xsl:call-template name=”strip” >
 < xsl:with-param name=”relfile” > < xsl:value-of select=”url”/ > < /xsl:with-
param >
 < /xsl:call-template >
 < /xsl:attribute > < img src=”/_layouts/images/folder.gif” alt=”Open file
location” style=”border:none; vertical-align:bottom;”/ > < /xsl:element >
 < /xsl:when >
 < xsl:when test=”starts-with($url, ‘http://’)” >
 - < xsl:element name=”a” > < xsl:attribute name=”href” >
 < xsl:call-template name=”strip” >
 < xsl:with-param name=”relfile” > < xsl:value-of select=”url”/ > < /xsl:with-
param >
 < /xsl:call-template >
 < /xsl:attribute > < xsl:attribute name=”target” > blank < /xsl:attribute > < img
src=”/_layouts/images/cat.gif” alt=”Open file location” style=”border:none;
vertical-align:bottom;”/ > < /xsl:element >
 < /xsl:when >
 < /xsl:choose > < br/ > < xsl:value-of select=”$siteUrl”/ >
 < /xsl:if >
 < /xsl:if >
 < /xsl:template >

 < xsl:template name=”strip” >
 < xsl:param name=”reldir”/ >
 < xsl:param name=”relfile”/ >
 < xsl:choose >
 < xsl:when test=”contains($relfile, ‘/’)” >
 < xsl:call-template name=”strip” >
 < xsl:with-param name=”relfile” >
 < xsl:value-of select=”substring-after($relfile,’/’)”/ >
 < /xsl:with-param >
 < xsl:with-param name=”reldir” >
 < xsl:value-of select=”concat($reldir, substring-before($relfile,’/’),
‘/’)”/ >
 < /xsl:with-param >
 < /xsl:call-template >
 < /xsl:when >
 < xsl:otherwise >
 < xsl:value-of select=”$reldir”/ >
 < /xsl:otherwise >
 < /xsl:choose >
 < /xsl:template >

 Call the template from the results with the following code (see Figure 13 - 10):

 < xsl:call-template name=”DisplaySite” >
 < xsl:with-param name=”title” select=”title”/ >
 < xsl:with-param name=”url” select=”sitename” / >
 < xsl:with-param name=”isdocument” select=”isdocument”/ >
 < /xsl:call-template >

c13.indd 255c13.indd 255 5/8/08 7:11:29 PM5/8/08 7:11:29 PM

Chapter 13: Search

256

 Empty Results
 What if users don ’ t find anything when they execute a query on the site? They spelled it correctly, they
just didn ’ t find anything. This represents another opportunity to show how much attention is shown to
the searcher. SharePoint provides a report in the Shared Services Provider (SSP) called Queries with Zero
Results that indicates terms users entered that returned no results. Clicking the term in the report
reexecutes the query.

 Tell Users About It
 The results XSLT provides a template for the no results case called dvt_1.empty . This section can be
customized to provide a message to searchers when they fail to find what they are looking for, such
as the message shown in Figure 13 - 11 , whereby the Leave Feedback link takes the user to a survey
about the site.

Figure 13-10

Figure 13-11

 Up - Scoping the Search
 Sometimes users unwittingly narrow their search, resulting in no returned results. In this case, it would
be nice to suggest that the user “ up - scope ” their search. This can offer suggestions for a particular search
configuration to help the user broaden the scope of the search. When working in a globally deployed
search environment, the search may offer a link to the master search site, which provides a broader scope
for their search.

 Search Administration and Configuration
 Effective search administration is a team effort. In distributed SharePoint environments where Central
Administration and the SSP are controlled by IT and the site collection is managed by a departmental
team, search administration is shared by members of each team. Understanding the administrative
boundaries of search administration can be a challenge. Additionally, it is important to work as a team to
plan the communication of changes that need to be made by the site collection owner versus changes

c13.indd 256c13.indd 256 5/8/08 7:11:30 PM5/8/08 7:11:30 PM

Chapter 13: Search

257

that need to be made centrally by the farm administrator. Working together, these groups can produce an
effective search experience for end users.

 There are three principal areas where search is configured. A site collection administrator can make
decisions for the site. This person can add scopes, keywords, and best bets, but not affect the content
sources. The farm administrator can change farm - level search settings, view the status of the Query and
Index Servers, and manage the SSP. SSP administrators control all indexing and search capability for the
farm, affecting every aspect of search for the sites in the SSP. This section addresses the different roles
and the features available to administrators. Note that every level of access affects the search results.
Even end users can affect the capability to find their content by the proper use of tagging with metadata.
The following table describes the SSP sections:

 Section Purpose

 Content sources and crawl schedules Create and manage the content sources for the SSP. Use this
section to add new sources of content to the index.

 Crawl rules Change how content is indexed.

 File types Determine the file types to include in the index.

 Crawl logs View the results of a crawl. Tools for filtering and
troubleshooting the crawl are included.

 Default content access account Manage the credentials of the default crawl account. This
setting can be overridden for a specific source if desired.

 Metadata property mappings Once content has been crawled, map the properties found to
common properties in the index.

 Server name mappings Allow the mapping of server names to affect search results.

 Search - based alerts Enable and disable search - based alerts. Use this option when
making large changes to the index that may trip search
alerts, e.g., when resetting the content index.

 Search result removal Find a little too much? Remove the results here (then fix
crawl so it is not found it again).

 Reset all crawled content Allow the clearing of all content in the entire index. Be
careful to turn off Search Alerts when resetting the content.

 Server Mapping of Search Results
 Change search results rendering with server mapping — for example, if the search results are returning
 http://servername and the results should render as http://myserver.company.com . Configure
a server mapping from http://servername to http://myserver.company.com . An alternative to
server mapping is to create a string replacement in the Search Core Results Web Part that handles the
transformation. For example, if the file share \\servername is crawled and the users should see a drive
letter instead, use XSL to perform the transformation of all instances of \\servername into z:\ .

c13.indd 257c13.indd 257 5/8/08 7:11:30 PM5/8/08 7:11:30 PM

Chapter 13: Search

258

 Search Scopes
 Search scopes created and managed from the SSP are global to the sites that comprise the SSP. Search
scopes enable searchers to narrow their search to scopes created globally in the SSP or locally in the site.
The scopes can appear in the search scope drop - down and on the advanced search page. While it is
common to create search scopes for each content source, consider the relevance of the scope for end
users. Scopes can be created that cross content boundaries and focus the results on metadata properties
(content types, file extension, etc.)

 Authoritative Pages
 Link depth, also known as click distance, is the distance of a page from the origin of the crawl, and it affects
the relevance of the page. The deeper the pages are in the site, the less relevant they become to the search
engine. The relevance of these deep pages can be enhanced with the help of authoritative pages . Pages that
are linked to authoritative pages are more relevant than other pages. Authoritative pages only affect
pages linked to them. Therefore, relevancy is not affected simply because pages have other pages under
them in the site hierarchy. The authoritative page functionality ranks relevancy based on click distance, a
calculation performed through links on the authoritative page itself.

 Central Administration
 The settings available to the farm administrator, from the Applications tab under Manage This Service,
include farm - level search settings such as e - mail address, proxy settings, and timeout settings. The status
of query servers, index servers, and the SSP search providers is shown on this tab.

 Site Collection Search Settings
 It is important that the site collection administrator understand the settings available within the site
collection that effect search. The site collection administrator has a great deal of control over how search
is delivered on the site. He or she also has control over what scopes are in use. For example, there is no
control over when the scopes are compiled; this is controlled in the SSP. Site collection administrators
still need to coordinate with farm administrators to achieve optimal search results.

 Search Settings
 The Search Center and Custom Scopes page is for configuring the location of the default search center
for a site collection. This setting can be changed to point to another site collection if desired in order to
have a centralized search center that is not part of the site collection.

 View Scopes
 The View Scopes page displays the search scopes for a site collection. The list includes scopes from the
SSP and those configured locally in the site collection. Site collection administrators can create new
search scopes for the site collection. The timing of the compilation of the search scope is determined in
Central Administration.

c13.indd 258c13.indd 258 5/8/08 7:11:30 PM5/8/08 7:11:30 PM

Chapter 13: Search

259

 Search Keywords
 The Manage Keywords page enables the site collection administrator to create keywords and definitions
and associate best bests with the keywords. When a searcher uses a keyword or synonym in the query,
the Best Bets Web Part returns the keyword, definition, and links to the best bets. The effective use of
keywords and best bets is an ongoing process. There may be seasonality to a business that necessitates a
management strategy for keywords. Keywords can have a contact who is notified when the review date
for the keyword is reached. In addition, keywords can be set to expire.

 Search Reports
 Two search - related reports are included with the site collection usage reports. The Search Queries
Report displays a summary of query activity and top queries for the past 30 days. The Search
Results Report displays Top Destination Pages, Queries with Zero Results, Most Clicked Best Bets, and
Queries with Zero Best Bets. It is a good practice to regularly review the search reports to look for
patterns in user query behavior. Understanding these reports can help in fine - tuning the query
experience and significantly improve the quality of the search experience for a site.

 Thesaurus File Configuration
 Consider the case where a company produces a widget. The company Web site refers to the widget by
the trademarked name: DooDad. Because the rest of the world thinks of them as widgets, that is how
visitors will search for them. Entering the search term “ widget ” will result in zero results. The company
wants to map the search term widget to the trademarked term DooDad. This is the purpose of the
 thesaurus file .

 Thesaurus Files
 Thesaurus files are used by the search engine to tailor the query for specific languages. The files are
associated with the SSP Application ID in the following folder:

C:\Program Files\Microsoft Office Servers\12.0\Data\Office
Server\Applications\ < Application ID (GUID) > \Config

 Thesaurus files have a specific naming convention and XML format. The naming format is
 Ts < lang id > .xml . The U.S. English file is Tsenu.xml . The neutral English thesaurus file is Tsneu.xml .
This file is a good choice if you are not creating a multilingual site, as it has a global impact on all
English - language queries.

 The default neutral English thesaurus file is shown in Listing 13 - 7 .

c13.indd 259c13.indd 259 5/8/08 7:11:31 PM5/8/08 7:11:31 PM

Chapter 13: Search

260

 Listing 13 - 7: Default neutral English thesaurus file

 < xml id=”Microsoft Search Thesaurus” >
 < thesaurus xmlns=”x-schema:tsSchema.xml” >
 < diacritics_sensitive > 0 < /diacritics_sensitive >
 < expansion >
 < sub > Internet Explorer < /sub >
 < sub > IE < /sub >
 < sub > IE5 < /sub >
 < /expansion >
 < replacement >
 < pat > NT5 < /pat >
 < pat > W2K < /pat >
 < sub > Windows 2000 < /sub >
 < /replacement >
 < expansion >
 < sub > run < /sub >
 < sub > jog < /sub >
 < /expansion >
 < /thesaurus >
 < /xml >

 The file is commented out on a new install. Remove the lines ”<! - - Commented out” and ” - - > ”
to enable the file.

 The XML indicates two functions of the thesaurus file. If the site uses the word “ doodad ” instead of the
more common words “ widget ” or “ thingamajig, ” then the thesaurus file can create a replacement set.
The replacement set will not search for the pattern terms, it will substitute the subword in the query. This
is an important distinction from expansion sets. The set would look like the following (see Figure 13 - 12):

 < replacement >
 < pat > widget < /pat >
 < pat > thingamajig < /pat >
 < sub > doodad < /sub >
 < /replacement >

Figure 13-12

c13.indd 260c13.indd 260 5/8/08 7:11:31 PM5/8/08 7:11:31 PM

Chapter 13: Search

261

 For example, if the site uses the word “ run ” interchangeably with the word “ jog ” and the goal is to
include all references to each word when any of the words are included in a query, then the thesaurus
file should use an expansion set. For instance, the following markup in a thesaurus file would yield the
results shown in Figure 13 - 13 :

 < expansion >
 < sub > run < /sub >
 < sub > jog < /sub >
 < /expansion >

Figure 13-13

 After editing the thesaurus file, the Office Search Service should be restarted to reflect the new terms
using the following commands:

C:\ > rem stopping search service
C:\ > net stop osearch
The Office SharePoint Server Search service is stopping..
The Office SharePoint Server Search service was stopped successfully.
C:\ > rem starting search service
C:\ > net start osearchThe Office SharePoint Server Search service is starting..
The Office SharePoint Server Search service was started successfully.

 Noise Word Configuration
 “ Noise ” words are omitted from the query. The default English noise word file contains the following: a ,
 and , is , in , it , of , the , and to . In contrast to the complexity of the thesaurus file, the noise word file is
simple. Like the thesaurus files, noise word files are language specific. Noise words are listed on
individual lines in the file.

 Advertising OpenSearch Capability
 OpenSearch is a standard for describing how to submit queries to a search engine and how the search
results are returned. SharePoint can be configured to provide search results to a client that understands
the OpenSearch schema file.

 For more information on OpenSearch, see www.opensearch.org .

c13.indd 261c13.indd 261 5/8/08 7:11:32 PM5/8/08 7:11:32 PM

Chapter 13: Search

262

 Telling the Browser Where to Search
 Internet Explorer and Firefox provide in - browser search capability by routing the query to a search
provider. These browsers detect sites that can participate as search providers by reading a tag in the page
that indicates the site supports the OpenSearch standard. When a user browses to sites that support this
standard for search, Internet Explorer advertises that search is available by turning the browser search
button orange.

 The OpenSearch standard defines a schema for an XML file that describes how to submit search queries
to a site. The basic format of the file is as follows:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < OpenSearchDescription xmlns=”http://a9.com/-/spec/opensearch/1.1/” >
 < ShortName > Short name < /ShortName >
 < Description > Description < /Description >
 < Url type=”text/html” template=”http://url?k={searchTerms}”/ >
 < SyndicationRight > open < /SyndicationRight >
 < /OpenSearchDescription >

 Listing 13 - 8 contains the XML that would use a SharePoint Search Center site.

 Listing 13 - 8: OpenSearch markup for a SharePoint Search Center site

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < OpenSearchDescription xmlns=”http://a9.com/-/spec/opensearch/1.1/” >
 < ShortName > Company Intranet < /ShortName >
 < Description > Company Intranet Search < /Description >
 < Url type=”text/html” template=”http://intranet.company.com/searchcenter/pages/
results.aspx?k={searchTerms}”/ >
 < SyndicationRight > open < /SyndicationRight >
 < /OpenSearchDescription >

 The process for enabling this functionality is as follows:

 1. Create the file by copying the preceding code. In editing the file, consider the < ShortName > ,
 < Description > , and < URL > . The < ShortName > will appear in the browser, and the URL needs
to be an absolute URL to your Search Center site. Name the file appropriately, such as
 opensearch.xml .

 2. Copy the file to the server into the /Style Library/XSL Style Sheets folder. Check in and
publish the file.

 3. Open a master page and add the following line before the closing < /head > tag:

 < link title=” Company Intranet ” type=”application/opensearchdescription+xml”
rel=”search” href=”/Style Library/XSL Style Sheets/opensearch.xml” / >

 4. Check in and publish the master page.

 5. Open the site ’ s home page in a browser. The search button in Internet Explorer 7 will turn
orange, indicating it has found a search provider for the current page, as shown in Figure 13 - 14 .

c13.indd 262c13.indd 262 5/8/08 7:11:32 PM5/8/08 7:11:32 PM

Chapter 13: Search

263

 8. Select the search provider and then select Add Provider in the dialog shown in Figure 13 - 17 .

Figure 13-14

 6. Select the drop - down button to see the site ’ s title as one of the search providers, as shown in
Figure 13 - 15 .

Figure 13-15

 7. Choose the Add Search Providers menu option to see the search provider listed, as shown in
Figure 13 - 16 .

Figure 13-16

Figure 13-17

 9. Choose Add Provider and the Web site will be listed as an option for searching in Internet
Explorer (see Figure 13 - 18).

c13.indd 263c13.indd 263 5/8/08 7:11:32 PM5/8/08 7:11:32 PM

Chapter 13: Search

264

 SharePoint sites can have any number of search providers. The following example works for the OOTB
People Search page:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < OpenSearchDescription xmlns=”http://a9.com/-/spec/opensearch/1.1/” >
 < ShortName > People Search < /ShortName >
 < Description > People Search < /Description >
 < Url type=”text/html”
template=”http://intranet/searchcenter/pages/peopleresults.aspx?k={searchTerms}”/ >
 < SyndicationRight > open < /SyndicationRight >
 < /OpenSearchDescription >

 Telling Applications Where to Search
 SharePoint provides a search Web service that can be used by applications that understand how to
submit queries and return results from a Web service. Microsoft Office applications and Internet Explorer
are two examples of applications that can take advantage of the search service. In Microsoft Office
applications such as Microsoft Word, users can Alt+click on a word and open the Research task pane.
The Research task pane is also available through the menus. This task pane provides access to online
resources such as dictionaries, thesauri, and other sites. The SharePoint Search Center can be added as a
research service as well.

 Search SharePoint from Microsoft Word
 1. Open the Research task pane. At the bottom of the pane choose Research Options.

 2. In the Research Options dialog, choose Add Services.

 3. In the Add Services dialog, enter the address of the SharePoint server search Web service as
follows: http://server/_vti_bin/search.asmx . Click Add and confirm the choice of the
intranet site.

 4. Click OK to return to the Research task pane.

 5. Test a search against the SharePoint site by entering a term in the Search For: box in the Research
task pane. Select the SharePoint instance from the drop - down menu. It is near the bottom under
All Intranet Sites and Portals, as shown in Figure 13 - 19 .

Figure 13-18

c13.indd 264c13.indd 264 5/8/08 7:11:33 PM5/8/08 7:11:33 PM

Chapter 13: Search

265

 Custom Enhancements for Search
 Many third - party companies have produced products that integrate into SharePoint to provide
additional features and capabilities for search. Many of the products offer enhanced search tools such as
wildcard search, image and video search, additional IFilters, and protocol handlers to return results from
more content types and content sources than those provided out of the box.

 The SharePoint community has stepped up and provided additional search capabilities and tools. Two
projects freely available from CodePlex that stand out are Faceted Search and MetaTagsGenerator .

 Faceted Search (www.andrewconnell.com/go/248) for SharePoint provides an enhancement to the
standard search Web Parts that enables users to group search results by category or facet. The Web
Parts display the total number of hits by facet and enable users to refine their search by clicking on the
facet value.

 The MetaTagsGenerator (www.andrewconnell.com/go/201) is a control that can be added to the
master page to surface any metadata from the publishing page. Once the control is added to the page
and configured, the metadata values from a specified group will be rendered in the page.

 BDC Integration with Search
 The Business Data Catalog (BDC) component of the enterprise version of SharePoint facilitates the
indexing and searching of structured data through Web services and ADO.NET data connections.
Configuration of the BDC involves authoring an application definition file. The application definition is

Figure 13-19

c13.indd 265c13.indd 265 5/8/08 7:11:34 PM5/8/08 7:11:34 PM

Chapter 13: Search

266

an XML file that describes how the data is accessed, how the data is queried as a set of records and
individual records, and how the entities within the data relate to one another. The BDC can help
organizations surface information previously “ trapped ” in database systems by enabling users to query
the data from the SharePoint search page and view the data through BDC Web Parts that can access it.

 Business Value from Structured Data
 A good example of the value of the BDC is providing access to a customer relationship management
(CRM) system. Creating an application definition that defines the customer, project, and prospect
information enables the searcher to find customers by name and then locate related projects and
prospects. The key to a successful BDC implementation is understanding the data and the action that
users will take upon locating the information. The application definition can create actions that are
associated with BDC entities. The actions can direct users to any Web - enabled activity, such as sending
an e - mail or getting more information based on a Web address.

 The incorporation of the BDC into search design leads back to basic questions. Create a new Search
Center or add tabs to the existing site? What actions will the user take after finding the content? The
tabbed interface of the Search Center makes it very easy to add additional tabs for searching the BDC.

 Microsoft Search Server 2008 Express
 Microsoft Search Server 2008 Express (MSS) (www.andrewconnell.com/go/249) provides the power
and flexibility of SharePoint search without the overhead of the collaboration features of SharePoint.
MSS shares the search technology built by Microsoft for SharePoint but has added enhancements that
will become available to SharePoint owners in 2008 as an upgrade.

 The advantage of MSS is that if an enterprise search engine is needed but there is no need for the
collaboration and Publishing capabilities of MOSS, a site can implement MSS Express free of charge.
If more advanced features are needed, such as scalability to multiple servers, look to Microsoft Search
Server 2008 (www.andrewconnell.com/go/250).

 The major improvements provided by MSS include federated search and a simplified search
configuration interface. The following table contains a list of the features as they compare to SharePoint:

 Microsoft Search
Server 2008 Express

 Microsoft Search
Server 2008

 Microsoft Office
SharePoint Server 2007

 Search Center X X X

 No Pre - Set Document
Limits

 X X X

 Extensible Search
Experience

 X X X

 Relevance Tuning X X X

c13.indd 266c13.indd 266 5/8/08 7:11:34 PM5/8/08 7:11:34 PM

Chapter 13: Search

267

 Microsoft Search
Server 2008 Express

 Microsoft Search
Server 2008

 Microsoft Office
SharePoint Server 2007

 Continuous
Propagation Indexing

 X X X

 Federated Search
Connectors

 X X X

 Indexing Connectors X X X

 Security - Trimmed
Results

 X X X

 Unified Administration
Dashboard

 X X X

 Query and Results
Reporting

 X X X

 Streamlined Installation X X

 High Availability and
Load Balancing

 X X

 People and Expertise
Searching

 X

 Business Data Catalog X

 SharePoint Productivity
Infrastructure

 X

 Summary
 Though SharePoint offers great features for search results, this chapter has demonstrated that with very
little work the interface can be greatly improved. This chapter looked at the various factors that can
contribute to a successful search project. The most important factor is understanding the goals of search
and how users will interact with a search site. The design of the search site can involve OOTB or custom
Web Parts. Customizing the search results involves XML and XSLT. Configuration of the indexing jobs
and content sources will affect users and the quality of their results. Integration with databases is also
possible with SharePoint, and that integration can be surfaced through the search site. Finally, reporting
and studying the search terms and the query results of users can lead to continuous improvement of the
search experience and a satisfying experience for end users.

c13.indd 267c13.indd 267 5/8/08 7:11:35 PM5/8/08 7:11:35 PM

c13.indd 268c13.indd 268 5/8/08 7:11:35 PM5/8/08 7:11:35 PM

 Authoring Experience
Extensibility

 All Web content management systems provide content authors with a user - friendly and easy way
to create and manage content within a Web site. The capabilities offered in Microsoft Office
SharePoint Server (MOSS) 2007 Publishing sites is no different. Content authors simply need to
navigate to the section of the site where they want to add content, authenticate, and create new
content using the provided browser interface.

 What if this experience is not enough? Thankfully, SharePoint does not stop there. SharePoint,
Windows SharePoint Services (WSS) 3.0, at its core is very extensible. Many opportunities exist for
extending and replacing the functionality provided out - of - the - box (OOTB) in SharePoint. Thanks
to the architecture of SharePoint 3.0, everything that WSS 3.0 has to offer is available to MOSS 2007
and thus, Publishing sites. Previous chapters have touched on the different customization options
available to developers in providing a unique experience for content owners, such as page layouts,
custom field controls, custom Web Parts, and custom workflows. This chapter takes the authoring
experience a bit further and discusses some additional extensibility options available to SharePoint
developers to customize the authoring experience .

 Customizing SharePoint Navigation
with Custom Actions

 SharePoint has numerous system menus scattered throughout the product, such as the Site Actions
menu, the Site Settings page, list pages (new/edit/display) with toolbars, as well as the edit
control block (ECB) shown in Figure 14 - 1 for all list items. The menu structure is based on the
concept of actions . Actions are registered to a specific menu within a specific context using WSS 3.0
Features. When a page loads, SharePoint interrogates the internal list of registered actions to get a
list of the items that should appear in each menu.

c14.indd 269c14.indd 269 5/8/08 7:12:06 PM5/8/08 7:12:06 PM

Chapter 14: Authoring Experience Extensibility

270

 Thanks to WSS 3.0 and the Features framework it is quite easy to manipulate the SharePoint menus. In
fact, Microsoft even used this model to implement the menus. If you have ever been curious about how
the Site Settings page is created, take a look at the Site Settings Feature located in the [..]\12\
TEMPLATE\FEATURES\SiteSettings folder.

 How does customizing SharePoint menus serve as a useful tool for developers in creating a customized
authoring experience? The ideal time to modify the menus is when the desired customization does not
directly affect the content the user is working on, but rather the overall experience. What if the content
authors at one organization are not technically savvy in that they don ’ t know HTML and primarily work
within the Office client applications such as Word and Excel? No matter how hard developers try, the
Web experience is always a little different than the thick client experience. What if some content
management tasks need to be provided as tutorials for organizations with a high rate of turnover in the
group that manages content in one section of the site? It is not very efficient to repeatedly have to hold
training sessions with the new content authors. In these cases, developers could create some customized
tutorials delivered as either a Web experience or an offline experience. Rather than send a bunch of links
around to the content authors every time new employees join the company, developers could create a
new link on the Site Actions menu that all authenticated users would see, linked to the tutorials, as
Figure 14 - 2 demonstrates.

 Figure 14 - 1

 Figure 14 - 2

c14.indd 270c14.indd 270 5/8/08 7:12:07 PM5/8/08 7:12:07 PM

Chapter 14: Authoring Experience Extensibility

271

 Adding items to SharePoint menu, like the Tutorials link at the bottom of the Site Actions menu shown
in Figure 14 - 2 , is achieved using Features. The site element < CustomAction / > enables developers to
create menu items and specify things such as title, description, image, and even permission rights
indicating what users must have in order to keep the menu item from being “ security trimmed ” from
their experience. The element manifest file to create the Tutorials menu item in Figure 14 - 2 is shown in
Listing 14 - 1 .

 Listing 14 - 1: Element manifest file creating a menu item

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < CustomAction Id=”A4C9FEB8-D867-4045-BC17-083AED73E7E6”
 Location=”Microsoft.SharePoint.StandardMenu”
 GroupId=”SiteActions”
 Sequence=”100”
 ImageUrl=”/_layouts/images/lg_ICHLP.gif”
 Title=”Tutorials”
 Description=”Content author and owner online tutorials.” >
 < UrlAction Url=”/_layouts/WROX/Tutorials/default.aspx” / >
 < /CustomAction >
 < /Elements >

 In addition to the < CustomAction / > site element, WSS offers two additional site elements that are
used to manipulate the SharePoint menus:

 < CustomActionGroup / > creates a new group of menu items. For example, it can create a new
column of links on the Site Settings page.

 < HideCustomAction / > is used to hide actions created by other Features.

 Offline Authoring with Document Converters
 The remainder of the chapter details the different Web authoring extensibility options available in
Publishing sites exclusively. However, before moving into Web authoring, let ’ s briefly explore the offline
authoring capabilities. Content authors are not limited to just the Web authoring capabilities MOSS 2007
Publishing sites offer. Pages can be created and managed using offline tools such as Office Word 2007 or
InfoPath 2007. This capability is facilitated with document converters . Once a document converter is
registered with a specified document library, SharePoint monitors the document library for new content.
When new content arrives in the document library, it is passed to the registered document converter,
which then creates a Web page and stores that page in the appropriate Pages library. This process does
not bypass any security or workflow configurations; it simply automates the process of creating or
updating an existing page in the Web experience.

 Document converters are covered in detail in Chapter 18 , “ Offline Authoring with Document
Converters. ”

❑

❑

c14.indd 271c14.indd 271 5/8/08 7:12:07 PM5/8/08 7:12:07 PM

Chapter 14: Authoring Experience Extensibility

272

 Edit Model Panel
 At some point in a Publishing site project, business requirements will dictate that the author ’ s editing
experience should be different from that of the display experience. For example, what if some fields on a
page need to be edited by the content authors but not shown to people browsing the site? This technique
comes in handy when a page needs to have some metadata associated with it at the same time that it
would be used in classifying or grouping pages in a Content Query Web Part or for more advanced
searching techniques.

 The way to provide different editing and display experiences in MOSS 2007 Publishing sites is through
the EditModePanel . The EditModePanel , used in page layouts, is an ASP.NET 2.0 composite control in
that it can contain child controls. By default, it only renders the controls within the panel when the page
is in Edit mode, but this is configurable using the PageDisplayMode property. When the
 PageDisplayMode property is set to Display , it displays the controls when the page is in Display
mode. When the PageDisplayMode property is set to Edit (which it is by default), it displays the
controls when the page is in Edit mode.

 The EditModePanel is demonstrated in the page layouts included in the Publishing Portal site
template — specifically, those associated with the Article Page content type (see Figure 14 - 3). A gray box
is rendered at the bottom of a page containing a field control for a thumbnail image. The intention is to
not use this image when viewing the content page but rather only in rollup Web Parts such as the
Content Query Web Part as a thumbnail in a list of content.

 Figure 14 - 3

 To add the EditModePanel to a page layout, either drag it from the SharePoint Controls section in the
Toolbox task pane in SharePoint Designer onto the page layout or add the markup in Listing 14 - 2 . In this
case, the editor part will display its contents when the page is in Edit mode only.

 Listing 14 - 2: Using an EditModePanel

 < PublishingWebControls:EditModePanel runat=”server” PageDisplayMode=”Edit” >
 < table cellpadding=”10” cellspacing=”0” align=”center” class=”editModePanel” >
 < tr >
 < td >
 < PublishingWebControls:RichImageField FieldName=”PublishingRollupImage”
 runat=”server” / >
 < /td >
 < /tr >
 < /table >
 < /PublishingWebControls:EditModePanel >

 Notice the CSS editModePanel class assigned to the table in Listing 14 - 2 . This CSS class is what gives
the EditModePanel the gray background presentation. It is included in the SharePoint style sheets
provided in an OOTB install, so developers are free to implement a similar presentation in their own
custom implementations.

c14.indd 272c14.indd 272 5/8/08 7:12:08 PM5/8/08 7:12:08 PM

Chapter 14: Authoring Experience Extensibility

273

 Customizing the HTML Editor Field Control
 The rich HTML Editor field control may be the most commonly used control on page layouts within
Publishing sites. The control provides content authors with the capability to author rich content using
formatting, tables, hyperlinks, and images, as well as modify the font color and size — all with a slick
live preview of the rendered content. This control, shown in Figure 14 - 4 , is very similar to the familiar
formatting toolbars available in common word processing applications such as Office Word 2007.

 Figure 14 - 4

 While the flexibility provided by the HTML Editor field control can be very useful in many cases,
at other times it is necessary to restrict what content authors can and cannot do. For instance, it may not
be desirable to allow content authors to pick the color or font size of the text, but should instead be
defined using specific CSS classes. At other times, content authors might want to disallow the use of
images or tables within a content field. To satisfy these needs, the HTML Editor field control provides a
way to enable and disable buttons, as well as create custom buttons and specify the CSS classes available
for use within a site.

 Enabling and Disabling Buttons
 Enabling and disabling buttons on the HTML Editor field control is very easy. There are two ways to
control the buttons. One way is to open the page layout containing the control in SharePoint Designer in
Design view and select the field control. The Tag Properties tool window shows all available settings on
the control. Changing one of the values adds an attribute to the field control in the source of the page
layout. The other way to control the Enabled state of a button is to manually add the Boolean attribute
to the field control markup directly in the page. The code in Listing 14 - 3 shows the markup for a field
control that has disabled the capability to add images and tables, as well as provide a way for the content
author to view the raw HTML markup.

 Listing 14 - 3: Customizing the HTML Editor field control

 < PublishingWebControls:RichHtmlField id=”Content” FieldName=”PublishingPageContent”
runat=”server” AllowImages=”False” AllowTables=”False” AllowTextMarkup=”True”
AllowHtmlSourceEditing=”False” / >

c14.indd 273c14.indd 273 5/8/08 7:12:08 PM5/8/08 7:12:08 PM

Chapter 14: Authoring Experience Extensibility

274

 The following table describes the available Boolean attributes:

 Control Attribute Description

 AllowExternalUrls Specifies whether the content can contain references to
targets within the current site or external to the site .

 AllowFonts Specifies whether the content can contain < font > tags .

 AllowHeadings Specifies whether the content can contain HTML headings
(< h1 > , < h2 > , < h3 > , < h4 > , < h5 > , < h6 >) .

 AllowHtmlSourceEditing Specifies whether the content owner can view the raw
HTML markup of the content and edit it .

 AllowHyperlinks Specifies whether the content can contain links (< a >) .

 AllowImages Specifies whether the content can contain images .

 AllowLists Specifies whether the content can contain HTML lists
(< ol > or < ul >) .

 AllowReusableContent Specifies whether the content owner can add reusable
content or not .

 AllowTextMarkup Specifies whether the content can contain formatting
markup (< b > , < em > , < u >) .

 DisableCustomStyles Specifies whether the content author can select from
predefined CSS styles .

 DisableBasicFormattingButtons Specifies whether the content author can use the text
formatting buttons for bold, italic, and underlined text, as
well as indentation .

 Adding Custom Buttons
 Another bit of customization that can be implemented on the HTML Editor field control is the capability
to create custom buttons in the floating toolbar. While not a trivial task, creating custom buttons can
provide an even more specialized authoring experience. Creating a button involves writing JavaScript
and registering it with the HTML Editor using XML.

 Consider the following example of using a MOSS 2007 Publishing site that contains significant editorial
content. The developers want to enable the content owners, the editors, to use a type of microformat
called XHTML Friends Network (XFN). The XFN microformat provides a way to represent human
relationships using HTML links.

c14.indd 274c14.indd 274 5/8/08 7:12:08 PM5/8/08 7:12:08 PM

Chapter 14: Authoring Experience Extensibility

275

 XFN links are not very complicated. The main difference is that an XFN link contains an extra attribute
 rel , which contains a space - delimited list of specific identifiers such as me , friend , met, and colleague .
Rather than tell content owners how to create these special links, the developers wanted to provide an
easy and self - explanatory way for the editors to create them on their own. When the user has selected
some text in the field control, a button should be enabled, allowing the content owner to enter a URL and
 rel values for the link, as shown in Figure 14 - 5 (notice the XFN button on the last row of the toolbar, just
below the Select button).

 Figure 14 - 5

 Clicking the XFN button will generate two JavaScript pop - up dialogs: one prompting for the URL and
one prompting for the rel values. After the values for both pop - up dialogs have been entered, the
button generates the HTML link. The result is shown in Figure 14 - 5 . The extra image is rendered using a
CSS trick:

a.xfnRelationship[rel~=”me”]
{
 padding-right: 21px;
 background: url(/_layouts/xfn/xfn-me.png) no-repeat right;
}

 To create this button, first create a new JavaScript file RTExfnMicroformat.js in the [..]\12\
TEMPLATE\LAYOUTS\1033 folder. This file contains the function that will create the button, as well as

 What Are Microformats?
 According to Wikipedia, “ a microformat is a Web - based data formatting approach that
seeks to reuse existing content as metadata, using only XHTML and HTML classes and
attributes. ” In other words, today XHTML and HTML are used to define how content
should be rendered (such as the < b > , < em > , or < u > tags) or what it should do (such as
 < a >). The goal of microformats is to add more structure to the data to define what the
data is. For instance, there are proposed microformats for physical addresses, calendar
items, and species (living things), to name a few.

 For more information on microformats and the XHTML Friends Network (XFN),
refer to the following pages on Wikipedia: www.andrewconnell.com/go/251 and
 www.andrewconnell.com/go/252 .

c14.indd 275c14.indd 275 5/8/08 7:12:09 PM5/8/08 7:12:09 PM

Chapter 14: Authoring Experience Extensibility

276

two additional functions. First, use the RTE2_RegisterToolbarButton() function to create the toolbar
item as shown in Listing 14 - 4 . This function has seven input parameters:

 ID — ID of the button .

 IconURL — Location of the image used in the button .

 Text — Text to appear on the toolbar for the button .

 ToolTip — Text to appear when a user hovers the mouse over the button .

 ClickCallback — Name of the JavaScript function to be called when the button is clicked. This
function does all the work.

 ResetStateCallback — Name of the JavaScript function to be called when the state of the editor
changes. This method would be called when the user enters, selects, or deselects text in the
editor. This is used to change the enabled state of the button.

 Arguments — Array of arguments to pass to each of the callback functions when they are
executed .

 Listing 14 - 4: RTE2_RegisterToolbarButton() JavaScript function called to create
custom button in the HTML Editor field control

RTE2_RegisterToolbarButton(“xfnMicroformat”,
 “_layouts/xfn/xfn-small.png”,
 “XFN”,
 “Add XHTML Friends Network microformat link”,
 XfnButtonOnClick,
 XfnButtonOnResetState,
 new Array());

 Next, create the two callback functions, as shown in Listing 14 - 5 . The first one, XfnButtonOnClick() ,
does all the work when the button is clicked. The second, XfnButtonOnResetState() , is used to enable
or disable the button. In this example, the button should only be enabled when text has been selected:

 Listing 14 - 5: HTML Editor field control custom button callback functions

// The method that is called when the button is clicked.
function XfnButtonOnClick(strBaseElementID, arguments) {
 // get reference to document currently being edited
 var docEditor = RTE_GetEditorDocument(strBaseElementID);
 if (docEditor == null) { return; }
 // get reference to the selected text
 var selectedRange = docEditor.selection.createRange();

 // prompt user for url and microformat
 var url = prompt(“Enter the person ’ s URL:”,”http://www.someone.com”);
 var xfn = prompt(“Enter the XHTML friend (XFN) relationships:\nPossible values:
me, parent, child, colleague, friend, spouse, sweetheart, met”, “”);

 // create the < a > HTML for the blog link

❑

❑

❑

❑

❑

❑

❑

c14.indd 276c14.indd 276 5/8/08 7:12:09 PM5/8/08 7:12:09 PM

Chapter 14: Authoring Experience Extensibility

277

 selectedRange.pasteHTML(“ < a href=\”” +url +”\” class=\”xfnRelationship\” rel=\””
+xfn +”\” > ” +selectedRange.htmlText + “ < /a > ”);

 // restore selection
 RTE_RestoreSelection(strBaseElementID);

 return true;
}

// The method that is called when the button ’ s state is reset.
function XfnButtonOnResetState(strBaseElementID, arguments) {
 // get reference to document currently being edited
 var docEditor = RTE_GetEditorDocument(strBaseElementID);
 if (docEditor == null) { return; }

 // restore selection
 RTE_RestoreSelection(strBaseElementID);

 // if text is selected, show the button
 if (docEditor.selection.createRange().text.length != 0){
 RTE_TB_SetEnabledFromCondition(strBaseElementID, true, “xfnMicroformat”);
 } else {
 RTE_TB_SetEnabledFromCondition(strBaseElementID, false, “xfnMicroformat”);
 }
 return true;
}

 Notice that a handful of predefined JavaScript functions are being called throughout the callbacks.
Unfortunately, these functions are not documented, but developers can pick through the files that define
them when creating custom buttons. The main JavaScript files involved in the HTML Editor field control
are HtmlEditor.js , FORM.js , and AssetPickers.js , which are all found in the [..]\12\TEMPLATE\
LAYOUTS\1033 folder.

 With the JavaScript created, the next thing to do is make the HTML Editor field control aware of the
custom button. When a page loads in Edit mode, the field control looks in a specific XML file within the
master page gallery for all additional JavaScript files that should be loaded. The file, http://[..]/
catalogs/masterpage/Editing menu/RTE2ToolbarExtension.xml , contains a list of all the custom
buttons to load onto the field control ’ s toolbar. Each XML node in this file should point to the JavaScript
file that contains the button registration function, as well as the callbacks. To register the XFN button,
add the following to this file and then go through the save, check - in, publish, and approval process:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < RTE2ToolbarExtensions >

 < RTE2ToolbarExtraButton id=”XfnMicroformat” src=”RTEXfnMicroformat.js”/ >

 < /RTE2ToolbarExtensions >

 After loading the JavaScript file, the HTML Editor field control will then call the
RTE2_RegisterToolbarButton() function to register and create the button.

c14.indd 277c14.indd 277 5/8/08 7:12:10 PM5/8/08 7:12:10 PM

Chapter 14: Authoring Experience Extensibility

278

 Depending on the custom button solution, extra steps may be needed, such as in the case of the XFN
button, which needed extra CSS classes to display and deploy images. The code download available for
this book contains the complete solution packaged up in a WSS solution package, including a Feature
that provisions the CSS file to the Style Library. Another process for deploying the custom button via a
Feature is discussed in detail in the section “ Deploying Page Editing Toolbar Customizations ” later
in the chapter, as the process of registering HTML Editor field control buttons and page editing
toolbar customizations are similar. The only manual step in the provided solution is to make the
necessary changes to the RTE2ToolbarExtension.xml file to make the HTML Editor field control
aware of the custom button.

 Customizing Available CSS Classes
 The previous section, “ Enabling and Disabling Buttons, ” demonstrated how Publishing site
developers and designers can enable or disable certain buttons on the HTML Editor field control toolbar
to keep content owners from using certain formatting options. The downside to this approach is that it
limits content formatting options when some content needs to be styled. The preferred way for designers
to implement and maintain a consistent look and feel in a site is to use CSS classes. These style sheets
contain the branding and layout information for the entire site. The best part about them is that they are
typically global to an entire site, so branding changes only have to be made in one spot, enabling
designers and developers to centrally manage the site ’ s look and feel. This eliminates the need for inline
styles or formatting that is defined on a case - by - case basis, such as the following:

 < span style=”font-weight:bold; color:red;” > Company Name < /span >

 Instead, designers can use a specific CSS class. This specific class makes maintaining a common look and
feel easy because the styling is defined in a single place.

 The HTML Editor field control provides an another formatting capability in addition to turning on/off
certain buttons (such as text formatting for bold, italic, underlined, or colored text). The HTML Editor
field control will detect all CSS classes defined on the page that match a specific naming pattern and
display them in the Styles selector in the toolbar of the field control. Any style with the class name
containing the prefix of ms - rteCustom - is added to the list of possible CSS classes to choose from. The
field control is intelligent enough to only display the classes that are available based on the context of
the editor.

 For example, add the following CSS class either to an existing CSS file loaded on the page or directly to
the page layout (again, it does not matter how it gets on the page, only that it is defined in the page
somewhere):

P.ms-rteCustom-ProWcmDev {font-weight:bold;}

 This class only pertains to the HTML paragraph tag, so when an entire < p > element is selected, this class
is available. Otherwise, this class will not appear in the Styles selector, as shown in Figure 14 - 6 .

c14.indd 278c14.indd 278 5/8/08 7:12:10 PM5/8/08 7:12:10 PM

Chapter 14: Authoring Experience Extensibility

279

 The HTML Editor field control also provides the capability to use specific CSS styles for a particular
HTML Editor field control. The field control contains a PrefixStyleSheet property that can change the
CSS class prefix for a particular field control instance from the default ms - rte - Custom - prefix.

 Telerik RadEditor Lite for MOSS
 The previous section covered the different customization options available to developers when using the
HTML Editor field control. One of the most significant pain points associated with this control is that it is
only supported for use within Internet Explorer. Other browsers, including the Mozilla - based browsers
such as Firefox and Apple ’ s Safari, are not supported and can ’ t offer a full hassle - free experience. To
address this issue, Microsoft has worked out an arrangement with Telerik (www.andrewconnell.com/
go/253) to provide an HTML Editor field control feature equivalent, yet cross - browser, experience.

 The Telerik RadEditor Lite for MOSS is available as a free downloadable add - on to anyone who has a
valid MOSS 2007 license (it is not available for WSS 3.0 – only installations). The RadEditor Lite for MOSS
is a slimmed - down version of the more robust and commercial RadEditor for MOSS product. Like the
HTML Editor field control, the RadEditor Lite can be customized in many of the same ways.

 It is recommended that developers use the Telerik RadEditor Lite for MOSS in lieu of the Microsoft -
 provided HTML Editor field control. The RadEditor Lite for MOSS enables developers to provide a pure
cross - browser authoring experience while leveraging the same customization techniques that the MOSS
HTML Editor field control offers, such as custom CSS styles and custom buttons.

 Go to the SharePoint 2007 section of the Telerik Web site (www.andrewconnell.com/254) to download
and get more information about the RadEditor Lite product, as well as documentation on installation,
customization tasks, and community support options.

 Figure 14 - 6

c14.indd 279c14.indd 279 5/8/08 7:12:10 PM5/8/08 7:12:10 PM

Chapter 14: Authoring Experience Extensibility

280

 Customizing the Page Editing Toolbar
 All Publishing sites utilize the Page Editing Toolbar (PET). The PET provides content authors and
owners with all the functionality needed to manage a page — from creating and editing pages to
managing workflow, page settings, and more. The PET is divided into three sections:

 Page Status Bar — This is the top portion of the PET. It provides informational messages about
the page, such as version, state, status, and when is it scheduled to start publication.

 Page Editing Menu — This is the lower - left portion of the PET. It includes menus of all the
different actions that can be undertaken on the current page. If an action is not available (such as
checking a page out because it is already checked out), then it is disabled.

 Quick Access Buttons — This is the lower - right portion of the PET. It includes buttons similar
to the actions found in the Page Editing Menu section, but only actions that are available in the
current context are shown.

 The PET is very functional and essentially complete OOTB, with all the necessary tasks needed to create
and manage a piece of content in a Publishing site, but it does provide a way for developers to create
custom menus, menu items, and buttons. The process involves creating a class that will do the work and
then modifying an XML file to make the PET aware of the new menus, items, and buttons. Luckily, the
code for both new menu items and buttons is identical. The following sections demonstrate how to
create custom editing menu items and custom buttons.

 A common request from customers and designers is knowing which page layout ASPX file corresponds
with a particular content page. While the ASPX can be determined by first checking the name of the page
layout from the Page Settings page (PET: Page Page Settings and Schedule) and using that title to find
the corresponding page layout ASPX file in the master page gallery, an easier way can be provided. The
solution is to create a new application page that provides additional publishing details about the current
page, as shown in Figure 14 - 7 .

❑

❑

❑

 Figure 14 - 7

c14.indd 280c14.indd 280 5/8/08 7:12:11 PM5/8/08 7:12:11 PM

Chapter 14: Authoring Experience Extensibility

281

 To get to this page, content owners want to simply click a button in the PET Quick Access Button area or
select an item from the PET Page Editing Menu, as shown in Figure 14 - 8 .

 Figure 14 - 8

 The following sections create one of each to demonstrate both processes. These menu items and buttons
center on the concept of PET actions, or console actions. The first step is to create a console action, as it
can be used as either a menu item or a button.

 Creating Page Editing Toolbar Actions
 As previously stated, menu items and buttons in the PET are founded on the idea of actions —
 specifically, console actions. Creating a console action involves creating a new class that inherits from the
 Microsoft.SharePoint.Publishing.WebControls.EditingMenuActions.ConsoleAction class
and overriding a handful of properties. Many of the properties can be set from the XML used to register
the action in the PET Page Editing Menu or the PET Quick Access Buttons areas. However, developers
can restrict the console action so that it doesn ’ t accept values other than those defined within the console
action by simply overriding the get portion of the property and ignoring the set portion. This way, the
values specified in the XML are never applied.

 To create a console action, create a new C# Class Library project in Visual Studio and add a reference to
the Microsoft.SharePoint and Microsoft.SharePoint.Publishing assemblies. Next, create a
new class, PublishingPageDetailAction , that inherits from Microsoft.SharePoint.Publishing
.WebControls.EditingMenuActions.ConsoleAction . Set the default name of the action within the
class constructor, as shown in Listing 14 - 6 .

 Listing 14 - 6: Page Editing Menu ConsoleAction class

using System;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Publishing.WebControls;
using Microsoft.SharePoint.Publishing.WebControls.EditingMenuActions;

namespace WROX.ProMossWcm.Chapter14 {
 public class PublishingPageDetailAction : ConsoleAction {
 public PublishingPageDetailMenuItem ()
 : base() {
 this.DisplayText = “Page Details”;
 }
 }
}

 The next thing to set is when the action is visible. This is done by overriding the ConsoleAction
.RequiredStates property. This property returns either a single value from the enumeration
 Microsoft.SharePoint.Publishing.WebControls.AuthoringStates or a bitmask of multiple

c14.indd 281c14.indd 281 5/8/08 7:12:11 PM5/8/08 7:12:11 PM

Chapter 14: Authoring Experience Extensibility

282

values. In this case, the Page Detail menu item and button should always be visible when the PET is
active, so the AuthoringStates.EditingMenuEnabled is used. Add the property shown in
Listing 14 - 7 to the PublishingPageDetailAction class.

 Listing 14 - 7: ConsoleAction.RequiredStates property

public override AuthoringStates RequiredStates {
 get { return AuthoringStates.EditingMenuEnabled; }
}

 Now the action needs to be configured to specify who can and cannot see the item or button. This is
done by overriding the ConsoleAction.UserRights property. Similar to the RequiredStates
property, UserRights returns a bitmask of the Microsoft.SharePoint.SPBasePermissions
enumeration. In this case, everyone who has access to the PET should be able to see this action, so the
 SPBasePermission.EmptyMask is used, as shown in Listing 14 - 8 .

 Listing 14 - 8: ConsoleAction.UserRights property

public override SPBasePermissions UserRights {
 get { return SPBasePermissions.EmptyMask; }
}

 All menu items and buttons can have an associated image (refer to Figure 14 - 8). In this case, the
 PublishingPageDetailAction will have a default image set but it will also allow for the image to be
overwritten in the XML, as shown in Listing 14 - 9 .

 Listing 14 - 9: ConsoleAction.ImageUrl

private string _imageUrl;
public override string ImageUrl {
 get {
 if (string.IsNullOrEmpty(_imageUrl))
 return “~/_layouts/images/info16by16.gif”;
 else return _imageUrl;
 }
 set { _imageUrl = value; }
}

 Finally, the action must do something when it is clicked by the user! This can be accomplished on
either the client side or the server side. To handle the click from the server side, override the
 ConsoleAction.RaisePostBackevent() method. If any errors are encountered in the postback,
instead of throwing an exception, developers should call the ConsoleAction.ShowError() method,
passing in the exception as well as a Microsoft.SharePoint.Publishing.WebControls
.ConsoleError object. The server - side approach is helpful when performing some operation on the
page, such as saving or checking - in, or some other server - side task.

 In the case of the PublishingPageDetailAction console action, the user should be taken to a specific
page. This does not require a postback; client - side script can be used. To do this, override the
 ConsoleAction.NavigateUrl property. When the menu item or button is clicked, the user should be

c14.indd 282c14.indd 282 5/8/08 7:12:11 PM5/8/08 7:12:11 PM

Chapter 14: Authoring Experience Extensibility

283

taken to the Page Detail application page. This page needs to know what page it should show the details
for, so the URL needs to contain some information such as the SharePoint site where the page resides and
the ID of the page in the Pages list. Add the code in Listing 14 - 10 to the PublishingPageDetailAction
class.

 Listing 14 - 10: ConsoleAction.NavigateUrl override

public override string NavigateUrl {
 get {
 string pageDetailUrl = “_layouts/WROX/PublishingPageDetail.aspx”;
 return String.Format(“javascript:window.location=’{0}/{1}?pageid={2}’;”,
 SPContext.Current.Web.Url.ToString(),
 pageDetailUrl,
 SPContext.Current.ListItem.ID.ToString());
 }
}

 At this point the console action is complete. The last two steps are to register a new menu item or button
on the PET and perform the necessary deployment steps.

 Adding Items to the PET Page Editing Menu
 With the console action created, it now needs to be added to the PET. As shown in Figure 14 - 8 , it is
added as a menu item in a new menu called Utilities . The Page Editing Menu structure is defined by the
XML file EditingMenu.xml located in [..]\12\TEMPLATE\LAYOUTS\EditingMenu . This is not the file
developers should modify, however, to add custom menu items. Rather, this file contains a reference
near the top where custom menu items are defined:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Console >

 < customfile FileName=”CustomEditingMenu” / >

 < references >
 < !-- omitted from the book for readability -- >

 This < customfile / > node tells the PET to look for the file CustomEditingMenu.xml in a special
location of the site hierarchy: http://[..]/_catalogs/masterpage/Editing Menu . This file is a
customized instance in the site collection so it needs to be edited directly in SharePoint Designer.
Another way to modify the file is covered in the section “ Deploying Page Editing Toolbar
Customizations. ”

 This file contains two main areas: references and structure. The < references > section is
similar to the < % @Register % > directive in *.ASPX and *.ASCX files. This where a reference is
established to the console action class in the assembly previously created. The second section,
 < structure > , is where the new menu and menu item is created. Replace the markup in the
 CustomEditingMenu.xml with the markup in Listing 14 - 11 .

c14.indd 283c14.indd 283 5/8/08 7:12:12 PM5/8/08 7:12:12 PM

Chapter 14: Authoring Experience Extensibility

284

 Listing 14 - 11: CustomEditingMenu.xml

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Console >
 < references >
 < reference TagPrefix=”wrox”
 assembly=”Chapter14PageEditingToolbar, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=c591e70cfdf9ce4f”
 namespace=”WROX.ProMossWcm.Chapter14” / >
 < /references >
 < structure >
 < ConsoleNode Sequence=”500” ConfigMenu=”Add” NavigateUrl=”javascript:”
 AccessKey=”L”
 DisplayText=”Utilities”
 ImageUrl=”/_layouts/images/saveitem.gif”
 UseResourceFile=”false”
 UserRights=”EmptyMask”
 ID=”saPageLinks” >
 < ConsoleNode DisplayText=”Page Details”
 ImageUrl=”/_layouts/images/info16by16.gif”
 UseResourceFile=”false”
 Action=”wrox:PublishingPageDetailMenuItem”
 ID=”wroxPublishingPageDetailMenuItem” >
 < /ConsoleNode >
 < /ConsoleNode >
 < /structure >
 < /Console >

 Notice in Listing 14 - 11 how the two < ConsoleNode / > elements are nested. This is what creates the new
menu with a menu item. The only other thing to note in this code listing is the Action attribute on the
inner < ConsoleNode / > . This attribute is used just like an ASP.NET 2.0 server control in an *.ASPX or
 *.ASCX file, as it contains the tag prefix defined in the < references / > section above, and the name of
the class of the console action.

 Save all changes, and check in, publish, and approve the CustomEditingMenu.xml file. Because this
file resides in the master page gallery, it conforms to the same approval and workflow settings as
master pages, page layouts, and preview images. The new menu and menu item should now appear
in the PET.

 Adding Buttons to the PET Quick Access Buttons
 Adding a new button to the PET Quick Access Button area is almost identical to creating a new
menu item in the Page Editing Menu area. Similar to the Page Editing Menu, the PET uses the file
 QuickAccess.xml located in the [..]\12\TEMPLATE\LAYOUTS\EditingMenu folder to build
the buttons. This file points to the CustomQuickAccess.xml file in the master page gallery for all
custom buttons. The structure of this XML file, shown in Listing 14 - 12 , is similar to that of the
 CustomEditingMenu.xml file except that there are no submenu options.

c14.indd 284c14.indd 284 5/8/08 7:12:12 PM5/8/08 7:12:12 PM

Chapter 14: Authoring Experience Extensibility

285

 Listing 14 - 12: CustomQuickAccess.xml

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Console >
 < references >
 < reference TagPrefix=”wrox”
 assembly=”Chapter14PageEditingToolbar, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=c591e70cfdf9ce4f”
 namespace=”WROX.ProMossWcm.Chapter14” / >
 < /references >
 < structure >
 < ConsoleNode Sequence=”1”
 ConfigMenu=”Add”

HideStates=”PageHasCustomizableZonesFalse|PageHasFieldControlsFalse”
 Action=”wrox:PublishingPageDetailAction”
 ID=”wroxPublishingPageDetailQuickAccessButton” / >
 < /structure >
 < /Console >

 Notice an additional attribute in the < ConsoleNode / > element: HideStates . This is a bitmask of the
 AuthoringStates enumeration, defining when the button should or should not be shown.

 Just like the Page Editing Menu, this file conforms to all approval and workflow settings for the master
page gallery, so it should be checked in, published, and approved for the changes to be seen by everyone.
Otherwise, only the person making the changes to the XML will see the changes.

 Deploying Page Editing Toolbar Customizations
 Last step: deployment. The deployment of custom PET menu items and buttons is quite simple. The
two XML files do not need to be deployed because the changes have already been applied to the site
collection. However, the console action needs to be deployed. The assembly containing the console
action can be deployed to the server ’ s GAC or the targeted Web application ’ s \BIN folder. The
console action also needs to be flagged as a < SafeControl / > in the web.config file regardless of
where the assembly is deployed. All of this can be done with a WSS solution package.

 One thing just doesn ’ t feel right though: The two XML files defining the custom menu item and button
were modified using SharePoint Designer. Does that mean in order to deploy the changes in multiple
environments a developer or site owner needs to make this change on all environments manually? If the
process followed in this chapter is what is used to implement the changes, then the answer is yes.
However, this is not the only way!

 Staying true to the theme of this book, whereby both SharePoint customization and development
techniques are demonstrated, consider the following approach. The only part of the previously
demonstrated process that requires manual intervention is the modification of the two XML files in the
master page gallery. Does that mean these files can be replaced with uncustomized instances that point
to the file system, just as master pages and page layouts can? Unfortunately, no — these files need to
exist as customized instances in the master page gallery. This means that provisioning the files using
WSS 3.0 Features is not possible, but deployment can still occur using Features with no manual work.

c14.indd 285c14.indd 285 5/8/08 7:12:12 PM5/8/08 7:12:12 PM

Chapter 14: Authoring Experience Extensibility

286

 Instead of using the file provisioning technique, use Feature receivers to do the work of modifying the
XML files. The associated code for this chapter demonstrates this approach. The process is as follows:
A Feature is used to trigger the deletion of the existing XML files, replacing them with new, customized
instances that contain the necessary XML to register the custom menu item and button in the PET. Sure,
the files could be programmatically opened and modified using code, but that just adds complexity.
Instead, the approach of deleting the old files and creating new files keeps the process simple.

 The trick is to delete the old XML files before creating the new ones. One Feature,
 Chapter14DeleteCustomizedPetFiles , deletes the two XML files when activated (see Listing 14 - 13).

 Listing 14 - 13: Chapter14DeleteCustomizedPetFiles Feature receiver deleting files

using System;
using System.IO;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter14 {
 public class Chapter14DeleteCustomizedPetFilesReceiver : SPFeatureReceiver {
 public override void FeatureInstalled (SPFeatureReceiverProperties props){}
 public override void FeatureUninstalling (SPFeatureReceiverProperties props){}

 public override void FeatureActivated (SPFeatureReceiverProperties props) {
 using (SPSite siteCollection = props.Feature.Parent as SPSite) {
 using (SPWeb site = siteCollection.RootWeb) {
 // delete the two customization files
 DeletePetCustomizationFiles(site, “CustomEditingMenu.xml”);
 DeletePetCustomizationFiles(site, “CustomQuickAccess.xml”);
 }
 }
 }

 private void DeletePetCustomizationFiles (SPWeb site, string fileName) {
 // delete the CustomEditingMenu.xml
 SPFile petCustomizationFile = site.GetFile(“_catalogs/masterpage/Editing
Menu/” + fileName);
 petCustomizationFile.Delete();
 }

 }
}

 Another Feature, Chapter14CreatePetCustomizationFiles , creates two new instances of the files
programmatically upon activation (see Listing 14 - 14).

 Listing 14 - 14: Chapter14CreatePetCustomizationFiles Feature receiver creating files

using System;
using System.IO;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter14 {
 public class Chapter14CreatePetCustomizationFilesReceiver : SPFeatureReceiver {

 private const string CUSTOM_EDITING_MENU = “ < ?xml version=\”1.0\”

c14.indd 286c14.indd 286 5/8/08 7:12:13 PM5/8/08 7:12:13 PM

Chapter 14: Authoring Experience Extensibility

287

encoding=\”utf-8\” ? > < Console > ” + /* omitted from the book for readability */ +
“ < /Console > ”;
 private const string CUSTOM_QUICK_ACCESS = “ < ?xml version=\”1.0\”
encoding=\”utf-8\” ? > < Console > ” + /* omitted from the book for readability */ +
“ < /Console > ”;

 public override void FeatureInstalled (SPFeatureReceiverProperties props){}
 public override void FeatureUninstalling (SPFeatureReceiverProperties props){}
 public override void FeatureDeactivating (SPFeatureReceiverProperties props){}

 public override void FeatureActivated (SPFeatureReceiverProperties props) {
 using (SPSite siteCollection = props.Feature.Parent as SPSite) {
 using (SPWeb site = siteCollection.RootWeb) {
 CreatePetCustomziationFile(site,
 “CustomEditingMenu.xml”,
 CUSTOM_EDITING_MENU);
 CreatePetCustomziationFile(site,
 “CustomQuickAccess.xml”,
 CUSTOM_QUICK_ACCESS);
 }
 }
 }

 private void CreatePetCustomziationFile (SPWeb site,
 string fileName,
 string content) {
 using (MemoryStream mStream = new MemoryStream()) {
 using (StreamWriter sWriter = new StreamWriter(mStream)) {
 sWriter.WriteLine(content);
 sWriter.Flush();

 // get reference to folder and create file
 SPFolder editingMenuFolder = site.GetFolder(“_catalogs/masterpage/Editing
Menu”);
 SPFile petCustomizationFile = editingMenuFolder.Files.Add(fileName,
 mStream);

 // check in & publish
 if (petCustomizationFile.Item.Level == SPFileLevel.Checkout)
 petCustomizationFile.CheckIn(“”);
 petCustomizationFile.Publish(“”);
 petCustomizationFile.Approve(“”);

 sWriter.Close();
 mStream.Close();
 }
 }
 }

 }
}

c14.indd 287c14.indd 287 5/8/08 7:12:13 PM5/8/08 7:12:13 PM

Chapter 14: Authoring Experience Extensibility

288

 Both of these Features, Chapter14DeleteCustomizedPetFiles and
 Chapter14CreatePetCustomizationFiles , are hidden Features. They are activated by another
visible Feature, Chapter14PageEditingToolbar , that activates each in the proper order, as shown in
Listing 14 - 15 .

 Listing 14 - 15: Chapter14PageEditing Toolbar Feature definition

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”5116F0D5-8B50-4F42-A676-C44DFC9C6B93”
 Title=”Chapter 14 - Page Editing Toolbar Customizations”
 Scope=”Site”
 Hidden=”FALSE”
 Version=”1.0.0.0” >

 < ActivationDependencies >

 < !-- Chapter14DeleteCustomizedPetFiles -- >
 < ActivationDependency FeatureId=”A168B00F-3E44-49A5-9911-959A29141910” / >

 < !-- Chapter14CreatePetCustomizationFiles -- >
 < ActivationDependency FeatureId=”5BC41C2E-8BA7-4E96-B150-C8FC14734747” / >

 < /ActivationDependencies >

 < /Feature >

 Activation of the Chapter14PageEditingToolbar Feature triggers the process of deleting the existing
XML files and creating the new XML files that define the PET customizations. Figure 14 - 9 contains the
process flow for the Feature activation.

1

Chapter14PageEditingToolbar

ac
tiv

at
es

activates

2
Chapter14DeleteCustomizedPetFiles

3

deletes
customized

PET XML files

4
Chapter14CreateCustomizedPetFiles

5

creates new
customized

PET XML files

 Figure 14 - 9

c14.indd 288c14.indd 288 5/8/08 7:12:13 PM5/8/08 7:12:13 PM

Chapter 14: Authoring Experience Extensibility

289

 In addition, the Features contain logic to “ undo ” everything upon deactivation, as shown in
Figure 14 - 10 .

2
Chapter14DeleteCustomizedPetFiles

deletes
customized

PET XML files

recreates
original

customized
PET XML files

1

Chapter14PageEditingToolbar

de
ac

tiv
at

es

deactivates
5

Chapter14CreateCustomizedPetFiles

3 4

 Figure 14 - 10

 This is another example demonstrating that developers are not restricted to using the SharePoint
customization approach to deployment. Rather, they can create a much more repeatable and automated
deployment process using SharePoint development techniques.

 Note that the deployment process demonstrated in this section also applies to the same customizations
that need to be made in the HTML Editor field control XML files covered in the section “ Adding
 Custom Buttons. ”

 Summary
 MOSS 2007 ships with various capabilities developers can use to create very customized Publishing
sites. These, as well as master pages, page layouts, custom field controls, and custom Web Parts, enable
developers to craft a unique site on the MOSS 2007 platform using the Publishing Features. In addition
to the many customization options, Microsoft has made WSS 3.0 and MOSS 2007 (as well as Publishing -
 specific aspects) extensible, enabling developers to extend and modify the OOTB experience for content
authors.

c14.indd 289c14.indd 289 5/8/08 7:12:14 PM5/8/08 7:12:14 PM

Chapter 14: Authoring Experience Extensibility

290

 This chapter discussed and demonstrated the various ways a Publishing site can be customized and
extended. The most common field control, the HTML Editor field control, provides many options for
customization, such as specifying selectable CSS classes, enabling and disabling the formatting buttons,
as well as creating custom buttons. While the HTML Editor field control provides many opportunities
for customization, it falls short in the area of cross - browser support. This chapter also touched on the
recommended alternative to the HTML Editor field control: Telerik ’ s RadEditor Lite for MOSS.

 Finally, the subject of creating custom menu items and buttons for the Page Editing Toolbar was covered.
Customizing the PET can provide a very specialized experience for content owners; thus, it is a very
powerful technique in the Publishing site developer ’ s toolbox.

c14.indd 290c14.indd 290 5/8/08 7:12:14 PM5/8/08 7:12:14 PM

 Authentication and
Authorization

 A common component to all Web applications is authentication and authorization. Authentication
is the process of ensuring that users are who they say they are, usually by looking up their account
with a username and password combination. Authorization is the process of checking the specific
rights indicating what a user can or cannot do within the provided context. Even in anonymous
Web sites, the Web server authenticates users using a special anonymous user account that has
been granted specific privileges.

 SharePoint sites — specifically, Publishing sites — are no different. SharePoint relies on ASP.NET
2.0 for authentication, using the ASP.NET 2.0 authentication provider model. Internally, it handles
the authorization piece with its own collection of components.

 This chapter covers the details of the various components applicable to SharePoint security, as well as
the process of customizing the ASP.NET 2.0 authentication provider model to change the default
Windows authentication that SharePoint sites use to using a custom provider such as a Microsoft SQL
Server database. In addition, some Publishing - specific security and permissions aspects are covered.

 SharePoint Security Components
 SharePoint deals with authorization using various interconnected components. The components
enable site administrators and owners to specify what things users can see and do, to group these
various rights into named sets, and to apply these named sets within the context of a securable object.

 Permission Rights
 At the very core of SharePoint authorization is permission rights. The various permissions are
broken down into three categories: list permissions, site permissions, and personal permissions . List
permissions are those things that apply to SharePoint lists, such as customizing the list ’ s schema,

c15.indd 291c15.indd 291 5/8/08 7:13:01 PM5/8/08 7:13:01 PM

Chapter 15: Authentication and Authorization

292

content types, workflow settings, and versioning, among other things. Site permissions are those things
that apply to SharePoint sites, such as creating subsites, managing permissions and creating new groups,
connecting to sites using something other than the browser interface, such as SharePoint Designer, as
well as customizing the pages within a site. Personal permissions include the capability to manage
personal views and customize personalized pages with Web Parts.

 All the individual permission rights can be viewed on the page where permission levels are created or
customized. This is available from a site ’ s Site Settings page by selecting Advanced Permissions
Settings Permission Levels, from which you can either select an existing permission level or create a
new permission level.

 Permission rights can also be referenced from within the SharePoint API. The Microsoft.SharePoint
.SPBasePermissions enumeration contains a list of all the permissions available. The values contained
in this enumeration can be used in various places throughout SharePoint. For example, the custom
action schema within a Windows SharePoint Services (WSS) Feature contains an attribute Rights , as
shown in Listing 15 - 1 . This attribute enables developers to specify a command - delimited list of the
various rights required by the user in order to see the link in the user interface. If the collective
permission rights of the current user, determined by combining all the assigned permission rights in
all permission levels assigned to the user in various groups, does not contain all the permissions listed,
the user will not see the item.

 Listing 15 - 1: Configuring security trimming on custom actions

 < CustomAction
 Id=”0D62A8AE-1031-462e-8D01-EE734FA1AE8F”
 Location=”Microsoft.SharePoint.StandardMenu”
 GroupID=”SiteActions”
 Sequence=”10”
 Title=”Go to www.wrox.com”
 Description=”Takes the user to http://www.wrox.com”

 Rights=”ApproveItems,EnumeratePermissions” >

 < UrlAction Url=”http://www.wrox.com” / >
 < /CustomAction >

 The SPBasePermission enumeration contains two special values: EmptyMask and FullMask
. SPBasePermission.EmptyMask is used to assign no permissions to something. SPBasePermissions
.FullMask is used to assign all the permissions to something.

 Permission Levels
 Permission rights cannot be applied directly to a user or group in SharePoint. Instead, they are grouped
together into something called a permission level . Permission levels, also referred to as roles, are then
assigned to users or groups in the context of a SharePoint securable object (securable objects are covered
later in the chapter).

c15.indd 292c15.indd 292 5/8/08 7:13:02 PM5/8/08 7:13:02 PM

Chapter 15: Authentication and Authorization

293

 Site administrators and owners can create and customize permission levels within a site. This is available
from a site ’ s Site Settings page by selecting Advanced Permissions Settings Permission Levels.
Developers can also interact with SharePoint permission levels through the API using the Microsoft
.SharePoint.SPRoleDefinition class. These SPRoleDefinition objects are not directly assigned to
a user, group, or securable object. Instead, another object, Microsoft.SharePoint.SPRoleAssignment ,
is used to pair the permission level with a user or group. This is demonstrated later in the section
 “ SharePoint Security via the API. ” All the permission levels defined within a particular SharePoint site
can be obtained from the Microsoft.SharePoint.SPWeb.RoleDefinitions collection.

 SharePoint Groups
 SharePoint allows permission levels to be applied to site users as well as security groups, such as Active
Directory groups, that have been added to the site. However, this is not the recommended approach.
Rather, Microsoft recommends that site owners and administrators assign permission levels to
SharePoint groups and then add site users and security groups to the SharePoint groups.

 Site administrators and owners can create and edit SharePoint groups within a site. This is available
from a site ’ s Site Settings page by selecting People and Groups. Developers can also obtain references to
existing SharePoint users and SharePoint groups using the Microsoft.SharePoint.SPUser or
 Microsoft.SharePoint.SPGroup classes. The users and SharePoint groups within a site are accessible
using the Microsoft.SharePoint.SPWeb.Users and Microsoft.SharePoint.SPWeb.Groups
properties.

 Securable Objects
 Until this point, only the permission rights, levels (or roles), and groups have been covered. These
different components are used to define what a user can do within a provided context (using permission
rights and levels) and how permissions can be applied to a group of users (using SharePoint groups).
The next piece to this puzzle is assigning the permission to something in SharePoint, such as a site, a list,
or a list item. Only certain objects can have permissions applied to them. These objects must implement
the Microsoft.SharePoint.ISecurable interface.

 Additional Publishing Security Components
 So far everything discussed in this chapter applies to WSS 3.0. While the provided SharePoint
permission levels and SharePoint groups offer enough control for most situations, Publishing sites
demand a bit more granular control. Publishing sites contain additional permission levels and
SharePoint groups beyond what is included in a standard WSS 3.0 site. The following sections explain
the additional pieces included in Publishing sites.

c15.indd 293c15.indd 293 5/8/08 7:13:02 PM5/8/08 7:13:02 PM

Chapter 15: Authentication and Authorization

294

 Publishing Permission Levels
 All SharePoint sites include a predefined default set of permission levels and SharePoint groups. For
example, all WSS 3.0 sites include the permission levels listed in the following table:

 Permission Levels Description

 Limited Access This special permission level grants users the absolutely minimal rights to
some objects in a site collection in order to browse a specific site. For
example, consider a user given access to a subsite within a site collection.
While this user has not been granted explicit permissions to the top - level site
in the site collection, he or she must have access to things such as the master
page gallery and the Style Library in order for the pages in the subsite to be
constructed and rendered. All users on the site are granted this permission
level. This permission level cannot be deleted or modified.

 Read Users granted this permission level are allowed to see but not change
content.

 Contribute Users granted this permission level can not only see content, but also add,
update, and delete items in SharePoint lists and libraries.

 Design Users granted this permission level have all the same rights as those granted
the contribute permission level but also have additional list permissions such
as customizing the list, overriding item checkouts, and approving items.
In addition, they can apply themes and style sheets, and customize pages.

 Full Control As the name implies, users granted this permission level have unfettered
access to the site. This permission level cannot be deleted or modified.

 As mentioned earlier, when the Publishing Features are activated on a SharePoint site, they add some
additional permission levels beyond what is included in a stock WSS 3.0 site. These additional
permission levels are required to provide the necessary functionality and control over a content - centric
site. The additional four permission levels are listed in the following table:

 Permission Levels Description

 Approve This permission level provides users with all the same permissions the
contribute permission level provides but with the added capability to manage
the approval state of an item.

 Manage Hierarchy This permission level allows users to create and manage the topology of a site
collection by creating and editing subsites.

 Restricted Read This permission level is similar to the read permission level included in WSS
3.0 sites, but with one major difference: This permission level does not allow
users to view previous versions of a list item, whereas those with the read
permission level can view versions. In addition, users granted this permission
level cannot browse user information on the site, whereas the WSS 3.0 read
permission level does permit this.

c15.indd 294c15.indd 294 5/8/08 7:13:02 PM5/8/08 7:13:02 PM

Chapter 15: Authentication and Authorization

295

 Publishing SharePoint Groups
 Similar to the permission levels, Publishing sites include a handful of additional SharePoint groups that
traditional WSS 3.0 sites do not include. Most of them correspond to the additional permission levels
added by the Publishing Features, but others are used to provide more granular control over a typical
content - centric site.

 The new groups that map directly to the additional Publishing permission levels include the Approvers,
Hierarchy Managers, and Restricted Readers SharePoint groups. The other three SharePoint groups
added by the Publishing Features provide additional control to site owners and administrators:

 Designers — This SharePoint group is meant for users who will have rights to customize the
site and create custom master pages and page layouts. The Design and Limited Access
permission levels are assigned to this SharePoint group.

 Quick Deploy Users — This SharePoint group is used in conjunction with content deployment,
covered in more depth in Chapter 17 .

 Style Resource Readers — This special SharePoint group grants the read permission level to the
site collection ’ s master page gallery, and the restricted read permission to the Style Library.

 SharePoint Security via the API
 Like everything in SharePoint, whatever can be done through the browser - based interface can also be
done using the SharePoint API. Creating permission levels, assigning rights to these levels, creating
SharePoint groups and applying permission levels to the groups, as well as adding users and security
groups to SharePoint groups — all of this can be done through the SharePoint API. Unfortunately, like
many other aspects of SharePoint, the object names in the API do not match the names used in the
browser interface, which can be confusing to users.

 Some of these classes have already been covered. For instance, SharePoint groups are represented as
 Microsoft.SharePoint.SPGroups , permission levels are Microsoft.SharePoint
.SPRoleDefinition , and the collection of all permission rights is found in Microsoft.SharePoint
.SPBasePermission .

 In order to grant a permission level to a SharePoint group, the first step is to get an instance of the
SharePoint group. The next step is to create an instance of a new Microsoft.SharePoint
.SPRoleAssignment object. This object will allow the binding of a permission level to the group. This is
done by adding the permission level binding to a collection of assignments using a special collection in
the current SharePoint site, as shown in Listing 15 - 2 .

 Listing 15 - 2: Assigning permission levels to an existing group

using (SPWeb site = SPContext.Current.Web){
 // get reference to a group
 SPGroup group = site.Groups[“WROX Members”];

 // create a new assignment for the group
 SPRoleAssignment roleAssignment = new SPRoleAssignment(group);

 // add two permission levels to the group

❑

❑

❑

(continued)

c15.indd 295c15.indd 295 5/8/08 7:13:03 PM5/8/08 7:13:03 PM

Chapter 15: Authentication and Authorization

296

Listing 15 -2 (continued)

 SPRoleDefinition roleDefinition;

 roleDefinition = site.RoleDefinitions[“Manage Hierarchy”];
 roleAssignment.RoleDefinitionBindings.Add(roleDefinition);

 roleDefinition = site.RoleDefinitions[“Approve “];
 roleAssignment.RoleDefinitionBindings.Add(roleDefinition);

 // add the role assignment to the site assignments collection
 site.RoleAssignments.Add(roleAssignment);

 // update the site
 site.Update();
}

 The code in Listing 15 - 2 demonstrates how to add permission levels to a SharePoint group. Notice
how the SPRoleAssignment object contains a collection of RoleDefinitionBindings and then adds the
 SPRoleAssignment back to the collection of role assignments for the site. Recall that all permissions are set
within the context of a user or group and a securable object. This is why the association of the permission
level is done with a group and then added to the collection of permissions for the SharePoint site.

 Alternate Access Mappings
 One common requirement for many Web sites, including SharePoint sites, is the ability to answer
requests on multiple URLs. For example, an internal URL may be used by company employees to
manage the content on the site while users of the site access it via a different, public URL. SharePoint
addresses this requirement using Alternate Access Mappings (AAMs). Each AAM maps to a different
zone. These can be used to create multiple paths of entry into a site collection, each path coming through
a different Web application and URL. Because the different paths are segmented using different URLs,
each site can implement different authentication providers as they are defined in the Web application ’ s
 web.config , as shown in the next section.

 Authentication Provider Model
 When developers and companies build most applications, they traditionally tightly integrate the
different security models into the project or product. However, the majority of the time these
authentication models all have common tasks. These include authenticating the user with the provided
username and password, creating new users, resetting passwords, providing some sort of “ forgot my
password ” functionality, and so on.

 Similar to site navigation, Microsoft saw this as a challenge and introduced the authentication provider
model to ASP.NET 2.0. This provider refactors the implementation of authentication from the application
and instead provides a common interface that applications can program against, leaving the
implementation to the providers. Because SharePoint is built on top of ASP.NET 2.0, it can fully leverage
this model. This provides SharePoint with two different models of authentication: Windows or

c15.indd 296c15.indd 296 5/8/08 7:13:03 PM5/8/08 7:13:03 PM

Chapter 15: Authentication and Authorization

297

Forms - based authentication (FBA). However, these two options are misleading. Windows authentication
really implies that users will get an NT Challenge Response dialog box like the one shown in Figure 15 - 1 ,
which authenticates the username and password provided against Active Directory.

 Figure 15 - 1

 FBA simply changes the model to send users to a Web page where they can enter a username and
password. This second option of FBA actually opens up a whole world of possibilities because now
developers can configure any authentication provider. All SharePoint sites default to using Windows
authentication, but they can be configured to use FBA.

 Configuring Forms - Based Authentication
 Configuring a SharePoint site for FBA is a multi - step process. While it is possible to change a newly
created SharePoint site collection to use FBA instead of Windows authentication, it is usually a better
idea to extend a new Web application from an existing one and configure the new Web application for
FBA, leaving the original one set to Windows authentication. There are numerous reasons for this, one
being that SharePoint ’ s search uses NTLM (Windows authentication) to authenticate and crawl the site
when indexing the content. In the following example, this is the model that is used.

 The authentication provider model contains three different providers: membership, role, and profile . The
membership provider is the one responsible for the users, including authentication. The role provider is
used to determine which users are in which groups. Finally, the profile provider facilitates creating
profiles for each user defined in the authentication store. These profiles can contain custom - defined
properties along with the standard first and last name, among other properties.

 At a minimum, a membership and role provider must be defined. The profile provider is not required,
but be aware that omitting it can have adverse effects. For example, a common misperception is that FBA
breaks SharePoint ’ s My Site capability. This is not true. My Sites require a profile for the user in order to
tie the My Site to the user. If no profile provider is defined, SharePoint cannot create a My Site for that
user, which is why many people get the impression that FBA breaks My Sites.

 Creating the SharePoint Web Applications
 The process begins by starting with a new SharePoint Web application, http://extranet , in SharePoint ’ s
Central Administration. Select Application Management Create or Extend Web Application Create a
New Web Application, just as you would with any other SharePoint Web application. After creating the
Web application, create a new site collection using the Publishing Portal template (but any template will

c15.indd 297c15.indd 297 5/8/08 7:13:03 PM5/8/08 7:13:03 PM

Chapter 15: Authentication and Authorization

298

do). Next, extend a new Web application off http://extranet in Central Administration by selecting
Application Management Create or Extend Web Application Extend an Existing Web Application. On
the Extend Web Application to Another IIS Web Site page, select the http://extranet Web application
and specify the URL of the new application as http://internet . Other than setting the zone to Internet,
accept all default values on this page.

 The name of the zone really doesn ’ t matter. SharePoint is limited to only five zones: Default, Internet,
Intranet, Extranet, and Custom. None of these names map to a specific configuration. They are just
labels and could just as easily be called Zone 1, Zone 2, Zone 3, and so on.

 At this point, two Web applications are pointing to the same site collection.

 Creating the FBA Authentication Database
 The next step is to configure the data store for the FBA provider that will be used. Thankfully, Microsoft
provides a Microsoft SQL Server authentication provider in ASP.NET 2.0. This provider stores all the
user membership and profile information in a custom SQL database. Microsoft even ships a utility in
ASP.NET 2.0 that will create the database. Launch this tool from the following location: C:\Windows\
Microsoft.NET\Framework\v2.0.50727\aspnet_regsql.exe . When prompted, enter the following
values:

 Server — This is the name of the server to install the database to — usually the same one that
contains the SharePoint content databases.

 Windows Authentication

 Database — SharePointFBA

 With the database created, the next step is to grant a user access to the database. This will be the user
account the SharePoint site uses to access the database. This is the identity of the application pool
running the Web application hosting the previously created Publishing Portal site collection. Next, use
SQL Server Management Studio and add the application pool identity account to the SharePointFBA
database previously created and grant it the following roles: db_datareader and db_datawriter .

 Creating the FBA Providers
 With the SharePoint Web applications created and the FBA database set up, the next step is to create the
providers. This is where things usually get complicated and most people run into problems. The
authentication providers in ASP.NET 2.0 are specified in the site ’ s web.config file. To configure
SharePoint for FBA, not only do the providers need to be added to the web.config file, but SharePoint
needs some additional configuration to make things work. Most people who run into problems do so by
configuring the providers directly on the SharePoint site. Instead, it is recommended that you simplify
things and create the providers using a vanilla ASP.NET 2.0 Web site instead of doing it within the
context of SharePoint. The reason this simplifies the process is because the providers can be configured
and tested without worrying about SharePoint at all. Later, if issues arise they can be isolated to the
SharePoint configuration piece.

 Create a new ASP.NET 2.0 Web site using Visual Studio. If a web.config file is not already present, add
one to the project. The first step is to establish a connection to the FBA database. Replace the existing
 < connectionStrings / > element in the web.config file with the following markup in Listing 15 - 3 .

❑

❑

❑

c15.indd 298c15.indd 298 5/8/08 7:13:04 PM5/8/08 7:13:04 PM

Chapter 15: Authentication and Authorization

299

 Listing 15 - 3: Database connection string for the FBA database

 < connectionStrings >
 < add name=”WroxFba” providerName=”System.Data.SqlClient”
 connectionString=”server=[SQL_SERVER]; database=SharePointFBA; Integrated
Security=SSPI;” / >
 < /connectionStrings >

 Next, add the markup shown in Listing 15 - 4 within the < system.web > nodes to define the membership
and role providers.

 Listing 15 - 4: FBA membership and role providers

 < system.web >
 < !-- membership provider -- >

 < membership defaultProvider=”WroxFbaSqlMembershipProvider” >
 < providers >
 < add name=”WroxFbaSqlMembershipProvider”
 type=”System.Web.Security.SqlMembershipProvider, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 connectionStringName=”WroxFba”
 enablePasswordRetrieval=”false”
 enablePasswordReset=”true”
 requiresQuestionAndAnswer=”false”
 applicationName=”/”
 requiresUniqueEmail=”false”
 passwordFormat=”Hashed”
 maxInvalidPasswordAttempts=”5”
 minRequiredPasswordLength=”1”
 minRequiredNonalphanumericCharacters=”0”
 passwordAttemptWindow=”10”
 passwordStrengthRegularExpression=”” / >
 < /providers >
 < /membership >

 < !-- role provider -- >

 < roleManager enabled=”true” defaultProvider=”WroxFbaSqlRoleProvider” >
 < providers >
 < add name=”WroxFbaSqlRoleProvider”
 type=”System.Web.Security.SqlRoleProvider, System.Web, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 connectionStringName=”WroxFba”
 applicationName=”/” / >
 < /providers >
 < /roleManager >

 < /system.web >

 With the connection string and providers configured, now Visual Studio can be used to launch a
special Web application for testing the providers and managing the database. From within Visual Studio,
select Website ASP.NET Configuration. With the administration site open, switch the site from
Integrated Authentication to Forms Authentication by selecting the Security tab Select Authentication
Type in the Users container. Make sure the option From the Internet is selected (also referred to as FBA)
and click Done.

c15.indd 299c15.indd 299 5/8/08 7:13:04 PM5/8/08 7:13:04 PM

Chapter 15: Authentication and Authorization

300

 Now that the security is configured, test the providers. Select the Provider tab, then Select a Different
Provider for Each Feature (Advanced), and click the Test link next to the two providers defined in the
 web.config : WroxFbaSqlMembershipProvider and the WroxFbaSqlRoleProvider . If there are any
errors, go back and check the data entered into web.config .

 Now is a good time to add some users who will be needed to test the FBA setup after it is configured in
SharePoint. From the Security tab, select Create User within the Users container. On the Create User
page, enter the following information for the new user, making sure the Active Use checkbox is checked:

 User name — George Washington

 Password — pass@word1

 Confirm Password — pass@word1

 Email — george.washington@foo.com

 This user will be used for testing as a regular user of the site. Now add another user who will be added
as a pseudo - administrator of the site:

 User name — FbaAdministrator

 Password — pass@word1

 Confirm Password — pass@word1

 Email — fba.admin@foo.com

 At this point the providers have been created, configured, and successfully tested. In addition, two user
accounts have been created in the database. This can be confirmed by looking at the aspnet_Users table
in the SharePointFBA database. The next step is to add the providers to the http://internet
SharePoint site and configure SharePoint to use the FBA providers.

 Configuring SharePoint to Use the FBA Providers
 Now it is time to add the FBA providers. In this case there are two Web applications pointing to the same
Publishing site collection: http://extranet and http://internet . Both sites need to be able to talk
to the FBA provider and the membership database in order to manage security from either site, but only
the http://internet site will authenticate using the FBA provider.

 Open the web.config file for the http://extranet site and use the markup in Listing 15 - 5 to add the
database connection string information as well as the FBA providers.

 Listing 15 - 5: FBA changes to the http://extranet web.config

 < connectionStrings >
 < add name=”WroxFba” providerName=”System.Data.SqlClient”
 connectionString=”server=[SQL_SERVER]; database=SharePointFBA; Integrated
Security=SSPI;” / >
 < /connectionStrings >

 < system.web >

 < membership defaultProvider=”WroxFbaSqlMembershipProvider” >
 < providers >

❑

❑

❑

❑

❑

❑

❑

❑

c15.indd 300c15.indd 300 5/8/08 7:13:04 PM5/8/08 7:13:04 PM

Chapter 15: Authentication and Authorization

301

 < add name=”WroxFbaSqlMembershipProvider”
 type=”System.Web.Security.SqlMembershipProvider, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 connectionStringName=”WroxFba”
 enablePasswordRetrieval=”false”
 enablePasswordReset=”true”
 requiresQuestionAndAnswer=”false”
 applicationName=”/”
 requiresUniqueEmail=”false”
 passwordFormat=”Hashed”
 maxInvalidPasswordAttempts=”5”
 minRequiredPasswordLength=”1”
 minRequiredNonalphanumericCharacters=”0”
 passwordAttemptWindow=”10”
 passwordStrengthRegularExpression=”” / >
 < /providers >
 < /membership >

 < roleManager enabled=”true” defaultProvider=”WroxFbaSqlRoleProvider” >
 < providers >
 < add name=”WroxFbaSqlRoleProvider”
 type=”System.Web.Security.SqlRoleProvider, System.Web, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 connectionStringName=”WroxFba”
 applicationName=”/” / >
 < /providers >
 < /roleManager >

 < /system.web >

 All of the markup added in Listing 15 - 5 can be copied straight from the web.config file created using
Visual Studio in the previous step; in fact, this is recommended to reduce the chance of errors.

 The same changes are required for the http://internet web.config file. Add the same markup in
Listing 15 - 5 to the web.config for the http://internet SharePoint Web application. At this point
neither Web application is authenticating using the FBA providers; they are still using Windows
authentication. However, both can see and talk to the FBA membership database.

 With the two sites ’ Web applications configured, the next step is to configure the Central Administration
Web application because the need may arise to manage the security using FBA users on one of the Web
applications from within Central Administration. Therefore, the web.config file for the Central
Administration Web application needs the same changes. Add the same markup in Listing 15 - 5 to the
 web.config file for the Central Administration Web application. However, there is one difference in the
Central Administration ’ s web.config file: Change the defaultProvider attribute on the
 < roleManager > element to AspNetWindowsTokenRoleProvider so Central Administration will still
use Windows Authentication for the role provider. This is required.

 With all the web.config modifications complete, it is now time to configure the http://internet
Web application to use the FBA membership provider. From within Central Administration, select
Application Management Authentication Providers. On the Authentication Providers page, ensure

c15.indd 301c15.indd 301 5/8/08 7:13:05 PM5/8/08 7:13:05 PM

Chapter 15: Authentication and Authorization

302

that the Web application is set to http://extranet and select the Internet zone link. On the Edit
Authentication page, use the following information to complete the form and then click Save:

 Authentication Type — Forms

 Enable Anonymous Access — checked

 Membership Provider Name — WroxFbaSqlMembershipProvider

 Role Manager Name — WroxFbaSqlRoleProvider

 At this point the http://extranet Web application is not authenticating users with the FBA
membership provider.

 Now a user needs to be added to the site. Leave Central Administration and navigate to the
 http://extranet SharePoint site. Select Site Actions Site Settings Modify All Site Settings and
select People and Groups. On the People and Groups page, click New, enter george.washington ,
and click the Check Names icon and grant the user rights to the Visitors group as shown in Figure 15 - 2 .

❑

❑

❑

❑

 Figure 15 - 2

 Confirm that everything is working properly by browsing to the http://internet site. SharePoint
should automatically redirect to the FBA login page. Enter the credentials for the george.washington
account as specified previously to validate and gain access to the site.

 Anonymous Access
 One thing that was always tricky to configure in the previous version of SharePoint was anonymous
access. Microsoft has made it much easier to support anonymous access in WSS 3.0. However,
configuring a SharePoint site for anonymous access frequently trips up developers and administrators
initially because first the Web application hosting the SharePoint sites must be configured to allow for
anonymous access before the options for enabling and configuring anonymous access are available
within the site.

 As a general rule, administrators should never configure Web applications using the Internet
Information Services Manager application. Instead, the majority of changes should be implemented
using the SharePoint Central Administration Web site. There are many reasons for this but consider just
one example: a load - balanced environment. When changes are made through Central Administration, all
Web applications on all SharePoint WFE servers are changed at the same time.

c15.indd 302c15.indd 302 5/8/08 7:13:05 PM5/8/08 7:13:05 PM

Chapter 15: Authentication and Authorization

303

 To configure a Web application to allow anonymous requests, browse to Central Administration and
select Application Management Authentication Providers under the Application Security group. On
the Authentication Providers page, select the desired Web application and the zone to be configured.
Check the Enable Anonymous Access checkbox, shown in Figure 15 - 3 , and click Save. Now the Web
application has been configured to allow anonymous requests.

 Figure 15 - 3

 The next step is to enable a SharePoint site to allow for anonymous access. Browse to the desired
SharePoint site ’ s Site Settings page and select Advanced Permissions. On the Permissions page, select
Settings Anonymous Access.

 If this option is not available, then the current site is likely inheriting permissions from its parent. Break
inheritance by selecting Actions Edit Permissions.

 On the Change Anonymous Access Settings page, select Entire Web Site and click OK. Now the entire
site is configured for anonymous access. Users can now browse the site without logging in but they will
be provided with a login control that enables them to log in to browse content and perform actions only
authenticated users are permitted to do.

 The Lockdown Feature
 Traditional SharePoint sites permit all users to view the SharePoint application pages. This includes list
form pages such as http://[some URL]/Pages/Forms/AllItems.aspx . Because Publishing sites are
commonly used for Internet - facing anonymous sites, it is not ideal to have these SharePoint application
pages accessible to the users of a site.

 The capability to browse these SharePoint application pages is controlled using the View Application
Pages permission right (SPBasePermissions.ViewFormPages). By default, the limited access
permission level is granted this permission right. Unfortunately, this permission level is one of two that
cannot be configured through the browser interface. However, it can be configured through the
SharePoint API!

 Microsoft has included a special SharePoint Feature named Restrict Limited Access Permissions, more
commonly known as the Lockdown Feature. This Feature ([..]\12\TEMPLATE\FEATURES\
ViewFormPagesLockDown) uses the FeatureActivated() and FeatureDeactivated() event

c15.indd 303c15.indd 303 5/8/08 7:13:05 PM5/8/08 7:13:05 PM

Chapter 15: Authentication and Authorization

304

receivers to add and remove the View Application Pages permission right from the limited access
permission level. By default, this Feature is activated when a site collection is created using the
Publishing Portal site definition, but administrators can easily activate the Feature via the command line
using STSADM.EXE .

 Summary
 This chapter covered the details of the various components within a SharePoint site that are used for
authorizing users and specifying what they can or cannot do. Publishing sites, while at the core are still
just SharePoint sites, include some additional permission levels and groups that are specific to Internet -
 facing content - centric sites. This chapter also walked through the process of configuring a SharePoint site
for FBA using a Microsoft SQL Server database.

c15.indd 304c15.indd 304 5/8/08 7:13:06 PM5/8/08 7:13:06 PM

 Implementing Sites
with Multiple Languages

and Devices

 It may not seem obvious that the same chapter would discuss both multilingual sites and sites for
mobile devices, but both of these scenarios use the same capability built into the Office SharePoint
Server (MOSS) 2007 publishing system: site variations . This feature enables the management of
parallel site hierarchies for Web Content Management (WCM), and movement of content among
them. First the multilingual scenario is examined, which explains how this is achieved; then their
application in mobile device scenarios is addressed.

 Developing Multilingual Web Sites
 Douglas Adams ’ science fiction parody The Hitchhiker ’ s Guide to the Galaxy describes a fanciful
creature that might have made this section unnecessary. The Babel fish provided instant language
translation, a service computer scientists have long sought to provide using software. If machines
could reliably translate all the nuances of human language, there would undoubtedly be
translation layers available on both client and server that could present any and all Web content in
the language of each user ’ s choosing. Alas, this vision has proven elusive — the services available
on the Web produce obtuse and sometimes humorous results, and even the best machine
translations must be checked by a human. For the foreseeable future, human translation will be a
part of any multilingual Web site.

 The translation problem is compounded in a WCM system because its text comes from so many
places. In a typical SharePoint Publishing site, in addition to the authored content, an end user will
see text that originates in the master page, in site metadata such as column and container names,
as well as text that comes from SharePoint itself. Some text is simple string data, while other text is
embedded in image files. In order for a user to have a good experience, all of this must be
localized.

c16.indd 305c16.indd 305 5/8/08 7:13:59 PM5/8/08 7:13:59 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

306

 Many computer products claim to have multilingual capabilities, but this term is subject to a broad range
of interpretation. The following table shows some of the possible capabilities and which are provided by
SharePoint technologies. The table uses the term “ content ” to refer to authored content and configured
metadata, and “ user interface ” to denote text that is displayed by the underlying platform — in this case
by MOSS 2007 and any added extensions.

 Capability ASP.NET WSS 2.0 and 3.0 SPS 2003 MOSS 2007

 User Interface

 User interface runs in a chosen
language (only one across the entire
Web farm)

 X X X X

 User interface runs in a mix of
languages, but a given section of a
Web site is always displayed in a
single language

 X X √

 User interface is “ language agile, ”
meaning the same page is displayed
in different languages depending on
the user ’ s preferences

 X

 Content

 Supports content in any language.
This mainly involves supporting a
(normally double - byte) character set
that can display the target languages

 X X X X

 Supports content translations. This
involves storing parallel content
translated into each target language.

 X

 For the “ user interface ” — the part of each Web page that originates in MOSS 2007 and any developed
extensions — utopia is language agility. That means both Japanese and Dutch users can visit exactly the
same URL and see a page that is translated into their preferred language (without redirecting to a
language - specific page).

 ASP.NET enables language agility via the .NET Resource Manager. .NET resources are non - executable
data that is compiled into an application. To create a Web control or page that is language agile, a
resource file is created for each target language, containing all display text and the locations of localized
images and other media. ASP.NET ’ s Resource Manager will select the right resources when a page is
rendered based on the thread culture, which the application sets to reflect the user ’ s preferred language.
The sample code in the section “ Localizing Web Parts and Field Controls ” demonstrates this concept.

 Unfortunately, none of the SharePoint technologies are completely language agile. (This is not such a bad
thing, actually, as most of the text on a typical SharePoint page is content, which does not lend itself well
to language agility anyway.) Although MOSS 2007 supports many “ language packs ” that provide the

c16.indd 306c16.indd 306 5/8/08 7:14:00 PM5/8/08 7:14:00 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

307

capability to create SharePoint sites in a variety of languages, a given site ’ s user interface will always be
displayed in the single language that was chosen when the site was created. This is visible at the API
level in the SPWebCollection.Add() method, which accepts a locale ID (LCID) as an argument; this
locale defines a site ’ s user interface language forever more.

 None of this has any affect on content, however! A Korean document can be loaded into a Swedish site
without any problem, or a page of English text can be added to a French Publishing site. This may well
happen in collaboration scenarios where participants contribute in multiple languages and no translation
is provided: Users need to be able to read more than one language on a page. In publishing scenarios,
however, the content must be translated and presented with the corresponding user interface to present
a single language to the viewer.

 Language agility assumes that a resource will be available in all supported languages before it can be
used. This is fine for a site user interface or Web Part, which has a finite and pre - determined set of
resources to display, but it creates problems for user - created content. One reason for this is because
translation takes time, and users often want to publish content in each language as soon as it ’ s available.
Another reason is that in practice, content often doesn ’ t apply in every locale. It ’ s sometimes desirable to
simply drop inapplicable content for certain languages, rather than to provide a translation, or to replace
content with something more relevant to a particular audience. Finally, certain languages may require
layout changes that aren ’ t easily accommodated by resource settings.

 To address these needs, as well as to coordinate the translation effort, MOSS 2007 provides site variations .
Variations are parallel site structures with a source site hierarchy and one or more parallel site hierarchies
for the translations. When content is approved on the source site, the other variations are automatically
updated with draft versions ready for translation. A translation workflow is provided to ensure that each
variation is translated or otherwise addressed by a human translator. The use of parallel sites enables site
designers to have as much flexibility as they need to choose the UI language, master pages, and other
settings needed for each variation. Variations are explored in more detail in the “ Using Variations ” section.

 Variations are not only for multilingual situations; they can be used whenever an alternative rendering is
needed. A common example is the use of variations to create alternative renderings for mobile devices;
this is covered in the section “ Targeting Devices with Variations. ”

 Installing the Language Packs
 The first step in creating a multilingual Web site in MOSS is to install language packs that determine the
user interface language:

 SharePoint Language Packs — These language packs are designed for Windows SharePoint
Services (WSS) only. In a multi - server farm, each desired language pack must be installed on
each server individually. These are not the language packs to use in a WCM scenario.

 Server Language Packs — These language packs are designed for MOSS 2007, and include all
the resources from the SharePoint language packs, so there is no need to install both. These are
the natural choice for a WCM scenario.

 Server Multiple Language Pack — This is a special Server Language Pack containing all of the
language packs bundled together. This is the only way to add English language support to a
non - English installation. This is the natural choice for a WCM scenario for which all available
languages are to be accessible.

❑

❑

❑

c16.indd 307c16.indd 307 5/8/08 7:14:00 PM5/8/08 7:14:00 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

308

 Installing the appropriate language pack(s) will make site definitions available in the target languages.
This is necessary to enable the user interface to be displayed in the target language of each site variation.
The following list contains links to download the language packs for the different versions of SharePoint.
One point of common confusion is how to download different languages. By default, each of the
following links loads in the browser ’ s configured locale. Use the selector in the download box to switch
to a different language, causing the page to postback and load in the selected language. Once in the
desired language, the download link will trigger the download for the selected language. In addition,
note that the release version of the language pack should be installed first, followed by the service pack:

 WSS x32 — www.andrewconnell.com/go/255

 WSS x32 Service Pack 1 — www.andrewconnell.com/go/256

 WSS x64 — www.andrewconnell.com/go/257

 WSS x64 Service Pack 1 — www.andrewconnell.com/go/258

 MOSS x32 — www.andrewconnell.com/go/259

 MOSS x32 Service Pack 1 — www.andrewconnell.com/go/260

 MOSS x64 — www.andrewconnell.com/go/261

 MOSS x64 Service Pack 1 — www.andrewconnell.com/go/262

 Using Variations
 The next step in creating a multi - lingual site is to set up the variations feature in Microsoft Office
SharePoint Server 2007. A MOSS 2007 site collection can have at most one variation hierarchy , shown in
Figure 16 - 1 .

❑

❑

❑

❑

❑

❑

❑

❑

Variation Source
/en-US

Subsite

Subsite

Subsite

Subsite

Subsite

Subsite

Variation Target
/fr-FRVariation Home

Variation Target
/jp-JP

 Figure 16 - 1

c16.indd 308c16.indd 308 5/8/08 7:14:01 PM5/8/08 7:14:01 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

309

 One site is designated as the variation home , and this is the root of the variation hierarchy. In most cases
this will be the top - level site, but that ’ s not necessary; a variation home can be any site in the site
collection. It ’ s best to plan ahead and set up variations correctly the first time, as changing or moving
them afterward can be difficult.

 Begin by creating a simple Publishing site to serve as the variation home; at first, this will behave as an
ordinary site, but after the variation hierarchy has been created, this site will contain a redirect page
(VariationRoot.aspx) to send users to the appropriate variation. The VariationRoot.aspx page can
be replaced to customize the redirection logic, which by default redirects users to the variation label
corresponding to their most preferred language in their browser language settings.

 Next, click Variations in the Site Collection Administration section. Here, the variation home site can be
set as well as other behaviors, such as whether or not to automatically create child sites in target
variations to match new sites under the source variation, whether to re - create pages that have been
deleted on target variations when the source page is updated, and so on.

 The next step is to create the variation labels , which are the parallel sites for each variation. One of these
labels will be the source, and the rest will be targets. Note that once the hierarchy is created, the source
designation cannot be changed, so planning ahead and getting it right the first time is important. A
language and culture can be defined for each label, and if the corresponding language pack is installed,
this will generate a site containing that language.

 To complete the setup, click the Create Hierarchies action on the Variation Labels screen. This will create
a child site for each variation label and will set up the Relationships List in the variation home site.

 Returning to the variation home site will redirect to the variation label corresponding to the preferred
language. This is typically set in the Web browser — in Internet Explorer 7.0 it ’ s on the Internet Options
dialog box, and in Firefox 2.0 it is under the Advanced tab under Options. Users can choose a list of
languages (first choice, second choice, etc.) and the redirector page will send them to the first one that
has a variation label.

 Master Pages and Page Layouts in Variation Sites
 The master pages and page layouts provided with MOSS 2007 contain no visible text, so out - of - the - box
(OOTB) there is no need to translate them. Each variation label inherits the master page setting from its
parent, and all will be well. In practice, however, it is typical to create a unique master page for each
variation for the following reasons:

 In a multilingual site, banners and other master page elements may contain text that needs to be
translated, and in some cases the text flow will affect the whole layout. This is most easily
managed by having a master page for each locale.

 If the variations aren ’ t being used for multilingual sites but for branding or use on mobile
devices, then each variation needs a master page with the appropriate branding or device
layout.

 In addition to master pages, page layouts may be affected, especially in device or branding scenarios, or
when handling languages that flow text from right to left, for example. This is explained in the section
 “ Targeting Devices with Variations ” later in the chapter.

❑

❑

c16.indd 309c16.indd 309 5/8/08 7:14:01 PM5/8/08 7:14:01 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

310

 Maintaining Object Relationships
 The variation feature tracks the variations of each child site and Web page in a hidden list called the
 relationship list in the variation home site. Whenever a new site or page is created, it is entered in the
relationship list; and if a site or page is renamed or deleted, the relationship list is updated accordingly.

 The relationship list tracks objects by their relative Web addresses in the ObjectID field; note that the
 ObjectID description holds the original address of the site or page. Now inspect the properties of a list
item; note that the field also stores the latest and greatest Web address. This means you can change the
site and page display names in the variation labels, as well as rename the subsite and page names to
localize the URLs.

 The actual copying of pages and sites from source to target variation labels is performed by the variation
job , which by default runs every 20 seconds. When it wakes up, it copies any new sites or newly
approved pages based on the rules specified under Variations in the Site Collection Settings.

 This handles pages and sites, but what about other content on the page? A typical page includes images
and possibly links to documents and other content that may need to be translated. This can be
accommodated by specifying Copy Resources in the Resources radio button on the Variation Settings
page. If this setting is selected, any images or documents in the source variation that are referenced on
a page (by an image field control or hyperlink, for example) will be copied along with the page to each
target variation, and their URLs will be adjusted on the target pages.

 While this allows for the translation of images and referenced documents, note that these items are not
managed in the relationship list and therefore won ’ t be copied when they are updated, but rather when a
page that references them is updated. Referenced items are copied every time a referencing page is
copied, potentially overwriting localized versions stored in the target variations. Moreover, any change
to the Web addresses of referenced items won ’ t be tracked, so if a document is renamed in a target
variation, a new copy with the old name will be copied the next time the referencing page is updated.

 Web Parts in Variations
 Web Part placement and metadata is not stored in the Pages list; it ’ s stored separately by WSS. That is
why Web Parts are not versioned along with the rest of a WCM page (though they are subject to approval),
and it is no surprise that Web Parts require a little special handling when using site variations as well.

 There is a setting on the Variation Settings page that enables the administrator to specify that Web Part
changes will be propagated to target pages along with other changes; by default, this is set to true. This
works fine for many but not all Web Parts. Some Web Parts, such as the Content Editor Web Part, do not
reference any external data, so they work the same wherever they are moved. Other Web Parts are fully
aware of variations, and will modify their metadata to handle their migration to a new site.

 For example, the Content Query Web Part will re - target the content query to the target variation site
when it is moved. Conversely, some of the Web Parts that ship with WSS are completely unaware of
variations and will break. The standard List View Web Part used to show document libraries and other
collaboration lists will break when it is moved because it references its list by a GUID, which is not
present in the target variation. In some cases it may appear to work, but it will break if the Web Part is
modified.

c16.indd 310c16.indd 310 5/8/08 7:14:02 PM5/8/08 7:14:02 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

311

 Building Language - Agile Features
 This section demonstrates how to develop a custom Web part that is aware of variations and how to
make entire Features language agile.

 Variation - Aware Web Parts
 The first example is a variation - aware Web Part for viewing lists and libraries. Figure 16 - 2 shows two
Web Parts on a U.S. English - language Web page that is in the source variation site. The one on the left is
the built - in List View of a task list, and the one on the right is the custom Variation List View Web Part.
They look almost identical.

Figure 16-2

 An interesting thing happens, however, on the target variation sites. Figure 16 - 3 shows the same two
Web Parts on a French target variation site.

Figure 16-3

 The Web Part on the left has not changed much, except it now has a French toolbar and the dates appear
in the day - month - year style used in Europe. It is still displaying the task list from the English site,
however, and will break if modified. In practice, the behavior of the built - in List View Web Part on a
target variation is hard to predict. The Variation List View Web Part on the right knows that it is running
on a new site, and is asking to be configured.

 When the editor modifies the Variation List View Web Part and selects a list and view to show, as shown
in Figure 16 - 3 , the Web Part adjusts to show the French task list. Figure 16 - 4 illustrates that the task list
has a French title, the tasks have been entered in French, and the column names from the French
language pack are displayed.

c16.indd 311c16.indd 311 5/8/08 7:14:02 PM5/8/08 7:14:02 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

312

Figure 16-4

 Of course, the editor could have deleted the built - in List View and replaced it with one from the French
site, and this would work initially; but whenever the source variation changes, the French Web Part will
be overwritten and that Web Part will need to be re - created every time. Conversely, the Variation List
View Web Part is smart enough to remember its settings, and won ’ t need to be modified again.

 How does this work?

 It ’ s really pretty simple. When the variation job copies a Web Part, it copies its metadata as well; and in
the case of the built - in List View Web Part, that metadata is not relevant in the context of a target variation
site. To get around that, the Variation List View Web Part stores the names of the lists and views to display
in the site property bag rather than in the Web Part metadata. (Note that the sample Web Part uses the
selected view to determine which columns to display, but does not respect other aspects such as filtering.
All the rendering is in a child control to easily plug in another control to render a list.)

 Listing 16 - 1 shows the Variation List View ’ s properties. Notice that only the first one, the correlation ID,
is stored in the Web Part metadata, as indicated by the Personalizable attribute. The first time this
property is retrieved, it generates a new unique value, which it will retain from then on, even when the
Web Part is copied to target variations.

 ListName and ViewName are not decorated with the Personalizable attribute, so the SharePoint
infrastructure leaves them alone. However, when the Web Part is configured, its Editor Part (the control
used to configure the Web Part) will handle these properties as it would any other Web Part properties.
This only requires that the properties be public for this purpose. These properties store their data in the
site property bag, in properties whose names contain the correlation ID. This ensures that each Web
Part ’ s properties are kept separately, as more than one might be used in a particular site or page. Because
the correlation ID is copied as part of the Web Part metadata, the target Web Part will pick up the right
values even if it is moved around on the page in the source variation.

 Listing 16 - 1: Web Part properties that survive variation page copies

private string _errorMessage = String.Empty;
private bool _errorSet = false;
private string _correlationID = String.Empty;

// This unique ID will propagate to target variations, so they can find the
// list and view properties in their SPWeb property bags.
[WebBrowsable(false)]
[Personalizable(PersonalizationScope.Shared)]

c16.indd 312c16.indd 312 5/8/08 7:14:02 PM5/8/08 7:14:02 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

313

public string CorrelationID {
 get {
 if (String.IsNullOrEmpty(_correlationID))
 _correlationID = Guid.NewGuid().ToString();

 return (_correlationID);
 }

 set { _correlationID = value; }
}

// ListName - Stores the list to be displayed in site property bag
public string ListName {
 get {
 if (!String.IsNullOrEmpty(_correlationID))
 return (SPContext.Current.Web.Properties[“listName_” +_correlationID]);
 else
 return (String.Emtpty);
 }

 set {
 try {
 SPContext.Current.Web.AllowUnsafeUpdates = true;
 SPContext.Current.Web.Properties[“listName_” + _correlationID] = value;
 SPContext.Current.Web.Properties.Update();
 } catch (Exception ex) {
 _errorMessage = ex.Message;
 _errorSet = true;
 }
 }
}

// View name is stored in the same way ...

 There is another approach to handling Web Part metadata across variations, but it currently only works
in Web Parts derived from the Microsoft.SharePoint.WebPartPages.WebPart class and not the
 System.Web.UI.WebControls.WebParts.WebPart class used in this sample. The trick here is to
implement an interface called IWebPartVariationUpdate , which requires a single method:

public void Update(PublishingWeb ownerWeb) { }

 If this is implemented, the variation job will invoke the Update() method on each Web Part on a page as
it is copied to each target variation, thus giving it the opportunity to adjust any of its properties for the
new site location.

 Localizing Web Parts and Field Controls
 That simple step makes the Web Part variation aware, but what about localization? There is not a lot of
text in the Web Part — the majority of what it renders is content. However, there is some, such as in the
Editor Part that is shown when a user selects a list or view to be displayed. Figure 16 - 5 shows the Editor

c16.indd 313c16.indd 313 5/8/08 7:14:03 PM5/8/08 7:14:03 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

314

Figure 16-5

Part in English on the left and in French on the right. Notice that the title (Select View to Display in
English) plus the “ List: ” and “ View: ” labels have been localized. This is UI, not content, and shows that
the Editor Part is language agile.

Figure 16-6

 The standard .NET technique of using resource files was used to provide the localized text. In this case,
 *.RESX resource files are used to create a default set of resources in English that are bound into the Web
Part assembly, and another set of French resources that are placed in a satellite assembly. Figure 16 - 6
shows the resources in Visual Studio; note that Visual Studio provides a simple design experience for the
resource files. Basically, these are name - value pairs, where the name is used to look up the localized
value at runtime.

 Accessing the resources in code is a simple affair, as shown in Listing 16 - 2 .

c16.indd 314c16.indd 314 5/8/08 7:14:03 PM5/8/08 7:14:03 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

315

 Listing 16 - 2: Using resources at runtime for localization

using System.Reflection;
using System.Resources;

// ...

ResourceManager rm = new ResourceManager(“WROX.ProMossWcm.Chapter16.Resources.
Strings”,this.GetType().Assembly);

this.Title = rm.GetString(“EditorPartTitle”);

 The resource manager is passed the base name of the resource file without the culture extension — the
actual resource files are Resources\Strings.resx and Resources\Strings.fr.resx . The file -
 naming format is basename.resx for culture - neutral resources (the default), and basename.
cultureID.resx for localized resources. The Culture ID can be a simple language identifier, such as
 “ fr ” , or a language and region identifier such as “ fr - CA ” for Canadian French.

 The resource manager will look for an exact match between the thread culture and the available resource
file extensions. If it does not find an exact match, then it falls back to the language identifier (from “ fr -
 FR ” to “ fr ” in this example), and if it doesn ’ t find the language identifier, it falls back to the culture -
 neutral resources (from “ en - US ” to the neutral resources in this example).

 The resource manager bases its choice of resources on the thread culture, which SharePoint handles
automatically. Therefore, whenever the resource manager ’ s GetString() method is called with a
resource name, the localized value is returned.

 Note that this project creates an extra assembly for every localized resource file — in this example, the
Web Part is in bin\debug\Chapter16WebPart.dll and the French resources are in bin\debug\fr\
Chapter16WebPart.resources.dll . Both assemblies need to be deployed in the solution package or
the Web Part will not work in French.

 The same technique can be used in field controls and other assemblies. The key point is that these are
runtime resources. However, there is another way to use resources in SharePoint: not at runtime but at
deployment time.

 Localizing SharePoint Features
 In the Web Part example almost everything was localized, but the Web Part Gallery was not. After all,
there is only one Web Part Gallery in the site collection, and because variations cannot span site
collections, that one gallery is shared by all the variations. Thus, if a user were to add the Web Part to a
new page, its name and description would be shown in the language of the top - level site. This is true of
all the built - in Web Parts as well, for the same reason. This is less of an issue in variation hierarchies
where Web Parts are configured only in the source variation, but what about adding menus, site settings,
and other extensions to the Publishing sites?

 Fortunately, SharePoint allows localizing Features and their elements. Resources are referenced directly
from the Feature XML files, and are expanded at deployment time, when a Feature is activated.
A Feature in any scope can be localized, but unless it is at site scope it will take on the language of its site
collection, or of the SharePoint installation. Only a site - scoped Feature will localize its elements for
individual variation sites.

c16.indd 315c16.indd 315 5/8/08 7:14:04 PM5/8/08 7:14:04 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

316

 This leads to another sample, this time a very simple Feature to add a button to the Site Actions menu.
The button brings the user directly to the top - level site settings, which is always handy.

 In Figure 16 - 7 , the menu item is localized; the English menu is on the left and the French menu is on the
right. In addition, the Feature ’ s name and description are localized in the Site Features list.

Figure 16-7

 The same kind of resource files used in the Web Part will work in a Feature, but they are not compiled;
instead, SharePoint interprets them directly. The default location for resources in a Feature is in a
directory called Resources under the Feature directory; resource files must be named like

Feature Directory\Resources\Resources.xx-XX.resx

 where xx - XX is the culture ID like before except that both the language and region portions are required.
Here is the form for a “ culture - neutral ” resources file:

Feature Directory\Resources\Resources.resx

 Listing 16 - 3 shows the elements.xml for the Site Actions menu.

c16.indd 316c16.indd 316 5/8/08 7:14:04 PM5/8/08 7:14:04 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

317

 Listing 16 - 3: Feature elements using resources for localization

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < !-- Add Top-level Site Settings to Site Actions Menu -- >
 < CustomAction Id=”TopLevelSiteSettings”
 Location=”Microsoft.SharePoint.StandardMenu”
 GroupId=”SiteActions”
 Sequence=”1000”
 Title=”$Resources:MenuItemName;”
 Description=”$Resources:MenuItemDescription;” >
 < UrlAction Url=”~sitecollection/_layouts/settings.aspx” / >
 < /CustomAction >
 < /Elements >

 The menu title and description are localized, using the notation $Resources;name , where name is the
name in the resource file. It is also possible to localize the Feature when it appears in the Site Features
page on the Site Settings page. Listing 16 - 4 shows the feature.xml file for the menu item.

 Listing 16 - 4: Feature XML using resources for localization

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”DB844BB8-B4D5-4f00-B7EC-8712C24A40B9”
 Title=”$Resources:FeatureName;”
 Description=”$Resources:FeatureDescription;”
 Hidden=”FALSE”
 Scope=”Web”
 Version=”1.0.0.0”
 RequireResources=”FALSE” >

 < ElementManifests >
 < ElementManifest Location=”elements.xml”/ >
 < /ElementManifests >

 < /Feature >

 The same notation works here as well. Another interesting thing about this XML is the
 RequireResources= ” FALSE ” attribute. Setting this attribute to false (the default) instructs SharePoint
to fall back to the culture - neutral resources file if no file is available for a site ’ s locale. Setting this
attribute to true will hide the Feature unless an exactly matching resources file is found.

 This is useful when developing a Feature that will simply not show up unless the desired localization is
available. For example, if this sample were added to a Japanese site, it would display in English, but if
 RequireResource= ” True ” were set, it would be hidden to prevent sites with unsupported locales from
using it entirely. In this case, there is no reason to provide a culture - neutral resources file because it will
never be used. Note that this hiding is only provided at the SharePoint user interface; the Feature could
still be activated on a Japanese site via the STSADM.EXE command line or the API, for example.

c16.indd 317c16.indd 317 5/8/08 7:14:04 PM5/8/08 7:14:04 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

318

 Targeting Devices with Variations
 WSS 3.0 comes with built - in mobility support, which is intended to enable mobile users to access list
data. The typical way to access this is via one of the two following URLs:

http://server/site/m
http://server/site/_layouts/mobile/default.aspx

 Note that the first, simpler syntax is disabled by default in Publishing sites, but it can be re - enabled by
activating a Feature called MobilityRedirect using the STSADM.EXE command:

stsadm - o activatefeature - name MobilityRedirect - URL http://URL

 List views can be designated as “ mobile ” in the regular view editing screen, and these views will be
offered to mobile users as well as regular Web browsers. Further customization of the rendering of
mobile views is possible, but is beyond the scope of this book.

 For more information on mobile device customizations in WSS 3.0, refer to the official documentation
on MSDN: www.andrewconnell.com/go/263 .

 In reality, this is most useful in collaborative environments. In Publishing sites, variations are a more
useful tool for adapting authored pages to a mobile format.

 Creating Variations for Mobile Devices
 Creating a mobile device variation is as simple as creating any other variation label. Typically, the source
and target variations have the same locale ID because there is no need to localize the user interface. In
addition, developers may want to disable approval and the approval workflow, and set to major versions
only, so that the target variation pages go live immediately without any human intervention.

 Redirecting Mobile Users
 When a variations hierarchy is created, a page called variationroot.aspx is created and set as the
welcome page to the site. This page contains a user control called VariationsRootLanding.ascx that
redirects the user to a variation based on the preferred language set in the client Web browser and the list
of available variation locales. While this works well in multilingual sites, it is not especially helpful for
redirecting mobile users to a special variation.

 There are a few options for modifying the redirection logic. One is to create a new ASPX page (or page
layout and a Publishing page) with the desired logic, ideally compiled into a control on the page, and set
that as the new welcome page. Another option is to modify the provided page layout or the user control.
Placing the logic in a compiled Web control is preferable for security reasons, even if it does require
redeploying the assembly if the redirection logic changes.

c16.indd 318c16.indd 318 5/8/08 7:14:04 PM5/8/08 7:14:04 PM

Chapter 16: Implementing Sites with Multiple Languages and Devices

319

 Master Pages, Page Layouts, and Style Sheets
 The mobile form factor will likely require the creation of custom master page(s), page layouts, and style
sheets for the small screen. Creating master pages and page layouts is covered in Chapter 7 , “ Master
Pages and Page Layouts. ” In general, mobile master pages and page layouts should avoid horizontal
placement of elements so that users can stick to vertical scrolling when viewing the page on a small
device.

 Assigning master pages and style sheets to variations is as easy as selecting the desired settings in
each variation ’ s Site Master Page Settings and allowing child sites to inherit the master page from the
variation site.

 Assigning page layouts is slightly trickier. Directly changing the page layout of a page in a target
variation will only be of temporary help, as the next time the source is modified the target page will have
its layout overwritten. The key is to designate a “ preferred ” page layout so the variation job can assign
the right layout every time it copies a page from the source variation.

 The selection of preferred page layouts for variations is not done in the variation sites, but rather in the
Master Page Gallery in the top - level site. Each page layout ’ s properties page provides the capability to
select one or more variations for which a page layout is preferred. When the variation job finds a source
page that has changed, it will look for a page layout of the same content type marked as preferred for
each target variation. If it finds one, it will set the target page to use the preferred page layout. Note that
the language packs localize the content type names but still use the same underlying content types. For
example, the Article Page content type is called Page d ’ article in a French Publishing site. Checking at the
site - collection level, notice that these still map to the same underlying content types.

 Care must be taken to designate only one preferred page layout for each content type/variation
combination, or the results may be unpredictable. This is most easily done by creating a view on the
Master Page Gallery that shows the associated content type and variations columns, and filters to only
show Page Layout content type items.

 Finally, note that using Web Part zones can affect the page layout processing if variations are set to
propagate Web Parts. If a source variation page contains a Web Part in zones that don ’ t exist in
the preferred target page layout, the source ’ s page layout will be reused in the target regardless of
preferred page layout settings.

 Summary
 One of the more common requirements for content - centric Web sites is that they present the content in
multiple languages to serve the largest audience possible. Fortunately, Microsoft included capabilities in
MOSS 2007 Publishing sites to facilitate the creation and management of multilingual sites. This is
primarily addressed using variations, a topic covered in depth in this chapter.

 In addition, developers should also account for multilingual situations when building custom
components, such as Web Parts, for sites that will be presented in multiple languages. This chapter
demonstrated how to achieve localization with custom Web Parts.

c16.indd 319c16.indd 319 5/8/08 7:14:05 PM5/8/08 7:14:05 PM

c16.indd 320c16.indd 320 5/8/08 7:14:05 PM5/8/08 7:14:05 PM

 Content Deployment

 Content deployment is one of the key feature areas from Microsoft Content Management Server
(MCMS) 2002 that has been brought over to and extended within Office SharePoint Server (MOSS)
2007 to enable flexible, powerful, fast, efficient, and secure deployment of Publishing sites. In a
nutshell, content deployment is the copying of content from one site collection to another, either
within the same SharePoint farm or across farms. The most common scenario that content
deployment targets is that of enabling content authoring within the internal network (a read/write
environment) and content delivery to the Internet (a read - only environment). Once configured by
an administrator, content deployment can take place without any manual intervention.

 While the main application of content deployment is for Internet - facing sites, it is an extremely
flexible feature that can also be used with intranet sites and for deploying content across site
collections on a single machine running MOSS. More complex uses include a three - tier
deployment topology (authoring, staging, and production).

 While MOSS provides a comprehensive administrative user interface for configuring, running, and
monitoring content deployment, it also provides an API that enables developers to customize
deployments to suit specific needs, such as deployment across disconnected environments.

 Content deployment also features a capability called Quick Deploy that enables content authors to
deploy single pages from within the authoring environment without having to wait for the next
scheduled content deployment job to run.

 This chapter covers the core concepts of content deployment, paths, and jobs, and how they can be
combined to provide granular control over content publishing. It also describes the content
deployment user interface, and includes examples and a look at the content deployment API.
Finally, the Windows SharePoint Services (WSS) 3.0 content migration APIs are covered, a key
infrastructure enabler for Publishing sites.

c17.indd 321c17.indd 321 5/8/08 7:15:02 PM5/8/08 7:15:02 PM

Chapter 17: Content Deployment

322

 Content Deployment Fundamentals
 The examples in this chapter mimic a simple content deployment topology consisting of an authoring
(read/write) environment and a production environment (read only). This topology is shown in
Figure 17 - 1 .

Authoring
(read/write)

Production
(read only)

 Figure 17 - 1

 However, to keep the samples simple and easy to follow, only two site collections within two separate
Web applications on a single server are used.

 A core concept of content deployment is that it follows a “ single master ” model. Deployment is always
one way from source to destination; it does not provide replication or synchronization capabilities. In
essence, content deployment has three phases of operation:

 1. Export content from the source — Based upon the configuration settings, content deployment
exports content by packaging it up as cabinet (CAB) files on the source server.

 2. Transport content from the source to destination — The CAB files are then transferred to the
destination server.

 3. Import content into the destination — The destination server opens the CAB files and imports
the content.

 In large or heavily used environments, it may not be desirable or acceptable for the content deployment
import and export processing to take place on machines that are serving end users. This is especially true
within the read - only, production farm and when deploying large amounts of content. For these
scenarios, content deployment can be configured to make use of dedicated import and export servers.
These servers must be SharePoint Web Front End (WFE) servers, and only a single server can be
specified for each role.

 The CAB files are stored within a temporary folder on the export server and each one is 10 megabytes by
default, but they can be configured if desired. After the files are sent to the import server, they are
removed from the export server. Once the import is complete, the files are removed from the import
server. There must be enough disk space on the import and export servers for the largest deployment
that could take place.

 Content deployment also takes care of the transport of the CAB files over the wire to the destination
import server. This transport takes place over firewall - friendly HTTP. Transport layer security (SSL) can
be configured to ensure that the data (including the credentials used to connect to the destination)
cannot be intercepted. The use of SSL should be carefully considered, as there is a performance impact
when leveraging it. When using content deployment within a trusted network, it is more appropriate to
stick with HTTP or implement IPSec, rather than SSL.

c17.indd 322c17.indd 322 5/8/08 7:15:03 PM5/8/08 7:15:03 PM

Chapter 17: Content Deployment

323

 Administration of content deployment configuration and operations takes place within SharePoint
Central Administration and therefore requires SharePoint farm administrator rights. Content
deployment operations cannot be delegated to a subset of users, as is the case for many of the shared
service provider (SSP) features. This is usually appropriate, but as demonstrated later there is an
alternative approach for content authors.

 By default, content deployment is incremental; it will deploy only the changes since the last successful
deployment. This approach avoids unnecessary processing and bandwidth. If a full deployment is
required, this can also be configured.

 Content deployment deploys the most recent major and minor versions of a content item. For example,
if version 2.7 of a page is being deployed, the most recent major version (2.0) of the page (the published
version), along with the most recent minor version (2.7), will be deployed to the destination.

 A destination site collection for content deployment must be based upon the Blank Site template.
If another template is used — for example, the Team Site template — then various elements will cause
conflicts when the import is processed.

 For more information on the Blank Site template requirement, refer to the Microsoft Knowledge Base
article # 923592 (www.andrewconnell.com/go/264).

 Dependencies of the content deployed are picked up and handled by content deployment as long as
those dependencies reside in the SharePoint content database. For example, if a page is dependent upon
a Page Layout that has been updated since the last deployment or it includes other resources such as
images or CSS files, these are packaged with the page itself and deployed. However, content deployment
does not take care of the deployment of Features, assemblies, or configuration for which Features and
solutions are the appropriate deployment mechanism. If the content being deployed depends upon files
on the file system, such as assemblies containing Web Parts, custom field types or field controls,
Features, or anything else for that matter, the files should be deployed as closely as possible to the same
time when the content deployment jobs execute. This is another reason why SharePoint farm
administrators should always enforce the deployment of custom code and files that are handled by WSS
solution packages (*.WSP).

 Content deployment also handles the activation of already deployed Features in the destination.
Consider the scenario in which a new site is added within the source site collection and it uses a Feature
not used elsewhere or that is otherwise available within the destination. Content deployment will take
care of the Feature activation during deployment. For example, in the case of an initial deployment to a
Blank Site, the Publishing Infrastructure Feature is activated.

 Paths
 A content deployment path defines a relationship between a source and a destination site collection for
the purposes of deploying content. A path contains the details of both the source and the destination Web
application and site collection. In addition, authentication details for the destination are necessary in
order to connect and select the destination site collection. The application pool identity of the Central
Administration Web application can be used or alternative credentials can be specified using either
Windows or basic authentication. A path can also be configured to deploy the user names associated with
the source content, and related security information, such as ACLs, roles, and membership, if desired.

c17.indd 323c17.indd 323 5/8/08 7:15:03 PM5/8/08 7:15:03 PM

Chapter 17: Content Deployment

324

 A path itself does not perform any deployment of content; it is purely the mapping, or link, between the
source and destination servers. Once a path is created and configured, jobs can be created and associated
with a path to begin deploying content.

 Jobs
 Once a path is defined, a deployment job can be created and associated with a path. A job defines
which sites within the source site collection are to be deployed, and the schedule indicating when to run
the job. The job also specifies whether to deploy all content (full deployment) or just content that has
been added or changed since the last time it ran (incremental deployment). When configuring a job,
e - mail notifications can also be specified to indicate deployment success or failure. Jobs provide the
capability to deploy content updates on a regular scheduled basis without the need for manual
intervention.

 A given path can have many jobs associated with it, each with its own schedule and configured to
deploy specific sites within the source site collection. This granular control enables a common scenario
whereby particular sections of a Publishing site have more aggressive deployment schedule than others.

 For example, consider a site with two subsites, About Us and News . The About Us site should be deployed
at the same time as the content within the top - level site, whereas the News site needs a more frequent
schedule to enable news items to be published faster.

 Quick Deploy Jobs
 Because content deployment is managed via Central Administration, it requires Central Administration
privileges. This is entirely appropriate for the initial configuration and ongoing management, but it does
not address the need for content authors to be able to deploy certain pieces of content in an “ on
demand ” fashion without having to wait for the next scheduled deployment to occur. This requirement
is met by the Quick Deploy function.

 Once a path has been created within a Publishing site collection, one that has the Office SharePoint
Publishing Infrastructure Feature activated, a Quick Deploy job is automatically created for use on that
path. The Quick Deploy job executes on a configurable schedule, which is set to every 15 minutes by
default. The Quick Deploy job checks the Pages library for items that are marked for deployment since
the last time it ran and then deploys these items.

 By default, only site owners can mark pages for deployment using Quick Deploy. However, sites that
have the Office SharePoint Publishing Infrastructure Feature enabled include a Quick Deploy Users
SharePoint group, and members of this group (commonly content authors) can mark a page for
deployment using the Quick Deploy item of the Tools menu within the Page Editing Toolbar, as shown
in Figure 17 - 2 .

c17.indd 324c17.indd 324 5/8/08 7:15:04 PM5/8/08 7:15:04 PM

Chapter 17: Content Deployment

325

Figure 17-4

Figure 17-2

 If a path is created within a site collection before the Publishing Infrastructure Feature is enabled, the
Quick Deploy job will not be created. To make use of Quick Deploy, delete and re - create the path after
the Publishing Infrastructure Feature has been enabled.

 Configuring Content Deployment
 By default, content deployment is disabled in a farm and must first be configured before use. The
destination farm needs to be configured to accept content deployment jobs and have a server selected as
its import server. The import server must host the farm ’ s Central Administration site, as the content
migration packages are sent via the Central Administration site. The source farm requires a server to be
configured as its export server. Development environments can simply be configured as a single server
with all of these roles, which is the default configuration in a standalone or single - server scenario.
Content deployment configuration is accessed via the Content Deployment section of the Operations tab
within SharePoint Central Administration, as shown in Figure 17 - 3 .

Figure 17-3

 By clicking the Content Deployment Settings link, a number of farmwide settings for content
deployment can be configured:

 Accept Content Deployment Jobs — This setting, shown in Figure 17 - 4 , specifies whether
incoming content deployment jobs should be accepted or rejected. When accept is chosen, the
source farm stills needs to authenticate to Central Administration to deploy content.

❑

c17.indd 325c17.indd 325 5/8/08 7:15:04 PM5/8/08 7:15:04 PM

Chapter 17: Content Deployment

326

 Import Server — This setting, shown in Figure 17 - 5 , specifies the server used to receive
incoming content deployment jobs.

❑

Figure 17-5

 Export Server — This setting, shown in Figure 17 - 6 , specifies the server used to send outgoing
content deployment jobs.

❑

Figure 17-6

 Connection Security — By default, content deployment is only allowed if the connection
between source and destination farms is encrypted by using the HTTPS protocol. This setting is
shown in Figure 17 - 7 .

❑

Figure 17-7

 Temporary Files — This setting, shown in Figure 17 - 8 , specifies where the temporary files
(CABs) for content deployment jobs are stored. These files are automatically deleted when the
deployment job is finished.

❑

Figure 17-8

c17.indd 326c17.indd 326 5/8/08 7:15:04 PM5/8/08 7:15:04 PM

Chapter 17: Content Deployment

327

 Reporting — This setting, shown in Figure 17 - 9 , enables administrators to specify the number of
reports to keep for each content deployment job.

❑

Figure 17-9

 Unfortunately, clicking OK to apply the changes does not return the user to the Operations page within
Central Administration but rather to the Site Settings page. This is one of several esoteric glitches
within the Central Administration application. To return to the Operations page, simply click the
 Operations tab.

 Content Deployment Walkthrough
 Once content deployment is enabled on the farm and configured, paths and jobs can be used to deploy
content between site collections.

 Example Scenario
 For the purposes of demonstration, this chapter features a simple scenario that provides an overview of
the capabilities of content deployment. Supporting the scenario are two SharePoint Web Applications:

 http://cdsource — Hosting a site collection based upon the Publishing Portal template. This
mimics a read/write authoring environment (source).

 http://cddestination — Hosting a site collection based upon the Blank Site template. This
mimics a read - only production environment (destination).

 The source site collection has two subsites, About Us and News . The About Us site should be deployed at
the same time as content within the top - level site, whereas the News site needs a more frequent
schedule. This example scenario is shown in Figure 17 - 10 .

❑

❑

Web Application:

http://cddest

/about us /news

CDDEST

Web Application:

http://cdsource

/about us /news

CDSOURCE

Figure 17-10

c17.indd 327c17.indd 327 5/8/08 7:15:05 PM5/8/08 7:15:05 PM

Chapter 17: Content Deployment

328

 Creating Paths
 Paths and jobs are created and configured using the Central Administration Operations Content
Deployment Paths and Jobs page. Before jobs can be created, a path must first be created by clicking the
New Path button. The Create Content Deployment Path page enables an administrator to define the
relationship between the source and destination site collections:

 Name and Description — This setting, shown in Figure 17 - 11 , provides basic information about
the path, which is displayed on the summary page.

❑

Figure 17-11

 Source Web Application and Site Collection — Use this setting, shown in Figure 17 - 12 to select
the source Web application and site collection to use for content deployment.

❑

Figure 17-12

 Destination Central Administration Web Application — This setting, shown in Figure 17 - 13 ,
specifies the URL to connect to for Central Administration on the destination farm.

❑

Figure 17-13

 Authentication Information — These credentials settings, shown in Figure 17 - 14 , are used to
connect to the destination farm and must have Central Administration privileges. Clicking the
Connect button connects to the destination to populate the Destination Web Applications and
Site Collections selectors.

❑

c17.indd 328c17.indd 328 5/8/08 7:15:05 PM5/8/08 7:15:05 PM

Chapter 17: Content Deployment

329

Figure 17-14

 Destination Web Application and Site Collection — Use these settings, shown in Figure 17 - 15 ,
to specify the destination Web application and site collection to use for content deployment.

❑

Figure 17-15

 User Names — This setting, shown in Figure 17 - 16 , specifies whether the user names associated
with content are also deployed.

❑

Figure 17-16

c17.indd 329c17.indd 329 5/8/08 7:15:06 PM5/8/08 7:15:06 PM

Chapter 17: Content Deployment

330

 Security Information — Use this setting, shown in Figure 17 - 17 , to specify whether ACLs, roles,
or membership are deployed.

❑

Figure 17-18

 Clicking OK creates the path and redirects the administrator back to the Manage Content Deployment
Paths and Jobs page, where the new path is shown. In addition to the path, a Quick Deploy job is
automatically created and associated with the path, as shown in Figure 17 - 18 .

 This configuration is required on both the source and the destination in a real - world scenario. Because
this chapter uses a single server for the examples, this isn ’ t necessary here.

 Creating Jobs
 With the path created, click the New Job button to create the two jobs needed in the scenario. The
following settings can be configured:

 Name and Description — Use these fields, shown in Figure 17 - 19 , to provide basic information
about the path, which is displayed on the summary page.

❑

Figure 17-17

c17.indd 330c17.indd 330 5/8/08 7:15:07 PM5/8/08 7:15:07 PM

Chapter 17: Content Deployment

331

Figure 17-21

 Path — This setting, shown in Figure 17 - 20 , specifies the content deployment path with which to
associate this job.

❑

 Scope — This setting, shown in Figure 17 - 21 , specifies the selection of content within the site
collection to deploy.

❑

Figure 17-19

Figure 17-20

 Frequency — These settings, shown in Figure 17 - 22 , specify the publishing schedule for the
job. If no schedule is configured, then the job can only be run manually from Central
Administration.

❑

c17.indd 331c17.indd 331 5/8/08 7:15:07 PM5/8/08 7:15:07 PM

Chapter 17: Content Deployment

332

 Deployment Options — This setting, shown in Figure 17 - 23 , specifies either incremental or full
deployment.

❑

 Notification — This setting, shown in Figure 17 - 24 , enables configuration of an e - mail
notification indicating whether content deployment has succeeded or failed.

❑

Figure 17-22

Figure 17-23

Figure 17-24

 Clicking OK creates the job and takes the administrator back to the Manage Content Deployment Paths
and Jobs page, where the new job is displayed.

c17.indd 332c17.indd 332 5/8/08 7:15:07 PM5/8/08 7:15:07 PM

Chapter 17: Content Deployment

333

Figure 17-26

 Create another job for the News site. Within the Scope section, select Specific Sites within the Site
Collection radio buttons and click Select Sites. A dialog will appear from which you can select the News
site, as shown in Figure 17 - 25 .

Figure 17-25

 For the News site, specify a different frequency, this time deploying content every 15 minutes, as shown
in Figure 17 - 26 .

 Clicking OK creates the second job and redirects back to the Manage Content Deployment Paths and
Jobs page. Now wait until the scheduled deployment takes place or manually test or execute the jobs.

c17.indd 333c17.indd 333 5/8/08 7:15:08 PM5/8/08 7:15:08 PM

Chapter 17: Content Deployment

334

 Running Jobs
 Manually execute jobs from the Manage Content Deployment Paths and Jobs page by choosing Run
Now or Test Job from the Job Item drop - down menu. The Test Job option simply tests the export and
packaging of the content on the source and confirms that the destination can be reached. While this is a
useful verification step it does not guarantee a successful deployment.

 Selecting Run Now performs the deployment and the status of the job is updated. Initially, the status will
be “ Preparing ” followed by “ Running. ” Once Running is displayed, the status becomes a hyperlink,
which when followed shows the Content Deployment Report depicted in Figure 17 - 27 , summarizing the
job ’ s status.

 Once the job is complete, the status is changed to “ Succeeded ” or “ Failed, ” both providing a link to the
summary page shown in Figure 17 - 28 .

Figure 17-27

c17.indd 334c17.indd 334 5/8/08 7:15:08 PM5/8/08 7:15:08 PM

Chapter 17: Content Deployment

335

Figure 17-28

 This page enables the viewing of errors and warnings associated with the job; more information about
each of these can be displayed by clicking the item. The job ’ s history can also be accessed from the
Content Deployment Report page.

 In addition, deployment of a specific object can be checked by choosing the hyperlink and entering the
URL to check.

 Once the job has completed, administrators can then browse to the destination and see the deployed
content. Notice in Figure 17 - 29 that the Publishing Infrastructure Feature has been activated on what was
a Blank Site.

c17.indd 335c17.indd 335 5/8/08 7:15:09 PM5/8/08 7:15:09 PM

Chapter 17: Content Deployment

336

Figure 17-29

 At this stage, verify the second job by creating a new page in both the About Us and News sites on the
source site collection and running the News job. This will deploy just the new page within the News site,
and not the page within the About Us site.

Unfortunately, if a new page is created within the top-level site and a new page is
created within the News site, and then the News job is rerun, the new page within the
top-level site is also deployed. This is a known issue with content deployment that
means that content that’s changed within the top-level site is always changed,
regardless of which jobs are run. It is necessary for the capabilities of the top-level sites
to be the same on both the source and destination; therefore, content deployment
checks this every time a job is run. Unfortunately, as well as interrogating the Features,
and so on, the content is also picked up and deployed.

Thus, while jobs can be leveraged to provide a different deployment schedule between
subsites, the top-level site changes are always deployed. This unfortunate limitation
can be overcome using the content deployment API, but it means that the automated
capability can only be run with the understanding that the top-level site’s content will
be deployed.

c17.indd 336c17.indd 336 5/8/08 7:15:09 PM5/8/08 7:15:09 PM

Chapter 17: Content Deployment

337

 Leveraging Quick Deploy Jobs
 Once a path is created, a Quick Deploy job for that path is automatically created. However, the Quick
Deploy job must be enabled before site owners or members of the Quick Deploy Users group can take
advantage of the feature (the Quick Deploy option is grayed out within the Page Editing Toolbar). To
configure the Quick Deploy job, choose Quick Deploy Settings from the Item menu on the Manage
Content Deployment Paths and Jobs page.

 The settings on the Quick Deploy Job Settings for Path page allow administrators to enable the Quick
Deploy job, specify a schedule (which by default is every 15 minutes), and indicate which users can
mark a page for Quick Deploy, as shown in Figure 17 - 30 .

Figure 17-30

 After the Quick Deploy job is enabled for a given path, content authors with the appropriate permissions
can mark a page for Quick Deploy for all approved pages from the Page Editing Toolbar.

 Using the Content Deployment API
 In addition to the administration interface available from Central Administration Operations, content
deployment is exposed as an API via the Microsoft.SharePoint.Publishing.Administration
namespace. This API is useful when administrators wish to provide an alternative user interface for
managing content deployment paths and jobs.

c17.indd 337c17.indd 337 5/8/08 7:15:10 PM5/8/08 7:15:10 PM

Chapter 17: Content Deployment

338

 The following simple example in Listing 17 - 1 shows how to enable content deployment in the source
farm, create a path and job, and execute the job from a console application. The status of the job is output
as the code executes. Once the operations are complete, the job and path are deleted.

 Listing 17 - 1: Leveraging the content deployment API

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint.Publishing.Administration;

namespace WROX.ProMossWcm.Chapter17 {
 class Program {
 static void Main(string[] args) {
 ContentDeploymentSample sample = new ContentDeploymentSample();
 sample.Invoke();
 }
 }

 class ContentDeploymentSample {
 public void Invoke() {

 // Path Settings
 string pathName = “Content deployment Sample 1”;
 Uri sourceServerUri = new Uri(“http://cdsource”);
 string sourceSiteCollection = “/”;
 Uri destinationAdminUri = new Uri(“http://moss2007:8888”);
 Uri destinationServerUri = new Uri(“http://cddestination”);
 string destinationSiteCollection = “/”;

 // job Settings
 string jobName = “Full Site”;

 ContentDeploymentPath path = null;
 ContentDeploymentJob job = null;

 try {
 // Configure Content deployment within the source farm...
 ContentDeploymentConfiguration config =
 ContentDeploymentConfiguration.GetInstance();
 config.AcceptIncomingJobs = true;
 // credentials and deployment are in plain text over the wire
 config.RequiresSecureConnection = false;
 config.Update();

 // Create a deployment path using the settings above...
 ContentDeploymentPathCollection allPaths =
 ContentDeploymentPath.GetAllPaths();
 path = allPaths.Add();

 path.Name = pathName;
 path.SourceServerUri = sourceServerUri;
 path.SourceSiteCollection = sourceSiteCollection;
 path.DestinationAdminServerUri = destinationAdminUri;
 path.DestinationServerUri = destinationServerUri;

c17.indd 338c17.indd 338 5/8/08 7:15:11 PM5/8/08 7:15:11 PM

Chapter 17: Content Deployment

339

 path.DestinationSiteCollection = destinationSiteCollection;
 path.Update();

 // Create a CD job associated with the Path created above...
 job = ContentDeploymentJob.GetAllJobs().Add();
 job.JobType = ContentDeploymentJobType.ServerToServer;
 job.Name = jobName;
 job.Path = path;
 job.Update();
 job.Run();
 }
 catch (Exception ex) {
 Console.Error.WriteLine(ex.StackTrace);
 throw;
 }
 finally {
 // Delete the job that was created.
 if (job != null) {
 job.Delete();
 }
 // Delete the path that was created.
 if (path != null) {
 path.Delete();
 }
 }

 }
 }

}

 While the content deployment API can be useful for custom user interface development, it does not
provide a solution for disconnected scenarios (i.e., when source and destination are unable to
communicate over the wire). All three operations — export, transport, and import — are always
performed when a job is executed. In addition, the API does not offer any capability to configure the
granularity of deployment to anything other than the site collection defined in the path (i.e., the Select
Sites to Deploy option within Central Administration).

 This is because the underlying implementation of the Select Sites to Deploy option is a combination of
the content deployment API and the content migration API available with WSS 3.0 (also known as
PRIME). In order to provide a solution for disconnected scenarios and/or more granular content
deployment, a combination of these APIs must be used.

 Using the Content Migration API
 The content migration API (Microsoft.SharePoint.Deployment) provides the capability to support
disconnected and granular deployment scenarios by enabling different phases of the deployment to
happen at different times. The exported content is packaged as a Content Migration Package (*.CMP)
file, which can easily be transported to the destination environment via common mechanisms such as
FTP or removable media such as DVDs. These CMP files are cabinet files with a different extension and

c17.indd 339c17.indd 339 5/8/08 7:15:12 PM5/8/08 7:15:12 PM

Chapter 17: Content Deployment

340

by default their maximum size is 24MB. Content migration actually underpins a number of MOSS
features, including content deployment, variations, the Manage Site Content and Structure tool, and the
MCMS migration capability.

 The following console application in Listing 17 - 2 shows how to use the content migration API to export
content to a *.CMP file.

 Listing 17 - 2: Exporting content with the content migration API

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Deployment;

namespace WROX.ProMossWcm.Chapter17 {
 class Program {
 private static string _sourceUrl = “http://cdsource”;

 static void Main(string[] args) {
 try {
 SPExportSettings exportSettings = new SPExportSettings();
 // echo output
 exportSettings.CommandLineVerbose = true;
 // CMP file to export
 exportSettings.BaseFileName = “export.cmp”;
 // Path to export CMP
 exportSettings.FileLocation = @”C:\windows\temp”;

 exportSettings.OverwriteExistingDataFile = true;
 exportSettings.IncludeSecurity = SPIncludeSecurity.All;
 exportSettings.SiteUrl = _sourceUrl;
 exportSettings.IncludeVersions =
 SPIncludeVersions.LastMajorAndMinor;
 exportSettings.FileCompression = true;

 SPExport export = new SPExport(exportSettings);

 // Run the export
 export.Run();
 }
 catch (Exception ex) {
 Console.Error.Write(ex.ToString());
 throw;
 }
 }
 }
}

 To export only a subsite, some additional code is necessary. Use the Microsoft.SharePoint
.Deployment.SPExportObject to create a reference to the particular site to be exported and add it to
the Microsoft.SharePoint.Deployment.SPExportSettings.ExportObjects collection, as shown
in Listing 17 - 3 .

c17.indd 340c17.indd 340 5/8/08 7:15:12 PM5/8/08 7:15:12 PM

Chapter 17: Content Deployment

341

 Listing 17 - 3: Exporting a specific site using the content migration API

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Deployment;

namespace WROX.ProMossWcm.Chapter17 {
 class Program {
 private static string sourceUrl = “http://cdsource”;

 static void Main(string[] args) {
 try {

 // get reference to specific site to export
 SPSite siteCollection = new SPSite(sourceUrl);
 SPWeb site = siteCollection.OpenWeb(“/News”);

 SPExportObject exportObject = new SPExportObject();
 exportObject.Id = site.ID;
 exportObject.IncludeDescendants = SPIncludeDescendants.All;
 exportObject.Type = SPDeploymentObjectType.Web;

 SPExportSettings exportSettings = new SPExportSettings();
 // echo output
 exportSettings.CommandLineVerbose = true;
 // CMP file to export
 exportSettings.BaseFileName = “export.cmp”;
 // Path to export CMP
 exportSettings.FileLocation = @”C:\windows\temp”;

 exportSettings.OverwriteExistingDataFile = true;
 exportSettings.IncludeSecurity = SPIncludeSecurity.All;
 exportSettings.SiteUrl = sourceUrl;
 exportSettings.IncludeVersions =
 SPIncludeVersions.LastMajorAndMinor;
 exportSettings.FileCompression = true;

 exportSettings.ExportObjects.Add(exportObject);

 SPExport export = new SPExport(exportSettings);

 // Run the export
 export.Run();
 }
 catch (Exception ex) {
 Console.Error.Write(ex.ToString());
 throw;
 }
 }
 }
}

 The following console application in Listing 17 - 4 shows how to use the content migration API to import
content from a *.CMP file.

c17.indd 341c17.indd 341 5/8/08 7:15:12 PM5/8/08 7:15:12 PM

Chapter 17: Content Deployment

342

 Listing 17 - 4: Importing content with the content migration API

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Deployment;

namespace WROX.ProMossWcm.Chapter17 {
 class Program {
 private static string destinationUrl = “http://cddestination”;
 private static string destinationRootWebUrl;

 static void Main(string[] args) {
 try {
 SPImportSettings importSettings = new SPImportSettings();

 importSettings.CommandLineVerbose = true;
 importSettings.RetainObjectIdentity = true;
 importSettings.FileLocation = @”C:\windows\temp”;
 importSettings.BaseFileName = “export.cmp”;
 importSettings.SiteUrl = destinationUrl;
 importSettings.IncludeSecurity = SPIncludeSecurity.All;
 importSettings.UserInfoDateTime =
 SPImportUserInfoDateTimeOption.ImportAll;
 importSettings.SuppressAfterEvents = true;
 importSettings.UpdateVersions = SPUpdateVersions.Append;

 SPImport import = new SPImport(importSettings);

 // Run the import
 import.Run();
 }
 catch (Exception ex) {
 Console.Error.Write(ex.ToString());
 throw;
 }
 }
 }
}

 Incremental Deployment
 Incremental deployment is supported with the use of change tokens . These tokens are used to quickly
identify which content was part of the most recent import. They then look at only the content for
anything that should be scheduled, such as something to be published or that will expire in the future.
Without the change tokens, SharePoint would need to iterate all sites and pages within those sites after
every import. The console application in Listing 17 - 5 demonstrates the use of change tokens.

c17.indd 342c17.indd 342 5/8/08 7:15:13 PM5/8/08 7:15:13 PM

Chapter 17: Content Deployment

343

 Listing 17 - 5: Change tokens in the content migration API

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Deployment;

namespace WROX.ProMossWcm.Chapter17 {
 class Program {
 private static string destinationUrl = “http://cddestination”;
 private static string destinationRootWebUrl;

 static void Main(string[] args) {
 try {
 SPImportSettings importSettings = new SPImportSettings();

 importSettings.CommandLineVerbose = true;
 importSettings.RetainObjectIdentity = true;
 importSettings.FileLocation = @”C:\windows\temp”;
 importSettings.BaseFileName = “export.cmp”;
 importSettings.SiteUrl = destinationUrl;
 importSettings.IncludeSecurity = SPIncludeSecurity.All;
 importSettings.UserInfoDateTime =
 SPImportUserInfoDateTimeOption.ImportAll;
 importSettings.SuppressAfterEvents = true;
 importSettings.UpdateVersions = SPUpdateVersions.Append;

 SPImport import = new SPImport(importSettings);

 SPChangeToken startChangeToken, endChangeToken;
 using (SPSite destinationSite = new SPSite(importSettings.SiteUrl)) {
 startChangeToken = destinationSite.CurrentChangeToken;
 destinationRootWebUrl =
 destinationSite.RootWeb.ServerRelativeUrl;
 }

 // Run the import
 import.Run();

 using (SPSite destinationSite = new SPSite(importSettings.SiteUrl)) {
 endChangeToken = destinationSite.CurrentChangeToken;
 }

 }

 catch (Exception ex) {
 Console.Error.Write(ex.ToString());
 throw;
 }
 }
 }
}

c17.indd 343c17.indd 343 5/8/08 7:15:13 PM5/8/08 7:15:13 PM

Chapter 17: Content Deployment

344

 The full capabilities of the content migration API are beyond the scope of this chapter, but it is hoped
that the examples presented here convey how this powerful mechanism can be leveraged both to
provide robust and flexible content deployment solutions for Publishing sites and to overcome the
current limitations of the content deployment feature set.

 Summary
 This chapter covered the core concepts of content deployment, paths, and jobs, and how they can
be combined to provide granular control over content publishing. You also saw the content deployment
capability in action, along with the associated content deployment API. This chapter also covered
the content migration API, one of the key infrastructure enablers for Publishing sites, and touched
on how it can be leveraged to overcome the current limitations of content deployment.

c17.indd 344c17.indd 344 5/8/08 7:15:13 PM5/8/08 7:15:13 PM

 Offline Authoring with
Document Converters

 When people think of Web - based content management systems, they are usually thinking of an
authoring experience revolving around the browser. While this provides a very easy way for many
content owners and subject matter experts to create and manage the content in a Web site, at times
this approach cannot satisfy all needs. Another approach to content management is using the
familiar approach of thick clients such as Microsoft Office Word.

 Microsoft provided this capability in Microsoft Content Management Server (MCMS) 2002, the
predecessor to Office SharePoint Server (MOSS) 2007 Web Content Management (WCM), by using
something called the Authoring Connector, which worked with Word 2002. Unfortunately, the
MCMS Authoring Connector was not widely used because it required a client installation. Even
then, after it was installed, it was not the most reliable way to author content, and the browser - based
approach was still the primary recommendation for content authoring a MCMS 2002 Web site.

 Microsoft elected to go in a different direction with offline authoring in MOSS 2007. This new
approach works with the default installation of the Office clients. The new approach enables users
to upload documents authored in a thick client, such as Word 2007, and then manually trigger a
conversion process. The conversion process parses the document, generating an HTML version of
it, and automatically creates a new page in the configured Publishing site. This process does not
circumvent any security or workflow configurations; it simply automates the process of authoring
content through the Web browser.

 Out of the box (OOTB), MOSS 2007 ships with four document converters, enabling administrators
to configure the Open XML file formats for Microsoft Office Word 2007 — specifically, *.DOCX and
the macro - enabled flavor, *.DOCM . InfoPath files (*.XSN) can also be used in document conversions,
as can XML files with a provided extensible style sheet (XSLT). The document converter framework
included in MOSS is not limited to just generating HTML content for Publishing sites utilizing the
MOSS 2007 WCM capabilities. This component is a piece of the bigger Enterprise Content
Management (ECM) strategy within MOSS 2007. This means developers can create document

c18.indd 345c18.indd 345 5/8/08 7:15:52 PM5/8/08 7:15:52 PM

Chapter 18: Offl ine Authoring with Document Converters

346

converters to transform one file type (e.g., *.XSN) to another (e.g., *.PDF). Because this book focuses on
the Web Content Management aspects of MOSS 2007, this chapter covers only that section.

 As with many other areas in this latest version of SharePoint, the document converter framework is
completely configurable and extensible. Developers are free to create their own document converters
with custom administrative and user settings pages so customers can meet the business needs of
individual projects. The bulk of this chapter covers the process of creating a custom document converter,
complete with custom settings pages. Before creating custom document converters, however, the chapter
describes the process of configuring the document converter infrastructure and using the OOTB
converters.

 Document Converter User Experience
 The end user experience in working with document converters is very simple and streamlined.
Document converters are configured by being tied to specific content types. A user first uploads a
document to a document library. After uploading, the user is taken to a page where he or she can enter
metadata associated with the document, including specifying the content type. Once the document has
been added to the document library and associated with a content type, it can then use the document
converter(s) configured for use with that content type. To trigger the conversion process, select the
Convert Document menu item in the ECB menu for the document in the library and then select the
desired converter, as shown in Figure 18 - 1 .

 Figure 18 - 1

 If the selected document conversion is configured to prompt the user for some additional settings
information, the user is taken to that page. Upon submitting the settings page, the document converter is
initiated using the highest priority (conversion priorities are covered in the section “ Overview of the
Document Converter Architecture ”). Once the document converter has finished, the generated file
(commonly referred to as the copy) is added back to the same document library as the document it was
generated from (commonly referred to as the original). This file is not automatically checked in,
approved, or published; the user would need to go through the typical workflow process of checking the
file in, maybe making additional modifications and submitting it for publication.

 One nice aspect of pages generated from a document is that a link is established between the original
and the copy. If the original page is viewed in Edit mode, as shown in Figure 18 - 2 , the author can elect to
have the conversion process run again to refresh the content in the page with the updated content in the
document.

c18.indd 346c18.indd 346 5/8/08 7:15:53 PM5/8/08 7:15:53 PM

Chapter 18: Offl ine Authoring with Document Converters

347

 Figure 18 - 2

 Overview of the Document Converter
Architecture

 Before diving into the intricacies of building a custom document converter, it is beneficial to understand
the overall architecture supporting this capability. The document converter infrastructure is included as
part of the Enterprise Content Management (ECM) strategy in MOSS 2007, thus it is included in the
MOSS 2007 Standard license. The only limitation placed on the document conversion framework is that
it can only run on member servers; it will not work on domain controllers. This is because the converters
are executed under the context of a local account on the server. Domain controllers, by their very nature,
do not have local accounts and thus will not work on a controller. This is one of the most common
problems people run into, so be aware of this one simple fact: Document converters will not work on
domain controllers, without a single exception.

 The document converter infrastructure is run by two services: the Document Converter Load Balancer
service and the Document Converter Launcher service. These two services are responsible for
distributing the conversion load across the SharePoint farm and executing specific document converters
on each server. When a conversion request is submitted, the Load Balancer service examines the
registered servers in the farm that are running the Launcher service and the process queues for each. It
determines which one has the lowest utilization and sends the conversion instructions to the Launcher
service on the target SharePoint server using .NET Remoting.

 The Launcher service then takes the request and the document to be processed and creates a locked -
 down environment and folder on the server in the following location:

C:\Program Files\Microsoft Office Servers\12.0\Bin\HtmlTrLauncher

 It then takes the document to be processed and any configuration information and saves it to this locked -
 down folder. At this point the Launcher now has everything it needs to perform the transformation of
the document. It initiates a .NET console application that accepts four parameters containing the logic
specifying how to process the file submitted for conversion. These four parameters tell the console
application the following:

 - in : The location of the file to be processed .

 - out : The location where the generated file should be saved .

❑

❑

c18.indd 347c18.indd 347 5/8/08 7:15:53 PM5/8/08 7:15:53 PM

Chapter 18: Offl ine Authoring with Document Converters

348

 - config : The location of the XML configuration file containing any settings specified by the
administrator when associating the document converter with the content type (covered in detail
in the section “ Document Converter Configuration ”), as well as the settings submitted by the
user when the conversion process was requested. While it is required to accept this parameter, it
is not necessary to read from it. However, this means the converter is ignoring any settings
specified by the administrator and user.

 - log : The location of the log file, provided the document converter contains logic to write to a
log. While it is required to accept this parameter, it is not necessary to create the log file.

 This console application must reside in a special folder on the servers running the Launcher service:

C:\Program Files\Microsoft Office Servers\12.0\TransformApps

 The document converter, the console application, is executed under the context of a special, locked - down
user account: HVU_ < machinename > . This is the root cause for the limitation that document converters
cannot execute on domain controllers.

 After the original file has been run through the document converter to create the copy, the Launcher
service then performs some post - processing on the resulting output. Specifically, it copies the metadata
contained in the original file to the copy and then adds the file to the same document library containing
the original that triggered the conversion process.

 Once the copy has been added to the document library, the Launcher performs one last post - processing
action: It establishes links and references between the original file and the copy file. The document
library contains a few hidden fields that the document converter infrastructure utilizes, provided the
document library is in a Web application that has configured document converters. Specifically, the
 ParentID field is updated on the copy to contain the unique ID of the original document used to
generate the copy. The ParentVersionID field is also updated on the copy to contain the version of the
original document used to generate the copy. Next, the document converter ’ s ID is added to the
 Converter field on the copy to indicate which converter did the transformation. Finally, the Launcher
service sends any e - mails that have been requested in the configuration of the document converter.

 Developers are free to create additional post - processing that can replace or append the existing logic, as
well as specify some pre - processing logic. This is covered in more detail in the section “ Pre - and
Post - Conversion Processing. ”

 At this point the document conversion process is complete.

 Updating Copy Files Post - Conversion and File Linkages
 What happens when either the original file or the copy file is updated after the conversion process has
executed? If versioning is not enabled for the document library, then the conversion process always runs,
as it has no version to compare it to. Provided versioning is enabled, the copy file will be updated by a
new requested conversion process by incrementing the version. This is true as long as the references are
intact between the two files. If the original file is deleted or moved, then the link is severed because the
copy file is the one containing all the references.

❑

❑

c18.indd 348c18.indd 348 5/8/08 7:15:54 PM5/8/08 7:15:54 PM

Chapter 18: Offl ine Authoring with Document Converters

349

 Conversion Priorities
 A case may arise where some document conversion requests need to be executed with a higher priority
than others. For instance, if the server is presently working on a large batch job of conversions, a user
initiating a conversion request should take on a higher priority than the batch job so the user is not left
waiting for the entire batch to finish.

 Thankfully, the document conversion process provides such a prioritization capability. There are three
priorities:

1 (High) — All document conversion requests submitted through the browser interface default
to this priority.

2 (Medium) — All document conversion requests submitted via the API default to this priority.

 3 (Low) — This priority is ideal for times when batch document conversion requests are
implemented.

 Queued requests are sorted accordingly by priority by the Launcher service.

 Using Document Converters to Create Publishing Pages
 In most cases, the original file is left alone at this point and the links are only established on the copy file.
However, in the case of conversions that generate an HTML copy, the object representing both files
contains links in both the original file and the copy file that point both ways.

 Some additional post - processing logic is performed in the case of document converters that are used to
create new Publishing pages. The new page that is created is based on the specified page layout defined
by the user when the conversion request was submitted. The generated copy file, containing HTML
markup, is expected to contain a very simple structure matching the schema in Listing 18 - 1 .

 Listing 18 - 1: Schema of generated HTML

 < html >
 < head >
 < style >

 < !-- generated code goes here -- >

 < /style >
 < /head >
 < body >

 < !-- generated code goes here -- >

 < /body >
 < /html >

 The Launcher service then extracts the content between the < style > < /style > elements and
 < body > < /body > elements and inserts it into the fields specified by the user when the document
converter was initiated.

❑

❑

❑

c18.indd 349c18.indd 349 5/8/08 7:15:54 PM5/8/08 7:15:54 PM

Chapter 18: Offl ine Authoring with Document Converters

350

 Document Converter Configuration
 Before any document conversions can occur, the necessary services must be configured and started. In
addition, a content type must be configured to support specific document conversions. The following
sections describe how to do this with one of the OOTB configurations. To reiterate a point made
previously, document converters can only be configured to run on servers that are not domain
controllers due to the local account used to execute the actual converter requested.

 Configuring Document Converter Services
 The first task is to start the required services. This can be done from the Central Administration Web site.
On the Operations page within Central Administration, select the Services on Server link. Select the
server to configure, and then the Document Conversions Load Balancer Service. Specify whether the
Load Balancer service should use HTTP or HTTPS to communicate with the Launchers associated with
it, as well as the port number it will use to communicate with (see Figure 18 - 3).

 Figure 18 - 3

 With the Load Balancer service started, now the Launcher service can be configured. On the
same Services on Server page, select the server Document Conversions Launcher service. On the
Launcher Service Settings page, select the server to configure and the load balancer service to associate
with this Launcher, and then enter the port the Load Balancer service will use to communicate with the
Launcher service (see Figure 18 - 4).

c18.indd 350c18.indd 350 5/8/08 7:15:54 PM5/8/08 7:15:54 PM

Chapter 18: Offl ine Authoring with Document Converters

351

Figure 18-5

Figure 18-4

 Because document conversions are configured at the Web application level, all site collections within the
specified Web application will be able to utilize document converters configured here. However, simply
turning these services does not allow users to start using the document converters.

 The next thing to do is configure specific Web applications to allow desired document converters, as well
as specify any additional settings required for each individual converter. On the Application
Management page within Central Administration, select the Document Conversions link under the
External Service Connections section. On the Configure Document Conversions page, select the desired
Web application to configure. The page will then refresh with the available document converters
installed on the selected Web application. When selecting a document converter, the administrator can
elect to make the document converter visible to site owners and administrators in the site collections
hosted by the Web application, as shown in Figure 18 - 5 .

c18.indd 351c18.indd 351 5/8/08 7:15:55 PM5/8/08 7:15:55 PM

Chapter 18: Offl ine Authoring with Document Converters

352

 Administrators can also set the timeout duration allowed for the converters to complete their execution,
as well as the maximum file size of the original file to be transformed and the maximum number of
times it will attempt to process the file. Options include every x minutes, every hour between x and y
minutes past the hour, or daily between x and y o ’ clock, which enables administrators to properly
throttle the load imposed on the servers, as the conversion process can be quite processor intensive.

 If the administrator elects to not make the document converter visible to the Web application, this only
means it cannot be configured or triggered through the browser interface. It can still be initiated through
the object model, as demonstrated later in the chapter.

 With the document converter services initiated and the specified converters configured on a Web
application - by - Web application basis, they can now be set up by site owners and administrators on a
site - by - site level.

 Configuring Document Converter Content Types
 Now that all the configurations have been set up at the server and Web application level, site owners and
administrators can configure specific content types within a site collection that can utilize the allowed
converters. To do this, navigate to the content type gallery within a site collection and select an existing
content type (or create a new one) and select the Manage Document Conversions for This Content Type
link. The Manage Document Conversions for [Content Type Name] page enables site owners to select
which document converters are allowed for the content type, as well as configure the nuances of each
converter.

 With the content type configured, the last step is to add the content type to the desired document library,
such as a site ’ s Pages library, so a content owner can upload a document and manually kick off the
conversion process (refer to Figure 18 - 1).

 Out - of - the - Box Document Converters
 As previously mentioned, Microsoft includes four document converters OOTB in the MOSS 2007
installation. These converters are intended to be used to create HTML pages. The following sections
describe these four OOTB document converters.

 Word Document and Word Document with
Macros to Web Page

 These two document converters take one of the new Word Open XML file format documents and convert
it to an HTML page. The two file types supported, DOCX and DOCM, can be authored in Word 2007,
Word 2003 (when the Open XML file format add - in is installed), Word 2008 (the Apple Mac version
of Word), or they can be programmatically created.

 When administrators configure these document converters, they must specify the default page layout as
well as the fields that should contain the generated styles and body content; whether the file should be
created upon the request (synchronously) or in the background (asynchronously); and the location
where the page should be created.

c18.indd 352c18.indd 352 5/8/08 7:15:55 PM5/8/08 7:15:55 PM

Chapter 18: Offl ine Authoring with Document Converters

353

 When a user initiates one of these document converters, they specify the page layout to use for the new
page and whether the page should be generated immediately or in the background.

 InfoPath Form to Web Page
 This document converter takes an InfoPath 2007 form and converts it to HTML. The InfoPath form must
be created using InfoPath 2007, not a prior version. If an InfoPath 2003 form is wanted, it must first be
upgraded to the InfoPath 2007 file format by opening and publishing it from InfoPath 2007.

 When an administrator configures this document converter he or she must specify the InfoPath form
template and view to use in the rendering, as well as all the same things required in the Word Document
to Web Page converter. Under the covers, the view in InfoPath 2007 is created using XSLT. This XSLT is
extracted on - the - fly from the InfoPath 2007 form by the document converter, as is the XML file, and both
are used to generate the HTML used in creating the resulting HTML page.

 When users initiate this document converter they specify the same things required in the Word
Document to Web Page converter.

 XML to Web Page
 This document converter takes an XML file and converts it to HTML using the specified extensible style
sheet (*.XSL). If that sounds familiar, it is. The process is almost identical to that of the XSN to HTML
document converter except that no InfoPath 2007 file is used. This converter can be quite helpful for
automatically generated XML files from external applications.

 When administrators configure this document converter they must specify the XSL style sheet to use in
the transformation of XML to HTML, as well as all the same things required in the Word Document to
Web Page converter.

 When users initiate this document converter they specify the same things required in the Word
Document to Web Page converter.

 Creating Custom Document Converters
 While the OOTB document converters provide a few options for converting files to HTML pages
automatically, they surely won ’ t meet every business need. What if a company has not yet upgraded to
the Office 2007 clients and is still using Office 2003 or an earlier version? What about converting other
file types to HTML? What if the generated file desired is not HTML but something else such as a *.PDF
or *.XPS file?

 Thankfully, Microsoft made the document converter infrastructure extensible, like so many other areas
of SharePoint, enabling developers to create custom document converters to meet specific business
needs. Developers can create converters that take any type of a file as an input and generate any file type
as output. This is done by creating a custom console application. The custom converters may have
special requirements to prompt both administrators and users for specific settings when configuring the
document converter with a content type, as well as when users initiate the transformation process.

c18.indd 353c18.indd 353 5/8/08 7:15:55 PM5/8/08 7:15:55 PM

Chapter 18: Offl ine Authoring with Document Converters

354

 The following sections demonstrate how to create a document converter, as well as the special
requirements involved when creating HTML pages for Publishing sites.

 Creating the Document Converter
 The document converter created in the following sections will take an XML file containing a dataset,
shown in Listing 18 - 2 , and transform it to an HTML table. When configured, the administrator needs to
specify the formatting of the table as a custom setting and pass that to the converter.

 Listing 18 - 2: XML file consumed by the custom document converter

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < root >
 < Title > US Presidents < /Title >
 < Description > The first five Presidents of the United States < /Description >
 < Data >
 < Columns >
 < Column > No. < /Column >
 < Column > Term < /Column >
 < Column > President < /Column >
 < Column > Vice President < /Column >
 < /Columns >
 < Rows >
 < Row >
 < Column > 1 < /Column >
 < Column > April 30, 1789 - March 4, 1797 < /Column >
 < Column > George Washington < /Column >
 < Column > John Adams < /Column >
 < /Row >
 < Row >
 < Column > 2 < /Column >
 < Column > March 4, 1797 - March 4, 1801 < /Column >
 < Column > John Adams < /Column >
 < Column > Thomas Jefferson < /Column >
 < /Row >
 < !-- additional rows omitted for brevity -- >
 < /Rows >
 < /Data >
 < /root >

 While this could also be accomplished using the OOTB XML to HTML converter with a custom XSL file, it is
a simple example that is easy to follow in order to understand how to create a custom document converter.

 Creating the Document Converter Application
 The first step to creating a custom document converter is to create the application that will do all the
heavy lifting. This console application has a few requirements. First, as previously mentioned in the
section “ Overview of the Document Converter Architecture, ” it must expect four command - line
arguments telling the converter where to find the file to process, where to put the generated copy, where
the settings are stored, and the log file to write to. Second, the executable must be deployed to a specific
folder on the SharePoint servers configured to run the Launcher service.

 The code in Listing 18 - 3 shows the static Main() method that is called when the executable is created.

c18.indd 354c18.indd 354 5/8/08 7:15:56 PM5/8/08 7:15:56 PM

Chapter 18: Offl ine Authoring with Document Converters

355

 Listing 18 - 3: Document converter Main()

using System;
using System.Collections.Generic;
using System.IO;
using System.Web.UI;
using System.Xml;

namespace WROX.ProMossWcm.Chapter18 {
 class Program {

 static void Main (string[] args) {

 Dictionary < DocConverterArgumentType, string > arguments =
DocConverterArgumentHelper.ParseCommandLineArguments(args);

 TransformXmlToHtml(arguments[DocConverterArgumentType.InputFile],
 arguments[DocConverterArgumentType.OutputFile],
 arguments[DocConverterArgumentType.ConfigurationFile],
 arguments[DocConverterArgumentType.LogFile]);
 }
 }
}

 Notice the highlighted line that uses the DocConverterArgumentHelper class, which contains logic to
ensure that all the required arguments are passed in and loads them in an easy to use generic
 Dictionary collection. This reusable class can be used in any document converter to simplify the
process of working with the arguments in custom document converters. It is not shown in the book for
brevity, but it ’ s available in the associated code that can be downloaded from the publisher ’ s Web site.

 After getting all the arguments, the next step is to process the file. That is the job of the
TransformXmlToHtml() method, shown in Listing 18 - 4 .

 Listing 18 - 4: Document converter ’ s TransformXmlToHtml() method

private static void TransformXmlToHtml (string inputFile, string outputFile, string
configFile, string logFile) {
 using (StreamReader reader = new StreamReader(inputFile)) {
 using (HtmlTextWriter writer = new HtmlTextWriter(new
StreamWriter(outputFile))) {
 // write shell of HTML
 writer.RenderBeginTag(HtmlTextWriterTag.Html);

 // write out styles and body of HTML

 WriteHtmlStyles(reader, writer, configFile);
 WriteHtmlBody(reader, writer);

 writer.RenderEndTag(); // < /HTML >
 writer.Close();
 }
 }
}

c18.indd 355c18.indd 355 5/8/08 7:15:56 PM5/8/08 7:15:56 PM

Chapter 18: Offl ine Authoring with Document Converters

356

 The TransformXmlToHtml() method first creates a reference to the original file to be copied, as well as the
file in which to put the generated HTML. The method then writes out the basic < HTML > < /HTML > tags, as
the generated file needs to conform to the same structure contained in Listing 18 - 1 . Next, it calls a method,
passing in references to the two files and the location of the configuration file. This is required because, as
defined in the requirements, the administrator specifies the type of formatting to use when the HTML
table is created from the provided XML. The WriteHtmlStyles() method is shown in Listing 18 - 5 .

 Listing 18 - 5: Document converter ’ s WriteHtmlStyles() method, generating the styles

private static void WriteHtmlStyles (StreamReader reader, HtmlTextWriter writer,
string configFile) {

 // load the settings
 XmlDocument xDoc = new XmlDocument();
 xDoc.Load(configFile);
 XmlNode tableFormattingType =
xDoc.SelectSingleNode(“/RcaTransformation/ConverterSettings/tableFormatting”);

 // write < head > & < style > tags
 writer.RenderBeginTag(HtmlTextWriterTag.Head);
 writer.RenderBeginTag(HtmlTextWriterTag.Style);

 // write styles
 writer.WriteLine(“TABLE {border-style:3px black solid;}”);
 writer.WriteLine(“TD {border-style:1px gray solid;}”);

 switch (tableFormattingType.InnerText.ToLower()){
 case “raw”:
 writer.Write(“TH {font-weight:bold;}”);
 break;
 case “gray”:
 writer.Write(“TH {font-weight:bold; color:black; background-color:gray;}”);
 break;
 case “black”:
 writer.Write(“TH {font-weight:bold; color:white; background-color:black;}”);
 break;
 }

 writer.RenderEndTag(); // < /STYLE >
 writer.RenderEndTag(); // < /HEAD >
}

 This method is fairly straightforward except for one part, the highlighted portion. This part pulls the
data out of the configuration file but the XPath query requires a little explanation. SharePoint uses a
specific schema when creating the configuration file. The XML structure is displayed in Listing 18 - 6 ,
which contains the content of the configuration file for the custom document converter.

 Listing 18 - 6: Structure of the XML configuration file

 < ?xml version=”1.0” encoding=”utf-8”? >
 < RcaTransformation >
 < ConverterSettings SourceDocLibUrl=”/PressReleases/Pages” >

 < tableFormatting > gray < /tableFormatting >

 < /ConverterSettings >

c18.indd 356c18.indd 356 5/8/08 7:15:56 PM5/8/08 7:15:56 PM

Chapter 18: Offl ine Authoring with Document Converters

357

 < TransformationContext >
 < TransformationStateStore xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >
 < IsUpdate > false < /IsUpdate >
 < LayoutBodyFieldId > f55c4d88-1f2e-4ad9-aaa8-819af4ee7ee8 < /LayoutBodyFieldId >
 < LayoutStylesFieldId > a932ec3f-94c1-48b1-b6dc-41aaa6eb7e54
< /LayoutStylesFieldId >
 < PageSiteId > 8524a11c-55b0-463f-89b5-215659fbc51d < /PageSiteId >
 < PageWebId > 88c41972-22a3-40fb-a13c-bdff0152a5f1 < /PageWebId >
 < PageUrl > Pages/Sample.aspx < /PageUrl >
 < /TransformationStateStore >
 < /TransformationContext >
 < /RcaTransformation >

 The structure of the configuration file is fairly static and is handled by SharePoint. However, when
creating custom settings that should be passed into the converter, as demonstrated later in the section
 “ Adding Settings to Document Converters, ” those settings are added to the section highlighted in
Listing 18 - 6 . The tableFormatting node is the custom node that will be added by a custom settings
page created later.

 With the styles written out to the HTML file, the next step is to write out the body of the page. This task
is handled by the WriteHtmlBody() method, shown in Listing 18 - 7 .

 Listing 18 - 7: Document converter ’ s WriteHtmlBody() method, generating the content

private static void WriteHtmlBody (StreamReader reader, HtmlTextWriter writer) {
 // load data
 XmlDocument xDoc = new XmlDocument();
 xDoc.Load(reader);

 string tableHeading = xDoc.SelectSingleNode(“/root/Title”).InnerText;
 string tableDescription = xDoc.SelectSingleNode(“/root/Description”).InnerText;
 XmlNode tableColumns = xDoc.SelectSingleNode(“/root/Data/Columns”);
 XmlNode tableRows = xDoc.SelectSingleNode(“/root/Data/Rows”);

 writer.RenderBeginTag(HtmlTextWriterTag.Body);

 // write table heading and description
 writer.WriteLine(String.Format(“ < h1 > {0} < /h1 > ”, tableHeading));
 writer.WriteLine(String.Format(“{0}”, tableDescription));

 // write table
 writer.RenderBeginTag(HtmlTextWriterTag.Table);

 // write heading row
 writer.RenderBeginTag(HtmlTextWriterTag.Thead);
 writer.RenderBeginTag(HtmlTextWriterTag.Tr);
 foreach (XmlNode column in tableColumns.ChildNodes) {
 writer.RenderBeginTag(HtmlTextWriterTag.Th);
 writer.WriteLine(column.InnerText);
 writer.RenderEndTag(); // < /TH >
 }

(continued)

c18.indd 357c18.indd 357 5/8/08 7:15:57 PM5/8/08 7:15:57 PM

Chapter 18: Offl ine Authoring with Document Converters

358

 writer.RenderEndTag(); // < /TR >
 writer.RenderEndTag(); // < /THEAD >

 // write data rows
 writer.RenderBeginTag(HtmlTextWriterTag.Tbody);
 foreach (XmlNode row in tableRows.ChildNodes) {
 writer.RenderBeginTag(HtmlTextWriterTag.Tr);
 foreach (XmlNode rowColumn in row.ChildNodes) {
 writer.RenderBeginTag(HtmlTextWriterTag.Td);
 writer.WriteLine(rowColumn.InnerText);
 writer.RenderEndTag(); // < /TD >
 }
 writer.RenderEndTag(); // < /TR >
 }
 writer.RenderEndTag(); // < /TBODY >
 writer.RenderEndTag(); // < /TABLE >
 writer.RenderEndTag(); // < /BODY >
}

 At this point the document converter is complete. Developers can test their work by manually calling the
converter, passing in the required parameters just as they would with any other console application, as
this one does not do anything with respect to a SharePoint context.

 At times the document converter needs to be tested “ in flight, ” or when the Launcher service executes it.
In this case, the developer needs to attach the Visual Studio debugger manually. This can be a bit tricky,
as the console executable will be triggered by another application, SharePoint, and could possibly run
very quickly. However, there is a technique that can stop the converter when it runs and give a developer
the chance to attach the debugger to debug the code. To do this, add the following line to where the
process should stop, ideally just inside the Main() method:

System.Diagnostics.Trace.Assert(false, “MOSS Document Converter currently
paused.”);

 This will display a dialog box on the server (shown in Figure 18 - 6) when executed and stop the
document converter until addressed. Before addressing the dialog box, manually attach the debugger in
Visual Studio as demonstrated throughout this book. Look for the name of the console application,
which will appear after checking Show Processes From All Users, as it will be running under the context
of the HVU_ < machinename > account. Once the debugger is attached and a breakpoint set, click the
Ignore button on the dialog to enable the document converter to continue. It should then hit the
breakpoint. If it fails to do so, it is likely that the debugging symbols (*.pdb) are not located in the same
directory as the console executable. Just copy that file into the directory and try again.

Listing 18-7 (continued)

Figure 18-6

c18.indd 358c18.indd 358 5/8/08 7:15:57 PM5/8/08 7:15:57 PM

Chapter 18: Offl ine Authoring with Document Converters

359

 Another issue that may arise is that the document converter may not fire at all. In this case, check the
ULS logs located in [..]\12\LOGS for entries in the category Launcher Service to help in
troubleshooting the problem.

 Deploying Custom Document Converters
 With the document converter created, the next step is to package it up for deployment and
registration with SharePoint. Document converters are registered with SharePoint Web applications
using a SharePoint Feature. The Feature tells SharePoint what types of files can be converted, the name
of the console executable previously created that should be triggered, and any extra information needed
for document converter – specific settings.

 Deploying, installing, and activating a Feature are not all that is required for implementing a custom
document converter. In addition, the document converter executable should also be deployed to a
specific folder on each server in the farm that has the Launcher service running:

c:\Program Files\Microsoft Office Servers\12.0\TransformApps

 Unfortunately, the Windows SharePoint Services (WSS) solution package framework used throughout
this book for deployment provides no such vehicle for deploying this file to the proper folder. Therefore,
once the solution has been deployed, an administrator must manually copy the document converter
executable to the required location on each and every server where the Launcher service is running.

 For more information on some non - OOTB solutions addressing the deployment issue whereby
 document converter executables are not deployed, see www.andrewconnell.com/go/265 .

 Creating the Document Converter Feature
 The SharePoint Feature schema includes a < DocumentConverter > element that is placed in an element
manifest file. The Feature should be scoped for Web applications, as shown in Listing 18 - 8 .

 Listing 18 - 8: Feature used for registration with a SharePoint Web application

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”7E71F2BF-774F-4871-A3DC-B0E52B074E96”
 Title=”Chapter 18 - XML Data to HTML Table Document Converter”
 Scope=”WebApplication”
 Hidden=”False”
 Version=”1.0.0.0” >

 < ElementManifests >
 < ElementManifest Location=”XmlToHtmlConverter.xml” / >
 < ElementFile Location=”Chapter18XmlDataToHtmlConverter.exe” / >
 < /ElementManifests >

 < /Feature >

c18.indd 359c18.indd 359 5/8/08 7:15:57 PM5/8/08 7:15:57 PM

Chapter 18: Offl ine Authoring with Document Converters

360

 Shown in Listing 18 - 9 is the Feature ’ s element manifest, which will register the document converter with
a specific Web application.

 Listing 18 - 9: Feature ’ s element manifest, registering a document converter

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < DocumentConverter Id=”1937057B-51CC-4968-8D13-C1BC4DB67F39”
 Name=”XML Data to HTML (as HTML table)”
 From=”xml”
 To=”html”
 App=”Chapter18XmlDataToHtmlConverter.exe”
 ConverterUIPage=”CreatePage.aspx” / >
 < /Elements >

 Notice that Listing 18 - 9 includes references to the type of file that can trigger the conversion process
(From= ” xml ”), the file type generated (To= ” html ”), and the name of the actual document converter
executable (App= ” Chapter18XmlDataToHtmlConverter.exe ”). In addition, because this converter
will generate a page, the Feature needs to tell SharePoint the page that users should be directed to in
order to specify any settings required for the conversion. This attribute, ConverterUIPage , is required
for document - to - page conversions. In this case, the OOTB page will suffice.

 While at this point the document converter could certainly be used in a real - world environment, what if
the document converter needs some custom settings by the administrator or user? The next section looks
at adding custom settings to document converters.

 Adding Settings to Document Converters
 Many document converters will require some sort of configuration information. Such settings could be
set by an administrator, such as the name of the content type and page layout to use when creating the
page, or by the user, such as the name of the Publishing page that is automatically generated by the
conversion process. Following the extensibility theme, Microsoft added the capacity for developers to
grant administrators and users the capability to enter custom settings consumed by a custom document
converter. The custom settings are embedded in the configuration XML file, whose location is passed as
one of the four arguments to the document converter.

 Consider any of the OOTB document converters, such as the From InfoPath Form to Web Page
document converter. When administrators configure the document converter on a content type, they can
specify the view in the InfoPath file to be used when generating the HTML from the data in the form, as
shown in Figure 18 - 7 . This is a custom setting needed by the document converter.

c18.indd 360c18.indd 360 5/8/08 7:15:58 PM5/8/08 7:15:58 PM

Chapter 18: Offl ine Authoring with Document Converters

361

Figure 18-8

Figure 18-7

 When users trigger the conversion process on the InfoPath file, they must specify the name of the page
(the filename) to create as well as the title of the page. Generally, all document converters that generate
HTML pages use the same settings page: CreatePage.aspx .

 All the customization of specific settings pages for individual document converters is handled by
creating custom ASP.NET 2.0 pages or user controls (*.ASCX files). These pages and controls are
associated with the document converter within the Feature ’ s element manifest. This was previously
demonstrated in Listing 18 - 9 , which set the user settings page to CreatePage.aspx using the
 ConverterUIPage attribute.

 The custom settings data entered by the administrator and user is passed into the document converter
via the configuration file parameter. The XML configuration conforms to the schema demonstrated in
Listing 18 - 6 . This includes not only the stock settings information, but also any settings introduced by
the developer.

 At this point the document converter can be deployed and tested. Use the sample.xml file in the
provided code for this chapter to generate a new Publishing page that will look like the one shown in
Figure 18 - 8 .

 Adding custom settings to a document converter is a little different, varying according to who will enter
the configuration information: the administrator or the user requesting the conversion.

c18.indd 361c18.indd 361 5/8/08 7:15:58 PM5/8/08 7:15:58 PM

Chapter 18: Offl ine Authoring with Document Converters

362

 Implementing Administrator Settings
 Adding custom settings information to a document converter for an administrator to enter takes place at
the content type configuration level. Developers are given two options for adding custom settings
information. They are free to define a custom ASP.NET 2.0 page that the administrator is presented with
when they select the Configure link on the Manage Document Conversion for [content type name] page that
can be reached by selecting the Manage Document Conversions for this Content Type link on the content
type ’ s settings page. This is done by setting the value of the ConverterSettingsForContentType
attribute in the document converter ’ s Feature element manifest file.

 Another option is to use an existing converter settings page, such as the OOTB ConverterSettings
.aspx , and inject a new section into the page. This is done by specifying the name of a user control
in the ConverterSpecificSettingsUI attribute. When this technique is used, the
 ConverterSettingsForContentType attribute must also be set to tell SharePoint what settings page
should be used. The settings page must have a ConverterSpecificControl master page content
placeholder control, which SharePoint will use to dynamically inject the settings user control into.

 This user control ’ s code - behind must implement the Microsoft.SharePoint.Publishing
.IDocumentConverterControl interface. This interface provides the minimal plumbing, such as the
name to display for the custom section in the settings page and code to serialize/deserialize the custom
settings to/from SharePoint in order to include them in the XML configuration file.

 The custom converter created in this chapter is going to have a special administrator - specified setting: the
formatting to use when generating the HTML table of the data. The administrator should select one value
among three: Raw, Gray, or Black. These options will simply be used when defining the styles that are
automatically generated by the converter.

 Create a new user control named XmlToHtmlConverterSettings.ascx in the project (see Listing
18 - 10). This file will be deployed to the [..]\12\LAYOUTS folder, so mimic the structure in the Visual
Studio project. The file will inherit a code - behind class created later and utilize some of the SharePoint -
 provided controls. Next, use these SharePoint - provided form controls to create a simple ASP.NET 2.0
drop - down list, as shown in Figure 18 - 9 .

 Listing 18 - 10: XmlToHtmlConverterSettings.ascx admin settings control

 < %@ Control Language=”C#” Inherits=”WROX.ProMossWcm.Chapter18-
XmlToHtmlConverterSettings, Chapter18XmlToHtmlConverterFeature, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=c591e70cfdf9ce4f” CompilationMode=”Always” % >
 < %@ Register TagPrefix=”wssuc” TagName=”InputFormSection”
Src=”/_controltemplates/InputFormSection.ascx” % >
 < %@ Register TagPrefix=”wssuc” TagName=”InputFormControl”
Src=”/_controltemplates/InputFormControl.ascx” % >
 < wssuc:InputFormSection runat=”server”
 Description=”Select the predefined table formatting options
for the HTML table to be generated. The selection here will define what embedded
styles to add to the converted page.” >
 < Template_InputFormControls >
 < wssuc:InputFormControl runat=”server”
 LabelText=”Table formatting options:” >
 < Template_Control >

c18.indd 362c18.indd 362 5/8/08 7:15:58 PM5/8/08 7:15:58 PM

Chapter 18: Offl ine Authoring with Document Converters

363

 < asp:DropDownList ID=”TableFormattingDropDownList”
 runat=”server” >
 < asp:ListItem > Raw < /asp:ListItem >
 < asp:ListItem > Gray < /asp:ListItem >
 < asp:ListItem > Black < /asp:ListItem >
 < /asp:DropDownList >
 < /Template_Control >
 < /wssuc:InputFormControl >
 < /Template_InputFormControls >
 < /wssuc:InputFormSection >

Figure 18-9

 Next, create a new class to act as the code - behind for the user control and implement the
 IDocumentConverterControl interface, as shown in Listing 18 - 11 . Notice the highlighted property
 ConverterSettings that handles the serialization and deserialization for the settings.

 Listing 18 - 11: XmlToHtmlConverterSettings.cs settings control code - behind

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Xml;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Publishing;
using Microsoft.SharePoint.WebControls;

namespace WROX.ProMossWcm.Chapter18 {
 public class XmlToHtmlConverterSettings : UserControl, IDocumentConverterControl
{
 private const string CONVERTER_NAME= “XmlToHtmlConverterSettings”;
 private SPContentType _contentType;
 protected DropDownList TableFormattingDropDownList;

 SPContentType IDocumentConverterControl.ContentType {
 get { return _contentType; }
 set { _contentType = value; }
 }
 (continued)

c18.indd 363c18.indd 363 5/8/08 7:15:59 PM5/8/08 7:15:59 PM

Chapter 18: Offl ine Authoring with Document Converters

364

 string IDocumentConverterControl.ConverterSettings {
 get {
 return “ < tableFormatting > ” +
TableFormattingDropDownList.SelectedValue.ToString() + “ < /tableFormatting > ”;
 }
 set {
 if (!string.IsNullOrEmpty(value)) {
 XmlDocument xdoc = new XmlDocument();
 xdoc.LoadXml(value);
 XmlNode node = xdoc.SelectSingleNode(“tableFormatting”);
 TableFormattingDropDownList.SelectedValue = node.InnerText;
 }
 }
 }

 bool IDocumentConverterControl.RequiresConfiguration {
 get { return true; }
 }

 string IDocumentConverterControl.SectionDisplayTitle {
 get { return “Table Formatting”; }
 }
 }
}

 The highlighted code adds the < tableFormatting / > element to the < ConverterSettings / > node
in the configuration XML file.

 There is no need to create a custom administrator settings page because the OOTB one will do, so modify
the Feature ’ s element manifest file to point to the control, as shown in Listing 18 - 12 . Because a custom
control is being used, the settings page must be specified as well even if it is the OOTB one.

 Listing 18 - 12: Document converter ’ s Feature element manifest

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >
 < DocumentConverter Id=”1937057B-51CC-4968-8D13-C1BC4DB67F39”
 Name=”XML Data to HTML (as HTML table)”
 From=”xml”
 To=”html”
 App=”Chapter18XmlDataToHtmlConverter.exe”
 ConverterUIPage=”CreatePage.aspx”

 ConverterSettingsForContentType=”ConverterSettings.aspx”
 ConverterSpecificSettingsUI=”XmlToHtmlConverterSettings.ascx” / >

 < /Elements >

 At this point the Visual Studio project should now look similar to the one in Figure 18 - 10 .

Listing 18-11 (continued)

c18.indd 364c18.indd 364 5/8/08 7:15:59 PM5/8/08 7:15:59 PM

Chapter 18: Offl ine Authoring with Document Converters

365

Figure 18-10

 Next, modify the WriteStyles() method in the document converter to consume the configuration file
and alter the generated output accordingly, as shown in Listing 18 - 13 .

 Listing 18 - 13: Document converter ’ s WriteHtmlStyles() method, generating the styles

private static void WriteHtmlStyles (StreamReader reader, HtmlTextWriter writer,
string configFile) {

 // load the settings
 XmlDocument xDoc = new XmlDocument();
 xDoc.Load(configFile);
 XmlNode tableFormattingType =
xDoc.SelectSingleNode(“/RcaTransformation/ConverterSettings/tableFormatting”);

 // write < head > & < style > tags
 writer.RenderBeginTag(HtmlTextWriterTag.Head);
 writer.RenderBeginTag(HtmlTextWriterTag.Style);

 // write styles
 writer.WriteLine(“TABLE {border-style:3px black solid;}”);
 writer.WriteLine(“TD {border-style:1px gray solid;}”);

 switch (tableFormattingType.InnerText.ToLower()){
 case “raw”:
 writer.Write(“TH {font-weight:bold;}”);
 break;
 case “gray”:
 writer.Write(“TH {font-weight:bold; color:black; background-color:gray;}”);
 break;

(continued)

c18.indd 365c18.indd 365 5/8/08 7:15:59 PM5/8/08 7:15:59 PM

Chapter 18: Offl ine Authoring with Document Converters

366

 case “black”:
 writer.Write(“TH {font-weight:bold; color:white; background-color:black;}”);
 break;
 }

 writer.RenderEndTag(); // < /STYLE >
 writer.RenderEndTag(); // < /HEAD >
}

 Implementing User Settings
 Developers are also free to specify custom settings pages that users who initiate the conversion process
will be prompted with in order to provide any additional configuration information for the document
converter. When any document converter creates HTML pages, this should be set to the OOTB
 CreatePage.aspx page.

 Pre - and Post - Conversion Processing
 After a file has been successfully processed by a document converter, the Launcher service runs some
post - processing tasks, as covered previously in the chapter. However, developers may have a need to
run some additional post - processing tasks or even some pre - processing logic before the document
converter is initiated.

 The only way to do either pre or post custom processing is to initiate the conversion process through the
object model. Both use the same model — when initiating the conversion process, pass two arguments:
the name of the class containing the logic and the strong name of the assembly containing the class.

 In order to add pre - or post - processing logic to the conversion process, create a new class that inherits
from the Microsoft.SharePoint.ISPConversionProcessor interface. This interface defines two
self - explanatory methods: PreProcess() and PostProcess() . For the pre - and post - processing, the
conversion must be initiated using the SPFile.Convert() method.

 Working with Document Converters via the
Object Model

 The process of initiating document converters has been demonstrated in this chapter assuming a user -
 browser interface. However, just like everything else in SharePoint, if it can be done through the browser
or STSADM.EXE , then it can be done with the SharePoint API. In fact, the conversion process must be
initiated programmatically through the API if the document converter should run custom pre - or post -
processing logic and the priority level of the conversion.

 For a list of the most commonly used methods and properties when working with document converters via
the object model, refer to the official documentation on MSDN: www.andrewconnell.com/go/266 .

Listing 18-13 (continued)

c18.indd 366c18.indd 366 5/8/08 7:16:00 PM5/8/08 7:16:00 PM

Chapter 18: Offl ine Authoring with Document Converters

367

 While using document converters to create Publishing pages within a Publishing site, simply calling
 SPFile.Convert() will not do. This is because a page must be programmatically added to the site using
the Microsoft.SharePoint.Publishing namespace. Specifically, to create a new page based on a
document using a specific document converter, use one of the overloads provided on the
 PublishingPageCollection.Add() method. Two of the three overloads on this method enable the
developer to specify the file (SPFile) to use as the original document, the GUID of the document
converter (defined in the Feature ’ s element manifest), the conversion priority, and optionally the
configuration XML.

 If a Publishing page has already been generated using a document converter, then the page can be
programmatically refreshed with the updated document by obtaining a reference to the page and calling
the PublishingPage.UpdateContentFromSourceDocument() method.

 Summary
 This chapter introduced an alternate way to create content within a Publishing site, or any MOSS site,
using document converters. The document converter framework enables users to create new pages within
a Publishing site by authoring the documents in Word 2007, InfoPath 2007, or a raw XML file. While only
four document converters are included OOTB that are intended to be used in the context of Publishing
sites, the document converter infrastructure is part of the MOSS Enterprise Content Management strategy
and can therefore be used to take any type of document and convert it to another type.

 Thankfully, the document converter framework is not sealed and can be leveraged by developers in
creating custom document converters. Not only can custom document converters be created to satisfy
any business requirements, but developers can also add custom settings pages and controls that site
administrators and users alike can consume in order to personalize each execution of the custom
document converter.

c18.indd 367c18.indd 367 5/8/08 7:16:00 PM5/8/08 7:16:00 PM

c18.indd 368c18.indd 368 5/8/08 7:16:00 PM5/8/08 7:16:00 PM

 Performance Tips, Tricks,
and Traps

 Prior releases of SharePoint focused on team - based collaboration sites, corporate intranets or
extranets that typically had a finite audience. Even though the total potential audience for a team
site or corporate intranet is not as significant as an anonymous site, performance was still an issue
with SharePoint sites. The same is true in the most recent release of SharePoint in both Windows
SharePoint Services (WSS) 3.0 and Office SharePoint Server (MOSS) 2007. The added capability of
hosting content - centric anonymous sites on the SharePoint platform makes performance even
more of an issue today.

 The significant architectural change in the SharePoint foundation, i.e., being built on top of ASP
.NET 2.0 rather than in a side - by - side model as in WSS 2.0, provided the most significant
performance benefit to the platform. This change facilitated the removal of the ISAPI filter from
Internet Information Services (IIS) that glued SharePoint together with ASP.NET 1.1 and was the
cause for a significant drag on the performance of any SharePoint 2.0 site.

 MOSS 2007 provides additional performance optimization opportunities above and beyond what
WSS 3.0 offers out of the box (OOTB). Site administrators and developers can take advantage of
ASP.NET 2.0 caching techniques to reduce the burden on SharePoint Web Front End (WFE) servers
as well as SQL Servers. This chapter covers the different caching techniques, as well as ways to
extend and customize them for your specific needs.

 Caching is not the only issue when it comes to performance. SharePoint 3.0 is a very powerful and
flexible application. One of the downsides in providing this flexible and powerful environment is
that SharePoint commonly generates rather large page sizes for low - bandwidth users. Thankfully,
opportunities exist to control and reduce a page ’ s size, or payload, for all requestors based on
different conditions, such as whether they are anonymous or authenticated users. This chapter
explores some of the different options available to assist in reducing the page ’ s payload.

 Finally, most performance issues that arise are caused by poorly written custom code that has been
integrated into a SharePoint site. This chapter describes a few coding techniques that all SharePoint

c19.indd 369c19.indd 369 5/8/08 7:16:50 PM5/8/08 7:16:50 PM

Chapter 19: Performance Tips, Tricks, and Traps

370

developers, especially Publishing site developers, should be aware of when creating SharePoint sites in
order to avoid common pitfalls in custom solutions.

 SharePoint Caching Options
 SharePoint ’ s architecture is set up such that most if not all site content lives inside the SharePoint content
database. Not only is the content in the database, but so are a considerable amount of layout files such as
master pages, page layouts, style sheets, and images. With so much content in the database, the
SharePoint WFE servers are very chatty with the database server. This results in a considerable amount
of traffic between the database(s) and WFE server(s). Aside from pulling data directly from the
database(s), SharePoint also pulls data from across lists and sites for such things as navigation and cross -
 list and site queries for the Content Query Web Part (CWQP). All this data is then used on the SharePoint
WFE servers to construct the pages, which are built and compiled by ASP.NET 2.0 to create the rendered
HTML output that is returned back to the requestor.

 WSS 3.0 leverages some of the caching techniques provided in ASP.NET 2.0 to optimize data retrieval
and page processing. MOSS 2007 takes SharePoint ’ s performance optimizations a step further in three
areas: output caching, object caching, and disk - based BLOB caching. Each of these techniques is
exclusive to MOSS 2007 and can be leveraged within Publishing sites to squeeze the most performance
out of a site.

 Each of the caching options has an extensive administrative interface associated with it. Instead of
documenting the administration screens and options in a developer book, refer to the official
documentation in the MOSS 2007 SDK on MSDN: www.andrewconnell.com/go/267 . The topics
covered in this chapter explain at a high level how these different caching options work and how they
can be customized from a developer ’ s perspective.

 Page Output Caching
 Page output caching in MOSS 2007 is virtually identical to the same technology found in ASP.NET 2.0 —
 with two major differences. When implementing page output caching in an ASP.NET 2.0 site, developers
add an OutputCache attribute to the Page or Control directive in an *.ASPX or *.ASCX file. This tells
ASP.NET 2.0 to store the resulting HTML that is generated by the page life cycle in memory (RAM) for a
period of time. Subsequent requests will receive the same rendered HTML output in memory, rather
than cause the ASP.NET 2.0 page life cycle to start up and go through the process of compiling and
executing the page to generate the rendered output.

 How is SharePoint different? Generally speaking, the process and net result is identical. One of the major
differences is that the OutputCache attribute is not used on the Page or Control directive. That ’ s
because pages created for a SharePoint site may be used in more than a single site; they may be used
across multiple sites or site collections, all served up from the same template file on the file system.
Instead, pages need to have the caching configured for certain circumstances (authenticated or
anonymous requests), as well as specific sites.

 Rather than manage the caching using the OutputCache attribute on pages and controls, MOSS 2007
Publishing sites have extra administrative screens added to the top - level site within a site collection. From
the site collection ’ s administration page, a site owner can create one or more profiles (Site Settings Site
Collection Cache Profiles). A profile consists of things such as how long the HTML in cache is retained,

c19.indd 370c19.indd 370 5/8/08 7:16:51 PM5/8/08 7:16:51 PM

Chapter 19: Performance Tips, Tricks, and Traps

371

whether SharePoint should check whether the HTML in cache was generated using the same permissions
as the current request, or whether SharePoint should check whether the underlying data has changed
(and if so, purge the cached HTML and regenerate the page). While it may seem a bit excessive, these
options are very helpful in certain cases:

 Perform ACL Check — For profiles used on an anonymous site, get a little extra performance
boost by avoiding the check to see whether the requestor who caused the current HTML in
cache had the same permissions as the current user requesting the page. On an anonymous site,
everyone has the same permissions so this is not necessary. However, this is not the case on a
non - anonymous site such as an intranet or extranet.

 Check for Changes — Is it more important to always show the most updated content or is it
more important to have the greatest performing site possible? Good news: SharePoint enables
the site owner to decide what is more important.

 Allow writers to view cached content — If a content owner is editing content on the same site
where caching is utilized, does it make sense for that person to see potentially stale content even
if it is just a few minutes old, or is it more important for them to see the latest version of the
page? Again, SharePoint does not dictate this, leaving the decision in the hands of the site
administrator.

 Site administrators assign these profiles as either the anonymous profile or the authenticated profile on
the site collection. Setting the profile at the site collection does not implicitly affect the entire site
collection. Similar to master pages, site administrators can break the inheritance and configure a
particular site ’ s cache profile. This allows for more granular control than what is offered in out - of - the -
 box ASP.NET 2.0 sites.

 What version of the page are the readers seeing? MOSS 2007 provides an easy way to see whether a page
is pulled from cache or not, as well as to see how old the page is. When setting the cache profile on a site
collection or site, site administrators can elect to include debug information. When this checkbox is
selected, SharePoint adds an HTML comment just after the closing < HTML > tag that includes the name of
the profile used as well as the timestamp indicating when it was added to cache:

 < !-- Rendered using cache profile:Public Internet (Purely Anonymous) at: 2007-10-
15T16:53:40 -- >

 Object Caching
 Object caching is another option available to Publishing site administrators when optimizing site
performance. While output caching stores the rendered HTML in memory, object caching stores actual
managed objects within memory that are later used by SharePoint. Object caching is most commonly
used in behaviors such as cross - site and cross - list queries. Issuing queries for things such as navigation
and CQWPs is an expensive process compared to other processes. To alleviate the burden, the resulting
objects from these queries are stored in cache. Subsequent requests that require these same queries then
retrieve the content directly from memory, rather than execute the exact same expensive query.

 The object cache is configured on the Site Settings Site Collection Object Cache page. From here, page
administrators can configure how much RAM on the server to use when storing items in cache, as well
as whether it is used. Site administrators can even force the invalidation (aka flushing) of the object cache
on the current SharePoint WFE or on all WFEs in the SharePoint farm.

❑

❑

❑

c19.indd 371c19.indd 371 5/8/08 7:16:51 PM5/8/08 7:16:51 PM

Chapter 19: Performance Tips, Tricks, and Traps

372

 There is one setting on the Object Cache Settings page that warrants a bit more explanation than what is
provided in the browser interface: Cross List Query Results Multiplier. When a query is executed,
SharePoint retrieves extra results — that is, more than what is desired and used in the actual query.
Sounds like a waste, so why is this even an option? Consider a non - anonymous site that contains a
CQWP. The first time the page containing the Web Part is requested, the CQWP executes the query and
stores the results in the database. If another user visits the same page a few seconds later but has
different rights within the same target result set, SharePoint would need to rerun the query because the
result set was generated using a different set of permission criteria. The multiplier enables SharePoint to
widen the result set retrieved in the query and store it within the cache. Subsequent requests would be
able to use the cached results and filter it, rather than rerun the expensive query. The greater the
multiplier, the more data is retrieved in each query. Careful testing should be undertaken when
manipulating the multiplier, as it can quickly result in adverse affects — consuming more memory much
quicker on the WFE than desired. Note that security trimming of items from the search results is still
applied to content in the cache.

 Disk - Based Caching (BLOB Cache)
 The final type of caching available to Publishing sites in MOSS 2007 is disk - based caching for very large
 binary large objects (BLOBs) . These are static media files stored in the database, such as sound, video, and
image files. Pulling these files repeatedly from the SharePoint content database creates unnecessary
overhead, as their content does not change. Instead, when disk - based caching is enabled, these files are
stored on the SharePoint WFE server ’ s hard disk upon the first request. Subsequent requests for the
same file are then pulled from the WFE disk, rather than from the database, thereby reducing the
network and database server load.

 To enable disk - based caching, find the following line in the web.config file for the Web application
containing the Publishing site:

 < BlobCache location=”C:\blobCache” path=”\.(gif|jpg|png|css|js)$” maxSize=”10”
enabled=”false” / >

 This line dictates where the BLOB files are stored on the WFE, if disk - based caching is enabled; the
maximum amount of space that can be occupied by the BLOB cache (measured in GB); and the filename
pattern to use as the criteria if a file can be saved to the BLOB cache. This pattern, the < BlobCache
Path= ” ” / > attribute, contains a regular expression that is matched against the names of the files pulled
from the SharePoint content database. By default, all files in the BLOB cache are stored in cache for
24 hours. In addition, only items stored in SharePoint document libraries are cached using disk - based
caching.

 Limiting the Page Payload
 One issue that always arises in regard to SharePoint 3.0 sites with respect to performance is the size of
the complete payload for a requested page. The payload of a page is the combined size of all of the files
needed for the page to be rendered and perform as desired. This includes not only the HTML of the
page, but any referenced style sheets, images, media, and client - side script. Before looking at any of the
options, understand that a Publishing site, or any SharePoint 3.0 site for that matter, can be completely
customized to look like anything using master pages and CSS. Sure, SharePoint ’ s OOTB layout is HTML
table – based, rather than a more concise CSS - based design, but that does not mean a SharePoint site has

c19.indd 372c19.indd 372 5/8/08 7:16:51 PM5/8/08 7:16:51 PM

Chapter 19: Performance Tips, Tricks, and Traps

373

Developers Toolbox: Fiddler Tool
One of the most powerful tools available to Web developers is Fiddler
(www.andrewconnell.com/go/268). Fiddler is an HTTP debugging proxy freeware
utility that logs all HTTP traffic between the computer it is installed on and the
network. Developers can use this tool to inspect all HTTP requests and responses.
This tool is used to inspect the traffic, the files requested, and file size in this section.

Figure 19-1

to be table - based — that is just how it shipped. Developers and designers can create a completely
customized SharePoint design and implementation with a small page size.

 Regardless, there are some SharePoint infrastructure files that contribute quite a bit to the SharePoint
page size. This section covers a few techniques developers can implement to reduce the payload of
the page. For demonstration purposes, an OOTB site created using the Publishing Portal template is
used. The only modification that has been made to the site is to configure it for anonymous access; no
other content or branding changes have been made.

 A request for the home page of a Publishing site (created with the OOTB Publishing Portal template)
generates a total of 22 requests for various files, as shown in Figure 19 - 1 — resulting in a combined file
size of 204k. Most of these files (16) are used to provide the banding and rendering of the page, such as
the ASPX page (containing the generated HTML), CSS, and image files. The content and branding files
account for 91k (44.6%) of the request for the home page of a Publishing Portal site. This leaves six script
files (shown as sessions 7 – 12 in Figure 19 - 1) to account for the remaining 111k (54.4%) of the request.
While all script files are cached after the first request, this first request can add a considerable amount of
time to the page load if the user is not on a broadband connection.

c19.indd 373c19.indd 373 5/8/08 7:16:52 PM5/8/08 7:16:52 PM

Chapter 19: Performance Tips, Tricks, and Traps

374

 SharePoint ’ s CORE.JS
 The biggest of the script files is the one that provides the functionality in the Site Actions menu:
core.js . This one file accounts for over 26% of the page payload, weighing in at 54k — and this is
compressed (more on compression in the next section). Controlling when this file is loaded can yield a
significant performance boost to the loading of the page (26%!). Because this file primarily contains the
script that implements the SharePoint Site Actions menu, it is not always needed.

 For instance, anonymous users who don ’ t have access to the Site Actions menu do not need core.js at
all. In these cases, core.js could be suppressed from being delivered to the page. What about
authenticated users? While authenticated users will likely need access to the Site Actions menu, a
technique referred to as delayed loading, or lazy loading, of the JavaScript file can be employed. Both of
these techniques are explained in more detail in the following sections.

 Note that these six JavaScript files that account for over 54% of the page payload are actually compressed
before they are sent to the client. This is done using IIS compression.

 IIS Compression
 IIS compression, a capability of Internet Information Services (IIS), compresses static files before sending
them to the requestor. These compressed file types, such as JavaScript and HTML files, are stored
in a temporary directory when first requested. When creating a SharePoint Web application, IIS is
configured to compress all files in the http://[..]/_layouts directory. Images are not included in
IIS compression because they are already compressed.

 As Figure 19 - 1 demonstrated, six JavaScript files are responsible for 111k, or 54.4%, of the payload when
requesting the home page of the Publishing Portal site the first time. These files are actually much bigger
because the 111k represents the compressed version of these files. Take a look in the [..]\12\TEMPLATE\
LAYOUTS\1033 folder to find four of the six files: core.js , ie55up.js (or ie50up.js), init.js , and
 search.js (the other two files are embedded resources in SharePoint assemblies, which are not easily
accessible). These files in their uncompressed form total over 452k in size! Core.js alone is 258k! This
means that IIS compression is already providing a 75% performance improvement; core.js alone is
compressed down to only 20% of its original size.

 While IIS compression plays a significant role in reducing the page payload, there is still 111k in
JavaScript that needs to be sent down to the client. Of that amount, 54k is attributed to core.js . The
next two sections demonstrate two techniques to mitigate the size issue of core.js .

 Loading core.js Only When Necessary
 As mentioned previously, core.js contains the JavaScript necessary to implement the Site Actions
menu. When a page is requested, core.js is also requested, which slows down the page load on the
first request (core.js is cached locally for subsequent requests). Because the core.js file includes the
JavaScript to implement the Site Actions menu, on a site that supports anonymous access it can be
suppressed from loading completely!

 The approach of suppressing core.js completely is not supported by Microsoft and should be carefully
considered. However, this technique is just one part of the technique described in the following section:
delayed loading of core.js . Therefore, it is recommended that you implement the complete delayed
loading solution. It still achieves a major goal in improving the page load time, while also loading
 core.js in the background.

c19.indd 374c19.indd 374 5/8/08 7:16:52 PM5/8/08 7:16:52 PM

Chapter 19: Performance Tips, Tricks, and Traps

375

 The first step is to either create a new master page or edit an existing one. This demonstration uses a
copy of the BlueBand.master master page called BlueBandSlimPayload.master . In the < HEAD >
section of the page, add the following server control, which tells SharePoint that unless another control
on the page registers core.js , it should not be registered on the page:

 < SharePoint:ScriptLink runat=”server” / >

 Create a new server control that checks whether the current user is authenticated or not. If they are
authenticated, then it should register core.js . The code in Listing 19 - 1 demonstrates how to create the
server control.

 Listing 19 - 1: Loading core.js for authenticated users only

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI.WebControls;
using Microsoft.SharePoint.WebControls;

namespace WROX.ProMossWcm.Chapter19 {
 [ToolboxItem(“ < {0}:RegisterCoreJsIfAuthenticated runat=\”server\” / > ”)]
 public class RegisterCoreJsIfAuthenticated : WebControl {

 protected override void OnInit (EventArgs e) {

 // if the current user is authenticated...
 if (HttpContext.Current.Request.IsAuthenticated)
 // register the core.js script in delayed load
 ScriptLink.RegisterCore(this.Page, true);

 base.OnInit(e);
 }

 }
}

 Compile and deploy the server control, adding the necessary safe control entry. This server control
touches the SharePoint object model, so either the CAS trust level of the Web application needs to be
running in WSS_Medium or a custom CAS policy needs to be created, granting this one assembly the
necessary permissions. The associated code download for this book, available from www.wrox.com ,
demonstrates how to create a custom CAS policy for this server control.

 After the server control is created, it needs to be registered and added to the BlueBandSlimPayload
.master master page. Add the following register directive to the top of the master page:

 < %@ Register TagPrefix=”WROX” Namespace=”WROX.ProMossWcm.Chapter19”
Assembly=”Chapter19SlimPagePayload, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c591e70cfdf9ce4f” % >

 Finally, add the server control to the < HEAD > portion of the page, as shown in Listing 19 - 2 .

c19.indd 375c19.indd 375 5/8/08 7:16:53 PM5/8/08 7:16:53 PM

Chapter 19: Performance Tips, Tricks, and Traps

376

 Listing 19 - 2: Implementing the RegisterCoreJsIfAuthenticated server control

 < head runat=”server” >
 < meta name=”GENERATOR” content=”Microsoft SharePoint” >
 < meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” >
 < meta http-equiv=”Expires” content=”0” >
 < SharePoint:RobotsMetaTag runat=”server”/ >
 < title id=”onetidTitle” >
 < asp:ContentPlaceHolder id=”PlaceHolderPageTitle” runat=”server”/ >
 < /title >
 < Sharepoint:CssLink runat=”server” / >
 < !--Styles used for positioning, font and spacing definitions-- >
 < SharePoint:CssRegistration name=” < % $SPUrl:~SiteCollection/Style
Library/~language/Core Styles/Band.css% > ” runat=”server”/ >
 < SharePoint:CssRegistration name=” < % $SPUrl:~sitecollection/Style
Library/~language/Core Styles/controls.css % > ” runat=”server”/ >
 < SharePoint:CssRegistration name=” < % $SPUrl:~SiteCollection/Style
Library/zz1_blue.css% > ” runat=”server”/ >
 < !--Placeholder for additional overrides-- >
 < asp:ContentPlaceHolder id=”PlaceHolderAdditionalPageHead” runat=”server”/ >
 < SharePoint:ScriptLink name=”init.js” runat=”server” / >

 < WROX:RegisterCoreJsIfAuthenticated runat=”server” / >

 < SharePoint:ScriptLink runat=”server” / >
 < /head >

 At this point, the core.js file will not be registered on the page when an anonymous user requests the
Publishing Portal site ’ s home page the first time, as shown by the following Fiddler capture in
Figure 19 - 2.

Figure 19-2

c19.indd 376c19.indd 376 5/8/08 7:16:53 PM5/8/08 7:16:53 PM

Chapter 19: Performance Tips, Tricks, and Traps

377

 Delayed Loading core.js
 Recall that core.js contains the JavaScript necessary to implement the Site Actions menu. When
a page is requested, core.js is also requested, which slows down the page load on the first request
(core.js is cached locally for subsequent requests). One option that can be employed in an effort to
improve the page load time is to delay loading the core.js file until after the rest of the page content has
been downloaded. While this does not eliminate the issue, it is a workaround that provides users of the
site with a better experience, as the download of core.js is pushed to the back of the line so to speak.

 Building off the BlueBandSlimPayload.master example in the previous section, create a new
application page named DelayLoadCoreJs.aspx in the [..]\12\TEMPLATE\LAYOUTS folder and add
the content in Listing 19 - 3 to the file.

 Listing 19 - 3: DelayLoadCoreJs.aspx

 < %@ Register Tagprefix=”SharePoint” Namespace=”Microsoft.SharePoint.WebControls”
Assembly=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c” % >
 < html >
 < head >
 < body >

 < SharePoint:ScriptLink name=”core.js” runat=”server” / >

 < script language=”javascript” >
 // don ’ t refresh the page when it gets focus
 DisableRefreshOnFocus();
 < /script >
 < /body >
 < /head >
 < /html >

 The only purpose of this page is to load core.js in the background . When this page is requested by the
user, the user downloads core.js one time and uses the locally cached version for future requests.
The next step is to get this page requested in the master page. To do this, add the code in Listing 19 - 4
to the bottom of the BlueBandSlimPayload.master master page.

 Listing 19 - 4: Lazy Loading core.js

 < !-- omitted from the book for readability -- >
 < /form >

 < iframe src=”/_layouts/DelayLoadCoreJs.aspx” style=”display:none;” / >

 < /body >
 < /html >

 Finally, test the solution by clearing the browser ’ s cache and requesting the Publishing Portal site as an
anonymous user. As the Fiddler trace shows in Figure 19 - 3, the core.js file is one of the last files
requested.

c19.indd 377c19.indd 377 5/8/08 7:16:53 PM5/8/08 7:16:53 PM

Chapter 19: Performance Tips, Tricks, and Traps

378

Figure 19-3

 Browser Cache and Content Expiration
 Another trick to managing page payload is by manipulating the browser caching settings on the client.
This can be done by adding special < META > tags in the < HEAD > portion of the page. These tags control
how long a page is cached or when it expires. For instance, the following tag tells the browser not to
retrieve a new version of the page until after midnight on New Year ’ s Eve 2007:

 < meta name=”expires” content=”Mon, 31 Dec 2007 23:59:59 GMT” / >

 The MetaTagsGenerator project on CodePlex (www.andrewconnell.com/go/201) provides an easy way
to manage the < META > tags in a Publishing site.

 Performance Programming Techniques
 Aside from the different caching options available in Publishing sites, and techniques to minimize the
page size returned to the requester, custom code is likely to be the area where the biggest performance
improvement can be realized. Custom code is typically where most of the performance issues arise in
SharePoint applications because developers are not aware of the inner workings of the .NET Framework
or some of the nuances in the SharePoint API.

 This section explains some of the more common issues that arise from Publishing sites in the area of
working with the SharePoint API. These concepts apply to any custom code written in SharePoint sites —
 not just Publishing sites or MOSS 2007 sites, but any WSS 3.0 – based site. In fact, these concepts go all the
way back to WSS 2.0!

c19.indd 378c19.indd 378 5/8/08 7:16:54 PM5/8/08 7:16:54 PM

Chapter 19: Performance Tips, Tricks, and Traps

379

 .NET Framework Disposable Objects
 Before explaining the specifics of disposable objects within the context of the SharePoint API, developers
must first understand what it means in general .NET terms. One of the core capabilities the .NET
Framework provides developers is managing system memory. This is what gives .NET applications the
label “ managed ” applications — the applications typically do not manage their own memory; instead,
the .NET Framework does it for them.

 .NET applications create objects that consume memory. These include objects such as integers, strings,
and classes, to name a few. After an object is created, developers do not have to explicitly destroy the
object. Instead, the .NET Framework ’ s garbage collector works behind the scenes to cleanup objects no
longer in use and free up the consumed memory. The garbage collector is triggered under certain
conditions such as when the CPU is idle for a given length of time or when a certain amount of memory
has been consumed. As it goes through the managed memory looking for objects no longer used by an
application, it keeps a record of all those objects that could be destroyed and have their consumed
memory returned to the system. Because the creation and destruction of an object is by far one of the
most expensive operations in the .NET Framework, the garbage collector uses the list of potential
candidates to determine where it can get the best bang for the buck: It destroys only the largest objects to
free up as much memory as possible, leaving the smaller objects alone until there are no more big objects
to destroy.

 Most developers are familiar with this aspect of the memory management infrastructure in the .NET
Framework. What many are not aware of is that the unmanaged memory still comes into play. Some
objects in the .NET Framework are actually small managed wrappers to much larger unmanaged blocks.
For instance, a database connection or an open file each have a managed and unmanaged footprint. The
challenge is that when the garbage collector runs, it can only see the managed portion. Therefore, it is not
getting an accurate picture of how much memory some objects are actually consuming.

 To address this issue, Microsoft created the System.IDisposable interface. This interface defines a
single method: Dispose() . This interface is supposed to be used on objects that require an extra bit of
cleanup before the garbage collector comes along. When an object implements the IDisposable
interface, it is a signal to developers using that object that they should call the Dispose() method as
soon as the object is no longer needed. The object ’ s Dispose() method does any necessary cleanup such
as releasing file references or closing database connections. Calling Dispose() ensures that the garbage
collector sees an accurate representation of how much memory is being consumed by a particular object.

 For more information on how the .NET Framework manages system memory, the garbage collector, and
the disposable pattern, refer to the Microsoft Patterns and Practices guide Improving .NET Application
Performance and Scalability on MSDN, specifically Chapter 5 , “ Improving .NET Application Performance
and Scalability ” : www.andrewconnell.com/go/269 .

 How High - Memory Usage Affects SharePoint Sites
 While it is generally an accepted principal that high memory usage in an application is not a good thing,
developers should understand the potential issues within the context of a SharePoint site.

 Application pools are typically configured to recycle themselves once they cross a certain threshold of
memory consumption. The recycling of an application pool is not the end of the world, as it does not
cause the site to be unavailable and result in bad responses to the requestors. If a request is received
when an application pool is recycling, the request is queued up until the application pool can serve it.

c19.indd 379c19.indd 379 5/8/08 7:16:54 PM5/8/08 7:16:54 PM

Chapter 19: Performance Tips, Tricks, and Traps

380

The downside of frequent application pool recycling is that it creates undue stress on the WFE, it loses
everything in cache, and it forces a just - in - time (JIT) compilation of each ASPX page within the
application on its next request. This results in a spike of the CPU, which is avoidable with good memory
management coding techniques.

 Another more drastic side - effect from high memory usage is the random OutOfMemory() exception.
These are incredibly nerve - wracking because they can be quite challenging to reproduce and typically
appear at random intervals in random spots throughout a SharePoint site.

 The worst result of high memory consumption in a SharePoint site is unexplained application crashes.
These are also challenging to debug because they may or may not occur at predictable times and with
repeatable results.

 Working with SharePoint Disposable Objects
 Why is this information about the IDisposable() interface important to SharePoint development? It is
critical because two commonly used objects in the SharePoint API are in fact small managed wrappers to a
much larger unmanaged object: SPSite and SPWeb . These two objects, or at least one of them, are used in
just about every single custom code component. When they are not properly managed they can result
in excessive memory consumption, causing major headaches for developers trying to troubleshoot issues
that arise in production but never appeared in development or load testing because the production load is
much more significant than expected.

 Generally speaking, just like .NET Framework objects, developers should dispose of SPSite and SPWeb
objects as soon as the objects are no longer needed in order to free up the unmanaged portion of memory.
 SPSite has an extra little - known issue in that when a new SPSite object is created, the SPSite
.RootWeb object is automatically hydrated with information about the site collection ’ s top - level site.
This is by design, as Microsoft anticipated that most calls to a site collection will also result in calls to the
top - level site in the site collection.

 When working with instances of a site collection (SPSite), developers should dispose of both the top -
 level site and the site collection as soon as possible:

SPSite siteCollection = new SPSite(“http://wcm”);
SPWeb topLevelSite = siteCollection.RootWeb;
// do some work
topLevelSite.Dispose();
siteCollection.Dispose();

 The same is true when working with SharePoint sites (SPWeb):

SPWeb site = siteCollection.OpenWeb(“ /PressReleases ”);
// do some work

site.Dispose();

 There are two generally accepted methods of coding when working with objects that implement the
 IDisposable interface. The first is using a try - catch - finally block, as shown in Listing 19 - 5 . The
 Dispose() method is called within the finally portion when it ’ s called — when either the try or
 catch portions complete.

c19.indd 380c19.indd 380 5/8/08 7:16:55 PM5/8/08 7:16:55 PM

Chapter 19: Performance Tips, Tricks, and Traps

381

 Listing 19 - 5: Working with disposable objects with try - catch - finally

try {
 siteCollection = new SPSite(“http://wcm”);
 site = siteCollection.RootWeb;
}
catch {}
finally {
 site.Dispose();
 siteCollection.RootWeb.Dispose();
 siteCollection.Dispose();
}

 The other, and recommended, way is to use the using statements, as shown in Listing 19 - 6 . These
require that the object provided in the using statement implement the IDisposable() interface, as it
will automatically call the Dispose() method at the completion of the statement.

 Listing 19 - 6: Working with disposable objects with using()

using (SPSite siteCollection = new SPSite(“http://wcm”)) {
 using (SPWeb site = siteCollection.RootWeb) {
 siteTitle = site.Title;
 }
}

 Working with Collections
 In addition to the IDisposable programming techniques that developers can use to avoid memory
management issues, developers should also be cognizant of how the SharePoint API works under the
hood when dealing with collections. Most SharePoint collections expose the members in the collection
using indexes. These indexes offer an easy way to obtain references to particular objects. For instance,
developers can get a reference to a specific list using any of the techniques shown in Listing 19 - 7 .

 Listing 19 - 7: Working with SharePoint collections

// get list by name
SPList taskList = SPWeb.Lists[“Tasks”];

// get list by ID (integer)
SPList taskList = SPWeb.Lists[listID];

// get list by unique identifier
SPList taskList = SPWeb.Lists[listGUID];

 Each of the commands in Listing 19 - 7 is functionally equivalent in that they return an instance of the
same list. The objects returned, in this case an SPList , has properties such as Title , Description , and
 Count . Because each of the commands in Listing 19 - 7 returns an instance of a SPList , developers could
skip a step and access the properties directly:

int itemsInTasksList = SPWeb.Lists[“Tasks”].Count;

c19.indd 381c19.indd 381 5/8/08 7:16:55 PM5/8/08 7:16:55 PM

Chapter 19: Performance Tips, Tricks, and Traps

382

 While there is nothing wrong with this code, developers should be aware of what is going on inside the
SharePoint API. In the preceding code, SharePoint is creating an internal instance of a SPList object,
hydrating it with the Tasks list, retrieving the value from the Count property, and then destroying the
internal SPList object. Makes perfect sense, so why is this important? Consider the code in Listing 19 - 8 .

 Listing 19 - 8: Accessing properties directly on items in a collection

string listTitle = SPWeb.Lists[“Tasks”].Title;
string listDescription = SPWeb.Lists[“Tasks”].Description;
int itemsInTasksList = SPWeb.Lists[“Tasks”].Count;

 The code in Listing 19 - 8 results in SharePoint creating three instances of the Tasks list using an internal
 SPList object (one for each statement), retrieving the value from the property and then discarding the
object. This means that the SharePoint API is making three round - trips to the database — not ideal, as
developers should strive for only 2 – 3 round - trips to the database for core pages in a SharePoint site.

 Instead, developers should get a local reference to the list and access each property using that, as
Listing 19 - 9 shows.

 Listing 19 - 9: Accessing properties using a local object

SPList tasksList = SPWeb.Lists[“Tasks”];
string listTitle = tasksList.Title;
string listDescription = tasksList.Description;
int itemsInTasksList = tasksList.Count;

 The code in Listing 19 - 9 is three times more performant than the code in Listing 19 - 8 .

 Querying/Aggregating Data via the API
 Developers are often faced with the task of querying for data across multiple SharePoint sites. This task
is made a bit easier in MOSS 2007, which ships with a new object that is optimized for cross - site queries:
the PortalSiteMapProvider . The Microsoft.SharePoint.Publishing.Navigation
.PortalSiteMapProvider is primarily used when there is a need to frequently rerun the same query
on data that does not change very often. Microsoft uses this object extensively within MOSS 2007 sites,
especially Publishing sites, because it is the fastest way to both generate navigation and retrieve the
results for the CQWP. The best part is developers can use this same object in their own custom code!

 This object contains three very useful methods:

 GetCachedListItemsByQuery() — This method retrieves items from a specific list, leveraging
special caching techniques.

 GetChildNodes() — This powerful method retrieves SPWeb and SPListItem objects,
including PublishingPage objects. It is very flexible in that developers can specify the types of
objects to be returned using the NodeTypes enumeration. The result set does not include the
configured Welcome Page, also known as the home page for a SPWeb .

❑

❑

c19.indd 382c19.indd 382 5/8/08 7:16:55 PM5/8/08 7:16:55 PM

Chapter 19: Performance Tips, Tricks, and Traps

383

 GetCachedSiteDataQuery() — This method enables developers to use a preconfigured
 SPSiteDataQuery object that returns a ADO.NET DataTable object. This method is useful
when querying across multiple lists in the same SPWeb .

 To use the PortalSiteMapProvider , first get an instance of an existing one such as the
 PortalSiteMapProvider.CurrentNavSiteMapProvider , as they are not designed to be created as
new instances due to their high memory footprint. Next, get a reference to a specific node in the site
collection hierarchy and create a CAML query using the SPQuery object. The code in Listing 19 - 10
demonstrates pulling all pages from the Press Releases subsite within the Division1 subsite that have
been published in the last seven days.

 Listing 19 - 10: Using the PortalSiteMapProvider

// get reference to provider for current navigation
PortalSiteMapProvider psmp = PortalSiteMapProvider.CurrentNavSiteMapProvider;

// get specific node in the navigation
PortalWebSiteMapNode node = psmp.FindSiteMapNode(“/Division1/PressReleases”) as
PortalWebSiteMapNode;

// get all pages created in the last seven days
SPQuery query = new SPQuery();
query.Query = “ < Where > < Geq > < FieldRef Name=\”Created\” / > < Value Type=\”DateTime\
” > [Today-7] < /Value > < /Geq > < /Where > ”;
SiteMapNodeCollection pages = psmp.GetCachedListItemsByQuery (node, “Pages”, query,
SPContext.Current.Web);

 While powerful and fast, the PortalSiteMapProvider should not be used without careful
consideration. In order to achieve the high level of performance necessary for things such as navigation
and the CQWP, it leverages sophisticated caching techniques. For this caching to be effective, the queries
must be issued frequently or the cached object will expire. In addition, the underlying data should not be
changing very frequently. Otherwise, all the overhead associated with creating and adding the object to
the cache will be a wasted effort, negatively affecting the performance of the custom code rather than
improving it.

 Summary
 This chapter has covered a few of the options available to site administrators and developers in getting
the best performance out of their Publishing sites. In addition to the topics discussed here, other non -
 SharePoint - specific Web development techniques and guidelines should be followed when writing
custom code for a Publishing site or any SharePoint site.

 This chapter focused on improving performance in three ways: limiting the round - trips to the SharePoint
content databases, minimizing the memory footprint on the SharePoint WFE servers, and minimizing
the payload size of the page delivered to the end user. Other techniques not discussed here include
leveraging AJAX callbacks, which avoids retransmitting the entire page across the wire.

❑

c19.indd 383c19.indd 383 5/8/08 7:16:56 PM5/8/08 7:16:56 PM

c19.indd 384c19.indd 384 5/8/08 7:16:56 PM5/8/08 7:16:56 PM

 Incorporating ASP . NET 2.0
Applications

 As covered in this book and many others, Windows SharePoint Services 3.0 (WSS) can be used
to host not only traditional collaboration sites, but also content - centric sites. However, many
organizations may require some sort of functionality or custom application to be embedded within
a SharePoint site. For instance, a SharePoint Publishing site may need to have a newsletter
subscription and management application or an event registration system. In past versions of
WSS 3.0 it was not very easy to incorporate custom applications into a site.

 Thankfully, WSS 3.0 greatly expands on the number of options available to developers to build
custom applications in SharePoint sites, both collaboration and Publishing sites. This chapter
covers different techniques and options developers can utilize to incorporate custom ASP.NET 2.0
applications into SharePoint sites. In addition, many common questions that come up when
building applications in SharePoint are covered in this chapter, such as when to store data in
SharePoint lists compared to a custom database and how to customize the navigation.

 While incorporating custom ASP.NET 2.0 applications into SharePoint sites is one option,
another option is to use WSS 3.0 as the application development platform. In this case, the
application is built on top of SharePoint, rather than being integrated into an existing collaboration
or publishing site.

 One thing not included in this chapter is a large number of code snippets and screenshots
demonstrating the different techniques. That ’ s because the techniques have been covered
extensively throughout other chapters in the book and repetition does not add value. Therefore,
this chapter contains references to other chapters throughout the book. Similarly, this chapter
does not walk through the development of a custom application, as each application is very
different and has unique business requirements. Think of this chapter as more of an overview
of different options and possibilities when creating custom applications in SharePoint sites.

 Before reading the rest of this chapter it would be helpful to adopt a particular mindset regarding
the development of SharePoint sites (if it is not already apparent). SharePoint development is

c20.indd 385c20.indd 385 5/8/08 7:17:33 PM5/8/08 7:17:33 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

386

unlike traditional ASP.NET 2.0 development in the sense that instead of building large applications,
developers build many smaller components and integrate them into a larger solution. For example,
creating a custom list or content type with advanced custom workflows and event receivers involves
building many little components, rather than a single large component. The sum of the components
yields a much larger and valuable component than the individual pieces.

 Each Component Adds More Value
 Before jumping into custom application development it helps to take a closer look at all of the
components that make up a SharePoint site and how they can be utilized in an application. This also
helps when you are deciding whether or not SharePoint is the right platform for building applications on
top of the WSS 3.0 platform. As explained in Chapter 2 , “ Windows SharePoint Services Development
Primer, ” WSS 3.0 is built on top of ASP.NET 2.0, and Office SharePoint Server (MOSS) 2007 is built on top
of WSS 3.0. Because the SharePoint architecture is additive to the underlying frameworks, every
component ’ s features and capabilities are available throughout the stack. This chapter covers the
different major aspects of these components and why they are significant when building custom
applications within SharePoint sites. The material provided in the following sections is by no means
exhaustive, but covers many of the most significant components as they pertain to custom application
development.

 What ASP . NET 2.0 Brings to the Table
 Chapter 2 details the primary components in ASP.NET 2.0 that are heavily leveraged within WSS 3.0.
While all the components in ASP.NET 2.0 can be leveraged in SharePoint sites in the same manner,
SharePoint provides some added value in certain areas, including the following:

 All pages within a section of the site can be configured to use the same master page, and site
administrators are provided with a Web interface for selecting and changing the master page
used for the site, rather than setting it on a page - by - page basis. For more information on master
pages in SharePoint, refer to Chapter 7 , “ Master Pages and Page Layouts. ”

 The plumbing required by the Web Part framework, such as the WebPartManager control and
various zones, is all provided OOTB in SharePoint. This is not the case in ASP.NET 2.0 sites, as
developers need to ensure that all pages leveraging Web Parts have an instance of the
 WebPartManager control, and create the necessary Web Part zones to host Web Parts, a catalog
zone to provide a list of Web Parts to add to the page, and an editor zone to enable users to
modify the properties of the Web Parts on the page. For more information on Web Parts, refer to
Chapter 11 , “ Web Parts. ”

 Although user and server controls can be used in SharePoint sites in the same way they are used
in ASP.NET 2.0 sites, SharePoint takes it a step further. Using delegate controls, developers can
create WSS 3.0 Features that enable site owners to dynamically inject and replace functionality
and content very easily, complete with a built - in undo mechanism. For more information on
delegate controls, refer to Chapter 7 .

❑

❑

❑

c20.indd 386c20.indd 386 5/8/08 7:17:34 PM5/8/08 7:17:34 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

387

 The addition of Windows Workflow Foundation (WF) to the .NET 3.0 Framework enabled
developers to create episodic and reactive programs such that while waiting for some event or
state, the programs are serialized to a persisted state and are therefore not subject to server
reboots or resource issues, as are traditional .NET applications. Applications utilizing WF must
host the workflow runtime and provide the necessary services, such as the persistence service
that handles serialization and deserialization of the workflow instance. SharePoint provides all
the necessary plumbing to host the workflow runtime and persistence service, removing these
burdens from developers. It also provides a human element by facilitating different types of
forms and associating workflows with items, documents, and content types. For more
information on WF in SharePoint, refer to Chapter 12 , “ Leveraging Workflow. ”

 When it comes to building a custom application that either integrates into an existing SharePoint site
or uses SharePoint as the foundation, developers can also take advantage of additional ASP.NET 2.0
components. The membership provider model enables developers to use any authentication store
desired in a custom application. The abstraction of the particulars of each authentication mechanism
at the ASP.NET 2.0 level dramatically simplifies the integration of custom applications at the
SharePoint level.

 All applications require some sort of navigation. The navigation provider model included in ASP.NET
2.0 enables developers to cleanly separate the data portion of the navigation from the rendering
implementation, enabling teams to purchase full - featured third - party navigation components that easily
snap into existing projects with very little, if any, custom code. SharePoint fully leverages the navigation
provider model, covered in detail in Chapter 8 , “ Navigation, ” and even includes a few site map data
sources that do most of the work in generating the navigation hierarchical structure.

 While ASP.NET 2.0 provides a significant number of components that can be utilized by developers in
custom applications, SharePoint provides much more. The next two sections provide an overview of the
various components that both WSS 3.0 and MOSS 2007 add to the developer ’ s proverbial toolbox.

 What WSS 3.0 Brings to the Table
 The previous section already mentioned a few of the additional WSS 3.0 benefits, such as how master
pages are implemented and how the plumbing of the Web Part framework and Workflow Foundation
are already provided out of the box (OOTB). However, the list does not stop there! Almost all custom
applications store and retrieve data from tables in a database. Each of these tables usually requires some
sort of administrative interface. This means that developers are left with the task of creating the CRUD
(Create, Read, Update, and Delete) admin pages. Fortunately, when SharePoint lists are used to store
such data, all these pages are included OOTB with each list.

 Virtually all custom applications also require some sort of security model. Some users act as
administrators to maintain and manage the application, while others fall into various buckets of
roles such as general users, power users, managers, and so on. WSS 3.0 includes a robust and granular
security model that leverages the ASP.NET 2.0 membership provider model. This model enables
administrators to add and remove users and groups to a site using a familiar Web interface.
Administrators can also configure sections of the site either to inherit the same permissions from its
parent or to break inheritance and create a unique permission configuration at a site, list/library, or even
list item level (including folders). In addition to the robust security model, WSS 3.0 also provides full
auditing of all events, although this must be enabled and managed using custom code, as shown in
Listing 20 - 1 .

❑

c20.indd 387c20.indd 387 5/8/08 7:17:34 PM5/8/08 7:17:34 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

388

 Listing 20 - 1: Enabling all auditing events on a site collection

SPSite siteCollection = new SPSite(“http://foo”);
siteCollection.Audit.AuditFlags = SPAuditMaskType.All;
siteCollection.Audit.Update();

 Many content - centric applications demand some level of search. WSS 3.0 provides a simple built - in
search capability. If more robust search functionality is required, developers can look to MOSS 2007 or
Microsoft Search Server 2008 Express. In addition, many applications need to share their data with other
applications or provide data feeds for some process. WSS 3.0 makes this task very easy, as it includes
several Web services that enable users to manage SharePoint sites, as well as read and write data to
SharePoint lists using the lists.asmx Web service.

 Another powerful tool in application development that WSS 3.0 offers is WSS solution packages (WSPs).
Covered in depth in Chapter 4 , “ SharePoint Features and the Solution Framework, ” WSPs make
deployment of new or existing code and custom files a simple task, even in the largest load - balanced
farm environment. Deployment of custom code and files in a traditional load - balanced ASP.NET 2.0 site
requires the use of additional software packages or sophisticated scripts — or just traditional XCOPY
deployment. WSPs dramatically simplify this task for SharePoint developers.

 The navigation provider model mentioned in the previous section is a valuable component included in
ASP.NET 2.0. WSS 3.0 fully leverages this model and includes two small additional pieces to the
navigation puzzle. The included site map providers and data sources build the navigation hierarchical
structure based on the structure of the site. When building the navigation structure, SharePoint factors in
the current permissions of the objects to which the navigation nodes refer and compares them to the
current user ’ s permission rights, omitting anything to which the user does not have access. In addition,
developers can add and remove items from the navigation programmatically.

 Sometimes the requirements of a custom application demand some sort of plug - in support. Again, WSS
3.0 includes something to facilitate this requirement: the Feature framework! SharePoint Features can be
used not only to deploy and add new functionality, but also to provide a plug - in style capability.

 While WSS 3.0 offers quite a bit in the area custom application development, MOSS 2007 offers
even more!

 What MOSS 2007 Brings to the Table
 Just like WSS 3.0, MOSS 2007 includes quite a few features that can be utilized in custom applications.
Some of these may or may not make sense in custom applications, such as utilizing the Publishing
Features or Excel Services (granted, the custom application may have some reporting capabilities that
utilize Excel Services — this is just an example). However, other components included in MOSS 2007 can
provide significant value in a custom application. This section takes a look at some of those components.

 First, building off the previous section, MOSS includes a much more robust search capability than what
WSS 3.0 provides. For example, the different components in SharePoint search (indexing and queries)
can be isolated to specific application servers in MOSS, whereas in WSS 3.0 all servers contain all server
roles. For more information on search in SharePoint refer to Chapter 13 , “ Search. ”

c20.indd 388c20.indd 388 5/8/08 7:17:34 PM5/8/08 7:17:34 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

389

 Another component of MOSS that can be very useful in custom application development is Forms
Services. This addition to the latest release of the SharePoint platform enables developers and business
users to author rich electronic forms using Office InfoPath 2007 and to consume those forms from the
server. The forms are rendered either using the InfoPath 2007 client or as a typical Web form. Virtually all
applications require some type of form for data collection or editing. Using InfoPath 2007, business users
and/or developers can quickly build sophisticated forms that can be deployed to a MOSS 2007 server
running Forms Services, and configure the forms to be rendered in the browser.

 Many custom applications need to interface with existing applications deployed within an organization.
These can be as big as CRM or ERP systems or as small as a homegrown time - keeping system. When one
application needs to interface with another application, this is done either using direct calls to the
database or by going through some middle business layer such as Web services. This can prove to be a
maintenance nightmare because developers need to keep track of multiple database connection strings
or Web service URLs, as well as the credentials needed to impersonate specific application accounts in
order to access these resources.

 In MOSS 2007, Microsoft introduced a new component called the Business Data Catalog (BDC) that helps
with these challenges. Developers first create an application definition, which is an XML file containing
the connection information and credentials used to connect to the source (a database or Web service);
entities; and relationships. The application definition can be loosely thought of as an object relationship
mapper (ORM). With the application definition created, SharePoint is then aware of the external
application. This does not mean that data is copied and consumed in SharePoint; rather, SharePoint
simply knows how to connect and retrieve data. Custom applications can utilize the BDC application
definitions however they need to. The advantage to using the BDC to connect to another system is that
all the connection information is maintained in one place by an administrator. In addition, the
connection information can specify using a specific account, pass the current user ’ s credentials through
to the target system, or leverage SharePoint ’ s single sign - on capability.

 The list of features described in this section is by no means exhaustive — MOSS 2007 offers numerous
capabilities, many of which were left off this list, such as the capability to create policies and manage
auditing configuration via the browser. Only the capabilities that provide the biggest value for the
majority of applications were included here. Even with all the components and added value that both
WSS 3.0 and MOSS 2007 bring to the table when building custom applications, additional benefits
should be considered when evaluating SharePoint as a potential application development platform.

 Advantages to Using SharePoint As an
Application Development Platform

 The previous sections covered the many components that SharePoint adds to a developer ’ s toolbox
when creating custom applications that either integrate into existing SharePoint sites or utilize
SharePoint as the foundation. However, it is not only the components that should be considered when
evaluating SharePoint as an application development platform. Other factors should also weigh in to the
decision process.

 First, SharePoint development is much more along the lines of building many smaller components and
integrating them. This is very different from traditional ASP.NET 2.0 development whereby the entire
application is typically built from scratch (aside from some store - bought or reusable libraries). Typically,

c20.indd 389c20.indd 389 5/8/08 7:17:35 PM5/8/08 7:17:35 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

390

this results in less custom code, which in turn results in less chance for defects and bugs, as well as less
code to write and maintain. Instead, more of the code is written and supported by Microsoft. This point
cannot be discounted or overlooked, as it is quite significant.

 Second, as discussed earlier, many of the things that all custom applications need are provided OOTB
by SharePoint, including navigation, search, personalization and customization capabilities, self - service,
a security model, and a plug - in framework.

 As with any evaluation period when deciding on an application development platform, weighing the
advantages against the disadvantages, as well as the capabilities, the next step is to determine the
available options when it comes to implementation. The next section covers the various implementation
options.

 Incorporating Applications into
SharePoint Sites

 After evaluating the components provided by ASP.NET 2.0, WSS 3.0, and MOSS 2007, and
understanding how they can assist in the development of a custom application, the next step is to devise
an implementation plan. This is the stage in the process where most developers get confused and
perplexed: How do you do it? Typically, three different techniques can be adopted, none of which are
mutually exclusive. Many custom applications require a combination of two, if not all three, of the
techniques depending on the application business requirements.

 Implementing One or More Web Parts
 The most obvious of the three options is to create one or more Web Parts for the application. In this
case the developer would create a Web Part that housed the business logic and user interface of the
application. Most commonly, the developer needs to account for the state of the application, including
all postbacks.

 When the application requires multiple Web Parts, deployment and configuration can start to get a
little tricky. If the Web Parts reside on the same page, developers can utilize Web Part connections to
pass data back and forth between them; but if the Web Parts live on different pages, then the deployment
instructions need to include provisions ensuring that the application manager configures each Web
Part to point to the other ’ s page. How will the data be shared between the two Web Parts? Utilizing
ASP.NET 2.0 session state in a SharePoint site can be quite challenging, so should data be passed around
on the query string? These are the types of questions that should be raised in the implementation stage
of the process when considering this approach.

 For anything other than the simplest applications, those where everything resides on a single page, using
Web Parts can prove problematic and a maintenance nightmare. For example, consider an entire
application built within a single user or server control in an ASP.NET 2.0 site. For something on a par
with a conference registration system, this can end up being a significantly challenging task. However,
for something as simple as a newsletter registration and management applet, it would be quite easy.

c20.indd 390c20.indd 390 5/8/08 7:17:35 PM5/8/08 7:17:35 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

391

 Provisioning Site Pages
 The second option is to create traditional ASP.NET 2.0 pages (*.ASPX) and provision them into
SharePoint sites using a WSS 3.0 Feature. This approach is much more flexible than the Web Part
approach because developers can provision multiple pages at once and control all the configuration
settings in the deployment, or provisioning, process. This approach is not very obvious to
most developers, yet interestingly enough it is the option that would be the most familiar. ASP.NET 2.0
developers are used to creating ASPX pages in a traditional ASP.NET 2.0 site, and the technique is very
much the same. However, there are a few subtle differences.

 First, the page directive should use one of the SharePoint - provided master page tokens (covered in
Chapter 7) in the MasterPageFile attribute, although it is not required (developers can point
to a specific master page if so desired). Second, the page directive should also contain
meta:progid= “ SharePoint.WebPartPages.Document ” . This attribute is needed if the provisioned
page is opened through the site using SharePoint Designer 2007.

 Developers often get tripped up when managed code is needed in the page. For example,
many developers don ’ t think SharePoint supports code-behind files, but in fact all pages in SharePoint
sites can utilize code - behind files. Unfortunately, the developer experience in SharePoint is still a bit
lacking in tools such as Visual Studio, so some manual work is needed.

 When managed code is needed on a site page, the code should always be placed in a code - behind file,
never as inline code within the ASPX file. The reason for this goes back to the safe mode parser discussed
in Chapter 2 . When a page instance is uncustomized, the request is not passed through the safe mode
parser. However, when the page becomes customized using something such as SharePoint Designer
2007, the request is run through the safe mode parser.

 One of the things the safe mode parser does is prohibit the execution of inline script on a page. This
includes code surrounded by the < script runat= ” server > < /server > tags, as well as any event
handlers declared in the controls, such as < asp:button OnClick= ” SomeHandler() ” / > . To wire up
event handlers for controls such as buttons, wire the events up in the code - behind file — specifically, by
overriding the OnInit() method on the System.Web.UI.Page class. The use of inline script frequently
trips up developers because a page runs just fine until it is customized, and then a cryptic error is
returned. The safe approach is to avoid inline script at all costs.

 In order to use code - behind files in site pages, create a new class that inherits from System.Web
.UI.Page . The assembly containing this class should be signed, deployed to the host Web application ’ s
 \bin directory or the global assembly cache, and registered as a safe control (< SafeControl / >) in the
Web application ’ s web.config file. Next, the ASPX page needs to be made aware that it has an
associated class. This is done by adding the fully qualified name of the class and the assembly (also
known as the five - part name, i.e., [namespace.type], [four - part assembly strong name]) in the Inherits
attribute in the page directive, as shown here:

 < %@ Page Inherits=”SitePage, WROX.ProMossWcm.Chapter20, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=3be73eb52598ff2e” Language=”C#”
MasterPageFile=”~masterurl/default.master” % >

 The process of provisioning site pages is almost identical to the technique of provisioning master pages
and page layouts using Features, as demonstrated in Chapter 7 (refer to the code in Listing 7 - 3). The only
difference is that the files are not provisioned into document libraries like master pages and page

c20.indd 391c20.indd 391 5/8/08 7:17:35 PM5/8/08 7:17:35 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

392

layouts; rather, they are provisioned into the site. This is done by setting the Type attribute on the
 < File / > node to Ghostable instead of GhostableInLibrary :

 < File Url=”SomePage.aspx” Type=”Ghostable” / >

 When does it make sense to use this technique in custom applications? One scenario might be when an
application ’ s pages need to support customization, such as utilizing Web Parts, or the application should
be available only to a particular site or subsite. What about applications that need to be used across all
site collections, such as creating an application for people within an organization to request a new
SharePoint team site? The next section covers this scenario.

 Application Pages
 The previous section detailed the technique of provisioning pages into a SharePoint site. This is quite
handy when an application needs to be deployed on a site - by - site basis, but what if the application
should be available across the entire farm? This is where the last technique of leveraging application
pages comes in. Application pages are those pages that reside within the http://[site]/_layouts
URL. This is a virtual directory that all sites share. It points to a special folder located at
 [..]\12\TEMPLATE\LAYOUTS .

 There are a few significant differences between application pages and site pages. First, because
application pages are accessed via a virtual directory and pulled straight from the file system, they
cannot be customized using something like SharePoint Designer 2007. Second, because they cannot be
customized, these files are not subject to the safe mode parser and therefore they can contain inline
script. Third, all applications use a single master page, application.master . This is covered in more
detail in Chapter 7 .

 Application pages, just like site pages, can also utilize code - behind files. If a code - behind file is
used in an application page, the class should not inherit from System.Web.UI.Page but from
 Microsoft.SharePoint.WebControls.LayoutsPageBase .

 Data Storage Options
 Almost every custom application needs to store data in some manner. In a traditional ASP.NET 2.0
application, data is usually stored in a relational database such as SQL Server. This is achieved in
SharePoint using one of two options: SharePoint lists or an external database.

 SharePoint Lists
 The ASP.NET 2.0 developer ’ s first instinct is to store data used by a custom application in a database.
Before doing so, however, developers should consider using SharePoint ’ s internal store constructs: lists!
Utilizing lists has many advantages over using a database in a SharePoint application. SharePoint lists
are similar in many ways to a database table. Both have columns and rows, although the terminology is
used a bit differently. Database tables also have triggers, a way for developers to add business logic
before and after an action is committed on the table. SharePoint lists have a similar concept called event
receivers, which also support pre - and post - logic processing on actions.

c20.indd 392c20.indd 392 5/8/08 7:17:36 PM5/8/08 7:17:36 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

393

 All the CRUD pages are provided OOTB to perform inserts, updates, deletes, and selects on the contents.
In addition, all the content in the lists can be indexed and searched using the OOTB search functionality
provided in SharePoint.

 Other common requirements in custom applications are included with SharePoint lists that would
usually require custom development. The following list touches on some of the more popular ones:

 Versioning and content approval — Many applications require historical data to be retained or
some sort of one - stage approval. This can be easily enabled on a list with a simple radio button
toggle on the list ’ s settings page.

 Really Simple Syndication (RSS) — All SharePoint lists can be configured to expose their
contents via an RSS feed.

 Exporting report views to Office applications — Business users often need to work with the
data provided in a report in an external application such as Office Excel or Access. Whereas this
would require custom development within an ASP.NET 2.0 application, it is provided OOTB
with SharePoint lists.

 One thing SharePoint lists do not have or support OOTB that is easy to do in relational databases is
implement referential integrity between two different tables (lists). While this can be achieved in
SharePoint using event receivers and custom field types and controls, it does require some extra custom
development.

 Another advantage that lists have over database tables is that developers do not have to worry about
connection information. All the connection information is provided by SharePoint as long as the list is in
the same site collection. When working with a database, developers need to deal with the location and
credentials necessary to connect to the database. Refer to Chapter 6 , “ Site Columns, Content Types, and
Lists, ” for information on reading and writing to SharePoint lists.

 A major difference between SharePoint lists and database tables is the capacity and storage of the data.
Whereas database tables can scale to contain hundreds of thousands of records, if not millions, the
performance of SharePoint lists starts to degrade at those levels. Specifically, the performance of a
SharePoint container begins to degrade as the number of items in the container approaches 2,000. The
primary reason for the performance degradation centers around the view architecture when rendering
the contents of the list.

 An easy workaround to this issue is to group the contents in a list into containers. For example, if a list
contains 8,000 items, group the items into a handful of folders such that each container has fewer than
2,000 items. This does not mean that lists cannot contain more than 2,000 items. For one thing, this is not
a hard limit. Second, there are other ways to retrieve the data from the list.

 For more information on working with lists containing more than 2,000 items, refer to
the TechNet white paper “ Working with Large Lists in Office SharePoint Server 2007 ”
(www.andrewconnell.com/go/270). This paper contains test results demonstrating the various
methods of reading and writing data to SharePoint lists. It also provides good guidance on how and
when to create indexes on fields in SharePoint lists to improve performance.

 While custom applications can certainly store their data within SharePoint lists, it does not always make
sense to do so, in which case an external database should be used.

❑

❑

❑

c20.indd 393c20.indd 393 5/8/08 7:17:36 PM5/8/08 7:17:36 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

394

 External Database
 After reading the previous section, you are likely wondering when a developer should not use
SharePoint lists, and instead use a database to store the data used in a custom application. The answer is
quite simple: when using SharePoint lists does not make sense. For instance, does the application store
vast amounts of data (tens of thousands of records or more) or must it absolutely contain a relational
model? If so, then SharePoint lists may not be the way to go. Instead, consider using an external database
for the application.

 The database can reside on the same SQL Server that hosts the SharePoint farm and content databases.
Just make sure that the custom application tables are not added to any of the SharePoint databases, as
this is not supported.

 Using an external database in SharePoint is almost no different from using one in an ASP.NET 2.0
application. All the same rules apply. First a connection must be established using ADO.NET and then
queries are issued to either create, retrieve, update, or delete data in the database tables.

 The only aspect that most ASP.NET 2.0 sites are not affected by in SharePoint deals with code
access security. By default, SharePoint sites start out using a very restrictive policy called WSS_Minimal.
This policy does not allow database connections to be made from third - party assemblies. In order
to create a connection to a database, either the trust level must be bumped up to WSS_Medium or
a custom policy must be created that grants the assembly and type the necessary permission:
System.Data.SqlClient.SqlClientPermission .

 Application Configuration Options
 Virtually every custom application requires a place to store configuration information. Such
configuration information may include Web service URLs, database connection data, as well as other
application - specific configuration information. When building ASP.NET 2.0 applications, this
configuration data can be stored in a custom database table or in configuration files, the most common
being the web.config file. How should configuration data be handled in a custom application
incorporated into or based on the SharePoint framework? Developers have a few options.

 The configuration data can still remain in the web.config file, but this approach should be used with
great care. Keep in mind that all sites (as well as site collections) in the Web application will have access
to these settings, which might not be desirable for things such as database connection strings and login
credentials. Another option is to store the configuration in a custom database or a special SharePoint list.
The list can be secured quite easily to keep users from viewing the information, yet the application can
use elevated privileges via the SPSecurity.RunWithElevatedPrivledges() method to retrieve
values from the list. Refer to Chapter 15 , “ Authentication and Authorization, ” for more information on
the SPSecurity.RunWithElevatedPrivledges() method.

 There are two other options unique to SharePoint that ASP.NET 2.0 does not provide. One, many
SharePoint objects contain a generic property bag that is exposed as a simple StringDictionary (via
the Microsoft.SharePoint.Utilities.SPPropertyBag object). Two, you can use the hierarchical
object store within a SharePoint farm. The latter approach involves creating a new object, adding it to the
farm ’ s store, and assigning it a unique identifier for easy retrieval later.

c20.indd 394c20.indd 394 5/8/08 7:17:36 PM5/8/08 7:17:36 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

395

 To use the hierarchical object store, developers first must create a class that inherits from
Microsoft.SharePoint.Administration.SPPersistedObject . This class provides the necessary
plumbing to create and remove an object from the store. It serializes or deserializes all the public fields
decorated with the Microsoft.SharePoint.Persisted attribute to XML and stores it in the
configuration database. This class must contain a default constructor (one with no parameters) in order
to be serializable and override a constructor on the SPPersistedObject class to give the object a name,
specify the object ’ s parent, and optionally a unique identifier. The code in Listing 20 - 2 contains a sample
object that could be used to store database connection information.

 Listing 20 - 2: Database connection information stored in a farm ’ s hierarchical store

using System;
using Microsoft.SharePoint.Administration;

namespace WROX.ProMossWcm.Chapter20 {
 public class Database : SPPersistedObject {
 [Microsoft.SharePoint.Administration.Persisted]
 public string _server = string.Empty;
 [Microsoft.SharePoint.Administration.Persisted]
 public string _database = string.Empty;
 [Microsoft.SharePoint.Administration.Persisted]
 public string _username = string.Empty;
 [Microsoft.SharePoint.Administration.Persisted]
 public string _password = string.Empty;

 public Database () { }
 public Database (string name, SPPersistedObject parent, Guid id) :
base(name, parent, id) { }
 }
}

 With the object created, the next step is to create an instance of the object and store in the configuration
database. This is demonstrated in Listing 20 - 3 using a Feature receiver to add and remove the object
upon Feature activation and deactivation.

 Listing 20 - 3: Adding and removing objects from the hierarchical store

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter20 {
 public class HierarchicalDataStoreFeatureReceiver : SPFeatureReceiver {
 private const string LITWARE_DB_CONFIG_KEY = “08F7E568-3184-4D94-A559-
8E91DB39F858”;

 public override void FeatureInstalled (SPFeatureReceiverProperties properties)
{}
 public override void FeatureUninstalling (SPFeatureReceiverProperties
properties) {}

 public override void FeatureActivated (SPFeatureReceiverProperties properties){

(continued)

c20.indd 395c20.indd 395 5/8/08 7:17:37 PM5/8/08 7:17:37 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

396

Listing 20 - 3 (continued)

 Database db = new Database(“LitwareDB”,
 properties.Definition.Farm,
 new Guid(LITWARE_DB_CONFIG_KEY));
 db.Server = “LitwareServer01”;
 db.DatabaseName = “Foo”;
 db.Username = “Admin”;
 db.Password = “pass@word1”;
 db.Update();
 }

 public override void FeatureDeactivating (SPFeatureReceiverProperties
properties) {
 Database db = properties.Definition.Farm.GetObject(
 new Guid(LITWARE_DB_CONFIG_KEY));
 db.Delete();
 }
 }
}

 To retrieve the object from the store in the application, simply obtain a reference to it using the same
method demonstrated in the FeatureDeactivating() method in Listing 20 - 3 :

Guid dbid = new Guid(“08F7E568-3184-4D94-A559-8E91DB39F858”);
Database db = SPContext.Site.WebApplication.Farm.GetObject(dbid);

 Thankfully, as demonstrated in this section, developers are provided with many different options when
a custom application incorporated into or built on the SharePoint platform needs configuration
information.

 Utilizing SharePoint Components
in Custom Applications

 Aside from all the components provided in ASP.NET 2.0, when SharePoint is selected as the application
development platform there are a few SharePoint components that warrant a bit more discussion. This
section describes the customization options for SharePoint navigation, utilizing the grids that Microsoft
uses throughout SharePoint (SPGridView), and leveraging permission levels.

 SharePoint Navigation
 SharePoint ’ s navigation data sources and providers are already set up to build the navigation based on
the structure of a site and site collection. Thus, if a custom application is based completely on SharePoint
sites and lists, no custom code needs to be written. The only customization that might be required is to
modify the navigation control to configure how many levels of dynamic flyouts are desired.

c20.indd 396c20.indd 396 5/8/08 7:17:37 PM5/8/08 7:17:37 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

397

 However, a custom application may provision custom pages with Features that need to be linked in
the navigation, or there may be some other need to customize the navigation. In these cases, developers
may want to customize navigation items. The first impulse is usually to create a custom navigation
provider or data source that will achieve this, but it isn ’ t necessary. Menus can be augmented using
the Feature schema — specifically, < CustomAction / > , < CustomActionGroup / > , and
 < HideCustomAction / > .

 Another option is to add items to the navigation when the pages are provisioned or the application
is installed using the SharePoint API. The API enables developers to interact with the top navigation
area, SPWeb.Navigation.TopNavigationBar , or the left - hand navigation area, SPWeb.Navigation
.QuickLaunch . The code in Listing 20 - 4 contains a Feature receiver that adds a new navigation item to
the top navigation control in a SharePoint site.

 Listing 20 - 4: Feature receiver adding a navigation node to the top navigation control

public override void FeatureActivated (SPFeatureReceiverProperties properties) {
 // get a reference to the current site’s top navigation
 SPWeb site = properties.Feature.Parent as SPWeb;
 if (site == null)
 throw new SPException(“Error obtaining reference to the parent SPWeb within
FeatureActivated event handler.”);
 SPNavigationNodeCollection topNavigation = site.Navigation.TopNavigationBar;

 // create new drop down menu for our new pages
 SPNavigationNode newNode = new SPNavigationNode(“Some Link”, “SomeFolder/
SomePage.aspx”, false);
 // add the new menu to the end of the top nav bar
 topNavigation[0].Children.AddAsLast(newNode);

 site.Update();
}

 Leveraging SPGridView
 Almost all applications need to display data. SharePoint lists display data in a special grid that is based
on the ASP.NET 2.0 GridView control: Microsoft.SharePoint.WebControls.SPGridView . Although
developers building custom applications can create their own grid controls, they should consider using
the grid that SharePoint uses. The primary benefit is to inherit the same look and feel as the rest of a
SharePoint site. When the SharePoint grid is used in a custom application, it uses the same CSS classes
the other grids SharePoint uses.

 One major difference exists when using SharePoint ’ s SPGridView control over the ASP.NET 2.0
 GridView control: Developers must set the AutoGenerateColumns property to false and explicitly
bind the columns as shown in Listing 20 - 5 . This listing retrieves data from a list containing sessions for a
conference, adds them to an ADO.NET DataTable , creates the columns in the grid, and then binds the
 DataTable to the grid.

c20.indd 397c20.indd 397 5/8/08 7:17:37 PM5/8/08 7:17:37 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

398

 Listing 20 - 5: Utilizing SPGridView

private void BindConferenceDayToGrid
 (SPList sessionList, SPGridView gridView, string conferenceDay) {
 // run query for day 1 sessions
 SPQuery query = new SPQuery();
 query.Query = String.Format(“ < Where > < Eq > < FieldRef Name=\”StartTime\” / > < Value
Type=\”DateTime\” > {0} < /Value > < /Eq > < /Where > < OrderBy > < FieldRef Name=\”StartTime\”
/ > < /OrderBy > ”, conferenceDay);
 SPListItemCollection results = sessionList.GetItems(query);

 DataTable table;

 table = new DataTable();
 table.Columns.Add(“TimeSlot”, typeof(string));
 table.Columns.Add(“AdminTrack”, typeof(string));
 table.Columns.Add(“CustomizationTrack”, typeof(string));
 table.Columns.Add(“DeveloperTrack”, typeof(string));

 DataRow row;
 string presenter;
 foreach (SPListItem result in results) {
 row = table.Rows.Add();
 row[“TimeSlot”] = string.Format(“{0} - {1}”,

Convert.ToDateTime(result[“StartTime”].ToString()).ToString(“h:mm tt”),

Convert.ToDateTime(result[“EndTime”].ToString()).ToString(“h:mm tt”));
 row[“AdminTrack”] = string.Empty;
 presenter = result[“Presenter”] == null ? “unknown” :
result[“Presenter”].ToString();
 switch (result[“Track”].ToString()) {
 case “Customization”:
 row[“CustomizationTrack”] = string.Format(“{0} - by: {1}”,
 result[“Title”].ToString(),
 presenter);
 break;
 case “Developer”:
 row[“DeveloperTrack”] = string.Format(“{0} - by: {1}”,
 result[“Title”].ToString(),
 presenter);
 break;
 }
 }

 // bind to the gridview
 SPBoundField boundField;

 boundField = new SPBoundField();
 boundField.HeaderText = “Sessions”;
 boundField.DataField = “TimeSlot”;
 boundField.ItemStyle.HorizontalAlign = HorizontalAlign.Center;

c20.indd 398c20.indd 398 5/8/08 7:17:37 PM5/8/08 7:17:37 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

399

 boundField.ItemStyle.Wrap = false;
 gridView.Columns.Add(boundField);

 boundField = new SPBoundField();
 boundField.HeaderText = “Admin Track”;
 boundField.DataField = “AdminTrack”;
 gridView.Columns.Add(boundField);

 boundField = new SPBoundField();
 boundField.HeaderText = “Customiation Track”;
 boundField.DataField = “CustomizationTrack”;
 gridView.Columns.Add(boundField);

 boundField = new SPBoundField();
 boundField.HeaderText = “Developer Track”;
 boundField.DataField = “DeveloperTrack”;
 gridView.Columns.Add(boundField);

 gridView.AutoGenerateColumns = false;
 gridView.DataSource = table.DefaultView;
 gridView.DataBind();
}

 As Listing 20 - 5 demonstrates, working with the SPGridView control is very similar to working with the
ASP.NET 2.0 GridView control. The primary differences are related to the source of the data and binding
columns to the grid.

 Creating and Managing Custom Security Roles
 As previously covered, SharePoint includes a very robust and granular permission model that
custom applications can take advantage of. Part of this architecture includes permission levels, which are
groups of permission rights. Permission rights are granted to behaviors such as opening a page, adding
items to a list, reading items in lists, and so forth. Permission levels are used to group one or more
permission rights together. Then, administrators grant permissions to users and groups by assigning
them permission levels, rather than permission rights. Administrators have the option to use the
provided permission levels to create custom ones through the user browser interface. Unfortunately,
custom permission rights cannot be created; administrators are limited to the ones provided by
Microsoft.

 Developers can still use permission levels within a custom application if the application has
special security requirements. For example, consider a conference registration system as the custom
application. People attending the conference should be provided a self - service registration system. Some
users — registration agents, for instance — need the capability to modify registrations. One way to
address this is to create a custom permission level through code (when a Feature is activated, for
instance) and then create a custom event receiver that is attached to the registrations list. This event
receiver would check whether the user is attempting to update or delete a registration record. If they
have not been granted the special permission level created by the Feature, they should not be permitted
to make the change.

c20.indd 399c20.indd 399 5/8/08 7:17:38 PM5/8/08 7:17:38 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

400

 The code in Listing 20 - 6 demonstrates creation of a permission level through code.

 Listing 20 - 6: Creating permission levels in code

private void CreatePermissionLevel (SPWeb site) {
 SPRoleDefinition registrator = new SPRoleDefinition();
 registrator.Name = “Registration Agent”;
 registrator.Description = “Users with this permission level can modify
registrations.”;

 // assign no rights... used only by name
 registrator.BasePermissions = SPBasePermissions.EmptyMask;

 site.RoleDefinitions.Add(registrator);
}

 The next step, shown in Listing 20 - 7 , is to create the event receiver that will check whether the user has
been assigned the permission level.

 Listing 20 - 7: Event receiver checking for a custom permission level

using System;
using Microsoft.SharePoint;

namespace WROX.ProMossWcm.Chapter20 {
 public class RegistrationListItemReceiver : SPItemEventReceiver {
 private const string REGISTRATOR_PERMISSION_LEVEL = “Conference Registrator”;

 public override void ItemUpdating (SPItemEventProperties properties) {
 this.DisableEventFiring();

 using (SPSite siteCollection = new SPSite(properties.WebUrl)) {
 using (SPWeb site = siteCollection.OpenWeb(properties.RelativeWebUrl)) {
 if (!IsUserAllowedToAddRegistrations(site)) {
 properties.Status = SPEventReceiverStatus.CancelWithError;
 properties.Cancel = true;
 properties.ErrorMessage = “Current user does not have permission to
manage registrations. Only users assigned the permission level “ +
REGISTRATOR_PERMISSION_LEVEL + “ can do this.”;
 }
 }
 }

 EnableEventFiring();
 }

 public override void ItemDeleting (SPItemEventProperties properties) {
 this.DisableEventFiring();

 using (SPSite siteCollection = new SPSite(properties.WebUrl)) {
 using (SPWeb site = siteCollection.OpenWeb(properties.RelativeWebUrl)) {
 if (!IsUserAllowedToAddRegistrations(site)) {

c20.indd 400c20.indd 400 5/8/08 7:17:38 PM5/8/08 7:17:38 PM

Chapter 20: Incorporating ASP . NET 2.0 Applications

401

 properties.Status = SPEventReceiverStatus.CancelWithError;
 properties.Cancel = true;
 properties.ErrorMessage = “Current user does not have permission to
manage registrations. Only users assigned the permission level “ +
REGISTRATOR_PERMISSION_LEVEL + “ can do this.”;
 }
 }
 }

 EnableEventFiring();
 }

 private bool IsUserAllowedToAddRegistrations (SPWeb site) {
 SPRoleDefinition registratorRole =
site.RoleDefinitions[REGISTRATOR_PERMISSION_LEVEL];

 // if not found, there’s an error with the setup
 if (registratorRole == null)
 throw new SPException(“Permission level ‘” + REGISTRATOR_PERMISSION_LEVEL +
“’ not found. This permission level is created by a Feature. Recreate a new
permission level using this same name.”);

 return site.AllRolesForCurrentUser.Contains(registratorRole);
 }
 }
}

 Note that when the permission level was created, no rights were specified:

registrator.BasePermissions = SPBasePermissions.EmptyMask;

 That ’ s because this permission level has a very specific use. This is a good technique to follow;
otherwise, it could be inadvertently adding rights to users.

 Summary
 This chapter covered the various options available to developers in incorporating custom applications
into SharePoint sites or building custom applications on top of the SharePoint platform. Developers
should consider using SharePoint as an application development platform because it brings so much to
the table that would normally have to be created from scratch. Things such as navigation, a granular
security model, workflow integration, data storage and CRUD pages, a site provisioning engine, and
personalization capabilities — all of this is provided OOTB with the free version of SharePoint: WSS 3.0.
Adding MOSS 2007 simply adds additional components that can be utilized in a custom application
such as electronic forms (Forms Services) or hooks into other applications (BDC).

c20.indd 401c20.indd 401 5/8/08 7:17:38 PM5/8/08 7:17:38 PM

c20.indd 402c20.indd 402 5/8/08 7:17:38 PM5/8/08 7:17:38 PM

Index

In
de

x

A
AAMs (Alternate Access Mappings), 296
ABCs of Web Content Management, 42–44
About Us site, 324, 327, 336
Accept Content Deployment

Jobs (setting), 325
Access (Microsoft), 393
accessibility, 145–156

advantages of, 151–152
CSS and, 147, 148, 149, 152, 153, 155
guidelines, 146–151, 156

Section 508, 147, 150–151, 156
WCAG 1.0, 147–149, 156
WCAG 2.0, 149–150, 156

measuring, 146–151
in SharePoint sites, 152–154

challenges, 153–154
Accessibility Kit for SharePoint (AKS), 145,

154–155, 156
ACLs, 323, 330, 371
ACMEMasterPreview.gif, 120
ACMEPressPreviewTmp.gif, 127
ACMEPressTmp.aspx, 125, 127
ACMETMasterPreviewTmp.gif, 118
ACMETmp.master, 118
AC’s WCM Custom Commands, for STSADM

.EXE, 94, 99
actions (custom), 54, 269–271

scoping options, 54
activation dependency, 58
activation properties (Feature), 84–85

Navigation Feature and, 86
Active Directory (AD), 13, 14, 15, 28,

293, 297
activities (workflow), 213, 214
AD (Active Directory), 13, 14, 15, 28,

293, 297
Adams, Douglas, 305

ADO.NET, 143, 265, 383, 394, 397
agility, language, 306, 307, 311, 314
AJAX callbacks, 383
AKS (Accessibility Kit for SharePoint), 145,

154–155, 156
AllowExternalUrls, 274
AllowFonts, 274
AllowHeadings, 274
AllowHtmlSourceEditing, 274
AllowHyperlinks, 274
AllowImages, 274
AllowLists, 274
AllowReusableContent, 274
AllowTextMarkup, 274
Alpha Task, values from, 234–235
Alternate Access Mappings (AAMs), 296
AlternateCssUrl, 85
anonymous access, 9, 302–304
APIs

content deployment, 337–339
content migration, 339–344
SharePoint. See SharePoint API

Apple Safari, 279
application development. See custom

application development
application master pages, 112–113
application pages, 32, 392

site pages v., 392
application pools, 37, 57, 177, 298, 323,

379, 380
application, Web. See Web applications
application.master, dynamically switching,

112–113
ApplyChanges() method, 183, 190
Approval workflow template, 220, 221
ApprovalDecision enumeration, 234
Approve permission level, 13, 294
Approvers SharePoint group, 295
Article Page, 71, 73, 202, 272, 319

bindex.indd 403bindex.indd 403 5/9/08 5:14:35 PM5/9/08 5:14:35 PM

404

ASCX files, 19, 28, 29, 164, 166, 181, 283,
284, 361, 370

AspMenu control, 139, 140
ASP.NET 2.0

applications, 396–401. See also custom
application development

authentication provider model, 296–302
components, 386–387

SharePoint leveraging of, 21
debugging in, 37
master pages. See master pages
multilingual capabilities, 306

content, 306
user interface, 306

navigation provider model, 137–138. See
also navigation

resource manager, 306, 315
validation controls, 172
Web Parts, 182

in SharePoint sites, 191–192
WSS 3.0 development v., 27–31, 37

ASP.NET controls, 11
assemblies, 60
associations, workflow, 217, 218
ATAG (Authoring Tool Accessibility

Guidelines), 147
Audience Targeting, 198
audiences, 15
authentication, 13, 291

forms-based, 297–302
WCM and, 13–14
Windows, 297

Authentication Information (setting), 328, 329
authentication provider model, 296–302

FBA and, 297–302
Windows authentication, 297

author pivots, 251–252
authoring, 42–43
authoring experience extensibility, 6, 269–290
Authoring Tool Accessibility Guidelines

(ATAG), 147
authoritative pages, 15–16, 258
authorization, 13, 291

permission levels. See permission levels
securable objects, 293
security (SharePoint), 291–296

components, 291–295

Publishing sites, 293–295
via SharePoint API, 295–296

AvailableWebTemplates, 85

B
Babel fish, 305
BDC. See Business Data Catalog
Beginning SharePoint 2007 Administration

(Wrox, 2007), 47
best bets, 16, 244, 248, 257, 259
binary large objects (BLOB) caching, 370, 372
Blank Site template, 23, 58, 88, 323,

327, 335
BLOB (binary large objects) caching, 370, 372
bottleneck, Webmaster, 2, 16, 42
branding, 4, 15, 43
breakpoints, 221, 240, 358
browser caching settings, 378
browsers. See Firefox; Internet Explorer; Safari
Business Data Catalog (BDC), 42, 49, 265,

267, 389, 401
business forms (MOSS feature), 41
business intelligence, 40, 41
buttons

added to Quick Access Buttons, 284–285
in HTML Editor field control, 274–278

enabling/disabling, 273–274
XFN, 275, 277, 278

C
C# Class Library project template, 29, 59,

160, 184, 281
CAB (cabinet) files, 60, 63, 103, 322. See also

WSP files
CAB Project template, 63
cabinet files. See CAB files
Cabinet SDK (Microsoft), 63
caching options (SharePoint), 370–372

browser caching settings, 378
disk-based BLOB caching, 370, 372
object caching, 371–372
page output caching, 370–371
PortalSiteMapProvider. See

PortalSiteMapProvider
callback methods, 183, 185, 186

ASCX fi les

bindex.indd 404bindex.indd 404 5/9/08 5:14:36 PM5/9/08 5:14:36 PM

405

In
de

x

CAML (Collaborative Markup Language),
37, 52

CAS (code access security), 30, 60, 68, 191,
194, 375

Cascading Style Sheets. See CSS
case scenarios, 7
Central Administration, 24, 63, 65

search and, 258
change tokens, 342–343
Chapter7Pages project, 118

Chapter7Pages Feature
creation of, 118
DDF file for, 121–122, 128–129
elements manifest file, provisioning master

page, 121
elements manifest file, provisioning

preview image, 119
Feature definition for, 119, 129
manifest.xml for, 122

Press Release content type and, 125
Chapter14DeleteCustomizedPetFiles Feature

receiver
creating files, 286–287
deleting files, 285

Chapter14PageEditingToolbar
deactivation, 289
Feature definition, 288
process flow, 288

checkpoints, 148
Priority 1, 148, 149, 151, 153, 155
Priority 2, 148, 149, 155
Priority 3, 148, 149

ChromeMasterUrl, 85
click distance, 258
CLR (common language runtime), 212
CMP (Content Migration Package) files, 339,

340, 341
code access security (CAS), 30, 60, 68, 191,

194, 375
Code Condition, 235
code reuse, 51, 67, 108
code-behind files, 29–30
CodePlex, 16, 153, 154, 265, 378
collaboration (MOSS feature), 41
Collaboration Portal template, 42, 246
Collaborative Markup Language. See CAML
collections, 381–382

accessing properties
directly on items, 382
using local object, 382

columns. See site columns
Commerce Server, Microsoft, 42
CommitWorkBatch service, 213
common language runtime (CLR), 212
Condition property, 235
Configurations element, 82
conformance (site design principle), 150
Conformance Levels, 149, 150
Connection Security (setting), 326
connection strings, database, 299, 300,

389, 394
ConsolAction.NavigateUrl override, 283
console actions, 281–283, 284, 285
ConsoleAction class, 281
ConsoleAction.ImageUrl, 282
ConsoleAction.RequiredStates property, 282
ConsoleAction.UserRights property, 282
Content and Structure Reports list, 100–101
content authoring, 42, 43, 86

experience extensibility, 269–290
field controls and, 209. See also field

controls
offline, with document converters, 271,

345–367
Telerik RadEditor Lite and. See Telerik

RadEditor Lite MOSS Editor control
content databases, 4, 9, 12, 22, 23, 31, 32,

34, 35, 86, 91, 93, 96, 118, 123, 126,
136, 216, 225, 323, 370, 372, 383, 394

content deployment, 44, 321–344
API, 337–339
authoring environment, 322
configuring, 325–327
example scenario, 327
fundamentals, 322–325
incremental, 323, 342–344
jobs, 324–325

creating, 330–333
running, 334–336

paths, 323–324
creating, 328–330

phases of operation, 322
production environment, 322
Quick Deploy jobs, 324–325

content deployment

bindex.indd 405bindex.indd 405 5/9/08 5:14:36 PM5/9/08 5:14:36 PM

406

content deployment (continued)
leveraging, 337

‘single master’ model, 322
topology, 322
walkthrough, 327–337

Content Deployment Report page, 334, 335
content fields, 110
content management (MOSS feature), 41
Content Management Server 2002 (MCMS),

39–40, 212, 321, 340, 345
content migration API, 339–344

change tokens in, 342–343
exporting content with, 340
exporting site with, 341
importing content with, 342
incremental deployment, 342–343

Content Migration Package (CMP) files, 339,
340, 341

content placeholders, 110, 114–115
content queries, 9
Content Query Web Part (CQWP), 8, 9, 10, 11,

15, 22, 43, 46, 73, 195, 196,
197–199, 209

customization, 199–204
deployment, 207–208
implementation/demonstration, 204–207

definition, modifying, 201–202
definition, provisioning, 208
rendering style sheet, provisioning, 208
style rendering, customizing, 202–204

content regions. See field controls; Web Parts
content, reusable, 12
content sources, 242, 244, 257, 258,

265, 267
Content Type, 198
content types, 5, 11, 46, 54, 71, 89,

94–100, 108
creating, 96–99

via browser interface, 96–97
via code, 97–98
via Features, 98–99

document converter, 352
gallery, 94, 96, 97, 352
IDs, 95–96

conventions, 95
GUIDs in, 95, 96

online information, 94
page layouts v., 11, 99

role, in Publishing sites, 99–100
root, 94, 95
scoping options, 54
System, 94, 95

content–centric sites, 74, 142, 145, 181, 294,
295, 304, 319, 369, 385, 388

contentclass, 15
ContentType field, 121, 128
Contribute permission level, 13, 294
ControlAdapter classes, 153, 155
controlled publishing, 43–44
_controltemplates, 22
converters. See document converters
ConverterUIPage attribute, 360, 361
core.js, 374–378

DelayLoadCoreJs.aspx, 377
IIS compression, 374
loading, 374–375

delaying, 377–378
lazy, 377–378

RegisterCoreJsIfAuthenticated server
control, 376

country selector event handler, 169
CountryRegionControl field control, 159

design–time experience added to, 171
CountryRegionControl.ascx custom field

control rendering template, 165
CountryRegionControl.cs custom field control,

164, 166
CountryRegionControl.Value

property’s get, 167
property’s set, 168–169

CountryRegionField class, 160
creating, 160
custom field type in, 160
field type and field value joined in, 163

CountryRegionField definition, 161
CountryRegionField field type, 159, 164

interface, 160, 161
CountryRegionField.GetValidatedString()

method, 173
CountryRegionValue.cs file, 162, 163
CQWP. See Content Query Web Part
crawl logs, 257
crawl rules, 242, 244, 257
crawl schedules, 257
Create, Read, Update, Delete (CRUD) admin

pages, 387, 393, 401

content deployment (continued)

bindex.indd 406bindex.indd 406 5/9/08 5:14:37 PM5/9/08 5:14:37 PM

407

In
de

x

Create User page, 300
createAlphaTask_MethodInvoking()

method, 233
createBetaTask_MethodInvoking()

method, 233
CreateChildControls() method, 166–167

rendering code in, 188
CreateEditorParts() method, 183, 191
CreatePage.aspx, 95, 361, 366
CRM (customer relationship management)

system, 266, 389
Cross List Query Results Multiplier, 372
cross-site groups, 13
cross-site queries, 382–383
CRUD (Create, Read, Update, Delete) admin

pages, 387, 393, 401
CSS (Cascading Style Sheets), 2, 4, 15, 21,

32, 60, 110, 112, 116, 124, 133, 192,
274, 323, 372, 373

accessibility and, 147, 148, 149, 152,
153, 155

AlternateCssUrl, 85
classes, 140, 171, 272, 273, 278, 279,

290, 397
customizing, 278–279

issues, search and, 246–247
SharePoint–specific, 27, 70, 372
Style Library and, 101, 123, 278
trick, 275

current navigation, 10
custom actions. See actions
custom application development, 396–401

ASP.NET 2.0 and, 386–387
configuration options, 394–396
data storage options, 392–394
implementation plan

application pages, leveraging of, 392
provisioning site pages, 391–392
Web Parts, 390

MOSS and, 388–389
navigation (SharePoint) and, 396–397
permission levels in, 399–401
SPGridView, leveraging of, 397–399
WSS 3.0 and, 385, 387–388, 389–390, 401

custom code, .NET Framework and, 378
Custom Commands (WCM), for STSADM.EXE,

94, 99
Custom Filters, 198

custom site provisioning engine, 76–77.
See also site provisioning

CustomEditingMenu.xml, 284
customer relationship management (CRM)

system, 266, 389
customized files, 31, 32–34, 38, 115

SharePoint customization and, 34–35
SPFile.RevertContentStream() method and, 34

CustomMasterUrl, 111

D
data elements, 99, 100, 101. See also site

columns
data storage options, 392–394

external database, 394
lists, 392–393

database connection strings, 299, 300,
389, 394

databases, 394. See also lists; SQL Server
databases

content. See content databases
tables, 100, 107, 392, 393, 394

lists v., 392–393
DDF file. See diamond directive file
debugging

in ASP NET 2.0, 37
document converters and, 358
F5, 37, 223
workflow templates, 239–240
in WSS 3.0, 37

Declarative Rule Condition, 235
DefaultRenderingTemplate, 175
DefaultTemplates.ascx, 164
DelayLoadCoreJs.aspx, 377
delegate controls, 54, 133–136

creating, 134–136
registered by Feature, 134
scoping options, 54
server controls as, 135–136

deployment, content. See content deployment
Deployment Options (setting), 332
Design permission level, 13, 294
Designers SharePoint group, 295
Destination Central Administration Web

Application (setting), 328
Destination Web Application and Site

Collection (setting), 329

Destination Web Application and Site Collection (setting)

bindex.indd 407bindex.indd 407 5/9/08 5:14:37 PM5/9/08 5:14:37 PM

408

detail pages, 10
DHTML, 42
diamond directive file (DDF file), 63, 64,

121, 128
for Chapter7Pages Feature, 121–122,

128–129
with solution manifest.xml, 64–65

disabilities
interactive, 145, 146
visual, 145, 146

DisableBasicFormattingButtons, 274
DisableCustomStyles, 274
disk–based BLOB caching, 370, 372
Display mode, 159, 161, 176
display name, 90, 99
DisplayPattern, 162
disposable objects, 379–381

try-catch-finally block and, 380, 381
using statements and, 381

Dispose() method, 379, 380, 381
dll, SharePoint. See Microsoft.SharePoint.dll

assembly
DOCM files, 345, 352
document converter framework, 345,

346, 367
document converters, 43, 345–367

application, creation of, 354–359
architecture, 347–349
configuration, 350–352
content types, 352
conversion priorities, 349
custom

creating, 353–359
deploying, 359–360
XML configuration file for, 356–357

debugging and, 358
Feature

creating, 359–360
element manifest, 364

InfoPath form to Web page, 353
Launcher service, 347, 348, 349, 350, 354,

358, 359, 366
Load Balance service, 347, 350
Main() method, 354, 355, 358
object model and, 352, 366–367
offline authoring with, 271, 345–367
out-of-the box, 352–353
Publishing pages created with, 349

scoping options, 54
settings in, 360–366
testing, 358
TransformXmlToHtml() method, 355, 356
user experience, 346–347
Word Document, 271, 352–353
Word Document with Macros to Web Page,

352–353
WriteHtmlBody() method, 355, 357
WriteHtmlStyles() method, 355, 356,

365–366
XML to Web page, 353

document libraries, 23, 36, 40, 41, 42, 43, 69,
70, 72, 83, 85, 86, 100

lists as, 100
Master Page Gallery. See Master Page Gallery
Pages library. See Pages library
Web Part Gallery. See Web Part Gallery

Document Object Model (DOM), 153, 188
document template, 95
Documents library, 101
documents library, 46, 101
DocumentTemplates element, 81–82
DOCX files, 43, 345, 352
DOCX/DOCM to HTML document converter,

43, 352–353
DOM (Document Object Model), 153, 188.

See also WPSC
domain controllers, 347, 348, 350
DooDads/widgets, 259, 260
draft revisions, 100
Dual Approvers workflow, 222–239

ApprovalDecision enumeration, 234
createAlphaTask_MethodInvoking()

method, 233
createBetaTask_MethodInvoking()

method, 233
deploying, 236–238
element manifest for, 237–238
Feature definition for, 236–237
incorporating/testing, in Publishing site,

238–239
InfoPath forms, creating, 227–231
logToHistoryListActivity1_MethodInvoking()

method, 234
onWorkflowActivated1_Invoked() method, 232
workflow template

adding code to, 232–236

detail pages

bindex.indd 408bindex.indd 408 5/9/08 5:14:37 PM5/9/08 5:14:37 PM

409

In
de

x

debugging, 239–240
modeling of, 224–227

dynamic master page tokens, 113

E
ECB (Edit Control Block) menu, 72, 117,

269, 346
ECM (Enterprise Content Management)

strategy, 345, 347
Edit Control Block (ECB) menu, 72, 117, 269, 346
Edit Mode Panels, 11, 16, 182–183
EditModePanel, 272
Editor Parts, 182

custom, 183, 189, 191, 209
generic, 182, 189

80–20 rule, 94, 99
electronic forms, 389, 401. See also Forms

Services
element manifests, 54–55

with branding files, 123
for Dual Approvers workflow, 237–238
list instance and, 105–106
provisioning CQWP definition, 208
provisioning CQWP rendering style sheet, 208
provisioning master page, 121
provisioning page layouts, 127–128
provisioning preview image, 119
using server controls in delegate control,

135–136
for WroxPublications list template, 104–105

element types, 54
ElementFile element, 62–63
Embedded Resource, 174, 374
Empty Project template, 59, 118
empty results, 16, 243, 256, 259
EmptyMask, 292
EnsureChildControls() method, 167, 190
Enterprise Content Management (ECM)

strategy, 345, 347
ERP system, 389
event receivers, 37, 52, 55–56, 67, 95, 100,

107, 386, 392, 393, 399
checking for permission level, 400–401

event registrations, scoping options, 54
Excel (Microsoft), 41, 81, 270, 393

Services, 388
spreadsheets, 41

ExecuteTask() method, 186
Export Server (setting), 326
extensibility. See also authoring experience

extensibility
MOSS, 269, 289
WSS 3.0, 269, 289

extranets, 1, 369, 371

F
F5 debugging, 37, 223
Faceted Search, 265
Farm scope, 53, 54
FBA. See forms–based authentication
Feature(s), 51–59. See also specific

Features
activation properties, 84–85, 86
activation/deactivation, 53, 57

with browser interface, 57
Feature receivers and, 55
with STSADM.EXE, 57

administration, 56–57
anatomy, 52–53
code reuse, 51, 67, 108
creating master pages with Visual Studio

and, 118–122, 133, 136
creating, with Visual Studio, 59
delegate control registered by, 134
dependencies, 57–58
element manifests, 54–55
element types, 54
events, 55
hidden, 57
installation/uninstallation, 52, 56–57
lists created with, 103–106
localization of, 315–317
overview, 51–59
schema, 54, 55
scope. See scope
site columns created with, 93–94
site–scoped, 83
stapling and. See Feature stapling; stapling

Features
visibility, 57

Feature definition file, 54
with activation dependency, 58
for Chapter7Pages Feature, 119, 129
with Feature receiver, 56

Feature defi nition fi le

bindex.indd 409bindex.indd 409 5/9/08 5:14:38 PM5/9/08 5:14:38 PM

410

Feature element(s), 84
manifest files, 35, 58, 362, 364

site columns in, 93–94
types, 54

Feature framework, 35, 52, 58, 67, 84, 388
Feature manifest (Minimal Publishing Portal

site definition), 87–88
Feature receivers, 55–56

site provisioning v., 78
Feature stapling, 58, 74
FeatureActivated event, 55–56
FeatureDeactivating event, 55
FeatureDeactivating() method, 396
FeatureInstalled event, 55
FEATURES folder, 52, 59, 66
FeatureUninstalling event, 55
Fiddler tool, 373, 376, 377
fields, 4, 92
field controls, 4, 10, 42, 46, 130–131, 157,

158, 209
custom, 6

creating, 159–160, 164–170, 178
creating (without custom field types),

173–176
design–time rendering preview added to,

157, 170–172, 178
implementing, in page layouts, 177–178

HTML Editor, 273–279, 289, 290
localization of, 313–315
in page layouts, 10, 130–131
Web Parts v., 130–131

field definitions. See site columns
field type definition, 158

custom, creating, 160–162
field types, 157, 158

custom, 6
creating, 160, 178
custom field controls without, 173–176
data validation (ASP.NET 2.0), 172
data validation (server–side), 172–173

field values, 158
custom, creating, 162–163

Fields property, 92
FieldTypeClass field, 162
file definition, 32. See also uncustomized files
File element, 86, 120

attributes in, 120
file extension pivots, 252–253

file sets, 119, 120. See also Module element
Firefox, 262, 279, 309
five–part name, 162
fldtypes[_*] .xml, 161
fldtypes_wrox.xml, 158, 161, 162, 177
forms, 6, 219–220. See also specific forms

electronic, 389, 401
InfoPath, 26, 219–220, 389

Forms Services, 219, 229, 389, 401
forms-based authentication (FBA), 297–302

database
connection string for, 299
creation of, 298

providers
creation of, 298–300
membership, 301, 302
role, 299
SharePoint configuration and, 300–302
testing, 300

SharePoint Web application, creation of,
297–298

Frequency (setting), 331, 332
FrontPage (Microsoft), 29, 81. See also

SharePoint Designer
Full Control permission level, 13, 14, 294
full trust, 30, 191
FullMask.SPBasePermission, 292

G
GAC. See Global Assembly Cache
garbage collector (GC), 212, 379
GC (garbage collector), 212, 379
GenSiteColumnsXml, 94
GenSiteContentTypesXml, 99
GetCachedListItemsByQuery() method,

142, 382
GetCachedList() method, 142
GetCachedSiteDataQuery() method, 143, 383
GetChildNodes() method, 382
GetDesignTimeHTML() method, 170, 175
GetValidatedString() method, 173
Ghostable, 120, 392
GhostableInLibrary, 120, 392
Global Assembly Cache (GAC), 30, 37, 55, 56,

59, 60, 61, 135, 158, 171, 192,
238, 285

global navigation, 10

Feature element(s)

bindex.indd 410bindex.indd 410 5/9/08 5:14:38 PM5/9/08 5:14:38 PM

411

In
de

x

Global site definition, 100
Go to Site, 254–256
Grouping and Sorting, 198
groups, 14. See also specific groups

cross-site, 13
online information, 14
Publishing Content Types, 96, 124
role provider, 13, 14, 297, 299, 301
SharePoint, 9, 13, 14, 293, 295

permission levels for, 295–296
site, 13

GUIDs
in content type IDs, 95, 96
site column, 61, 90

H
HeaderPattern, 162
Header.xsl file, 202, 203
hidden Feature, 57
hierarchical object store, 394, 395
Hierarchy Managers group, 295
high-memory usage, 379–380
HiSoftware, 154, 156. See also Accessibility

Kit for SharePoint
history lists, 218
Hitchhiker’s Guide to the Galaxy, 305
HTML

DOCX/DOCM to HTML document converter,
43, 352–353

Table based, 152
XML to HTML document converter, 353
XSN to HTML document converter, 353

HTML Editor field control, 273–279, 289, 290
custom button callback functions, 276–277
custom buttons added to, 274–278
enabling/disabling buttons on, 273–274

HTTP
custom module, 112, 113
Fiddler tool, 373, 376, 377
handlers, 19, 20, 21, 27
Launcher/Load Balancer services and, 350
requests/responses, 373
SSL and, 322
workflow activities and, 214

http://cdsource, 327
http://extranet, 297, 298, 300, 302
http://internet, 298, 300, 301, 302

HTTPS, 326, 350
HVU_‹machine name› account, 348, 350

I
IDs

content type, 95–96
site column, 61, 90

IFilters, 243, 265
IIS (Internet Information Services), 374

application pool, 37
compression, 374
ISAPI filter, 19, 20, 179, 369
SharePoint in, 21–22
virtual Web site, 47
Visual Studio and, 29
Web sites, 22, 24. See also Web applications
worker process isolation mode, 40

iisreset.exe, 177
image library, 3, 12, 46
Images library, 101
Import Server (setting), 326
Improving Web Site Usability and Appeal

(online resource), 17
in-browser search capability, 262
incremental content deployment, 323,

342–344
indexing, 242, 243, 257, 265, 267
infinite loop, 78, 79
InfoPath (Microsoft), 43, 81, 271

form to Web page document converter,
271, 353

forms, 26, 219–220, 389
XSLT and, 353
.xsn files, 345, 346, 353

information architecture, 7, 12, 13, 17
InitForm, 227, 228
InitFormSchema–generated class, 229–230
Inside Microsoft Windows SharePoint Services

3.0 (Pattison & Larson), 19, 220
installfeature, 52, 57
interactive disabilities, 145, 146
internal name, 90, 99
Internet Explorer, 154, 173, 200, 262, 263,

264, 279, 309
Internet Information Services. See IIS
intranets, 1, 241, 242, 243, 264, 298, 321,

369, 371

intranets

bindex.indd 411bindex.indd 411 5/9/08 5:14:39 PM5/9/08 5:14:39 PM

412

ISAPI filter, 19, 20, 179, 369
IT bottleneck, 42
Item, 94, 95
ItemStyle.xsl file, 203, 204, 205, 207

J
JavaScript, 60, 148, 154, 274, 275, 374, 377
jobs, 324–325

creating, 330–333
running, 334–336

K
key performance indicators (KPIs), 11, 41
keywords, 16, 243, 244, 257, 259
Kitta, Todd, 215
KPIs (key performance indicators), 11, 41

L
labels, variation, 309
language agility, 306, 307, 311, 314
language packs

Server, 307
Server Multiple, 307
SharePoint, 307

language-agile Features, 311–317
Larson, Dan, 19, 220
Launcher service, 347, 348, 349, 350, 354,

358, 359, 366
_layouts, 22, 112
LCID (locale ID), 85, 307
Limited Access permission level, 13, 294
line of business (LOB) actions, 41, 42
link depth, 258
list(s), 5, 89, 100–107, 392–393. See also

specific lists
accessing, via SharePoint API, 106–107
creating, 102–106

via browser interface, 102
via code, 102–103
via Features, 103–106

data storage with, 392–393
document libraries as, 100
folders in, 23
large, working with, 393

publishing, 100–101
querying, 107
RSS feeds and, 100, 393
schemas, 94, 102, 103, 104, 105
tables v., 392–393
versioning capabilities, 100

list columns, 90
List Settings page, 25–26
List Template Gallery, 100
list templates, 23, 36, 51, 52

scoping options, 54
List Type, 198
ListTemplates element, 81
Load Balance service, 347, 350
LOB (line of business) actions, 41, 42
locale ID (LCID), 85, 307
localization

of Features, 315–317
of field controls, 313–315
resources at runtime for, 315
of Web Parts, 313–315

Lockdown Feature, 86, 303–304
logToHistoryListActivity1_MethodInvoking()

method, 234

M
Main() method, 354, 355, 358
MakeCab.EXE utility, 63, 64, 65, 67. See also

CAB files
Manage Content Deployment Paths and Jobs

page, 330, 332, 333, 334, 337
Manage Hierarchy permission level, 13, 294
Manage Keywords page, 259
manifest.xml file, 61, 62. See also solution

manifest.xml file
for Chapter7Pages Feature, 122

Mann, David, 220
Markup Validation Service, W3C, 151, 154
Master Page Gallery, 46, 70, 76, 100, 110,

111, 117, 119, 120, 121, 122, 126,
128, 131, 136, 193, 208, 277, 280,
284, 285, 294, 295, 319

Master Page Settings page, 111,
117, 319

master pages, 4, 5, 27, 43, 46, 70, 109,
110–123

ISAPI fi lter

bindex.indd 412bindex.indd 412 5/9/08 5:14:39 PM5/9/08 5:14:39 PM

413

In
de

x

application, 112–113
ASP.Net 2.0/SharePoint, 27
content placeholders, 110, 114–115
creating, 115–122

as templates, 133, 136
using SharePoint Designer, 116–118,

133, 136
using Visual Studio and Features,

118–122, 133, 136
element manifest provisioning, 121
minimal, 116
mobile device sites, 319
page layouts and, 70–71. See also page

layouts
preview images and, 117, 118
site, 112
tokens, 110, 113–114
types of, 110–113
in variation sites, 309

MasterUrl, 111
masterurl/custom.master, 113
masterurl/default.master, 113
MCMS (Content Management Server 2002),

39–40, 212, 321, 340, 345
medium trust, 30, 375, 394
membership provider model, 28, 297, 387

FBA, 301, 302
META tags, 16, 378
metadata, 110, 242, 243, 244, 257, 258, 265
Metadata Property Mappings, 252, 257
MetaTagsGenerator, 16, 265, 378
microformats, 274, 275
Microsoft Cabinet SDK, 63
Microsoft Commerce Server, 42
Microsoft Content Management Server 2002.

See MCMS
Microsoft Installer files (MSI files), 60
Microsoft Office SharePoint Designer.

See SharePoint Designer
Microsoft Office SharePoint Server 2007.

See MOSS
Microsoft Search Server 2008 Express (MSS),

266–267
Microsoft SQL Server databases. See SQL

server databases
Microsoft Visual Studio. See Visual Studio
Microsoft.SharePoint namespace, 36–37, 179

Microsoft.SharePoint.dll assembly, 36, 171
Microsoft.SharePoint.Publishing namespace,

39, 47–49, 367
Microsoft.SharePoint.Publishing.

Administration namespace, 337
Microsoft.SharePoint.Publishing.

PublishingLayoutPage, 110
Microsoft.SharePoint.Publishing.

PublishingPage, 47
Microsoft.SharePoint.Publishing.

PublishingSite, 47
Microsoft.SharePoint.Publishing.

PublishingWeb, 47
migration, content. See content migration API
minimal master pages, 116
Minimal Publishing Portal site definition,

69–88
configurations, 79–80

hidden, 79
visible, 80
workflow, 80

Configurations element, 82
deploying, 88
Feature elements, 88

master page, 88
page layouts, 88

Feature manifest, 87–88
goal of, 74
lockdown Feature, 86
modules, 86–87
Navigation Feature, 86
ONET.XML file, 80–83

DocumentTemplates element, 81–82
NavBars element, 81
project element, 81

Publishing Feature, activation properties, 85
site provisioning, 76–79
SiteFeatures element, 83
solution package, 79
structure of, 79
testing, 88
WebFeatures element, 83–84
WEBTEMP file, 79–80

minimal trust, 30
mobile device sites, 305, 318

customizations, 318
master pages, 319

mobile device sites

bindex.indd 413bindex.indd 413 5/9/08 5:14:40 PM5/9/08 5:14:40 PM

414

mobile device sites (continued)
page layouts, 319
redirecting users of, 318
variations for, 305, 318–319

creating, 318
Module element, 86–87, 119–120

attributes, 120
in ONET.XML file, 86, 87

modules, 86–87
More from This Site, 253–254
MOSS (Microsoft Office SharePoint Server

2007), 40–42
custom application development and,

388–389
ECM strategy, 345, 347
editions, 41
Enterprise Edition, 41
extensibility, 269, 289. See also authoring

experience extensibility
features, 40–42

business forms, 41
collaboration, 41
content management, 41
portal, 41

Internet Sites Edition, 41
licensing, 41
multilingual capabilities, 306

content, 306
user interface, 306

.NET Framework and, 20, 21, 29, 152, 167
Publishing Portal site definition. See

Publishing Portal site definition
Publishing sites. See Publishing sites
SDK, 222
search. See search
Standard Edition, 41
Telerik RadEditor Lite Editor control for, 154,

173, 174, 279, 290
WCM in, 39–49

MOSS x32, 308
MOSS x32 Service Pack 1, 308
MOSS x64, 308
MOSS x64 Service Pack 1, 308
Mozilla-based browsers, 279
MSBuild, 66–67, 88, 223
MSI files (Microsoft Installer files), 60
MSS (Microsoft Search Server 2008 Express),

266–267

multilingual capabilities
content

ASP.NET, 306
MOSS, 306
SPS, 306
WSS, 306

user interface
ASP.NET, 306
MOSS, 306
SPS, 306
WSS, 306

multilingual Web sites, 305–317
language packs, installing, 307–308
language-agile Features in, 311–317
localization

of Features, 315–317
of field controls, 313–315
resources at runtime for, 315
of Web Parts, 313–315

variation-aware Web Parts, 311–313
variations in, 308–310

My Sites, 15, 41, 297
MyFirstFeature, 52, 53, 57, 58, 61, 62,

65, 66

N
Name and Description (setting), 328, 330, 331
Name attribute, 120
names, site column, 90–91

display, 90, 99
internal, 90, 99

namespace
Microsoft.SharePoint, 36–37, 179
Microsoft.SharePoint.Publishing, 39,

47–49, 367
Microsoft.SharePoint.Publishing.

Administration, 337
namespace.type, Assembly, Version, Culture,

PublicKeyToken, 162
NavBars element, 81
navigation (ASP.NET 2.0/SharePoint), 6, 10,

27, 137–144
browser–based customizations, 138–139
components, creating, 142
current, 10
custom applications and, 396–397
customizing, 138–142

mobile device sites (continued)

bindex.indd 414bindex.indd 414 5/9/08 5:14:40 PM5/9/08 5:14:40 PM

415

In
de

x

custom actions and, 269–271
with SharePoint API, 141

global, 10
navigation providers, customizing, 140–141
page listings and, 10
performance/usability considerations, 142–144
PortalSiteMapProvider. See

PortalSiteMapProvider
rendering controls, customizing, 139–140, 144
site map data sources, 138

customizing, 140
Site Navigation Settings page, 138, 141, 144
site structure and, 7–10
Table of Contents Web Part. See Table of

Contents Web Part
Navigation Feature, 74, 86

activation properties and, 86
navigation provider model (ASP.NET 2.0),

137–138, 387
.NET Framework, 20, 21, 28, 132, 134,

191, 240
3.5 release, 215, 222
ADO.NET, 143, 265, 383, 394, 397
CAS. See CAS
CLR, 212
custom code and, 378
disposable objects, 379–381
garbage collector, 212, 379
membership provider model. See

membership provider model
MOSS and, 20, 21, 29, 152
MSBuild. See MSBuild
stack, 21
Visual Studio 2005 and, 215, 222
Visual Studio 2008 and, 222
WF. See Workflow Foundation, Windows
XSD.EXE tool, 229, 232

News site, 324, 327, 333, 336
‘noise’ words, 261
Notification (setting), 332
NT Challenge Response dialog box, 297
NTLM (Windows authentication), 297

O
Object Cache Settings page, 372
object caching, 371–372
object model (document). See DOM

object model (SharePoint), 9, 60, 90, 375
document converters and, 352, 366–367
navigation, 137, 138
PortalSiteMapProvider and, 143

object relationship mapper (ORM), 310, 389
object store, hierarchical, 394, 395
objects, disposable. See disposable objects
Office applications. See Access; Excel;

InfoPath; Outlook; PowerPoint; Word
‘Office Server,’ 47
Office SharePoint Designer. See SharePoint

Designer
Office SharePoint Server 2007. See MOSS
Office SharePoint Server 2007 Administrators

Companion (Microsoft Press, 2007), 47
Office Visio 2007, 224
offline authoring with document converters,

271, 345–367
OnBegin() method, 186
OnEnd() method, 186
OneNote, 81
ONET.XML file, 74, 75, 76, 78, 79, 80–83

Configurations element, 82
DocumentTemplates element, 81–82
Module element, 86, 87
NavBars element, 81
project element, 81
SiteFeatures element, 83
WebFeatures element, 83–84

OnTimeout() method, 186
onWorkflowActivated1_Invoked() method, 232
OpenSearch, 261–264

browsers and, 262
Search Center site and, 262–264

operable (site design principle), 150
ORM (object relationship mapper), 310, 389
Outlook (Microsoft), 41, 199, 220, 221
output caching. See page output caching

P
page(s), 7, 8, 31–32. See also application

pages; master pages; site pages
authoritative, 15–16, 258
detail, 10
Publishing. See Publishing pages
rendering process, 109–110
status. See status page

page(s)

bindex.indd 415bindex.indd 415 5/9/08 5:14:41 PM5/9/08 5:14:41 PM

416

page(s) (continued)
types of, 31–32
welcome, 10

Page Editing Menu, 280, 281
ConsoleAction class, 281
items added to, 283–284

Page Editing Toolbar (PET), 42, 280–289, 290
console actions, 281–283, 284, 285
customizations, 280–289

deploying, 285–289
sections of, 280

page layouts, 4, 5, 10–11, 43, 46, 70, 109,
124–132, 136

content types v., 11, 99
creating, 124–129

as templates, 133, 136
using SPD, 125–126
using Visual Studio and Features, 126–129

element manifest provisioning, 127–128
field controls added to, 10, 130–131

custom, 177–178
master pages and, 70–71. See also master

pages
mobile device sites, 319
in Search Center with Tabs, 245–246
in variation sites, 309
Web Parts added to, 11, 130–133
wireframes, 10, 11, 12, 16

page output caching, 370–371
page payload, 152, 369, 372–378, 383
Page Status Bar, 280
PageAsyncTask class, 185
PageLayoutTemplate.aspx file, 70, 71, 73
Pages library, 7, 12, 70, 204, 238, 271,

352, 354
Pages list, 44, 46, 109, 110, 130, 170, 220,

238, 283, 310
PagesListUrl, 85
pain points, 40, 51, 67, 68, 279
Parallel Approvers workflow, 220, 238
ParentType field, 162
Path (setting), 331
Path attribute, 120
paths, 323–324

creating, 328–330
Pattison, Ted, 19, 220
payload. See page payload
PDB files, 37

.PDF file, 346, 353
perceivable (site design principle), 149
performance tips (Publishing sites), 369–383

caching options, 370–372
collections and, 381–382
cross-site queries and, 382–383
disposable objects and, 379–381
page payload, limiting of, 152, 369,

372–378, 383
permission levels, 13, 292–293, 399

Approve, 13, 294
Contribute, 13, 294
creating, through code, 400
in custom applications, 399–401
Design, 13, 294
event receiver checking for, 400–401
Full Control, 13, 14, 294
Limited Access, 13, 294
Manage Hierarchy, 13, 294
Read, 13, 294
Restricted Read, 13, 14, 294
roles as, 14, 292
for SharePoint groups, 295–296

permission rights, 291–292, 399
permissions, 8, 13–14

list, 291, 292
online information, 14
personal, 291, 292
site, 291, 292

persistence service, 213
PET. See Page Editing Toolbar
PIDs (process IDs), 37
pivots, 250–253

author, 251–252
file extension, 252–253

PlaceHolderAdditionalPageHead, 114, 247
PlaceHolders (list), 114. See also content

placeholders
PlaceHolderTitleBreadcrumb placeholder,

114, 246
portal (MOSS feature area), 41
PortalSiteMapProvider, 140, 141, 142–143,

197, 382–383
methods, 142–143, 382–383
press releases selected with, 143

PowerPoint (Microsoft), 81
Press Release content type, 96–97, 124

Chapter7Pages project and, 125

page(s) (continued)

bindex.indd 416bindex.indd 416 5/9/08 5:14:41 PM5/9/08 5:14:41 PM

417

In
de

x

Preview Image property, 117, 122, 126
preview images, 117

element manifest provisioning, 119
master pages and, 117, 118

PRIME, 339
Priority 1 checkpoints, 148, 149, 151,

153, 155
Priority 2 checkpoints, 148, 149, 155
Priority 3 checkpoints, 148, 149
process IDs (PIDs), 37
profile provider, 297
project element, 81
provisioning site pages, 391–392
provisioning the file, 32
Publishing Content Types group, 96, 124
Publishing Feature, 44, 57
Publishing framework, 69, 70, 72, 76, 78, 83,

85, 86, 87
Publishing Infrastructure Feature, 9, 74, 323,

324, 325, 335
publishing lists, special, 100–101
Publishing pages, 46

creating, 49
with document converters, 349

publishing, 49
setting properties, 49

Publishing Portal site definition, 69, 71–74, 88
custom. See Minimal Publishing Portal site

definition
limitations, 74, 88

Publishing Portal template, 44, 70, 72, 74,
154, 297, 373

http://cdsource, 327
Search Center with Tabs site on, 245

Publishing Site template, 44, 220
Publishing Site with Workflow template, 74, 220
Publishing sites (MOSS), 44–47

content types’ role in, 99–100
creating, 48, 71–74. See also Minimal

Publishing Portal site definition;
Publishing Portal site definition

elements of, 70–71
enumerating, 47
key elements, 46
master pages. See master pages
performance tips, 152, 369–383, 383
security components, 293–295
site columns’ role in, 99–100

versioning, 181
Web Parts in, 180–181
workflows in, 220–240

PublishingLayouts Feature, 73, 74
PublishingMinimal Feature, 80, 83

scoped at site collection level, 83
PublishingPrerequisites Feature, 73, 88
PublishingResources Feature, 73, 88, 95
PublishingSite Feature, 73
PublishingStapling Feature, 74
PublishingWeb Feature, 57, 72

Q
Query Scope, 198
querying lists, 107
Quick Access Buttons, 280, 281

buttons added to, 284–285
Quick Deploy jobs, 324–325

leveraging, 337
Quick Deploy Users, 295, 324, 337

R
RadEditor Lite Editor control for MOSS

(Telerik), 154, 173, 174, 279, 290
Read permission level, 13, 294
Real World SharePoint 2007: Indispensable

Experiences from 16 MOSS and WSS
MVPs (Wrox, 2007), 181

Really Simple Syndication feeds. See RSS
feeds

receivers. See event receivers; Feature
receivers

Redirect Page, 71
Reflector tool, 171
RegisterCoreJsIfAuthenticated server

control, 376
Rehabilitation Act. See United States

Rehabilitation Act of 1973 Section 508
relationship list, 310
rendering controls, 158, 160, 165

navigation, 139–140, 144
rendering piece, 137, 138
rendering templates, 164, 165, 166, 167, 168,

170, 174, 175, 177
RenderingTemplate, 158
Render() method, 171

Render() method

bindex.indd 417bindex.indd 417 5/9/08 5:14:41 PM5/9/08 5:14:41 PM

418

Reporting (setting), 327
reports (search), 259

Search Queries, 259
Search Results, 16, 259

resource files, 60
resource manager, 306, 315
Restrict Limited Access Feature, 303.

See also Lockdown Feature
Restricted Read permission level, 13, 14, 294
results, search. See search
retractsolution, 63
reusable content, 12, 42
Reusable Content list, 12
Rich Text Editor (RTE), 154
RichEditField control, 173. See also Telerik

RadEditor Lite MOSS Editor control
Roeder, Lutz, 171
role provider groups, 13, 14, 297, 299, 301
roles, as permission levels, 14, 292. See also

permission levels
root content type, 94, 95
root sites, 23. See also top-level sites
RootWebOnly attribute, 80, 120
Routing Workflows Feature, 220
RSS (Really Simple Syndication) feeds,

11, 181
lists and, 100, 393
Weather News Web Part and, 184, 185, 186,

187, 188, 194
RTE (Rich Text Editor), 154
RTE2_RegisterToolbarButton() JavaScript

function, 276
runtime engine, WF, 212, 213, 216, 222, 240

S
Safari, 279
safe mode parser, 31, 192, 391, 392
scheduling service, 213
schema.xml file, 104, 105
SCM (source control management) system,

35, 36, 200
scope (Feature)

Farm, 53, 54
Site (site collection level), 53, 54, 83, 84,

119
Web (site level), 53, 54, 83, 84
WebApplication, 53, 54

Scope (setting), 331
Scope, Query, 198
scope rules, 15
scopes, search, 15, 242, 243, 244, 256,

257, 258
screen readers, 146, 147
Scribner, Kenn, 215
search, 41, 241–267, 388

administration, 256–259
applications and

Internet Explorer, 264
Microsoft Word, 264

BDC integration with, 265–266
as business problem, 244
central administration, 258
configuration, 256–259
CSS issues and, 246–247
custom enhancements for, 265
in–browser search capability, 262–264
indexing and, 242, 243, 257, 265, 267
issues, 242
MSS and, 266–267
‘noise’ word configuration, 261
OpenSearch capability, 261–264
planning for, 242–244

questions to ask, 242–243
reports, 259
results

configuration, 248–250
default columns in, 252
fields added to, 252
handling, 243
pivots and, 250–253
quantity v. quality, 242
removal, 257
server mapping of, 257
site location from, 254–256
XSLT and, 248, 251, 256, 267
zero/empty, 16, 243, 256, 259

site collection search settings, 258–259
thesaurus file configuration, 259–261
WCM and, 15–16

Search Action Links, 248
Search Best Bets, 248
Search Box Web Parts, 246, 247, 248
Search Center, 244–256

OpenSearch and, 262–264
Search Center and Custom Scopes page, 258

Reporting (setting)

bindex.indd 418bindex.indd 418 5/9/08 5:14:42 PM5/9/08 5:14:42 PM

419

In
de

x

Search Center with Tabs, 244, 245
creating, on Publishing Portal template, 245
page layouts in, 245–246

Search Core Results Web Part, 248, 249, 250,
252, 253, 257

Search High Confidence Results, 248
Search Paging, 248
Search Queries Report, 259
Search Results Report, 16, 259
search scopes, 15, 242, 243, 244, 256,

257, 258
Search Server 2008 Express (MSS), 266–267
Search Statistics, 248
Search Summary, 248
search term stemming, 250
search–based alerts, 257
Section 508 (United States Rehabilitation Act

of 1973), 147, 150–151, 156
securable objects, 292, 293
security (SharePoint), 291–296

components, 291–295
Publishing sites, 293–295

permission levels. See permission levels
via SharePoint API, 295–296

Security Information (setting), 330
Select Sites to Deploy option, 339
sequential workflows, 214, 221, 222
server controls, 28

as delegate control, 135–136
with public properties, 135

Server language packs, 307
server mapping, of search results, 257
Server Multiple language pack, 307
server name mappings, 257
.Set command, 64
Shared Services Providers. See SSPs
SharePoint. See MOSS; WSS 3.0
SharePoint 12 folder, 21, 52, 59, 60, 61,

112, 118
SharePoint API

accessing lists via, 106–107
core, 36
creating customized page with, 33
navigation customization with, 141
security via, 295–296

SharePoint collections. See collections
SharePoint Designer (SPD), 170

master pages created with, 116–118, 133, 136

page layouts created with, 125–126
WYSIWYG interface, 29, 118, 126, 133

SharePoint groups. See groups
SharePoint language packs, 307
SharePoint navigation. See navigation
SharePoint Portal Server (SPS) 2003, 73, 182,

184, 215
multilingual capabilities, 306

content, 306
user interface, 306

SharePoint themes, 112
SharePoint_Publishing_defaultformtemplates.

ascx, 164
SimplePublishing property, 85, 86
‘single master’ model, 322
single sign–on (SSO), 41
site(s) (SharePoint), 5, 7, 8. See also

Publishing sites; Web sites
accessibility in, 152–154
ASP.NET Web Parts in, 191–192
components

ASP.NET 2.0, 386–387
MOSS, 388–389
WSS 3.0, 387–388

customization, 34–35
customization v. development, 34–36
development, 35–36
elements. See content types; lists; site

columns
high–memory usage and, 379–380
pages. See pages
structure, 7–10

navigation and, 7–10
top–level, 7, 8, 23
topology, 22–23

Site Collection Documents, 101
Site Collection Images, 101
site collection level, scoping at, 53, 54, 83
site collections, 5, 7, 8, 9, 22, 23, 46

boundaries, 9
search settings, 258–259

site columns, 5, 90–94, 99–100
creating, 91–94

via browser interface, 91–92
via code, 92–93
via Features, 93–94

data elements as, 99, 100, 101
GUIDs, 90

site columns

bindex.indd 419bindex.indd 419 5/9/08 5:14:42 PM5/9/08 5:14:42 PM

420

site columns (continued)
names, 90–91

display, 90, 99
internal, 90, 99
x0020 in, 90, 91–92, 107

role, in Publishing sites, 99–100
scoping options, 54

Site Content Type Gallery, 94, 96, 97, 352
site definition Configuration elements, 74,

75, 76
site definitions, 5, 12, 75–76, 88

custom. See Minimal Publishing Portal site
definition

Global, 100
Publishing Portal. See Publishing Portal site

definition
site templates v., 75–76

site design principles
conformance, 150
operable, 150
perceivable, 149
understandable, 150

site groups, 13
site map, 7–10
site map data sources, 138, 140
Site Master Page, 111, 112, 117
Site Master Page Settings page, 111,

117, 319
site master pages, 112
Site Navigation Settings page, 138, 141, 144
site pages, 31

application pages v., 392
site provisioning, 76–79

custom, 76–79
Feature receiver v., 78

Site Settings page, 24–25
Site Template Gallery, 100
site templates, 12, 23, 75, 76

site definitions v., 75–76
Site Title property, 253
site variations. See variations
sitecollection/default.master, 114
site/default.master, 114
SiteFeatures element, 83

with lockdown Feature, 86
site–scoped, 53, 54, 83, 84, 119
SmartPart, 181

SME (subject matter experts), 146
solution framework, 51, 60, 62, 68
solution manifest, 61
solution manifest.xml file, 61

assembly deployment with, 61
DDF file with, 64–65
Feature deployment with, 62

solution packages (WSS), 4, 5–6, 59–67
anatomy, 60–63
creating, 63–67
deployment process, 63
Minimal Publishing Portal site, 79
MSBuild and, 66–67, 88, 223
WSP files, 60, 61, 63, 64, 68, 88, 122, 129,

323, 388
solution store, 24, 26, 60, 63, 65, 66, 88, 122,

129, 238
source control management (SCM) system,

35, 36, 200
Source Web Application and Site Collection

(setting), 328
SPBasePermission, 282, 292, 295
SPContentType, 97
SPContentTypeCollection, 97
SPD. See SharePoint Designer
SPDocumentLibrary, 23, 36
special publishing lists, 100–101
SPFeatureReceiver, 55
SPField, 92, 98, 160
SPFieldCollection, 92
SPField.GetFieldValue() method, 163
SPField.GetValidatedString() method, 172
SPFieldLink, 98
SPFieldMultiColumn, 160, 162
SPFieldMultiColumnValue, 160, 162, 163
SPFile.RevertContentStream() method, 34
SPGridView, 396, 397–399
SPGroup, 37, 293, 295
SPList, 23, 36, 47, 102, 106, 381, 382
SPListItem, 23, 36, 47, 107, 130, 131, 382
SPPersistedObject, 395
SPQuery, 9, 37, 107, 142, 383
SPRoleAssignment object, 293, 295, 296
SPRoleDefinition, 293, 295
SPS. See SharePoint Portal Server 2003
SPSecurity.RunWithElevatedPrivledges()

method, 394

site columns (continued)

bindex.indd 420bindex.indd 420 5/9/08 5:14:43 PM5/9/08 5:14:43 PM

421

In
de

x

SPSite, 23, 36, 47, 53, 380
SPUrl, 123, 376
SPVirtualPathProvider, 20, 32
SPWeb, 23, 36, 47, 380. See also sites
SPWebApplication, 22
SPWeb.ApplyWebTemplate() method, 77, 78
SPWebProvisioningProvider.Provision()

method, 77, 78
SQL Server databases, 23, 30, 36, 47, 213,

291, 304, 369, 392, 394
SharePoint–specific, 23. See also content

databases
SSL, 322
SSO (single sign–on), 41
SSPs (Shared Services Providers), 14, 15, 16,

39, 46–47, 256, 257, 258, 259, 323
Application ID, 259
search scopes, 258. See also search scopes
sections, 257

stapling (Feature site template associations),
74

scoping options, 54
stapling Features, 58–59
state machine workflows, 214, 221, 222
static master page tokens, 114
status page, 216, 218, 238, 239
Step–by–Step Usability Guide (online

resource), 17
STP file, 103. See also template file
STSADM.EXE, 26

AC’s WCM Custom Commands for, 94, 99
activate/deactivate Features, 57
extensibility, 26
GenSiteColumnsXml, 94
GenSiteContentTypesXml, 99
install/uninstall Features, 52, 57
retractsolution, 63
upgradesolution, 63

Style Library, 70, 73, 101, 123, 202, 247, 248,
278, 294, 295

Style Resource Readers SharePoint
group, 295

subject matter experts (SME), 146
SubVersion, 35, 200
Summary Links Web Part, 10, 73, 195,

196, 209
supporting content, 11–12

SyncChanges() method, 183, 190
System content type, 94, 95
System Master Page, 73, 111
System.IDisposable interface, 379

T
Table of Contents Web Part, 73, 144, 195,

196, 197, 203, 209
tables (database), 100, 107, 392, 393.

See also lists
lists v., 392–393

targeting, user profiles and, 14–15
task lists, 218
TaskForm, 230, 231
Team Foundation System, 35, 200
Telerik RadEditor Lite MOSS Editor control,

154, 173, 174, 279, 290
template Configuration elements, 74, 75, 76
template element, 74
template file, 32, 33, 34, 86, 103, 118, 370.

See also uncustomized files
TemplateFiles element, 62
TemplateType attribute, 106
Temporary Files (setting), 326
themes (SharePoint), 112
thesaurus files, 259–261
thick clients, 270, 345
Tielens, Jan, 181
tokens (change), 342–343
tokens (master page), 110, 113–114

dynamic, 113
masterurl/custom.master, 113
masterurl/default.master, 113
sitecollection/default.master, 114
site/default.master, 114
static, 114

top–level sites, 7, 8, 23
tracking service, 213
TransformXmlToHtml() method, 355, 356
triggers, 100, 392. See also event receivers
trunk, 36
trust, 28, 60, 191, 194. See also code access

security
full, 30, 191
medium, 30, 375, 394
minimal, 30

trust

bindex.indd 421bindex.indd 421 5/9/08 5:14:43 PM5/9/08 5:14:43 PM

422

try-catch-finally block, 380, 381
12 folder structure (SharePoint), 21, 52, 59,

60, 61, 112, 118
[..]/12/TEMPLATE/XML folder, 158, 160,

161, 177
Type attribute, 120
TypeDisplayName field, 162
TypeName field, 161
TypeShortDescription field, 162

U
UAAG (User Agent Accessibility

Guidelines), 147
uncustomized files, 31, 32–34, 38, 115

SharePoint development and, 35–36
SPFile.RevertContentStream() method

and, 34
underscore (_), 133
understandable (site design principle), 150
uninstallfeature, 57
United States Rehabilitation Act of 1973

Section 508, 147, 150–151, 156
upgradesolution, 63
up-scoping, 243, 256
Url attribute, 120
User Agent Accessibility Guidelines

(UAAG), 147
user controls, 28. See also ASCX files;

rendering templates
User Information LIst, 100
User Names (setting), 329
user profiles, 14–15
UserCreatable field, 162
using statements, 232

disposable objects and, 381

V
validation controls, 172
variation-aware Web Parts, 311–313
VariationRootPageLayout.aspx, 70, 71, 73
variations (site), 42, 44, 305, 307, 308–319

hierarchy, 308
home, 309
job, 310
labels, 309
master pages in, 309

mobile device sites and, 305, 318–319
in multilingual Web sites, 308–310
Web Parts in, 310

View Scopes page, 258
ViewFormPagesLockDown, 86, 303
virtual path provider, 20, 32
VisibleFeatureDependency, 80
Visio 2007, 224
visual disabilities, 145, 146
Visual Source Safe, 200
Visual Studio (Microsoft)

2005 v. 2008, 222
Features created with, 59
IIS and, 29
master pages created with, 118–122,

133, 136
page layouts created with, 126–129
Team Foundation Server, 35
workflows created with, 215, 221–240

Visual Studio 2005 for .NET Framework 3.0
(VSeWWF), 215, 222

VSeWWF (Visual Studio 2005 for .NET
Framework 3.0), 215, 222

_vti_bin, 21

W
W3C (World Wide Web Consortium), 146–147

guidelines, 146
Markup Validation Service, 151, 154
recommendations, 147

w3wp.exe processes, 37
WAI (Web Accessibility Initiative), 147
WCAG (Web Content Accessibility Guidelines)

1.0, 147–149, 156
Checklist, 149
references, 149
Techniques document, 149

2.0, 149–150, 156
references, 150
site design principles, 149–150

WCM (Web Content Management), 1–17
ABCs of, 42–44
authentication options, 13–14
case scenarios, using, 7
designing/planning, 7–16
experience

authors/editors, 2–3

try-catch-fi nally block

bindex.indd 422bindex.indd 422 5/9/08 5:14:44 PM5/9/08 5:14:44 PM

423

In
de

x

designers/developers, 4–6
extensibility, 5–6
on Microsoft platform, 39–40
search strategy, 15–16
site structure/navigation, 7–10
supporting content, 11–12
user profiles/targeting, 14–15

WCM Custom Commands, for STSADM.EXE,
94, 99

WCM in MOSS, 39–49
Weather News Web Part, 184–195

definition file, 193
RSS feed, 184, 185, 186, 187, 188, 194
settings, public accessors for, 189
Web Part Gallery and, 193, 194, 195

WeatherEditorPart class, 189–190
WeatherEditorPart.cs file, 189–190
WeatherWebPart class, asynchronous tasks,

creating/executing, 187
WeatherWebPart.cs file, 184
Web Accessibility Initiative (WAI), 147
Web applications, 10, 22, 24
Web browsers. See Firefox; Internet Explorer;

Safari
Web Content Accessibility Guidelines.

See WCAG
Web Content Management. See WCM
Web front–end servers. See WFE servers
Web Part definition files (* .webpart), 60
Web Part framework, 27, 28, 179, 191, 199,

208, 216, 386, 387
Web Part Gallery, 60, 73, 100, 130, 192, 193,

195, 200, 207, 315
Web Part Packager, 60
Web Part Page Services Component (WPSC),

153, 188
Web Part zones, 11, 179

Web Parts added to, 180–181
Web Parts, 6, 28, 43, 179–209. See also

specific Web Parts
advanced techniques, 182
ASP.NET, 182

in SharePoint sites, 191–192
asynchronous programming techniques, 183
Content Query. See Content Query Web Part
creating, 181–195
deployment options, 192–195
Edit Mode Panels, 11, 16, 182–183

field controls v., 130–131
functionality and, 181
localization of, 313–315
in page layouts, 11, 130–133
in Publishing sites, 180–181
Summary Links. See Summary Links Web Part
Table of Contents. See Table of Contents

Web Part
variation–aware, 311–313
in variations, 310
Weather News. See Weather News Web Part

Web sites. See also sites
accessibility. See accessibility
content–centric, 74, 142, 145, 181, 294,

295, 304, 319, 369, 385, 388
designing, online resources, 17
multilingual, 305–317

WebApplication scope, 53, 54
web.config file, 60, 61, 63, 68, 141, 177, 192,

285, 296, 298, 372, 391, 394
WebFeatures element, 83–84
Webmaster bottleneck, 2
.webpart, 60
Web–scoped, 53, 54, 83, 84
WEBTEMP file, 79–80
Welcome Page, 71, 382
welcome pages, 10
WelcomePageUrl, 85
WF. See Workflow Foundation, Windows
WFE (Web front–end) servers, 51, 60, 61,

302, 322
memory footprint, reduction of, 369, 370,

371, 372, 383
Widget Content Builder Feature, 196
Widget Product Page, 196
WidgetContentBuilder, 196, 204
Widgets, 196
widgets/DooDads, 259, 260
Windows authentication, 297. See also

authentication
Windows SharePoint Services. See WSS
wireframes, 10, 11, 12, 16. See also page

layouts
Word (Microsoft), 43, 81

document converter, 271, 352–353
macros to Web page, 352–353

search and, 264
template, 95

Word (Microsoft)

bindex.indd 423bindex.indd 423 5/9/08 5:14:44 PM5/9/08 5:14:44 PM

424

WorkerTask class, 185–186
setting/retrieving values in, 186

WorkerTask.cs file, 185
WorkerTask.ExecuteTask() method, 186
workflow(s), 43. See also specific

workflows
activities, 213, 214
creating, with SPD, 221
creating, with Visual Studio, 215,

221–240
required components, 222

custom, 6, 215
Dual Approvers, 222–239
forms added to, 219–220
instance, 213
in Publishing sites, 220–240
sequential, 214, 221, 222
state machine, 214, 221, 222
types of, 214

workflow association form, 219
workflow associations, 217, 218
Workflow Foundation, Windows (WF), 20,

211–240
architecture, 212–213
books on, 215
online information, 215
overview, 211–215
runtime engine, 212, 213, 216, 222, 240
SharePoint leveraging of, 211, 215–240

architecture, 216
forms added to workflows, 219–220
history lists, 218
task lists, 218
terminology, 216–218

terminology, 212–213
Workflow in the 2007 Microsoft Office System

(Mann), 220
workflow initiation form, 219
workflow instances, 218
workflow modification form, 219
workflow task form, 219
workflow templates, 217

debugging, 239–240
Dual Approvers workflow. See Dual Approvers

workflow
“Working with Large Lists in Office SharePoint

Server 2007,” 393

World Wide Web Consortium. See W3C
_wpresources, 21, 22, 60, 61
WPSC (Web Part Page Services Component),

153, 188
WriteHtmlBody() method, 355, 357
WriteHtmlStyles() method, 355, 356,

365–366
WriteStyles() method, 365
WroxBookControl, added to page layout, 178
WroxBookControl.cs, 175–176
WroxPublications list template, 104,

105, 106
WroxTemplates.ascx, 174
WSP files, 60, 61, 63, 64, 68, 88, 122, 129,

323, 388. See also solution packages
WSS 2.0, 19, 20, 51
WSS (Windows SharePoint Services) 3.0,

19–38
administration, 24–26
as application development platform, 385,

389–390, 401
architecture, 19–22
customization, 34–36, 38

development v., 34–36, 38, 133
debugging in. See debugging
designing/planning, 7–16

checklist, 16
development, 35–36

ASP.NET 2.0 development v., 27–31, 37
customization v., 34–36, 38, 133

extensibility, 269, 289. See also authoring
experience extensibility

Features. See Features
multilingual capabilities, 306

content, 306
user interface, 306

navigation. See navigation
overview, 19–38
pages. See application pages; site pages
SDK, 222
site topology, 22–23. See also sites
solution packages. See solution packages

WSS x32, 308
WSS x32 Service Pack 1, 308
WSS x64, 308
WSS x64 Service Pack 1, 308
WYSIWYG interface, 29, 118, 126, 133

WorkerTask class

bindex.indd 424bindex.indd 424 5/9/08 5:14:44 PM5/9/08 5:14:44 PM

425

In
de

x

X
x0020, 90, 91–92, 107
XFN (XHTML Friends Network), 274, 275

button, 275, 277, 278
links, 275
microformat, 274, 275

XHTML, 148, 151, 275
XHTML Friends Network (XFN). See XFN
XML configuration file, for document

converter, 356–357
XML to HTML document converter, 353
XmlToHtmlConverterSettings.ascx admin

settings control, 362–363
XmlToHtmlConverterSettings.cs settings

control code-behind, 363–364

XPS file, 353
XSD.EXE tool, 229, 232
XSLT

InfoPath and, 353
search results and, 248, 251,

256, 267
style sheets, 6, 70, 73,

195, 345
.xsn files, 345, 346, 353
XSN to HTML document converter, 353

Z
zero results, 16, 243, 256, 259
zones, Web Part. See Web Part zones

zones, Web Part

bindex.indd 425bindex.indd 425 5/9/08 5:14:44 PM5/9/08 5:14:44 PM

bindex.indd 426bindex.indd 426 5/9/08 5:14:45 PM5/9/08 5:14:45 PM

badvert.indd 427badvert.indd 427 5/8/08 7:19:46 PM5/8/08 7:19:46 PM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 428badvert.indd 428 5/8/08 7:19:46 PM5/8/08 7:19:46 PM

	Professional SharePoint 2007 Web Content Management Development: Building Publishing Sites with Office SharePoint Server 2007
	About the Author
	About the Technical Editors
	Credits
	Acknowledgments
	Contents
	Foreword
	Introduction
	Who This Book Is For
	How This Book Is Structured
	What You Need to Use This Book

	Chapter 1: Embarking on Web Content Management Projects
	The Web Content Management Experience
	Designing and Planning a Successful WCM Solution
	Summary

	Chapter 2: Windows SharePoint Server 3.0 Development Primer
	SharePoint Architecture
	SharePoint Site Topology
	SharePoint Administration
	WSS 3.0 and ASP.NET 2.0 Development
	Types of Pages
	Uncustomized Versus Customized Files
	Customization versus Development
	Introducing the Microsoft. SharePoint Namespace
	Debugging in WSS 3.0
	Summary

	Chapter 3: Overview of Web Content Management in Microsoft Office SharePoint Server 2007
	Web Content Management on the Microsoft Platform
	Microsoft Office SharePoint Server
	The ABCs of Web Content Management
	Publishing Sites
	Microsoft. SharePoint. Publishing Namespace
	Summary

	Chapter 4: SharePoint Features and the Solution Framework
	Overview of SharePoint Features
	Overview of WSS Solution Packages
	Summary

	Chapter 5: Minimal Publishing Site Definition
	Elements of a Publishing Site
	Examining the Publishing Portal Site Definition
	The Challenge with the Publishing Portal Site Definition
	Creating a Publishing Site Definition
	Summary

	Chapter 6: Site Columns, Content Types, and Lists
	Site Columns
	Content Types
	Role of Site Columns and Content Types in Publishing Sites
	Lists
	Summary

	Chapter 7: Master Pages and Page Layouts
	Page Rendering Process Overview
	Master Pages in Publishing Sites
	Page Layouts
	Building Master Pages and Page Layouts As Templates
	Delegate Controls
	Summary

	Chapter 8: Navigation
	ASP . NET 2.0 Navigation Provider Model
	Customizing Site Navigation
	Performance and Usability Considerations
	Summary

	Chapter 9: Accessibility
	What Is an Accessible Web Site?
	Measuring Accessibility
	Advantages to Creating Accessible Web Sites
	Creating Accessible SharePoint Sites
	Accessibility Kit for SharePoint
	Summary

	Chapter 10: Field Types and Field Controls
	Overview of All the Moving Par ts
	Creating Custom Field Types and Controls
	Creating Custom Field Controls without Custom Field Types
	Implementing Custom Field Controls in Page Layouts
	Summary

	Chapter 11: Web Parts
	Adding Web Parts to Web Part Zones
	Creating Custom Web Par ts
	MOSS 2007 Publishing Web Parts
	Summary

	Chapter 12: Leveraging Workflow
	Understanding Windows Workflow Foundation
	Creating Custom Workflows
	Overview of SharePoint’s Workflow Proposition
	Workflow in SharePoint Publishing Sites
	Creating Custom Workflows for SharePoint Publishing Sites
	Summary

	Chapter 13: Search
	Planning for Search
	Search Center Design and Configuration
	Search Administration and Configuration
	Thesaurus File Configuration
	Advertising OpenSearch Capability
	Telling Applications Where to Search
	Custom Enhancements for Search
	BDC Integration with Search
	Microsoft Search Server 2008 Express
	Summary

	Chapter 14: Authoring Experience Extensibility
	Customizing SharePoint Navigation with Custom Actions
	Offline Authoring with Document Converters
	Edit Model Panel
	Customizing the HTML Editor Field Control
	Telerik RadEditor Lite for MOSS
	Customizing the Page Editing Toolbar
	Summary

	Chapter 15: Authentication and Authorization
	SharePoint Security Components
	SharePoint Security via the API
	Alternate Access Mappings
	Authentication Provider Model
	Anonymous Access
	Summary

	Chapter 16: Implementing Sites with Multiple Languages and Devices
	Developing Multilingual Web Sites
	Targeting Devices with Variations
	Summary

	Chapter 17: Content Deployment
	Content Deployment Fundamentals
	Configuring Content Deployment
	Content Deployment Walkthrough
	Using the Content Deployment API
	Using the Content Migration API
	Summary

	Chapter 18: Offline Authoring with Document Converters
	Document Converter User Experience
	Overview of the Document Converter Architecture
	Document Converter Configuration
	Out-of-the-Box Document Converters
	Creating Custom Document Converters
	Working with Document Converters via the Object Model
	Summary

	Chapter 19: Performance Tips, Tricks, and Traps
	SharePoint Caching Options
	Limiting the Page Payload
	Performance Programming Techniques
	Querying/Aggregating Data via the API
	Summary

	Chapter 20: Incorporating ASP.NET 2.0 Applications
	Each Component Adds More Value
	Advantages to Using SharePoint As an Application Development Platform
	Incorporating Applications into SharePoint Sites
	Data Storage Options
	Application Configuration Options
	Utilizing SharePoint Components in Custom Applications
	Summary

	Index

