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For my mother who always showed me the right path…



Preface

This book is written for young professionals and graduate students

who have prior logic design background and want to learn how to use

logic blocks to build complete systems from design specifications.

My two-decade-long industry experience has taught me that engineers

are “shape-oriented” people and that they tend to learn from charts and

diagrams. Therefore, the teaching method I followed in this textbook

caters this mind set: a lot of circuit schematics, block diagrams, timing

diagrams, and examples supported by minimal text.

The book has eight chapters. The first three chapters give a complete

review of the logic design principles since rest of the chapters signifi-

cantly depend on this review. Chapter 1 concentrates on the combina-

tional logic design. It describes basic logic gates, DeMorgan’s theorem,

truth tables, and logic minimization. This chapter uses these key con-

cepts in order to design mega cells, namely various types of adders and

multipliers. Chapter 2 introduces sequential logic components, namely

latches, flip-flops, registers, and counters. It introduces the concept of

timing diagrams to explain the functionality of each logic block. The

Moore and Mealy-type state machines, counter–decoder-type con-

trollers, and the construction of simple memories are also explained in

this chapter. Chapter 2 also illustrates the design process: how to develop

architectural logic blocks using timing diagrams, and how to build a

controller from a timing diagram to guide data flow. Chapter 3 focuses

on the review of asynchronous logic design, which includes state defi-

nitions, primitive flow tables, and stateminimization. Racing conditions

in asynchronous designs, how to detect and correct them are also

explained in this chapter. The chapter ends with designing an important

asynchronous timing block: the C element (or theMueller element), and

it describes an asynchronous timing methodology that leads to a com-

plete design using timing diagrams.

vii



From Chapter 4 to Chapter 8, computer architecture-related topics

are covered. Chapter 4 examines a very essential system element:

system bus and communication protocols between system modules.

This chapter defines the bus master and the bus slave concepts and

examines their bus interfaces. Read and write bus cycles and protocols,

bus handover and arbitration are also examined in this chapter. System

memories, namely Static Random Access Memory (SRAM),

Synchronous Dynamic Random Access Memory (SDRAM),

Electrically-Erasable-Programmable-Read-Only-Memory (E2PROM)

and Flash memory are examined in Chapter 5. This chapter also shows

how to design bus interface for each memory type using timing dia-

grams and state machines. Chapter 6 is all about the design of a simple

Reduced Instruction Set Computer (RISC) for central processing. The

chapter starts with introducing a simple assembly instruction set and

building individual hardware for each instruction. As other instructions

are introduced to the design, techniques are shown how to integrate

additional hardware to the existing CPU data-path to be able to execute

multiple instructions. Fixed-point and floating-point Arithmetic Logic

Units (ALU) are also studied in this chapter. Structural, data and pro-

gram control hazards, and the required hardware to avoid them are

shown. This chapter ends with the operation of various cache archi-

tectures, cache read and write protocols, and the functionality of

write-through and write-back caches. The design of system peripherals,

namely Direct Memory Access (DMA), interrupt controller, system

timers, serial interface, display adapter and data controllers are covered

in Chapter 7. The design methodology to construct data-paths with

timing diagrams in Chapter 2 is closely followed in this chapter in order

to design the bus interface for each peripheral. Chapter 8 describes the

Field-Programmable Gate array (FPGA), and the fundamentals of data

driven processors as special topics.

At the end of the book, there is a small appendix that introduces the

Verilog language. Verilog is a widely used Hardware Design

Language (HDL) to build and verify logic blocks, mega cells and

systems. Interested readers are encouraged to go one step beyond and

learn system Verilog to be able to verify large logic blocks.

Dr. Ahmet Bindal

Computer Engineering Department

San Jose State University

San Jose, CA, USA
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1Review of Combinational Circuits

Logic gates are the essential elements in digital design, and ultimately constitute the building

blocks for digital systems. A good understanding in designing complex logic blocks from

primitive logic gates, and mastering the design tools and techniques that need to be incor-

porated in the design process is a requirement for the reader before moving to the details of

computer architecture and design.

This chapter starts with defining the logic gates and the concept of truth table which then

leads to the implementation of basic logic circuits. Later in the chapter, the concept of

Karnaugh maps is introduced in order to minimize gate count, thereby completing the basic

requirements of combinational logic design. Following the minimization techniques, various

fundamental logic blocks such as multiplexers, encoders, decoders and one-bit adders are

introduced so that they can be used to construct larger scale combinational logic circuits. The

last section of this chapter is dedicated to the design of mega cells. These include different

types of adders such as ripple-carry adder, carry-look-ahead adder, carry-select adder, and

the combination of all three types depending on the goals of the design: gate count, circuit

speed and power consumption. Subtractors, linear and barrel shifters, array and Booth

multipliers constitute the remaining sections of this chapter.

It is vital for the reader to also invest time to learn a hardware design language such as

Verilog while studying this chapter and the rest of the chapters in this book. A simulation

platform incorporating Verilog and a set of tools that work with Verilog such as design

synthesis, static timing analysis, and verification is an effective way to check if the intended

design is correct or not. There is nothing more valuable than trying various design ideas on a

professional design environment, and understanding what works and what does not while

learning from your mistakes. An appendix introducing the basic principles of Verilog is

included at the end of this book for reference.

© Springer International Publishing Switzerland 2017

A. Bindal, Fundamentals of Computer Architecture and Design,

DOI 10.1007/978-3-319-25811-9_1
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1.1 Logic Gates

AND gate

To understand how AND gate functions, assume that the output, OUT, in Fig. 1.1 is at logic

0 when both switches, A and B, are open. Unless both A and B close, the output stays at

logic 0.

A two-input AND gate functions similarly to the circuit in Fig. 1.1. If any of the two

inputs, A or B, is at logic 0 in the AND gate in Fig. 1.2, the gate produces a logic 0 output at

OUT. Both inputs of the gate must be equal to logic 1 in order to produce an output at logic 1.

This behavior is tabulated in Table 1.1, which is called a “truth table”.

A

B
OUT

Fig. 1.2 Two-input AND gate symbol

Table 1.1 Two-input AND gate truth table

A B OUT

0 0 0

0 1 0

1 0 0

1 1 1

1

OUT

A

B

Fig. 1.1 Switch representation of a two-input AND gate
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The functional representation of the two-input AND gate is:

OUT ¼ A : B

Here, the symbol “.” between inputs A and B represents the AND-function.

OR gate

Now, assume a parallel connectivity between switches A and B as shown in Fig. 1.3. OUT

becomes logic 1 if one of these switches closes; otherwise the output will stay at logic 0.

A two-input OR gate shown in Fig. 1.4 functions similarly to the circuit in Fig. 1.3. If any

of the two inputs is at logic 1, the gate produces an output, OUT, at logic 1. Both inputs must

be equal to logic 0 in order to produce a logic 0 output. This behavior is tabulated in the truth

table, Table 1.2.

A

B
OUT

Fig. 1.4 Two-input OR gate symbol

1

OUT

A B

Fig. 1.3 Switch representation of two-input OR gate

Table 1.2 Two-input OR gate truth table

A B OUT

0 0 0

0 1 1

1 0 1

1 1 1
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The functional representation of the two-input OR gate is:

OUT ¼ A þ B

Here, the symbol “+” between inputs A and B signifies the OR-function.

Exclusive OR gate

A two-input Exclusive OR gate, XOR gate, is shown in Fig. 1.5. The XOR gate produces a

logic 0 output if both inputs are equal. Therefore, in many logic applications this gate is used

to compare the input logic levels to see if they are equal. The functional behavior of the gate

is tabulated in Table 1.3.

The functional representation of the two-input XOR gate is:

OUT = A�B

Here, the “⊕” symbol between inputs A and B signifies the XOR-function.

Buffer

A buffer is a single input device whose output is logically equal to its input. The only use of

this gate is to be able to supply enough current to the capacitive load created by a multitude of

logic gates connected to its output. The logical representation of this gate is shown in Fig. 1.6.

Table 1.3 Two-input XOR gate truth table

A B OUT

0 0 0

0 1 1

1 0 1

1 1 0

A

B
OUT

Fig. 1.5 Two-input XOR gate symbol

OUTIN

Fig. 1.6 Buffer symbol
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Complementary Logic Gates

All basic logic gates need to have complemented forms in logic design. If a single input

needs to be complemented, an inverter shown in Fig. 1.7 is used. The inverter truth table is

shown in Table 1.4.

The functional representation of the inverter is:

OUT ¼ IN

Here, the “-” symbol on top of the input, IN, represents the complement-function.

The complemented form of two-input ANDgate is called two-input NANDgate, where “N”

signifies negation. The logic representation is shown in Fig. 1.8, where a circle at the output of

the gate means complemented output. The truth table of this gate is shown in Table 1.5. Note

that all output values in this table are exact opposites of the values given in Table 1.1.

A

B
OUT

Fig. 1.8 Two-input NAND gate symbol

Table 1.4 Inverter truth table
IN OUT

0 1

1 0

OUTIN

Fig. 1.7 Inverter symbol

Table 1.5 Two-input NAND gate truth table

A B OUT

0 0 1

0 1 1

1 0 1

1 1 0
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The functional representation of the two-input NAND gate is:

OUT ¼ A : B

Similar to the NAND gate, the two-input OR and the two-input XOR gates have com-

plemented configurations, called the two-input NOR and the two-input XNOR gates,

respectively.

The symbolic representation and truth table of a two-input NOR gate is shown in Fig. 1.9

and Table 1.6, respectively. Again, all the outputs in Table 1.6 are the exact complements of

the outputs in Table 1.2.

The functional representation of the two-input NOR gate is:

OUT ¼ A þ B

The symbolic representation and truth table of a two-input XNOR gate is shown in

Fig. 1.10 and Table 1.7, respectively. This gate, like its counterpart the two-input XOR gate,

is often used to detect if input logic levels are equal.

Table 1.6 Two-input NOR gate truth table

A B OUT

0 0 1

0 1 0

1 0 0

1 1 0

A

B
OUT

Fig. 1.10 Two-input XNOR gate symbol

A

B
OUT

Fig. 1.9 Two-input NOR gate symbol

Table 1.7 Two-input XNOR gate truth table

A B OUT

0 0 1

0 1 0

1 0 0

1 1 1
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The functional representation of the two-input XNOR gate is:

OUT ¼ A�B

Tri-State Buffer and Inverter

It is often necessary to create an open circuit between the input and the output of a logic gate

if the gate is not enabled. This need creates two more basic logic gates, the tri-state buffer

and tri-state inverter.
The tri-state buffer is shown in Fig. 1.11. Its truth table in Table 1.8 indicates continuity

between the input and the output terminals if the control input, EN, is at logic 1. When EN is

lowered to logic 0, an open circuit exists between the IN and the OUT terminals, which is

defined as high impedance state (HiZ).

The tri-state inverter is shown in Fig. 1.12 along with its truth table in Table 1.9. This

gate behaves like an inverter when EN input is at logic 1. However, when EN is lowered to

logic 0, its output disconnects from its input.

Table 1.8 Tri-state buffer truth table

TUONE NI

0 0 HiZ

0 1

1 0

1 1

0

HiZ

1

OUTIN

EN

Fig. 1.12 Tri-state inverter symbol

OUTIN

EN

Fig. 1.11 Tri-state buffer symbol
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The control input, EN, to tri-state buffer and inverter can also be complemented in order to

produce an active-low enabling scheme.

The tri-state buffer with the active-low enable input in Fig. 1.13 creates continuity when

EN = 0.

The tri-state inverter with the active-low input in Fig. 1.14 also functions like an inverter

when EN is at logic 0, but its output becomes HiZ when EN is changed to logic 1.

1.2 Boolean Algebra

It is essential to be able to reconfigure logic functions to suit our design goals. Logical

reconfigurations may be as simple as regrouping the inputs to a single gate or comple-

menting the inputs of several gates to reach a design objective.

The identity, commutative, associative, distributive laws and the DeMorgan’s negation

rules are used to perform logical manipulations. Table 1.10 tabulates these laws.

Table 1.9 Tri-state inverter truth table

TUONE NI

0 0 HiZ

0 1

1 0

1 1

1

HiZ

0

OUTIN

EN

Fig. 1.13 Tri-state buffer symbol with complemented enable input

OUTIN

EN

Fig. 1.14 Tri-state inverter symbol with complemented enable input
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Example 1.1: Reduce OUT ¼ A : B : C þ A : B : C þ A : B using algebraic rules.

OUT ¼ A :B : C þ A :B : C þ A :B

¼ A : C : ðB þ BÞ þ A :B

¼ A : (C þ BÞ

Example 1.2: Reduce OUT ¼ A þ A : B using algebraic rules.

OUT ¼ A þ A : B

¼ ðA þ AÞ : ðA þ BÞ

¼ A þ B

Table 1.10 Identity, commutative, associative, distributive and DeMorgan’s rules

A . B = B . A

A + B = B + A
Commutative

A . (B . C) = (A . B) . C

A + (B + C) = (A + B) + C
Associative

A . (B + C) = A . B + A . C

A + B . C = (A + B) . (A + C)
Distributive

A . B = A + B

A + B = A . B

A . 1 = A

A . 0 = 0

A . A = A

A . A = 0

A = A

A + 1 = 1

A + 0 = A

A + A = A

A + A = 1

Identity

DeMorgan’s

1.2 Boolean Algebra 9



Example 1.3: Reduce OUT ¼ A : B þ A : C þ B : C using algebraic rules.

OUT ¼ A : B þ A :C þ B : C

¼ A : B þ A :C þ B : C : ðA þ AÞ

¼ A : B þ A : C þ A : B : C þ A : B : C

¼ A : B : ð1 þ CÞ þ A :C : ð1 þ B)

¼ A : B þ A : C

Example 1.4: Reduce OUT ¼ ðA þ BÞ : ðA þ C) using algebraic rules.

OUT ¼ðA þ BÞ : ðA þ C)

¼A : A þ A : C þ A : B þ B : C

¼A : C þ A : B þ B : C

¼A : C þ A : B þ B : C : ðA þ AÞ

¼A : C þ A : B þ A : B : C þ A : B : C

¼A : C : ð1 þ BÞ þ A : B : ð1 þ CÞ

¼A : C þ A : B

Example 1.5: Convert OUT ¼ ðA þ BÞ : C : D into an OR-combination of two-input

AND gates using algebraic laws and DeMorgan’s theorem.

OUT ¼ ðA þ BÞ : C : D

¼ ðA þ BÞ : ðC þ DÞ

¼ A : C þ A : D þ B : C þ B : D

Example 1.6: Convert OUT ¼ A : B þ C : D into an AND-combination of two-input OR

gates using algebraic laws and DeMorgan’s theorem.

OUT ¼ A : B þ C : D

¼ A : B þ C : D

¼ ðA þ BÞ : ðC þ DÞ
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1.3 Designing Combinational Logic Circuits Using Truth Tables

A combinational logic circuit is a cascaded form of basic logic gates without any feedback

from the output to any of its inputs. The logic function is obtained from a truth table that

specifies the complete functionality of the digital circuit.

Example 1.7: Using the truth table given in Table 1.11 determine the output function of the

digital circuit.

The output function can be expressed either as the OR combination of AND gates or the

AND combination of OR gates.

If the output is expressed in terms of AND gates, all output entries that are equal to one in

the truth table must be grouped together as a single OR gate.

Table 1.11 An arbitrary truth table with four inputs

A B C D OUT

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

1

1

1

0

0

1

0

0

1

1

1

0

0

0

0

0
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OUT ¼ A : B : C : D þ A : B : C : D þ A : B : C : D þ A : B : C : D

þ A : B : C : D þ A : B : C : D þ A : B : C : D

This expression is called the Sum Of Products (SOP), and it contains seven terms each

of which is called a “minterm”. In the first minterm, each A, B, C and D input is com-

plemented to produce OUT = 1 for the A = B = C = D = 0 entry of the truth table. Each of

the remaining six minterms also complies with producing OUT = 1 for their respective input

entries.

The resulting combinational circuit is is shown Fig 1.15.

If the output function needs to be expressed in terms of OR gates, all the output entries

that are equal to zero in the truth table must be grouped as a single AND gate.

A 

B

C

D

A 

B

C

D

A 

B

C

D

A 

B

C

D

A 

B

C

D

A 

B

C

D

A 

B

C

D

OUT

Fig. 1.15 AND-OR logic representation of the truth table in Table 1.11
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OUT ¼ ðA þ B þ C þ DÞ : (A þ B þ C þ DÞ : ðA þ B þ C þ D)

: ðA þ B þ C þ DÞ : ðA þ B þ C þ DÞ : ðA þ B þ C þ DÞ

: ðA þ B þ C þ DÞ : ðA þ B þ C þ D) : ðA þ B þ C þ DÞ

This expression is called the Product Of Sums (POS), and it contains nine terms each of

which is called a “maxterm”. The first maxterm produces OUT = 0 for the ABCD = 0011

entry of the truth table. Since the output is formed with a nine-input AND gate, the values of

the other maxterms do not matter to produce OUT = 0. Each of the remaining eight max-

terms generates OUT = 0 for their corresponding truth table input entries.

The resulting combinational circuit is shown in Fig. 1.16.

A 

B

C
D

A 

B

C
D

A 

B

C

D

A 

B

C

D

A 

B

C
D

A 

B

C

D

A 

B

C
D

OUT

A 

B

C

D

A 

B

C

D

Fig. 1.16 OR-AND logic representation of the truth table in Table 1.11
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1.4 Combinational Logic Minimization—Karnaugh Maps

One of the most useful tools in logic design is the use of Karnaugh maps (K-map) to

minimize combinational logic functions.

Minimization can be performed in two ways. To obtain the SOP form of a minimized

logic function, logic 1 entries of the truth table must be grouped together in the K-map. To

obtain the POS form of a minimized logic function, logic 0 entries of the truth table must be

grouped together in the K-map.

Example 1.8: Using the truth table in Table 1.12, determine the minimized SOP and POS

output functions. Prove them to be identical.

The SOP function is formed by grouping logic 1s in Fig. 1.17 to obtain the minimized

output function, OUT.

Table 1.12 An arbitrary truth table with three inputs

OUTA B C

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

00 01 11 10

0

1

1

1 0

1

1

1 0

0

AB

C

OUT

Fig. 1.17 K-map of the truth table in Table 1.12 to determine SOP

Grouping 1s takes place among neighboring boxes in the K-map where only one variable

is allowed to change at a time. For instance, the first grouping of 1s combines the ABC = 000

and ABC = 010 entries as they are in the neighboring boxes. Only B changes from logic 0 to

logic 1 while A and C stay constant at logic 0. To obtain OUT = 1, both A and C need to be

complemented; this produces the first term, A : C, for the output function. Similarly, the

second grouping of 1s combines the neighboring boxes, ABC = 000, 001, 100 and 101,

where both A and C change while B stays constant at logic 0. To obtain OUT = 1, B needs to

be complemented; this generates the second term, B, for the output function.
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This means that either the term A : C or B makes OUT equal to logic 1. Therefore, the

minimized output function, OUT, in the SOP form is:

OUT ¼ B þ A : C

Grouping 0s produces the minimized POS output function as shown in Fig. 1.18.

This time, the first grouping of 0s combines the boxes, ABC = 011 and 111, where A

changes from logic 0 to logic 1 while B and C stay constant at logic 1. This grouping targets

OUT = 0, which requires both B and C to be complemented. As a result, the first term of the

output function, B þ C, is generated. The second grouping combines ABC = 110 and 111

where C changes from logic 0 to logic 1 while A and B stay at logic 1. To obtain OUT = 0,

both A and B need to be complemented. Consequently, the second term, A þ B, forms.

Therefore, either B þ C or A þ B should produce OUT = 0, resulting the following POS

function.

OUT ¼ ðB þ CÞ : ðA þ BÞ

To find out if the SOP and POS forms are identical to each other, we can manipulate the

POS expression above using the algebraic rules given earlier.

OUT ¼ ðB þ CÞ : ðA þ BÞ

¼ A :B þ B :B þ A :C þ B :C

¼ A : B þ B þ A : C þ B : C

¼ B : ðA þ 1 þ CÞ þ A : C

¼ B þ A :C

00 01 11 10

0

1

1

1 0

1

1

1 0

0

AB

C

OUT

Fig. 1.18 K-map of the truth table in Table 1.12 to determine POS

This is the SOP form of the output function derived above.

Example 1.9: Using the truth table in Example 1.7 determine the minimized SOP and POS

output functions.

To obtain the output function in SOP form, logic 1s in the K-map in Fig. 1.19 are grouped

together as shown below.
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The minimized output function contains only three minterms compared to seven minterms

in Example 1.7. Also, the minterms are reduced to groups of two or three inputs instead of four.

OUT ¼ B : C þ A : C : D þ B : D

The resultant combinational circuit is shown in Fig. 1.20

Further minimization can be achieved algebraically, which then reduces the number of

terms from three to two.

OUT ¼ B : ðC þ DÞ þ A : C : D

The corresponding combinational circuit is shown in Fig. 1.21.

00 01 11 10

00

01

11

10

1

1 1

1

1

1

1

0 0

0

0 00 0

0 0

AB

CD

OUT

Fig. 1.19 K-map of the truth table in Table 1.11 to determine SOP

B

C

A

C
D

B

D

OUT

Fig. 1.20 Minimized logic circuit in SOP form from the K-map in Fig. 1.19
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To obtain the POS output function, logic 0s are grouped together as shown in Fig. 1.22.

The minimized output function contains only three maxterms compared to nine in

Example 1.7. Also, the maxterms are reduced to groups of two inputs instead of four.

OUT ¼ ðC þ DÞ : ðA þ BÞ : ðB þ D)

The resultant combinational circuit is shown in Fig. 1.23

B

A 

C
D

C

D  

OUT

Fig. 1.21 Logic circuit in Fig. 1.20 after algebraic minimizations are applied

00 01 11 10

00

01

11

10

1

1 1

1

1

1

1

0 0

0

0 00 0

0 0

AB

CD

OUT

Fig. 1.22 K-map of the truth table in Table 1.11 to determine POS

C

D

A 

B

B

D

OUT

Fig. 1.23 Minimized logic circuit in POS form from the K-map in Fig. 1.22
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Example 1.10: Determine if the minimized SOP and POS output functions in Example 1.9

are identical to each other.

The POS expression for the OUT function in Example 1.9 can be re-written as follows:

OUT ¼ ðC þ DÞ : ðA þ BÞ : ðB þ D)

¼ ðA : C þ A : D þ B : C þ B :DÞ : ðB þ D)

¼ A :B :C þ A : B : D þ B : C þ B : D

þ A :C :D þ B : C : D

¼ B : C þ B : D þ A : C : D

The result is identical to the SOP expression given in Example 1.9.

Example 1.11: Determine the minimal SOP and POS forms of the output function, OUT,

from the K-map in Fig. 1.24. Note that the “X” sign corresponds to a “don’t care” condition

that represents either logic 0 or logic 1.

For the SOP expression, logic 1s in the K-map in Fig. 1.25 are grouped. Boxes with

“don’t care” entries are used as logic 1s to achieve the minimal SOP expression.

00 01 11 10

00

01

11

10

1

0 0

X

1

0

1

0 1

0

0 X01

X 0

AB

CD

OUT

Fig. 1.24 An arbitrary K-map with “don’t care” entries
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As a result, the SOP functional expression for OUT is:

OUT = A : C : D þ A : B : C þ B : D

For the POS expression, logic 0s in the K-map in Fig. 1.26 are grouped. Boxes with

“don’t care” symbols are used as logic 0s to achieve the minimal POS expression.

Therefore, the POS functional expression for OUT becomes:

OUT ¼ ðC þ DÞ : ð B þ DÞ : (A þ B þ CÞ : ðA þ B þ CÞ

To show that the SOP and POS expressions are identical, we use the algebraic manip-

ulations in Table 1.10 on the POS expression in order to obtain the SOP expression.

00 01 11 10

00

01

11

10

1

0 0

X

1

0

1

0 1

0

0 X01

X 0

AB

CD

OUT

Fig. 1.25 Grouping to determine SOP form for the K-map in Fig. 1.24

00 01 11 10

00

01

11

10

1

0 0

X

1

0

1

0 1

0

0 X01

X 0

AB

CD

OUT

Fig. 1.26 Grouping to determine POS form for the K-map in Fig. 1.24
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OUT ¼ (C þ D) . (B þ D) . (A þ B þ C) . (A þ B þ C)

¼ ðB : C þ C : D þ B : D þ DÞ : ðA : B þ A : C þ A : B þ B þ B : C þ A : C þ B : C)

¼ ðB : C þ DÞ : ðA : C þ A : C þ BÞ

¼ A : B . C þ A . C : D þ A : C . D þ B : D

¼ A : B .C þ A . C : D þ B : D þ A : C . D : ðB þ BÞ

¼ A : B . C þ A . C : D þ B : D þ A : B . C . D þ A : B : C . D

¼ A : B . C . (1 þ D) + A . C : D þ B : D : ð1 þ A : CÞ

¼ A : B . C þ A . C : D þ B : D

This result is identical to the minimal SOP expression for the OUT function above.

1.5 Basic Logic Blocks

2-1 Multiplexer

The 2-1 multiplexer (MUX) is one of the most versatile logic elements in logic design. It is

defined as follows:

OUT ¼
A if sel ¼ 1

B else

"

A functional diagram of the 2-1 MUX is given in Fig. 1.27. According to the functional

description of this device when sel = 1, input A passes through the device to become its

output. When sel = 0, input B passes through the device to become its output.

1 0

A B

OUT

sel

Fig. 1.27 2-1 MUX symbol
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According to this functional definition, the truth table in Table 1.13 can be formed.

Now, let us transfer the output values from the truth table to the K-map in Fig. 1.28.

Grouping logic 1s in the K-map reveals the minimal output function of the 2-1 MUX in

SOP form:

OUT ¼ sel : A þ sel :B

The corresponding combinational circuit is shown in Fig. 1.29.

Table 1.13 2-1 MUX truth table

A Bsel OUT

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

0

1

0

0

1

1

00 01 11 10

0

1

0

0 0

0

1

1 1

1

AB

sel

OUT

Fig. 1.28 2-1 MUX K-map

sel

A

OUT

sel

B

Fig. 1.29 2-1 MUX logic circuit
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4-1 Multiplexer

If we apply four inputs to a multiplexer instead of two, we form a 4-1 MUX whose

functional description becomes as follows:

OUT ¼

A if sel1 ¼ 0 and sel2 ¼ 0

B if sel1 ¼ 0 and sel2 ¼ 1

C if sel1 ¼ 1 and sel2 ¼ 0

D else

2

6

6

6

4

According to this description, we can form a truth table and obtain the minimal SOP or

POS expression for OUT. However, it is quite easy to decipher the SOP expression for OUT

from the description above. The AND-combination of A, complemented sel1 and comple-

mented sel2 inputs constitute the first minterm of our SOP. The second minterm should

contain B, complemented sel1 and uncomplemented sel2 according to the description above.

Similarly, the third minterm contains C, uncomplemented sel1 and complemented sel2.

Finally, the last minterm contains D, uncomplemented sel1 and uncomplemented sel2

control inputs. Therefore, the SOP expression for the 4-1 MUX becomes equal to the logic

expression below and is implemented in Fig. 1.30.

OUT ¼ sel1 : sel2 : A þ sel1 : sel2 : B þ sel1 : sel1 : C þ sel1 : sel2 : D

sel1

A

OUT

sel2

sel1

B
sel2

sel1

C
sel2

sel1

D
sel2

Fig. 1.30 4-1 MUX logic circuit in SOP form

However, implementing a 4-1 MUX this way is not advantageous due to the amount of

gate delays. A three-input AND gate is a series combination of a three-input NAND gate and

an inverter. Similarly, a four-input OR requires a four-input NOR gate and an inverter.

Therefore, we obtain a minimum of four gate delays instead of two according to this circuit.

Logic translations are possible to reduce the gate delay. The first stage of this process is to

complement the outputs of all four three-input AND gates. This necessitates complementing

the inputs to the four-input OR gate, and it results in a circuit in Fig. 1.31.
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However, an OR gate with complemented inputs is equivalent to a NAND gate.

Therefore, the circuit Fig. 1.32 becomes an optimal implementation to achieve the shortest

gate delay for the 4-1 MUX because it contains only two gate delays instead of the earlier

four.

The symbolic diagram of the 4-1 MUX is shown in Fig. 1.33.

sel1

A

OUT

sel2

sel1

B
sel2

sel1

C
sel2

sel1

D
sel2

Fig. 1.31 Logic conversion of 4-1 MUX in Fig. 1.30

sel1

A

OUT

sel2

sel1

B

sel2

sel1

C

sel2

sel1

D

sel2

Fig. 1.32 4-1 MUX logic circuit in NAND-NAND form

00

A B

OUT

sel1

C D

sel2
01 10 11

Fig. 1.33 4-1 MUX symbol
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Encoders

Encoders are the combinational logic blocks that receive 2N number of inputs and produce N

number of encoded outputs.

Example 1.12: Generate an encoding logic from the truth table given in Table 1.14.

The K-maps in Fig. 1.34 group logic 1s, and produce the encoded SOP expressions for

OUT1 and OUT2.

Table 1.14 An arbitrary encoder truth table with four inputs

IN1 IN2 IN3 IN4 OUT1 OUT2

0 0 0 0 0 1

0 0 0 1 1 1

0 0 1 0 1 1

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 1 0 0

0 1 1 0 0 0

0 1 1 1 1 0

1 0 0 0 0 1

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 0 1 0

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 1 0

0 1 0 1

0101

1 1 1 1

0000

0100 1011

01

00

10

11

OUT1

IN3 IN4

IN1 IN2

1 1 1 1

0000

0 1 0 1

0101

0100 1011

01

00

10

11

OUT2

IN3 IN4

IN1 IN2

Fig. 1.34 K-map of the truth table in Table 1.14
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OUT1 ¼ IN1 : IN2 þ IN1 : IN2 : IN3 : IN4 þ IN1 : IN2 : IN3 : IN4

þ IN2 : IN3 : IN4 þ IN2 : IN3 : IN4

¼ IN1 : IN2 þ IN1 : IN2 : ðIN3� IN4Þ þ IN2 : ðIN3� IN4Þ

OUT2 ¼ IN1 : IN2 þ IN2 : IN3 : IN4 þ IN2 : IN3 : IN4 þ IN1 : IN2 : IN3 : IN4

þ IN1 : IN2 : IN3 : IN4

¼ IN1 : IN2 þ IN2 : ðIN3� IN4Þ þ IN1 : IN2 : ðIN3� IN4Þ

Decoders

Decoders are the combinational logic blocks to decode encoded inputs. An ordinary decoder

takes N inputs and produces 2N outputs.

Example 1.13: Design a line decoder in which an active-high enable signal activates one of

the eight independent outputs according to the truth table in Table 1.15. When the enable

signal is lowered to logic 0, all eight outputs are disabled and stay at logic 0.

Table 1.15 Truth table of a line decoder with three inputs with enable

IN[2] IN[1] IN[0] OUT[7] OUT[6] OUT[5] OUT[4] OUT[3] OUT[2] OUT[1] OUT[0]

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

EN

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1
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In this table, all outputs become logic 0 when the enable signal, EN, is at logic 0.

However, when EN = 1, selective activation of the output starts. In this section, for each

three-bit input entry, there is always one output equal to logic 1. For example, when IN[2] =

IN[1] = IN[0] = 0, OUT[0] becomes active and equals to logic 1 while all the other outputs

stay at logic 0. IN[2] = IN[1] = IN[0] = 1 activates OUT[7] and disables all other outputs.

We can produce the expression for each output from OUT[7] to OUT[0] simply by

reading the input values from the truth table. The accompanying circuit is composed of eight

AND gates, each with four inputs as shown in Fig. 1.35.

OUT½7� ¼ EN : IN½2� : IN[1] : IN½0�

OUT½6� ¼ EN : IN½2� : IN½1� : IN½0�

OUT½5� ¼ EN : IN½2� : IN½1� : IN½0�

OUT½4� ¼ EN : IN½2� : IN½1� : IN½0�

OUT½3� ¼ EN : IN½2� : IN½1� : IN½0�

OUT½2� ¼ EN : IN½2� : IN½1� : IN½0�

OUT½1� ¼ EN : IN½2� : IN½1� : IN½0�

OUT½0� ¼ EN : IN½2� : IN½1� : IN½0�

IN [ 0]

IN [ 1]

IN [ 2]
EN

OUT[ 0]

IN [ 0]

IN [ 1]

IN [ 2]
EN

OUT[ 1]

IN [ 0]

IN [ 1]

IN [ 2]
EN

OUT[ 2]

IN [ 0]

IN [ 1]

IN [ 2]
EN

OUT[ 3]

IN [ 0]

IN [ 1]

IN [ 2]
EN

OUT[ 4]

IN [ 0]

IN [ 1]

IN [ 2]
EN

OUT[ 5]

IN [ 0]

IN [ 1]

IN [ 2]
EN

OUT[ 6]

IN [ 0]

IN [ 1]

IN [ 2]
EN

OUT[ 7]

Fig. 1.35 Logic circuit of a line decoder in Table 1.15
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One-Bit Full Adder

The one-bit full adder has three inputs: A, B, and carry-in (CIN), and it produces two

outputs: sum (SUM) and carry-out (COUT). The symbolic representation of a full adder is

shown in Fig. 1.36.

The one-bit full adder simply adds the contents of its two inputs, A and B, to CIN, and

forms the truth table in Table 1.16.

We can obtain the minimized SOP expressions for SUM and COUT from the K-maps in

Figs. 1.37 and 1.38.

FA

A B

COUTCIN

SUM

Fig. 1.36 One-bit full adder symbol

00 01 11 10

0

1

0

1 0

1

0

1 0

1

AB

CIN

SUM

Fig. 1.37 SUM output of a one-bit full adder

Table 1.16 One-bit full adder truth table

CIN

0

0

0

0

1

1

1

A B SUM COUT

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

0 1 0 1

1 0 0 1

1 1 1 11
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Consequently,

SUM ¼ A :B :CIN þ A :B :CIN þ A :B :CIN þ A :B :CIN

¼ CIN : ðA :B þ A :BÞ þ CIN : ðA :B þ A :BÞ

¼ CIN : ðA�BÞ þ CIN : (A�B)

¼ A�B�CIN

Thus,

COUT ¼ CIN :B þ A :B þ A :CIN

¼ CIN : ðA þ BÞ þ A :B

The resultant logic circuits for the SUM and COUT outputs are shown in Fig. 1.39.

One-Bit Half Adder

The one-bit half adder has only two inputs, A and B with no CIN. The A and B inputs are

added to generate the SUM and COUT outputs. The symbolic representation of half-adder is

shown in Fig. 1.40.

00 01 11 10

0

1

0

0 1

0

1

0 1

1

AB

CIN

COUT

Fig. 1.38 COUT output of a one-bit full adder

CIN

A
B

A

B

COUT

A
B

CIN
SUM

Fig. 1.39 One-bit full adder logic circuit
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The truth table given in Table 1.17 describes the functionality of the half adder.

From the truth table, the POS expressions for the SUM andCOUT outputs can bewritten as:

SUM ¼ A � B

COUT ¼ A : B

Therefore, we can produce the SUM and the COUT circuits as shown in Fig. 1.41.

1.6 Combinational Mega Cells

Adders

One-bit full-adders can be cascaded serially to produce multiple-bit adder configurations.

There are three basic adder types:

HA

A B

COUT

SUM

Fig. 1.40 One-bit half-adder symbol

Table 1.17 One-bit half-adder truth table

A B SUM COUT

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

A

B
SUM

A

B
COUT

Fig. 1.41 One-bit half adder logic circuit
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Ripple-Carry Adder

Carry-Look-Ahead Adder

Carry-Select Adder

However, hybrid topologies can also be formed by combining two or even three of these

configurations. For the sake of simplicity, we will limit the number of bits to four and

explain each topology in detail.

Ripple-Carry Adder

The ripple-carry adder is a cascaded configuration of multiple one-bit full adders. The circuit

topology of a four-bit ripple carry adder is shown in Fig. 1.42. In this figure, the carry-out

output of a one-bit full adder is connected to the carry-in input of the next full adder to

propagate the carry bit from one adder to the next.

For the 0th bit of this adder, we have:

SUM½0� ¼ A½0� � B½0� � CIN½0�

COUT½0� ¼ CIN½1� ¼ A½0� : B½0� þ CIN½0� : ðA½0� þ B½0�Þ ¼ G½0� þ P½0� : CIN½0�

where,

G[0] = A[0] . B[0] as the zeroth order generation term

P[0] = A[0] + B[0] as the zeroth order propagation term

FA0FA1FA2FA3

A[3] B[3]

SUM[3]

CIN[3]

CIN[0]

COUT[2]

A[2] B[2] A[1] B[1] A[0] B[0]

CIN[2]

COUT[1]

CIN[1]

COUT[0]

SUM[2] SUM[1] SUM[0]

Fig. 1.42 Four-bit ripple-carry adder
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For the first bit:

SUM½1� ¼ A½1� � B½1� � CIN½1� ¼ A½1� � B½1� � ðG½0� þ P½0� : CIN½0�Þ

COUT½1� ¼ CIN½2� ¼ G½1� þ P½1� : CIN½1�

¼ G½1� þ P½1� : ðG½0� þ P½0� : CIN½0�Þ ¼ G½1� þ P½1� : G½0�

þ P½1� : P½0� : CIN½0�

where,

G[1] = A[1] . B[1] as the first order generation term

P[1] = A[1] + B[1] as the first order propagation term

For the second bit:

SUM½2� ¼ A½2� � B½2� � CIN½2� ¼ A½2� � B½2� � fG½1� þ P½1� : ðG½0�

þ P½0� : CIN½0�Þg

¼ A½2� � B½2� � ðG½1� þ P½1� : G½0� þ P½1� : P½0� : CIN½0�Þ

COUT½2� ¼ CIN½3� ¼ G½2� þ P½2� : CIN½2�

¼ G½2� þ P½2� : fG½1� þ P½1� : ðG½0� þ P½0� : CIN½0�Þg

¼ G½2� þ P½2� : G½1� þ P½2� : P½1� : G½0� þ P½2� : P½1� : P½0� : CIN½0�

where,

G[2] = A[2] . B[2] as the second order generation term

P[2] = A[2] + B[2] as the second order propagation term

And for the third bit:

SUM½3� ¼ A½3� � B½3� � CIN½3�

¼ A½3� � B½3� � fG½2� þ P½2� : fG½1� þ P½1� : ðG½0� þ P½0� : CIN½0�Þgg

¼ A½3� � B½3� � ðG½2� þ P½2� : G½1� þ P½2� : P½1� : G½0�

þ P½2� : P½1� : P½0� : CIN½0�Þ

These functional expressions of the SUM and the COUT outputs also serve to estimate the

maximum and the minimum propagation delays for each bit of this adder.

The circuit diagram in Fig. 1.43 shows the maximum delay path from bit 0 to bit 3. In this

figure, the maximum gate delay from A[0] or B[0] inputs to SUM[0] is 2TXOR2, where

TXOR2 is a single two-input XOR gate delay.

The maximum gate delay from A[0] or B[0] to COUT[0] is 2TOR2 + TAND2 where TOR2

and TAND2 are the two-input OR gate and the two-input AND gate delays, respectively.

The gate delay from A[1] or B[1] to SUM[1] is still 2TXOR2; however, the delay from A[0]

or B[0] to SUM[1] is 2TOR2 + TAND2 + TXOR2, which is more than 2TXOR2 and must be

considered themaximum gate delay for this particular bit position and for more significant bits.
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The maximum gate delay from A[0] or B[0] to COUT[1] is 3TOR2 + 2TAND2. It may make

more sense to expand the expression for COUT[1] as COUT½1� ¼ G½1� þ P½1� :

G½0� þ P½1� : P½0� : CIN½0�, and figure out if the overall gate delay, TOR2 + TAND3 + TOR3, is

smaller compared to 3TOR2 + 2TAND2. Here, TAND3 and TOR3 are the three-input AND and

the three-input OR gate delays, respectively.

Themaximum gate delay fromA[0] or B[0] to SUM[2] is 3TOR2 + 2TAND2 + TXOR2.When the

expression for SUM[2] is expanded as SUM½2� ¼ A½2� � B½2� � ðG½1� þ P½1� : G½0�

þ P½1� : P½0� : CIN½0�Þ, we see that this delay becomes TOR2 + TAND3 + TOR3 + TXOR2, and it

may be smaller than the original delay if TAND3 < 2TAND2 and TOR3 < 2TOR2.

The maximum gate delay from A[0] or B[0] to COUT[2] is 4TOR2 + 3TAND2.

When COUT[2] is expanded as COUT½2� ¼ G½2� þ P½2� : G½1� þ P½2� : P½1� : G½0� þ P½2� :

P½1� : P½0� : CIN½0�; the maximum delay becomes TOR2 + TAND4 + TOR4, and it may be

smaller than the original delay if TAND4 < 3TAND2 and TOR4 < 3TOR2. Here, TAND4 and TOR4

are the four-input AND and the four-input OR gate delays, respectively.

Finally, the maximum delay from A [0] or B [0] to SUM [3] is 4TOR2 + 3TAND2 + TXOR2,

which is also the maximum propagation delay for this adder. When the functional expression

for SUM[3] is expanded as SUM½3� ¼ A½3� � B½3� � ðG½2� þ P½2� : G½1� þ P½2� : P½1� :

G½0� þ P½2� : P½1� : P½0� : CIN½0�Þ; the total propagation delay becomes TOR2 + TAND4 +

TOR4 + TXOR2, and again it may be smaller compared to the original delay if TAND4 <

3TAND2 and TOR4 < 3TOR2.

A[3] B[3]

SUM[3]

CIN[0]

COUT[0] = CIN[1]

Minimum

Delay

Maximum

Delay

A[2] B[2]

A[2] B[2]

A[1] B[1]

A[1] B[1]

A[0] B[0]

A[0] B[0]

SUM[2] SUM[1] SUM[0]

COUT[1] = CIN[2]COUT[2] = CIN[3]

Fig. 1.43 Logic circuit of the four-bit adder with the maximum and minimum delays

32 1 Review of Combinational Circuits



Carry-Look-Ahead Adder

The idea behind carry-look-ahead (CLA) adders is to create a topology where carry-in bits to

all one-bit full adders are available simultaneously. A four-bit CLA circuit topology is

shown in Fig. 1.44. In this figure, the SUM output of a more significant bit does not have to

wait until the carry bit ripples from the least significant bit position, but it gets computed

after some logic delay. In reality, all carry-in signals are generated by complex combina-

tional logic blocks called CLA hook-ups as shown in Fig. 1.44. Each CLA block adds a

certain propagation delay on top of the two-input XOR gate delay to produce a SUM output.

The earlier SUM and CIN expressions derived for the ripple carry adder can be applied to

the CLA adder to generate its functional equations.

Therefore,

SUM½0� ¼ A½0� � B½0� � CIN½0�

SUM½1� ¼ A½1� � B½1� � CIN½1�

SUM½2� ¼ A½2� � B½2� � CIN½2�

SUM½3� ¼ A½3� � B½3� � CIN½3�

CIN[1]CIN[2]CIN[3]
CIN[0]

COUT[0]

A[3] B[3]

SUM[0]SUM[1]SUM[2]SUM[3]

G[2] + P[2].G[1] + P[2].P[1].G[0] + P[2].P[1].P[0].CIN[0]

G[1] + P[1].G[0] + P[1].P[0].CIN[0]

FA0FA1FA2FA3

A[2] B[2] A[1] B[1] A[0] B[0]

Fig. 1.44 A four-bit carry-look-ahead adder
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where,

CIN½1� ¼ G½0� þ P½0� : CIN½0�

CIN½2� ¼ G½1� þ P½1� : G½0� þ P½1� : P½0� : CIN½0�

CIN½3� ¼ G½2� þ P½2� : G½1� þ P½2� : P½1� : G½0� þ P½2� : P½1� : P½0� : CIN½0�

Therefore, CIN[1] is generated by the COUT[0] function within the zeroth (the least

significant) full adder bit. However, CIN[2] and CIN[3] have to be produced by separate

logic blocks in order to provide the CIN signals for the second and the third (the most

significant) full-adder bits.

According to Fig. 1.44, once a valid CIN[0] becomes available, it takes successively

longer times to generate valid CIN inputs to produce higher order SUM outputs due to the

increasing logic complexity in the CLA hook-ups.

Assume that TSUM0, TSUM1, TSUM2 and TSUM3 are the propagation delays corresponding

to the bits 0, 1, 2 and 3 with respect to the CIN[0] signal. We can approximate TSUM0 =

TXOR2. To compute TSUM1, we need to examine the expression for CIN[1]. In this

expression, P[0] . CIN[0] produces a two-input AND gate delay, and G[0] + (P[0] . CIN[0])

produces a two-input OR gate delay to be added on top of TXOR2. Therefore, TSUM1 becomes

TSUM1 = TAND2 + TOR2 + TXOR2. Similarly, the expressions for CIN[2] and CIN[3] produce

TSUM2 = TAND3 + TOR3 + TXOR2 and TSUM3 = TAND4 + TOR4 + TXOR2, respectively.

The maximum propagation delay for this adder is, therefore, TSUM3 = TAND4 + TOR4 +

TXOR2.

Despite the CLA adder’s advantage of being faster than the ripple-carry adder, in most

cases the extra CLA logic blocks make this adder topology occupy a larger chip area if the

number of adder bits is above eight.

Carry-Select Adder

Carry-Select Adders require two rows of identical adders. These adders can be as simple as

two rows of ripple-carry adders or CLA adders depending on the design requirements.

Fig. 1.45 shows the circuit topology of a four-bit carry-select adder composed of two rows

of ripple carry adders.

In this figure, the full adder at the least significant bit position operates normally and

generates a value for COUT[0]. As this value is generated the two one-bit full adders, one

with CINA[1] = 0 and the other with CINB[1] = 1, simultaneously generate SUMA[1] and

SUMB[1]. If COUT[0] becomes equal to one, SUMB[1] gets selected and becomes SUM[1];

otherwise, SUMA[1] becomes the SUM[1] output. Whichever value ends up being SUM[1],

it is produced after a 2-1 MUX propagation delay.

However, we cannot say the same in generating SUM[2] and SUM[3] outputs in this

figure. After producing SUM[1], carry ripples through both adders normally to generate

SUM[2] and SUM[3]; hence, the speed advantage of having two rows of adders becomes
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negligible. Therefore, we must be careful when employing a carry-select scheme before

designing an adder, as this method practically doubles the chip area.

Even though carry-select topology is ineffective in speeding up this particular four-bit

adder, it may be advantageous if employed to an adder with greater number of bits in

conjunction with another adder topology such as the CLA.

Example 1.14: Design a 32-bit carry-look-ahead adder. Compute the worst-case propa-

gation delay in the circuit.

We need to be careful in dealing with the CLA hook-ups when generating higher order

terms because the complexity of these logic blocks can “grow” exponentially in size while

they may only provide marginal speed gain when compared to ripple-carry scheme.

SUM[0]

CIN[0]
COUT[0]

010101

A[0] B[0]

FA

FAFAFA

FAFAFA

SUM[1]SUM[2]SUM[3]

A[3] B[3]

CINA[1] = 0

CINB[1] = 1

CINA[2]

CINB[2]

CINA[3]

CINB[3]

SUMB[1] SUMA[1]

A[2] B[2] A[1] B[1]

SUMB[2] SUMA[2]SUMB[3] SUMA[3]

Fig. 1.45 A four-bit carry-select adder

1.6 Combinational Mega Cells 35



Therefore, the first step of the design process is to separate the adder into eight-bit

segments with full CLA hook-ups. The proposed topology is shown in Fig. 1.46.

Each eight-bit CLA segment contains six CLA hook-ups from CLA0 to CLA5 as shown

in Fig. 1.47.

SUM[7:0]

A[7:0]

CIN[0]

B[7:0]

SUM[15:8]

CIN[8]

B[15:8]A[15:8]

SUM[23:16]

CIN[16]

B[23:16]A[23:16]

SUM[31:24]

CIN[24]

B[31:24]A[31:24]

8 8 8 8 8 8 8 8

8 88 8

8-bit CLA8-bit CLA8-bit CLA8-bit CLA

Fig. 1.46 A 32-bit carry-look-ahead topology

FAFAFAFAFAFAFA

SUM[7]

A[7] B[7]

FACOUT[7]
CIN[7]

CLA0

CLA1

CLA2

CLA3

CLA4

CLA5

SUM[6]

A[6] B[6]

CIN[6]

SUM[5]

A[5] B[5]

CIN[5]

SUM[4]

A[4] B[4]

CIN[4]

SUM[3]

A[3] B[3]

CIN[3]

SUM[2]

A[2] B[2]

CIN[2]

SUM[1]

A[1] B[1]

CIN[1]

SUM[0]

A[0] B[0]

CIN[0]

Fig. 1.47 An eight-bit segment of the carry-look ahead adder in Fig. 1.46

CIN and SUM expressions from bit 0 through bit 7 are given below.

SUM½0� ¼ A½0� � B½0� � CIN½0�

SUM 1½ � ¼ A½1� � B½1� � CIN½1�

where;

CIN½1� ¼ G½0� þ P½0� : CIN½0�
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SUM½2� ¼ A½2� � B½2� � CIN½2�

where,

CIN½2� ¼ G½1� þ P½1� : G½0� þ P½1� : P½0� : CIN½0�

SUM½3� ¼ A½3� � B½3� � CIN½3�

where;

CIN½3� ¼ G½2� þ P½2� : G½1� þ P½2� : P½1� : G½0� þ P½2� : P½1� : P½0� : CIN½0�

SUM½4� ¼ A½4� � B½4� � CIN½4�

where;

CIN½4� ¼ G½3� þ P½3� : ðG½2� þ P½2� : G½1� þ P½2� : P½1� : G½0�

þ P½2� : P½1� : P½0� : CIN½0�Þ

SUM½5� ¼ A½5� � B½5� � CIN½5�

where;

CIN½5� ¼ G½4� þ P½4� : fG½3� þ P½3� : ðG½2�

þ P½2� : G½1� þ P½2� : P½1� : G½0� þ P½2� : P½1� : P½0� : CIN½0�Þg

¼ G½4� þ P½4� : G½3� þ P½4� : P½3� : ðG½2� þ P½2� : G½1�

þ P½2� : P½1� : G½0� þ P½2� : P½1� : P½0� : CIN½0�Þ

SUM½6� ¼ A½6� � B½6� � CIN½6�

where;

CIN½6� ¼ G½5� þ P½5� : fG½4� þ P½4� : G½3� þ P½4� : P½3� : ðG½2� þ P½2� : G½1�

þP½2� : P½1� : G½0� þ P½2� : P½1� : P½0� : CIN½0�Þg

¼ G½5� þ P½5� : G½4� þ P½5� : P½4� : G½3� þ P½5� : P½4� : P½3� : ðG½2�

þ P½2� : G½1� þ P½2� : P½1� : G½0� þ P½2� : P½1� : P½0� : CIN½0�Þ

SUM ½7� ¼ A½7� � B½7� � CIN½7�

where,

CIN ½7� ¼ G½6� þ P½6� : fG½5� þ P½5� : G½4� þ P½5� : P½4� : G½3�

þ P½5� : P½4� : P½3� : ðG½2� þ P½2� : G½1� þ P½2� : P½1� : G½0�

þ P½2� : P½1� : P½0� : CIN½0�Þg

And finally,
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COUT½7� ¼ CIN½8� ¼ G½7� þ P½7� : fG½6� þ P½6� : fG½5� þ P½5� : G½4�

þ P½5� : P½4� : G½3� þ P½5� : P½4� : P½3� : ðG½2� þ P½2� : G½1�

þ P½2� : P½1� : G½0� þ P½2� : P½1� : P½0� : CIN½0�Þgg

¼ G½7� þ P½7� : G½6� þ P½7� : P½6� : fG½5� þ P½5� : G½4�

þ P½5� : P½4� : G½3� þ P½5� : P½4� : P½3� : ðG½2� þ P½2� : G½1�

þ P½2� : P½1� : G½0� þ P½2� : P½1� : P½0� : CIN½0�Þg

In these derivations, particular attention was paid to limit the number of inputs to four in

all AND and OR gates since larger gate inputs are counterproductive in reducing the overall

propagation delay.

From these functional expressions,maximumpropagation delays for SUM[7] andCOUT[7]

are estimated using the longest logic strings in Fig. 1.48.

For SUM[7], the minterm, P[2] . P[1] . P[0] . CIN[0], generates the first four-input

AND gate. This is followed by a four-input OR gate whose minterms are G[2], P[2] . G[1],

P[2] . P[1] . G[0], and P[2] . P[1] . P[0] . CIN[0]. The four-input OR gate is then cascaded by

a four-input AND, a four-input OR, a two-input AND, a two-input OR and a two-input

XOR-gates in successive order. The entire string creates a propagation delay of TSUM7 = 2

(TAND4 + TOR4) + TAND2 + TOR2 + TXOR2 from CIN[0] to SUM[7].

For COUT[7], the longest propagation delay between CIN[0] and COUT[7] is TCOUT7 = 2

(TAND4 + TOR4) + TAND3 + TOR3. The delays for the rest of the circuit in Fig. 1.46 become

easy to determine since the longest propagation delays have already been evaluated.

CIN[0]

P2

P0

P1

G2

P5

P3

P4

G5 P6
G6

A7 + B7
SUM[7]

CIN[0]

P2

P0

P1

G2

P5

P3

P4

G5 P7
G7

COUT[7] = CIN[8]

Fig. 1.48 Propagation delay estimation of the eight-bit carry-look-ahead adder in Fig. 1.47
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The delay from CIN[0] to SUM[15], TSUM15, simply becomes equal to the sum of TCOUT7

and TSUM7. In other words, TSUM15 = 4(TAND4 + TOR4) + TAND3 + TOR3 + TAND2 + TOR2 +

TXOR2. Similarly, the delay from CIN[0] to COUT[15], TCOUT15, is equal to TCOUT15 = 4

(TAND4 + TOR4) + 2(TAND3 + TOR3).

The remaining delays are evaluated in the same way and lead to the longest propagation

delay in this circuit, TSUM31, from CIN[0] to SUM[31].

Thus,

TSUM31 ¼ 3 2 TAND4 þ TOR4ð Þ þ TAND3 þ TOR3½ � þ 2 TAND4 þ TOR4ð Þ þ TAND2

þ TOR2 þ TXOR2

or

TSUM31 ¼ 8ðTAND4 þ TOR4Þ þ 3 TAND3 þ TOR3ð Þ þ TAND2 þ TOR2 þ TXOR2

Example 1.15: Design a 32-bit hybrid carry-select/carry-look-ahead adder. Compute the

worst-case propagation delay in the circuit.

Large adders are where the carry-select scheme shines! This is a classical example in

which the maximum propagation delay is reduced considerably compared to the CLA

scheme examined in Example 1.14.

As mentioned earlier, a twin set of an adder configuration is required by the carry-select

scheme. The adders can be ripple-carry, carry-look-ahead or the combination of the two.

In this example, the 32-bit adder is again divided in eight-bit segments where each

segment consists of a full CLA adder as shown in Fig. 1.49. The first segment, CLA-0, is a

single unit which produces COUT[7] with full CLA hook-ups. The rest of the eight-bit

segments are mirror images of each other, and they are either named A-segments (A1, A2

and A3) or B-segments (B1, B2 and B3).

As the CLA-0 generates a valid COUT[7], the CLA-A1 and CLA-B1 simultaneously

generate COUTA[15] and COUTB[15]. When COUT[7] finally forms, it selects either

COUTA[15] or COUTB[15] depending on its value. This segment produces COUT[15] and

SUM[15:8].

COUT[15], on the other hand, is used to select between COUTA[23] and COUTB[23],

both of which have already been formed when COUT[15] arrives at the 2-1 MUX as a

control input. COUT[15] also selects between SUMA[23:16] and SUMB[23:16] to deter-

mine the correct SUM[23:16].

Similarly, COUT[23] is used as a control input to select between SUMA[31:24] and

SUMB[31:24]. If there is a need for COUT[31], COUT[23] can also be used to determine

the value of COUT[31].
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The maximum propagation delay for the 32-bit carry-select/CLA adder can be found using

the logic string in Fig. 1.50. The first section of this string from CIN[0] to COUT[7] is

identical to the eight-bit CLA carry delay in Fig. 1.48. In addition to the CLA delay, there are

three cascaded MUX stages which correspond to the generation of COUT[15], COUT[23]

and SUM[31].

Considering that a 2-1 MUX propagation delay consists of a two-input AND gate delay

and a two-input OR gate delay, we obtain the maximum propagation delay for this 32-bit

adder as follows:

TSUM31 ¼ 2 TAND4 þ TOR4ð Þ þ TAND3 þ TOR3 þ 3 TAND2 þ TOR2ð Þ

CIN[0]

P2

P0

P1

G2

P5

P3

P4

G5
P7
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COUT[7]

0

1

0

1

0

1

SUM[31]

SUMA[31]

SUMB[31]

COUTA[23]

COUTB[23]

COUTA[15]

COUTB[15]

COUT[15]

COUT[23]

Fig. 1.50 Maximum delay propagation of the 32-bit adder in Fig. 1.49
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SUMB[31:24]

COUT[15]COUT[23]

Fig. 1.49 A 32-bit carry-look-ahead/carry-select adder
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Considering the maximum propagation delay in Example 1.14, this delay is shorter by at

least 6(TAND4 + TOR4). Larger carry-select/carry-look-ahead adder schemes provide greater

speed benefits at the cost of approximately doubling the adder area.

Subtractors

Subtraction is performed by a technique called twos (2s) complement addition. Twos

complement addition first requires complementing one of the adder inputs (1s complement)

and then adding 1 to the least significant bit.

Example 1.16: Form −4 in four bits using 2s complement.

−4 is formed by inverting all four bits of +4 (1s complement) and then adding one to it.

Therefore, the first step of this process is to represent +4 in four-bit binary format, which

is 0100. The second step is to determine its 1s complement, which is 1011. And the last step

is to find its 2s complement, which is 1011 + 0001 = 1100.

Here, logic 0 signifies a positive sign, and logic 1 signifies a negative sign at the most

significant bit position.

Example 1.17: Add +4 to −4 using 2s complement.

The four bit binary format of +4 is 0100. The 2s complement of +4 is 1100. If we add two

numbers together, we obtain 0100 + 1100 = 1 0000, where logic 1 at the overflow bit

position is neglected due to the four-bit binary format. Therefore, the final result becomes

0000 = 0 as expected.

Subtractors function according to the 2s complement addition. We need to form the 1s

complement of the adder input to be subtracted and then add CIN[0] = 1 to the result to

perform subtraction.

Figure 1.51 illustrates the topology of a 32-bit subtractor where input B is complemented,

and CIN[0] is tied to logic 1 to satisfy the 2s complement addition requirements to produce

A−B.

CIN[0] = 1

SUB[31:0]

B[31:0]

A[31:0]

32

SUBTRACTOR

32

32

Fig. 1.51 A symbolic representation of a 32-bit subtractor
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Shifters

There are two types of shifters in logic design:

Linear shifters

Barrel shifters

Linear Shifters

A linear shifter shifts its inputs by a number of bits to the right or to the left, and routes the

result to its output.

Example 1.18: Design a four-bit linear shifter that shifts its inputs to the left by one bit and

produces logic 0 at the least significant output bit when SHIFT = 1. When SHIFT = 0, the

shifter routes each input directly to the corresponding output.

The logic diagram for this shifter is given in Fig. 1.52. In this figure, each input is

connected to the port 0 terminal of the 2-1 MUX as well as the port 1 terminal of the next

MUX at the higher bit position. Therefore, when SHIFT = 1, logic 0, IN[0], IN[1], and IN[2]

are routed through port 1 terminal of each 2-1 MUX and become OUT[0], OUT[1], OUT[2],

and OUT[3], respectively. When SHIFT = 0, each input goes through port 0 terminal of the

corresponding 2-1 MUX and becomes the shifter output.

0 1

IN[3]

OUT[3]

0 1

IN[2]

OUT[2]

0 1

IN[1]

OUT[1]

0 1

IN[0]

OUT[0]

0

SHIFT

Fig. 1.52 Four-bit linear shifter

Barrel Shifters

Barrel shifters rotate their inputs in either clockwise or counterclockwise direction by a

number of bits and propagate them to their outputs.

Example 1.19: Design a four-bit barrel shifter that rotates its inputs in a clockwise direction

by one bit when SHIFT = 1. When SHIFT = 0, the shifter routes each input directly to the

corresponding output.

The logic diagram for this shifter is given in Fig. 1.53. The only difference between this

circuit and the linear shifter in Fig. 1.52 is the removal of logic 0 from the least significant

bit, and connecting this input to the IN[3] pin instead. Consequently, this leads to OUT[0] =

IN[3], OUT[1] = IN[0], OUT[2] = IN[1] and OUT[3] = IN[2] when SHIFT = 1, and OUT[0]

= IN[0], OUT[1] = IN[1], OUT[2] = IN[2] and OUT[3] = IN[3] when SHIFT = 0.
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Example 1.20: Design a four-bit barrel shifter that rotates its inputs clockwise by one or

two bits.

First, there must be three control inputs specifying “no shift”, “shift 1 bit” and “shift 2

bits”. This requires a two-bit control input, SHIFT[1:0], as shown in Table 1.18. All control

inputs in this table are assigned arbitrarily. However, it makes sense to assign a “No shift”

input to SHIFT[1:0] = 0, a “Shift 1 bit” input to SHIFT[1:0] = 1 and a “Shift 2 bits” input to

SHIFT[1:0] = 2 for the actual rotation amount.

According to this table, if there is no shift, each input bit is simply routed to its own output.

If the “Shift 1 bit” input is active, then each input is routed to the neighboring output at the

next significant bit position. In other words, IN[3] rotates clockwise and becomes OUT[0].

Similarly, IN[0], IN[1] and IN[2] shift one bit to the left and become OUT[1], OUT[2] and

OUT[3], respectively. If the “Shift 2 bits” input becomes active, then each input is routed to

the output of the neighboring bit which is two significant bits higher. This rotates all input

bits twice before they are routed to the output, producing OUT[0] = IN[2], OUT[1] = IN[3],

OUT[2] = IN[0] and OUT[3] = IN[1].

Therefore, using Table 1.18, we can conclude the logic diagram in Fig. 1.54.

0 1

IN[3]

OUT[3]

0 1

IN[2]

OUT[2]

0 1

IN[1]

OUT[1]

0 1

IN[0]

OUT[0]

SHIFT

Fig. 1.53 Four-bit barrel shifter

Table 1.18 A four-bit barrel shifter truth table

00

10

01

11

No shift

Shift 1 bit 

Shift 2 bits

No shift

SHIFT[1] SHIFT[0] OPERATION OUT[3] OUT[2] OUT[1] OUT[0]

IN[3] IN[2] IN[1] IN[0]

IN[2] IN[1] IN[0] IN[3]

IN[1] IN[0] IN[3] IN[2]

IN[3] IN[2] IN[1] IN[0]
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A more detailed view of Fig. 1.54 is given in Fig. 1.55.
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Fig. 1.55 Logic circuit of the barrel shifter in Fig. 1.54

01

IN[3]

OUT[3]

SHIFT2

IN[2]IN[1]

01

IN[2]

OUT[2]

2

IN[1]IN[0]

01

IN[1]

OUT[1]

2

IN[0]IN[3]

01

IN[0]

OUT[0]

2

IN[3]IN[2]

2
SHIFT[1:0]

Fig. 1.54 Logic diagram of the barrel shifter in Table 1.18
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Multipliers

There are two types of multipliers:

Array multiplier

Booth multiplier

An array multiplier is relatively simple to design, but it requires a large number of gates.

A Booth multiplier, on the other hand, requires fewer gates but its implementation follows a

rather lengthy algorithm.

Array Multiplier

Similar to our everyday hand multiplication method, an array multiplier generates all partial

products before summing each column in the partial product tree to obtain the result. This

scheme is explained in Fig. 1.56 for a four-bit array multiplier.

The rules of partial product generation are as follows:

1. The zeroth partial product aligns with multiplicand and multiplier bit columns.

2. Each partial product is shifted one bit to the left with respect to the previous one once it is

created.

3. Each partial product is the exact replica of the multiplicand if the multiplier bit is one.

Otherwise, it is deleted.

Example 1.21: Multiply 1101 and 1001 according to the rules of array multiplication.

Suppose 1101 is the multiplicand and 1001 is the multiplier. For a four-bit multiplier, four

partial products must be formed. The bits that belong to each column of the partial product

tree are then added successively while the resultant carry bits are propagated to more

significant bit positions. This process is illustrated in Fig. 1.57.

A[3] A[2] A[1] A[0]

MULTIPLIERB[3] B[2] B[1] B[0]

MULTIPLICAND

B[0].A[2] B[0].A[1] B[0].A[0]B[0].A[3] 0
th
 PARTIAL PRODUCT

1
st
 PARTIAL PRODUCT

2
nd

 PARTIAL PRODUCT

3
rd

 PARTIAL PRODUCT

SUM[0]SUM[1]SUM[2]SUM[3]SUM[4]SUM[5]SUM[6] SUM OUTPUTSUM[7]

B[1].A[2] B[1].A[1] B[1].A[0]B[1].A[3]

B[2].A[2] B[2].A[1] B[2].A[0]B[2].A[3]

B[3].A[2] B[3].A[1] B[3].A[0]B[3].A[3]

Fig. 1.56 4x4 array multiplier algorithm
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Example 1.22: Design the partial product tree for a four-bit array multiplier.

Following the convention in Fig. 1.56 and the rules of partial product generation for an

array multiplier, we can implement the partial product tree as shown in Fig. 1.58.

In this figure, partial product elements of the zeroth partial product, B[0].A[3], B[0].A[2],

B[0].A[1] and B[0].A[0], are replaced by PP0[3:0] for purposes of better illustration.

Similarly, PP1[3:0], PP2[3:0] and PP3[3:0] are the new partial product outputs corre-

sponding to the rows one, two and three.

Example 1.23: Design a full adder tree responsible for adding every partial product in the

partial product tree for a four-bit array multiplier.

After generating the partial products, the next step in the design is to add the partial product

elements column by column to generate the SUM outputs, SUM[7:0], while propagating carry

bits to higher order columns. Following the naming convention in Fig. 1.58, all 16 partial

1 0

A[3]

B[0]

PP0[2]

1 0

A[2]

PP0[1]

1 0

A[1]

1 0

A[0] 0

PP0[3]

0 00

PP0[0] 0
th
 PARTIAL PRODUCT

1 0
B[1]

PP1[2]

1 0

PP1[1]

1 0 1 0

PP1[3] PP1[0] 1
st
 PARTIAL PRODUCT

1 0

B[2]

PP2[2]

1 0

PP2[1]

1 0 1 0

PP2[3] PP2[0] 2
nd

 PARTIAL PRODUCT

1 0

B[3]

PP3[2]

1 0

PP3[1]

1 0 1 0

PP3[3] PP3[0] 3
rd

 PARTIAL PRODUCT

A[3] A[2] A[1] A[0] 00 00

A[3] A[2] A[1] A[0] 00 00

A[3] A[2] A[1] A[0] 00 00

Fig. 1.58 4x4 array multiplier bit selector tree

0 11 1

0 11 0

11 01

00 00

00 00

11 01

01 11 11 0

0 th  PARTIAL PRODUCT

1st  PARTIAL PRODUCT

2nd  PARTIAL PRODUCT

3 rd  PARTIAL PRODUCT

MULTIPLIER

MULTIPLICAND

SUM OUTPUT

Fig. 1.57 4x4 array multiplier algorithm example
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product elements are then fed to the carry-propagate adder in Fig. 1.59. The box outlined by

dashed lines shows how the carry propagation takes place from one column to the next.

Booth Multiplier

The Booth multiplier scheme halves the number of partial products using a lengthy algo-

rithm given below.

Assume that the product of two binary integers, X and Y, forms P = X.Y, where X is a

multiplicand and Y is a multiplier.

In binary form, Y is expressed in powers of two:

Y ¼
Xn�1

k¼0
yk2

k

where, the most significant bit, yn-1, corresponds to the sign bit. When yn-1 = 0, Y is

considered a positive number, otherwise it is a negative number as mentioned earlier in the

2s complement representation of integers.

In this section, we examine the Booth multiplication algorithm when Y is both a positive

and a negative number.

CASE 1: Y > 0, thus yn-1 = 0.

We can express a kth term of Y as:

SUM[7]

P
P

1
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P
P

0
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]

P
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0
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P
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0
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3
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P

2
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P
P

2
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]

P
P

2
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]

P
P

1
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]
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P
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]

P
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3
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]

P
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2
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]
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3
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]

FA FA FA FA FA HA

FA

FA FA HA

HAHA

SUM[6] SUM[5] SUM[4] SUM[3] SUM[2] SUM[1] SUM[0]

CARRY 

PROPAGATION

Fig. 1.59 An eight-bit propagate adder for the bit selector tree in Fig. 1.58
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yk2
k ¼ 2yk � ykð Þ2k¼ 2yk�

1=2 2yk

� �

2k

¼ yk2
k þ 1 � 2yk2

k�1

Thus:

Y ¼
Xn�1

k¼0
yk2

k ¼
Xn�1

k¼0
yk2

k þ 1 � 2yk2
k�1

� �

¼ yn�12
n � 2yn�12

n�2

þ yn�22
n�2

þ yn�32
n�2�2yn�32

n�4

þ yn�42
n�4

:

:

:

þ y32
4�2y32

2

þ y22
2

þ y12
2�2y12

0

þ y02
0

Regrouping the terms of the same power yields:

Y ¼ yn�12
n þ 2n�2 �2yn�1 þ yn�2 þ yn�3ð Þ

þ 2n�4 �2yn�3 þ yn�4 þ yn�5ð Þ

:

:

:

þ 22 �2y3 þ y2 þ y1ð Þ

þ 20 �2y1 þ y0 þ y�1ð Þ

But, yn-1 = 0 and y-1 = 0 since Y > 0

Y ¼ 2n�2 �2yn�1 þ yn�2 þ yn�3ð Þ

þ 2n�4 �2yn�3 þ yn�4 þ yn�5ð Þ

:

:

:

þ 22 �2y3 þ y2 þ y1ð Þ

þ 20 �2y1 þ y0 þ y�1ð Þ
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Now, let’s define a new set of coefficients:

zk ¼ �2 yk þ 1 þ yk þ yk�1

Then:

Y ¼
Xn�2

k¼0
zk2

k where, k ¼ 0; 2;. . .; n� 4ð Þ; n� 2ð Þ:

When X is multiplied by Y, one obtains:

P ¼ X:Y ¼
Xn�2

k¼0
zk:Xð Þ:2k

where, the number of partial products in the product term, P, is reduced by half.

Each zk = −2yk+1 + yk + yk-1 depends on the value of three adjacent bits, yk+1, yk and yk-1.

This is tabulated in Table 1.19.

Therefore, each partial product, (zk.X), becomes one of the five different forms:

zk:Xð Þ ¼ 0, + X,� X; þ 2X;�2X

These partial products can easily be obtained by the following methods:

For zk.X = 0, all multiplicand bits are replaced by 0.

For zk.X = +X, all multiplicand bits are multiplied by one.

For, zk.X = +2X, all multiplicand bits are shifted left by one bit.

For zk.X = −X, the multiplicand is 2s complemented.

For zk.X = −2X, all multiplicand bits are shifted left by one bit to form +2X, and then 2s

complemented to form −2X.

Now, the time has come to investigate when Y is negative.

CASE 2: Y < 0, thus yn-1 = −1

The first step is to sign-extend Y by one bit. Sign extension does not change the actual

value of Y but increases the terms from n to (n+1). Thus:

Table 1.19 Booth encoder truth table

yk+1 yk zkyk-1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

1

2

-2

-1

-1

0
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Y ¼ �2n þ
Xn�1

k¼0
yk2

k

Let us consider:

Xn�1

k¼0
2k¼ 1 þ 2 þ 22 þ . . . þ 2n�1 ¼ f

Then,

zk:Xð Þ ¼ 0, þ X,� X, þ 2X;�2X

Thus:

f ¼ 2f � f ¼ 2n�1

or

2n¼ 1 þ f ¼ 1 þ
Xn�1

k¼0
2k

Substituting −2n into Y yields:

Y ¼ �2n þ
Xn�1

k¼0
yk2

k ¼ � 1�
Xn�1

k¼0
2k þ

Xn�1

k¼0
yk2

k ¼ �1 þ
Xn�1

k¼0
ðyk � 1Þ2k

or

�Y ¼ 1 þ
Xn�1

k¼0
ð1�ykÞ2

k

However, (1 – yk) = 1 when yk = 0, and (1 – yk) = 0 when yk = 1. That means:

1� ykð Þ ¼ yk

Thus:

�Y ¼ 1 þ
Xn�1

k¼0
yk 2

k

The samemathematicalmanipulation applied to yk 2
k inCASE1 can also be applied to yk 2

k.

yk 2
k¼ ð2 yk � ykÞ2

k ¼ yk 2:2
k � yk 2:

1=2 :2
k
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Therefore,

Xn�1

k¼0
yk 2

k ¼
Xn�1

k¼0
ðyk 2:2

k � yk 2:
1=2:2

kÞ

¼
Xn�1

k¼0
yk 2

k þ 1 � yk 2:2
k�1

¼ yn�1 2
n � yn�1 2:2

n�2

þ yn�2 2
n�2

þ yn�3 2
n�2 � yn�3 2:2

n�4

þ yn�4 2
n�4

:

:

:

þ y3 2
4 � y3 2:2

2

þ y2 2
2

þ y1 2
2 � y1 2:2

0

þ 20 y0

¼ yn�1 2
n

þ ð�2 yn�1 þ yn�2 þ yn�3Þ 2
n�2

þ ð�2 yn�3 þ yn�4 þ yn�5Þ 2
n�4

:

:

:

þ ð�2 y3 þ y2 þ y1Þ 2
2

þ ð�2 y1 þ y0 þ y�1Þ 2
0

Here, y�1 ¼ 0:

Then,

� Y ¼ 1 þ
Xn�1

k¼0
yk 2

k

¼ yn�1 2
n

þ ð�2 yn�1 þ yn�2 þ yn�3Þ 2
n�2

þ ð�2 yn�3 þ yn�4 þ yn�5Þ 2
n�4

:

:

:

þ ð�2 y3 þ y2 þ y1Þ 2
2

þ ð�2 y1 þ y0 þ y�1Þ 2
0 þ 1
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However, the sign-extended term, yn�1 2
n¼ �1

Thus,

�Y ¼ 1 þ
Xn�1

k¼0
yk 2

k

¼ ð�2 yn�1 þ yn�2 þ yn�3Þ 2
n�2

þ ð�2 yn�3 þ yn�4 þ yn�5Þ 2
n�4

:

:

:

þ ð�2 y3 þ y2 þ y1Þ 2
2

þ ð�2 y1 þ y0 þ y�1Þ 2
0

Let

wk ¼ �2yk þ 1 þ yk þ yk�1

Then,

� Y ¼
Xn�2

k¼0
wk2

k where; k ¼ 0; 2; . . . ; n� 4ð Þ; n� 2ð Þ:

But,

wk ¼ � 2yk þ 1 þ yk þ yk�1 ¼ �2 1� yk þ 1

� �

þ 1� ykð Þ þ 1� yk�1ð Þ

¼ 2yk þ 1 � yk � yk�1 ¼ �zk

Then,

�Y¼
Xn�2

k¼0
wk2

k ¼ �
Xn�2

k¼0
zk2

k

or

Y ¼
Pn�2

k¼0 zk2
k which is the same equation for Y > 0.

Therefore, for both positive and negative values of Y, we have:

Y ¼
Xn�2

k¼0
zk2

kwhere; k ¼ 0; 2; . . . ; n� 4ð Þ; n� 2ð Þ:

where, zk = -2yk+1 + yk + yk-1

Example 1.24: Starting from the generation of its partial products, design an eight-bit

Booth multiplier.

The multiplier term, Y, for the eight-bit Booth multiplier follows the encoded expression:
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Y ¼
X6

k¼0
zk2

k ¼ z02
0 þ z22

2 þ z42
4 þ z62

6

Where, the encoded multiplier coefficients are:

z0 ¼ �2y1 þ y0 þ y�1 ¼ �2y1 þ y0

z2 ¼ �2y3 þ y2 þ y1

z4 ¼ �2y5 þ y4 þ y3

z6 ¼ �2y7 þ y6 þ y5

Thus, P = X.Y yields:

P ¼ 20 X:z0ð Þ þ 22 X:z2ð Þ þ 24 X:z4ð Þ þ 26 X:z6ð Þ

This reduces the number of partial products from eight to four as shown in Fig. 1.60. In

this figure, u0, u1, u2, and u3 are added to the least significant bit position of each partial

product to handle cases where the partial product becomes −X, −2X.

For cases +X, +2X and 0, all u-terms become equal to zero. All partial products are

sign-extended and nine bits in length to be able to handle ± 2X.

a8 a8 a8 a8 a8 a8 a8 a8 a7 a6 a5 a4 a3 a2 a1 a0

u0

b8 b8 b8 b8 b8 b8 b7 b6 b5 b4 b3 b2 b1 b0 0 0

u1

c8 c8 c8 c8 c7 c6 c5 c4 c3 c2 c1 c0 0 0 0 0

u2

d8 d8 d7 d6 d5 d4 d3 d2 d1 d0 0 0 0 0 0 0

u3

z0X

z2X

z4X

z6X

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

9-bit partial product due to a possible left shiftsign extension

SUM

Fig. 1.60 Partial product tree of an eight-bit Booth multiplier
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The calculation of the final product can be further simplified if the sign extension terms

are eliminated. Let us add all the sign extension terms and form the term, SE, as shown

below:

SE ¼ a8: 2
15 þ . . . þ 28

� �

þ b8:ð2
15 þ . . .210Þ þ c8: 2

15 þ . . .212
� �

þ d8: 2
15 þ 214

� �

But,

215 þ . . . þ 28 ¼ 28: 27 þ . . . þ 1
� �

¼ 28: 28 � 1
� �

¼ 216 � 28

215 þ . . . þ 210 ¼ 210: 25 þ . . . þ 1
� �

¼ 210: 26 � 1
� �

¼ 216�210

215 þ . . . þ 212 ¼ 212: 23 þ . . . þ 1
� �

¼ 212: 24 � 1
� �

¼ 216�212

215 þ 214 ¼ 214: 2 þ 1ð Þ ¼ 214: 22 � 1
� �

¼ 216�214

SE ¼ a8:2
16 � a8:2

8 þ b8:2
16 � b8:2

10 þ c8:2
16 � c8:2

12 þ d8:2
16 � d8:2

14

¼ 216: a8 þ b8 þ c8 þ d8ð Þ � a8:2
8 � b8:2

10 � c8:2
12 � d8:2

14

But,

� a8 ¼ a8 � 1

� b8 ¼ b8 � 1

� c8 ¼ c8 � 1

� d8 ¼ d8 � 1

Thus,

SE ¼ 216: a8 þ b8 þ c8 þ d8ð Þ þ 28:ða8 � 1Þ þ 210:ðb8 � 1Þ þ 212:ðc8 � 1Þ

þ 214:ðd8 � 1Þ

¼ 216 (a8 þ b8 þ c8 þ d8Þ þ 28:a8 þ 210:b8 þ 212:c8

þ 214:d8 � 28 � 210 � 212 � 214

SE ¼ 216:ða8 þ b8 þ c8 þ d8Þ þ 28:a8 þ 210:b8 þ 212:c8 þ 214:d8

� 28 � 210 � 212 � 214 � 216 þ 216 þ 1� 1ð Þ

¼ 216: a8 þ b8 þ c8 þ d8 � 1ð Þ þ 28:a8 þ 210:b8 þ 212:c8 þ 214:d8

� 28 � 210 � 212 � 214 þ 216 � 1
� �

þ 1
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But,

216�1 ¼ 1 þ 2 þ 22 þ . . . þ 27
� �

þ 28 þ 29 þ . . . þ 215
� �

¼ 28�1
� �

þ 28 þ 29 þ . . . þ 215
� �

Then,

SE ¼ 216: a8 þ b8 þ c8 þ d8 � 1ð Þ þ 28: a8

þ 210:b8 þ 212:c8 þ 214:d8

� 28 � 210 � 212 � 214 þ 1 þ 28 � 1
� �

þ 28 þ 29 þ 210 þ 211 þ 212 þ 213 þ 214 þ 215
� �

Regrouping the terms with the same power in SE yields:

SE ¼ 216: a8 þ b8 þ c8 þ d8 � 1ð Þ þ 28:ða8 þ 1Þ þ 29 þ 210:b8 þ 211

þ 212:c8 þ 213 þ 214:d8 þ 215

But, the term, 216, is unimportant since this is the overflow bit in the multiplier sum.

Thus,

SE ¼ 28:ða8 þ 1Þ þ 29 þ 210: b8 þ 211 þ 212:c8 þ 213 þ 214:d8 þ 215

Then the partial product tree in Fig. 1.60 simplifies and becomes Fig. 1.61.

8 a7 a 6 a 5 a4 a 3 a 2 a1 a 0

u 0

8 b7 b6 b5 b 4 b 3 b2 b 1 b 0 0 0

8 c 7 c 6 c 5 c 4 c3 c 2 c 1 c 0

8 d7 d6 d5 d 4 d3 d2 d1 d 0

z0X

z2X

z4X

z6X

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

sign extension

SUM

1

0 0 0 c 0 0 0 0

0 d

0 0

2

3

0 0 0 0 0 0 0 a

0 0 0 0 0 b

0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 u

0 0 0 0 1 0 0 0 0 0 0 u 0 0 0 0

1 0 1 0 0 0 0 0 0 u 0 0 0 0 0 0

Mid bitsMSB LSB

Fig. 1.61 Partial product tree of an eight-bit Booth multiplier after minimization
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In Fig. 1.60, ai = z0 . xi, bi = z2 . xi, ci = z4 . xi, and di = z6 . xi where i = 0, 1, 2, …7, and xi

represents each term in the multiplicand, X.

The complemented a8, b8, c8 and d8 in Fig. 1.61 are the “reserved bits” in case of a one-bit

left shift of the partial product.

Now, the time has come to implement the components of the eight-bit Booth multiplier:

the encoder, the partial product tree and the full-adder tree.

The Booth encoder is a logic block that forms each partial product. Earlier, we obtained

the Booth coefficient, zk = −2yk+1 + yk + yk-1, to aid the generation of each partial product in

Fig. 1.61. In this expression, the multiplier bits, yk+1, yk and yk-1, from neighboring terms

can be used as inputs to zk to obtain the encoder outputs. Table 1.19 is slightly modified to

form the truth table for the Booth encoder as shown in Table 1.20.

Following Table 1.20, the Booth encoder is implemented in Fig. 1.62. In this figure,

ZEROk, P1k, M1k, P2k and M2k correspond to the Booth coefficients, 0, +1, -1, +2 and -2, to

be multiplied with the multiplicand, respectively.

Each partial product in Fig. 1.61 contains a u-term, namely u0, u1, u2 or u3, in case of a

2s complement conversion of the partial product. Therefore, for k = 0, 1, 2 or 3 uk becomes

equal to one if M1k or M2k = 1 (if the multiplicand is multiplied by −1), else it is equal to

zero (if the multiplicand is multiplied by zero or +1). The uk-terms are implemented as

shown in Fig. 1.63.

Table 1.20 Modified Booth encoder truth table

yk+1 yk zkyk-1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

1

2

-2

-1

-1

0

Encoder outputs

ZEROk = 1

P1k = 1

P1k = 1

P2k = 1

M2k = 1

M1k = 1

M1k = 1

ZEROk = 1

Encoder inputs
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yk+1

yk

yk-1

yk

ZEROk

yk+1

yk-1

P1k

yk

yk-1

yk

yk-1

yk+1

M1k

yk

yk-1

yk

yk-1

yk+1

yk

yk+1

yk-1

P2k

yk

yk+1

yk-1

M2k

Fig. 1.62 Booth encoder logic circuit

uk
M2k

M1k

Fig. 1.63 Implementation of uk

1.6 Combinational Mega Cells 57



The LSBs, namely the terms, a0, b0, c0 and d0, in Fig. 1.61 become equal to the values

listed in Table 1.21.

According to this table, when the multiplicand is multiplied by zero, the LSB of the partial

product becomes equal to zero. When the multiplicand is multiplied by +1 or −1, the LSB is

simply equal to the LSB of the multiplicand, x0, or its complement, respectively. Finally,

when the multiplicand is multiplied by +2 or −2, the partial product is shifted one bit to the

left; the LSB becomes either zero or one depending on the sign. Therefore, the LSB of the

partial product is generated using a 5-1 MUX as shown in Fig. 1.64.

The mid bits, a1 to a7, b1 to b7, c1 to c7, and d1 to d7, in Fig. 1.61 are generated according

to Table 1.22. In this table, all mid bits of a partial product are equal to zero if the

multiplicand is multiplied by zero. Mid bits become equal to the multiplicand bits or their

complements depending on the multiplicand is multiplied by +1 or −1, respectively.

Table 1.21 Truth table of the LSB for Fig. 1.61

ZEROk = 1 a0 = b0 = c0 = d0 = 0

P1k = 1 a0 = b0 = c0 = d0 = x0

M1k = 1 a0 = b0 = c0 = d0 = x0

P2k = 1 a0 = b0 = c0 = d0 = 0

M2k = 1 a0 = b0 = c0 = d0 = 1

Encoder output LSB

P1k M1k M2kZEROk P2k

2

3

4

x0

x0 LSB

1

5

0

0

1

Fig. 1.64 Logic diagram of the LSB for Fig. 1.61
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When the multiplicand is multiplied by +2 or −2, each term in the partial product is

shifted one bit to the left. Therefore, each partial product bit becomes equal to the lesser

significant multiplicand bit or its complement. Each mid bit in Table 1.22 can be imple-

mented by a 5-1 MUX shown in Fig. 1.65.

The MSBs, namely the terms, a8; b8; c8 or d8, in Fig. 1.61 form according to Table 1.23.

In this table, when the multiplicand is multiplied by zero, the MSB of the partial product

becomes equal to zero. When the multiplicand is multiplied by +1 or −1, the MSB is simply

Table 1.22 Truth table of the mid bits for Fig. 1.61

ZEROk = 1 ai = bi = ci = di = 0

P1k = 1 ai = bi = ci = di = xi

M1k = 1 ai = bi = ci = di = xi

P2k = 1 ai = bi = ci = di = xi-1

M2k = 1 ai = bi = ci = di = xi-1

Encoder output Mid bits

where i = 1, 2,…7

where i = 1, 2,…7

where i = 1, 2,…7

where i = 1, 2,…7

where i = 1, 2,…7

P1k M1k M2kZEROk P2k

2

3

4

xi

xi Mid bit

1

5

0

xi-1

xi-1

Fig. 1.65 Logic diagram of the mid bits for Fig. 1.61

Table 1.23 Truth table of the MSB for Fig. 1.61

ZEROk = 1 a8 = b8 = c8 = d8 = 0

P1k = 1 a8 = b8 = c8 = d8 = x7

M1k = 1 a8 = b8 = c8 = d8 = x7

P2k = 1

M2k = 1

Encoder output MSB

a8 = b8 = c8 = d8 = x7

a8 = b8 = c8 = d8 = x7
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equal to the sign-extended value of the most significant multiplicand bit, x7, or its com-

plement, respectively. When the multiplicand is multiplied by +2 or −2, the partial product

shifts one bit to the left. Consequently, the MSB becomes equal to the most significant

multiplicand bit or its complement, respectively. The MSB of a partial product can therefore

be implemented by a 5-1 MUX as shown in Fig. 1.66.

When all of the components of the eight-bit Booth multiplier are integrated, we finally

obtain the circuit topology in Fig. 1.67.

Example 1.25: Multiply A = 10110101 (multiplicand) by B = 01110010 (multiplier) using

the Booth algorithm. The multiplier bits are as follows:

y0 ¼ 0; y1 ¼ 1; y2 ¼ 0; y3 ¼ 0; y4 ¼ 1; y5 ¼ 1; y6 ¼ 1; y7 ¼ 0

Therefore, the Booth coefficients become:

z0 ¼ �2y1 þ y0 þ y�1 ¼ �2:ð1Þ þ 0 þ 0 ¼ �2

z2 ¼ �2y3 þ y2 þ y1 ¼ �2:ð0Þ þ 0 þ 1 ¼ þ 1

z4 ¼ �2y5 þ y4 þ y3 ¼ �2:ð1Þ þ 1 þ 0 ¼ �1

z6 ¼ �2y7 þ y6 þ y5 ¼ �2:ð0Þ þ 1 þ 1 ¼ þ 2

According to these coefficients, the partial product tree forms as shown in Fig. 1.68.

In this figure, the zeroth partial product (top row) is generated by multiplying the mul-

tiplicand by -2. This requires taking the 2s complement of the multiplicand, and then shifting

its contents one bit to the left. In other words, if the multiplicand is equal to 10110101, then

its 2s complement becomes 01001011. Shifting this value to the left by one bit reveals a

nine-bit value of 010010110. Since the sign bit of 01001011 is zero before any shifting takes

place, sign extending 010010110 after the shift in a 16-bit field yields 0000000010010110.

P1k M1k M2kZEROk P2k

2

3

4

x7

x7 MSB

1

5

0

x7

x7

Fig. 1.66 Logic diagram of the MSB for Fig. 1.61
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The first partial product (second row from the top) is produced by multiplying the multi-

plicand by +1. This simply replicates the multiplicand bits, 10110101, in the partial product.

Since the sign bit of 10110101 is one, sign extending this value in a 14-bit field yields

11111110110101 as the partial product. The second partial product (third row from the top)

is formed by multiplying the multiplicand by −1. This simply requires taking the 2s com-

plement of the multiplicand, which is 01001011. Sign extending this value in a 12-bit field

yields 000001001011 as the partial product. The third partial product (last row) is obtained

by multiplying the multiplicand by +2, which shifts the multiplicand one bit to the left. Since

the multiplicand is 10110101, a nine-bit value of 101101010 is obtained after the shift. Sign

extending this value within ten bits yields 1101101010.

00 0 0 0 0 0 0 0 1 0 0 1 0 1 1

0 1 1 1 0 0 1 0

1 0 1 1 0 1 0 1Mult iplicand =

Mult iplier =

11 1 1 1 1 1 1 0 1 1 0 1 0

10 0 0 0 0 1 0 0 1 0 1

01 1 0 1 1 0 1 0 1

01 1 0 1 1 1 1 0 1 0 0 1 1 0 1

-2 = Take 2s com plem ent of the m ult iplicand

and shift left by 1 bit

+ 1 = Replicate the m ult iplicand

-1 = Take 2s com plem ent of the m ult iplicand

+ 2 = Shift the m ult iplicand left by 1 bit

Fig. 1.68 A numerical example of an 8x8 Booth multiplier
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Review Questions

1. Implement the following gates:

(a) Implement a two-input XOR gate using two-input NAND gates and inverters.

(b) Implement a two-input AND gate using two-input XNOR gates and inverters.

2. Simplify the equation below:

out ¼ ðA þ BÞ : ðA þ BÞ

3. Simplify the equation below:

out ¼ ðA þ C) : ðA þ CÞ : ðA þ B þ CÞ

4. Obtain the SOP and POS expressions for the following function:

out ¼ ðA : B þ C) : ðB þ A : C)

5. Implement the following function using NAND gates and inverters:

out ¼ A : C þ B : C þ A : B : D

6. Implement the following function using NOR gates and inverters:

out ¼ ðA� B) : ðC� DÞ

7. Implement the following 2-1 multiplexer using AND and OR gates.

Note that the function of this multiplexer must produce the following:

If En = 1 then out = A else (when En = 0) out = B.

A

B

out

En

0

1
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8. Implement the following 3-1 multiplexer using AND and OR gates.

Note that the function of this multiplexer must produce the following:

If En = 2 then out = A; if En = 1 then out = B else (when En = 0 or En = 3) out = C.

A

C

out

En [1:0]

0

2

B 1

2

9. Implement a two-bit ripple-carry adder with inputs A[1:0] and B[1:0] and an output C

[1:0] using one-bit half- and one-bit full-adders. Preserve the overflow bit at the output

as C[2].

10. Implement a two-bit ripple-carry subtractor with inputs A[1:0] and B[1:0] and an

output C[1:0] using one-bit half- and one-bit full-adders. Preserve the overflow bit at

the output as C[2].

11. Implement a two-bit multiplier with inputs A[1:0] and B[1:0] and an output C[3:0]

using one-bit half- and one-bit full-adders.

12. Construct a four-bit comparator with inputs A[3:0] and B[3:0] using a subtractor. The

comparator circuit should identify the following cases with active-high outputs:

A½3 :0� ¼ B½3 :0�

A½3 :0�[B½3 :0�

A½3 :0�\B½3 :0�

13. Implement a two-bit decoder that produces four outputs.

When enabled the decoder generates the following outputs:

If in½1 :0� ¼ 0 then out½3 :0� ¼ 1

If in½1 :0� ¼ 1 then out½3 :0� ¼ 2

If in½1 :0� ¼ 2 then out½3 :0� ¼ 4

If in½1 :0� ¼ 3 then out½3 :0� ¼ 8

When disabled the out[3:0] always equals to zero regardless of the input value.
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14. Design a 64-bit adder in ripple-carry form and compare it against carry-look-ahead,

carry-select, and carry-look-ahead/carry-select hybrids in terms of speed and the number

of gates which define the circuit area. Divide the 64-bit carry-look-ahead/carry-select

hybrid into four-bit, eight-bit, 16-bit and 32-bit carry-look-ahead segments. Indicate

which carry-look-ahead/carry-select hybrid produces the optimum design.

15. Implement a 4 x 4 Booth multiplier. Design the Booth encoders for the partial product

tree and draw the entire schematic of the multiplier. Compare this implementation with

the 4 x 4 array multiplier explained in this chapter. List the advantages of both designs

in terms of speed and circuit area.

Projects

1. Implement the 4-1 multiplexer in Fig. 1.30 and verify its functionality using Verilog.

2. Implement the encoder circuit in Table 1.14 and verify its functionality using Verilog.

3. Implement the decoder circuit in Table 1.15 and verify its functionality using Verilog.

4. Implement the four-bit Ripple-Carry Adder in Fig. 1.42 and verify its functionality

using Verilog.

5. Implement the four-bit Carry-Look-Ahead Adder in Fig. 1.44 and verify its function-

ality using Verilog.

6. Implement the four-bit Carry-Select Adder in Fig. 1.45 and verify its functionality

using Verilog.

7. Implement the four-bit Carry-Select/Carry-Look-Ahead Adder in Fig. 1.49 and verify

its functionality using Verilog.

8. Implement the four-bit barrel shifter in Fig. 1.53 and verify its functionality using

Verilog.

9. Implement the four-bit array multiplier in Fig. 1.56 and verify its functionality using

Verilog.

10. Implement the eight-bit Booth multiplier in Fig. 1.67 and verify its functionality using

Verilog.
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2Review of Sequential Logic Circuits

The definition of clock and system timing are integral parts of a sequential digital circuit.

Data in a digital system moves from one storage device to the next by the virtue of a system

clock. During its travel, data is routed in and out of different combinational logic blocks, and

becomes modified to satisfy a specific functionality.

This chapter is dedicated to reviewing the basics of memory devices that store data, and

sequential circuits that use memory devices to operate. The chapter begins with the intro-

duction of two basic memory elements, the latch and the flip-flop. It then explains how data

travels between memory elements using timing diagrams, and how timing violations form as

a result of unexpected combinational logic delays on the data path or in the clock line. Later

in the chapter, the basic sequential building blocks such as registers, shift registers and

counters are examined. Moore-type and Mealy-type state machines that control data

movement are also studied; their advantages and disadvantages are compared against

counter-decoder type controllers in various design tasks. The concept of block memory and

how it is used in a digital system is introduced at the end of this chapter. The chapter

concludes with a comprehensive example which demonstrates data transfer from one

memory block to another, how to build a detailed data-path during the development of the

design, and how to use timing diagrams to build a controller.

2.1 D Latch

The D Latch is the most basic memory element in logic design. It has a data input, D, a clock

input, clock, and a data output, Q, as shown in the top portion of Fig. 2.1. It contains a

tri-state inverter at its input stage followed by two back-to-back inverters connected in a loop

configuration, which serves to store data.
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The clock signal connected to the enable input of the tri-state inverter can be set either to

active-high or active-low. In Fig. 2.1, the changes at the input transmit though the memory

element, and become the output during the low phase of the clock. In contrast, the changes at

the input are blocked during the high phase of the clock, and no data transmits to the output.

Once the data is stored in the back-to-back inverter loop, it becomes stable and does not

change until different data is introduced at the input. The buffer at the output stage of the

latch is used to drive multiple logic gate inputs.

The operation of the D latch is shown in Fig. 2.2. During the low phase of the clock, the

tri-state inverter is enabled. The new data transmits through the tri-state inverter, overwrites

the old data in the back-to-back inverter stage, and reaches the output. When the clock

switches to its high phase, the input-output data transmission stops because the tri-state

buffer is disabled and blocks any new data transfer. Therefore, if certain data needs to be

retained in the latch, it needs to be stored some time before the rising edge of the clock. This

time interval is called the set-up time, tS, and it is approximately equal to the sum of delays

through the tri-state inverter and the inverter in the memory element. At the high phase of the

clock, the data stored in the latch can no longer change as shown in Fig. 2.2.

D

clock

Q

D Q

clock

Fig. 2.1 Logic and circuit diagrams of a D latch
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2.2 Timing Methodology Using D Latches

Timing in logic systems is maintained by pipeline structures. A pipeline consists of com-

binational logic blocks bounded by memory elements as shown in the top portion of Fig. 2.3.

The main purpose of pipelines is to process several data packets within the same clock cycle

and maximize the data throughput.

To illustrate the concept of pipeline, latches are used as memory elements in the pipeline

structure shown in Fig. 2.3. In every latch boundary, data propagates from one combina-

tional logic stage to the next at the high and at the low phases of the clock.

The bottom part of Fig. 2.3 shows the timing diagram of a data transfer for a set of data

packets ranging from D1 to D3 at the IN terminal. The first data packet, D10, retains its

original value during the high phase of the clock (Cycle 1H) at the node A. D10 then

propagates through the T1 stage, and settles at the node B in a modified form, D11, sometime

before the falling edge of the clock. Similarly, D11 at the node C retains its value during the

low phase of the clock while its processed form, D12, propagates through the T2 stage, and

arrives at the node D before the rising edge of the clock. This data is processed further in the

T3 stage, and transforms into D13 before it becomes available at the OUT terminal at the

falling edge of the clock in Cycle 2L.

Similarly, the next two data packets, D20 and D30, are also fed into the pipeline at the

subsequent negative clock edges. Both of these data propagate through the combinational

logic stages, T1, T2 and T3, and become available at the OUT terminal at the falling edge of

Cycle 3L and Cycle 4L, respectively.

Q

Low phase of the clock

ts

D

D

new data

High phase of the clock

Q

new data

Fig. 2.2 Operation of D latch
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The total execution time for all three data packets takes four clock cycles according to the

timing diagram in Fig. 2.3. If we were to remove all the latch boundaries between nodes A

and F, and wait until all three data packets, D1, D2 and D3, were processed through the sum

of the three combinational logic stages, T1, T2 and T3, the total execution time would have

been 3 x 1.5 = 4.5 clock cycles as each combinational logic stage requires half a clock cycle

to process data. Therefore, pipelining can be used advantageously to process data in a shorter

amount of time and increase data throughput.

2.3 D Flip-Flop

The D flip-flop is another important timing element in logic design to maintain timely

propagation of data from one combinational logic block to the next.

Similar to a latch, the flip-flop has also a data input, D, a clock input, clock, and a data

output, Q, as shown in the top portion of Fig. 2.4.

The bottom part of Fig. 2.4 shows the circuit schematic of a typical flip-flop which

contains two latches in series. The first latch has an active-low clock input, and it is called

the master. The second latch has an active-high clock input, and it is called the slave. The
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Fig. 2.3 Timing methodology using D latches (“X” marks correspond to changing data)
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master accepts new data during the low phase of the clock, and transfers this data to the slave

during the high phase of the clock.

Figure 2.5 shows the timing attributes of a flip-flop. The set-up time, tS, is the time

interval for valid data to arrive and settle in the master latch before the rising edge of the

clock. Hold time, tH, is the time interval after the positive edge of the clock when valid data

needs to be kept steady and unchanged. The data stored in the master latch propagates

through the slave latch and becomes the flip-flop output some time after the rising edge of

the clock, and it is called clock-to-q delay or tCLKQ.

The operation of the flip-flop in two different phases of the clock is shown in Fig. 2.6.

During the low phase of the clock, new data enters the master latch, and it is stored. This data

cannot propagate beyond the master latch because the tri-state inverter in the slave latch acts

as an open circuit during the low phase of the clock. The flip-flop output reveals only the old

data stored in the slave latch. When the clock goes high, the new data stored in the master

D

clock
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clock

MASTER SLAVE

D Q

clock

Fig. 2.4 Logic and circuit diagrams of a D flip-flop
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Valid Data

D
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Fig. 2.5 Timing attributes of a D flip-flop
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latch transmits through the slave and arrives at the output. One can approximate values of tS

and tCLKQ using the existing gate delays in the flip-flop.

2.4 Timing Methodology Using D Flip-Flops

Data propagation through a pipeline with D flip-flops is shown in Fig. 2.7. The bottom part

of Fig. 2.7 shows the timing diagram of a data transfer for a set of data packets ranging from

D1 to D3 at the IN terminal.

The first data packet, D10, at the IN terminal has to be steady and valid during the set-up

and hold periods of the flip-flop, but it is free to change during the remaining part of the clock

period as shown by oscillatory lines. Once the clock goes high, the valid D10 starts to

propagate through the combinational logic block of T1 and reaches the second flip-flop

boundary. The processed data, D11, has to arrive at the second flip-flop input, B, no later than

the set-up time of the flip-flop. Otherwise, the correct data cannot be latched. D11 propagates

through the second (T2) and third (T3) combinational logic stages, and becomes D12 and D13,

respectively, before exiting at the OUT terminal as shown in the timing diagram in Fig. 2.7.

The subsequent data packets, D20 and D30, are similarly fed into the pipeline stage from

the IN terminal following D10. They are processed and modified by the T1, T2 and T3

combinational logic stages as they propagate through the pipeline, and emerge at the OUT

terminal.

The total execution time for three input data packets, D10, D20 and D30, takes six clock

cycles, including the initial three clock cycle build-up period before D13 emerges at the OUT

terminal. If we were to remove all the flip-flop boundaries between the nodes A and F, and
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Fig. 2.6 Operation of D flip-flop
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wait for these three data packets to be processed without any pipeline structure, the total

execution time would have been 3 x 3 = 9 clock cycles, assuming each T1, T2 or T3 logic

stage imposes one clock cycle delay.

Once again, the pipelining technique considerably reduces the overall processing time and

increase data throughput whether the timing methodology is latch-based or flip-flop-based.

The advantage of using latches as opposed to flip-flops is to be able to borrow time from

neighboring stages. For example, the propagation delay in the T1 stage in Fig. 2.3 can be

extended at the expense of shortening the propagation delay in the T2 stage. This flexibility

does not exist in a flip-flop based design in Fig. 2.7.

2.5 Timing Violations

Although pipelining scheme helps reducing the overall data processing time, we still need to

watch out possible timing violations because of the unexpected delays in the data-path and

the clock network.

Therefore, this section examines the set-up and hold timing violations in flip-flop

controlled pipelines, and proposes possible solutions to eliminate them.
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Fig. 2.7 Timing methodology using D flip-flops (“X” marks correspond to changing data)
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Figure 2.8 shows a section of a pipeline where a combinational logic block with a

propagation delay of TCOMB is sandwiched between two flip-flop boundaries. At the rising

edge of the clock, the valid data that meets the set-up and hold time requirements is

introduced at the IN terminal. After tCLKQ delay, the data emerges at the node A and

propagates through the combinational logic block as shown in the timing diagram. However,

the data arrives at the node B too late and violates the allocated set-up time of the flip-flop.

This is called the set-up violation. The amount of violation is dependent on the clock period

and is calculated as follows:

Set-up violation = tS � TC � tCLKQþ TCOMBð Þ½ �

Figure 2.9 describes the hold time violation where the clock shifts by TCLK due to an

unexpected delay in the clock line. In the timing diagram, the valid data is introduced to the

pipeline at the IN terminal, and it arrives at the node B after a short delay equal to (tCLKQ +

TCOMB). The shifted clock, on the other hand, creates a substantial set-up time slack equal to

(TC + TCLK – tS – tCLKQ – TCOMB), but it also produces a hold time violation at the delayed

clock edge. The amount of violation is dependent on the clock delay and is calculated as

follows:

Hold violation = TCLKþ tHð Þ � tCLKQþTCOMBð Þ
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Fig. 2.8 Setup violation
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Set-up violations can be recovered simply by increasing the clock period, TC. However,

there is no easy way to fix hold violations as they need to be searched at each flip-flop input.

When they are found, buffer delays are added to the combinational logic block, TCOMB, in

order to avoid the violation.

The schematic in Fig. 2.10 examines the timing ramifications of two combinational logic

blocks with different propagation delays merging into a single block. The data arrives at the

node C much earlier than the node D as shown in the timing diagram. The data at the nodes

C and D propagate through the last combinational block and arrive at the node E. This

scenario creates minimum and maximum delay paths at the node E. We need to focus on the

maximum path, (T2 + T3), when examining the possibility of a set-up violation and the

minimum path, (T1 + T3), when examining the possibility of a hold violation at the next

flip-flop boundary.
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To further illustrate the timing issues involving multiple combinational logic blocks, an

example is given in Fig. 2.11 where two combinational logic blocks merge into a single

block. The adder is bypassed with the inclusion of a 2-1 MUX which selects either the

output of the adder or the bypass path, by a selector input, SEL.

The propagation delays of the inverter, TINV, and the two-input NAND gate, TNAND2, are

given as 100 ps and 200 ps, respectively. The set-up, hold and clock-to-q delays are also

given as 100 ps, 0 ps and 300 ps, respectively.
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Fig. 2.10 A timing example combining two independent data-paths
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Both the one-bit full adder and the 2-1 MUX are decomposed into basic logic gates, such

as inverters and two-input NAND gates, as shown in Fig. 2.12. We obtain a total of seven

propagation paths all merging at the node R. However, we only need to search for the

maximum and the minimum delay paths to locate possible set-up and hold violations.

The maximum delay path consists of the inverter 1, and the series combination of four

two-input NAND gates numbered as 1, 3, 4 and 6 shown in the schematic. This path results

in a total delay of 900 ps. The minimum delay path, on the other hand, contains two

two-input NAND gates numbered as 5 and 6, and it produces a delay of 400 ps. Placing

these delays in the timing diagram in Fig. 2.13 yields a set-up slack of 100 ps at the node R

when a clock period of 1400 ps is used. There is no need to investigate hold violations

because there is no shift in the clock edge. However, if there were a shift in the clock line

beyond tCLKQ = 300 ps, then we would have a hold violation, and it would require an

additional combinational logic delay in the data-path to proportionally shift the valid data at

the node R to compensate the hold violation. This, however, would also eliminate the 100 ps

set-up slack in Fig. 2.13.
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Fig. 2.11 An example with multiple propagation paths
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2.6 Register

While the flip-flop holds data for only one clock cycle until new data arrives at the next clock

edge, the register can hold the same data perpetually until the power is turned off.

Figure 2.14 shows the circuit diagram of a one-bit register composed of a flip-flop and a

2-1 MUX. The Write Enable pin, WE, is a selector input to the 2-1 MUX and transfers new

data from the IN terminal to the flip-flop input when WE = 1. If the WE input is at logic 0,

any attempt to write new data to the register is blocked. The old data stored in the flip-flop

simply circulates around the feedback loop from one clock cycle to the next.

The timing diagram at the bottom of Fig. 2.14 describes the operation of the one-bit

register. The data at the IN terminal is blocked until the WE input becomes logic 1 in the

middle of the second clock cycle. At this point, the new data is allowed to pass through the

2-1 MUX, and it renews the contents of the register at the beginning of the third clock cycle.

The WE input transitions to logic 0 before the end of the third clock cycle, and causes the

register output, OUT, to stay at logic 1 during the fourth clock cycle.

A 32-bit register shown in Fig. 2.15 is composed of 32 one-bit registers. All 32 registers

have a common clock and WE input. Therefore, any new 32-bit data introduced at the

register input changes the contents of the register at the rising edge of the clock if the WE

input is set to logic 1.
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Fig. 2.14 One-bit register and a sample timing diagram
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2.7 Shift Register

The shift register is a particular version of an ordinary register, and it specializes in shifting

data to the right or to the left according to the design needs.

Figure 2.16 shows the circuit schematic of a four-bit shift register that shifts serial data at

the IN terminal to the left if enabled.

The operation of this shift register is explained in the timing diagram in Fig. 2.17. In cycle

1, SHIFT = 0. Therefore, the change at the IN terminal during this cycle does not affect the

register outputs. However, when the SHIFT input transitions to logic 1 in the middle of cycle

2, it allows IN = 1 to pass to the least significant output bit, OUT[0], at the beginning of the

third clock cycle. From the middle of cycle 2 to the middle of cycle 13, SHIFT is kept at

logic 1. Therefore, any change at the IN node directly transmits to the OUT[0] node at the

positive edge of each clock cycle. The other outputs, OUT[1], OUT[2] and OUT[3], produce

delayed outputs one clock cycle apart from each other because the output of a lesser

significant bit is connected to the input of a greater significant bit in the shift register.

When the SHIFT input becomes logic 0 from the middle of cycle 13 to cycle 17, the shift

register becomes impervious to any change at the IN terminal, and retains the old values

from the beginning of cycle 13 to cycle 18 as seen in Fig. 2.17. From the middle of cycle 17

onwards, the SHIFT input becomes logic 1 again, and the shift register distributes all new

data entries at the IN terminal to its outputs.
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Fig. 2.15 32-bit register
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2.8 Counter

The counter is a special form of a register which is designed to count up (or down) at each

rising edge of the clock.

The circuit schematic in Fig. 2.18 shows a typical 32-bit up-counter with two control inputs,

COUNT and LOAD. The COUNT = 1 entry enables the counter to count upwards at the rising

edge of each clock cycle, and the LOAD = 1 entry loads new data to the counter from its IN

[31:0] terminal. Once loaded, the counter output, OUT[31:0], increments by one at the pos-

itive edge of each clock cycle until all the output bits become logic 1. The next increment

clock
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Fig. 2.17 A sample timing diagram of the four-bit shift register in Fig. 2.16
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Fig. 2.16 Four-bit shift register
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automatically resets the counter output to logic 0. When LOAD = COUNT = 0, the counter

neither loads new data nor is able to count upwards; it stalls and repeats its old output value.

The sample timing diagram at the bottom of Fig. 2.18 illustrates its operation. Prior to the

first clock edge, the LOAD input is at logic 1 which allows an input value, IN = 3, to be

stored in the counter. This results in OUT[31:0] = 3 at the positive edge of the first clock

cycle. The LOAD = 0 and COUNT = 1 entries before the end of the first clock cycle start the

up-count process, and the contents of the output, OUT[31:0] = 3, is subsequently incre-

mented by one. The result, 3 + 1 = 4, passes through the C-port of the 3-1 MUX and arrives

at the flip-flop inputs. At the positive edge of the second clock cycle, this new value

overwrites the old registered value, and the OUT[31:0] node becomes equal to 4. In the next

cycle, the counter goes through the same process and increments by one again. However, in

the same cycle, the COUNT input also transitions to logic 0, and turns on the I-port of the

3-1 MUX. This input value prevents any new data from entering the up-counter, and it keeps

the old data in the following clock cycles. As a result, the counter output stops incrementing

and stalls at the value of OUT[31:0] = 5.
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Fig. 2.18 A 32-bit counter and a sample timing diagram
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2.9 Moore Machine

A state machine can be formed as soon as a flip-flop output is connected to a flip-flop input.

Therefore, an overall state machine topology consists of flip-flops, feedback loops from

flip-flop outputs to flip-flop inputs, and combinational logic blocks connected to flip-flop

outputs and embedded in feedback loops.

Figure 2.19 shows the Moore-type state machine topology consisting of a flip-flop and a

feedback loop. In this configuration, the feedback loop includes a combinational logic block

that accepts both the flip-flop output and external inputs. If there are multiple flip-flops, the

combination of all flip-flop outputs constitutes the “present” state of the machine. The com-

bination of all flip-flop inputs is called the “next” state because at the positive edge of the clock

these inputs become the flip-flop outputs, and form the present state. Flip-flop outputs are

processed further by an additional combinational logic block, forming the present state outputs.

The basic state diagram of a Moore machine, therefore, includes the present state (PS) and

the next state (NS) as shown in Fig. 2.19. The machine can transition from the PS to the NS

if the required present state inputs are supplied. The outputs of the Moore machine are solely

generated by the present state, and they emerge only from the current states as shown in the

basic state diagram.
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Fig. 2.19 Block diagram and state representation of Moore machine

The state diagram in Fig. 2.20 shows an example of a Moore-type machine with four

states. Note that every state-to-state transition in the state diagram requires a valid present

state input entry, and every node generates one present state output.

The state 0, S0, produces a present state output, OUT = 1, regardless of the value of the

present state input, IN. When IN = 1, the state S0 transitions to the next state S1. Otherwise,

it circulates back to itself. The state S1 produces OUT = 2; its next state becomes S1 if IN =

0, or it becomes S2 if IN = 1. The state S2 also produces a present state output, OUT = 3, and

transitions to the state S3 if IN = 1. The state S2 remains unchanged if IN = 0. In the fourth

and the final state, the present state output from S3 becomes 4. The machine stays in this

state if IN stays at 0; otherwise, it goes back to the state S1.
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The present state inputs and outputs of this Moore machine and its states can be tabulated

in a table called the “state table” given in Fig. 2.21. In this table, the first column under the

PS entry lists all the possible present states in the state diagram in Fig. 2.20. The middle two

columns contain the next state entries for IN = 0 and IN = 1. The last column lists the present

state outputs, one for each present state.
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Fig. 2.21 State table of the Moore machine in Fig. 2.20
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Fig. 2.20 State diagram of a Moore machine with four states
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The binary state assignment is performed according to Fig. 2.22 where only one bit is

changed between adjacent states.

The binary form of the state table in Fig. 2.21 is reconstructed in Fig. 2.23 according to

the state assignment in Fig. 2.22. This table is called the “transition table”, and it includes the

binary representation of the next state and the present state outputs.

Forming this machine’s K-maps for the NS0, NS1, OUT0, OUT1 and OUT2 requires

grouping all the input terms, PS1, PS0 and IN, according to the table in Fig. 2.23. The

K-maps and their corresponding Sum of Products (SOP) expressions are shown in Fig. 2.24.
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Fig. 2.23 Transition table of the Moore machine in Fig. 2.20
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Fig. 2.22 Bit representations of states S0, S1, S2 and S3
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The next step is to generate the circuit diagram that produces all five outputs of the Moore

machine according to these SOP expressions in Fig. 2.24. This circuit diagram is given in

Fig. 2.25.

In order to generate this circuit, individual combinational logic blocks for NS0 and NS1

must be formed first in terms of PS0, PS1 and IN. Then, each NS0 and NS1 output is connected

to the corresponding flip-flop input, producing the feedback loops for this state machine. The

logic blocks for OUT0, OUT1 and OUT2 are generated directly from PS0 and PS1.
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Fig. 2.24 K-maps and SOP expressions for the Moore machine in Fig. 2.20
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Fig. 2.25 Logic circuit of the Moore machine in Fig. 2.20
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2.10 Mealy Machine

The Mealy machine shares the same circuit topology with the Moore machine. The machine

configuration also contains flip-flops and feedback loops as shown in Fig. 2.26. However,

the present state outputs are generated from the combinational logic block in the feedback

loop rather than from the present states as in the Moore-type machines.

As a result of this topology, the basic state diagram of a Mealy machine includes the

present state, the next state and the input condition that makes the state-to-state transition

possible as shown in Fig. 2.26. The present state output(s) does not emerge from the present

state; instead, it is a function of the present state input(s) and the present state.

The Mealy state diagram in Fig. 2.27 exhibits similar characteristics compared to the

Moore state diagram in Fig. 2.20, and all the state names and the state-to-state transitions in

this diagram are kept the same for comparison purposes. However, each arrow connecting

one state to the next carries the value of the present state output as a function of the present

state input and the present state as indicated in Fig. 2.26. As a result, the Mealy state table in

Fig. 2.28 contains two separate columns that tabulate the values of NS and OUT for IN = 0

and IN = 1. The binary state assignment is the same as in Fig. 2.22, which results in a

transition table in Fig. 2.29.

clock

Combinational
Logic

Present StateNext State

Present State 
Outputs

Present State 
Inputs

PS

NS

Present State Outputs

Present State Inputs

QD

Fig. 2.26 Block diagram and state representation of Mealy machine

2.10 Mealy Machine 87



S0

S1

S2

S3

IN = 0

OUT = 3

IN = 0

OUT = 1

IN = 0

OUT = 2

IN = 0

OUT = 4

IN = 1

OUT = 2

IN
 = 1

O
U
T = 2

IN
 =

 1
O

U
T 

= 
3IN

 = 1
O
U
T = 4

Fig. 2.27 State diagram of a Mealy machine with four states
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Fig. 2.28 State table of the Mealy machine in Fig. 2.27
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The K-maps for NS0, NS1, OUT0, OUT1 and OUT2 are formed according to the table in

Fig. 2.29 and shown in Fig. 2.30 with the corresponding SOP expressions. Figure 2.31

shows the circuit diagram of this machine according to the expressions in Fig. 2.30. The

methodology used to construct this circuit diagram is identical to the methodology used in

the circuit diagram for the Moore machine in Fig. 2.25.
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Fig. 2.29 Transition table of the Mealy machine in Fig. 2.27
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Fig. 2.30 K-maps and SOP expressions for the Mealy machine in Fig. 2.27
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2.11 Controller Design: Moore Machine Versus Counter-Decoder Scheme

Both Mealy and Moore-type state machines have practical implementation limits when it

comes to design. A large ring-style state machine composed of N states such as in Fig. 2.32

may have multiple outputs attached to each state, making its implementation nearly

impossible with conventional state machine implementation techniques. However, these

types of designs are excellent candidates for the counter-decoder type of designs where each

state in the state diagram is associated with a counter output value. Therefore, as the counter

increments, present state outputs for each state can simply be generated by a set of decoders

connected to the output of the counter.

IN

NS1

NS0 PS0

PS1

OUT2

OUT1

OUT0

clock

QD

QD

Fig. 2.31 Logic circuit of the Mealy machine in Fig. 2.27
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To illustrate this theory, a controller that generates the timing diagram in Fig. 2.33 will be

implemented using both the Moore-type state machine and the counter-decoder approach.

From the timing diagram below, this state machine generates a single active-high output,

Out = 1, once in every 8 cycles as long as Stop = 0. When Stop = 1, however, the machine

stalls and it retains its current state.

S0

S0

S0S0

S0

S8

S4S12

S2

S10 S6

S0

S0

S0

S1

S9

S5

S3

S11

S7

S(N-1)

Fig. 2.32 State diagram of a counter with N states

clock

S0 S1

Stop

Out

S2 S3 S3 S3 S4 S5 S6 S7 S0 S1 S2

Fig. 2.33 Timing diagram of a state machine with a single input, Stop, and a single output

Once the state assignments are made for each clock cycle in Fig. 2.33, the state diagram

for a Moore-type state machine emerges in Fig. 2.34.

The first and the second clock cycles in the timing diagram are assigned to the S0 and the

S1 states, respectively. The third clock cycle is assigned to the S2 state where Out = 1. The

fourth clock cycle corresponds to the S3 state. The machine stays in the S3 state as long as
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Stop = 1. This ranges from the fourth to the sixth clock cycle in the timing diagram. The state

assignments from the seventh to the tenth clock cycle become the S4, S5, S6 and S7 states,

respectively. The eleventh clock cycle returns to the S0 state.

Implementing the state diagram in Fig. 2.34 follows a lengthy process of producing state

tables, transition tables, and K-maps, resulting in a total of four outputs (three flip-flop

outputs due to eight states and one output for Out). However, using a counter-decoder

approach minimizes this design task considerably and reveals a rather explicit circuit

implementation.

When the timing diagram in Fig. 2.33 is redrawn to implement the counter-decoder design

approach, it yields a simple three-bit counter which counts from zero to seven as shown in

Fig. 2.35. The counter output, CountOut, is included in this figure to show the relationships

between the state assignments, the input (Stop) and the output (Out). The figure also shows

the clock cycle where the counter resets itself when its output reaches seven.
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S5 S3
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Out = 1

Out = 0
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Fig. 2.34 Moore representation of the timing diagram in Fig. 2.33
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The first task for the design is to construct a three-bit up-counter as shown in Fig. 2.36.

The counter in this figure is derived from a general counter topology, and it consists of a

three-bit adder, three 2-1 MUXes and three flip-flops. A three-input AND gate is used as a

decoder at the counter output to implement Out = 1 when the CountOut node becomes 2.

Therefore, this method follows a simple, step-by-step design approach in producing the final

circuit that does not require implicit logic design techniques.

clock

S0 S1

0CountOut 1 2 3 3 3 4 5 6 7 0 1 27

Stop

Out

S2 S3 S3 S3 S4 S5 S6 S7 S0 S1 S2

Fig. 2.35 Timing diagram of a three-bit counter with a single input, stop, and a single

output

clock

Out

+1

Stop

3

0 1

CountOut

Q
D

Fig. 2.36 Counter-decoder representation of the timing diagram in Fig. 2.35
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2.12 Memory

Small memory blocks can be assembled from one-bit registers in a variety of configurations

as shown in Fig. 2.14. For example, a 32-bit wide, 16-bit deep memory block shown in

Fig. 2.37 can be built by stacking 16 rows of 32-bit registers on top of each other. Each

32-bit register contains tri-state buffers at its output to prevent logic contention during read

as shown in Fig. 2.38.

The inputs to each column of the memory block in Fig. 2.37 are connected together to

write data to a selected row. For example, the input terminal, IN[0], is connected to the In[0]

pins of all 32-bit registers between row 0 to row 15 to be able to write a single bit at a

selected row. The same is true for the remaining inputs, IN[1] to IN[31].

Similarly, all outputs of each column in Fig. 2.37 are connected together to read data from

the memory block. For example, the output pin, OUT[0], is connected to the Out[0] pin of

every 32-bit register from row 0 to row 15 to be able to read one bit from a selected row. The

same is true for the remaining output pins, OUT[1] through OUT[31].

Every row of the memory block in Fig. 2.37 is accessed by an individual Write Enable

(WE) and Read Enable (RE) signal for writing or reading data, respectively.

clock

IN[0]

OUT[0]OUT[30]OUT[31]

IN[30]IN[31]

32-bit Register Row 15

32-bit Register Row 14

32-bit Register Row 0

WE[15]
4

Address [3:0]

WE

A
d

d
re

s
s
  

D
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r

RE[15]

WE[14]

RE[14]

WE[0]

RE[0]

RE

Fig. 2.37 A 32x16 memory and the truth table of its address decoder
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In order to generate the WE inputs, WE[0] to WE[15], an address decoder is used. This

decoder enables only one row while deactivating all the other rows using a four-bit address,

Address[3:0], and a single WE input according to the truth table in Fig. 2.39. For example, a

32-bit data is written to row 0 if WE = 1 and Address[3:0] = 0000 at the decoder input.

However, WE = 0 blocks writing data to all rows of the memory block regardless of the

input address as shown in the truth table in Fig. 2.40.

The RE inputs, RE[0] to RE[15], use address decoders similar to Figs. 2.39 and 2.40 to

read a block of data from a selected row. The read operation is achieved with a valid input

address and RE = 1 according to the truth table in Fig. 2.41. The RE = 0 entry disables

reading data from any row regardless of the input address as shown in Fig. 2.42.

Therefore, a valid input address along with the RE and WE command inputs must be

provided to the memory in order to perform a read or a write operation, respectively.

The WE = 0, RE = 1 combination reads data from the selected row. Similarly, the WE = 1

and RE = 0 combination writes data to a selected row. The WE = 0 and RE = 0 combination

disables both reading and writing to the memory block. The control input entry, WE = 1 and

RE = 1, is not allowed, and it should be interpreted as memory read.

clock
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Out[30]Out[31]

10 10

In[30]In[31]

Q

D

Q

D

Q

D
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Fig. 2.38 A 32-bit register slice at every row of Fig. 2.37
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Fig. 2.39 The address decoder for the 32x16 memory in Fig. 2.37 when WE = 1
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Fig. 2.40 The address decoder for the 32x16 memory in Fig. 2.37 when WE = 0
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Fig. 2.41 The address decoder for the 32x16 memory in Fig. 2.37 when RE = 1
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2.13 A Design Example Using Sequential Logic and Memory

This design example combines the data-path and controller design concepts described in this

chapter and in Chap. 1. It also introduces the use of important sequential logic blocks such as

flip-flop, register, counter and memory in the same design.

Every design starts with gathering small or large logic blocks to meet the functional

specifications of the design and to construct a data-path for proper data-flow. Once the

data-path is set, then the precise data movements from one logic block to the next are

described using timing diagrams. Any architectural change in the data-path should follow a

corresponding change in the timing diagram or vice versa.

When the data-path design and the timing diagram fully associate with each other, and each

describes identical data movements, the next step in the design process is to build the

controller that governs the flow of data. To define the states of the controller, the clock periods

that generate different sets of outputs are separated from each other and named individually as

distinct states. Similarly, the clock periods revealing identical outputs are grouped together

under the same state name. The controller can be Moore-type or Mealy-type state machine

according to the design needs. The design methodology of building the data-path, timing

diagram and controller shown here will be repeated in every design throughout this book,

especially when designing peripherals for a computer system in Chap. 7.

The example design in this section reads two eight-bit data packets from an 8x8 source

memory (memory A), processes them and stores the result in an 8x4 target memory (memory

B). The processing part depends on the relative contents of each data packet: if the contents
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Fig. 2.42 The address decoder for the 32x16 memory in Fig. 2.37 when RE = 0
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of the first data packet are larger than the second, the contents of the data packets are added.

Otherwise, they are subtracted from each other before the result is stored.

The block diagram in Fig. 2.43 demonstrates the data-path required for this

memory-to-memory data transfer as described above. The timing diagram in Fig. 2.44 needs

to accompany the data-flow in Fig. 2.43 since it depicts precise data movements and values

in each clock cycle.

To be able to write data to a memory address in Fig. 2.37, a valid data and address must

be available within the same clock cycle. In a similar fashion, data is read from the memory

core a cycle after a valid address is introduced.

Initially, counter A generates the addresses, 0 to 7, for memory A and writes the data

packets, A0 to A7, through DataInA[7:0] port. This is shown in the timing diagram in

Fig. 2.44 from clock cycles 1 through 8. When this task is complete, counter A resets and

reads the first data packet A0 from AddrA[2:0] = 0 in clock cycle 9. In the next clock cycle,

A0 becomes available at DOut1, and the counter A increments by one. In cycle 11, AddrA

[2:0] becomes 2, the data packet A1 is read from DOut1[7:0], and the data packet A0

transfers to DOut2[7:0]. In this cycle, the contents of the data packets A0 and A1 are

compared with each other by subtracting A1 (at DOut1) from A0 (at DOut2). If the contents

of A0 are less than A1, then the sign bit, Sign, of (A0 – A1) becomes negative. Sign = 1

selects (A0 + A1) at ADDOut[7:0] and routes this value to DataInB[7:0]. However, if the

contents of A0 are greater than A1, (A0 – A1) becomes positive. Sign = 0 selects (A0 – A1)

and routes this value from SUBOut[7:0] to DataInB[7:0]. The result at DataInB[7:0] is

written at AddrB[1:0] = 0 of memory B at the positive edge of clock cycle 12. In the same

cycle, A1 is transferred to DOut2[7:0], and A2 becomes available at DOut1[7:0]. A com-

parison between A1 and A2 takes place, and either (A1 + A2) or (A1 – A2) is prompted to

be written to memory B depending on the value of the Sign node. However, this is an

unwarranted step in the data transfer process because the design requirement states that the

comparison has to be done only once between two data packets from memory A. Since A1 is

used in an earlier comparison with A0, A1 cannot be used in a subsequent comparison with

A2, and neither (A1 + A2) nor (A1 – A2) should be written to memory B. The remaining

clock cycles from 13 through 18 compare the values of A2 with A3, A4 with A5, and A6

with A7, and write the added or subtracted results into memory B. After clock cycle 19, all

operations on this data-path suspend, the counters are reset and all writes to the memory core

are disabled.
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Fig. 2.43 Data-path of a memory transfer example
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To govern the data-flow in Fig. 2.44, a Moore-type state machine (or a

counter-decoder-type controller) is used. A Mealy-type state machine for a controller design

is usually avoided because present state inputs of this type of a state machine may change

during the clock period and may cause jittery outputs to form.

The inclusion of the controller in Fig. 2.45 identifies the necessary control signals to be

able to guide the data flow in Fig. 2.44 properly. These signals increment the counters A and

B (with IncA and IncB), and enable writes to memory A or B (with WEA and WEB) when

necessary. Thus, the timing diagram in Fig. 2.44 is expanded to include these control signals

in Fig. 2.46, and this provides a complete picture of the data transfer process from memory A

to memory B in contrast to the earlier timing diagram in Fig. 2.44.
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Fig. 2.45 Compete block diagram of the memory transfer example with controller
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The controller in Fig. 2.45 can be implemented either by a Moore-type state machine in

Fig. 2.47 or by a counter-decoder-type design in Fig. 2.48.

In the Moore type design, the states from S1 through S18 are assigned to each clock cycle

of the timing diagram in Fig. 2.46. The values of the present state outputs, WEA, IncA,

WEB and IncB, in each clock cycle are read from the timing diagram and attached to each

state in Fig. 2.47. The reset state, S0, is included in the Moore machine in case the data-path

receives an external reset signal to interrupt an ongoing data transfer process. Whichever

state the state machine may be in, a Reset = 1 entry always forces the current state to

transition back to the S0 state at the positive edge of the clock. These transitions are not

included in Fig. 2.47 for simplicity.

The counter-decoder style design in Fig. 2.48 consists of a five-bit counter and four

decoders to generate WEA, IncA, WEB and IncB control signals. To show the operation of

this design to generate WEA, for example, this particular decoder includes eight five-input

AND gates, one for each clock cycle from cycle 1 to cycle 8 in order to keep WEA = 1 in

Fig. 2.46. The five-bit counter implicitly receives a reset signal from its output when it

reaches clock cycle 18, and resets counter A, counter B and the rest of the system in

Fig. 2.45.
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Reset = 1

S1

S0

S2

WEA = 1

IncA = 1

WEA = 1

IncA = 1

S3

S4

WEA = 1

IncA = 1

WEA = 1

IncA = 1

S5

S6

WEA = 1

IncA = 1

WEA = 1

IncA = 1

S7

S8

WEA = 1

IncA = 1

WEA = 1

IncA = 1

S9S10 IncA = 1IncA = 1

S18IncB = 1

S17

S16

WEB = 1

S15

S14

S13

S12IncA = 1

IncB = 1

S11IncA = 1

WEB = 1

IncA = 1

WEB = 1

IncA = 1

IncB = 1

IncA = 1

WEB = 1

IncA = 1

IncB = 1

Reset = 0

Reset = 0

Reset = 0

Reset = 0

Reset = 0

Reset = 0

Reset = 0

Reset = 0 Reset = 0

Reset = 0

Reset = 0

Reset = 0

Reset = 0

Reset = 0

Reset = 0

Reset = 0

Reset = 0

Reset =0

Fig. 2.47 Moore representation of the controller unit in Fig. 2.45
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WEA IncA WEBIncB

clock

Reset

5

5-BIT UP-COUNTER

Fig. 2.48 Counter-decoder representation of the controller unit in Fig. 2.45

2.13 A Design Example Using Sequential Logic and Memory 105



Review Questions

1. Implement the following Moore machine:

S0

S1

S2

S3

in = 0

in = 0

in = 1

in = 1 in = 1

in = 0
in

 =
 0 in = 1

out = 0

out = 1out = 0

out = 0

2. Implement the following Moore machine using a timer. The timer is initiated when In =

1. With this input, the state machine goes to the A state and stays there for 10 cycles. In

the tenth cycle, the state machine transitions to the B state and stays in this state for only

one cycle before switching to the IDLE state. One implementation scheme is to construct

a four-bit up-counter to generate the timer. When the counter output reaches 9, the

decoder at the output of the counter informs the state machine to switch from the A state

to the B state.

IDLE

B A

In = 0

In = 0

In = 1

In = 1

t < 10 clock cycles (CountOut = 0)

Out = 0

Out = 0Out = 1

In = 1

t = 10 clock cycles (CountOut = 1)
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3. The following truth table needs to be implemented using two-input NAND gates and

inverters.

A B C Out

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 3

1 0 1 2

1 1 0 1

1 1 1 0

TNAND (two-input NAND gate delay) = 500 ps

TINV (inverter delay) = 500 ps

tclk-q (clock-to-q delay) = 200 ps

tsu (setup time) = 200 ps

th (hold time) = 300 ps

(a) Implement this truth table between two flip-flop boundaries.

(b) Find the maximum clock frequency using a timing diagram.

(c) Shift the clock by 500 ps at the receiving flip-flop boundary. Show whether or not

there is a hold violation using a timing diagram.

4. A block diagram is given below:

BLOCK A BLOCK B

A

CIN

T
clkshiftclk

B

Block A contains only two flip-flops. Block B contains a one-bit adder with SUM and

COUT outputs connected to two flip-flops as shown below.
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CIN

A

B

clkshift

D Q

D Q

COUT

SUM

(a) Using the logic gates with propagation delays listed below, determine the setup time

for A, B, and CIN with respect to clkshift.

100ps 200ps 200ps 400ps 400ps

(b) Assuming T = 0 ns and TCLK (clock period) = 5 ns, if data at A, B and CIN become

valid and stable 4 ns after the positive edge of clkshift, will there be any timing

violations? Assume tH (hold time) = 3 ns for the flip-flop.

(c) How can you eliminate the timing violations? Show your calculations and draw a

timing diagram with no timing violations.

5. A schematic is given below:

D Q

D Q

TA

TB D Q

TC

IN1

IN2

clkTx

clkRx

A

B

C
D
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(a) If tsu (setup time) = 200 ps, th (hold time) = 200 ps and tclk-q (clock-to-q delay) =

300 ps for the flip-flop, and TA = 1000 ps, TB = 100 ps for the internal logic blocks

on the schematic, show if there is any timing violation or timing slack in a detailed

timing diagram if TC = 0 ps.

(b) What happens if TC = 400 ps? Show it in a separate timing diagram.

6. The state diagram of a Moore machine is given below:

A

B C

out = 0

out = 1out = 1

in = 0

in = 0

in = 1

in = 1 in = 0

in = 1

The assignment of the states A, B and C are indicated as follows:

states PS[1] PS[0]

A

B

C

0 0

0 1

1 1

(a) Implement this state machine using inverters, two-input and three-input AND gates

and two-input OR gates.

(b) Find the maximum operating frequency of the implementation in part (a) if the

following timing assignments are applied:

tsu (setup time) = 100 ps, th (hold time) = 100 ps, tclk-q (clock-to-q delay) = 200 ps,

TINV (inverter delay) = 200 ps, TAND2 (two-input AND gate delay) = 300 ps, TAND3

(three-input AND gate delay) = 400 ps, TOR2 (two-input OR gate delay) = 400 ps.

7. Data is transferred from Memory Tx to Memory Rx starting from the address 0x00 and

ending at the address 0x0F as shown below. Once a valid address is produced for

Memory Tx, the data is read from this address at the next positive clock edge. On the

other hand, data is written to Memory Rx at the positive edge of the clock when a valid

address is available. The operating clock frequency of Memory Tx is twice the clock

frequency of Memory Rx.
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0xFF

0xEE

0xDD

0xCC

0xBB

0xAA

0x99

0x88

0x77

0x66

0x55

0x44

0x33

0x22

0x11

0x00

7 0

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

clock Tx

Memory Tx
7 0

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

clock Rx

Memory Rx

(a) Assuming address generators for Memory Tx and Memory Rx start generating valid

addresses at the same positive clock edge, show which data is actually stored in

Memory Rx using a timing diagram. Indicate all the address and data values for

Memory Tx and Memory Rx in the timing diagram.

(b) Now, assume that the operating clock frequency of Memory Tx is four times higher

than the clock frequency of Memory Rx, and an actual write to Memory Rx takes

place at the negative edge of the clock when a valid address is present. Redraw the

timing diagram indicating all address and data values transferred from Memory Tx to

Memory Rx.

8. Serial data is transferred to program four eight-bit registers. The start of the transfer is

indicated by a seven-bit sequence = {1010101} immediately followed by the address of

the register (two bits) and the data (eight bits). The transfer stops after programming the

last register. After this point, all other incoming bits to the serial input are ignored. Design

this interface by developing a data-path and a timing diagram simultaneously. Implement

the state diagram. Can this controller be implemented by a counter-decoder scheme?
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Projects

1. Implement the one-bit register in Fig. 2.14 and verify its functionality using Verilog. Use

timing attributes in the flip-flop and the multiplexer to create gate propagation delays.

Change the clock frequency until set-up time violation is produced.

2. Implement the four-bit shift register in Fig. 2.16 and verify its functionality using Ver-

ilog. Use timing attributes for flip-flops and the multiplexers to create gate propagation

delays. Examine the resulting timing diagram.

3. Implement the 32-bit counter in Fig. 2.18 and verify its functionality using Verilog.

4. Implement the four-state Moore-type state machine in Fig. 2.20 and verify its func-

tionality using Verilog.

5. Implement the four-state Mealy-type state machine in Fig. 2.27 and verify its function-

ality using Verilog.

6. Implement the three-bit counter-decoder in Fig. 2.36 and verify its functionality using

Verilog and examining the resulting timing diagram.

7. Implement the 32x16 memory block in Fig. 2.37 using Verilog. How can this memory be

verified functionally?

8. Implement the memory-to-memory transfer circuit in Fig. 2.45 and verify its functionality

using Verilog.
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3Review of Asynchronous Logic
Circuits

A digital system is often comprised of different time domains. Some domains work with

clock, and data is sequentially transferred from one flip-flop (or latch) boundary to the next.

In other domains, data is asynchronously processed and handled without the aid of a clock.

This chapter introduces asynchronous circuits that require no clock input. The complete

design methodology is given in terms of state assignments from timing diagrams, con-

struction of flow tables and gate minimization, which then leads to the implementation of

fundamental mode circuits [1]. The chapter concludes with an asynchronous timing

methodology with C (Mueller) elements that allows data propagation between logic blocks

without any clock input.

3.1 S-R Latch

A common storage element in asynchronous circuits is a Set-Reset (S-R) latch. This circuit is

composed of twoNANDgates whose outputs are connected to their inputs as shown in Fig. 3.1.

Initially, both S and R inputs may be at logic 0, producing Q = Q = 1. If the S input

transitions to logic 1 while R = 0, Q stays at logic 1 and Q transitions to logic 0. This state is

called the set state of the S-R latch. If, on the other hand, the R input goes to logic 1 while

the S input stays at 0, Q transitions to logic 0 and Q stays at logic 1. This state is called the

S

R
Q

Q1

2

Fig. 3.1 S-R latch
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reset state. Simultaneously changing both the S and R inputs from logic 0 to logic 1 causes a

racing condition. If NAND gate number 1 has a shorter gate delay than the NAND gate

number 2, Q switches to logic 0 first, and forces Q to stay at logic 1. If NAND gate number 2

has a shorter gate delay, Q switches to logic 0 first. Therefore, simultaneously switching

more than one input in asynchronous circuits creates unexpected outputs due to multiple

racing paths in a circuit. The fundamental-mode design methodology corrects this problem

by permitting only one input to change, and eliminates all unwanted transitions in the circuit.

3.2 Fundamental-Mode Circuit Topology

An asynchronous circuit requires no clock input to operate, and it is composed of a combi-

national logic block and a delay block. The delay block is a combinational logic circuit whose

inputs constitute the present state. The outputs of the delay block are fed back to the inputs of

the combinational logic to form the next state as shown in Fig. 3.2.

Designing an asynchronous circuit requires to follow a certain procedure. The first task is

to form a primitive state flow table tabulating all possible states and transitions that the

asynchronous circuit can produce. This table must contain only one stable state per row to

maintain the fundamental mode of operation. Similarly, another table, containing only the

outputs of the circuit, is formed. An output table is also formed, and it includes every output

change as the circuit makes a transition from one state to another. Minimization of state and

output tables is achieved by implication tables prior to producing a final circuit. In asyn-

chronous circuit design, it is common to create race conditions where circuit delays produce

multiple simultaneous state transitions resulting in unwanted outputs. An effective method to

eliminate racing conditions is to work on the minimized state table and remove such state

transitions that cause the circuit to depart from its fundamental-mode of operation.

Combinational

Logic

Delay

inputs outputs

present statenext state

Fig. 3.2 Fundamental mode asynchronous circuit topology
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3.3 Fundamental-Mode Asynchronous Logic Circuits

In this section, an example will be used to present the entire process designing

fundamental-mode asynchronous circuits from the creation of primitive flow tables to the

removal of racing conditions.

The circuit in this example consists of two inputs, in1 and in2, and a single output. The

output is at logic 0 whenever in1 = 0. The first change in in2 produces out = 1 while

in1 = 1. The output transitions back to logic 0 when in1 switches to logic 0.

The timing diagram in Fig. 3.3 summarizes the behavior of this circuit. State assignments

in the timing diagram follow the basic rule that requires the change in only one input per

state. All stable states are numbered and circled.

The state① is when in1 = in2 = 0 and out = 0. Any change in in2 transitions the circuit to

the state ② with out = 0. Additional ripples at in2 while in1 = 0 change the state of the

circuit between the states ① and ②. Switching in1 from logic 0 to logic 1 while in2 = 1

forms a new state, state ③, and produces out = 0. The first change in in2 while in1 = 1

creates another new state, state④, with out = 1. As in2 transitions back from logic 0 to logic

1 while in1 = 1, the state of the circuit changes to the state⑤, but the output stays at out = 1.

Further ripples in in2 while in1 = 1 create no change at the output, and the circuit ends up

transitioning between the states ④ and⑤. When in1 transitions to logic 0 while in2 = 1, the

state of the circuit switches back to the state②. Finally, when in2 also switches back to logic

0, the state of the circuit becomes the state ①.

Now, let us assume that in1 transitions to logic 1 first while in2 is steady at logic 0. This

condition creates a new state, state ⑥, with an output value of out = 0. When in2 also

transitions to logic 1 while in1 = 1, the state of the circuit changes from the state⑥ to a new

state, state ⑦, and out becomes logic 1. As soon as in2 goes back to logic 0 while in1 = 1,

the circuit also switches back to the state ④ but out stays at logic 1. Further ripples in in2

while in1 = 1 simply change the state of the circuit between the states ④ and⑦. As soon as

1 2 2 3 4 5 2 1 6 7 4 7 2 1

in1

in2

out

Fig. 3.3 Timing diagram and state assignments
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in1 transitions back to logic 0, the circuit goes to the state ②. When in2 also changes to

logic 0, the circuit goes back to the state ①.

Constructing primitive state table and output flow table is the direct extension of the

timing diagram in Fig. 3.3. When transferring stable, circled states from the timing diagram

to the primitive state table in Fig. 3.4, the fundamental-mode rule that enforces one stable

state per row is strictly observed. The non-circled states in this table are considered “tran-

sitionary” states: the circuit momentarily stays in these states until it makes a permanent

move to a stable state. For example, as in2 transitions from logic 0 to logic 1 while in1 stays

at logic 0 in the first row of Fig. 3.4, the state of the circuit changes from the stable state

① to the transitionary state 2. The circuit stays in this transitionary state only for a brief

moment until it finally transitions to the stable state ② in row 2. Similarly, as in1 switches

from logic 0 to logic 1 while in2 = 1, the circuit transitions from the state ② to the state

③ through a transitionary state 3 in the second row. All simultaneous dual input transitions

are forbidden because of the primary rule in the fundamental mode of operation. Therefore, a

transition from in1 = in2 = 0 to in1 = in2 = 1 in the first row is not allowed. In this figure,

the boxes marked with “-” indicate the forbidden transitions.

Primitive state and output flow tables are usually integrated to produce a compact table as

shown in Fig. 3.5. Furthermore, labeling the present and next states clarifies the state

transitions and the output values during each transition. Figure 3.5 also separates the states

that produce out = 0 from the states that produce out = 1. This design practice comes in

handy during the minimization step when equivalence classes are formed.

in1 in2

2 - 6

1 3 -

- 2 4

1 - 5

- 2 4

1 - 7

- 2 4

1

2

3

4

5

6

7

00 01 11 10

in1 in2

0

0

0

1

1

0

1

00 01 11 10

Fig. 3.4 Primitive state (left) and output (right) flow tables for Fig. 3.3
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The first step towards state minimization is to form an implication table as shown in

Fig. 3.6. This table includes all permitted, forbidden and “implied” states that can either go

into the permitted or forbidden categories.

Figure 3.6 replicates the present state column in Fig. 3.5 in its vertical axis with the

exception of the state 1 (the first row in Fig. 3.5), and in its horizontal axis with the exception

of state 7 (the last row in Fig. 3.5).

The box located at (2, 1) in Fig. 3.6 is checked because there are no other states involved

in a transition from the state ① to the state ② in Fig. 3.5. The box at (3, 1) contains 4-6,

because the “implied” states 6 and 4 in the column, in1 in2 = 10, in Fig. 3.5 must be

traversed in order to go from the state ① to the state ③. The columns, in1 in2 = 00 and 11,

contain forbidden transitions, and they cannot be used as implied states to allow a transition

from the state ① to the state ③. The only other column for a transition from the state ① to

2 - 6

1 3 -

- 2 4

1 - 7

1 - 5

- 2 4

- 2 4

1

2

3

6

5

7

00 01 11 10

in1 in2

0

0

0

0

1

1

1

00 01 11 10

in1 in2

1

2

3

6

4

5

7

ns out

ps

4

Fig. 3.5 Integrated primitive state and output flow tables

4-6

4-6

4-6

4-6

3-7

3-5

3-5

3-7

3-7

4-6

3-5

5-7

4-6

4-6 5-7

21 63 54

2

7

6

3

5

4

Fig. 3.6 The implication table for Fig. 3.5
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the state③ is the column, in1 in2 = 01, but it requires a transition from the state 2 to the state

2, which is not possible. The box at (4, 6) in Fig. 3.6 contains an “X” mark because the

outputs produced at the states④ and⑥ are different. The same applies to boxes at (5, 3) and

(7, 3). The box at (6, 3) contains two implied transitions, 3-7 and 4-6, which correspond to

the columns, in1 in2 = 11 and 10, respectively.

We can further eliminate some of the implied state entries in the implication table of

Fig. 3.6 if these states are “related” to the boxes that have already been crossed out.

Figure 3.7 shows the new implication table after eliminations. In this table, the boxes that

contain the transitionary states 4-6, 3-5 and 3-7 are safely crossed out since they are related

to the boxes at (4, 6), (5, 3) and (7, 3), respectively.

Forming the equivalence class table is the next step for minimization. First, all states in

the horizontal axis of the implication table in Fig. 3.7 are repeated backwards under the

“States” column in the equivalence class table in Fig. 3.8.

Column 5 in Fig. 3.7 contains a checked box. This box corresponds to a joint state, (5-7),

listed as an equivalence class in the first row of Fig. 3.8. Column 4 in Fig. 3.7 consists of a

checked box at (4, 5) and a second box containing an implied state 5-7 at (4, 7). Therefore,

the second row of Fig. 3.8 contains two new joint states, (4, 5) and (4, 7), as well as the

earlier joint state, (5, 7), from the first row. Since in this row the joint states, (5, 7), (4, 7) and

(4, 5), overlap, they can be combined in a compact joint state (4, 5, 7). Columns 6 and 3 in

Fig. 3.7 have crossed-out boxes that contain no implied states. Therefore, the third and the

fourth row of Fig. 3.8 do not have new state entries, but only a single combined state carried

over from the second row. Column 2 in Fig. 3.7 has also crossed-out boxes except at (2, 3),

and this produces a new joint state, (2, 3), in the fifth row of Fig. 3.8. Finally, column 1 in

Fig. 3.7 contains two checked boxes at (1, 2) and (1, 6), which form two additional joint

states, (1, 2) and (1, 6), in the last row of Fig. 3.8. Therefore, the final equivalence class list

includes the joint states, (4, 5, 7), (2, 3) and (1, 6). The joint state (1, 2) is a shared state

between (2, 3) and (1, 6), and it is absorbed in the final list.

5-7

21 63 54

2

7

6

3

5

4

Fig. 3.7 The implication table after eliminations
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The final equivalence class list indicates the presence of only three states. Therefore, the

same number of states must be present in the minimal state flow table in Fig. 3.9, where the

joint states, (1, 6), (2, 3) and (4, 5, 7) are assigned to the states A, B and C, respectively.

In Fig. 3.5, the present states ① and ⑥ correspond to the states ① and 1 when in1 in2 =

00. However, the states ① and 1 now belong to the new assigned state A in Fig. 3.9.

Therefore, the present state A transitions to a stable state A with out = 0 when in1 in2 = 00.

Similarly, the present states① and⑥ in Fig. 3.5 correspond to the states 2 and “-” when in1

in2 = 01, and produce no output. In the new table, this translates to a transition from the

present state A to the stable state B when in1 in2 = 01. The other entries in the next state, ns,

and the output, out, columns in Fig. 3.9 are formed in a similar manner.

The three states, A, B and C, in Fig. 3.9 require two next state bits, ns1 and ns2. The state

assignments are shown in Fig. 3.10.

States Equivalence Classes

5

4

6

3

2

1

Final List

(5, 7)

(5, 7) (4, 7) (4, 5) = (4, 5, 7)

(4, 5, 7)

(4, 5, 7) (2, 3) 

(4, 5, 7)

(4, 5, 7) (2, 3) (1, 2) (1, 6)

(4, 5, 7) (2, 3) (1, 6)

Fig. 3.8 Equivalent class table

B C

A C

A B

A

B

C

00 01 11 10

in1 in2

0 - - 0

- 0 0 -

- - 1 1

00 01 11 10

in1 in2
ps

A

B

C

(1, 6) = A

(2, 3) = B

(4, 5, 7) = C

outns

Fig. 3.9 Minimized integrated primitive state and output flow tables

3.3 Fundamental-Mode Asynchronous Logic Circuits 119



Employing the state assignment table in Fig. 3.10 in the combined minimal state and

output flow table in Fig. 3.9 leads to the state and the output K-maps in Fig. 3.11. The

crossed-out entries in this figure correspond to “don’t care” conditions, and they are treated

as either logic 0 or logic 1 to achieve the minimal Sum of Products (SOP) expression for

each K-map.

Finally, the SOP expressions for ns1, ns2 and out in Fig. 3.11 generate the circuit diagram

in Fig. 3.12. To draw the complete circuit, first combinational logic blocks for ns1, ns2 and

out are formed using their SOP expressions. Then, each next state, ns1 and ns2, is connected

to its corresponding present state, ps1 and ps2, to complete the circuit diagram in Fig. 3.12.

0 0 1 0

0 0 0 1

0 0 1 1

00 01 11 10

in1 in2

00

01

11

10

ns1

ps1 ps2

0 1 1 0

0 1 1 1

0 1 1 1

00 01 11 10

in1 in2

00

01

11

10

ns2

ps1 ps2

0 0

0 0

1 1

00 01 11 10

in1 in2

00

01

11

10

out

ps1 ps2

ns2 = in2 + in1.ps2

out = in1.ps1

ns1 = in1.ps1 + in1.in2.ps2 + in1.in2.ps2

Fig. 3.11 K-maps for the next states, ns1 and ns2, and the output, out

A

B

C

ns1 ns2

0 0

0 1

1 1

Fig. 3.10 State assignments
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Even though the circuit in Fig. 3.12 represents the required state behavior, it may not

eliminate all possible racing conditions. When the state table in Fig. 3.9 is transformed into a

state diagram in Fig. 3.13, the forward and backward transitions between the states A and C

may induce racing conditions because two inputs change simultaneously.

To prevent racing conditions, a fictitious fourth state is introduced between the states A

and C in Fig. 3.13. This fourth state, a, forms a bridge when going from the state A to the

state C (or vice versa) and allows only one state input to change to prevent possible hazards

as shown in Fig. 3.14.

in1

in2
ns1

ns2

ps2

ps1

out

Fig. 3.12 Fundamental mode asynchronous circuit for Fig. 3.3

A = 00 B = 01

C = 11
racing condition

may exist 

during these 

transitions

Fig. 3.13 State diagram showing possible racing conditions
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However, the inclusion of the new state, a, necessitates reconfiguring the original state

table in Fig. 3.9. The new state table contains the state a as a transitionary state in Fig. 3.15,

and the transitions into this state do not produce any output.

When the hazard-free state and output K-maps are formed based on the flow table in

Fig. 3.15, the resultant SOP expressions for ns1 and ns2 in Fig. 3.16 contain only an

additional term with respect to the ones in Fig. 3.11. This is a small price to pay in the total

gate count for the benefit of eliminating all racing conditions.

A = 00 B = 01

α = 10 C = 11α

α

No hazard

A              C

or 

C              A

Fig. 3.14 Reconfiguration of the state diagram to eliminate racing conditions
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Fig. 3.15 Integrated state and output flow tables without racing conditions
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3.4 Asynchronous Timing Methodology

Asynchronous data propagation through combinational logic blocks can be achieved using

C-elements (Mueller elements) as shown in Fig. 3.17.

In this figure, combinational logic blocks, CL1, CL2 and CL3, are connected through

flip-flops to propagate data. However, data propagation through the combinational logic does

not have to be complete within a fixed clock period as in conventional sequential circuits.

The C-elements in conjunction with inverting delay blocks, D1, D2 and D3, allow variable

data propagation to take place for each stage.

As data propagates through a particular combinational logic block, the positive edge

produced at the Cout terminal of a C-element also propagates through the corresponding

delay circuit. When data reaches the next flip-flop boundary, the C-element in this stage also

produces a positive Cout edge for the flip-flop to fetch the incoming data.

data1 D Q CL1 D Q CL2 D Q CL3 D Q

C CD1 CD2 CD3

data2 data3 data4

Cout1 Cout2 Cout3 Cout4

Cin4Cin3Cin2

F1 F2 F3

Fig. 3.17 Asynchronous timing methodology using C-elements
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ns1 = in1.ps1 + in1.in2.ps2 + in2.ps1.ps2 + in1.in2.ps2

out = in1.ps1

ns2 = in1.in2 + in1.ps2 + in1.ps1

Fig. 3.16 Next state and output K-maps producing no racing conditions
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The details of variable data propagation in Fig. 3.17 are illustrated in the timing diagram

in Fig. 3.18. In this figure, the C-element produces a positive edge at Cout1 and enables the

flip-flop to dispatch data1 from its output after a clock-to-q delay. As this data propagates

through the combinational logic block, CL1, the positive edge of Cout1 also travels through

the delay block, D1, and reaches the next C-element to form a positive edge at Cout2 to fetch

the incoming data.

Data propagation in the second stage and the positive edge formation of Cout2 is identical

to the first stage with the exception of longer propagation delays, CL2 and D2. The third stage

presents a much smaller propagation delay, CL3, and requires a smaller delay element, D3.

Even though each combinational data-path delay in Fig. 3.18 is approximately twice as

large as the propagation delay of its corresponding delay element, the flip-flop set-up time,

tsu, must be taken into account to fine-tune the length of delay for each delay element.

Figure 3.19 shows the detailed Input/Output timing diagram of the C-element. In the first

stage of the data-path (CL1 in Fig. 3.17), a positive edge at Cout1 travels though the

inverting delay element, D1, and produces a negative edge at Cin2 for the next C-element.

The C-element is designed such that the negative edge at its Cin input creates a negative

edge from its F output. Therefore, the negative edge at the F1 node comes back to the first

C-element as an input and prompts the first C-element to lower its Cout output, resulting in

Cout1 = 0, and creating a pulse with a duration of D1. The negative edge at Cout1, on the

other hand, travels through the inverting delay element, D1, the second time, and produces a

data1

D1

D1

Cout1

data2

Cout2

data3

Cout3

data4

Cout4

D2

D2
D3

D3

tsu

tsu

tsu

CL1 = 2D1 - tsu

CL2 = 2D2 - tsu

CL3 = 2D3 - tsu

Fig. 3.18 A timing diagram with variable clock lengths and stage delays
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positive edge at Cin2. This positive edge, in turn, enables the second C-element to generate

positive edges at F1 and Cout2 to latch the valid data at the data2 port.

As the data propagates through the second stage, the sequence of timing events that took

place between the first and second C-elements repeat once again between the second and the

third C-elements that define the boundaries of CL2. This results in generating a positive

pulse at the Cout2, two negative pulses at Cin3 and F2, and a positive Cout3 edge to be able

to receive a new data at data3.

The vertical slicing in Fig. 3.19 helps to define all possible stable states in designing the

C-element. Even though Fig. 3.19 only samples the inputs and the outputs of the second

C-element, all C-elements in Fig. 3.17 yield identical results. Every stable state from the

state ① to the state ④ allows only one input change as the fundamental-mode rule in

asynchronous design methodology. The state ① is entered when Cin2 = F2 = 1, and pro-

duces F1 = 1 and Cout2 = 0. As Cin2 transitions to logic 0, the circuit goes into the state ②

where it yields F1 = 0 and Cout2 = 0. The start of the pulse at Cout2 defines the state ③

Cout1

Cout2

Cout3

F3

Cin2

F1

Cin3

F2

Cin4

D1 D1

D2 D2

D3
D3

1 2 3 4 1

F2 = 1

Cin2 = 1

F1 = 1

Cout2 = 0

F2 = 1

Cin2 = 0

F1 = 0

Cout2 = 0

F2 = 1

Cin2 = 1

F1 = 1

Cout2 = 1

F2 = 0

Cin2 = 1

F1 = 1

Cout2 = 0

F2 = 1

Cin2 = 1

F1 = 1

Cout2 = 0

Fig. 3.19 C-element and delay-element input/output activity in Fig. 3.17

3.4 Asynchronous Timing Methodology 125



where Cin2 transitions back to logic 1, and both outputs, F1 and Cout2, change to logic 1.

The last state, state ④, emerges when F2 switches to logic 0. This state also causes Cout2 to

change to logic 0, but retains F1 at logic 1. The transition of F2 to logic 1 prompts the

C-element to go back to the state ①.

All possible state and output changes of the C-element in Fig. 3.19 are condensed in an

integrated state and output flow table in Fig. 3.20. In this figure, the “?” mark indicates that

the C-element never reaches these transitionary cases. The “-” mark again defines the for-

bidden states where the fundamental-mode design is violated.

The state assignments for the four stable states in Fig. 3.20 are shown in Fig. 3.21. This is

a vital step in the design since the states in Fig. 3.20 are still in symbolic form and have not

yet been converted into binary values.

Since the fundamental-mode design rule of changing only one input between state

transitions is fully observed, the state table in Fig. 3.22 shows no potential racing hazards in

the current C-element design.

- ? 2

? - 3

- 4 ?

? 1 -

1
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3

4

00 01 11 10

F2  Cin2

10

00

11
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00 01 11 10

F2  Cin2
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4

ns F1  Cout2

ps1  ps2

Fig. 3.20 Integrated primitive state and output flow tables for C-element
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1 1

1 0

1
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Fig. 3.21 State assignments for Fig. 3.20
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Once the primitive flow table and the state assignments are complete, the next state and

the output K-maps of the C-element can be constructed as shown in Fig. 3.23.

1 = 00 2 = 01

4 = 10 3 = 11

No hazard!

One state-bit 

at a time

Fig. 3.22 Hazard-free state diagram of the C-element
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Fig. 3.23 Next state and output K-maps of the C-element
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In this figure, the cases marked by “?” and “-” are directly transferred from the primitive

flow table in Fig. 3.20. When generating the SOP expressions for the ns1, ns2, F1 and Cout2

outputs, the cases marked with “?” and “-” signs in Kmaps are deliberately excluded from

the SOP expressions in Fig. 3.23. This ensures that unwanted state transitions and outputs do

not take place in the final circuit in Fig. 3.24.

The input and output names of the second C-element in Fig. 3.17 are also changed for a

generic C-element. According to Fig. 3.24, the inputs, Cin2 and F2, have become Cin and Fin,

and the outputs, F1 andCout2, havebecomeFout andCout of a genericC-element, respectively.

ns1

ps1

Cin2 (Cin)

F2 (Fin)

Cout2 (Cout)

F1 (Fout)

ns2

ps2

Fig. 3.24 C-element circuit according to the fundamental mode design rules
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Review Questions

1. An asynchronous circuit has two inputs, in1 and in2, and an output, out. When in1 = 1,

the first transition from logic 0 to logic 1 at in2 generates out = 1 in the waveform below.

Output stays at logic 1 unless in1 goes back to logic 0. The first transition from logic 1 to

logic 0 at in2 switches the output back to logic 0 while in1 = 0.

A sample waveform is given below.

in1

in2

out

Define all possible states using the waveform above and form an integrated primitive state

and output flow table. Form an associated implication table leading to the minimization of

states and outputs. Design the resultant fundamental mode asynchronous circuit.

2. An asynchronous circuit has two inputs, in1 and in2, and an output, out. When in1 = 0, the

first transition at in2 produces out = 0 as shown in the waveform below. When in1 = 1, a

transition from logic 0 to logic 1 at in2 increments the value of out by one. When out = 3

and in1 = 1, an additional logic 0 to logic 1 transition at in2 produces out = 0.

Define the possible states from the waveform above, and form the primitive state and

output flow tables. Define the resultant implication table to minimize the initial states and

outputs. Design the resultant fundamental mode asynchronous circuit.

3. An asynchronous circuit has three inputs, in1, in2 and in3, and an output, out. When all

inputs are at logic 0, the first logic 0 to logic 1 transition at any input causes the output to

display the input ID. For example, a logic 0 to logic 1 transition at in1 while in2 =

in3 = 0 produces out = 1 because this value is the ID number of in1. Similarly, the first

logic 0 to logic 1 transition at in2 while in1 = in3 = 0 produces out = 2. Logic 0 to

logic 1 transition at any input while one or more inputs are at logic 1 does not change the

in1

in2

out [1:0] 0 1 2 3 0 0 1 2 0?
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output value. Similarly, logic 1 to logic 0 transition does not affect neither the state of the

circuit nor the output value.

Form the primitive state, the output flow table(s) and the implication table to minimize

the initial state and the output assignments from the waveform above. Design the fun-

damental mode asynchronous circuit.

4. The schematic below is a data-path of an asynchronous system controlled by the

C-elements. The combinational delays are shown by T1 through T4 blocks, each of

which has a single input and output. There are also junction delays, J1 through J4, which

accept two or more inputs and generate a single output.

(a) Compute D1 and D2 in terms of combinational and junction delays, T1, T2, T3, T4,

J1, J2, J3 and J4.

(b) Show the data-flow that includes the signals fromCin1 to Cin3, and fromCout1 to Cout3

in a timing diagram. Assume the clock-to-q delay is equal to Tc in the timing diagram.

T1 J1D Q

T2D Q T3

J2 D Q

D Q

D Q

J3 T4 J4 D Q

C D1 C D2 C

data1

data2

data3

data4

Cin1

Cout1

Cin2

Cout2

Cin3

Cout3

clock

clock

clock

out [1:0] 1 2

in1

2 3?

in2

in3
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5. Data is transferred from a 32x8 source memory to a 32x8 destination memory as shown

in the schematic below. When a 32-bit data is fetched from the source memory, the high

(HI) and the low (LO) 16 bits are multiplied by an integer multiplier, and the product is

delivered at a destination address. The initial values of the source and the destination

addresses are zero and seven, respectively. During the data transfer the source address

increments by one while the destination address decrements by one until all eight data

packets in the source memory are processed. Assuming that the source and the desti-

nation memories are asynchronous in nature, and neither needs a clock input to read or

write data, include the C-elements in the circuit schematic to make this data transfer

possible. Assume Tacc is the access time to fetch data from the source memory, Twrite is

the time interval to write data to the destination memory, and Taddr is the time interval to

produce addresses from the address pointer 1 and the address pointer 2.

31

AddrC1 HI LO

0
Addr1

clock

reset incr1

Dout

32

16 lo

16 hi

31

HI LO

0

Din

AddrC2
Addr2

clock

resetincr2

Addr2 = 7

Addr2 = 0

32

Addr1 = 7

Addr1 = 0

Source 

memory

Destination 

memory

Projects

1. Implement the S-R latch in Fig. 3.1 and verify its functionality using Verilog.

2. Implement the fundamental mode asynchronous circuit in Fig. 3.12 and verify its

functionality using Verilog.

3. Implement the C-element in Fig. 3.24 and verify its functionality using Verilog.

Reference

1. Hill FJ, Peterson GR. Introduction to switching theory and logical design, 2d edn. Wiley, ISBN: 9780471042730
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4System Bus

A system bus is responsible for maintaining all communications between the Central

Processing Unit (CPU), system peripherals and memories. The system bus operates with a

certain bus protocol to exchange data between a bus master and a bus slave. The bus

protocol ensures to isolate all other system devices from interfering the bus while the bus

master exchanges data with a bus slave. Bus master initiates the data transfer, and sends or

receives data from a slave device or a system memory. Bus slave, on the other hand, does not

have the capability to start data transfer.

There are two types of bus architectures. Serial bus architecture is essentially composed of

a single data line between a master and a slave where data bits are exchanged one bit at a

time. A parallel bus, on the other hand, is comprised of many lines, and multitude of bits are

sent or received all at once. In this chapter, we will describe several serial and parallel bus

protocols and priority schemes.

4.1 Parallel Bus Architectures

There are two types of parallel bus architectures in a typical system: unidirectional bus and

bidirectional bus. A unidirectional bus contains two separate paths for data: one that orig-

inates from a bus master and ends at a slave, and the other that starts from a slave and ends at

the master. A bidirectional bus, on the other hand, shares the same data path which allows

data to flow in both directions. However, this type of bus requires logic overhead and control

complexity.

Figure 4.1 below describes a 32-bit unidirectional bus architecture containing two bus

masters and three slaves. In this figure, the two unidirectional data-paths are highlighted with

thicker lines. The first path is the “write” path, which a bus master uses to write data to a

slave. This path requires a Write Data (WData) port from every master and slave. The second

path is the “read” path for reading data from a slave. This also requires a Read Data (RData)

port from each master and slave. Both the bus master and the slave have address and control
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ports that define the destination address, the direction of data transfer, the data bit width and

the length of data.

All bus masters have to negotiate with a bus arbiter to gain the ownership of the bus

before starting a data transfer. When there are pending requests from multiple bus masters,

the arbiter decides which bus master should start the data transfer first according to a priority

scheme and issues an acknowledgement to the bus master with the highest priority.

Therefore, every bus master has a Request (Req) and Acknowledge (Ack) port to com-

municate with the arbiter. Once the permission is granted, the master sends out the address

and control signals to the selected slave in the first bus cycle, and writes or reads data in the

next cycle. The decoder (DEC) unit connected to the address bus generates an Enable

(EN) signal to activate the selected slave. Every master and slave device has a Ready port

that indicates if the selected slave is ready to transmit or receive data.

A 32-bit bidirectional bus architecture is shown in Fig. 4.2. The number of masters and

slaves are kept the same as in Fig. 4.1 for comparison purposes. The only difference between

the two figures is the replacement of the unidirectional data bus in the earlier architecture

with a bidirectional bus for reading and writing data. Tri-state buffers on data lines are

essential for bidirectional bus architectures to isolate nonessential system devices from the
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Fig. 4.1 A unidirectional bus structure with two bus masters and three slaves
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bus when data transfer takes place between a master and a slave. The address bus in Fig. 4.2

can be also integrated with the data bus to allow both address and data to be exchanged on

the same bus. However, this scheme is much slower and requires extra control logic over-

head to maintain proper data-flow and management.

Figure 4.3 shows all the Input/Output (I/O) ports of a typical bus master. The Req and

Ack ports directly communicate with the arbiter as mentioned earlier. Bus master uses the

“Ready” port to determine if the slave is ready to transmit or receive data. The WData,

RData and Address ports are used for writing and reading data, and specifying the slave

address, respectively. The control signals, Status, Write, Size and Burst, describe the nature

of the data transfer.
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Fig. 4.2 A bidirectional bus structure with two bus masters and three slaves
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The Status port is a two-bit bus that describes the status of the bus master as shown in

Table 4.1. According to this table, the bus master may initiate a new data transfer by issuing

the START signal. If the master is in the midst of exchanging data with a slave, it issues the

Continue (CONT) signal. The IDLE signal is used when the bus master finishes the data

transfer. The bus master may also be in the midst of an internal operation while exchanging

data with a slave. For this particular instance, the master may momentarily stall the data

transfer by issuing the BUSY signal.

The Write port, as its name implies, describes if the master is in the process of writing or

reading data as shown in Table 4.2.

Table 4.1 Bus master Status control

Status[1:0]

0   0

0   1

1   0

1   1

Bus Master Status

Start Transfer (START) 

Continue Transfer (CONT) 

Finish Transfer (IDLE)

Pause Transfer (BUSY)

Table 4.2 Bus master Write control

Write

0

1

Bus Master Write

Read

Write

Bus
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Ack
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32
RData[31:0]

From Slave

From Slave
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Write

32

2

32
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Fig. 4.3 Bus master interface
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The Size port describes the data bit width during a transfer and is shown in Table 4.3.

A bus master is allowed to transmit or receive data in eight bits (byte), 16 bits (half-word),

32 bits (word) or 64 bits (double-word), which cannot be changed during the transfer.

The Burst port describes the number of data packets to be sent or received by the bus

master according to Table 4.4. In this table, a bus master can transfer from one packet to over

32,000 packets of data in a single burst.

Figure 4.4 shows the I/O ports of a typical bus slave. The Req and Ack ports are omitted

since the slave is not authorized to initiate a data transfer. The Ready signal indicates if the

slave is ready to transmit or receive data once the transfer is initiated by the bus master. The

WData, RData and Address ports are used to write data, read data, and specify a destination

address, respectively. The control inputs, Status, Write, Size and Burst, describe the nature of

the transfer as mentioned above. The Enable (EN) input is produced by the address decoder,

and based on the address generated by the bus master to activate a particular slave.

Table 4.3 Bus master Size control

Size[1:0]

0   0

0   1

1   0

1   1

Number of bits

8

16

32

64

Table 4.4 Bus master Burst control

Burst[3:0]

0   0   0   0

0   0   0   1

0   0   1   0

0   0   1   1

0   1   0   0

0   1   0   1

0   1   1   0

0   1   1   1

1   0   0   0

1   0   0   1

1   0   1   0

1   0   1   1

1   1   0   0

1   1   0   1

1   1   1   0

1   1   1   1

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

Number of data packets
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4.2 Basic Write Transfer

From this point forward, we will be using timing diagram(s) as a standard tool to show the

bus activity between a master and a slave.

The bus protocol for write describes how a bus master writes data to a slave on a

unidirectional bus as shown in Fig. 4.5.
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RData[31:0] 
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Fig. 4.4 Bus slave interface
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Fig. 4.5 Basic write transfer
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In the first clock cycle, the bus master sends out the destination address and the control

signals, A1 and C1, to the slave regardless of the slave status. If the slave status is “Ready”,

the actual data packet, WData1, is sent in the second cycle along with the address and the

control signals, A2 and C2, of the next data packet. The slave should be able to read WData1

at the positive edge of the second clock cycle if it is ready. However, there are instances

where the slave may not be ready to receive or send data. As an example, the slave changes

its status to “Not Ready” in the second cycle of Fig. 4.6. As soon as the slave’s status is

detected at the positive edge of the third clock cycle, the master stalls the write transfer. This

means that the current data packet, WData2, and the next address and control signals, A3 and

C3, are repeated as long as the slave keeps its Not Ready status. The normal data transfer

resumes when the slave becomes Ready to receive the remaining data.

Example 4.1: What happens to the write sequence when the slave changes its status

frequently?

When the slave changes its status to Not Ready during a clock cycle, the master detects

this change at the next positive clock edge, and holds the current data, the next address and

the control signals until the slave becomes Ready again.

An example where the slave changes its status frequently is shown in Fig. 4.7. In this

figure, the slave is Not Ready in the first cycle. Therefore, the first address and control

packets, A1 and C1, are prolonged, and no data is sent to the slave. When the slave produces

clock
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Controls

WData

Ready

WData1

A2

C2

A3

C3

Not Ready

detection

A1

C1

WData2

slave reads WData1 slave reads WData2

Fig. 4.6 Basic write transfer including the case Ready = 0
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a Ready signal during the second cycle, the bus master produces the first data packet,

WData1, and changes the address and control signals to A2 and C2 at the positive edge of

the third cycle. However, the slave decides to change its status to Not Ready once again

during the third and the fourth clock cycles. The master detects the status change at the

positive edge of the fourth and fifth clock cycles and responds by not changing A2, C2 and

WData1. The Ready signal in the fifth cycle prompts the master to produce A3, C3 and

WData2 at the beginning of the sixth cycle. The master holds these values until the

beginning of the eighth cycle when the slave changes its status to Ready again. At this point,

the master sends the new A4, C4 and WData3.

4.3 Basic Read Transfer

A basic read transfer is shown in Fig. 4.8. According to this figure, the slave produces data

for the master anytime after it issues the Ready signal. Once the master detects the Ready

signal at a positive clock edge, it produces the next address and the control signals for the

slave in the same cycle, but reads the slave’s response at the next positive clock edge.

clock

Address

Controls

WData

Ready

A1 A2 A3

C1 C2 C3

WData1

A4

C4

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

WData2 WData3

slave reads WData1 slave reads WData2

Fig. 4.7 A basic write transfer with varying Ready signal
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Example 4.2: What happens to the read sequence when the slave changes its status

frequently?

Figure 4.9 shows an example where the slave changes its status frequently. In this figure,

the slave is Not Ready prior to the first cycle. Therefore, the master holds the first address

and the control packets, A1 and C1, until the slave becomes Ready. When the master detects

a Ready signal at the positive edge of the third cycle, it responds by issuing a new set of

address and control signals, A2 and C2, for the slave. Within the third cycle, the slave also

issues RData1 for the master. The master is not able to read this data until it detects a Ready

signal from the slave at the beginning of the sixth cycle.

The rest of the read transactions in Fig. 4.9 follow the same protocol described above. In

other words, the master produces a new set of address and control signals every time it

detects a Ready signal from the slave, and the slave issues a new data packet for the master

after it becomes Ready.

RData RData1

clock

Address

Controls

A1

C1

Ready

A2

C2

master reads RData1

A3

C3

RData2

Fig. 4.8 Basic read transfer
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4.4 Bus Master Status Change

It is possible that the bus master may be intermittently busy during a data transfer. In the

event the bus master is busy to carry out its own internal tasks, the bus protocol requires the

bus master to hold the address, control and data values as long as it is busy.

Figure 4.10 illustrates an example where the bus master becomes Busy in clock cycles 2, 9

and 10 while writing data into a slave. The master starts the data transfer by issuing Status =

Start, and promptly sends out the first address, A1. In the second cycle, the bus master

becomes busy with its internal operations and issues a Status = Busy signal. As a result, it

repeats the previous address, A1, but is unable to dispatch any data to the slave even though

Ready = 1 during this period. In the third cycle, all internal operations cease, and the bus

master continues the normal data transfer by generating Status = Cont signal. The master also

detects that the slave is Ready at the positive edge of the third cycle and issues the second

address, A2 along with the first write data, WD1. In the next cycle, the master repeats A2 and

WD1 because the slave is not Ready at the positive edge of the fourth cycle. Despite the slave

showing the Not Ready condition in cycle 7, the normal data transfer sequence continues until

cycle 9 where the bus master changes its status to Busy again. This change, in turn, causes the

bus master to extend the address, A5, and the data, WD4, into cycles 9 and 10 irrespective of

the slave status.

clock

Address

Controls

Ready

RData

A1 A2 A3

C1 C2 C3

RData 1 RData 2

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

master reads RData1 master reads RData2

Fig. 4.9 A basic read transfer with varying Ready signal
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Example 4.3: What happens to the data transfer when the master changes its status

frequently?

Assume that the bus master transfers two half words (16-bit wide data packets) to the

addresses 0x20 and 0x22 of a memory block followed by 4 words (32-bit wide data packets)

to the addresses 0x5c, 0x60, 0x64 and 0x68. The address map of this byte addressable memory

is shown in Fig. 4.11 where the numbers in each box indicate individual byte addresses.

During the data transfer, the master issues frequent Busy signals during cycles 2, 3, 4, 7

and 8 as shown in the timing diagram in Fig. 4.12. Note that the slave is continuously Ready

from cycle 2 until the end of the data transfer.

WData[31:0]

START BUSY

A1 A2 A3 A4 A5 A5

WD1 WD2

clock

Status[1:0]

Address[31:0]

Ready

CONT CONT

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle10 Cycle11

WD3 WD4 WD4

BUSY

slave

reads 

WData1

slave

reads 

WData2

slave

reads 

WData3

slave

reads 

WData4

A1 A6

WD5

slave

reads 

WData5

Fig. 4.10 Bus master Status control change

20 21 22 23

5c 5d 5e 5f

60 61 62 63

64 65 66 67

68 69 6a 6b

Fig. 4.11 A byte-addressable memory
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The bus master starts transferring the first data packet by issuing Status = Start, Burst =

Two (data packets), Size = Half word, Write = 1 and Address = 0x20 in the first cycle

according to Tables 4.1, 4.2, 4.3 and 4.4. Since the slave is Ready at the beginning of the

second cycle, the master prepares to dispatch the next address, 0x22, and the first write data,

Data 20. However, in this cycle the master also becomes busy with internal operations until

the beginning of the fifth cycle and issues a Busy signal as shown in Fig. 4.12. The Busy

condition requires the bus master to repeat its control, address and data signals during this

period. Therefore, when the master finally changes its status to Cont in the fifth cycle, it is

able to send Data 20 in the same cycle, and Data 22 in the following cycle.

As soon as the first data transfer finishes, the master starts another write transfer in the

sixth cycle by issuing Status = Start, Burst = Four (data packets), Size = Word, Write = 1 and

Address = 0x5C. Since the slave’s status is Ready, the master prepares to issue the next

address and data packets at the beginning of the seventh cycle. However, its internal

operations interfere with this process once again until the beginning of the ninth cycle. The

master issues a Busy signal, and repeats its control, address and data outputs. When the

master finally changes its status to Cont in the ninth cycle, it delivers the second address,

0x60, and the first data, Data 5C. In the tenth cycle, the next address, 0x64, and data, Data

60, are issued, respectively. The master writes Data 64 in the eleventh cycle, and finishes the

transfer by writing the last data, Data 68, in the twelfth cycle. In this cycle, the bus master

changes its status to Idle, indicating the end of the data transfer.

clock

Status[1:0]

Burst[3:0]

Size[1:0]

Wdata[31:0]

START BUSY CONT BUSY

Address[31:0]

Ready

CONT

2

HW HW WORD

Data22 Data60 Data64

20 20 5C 64

HW

5C

START

Write

Data22

WORD WORD WORD

2 4 4 4 4 4

WORD

68

Data68

2

IDLE

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11 Cycle 12

22 60

Data20 Data5C

Data20

is written

Data22

is written

Data5C

is written

Data60

is written

Data64

is written

Data68

is written

Fig. 4.12 A write transfer example to the byte addressable memory in Fig. 4.11
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4.5 Bus Master Handshake

Each bus master communicates with the arbiter using request-acknowledge signals, which

form the basic “handshake” protocol. The master needing a data transfer issues a request

signal, Req, requesting the ownership of the bus from the arbiter. The arbiter grants this

request by an acknowledgement signal, Ack. If there is no ongoing data transfer, the

acknowledgement is usually issued in the following cycle after the master generates a

request. However, the Ack signal may not be generated many cycles after the Req signal is

issued due to an existing data transfer.

Figure 4.13 shows the timing diagram of a handshake mechanism between a bus master

and the arbiter before the bus ownership is granted to the master. The double “*” sign on

the Ack signal signifies that this signal is generated many cycles after the arbiter has received

a request from the bus master. As soon as the master receives the Ack signal in the nth cycle,

it changes its status to Start in the (n + 1)th cycle, and sends out the first address, A1,

regardless of the slave’s status. If the slave is Ready, the master subsequently sends out the

second address, A2, and the first data, WData1, in the following cycle.

4.6 Arbiter

Bus arbitration is an essential part of bus management if there are more than one bus master

requesting the ownership of the bus. The arbitration is either hardware-coded and imple-

mented as a state machine or programmable and register-based.

clock

Ready

Ack

Req

WData1

Status[1:0]

A1 A2

WData[31:0]

Address[31:0]

START CONT

Cycle n Cycle (n+1) Cycle (n+2) Cycle (n+3) Cycle (n+4)

A3

CONT

WData2

Cycle 1

Fig. 4.13 Bus master-arbiter handshake protocol
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Table 4.5 explains a hardware-coded bus arbitration mechanism between two bus masters.

When there are no requests to the arbiter, no Ack is generated to either bus master. However,

if two requests are issued at the same time, the acknowledge is issued to bus master 1

according to this table since bus master 1 is assumed to have higher priority than bus master

2 as shown in the last row.

The Table 4.5 is implemented as a state machine in Fig. 4.14. In this figure, the shorthand

representation of Req = (Req1 Req2) corresponds to the bus master request inputs 1 and 2.

Similarly, Ack = (Ack1 Ack2) corresponds to the acknowledge signals generated by the

arbiter for bus masters 1 and 2, respectively.

The arbiter is normally in the IDLE state when there are no pending requests. If there are

simultaneous requests from bus masters 1 and 2, the arbiter moves from the IDLE state to the

ACK1 state, generates Ack1 = 1 for bus master 1, and ignores the request from bus master 2

by Ack2 = 0 according to Table 4.5. The inputs for this state-to-state transition are shown by

Table 4.5 Bus arbitration table for two bus masters

Req1 Req2 Ack1 Ack2

0 0 0 0

0 1 0 1

1 0 1 0

1 1 1 0

From IDLE State

IDLE

Req = (00)

Ack = (00)

ACK1 ACK2

Req = (1x)

Req = (00)

Req = (01)

Req = (1x) Req = (x1)
Req = (01)

Req = (10)

Ack = (10) Ack = (01)

Ack = (Ack1 Ack2)

Req = (Req1 Req2)

Req = (00)

Fig. 4.14 Bus arbiter with two bus masters
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Req = (1 x), where Req1 = 1 and Req2 = x (don’t care). When bus master 1 terminates the

data transfer by issuing Req1 = 0, the arbiter either stays in the ACK1 state if there is another

pending request from bus master 1 or moves back to the IDLE state if there are no requests.

However, if the arbiter receives Req1 = 0 and Req2 = 1 while in the ACK1 state, it

transitions to the ACK2 state, and issues Ack2 = 1 to bus master 2.

In a similar fashion, the transition from the IDLE state to the ACK2 state requires Req2 = 1

and Req1 = 0. Once in the ACK2 state, the arbiter grants the usage of the bus to bus master

2 by issuing Ack2 = 1 and Ack1 = 0. When bus master 2 finishes the transfer by issuing

Req2 = 0, the arbiter either goes back to the IDLE state or transitions to the ACK1 state if

Req1 = 1. In case the higher priority bus master, bus master 1, requests the ownership of the

bus by Req1 = 1 while the lower priority bus master is in the middle of a transfer, the arbiter

stays in the ACK2 state as long as Req2 = 1 from bus master 2, ensuring the data transfer is

complete.

Example 4.4: Design a hardware-coded arbiter with three bus masters where bus master 1

has the highest priority followed by bus masters 2 and 3.

According to this definition, the bus master priorities can be tabulated in Table 4.6.

This table generates no acknowledge signal if there are no requests from any of the bus

masters (the top row). If only bus master 3 requests the bus, Ack3 = 1 is generated for bus

master 3 (the second row from the top). If there are two pending requests from bus masters 2

and 3, Ack2 = 1 is issued for bus master 2 because it has higher priority than bus master 3

(fourth row from the top). If all three bus masters request the ownership of the bus, the

arbiter grants the bus to bus master 1 by Ack1 = 1 because it has the highest priority with

respect to the remaining bus masters (the last row).

The implementation of this priority table is shown in Fig. 4.15 as a state machine. The

naming convention in representing request and acknowledge signals in Fig. 4.15 is the same as

in Fig. 4.14. Therefore, Req = (Req1Req2Req3) corresponds to busmaster requests 1, 2 and 3,

and Ack = (Ack1 Ack2 Ack3) corresponds to the arbiter acknowledge signals for bus masters

1, 2 and 3, respectively. Normally, the arbiter is in the IDLE state when there are no requests. If

there are three simultaneous requests from bus masters 1, 2 and 3, the arbiter transitions to the

Table 4.6 Bus arbitration table for three bus masters

Req1 Req2 Req3 Ack1 Ack2 Ack3

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 0

1 0 0 1 0 0

1 0 1 1 0 0

1 1 0 1 0 0

1 1 1 1 0 0

From IDLE State
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ACK1 state where it generates Ack1 = 1 since bus master 1 has the highest priority. When bus

master 1 finishes the data transfer, the arbiter can either stay in the ACK1 state or transition to

the ACK2 state or transition the ACK3 state depending on the requests from all three bus

masters. If there are no pending requests, the arbiter goes back to the IDLE state.

The arbiter does not issue acknowledge signals to higher priority bus masters until an

ongoing data transfer of a lower priority bus master is complete. For example, in the ACK3

state the requests from bus masters 1 and 2 are ignored as long as bus master 3 keeps its

request high to continue transferring data.

4.7 Bus Master Handover

The bus may be handed over to a different bus master if the current bus master lowers its

request.

Figure 4.16 describes how this bus ownership takes place in a unidirectional bus. In this

timing diagram, the current bus master, bus master 1, starts a new transfer by generating a Start

signal a cycle after it receives Ack1 = 1 from the arbiter. The write transfer continues until the

eighth cycle when the bus master delivers its last address, A4. In cycle nine, the bus master

delivers its last data,WA4, lowers its request, and changes its status to Idle, thus terminating the

data transfer. At the positive edge of the tenth cycle, the arbiter detects Req1 = 0 and Req2 = 1,

IDLE

Req = (000)

Ack = (000)

ACK1 ACK2 ACK3

Req = (1xx)

Req = (000)

Req = (01x)

Req = (001)

Req = (1xx)

Req = (x1x)

Req = (xx1)

Req = (001)

Req = (01x) Req = (001)

Req = (10x) Req = (010)

Req = (1x0)

Ack = (100) Ack = (010) Ack = (001)

Ack = (Ack1 Ack2 Ack3)

Req = (Req1 Req2 Req3)

Req = (000)

req = (000)

Fig. 4.15 Bus arbiter with three bus masters
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and switches the bus ownership by issuing Ack1 = 0 and Ack2 = 1. The new master,

bus master 2, starts a new transfer in the eleventh cycle and generates its first address, B1.

The write transfer continues until the fourteenth cycle when bus master 2 delivers its last data,

WB2.

4.8 Serial Buses

Peripheral devices and external buffer memories that operate at low frequencies communi-

cate with the processor using a serial bus.

There are currently two popular serial buses used in low-speed communication. The Serial

Peripheral Interface (SPI) was introduced in 1979 by Motorola as an external microprocessor

bus for the well-known Motorola 68000 microprocessor. The SPI bus normally requires four

wires; however, wire count increments by one every time a peripheral device is added to the

system. The second bus, Inter-Integrated Circuit (I2C), was developed by Philips in 1982 to

connect Philips CPUs to peripheral chips in a TV set. This bus requires only two wires, but it

is considerably slower compared to the SPI bus.

Serial Peripheral Interface (SPI)

SPI is designed as a very straightforward serial bus. Four signals establish all the serial

communication between a CPU and a peripheral device. The SPI clock signal, SCK, is

clock

Req2

Status[1:0] START

Ready

Ack2

Ack1

Req1

Address[31:0] A1 A2 A3 B2

WData[31:0] WA1 WA2 WB1 WB2WA3

B1A4

IDLE

WA4

CONT START CONT IDLE

Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle10 Cycle11 Cycle12 Cycle13 Cycle14

A4 B2

Fig. 4.16 Bus master handover protocol
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distributed to all the slaves in a system, and forces each peripheral to be synchronous with a

single master. The Slave Select signal ðSSÞ is an active-low signal, and is used to enable a

particular slave prior to data transfer. The Serial-Data-Out (SDO) or Master-Out-Slave-In

(MOSI) port is what the master uses to send serial data to a slave. The Serial-Data-In (SDI) or

Master-In-Slave-Out (MISO) port is what the master uses to read serial data from a slave.

Figure 4.17 shows the serial bus configuration between the bus master and a single slave.

All SPI signals with the exception of SDI must be initiated by the bus master.

When the bus master is connected to a multitude of slaves, it needs to generate an

active-low Slave Select signal for each slave as shown in Fig. 4.18.

SCK

SDI

SDO

SS

SPI Master

SCK

SDI

SDO

SS

SPI Slave

Fig. 4.17 SPI bus between a master and a single slave
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SPI Slave3

SS2

SS3

SS

SPI Slave2
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SPI Slave1

SCK

SDI

SDO

SCK

SDI

SDO

Fig. 4.18 SPI bus between a master and three slaves
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SPI is considered a single-master serial communication protocol. This means that only one

master is assigned to initiate and carry out all serial communications with slaves.When the SPI

master wishes to send or request data from a slave, first it selects a particular slave by lowering

the corresponding SS signal to logic 0, and then it produces a clock signal for the slave as

shown in Fig. 4.19. Once the select and the clock signals are established, the master sends out

serial data to the selected slave from its SDO port at the negative edge of SCK, and simul-

taneously samples slave data at its SDI port at the positive edge of SCK. According to the SPI

protocol, the slave is capable of sending and receiving data except it cannot generate SCK.

In the following example in Fig. 4.19, the master sends out serial data, DataM1 (most

significant bit) to DataM4 (least significant bit), from its SDO port at the negative edge of

SCK, and samples slave data, DataS1 (most significant bit) to DataS4 (least significant bit),

at its SDI port at the positive edge of SCK. The slave, on the other hand, can also dispatch

serial data packets, DataS1 (most significant bit) to DataS4 (least significant bit), from its

SDO port at the negative edge of SCK, and sample the master data, DataM1 (most sig-

nificant bit) to DataM4 (least significant bit), at its SDI port at the positive edge of SCK.

SCK is initially at logic 0

Data release at the negative edge of SCK

Data fetch at the positive edge of SCK

SCK

SDI

SDO

SS

Master samples data at SDI port

DataS1 DataS2 DataS3 DataS4

DataM1 DataM2 DataM3 DataM4

Slave dispatches data from SDO port

Master dispatches data from SDO port

Slave samples data at SDI port

Fig. 4.19 SPI bus protocol between a master and a single slave
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There are four communication modes available for the SPI bus protocol. Each protocol is

categorized according to the initial SCK level (the logic level at which SCK resides at steady

state) and the data generation edge of the SCK. Each communication mode is shown in

Fig. 4.20.

MODE 0 communication protocol assumes that the steady state level for SCK is at logic 0.

Each data bit is generated at the negative edge of SCK by the master (or the slave), and

is sampled at the positive edge. A good example of the MODE 0 protocol is shown in

Fig. 4.19.

MODE 1 still assumes the steady state level of SCK to be at logic 0, but the data

generation takes place at the positive edge of SCK. Both the master and the slave read data at

the negative edge in this mode.

MODE 2 switches the steady state level of SCK to logic 1. Data is released at the positive

edge of SCK and is sampled at the negative edge as shown in Fig. 4.20.

MODE 3 also accepts the steady state level of SCK at logic 1. However, data is released at

the negative edge of SCK and is sampled at the positive edge.

A master-slave pair must use the same mode during a data exchange. If multiple slaves are

used, and each slave uses a different communication mode, the master has to reconfigure

itself each time it communicates with a different slave.

SPI bus has neither an acknowledgement mechanism to confirm receipt of data nor it

offers any other data-flow control. In reality, an SPI bus master has no knowledge if a

physical slave exists on the other side of the bus, or the data it sends is properly received by

the slave. Most SPI implementations pack eight bits of data in a clock burst. However, many

variants of SPI today use 16 or even 32 clock cycles to send more data bits in a burst in order

to gain speed.

152 4 System Bus



MODE 0

SCK is initially at logic 0

Data release at the negative  edge of SCK

SCK
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MODE 1

SCK is initially at logic 0

Data release at the positive  edge of SCK
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SCK is initially at logic 1

Data release at the positive  edge of SCK
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SCK is initially at logic 1

Data release at the negative  edge of SCK

SCK

DATA

SCK

DATA

Data 1 Data 2

Data 1 Data 2 Data 3

Data 1 Data 2

Data 1 Data 2 Data 3

Fig. 4.20 SPI bus protocol modes
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Inter Integrated Circuit (I2C)

Inter Integrated Circuit (I2C) is a multi-master bus protocol that transmits and receives data

between bus masters and slaves using only two signal lines, Serial Clock (SCL) and Serial

Data (SDA).

Slave selection with slave select signals, address decoders or arbitrations is not necessary

for this particular bus protocol. Any number of slaves and masters can be employed in an I2C

bus using only two lines.

The data rate is commonly at 100 Kbps which is the standard mode. However, the bus can

operate as fast as 400 Kbps or even at 3.4 Mbps at high speed mode.

Physically, the I2C bus consists of the two active wires, SDA and SCL, between a master

and a slave device as shown in Fig. 4.21. The clock generation and data-flow are both

bidirectional. This protocol assumes the device initiating the data transfer to be the bus

master; all the other devices on the I2C bus are regarded as bus slaves.

In a typical I2C bus, both the bus master and the slave have two input ports, SCL In and

SDA In, and two output ports, SCL Out and SDA Out, as shown in Fig. 4.21. When a master

issues SCL Out = 1 (or SDA Out = 1), the corresponding n-channel MOSFET turns on, and

pulls the SCL line (or SDA line) to ground. When the master issues SCL Out = 0 (or SDA

Out = 0), it causes the corresponding n-channel transistor to turn off, resulting SCL (or SDA)

afloat. However, neither SCL nor SDA is truly left floating in an undetermined voltage level.

The pull-up resistor, Rpu, immediately lifts the floating line to the power supply voltage

level, VDD. On the other side of the bus, the I2C slave detects the change at the SCL In (or

SDA In) port, and determines the current bus value.

SCL In

SCL Out

SCL

SDA In

SDA Out

SDA

Rpu

VDD

Rpu

VDD

SCL In

SCL Out

SDA In

SDA Out

I2C SlaveI2C Master

Fig. 4.21 I2C architecture
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Each slave on the I2C bus is defined by an address field of either seven bits or ten bits as

shown in Fig. 4.22. Each data packet following the address is eight bits long. There are only

four control signals that regulate the data flow: Start, Stop, Write/Read and Acknowledge.

The seven-bit and ten-bit versions of read and write data transfers are shown in Fig. 4.22.

The top sequence in this figure explains how a bus master writes multiple bytes of data to a

slave that uses a seven-bit address. The master begins the sequence by generating a Start bit.

This acts as a “wake-up” call to all the slave devices and enables them to watch for the

incoming address. This step is followed by a seven-bit long slave address. The bus master

sends the most significant address bit first. The remaining address bits are released one bit at

a time until the least significant bit. At this point, all slave devices compare the bus address

just sent out with their own addresses. If the address does not match, the slave simply

ignores the rest of the incoming bits on the SDA bus, and waits for the beginning of the next

bus transfer. If the addresses match, however, the addressed slave waits for the next bit that

indicates the type of the data transfer from the master. When the master sends out a Write bit,

the slave responds with an acknowledge signal, SAck, by pulling the SDA line to ground.

The master detects the acknowledge signal, and sends out the first eight-bit long data packet.

The format for transmitting data bits is the same as the address: the most significant bit of the

data packet is sent out first followed by the intermediate bits and the least significant bit. The

slave produces another acknowledgement when all eight data bits are successfully received.

The data delivery continues until the master completes sending all of its data packets. The

transfer ends when the master generates a Stop signal.

The second entry in Fig. 4.22 shows the write transfer to a bus slave whose address is ten

bits long. Following the Start bit, the bus master sends out a five-bit preamble, 11110,

indicating that it is about to send out a ten-bit slave address. Next, the master sends out the two

most significant address bits followed by the Write bit. When the delivery of all these entries

is acknowledged by the slave(s) whose two most significant address bits match the ones sent

by the master, the master sends out the remaining eight address bits. This is followed by

another slave acknowledgement, and the master transmitting all of its data bytes to the

designated slave. The data transfer completes when the bus master generates a Stop bit.

The third and the fourth entries in Fig. 4.22 show the seven-bit and ten-bit read sequences

initiated by the bus master. In each sequence, after receiving the Start bit and the address

from the master, the designated slave starts sending out data packets to the master. After

successfully receiving the first data byte, the master responds to the slave with an

acknowledge signal, MAck, after which the slave transmits the next byte. The transfer

continues until the slave delivers all of its data bytes to the master. However, right before

issuing a Stop bit, the master generates a no-acknowledgement bit, MNack, signaling the end

of the transfer as shown in Fig. 4.22.
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The Start and Stop signals are generated by the combination of SCL and SDA values as

shown in Fig. 4.23. According to this figure, a Start signal is produced when the SDA line is

pulled to ground by the bus master while SCL = 1. Similarly, a Stop signal is created when

the bus master releases the SDA line while SCL = 1.

Figure 4.24 shows when data is permitted to change, and when it needs to be steady. The

I2C protocol only allows data changes when SCL is at logic 0. If the data on SDA changes

while SCL is at logic 1, this may be interpreted as a Start or a Stop condition depending on

the data transition. Therefore, the data on SDA is not allowed to change as long as SCL = 1.

Master = Write   Addr Mode = 7 bits

START Slave Address Write SAck Data1 SAck STOP

1 bit 7 bits 1 bit 1 bit 8 bits 1 bit 1 bit8 bits 1 bit

Master = Write   Addr Mode = 10 bits

START Slave Address Write SAck

1 bit msb (2 bits) 1 bit 1 bit

Slave Address SAck

1 bit

11110

5 bits lsb (8 bits)

Data1

8 bits 1 bit

DataN SAck STOP

1 bit8 bits 1 bit

SAck DataN

SAck

Master response Slave response

Master response Slave response

Master = Read   Addr Mode = 7 bits

START Slave Address Read SAck Data1 MNack STOP

1 bit 7 bits 1 bit 1 bit 8 bits 1 bit 1 bit8 bits 1 bit

MAck DataN

Master response Slave response

Master = Read   Addr Mode = 10 bits

START Slave Address Read SAck

1 bit msb (2 bits) 1 bit 1 bit

Slave Address SAck

1 bit

11110

5 bits lsb (8 bits)

Data1

8 bits 1 bit

DataN

8 bits

MAck

Master response Slave response

MNack STOP

1 bit1 bit

Fig. 4.22 I2C modes of operation

Start condition

SCL

SDA

Stop condition

Fig. 4.23 I2C data stream start and stop conditions
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Figure 4.25 explains the timing diagram in which the bus master writes two bytes of data

to a slave with a seven-bit address. According to this figure, the write process starts with

transitioning the value at the SDA to logic 0 while SCL = 1. Following the Start bit, the slave

address bits are delivered sequentially from the most significant bit, SA[6], to the least

significant bit, SA[0]. Each address bit is introduced to the SDA only when SCL is at logic 0

according to the I2C bus protocol shown in Fig. 4.24. The Write command and the subse-

quent slave acknowledgement are generated next. The data bits in Byte 0 and Byte 1 are also

delivered to the SDA starting from the most significant data bit, D[7]. The write sequence

finishes with the SDA transitioning to logic 1 while SCL = 1.

Figure 4.26 shows the timing diagram of reading two bytes of data from a slave. Fol-

lowing the Start bit and the slave address, the master issues the Read command by SDA = 1.

Subsequently, bytes of data are transferred from the slave to the master with the master

acknowledging the delivery of each data byte. The transfer ends with the master not

acknowledging the last byte of data, MNack, and generating the Stop bit.

Data change is 

allowed

SCL

SDA

Data change is 

NOT allowed

(Data is assumed 

VALID)

Fig. 4.24 I2C data change conditions

Master = Write   Addr Mode = 7 bits

SCL

SDA SA[6] SA[5] SA[0] D[6] D[0]D[7] D[6] D[0]D[7]

Write SAck SAck SAckStart StopSlave Address Byte 0 Byte 1

Fig. 4.25 I2C write timing diagram

4.8 Serial Buses 157



Here comes the reason why the I2C bus protocol excels in maintaining flawless com-

munication between any number of masters and slaves using only two physical wires. For

example, what happens if two or more devices are simultaneously trying to write data on the

SDA? At the electrical level, there is actually no contention between multiple devices trying

to simultaneously enter a logic level on the bus. If a particular device tries to write logic 0 to

the bus while the other issues logic 1, then the physical bus structure with pull-up resistors in

Fig. 4.21 ensures that there will be no electrical short or power drainage; the bus actually

transitions to logic 0. In other words, in any conflict, logic 0 always wins!

This physical structure of the I2C bus also allows bus masters to be able to read values

from the bus or write values onto the bus freely without any danger of collision. In case of a

conflict between two masters (suppose one is trying to write logic 0 and the other logic 1),

the master that tries to write logic 0 gains the use of the bus without even being aware of the

conflict. Only the master that tries to write logic 1 will know that it has lost the bus access

because it reads logic 0 from the bus while trying to write logic 1. In most cases, this device

will just delay its access to the bus, and try it later.

Moreover, this bus protocol also helps to deal with communication problems. Any device

present on the bus listens to the bus activity, particularly the presence of Start and Stop bits.

Potential bus masters on the I2C bus detecting a Start signal will wait until they detect the

Stop signal before attempting to access the bus. Similarly, unaddressed slaves go back to

hibernation mode until the Stop bit is issued.

Similarly, the master-slave pair is aware of each other’s presence by the active-low

acknowledge bit after the delivery of each byte. If anything goes wrong, and the device

sending the data does not receive any acknowledgment, the device sending the data simply

issues a Stop bit to stop the data transfer and releases the bus.

An important element of the I2C communication is that the master device determines the

clock speed in order to synchronize with the slave. If there are situations where an I2C slave

device is not able to keep up with the master because the clock speed is too high, the master

Master = Read   Addr Mode = 7 bits

SCL

SDA SA[6] SA[5] SA[0] D[6] D[0]D[7] D[6] D[0]D[7]

Read SAck MAck MNackStart StopSlave Address Byte 0 Byte 1

Fig. 4.26 I2C read timing diagram
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can lower the frequency by a mechanism referred to as “clock stretching”. According to this

mechanism, an I2C slave device is allowed to hold the SCL at logic 0 if it needs the bus

master to reduce the bus speed. The master is required to observe the SCL signal level at all

times and proceeds with the data transfer until the line is no longer pulled to logic 0 by the

slave.

All in all, both SPI and I2C offer good support for low-speed peripheral communication.

SPI is faster and better suited for single bus master applications, and I2C is slower but

better suited for multi-master applications. The two protocols offer the same level of

robustness and have been equally successful among vendors producing Flash memories,

Analog-to-Digital and Digital-to-Analog converters, real-time clocks, sensors, liquid crystal

display controllers etc.
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Review Questions

1. A CPU reads three bursts of data from a 32-bit wide byte-addressable memory in the

following manner:

• It reads four bytes with the starting address 0xF0,

• Immediately after the first transaction, the CPU reads two half-words from the starting

address 0xF4,

• Immediately after the second transaction, it reads one word from the starting address

0xF8.

The contents of the memory are as follows:

0xCC 0xDD 0xEE 0xFF

0x88 0x99 0xAA 0xBB

0xF0

0xF4

0x44 0x55 0x66 0x77

0x00 0x11 0x22 0x33

0xF8

0xFC

31 0

The unidirectional bus protocol states that the data communication between a bus master

and a slave requires generating the address and control signals in the first cycle, and the data in

the second cycle. The bus master always issues a Start signal to indicate the start of a data

transmission. After an initial address, the master changes its status to Cont to indicate the

continuation of the data transfer. The bus master issues Idle to indicate the end of the data

transfer or Busy to indicate its incapability to produce address and control signals (and data if

applicable). Any time the bus master is Busy, it repeats its address and control signals (and

data if applicable) from the previous clock cycle. Similarly, if a Ready signal is not generated

by the slave, the bus master also repeats its address and control signals (and data if applicable)

in the next clock cycle. At the end of a data transfer when the bus master finishes issuing new

addresses, it transitions to the Idle state even though there may be a residual data still in the

process of being read or written in the subsequent clock cycle(s).

Fill in the blanks of the following timing diagram to complete all three data read bursts in

the order specified above.

start busy busy busy busy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

clock

status

burst

size

Addr

RData

Ready
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2. The following bidirectional bus maintains the communication between a CPU and a

memory.
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The CPU has the Addr and the WData outputs to dispatch the address and the write-data,

respectively. It also uses the RData output to receive data from the memory.

The memory, on the other hand, has the Addr input to receive address from the CPU, and

a bidirectional Data port to receive and send data.

To validate the address and write-data, the EnAddr and EnWData signals are issued to the

bus controller, respectively. To validate read-data, the memory dispatches the Ready signal to

the controller. With all these inputs from the CPU and the memory, the controller generates

the WE and RE signals for the memory to write and read data, and the EnRData signal for the

CPU to validate the read data. The signals, SelAddr, SelWData and SelRData, are also

generated by the bus controller to manage the timely distribution of the address, write-data

and read-data using a single 32-bit wide bidirectional bus as shown in the figure above.

The write process to the memory requires a valid address with data as shown below:

clock

Addr

Data

Valid Addr

WE

RE

Data

data written

4.8 Serial Buses 161



The read process requires a cycle delay to produce valid data from the memory once an

address is issued. This is shown below:

clock

Addr

Data

Valid Addr

WE

RE

Data

data read

(a) Since the bus protocol delivers data following a valid address, construct a timing

diagram to write the data, W1 to A1, W2 to A2, W3 to A3 and W4 to A4. Without

any delay, perform a read sequence to fetch the data packets, R1, R2, R3 and R4,

from the memory addresses, A5, A6, A7 and A8, respectively. Plot a timing dia-

gram, including the 32-bit bus, Bus[31:0], and the control signals, WE, RE,

SelAddr, SelWData and SelRData, for the write and read sequences.

(b) Design the CPU and the memory interfaces with the bidirectional bus such that these

two data transfers are possible (note that these interfaces are not state machines).

3. A bus master writes four bytes of data to the following address locations of a 32-bit wide

byte-addressable memory (slave) organized in a Little Endian format:

Address Data

-----------------------------------

0x0D 0x11

0x11 0x22

0x15 0x33

0x19 0x44

Following the write cycle, the same bus master reads data (words) from the following

slave addresses:

Address Data

---------------------------------------

0x3C 0xAABBCCDD

0x40 0x55667788
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(a) Describe the contents of the memory after the writing and reading cycles shown

above become complete.

(b) If the bus master generates the first address during the first clock cycle and keeps

generating new addresses every time the slave responds with a Ready signal, what

will be the values of the address, control and data entries in the timing diagram

below? Assume that the bus master does not produce any Status signal comprised of

Start, Cont, Busy and Idle.

clock

address

WE

size

burst

WData

RData

ready

1 2 3 4 5 6 7 8 9 10 11 12 13

4. A bus master reads four data packets starting from the address, 0x00, and ending at the

address, 0x03, from an eight-bit wide memory. Immediately after this transaction, the bus

master writes 0x00, 0x11, 0x22 and 0x33 into the addresses 0x04, 0x05, 0x06 and 0x07

respectively. This memory contains the following data after this operation:

0xAA

0xBB

0xCC

0xDD

0x00

0x11

0x22

0x33

00

01

02

03

04

05

06

07

7 0
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Assuming the unidirectional bus protocol is the same as described in question 1, fill in the

blanks of the timing diagram below to accommodate each read and write transfer.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

busy busy

clock

Status

Write

Burst

Size

Address

WData

RData

Ready

5. A bus master is connected to four memory blocks acting as bus slaves in a bidirectional

bus where 32-bit address, write-data and read-data are sent or received on the same bus.

The I/O ports of the bus master and the slaves are shown below:

RData[31:0]

WData[31:0]

Addr[31:0]

EN

W/R

Ready

Bus Master

Addr/Data[31:0]

EN

WE

Ready

Bus Slave

EnAddr

The bus master has separate read and write data ports to receive and transmit data,

respectively. The Enable, and W/R ports enable the bus master to write data, i.e. EN = 1 and

W/R = 1. Similarly, EN = 1 and W/R = 0 enable the bus master to read. Since address and

data entries share the same bus, the bus master provides a third control signal, EnAddr, to

enable the address. The bus master determines if the slave is ready to receive of transmit data

through its Ready signal.
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The slave, in contrast, has only one port for receiving address or data. EN = 1 and WE = 1

writes data to the slave. If data needs to be read from the slave, then EN=1 andWE=0 are used.

Draw the architectural diagram of such a system. Make sure to use the most significant

address bits, Addr[31:30], to select one of the slaves to read or write data.

6. A 16-bit digital system with a unidirectional data and address bus is given below.

Bus Arbiter

Memory 

Select

Reqm

Reqc

Reqd

Grantm

Grantc

Grantd

Addrd

Addrc

Addrm

WDatam

WDatac

MPU

Co-proc 1

Co-proc 2

RDatam

RDatac

3 3

DIn1

Addr1 DOut1

DIn2

Addr2 DOut2

DIn3

Addr3 DOut3

Memory 1

Memory 2

Memory 3

3

16

16

16

16

16

16

16

16

16

WE1, RE1

WE2, RE2

WE3, RE3

This system contains three bus masters, a Microprocessor Unit (MPU), Co-processor 1

and Co-processor 2. It also contains three slaves, Memory 1, Memory 2 and Memory 3.

A bus arbiter is responsible for prioritizing the ownership of the bus among the three bus

masters. The MPU has the highest and Co-processor 2 has the lowest priority to use the bus.

When the arbiter gives the ownership of the bus to a bus master, the bus master is free to

exchange data with a slave as long as it keeps its request signal at logic 1. When the bus

master lowers its request signal after finishing a data transfer, the arbiter also lowers its grant

to assign the bus to another bus master according to the priority list.

As long as a bus master owns the bus, it can send a 16-bit write-data (WData) to the

selected slave at a specific address (Addr). Similarly, the bus master can read data from the

selected slave using a 16-bit read-data (RData) bus.
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For the sake of simplicity, control signals on the schematic are not shown; however, each

memory has the Read Enable (RE) and Write Enable (WE) ports to control data storage.

(a) With the description above, draw the state diagram of the bus arbiter.

(b) While MPU and Co-processor 1 remain at idle, Co-processor 2 requests two data

transfers. The first data transfer is from the addresses, 0xABC0 and 0xABC1, of

Memory 1 to the addresses, 0x0000 and 0x0001, of Memory 2, respectively. The second

one is from the address, 0x0002, of Memory 2 to the address, 0xABC2, of Memory 1.

The first one is from the addresses 0xABC0 and 0xABC1 of Memory 1 to the addresses

0x0000 and 0x0001 of Memory 2, respectively. The second one is from the address 0x0002

of Memory 2 to the address 0xABC2 of Memory 1, respectively.

Note that Co-processor 2 and Memory 1 operate at a clock frequency twice as high as the

clock frequency used in Memory 2. Both memories have a read latency (access time) of one

clock cycle, i.e. data becomes available in the next clock cycle after issuing a valid address

with RE = 1.Write happens within the same clock cycle when the address is valid andWE = 1.

Including the request (reqd), grant (grantd) and address (Addrd) from Co-processor 2, and

the control signals (RE1, WE1, RE2, WE2) from each memory, create a timing diagram that

shows data transfers between Memory 1 and Memory 2. If you prefer, use the timing

diagram template below to make your entries.

AAAA

BBBB

0000

15 0

ABC0

ABC1

ABC2

0000

0000

CCCC

15 0

0000

0001

0002

Memory 1
Memory 2

WE1

RE1

WE2

RE2clk1 clk2

Din1

DOut1

Addr1

Din2

DOut2

Addr2
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clk1

reqd

grantd

Addrd

RE1

DOut1

WE2

RE2

DOut2

WE1

clk2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7. The waveforms below describe serial transmission of data using two known bus proto-

cols, I2C and SPI.

(a) A bus master writes data to an I2C-compliant slave according to the timing diagram

below. Assuming that the bus master uses the negative edge of SCLK to produce data

on the SDA bus, determine the slave address and the data packets in binary format.

Start

StopContinue the waveform

SCLK

SDA

SCLK

SDA
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(b) Now, the bus master transmits the same data packets on the SPI bus. Using the timing

diagram below, show the value of each data bit at the SDI terminal. Note that the bus

master uses Mode0 convention and produces data at the negative edge of SCK.

Projects

1. Implement the unidirectional bus with two bus masters and three slaves shown in Fig. 4.1

using Verilog. Make sure both of the bus masters are able to produce status signals,

START, CONT, BUSY and IDLE to transfer data packets from one byte to two words

(64 bits) on a 32-bit wide bus. Similarly, ensure that all the slaves are able to generate

Ready signals compliant to the parallel bus protocol given in this chapter. Design the bus

arbiter shown in Fig. 4.14. Verify each individual block, i.e. the bus master, the slave, the

arbiter and the overall system functionality.

2. Implement the bidirectional bus with two bus masters and three slaves as shown in

Fig. 4.2 using Verilog. Make sure that the bus masters and slaves are fully compliant to

the parallel bus protocol given in this chapter. Design the bus arbiter shown in Fig. 4.14.

Again, verify each individual block, i.e. the bus master, the slave, the arbiter and the

entire bus system.

3. Implement the SPI bus with one bus master and three slaves as shown in Fig. 4.18 using

Verilog. Verify the system functionality with timing diagrams.

4. Implement the I2C bus in seven-bit addressing mode in Fig. 4.22 using Verilog. Verify

the system functionality with timing diagrams.

SCK

SS

SDI
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5Memory Circuits and Systems

Basic serial and parallel bus structures and different forms of data transfer between a bus

master and a slave were explained in Chapter 4. Regardless of the bus architecture, the bus

master is defined as the logic block that initiates the data transfer, and the slave is defined as

the device that exchanges data with the master on demand. Both devices, however, may

include a buffer memory. The master may have an internal memory that stores user programs

or data, and the slave may have a large capacity system memory or a small buffer memory.

Depending on the read and write speed, capacity and permanence of data, system

memories and peripheral buffers can be categorized into three different forms. If fast read and

write times are desired, Static Random Access Memory (SRAM) is used despite its relatively

large cell size compared to other types of memory. SRAM is commonly used to store small

temporary data, and it is typically connected to a high speed parallel bus in a system. If large

amounts of storage are required, but slow read and write speed can be tolerated, then

Dynamic Random Access Memory (DRAM) should be the main memory type to be used.

DRAMs are still connected to the high speed parallel bus, but typically operate with large

bursts of data. A typical DRAM cell is much smaller than an SRAM cell with significantly

lower power consumption. The main drawbacks of DRAM are high data read and write

latencies, the complexity of memory control and management of data.

The permanence of data yet calls for a third memory type whose cell type consists of a

double-gated Metal-Oxide-Semiconductor (MOS) transistor. Data is permanently stored in

the floating gate of the device until it is overwritten. Electrically-Erasable-Programmable-

Read-Only-Memory (E2PROM) or Flash memory fit into this type of device category. The

advantage of this memory type is that it keeps the stored data even after the system power is

turned off. However, this memory is the slowest compared to all other memory types, and it

is subject to a limited number of read and write cycles. Its optimal usage is, therefore, to

store permanent data for Built-In-Operating-Systems (BIOS), especially in hand-held

devices where power consumption is critical. A typical computing system can contain one or

all three types of memories depending on the usage and application software.
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The basic functionality of SDRAM, E2PROM and Flash memory blocks in this chapter is

inspired from Toshiba memory datasheets [1–6]. The more recent serial Flash memory with

SPI interface in this chapter is based on an Atmel Flash memory datasheet [7]. In each case,

the functionality of the memory block has been substantially simplified (and modified)

compared to the original datasheet in order to increase reader’s comprehension of the subject

matter. The purpose here is to show how each memory type operates in a system, covering

only the basic modes of operation to train the reader rather than going into the details of the

actual datasheets. The address, data and control timing constraints for each memory have

also been simplified compared to the datasheets. This allows us to design the bus interface

for each memory type with ease. For the sake of simplicity, we avoided duplicating the port

names, exact timing requirements and functionality details that can be found in the actual

datasheets. After reading this chapter, interested readers are encouraged to study the refer-

enced datasheets prior to carrying out their design tasks.

5.1 Static Random Access Memory

Static Random Access Memory (SRAM) is one of the most fundamental memory blocks in

digital design. Among all different types of memory, SRAM ranks the fastest; however, its

large memory cell size limits its usage for a variety of applications.

A typical SRAM architecture shown in Fig. 5.1 is composed of four different blocks: the

SRAM core, the address decoder, the sense amplifier and the internal SRAM controller. The

memory core retains all immediate data. The sense amplifier amplifies the cell voltage to full

logic levels during read. The address decoder generates all 2N Word Lines (WL) from an

N-bit wide address. Finally, the controller generates self-timed pulses required during a read

or write cycle.

Each SRAM cell is composed of two back-to-back inverters like the ones used in a latch,

and two N-channel Metal Oxide Semiconductor (NMOS) pass-gate transistors to isolate the

existing data in the cell or to allow new data into the cell as shown in Fig. 5.2. When data

needs to be written to a cell, WL = 1 turns on both NMOS transistors, allowing the true and

complementary bits of data to be simultaneously written from the Bit and Bitbar inputs.

Suppose the node A is initially at logic 0, and the node B at logic 1 but WL = 0. The logic

level at WL turns off both NMOS transistors, and the latch becomes completely isolated from

its surroundings. As a result, logic 0 level is contained in the cell. But, if WL = 1, Bit = 1 and

Bitbar = 0, this time the logic level at WL turn on both NMOS transistors, and the values at

the Bit and the Bitbar nodes overwrite the existing logic levels at the nodes A and B, thereby

changing the stored bit in the cell from logic 0 to logic 1.

Similarly, if the data needs to be read from the cell, both NMOS transistors are turned on

by WL = 1, and the small differential potential developed between the Bit and the Bitbar

outputs are amplified by a sense amplifier to reach full logic levels at the SRAM output.
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The data write sequence starts with EN (Enable) = 1 and Write Enable (WE) = 1. This

combination precharges the Bit and the Bitbar nodes in the SRAM core to a preset voltage

and prepares the memory for a write. When the precharge cycle is complete, the controller

enables the address decoder by EnWL = 1 as shown in Fig. 5.1. The decoder activates a

single WL input out of 256 WLs according to the value provided at AddrIn[7:0]. Within the
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Internal SRAM

Controller
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DOut[31:0]

DIn[31:0]

SRAM Core
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Fig. 5.1 A typical SRAM architecture with eight-bit address and 32-bit data

WL

Bit Bitbar
A B

Fig. 5.2 SRAM memory cell
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same time period, the controller also produces WritePulse = 1, which allows the valid data at

DIn[31:0] to be written into the specified address.

Reading data from the SRAM core is performed by EN = 1 and WE = 0. Similar to the

write operation, the controller first precharges the SRAM core prior to reading data, and then

turns on the address decoder. According to the address value at the AddrIn port, the WL

input to a specific row is activated, and the data is read from each cell to the corresponding

Bit and Bitbar nodes at this row. The sense amplifier amplifies the cell voltage to full logic

levels and delivers the data to the DOut port.

The SRAM I/O timing can be synchronized with clock as shown in Figs. 5.3 and 5.4. In

Fig. 5.3, when EN and WE inputs are raised to logic 1, SRAM goes into the write mode, and

the valid data is written to a specified address at the next positive clock edge. In Fig. 5.4,

when EN = 1 and WE = 0, SRAM is enabled and operates in the read mode. The core

delivers the valid data sometime after the next positive edge of the clock.

clock

WE

EN

Addr[7:0] Valid Address

DOut[31:0] Valid Data

Fig. 5.4 SRAM I/O timing for read

clock

WE

EN

Addr[7:0] Valid Address

DIn[31:0] Valid Data

Fig. 5.3 SRAM I/O timing for write

172 5 Memory Circuits and Systems



One of the important tasks to integrate an SRAM module to an existing system is to

design its bus interface. Figure 5.5 shows the block diagram of such an implementation. The

bus interface basically translates all bus control signals to SRAM control signals (and vice

versa), but it seldom makes any modifications on address or data. In the unidirectional bus

protocol described in Chapter 4, SRAM is considered to be a bus slave that exchanges data

with the bus master on the basis of a Ready signal. As also mentioned in Chapter 4, a bus

master has four control signals to indicate the data transfer. The Status signal indicates if the

bus master is sending the first data packet (START) or is in the process of sending remaining

data packets (CONT). The bus master may also send IDLE or BUSY signals to indicate if it

has finished the current data transfer or busy with an internal task, respectively. The Write

signal specifies if the bus master intends to write data to a slave or read from a slave. The

AddrIn[7:0]

Bus Interface
SRAM

Status

Write

Ready

WE

DIn[31:0]

RData[31:0]

EN

clock

D
Q

W R

Addr[31:0]

BIWEn

32

DOut[31:0]

WData[31:0]

32

8

32

Addr[31:28]4

Burst

BIREn

8

Addr[7:0]

Fig. 5.5 SRAM bus interface block diagram
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Burst signal designates the number of data packets in the transaction, and the Size signal

defines the width of the data.

The timing diagram in Fig. 5.6 shows how to write four data packets, W1 to W4, to four

consecutive SRAM addresses, A1 to A4, as an example to build the bus interface in Fig. 5.5.

To initiate a write sequence, the bus master issues a valid address, Status = START and

Write = 1 in the first clock cycle of this timing diagram, and enables the bus interface for a

clock

Write

Status

Addr[7:0]

WData[31:0]

RData[31:0]
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Fig. 5.6 SRAM bus interface timing diagram for write
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write by producing an active-high Bus Interface Write Enable (BIWEn) signal. Upon

receiving the BIWEn = 1, the bus interface produces Ready = 1 in the next cycle, and prompts

the bus master to change the address and control signals in the third cycle. As the bus master

changes its address from A1 to A2, it also sends its first data packet, W1, according to the

unidirectional bus protocol explained in Chapter 4. However, in order to write data into an

SRAM address, a valid data must be available within the same cycle as the valid address as

shown in Fig. 5.3. Therefore, a set of eight flip-flops are added to the write path prior to the

AddrIn port in Fig. 5.5 so that the address, A1, is delayed for one clock cycle, and aligned

with the current data, W1. The bus interface also produces EN = WE = 1 in the third cycle so

that W1 is written to A1 at the positive edge of the fourth clock cycle. The next write is

accomplished in the same way: the SRAM address is delayed for one cycle in order to write

W2 into A2 at the positive edge of the fifth cycle. In the sixth cycle, the bus interface keeps

EN = WE = 1 to be able to write W3 to A3, but lowers the Ready signal to logic 0 so that the

bus master stops incrementing the slave address and suspends the controls in the next cycle. In

the seventh and final write cycle, the bus interface lowers both EN and WE to logic 0 but

allows the last data, W4, to be written to A4 at the positive edge of the clock.

The bus interface state diagram for write in Fig. 5.7 is developed as a result of the timing

diagram in Fig. 5.6. The first state, Idle state, is the result of the bus interface waiting to

receive BIWEn = 1 from the bus master, which corresponds to the first clock cycle of the

timing diagram in Fig. 5.6. The next state that follows the Idle state is the Standby state

where the bus interface generates Ready = 1. This state is one clock cycle long and rep-

resents the second clock cycle in the timing diagram. The Write state is the state during

which the actual write sequence takes place: EN and WE are kept at logic 1 as long as the

number of write addresses issued by the bus master is less than Burst length. This state

corresponds to the third, fourth and fifth clock periods in the timing diagram. When the

number of write addresses reaches the value of the Burst length, the bus interface goes to the

Last Write stage and Ready signal becomes logic 0. The bus master writes the final data

packet to the last SRAM address at the positive edge of the seventh clock cycle before it

enters the Idle state.

In order to initiate a read sequence, the bus master issues a valid SRAM address, Status =

START andWrite = 0 signals in the first clock cycle of Fig. 5.8. This combination produces an

active-high Bus Interface Read Enable, BIREn = 1, which is interpreted as the bus master

intending to read data fromanSRAMaddress.Consequently, the bus interface generatesEN=1,

WE = 0, Ready = 1 in the second cycle. This fetches the first data, R1, from the SRAM address,

B1, in the third cycle. The read transactions in the fourth andfifth cycles are identical to the third,

and the bus master reads R2 and R3 from the addresses, B2 and B3, respectively. In the sixth

cycle, the bus interface retains Ready = 1 so that the bus master can still read the last data, R4,

from the address, B4.
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As in the write case, the read bus interface in Fig. 5.9 is also a direct consequence of the

timing diagram in Fig. 5.8. The Idle state corresponds to the first clock cycle of the timing

diagram in Fig. 5.8. As soon as BIREn = 1 is generated, the bus interface transitions to the

Standby state where it produces EN = 1, WE = 0 and Ready = 1. The interface enters the

Read state in the third cycle and produces the same outputs as before so that the bus master

can read its first data, R1, and sends a new address in the next cycle. The interface stays in

the Read state until the number of read addresses issued by the bus master is less than the

Burst length. The Read state covers from the third to the fifth cycle in the timing diagram in

Fig. 5.8. After the number of read addresses reaches the Burst length, the bus interface
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Ready = 0

EN = 0

WE = 0

Ready = 1

EN = 0

WE = 0

Write
Ready = 1
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Fig. 5.7 SRAM bus interface for write
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transitions to the Last Read state in cycle six where it continues to generate Ready = 1. This

is done so that the bus master is able to read the last data as mentioned earlier. The interface

unconditionally goes back to the Idle state in the following cycle.

clock
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Fig. 5.8 SRAM bus interface timing diagram for read
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Increasing SRAM capacity necessitates employing extra address bits. In the example shown

in Fig. 5.10, the SRAM capacity is increased from 32x16 bits to 32x64 bits by appending two

extra address bits, Addr[5:4], which serves to access one of the four SRAM blocks. In this

figure, even though Addr[3:0] points to the same address location for all four 32x16 SRAM

blocks, Addr[5:4] in conjunction with EN enables only one of the four blocks. Furthermore,

the data read from the selected block is routed through the 4-1 MUX using Addr[5:4] inputs.

Addr[5:4] = 00 selects the contents of DOut0 port and routes the data through port 0 of the 4-1

MUX to Out[31:0]. Similarly, Addr[5:4] = 01, 10 and 11 select ports 1, 2 and 3 of the 4-1

MUX, and route data from DOut1, DOut2 and DOut3 ports to Out[31:0], respectively.
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5.2 Synchronous Dynamic Random Access Memory

Synchronous Dynamic Random Access Memory (SDRAM) is a variation of the older

DRAM, and it constitutes the main memory of almost every computing system. Even though

its capacity can be many orders of magnitude higher than SRAM, it lacks speed. Therefore,

its usage is limited to storing large blocks of data when speed is not important.

An SDRAM module is composed of four blocks. The memory core is where data is

stored. The row and column decoders locate the data. The sense amplifier amplifies the cell

voltage during read. The controller manages all the read and write sequences.

The block diagram in Fig. 5.11 shows a typical 32-bit SDRAM architecture composed of

four memory cores, called banks, accessible by a single bidirectional input/output port. Prior

to operating the memory, the main internal functions, such as addressing mode, data latency

and burst length, must be stored in the Address Mode Register. Once programmed, the

active-low Row Address Strobe, RAS, Column Address Strobe, CAS, and Write Enable,

WE, signals determine the functionality of the memory as shown in Table 5.1. The data from

a selected bank can be masked by the Read/Write logic block at the DInOut port so that only

part of the data can be fetched from the memory. This unit also serves blocking parts of the

32-bit data to be written to a bank.
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The SDRAM cell is a simple device composed of an NMOS transistor to control the

data-flow in and out of the cell and a capacitor to store data as shown in Fig. 5.12. When new

data needs to be written into the cell, the NMOS transistor is turned on by Control = 1, and

the data at the DIn/Out terminal overwrites the old data at the Cell node. Reading data from

the cell, on the other hand, requires amplification of the cell voltage, thus activation of the
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Fig. 5.11 Typical SDRAM architecture

Table 5.1 SDRAM modes of operation

CS RAS CAS WE

0 0 0 0 Program Addr. Mode Register

0 0 0 1 Self Refresh

0 0 1 0 Precharge a Bank with BS[1:0]

0 0 1 1 Activate a Bank with BS[1:0]

Write into a Bank with BS[1:0]

Read from a Bank with BS[1:0]

Burst Stop

Reserved

SDRAM Deselect

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 X X X

OPERATION
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sense amplifier when the NMOS transistor is turned on. When data needs to be preserved,

the NMOS transistor is simply turned off by Control = 0. However, the charge on the cell

capacitor slowly leaks through its insulator, resulting in a reduced cell voltage. Thus, an

automatic or manual cell refresh cycle becomes mandatory during SDRAM operation to

preserve the bit value in the cell.

The first row of the truth table in Table 5.1 indicates how to program the internal Address

Mode Register. At the positive edge of the clock, CS, RAS, CAS and WE signals are pulled

low to logic 0 to program the Address Mode Register as shown in Fig. 5.13. In the program,

the address bits, A[2:0], define the data burst length as shown in Table 5.2. Burst length can

range from one word of data to a full page, which is equal to the contents of the entire bank.

The address bit, A[3], defines how the SDRAM address is incremented for each data packet.

In sequential addressing mode, the starting address is incremented by one while the carry bit is

eliminated according to the size of the burst length. In linear addressing mode, the address is

incremented without eliminating the carry bit. The address bits, A[5:4], determine the data

latency when reading takes place from the memory. Latency can range from two to five clock

cycles depending on the need.

Control

C

DIn/Out
Cell

Fig. 5.12 SDRAM memory cell

clock

A[2:0]

A[3]

BURST LENGTH

ADDRESS MODE

CS

RAS

CAS

WE

A[5:4] LATENCY

Fig. 5.13 Timing diagram for programming the address mode register
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The example in Table 5.3 shows the elimination of the carry bit in sequential addressing

mode for burst lengths of 2, 4 and 8. In this example, if the starting address is 13 and the

burst length is two words, the carry bit from the column A[0] is eliminated, resulting the next

address to be 12. In the same example, if the burst length is increased to four, this time the

carry bit from the column A[1] is eliminated, and the address values following the starting

address 13 become 14, 15 and 12. If the burst length becomes eight, the carry bit from the

column A[2] is eliminated, and the address values of 14, 15, 8, 9, 10, 11 and 12 follow the

initial address 13. Sequential addressing confines reading or writing of data within a pre-

defined, circulatory memory space, convenient for specific software applications.

The linear addressing mode is a simplified version of the interleave addressing in various

SDRAMs, and increments the SDRAM address linearly without eliminating the carry bit as

shown in Table 5.4. In this example, if the starting address is 13 and the burst length is two,

the next address will be 14. If the burst length is increased to four, the next three addresses

following 13 will be 14, 15 and 16. In contrast to the sequential addressing mode, the linear

addressing increments SDRAM address one bit at a time, not confining the data in a

circulatory address space.

The second row of the operational truth table in Table 5.1 shows how to initiate a self

refresh cycle as shown in Fig. 5.14. In self refresh, SDRAM automatically replenishes node

voltage values at each cell because the charge across the cell capacitor leaks through its

dielectric layer over time. The time duration between refresh cycles depends on the tech-

nology used, the quality of the oxide growth and the thickness of the dielectric used between

capacitor plates.

Table 5.2 Truth tables for programming the address mode register

A[2] A[1] A[0] Burst Length

0

0

0

0

0

0

1

1

0

1

0

1

1

1

1

1

0

0

1

1

0

1

0

1

1 Word

2 Words

4 Words

8 Words

16 Words

32 Words

64 Words

Full Page

A[3] Addressing Mode

Sequential

Linear

0

1

A[5] A[4] Latency

0

0

1

1

0

1

0

1

2

3

4

5
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Table 5.3 SDRAM sequential mode addressing for burst lengths of 2, 4 and 8

A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

0 0        0 0 0 0 1 1 0 1    =  13

0 0        0 0 0 0 1 1 1 0    =  14

0 0        0 0 0 0 1 1 1 1    =  15

0 0        0 0 0 0 1 0 0 0    =  8

0 0        0 0 0 0 1 0 0 1    =  9

0 0        0 0 0 0 1 0 1 0    =  10

0 0        0 0 0 0 1 0 1 1    =  11

0 0        0 0 0 0 1 1 0 0    =  12

delete the carry bit

+ 1

+ 1

+ 1

+ 1

+ 1

+ 1

+ 1

Starting Address = 13, Burst Length = 8, Mode = Sequential

Starting Address = 13, Burst Length = 4, Mode = Sequential

+ 1

delete the carry bit

0 0 0 0 0 0 1 1 0 1 =    13

=    14

A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

0 0 0 0 0 0 1 1 1 0

+ 1

=    150 0 0 0 0 0 1 1 1 1

=    120 0 0 0 0 0 1 1 0 0

+ 1

Starting Address = 13, Burst Length = 2, Mode = Sequential

+ 1

delete the carry bit

0 0 0 0 0 0 1 1 0 1 =    13

=    12

A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

0 0 0 0 0 0 1 1 0 0
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Table 5.4 SDRAM linear addressing mode for burst lengths of 2 and 4

Starting Address = 13, Burst Length = 2, Mode = Linear

A[9]     A[8]     A[7]     A[6]     A[5]     A[4]     A[3]     A[2]     A[1]     A[0]

0         0          0          0         0          0         1         1          0         1     =    13

0         0          0          0         0          0         1         1          1         0     =    14

0         0          0          0         0          0         1         1          1         1     =    15

0         0          0          0         0          1         0         0          0         0     =    16

Starting Address = 13, Burst Length = 4, Mode = Linear

A[9]     A[8]     A[7]     A[6]     A[5]     A[4]     A[3]     A[2]     A[1]     A[0]

0         0          0          0         0          0         1         1          0         1     =    13

0         0          0          0         0          0         1         1          1         0     =    14

Self Refresh

IDLE

IDLE

IDLE

IDLE

clock

BANK0

BANK1

BANK2

BANK3

CS

RAS
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WE

Fig. 5.14 Timing diagram for self-refresh
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Rows three to six in Table 5.1 define the read and write sequences in an SDRAM as

shown in Fig. 5.15. In this figure, a read or a write sequence always starts with precharging

all the rows and columns of the SDRAM core. This is followed by an activation cycle where

the row address is generated. In the last cycle, the column address is generated, and the data

is either written or read from the memory according to the control signals, CS, RAS, CAS

and WE.

Prior to a read or a write, all the rows and columns of a bank must be precharged to a

certain voltage level for a period of one clock cycle as shown in Fig. 5.16. During precharge,

CS, RAS and WE, must be lowered to logic 0, and CAS must be kept at logic 1 as shown in

the third row of Table 5.1. The value of the precharge voltage can be anywhere between 0 V

and the full supply voltage depending on the technology and the requirements of the circuit

design. The activation cycle starts right after precharging a bank. The time interval between

the precharge and activation cycles is called the precharge time period, tPRE, as shown in

Fig. 5.16. The activation cycle is enabled by lowering CS and RAS to logic 0, but keeping

CAS and WE at logic 1 as shown in the fourth row of Table 5.1. Following the activation

cycle, the next precharge period must not start until after a certain time period has elapsed for

the same bank. This time interval is called the RAS time period, tRAS, as shown in Fig. 5.16.
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supply Row Address

READ and supply

Column Address

WAIT

WAIT

WAIT

PRECHARGE

ACTIVATE and

supply Row Address

WRITE and supply 

Column Address

WAIT

WAIT
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Fig. 5.15 Write and read operation cycles
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The fifth row of Table 5.1 shows how to write to a selected bank when CS = CAS =WE = 0

and RAS = 1. The actual write takes place in the last phase of the write sequence in Fig. 5.15

following the precharge and activation cycles. To illustrate the write sequence in detail, an

example illustrating a single write burst is given in Fig. 5.17. In this figure, the write cycle

starts with precharging Bank 1. After t = tPRE, the activation period starts and the row

address is defined for the SDRAM. When the column address is generated after a time period

of tCAS, four data packets, D(0) to D(3), are written to SDRAM core in four consecutive

clock cycles. Note that in this figure if the same bank is used for another write, a new time

period, tRAS, needs to be placed between the bank activation cycle and the next precharge

period.

clock

BS[1]

BS[0]

tPRE

Precharge

BANK1

Activate 

BANK1

CS

RAS

CAS

WE

Precharge

BANK1

tRAS

Fig. 5.16 Bank precharge and activation cycles
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The example in Fig. 5.18 shows two separate write sequences into two different banks.

When writing takes place more than a single bank, interleaving one bank’s precharge and

activation time periods with respect to the other may result in a time-saving scenario where

one write burst takes place immediately after the other, resulting in a shorter overall write

period. In this figure, the interleaving technique results in writing four words to bank 1

immediately after writing four words to bank 0 without any cycle loss. Therefore, writing to

two (or more) different banks as opposed to writing continuously to a single bank is a

preferred scheme because this process eliminates all unnecessary waiting periods between

precharge cycles. However, as the burst length involves a lot more than four words, the

relative placement of the bank precharge cycle in the timing diagram becomes less

important.
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Fig. 5.17 A single write cycle
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The sixth row of Table 5.1 shows how to initiate a read cycle from a selected bank.

Reading words from SDRAM involves a latency period, and it needs to be programmed in

the Address Mode Register. The example in Fig. 5.19 shows the start of a read burst after a

latency period of three clock cycles once the read command and the address are given.

A latency of three clock cycles means that the data becomes available at the output of

SDRAM in the third clock cycle after the address is issued.
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clock

Address

Data D(13)

Mode

D(14) D(15) D(8) D(9) D(10) D(11) D(12)

controls

13

L
A

T
E

N
C

Y
 =

 1

L
A

T
E

N
C

Y
 =

 2

L
A

T
E

N
C

Y
 =

 3

Fig. 5.19 Definition of latency during a read cycle
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Fig. 5.18 Multiple write cycles to different banks (tPRE = 1 cycle, tCAS = 2 cycles)
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The example in Fig. 5.20 shows a single read sequence frombank 1.Until the read command

and the column address are issued, the read and write sequences follow identical paths.

However, after this point the read burst starts following a latency period. Similar to the write

process, a certain tRAS periodmust elapse between read bursts before additional streams of data

become available from the same bank. In this figure, tWAIT corresponds to the waiting period

between the last data packet read from the memory and the start of the next precharge period.

The example in Fig. 5.21 describes multiple reads from the same bank and assumes tWAIT

is equal to zero. This scenario produces a read burst of four words, D(0) to D(3), from bank 1

and causes the same bank to be precharged during the last data delivery. The second read

burst from bank 1 follows the same pattern as the first one and delivers D(4) to D(7) after a

programmed latency of two clock periods. If tWAIT is different from zero, then the second

precharge period should start right after the tWAIT period as described in Fig. 5.20.

The interleaving technique used in reading data from two different banks in Fig. 5.22 is

not any different from the one used when writing data to two different banks. As with the

write case, the placement of the second precharge cycle in the timing diagram is important to

achieve two consecutive read bursts, D0(0) to D0(3) from bank 0 and D1(0) to D1(3) from

bank 1, without any cycle loss in between, accomplishing the shortest possible time to fetch

data from SDRAM.
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The seventh row of Table 5.1 shows how to stop a read or a write burst. Figure 5.23

shows a single write sequence when the burst stop command is issued in the middle of a data

clock
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COLUMN ADDRESS

and 

READ BANK1

LATENCY = 2

ROW ADDRESS

and

ACTIVATE BANK1

LATENCY = 2

CS

RAS

CAS

WE

COLROWCOLROW

D(0) D(1) D(2) D(3) D(4) D(5) D(6) D(7)

LAST READ and 

PRECHARGE 

BANK1

tRAS

Fig. 5.21 Multiple read cycles from the same bank (tPRE = 1 cycle, tCAS = 2 cycles,

tWAIT = 0 cycle)

clock

DInOut

A[9:0]

BS[0]

BS[1]

PRE

BANK0
ACT

BANK0

PRE

BANK1

COL ADDR

and

READ BANK0

ACT

BANK1
COL ADDR

and

READ BANK1

CS

RAS

CAS

WE

ROW0 COL0 ROW1 COL1

D0(0) D1(0) D1(2) D1(3)D0(1) D0(2) D0(3) D1(1)

Fig. 5.22 Multiple read cycles from different banks (tPRE = 1 cycle, tCAS = 2 cycles)
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burst. Upon receiving this command, the selected bank goes into the standby mode and waits

for the next precharge command.

When the burst stop command is given in the middle of a read, the last data packet is still

delivered at the clock edge following the burst stop command as shown in Fig. 5.24.

clock

A[9:0]

DInOut

ROW ADDRESS

and

ACT BANK0

BURST 

STOP

PRECHARGE 

BANK0

COL ADDRESS

and

WRITE into BANK0

CS

RAS

CAS

WE

ROW COL

Fig. 5.23 Burst stop during write

clock

A[9:0]

DInOut

CS

RAS

CAS

WE

ROW COL

CAS LATENCY = 2

ROW ADDRESS

and

ACT BANK0

BURST 

STOP
PRECHARGE 

BANK0

COL ADDRESS

and

READ from BANK0

Fig. 5.24 Burst stop during read
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The Input/Output data can be masked with the Read/Write Logic block in Fig. 5.11. The

truth table in Table 5.5 lists all the possible cases of blocking and transmitting data to/from

SDRAM core. When Mask[3:0] = 0000, for example, no mask is applied to the output data,

and all 32 bits are allowed to be written to the selected bank or read from it. The case, Mask

[3:0] = 1111, on the other hand, blocks all four bytes of data, and allows no byte to be

written or read from the selected address.

Figure 5.25 shows the data-path and the controller of the SDRAM bus interface. Prior to

operating SDRAM, each ten-bit wide bus interface register containing the precharge (tPRE),

CAS (tCAS), burst (tBURST), latency (tLAT), and wait (tWAIT) periods must be programmed

through a 10-bit program bus. The precharge, CAS and wait registers contain the number of

clock cycles to achieve the required waiting period. The burst register should store the

number of data packets of the data transfer. Therefore, the value in this register must be

identical to the value programmed in the Address Mode Register. The latency register

specifies the number of clock cycles prior to reading the first data from an SDRAM address.

The details of how the programming takes place prior to the normal SDRAM operation and

the required hardware are omitted from Fig. 5.25 to avoid complexity. The Address Mode

Table 5.5 Truth table for data output mask

Mask [3] Mask [2] Mask [1] Mask [0]

0 0 0 0

0 0 0 1 DInOut[7:0]

None

0 0 1 0

0 0 1 1 DInOut[15:0]

DInOut[15:8]

0 1 0 0

0 1 0 1 DInOut[23:16] and DInOut[7:0]

DInOut[23:16]

0 1 1 0

0 1 1 1 DInOut[23:0]

DInOut[23: 8]

1 0 0 0

1 0 0 1 DInOut[31:24] and DInOut[7:0]

DInOut[31:24]

1 0 1 0

1 0 1 1 DInOut[31:24] and DInOut[15:0]

DInOut[31:24] and DInOut[15:8] 

1 1 0 0

1 1 0 1 DInOut[31:16] and DInOut[7:0]

DInOut[31:16]

1 1 1 0

1 1 1 1 DInOut[31:0]

DInOut[31:8]

MASKED BITS
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Register (or a set of registers defining basic SDRAM functionality) exists in many older

SDRAMs. However, recent SDRAM modules omit the mode register completely and rely on

the bus interface unit to store such information. To manage the precharge, CAS, burst and

wait periods the memory controller is continuously interact with a down-counter in Fig. 5.25

since these periods are often many clock cycles long.

For normal SDRAM operation, the address bus, Addr[31:0], has been divided into several

segments. In the example in Fig. 5.26, the four most significant bits of the SDRAM address,

Addr[31:28], indicate the SDRAM chip identification, and it is used to activate the corre-

sponding bus interface. Addr[21:20] is used to select the SDRAM bank, BS[1:0]. Addr[19:10]

and Addr[9:0] specify the row and column addresses, respectively.

Figure 5.27 shows a typical SDRAM write sequence. In this timing diagram, all five

SDRAM interface registers must be programmed prior to the IDLE/PROG clock cycle as

mentioned earlier. The SDRAM write sequence starts with the system bus sending Status =

START, Write = 1 and the starting SDRAM address. These three signals cause the Bus

Interface Write Enable signal, BIWEn, to transition to logic 1, which in turn, enables the bus

interface for write in the first cycle of Fig. 5.27. Once enabled, the bus interface stores the

starting SDRAM address in the Address Reg by StoreReg = 1 and issues the precharge

command by CS = 0, RAS = 0, CAS = 1 and WE = 0 for the selected bank. Within the same

cycle, the counter is loaded with the precharge wait period, tPRE, by LoadtPRE = 1 as shown

in the timing diagram.

The Precharge wait period is calculated by multiplying the number of clock cycles by the

clock period. The counter in this design is a down-counter. When its output value, CountOut,

becomes one, the controller initiates the activation cycle for the selected SDRAM bank and

dispatches the row address. The activation period starts with loading the value of tCAS into the

Addr[31:0]  = Addr[31:28]      Addr[27:22]      Addr[21:20]      Addr[19:10]      Addr[9:0]

Activate SDRAM

Bus Interface

Bank select[1:0] = BS[1:0]

Row Address[9:0] = A[9:0]

Reserved

Column Address[9:0] = A[9:0]

Fig. 5.26 SDRAM bus interface address mapping

194 5 Memory Circuits and Systems



c
lo

c
k

ID
L

E
/

P
R

O
G

L
O

A
D

P
R

E
tP

R
E

W
R

IT
E

W
R

IT
E

A
d

d
r

S
ta

tu
s

W
ri
te

B
IW

E
n

S
to

re
R

e
g

S
e

lR
o

w

S
e

lC
o

l

C
S

R
A

S

C
A

S

W
E

W
D

a
ta

E
n

W
D

a
ta

L
o
a
d
tP

R
E

R
e
a
d
y

tP
R

E
P

R
E

R
o
w

A
d

d
r

+ A
c
t

B
a

n
k
1

S
T

A
R

T

S
D

R
A

M
 S

ta
rt

 A
d

d
r 

=
 A

0
A

1
A

2
A

3
A

d
d

r 
=

 B
0

C
O

N
T

C
O

N
T

C
O

N
T

ID
L
E

S
T

A
R

T

W
R

IT
E

W
R

IT
E

B
a

n
k
 1

R
O

W
C

O
L

D
0

3
2

1
3

2
1

3
2

1
4

3
2

1

B
M

 s
e

n
d

s
 W

R
IT

E
 d

a
ta

B
a

n
k
 1

B
a

n
k
 1

B
S

[1
:0

]

A
[9

:0
]

L
o
a
d
tC

A
S

L
o
a
d
tB

U
R

S
T

L
o
a
d
tW

A
IT

tC
A

S

C
o

l

A
d

d
r

+

W
ri
te

B
a

n
k
1

tB
U

R
S

T
tW

A
IT

D
1

D
2

D
3

tP
R

E
tP

R
E

L
O

A
D

C
A

S
tC

A
S

tC
A

S
L

O
A

D

B
U

R
S

T

S
T

A
R

T

W
R

IT
E

L
O

A
D

W
A

IT
tW

A
IT

tW
A

IT
tW

A
IT

O
u

tp
u

t 
o

f 
th

e
 d

o
w

n
-c

o
u

n
te

r

F
ig
.
5
.2
7

W
ri
te

cy
cl
e
w
it
h
S
D
R
A
M

b
u
s
in
te
rf
ac
e

5.2 Synchronous Dynamic Random Access Memory 195



down-counter by LoadtCAS = 1. Within the same clock cycle, the row address, Addr[19:10],

is transferred from the Address Reg to the SDRAM through the R-port of the 3-1 MUX by

SelRow = 1. When the activation wait period expires, the controller uses the LoadtBURST

input to load the length of the write burst (the number of data packets) to the down-counter

and subsequently initiates the write sequence in the next cycle.

During the START WRITE period, the controller transfers the column address, Addr

[9:0], from the Address Reg through the C-port of the 3-1 MUX to the A[9:0] port of the

SDRAM by generating SelCol = 1. In the same cycle, the controller also generates CS = 0,

RAS = 1, CAS = 0,WE = 0 and enables the tri-state buffer by EnWData = 1 in order to write

the first data packet, D0, to the SDRAM. To be able to write the remaining data packets, the

controller issues Ready = 1 from this point forward. When the sequence comes to the

LOAD WAIT period (where the last write takes place), the controller lowers the Ready

signal, but keeps the EnWData signal at logic 1 in order to write the last data packet, D3.

This clock cycle also signifies the start of the wait period, tWAIT. The controller issues

LoadtWAIT = 1 to load tWAIT into the down-counter if another write sequence needs to take

place for the same bank.

The remaining control signals, Burst and Size, are omitted from the timing diagram for

simplicity. During the entire data transfer process, Burst is set to four and Size is set to 32 in

Fig. 5.27. For byte and half-word transfers, Size needs to be defined with masking in place as

described in Table 5.5.

The state diagram of the controller for write is shown in Fig. 5.28. In this diagram, when the

interface receives BIWEn = 1, the controller transitions from the IDLE/PROG state, which

corresponds to the first cycle of the timing diagram in Fig. 5.27, to the LOADPRE state, which

corresponds to the second clock cycle in the same timing diagram. In the LOAD PRE state, the

controller resets CS, RAS and WE, but sets CAS for the selected bank to start the precharge

process. In this state, two additional signals are generated: StoreReg = 1 to store the bus

address in the Address Reg, and LoadtPRE = 1 to start the precharge wait period. In the next

cycle, the controller transitions to the precharge wait state, tPRE. The controller remains in this

state until CountOut = 1. The controller then transitions to the LOAD CAS state where it

activates the selected bank, issues SelRow = 1 to transfer the row address to the SDRAM, and

produces LoadtCAS = 1 to initiate the activation wait period. The next state, tCAS, is another

wait state where the controller waits until the activation period expires. Once this period is

over, the controller first goes into the LOAD BURST state, and then to the START WRITE

state to initiate writing data to the SDRAM. The latter corresponds to the state where the first

data packet is written to the SDRAM core as mentioned earlier. The subsequent writes take

place when the controller transitions to the WRITE state. The controller stays in this state until

CountOut = 2, which signifies one more data packet to be written to the SDRAM. The last data

packet is finally written when the controller moves to the LOAD WAIT state. Before

attempting another write process, the controller waits in the tWAIT state until CountOut = 1.
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Note that all the state names in Fig. 5.28 and the cycle names on top of Fig. 5.27 are kept the

same to make one-to-one correspondence between the timing diagram and the state diagram.

The SDRAM read sequence also starts with the system bus sending Status = START,

Write = 0 and an initial SDRAM address. This combination sets the Bus Interface Read

Enable signal, BIREn = 1, to enable the bus interface to read data from the SDRAM core in

the first cycle of the timing diagram in Fig. 5.29. The remainder of the read process is

IDLE/

PROG

CountOut > 1

StoreReg = 1

CS = 0

RAS = 0

CAS = 1

WE = 0

LoadtPRE = 1

Ready = 0

LOAD

PRE

tPRE

Status = START

Write = 1

Addr = SDRAM start addr

else

LOAD

CAS

tCAS

START

WRITE

CountOut = 1

Ready=0

Ready=0 WRITE
EnWData = 1

Ready = 1

SelRow = 1

CS = 0

RAS = 0

CAS = 1

WE = 1

A [9:0] = Addr [19:10] = Row Address 

LoadtCAS = 1 

Ready = 0

SelCol = 1

CS = 0

RAS = 1

CAS = 0

WE = 0

A [9:0] = Addr [9:0] 

           = Col Address 

EnWData = 1

Ready = 1

LOAD

WAIT

EnWData = 1

LoadtWAIT = 1

Ready = 0

tWAIT Ready=0

LOAD

BURST

CountOut > 2

CountOut = 2

LoadtBURST = 1

Ready = 1

CountOut > 2

CountOut = 2

CountOut > 1

CountOut = 1

Status = START

Write = 1

Addr = SDRAM start addr

else

CS = 0

RAS = 0

CAS = 0

WE = 0

Ready = 0

Fig. 5.28 SDRAM bus interface for write
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identical to the write process until the controller issues the read command during the

START READ cycle, and sends the column address of the selected SDRAM bank.

Since SDRAM data becomes available after a latency period, the controller must replicate

this exact delay prior to a read burst and produce the control signals during and after the

burst. For example, a cycle before the latency period expires, the controller needs to generate

LoadtBURST = 1 to load the burst duration to the down-counter to be able to detect the

beginning and the end of burst data. As a result, the controller can determine when to

generate EnRData = 1 for the tri-state buffer to read data packets, D0 to D3, from the

SDRAM RData output. During the last data delivery, the controller issues LoadtWAIT = 1 to

load the value of tWAIT to the down-counter in the event the same bank is selected for

another read.

The state diagram in Fig. 5.30 for the read sequence is a direct result of the timing

diagram in Fig. 5.29. In this diagram, when the interface receives BIREn = 1, the controller

transitions from the IDLE state which corresponds to the first cycle in Fig. 5.29, to the

LOAD PRE state which corresponds to the second clock cycle in the same timing diagram.

In the LOAD PRE state, the precharge process is initiated by CS = 0, RAS = 0, WE = 0 and

CAS = 1 for the selected bank. In this state, the controller stores the valid bus address in the

Address Reg by StoreReg = 1, and loads the precharge wait period into the down-counter by

LoadtPRE = 1. Then the controller moves to the tPRE and stays in this state until the precharge

value in the down-counter expires. Next, the controller transitions to the LOAD CAS state

where it activates the selected bank by CS = 0, RAS = 0, CAS = 1 and WE = 1, issues

SelRow = 1 to transfer the row address from the Address Reg to the SDRAM, and generates

LoadtCAS = 1 to load the activation wait period to the down-counter. The CAS wait period

corresponds to the tCAS state in Fig. 5.30. When this period is over at CountOut = 1, the

controller transitions to the START READ state where it issues CS = 0, RAS = 1, CAS = 0

and WE = 1 to initiate the data read and produces SelCol = 1 to transfer the column address

from Address Reg to the SDRAM address port. This state is followed by four individual

latency states to select the programmed read latency period. Since the read latency in

Fig. 5.29 is equal to two, the state machine traces through a single LAT WAIT state. In the

LAT WAIT state, the controller issues LoadtBURST = 1 and loads the value of the data burst,

tBURST, to the down-counter. Following the latency states, the state machine transitions to the

READ state where it stays until CountOut = 2, signifying the end of the read burst. Here, it

produces EnRData = 1 to enable the data output buffer and Ready = 1 to validate the read

data. At the end of the burst period, the state machine moves to the LOAD WAIT state and

issues LoadtWAIT = 1 to load the required wait period into the down-counter until the next

precharge takes place. Subsequently, the state machine transitions to the tWAIT state and

stays there until the wait period is over.
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IDLE/

PROG

CountOut > 1

LOAD

PRE

tPRE

Status = START

Write = 0

Addr = SDRAM Start Addr

else

LOAD

CAS

tCAS

START

READ

Ready=0

Ready=0

READ

LOAD

WAIT

EnRData = 1

Ready = 1

tWAIT Ready=0

StoreReg = 1

CS = 0

RAS = 0

CAS = 1

WE = 0

Load tPRE = 1 

Ready = 0

SelRow = 1

CS = 0

RAS = 0

CAS = 1

WE = 1

A [9:0] = Addr [19:10] = Row Address 

Load tCAS = 1 

Ready = 0

LAT

WAIT

Load tBURST = 1

Ready = 0

LAT

WAIT

Ready = 0

LAT

WAIT

Ready = 0

LAT

WAIT

Ready = 0

LAT

WAIT

LAT

WAIT

Ready = 0

LAT

WAIT

Ready = 0

LAT

WAIT

LAT

WAIT

Ready = 0

LAT

WAIT

LATENCY = 2

SelCol = 1

CS = 0

RAS = 1

CAS = 0

WE = 1

A [9:0] = Addr [9:0] = Col Address 

Ready = 0

CountOut = 1

CountOut > 1

CountOut = 1

CountOut > 2

CountOut = 2

LoadtWAIT = 1

EnRData = 1

Ready = 1

CountOut > 1

CountOut = 1

LATENCY = 3

Load tBURST = 1

Ready = 0

LATENCY = 4

Load tBURST = 1

Ready = 0

LATENCY = 5

Load tBURST = 1

Ready = 0

Status = START

Write = 0

Addr = SDRAM Start Addr

else

CS = 0

RAS = 0

CAS = 1

WE = 0

Ready = 0

Fig. 5.30 SDRAM bus interface for read
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5.3 Electrically-Erasable-Programmable-Read-Only-Memory

Electrically-Erasable-Programmable-Read-Only-Memory (E2PROM) is historically consid-

ered the predecessor of Flash memory and also the slowest memory in a computing system.

Its greatest advantage over the other memories is its ability to retain data after the system

power is turned off due to the floating-gate MOS transistor in its memory core. Its relatively

small size compared to electromechanical hard disks makes this device an ideal candidate to

store Built-In-Operating-Systems (BIOS) especially for hand-held computing platforms.

A typical E2PROM memory is composed of multiple sectors, each of which contains

multiple pages as shown in the example in Fig. 5.31. A single word in E2PROM can be

located by specifying its sector address, page address and row address. The sector address

indicates which sector a particular word resides. The page address locates the specific page

inside a sector. Finally, the row address points to the location of the data byte inside a page.

There are five control signals in E2PROM to perform read, write or erase operations. The

active-low Enable signal, EN, places a particular page in standby mode and prepares it for an

upcoming operation. The active-low Command Enable signal, CE, is issued with a command

code, such as read, write (program) or erase. The active-low Address Enable signal, AE, is
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Fig. 5.31 A typical E2PROM organization
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issued when an address is provided. Finally, the active-low Write Enable signal,WE, and the

Read Enable signal, RE, are issued for writing and reading data, respectively.

Typical E2PROM architecture consists of a memory core, an address decoder, an output

data buffer, status, address and command registers, and a control logic circuit as shown in

Fig. 5.32. Prior to any operation, command and address registers are programmed. When the

operation starts, the control logic enables the address decoder, the data buffer and the

memory core using the active-high Enable Address (ENA), Enable Data Buffer (END), and

Write Enable Core (WEC) or Read Enable Core (REC) signals depending on the operation.

The address stored in the address register is decoded to point the location of data. If the read

operation needs to be performed, the required data is retrieved from the E2PROM core and

stored in the data buffer before it is delivered to the I/O bus. If the operation is a write (or

program), the data is stored in the data buffer first before it is uploaded to the designated

E2PROM address. In all cases, EN needs to be at logic 0 to place E2PROM into standby

mode before starting an operation. The table in Fig. 5.33 describes all major operation

modes. Hibernate mode disables the address decoder, memory core and data buffer to reduce

power dissipation, and puts the device into sleep.
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Fig. 5.32 A typical E2PROM architecture
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The E2PROM cell shown in Fig. 5.34 is basically an N-channel MOS transistor with an

additional floating gate layer sandwiched between its control gate terminal (Wordline) and

the channel where the electronic conduction takes place. This device has also drain (Bitline)

and source (Sourceline) terminals for connecting the cell to the neighboring circuitry.

To write logic 0 into the memory cell, a high voltage is applied between Wordline and

Bitline terminals while the Sourceline node remains connected to ground. This configuration

generates hot carriers in the transistor channel which tunnel through the gate oxide and reach

the floating gate, raising the threshold voltage of the transistor. The raised threshold voltage

prevents the programmed device to be turned on by the standard gate-source voltage used

during normal circuit operations, and causes the value stored in the device to be interpreted

as logic 0. An unprogrammed device with no charge on the floating gate, on the other hand,

exhibits low threshold voltage characteristics and can be turned on by the standard

gate-source voltage, producing a channel current. In this state, the value stored in the device

is interpreted as logic 1.

Figure 5.35 shows a typical command input sequence. There are four basic commands for

this E2PROM example: read, write (program), page-erase and status register read. The write

and program commands will be used interchangeably here and when describing the Flash

memory since they mean the same operation. The operation sequence always starts with the

command input followed by the address and data entries. To issue a command input, EN is

lowered to logic 0, AE is raised to logic 1 (because the entry is not an address), and CE is

lowered to logic 0, indicating that the value on the I/O bus is a command input. Since the

command input is written into the command register WE is also lowered to logic 0 some

EN WE RE

0 1 1 Standby

0 0 1 Write

0 1 0 Read

1 X X Hibernate

Fig. 5.33 E2PROM major operation modes

Wordline

Sourceline Bitline

Floating gate

Channel

Fig. 5.34 E2PROM cell
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time after the negative edge of CE signal. This delay is called the setup time (tS) as shown in

Fig. 5.35. The low phase of WE signal lasts for a period of tLO, and transitions back to logic

1 some time before the positive edge of CE. This time interval is called the hold time, tH.

Prior to the positive edge of WE, a valid command input is issued, satisfying the data setup

time, tDS, and the data hold time, tDH, as shown in Fig. 5.35.

The address input timing shown in Fig. 5.36 has the same principle as the command input

timing described above: EN needs to be at logic 0 to enable the device, AE must be at logic 0

for the address entry, and CE needs to be at logic 1 because this operation is not a command

entry. During the low phase of EN signal, WE signal must be lowered to logic 0 twice to

locate data in the E2PROM. The first time WE = 0, an eight-bit row address is entered at the

first positive edge of WE. This is followed by the combination of four-bit page address and

four-bit sector address at the next WE = 0. The WE signal must be lowered to logic 0 after a

period of tS, following the negative edge of the EN signal, and then back to logic 1 for a

period of tH before the positive edge of EN. TheWE signal must also be at the low phase for

a period of tLO and at the high phase for a period of tHI (or longer) during the address entry.

Valid address values are issued at each positive edge ofWE within the tDS and tDH setup and

hold time periods.

CE

EN

WE

AE

I/O[7:0]

tDS tDH

Command Input

tHtS tLO

Fig. 5.35 Command input timing diagram
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Figure 5.37 describes data entry sequence where (M + 1) number of data packets are

written to the E2PROM. During the entire write cycle AE signal must be at logic 1, indi-

cating that the operation is a data entry but not an address. Data packets are written at each

positive edge of WE signal.

During a read the active-low control signals, AE and CE, are kept at logic 1. The Read

Enable signal, RE, enables the E2PROM to read data from the memory core at each negative

edge as shown in Fig. 5.38. The time delay between the negative edge of RE and the actual

CE

EN

WE

AE

I/O[7:0]

tDS tDH

A[7:0]

tHtS tLO tHI

A[15:8]

Row

Address

Page + Sector 

Address

Fig. 5.36 Address input timing diagram

CE

EN

WE

AE

I/O[7:0]

tDS tDH

DIn0

tHtS tLO tHI

DIn1 DInM

Fig. 5.37 Data input (write or program) timing diagram
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availability of data from the memory is called the access time, tA, as shown in the same

timing diagram. The RE signal must have the specified tS, tH, tLO and tHI time periods to be

able to read data from the memory core.

CE

EN

RE

AE

I/O[7:0] DOut0

tHtS tLO tHI

DOut1 DOutM

tA

Fig. 5.38 Data output (read) timing diagram

Reading data from the Status Register is a two-step process. The first step involves

entering the command input, Status Register Read, at the positive edge of the WE signal.

The contents of the register are subsequently read sometime (tA) after the negative edge of

RE as shown in Fig. 5.39. Note that CE signal is initially kept at logic 0 when entering the

command input, but raised to logic 1 when reading the contents of the Status Register.

A full-page write data entry consists of the combination of four tasks as shown in Fig. 5.40.

The first task is entering the Write to Data Buffer command at the positive edge ofWE while

keeping CE at logic 0. The second task is entering the page and sector addresses at the

positive edge of WE while AE is at logic 0. The third task is entering the full-page of data

from D(0) to D(255) into the data buffer at each positive edge ofWE signal. Both AE and CE

are kept at logic 1 during this phase. The last task is entering the Write to Core Memory

command in order to transfer all 256 bytes of data from the data buffer to the memory core.

The last cycle needs a relatively longer time period, tWRITE, to complete the full-page write.

The read operation is composed of three individual tasks similar to the write operation as

shown in Fig. 5.41. The first task is entering the Read from Memory command at the

positive edge of WE while CE is at logic 0. The second step is entering the starting address

by specifying the row, page and sector address values at each positive edge ofWE while AE

is at logic 0. The third task is to read data from the memory core at each negative edge of RE

while CE and AE signals are at logic 1.
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tDS tDH

Status Read
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tLO tH

tA
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SR Read

Command

Read

SR Contents
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Fig. 5.39 Timing diagram for reading status register
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Fig. 5.40 Timing diagram for full-page write (program)
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A typical full-page erase is described in Fig. 5.42. In this figure, the Erase Full Page

command is enteredfirst at the positive edge ofWEwhileCE is at logic 0. Thememory address,

CE

EN

RE

AE

I/O[7:0 ]

tS

WE

tH

tS tH

Read A7-0 A15-8 DO(N) DO(N+1) DO(N+255)

tHtS

Program 

Command 

Register:

Read from 

Memory 

Command

Row

Address

Page + Sector 

Address

From 

Starting Addr 

From 

Last Addr

Fig. 5.41 Timing diagram for full-page read
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Program
Command
Register:
Erase
Core Memory 
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Fig. 5.42 Timing diagram for full-page erase
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composed of page and sector addresses, is entered next while AE is at logic 0. The Erase Core

Memory command is entered following the address whileCE is at logic 0. Full-page erase time

period, tERASE, must be employed to complete the operation.

5.4 Flash Memory

Flash memory is the successor of the Electrically-Erasable-Programmable-Read-Only-

Memory (E2PROM), and as its predecessor it has the capability of retaining data after power

is turned off. Therefore, it is ideal to use in hand-held computers, cell phones and other

mobile platforms.

A typical Flash memory is composed of multiple sectors and pages as shown in Fig. 5.43.

An eight-bit word can be located in a Flash memory by specifying the sector, the page and

the row addresses. To be compatible with the E2PROM architecture example given in the

previous section, this particular Flash memory also contains 16 sectors and 16 pages. Each

page contains 256 bytes. The sector address constitutes the most significant four bits of the

16-bit Flash address, namely Addr[15:12]. Each page in a sector is addressed by Addr[11:8],

and each byte in a page is addressed by Addr[7:0]. There are five main control signals in

Flash memory to perform basic read, write (program), erase, protect and reset operations.

Write and program commands are equivalent to each other, and used interchangeably
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Fig. 5.43 Flash memory organization
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throughout the manuscript when describing Flash memory operations. Many Flash data-

sheets use the term, program, to define writing a byte or a block of data to Flash memory.

The active-low Enable input, EN, activates a particular page in the Flash memory to prepare

it for an upcoming operation. The active-low Read Enable input, RE, activates the Read/Write

interface to read data from the memory. The active-low Write Enable input, WE, enables to

write (program) data to the memory. The active-low Reset input, Reset, is used for resetting

the hardware. After this command, Flash memory automatically goes into the read mode.

Typical Flash memory architecture, much like the other memory structures we have

examined earlier, consists of a memory core, address decoder, sense amplifier, data buffer

and control logic as shown in Fig. 5.44. When a memory operation starts, the control logic

enables the address decoder, the address register, and the appropriate data buffers in order to

activate the read or the write data-path. The address in the address register is decoded to

point the location of data in the memory core. If a read operation needs to be performed, the

retrieved data is first stored in the data buffer, and then released to the bus. If the operation

calls for a write, the data is stored in the data buffer first, and then directed to the designated

address in the memory core. The standby mode neither writes to the memory nor reads from

it. The hibernation mode disables the address decoder, memory core and data buffer to

reduce power dissipation. The main Flash operation modes are tabulated in Fig. 5.45.
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Fig. 5.44 Flash memory architecture
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The Flash memory cell shown in Fig. 5.34 is the basic storage element in the Flash

memory core. It is an N-channel MOS transistor with a floating gate whose sole purpose is to

store electronic charge. The device needs high voltages well above the power supply voltage

to create and transfer electrons back and forth to the floating gate according to the need. If

there is no secondary high voltage supply for this job, the control logic in Fig. 5.44 may

contain a charge pump circuit composed of a constant current source and a capacitor in order

to obtain a higher DC voltage from the primary power supply for a short duration. As the

constant current charges the capacitor, the voltage across the capacitor rises linearly with

time, ultimately reaching a high DC potential to create electron-hole pairs near the Bitline

contact (drain) of the device, ultimately causing the electrons to tunnel to the floating gate.

The mechanism of electron tunneling to the floating gate requires time. Therefore, a write or

erase operation may take many consecutive clock cycles compared to simple control

operations such as suspend or resume.

Figure 5.46 shows the basic read operation provided that data has already been transferred

from the memory core to the data buffer. Once a valid address is issued, data is produced at

the I/O terminal some time after the falling edge of the Read Enable signal, RE. Data is held

at the I/O port for a period of hold time, th, following the rising edge of RE as shown in the

timing diagram below. The actual read operation takes about four clock cycles as the entire

data retrieval process from the memory core takes time. This involves sensing the voltage

level at the Flash cell, amplifying this value using the sense amplifier, and propagating the

data from the sense amplifier to the data buffer.

In contrast to read, the basic write operation follows the timing diagram of Fig. 5.47. In

this figure, a valid address must be present at the address port when the Enable and the Write

Enable signals, EN and WE, are both at logic 0. Valid data satisfying the setup and hold

times, ts and th, is subsequently written to the data buffer. The actual write process can take

up to four clock cycles due to the data propagation from the I/O port to the data buffer, and

then from the data buffer to the Flash cell.

EN RE WE reset

0 0 1 1 Read

0 1 0 1 Write

0 1 1 1 Standby

Hibernate

Hardware reset

1 X X 1

X X X 0

MODE

Fig. 5.45 Main modes of Flash memory
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Disabling the I/O port for read or write, and therefore putting the device in standby mode

requires EN signal to be at logic 0 as shown in Fig. 5.48. The I/O port will float and show

high impedance (Hi-Z).

Addr Address

EN

RE

WE

DataI/O[7:0]

thtacc

tcommand

Reset

Fig. 5.46 Basic read operation timing diagram

Addr Address

EN

RE

WE

Data

thts

tcommand

Reset

I/O[7:0]

Fig. 5.47 Basic write (program) operation timing diagram
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Hardware reset requires only lowering the Reset signal during the command cycle as

shown in Fig. 5.49. The actual reset operation takes three bus cycles and resets the entire

Flash memory.

Basic Flash memory operations are tabulated in Fig. 5.50. In actuality, there are a lot more

commands in commercially available Flash memories than what is shown in this table. This

section considers only essential byte-size operations in a Flash memory. Word-size
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Fig. 5.48 Basic standby operation
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Fig. 5.49 Basic hardware reset operation timing diagram
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operations, very specific Flash command sequences, such as hidden ROM programs, query

and verification commands and boot protection processes are avoided in order to emphasize

the core Flash memory operations for the reader. Address and data entries for each specific

command in Fig. 5.50 are also modified compared to the actual datasheets to simplify the

read, write (program) and erase sequences. The number of clock cycles, the address and data

preamble values in each cycle, and the operational codes to perform read, write, page erase,

chip erase, page protect, fast write and other modes of operation may be different from the

actual datasheets.

The first task in Fig. 5.50 is the Flash memory read sequence which takes four clock

cycles. The first three clock cycles of this sequence represents the waiting period to prepare

the read path from the memory core. During this period, address and data values in the form

of alternating combinations of 1s and 0s, such as 0x5555/0xAA and then 0xAAAA/0x55,

are introduced at the address and data ports of the Flash memory as shown in Fig. 5.51. Once

the read command, 0x00, is issued in the third clock cycle, a byte of data becomes available

shortly after the negative edge of the RE signal in the fourth and final clock cycle.

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555 Addr

0xAA 0x55 0x00 Data

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Read command Read data

I/O[7:0]

Fig. 5.51 Timing diagram for read operation
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Figure 5.52 shows an example of the read operation which extracts the manufacturer’s ID

and device ID from the Flash memory. The first three clock cycles of this sequence are the

same as the normal read operation, but with the exception of the ID read code, 0x10. The

next two cycles deliver the manufacturer’s ID and the device ID following the negative edge

of the RE signal.

There are basically two types of write (program) operations for the Flash memory: auto

write (program) and fast write (program). Figure 5.53 explains the auto write sequence

where the first three cycles are the same as the read sequence with the exception of the auto

write command code, 0x20, in the third clock cycle. In the fourth cycle, a valid address and a

data are entered to the device when EN andWE are both lowered to logic 0. The valid data is

subsequently written to the specified address at the positive edge of WE. The data written to

the Flash memory can be retrieved in the following cycle without going through a separate

read sequence. This is called the auto write verification step, and the most recent written data

becomes available at the I/O port as soon as RE is lowered to logic 0.

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555 Man Addr Dev Addr

0xAA 0x55 0x10 Man Data Dev Data

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

ID read command Manufacturer 

ID read

Device ID 

read

I/O[7:0]

Fig. 5.52 Timing diagram for ID read operation
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The write sequence can be suspended or resumed depending on the need. Both operations

take only one clock cycle with the appropriate suspend and resume codes as shown in

Figs. 5.54 and 5.55, respectively. The write suspend and resume codes can be read in the

second cycle as a verification step.

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555 Write Addr

0xAA 0x55 0x20 Write Data

Write Addr

Write Data

Write command Write Data Verification

Cycle 1 Cycle 2 Cycle 3 Cycle 4

I/O[7:0]

Fig. 5.53 Timing diagram for write (program) operation

Addr Page Addr

EN

RE

WE

Page Addr

0x30 Suspend comm.

Write suspend 

command
Verification

Cycle 1

I/O[7:0]

Fig. 5.54 Timing diagram for write (program) suspend operation
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The erase operation can be applied either to the entire chip or to a particular page. Both

sequences take six clock cycles because of the lengthy nature of erase process. In the auto

chip erase operation, the first three and the last three cycles are almost identical except the

two new codes, 0x50 and 0x60, are introduced in the third and in the sixth cycles as shown

in Fig. 5.56.

Addr Page Addr

EN

RE

WE

Page Addr

0x40 Resume comm.

Write resume 

command
Verification

Cycle 1

I/O[7:0]

Fig. 5.55 Timing diagram for write (program) resume operation

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555

0xAA 0x55 0x50

Chip erase command

Cycle 1 Cycle 2 Cycle 3

0xAAAA 0x55550x5555

0xAA 0x55 0x60

Cycle 4 Cycle 5 Cycle 6

I/O[7:0]

Fig. 5.56 Timing diagram for chip erase operation
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The first five clock cycles of the page erase operation are identical to the chip erase as

shown in Fig. 5.57. The page address to be erased is supplied with the page erase command,

0x70, in the sixth cycle.

A certain Flash memory page can be protected from being overwritten or erased by

issuing a page protect operation. This is a three-cycle operation as shown in Fig. 5.58. In all

three cycles, the page address and the page protect code, 0x0A, have to be specified.

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555

0xAA 0x55 0x50

Page erase command

Cycle 1 Cycle 2 Cycle 3

0xAAAA Page Addr0x5555

0xAA 0x55 0x70

Cycle 4 Cycle 5 Cycle 6

Page Addr input 

I/O[7:0]

Fig. 5.57 Timing diagram for page erase operation

Addr Page Addr

EN

RE

WE

Page Addr Page Addr

0xA0 0xA0 0xA0

Page protect command

Cycle 1 Cycle 2 Cycle 3

Page Addr

Protect com

Verification

I/O[7:0]

Fig. 5.58 Timing diagram for page protect operation

5.4 Flash Memory 219



If faster writing speed is required from the Flash memory, the fast write (program)

sequence can be used. This sequence is composed of three parts: fast write set, fast write and

fast write reset. The fast write set and reset codes are entered at the beginning and at the end

of a write sequence. Figure 5.59 shows the timing diagram for the fast write set sequence

where the set code, 0xB0, is entered in the third clock cycle.

The timing diagram for the fast write is a two-cycle sequence as shown in Fig. 5.60. In the

first cycle, the fast write code, 0xC0, is entered. In the second cycle, a valid address/data pair

is entered at the positive edge of WE.

Addr 0x5555

EN

RE

WE

0xAAAA

0xAA

Cycle 1 Cycle 2

Fast write set command

0x5555

0x55 0xB0

Cycle 3

I/O[7:0]

Fig. 5.59 Timing diagram for fast write (program) set operation

Addr 0xXXXX

EN

RE

WE

Write Addr

0xC0

Cycle 1 Cycle 2

Fast write command

Write DataI/O[7:0]

Fig. 5.60 Timing diagram for fast write (program) operation

220 5 Memory Circuits and Systems



The fast write reset sequence shown in Fig. 5.61 is also a two-cycle process with two fast

write termination codes, 0xD0 and 0xE0, entered in two consecutive clock cycles.

Device reset can be initiated either by Reset input in Fig. 5.48 or by entering the reset

code, 0xF0, in the third clock cycle of Fig. 5.62.

Addr 0xXXXX

EN

RE

WE

0xXXXX

0xD0

Cycle 1 Cycle 2

Fast write reset command

0xE0I/O[7:0]

Fig. 5.61 Timing diagram for fast write (program) reset operation

Addr 0x5555

EN

RE

WE

0xAAAA 0x5555

0xAA 0x55 0xF0

Reset command

Cycle 1 Cycle 2 Cycle 3

I/O[7:0]

Fig. 5.62 Timing diagram for Reset operation
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Both reading and writing (programming) data are cyclic processes. This means that a loop

has to be established in the user program to generate a series of memory addresses to read or

write data.

Figure 5.63 shows the auto write (program) flow chart where a loop is created to generate

the next write address. Each box in the flow chart corresponds to a clock cycle. The first

three boxes of the flow chart prepare the memory core for a write operation. The preparation

period terminates with the auto write code, 0x20, as mentioned earlier in Fig. 5.53. After

entering the first write address and data, the memory address is incremented in the fourth

cycle. The same process repeats itself prior to issuing the next address and data. When the

final address is reached, the write process simply terminates.

Start

0x5555/0xAA

0xAAAA/0x55

0x5555/0x20

Write Addr/

Write Data

Last AddrAddr = Addr + 1
NO

YES

Complete

Write

sequence

Fig. 5.63 Flow chart for write (program)
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The sequence of events is a little different for the fast write (program) in Fig. 5.64. The

fast write phase starts with the three-cycle long fast write set sequence followed by the two

cycle long fast write sequence. The memory address keeps incrementing until the last data

byte is written to the core. The fast write process ends with the two-cycle long fast write reset

sequence.

Auto write and fast write processes can be interrupted or resumed by issuing one-cycle

long suspend and resume commands anytime during the write process.

Start

0x5555/0xAA

0xAAAA/0x55

0x5555/0xB0

0xXXXX/0xC0

Write Addr/

Write Data

Last AddrAddr = Addr + 1

0xXXXX/0xD0

0xXXXX/0xE0

NO

YES

Complete

Fast write set

sequence

Fast write

sequence

Fast write reset

sequence

Fig. 5.64 Flow chart for fast write (program)
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In the following sections, we will demonstrate how to design three individual I2C bus

interfaces with Flash memory to perform read, write and erase operations. In each design, we

will assume only one mode of operation to simplify the design process. After studying each

design example, the reader is encouraged to design a single interface that integrates all three

operations.

Design Example 1:

I2C Fast Write (Program) Interface for Flash Memory

The following design example constructs only the I2C fast write (program) interface for a

Flash memory that has parallel address and data ports as shown in Fig. 5.44 using a modified

seven-bit address mode. No read, auto write, erase, page protect, reset or other modes are

included in this design for the sake of simplicity.

Before dealing with the design details and methodology, it may be prudent to review the

timing diagram of I2C write sequence using the seven-bit addressing mode. Although

Fig. 5.65 includes only one byte of data, it describes the entire write protocol for the

seven-bit address mode in Fig. 4.22. This diagram also includes the start and the stop

conditions in Fig. 4.23, and when data (or address) is allowed to change in Fig. 4.24. After

generating the start condition, the bus master delivers a seven-bit slave address, starting from

the most significant bit, A6. The address sequence is followed by the write bit at logic 0.

Once the slave receives the seven-bit address and the write command, it produces an

acknowledgment, ACK, by lowering the SDA bus to logic 0. The master detects the ACK

signal, and sends out an eight-bit data starting from the most significant bit, D7. Once the

entire byte is received, the slave responds with another ACK. More data packets follow the

same routine until the master generates the stop condition.

A6 A5 A0 W = 0 D7 D0ACK D6 ACK

STOPSTART

SCL

SDA

A6 A5 A0 W ACK D7 D6 D0 ACK

I2C

reads

I2C

ACK

I2C

reads

I2C

reads

I2C

reads

Master

reads

Master

sends

Master

sends

Master

sends

Master

sends

Master

sends

Master

sends

I2C

reads

I2C

reads

Master 

sends

I2C

reads

I2C

ACK

Master

reads

Fig. 5.65 A simple timing diagram for I2C write (program) using seven-bit address mode

In Fig. 5.65, the names that appear on top of each SCL cycle describe a distinct state. If a

state machine needs to be constructed from this timing diagram, we simply assign an

independent state that corresponds to each name in Fig. 5.65 and produce a state diagram in

Fig. 5.66. In this diagram, the start condition activates the state machine, which goes through

the address and the command sequences before the data. As long as the state machine does
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not detect any stop condition, it constantly traces the data states D7 to D0. However, when

there is a stop condition, the state machine goes to the IDLE state and waits for another start

condition to emerge.

Even though this example only shows the fast write interface, it sets up a solid foundation

of how to design any typical I2C interface between a bus master and a Flash memory. The

first step of the design process is to create a rough interface block diagram showing all the

major I/O ports between the Flash memory and the I2C bus as shown in Fig. 5.67. For the

fast write sequence, the address and data packets are serially transferred to the interface

through the SDA port. However, the Flash memory needs the address and data fields all at

once. Therefore, the write operation requires the interface to perform serial-to-parallel

conversion of incoming data. The interface also needs to produce two control signals, EN

and WE, for the fast write sequence, and the control signal, EnDataOut, for writing an

eight-bit data to a designated Flash memory address.

IDLE

A6

A0

W

ACK

D7

D0

ACK

START = 1

START = 0

STOP = 1

STOP = 0

Fig. 5.66 The state diagram for the simple I2C write (program) in Fig. 5.65
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Figure 5.68 shows the architectural block diagram of the Flash memory interface for the

fast write operation. As mentioned earlier when designing SRAM and SDRAM memory

interfaces, creating a complete data-path for an interface is not a single-step process. The

design methodology requires building a simple data-path with all of its functional units and a

corresponding timing diagram showing the flow of data in each clock cycle, the start and stop

conditions, address and data formations. However, as more detail is added to the architecture,

the initial timing diagram also becomes more complex to match the architecture. Figures 5.69,

5.70 and 5.71 show a set of timing diagrams related to the architecture in Fig. 5.68. These

diagrams describe the start and stop conditions, preamble sequence, address and data for-

mations, repacking and delivery of serial address and data in a systematic manner.

Once the cycle-by-cycle nature of address and data entries are accurately described in the

timing diagram, the control signals responsible for routing the address and data can be added

to the diagram. The final step of the design process is to assign distinct states to each clock

cycle in the timing diagram that contains different sets of control signals in order to generate

a Moore-type state machine.

To start, we need to include four functional units in Fig. 5.68 to be able to handle a simple

fast write operation. The first functional unit is an eight-bit shift register whose sole purpose is

to convert the incoming serial data from the SDA port into a parallel form. If the fast-write

process requires an authentication step prior to data exchange, the first eight-bit packet

coming to this interface must be delivered to the device ID register, which is considered the

second functional unit. The second and the third eight-bit data packets arriving at the interface

belong to the most and the least significant bytes of the 16-bit starting Flash memory address,

respectively, and they are stored in the address counter. The address counter, which consti-

tutes the third functional unit, uses this initial address to generate subsequent addresses for

programming the Flash memory. All eight-bit data that follows the address entry is routed

directly to the data port of the Flash memory. There are also several fixed-value registers

connected to the inputs of the address and data MUXes in Fig. 5.68. These registers contain

SDA

EN WE

Addr [15:0]

DataI/O [7:0]

16

I/O [7:0]

EnDataOut

Flash 

Fast Write 

I/F

8
SCL

Fig. 5.67 Simplified page diagram of the I2C fast write (program) interface
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the preamble data for setting and resetting the fast write modes for the Flash memory prior to

address and data sequences. The write controller, which is considered to be the fourth

functional unit, generates all the control signals necessary for storing data, incrementing the

address, and routing the address and data to the output ports of the interface. The host

processor delivers all address, control and data signals to the interface at the negative edge of

the SCL, which requires all the registers to operate at the positive edge of SCL in Fig. 5.68.
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Fig. 5.68 I2C fast write (program) interface data-path

5.4 Flash Memory 227



The START condition in Fig. 5.69 is produced by the bus master in cycle 1 by lowering

the SDA signal to logic 0 while keeping the SCL signal at logic 1. Once the START

condition is detected, the serial data on the SDA port is transferred to an eight-bit shift

register which converts this data into a parallel form before sending it to different registers in

Fig. 5.68. In clock cycles 2 to 8, the seven-bit Flash memory ID is loaded to the shift register

starting from the most significant bit if device authentication is required prior to data

transmission. In cycle 9, the bus master sends the write bit, W, stored in the shift register. In

cycle 10, a number of events take place simultaneously. First, the write bit at the least

significant bit position of the shift register activates the write controller. Second, the device

ID and the write bit are transferred from the shift register to a special device ID register.

Third, the Flash memory interface produces the first acknowledge signal, ACK, by

EnSDAOut = 1, thus lowering the SDA bus to logic 0. Finally, the interface sends the first

preamble which consists of the address, 0x5555, and the data, 0xAA, to the Flash memory

and lowers EN and WE to logic 0 as the first step of the fast write set.

In cycle 11, the most significant bit of the 16-bit initial Flash memory address, Add15, is

received from the SDA bus and stored in the shift register. This cycle is also considered a

hold period for the EN and WE signals. In cycle 12, the second most significant address bit,

Add14, is stored in the shift register. In this cycle, the second preamble that contains the

address, 0xAAAA, and the data, 0x55, are sent to the Flash memory as the second step of the

fast write set. In cycle 14, the third address and command preamble, 0x5555 and 0xB0, are

sent to the Flash memory, completing the fast write set sequence. The fast write sequence

starts at cycle 16 where the fast write command, 0xC0, is sent to the Flash memory. In cycle

19, the most significant byte of the 16-bit starting Flash memory address, StAddMSB, is

transferred from the shift register to the address register which resides inside the address

counter. In this cycle, the interface also generates the second ACK signal by EnSDAOut = 1.

From cycles 20 to 27 in Fig. 5.70, the least significant byte of the starting Flash address,

StAddLSB, is received by the shift register. In cycle 28, this byte is transferred to the least

significant byte of the address register in order to form the 16-bit starting Flash address. In this

cycle, the interface generates the third ACK signal. From cycles 29 to 36, the first set of data

bits starting from the most significant bit, DF7, to the least significant bit, DF0, are received by

the shift register. In cycle 37, the first eight-bit data packet, Data0, is transferred to the Flash

memory through its bidirectional I/O port. The tri-state buffers in Fig. 5.68 need to be enabled

by the control signal, EnDataOut, to be able write this data packet to the Flash memory.

Cycles 38 to 45 in Fig. 5.71 are used to store the second eight-bit data packet in the shift

register. Cycle 46 transfers this data packet, Data1, to the I/O port and generates an ACK

signal for receiving the second data byte from the bus master. If the STOP condition is

detected during the next clock cycle, the fast write process halts. The write controller goes into

the fast write reset mode and asynchronously produces selAux = 1 to engage the auxiliary

clock, SCLAux, instead of using the main SCL clock, SCLMaster, generated by the bus
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master. This is because the Flash memory needs two more preambles that contain 0xD0 and

0xE0 commands to complete the fast write reset sequence. Therefore, starting from cycle 48,

SCL resumes with three more cycles. In cycle 48, the first preamble that contains 0xD0, and in

cycle 50 the second preamble that contains 0xE0 are sent to the Flash memory by setting

selD0 and then selE0 to logic 1, respectively. In the next cycle, selAux becomes logic 0, and

SCL switches back to the SCLMaster input which permanently stays at logic 0.

The Moore machine in Fig. 5.72 implements the write controller in Fig. 5.68. At the onset

of the START condition, the controller wakes up and goes into the device ID retrieval mode.

From cycles 2 to 8 in Fig. 5.69, the serial device ID is received by the shift register on the

SDA bus. These cycles correspond to the states DAdd6 to DAdd0 in Fig. 5.72 where the

shift signal is constantly kept at logic 1, and writing data to the Flash memory is disabled. In

cycle 9, the write bit is also stored in the shift register. This corresponds to the W state in the

state machine. In cycle 10, numerous events take place simultaneously. First, shifting serial

data into the shift register stops by shift = 0. Second, the seven-bit device ID and the write bit

are delivered to the device ID register by LoadDevID = 1. Third, the first address and data

preamble, 0x5555 and 0xAA, is delivered to the Flash memory through port 1 of the address

MUX by sel5555 = 1 and port 1 of the data MUX by selAA = 1. Fourth, the control signals,

EN and WE, are lowered to logic 0 in order to write the address and data preamble to the

Flash memory. Finally, an ACK signal is generated by EnSDAOut = 1. This cycle corre-

sponds to the DevID ACK state of the write controller.

In cycle 11, shifting data resumes, and the shift register receives the most significant bit of

the initial Flash address, Add15, while in the Add15 state. In cycle 12, which corresponds to

the Add14 state, the second most significant address bit, Add14, is latched in the shift

register by shift = 1. In the same cycle, the second address and data preamble, 0xAAAA and

0x55, is delivered to the Flash memory through port 2 of the address MUX by selAAAA = 1

and port 2 of the data MUX by sel55 = 1. The control signals, EN and WE, are also lowered

to logic 0 in order to write this preamble to the Flash memory. In cycle 13, Add13 is stored

in the shift register. This cycle corresponds to the Add13 state. In cycle 14, the third address

and data preamble, 0x5555 and 0xB0, is written to the Flash memory through port 1 of the

address MUX by sel5555 = 1 and port 3 of the data MUX by selB0 = 1. In this cycle, the

control signals, EN andWE, are lowered to logic 0 in order to write the last address and data

preambles. This cycle corresponds to the Add12 state. Cycle 15 designates the end of the fast

write set cycle, and corresponds to the Add11 state when the address bit, Add11, is loaded to

the shift register.
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Fig. 5.72 I2C fast write (program) interface controller
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Cycle 16 enters the fast write command mode and writes the address and data preambles,

0xXXXX and 0xC0, through port 4 of the data MUX by selC0 = 1. In this cycle, EN and

WE signals are lowered to logic 0 to accommodate the write operation, and Add10 is latched

in the shift register. This clock cycle corresponds to the Add10 state. Storing the higher byte

of the initial Flash address becomes complete by the end of cycle 18. In cycle 19, the higher

byte of the initial address is transferred to the address register by LoadAddMSB = 1, and an

acknowledge signal is generated by EnSDAOut = 1. This cycle corresponds to the

AddMSB ACK state in the state diagram. Similar events take place when storing the least

significant byte of the starting address in the shift register. These states are marked as Add7

to Add0 in the state diagram, and correspond to the cycles 20 though 27, respectively. The

cycle 28, which corresponds to the AddLSB ACK state, generates the third acknowledge for

the bus master by EnSDAOut = 1, and transfers the least significant byte of the starting Flash

memory address to the address register by LoadAddLSB = 1.

From cycles 29 to 36, the first set of data bits are delivered to the shift register starting from

the most significant data bit, DF7. This sequence is shown as the states DF7 to DF0 in the

state diagram. In cycle 37, an acknowledgement is sent to the bus master by EnSDAOut = 1

shown as the Data ACK state. During this period, the initial 16-bit address and eight-bit data

are delivered to the Flash memory through port 0 of the address MUX by selAddr = 1 and

port 0 of the data MUX by selData = 1. Tri-state buffer at the I/O port is also enabled by

EnDataOut = 1. The second data byte is received during cycles 38 to 45, which correspond to

the states D7 to D0, respectively. Cycle 45 is also the cycle to increment the Flash memory

address by issuing IncrAddr = 1. In Cycle 46, the write controller goes into the Data ACK

state once again and issues an acknowledgement for receiving the second data packet by

EnSDAOut = 1. In this cycle, the second data packet is delivered to the incremented Flash

memory address, StAdd + 1, by selAddr = 1, selData = 1 and EnDataOut = 1. As long as the

STOP condition is not detected, data packets are delivered to the Flash memory at each

incremented address. However, if the bus master issues a STOP condition, the auxiliary SCL

generator, SCLAux, is asynchronously enabled within the same cycle by selAux = 1. The

write controller goes into the fast write reset mode in the next clock cycle and keeps the

auxiliary SCL generator enabled by selAux = 1. For the next three clock cycles, the 0xD0 and

0xE0 command codes, corresponding to the 0xD0 and 0xE0 states in the state diagram, are

delivered to the Flash memory through port 5 of the data MUX by selD0 = 1 and port 6 of the

data MUX by selE0 = 1.
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Design Example 2:

I2C Read Interface for Flash Memory

The following design example constructs only the I2C read interface for a Flash memory that

has parallel address and data ports shown in Fig. 5.44 using a modified seven-bit address

mode. No other modes are included in this design except the read.

The timing diagram for I2C read sequence is given in Fig. 5.73 where each eight-bit data

packet is serially read from a slave after issuing an initial seven-bit address. The address sent

by the bus master requires an acknowledgment (ACK) from the slave. In contrast, data

packets sent by the slave require the master’s acknowledgment. If the bus master chooses not

to acknowledge the receipt of data (NACK), the data transfer stops in the next cycle.

Figure 5.74 shows the sequence of events taking place in Fig. 5.73 in the form of a state

diagram where the logic level in Master ACK/NACK state determines the continuation or

the end of the data transfer.

The Flash memory read sequence described in Fig. 5.75 is a four-cycle process as

mentioned earlier in Fig. 5.50. The bus master sends the address and data preambles,

0x5555/0xAA and 0xAAAA/0x55, in the first two cycles. This is followed by the

0x5555/0x00 preamble containing the read command code in the third cycle. All three cycles

can be considered a preparation period for a read operation which takes place in the fourth

cycle. Following the read operation, the address is incremented either by one or a predefined

value according to the Flash memory address generation protocol before the next data read

sequence takes place.

To read data from the Flash memory, the address and command entries are serially sent by

the host processor to the I2C interface through the SDA port. The Flash memory requires a
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Fig. 5.73 A simple timing diagram for the I2C read operation using seven-bit address mode
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16-bit address all at once in order to read an eight-bit data, and this necessitates an interface

to perform both serial-to-parallel and parallel-to serial conversions. The interface has to

produce three active-low control signals, EN, WE and RE, to be able to read data from the

Flash memory. It also needs to produce the control signals, EnDataIn and EnDataOut, to

route the incoming and outgoing data.

IDLE

A6

A0

R

D7

D0

START = 1

START = 0

SDA = 1SDA = 0

Slave

ACK

Master

ACK/NACK

Fig. 5.74 The state diagram for the simple I2C read operation in Fig. 5.73
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Figure 5.76 shows the architectural diagram of the Flash memory read interface. Figures

5.77, 5.78 and 5.79 show the timing diagrams related to this architecture. These waveforms

describe a complete picture of the preamble formation, device ID creation, address gener-

ation and serializing the read data from the Flash memory.

The architecture in Fig. 5.76 still contains four functional units as in the fast write

(program) data-path. The first functional unit is an eight-bit shift register which identifies the

serial address, command and data boundaries, and converts the serial data on the SDA bus

into a parallel form and the parallel data from the Flash memory into a serial form. The

second functional unit stores the device ID if the Flash memory requires an identification

process prior to data exchange, and the command bit. The third unit stores the initial 16-bit

Flash memory address and generates the subsequent memory addresses using an up-counter.

The fourth unit is the read controller, which is responsible for storing the device ID, the

command bit, forming and incrementing the initial address, and handling the proper

data-flow that complies with the timing diagrams in Figs. 5.77, 5.78 and 5.79. There are also

several fixed-value registers, each of which contains the address and data preambles for

retrieval of data from the Flash memory. The host processor dispatches all address and

Start
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0xAAAA/0x55

0x5555/0x00

Read Addr/

Read Data

Last AddrAddr = Addr + 1
NO

YES

Complete

Read

preamble

Fig. 5.75 Flow chart for the read sequence
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control signals at the negative edge of the SCL clock in order to read data packets from the

Flash memory, and therefore it requires all the registers in Fig. 5.76 to operate at the positive

edge of the SCL clock.
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Figures 5.77, 5.78 and 5.79 describe the complete picture of reading data from the Flash

memory. Figure 5.77 shows the device ID and the command bit formations followed by the

generation of the most significant byte of the initial Flash memory address. Figure 5.78

describes the formation of the least significant byte of the initial Flash memory address and

the first data byte read from the memory. Figure 5.79 includes two additional bytes of data

sent to the bus master and the termination of data transfer.

The bus master initiates the data transfer by issuing the START condition in Fig. 5.77.

Between cycles 1 and 8, the bus master sends the device ID followed by the read command

on the SDA bus, both of which are serially loaded to an eight-bit shift register by ShiftIn = 1.

These cycles are represented by the states DAdd6 to DAdd0 followed by the R state, which

corresponds to the read command, in the state diagram in Fig. 5.80. In cycle 9, the Flash

memory interface responds to the bus master with an acknowledgement by issuing

EnSDAOut = 1, but pauses shifting data by ShiftIn = 0. In the same cycle, the interface also

transfers data from the shift register to the device ID register by LoadDevID = 1. This cycle

corresponds to the first slave-acknowledgement state, DevID SACK, in Fig. 5.80. In cycle

10, the interface starts sending the preamble to the Flash memory for a read operation. In this

cycle, the first address and data preamble, 0x5555/0xAA, is fetched from the fixed-data

registers, 0x5555 and 0xAA in Fig. 5.76. This preamble is subsequently sent to the address

port of the device through port 1 of the address MUX by sel5555 = 1, and to the data port of

the device through port 1 of the data MUX by selAA = 1. In this cycle, the bus master also

sends the most significant bit of the 16-bit Flash memory address, Add15, on the SDA bus.

In cycle 12, the interface sends the second address and data preamble, 0xAAAA/0x55,

through port 2 of the address MUX by selAAAA = 1 and port 0 of the data MUX by sel55 = 1.

In cycle 14, the last address and data preamble, 0x5555/0x00, containing the read command, is

sent to the Flash memory address and data ports. The cycles 10 to 17 correspond to storing the

most significant byte of the starting Flash memory address, Add15 to Add8, in the shift register

by ShiftIn = 1. In cycle 18, the interface sends an acknowledgement to the bus master by

EnSDAOut = 1 to indicate that it has received the higher byte of the starting Flash memory

address. Within the same cycle, this higher byte is stored in the 16-bit address register that

resides in the address counter by LoadAddMSB = 1. This cycle represents the second

slave-acknowledgement state, AddLSB SACK, in Fig. 5.80.

In cycles 19 to 26, the bus master sends the least significant byte of the starting Flash

memory address by ShiftIn = 1. These cycles correspond to the states Add7 to Add0 in

Fig. 5.80, respectively. Cycle 27 constitutes the third slave-acknowledgement state,

AddLSB SACK, in Fig. 5.80. There are numerous events that take place during this clock

cycle, and they are all inter-related. The first event concatenates the least significant byte of

the starting Flash memory address in the shift register with the most significant byte in the

Addr MSB register to form the complete 16-bit starting Flash memory address. This address

is subsequently sent to the Addr[15:0] terminal of the Flash memory through port 1 of the

address register MUX by selStartAddr = 1 and port 0 of the address MUX by selAddr = 1.
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Fig. 5.80 I2C read interface controller
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The second event lowers EN and RE control signals to logic 0 and produces EnDataIn = 1 in

order to fetch the first data byte from the Flash memory, Data0, since the read preamble has

already been sent between cycles 10 and 14. The third event stores Data0 in the shift register

through its ShiftRegIn port by LoadShift = 1. Finally, the last event sends an acknowl-

edgement signal to the bus master by EnSDAOut = 1, signifying the least significant byte of

the starting address has been received so that the bus master can start receiving serial data on

the SDA bus in the next cycle.

In cycle 28, the starting address, which could not be registered due to time limitations in

the earlier cycle, is now registered in the address register, and the address counter output,

AddrCountOut, becomes equal to the starting address, StartAdd. In the same cycle, the most

significant bit of Data0, D7, becomes available on the SDA bus by SDAOut = 1. Starting

from cycle 30, the read preamble associated with the second data is sent to the Flash memory.

The read preamble could have been issued as early as cycle 28 or 29 since the address counter

still held StartAdd at the AddrCountOut node during these periods. In cycle 35, the interface

increments the starting address by IncrAddr = 1 and uses port 2 of the address register MUX

to feed through the result. Until the beginning of cycle 36, all eight bits of Data0, D7 to D0,

are serially sent to the bus master by SDAOut = 1. Therefore, cycles 28 to 35 correspond to

the states D7 to D0 in Fig. 5.80, respectively. In cycle 36, while the bus master acknowledges

the reception of Data0 by MasterAck = 1, and thereby lowering the SDA bus to logic 0, the

interface sends the incremented Flash memory address, StAdd + 1, to the Addr[15:0] terminal

through port 0 of the address counter MUX by selAddr = 1. In the same cycle, the interface

lowers EN and RE signals to logic 0, fetches Data1 from the I/O port of the Flash memory

by EnDataIn = 1, and stores this value in the shift register by LoadShift = 1. This particular

cycle corresponds to the master-acknowledge state, MACK, in Fig. 5.80, where the state

machine continues fetching data from the Flash memory.

Cycles 37 to 44 and cycles 46 to 53 contain identical events to the ones between cycles 28

and 35. They both correspond to the states D7 to D0 in Fig. 5.80. In cycle 54, the SDA bus

transitions to logic 1 because the bus master decides not to issue any more acknowledge-

ments by MasterAck = 0. Even though the current address increments at this point, the

interface neither lowers the EN nor lowers the RE signal to logic 0 as shown by the

master-no-acknowledge state, MNACK. Therefore, no data reading takes place from

the Flash memory. In the next cycle, the bus master terminates the SCL activity and

issues the STOP condition, signifying the end of data transfer.
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Design Example 3:

I2C Page Erase Interface for Flash Memory

The following design example constructs only the I2C page erase interface for a Flash

memory that has parallel address and data ports as shown in Fig. 5.44. Using a modified

seven-bit address mode. No other Flash memory mode is implemented in this design except

the erase.

The Flash memory page erase is a six-cycle sequence as described earlier in Fig. 5.50. The

flow chart for this process is shown in Fig. 5.81. In the first five cycles, the bus master sends

fixed address/data combinations to the Flash memory as a preamble to prepare the memory

to erase a block of data at a specified memory location. The page erase command is the 0x50

entry in the third cycle followed by the page address and the second erase command, 0x70,

in the sixth cycle to initiate the process.

Start

0x5555/0xAA

0xAAAA/0x55

0x5555/0x50

Page Addr/

0x70

Complete

Page 

Erase

preamble

0xAAAA/0x55

0x5555/0xAA

Fig. 5.81 Flow chart for page erase
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Figure 5.82 shows the data-path for the I2C page erase interface. The shift register

acquires the device ID (if the Flash memory requires any type of device authentication prior

to page erase) and the page address from the SDA bus, and transfers them to the device ID

register and the page address register, respectively. There are also address and data registers

that store only the fixed values, and they are routed to the address and data ports of the Flash

memory in order to produce the correct preamble and page erase commands in Fig. 5.81.
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The page erase process is described in the timing diagrams of Figs. 5.83, 5.84 and 5.85.

The process starts with the bus master generating the START condition in Fig. 5.83. In

cycles 2 to 9, the bus master sends the seven-bit device ID and the write bit, starting with the

most significant device ID bit, DAdd6. Even though the write bit is considered a command

bit, it does not have any significance in the page erase preamble. The bus master sends this

bit only to comply with the I2C protocol. All these bits are temporarily stored in the shift

register and correspond to the states DAdd6 to W in the state diagram in Fig. 5.86. In cycle

10, the interface generates an acknowledgement, ACK, to signify that it has received the first

eight bits from the bus master by EnSDAOut = 1, and transfers the device ID stored in the

shift register to the device ID register by LoadDevID = 1. This cycle corresponds to the

DevID ACK state in Fig. 5.86.

From cycles 11 to 18, which correspond to the states Add15 to Add8 in the state diagram,

the bus master sends the most significant byte of the Flash memory page address to the

interface. These bits are received by the shift register and immediately transferred to the page

address register in cycle 19 by LoadBlkMSB = 1. In this cycle, the interface also sends a

second acknowledgment to the bus master by EnSDAOut = 1, which is represented by the

AddMSB ACK state in the state diagram.

From cycles 20 to 27, the interface receives the least significant byte of the page address. It

stores this byte in cycle 28 by LoadBlkLSB = 1, and sends a third acknowledgement to the

bus master by EnSDAOut = 1. These events are shown by the states Add7 to Add0 and the

state AddLSB ACK in the state diagram, respectively. Starting in cycle 29, the complete page

address becomes available at the Addr[15:0] terminal in Fig. 5.82 even though the page erase

process has not been initiated. This cycle is also the starting point for the bus master to send

the erase command, 0x50, to the Flash memory interface. Without this step, the interface will

not be able to recognize if the ongoing process is actually about erasing a block of data.

From cycle 29 to 36 that correspond to the states 0x50-0 to 0x50-7, the interface receives

all eight bits of the command code, 0x50, in the shift register. Then in cycle 37, it generates

the fourth acknowledgment by EnSDAOut = 1, and transfers the contents of the shift

register, 0x50, to the command register by LoadCom = 1. Later on, the interface uses this

value to be able to generate the correct preamble for the page erase operation. Cycle 37

corresponds to the 0x50 ACK state in the state diagram. While the bus master sends the

second command code, 0x70, from cycles 38 to 45 to initiate the page erase, the interface,

now aware of the page erase operation, sends the first address and data preamble,

0x5555/0xAA, to the Flash memory in cycle 39. In this cycle, the fixed register value,

0x5555, is routed through port 1 of the address MUX by sel5555 = 1. The fixed register data,

0xAA, is also sent to the I/O[7:0] port through port 0 of the data MUX by selAA = 1 and

EnDataOut = 1. In cycle 41, the second address and data preamble, 0xAAAA/0x55, is sent.

This is followed by sending the third preamble (including the first page erase command),

0x5555/0x50, in cycle 43, and then the fourth preamble, 0x5555/0xAA, in cycle 45. The

interface pauses for one cycle after dispatching each address and data combination to comply

with the Flash memory protocol of writing data.
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Fig. 5.86 I2C page erase interface controller
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Cycles 38 to 45 are represented by the states 0x70-0 to 0x70-7 in the state diagram,

respectively. The interface sends the fifth acknowledgment to the bus master in cycle 46 by

EnSDAOut = 1 while in the 0x70 ACK state. In cycle 47, the interface sends the fifth address

and data preamble, 0xAAAA/0x55, and finally in cycle 49, it sends the page address with the

second page erase command, 0x70, to erase the entire block of data. Cycles 47 to 49 are

represented by the DontCare-0, DontCare-1 and DontCare-2 states in Fig. 5.86, respectively.

An architecture combining the read and the fast write interfaces can be implemented by a

data-path shown in Fig. 5.87. A shift register can be used to receive the incoming device

address and command bit from the SDA bus, which is subsequently is stored in an auxiliary

register as shown in this figure. The seven-bit device ID field can be used to activate one of

the maximum 128 Flash memory chips. The command bit, R or W, is used to enable either

the read interface or the fast write interface depending on its value. The Flash memory

address residing in the shift register is then forwarded to the eight-bit shift register in either

the read or the fast write interface to prepare the Flash memory for a data transfer.

The reader should be quite familiar with all three I2C interface designs shown above to be

able to integrate them in one interface to achieve a complete design.
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Fig. 5.87 I2C read and fast write (program) interface topologies
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5.5 Serial Flash Memory

Recent Flash memory chips already include I2C or SPI interfaces to interact with a host

processor or another bus master. The user does not have to deal with preambles, waiting

periods or other complexities of the memory, but simply write an I2C or SPI-compliant

embedded program to initiate a read, write or erase operation with the Flash memory.

This section examines the operation of a typical Flash memory with an SPI interface.

Figure 5.88 shows the basic internal architecture of the Flash memory where an external

active-low Slave Select control signal, SS, is applied to enable the memory. The clock is

supplied through the SCK port. The serial data comes into the memory through the

Serial-Data-In (SDI) port and departs from the Serial-Data-Out (SDO) port. Once a serial

address is retrieved from the SPI bus, it is stored in the address register. The address decoder

uses the contents of the address register to access the Flash memory core and read the data to

an internal data buffer. The serial data is subsequently delivered to the bus master through

the SDO port. If the operation is a write, the bus master sends serial data to the SDI port,

which is then transferred to an internal data buffer, and subsequently to the memory core.

Figure 5.89 describes a typical partitioning scheme of a 1 MB memory core that requires a

20-bit address for each byte of data. To be consistent with the E2PROM and Flash memory

organizations discussed in previous sections, the entire memory block in this example is

divided into sixteen 64 KB sectors. Each sector is subdivided into sixteen 4 KB blocks, and

each block is further subdivided into 16 pages. Each page contains 256 bytes, any of which

is accessible through the SPI bus. Figure 5.90 shows the detailed address mapping of Block

0 in Sector 0 to further illustrate the internal memory organization.
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Fig. 5.88 Serial Flash memory architecture with SPI interface
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Figure 5.91 shows nine basic modes of operation for this Flash memory. Some of the

modes in this table are further divided into sub-modes according to the complexity of the main

mode. For example, in the write (program) mode, the opcode 0x20 assumes to write between

1 and 255 bytes into the memory core while the opcode 0x23 writes 64 KB of data into a

sector. Similarly, the erase mode can be configured to erase a page, a block or the entire

chip. The protect operation prevents overwriting to a sector or the chip. The write enable

feature is a security measure for the serial Flash memory, and it is used prior to an actual write

or an erase operation. Once the write enable command is issued, any kind of data alteration in

the memory core becomes possible. Both the write enable and protect features are registered

Block 15 –4KB
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Block 0 –4KB

Sector 15 –64KB

Block 15 –4KB

Block 14 –4KB

Block 0 –4KB

Sector 14 –64KB

Block 15 –4KB

Block 14 –4KB

Block 0 –4KB

Sector 0 –64KB

Fig. 5.89 A serial Flash core memory organization: 16 sectors and 16 blocks in each sector

Page 0

(256B)

0x00000

0x000FF

7 0

Page 1

(256B)
Page 15

(256B)

7 0 7 0
0x00100

0x001FF

0x00F00

0x00FFF

Address mapping of Block 0 of Sector 0

Fig. 5.90 Memory organization of block 0 of sector 0: 16 pages, 256 bytes per page
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in the status register and can be read on demand. The status register also indicates whether the

device is busy, such as in the middle of a write or read operation, write enable is engaged or

not, or which sector is protected. The Flash memory can be placed into a long term hiber-

nation mode to save power. The modes in Fig. 5.91 are at minimum compared to a typical

serial Flash memory to emphasize only the primary modes of operation. The opcode value for

each mode is also randomly selected. Actual serial Flash memory datasheets contain many

more operational modes with different opcode values assigned to each mode.

FLASH MEMORY COMMANDS OPCODES

Read 0x10

Write Byte (1-255) 0x20

Write Page 0x21

Write Block 0x22

Write Sector 0x23

Erase Page 0x30

Erase Block 0x31

Erase Chip 0x32

Protect Sector 0x40

Unprotect Sector 0x41

Protect Chip 0x42

Unprotect Chip 0x43

0x66

0x55

Read Status Register 0x77

Hibernate 0x88

Wake up 0x99

Write

Erase

Protect/Unprotect

Write Disable

Write Enable

Fig. 5.91 Main serial Flash memory commands
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This particular Flash memory operates in both mode 0 (SCK is initially at logic 0) and

mode 3 (SCK is initially at logic 1) of the SPI protocol. However, most of the timing diagrams

in this section will refer to mode 0 when explaining different commands in Fig. 5.91.

Figures 5.92 and 5.93 explain the basic write protocols in mode 0 and mode 3, respec-

tively. Once SS signal is lowered to logic 0, data bits at SDI port can be written into the

Flash memory’s data buffer at the positive edge of SCK. The data transaction stops when SS

is raised to logic 1. The entire data buffer is subsequently transferred to the memory core

within the write period, tWRITE.

Similarly, Figs. 5.94 and 5.95 explain the basic read protocols in mode 0 and mode 3,

respectively. When the SS signal is lowered to logic 0, data is delivered from the memory

core to the data buffer, and then from the data buffer to the SDO terminal at the negative edge

of each SCK cycle. The memory access is equal to tREAD with respect to the negative edge of

SCK. When the SS signal is raised to logic 1, SCK is no longer allowed to change, and the

read process terminates.

In both write and read operations, the most significant data bit is delivered first, and the

least significant data bit is delivered last.

MSB LSBSDI

SS

SCK

Mode 0 - Write Protocol

Fig. 5.92 Serial Flash memory mode 0 SPI write (program) protocol

MSB LSBSDI

SS

SCK

Mode 3 - Write Protocol

Fig. 5.93 Serial Flash memory mode 3 SPI write (program) protocol
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A typical Flash memory byte read is shown in Fig. 5.96. The process starts with sending

the opcode, 0x10, corresponding to a read operation according to the table in Fig. 5.91.

A 20-bit address follows the opcode with the most significant address bit, A19, first, and the

least significant address bit, A0, last. The first data bit, D7 (also the most significant bit of

data), is delivered to the SDO terminal at the negative edge of SCK according to Fig. 5.96.

The remaining seven bits of data are sequentially delivered at each negative edge of SCK

until the SCK signal stabilizes at logic 0, and the SS signal transitions to logic 1.

MSB LSBSDO

SS

SCK

Mode 0 - Read Protocol

Fig. 5.94 Serial Flash memory mode 0 SPI read protocol

MSB LSBSDO

SS

SCK

Mode 3 - Read Protocol

Fig. 5.95 Serial Flash memory mode 3 SPI read protocol

MSB LSB

0 0 0 1 0SDI

SS

SCK

A19 A18 A0

D7 D6

MSB LSB

D0SDO

BYTE

OPCODE = 0x10 = READ ADDRESS [19:0]

Fig. 5.96 Serial Flash memory byte read in mode 0
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Once a starting 20-bit address is issued, a number of bytes, ranging from one byte to the

contents of the entire memory, can be read from the SDO port as long as the SS signal is kept

at logic 0, and the SCK activity is present. Terminating SCK and raising SS to logic 1 ceases

the read process as shown in Fig. 5.97.

The Flash memory write (program) mode has four sub modes. In the byte write mode,

bytes ranging between 1 and 255 can be written to a page following the opcode, 0x20, and a

20-bit memory address as shown in Fig. 5.98. After data is written to the last address of the

page, subsequent bytes at SDI terminal are considered invalid and will be ignored even

though there may still be SCK activity and/or SS may still be at logic 0. In some serial Flash

memory chips, excess data is not ignored but written to the memory core starting from the

first address of the page (address looping).

MSB LSB

0 0 0 1 0SDI

SS

SCK

A19 A18 A0

D7

MSB LSB

D0SDO

BYTE 0

OPCODE = 0x10 = READ ADDRESS [19:0]

D7

MSB LSB

D0

BYTE N (MAX = 1,048,575)

Fig. 5.97 Serial Flash memory read burst in mode 0

MSB LSB

0 0 1 0 0SDI

SS

SCK

A19 A18 A0 D7 D6

MSB LSB

D0

BYTE (1-255)OPCODE = 0x20 = WRITE BYTE ADDRESS [19:0]

Fig. 5.98 Serial Flash memory write burst (1 to 255 bytes) in mode 0
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Figure 5.99 describes the page write mode. After issuing the write page opcode, 0x21, and

a 20-bit page address, 256 bytes of data are sequentially written into the memory core

starting from the top of the page. Any data beyond 256 bytes will be ignored by the device. It

is vital that the 20-bit starting address aligns with the first address of the page. For example,

if page 0 of block 0 in sector 0 needs to be accessed to write data, the starting address has to

be 0x00000 according to Fig. 5.90. Similarly, the starting address has to be 0x00100 for

page 1 or 0x00F00 for page 15 if the contents of either page need to be written.

Writing to a block or a sector is not any different from writing to a page. In both instances,

the starting 20-bit address needs to align with the topmost address of the block or the sector.

For example, writing a 4 KB of data to block 0 of sector 0 requires the starting address to be

0x00000. Similarly, the starting address of block 1 of sector 0 has to be 0x01000 if 4 KB

data needs to be written to this block.

Erase can be performed on a page, a block or the entire chip according to the table in

Fig. 5.91. The page erase requires the opcode, 0x30, followed by the topmost address of the

page as shown in Fig. 5.100. Erasing the entire chip only requires the opcode, 0x32, as

shown in Fig. 5.101.

MSB LSB

0 0 1 0 1SDI

SS

SCK

A19 A18 A0 D7

MSB LSB

D0 D7

MSB LSB

D0

BYTE 0 BYTE 255OPCODE = 0x21 = WRITE PAGE ADDRESS [19:0]

PAGE

Fig. 5.99 Serial Flash memory page write in mode 0
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Accidentally altering the contents of the Flash memory is a non-reversible process.

Therefore, many manufacturers formulate a security measure, such as a write enable com-

mand, prior to a write or an erase operation. The write enable command requires issuing an

opcode, 0x55, according to Fig. 5.91, and it is implemented in Fig. 5.102. This code changes

the write enable bit in the status register which then enables the Flash memory for write or

erase. For example, in Fig. 5.103 the write enable opcode, 0x55, is issued prior to the write

byte opcode, 0x20, to allow any number of bytes to be written to a page. If the write enable

opcode is omitted prior to a byte, a page, a block or a sector write, the data delivered to the

memory core becomes invalid and is ignored.

MSB LSB

0 0 1 1 0SDI

SS

SCK

A19 A18 A0

OPCODE = 0x30 = PAGE ERASE PAGE ADDRESS [19:0]

Fig. 5.100 Serial Flash memory page erase in mode 0

0 0 1 1 0 0 1 0SDI

SS

SCK

OPCODE = 0x32 = CHIP ERASE

Fig. 5.101 Serial Flash memory chip erase in mode 0
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Protecting a sector or the entire chip is also a vital security measure for the Flash memory.

For example, if a Flash memory contains BIOS data in specific sectors, accidentally

accessing these sectors for write or erase becomes fatal. Therefore, such accesses need to be

prevented at all costs. The opcode, 0x40, is issued with a specific sector address to protect

the data in this sector as shown in Fig. 5.104. However, as with the write and erase modes,

the write enable opcode, 0x55, must accompany the sector protect opcode, 0x40, to make the

sector protect a valid entry as shown in the timing diagram in Fig. 5.105.

0 1 0 1 0 1 0 1SDI

SS

SCK

OPCODE = 0x55 = WRITE ENABLE

Fig. 5.102 Serial Flash memory write enable operation in mode 0

0 1 0 1 0SDI

SS

SCK

OPCODE = 0x55 = WRITE ENABLE

MSB LSB

1 0 1 0 0 A19 A18 A0 D7 D6

MSB LSB

D0

BYTE (1-255)OPCODE = 0x20 = WRITE BYTE ADDRESS [19:0]

Fig. 5.103 Serial Flash memory write (program) burst (1 to 255 bytes) followed by write

enable
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The user may reverse the write enable status of the device by issuing a write disable

command, 0x66, as shown in the timing diagram in Fig. 5.106.

Status register constitutes an important part of the Flash memory programming. For this

particular Flash memory, there are four entries in the status register that contain vital

operational information as shown in Fig. 5.107. The SP0, SP1 and SP2 bits identify which

MSB LSB

0 1 0 0 0 0 0 0SDI

SS

SCK

A19 A18 A0

OPCODE = 0x40 = PROTECT SECTOR SECTOR ADDRESS [19:0]

Fig. 5.104 Serial Flash memory protect sector operation in mode 0

0 1 0 1SDI

SS

SCK

OPCODE = 0x55 = WRITE ENABLE

1

MSB LSB

0 1 0 0 0 A19 A18 A0

OPCODE = 0x40 = PROTECT SECTOR SECTOR ADDRESS [19:0]

Fig. 5.105 Serial Flash memory write enable operation followed by protect sector in mode 0
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sectors are protected. The Write Enable Latch bit, WEL, signifies if the device has already

been write-enabled or not. The Write-In-Progress, WIP, bit defines if the device is busy with

a write process.

The user can access the contents of the status register at any time by issuing the read status

register command, 0x77, as shown in Fig. 5.108. After executing this command, the contents

of the status register become available at the SDO port.

The user can also place the Flash memory into the sleep mode to conserve power by

issuing hibernate opcode, 0x88, as shown in Fig. 5.109. The hibernation mode can be

reversed by issuing the wake-up opcode, 0x99, as shown in Fig. 5.91.

0 1 1 0 0 1 1 0SDI

SS

SCK

OPCODE = 0x66 = WRITE DISABLE

Fig. 5.106 Serial Flash memory write disable operation in mode 0

SP0 WIP

7 6 5 4

WEL = Write Enable Status = 1   Write Enable is active

                                                0   Write Enable is inactive

WIP = Write In Progress = 1   Device is busy with write

                                           0   Device is not busy with write

WEL

3

SP1SP2Reserved

2 1 0

SP0SP1SP2

000

100

010

110

001

101

011

111

No sector is protected

Address 0x00000 to 0x0FFFF is protected

Address 0x00000 to 0x1FFFF is protected

Address 0x00000 to 0x3FFFF is protected

Address 0x00000 to 0x7FFFF is protected

Address 0x00000 to 0xFFFFF is protected

Address 0x00000 to 0xFFFFF is protected

Address 0x00000 to 0xFFFFF is protected

Fig. 5.107 Serial Flash memory status register
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0 1 1 1 1SDI

SS

SCK

Res Res

MSB

SDO

STATUS REGISTER CONTENTS

OPCODE = 0x77 = READ STATUS REGISTER

Res SP2 SP1 SP0 WEL WIP

LSB

Fig. 5.108 Serial Flash memory status register read operation in mode 0

1 0 0 0 1 0 0 0SDI

SS

SCK

OPCODE = 0x88 = CHIP HIBERNATE

Fig. 5.109 Serial Flash memory chip hibernate operation in mode 0
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Review Questions

1. An SDRAM is composed of two16-bit wide banks, bank 0 and bank 1, as shown below.

00000xAB00

11110xAB01

22220xAB02

33330xAB03

44440xAB04

55550xAB05

66660xAB06

77770xAB07

88880xAB08

99990xAB09

AAAA0xAB0A

AA000xCD00

BB110xCD01

CC220xCD02

DD330xCD03

EE440xCD04

FF550xCD05

AA110xCD06

BB220xCD07

CC330xCD08

DD440xCD09

EE550xCD0A

SDRAM Bank0 SDRAM Bank1

15 150 0

The truth table below defines the precharge, activate and read cycles.

0

CS RAS CAS WE

Precharge

Activate

Read

Operation

0 1 0

0 0 1 1

0 1 0 1

Each 16-bit SDRAM address is composed of two parts: the most significant byte cor-

responds to the row address, and the least significant byte corresponds to the column

address as shown below.

Address = {Row Address, Column Address}

The precharge wait period is two clock cycles between the positive edge of the precharge

cycle and the positive edge of the activate cycle. Similarly, the CAS wait period is two

cycles between the positive edge of the activate cycle and the positive edge of the read

command. The read burst from the specified address starts after a latency of two cycles.

The waiting period between the last data packet and the precharge cycle is also two cycles

if the read repeats from the same bank.
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(a) Show the two read sequences in sequential addressing mode from Bank 0. Each burst

contains four data packets: the first burst is from the address, 0xAB03, and the next

from the address, 0xAB07.

(b) Show the two read sequences in sequential addressing mode from different banks

with no delay in between. Each burst contains four data packets: the first burst is from

the Bank 0 with the starting address, 0xAB03, and the next from Bank 1 with the

address, 0xCD06.

2. A Flash memory is composed of two byte-addressable sectors. It has an eight-bit

bidirectional I/O port for reading and writing data, and a 16-bit unidirectional address

port. The upper eight bits of the address field are allocated for the sector address and the

lower eight bits for the program address. The three active-low inputs, EN, RE and WE,

control the Flash memory according to the following chart:

Operations EN RE WE

Read 0 0 1

Write 0 1 0

Standby 0 1 1

Off 1 x x

The initial data contents in this memory are shown below:

0xEE 0xFF 0x34 0x12

0xCC 0xDD 0x78 0x56

0x00

0x02

0xAA 0xBB 0xBC 0x9A

0x88 0x99 0xF0 0xDE

0x04

0x06

15 0150

0x00

0x02

0x04

0x06

Sector 0 Sector 1

The Flash command chart is as follows:

Sector protect 0x5555 0xAA 0xAAAA 0x55 Sector Addr 0x01

Fast write
0x5555

0xAA
0xAAAA

0x02
Write Addr Write Data

word

word

0xAAAA 0x5555 Write Addr Write Databyte

Read
0x5555

0xAA
0xAAAA

0x03
Read Addr Read Dataword

0xAAAA 0x5555 Read Addr Read Databyte

Cycle 1 Cycle 2 Cycle 3

Addr Data Addr Data Addr Data
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In this diagram, the sector protect is a three-cycle sequence where the sector protect code,

0x01, is provided in the third cycle along with the sector address.

Both the fast write and the read processes are initially three cycles. However, once the

process starts, additional reads or writes are reduced to two-cycle operations as shown in

the flow chart below. According to this chart, for each additional data to be read or

written, the command code must be employed in the second cycle, and the address/data

combination in the third cycle.

The flow chart for the fast write and read is as follows:

Start

First cycle

Second cycle

Addr/

Data

Last Addr

Finish

yes

Incr. Addr
no

(a) Perform protect sector 1. Show the timing diagram with control inputs, address and

data.

(b) Perform fast write to sector 0 with four bytes of data, 0x11, 0x22, 0x33, 0x44. Start

from the address, 0x04, and increment the address to write each byte.

(c) Read four bytes from sector 0 at the addresses, 0x00, 0x02, 0x04 and 0x06. Show the

timing diagram with control inputs, address and data.
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3. Two reads need to be accomplished from a 16-bit wide SDRAM organized in four banks

with the data shown below.

Each SDRAM address is composed of an eight-bit wide row address, RA[7:0], and an

eight-bit wide column address, CA[7:0], as in the following format:

SDRAM Address = {RA[7:0], CA[7:0]} where the row address occupies higher bits.

To control SDRAM, the following controls are supplied:

0

CS RAS CAS WE

Precharge

Activate

Read

Operation

0 1 0

0 0 1 1

0 1 0 1

The wait period between the precharge and the activate cycles is one clock cycle. Similarly,

the wait period between the activate and the read cycles is one clock cycle. The precharge

cycle for the next read operation takes place after the last data is read out from SDRAM.

BS[1:0] = 0 selects Bank0, BS[1:0] = 1 selects Bank1, BS[1:0] = 2 selects Bank2, and

BS[1:0] = 3 selects Bank3 in the timing diagrams.

(a) Assuming that the mode register is pre-programmed in sequential mode addressing

with a burst length of four and a CAS latency of two, construct a timing diagram to

show the two reads from the SDRAM addresses, 0xAA00 and 0xAA04. Start from

the precharge cycle to accomplish each read.

(b) With the same mode register contents in part (a), construct a timing diagram such that

the two reads from the SDRAM addresses, 0xAA00 and 0xBB02, take place in the

shortest possible time. Again start from the precharge cycle to accomplish each read.

1111

2222

3333

4444

5555

6666

7777

8888

AA00

AA01

AA02

AA03

AA04

AA05

AA06

AA07

15 0

Bank0

AAAA

BBBB

CCCC

DDDD

EEEE

FFFF

0000

1111

BB00

BB01

BB02

BB03

BB04

BB05

BB06

BB07

15 0

Bank1

FFFF

EEEE

DDDD

CCCC

BBBB

AAAA

1111

0000

CC00

CC01

CC02

CC03

CC04

CC05

CC06

CC07

15 0

Bank2

8888

7777

6666

5555

4444

3333

2222

1111

DD00

DD01

DD02

DD03

DD04

DD05

DD06

DD07

15 0

Bank3
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(c) With the same mode register contents in part (a), accomplish one read from the

SDRAM address, 0xCC00, with a burst length of two, and one read from the

SDRAM address, 0xDD02, with a burst length of eight. Start from the precharge

cycle to accomplish each read.

4. Subsequent write and read operations are performed on an SDRAM that consists of two

banks. Both banks have eight-bit wide I/O data ports.

The first SDRAM operation is a write operation that writes 0x11 to the starting address of

0xAB in bank 0. This is followed by writing the data values, 0xEE, 0x00 and 0xFF, to

bank 0 in sequential mode.

The read operation takes place from bank 1 without any interruption. This means that the

first read-data is delivered to the data bus immediately after the last data, 0xFF, has been

written. The first read-address is defined as 0x12. Four data packets are read from this

starting address in sequential mode with a latency of two cycles.

Both write and read operations require tPRE = tCAS = 1 cycle.

Construct a timing diagram with control, address and data values to achieve these two

consecutive operations. Assume all initial data values in Bank 0 are 0x00. Make sure to

mark each precharge, activate, write and read cycle on the timing diagram. Indicate where

latency happens.

Addr[0xA0]

7 0

Addr[0xA1]

Addr[0xA2]

Addr[0xA3]

Addr[0xA4]

Addr[0xA5]

Addr[0xA6]

Addr[0xA7]

BANK 0

Addr[0xA8]

Addr[0xA9]

Addr[0xAA]

Addr[0xAB]

Addr[0xAC]

Addr[0xAD]

Addr[0xAE]

Addr[0xAF]

Addr[0x10]0x88

0x99

0xAA

0xBB

0xCC

0xDD

0xEE

0xFF

7 0

Addr[0x11]

Addr[0x12]

Addr[0x13]

Addr[0x14]

Addr[0x15]

Addr[0x16]

Addr[0x17]

Addr[0x18]0x00

0x11

0x22

0x33

0x44

0x55

0x66

0x77

Addr[0x19]

Addr[0x1A]

Addr[0x1B]

Addr[0x1C]

Addr[0x1D]

Addr[0x1E]

Addr[0x1F]

BANK 1
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5. An E2PROM memory is organized in four sectors. There are eight rows in each sector but

no pages. The existing data in this memory is shown below.

0x7

0x6

0x5

0x4

0x3

0x2

0x1

0x0 0x7

0x6

0x5

0x4

0x3

0x2

0x1

0x00xF

0xE

0xD

0xC

0xB

0xA

0x9

0x8 0xF

0xE

0xD

0xC

0xB

0xA

0x9

0x8

3 0

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

3 0 3 0 3 0

Sector 0 Sector 1 Sector 2 Sector 3

The command truth table is given below.

Function Command code

SR Read

Read

Write buffer

0x0

0x1

0x2

0x3Write core

The memory has five control pins:

EN is an active-low signal that activates the sector

AE is an active-high signal that accepts address

CE is an active-high signal that enables command function

WE is an active-low signal that enables write

RE is an active-low signal that enables read

Writing to thememory takes place at the rising edge ofWE. At the falling edge ofRE, reads

take place from thememory. Thewrite sequence starts with the command function followed

by the address and then the data. The read sequence follows a similar fashion: it starts with

the read command, then the address and then the data. Assume all AE,WE and RE set-up

times are 0 s. The setup and hold times for command, address and data are all different from

0 s. It takes tWRITE amount of time to transfer data from the buffer to the memory core.

(a) Draw a timing diagram to read data from the row address = 0 and the sector address = 3.

(b) Draw a timing diagram to write 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x7, 0x6 starting

from the row address = 2 and the sector address = 2 in the following manner: the first

data, 0xA, to the row address 2; the second data, 0xB, to the row address 0x3 and so

forth. Draw the contents of the memory after the write sequence is complete.
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6. A Flash memory block has an eight-bit address, and executes all reads and writes on an

eight-bit bidirectional data bus. The Flash memory write sequence contains a preamble, a

write command, and an address/data combination as shown in the flow chart below. Once

the write command is issued, the address/data combination is generated continuously until

the last write takes place. The sequence ends with the same preamble that starts the write.

Preamble

Write com

Addr/Data

Last

Addr

Preamble

DONE

Next Addr

START

yes

no

In the read sequence, the bus master starts fetching data once the preamble and the read

command are issued. The sequence has the same exit preamble as shown below.

Preamble

Read com

Addr/Data

Last

Addr

Preamble

DONE

Next Addr

START

yes

no
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START and DONE do not have any significance in timing diagrams other than that they

indicate the start and the end of the sequence, respectively.

The preamble, write and read commands are issued with the hexadecimal values shown

in the truth table below.

Preamble

Write com

Read com

COMMANDS Address Data

FF

AA

BB

00

FF

FF

The state of the Flash memory before any read or write operation is shown below. The

leftmost column in this figure shows the Flash memory address in hexadecimal.

FF

EE

DD

CC

BB

AA

99

88

7 0

F8

F9

FA

FB

FC

FD

FE

FF

The bus master produces three data transmissions for the Flash memory. In the first

transmission, four data packets are written to the Flash memory as shown below.

F8

F9

00

11

Address Data

1

2

Packet no

FA

FB

22

33

3

4
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In the second transmission, the bus master reads two data packets from the following

addresses below.

FA

FB

Address Data

1

2

Packet no

In the third transmission, the bus master reads two more data packets from the following

addresses.

FE

FF

Address Data

1

2

Packet no

Construct a timing diagram, including the address, the active-low WE and RE signals,

and the data. Note that the Flash memory requires a hold period which coincides with the

high phase of EN signal. However, in the low phase, when the Flash memory is active,

the device either writes or reads depending on the value of the WE and RE signals,

respectively.

7. A serial on-chip SPI bus described in Chapter 4 is used to program an SDRAM register

file that consists of five registers (see the SDRAM bus interface architecture).

Assume that each register in the register file has an eight-bit long address. Data in each

register is also assumed to be eight bits long.

The Wait register receives the number of clock periods which is equivalent to tWAIT, the

Latency register to tLAT, the Burst register to tBURST, the CAS register to tCAS, and the

Precharge register to tPRE.

The SDI port of the SDRAM programming interface receives an eight-bit address (starting

with the most significant bit) followed by an eight-bit data (again starting with the most

significant bit) at the positive edge of SCK until all five registers are programmed while

SS = 0. Once the programming is finished, the SS node pulls back to logic 1.

Design the interface between the SPI bus and the register file. Make sure to show each

SPI-compliant I/O port (such as SCK, SDI, SS etc.), the internal address, data and control

signals of the interface on the timing diagram. The functionality of the interface must be

the same in both the timing diagram and the data-path.

Start building the timing diagram that includes only the address and the data. Then form

the corresponding data-path that matches the timing diagram. Increase the complexity of

the design by including the control signals in the timing diagram, guiding the data flow.

Lastly, draw the state diagram of the Moore type controller for the interface.
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Projects

1. Implement and verify the SRAM bus interface unit described in Fig. 5.5 with the uni-

directional bus designed in Chapter 4. Use Verilog as the hardware design language for

the module implementation and functional verification. Make sure the interface complies

with the timing diagrams shown in Figs. 5.6 and 5.8 and includes a controller unit as

shown in Figs. 5.7 and 5.9.

2. Implement and verify the SDRAM bus interface unit described in Fig. 5.25 with the

unidirectional bus designed in Chapter 4. Use Verilog as the hardware design language

for the module implementation and functional verification. Make sure the interface

complies with the timing diagrams shown in Figs. 5.27 and 5.29 and includes a controller

unit as shown in Figs. 5.28 and 5.30. Produce the hardware to program the SDRAM

register file. Assume a serial bus such as SPI or I2C to distribute the program data to the

registers.

3. Implement and verify the I2C fast write interface in the first design example of Chapter 5

using Verilog. Make sure your design is consistent with the state machine shown in

Fig. 5.72.

4. Implement and verify the I2C read interface in the second design example using Verilog.

Make sure to be consistent with the state machine shown in Fig. 5.80.

5. Combine the read and the fast write interfaces into a single unit. Design and verify the

complete interface using Verilog.

Note that for projects 3 through 5, write a behavioral Verilog code that mimics the bus

master in order to send data on the I2C bus.
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6Central Processing Unit

This chapter describes a basic Central Processing Unit (CPU) that operates with a Reduced

Instruction Set (RISC) [1, 2, 3, 4]. The chapter is divided into four parts.

In the first part, fixed-point Arithmetic Logic Unit (ALU) instructions are described. This

section first develops a dedicated hardware (data-path) to execute a single RISC instruction,

and then groups several data-paths together to be able to execute variety of user programs. In

each step of this process, the instruction field is dissected into several segments as the

instruction flows through the data-path, and the necessary hardware is formed to execute the

instruction and generate an output.

The second part of this chapter explains the IEEE single and double-precision

floating-point formats, leading to the designs of floating-point adder and multiplier. These

designs are then integrated with the fixed-point hardware to obtain a RISC CPU capable of

executing both fixed-point and floating-point arithmetic instructions.

In the third part, structural, data and program control hazards in CPU pipelines are

discussed. This section shows how to generate additional hardware (forwarding loops) to

overcome various hazards [4].

The last section of this chapter is devoted to explaining different types of cache memory

architectures, their operation and design trade-offs.

6.1 RISC Instruction Formats

In a RISC CPU, all instructions include an Operation Code (OPC) field which instructs the

processor what to do with the rest of the fields in the instruction, and when to activate

different hardware components in the CPU to be able to execute the instruction. The OPC

field is followed by one or more operand fields. Each field either corresponds to a register

address in the Register File (RF) or contains immediate user data to process the instruction.
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There are three types of instructions in a RISC CPU: register-to-register-type,

immediate-type and jump-type.

A register-to-register-type instruction contains an OPC followed by three operands: two

source register addresses and one destination register address pointing the RF, namely RS1,

RS2 and RD. The format of this instruction is shown below.

OPC RS1;RS2;RD

This type of instruction fetches the contents of the first and second source registers,

Reg[RS1] and Reg[RS2], from the RF, processes them according to the OPC, and writes the

result to the destination register, Reg[RD] in the RF. This operation is described below.

Reg RS1½ � ðOPCÞReg RS2½ � ! Reg RD½ �

An immediate-type instruction contains an OPC followed by three operands: one source

register address, RS, one destination register address, RD, and an immediate data as shown

below.

OPCRS;RD; ImmValue

This type of instruction combines the contents of the source register, Reg[RS], with a

sign-extended immediate value according to the OPC, and writes the result to the destination

register, Reg[RD], in the RF. This operation is shown below.

Reg RS½ � OPCð Þ ImmediateValue ! Reg RD½ �

The jump-type instruction contains an OPC followed by an immediate value shown

below.

OPC ImmValue

This type of instruction uses the immediate field to modify the contents of the Program

Counter (PC) for the instruction memory. The operation of this instruction is given below.

ImmediateValue ! PC

All three instruction types fit in a 32-bit wide instruction memory as shown Fig. 6.1. In

this figure, the numbers on top of each field correspond to the bit positions of the instruction

memory, defining the borders of the OPC or a particular operand field.
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6.2 CPU Data-Path

A modern RISC CPU is composed of small and large size memories, such as Register File

(RF), instruction and data memories, and an ALU to execute an instruction. A Program

Counter (PC) generates an address for the instruction memory as shown in Fig. 6.2. Each

instruction is fetched from this memory and separated into OPC and operand fields.

The OPC field guides the data-flow through the rest of the CPU. The operand field contains

either a number of RF addresses or the user data or the combination of the two. Once the

source and destination RF addresses become available at the output of the instruction

memory, the corresponding data is read from the RF and processed in the ALU according to

the OPC. The read function from the RF is achieved by simply disabling the write process to

the RF or Write Enable (WE) = 0. The processed data in the ALU is subsequently written

back to a destination address in the RF by WE = 1. On the other hand, if a particular

instruction needs to fetch data from the data memory instead of the RF, first the ALU

calculates the effective memory address for the data memory. When data becomes available

at the output of the data memory, then the OPC decoder writes this data back to a destination

address in the RF by WE = 1. Sometimes, instructions contain a user-defined immediate

value. This is separated from the rest of the operand fields and combined with the contents

of a source register, Reg[RS], in the ALU. The processed data is written back to the RF

by WE = 1.

31

OPC RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

31

OPC RS RD Immediate Value/Not Used

26 25 21 20 16 15 0

31

OPC Immediate Value/Not Used

26 25 0

Register-to-Register Type

Immediate Type

Jump Type

Fig. 6.1 Instruction field formats
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Instructions can be executed in RISC CPUs in two ways. In a non-pipelined CPU

architecture, instructions are fetched from the instruction memory and processed through the

remaining four stages of the CPU in Fig. 6.2 before the CPU takes the next instruction. This

is shown in Fig. 6.3. In this figure, IF, RF, A, DM and WB represent the Instruction Fetch,

Register File access, ALU, Data Memory and Write-Back stages, respectively.

Non-pipelined structures are inefficient in terms of data throughput but require lower clock

frequencies to operate. The CPU becomes more efficient in terms of throughput if the archi-

tecture in Fig. 6.2 is subdivided into smaller functional stages where each stage is separated

from its neighboring stage by a flip-flop boundary that stores data (or address) only for one

clock cycle as shown in Fig. 6.4. In this figure, the CPU data-path consists offive stages where

individual tasks are executed in each stage within one clock cycle. According to this scheme,

the clock frequency becomes five times higher compared to the architecture in Fig. 6.2.

The first stage of this new pipeline in Fig. 6.4 is the instruction memory access. In this

stage, each program instruction is fetched from the instruction memory and stored in the

instruction register at the first flip-flop boundary. This architecture supports a

word-addressable instruction memory, and therefore requires the PC to increment by one.

Instruction 1

Instruction 2

Instruction 3

IF RF A DM WB

cycle 

1

cycle 

2
cycle 

3

IF RF A DM WB

IF RF A DM WB

NON-

PIPELINED

Fig. 6.3 A non-pipelined CPU timing table
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Fig. 6.2 A non-pipelined CPU
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Instruction Memory Stage RF Stage Data Memory Stage Write-Back Stage

1
st
 flip-flop 

boundary

ALU Stage

2
nd

 flip-flop 

boundary

3
rd

 flip-flop 

boundary

4
th
 flip-flop 

boundary

PC

OPC Dec

A

L

U

Addr

Instruction

Memory

Ain Dout

Register

File

RS1

RS2

Ain1

Ain2

Dout1

Dout2

Immediate value path

Din

RF

Imm

Ain

Dout

Data Memory bypass path

DM

BY

Data

Memory

WE

Ain3 WE

Fig. 6.4 A pipelined five-stage CPU

The next pipeline stage is the RF stage where the instruction OPC is separated from its

operands. The OPC is decoded in order to generate control signals to route the address and

data in the rest of the CPU. Operand fields are either source register addresses to access the

data in the RF or immediate data supplied by the user as mentioned earlier. If the operand

corresponds to an RF address, the data fetched from this address is loaded to the register that

resides at the second flip-flop boundary. If the operand is an immediate data, it is sign

extended to 32 bits before it is loaded to a register in the second flip-flop boundary.

The third stage of the CPU pipeline is the ALU stage. The data from the source registers

in the RF or the immediate data are processed in this stage according to the OPC and loaded

to the register at the third flip-flop boundary.

The fourth stage is the data memory stage. This stage either calculates an effective address

for the data memory or bypasses the data memory. If the instruction calls for loading or storing

data, the ALU calculates the data memory address to access its contents. Otherwise, the ALU

result simply bypasses the data memory and stored in a register at the fourth flip-flop boundary.

The last stage of the CPU pipeline is the write-back stage. In this stage, data is either

routed from the output of the data memory or from the bypass path to a designated desti-

nation address in the RF.

A pipelined RISC CPU’s efficiency and speed are shown in the timing table in Fig. 6.5.

This figure extends to 15 high frequency clock cycles, which is the equivalent to three low

frequency clock cycles in Fig. 6.3. The number of completed instructions in this new

pipeline is almost 12, which is four times larger than the number of instructions executed in a

non-pipelined CPU in Fig. 6.3. The difference between non-pipelined and pipelined CPU

efficiency only gets better as the number of instructions increases.
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The next section of this chapter examines the hardware requirements of

register-to-register-type, immediate-type and jump-type RISC instructions.

6.3 Fixed-Point Register-to-Register Type ALU Instructions

Fixed-point register-to-register type ALU instructions interact with the ALU only. The most

fundamental instruction in this category is the Add (ADD) instruction that contains the ADD

opcode, two source register addresses, RS1 and RS2, and a destination register address, RD,

as shown below.

ADDRS1;RS2;RD

This instruction fetches data from the source addresses, RS1 and RS2, adds them, and

returns the result to the destination address RD according to the equation below.

Reg RS1½ � þReg RS2½ � ! Reg RD½ �

The field format of this instruction in the instruction memory is shown in Fig. 6.6. The

numbers on top of each field represent the OPC and operand boundaries.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

IF RF A DM WB

cycle 

1

cycle 

2

cycle 

3

cycle 

4

cycle 

5

cycle 

6

cycle 

7

cycle 

8

cycle 

9

cycle 

10

cycle 

11

cycle 

12

cycle 

13

cycle 

14

cycle 

15

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

IF RF A DM WB

Instruction 7

Instruction 8

Instruction 9

Instruction 10

Instruction 11

Instruction 12

PIPELINED

Fig. 6.5 A pipelined CPU timing table
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The required hardware for the ADD instruction is shown in Fig. 6.7. In this figure, the PC

generates an address for the instruction memory and loads the contents of the ADD

instruction to the instruction register at the end of the first clock cycle. Since the instruction

contains two source register addresses, RS1 and RS2, the contents of these registers,

Reg[RS1] and Reg[RS2], are read from the RF and stored at the second flip-flop boundary.

As mentioned earlier, the read function is achieved by disabling the write process to the RF

or WE = 0 during this cycle. In the third clock cycle, the ALU adds Reg[RS1] and Reg

[RS2], and stores the result at the third flip-flop boundary. In the fourth clock cycle, the ALU

result is written back to the destination register address, RD, in the RF. In this cycle, WE = 1

is generated by the OPC decoder to enable the write. No processing is done to RD, which

propagates from one stage to another without any modification to point where the processed

ALU result needs to go in the RF.

31

ADD RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.6 Fixed-point ADD instruction field format
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Fig. 6.7 ADD instruction data-path
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Since the ADD instruction does not require any data to be stored or fetched from the data

memory, the data memory stage is omitted from this data-path which reduces the number of

stages from five to four.

Similar to the ADD instruction, the Subtract (SUB) instruction subtracts the 32-bit data at

RS2 from the 32-bit data at RS1 and returns the result to RD. The instruction and its

operational equation are shown below.

SUBRS1;RS2;RD

Reg RS1½ � � Reg RS2½ � ! Reg RD½ �

The field format of the SUB instruction in the instruction memory is the same as the ADD

instruction in Fig. 6.6 except the ADD OPC is replaced by SUB. This instruction also

follows the same data-path as the ADD instruction except the OPC selects the subtractor in

the ALU instead of the adder.

The fixed-point Multiplication (MUL) instruction requires four operands as shown below.

This instruction multiplies the contents of RS1 and RS2 and generates a 64-bit result. The

lower and upper 32 bits of the result in curly brackets are written to RD1 and RD2,

respectively.

MULRS1;RS2;RD1;RD2

Reg RS1½ � � Reg RS2½ � ! Reg RD2½ �;Reg RD1½ �f g

The field format of this instruction in the instruction memory is shown in Fig. 6.8.

There are two ways to generate a data-path for this particular instruction. The first method

executes this instruction using four pipeline stages and requires two RF write-back ports as

shown in Fig. 6.9. In this figure, the lower 32 bits of the multiplication result, MUL[31:0],

are written to the address RD1 while the higher 32 bits, MUL[63:32], are written to the

address RD2 in the RF. In the write-back cycle, WE = 1 is generated by the OPC decoder to

enable the two simultaneous writes.

31

MUL RS1 RS2 RD2 Not Used

26 25 21 20 16 15 11 10 0

RD1

6 5

Fig. 6.8 Fixed-point MUL instruction field format
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The second method writes the multiplication result back to the RF in two successive clock

cycles instead of one but does not require the RF to have two write-back ports. In this

scheme, the 64-bit multiplication result is divided between two distinct paths in the ALU as

shown in Fig. 6.10. The lower 32 bits, MUL[31:0], are written back into the RF at the end of

fourth cycle while the higher 32 bits, MUL[63:32], are stored at an additional flip-flop

boundary. The higher 32 bits are subsequently written back to the RF at the end of the fifth

cycle.
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Fig. 6.9 Data-path for fixed-point multiplication using two write-back ports
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The And (AND) instruction bitwise “ANDs” the contents of RS1 and RS2, and returns the

result to the address RD in the RF. Again in the fourth cycle, WE = 1 is generated by the

OPC decoder to enable the write. The operational equation of this instruction contains the

“&” sign to indicate that this is an AND operation. The field format of this instruction is

shown in Fig. 6.11.

ANDRS1;RS2;RD

Reg RS1½ �&Reg RS2½ � ! Reg RD½ �

The AND instruction data-path in Fig. 6.12 is identical to the ADD or SUB instruction

data-paths except for the ALU which requires 32 sets of two-input AND gates to carry out

the instruction.
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Fig. 6.10 Data-path for fixed-point multiplication using a single write-back port (WE signal

to RF is not shown for clarity)

31

AND RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.11 Fixed-point AND instruction field format
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The Or (OR), Exclusive Or (XOR), Nand (NAND), Nor (NOR) and Exclusive Nor

(XNOR) instructions have identical instruction formats except the opcode field. These

operations are shown below.

OR RS1, RS2, RD

Reg[RS1] | Reg[RS2] ! Reg[RD]

XOR RS1, RS2, RD

Reg[RS1] ^ Reg[RS2] ! Reg[RD]

NAND RS1, RS2, RD

Reg[RS1] *& Reg[RS2] ! Reg[RD]

NOR RS1, RS2, RD

Reg[RS1] *| Reg[RS2] ! Reg[RD]
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Fig. 6.12 AND instruction data-path
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XNOR RS1, RS2, RD

Reg[RS1] *^ Reg[RS2] ! Reg[RD]

Here, “|” and “^” signs refer to the OR and XOR operations, respectively. The “*” sign

corresponds to negation and generates a complemented value. Therefore, “*&”, “*|” and

“*^” operations denote the bitwise-NAND, NOR and XNOR, respectively.

The OR, XOR, NAND, NOR and XNOR instructions follow the same, four-stage

data-path as the AND instruction in Fig. 6.12. However, each logical instruction requires

different types of logic gates in the ALU stage, and the OPC field selects which to use.

Another important register-to-register type instruction is the shift instruction. The Shift

Left (SL) instruction shifts the contents of RS1 to the left by the amount stored at the address

RS2, and returns the result to RD. The format and the operation of this instruction are shown

below. The “�” sign indicates left-shift operation. This instruction’s field format is similar

to the previous register-to-register-type instructions as shown in Fig. 6.13.

SLRS1;RS2;RD

Reg RS1½ � � Reg RS2½ � ! Reg RD½ �

The Shift Right (SR) instruction is similar to the SL instruction except the contents of RS1

are shifted to the right by the amount indicated in RS2. The “�” sign corresponds to the SR

operation.

SRRS1;RS2;RD

Reg RS1½ � � Reg RS2½ � ! Reg RD½ �

Both the SL and SR instructions require linear shifters in the ALU. These units are large

combinational logic blocks that are predominantly made out of multiplexers as examined in

Chapter 1. Both of these instructions follow the same data-path as any other

register-register-type instructions with three operands. Figure 6.14 shows the combined

data-path for the SL and SR instructions. The ALU stage contains both a left and a right

linear shifter. The first input, Reg[RS1], represents the value to be shifted to the right or to

the left. The second input, Reg[RS2], specifies the amount to be shifted in number of bits.

Even though the ALU executes both the left and right-shifted versions of Reg[RS1]

simultaneously, only one result is selected by the OPC and written back to the RF. If the

instruction is a SR instruction, then OPC selects port 0 of the 2-1 MUX, and the SR result is

written to the RF. Otherwise, the OPC selects port 1, and the SL result is written to the RF.

31

SL RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.13 Fixed-point Shift-Left (SL) instruction field format
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Both the SL and SR instructions require a four-stage CPU pipeline. In the write-back cycle,

WE = 1 is generated by the OPC decoder to enable the write.

As an example, we can combine the individual data-paths for ADD, SUB, AND, NAND,

OR, NOR, XOR, XNOR, SL and SR instructions in a single CPU to execute a user program.

The architecture in Fig. 6.15 shows eight individual functional units in the ALU followed by

an 8-1 MUX to select the desired ALU output. In this figure, there is only one adder, and it is

able to execute a two’s complement addition to perform subtraction. The left and right linear

shifters are also combined in a single unit as in Fig. 6.14. The SL or SR opcode selects the

output of either the left shifter or the right shifter for the destination register. The outputs of

all logical units are selected by an 8-1 MUX and forwarded to the RF.
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The next category of register-register-type instructions are the Set instructions used in

decision-making situations where two source register values are compared against each other

prior to a branch instruction.

The Set-Greater-than-or-Equal (SGE) instruction below describes setting the contents of

RD to 0x00000001 if the contents of RS1 are found to be greater than or equal to the

contents of RS2. The data in RS1 and RS2 registers are considered unsigned integers. If the

comparison fails, then the contents of RD are set to 0x00000000. The field format of this

instruction is given in Fig. 6.16.

SGERS1;RS2;RD

If Reg RS1½ � �Reg RS2½ � then 1 ! Reg RD½ � else 0 ! Reg RD½ �

The data-path for the SGE instruction in Fig. 6.17 tests if the contents of RS1 are greater

than or equal to the contents of RS2 using a subtractor in the ALU. Again, the data in RS1

and RS2 registers are considered unsigned integers. To perform this test, Reg[RS1] is

subtracted from Reg[RS2], and the sign bit of the result is used to make the decision. If Reg

[RS1] is greater than or equal to Reg[RS2], the sign bit becomes zero. The complemented

31

SGE RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.16 Fixed-point Set-Greater-than-or-Equal (SGE) instruction field format
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Fig. 6.17 SGE instruction data-path (WE signal to RF is not shown for clarity)
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sign bit is then forwarded to the 2-1 MUX at the write-back port of the RF to store

0x00000001 in the destination register. If the subtraction yields a negative number, the

complemented sign bit selects 0x00000000 to be stored in the RD.

The Set-Greater-Than (SGT) instruction is another instruction that tests if Reg[RS1] is

greater than Reg[RS2]. If the comparison is successful, the instruction stores 0x00000001 in

the RD. Otherwise, the instruction stores 0x00000000 as described below.

SGTRS1;RS2;RD

If Reg RS1½ �[Reg RS2½ � then 1 ! Reg RD½ � else 0 ! Reg RD½ �

The data-path of the SGT instruction is shown in Fig. 6.18. In this figure, two tests are

performed in the ALU stage. The first test checks if Reg[RS1] is greater than or equal to Reg

[RS2] using the sign bit of the subtractor as was done for the SGE instruction. The second

test checks if Reg[RS1] is not equal to Reg[RS2] using 32 sets of two-input XNOR gates

followed by a single 32-input NAND gate. Both of these tests form the input to a two-input

AND gate in the ALU, which then produces the selector input for the 2-1 MUX in the

write-back stage to test the SGT condition. If Reg[RS1] > Reg[RS2], then port 1 of the 2-1

MUX is selected to store 0x00000001 in RD. Otherwise, port 0 is selected to store

0x00000000.

Similar to the SGE and SGT instructions, there are four other set instructions that compare

the contents of the two source registers in a variety of different ways to set or reset the

destination register. The Set-Less-than-or-Equal (SLE), Set-Less-Than (SLT), Set-Equal

(SEQ) and Set-Not-Equal (SNE) instructions and how they operate in theCPU are listed below.

SLERS1;RS2;RD

If Reg RS1½ � �Reg RS2½ � then 1 ! Reg RD½ � else 0 ! Reg RD½ �

SLTRS1;RS2;RD

If Reg RS1½ �\Reg RS2½ � then 1 ! Reg RD½ � else 0 ! Reg RD½ �

SEQRS1;RS2;RD

If Reg RS1½ � ¼ Reg RS2½ � then 1 ! Reg RD½ � else 0 ! Reg RD½ �

SNERS1;RS2;RD

If Reg RS1½ � 6¼ Reg RS2½ � then 1 ! Reg RD½ � else 0 ! Reg RD½ �

All Set instructions require four clock cycles to write the result to the RF like all the other

register-to-register-type instructions.
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6.4 Fixed-Point Immediate Type ALU Instructions

Immediate ALU instructions allow user data to be included in the instruction. However,

these instructions still fetch register data from the RF to be combined with the user data.

The Add-Immediate instruction (ADDI) adds the contents of RS to the user-supplied

16-bit immediate value and returns the result to RD in the RF. This instruction and how it

operates in the CPU are shown below. The field format of this instruction in the instruction

memory is given in Fig. 6.19.

ADDIRS;RD; ImmValue

Reg RS½ � þ ImmediateValue ! Reg RD½ �

The ADDI instruction data-path is shown in Fig. 6.20. In this figure, the contents of the

instruction are transferred from the instruction memory to the instruction register at the end

31

ADDI RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.19 Fixed-point ADD Immediate (ADDI) instruction field format
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Fig. 6.20 ADDI instruction data-path
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of the first clock cycle. In the second clock cycle, the 16-bit immediate value in the

instruction is sign extended to 32 bits while the contents of RS are fetched from the RF. In

the third clock cycle, the two values are added in the ALU. At the end of the fourth cycle, the

processed data is written back to the RF at the address RD. Therefore the ADDI instruction

requires only four clock cycles to execute.

The Subtract-Immediate instruction (SUBI) behaves similarly to the ADDI, but it subtracts

the immediate value from the contents of RS, and returns the result to RD as illustrated below.

SUBIRS;RD; ImmValue

Reg RS½ � � ImmediateValue ! Reg RD½ �

There are also immediate logical instructions that operate with the user data. The

AND-Immediate (ANDI) instruction, for example, bitwise ANDs the contents of RS with the

immediate value and returns the result to RD as shown below. The field format of this

instruction is given in Fig. 6.21.

31

ANDI RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.21 Fixed-point AND Immediate (ANDI) instruction field format

ANDIRS;RD; ImmValue

Reg RS½ �& ImmediateValue ! Reg RD½ �

The ANDI instruction uses a similar data-path to the ADDI instruction, but replaces the

fixed-point adder with 32 two-input AND gates as shown in Fig. 6.22. The contents of RS

and the sign-extended immediate value are combined using the AND gates, and the result is

returned to RD in the RF.

Similar to the ANDI instruction, the ORI, XORI, NANDI, NORI, and XNORI instructions

operate with the immediate data and follow the same data-path as the ANDI instruction.

These instructions and how they operate in the CPU are listed below.The Or (OR), Exclusive

Or (XOR), Nand (NAND), Nor (NOR) and Exclusive Nor (XNOR) instructions have iden-

tical instruction formats except the opcode field. These operations are shown below.

ORI RS, RD, Imm Value

Reg[RS] | Immediate Value ! Reg[RD]

XORI RS, RD, Imm Value

Reg[RS] ^ Immediate Value ! Reg[RD]

NANDI RS, RD, Imm Value

Reg[RS] *& Immediate Value ! Reg[RD]
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NORI RS, RD, Imm Value

Reg[RS] *| Immediate Value ! Reg[RD]

XNORI RS, RD, Imm Value

Reg[RS] *^ Immediate Value ! Reg[RD]

All logical immediate instructions require four cycles to form the result.

The Shift Left Immediate (SLI) and Shift Right Immediate (SRI) instructions use the same

functional units as the SL and SR instructions in the ALU.

The SLI instruction fetches the contents of RS from the RF, shifts it to the left by the

user-defined immediate value, and stores the result in RD as indicated below. Figure 6.23

shows the field format of this instruction.
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31

SLI RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.23 Fixed-point SL Immediate (SLI) instruction field format
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SLIRS;RD; ImmValue

Reg RS½ � � ImmediateValue ! Reg RD½ �

Similar to the SLI instruction, the SRI instruction shifts the contents of RS to the right by

an amount equal to the immediate value, and stores the result in RD as shown below.

SRIRS;RD; ImmValue

Reg RS½ � � ImmediateValue ! Reg RD½ �

The SLI and SRI instruction data-paths in Fig. 6.24 still require the left and right linear

shifters in the ALU stage. In these instructions, one shifter input receives the immediate data

that specifies the number of bits to shift to the left or to the right while the other input

receives the contents of RS.
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Fig. 6.24 SLI and SRI instruction data-paths

Figure 6.25 combines all the immediate ALU instructions examined so far in one sche-

matic. These include the ADDI, SUBI, SLI, SRI, ANDI, ORI, XORI, NANDI, NORI and

XNORI instructions with their sign-extended input. The port selection process at the

ALU MUX is as follows: if the OPC is ADDI or SUBI, the adder/subtractor output is routed

through the S/A port; for the SLI and SRI OPCs, the shifter outputs are routed through the

SH port; for the remaining OPCs, the processed data is routed through the corresponding

MUX port carrying the same name as the OPC and becomes the ALU output.
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The set-immediate instructions compare the contents of RS with an immediate value for

setting or resetting the register RD.

The Set-Greater-than-or-Equal-Immediate (SGEI) instruction sets the contents of RD if

the instruction finds the contents of RS to be greater than or equal to the immediate value.

This instruction and how it operates in the CPU is shown below. The field format is given in

Fig. 6.26.

SGEIRS;RD; ImmValue

If Reg RS½ � � ImmediateValue then 1 ! Reg RD½ � else 0 ! Reg½RD�

The SGEI instruction data-path in Fig. 6.27 tests the relative magnitudes of Reg[RS] and

the sign-extended immediate value to make a decision about the contents of RD. If Reg[RS]

is larger than the immediate value or equal to it, the sign bit of the ALU result becomes zero,

which in turn, stores 0x00000001 into RD. Otherwise, RD becomes 0x00000000.

31

SGEI RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.26 Fixed-point SGE Immediate (SGEI) instruction field format
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Similarly, the instruction format for the Set-Greater-Than-Immediate (SGTI),

Set-Less-than-or-Equal-Immediate (SLEI), Set-Less-Than-Immediate (SLTI),

Set-Equal-Immediate (SEQI) and Set-Not-Equal-Immediate (SNEI) instructions and how

they operate in the CPU are given below.

SGTIRS;RD; ImmValue

If Reg RS½ �[ ImmediateValue then 1 ! Reg RD½ � else 0 ! Reg RD½ �

SLEIRS;RD; ImmValue

If Reg RS½ � � ImmediateValue then 1 ! Reg RD½ � else 0 ! Reg RD½ �

SLTIRS;RD; ImmValue

If Reg RS½ �\ImmediateValue then 1 ! Reg RD½ � else 0 ! Reg RD½ �

SEQIRS;RD; ImmValue

If Reg RS½ � ¼ ImmediateValue then 1 ! Reg RD½ � else 0 ! Reg RD½ �

SNEIRS;RD; ImmValue

If Reg RS½ � 6¼ ImmediateValue then 1 ! Reg RD½ � else 0 ! Reg RD½ �

All Set Immediate instructions require four clock cycles to store the result in RD.

6.5 Data Movement Instructions

The first data movement instruction that relocates data from the data memory to a register in the

RF is the Load (LOAD) instruction. This instruction first adds the contents of RS to a

user-defined immediate value to form an effective data memory address. It then fetches the data

at this address and moves it to a destination register, RD, in the RF. This instruction and how it

operates in theCPU is shownbelow. The term,Reg[RS] + ImmValue, defines the effective data

memory address, andmem{Reg[RS] + ImmValue} corresponds to the data at this address. The

field format of this instruction while it is in the instruction memory is given in Fig. 6.28.

LOADRS;RD; ImmValue

mem Reg RS½ � þ ImmediateValuef g ! Reg RD½ �

31

LOAD RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.28 Fixed-point LOAD instruction field format

The LOAD instruction data-path in Fig. 6.29 adds the contents of RS to the sign-extended

immediate value and uses this sum as an address for the data memory. The OPC selects the
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adder in the ALU to calculate the effective data memory address and enables the data

memory for read. The data read from the memory is subsequently written back to the RF at

the address RD by WE = 1. This instruction requires five clock cycles to complete, and it

traces through all five stages of the CPU.

The Store (STORE) instruction moves data in the opposite direction of the LOAD

instruction. This instruction uses the contents of RD and the immediate value to form a data

memory address, and moves the contents of RS to this address as described below. Fig-

ure 6.30 shows this instruction’s field format.

STORERS;RD; ImmValue

Reg RS½ � ! mem Reg RD½ � þ ImmediateValuef g

The data-path for the STORE instruction is shown in Fig. 6.31. In this figure, the OPC

selects the adder in the ALU to perform an add operation between the sign-extended

immediate value and Reg[RD]. The OPC then enables the data memory to write the contents

of RS at this calculated address. The STORE instruction needs only four clock cycles to

complete.

The Move (MOVE) instruction does not interact with the data memory. Nevertheless, it

moves data from one register to another in the RF. The instruction and how it operates in the

CPU are given below. The bit field format for the MOVE instruction is shown in Fig. 6.32.

MOVERS;RD

Reg RS½ � ! Reg RD½ �

The Move Immediate (MOVEI) instruction moves an immediate value to a destination

register, RD, in the RF as shown below. The bit field format of this instruction is given in

Fig. 6.33.

31

STORE RS RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.30 Fixed-point STORE instruction field format
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MOVEI ImmValue;RD

ImmediateValue ! Reg RD½ �

The schematic in Fig. 6.34 combines the data-paths of all data movement instructions

discussed above except MOVEI. The data memory address is selected between {Reg[RS] +

Imm} and {Reg[RD] + Imm} by a 2-1 MUX at the input of the adder depending on the

OPC. Another 2-1 MUX at the write-back stage selects between the contents of RS for the

MOVE instruction and the contents of data memory for the LOAD instruction before the

result is written back to the RF.

6.6 Program Control Instructions

To be able to make decisions in a program, we need program control instructions.

The Branch (BRA) instruction is one of the most essential instructions in a program as it

controls direction of the program flow. This instruction first compares the contents of RS

with a five-bit RS value specified by the user. If the comparison is successful, the BRA

instruction redirects the program to fetch an instruction from a different PC address as shown

below. This new PC address is calculated by incrementing the old PC address by an

immediate value specified by the user. If the comparison is not successful, the program skips

the next instruction, but it executes the instruction after next. This instruction’s field format

is shown in Fig. 6.35.

BRARS;RSValue; ImmValue

If Reg RS½ � ¼ RSValue then PCþ ImmediateValue ! PC

else PCþ 2 ! PC

The BRA instruction usually depends on a previously stored data value in the RF as a

result of a Set or Set-Immediate instruction. To be able to carry out the BRA instruction, first

the contents of RS is compared with the RS Value. The comparator in Fig. 6.36 is composed

31

MOVE RS RD Not Used

26 25 21 20 16 15 0

Fig. 6.32 Fixed-point MOVE instruction field format

31

MOVEI Not Used RD Immediate Value

26 25 21 20 16 15 0

Fig. 6.33 Fixed-point MOVEI instruction field format
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of 32 two-input XNOR gates to perform a bitwise comparison between Reg[RS] and the

unsigned (positive) RS Value. All 32 XNOR outputs are then fed to a 32-input AND gate to

make a decision for the new PC value. If the comparison is successful, the current PC value

is replaced with (PC + Imm Value). If the comparison is unsuccessful, however, the PC

value is incremented by (PC + 2). The reason for (PC + 2) is because the PC increments by

two by the time a new value forms at the input of the PC. In actuality, the instruction

following the BRA instruction at (PC + 1) already enters the pipeline. However, this

instruction needs to be independent of the branch instruction. To be able to execute this

instruction (following the BRA instruction) and to remove the pending hazard, the compiler

either inserts a No Operation (NOP) instruction right after the BRA instruction or finds an

unrelated instruction in the program and inserts it at the (PC + 1) location.

31

BRA RS RS Value Immediate Value

26 25 21 20 16 15 0

Fig. 6.35 Fixed-point BRANCH instruction field format
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Unconditional decisions in the program do not need a comparison. The programmer can

simply change the flow of the program by using a jump-type instruction.
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The first unconditional jump-type instruction is the Jump (JUMP) instruction which

simply replaces the current PC value with an immediate value as shown below. Its field

format is shown in Fig. 6.37.

JUMP ImmValue

ImmediateValue ! PC

Thedata-path for the JUMP instruction is shown inFig. 6.38. In this data-path, the 26-bit jump

value is an unsigned integer extended to 32 bits before being forwarded to the PC. However, the

PC value has already incremented once by the time the immediate value from the instruction

register replaces the current value at the input of the PC. In the next clock cycle, this immediate

value transmits to the output of the PC, pointing a different instructionmemory location, instead

of (PC + 2). Therefore, this instruction also creates a control hazard when the CPU fetches an

instruction at (PC + 1) and requires compiler’s intervention to remove the hazard.

31

JUMP Immediate Value

26 25 0

Fig. 6.37 Fixed-point JUMP instruction field format
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The second unconditional jump-type instruction is the Jump Register (JREG) instruction,

which is similar to the JUMP instruction, but uses the contents of RS to replace the current

PC value as shown below. Figure 6.39 describes this instruction’s bit field format.

JREGRS

Reg RS½ � ! PC

The data-path for the JREG instruction is shown in Fig. 6.40. This instruction reads the

contents of RS and loads it to the PC as the jump value. The program control hazard also

exists for this instruction. The hazard can be removed either by inserting a NOP instruction

or another unrelated instruction in the program after the JREG instruction.

31

JREG RS Not Used

26 25 21 20 0

Fig. 6.39 Describes this instruction’s bit field format
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The Jump-And-Link (JAL) instruction is the third unconditional jump-type instruction,

and it requires two steps to operate. In the first step, the PC address, (PC + 2), following the

JAL instruction is stored in the register R31. In the second step, the current PC value is

replaced with an immediate value as shown below. The instruction’s bit field format is given

in Fig. 6.41.

JAL ImmValue

PCþ 2ð Þ ! Reg R31½ � followed by ImmediateValue ! PC

The last unconditional jump-type instruction is the Jump-And-Link Register (JALR)

instruction. This instruction also requires a two-step process. In the first step, the PC address,

(PC + 2), is stored in the register R31. In the second step, the PC is loaded with the contents

of RS as shown below. The field format of this instruction is shown in Fig. 6.42.

JALRRS

PCþ 2ð Þ ! Reg R31½ � followed byReg RS½ � ! PC

The Return instruction (RET) works with the JAL or JALR instruction. It retrieves the old

program address stored in the register R31, and replaces the current PC value with the

contents of R31 in order to go back to the original program location as described below. This

instruction’s bit field format is given in Fig. 6.43.

RET

Reg R31½ � ! PC

31

JAL Immediate Value

26 25 0

Fig. 6.41 Fixed-point Jump-And-Link (JAL) instruction field format

31

JALR RS Not Used

26 25 21 20 0

Fig. 6.42 Fixed-point Jump-And-Link Register (JALR) instruction field format

31

RET Not Used

26 25 0

Fig. 6.43 Fixed-point Return (RET) instruction field format
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6.7 Design Example I: A Fixed-Point CPU with Four Instructions

This first design example explains how to construct a single CPU data-path that executes the

ADD, LOAD, STORE and MOVE instructions.

The first step of the design process is to start with a single instruction in the instruction list

and build its data-path. Each new instruction brings new hardware requirements to the

design, and they are added incrementally to the existing data-path. Once the data-path

reaches its final form and is able to execute a set of instructions, the second step is to build

the OPC decoders to control each pipeline stage and guide the data.

In this design, we start building the data-path for the ADD instruction as shown in

Fig. 6.7. The next step is to introduce additional hardware for the LOAD instruction. To

accommodate this requirement, the first modification is to place a 2-1 MUX in the ALU

stage to select between the immediate value required by the LOAD instruction and Reg

[RS2] required by the ADD instruction as shown in Fig. 6.44. The second modification is to

add a bypass path in the data memory stage so that the result of the adder is either guided

through this bypass path if the OPC is ADD, or it is used as an effective address for the data

memory if the OPC is LOAD. Finally, a third modification is to place a 2-1 MUX in the

write-back stage to select either the contents of the data memory (from the LOAD

instruction) or the adder output (from the ADD instruction) before writing the result back to

the destination register, RD.

When the STORE instruction is introduced as a third instruction, it prompts a change in the

calculation of the data memory address from {Reg[RS] + Imm Value} to {Reg[RD] + Imm

Value}. This change requires a secondary 2-1 MUX to be placed in the ALU stage to guide

the effective memory address to the AIn port of the data memory, and an additional path to

transfer Reg[RS] to the DIn port of the data memory as shown in Fig. 6.45. The modifications

for the STORE instruction, however, should not alter the existing data-paths for the ADD and

LOAD instructions. If the ADD and LOAD instruction data-paths are individually traced after

adding the hardware to support the STORE instruction, both Reg[RS1] + Reg[RS2] (from the

ADD instruction) and mem{Reg[RS] + Imm Value} (from the LOAD instruction) paths

should still be available to write the result back to a destination register in the RF.

Introducing the MOVE instruction requires another write-back path to be integrated with

the three existing write-back paths in the architecture. Therefore, a 3-1 MUX needs to placed

in the write-back stage to pass the contents of RS to the RF as shown in Fig. 6.46. While the

MOVE and LOAD instructions use port 0 and port 1 of the 3-1 MUX, respectively, the rest

of the instructions use port 2 of this MUX to write data back to the RF.
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The controller for each stage of the data-path is OPC-dependent and completely com-

binational as shown in Fig. 6.47. Since the OPC propagates from one stage to another with

the data, it can effectively be used as a control input to guide data and to activate the required

hardware in each stage. Four instructions need only two input bits stemming from the

instruction register, IR[27:26], to design the OPC decoder in Fig. 6.47. The more significant

four OPC bits, IR[31:28], are considered zero for an instruction set of four.

To generate the ADD selector input, both IR[27] and IR[26] are complemented and then

ANDed according to the table in Fig. 6.47. The selector inputs for LOAD, STORE and

MOVE instructions are also generated using the same OPC table.

IR[27] IR[26]OPC

ADD

LOAD

STORE

MOVE

0 0

0 1

1 0

1 1

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

ADD

STORE

MOVE

IR[27]

IR[26]

RF Stage

ALU

Stage

Data Memory 

Stage

Write-Back

Stage

LOAD
D Q

clock

D Q

clock

D Q

clock

D Q

clock

MOVE

selects port 0 and

produces WE =1 for RF

LOAD

selects port 1 and

produces WE = 1 for RF

STORE produces WE = 1 

for the Data Memory

LOAD, STORE 

and ADD select 

the adder 

in the ALU

D Q

clock

D Q

clock

ADD

produces WE = 1 for RF

Fig. 6.47 OPC table for ADD, LOAD, STORE and MOVE instructions and the control

circuitry
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The STORE selector input is connected to Write Enable (WE) bit of the data memory

since the STORE instruction is the only instruction that writes data to the data memory. All

other instructions write back the results to the RF, and therefore should produce a WE signal

to enable the RF for write. However, this signal is not shown in Figs. 6.44, 6.45 and 6.46 to

avoid complexity.

6.8 Design Example II: A Fixed-Point CPU with Eight Instructions

The design methodology used in this example is the same as in the previous example. First,

as additional instructions are introduced to the design, new hardware for each instruction

should be incrementally added to the existing data-path. Second, an OPC truth table should

be constructed from the instruction set. Third, controller outputs should be generated from

the OPC truth table to guide the data in each CPU stage.

In this example, the instruction set consists of the ADD, LOAD, STORE, MOVE, SLI,

SRI, JUMP and BRA instructions.

We start with the ADD instruction data-path given in Fig. 6.7 to form the base platform.

The SLI and SRI instructions are implemented next. Both of these instructions require left

and right linear shifters in the ALU stage where each shifter can individually be selected by

the SLI or SRI inputs as shown in Fig. 6.48. These instructions also require a bypass path in

the RF stage that connects IR[15:0] to the ALU input as explained earlier.

When the LOAD instruction is introduced as the fourth instruction, the existing 32-bit

adder in the ALU is used to calculate the effective address for the data memory. The 2-1

MUX in the write-back stage is replaced by a 3-1 MUX to be able to write the contents of the

data memory back to the RF.

The STORE instruction is the fifth instruction added to this design. This instruction

requires two separate paths to calculate the data memory address and to write the contents of

RS to the data memory. The STORE instruction also necessitates a secondary 2-1 MUX in

the ALU stage so that an immediate value is added to the contents of RD instead of RS.

The MOVE instruction is the sixth instruction which requires a path to write the contents

of RS to the RF, bypassing both the ALU and the data memory, and using port 0 of the 3-1

MUX in the write-back stage.

The BRA instruction is the seventh instruction in this set and requires a path to compare

Reg[RS] with RS Value, IR[20:16]. The bitwise comparison is done by 32 two-input XNOR

gates followed by a single 32-input AND gate, and produces a single bit that selects between

(PC + Imm Value) and (PC + 2). The selected target address is loaded to the PC to redirect

the program to a different PC address. This instruction also requires a special 32-bit adder in

the RF stage to calculate (PC + Imm Value) as shown earlier.
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The JUMP instruction simply forwards the jump value, IR[25:0], extended to 32 bits to

the PC. It requires a second 2-1 MUX in the RF stage that selects this jump value when the

OPC is JUMP. The ALU adder is selected by the ADD, LOAD and STORE instructions.

However, this selection is not shown in Fig. 6.48 to avoid complexity.

Once the data-path for all eight instructions is complete, the OPC truth table in Fig. 6.49 is

formed. Since there are eight instructions in this set, only IR[28:26] are used for designing

the OPC decoder. The upper three bits of the OPC field become equal to zero.

D Q

clock

D Q

clock

D Q

clock

D Q

clock

ADD

OPC[28]

OPC[27]

D Q

clock

D Q

clock

OPC[26]

D Q

clock

D Q

clock

A
D

D

D Q

clock

L
O

A
D

S
L

I

S
R

I

ADD or

LOAD or

SLI or

SRI

SLI or

SRI

IR[27] IR[26]OPC

ADD

LOAD

STORE

MOVE

0 0

0 0

0 1

0 1

0

1

0

1

IR[28]

SLI

SRI

JUMP

BRA

1 0

1 0

1 1

1 1

0

1

0

1

RF Stage

ALU

Stage

Data Memory 

Stage

Write-Back 

Stage

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

D Q

clock

LOAD

STORE

MOVE

SLI

SRI

JUMP

BRA

LOAD selects port 1

and produces WE = 1 for RF

MOVE selects port 0

and produces WE = 1 for RF

STORE produces 

WE = 1 

for Data Memory

D Q

clock

ADD produces WE = 1 for RF

D Q

clock

D Q

clock

SLI produces WE = 1 for RF

D Q

clock

D Q

clock

SRI produces WE = 1 for RF

Fig. 6.49 OPC table for ADD, LOAD, STORE, MOVE, SLI, SRI, JUMP and BRA

instructions and the control circuitry
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To generate the ADD selector input (used in the RF and ALU stages), the first row of the

OPC table is implemented. This requires IR[28], IR[27] and IR[26] to be complemented and

ANDed. The LOAD, STORE, MOVE, SLI, SRI, JUMP and BRA selector inputs are also

generated similarly using the same OPC table. The ALU stage requires the ADD, LOAD, SLI

and SRI selector inputs to be ORed to select Reg[RS] for the adder input. Similarly, SLI and

SRI inputs areORed to select the shifter outputs. The STORE selector input is connected toWE

input of the data memory since the STORE instruction is the only instruction in the instruction

set that writes data to the data memory. The WE for the RF is omitted to avoid complexity.

6.9 Floating-Point Instructions

This RISC instruction set contains two floating-point (FP) instructions: Floating-Point Add

(ADDF) and Floating-Point Multiply (MULF). Both instructions use the IEEE single pre-

cision floating-point format which defines the most significant bit to be the sign, the next eight

most significant bits to be the exponent and the least 23 significant bits to be the fraction.

The ADDF instruction adds two single precision floating-point numbers at the registers,

RS1 and RS2, and returns the result to the register RD as described below. The bit field

format of this instruction is given in Fig. 6.50.

ADDFRS1;RS2;RD

Reg RS1½ � þReg RS2½ � ! Reg RD½ �

The MULF instruction multiplies two floating-point numbers in registers RS1 and RS2,

and returns the result to the register RD as shown below. This instruction’s bit field format is

described in Fig. 6.51.

MULFRS1;RS2;RD

Reg RS1½ � � Reg RS2½ � ! Reg RD½ �

31

ADDF RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.50 Floating-point Add (ADDF) instruction field format

31

MULF RS1 RS2 RD Not Used

26 25 21 20 16 15 11 10 0

Fig. 6.51 Floating-point Multiply (MULF) instruction field format
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6.10 Floating-Point

Single and double precision floating-point bit field formats are conveniently used in many

modern CPU platforms because the sum of sign, exponent and fraction bits fit into a 32-bit

or a 64-bit wide bus.

An IEEE single-precision (SP) floating-point number shown in Fig. 6.52 has an eight-bit

field for the exponent and 23-bit field for the fraction. The most significant bit constitutes the

sign bit for the fraction.

Mathematically, a single-precision floating-point number is expressed as follows:

Single�precision FP number ¼ ð�1ÞS 1þ F1 	 2�1þ F2 	 2�2þ F3 	 2�3þ 
 
 
 þ F23 	 2�23
� �

2REXP

Here, s = 1 if the fraction is negative, else the fraction is positive. F1 to F23 are the 23

fraction bits that range from the most significant to the least significant bit positions of the

fraction field in Fig. 6.52, respectively.

Since the exponent field does not possess a sign bit, a biasing system is employed to

distinguish the negative exponents from the positive exponents. The biased exponent

(EXP) field shown in Fig. 6.52 is the combination of the real exponent (REXP) and the

BIAS as shown below.

EXP ¼ REXPþBIAS

The BIAS is calculated by substituting the lowest and the highest eight-bit numbers in the

EXPfield to determine themost negative and themost positive real exponent values. Therefore,

when the most negative real exponent, REXP, equals to –MAX, the expression becomes:

0 ¼ �MAXþBIAS

Similarly, when the most positive exponent, REXP, becomes equal to +MAX, the

expression becomes:

255 ¼ MAXþBIAS

Hence substituting MAX = BIAS into 255 = MAX + BIAS yields:

S E7………………….E0 F1………………………… ..F23

1 8 bits 23 bits

2
-1 2

-23

S
IG

N

EXP FRACTION

Fig. 6.52 IEEE single-precision floating-point format

BIAS ¼ 127
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Example 6.1: Represent −0.7510 as a single-precision floating-point number.

� 0:7510 ¼ �0:112 ¼ ð�1ÞS 1þ F1 	 2�1þF2 	 2�2 þF3 	 2�3þ 
 
 
 þ F23 	 2�23
� �

2REXP

� 1:1	 2�1 ¼ ð�1ÞS 1þF1 	 2�1þ F2 	 2�2þ F3 	 2�3þ 
 
 
 þF23 	 2�23
� �

2REXP

Thus,

s ¼ 1

F1 ¼ 1

F2 through F23 ¼ 0

REXP ¼ �1 ¼ EXP�BIAS ¼ EXP� 127

EXP ¼ 127�1 ¼ 126

Filling the fraction and the exponent fields in Fig. 6.53 yields:

Example 6.2: Represent −527.510 as a single-precision floating-point number.

�527:510 ¼ ð�1Þ1 1þ F1 	 2�1 þ F2 	 2�2 þ F3 	 2�3 þ 
 
 
 þ F23 	 2�23
� �

2REXP

The closest real exponent to 527.5 is 512 = 29. Thus,

�527:510 ¼ ð�1Þ1 1þ F1 	 2�1 þ F2 	 2�2 þ F3 	 2�3 þ 
 
 
 þ F23 	 2�23
� �

29

where,

1þ F1 	 2�1þ F2 	 2�2þ F3 	 2�3þ 
 
 
 þ F23 	 2�23
� �

¼ 527:5=512 ¼ 1:0302710

�1:000012 ¼ 1:0312510

Error in the fraction ¼
1:03125� 1:03027

1:03125
¼ 0:01%

1   0   1   1    1   1   1   1   0   1   0   0 .......................... 0   0

1 8 bits 23 bits

2
7

2
0

2
-1

2
-23

S
IG

N

EXP FRACTION

Fig. 6.53 Single-precision floating-point number in Example 6.1
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The biased exponent is calculated as follows:

REXP ¼ 9 ¼ EXP�BIAS ¼ EXP� 127

EXP ¼ 127þ 9 ¼ 136

After entering the fraction and exponent fields into Fig. 6.52, the single-precision

floating-point number for −527.510 produces the format in Fig. 6.54.

Example 6.3: Convert the single-precision floating-point number in Fig. 6.55 into a deci-

mal number.

Here, s = 1 corresponds to a negative fraction. The fraction and biased exponent fields

yield 0.25 and 129, respectively. Thus,

REXP ¼ 129�127 ¼ 2

The decimal number ¼ ð�1Þ1 1þ 0:25ð Þ22 ¼ �1:25	 4 ¼ �5

Example 6.4: Convert the single-precision floating-point number in Fig. 6.56 into a deci-

mal number.

S
IG

N

EXP FRACTION

1   1   0   0    0   1   0   0   0   0   0   0    0   1   0   0 ...... 0   0

1 8 bits 23 bits

2
7

2
0

2
-1

2
-23

Fig. 6.54 Single-precision floating-point number in Example 6.2

S
IG

N

EXP FRACTION

1   1   0   0    0   0   0   0   1   0   1   0    0   0   0   0 ...... 0   0

1 8 bits 23 bits

2
7

2
0

2
-1

2
-23

Fig. 6.55 Single-precision floating-point number in Example 6.3

S
IG

N

EXP FRACTION

0   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1  .....  1   1

1 8 bits 23 bits 

2
7

2
0

2
-1

2
-23

Fig. 6.56 Single-precision floating-point number in Example 6.4
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Here, s = 0 corresponds to a positive fraction. The fraction field yields approximately 1.

The biased exponent produces EXP = 255. Therefore,

REXP ¼ 255�127 ¼ 128

The decimal number ¼ ð�1Þ0ð1þ 1Þ2128 ¼ 2	 1038

The IEEE double-precision (DP) floating-point number in Fig. 6.57 has 11 bits for the

exponent and 52 bits for the fraction for better accuracy. Once again, the most significant bit

corresponds to the sign bit for the fraction.

The double-precision floating-point number is expressed as follows:

Double�precision FP number ¼ ð�1ÞS 1þF1 	 2�1 þF2 	 2�2þ F3 	 2�3þ 
 
 
 þ F52 	 2�52
� �

2REXP

Here, s = 1 corresponds to a negative, and s = 0 corresponds to a positive fraction. Bits F1

to F52 are the 52 fraction bits from the most significant bit position to the least significant bit

position, respectively.

The bias system used in single-precision floating-point numbers can be applied to the

double-precision exponents to distinguish between the negative and the positive exponents. Thus,

EXP ¼ REXPþBIAS

Here, EXP is the 11-bit field in Fig. 6.57, and REXP is the real exponent. The BIAS is

calculated by substituting the lowest and highest biased exponent in the equation,

respectively.

Therefore, for the most negative exponent the equation becomes:

0 ¼ �MAXþBIAS

Similarly, for the most positive exponent the equation becomes:

2047 ¼ MAXþBIAS

Substituting MAX = BIAS into 2047 = MAX + BIAS yields BIAS = 1023 for

double-precision floating-point numbers.

S E10……………….E0 F1…………………………..F52

1 11 bits 52 bits

2
-1 2

-52

S
IG

N

EXP FRACTION

Fig. 6.57 IEEE double-precision floating-point format
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Example 6.5: Represent −0.7510 as a double-precision floating-point number.

�0:7510 ¼ �0:112 ¼ ð�1ÞS 1þ F1 	 2�1þ F2 	 2�2þ F3 	 2�3þ 
 
 
 þ F52 	 2�52
� �

2REXP

�1:1	 2�1 ¼ ð�1ÞS 1þ F1 	 2�1þ F2 	 2�2þ F3 	 2�3þ 
 
 
 þ F52 	 2�52
� �

2REXP

Thus,

s ¼ 1

F1 ¼ 1

F2 through F52 ¼ 0

REXP ¼ �1 ¼ EXP�BIAS ¼ EXP� 1023

EXP ¼ 1023�1 ¼ 1022

Therefore, entering the fraction and the exponent fields in Fig. 6.58 yields:

Example 6.6: Represent 4.010 as a double-precision floating-point number.

410 ¼ �1ð Þ0 1þ F1 	 2�1þ F2 	 2�2þ F3 	 2�3þ 
 
 
 þ F52 	 2�52
� �

2REXP

The closest exponent to 4 is 4 = 22. Thus,

410 ¼ ð�1Þ0 1þ F1 	 2�1þ F2 	 2�2þ F3 	 2�3þ 
 
 
 þ F52 	 2�52
� �

22

where,

1þ F1 	 2�1þ F2 	 2�2þ F3 	 2�3 þ 
 
 
 þ F52 	 2�52
� �

¼ 1:02

Therefore,

F1 through F52 ¼ 0

REXP ¼ 2 ¼ EXP�BIAS ¼ EXP� 1023

EXP ¼ 1025

Thus, entering the fraction and exponent fields in Fig. 6.59 yields:

S
IG

N

EXP FRACTION

1  0  1  1  1  1  1  1  1  1  1  0  1  0  0  .......... ................ 0  0

1 11 bits 52 bits

2
10

2
0

2
-1

2
-52

Fig. 6.58 Double-precision floating-point in Example 6.5
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Example 6.7: Convert the double-precision floating-point number in Fig. 6.60 into a

decimal number.

Here, s = 1 corresponds to a negative fraction. The fraction and biased exponent fields

yield 1 and 0, respectively. Therefore,

REXP ¼ 0�1023 ¼ �1023

Thus, the decimal number = (−1)1 (1 + 1) 2−1023 = −2 x 10−308.

6.11 Floating-Point Adder

Floating-point addition requires equating the exponents before adding the fractions. There

are two ways to equate exponents. The first method is to shift the fraction of the

floating-point number with greater exponent to the left until both exponents become equal.

The second method is to shift the fraction of the floating-point number with lesser exponent

to the right until the exponents are equal.

The floating-point adder in Fig. 6.61 implements the second method. The first step of this

method is to determine which of the two floating-point numbers has a smaller exponent. This

leads to subtracting the two exponents from each other and examining the sign bit of the

result. In the schematic in Fig. 6.61, the second number’s exponent, EXP2, is subtracted

from the first number’s exponent, EXP1, to obtain the difference, DEXP = EXP1 − EXP2. If

the sign bit of the difference, DEXP, becomes zero, it indicates EXP1 is larger than or equal

to EXP2. Therefore, the fraction of the second number, FRAC2, is shifted to the right by

DEXP before adding the fractions. If, on the other hand, the sign bit of DEXP becomes one,

FRAC1 is shifted to the right by DEXP before adding FRAC1 to FRAC2.

S
IG

N

EXP FRACTION

0  1  0  0  0  0  0  0  0  0  0  1  0  0  0  .......... ................ 0  0

1 11 bits 52 bits

2
10

2
0

2
-1

2
-52

Fig. 6.59 Double-precision floating-point in Example 6.6
S

IG
N

EXP FRACTION

1  0  0  0  0  0  0  0  0  0  0  0  1  1  1  .......... ................ 1  1

1 11 bits 52 bits

2
10

2
0

2
-1

2
-52

Fig. 6.60 Double-precision floating-point in Example 6.7
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S1 EXP1 FRAC1

  0         1

S2 EXP2 FRAC2

  1         0   1         0

  SHIFT RIGHT

NORMALIZE

FRACTION

ROUND FRACTION

S EXP FRACTION

OVERFLOW /

UNDERFLOW

VALIDATE

NO

YES

(TO EXCEPTIONS)

select 

BIG EXP

select

SMALL FRAC

SIGN

1.000
-1.110

-1.110

+1

-0.111 1.000

0.001SIGN

INCREMENT / DECREMENT

1.000

1.000

select

BIG FRAC

BIASED=126

126 125

EXP=126

EXP = 123

BIASED=125

∆EXP

Fig. 6.61 A floating-point adder implementation
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The numerical example in Fig. 6.61 describes how to process the exponent and the

fraction fields of two floating-point numbers to be added. In this figure, 126, 1.000, 125 and

−1.110 are assigned to the EXP1, FRAC1, EXP2 and FRAC2 fields, respectively. Initially,

EXP2 is subtracted from EXP1, yielding ∆EXP = +1. The sign of DEXP becomes zero, and

therefore the larger exponent, EXP1 = 126, is routed to the adder that calculates the final

exponent. The zero value of the sign bit also selects the fraction field of the larger exponent,

FRAC1 = 1.000, and forwards it to the secondary adder that computes the fraction field.

FRAC2 = −1.110, on the other hand, is directed to be the input of the right shifter, which

shifts this value by DEXP = 1 and produces −0.111. This shifted fraction, −0.111, is then

added to FRAC1 = 1.000, producing 0.001 while the exponent stays at 126. The normal-

ization mechanism takes place next, and shifts the result, 0.001, to the left until the leading

one in the 0.001 field is detected. The normalizer output becomes 1.000, but the shifted

amount, −3, is added to the current exponent, 126, yielding 123 at the output of the adder

that computes the exponent.

The normalized fraction goes through a rounding process and truncates the fraction field

to 23 bits. The result is stored in a 23-bit register at the output of the floating-point adder.

The output of the exponent adder is similarly stored in an eight-bit register along with the

sign bit for further processing in the CPU.

This floating-point adder also deals with overflow and underflow conditions in case the

exponent values become higher than 255 or smaller than 0, both of which generate

exceptions for the CPU.

6.12 Floating-Point Multiplier

The processing complexity of comparing two exponent fields in the floating-point adder

does not take place in the floating-point multiplier. The algorithm used in multiplying two

floating-point numbers simply multiplies the fractions and adds the exponents.

The floating-point multiplier architecture in Fig. 6.62 computes the fraction and exponent

fields with a numerical example. In this example, 126, 1.000, 125 and 1.110 values are

assigned to the EXP1, FRAC1, EXP2 and FRAC2 fields of the multiplier, respectively.

The first step of the multiplication process is to calculate the real exponent values of the

two floating-point numbers. Therefore, both EXP1 = 126 and EXP2 = 125 are subtracted

from the single-precision bias, 127, yielding −1 and −2, respectively. The real exponents are

then added, producing −3, which becomes the input of an adder that increments or decre-

ments the real exponent after multiplication on the fractions is performed. The fractions,

FRAC1 = 1.000 and FRAC2 = 1.110, are multiplied and produce 1110000. The floating

point is assigned immediately after locating the leading one in the 1110000 field which
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results in 1.11000. This result is subsequently truncated to 1.110. Since no normalization

needs to be performed on 1.110, this step effectively produces a zero increment/decrement

value, and the fraction is stored in the output register after rounding. The real exponent, −3,

on the other hand, is added to the bias, 127, and the result is stored in the exponent register.

Sign bits of the two floating-point numbers are also XORed and stored.

As in the floating-point adder, the underflow and overflow conditions in the exponent

field of the floating-point multiplier cause the CPU to generate exceptions.

6.13 A RISC CPU with Fixed and Floating-Point Units

The floating-point adder, FP Adder, and the floating-point multiplier, FP Multiplier, can be

included in the existing fixed-point data-path as shown in Fig. 6.63. The register file outputs

are connected to the fixed-point ALU as well as the floating-point adder and the multiplier.

S1 EXP1 FRAC1 S2 EXP2 FRAC2

NORMALIZE 

FRACTION

ROUND FRACTION

S EXP FRACTION

OVERFLOW /

UNDERFLOW

VALIDATE

-1 -2

NO

1.110

INCREMENT / DECREMENT

-3 0

BIAS = 127

TRUNCATE 

FRACTION

FIND THE FLOATING PT

-3

124

YES 

(TO EXCEPTION)

1.000

01110000

1.11000

1.110

1.110

1.110124

0 1

1

1

BIASED = 126 BIASED = 125

-127

-127

Fig. 6.62 A floating-point multiplier implementation

6.12 Floating-Point Multiplier 325



O P C I M M

01
5

1
6

2
0

2
1

2
5

2
6

3
1

D
Q

c
lo

c
k

A L U

D
Q

c
lo

c
k

D
Q

c
lo

c
k

D
Q

c
lo

c
k

D
Q

c
lo

c
k

D
Q

c
lo

c
k

P
C

In
s
tr

u
c
ti
o

n

M
e

m
o

ry

R
e

g
is

te
r

F
ile

A
In

1
D

O
u

t1

A
In

3
D

In

c
lo

c
k

c
lo

c
k

A
In

D
O

u
t

3
2

3
2

5 5
3

2

3
2

3
2

5
1

1
5

5
5

5

A
In

2
D

O
u

t2

In
s
tr

u
c
ti
o

n

R
e

g
is

te
r

R
S

1
/R

S

R
S

2
/R

D

R
D

/I
m

m
[1

5
:1

1
]

R
e

g
 [

R
S

1
/R

S
]

R
e

g
 [

R
S

2
/R

D
]

3
2

01

1
0

Im
m

S
E

X
T

1
6

1
6

3
2

F
ix

e
d

R
e

g
-R

e
g

In
s
tr

u
c
ti
o

n
s

F
ix

e
d

R
e

g
-R

e
g

In
s
tr

u
c
ti
o

n
s

D
a

ta

M
e

m
o

ry

A
In

D
O

u
t

D
Q

c
lo

c
k

D
Q

c
lo

c
k

D
Q

c
lo

c
k

D
Q

c
lo

c
k

5

F
ix

e
d

-P
o

in
t

O
P

C
O

D
E

s

F
lo

a
ti
n

g
-P

o
in

t

A
D

D

01

02 1

F
P

 A
d

d
e

r

F
P

 M
u

lt
ip

lie
r

Floating-Point OPCODEs

LOAD

3
2

3
2

3
2

F
ig
.
6
.6
3

C
P
U

w
it
h
fi
x
ed

an
d
fl
o
at
in
g
-p
o
in
t
d
at
a-
p
at
h
s

326 6 Central Processing Unit



The OPC field for the ADDF instruction selects the floating-point adder result in the ALU,

and routes it to port 0 terminal of the 3-1 MUX at the write-back stage. Similarly, the result

from the floating–point multiplier is directed to port 0 of the 3-1 MUX if the OPC is MULF.

Port 1 of the 3-1 MUX is dedicated to the LOAD instruction, and port 2 to the remainder of

the OPCs in the instruction set.

One can also employ a secondary RF for only storing floating-point numbers since the

formats of fixed and floating-point numbers are different from each other. However, this

approach creates additional complexity in routing the RF outputs to the appropriate ALUs

and requires additional hardware. Therefore, it is avoided in this design.

6.14 Structural Hazards

When instructions are fetched from the instruction memory and introduced to the CPU

pipeline, they follow each other one clock cycle apart as shown in Fig. 6.64. In this figure,

when the first instruction transitions to the RF stage in cycle 2, the second instruction starts

its instruction fetch cycle. In cycle 3, the first instruction starts the ALU stage, the second

instruction enters the RF stage, and the third instruction goes into the instruction fetch stage.

The fourth cycle in Fig. 6.64 should be viewed with a particular importance because it

creates a structural hazard. In this cycle, the first instruction accesses the data memory while

the fourth instruction is fetched from the instruction memory. If there is only one memory

block with a single port (to read instructions and to store data), this configuration will create

a structural hazard because the first and the fourth instructions will try to access the memory

in the same cycle. This is the primary reason to have separate instruction and data memories

in a RISC CPU.

INSTRUCTION 1

INSTRUCTION 2

INSTRUCTION 3

INSTRUCTION 4

INSTRUCTION 5

CYCLES

I R A D W

I R A D W

I R A D W

I R A D W

I R A D W

1 2 3 4 5 6 7 8 9

Fig. 6.64 Structural hazards in a five-stage CPU
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Cycles 5 and 6 creates another type of structural hazard. In both of these cycles, data has

to be read from the RF and written to the RF in the same cycle. If the data read from the RF

depends on the data written to the RF, this condition will create a hazard because the write

needs to take place before the read in order to produce correct results. Therefore, RF should

be designed such that all writes have to be done at the high phase of the clock and all reads at

the low phase.

6.15 Data Hazards

Data hazards create a situation where the required data is unavailable when it is needed by an

instruction. There are four known data hazards in this architecture. The examples below

illustrate each data hazard type and propose solutions in the CPU architecture to avoid them.

The first type of data hazard is shown in the example in Fig. 6.65. In this example, the

ADD instruction adds the contents of R1 and R2, and then writes the result to a destination

register, RD. The second, third and fourth instructions require the contents of RD to proceed.

The only hazard-free case here is the data exchange between the ADD and the OR

instructions since the RF permits data to be written during the high phase of the clock and

read during the low phase. However, the SUB and the AND instructions try to fetch the

contents of RD before they become available. Therefore, executing any of these instructions

would produce two separate hazards. In order to circumvent this problem, a technique called

“data-forwarding” is applied to the CPU pipeline. This method requires a special data route

in the CPU data-path so that partially processed data is immediately transferred from a

particular pipeline stage to the next when it is needed. Figure 6.66 shows the two forwarding

paths to remove the data hazards associated with the SUB and the AND instructions. The

first path transfers data from the ALU output to the ALU input when the SUB instruction

needs the ADD instruction’s ALU result to proceed. The second path transfers data from the

output of the data memory to the ALU input when the AND instruction needs the ADD

instruction’s ALU output.

I R A D W

I R A D W

I R A D W

I R A D W

ADD

SUB

AND

OR

R1, R2, RD

, R3

, R5

, R7

, R4

, R6

, R8

RD

RD

RD

Fig. 6.65 Data hazard: a register-type instruction followed by other register-type instruction(s)
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Figure 6.67 shows the first forwarding path from the ALU output to the ALU input to

remove the data hazard caused by the ADD-SUB instruction pair in Fig. 6.65. In this figure,

the source address of the SUB instruction is compared against the destination address of the

ADD instruction. If there is a match, then the ALU output to ALU input forwarding path(s)

is activated by selecting port 1 of the 2-1 MUX at the input of the ALU.

The second forwarding path shown in Fig. 6.68 feeds back the output of the data memory

stage to the input of the ALU and removes the data hazard caused by the ADD-AND

instruction pair in Fig. 6.65. Again, the source address of the AND instruction is compared

against the destination address of the ADD instruction. The path that connects the data

I R A D W

I R A D W

I R A D W

I R A D W

ADD

SUB

AND

OR

R1, R2, RD

, R3

, R5

, R7

, R4

, R6

, R8

RD

RD

RD

Fig. 6.66 Forwarding paths to remove the data hazards caused by a register-type instruction

followed by other register-type instruction(s)
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D Q

clock

D Q

clock
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AIn DOut

32

32 32 32 32

DIn

D Q

clock
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0
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0
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0
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U

32
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32

D Q

clock

D Q

clock

32

D Q

clock

32

ALU - ALU path

1

0

1

0

Fig. 6.67 ALU output to ALU input forwarding path
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memory output at the end of the bypass path to the ALU input is activated by selecting port 1

of the 2-1 MUX if there is a match.

Another type of data hazard is shown in Fig. 6.69. This hazard originates from an

instruction that requires the contents of the data memory as a source operand. A forwarding

path that connects the output of the data memory to the input of the ALU may not be

sufficient to remove this data hazard as shown in Fig. 6.70. However, if a No Operation

(NOP) instruction is inserted between the LOAD and ADD instructions, the one cycle delay

created by this instruction can avoid this hazard as shown in Fig. 6.71. With the NOP

instruction in place, the LOAD instruction can now forward the contents of the data memory

as a source operand for the ADD instruction as it enters the ALU stage.

D Q

clock

D Q

clock

D Q

clock

Data

Memory

AIn DOut

32

32 32 32 32

DIn

D Q

clock

1

0

1

0

1

0

A

L

U

32

32

32

D Q

clock

D Q

clock

32

D Q
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32

DBypass - ALU path

1

0

1

0

Fig. 6.68 Data memory bypass output to ALU input forwarding path

LOAD R1,

, R2, R3

, Imm

ADD RD

RD I R A D W

RI WA D

Fig. 6.69 Data hazard created by the LOAD instruction followed by a register-type

instruction
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Figure 6.72 shows the hardware implementation to remove the particular data hazard in

Fig. 6.69. The data memory output to the ALU input path is activated by implementing a

logic block that compares the destination address of the LOAD instruction with the source

address of the ADD instruction, and enables port 1 of the 2-1 MUX if they are equal.

LOAD R1,

, R2, R3

, Imm

ADD RD

RD I R A D

RI WA D

W

Fig. 6.70 A forwarding path to remove the data hazard caused by the LOAD instruction

followed by a register-type instruction

NOP

LOAD R1,

, R2, R3

, Imm

ADD RD

RD I R A D W

I R A D W

I R A D W

Fig. 6.71 A forwarding path and a NOP instruction to remove the data hazard caused by the

LOAD instruction followed by a register-type instruction
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DMem - ALU path
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0
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Fig. 6.72 Data memory output to ALU input forwarding path
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The final data hazard shown in Fig. 6.73 stems from a LOAD instruction followed by a

STORE instruction. Here, the destination address of the LOAD instruction is the same as the

source address of the STORE instruction. This results in a situation where the data written

back to the RF has to be stored in the data memory within the same clock cycle. A for-

warding path that connects the output of the data memory to the input of the data memory

removes this hazard as shown in Figs. 6.74 and 6.75. Once again, we need a comparator that

compares the contents of the destination address of the LOAD instruction against the source

address of the STORE instruction to activate this forwarding path.

LOAD R1,

, R2, Imm2

, Imm1

STORE RD

RD I R A D

DI WAR

W

Fig. 6.73 Data hazard: a STORE instruction followed by a register-type instruction

LOAD R1,

, R2, Imm2

, Imm1

STORE RD

RD I R A D

I WAR

W

D

Fig. 6.74 A forwarding path to remove the data hazard caused by a STORE instruction

followed by a register-type instruction
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clock
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Fig. 6.75 Data memory output to data memory input forwarding path
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Figure 6.76 shows the combination of all four forwarding paths to remove data hazards

from the CPU pipeline. The selector inputs in this figure originate from individual com-

parators that compare the destination address of an instruction with the source address of a

subsequent instruction.

6.16 Program Control Hazards

Branch and jump instructions also create hazards. In the program shown in Fig. 6.77, the

earliest time for the BRA instruction to produce a branch target address is when this

instruction is at the RF stage. Therefore, the instruction following the BRA instruction

cannot be fetched from the instruction memory in the next clock cycle but it requires one

cycle delay. This delay can be implemented either by inserting an unrelated instruction to

branch or using a NOP instruction in the “branch delay slot” as shown in Fig. 6.78.

D Q

clock

D Q

clock

D Q

clock

Data

Memory

AIn DOut

32

32 32 32 32

DIn

D Q

clock

1

0

1

0

1

0

A

L

U

32

32

32

D Q

clock

D Q

clock

32

10

D Q

clock

32

DMem – DMem path

ALU - ALU path

DMem - ALU path

DBypass - ALU path

3

Fig. 6.76 CPU schematic containing all data hazard corrections
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Similar to the BRA instruction, the jump-type (JUMP, JREG, JAL and JALR) instruc-

tions also create control hazards since they can only define the address of the next instruction

when they are in the RF stage as shown in Fig. 6.79. Inserting a NOP instruction or an

unrelated instruction to jump in the “jump delay slot” removes the pending control hazard as

shown in Fig. 6.80.

Even though the jump-type and branch-type instructions update the contents of the PC,

the branch instruction requires a comparator and a special adder in the RF stage to calculate

the target address.

BRA R1,

R3,

Imm

ADD

I R A D

I WAR

W

D

RSValue,

R2, R4

Fig. 6.77 Control hazard: a BRA instruction

NOP

Unrelated instruction

Delay slot

BRA R1,

R3,

Imm

ADD

I R A D

I WAR

W

D

RSValue,

R2, R4

I WAR D

BRA R1,

R3,

Imm

ADD

I R A D

I WAR

W

D

RSValue,

R2, R4

I WAR D

BRA R1,

R3,

Imm

ADD

I R A D

I WAR

W

D

RSValue,

R2, R4

I WAR D

Fig. 6.78 Removal of BRA control-hazard using an unrelated instruction in the program or

a NOP instruction
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6.17 Handling Hazards in a Five-Stage RISC CPU: An Example

This example shows the use of forwarding paths to avoid data and control hazards on an

instruction chart. The use of the NOP instruction is also shown when forwarding paths

become insufficient to remove a particular hazard.

The flow chart in Fig. 6.81 shows a small user program and the contents of the instruction

memory before the program is executed. Data A in the flow chart is read from the memory

address 100. Data Y, Z and W are stored at the memory addresses 200, 201 and 202,

respectively.

JREG R1

R3,

Imm

ADD R2, R4

JUMP I R A D W

I WAR D

R3,ADD R2, R4

I R A D W

I WAR D

Fig. 6.79 Control hazard: JUMP and JREG instructions

NOP

Unrelated instruction

Delay slot

ImmJUMP

R3,ADD R2, R4

I R A D W

I R A D W

I R A D W

ImmJUMP

R3,ADD R2, R4

I R A D W

I R A D W

I R A D W

ImmJUMP

R3,ADD R2, R4

I R A D W

I R A D W

I R A D W

Fig. 6.80 Removal of JUMP and JREG control-hazards using an unrelated instruction in the

program or a NOP instruction
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After Y is stored, the flow chart comes to a decision box where the value of A is compared

against one. At this point, the program splits into two where each branch performs calcu-

lations to determine the values of Z and W before they are stored in the data memory.

The instruction, LOAD R0, R1, 100, in Fig. 6.82 adds the contents of R0, whose bits are

hard-wired to logic 0 due to the architectural specifications, to 100 to calculate the data

memory address. It then fetches A from the data memory address 100, and writes this value

to the RF address R1.

The SLI R1, R2, 1 instruction shifts the contents of R1 one bit to the left to produce 2A,

and writes the result, Y = 2A, to R2. The ADD R1, R2, R3 and SRI R1, R4, 1 instructions

compute the values 3A and 0.5A, respectively. Both values will be used later in the program.

The BRA R1, 1, 5 instruction compares the contents of R1, which currently holds A, with

the RS Value = 1. If the comparison is successful, the program branches off to fetch the next

instruction at the instruction memory location, PC = 4 + 5 = 9, to execute the SUBI R3, R5,

1 that computes Z = 3A – 1. Otherwise, the program fetches the next instruction, ADDI R3,

R5, 1 at PC = 4 + 2 = 6 to compute Z = 3A + 1.

READ A

Y = 2A

STORE Y

Z = 3A - 1

W = 0.5A + 1

Z = 3A + 1

W = 0.5A - 1

STORE Z, W

A : 1

A = 1

ELSE

A

Y

Z

W

LOADED

TO BE

STORED

100

200

201

202

Data Memory

Fig. 6.81 Flow-chart of an example program and data memory contents
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The STORE R2, R0, 200 instruction is an unrelated instruction to the branch. Therefore, it

is used in the branch delay slot following the branch instruction. This instruction stores the

contents of R2, which contains 2A, to the data memory location 200 in Fig. 6.81.

The JUMP 11 instruction at PC = 8 changes the value of the PC with an immediate value

of 11. Therefore, the program skips both the SUBI and ADDI instructions following the

JUMP instruction to execute the STORE R5, R0, 201 and STORE R6, R0, 202 instructions.

As a result, the values of Z and W are stored at the data memory addresses 201 and 202,

respectively, regardless of the branch outcome.

Figure 6.83 shows the instruction chart of the program in Fig. 6.82. The LOAD R0, R1,

100 instruction causes a data hazard as explained in Fig. 6.69, but it is corrected by a

combination of a NOP instruction and a forwarding path (from the data memory stage (D) of

the LOAD instruction to the ALU stage (A) of the SLI instruction).

The ADD R1, R2, R3 instruction also requires data forwarding from the A stage of the

SLI instruction to the A stage of the ADD instruction.

0         LOAD  R0, R1, 100  A     Reg [R1]

1         SLI R1, R2, 1 2A     Reg [R2]

2          ADD R1, R2, R3 3A     Reg [R3]

3         SRI R1, R4, 1 0.5A     Reg [R4]

4         BRA R1, 1, 5 If A = 1 then PC + 5     PC

5         STORE R2, R0, 200  2A     mem [200]

6          ADDI R3, R5, 1 Z = 3A + 1     Reg [R5]

7          SUBI R4, R6, 1 W = 0.5A - 1     Reg [R6]

8          JUMP 11 11     PC

9        SUBI R3, R5, 1 Z = 3A - 1     Reg [R5]

10          ADDI R4, R6, 1 W = 0.5A + 1     Reg [R6]

11          STORE R5, R0, 201    Z     mem [201]

12         STORE R6, R0, 202   W     mem [202]

PC                           Instruction Comments

Fig. 6.82 Instruction memory contents of the example and explanation of each instruction
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The BRA R1, 1, 5 instruction computes the branch target while it is in the RF (R) stage.

An instruction unrelated to the branch instruction, such as STORE R2, R0, 200 is used in the

branch delay slot so that the CPU has enough time to fetch ADDI R3, R5, 1 if the branch

comparison is unsuccessful or SUBI R3, R5, 1 if the comparison is successful.

From this point forward, the program follows two separate instruction charts. The first

chart shows the case where the branch comparison is unsuccessful. This chart contains a

JUMP instruction followed by a NOP instruction used in the jump delay slot. The second

chart follows the case where the branch comparison is successful, and contains two for-

warding paths required by the STORE instructions. Both of these paths forward data from

the D stage of SUBI R3, R5, 1 and ADDI R4, R6, 1 to the A stage of STORE R5, R0, 201

and STORE R6, R0, 202 to avoid data hazards, respectively.

The entire program takes 15 clock cycles to complete if the branch is successful and 17

cycles if unsuccessful.

LOAD R0, R1, 100

SLI R1, R2, 1

ADD R1, R2, R3

SRI R1, R4, 1

BRA R1, 1, 5

STORE R2, R0, 200

ADDI R3, R5, 1

SUBI R4, R6, 1

JUMP 11

SUBI R3, R5, 1

ADDI R4, R6, 1

STORE R5, R0, 201

STORE R6, R0, 202

NOP

I     R    A    D    W

I     R    A    D   W

I     R    A    D    W

I     R    A    D   W

I     R    A    D    W

I     R    A    D    W

I     R    A    D    W

I     R    A    D    WNOP

STORE R5, R0, 201

STORE R6, R0, 202 I     R    A    D   W

I     R    A    D    W

I     R    A    D   W

I     R    A    D    W

Delay Slot

Branch TAKEN

Branch NOT TAKEN

I     R    A    D   W

I     R    A    D   W

I     R    A    D    W

I     R    A    D    W

I     R    A    D    W

Delay Slot

Fig. 6.83 Five-stage CPU instructional chart
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Can the program in Fig. 6.82 be executed more efficiently in a shorter amount of time and

with fewer forwarding paths if the number of pipeline stages is reduced? To answer this

question, two additional CPU pipelines are implemented: one with four pipeline stages and

the other with three.

6.18 Handling Hazards in a Four-Stage RISC CPU

Figure 6.84 shows a four-stage RISC CPU where the ALU and the data memory stages are

combined in a single stage.

If the instructional chart is reconstructed to execute the program in Fig. 6.82 in a

four-stage CPU, it will produce a chart in Fig. 6.85. The first observation in this figure is that

there are fewer NOP instructions. For example, the NOP instruction that follows LOAD R0,

R1, 100 is eliminated because the memory contents become available during the combined

ALU/Data Memory stage (AD). Also, the forwarding paths from SUBI R3, R5, 1 to STORE

R5, R0, 201 and from ADDI R4, R6, 1 to STORE R6, R0, 202 in Fig. 6.83 are eliminated in

Fig. 6.85 because the write-back stage (W) of SUBI R3, R5, 1 lines up with the RF access

stage (R) of STORE R5, R0, 201, and similarly the W stage of ADDI R4, R6, 1 lines up with

the R stage of STORE R6, R0, 202 in this new CPU pipeline.

PC
Instruction

Memory
Register

File

OPC Dec

A

L

U

Data

Memory

Instruction Memory Stage RF Stage ALU/Data Memory Stage Write-Back Stage

1st flip-flop 

boundary

2nd flip-flop 

boundary

3rd flip-flop 

boundary

Fig. 6.84 Four-stage CPU data-path
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Branch and jump-related hazards still exist in the chart in Fig. 6.85. They are removed

either by inserting NOP instructions or unrelated instructions to branch and jump in the

corresponding delay slots.

The new CPU pipeline executes the program in a shorter time: 13 clock cycles if the

branch is successful and 15 cycles if unsuccessful.

6.19 Handling Hazards in a Three-Stage RISC CPU

Can there be a continuing improvement in the program efficiency and the overall execution

time if the number of pipeline stages is reduced further? To answer this question, the CPU

pipeline in Fig. 6.84 is repartitioned into three stages where the ALU, the data memory and

the write-back stage are grouped together to form a single stage as shown in Fig. 6.86.

LOAD R0, R1, 100

SLI R1, R2, 1

ADD R1, R2, R3

SRI R1, R4, 1

BRA R1, 1, 5

STORE R2, R0, 200

ADDI R3, R5, 1

SUBI R4, R6, 1

JUMP 11

SUBI R3, R5, 1

ADDI R4, R6, 1

STORE R5, R0, 201

STORE R6, R0, 202

I      R    AD    W

NOP

STORE R5, R0, 201

STORE R6, R0, 202

Delay Slot

Branch TAKEN

Branch NOT TAKEN

Delay Slot

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

I      R    AD    W

Fig. 6.85 Four-stage CPU instructional chart
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When the instructional chart is reconstructed for the three-stage CPU in Fig. 6.86, we see

an immediate improvement: the absence of all forwarding paths. The new chart is shown in

Fig. 6.87. However, the combined ALU, Data Memory and Write-Back stages (AW) create a

practical engineering problem: calculating the data memory address, accessing the data

memory and then writing the results back to the RF may not fit in half a clock cycle.

Therefore, a NOP instruction is used after LOAD R0, R1, 100 to allow a full clock cycle

delay to complete the write-back to the RF before SLI R1, R2, 1 accesses this data.

For the SLI R1, R2, 1 and ADD R1, R2, R3 instruction pair, half a cycle may be sufficient

to shift the contents of R1 and store the result into R2 before the ADD instruction accesses

this data. Therefore, no NOP instruction is inserted between the SLI and ADD instructions.

Branch and jump-related delay slots still cannot be avoided in Fig. 6.87. STORE R2, R0,

200 is inserted in the branch delay slot, and a NOP instruction is used as the jump delay in

Fig. 6.87 just as in Figs. 6.83 and 6.85.

The three-stage CPU executes the program in 13 clock cycles if the branch is successful

and 15 cycles if unsuccessful. Therefore, there is no gain in speed compared to the four-stage

CPU. However, this may not be true for larger programs if they contain more instructions to

access the data memory.

PC
Instruction

Memory
Register

File

OPC Dec

A

L

U

Data

Memory

Instruction Memory Stage RF Stage ALU/Data Memory/Write-Back Stage

1st flip-flop 

boundary

2nd flip-flop 

boundary

Fig. 6.86 Three-stage CPU data-path
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6.20 Multi-cycle ALU and Related Data Hazards

Not all ALU operations can be executed within one clock cycle. Depending on the propa-

gation delay of the functional modules, the ALU stage may take up several cycles especially

if it includes a floating-point adder or multiplier.

To show the potential data hazards in a multi-cycle ALU, a RISC CPU containing both

fixed and floating-point ALUs is used in Fig. 6.88. In this example, the fixed-point ALU is

assumed to execute data in a single clock cycle, whereas the floating-point add and multiply

units require three and five clock cycles to process data, respectively.

LOAD R0, R1, 100

SLI R1, R2, 1

ADD R1, R2, R3

SRI R1, R4, 1

BRA R1, 1, 5

STORE R2, R0, 200

ADDI R3, R5, 1

SUBI R4, R6, 1

JUMP 11

SUBI R3, R5, 1

ADDI R4, R6, 1

STORE R5, R0, 201

STORE R6, R0, 202

NOP

NOP

STORE R5, R0, 201

STORE R6, R0, 202

Delay Slot

Branch TAKEN

Branch NOT TAKEN

Delay Slot

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

I     R    AW

Fig. 6.87 Three-stage CPU instructional chart
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The program below is executed in the CPU pipeline in Fig. 6.88, and deliberately

designed to contain data dependencies. All matching source and destination register

addresses are shown in bold letters.

LOAD R1, R2, 0

MULF R2, R3, R4

ADDF R4, R5, R6

STORE R6, R7, 0

The instructional chart for a five-stage CPU in Fig. 6.89 requires the combination of a

forwarding path from the D stage of LOAD R1, R2, 0 to the A stage of MULF R2, R3, R4

and a NOP instruction in order to remove the pending data hazard.

But, the more importantly this chart employs four NOP instructions following the MULF

instruction to provide the required delay for ADDF R4, R5, R6 to add the contents of R5 to

the forwarded data from the floating-point multiplier output. Similarly, STORE R6, R7, 0

needs the combination of a NOP instruction and a forwarding path from the A3 stage of the

ADDF instruction to calculate the data memory address. The entire program takes 14 clock

cycles to complete.

IMem RF

Fixed

Point

Float

ADD

1

Float

ADD

2

Float

ADD

3

DMem WB

Floating Point ADD

Float

MUL

1

Float

MUL

2

Float

MUL

3

Float

MUL

4

Float

MUL

5

Floating Point MULTIPLY

Floating Point Operations

Fig. 6.88 Multi-cycle ALU of a five-stage CPU
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The chart in Fig. 6.90 is derived from the instruction chart in Fig. 6.89. This new chart

uses different RF addresses, and produces no data dependencies. Consequently, the program

is executed in 10 clock cycles instead of 14 due to the absence of NOP instructions.

Figure 6.91 alters the number of ALU cycles for the floating-point add from three to two

clock cycles to investigate the outcome. In this figure, even though the D stage of the ADDF

instruction aligns with the D stage of the STORE instruction, neither path interferes with

each other since the ADDF instruction uses the data memory bypass path while the STORE

instruction accesses the data memory with an address calculated by the fixed-point adder.

Therefore, this situation does not create a structural hazard for the CPU.

LOAD R1,

R5,

0

ADDF

I R A D

I WAR

W

D

R4, R6

R2,

STORE R6, 0R7,

R3,MULF R2, R4

NOP

NOP

NOP

NOP

NOP

NOP

I R A D W

I WDR A

I WDR A

I WDR A

I WDR A

I WDR A

I WR 1A DA2 A3

I WR 1M DM2 M3 M4 M5

Fig. 6.89 Instructional chart of a program with data dependencies

LOAD R1, R2, 0 I R A D W

MULF R3, R4, R5 I R M 1   M2   M3   M4   M5    D W

ADDF R6, R7, R8 I R A 1    A2    A3    D W

STORE R9, R10, 0 I R A D W

Fig. 6.90 Instructional chart of a program with no data dependencies
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Similarly, the W stages of the ADDF and STORE instructions do not create a structural

hazard because the ADDF instruction uses the RF write-back path while the STORE

instruction terminates at the data memory stage.

Figure 6.92 examines the case where the ALU stage of the MULF instruction is reduced

from five to three clock cycles, and there are still no data dependencies among instructions.

In this case, both the MULF and ADDF instructions are forced to use the same data memory

bypass and write-back paths. Therefore, the ADDF instruction must be delayed for one cycle

D

Bypass path

DIn port

It does not exist

LOAD R1,

R7,

0

ADDF

I R A D W

R6, R8

R2,

STORE R9, 0R10,

R4,MULF R3, R5

I AR

I WA1R DA2

I WM1R DM2 M3 M4 M5

W

Fig. 6.91 Instructional chart of a program with no data dependencies: The MULF instruction

still requires five cycles but the ADDF instruction is reduced from three to two cycles

Bypass path

Write -Back path

Bypass path

D

DIn port

It does not exist

LOAD R1,

R7,

0

ADDF

I R A D W

R6, R8

R2,

STORE R9, 0R10,

R4,MULF R3, R5

I AR

I WA1R DA2

I WM1R DM2 M3

W

D

DIn port

It does not exist

LOAD R1,

R7,

0

ADDF

I R A D W

R6, R8

R2,

STORE R9, 0R10,

R4,MULF R3, R5

I AR

I WA1R DA2

I WM1R DM2 M3

W

Bypass path

NOP I R A D W

Fig. 6.92 Instructional chart of a program with no data dependencies: MULF is reduced to

three cycles, but ADDF is still two cycles
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with respect to the MULF instruction to ensure that these instructions are able to use the

same paths in different clock cycles.

The D stage alignment between the ADDF and STORE instructions does not impose any

structural hazard because the ADDF instruction uses the data memory bypass path while the

STORE instruction uses a data memory address calculated by the fixed-point adder to store

data.

6.21 Cache Topologies

Cache is a local memory to the CPU where the temporary blocks of data is kept until it is

permanently stored in the system memory. No other bus master but the CPU is allowed to

access the cache memory.

There are three types of cache architectures in modern CPUs: fully-associative,

set-associative and direct-mapped.

Fully-associative cache protocol allows a block of data to be written (or read) anywhere in

the cache as shown in Fig. 6.93. In this type of cache architecture, a block of data is searched

in the entire cache before it is read. The range of cache memory addresses to place a block of

data is called a set. In Fig. 6.93, the entire cache containing N number of blocks belongs to a

single set.

Set-associative cache protocol, in contrast, allows a block of data to be written (or read)

only to a limited set of addresses in the cache. The top figure of Fig. 6.94 shows a two-way

set-associative cache where a block of data from the main memory is written only to two

SET 

Fully-Associative CacheMain Memory

Block X

Block 0

Block 1

Block 2

Block 3

Block (N-2)

Block (N-1)

Block (N-4)

Block (N-3)

Block 4

Block 5

Block 6

Block 7

Fig. 6.93 Fully-associative cache topology
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possible cache addresses, which defines a set. Conversely, when data needs to be read from a

two-way set-associative cache, data is searched only within a given set. Therefore, the time

to search and locate data is reduced by a factor of N/2 in a two-way set associative cache

compared to a fully-associative cache containing N number of blocks.

SET 0

2-Way Set Associative CacheMain Memory

SET 1

SET (K-1)

Block X

Block 0

Block 1

Block 2

Block 3

Block (N-2)

Block (N-1)

SET 0

4-Way Set Associative CacheMain Memory

SET 1

SET (K-1)

Block (N-4)

Block (N-3)

Block 4

Block 5

Block 6

Block 7

Block X

Block 0

Block 1

Block 2

Block 3

Block (N-2)

Block (N-1)

Block (N-4)

Block (N-3)

Block 4

Block 5
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Fig. 6.94 Two-way and four-way set-associative cache topologies
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Similar to the two-way set-associative cache, a block of data is searched in four possible

addresses in a set when the CPU issues a cache read in a four-way set-associative cache as

shown at the bottom part of Fig. 6.94. If data needs to be written to the cache, only four

possible cache addresses in a set are considered according to the cache protocol.

The third cache type is the direct-mapped cache as shown in Fig. 6.95. Its organization is

similar to an SRAM, and it maintains a one-to-one addressing scheme with the main

memory. In other words, a block of data in the main memory can only be written to a specific

location in the cache memory or vice versa.

All stored data blocks in the cache memory are tagged. Consequently, all data transactions

between the cache and the main memory (or the CPU) require validation of the tag field

before performing a cache read or write operation. Physically, tag fields are stored in a

different memory block in the same cache structure. However, both the cache and tag

memories retain one-to-one association with each other as shown in Fig. 6.96. In addition,

the tag memory comes with valid bits. Each bit specifies if a block of data residing in the

cache has an identical twin in the main memory or not. A valid bit = 0 means that the

contents of the main memory have not been updated with the block of data residing in the

cache at a certain address. When updating is complete and there is complete data coherency

between the cache and main memories, the valid bit becomes logic 1.

SET 0 

Direct-Mapped CacheMain Memory

Block X

Block 0

Block 1

Block 2

Block 3

Block (N-2)

Block (N-1)

Block (N-4)

Block (N-3)

Block 4

Block 5

Block 6

Block 7

SET 1 

SET 2 

SET 3 

SET 4 

SET 5 

SET 6 

SET 7 

SET (N-4) 

SET (N-3) 

SET (N-2) 

SET (N-1) 

Fig. 6.95 Direct-mapped cache topology
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The CPU address that references the cache memory consists of three separate fields as

shown at the bottom section of Fig. 6.96: tag, index and block offset. The index field

specifies the set address where the cache block resides. Since a block may contain many

words, block offset selects the word in the block. Therefore, before a cache-related operation

takes place, the tag field in a CPU address is compared against all the tag fields in a given set.

If the tag comparison is successful, the block of data at the specified set location is trans-

ferred out of the cache memory or vice versa.

6.22 Cache Write and Read Structures

The cache write operation starts with comparing the tag field of the CPU address with all the

tag fields of a referenced set in the tag memory. If the comparison is successful, this creates a

hit signal, and prompts the CPU to write data to the specified set (and block offset) location

in the cache memory.

Cache Memory

Block 0V

Block 1V

Block 2V

Block 3V

Block (N-2)V

Block (N-1)V

Tag 0

Tag 1

Tag 2

Tag 3

Tag (N-2)

Tag (N-1)

Tag MemoryValid Bits

TAG INDEX BLOCK OFFSET

BLOCK ADDRESS

SET 

selection

TAG 

comparison

WORD 

selection

CPU ADDRESS:

Fig. 6.96 Cache structure

Figure 6.97 shows the cache write operation to a 32-bit, four-way set-associative cache.

This cache contains 22-bit tag fields, 256 sets due to the eight-bit index field, and four words
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in a block due to the two-bit block offset field. The write process starts with identifying the set

address using the eight-bit index field. All four tag fields at this set address are individually

compared against the CPU tag using XNOR-gates as shown at the output stage of the tag

memory in Fig. 6.97. If one of the tags at the set address compares successfully with the CPU

tag, it creates a hit signal for the CPU to write a block of data to the corresponding set address.

The CPU data is routed through the tri-state buffers placed at the input stage of the cache

memory, and written to the designated address via the index field and the block offset field.

The cache read operation is similar to the cache write operation except that the cache and

the tag memories are accessed simultaneously to shorten the cache read access period.

Figure 6.98 shows the same four-way set-associative cache structure shown in Fig. 6.97.

With the eight-bit index field defining the set address, four tag blocks from the tag memory

and four data blocks from the cache memory are read out simultaneously. Each tag is

individually compared with the 22-bit tag field in the CPU address, and hit signals are

generated using four XNOR gates. These hit signals are subsequently used as selector inputs

for the 4-1 MUX at the output of the cache memory to select one of the cache blocks. The

word from the chosen block is selected by the two-bit block offset field and given to the CPU.

6.23 A Direct-Mapped Cache Example

Even though cache read/write protocols and the related hardware have been explained in the

earlier sections of this chapter, the example shown in Fig. 6.99 further clarifies the operation

of a direct-mapped cache.

The cache structure in this example consists of eight sets due to the three-bit index field in

the CPU address with no block offsets. Therefore, each data block contains a single five-bit

word with a two-bit tag field.

Assume that the CPU issues cache reads from the following addresses: 10101, 10010,

10101, 01010, 10000, 10110, 10000, 10111 and 01111. When the cache is first turned on, its

tag, valid bits and data fields are all zero. The index column in Fig. 6.99 is not an actual part

of cache memory. Its sole purpose is simply to indicate a set address.

When the CPU issues the first read from the address 10101, the tag memory contents 00 at

the set address 101 are compared against the tag field contents of 10 in the CPU address.

Since the two values are different from each other, the cache controller issues a cache miss,

fetches the data, mem (10101), from the main memory address of 10101, delivers this data to

the CPU, and stores the same data in the cache. It also updates the tag contents with 10, and

issues valid bit = 1.

Next, the CPU issues the second read from the address 10010. This time, the tag memory

contents 00 at the set address 010 are compared with the tag field of 10 in the CPU address. The

comparison fails and produces amiss. The cache controller fetches the data,mem (10010), from

themainmemory, writes this data at the set address 010 of the cachememory, delivers the same

data to the CPU, updates the tag memory with 10, and produces valid bit = 1.
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Fig. 6.99 A direct-mapped cache operation
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The CPU reissues another read from the address 10101. The tag memory contents of 10 at

the set address of 101 compare successfully with the CPU tag field of 10. As a result, the

cache controller issues a hit. The data, mem (10101), at the set address 101 is transferred

directly from the cache memory to the CPU.

The next CPU address 01010 accesses the set 010 in the tag memory, but finds the tag

memory contents of 10 at this address is different from the tag field contents of 01 in the

CPU address. Therefore, the cache controller issues a miss, fetches mem (01010) from the

main memory, and delivers this data to the CPU and the cache memory. It also updates

the tag contents with 01, and issues valid bit = 1.

The fifth address 10000 creates another miss because the tag memory contents of 00 at the

set address of 000 do not compare with the tag contents of 10 at the CPU address. The cache

controller transfers mem (10000) from the main memory to the set address 000 of the cache,

delivers the same data to the CPU, updates the tag contents with 10, and produces valid bit = 1.

When the CPU issues the sixth address 10110, the cache controller finds the tag memory

contents of 00 at the set address of 110 to be different from the tag field contents of 10 in the

CPU address, and issues a miss. Consequently, the cache controller fetches mem (10110)

from the main memory, delivers it to the CPU and the cache memory. It also updates the tag

memory with 10, and assigns valid bit = 1.

Next, the CPU reissues the address 10000. Since the CPU and the tag memory contents

match, this creates a cache hit. The cache controller simply delivers mem (10000) from the

set address 000 of the cache to the CPU.

The next address, 10100, creates another cache miss. The cache controller updates the set

address contents with mem (10100) and delivers the same data to the CPU. It also updates

the tag memory with a value of 10 and issues valid bit = 1.

When the last CPU address, 11111, is issued, the cache controller finds the tag field

contents of 11 in the CPU address to be different from the tag memory contents of 00 at the

set address of 111. It issues a miss and delivers mem (11111) to both the CPU and the cache.

It updates the tag memory with 11 and assigns valid bit = 1.

6.24 Write-Through and Write-Back Cache Structures in Set-Associative
Caches

It is very common to see two types of cache structures when analyzing set-associative

caches: write-through caches and write-back caches.

In write-through caches, the cache controller maintains data coherency between the cache

and the main memory before starting a new task.

In write-back caches, the wait time for data coherency is an essence. For example, if the

transaction is a read, but the main memory bus is busy with another data transfer, the cache

controller temporarily stores the data from the cache in a write-back buffer instead of waiting

to write it to the main memory, and starts a new task. When the bus arbiter grants the bus
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access, the cache controller resumes transferring this data from the write-back buffer to the

main memory.

6.25 A Two-Way Set-Associative Write-Through Cache Example

The example in Fig. 6.100 shows 14 different transactions between a two-way

set-associative write-through cache and a CPU. The initial contents of the main memory

are shown in the same figure. Each transaction is specified by a CPU address, the type of

transaction and data.

The CPU address in this example consists of six bits: the most significant four bits define

the tag address; the least significant two bits indicate the set address as shown in Fig. 6.101.

Transaction No CPU Address Read/Write CPU Data

1

2

3

4

5

6

7

8

9

10

11

12

13

14

010101

110001

100000

100011

110000

010011

000110

001110

110000

100000

100100

100100

111100

000000

Read

Read

Read

Read

Read

Read

Read

Write

Write

Write

Write

Write

Write

Write

-

-

-

-

-

-

0x0B

0x1B

0x2B

0x3B

0x0C

0x1C

0x2C

-

0x3F

0x3A

0x0A

0x0E

0x0F

0x2A

0x1A

000000

010011

010101

100000

100011

110000

110001

MAIN MEMORY

(Word Addressable)

Fig. 6.100 A two-way set-associative write-through cache pending transactions and initial

data memory contents
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1
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1
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1

1

V
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-
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-
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-
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TAG MEMORYCACHE MEMORY
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Set 0

Set 1

Set 2

Set 3

Set 0

Set 1

Set 2

Set 3

Set 0

Set 1

Set 2

Set 3

Set 0

Set 1

Set 2

Set 3

Set 0

Set 1

Set 2

Set 3

Set 0

Set 1

Set 2

Set 3

Set 0

Set 1

Set 2

Set 3

111100

-

0x1C 0x2B

0x0A 0x1A

0x0B 0x1B

0x0F 0x3A

WAY 1 WAY 0

1001 1100

0101 1100

0001 0011

1000 0100
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1
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1

V
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1

V

End of 12th transaction:

Set 0

Set 1

Set 2

Set 3

Set 0

Set 1

Set 2

Set 3

Fig. 6.101 A two-way set-associative write-through cache, tag and data memory contents

after the sixth, tenth, twelfth and fourteenth transactions
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There are no bits for block offset, which indicates every block consists of a single word with

six bits of data. Since this is a two-way set-associative cache, the memory is organized as

two adjacent data blocks for every set. The tag memory also consists of two adjacent tag

fields with valid bits for each set as shown in Fig. 6.101.

The data from the main memory can either go to the most significant (WAY 1) or the least

significant (WAY 0) block position of the two-way set-associative cache. Therefore, a data

replacement policy must be defined when designing a set-associative cache architecture. In

this example, let us assume that the data replacement policy dictates the old data with smaller

number of memory references (the total number of reads and writes) to be replaced. If the

number of memory references at either cache blocks is equal to each other, the block of data

at the most significant cache position is replaced with the new data.

The first transaction reads from the memory address of 010101. In this transaction, the

cache controller compares the tag field contents of 0101 in the CPU address with the tag

memory contents of 0000 at the set address 01, and issues a miss. Next, the cache controller

fetches 0x0A from the main memory address of 010101, and delivers it to the CPU. Since

the number of memory references at the most and the least significant cache positions are

both zero at this point, the cache controller places 0x0A at the most significant cache

position as the result of the data replacement policy. It also updates the tag memory with

0101, and assigns valid bit = 1.

The next five read transactions result in five consecutive cache misses. By the end of the

sixth transaction, six new data entries from the main memory are written to both the cache

and the tag memories as shown in Fig. 6.101.

The seventh CPU transaction is a write. The CPU issues to write 0x0B to the main

memory address of 000110. As for the read operations, the cache controller compares the tag

memory contents of 0000 at the set address of 10 with the tag field contents of 0001 in the

CPU address, and issues a miss. The data, 0x0B, is written to both the main memory address

of 000110 and the most significant cache position at the set address of 10. The tag memory is

also updated with 0001, and valid bit = 1.

In the eight transaction, the cache controller again issues a miss for the set address of 10

because the tag field comparison fails. Consequently, the cache controller stores the CPU

data, 0x1B, in the main memory address of 001110, and also writes this data to the least

significant cache position at the set address of 10. The tag memory is updated with 0011 and

valid bit = 1.

The next write compares the tag field entry of 1100 in the CPU address with all the tag

memory entries at the set address of 00. Since the least significant tag memory contents are

identical to the CPU tag entry, the cache controller issues a hit, but still replaces the contents

of the main memory at the address of 110000 and the contents of the cache memory at the set

address of 00 with 0x2B. This is because the architecture of this cache is a write-through

which requires the cache and the main memory contents to be the same before the cache

controller starts a new task. Therefore, there is really no difference between a cache write
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miss and cache write hit when it comes to updating the cache and the main memory contents.

In both cases, the cache controller has to wait until the current data transaction ends before

updating the main memory. However, the tag memory contents require no updating fol-

lowing a cache write hit.

The tenth transaction is another CPU write which results in a cache hit. Like the previous

write transaction, the cache controller has to replace the contents of the main memory at the

address of 100000 and the contents of the cache memory at the set address of 00 with 0x3B.

At the end of the tenth transaction, the cache and the tag memory contents are shown in

Fig. 6.101 with two memory references for the set address of 00, and one memory reference

for the remaining set addresses.

The eleventh transaction creates a cache miss and causes the cache controller to replace the

data 0x3B at the most significant cache position with the CPU data of 0x0C at the set address

of 00. The most significant tag entry, 1000, is also replaced with 1001 at the same set address.

The twelfth transaction creates a cache hit because the CPU tag field, 1001, compares

successfully with the tag memory contents at the set address of 00. However, the cache

controller replaces 0x0C at the main memory address of 100100 and at the set address of 00

with the new CPU data 0x1C.

In the thirteenth transaction, the CPU address of 111100 causes a cache miss. The CPU

data, 0x2C, is written both to the main memory address, 111100, and the least significant

cache position at the set address of 00 per data replacement policy. The least significant tag

memory contents at the set address of 00 are also updated with 1111.

The fourteenth transaction is a memory read and causes another miss. The cache con-

troller delivers 0x3F from the main memory location of 000000 to the CPU and writes the

same data to the least significant cache position at the set address of 00.

6.26 A Two-Way Set-Associative Write-Back Cache Example

The example in Fig. 6.102 shows the transactions between a CPU and a two-way

set-associative write-back cache. The initial contents of the main memory and the cache are

shown in the same figure. The CPU address in this example has eight bits. The most

significant four bits are reserved for the tag field. The two-bit index field indicates that there

are four sets in the cache memory. The two-bit block offset field signifies that there are four

eight-bit wide words in each block. Therefore, the cache memory consists of two adjacent

blocks at WAY 1 and WAY 0 positions, each containing four words. The tag memory has

also two adjacent tag entries with valid bits. Each tag represents a block in the cache

memory. The data replacement policy for this example assumes to replace the block of data

in the cache memory with the least number of memory references. If the number of memory

references at each block is the same, then the policy replaces the old data at the least

significant block position.
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Two-Way Set-Associative Tag Memory

Transaction No CPU Address Read/Write CPU Data

1

2

3

4

10001000

10000000

10000001

10000010

10000011

10000000

10000001

10000010

10000011

11000000

Read

Write

Write

Write

Write

Write

Write

Write

Write

Read

-

0xE0

0xE1

0xE2

0xE3

0xF0

0xF1

0xF2

0xF3

-

0xA010001000

MAIN MEMORY

(Word Addressable)

0xC3

WAY 1

Set 0

Set 1

Set 2

Set 3

Two-Way Set-Associative Cache Memory

0xC2 0xC1 0xC0

11 10 01 00

WAY 0

11 10 01 00

0

WAY 1

Set 0

Set 1

Set 2

Set 3

1011

D TAG

0xB3 0xB2 0xB1 0xB0

1

V

0

WAY 0

1010

D TAG

1

V

0xA110001001

0xA210001010

0xA310001011

0xB010101000

0xB110101001

0xB210101010

0xB310101011

0xC010111000

0xC110111001

0xC210111010

0xC310111011

0xD011000000

0xD111000001

0xD211000010

0xD311000011

Write-Back Buffer

Block 1 Block 0

--------

CPU Address

4 bits

BOFFINDEXTAG

2 bits 2 bits

Fig. 6.102 A two-way set-associative write-back cache pending transactions and initial data

memory
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Since this is a write-back cache, its architecture enables the cache controller to store the

CPU data temporarily in a buffer to be written to the main memory at a later time. Every time

a block of data is written to this buffer, a dirty bit is attached to its tag, designating that this

block is waiting to be written to the main memory. Therefore, the cache coherency mech-

anism that presides over write-through caches is not valid for write-back caches. Instead, the

dirty bit attached to each tag entry determines whether or not a block of data exists in both

the cache and the main memories.

Initially, identical data resides both in the main memory and the cache as shown in

Fig. 6.102, and therefore valid bits at the set address of 10 in the tag memory become equal

to one. Since the write-back buffer cache architecture does not offer any data waiting period

for the main memory, the dirty bits at the set address 10 are equal to zero.

The first CPU transaction is to read data from the memory address 10001000. The cache

controller compares the tag entry 1000 in the CPU address with all the tags at the set address

10 and issues a miss. It then transfers the block of data from the main memory address

10001000 (0xA0, 0xA1, 0xA2 and 0xA3) to replace the old block (0xB0, 0xB1, 0xB2 and

0xB3) at the least significant cache position. The cache controller also updates the corre-

sponding tag contents with 1000 as shown at the top portion of Fig. 6.103.

The next CPU transaction is a write, which results in a cache miss. Consequently, the

cache controller writes the contents of the CPU data that consists of 0xE0, 0xE1, 0xE2 and

0xE3 to the least significant cache position at the set address 00, and updates the tag memory

contents with 1000. However, during this transaction the data bus happens to be busy.

Therefore, the cache controller stores this block in the write-back buffer, assigns dirty bit = 1

and valid bit = 0, and starts the next transaction. When the bus access is granted, the cache

controller resumes transferring this data from the write-back buffer to the main memory, and

assigns dirty bit = 0 and valid bit = 1.

The third CPU transaction is a write and results in a cache hit. The cache controller simply

writes the new block of data, 0xF0, 0xF1, 0xF2 and 0xF3, to the write-back buffer and to the

least significant block position of the cache memory, replacing the old block, 0xE0, 0xE1,

0xE2 and 0xE3. Since this transaction does not require transferring the old block from the

write-back buffer to the main memory, write-back cache scheme creates a distinct speed

advantage compared to the write-through scheme.

The last CPU transaction is a memory read that results in a miss. Consequently, the data

block, 0xD0, 0xD1, 0xD2 and 0xD3, that resides at the main memory address 11000000 is

transferred to the most significant block position of the cache memory at the set address 00

since this position has zero memory references compared to the least significant block

position. The tag memory contents are updated with 1100, valid bit = 1 and the dirty bit = 0

at this set address.

360 6 Central Processing Unit



0xC3

WAY 1

Set 0

Set 1

Set 2

Set 3

0xC2 0xC1 0xC0

11 10 01 00

WAY 0

11 10 01 00

0

WAY 1

Set 0

Set 1

Set 2

Set 3

1011

D TAG

0xA3 0xA2 0xA1 0xA0 1

V

0

WAY 0

1000

D TAG

1

V

Write-Back Buffer

Block 1 Block 0

--------

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory

AFTER THE 1st TRANSACTION

0xC3

WAY 1

Set 0

Set 1

Set 2

Set 3

0xC2 0xC1 0xC0

11 10 01 00

WAY 0

11 10 01 00

0

WAY 1

Set 0

Set 1

Set 2

Set 3

1011

D TAG

0xE3

0xA3

0xE2

0xA2

0xE1

0xA1

0xE0

0xA0 1

V

1

0

WAY 0

1000

1000

D TAG

0

1

V

Write-Back Buffer

Block 1 Block 0

0xE00xE10xE20xE3----

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory

AFTER THE 2nd TRANSACTION

0xC3

WAY 1

Set 0

Set 1

Set 2

Set 3

0xC2 0xC1 0xC0

11 10 01 00

WAY 0

11 10 01 00

0

WAY 1

Set 0

Set 1

Set 2

Set 3

1011

D TAG

0xF3

0xA3

0xF2

0xA2

0xF1

0xA1

0xF0

0xA0 1

V

1

0

WAY 0

1000

1000

D TAG

0

1

V

Write-Back Buffer

Block 1 Block 0

0xF00xF10xF20xF3----

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory

AFTER THE 3rd TRANSACTION

0xD3

0xC3

WAY 1

Set 0

Set 1

Set 2

Set 3

0xD2

0xC2

0xD1

0xC1

0xD0

0xC0

11 10 01 00

WAY 0

11 10 01 00

0

0

WAY 1

Set 0

Set 1

Set 2

Set 3

1100

1011

D TAG

0xF3

0xA3

0xF2

0xA2

0xF1

0xA1

0xF0

0xA0

1

1

V

1

0

WAY 0

1000

1000

D TAG

0

1

V

Write-Back Buffer

Block 1 Block 0

0xF00xF10xF20xF3----

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory

AFTER THE 4th TRANSACTION

Fig. 6.103 A two-way set-associative write-back cache with tag and write-back buffers
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Review Questions

1. A 32-bit RISC CPU organized in Big Endian format has three pipeline stages to

execute the following two instructions:

ADDI RS, RD, Imm Value Reg[RS] + Imm Value ! Reg[RD]

XOR RS1, RS2, RD Reg[RS1] + Reg[RS2] ! Reg[RD]

Draw the detailed ALU and the CPU schematic that executes these two instructions.

Label all interconnections, bus widths and control signals.

2. An eight-bit CPU interacts with a two-way set-associative write-through cache

organized in Little Endian format. The top row of this cache corresponds to set 0.

The CPU address has the following format:

Tag Index Block offset

3 bits 3 bits 2 bits

Data replacement policy in case of a miss is as follows:

(i) Tags with invalid bits are replaced.

(ii) The least significant tag is replaced if the number of references is the same when

valid bit = 1 (every cache read or write is considered a reference).

(a) Draw the block diagram of the tag (with valid bits) and cache memories. Calculate

how many bits are in each memory.

(b) Draw the block diagram and the contents of the cache and the tag memories at the

end of the fifth, eleventh and thirteenth transactions according to the transaction list

below:
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Transaction no. CPU Address Data Write/Read

1

2

3

4

5

6

7

8

9

10

11

12

13

10100110

00111001

11110100

10001111

00100110

00111011

00111001

11001111

01101101

00010100

10100110

00100111

00101111

0x11

0x22

0x33

0x44

0x55

0x66

0x77

0x88

0x99

0xAA

?

?

?

W

W

W

W

W

W

W

W

W

W

R

R

R

3. The following specification is given for implementing a 32-bit RISC processor that

executes the integer multiply-add (MADD) and add (ADD) instructions:

(i) Data, a, b, c and d are read from the DOut1, DOut2, DOut3 and DOut4 ports of

the 32-bit RF at the same time.

(ii) There are four stages in the processor. The ALU consists of two stages.

(iii) Multiplication is the first ALU stage for the MADD instruction between a and b,

and between c and d. It takes one clock cycle to produce results which are

eventually written to the DinH (for higher 32 data bits) and DinL (for lower 32

data bits) ports of the RF simultaneously. This stage can be bypassed if addition

is performed between a and c.

(iv) Addition is the second ALU stage, and it also takes one clock cycle to produce

results.

(v) For MADD instruction, RS1 is the first source address that contains a, RS2 is the

second source address that contains b, RS3 is the third source address that

contains c, and RS4 is the fourth source address that contains d. RD1 is the first

destination address that stores the lower 32 bits of the result, and RD2 is the

second destination address that stores the higher 32 bits. For the ADD

instruction, RS1 is the first source address that contains a, RS3 is the second

address that contains c, and RD1 is the destination address that stores the result.
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(a) Draw the instruction bit field format of these two instructions, indicating the

opcode and operand fields.

(b) Draw the architectural diagram of the processor that executes the ADD and the

MADD instructions, indicating all the necessary hardware such as the required

memories, the RF, the detailed ALU with all the port names and bit widths. Show

how the opcode decoder enables multiplexers and other hardware in each stage.

4. The area under y = x is calculated until the area equals to 18 square units.

y

x
0 1 2 3 .  .  .  .

delx

y = x

The incremental area is calculated in the flow chart given below.

area = 0, delx = 1, x = 0

area = area + delx * (y1+y2)/2

STORE area at mem=100

y1 = x, y2 = x+delx

x = x+delxarea:18
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(a) Assuming Reg[R0] = 0, write a program using the instruction set given in Chapter 6.

Make comments next to each instruction in the program.

(b) Form an instruction chart (histogram) for this program and show all the data

dependencies that require forwarding loops in the RISC processor. Stall the

pipeline using the NOP instruction if necessary. Consider the branch or jump delay

penalty to be 1 cycle.

5. A RISC CPU computes the following:

X ¼ 2A2 þ 1

A is located at the data cache address, 100, and X needs to be stored at the address,

200. All instructions take one cycle except the multiply, which takes three cycles.

The RF contains only R0 and R1. The contents of R0 are 0.

Make sure to have only 16-bit values in the source registers, RS1 and RS2, in order to

avoid the overflow condition in the destination register, RD, when the MUL

instruction is used.

(a) Write an assembly code to compute and store the value of X. Make sure to write

comments next to each instruction to keep track of the register values.

(b) Rewrite the assembly code with an instruction chart. Indicate all the forwarding

loops and the stalls caused by the NOP instructions on this chart.

6. Design a four-way set-associative cache for an eight-bit CPU. The cache is organized

in Little Endian format. It has four sets, and each block in the set contains two words.

The replacement policy on a cache miss is as follows:

(i) An entire block of data is exchanged between the CPU and the cache

(ii) The least significant block is replaced

(iii) The block with the fewest number of memory references is replaced (a memory

reference corresponds to each memory-read or memory-write cycle)

Below is the list of CPU transactions:
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The contents of the main memory before any transaction are shown below:

Transaction no. CPU Address Data Write/Read

1

2

3

4

5

6

7

8

9

10

11

12

10000010

10000110

01111101

00100011

00001010

00001101

10001001

10001010

10000000

00001010

11011010

11011011

11111011

0xAB

R

R

R

R

R

R

R

R

W

W

W

W

R

10000001 0xCD W

00001011 W

0xAB

0xCD

0xAB

0xCD

?

?

?

?

?

?

?

?

?
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(a) Draw the block diagram of the cache and tag memories. Show the field format of

the CPU address in terms of tag, index and block offset.

0x3300001010

0x4400001011

0x5500001100

0x6600001101

0x1100100010

0x2200100011

0xEE01111100

0xFF01111101

0x0010000000

0x0010000001

0xAA10000010

0xBB10000011

0xCC10000110

0xDD10000111

0x7710001000

0x8810001001

0x0010001010

0x9910001011

0x0011011010

0x0011011011

0xAB11111010

0xCD11111011

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7 0
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(b) Show the contents of the cache and the tag memories after the eighth, tenth and

twelfth transactions. Update the main memory contents if there is any change.

7. A 32-bit, five-stage RISC CPU organized in Little Endian format executes the flow

chart below. The CPU contains a register file with 32 registers where Reg[R0] = 0.

The integer values, SUM = 0, i = 1 and the compare value of 100, are stored at the data

memory locations 100, 101 and 102, respectively. The final SUM needs to be stored at

the data memory address, 200.

SUM = 0

at mem (100)

i = 1

at mem (101)

SUM = SUM + i

i : 100 i = i + 1

STORE 

SUM at mem (200)

i < 100

i = 100

(a) Write an assembly program using the following instruction set. Accompany each

instruction in the program with register data and comments.
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(b) Draw the CPU schematic that executes the instructions in the flow chart above.

8. The function, Y ¼ 5ðA�BÞ
32

, needs to be executed using the instruction set below.

A is located at the memory address 100.

B is located at the memory address 101.

Y needs to be stored at the memory address 102.

Reg[R0] = 0.

LOAD RS, RD, Imm Value

STORE RS, RD, Imm Value

ADD RS1, RS2, RD

LOAD RS RD Imm Value

2631

STOR RS RD Imm Value

ADD RS1 RS2 RD Not used

mem {Reg [RS] + Imm} → Reg [RD] 

Reg [RS] →  mem {Reg [RD] + Imm}

Reg [RS1] + Reg [RS2] → Reg [RD]

Instruction Set Instruction Definition Instruction Bit Field

25 21 20 16 15 0

2631 25 21 20 16 15 0

2631 25 21 20 1615 011 10

SUB RS1, RS2, RD SUB RS1 RS2 RD Not usedReg [RS1] - Reg [RS2] → Reg [RD]

2631 25 21 20 1615 011 10

SLI RS, RD, Imm Value SLI RS RD Imm Value

2631

Reg [RS] << Imm → Reg [RD] 

25 21 20 16 15 0

SRI RS, RD, Imm Value SRI RS RD Imm Value

2631

Reg [RS] >> Imm → Reg [RD] 

25 21 20 16 15 0

LOAD RS, RD, Imm Value

STORE RS, RD, Imm Value

ADD RS1, RS2, RD

ADDI RS, RD, Imm Value

SEQ RS1, RS2, RD

BNEZ RS, Imm Value

JUMP Imm Value

LOAD RS RD Imm Value

13 62

STOR RS RD Imm Value

ADD RS1 RS2 RD Not used

ADDI RS RD Imm Value

SEQ RS1 RS2 RD Not used

BNEZ RS NU Imm Value

JUMP NU NU Imm Value

mem {Reg[RS] + Imm} → [RD] 

Reg[RS] → mem {Reg[RD] + Imm}

Reg[RS1] + Reg[RS2] → Reg[RD] 

Reg[RS] + Imm Value → Reg[RD]  

If Reg[RS1] = Reg[RS2] 

then 1 → Reg[RD] else 0 → Reg[RD]  

If Reg [RS] ≠ 0 

then PC + Imm → PC else PC + 2 → PC 

Imm → PC 

Instruction Set Instruction Definition Instruction Bit Field

25 21 20 16 15 0

516102125213 62 0

516102125213 62 0

516102125213 62 0

516102125213 62 0

516102125213 62 011 10

516102125213 62 011 10

Reg 
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(a) Write a program to compute Y.

(b) If the LOAD and STORE instructions require two cycles to access the data cache,

rewrite the program to accommodate this requirement. Show all the forwarding

loops and include all the necessary NOPs in the instruction chart.

(c) Indicate the minimum number of clock cycles to execute the program in part (b).

9. A 32-bit CPU organized in Big Endian format has 32 general purpose registers (R0 is

also a general purpose register and its contents are not zero). This CPU executes the

following flow chart:

mem{Imm0}    Reg[R0]

mem{Imm1}    Reg[R1]

Reg[R0]    Reg[R2]

Reg[R0] * Reg[R1]    Reg[R3], Reg[R4]

Reg[R0] + Reg[R1]    Reg[R5]

Reg[R1]    Reg[R6]

Reg[R3]    mem{Imm3}

Reg[R4]    mem{Imm4}

Reg[R2]    mem{Imm2}

Reg[R5]    mem{Imm5}

Reg[R6]    mem{Imm6}
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The instruction set and the bit-field format for each instruction is shown below.

The CPU maintains the following rules:

(i) Every instruction is executed in a different number of clock cycles

(ii) No NOP instruction is allowed

(iii) LOAD does not have an ALU cycle but requires two data memory cycles

(iv) INVERT does not have a data memory cycle but requires one ALU cycle

(v) MUL does not have a data memory cycle but requires three ALU cycles

(vi) ADD does not have a data memory cycle but requires two ALU cycles

(vii) STORE does not have an ALU cycle but requires one data memory cycle

Write a program and construct its instruction chart to execute the flow chart above.

Show all the necessary forwarding loops and possible data hazards in the instruction

chart. Show the cases in which there may be structural hazards and indicate how to

prevent them.

10. An eight-bit CPU has a four-way set-associative, write-back data cache organized in

Little Endian format (the most significant bit is at bit position 7 and the least signif-

icant bit is at bit position 0).

The cache has four sets, and each block contains two eight-bit words. In the case of a

cache miss the cache controller replaces the least significant, least used block.

The write-back buffer stores four rows of block data in case of a cache miss. When all

four rows are filled with data, the cache controller transfers the contents of the entire

write-back buffer to the main memory.

CPU issues the following addresses to read and write data:

mem (Imm Value)      Reg[RD]

Reg[RS]      Reg[RD]

Reg[RS1] * Reg[RS2]      Reg[RD1], Reg[RD2]

Reg[RS1] + Reg[RS2]      Reg[RD]

Reg[RS]      mem{Imm Value}

upperlower

LOAD NU RD

INVERT RS

MUL RS1 RS2 RD1 RD2

ADD RS1 RS2 RD

STORE RS NU

0 5 6 10 11 15 16 31

0 5 6 10 11 31

0 5 6 10 11 15 16 31

0 5 6 10 11 15 16 31

0 5 6 10 11 15 16 31

20 21 25 26

20 21

RD

15 16

Imm Value

NU

NU

NU

Imm Value

LOAD  Imm Value, RD

INVERT  RS, RD

MUL RS1, RS2, RD1, RD2

ADD RS1, RS2, RD

STORE  RS, Imm Value

6.26 A Two-Way Set-Associative Write-Back Cache Example 371



CPU address Write/Read

10000101

11000100

01000101

01100100

01110010

10100011

11100010

11110011

R

R

R

R

R

R

R

R

00100010

00110101

01000101

11110010

R

R

R

R

00001010

00001011

W

Data

0xCC

0xDD

00010010

00010011

W0xEE

0xFF

00001100

00001101

W0xAA

0xBB

00011100

00011101

W0x55

0x66

?

?

?

?

?

?

?

?

?

?

?

?

Transaction No

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Main memory contents are as follows prior to the 16 transactions listed above.
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(a) Draw the block diagrams of the cache and tag memories in Little Endian format,

making sure to attach the dirty and valid bits to each tag block. Indicate how many

bits are in each memory. Note that in this memory architecture, the top row of the

cache contains set 0, and the bottom row contains set 3.

(b) Draw the block diagrams of the cache and tag memories at end of the eighth

transaction. Show the address, control, data and cache hit/miss entries.

(c) Draw the block diagrams of the cache and tag memories at the end of the twelfth

transaction. Show the address, control, data and cache hit/miss entries.

0xEE

0xFF

0xAA

0xBB

0x55

0x66

0x77

0x88

0x12

0x34

0x11

0x22

0x56

0x78

0x33

0x44

0xAA

0xBB

0xCC

0xDD

00100010

00100011

00110100

00110101

01000100

01000101

01100100

01100101

01110010

01110011

10000100

10000101

10100010

10100011

11000100

11000101

11100010

11100011

11110010

11110011

Main Memory
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(d) Draw the block diagrams of the cache and tag memories, and the contents of the

write-back buffer at the end of sixteenth transaction. Show the address, control,

data and cache hit/miss entries.

11. The following instruction set needs to be executed in a 32-bit RISC CPU organized in

Little Endian format. The CPU has three pipeline stages where the ALU and

write-back stages are combined. The CPU is capable of executing the integer (ADDI,

SLI and SRI) and floating-point (ADDF and MULF) instructions. The CPU stores the

fixed and floating-point numbers in two separate register files, each containing 32

registers.

In the instruction set below, RS and RD are defined as the source and the destination

addresses for the fixed-point registers. Similarly, FS1, FS2 and FD are the source and

the destination addresses for the floating-point registers. Show a detailed data-path of

this CPU, indicating all internal bus widths and port names. Include only the necessary

functional units.

Projects

1. Implement a 32-bit four-stage RISC CPU that executes only the ADD instruction in

Fig. 6.7 using Verilog. Verify the data and the control signals at the output ports of the

instruction memory, RF, ALU and write-back stages.

2. Implement the ADD, SUB, AND, NAND, OR, NOR, XOR, XNOR, SL and SR

instructions in a 32-bit four-stage RISC CPU shown in Fig. 6.15, and perform a complete

system verification using Verilog.

3. Implement a 32-bit five-stage RISC CPU that executes the LOAD, STORE, MOVE and

MOVEI instructions using Verilog. Verify the data and the control signals at the output

ports of the instruction memory, RF, ALU, data memory and write-back stages.

ADDI RS, RD, Imm Value

ADDF FS1 FS2 FD Not used

Reg[RS] + Imm → Reg[RD]

Instruction Set Instruction Definition Instruction Bit Field

2631 25 21 20 1615 011 10

SLI RS, RD, Imm Value SLI RS RD Imm Value

2631

Reg[RS] << Imm → Reg[RD] 

25 21 20 16 15 0

SRI RS, RD, Imm Value SRI RS RD Imm Value

2631

Reg[RS] >> Imm → Reg[RD] 

25 21 20 16 15 0

ADDI RS RD Imm Value

2631 25 21 20 16 15 0

ADDF FS1, FS2, FD Reg[FS1] + Reg[FS2] → Reg[FD]

MULF FS1, FS2, FD Reg[FS1] * Reg[FS2] → Reg[FD] MULF FS1 FS2 FD Not used

2631 25 21 20 1615 011 10
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4. Implement a 32-bit four-stage RISC CPU that executes only the BRA instruction shown

in Fig. 6.36 using Verilog. Verify the data and the control signals at the output ports of

the instruction memory and RF stages.

5. Implement and verify the 32-bit floating-point adder in Fig. 6.61 using Verilog. Verify

the validity of data at the outputs of every major stage using timing diagrams and perform

functional verification for the entire adder.

6. Implement and verify the 32-bit floating-point multiplier in Fig. 6.62 using Verilog.

Verify the validity of data at the outputs of every major stage using timing diagrams, and

perform functional verification for the entire multiplier. Use behavioral Verilog to mimic

the exponent adder and the integer multiplier.
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7System Peripherals

When the host processor executes a user program, it either exchanges data with system

memories such as SRAM, SDRAM or Flash, or communicates with system peripherals to

perform various tasks.

A conventional computing system may consists of one or more CPU cores, co-processors

such as hardware accelerators to perform specialized tasks, a Direct Memory Access

(DMA) controller to do routine data transfers from one memory to another, a display adaptor

to support user screen, and an interrupt controller. In most cases, data converters to convert

external analog signals into digital form or digital signals into analog form, timers to control

the length of an event, and transceivers in charge of serially transmitting and receiving

peripheral data are interrupt-driven and connected to the interrupt controller. The interrupt

controller, on the other hand, manages all event-driven or program-driven tasks through a

series of Interrupt Service Routines (ISR) that reside inside the program memory.

7.1 Overall System Arcitecture

A basic system architecture containing essential bus masters and slaves is shown in Fig. 7.1.

In this figure, the CPU is a bus master that executes user programs. The Direct Memory

Access (DMA) is another bus master in charge of transferring data between different system

memories. Bus slaves are generally the system memories such as SRAM, SDRAM and Flash

memory. However, other system devices that reside on the high speed bus such as the

display adaptor or peripheral buffer memories connected to the low speed I/O bus are also

considered bus slaves.

The display adaptor is considered an essential high-speed peripheral that displays the

results of a running program or application on the screen. Because of its bandwidth, this unit

is usually connected to the parallel port of the CPU. However, there are times when the
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display adaptor can also be connected to the low speed I/O bus. This choice very much

depends on how often the monitor needs to be used when running an application program.

Each type of memory mentioned in Chapter 5 serves a different purpose in a system.

SRAM usually holds immediate data generated by the CPU or stores temporary data during

a DMA transfer. Larger blocks of data are stored in SDRAM since this memory is many

orders of magnitude larger in capacity compared to SRAM. Flash memory usually stores

permanent data such as the Built-In Operating System (BIOS).

A bus adaptor translates commands, address and data signals between the parallel bus

which operates at a high clock frequency and the low speed I/O bus which operates at a

much lower clock frequency.

Sensors, electro-mechanical devices, human interface devices etc. that reside outside the

main system commonly use SPI and I2C bus protocols, and considered I/O devices. Ulti-

mately, they are all connected to the interrupt controller and memory-mapped due to their

capability to store incoming or outgoing data.

The system can also be connected to other systems (or CPUs) with a network adaptor. The

simplest connection protocol is Ethernet where many systems are serially connected to the

same bus.

Cache

CPU

DMA SDRAM

Display

Adaptor

Display

Bus

Adaptor

SRAM

Network

Adaptor

Network

Flash

Memory

Interrupt

Controller

Timers
Data

Converters

Serial

I/O devices

Low speed I/O bus

High speed parallel bus

Fig. 7.1 A typical system architecture

7.2 Direct Memory Access Controller

The CPU assigns routine memory-to-memory data transfer operations to the Direct Memory

Access (DMA) controller. Most of these transfers take place between two system memories

or between the buffer memory of a peripheral device and a system memory. This section
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shows how to design the basic architecture of a DMA controller that transfers data from a

source to a destination memory.

The DMA interface in Fig. 7.2 shows the I/O port description of a typical DMA controller.

In this figure, the DMA controller interacts with the CPU through handshake signals, ReqM

and AckM. When the CPU initiates a DMA data transfer, it issues a request, ReqM, to the

DMA controller. If the controller is not busy with another transfer, it then generates a request,

ReqD, to the bus arbiter to use the bus. When the arbiter acknowledges the request by AckD,

then the controller informs the CPU that it is ready to initiate the transfer by AckM, and at the

same time it sends out its first address and control signals to the source memory. While the

source memory is delivering data, the DMA controller issues the address and control signals

for the destination memory within the same clock cycle. In order to accomplish this task, a

direct data channel must exist between the source and the destination memories. This new

configuration modifies the original bus structure in Fig. 5.1 in which all bus masters are

assumed to have individual write data ports to be able to write data directly to a slave.

CPU
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a
d

y
D

From Decoder

RData

Rs

Rd

R
e

a
d

y
S

Fig. 7.2 The block diagram including a DMA, source and destination memories
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Figure 7.3 shows a typical data transfer between the source and the destination memory

until the last data packet, D4, is transmitted. The sequence starts with the DMA controller

issuing Status = START and AddrS = AS1, indicating the beginning of the data transfer and

the first source memory address, respectively. Since both memories are ready (ReadyS =

ReadyD = 1) after the first clock cycle, the controller continues the data transfer by issuing

Status = CONT, AddrS = AS2 (the second source memory address), and AddrD = AD1

(the first destination memory address) in the second cycle. In this cycle, the source memory

also delivers the first data, D1, to the destination memory. The same process takes place in

the third cycle, during which the DMA controller generates AddrS = AS3, AddrD = AD2,

and writes D2 to the destination memory. In the fifth clock cycle, as the DMA controller

generates the last destination memory address, AddrD = AD4, and writes the last data, D4,

to AD4, it also changes its status to IDLE, indicating the end of the data transfer.

Any time one of the Ready signals from the source or the destination memories transitions

to logic 0, the DMA controller stalls the data transfer by repeating the address and the control

signals as long as ReadyS or ReadyD is at logic 0. Figure 7.4 shows a typical data transfer in

which the destination memory is busy in the third cycle, and prompts the DMA controller to

repeat AddrS = AS3 and AddrD = AD2 in the next cycle. The DMA controller stalls the bus

again in the sixth cycle when it detects the source memory to be busy in the fifth cycle.

Status

AddrS

AddrD

Data

clock

START CONT CONT CONT IDLE

AS1 AS2

AD1

D1

AD2

D2

AS3

AD3

D3

AS4

AD4

D4

ReadyS

ReadyD

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Fig. 7.3 Timing diagram showing a DMA-assisted data transfer
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A basic DMA controller is shown in Fig. 7.5. There are three modules in this architecture.

The first module is the DMA register file that stores the initial and incremental source address

values, InitAddS, StepAddrS. The same registerfile contains four other registers. The InitAddrD

and the StepAddrD registers store the initial and the incremental destination addresses. The

Size and the Burst registers store the data width and the burst length, respectively. A program

data bus is used to store all six register entries before regular operations take place.

The second section of the DMA controller manages the handshake between the CPU and

the bus arbiter. This section also provides the internal signals to the DMA data-path to guide

the data.

In the third section, the DMA data-path produces source and destination addresses, AddrS

and AddrD, and the bus master control signals, Status, Size, Burst, WED (write-enable for

the destination memory) and RES (the read-enable for the source memory).

To be able to implement this architecture, three elements need to be examined in the

design phase simultaneously: a timing diagram describing an entire data transfer process

including the stall periods, a data-path that fully complies with the timing diagram, and a

control logic that manages the timely flow of data on the data-path.

As pointed out in previous chapters, the design always starts with forming a timing

diagram that describes the complete data-flow in a logic block. The timing diagram generally

includes a single clock (multiple clock domains or asynchronous event signals are also

common but not relevant for a basic DMA design), address, data and control signals with

respect to this clock. In order to generate an accurate timing diagram, a data-path must be

concurrently developed. The data-path generally consists of registers and logic gates.

However, it can also contain mega cells such as complex arithmetic units or memories. As

the design develops and more details are added to the original data-path, the corresponding
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clock
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ReadyS
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AD2 AD3

D2 D3

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Fig. 7.4 DMA-assisted data transfer with varying Ready signals from memories
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Fig. 7.5 A typical DMA architecture

timing diagram becomes more complex to accommodate the changes in the hardware. The

design of the controller to govern the data flow is the last step in the design process. This

step does not start until every internal and external signal is determined, and the complete

block functionality, including all corner cases of the data-flow, is explicitly depicted on the

timing diagram.

A detailed timing diagram describing a typical DMA transfer is shown in Fig. 7.6. As we

mentioned earlier in the memory-to-memory example in Chapter 2, this diagram is also

developed in two phases. In the first phase, the main DMA signals, namely the handshake

signals with the CPU and the arbiter (ReqM, AckM, ReqD and AckD), the source and the

destination memory addresses (AddrS and AddrD), the data (Data), the bus master control

signals (Status, Burst, Size, WriteD and ReadS), and the slave response signals (ReadyS and

ReadyD) are included in the timing diagram. In the second phase, all internal control signals

that support the address and data movement in the timing diagram are brought into the

picture. This section also includes the control signals for an internal down-counter to keep

track of the number of data packets transferred from one memory to the next.
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Fig. 7.6 Detailed timing diagram of a DMA transfer

In Fig. 7.6, the CPU initiates a DMA-assisted data transfer by issuing a request to the

DMA controller, ReqM, in clock cycle 1. This request enables the DMA controller to

generate a subsequent request, ReqD, to the arbiter in order to use the system bus in cycle 2.

An acknowledgment from the arbiter, AckD, may come in the third cycle or many cycles

later depending on the bus traffic and the other pending requests from higher priority bus

masters. However, as soon as the DMA controller receives the acknowledgement from the

arbiter, it notifies the CPU by issuing an acknowledgement signal, AckM, in cycle 4. This

cycle also prepares the DMA for an upcoming data transfer by setting the SetAddrS and

SetSTART signals to logic 1. That way, the first source memory address, AS1, can be

fetched from the InitAddrS register and delivered to the AddrS port in Fig. 7.7, and similarly
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the START code can be produced at the Status port in cycle 5. The port selection guide for

each 3-1 MUX in Fig. 7.7 is shown in Table 7.1. In cycle 5, the first data read command

from AS1 is issued by ReadS = 1. This cycle also sets the control signals, SetAddrD,

IncrAddrS and SetCONT, to logic 1, so that the first destination memory address can be

retrieved from the InitAddrD register and transferred to the destination address port, AddrD,

the second source memory address, (InitAddrS + StepAddrS), can be formed at the AddrS

output, and the status code can be changed from START to CONT in the next clock cycle.

Still in cycle 5, the down-counter, responsible for counting the number of data packets to be

delivered to the destination memory, is set with an initial value from the burst register by

SetCount = 1. Therefore, when clock cycle 6 starts, the second source memory address,

AS2, is formed at the AddrS port along with the first destination address, AD1, at the AddrD

port. The Status output indicates CONT code specifying the ongoing data transfer. In this

cycle, the first data, D1, is transferred from the AS1 address to the AD1 address with an

active-high WriteD signal and subsequently written in the destination memory. The

CountOut output also shows the initial value from the burst register, defining the number of

data packets to be written to the destination memory. This cycle sets the control signals,

IncrAddrS, IncrAddrD and DecCount, to logic 1 in order to prepare the next source and

destination addresses, and to decrement the CountOut by one in the next cycle.

Table 7.1 3-1 MUX port assignments in Fig. 7.7

SetAddrS = 1 set

ReadyS = 1
ReadyD = 1
IncrAddrS = 1

incr

ELSE stall

PORTINPUT

SetAddrD = 1 set

ReadyS = 1
ReadyD = 1
IncrAddrD = 1

incr

ELSE stall

PORTINPUT

SetCount = 1 set

ReadyS = 1
ReadyD = 1
DecCount = 1

decr

ELSE stall

PORTINPUT

IAS IAD DC

The routine data transfer continues until either the source or the destination Ready signal

transitions to logic 0. When this happens, the entire data transfer stalls, disengaging an

ongoing write process at the destinationmemory. In a stall, the previous source and destination

address values repeat themselves at the AddrS and AddrD ports; the down-counter stops,

displaying the remaining number of data packets to be written to the destination memory.

The data transfer resumes when the ReadyS and ReadyD signals become logic 1. Count-

Out = 2 defines the end of the data transfer. In this cycle, the IncrAddrS signal also transitions

to logic 0, indicating that there will be nomore new source address generation at the AddS port.

Similarly, the SetIDLE signal goes to logic 1, changing the bus master status code fromCONT

to IDLE in the next cycle.When CountOut = 1 in the following cycle, the last data is written to

the destination address. From this point forward, the DMA handshakes with the CPU and the

arbiter to terminate the data transfer. ReqD = 0 forces the arbiter to lower the acknowledge

signal, AckD. AckM = 0 prompts the CPU to lower its DMA request signal, ReqM.
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The controller design is a direct outcome of the timing diagram in Fig. 7.6. The first step

in the controller design is to assign a name to each clock cycle in the timing diagram that

produces a different set of outputs from the previous clock cycle. In other words, each clock

cycle that produces a different set of outputs has to be labeled with a new state in the

controller state diagram.

Cycle 1 is named as the IDLE state, producing ReqD = 0 and AckM = 0 in Fig. 7.8.

When ReqM = 1 is received in cycle 1, ReqD switches from logic 0 to logic 1 in cycle 2,
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Fig. 7.8 DMA controller state diagram
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producing a new state, REQD. ReqD = 1, on the other hand, prompts AckD = 1 in cycle 3

which creates the ACKD state in this cycle. Cycle 4 also creates a new state, SET SRC,

because a different set of control signals (AckM = 1, SetAddrS = 1 and SetSTART = 1)

emerges in this cycle. The next cycle generates a new set of outputs (ReadS =

SetAddrD = IncrAddrS = SetCONT = SetCount = 1) compared to the previous clock

cycles, and therefore it is labeled as the SET DEST state. Between cycles 6 and 13, the

controller outputs remain the same. Therefore, all these cycles can be grouped together under

the same state name, INCR. In cycle 14, the IncrAddrS signal transitions to logic 0 and the

SetIDLE signal transitions to logic 1. This new set causes the creation of a new state,

END SRC. Cycle 15 changes the controller output values once more with respect to the

previous cycle, and it is labeled as the END DEST state. In cycle 16, the down-counter

output finally reaches zero, and all the controller outputs except the AckM and ReqD signals

become logic 0. Therefore, this cycle is named as the END COUNT state. The controller

lowers the AckM and ReqD signals to logic 0, which creates a new state, END REQD in

cycle 17. In the next cycle, AckM = ReqD = 0 prompts the CPU and the arbiter to lower

ReqM and AckD signals to logic 0, respectively, and the controller transitions to the IDLE

state.

7.3 Interrupt Controller

There are numerous events that may interrupt the normal flow of program execution.

External events are created by I/O devices that need specific utility programs because they

may have data ready for the CPU or require data from the CPU. There are also internal

events within the CPU that result from errors encountered when executing user programs,

such as divide-by-zero or overflow conditions, which create exceptions.

There are four types of interrupts according to their priority. The interrupt for resetting the

CPU takes the precedence over all other interrupts because when reset occurs, the data in

each CPU register needs to be preserved in a special memory in order to be restored later on.

Internal interrupts take the second priority after the CPU reset. These interrupts generally

originate from errors encountered in user programs or may result from breakpoints installed

in a user program. Software interrupts take the third place in the priority list. These interrupts

are actually vectored subroutine calls that stem from software emulation routines.

Floating-point division produces one such example. Hardware interrupts are placed last in

the priority list. Even though prioritizing hardware interrupts is completely

user-programmable, the operating system may also manage the hardware priority list and

communicate with a specific device though device drivers.

In this chapter, we will examine the sequence of events that take place to handle a

hardware interrupt, and design a simple interrupt controller interface that serves up to 256

external I/O devices.
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The interrupt process begins when one or more I/O devices submit interrupt requests to

the interrupt interface in Fig. 7.9. In this figure, the interrupt interface is designed to handle

up to 256 interrupt inputs, INTR0 through INTR255. Interrupt controller is a programmable

state machine that prioritizes all pending interrupts, selects a highest priority device

according to a priority list, and communicates with the CPU using the INTR output as shown

in Fig. 7.9. When the acknowledgement signal, INTA, is received from the CPU, the

interrupt interface transmits the device ID, INTRID, causing the interrupt on an eight-bit

wide bus.

The interrupt ID in Fig. 7.9 matches the interrupt number at the input of the interface, and

ranges between 0 and 255. Each interrupt ID correlates to a specific address in the Interrupt

Address Table, IAT, in Fig. 7.10. Each address stored in IAT points the starting address of a

particular Interrupt Service Routine (ISR) residing in the instruction memory. Therefore,

when the interrupt interface generates an INTRID and accesses a specific memory address in

the IAT, the contents at this address is immediately loaded to the Program Counter (PC).

This prompts the CPU to pause executing the normal user program, and jump to the starting

ISR address in the instruction memory to execute the corresponding ISR instructions. This

basically translates to jumping from Instr3 of the user program to Intr1 of the ISR in the

example in Fig. 7.10. While in the ISR, a return instruction, IntrRET, indicates the end of

interrupt service routine. At this point, the program returns to ARET to execute the rest of

the user program.

To convert the block diagram in Fig. 7.10 into a detailed data-path, each step of the

interrupt service routine outlined above should be translated into a timing diagram. Creating a

timing diagram, on the other hand, is usually accomplished in two steps. The first step defines

all primary, bus-level signals such as data and address and includes them in the timing

diagram. The second step generates the necessary control signals to manage the data-flow.

To achieve the first step, let us consider the signals, INTRx (INTR0 to INTR255), INTR,

INTA, INTRID, DOutIAT and PCOut, in Fig. 7.10 and in the timing diagram in Fig. 7.11.

The signals, INTRx, INTR and INTA, are not bus-level signals; but, they are considered as
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Fig. 7.9 Interrupt interface input/output description
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the primary I/O signals that indicate the start of an interrupt. Therefore, they will be grouped

together with the other bus-level signals to show the complete interrupt sequence. In

Fig. 7.11, an I/O device issues an interrupt, INTRx = 1, to the interrupt interface in clock

cycle 1. In response, the interrupt interface generates INTR = 1 for the Interrupt Control Unit

(ICU) in charge of the handshake signals in cycle 2. In cycle 3, the ICU generates INTA = 1,

and prompts the interrupt interface to transmit an eight-bit INTRID to the IAT in the fol-

lowing cycle. As mentioned earlier, the INTRID signal is also an address for the IAT. The

data stored at this address is actually the starting address of an ISR in the instruction memory.

Therefore, the interrupt controller simply reads the memory contents at the address, INTRID,

from the DOutIAT port and waits for the interrupt service routine to begin in cycle 5. In the
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Fig. 7.10 A block diagram describing an interrupt
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mean time, at the beginning of cycle 3 when the ICU is aware of a pending interrupt by means

of the INTR signal, it immediately stalls the CPU pipeline by stopping the PC from incre-

menting. However, the PC has already incremented to A3 at this point, and there are

uncompleted instructions from the A1 and A2 addresses in the CPU pipeline. We know that

from the onset of PC address generation to the end of the write-back cycle, a normal

instruction takes four clock cycles to complete (latency = 4) according to the simplified CPU

data-path in Fig. 7.12. Therefore, the PC output stays at the A3 address until the end of cycle

6 when the instructions, Instr1, Instr2 and Instr3, are completely flushed out of the CPU

pipeline and written back to the CPU’s register file (RF). However, the interaction with the

CPU pipeline adds the RF block and all its corresponding data paths to the existing block

diagram in Fig. 7.10, transforming the interrupt controller into a more detailed architecture in

Fig. 7.13.

P
C

I-Cache D-CacheRF
I
R

A
L
U

A1

A2

AO

DO

WB-stageALU/D$-stageRF-stageIF-stage

SelPC

PCOut

IF-stage RF-stage ALU/D$-stage WB-stage

Cycle 1 Cycle 2 Cycle 3 Cycle 4

data 
at IR

data 
at A1/A2

data 
at DO/AO

data 
at RF

data 
at PC

DInRF

1 0

OPC

Fig. 7.12 A four-stage CPU employed in the interrupt sequence in Fig. 7.7

After the last write-back is completed in cycle 6, the PC is incremented by one, and the

return address, ARET, is stored in a special register, R31, in the RF as shown in cycle 7. This

step assumes that there is no Jump-and-Link (JAL) or Jump-and-Link-Register (JALR)

instruction in the CPU instruction set because the return address will simply be overwritten

by one of these instructions. Before the CPU starts executing the interrupt service routine, it

copies the contents of the entire register file into a temporary memory identical to the register

file. This step is called “context switching”, and it is omitted from the timing diagram in
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Fig. 7.11 to maintain simplicity. Only after the contents of all 32 registers in the register file

are stored, the interrupt controller starts executing the instructions in the interrupt service

subroutine, which starts in cycle 8. In this cycle, the first interrupt instruction address, I1, at

the output of the IAT is loaded to the PC. Once loaded to the CPU data-path, it takes four

clock cycles to execute the first interrupt instruction due to the CPU’s write-back latency.

The remaining interrupt instructions are similarly fetched from the instruction memory

addresses, I2 to IN, executed, and written back to the RF until the end of cycle (N + 3). In

cycle (N + 4), the register R31 is accessed. In the following cycle, the return address, ARET,

is fetched from R31. This cycle also completes the interrupt service routine and prompts the

ICU to transfer the control over to the CPU to execute the remaining user instructions. In

cycle (N + 6), the ICU lowers the INTA signal to logic 0, and the interrupt controller loads

the value of the ARET to the PC. In response to the INTA, the interrupt interface also lowers

the INTR signal to logic 0 and invalidates the INTRID in cycle (N + 7). New interrupt

arbitration will take place in cycle (N + 8) to service the next interrupt.

In the previous paragraphs, we only explained how the address and data bus values

changed once an interrupt signal is received from the interrupt interface. Now, we are ready

to explain the second part of the timing diagram that includes the control signals to manage

the data-flow. After examining the detailed data-path in Fig. 7.13, the control signals can be

grouped into three categories. The first group supports the PC input control and contains the

StallPC, SelIAT and SelRF signals. The StallPC signal simply routes the output of the PC,

PCOut, to its input through the P-port of the 4-1 MUX to stall the PC. The SelIAT signal

routes the output of the IAT, DOutIAT, to the input of the PC through the I-port of the 4-1

MUX to load an interrupt address. The SelRF signal enables the R-port, and connects the

output of the RF, DOutRF, to the input of the PC to load the return address, ARET, once the

interrupt service is over. If none of these control signals are generated, then the PC incre-

ments through the C-port. The second group controls the address and data inputs to the RF

and consists of the SelR31 and SelPC inputs. The SelR31 input selects the register R31 to be

the address for the RF at the AddrRF port. The SelPC input selects the contents of the PC to

be the data for the RF at the DInRF port. The third group controls the read and the write

enable signals, REIAT and WEIAT, for the IAT, respectively. Although writing into the IAT

does not take place during a routine interrupt service, it will be used to reprogram a new set

of ISR addresses in the IAT.

All three groups of controls manage the proper data flow in Fig. 7.13. The StallPC signal

transitions to logic 1 at the beginning of cycle 3 and stays there until cycle 6 to stop the PC

from incrementing so that the CPU completes writing the instructions, Instr1, Instr2 and

Instr3, back to the RF. Because of these write-backs, the write-enable signal for the RF,

WERF, is also kept at logic 1 from cycles 4 to 6. The read-enable signal for the IAT, REIAT,

is kept high in cycle 4 because the first interrupt instruction address, I1, needs to be fetched

from the IAT following a valid INTRID. Cycle 7 is a special cycle to load the register R31

with the program return address, ARET. Therefore, the signals, SelR31, SelPC and WERF,
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all become logic 1 during this cycle. The SelIAT signal is also kept at logic 1 during cycle 7

in order to load the first interrupt address, I1, to the PC in cycle 8. The WERF signal is kept

at logic 1 from cycle 11 to cycle (N + 3) to be able to complete all interrupt-related

write-backs to the RF. The StallPC signal is kept at logic 1 from cycle (N + 1) to cycle

(N + 4) to stall the value of PCOut at IRET. Cycle (N + 5) is dedicated to retrieving the

program return address, ARET, from the RF. Therefore, the SelRF signal is kept at logic 1 in

this cycle to load the PC with the contents of ARET in the following cycle. The WERF

signal transitions to logic 1 in cycle (N + 9) in order to write the result of the instruction,

InstrRET, back to the RF.

Figure 7.14 shows the resultant state diagram for the interrupt controller. Its design is

solely based on the values of the control signals from the timing diagram in Fig. 7.11. The

name of each state in the state machine comes from the labels on top of the timing diagram in
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INTRID

INTR
ADDR
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FETCH
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FETCH
I2

FETCH
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Fig. 7.14 Interrupt controller state diagram
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Fig. 7.11. The machine starts with the IDLE state where there is no INTR signal. Therefore,

this state generates INTA = 0. When a valid INTR is received, the state machine transitions

to the INTA state and produces two outputs, INTA = 1 and StallPC = 1. This state corre-

sponds to cycle 3 of the timing diagram. As INTR = 1 continues, the machine goes though

the INTRID, INTR ADDR, LAST WB and STORE ARET states, which correspond to

cycles 4, 5, 6 and 7, respectively. These are the preparation states prior to an ISR.

The FETCH I1 state indicates the first interrupt instruction fetch, which corresponds to cycle

8. The interrupt controller goes though the FETCH I2 and FETCH I3 states where it fetches

the second and third interrupt instructions. These are indicated in cycles 9 and 10, respec-

tively. A cycle later the machine enters the INTR WB state where it starts writing the results

of interrupt instructions back to the RF. The interrupt controller stays at this state until the

interrupt address reaches its last value, IN. When the last interrupt address is fetched, the

machine transitions to the INTR END state where it performs three additional interrupt

write-backs, and stalls the PC at IRET until the last interrupt write-back, WBIN, completes.

This state continues during cycles (N + 1), (N + 2) and (N + 3) in the timing diagram.

Following the last interrupt write-back, the interrupt controller prepares the system to finish

the current interrupt service before receiving another interrupt. The closing states are the

ACCESS R31, LOAD ARET and FETCH ARET states, which correspond to cycles

(N + 4), (N + 5) and (N + 6) in the timing diagram, respectively. The interrupt controller

goes back to the IDLE state in cycle (N + 7) where the INTRID becomes no longer valid.

However, a crucial problem arises when implementing this state machine. The interrupt

controller needs to know the end of an ISR. Somehow the number of instructions in the

interrupt service routine must be determined in advance in order to continue the state

transitions in the state machine. The states, INTR WB and INTR END, are the examples of

this problem. The interrupt controller needs to stay in the INTR WB state from the first to the

(N – 4)th interrupt write-backs, and similarly in the INTR END state from the (N – 3)th to

the Nth interrupt write-backs during an ISR. Since the number of instructions varies in an

ISR program, this state machine’s implementation becomes impossible for the ICU design,

necessitating a change in the original timing diagram, which will affect the data-path in

Fig. 7.13 and the state diagram in Fig. 7.14.

Figure 7.15 shows a slightly modified version of the interrupt controller data-path to

circumvent this problem. In this figure, a decoder is added between the output of the

instruction register, IROut, and the interrupt controller in order to detect the return opcode in

the IntrRET instruction at the last interrupt address, IRET. This, however, creates an

additional input, DetIRET, for the ICU. Therefore, when the return opcode is decoded in

cycle (N + 2) in the new timing diagram in Fig. 7.16, the DetIRET signal becomes logic 1

and prompts the ICU to make preparations to end the current ISR. In this figure, the StallPC

signal is also lowered to logic 0 between cycles (N + 1) and (N + 4) because not stalling the

PC during this interval will simply generate invalid addresses at the PCOut port, and this is
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not critical for the operation of the interrupt controller since the program return address,

ARET, becomes a valid address at PCOut in cycle (N + 6).

This modification leads to a number of changes in the ICU’s state diagram shown in

Fig. 7.17. After transitioning to the INTR WB state in cycle 11, the state machine stays in

this state until it detects DetIRET = 1. This input forces the ICU to move the WBIN state to

complete the last interrupt write-back. At this point, the machine goes through three more

states, ACCESS R31, LOAD ARET and FETCH ARET, to load the user program return

address back to the PC in order to resume the original program.
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Fig. 7.17 Modified interrupt controller state diagram

398 7 System Peripherals



7.4 Serial Transmitter and Receiver Interface

There are times when the CPU needs to use its serial I2C or SPI interface in order to

communicate with an I/O device. The serial interface consists of a transmitter to send serial

data to an I/O device, and a receiver to receive serial data from the same device on a one-bit

bus. The following section describes the basic structure of a transceiver composed of a

transmitter and a receiver to handle one-bit serial data.

Transmitter

Figure 7.18 shows the data-path of a transmitter where an incoming 32-bit data from the

CPU is received at the TXIn[31:0] port, and stored in one of the two buffers before being

serially sent out from the TXOut port. Each buffer is essentially a shift register. Once a 32-bit

data packet is loaded into a shift register, the bits start shifting from the least significant bit

position to the most significant bit position until all 32 bits are sent out.
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This design uses a dual buffer scheme to overcome moderate waiting periods to access

system’s main memory. If the waiting period takes too long, the transmitter architecture may

require more than two buffers to sustain continuous stream of serial data from TXOut.

A single buffer may also be sufficient for the transmitter provided that there should not be

any waiting period to access the main memory. Once the main memory is accessed, storing a

32-bit data in one of the transmitter buffers takes only a cycle. Streaming all 32 bits from a

particular buffer, on the other hand, takes 32 consecutive clock cycles. The clock used to

send serial data may also be a slower clock depending on the design constraints. Therefore,

the transmitter uses all 32 clock periods to request, wait and receive data to its secondary

buffer while it streams bits out of the first buffer. When the first buffer becomes empty, the

transmitter immediately starts streaming data out of its secondary buffer while the first buffer

is being filled.

PassTxBuf input in Fig. 7.18 is a control signal for the 2-1 MUX that determines when to

switch buffer outputs. LoadTxBuf0 and LoadTXBuf1 inputs load data from TXIn[31:0] to

the first and the second buffers, respectively. ShiftTXBuf0 and ShiftTXBuf1 inputs control

the beginning and the end of the serial data shift from buffer 0 and buffer1, respectively.

The CSTX is a Chip-Select input port for the transmitter, and it stays at logic 1 as long as the

system uses the transmitter.

The timing diagram in Fig. 7.19 shows how data is stored and streamed out of the data

buffers. It is constructed while the transmitter data-path in Fig. 7.18 is being developed.

Once again, the top part of this diagram shows the bus-level data signals that describe the

data-flow while the bottom part contains the control signals that govern this data-flow.

The transmitter wakes up when it receives an active-high CSTX signal from the CPU in

cycle 1. In cycles 2 and 3, the 32-bit data packets, Buf0 and Buf1, fill the first and second

transmitter buffers, TXBuf0 and TXBuf1, respectively. Once the first buffer is full in cycle 2,

single bits start coming out of the least significant bit position of the buffer (the shifting

mechanism in the buffer can also be configured such that single bits start emerging from the

most significant bit position instead) in cycle 3. The first bit that comes out of TXBuf0 in

cycle 3 is Bit0 which is the least significant bit of the data packet. This is followed by Bit1

through Bit31 between cycles 4 to 34, respectively. When the first buffer becomes empty, the

transmitter immediately switches to its second buffer and starts streaming bits from TXBuf1.

In the mean time, the transmitter fills TXBuf0 with a new 32-bit of data in cycle 35 as long

as there is no bus traffic. Emptying the second buffer takes until cycle 66 when Bit31 is sent

out from the TXOut terminal. When TXBuf1 is empty, the transmitter starts streaming out

data from TXBuf0 in cycle 67 while filling TXBuf1. The process of filling one buffer while

streaming bits out of the second continues as long as the data stored in the main memory is

fully exhausted. Figure 7.19 shows all 32-bit data packets from the main memory imme-

diately available when the transmitter switches from its empty buffer to its full buffer, and

ignores any delay associated with accessing the main memory. In reality, when the trans-

mitter starts streaming data out of the full buffer, it immediately generates an interrupt for its
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empty buffer to fetch data from the main memory. The waiting period is 31 clock cycles. In

the 32nd clock cycle, the empty buffer must be full. Otherwise, the transmitter stalls, and no

new data can be transmitted.

The control signals that govern the data-flow in Fig. 7.18 constitute the second part of the

timing diagram. Once the active-high CSTX signal is received, the LoadTXBuf0 signal

transitions to logic 1 to load the first 32-bit data packet, Buf0, to TXBuf0 in cycle 2. In cycle

3, the second 32-bit data packet, Buf1, is loaded to TXBuf1, which requires the LoadTX-

Buf1 signal to be at logic 1. From cycle 3 until cycle 33, TXBuf0 works as a shift register to

stream bits 0 to 31. Therefore, the ShiftTXBuf0 signal stays at logic 1 during this period. In

cycle 34, the last bit is shifted out of TXBuf0, and therefore, all data-flow controls for this

buffer transition to logic 0. In cycle 35, the LoadTXBuf0 signal transitions to logic 1 to fill

the empty buffer, TXBuf0. The ShiftTXBuf1 signal also transitions to logic 1 in the same

cycle to shift bits from 0 to 31 until cycle 66. Cycle 35 is also the time to switch the buffer

outputs. Therefore, the PassTXBuf signal becomes logic 1 in this cycle until cycle 67 when

all the data in TXBuf1 is streamed out. Cycle 66 is the cycle to deliver the last bit out of

TXBuf1. Cycles 67 through 98 are exact replicas of cycles 3 through 34 where TXBuf1 is

filled while bits are shifted out of TXBuf0. The ValidTXData signal validates bits as they are

streamed out of the transmitter. Therefore, this signal stays at logic 1 from cycle 3 until the

last transmitter bit.

Figure 7.20 shows the state diagram of the controller unit that loads and shifts data in

each buffer, to switch buffer outputs, and to validate bits out of the transmitter. The state

names in this figure follow the names depicted at the top of the timing diagram in Fig. 7.19.

When there is no activity in CSTX signal, the state machine stays in the IDLE state. When

CSTX = 1, the controller transitions to the PRELOAD BUF0 state where it produces

LoadTXBuf0 = 1 to load TXBuf0, and LoadTXCount = 1 to load the TXcounter in

Fig. 7.18 with the value of 31. This state is associated with cycle 2 in the timing diagram.

Note that the TXCounter is a five-bit counter which is used to detect the end of the serial data

stream, and it is essential for the controller to be able to make a transition to the next state.

As long as CSTX = 1, the state machine transitions to the LOAD BUF1 state where it

produces LoadTXBuf1 = ShiftTXBuf0 = ValidTXData = 1. This state corresponds to cycle

3 in the timing diagram. This state is also the beginning of the count-down stage where the

TXCounter output starts decrementing from 31 towards 0 by DecTXCount = 1. Next, the

state machine goes to the EMPTY BUF0 state, and stays there as long as the output of the

TXCounter, TXCount, is greater than one. This state corresponds to cycles 4 through 33 in

the timing diagram. When TXCount = 1, the controller goes to the EMPTY Last Bit BUF0

state where Bit31 is shifted out of TXBuf0. This state is equivalent to cycle 34 in the timing

diagram when the TXCounter is reloaded with the value of 31 to start another count-down.

As long as CSTX = 1, the state machine first transitions to the LOAD BUF0 state in cycle

35, and then to the EMPTY BUF1 state as the TXCounter decrements towards 1 from cycles

36 to 65. When TXCount = 1, the state machine transitions to the EMPTY Last Bit BUF1
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state in cycle 66 when the last bit of TXBuf1 is shifted out. From cycle 67 onwards, the state

machine goes back to the LOAD BUF1 state, and traces through the previous five states

since the control outputs generated in each state are identical to the ones in the timing

diagram in each clock cycle. The state diagram in Fig. 7.20 does not show the transitions

from an arbitrary state to the IDLE state when CSTX = 0 to improve readability. The case

when the transmitter exhausts all of its valid data from both of its buffers and forced to stall

is not shown in Fig. 7.20 either. If heavy bus traffic is expected, the reader should employ an

additional STALL state in case new data is not yet loaded to TXBuf0 or TXBuf1 before the

state machine transitions to the LOAD BUF0 or LOAD BUF1 states, respectively.

Receiver

Figure 7.21 shows the data-path of a receiver where incoming data bits are serially received

by the RX buffer, RXBuf, at the RXIn port before being packed as 32-bit data packets and
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Fig. 7.20 Transmitter controller state diagram
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sent to the CPU from the RXOut[31:0] port. This architecture can also be accomplished with

multiple buffers in case the receive clock frequency becomes much higher than the processor

clock frequency.

Figure 7.22 summarizes the operation of the receiver in a timing diagram. Once the

receiver is activated by CSRX = 1 in cycle 1, any incoming data bit is ignored until the

ValidRXDIn signal transitions to logic 1. In other words, this external signal validates the

data bit at the RXIn port, and indicates when to start latching data bits into the RX buffer. As

a result, Bit0 is stored in RXBuf in cycle 2 and Bit31 in cycle 33. In cycle 34, a new Bit0 is

fetched for the receive buffer. This cycle is also the time period to pack all 32 bits, and send

them out of the RXOut[31:0] port. The 32-bit data is accompanied by the ValidRXDOut

signal for validation. In order to determine which clock cycle the ValidRXDOut signal

transitions to logic 1, a five-bit counter is used. This counter starts decrementing as soon as

the DecRXCount or the LatchRXData signal goes to logic 1. When the counter reaches 0,

the RX Controller produces ValidRXDOut = 1 in the following cycle to validate the 32-bit

word at the RXOut[31:0] port. From cycles 34 to 67, the receiver keeps latching new valid

bits into RXBuf. As an example, there may be a period where the serial bit stream may not

be valid (ValidRXDIn = 0) such as in cycles 38 and 39. During this period, both the latching

action at the RXIn port and the count-down mechanism at the RX Counter should stop

immediately by LatchRXData = 0 and DecRXCount = 0, respectively. The normal receiver

operation resumes as soon as the ValidRXDIn signal transitions to logic 1 in cycle 40.
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LatchRXData

RX

Controller
ValidRXDOutRX Counter
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Fig. 7.21 Receiver data-path

404 7 System Peripherals



R
X

In

R
X

O
u
t[
3
1
:0

]

c
lo

c
k

W

B
it0

B
it
3
0

B
it1

B
it

0
 

la
tc

h
e

d

B
it
3
1

la
tc

h
e

d

B
it0

B
it3

B
it1

B
it4

B
it
3

0
B

it5

W

B
it2

B
it
3
1

N
O

T
 V

A
L
ID

B
it
3
1

C
S

R
X

V
a
lid

R
X

D
In

B
it

0
 

la
tc

h
e

d

B
it
3
1

la
tc

h
e

d

C
y
c
le

 

1

C
y
c
le

 

2

C
y
c
le

 

3

C
y
c
le

 

4

C
y
c
le

 

3
2

C
y
c
le

 

3
3

C
y
c
le

 

3
4

C
y
c
le

 

3
5

C
y
c
le

 

3
6

C
y
c
le

 

3
7

C
y
c
le

 

3
8

C
y
c
le

 

3
9

C
y
c
le

 

4
0

C
y
c
le

 

4
1

C
y
c
le

 

4
2

C
y
c
le

 

6
6

C
y
c
le

 

6
7

C
y
c
le

 

6
8

3
1

1
3

0
3

1
2

8
3

0
1

2
6

2
9

0
2

7
0

3
1

D
e
c
R

X
C

o
u
n
t

R
X

C
o
u
n
t

V
a
lid

R
X

D
O

u
t

L
a
tc

h
R

X
D

a
ta

C
O

U
N

T
 D

O
W

N
C

O
U

N
T

 D
O

W
N

V
A

L
ID

 

D
O

U
T

V
A

L
ID

 

D
O

U
T

ID
L
E

F
ig
.
7
.2
2

R
ec
ei
v
er

ti
m
in
g
d
ia
g
ra
m

7.4 Serial Transmitter and Receiver Interface 405



The RX controller is a simple state machine with three states as shown in Fig. 7.23.

The IDLE state is the state when CSRX = 0 or ValidRXDIn = 0. Even when the CSRX

signal goes to logic 1, the controller stays in this state as long as ValidRXDIn = 0. This

translates to cycles 1 and 2 in Fig. 7.22. When the CSRX and ValidRXDIn signals both go

to logic 1, the controller moves to the COUNT DOWN state to fill RXBuf. The controller

stays in this state until the RXCount signal reaches 0. This state covers the cycles from 3 to

33 in the timing diagram. In the next cycle, the state machine goes to the VALID DOUT

state where it stays for only one clock cycle and produces ValidRXDOut = 1 for the 32-bit

data at the RXOut[31:0] port. Following the VALID DOUT state, the controller goes back to

the COUNT DOWN state where it starts filling the receive buffer again. As long as valid bits

arrive at the RXIn port, the state machine rotates between the COUNT DOWN and the

VALID DOUT states in Fig. 7.23. When CSRX = 0 or ValidRXDIn = 0, the state machine

transitions either from the COUNT DOWN state or from the VALID DOUT state to the

IDLE state. These transitions are omitted in Fig. 7.23 to maintain simplicity.

7.5 Timers

Every digital system contains programmable timers to handle a multitude of tasks. If an

external event needs to be monitored, it calls for a timer. Periodic internal system tasks are

also managed by timers. Timers can also be used to generate square waveforms or pulses
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COUNT
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VALID

DOUT

CSRX = 0

or

ValidRXDIn = 0

CSRX = 1

ValidRXDIn = 1

CSRX = 1

ValidRXDIn = 1

RXCount = 0CSRX = 1

ValidRXDIn = 1

RXCount ≠ 0
ValidRXDout = 1

Fig. 7.23 Receiver controller state diagram
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with adjustable pulse widths such as Pulse Width Modulation (PWM) signals to control

output devices or perform periodic tasks.

A basic system timer is shown in Fig. 7.24 [1]. This timer essentially consists of a counter, a

compare unit and two registers. The first register stores the entire timer period after which the

counter receives an automatic reset, and the other divides the clock frequency of the counter.

The period and the divide by N registers are fully programmable. The compare unit is simply a

subtractor which subtracts the counter output from the period value. As the counter starts

incrementing from zero and ultimately reaches the value stored in the period register, the

output of the subtactor and its sign bit become all zero. These bits are ultimately decoded by the

compare unit to produce logic 1 at the timer output and reset the counter as shown in this figure.

Divide by N
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Fclock

Cutoff period

Counter period

time

time
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clock division, N

PERIOD
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Program Data
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Fig. 7.24 Simplified timer block diagram
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The basic philosophy used in a timer block diagram can be modified into different forms.

However, all modifications still end up with a counter, a register set and a comparator for the

intended functionality. The comparison can be achieved by a digital block that may produce

one or multiple timer outputs, or by a subtractor/decoder scheme as in Fig. 7.24.

The following section presents many different forms of timers, each of which can still be

modified and converted into various other forms that can produce additional features and

functionality. The basic timers in this section are configured to produce a one-time pulse

(one-shot timer), a periodic waveform with adjustable duty cycle (rate generator), a square

waveform with fully programmable period (square wave generator) and a step function with

adjustable delay (interrupt generator). There are subtle differences and incremental

enhancements from one timer circuit to another, but in the end each timer uses a counter, a

register and a comparator as pointed out before.

One-Shot Timer

The one-shot timer, as its name suggests, generates a single, non-repetitive pulse whose

pulse width is programmed by the user. Figure 7.25 shows the micro-architecture of a typical

one-shot timer.

Before the operation starts, the pulse width for the one-shot timer is stored in the OneShot

register via a program bus. Once programmed, the data in this register is routed through the

L-port of the 3-1 MUX by LoadOneShot = 1. This provides an initial value for the

down-counter. As a numerical example, assume that the OneShot register is programmed

with a value of four, which produces OneShotOut = 4 during cycle 1 in the timing diagram in

Fig. 7.26. In cycle 2, the RData[31:0] node becomes 4. Since this value is different from 0,

the decoder placed at the RData[31:0] node (a 32-input AND gate with an inverter) produces

logic 1 at the OneShot output. This, in turn, activates the D-port of the 3-1 MUX and routes

the decremented RData value, (RData – 1) = 3, to the input of the down-counter. In cycle 3,

the RData[31:0] node becomes 3, and the OneShot output stays at logic 1, keeping the

D-port of the 3-1 MUX active. The decremented RData value, (RData – 1) = 2, is fed back

to the timer input once again. The D-port of the 3-1 MUX stays active until cycle 6 when the

RData[31:0] node becomes zero. From this point forward, the Idle-port of the 3-1 MUX

becomes active, and the timer output becomes zero. The timer stays in this state until it is

reprogrammed with a new value.

Rate Generator

The rate generator is another type of timer which periodically generates single pulses sep-

arated by a programmable time duration. Once a desired rate is stored in the RateGen register

via program bus, it is routed through the L-port of the 2-1 MUX to the input of the timer by

LoadRateGen = 1 as shown in Fig. 7.27. This step is shown in cycle 1 of the timing diagram
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in Fig. 7.28 with RateGenOut = 4 as an example. In cycle 2, the RData[31:0] node becomes

four, and the RateGen output becomes zero. Because neither the RateGen port nor the

LoadRateGen input is at logic 1, the D-port of the 2-1 MUX becomes automatically active to

allow the decremented RData, (RData – 1) = 3, to become the input of the down-counter. In

cycle 3, RData[31:0] becomes equal to three, which keeps the D-port still active because

RateGen = 0. The decremented RData, (RData – 1) = 2, is routed once again to the input of

the timer. This path stays active until RData[31:0] = 1. At this point, RateGen output

becomes equal to one, and selects the L-port of the 2-1 MUX. The value in the RateGen

register is loaded to the input of the down-counter. This is shown in cycle 5 of the timing

diagram. In cycle 6, RData[31:0] becomes four, and the RateGen output becomes zero. The

cycles 7 through 9 are the exact replicas of the cycles 3 through 5. The RData node keeps

decrementing until it becomes equal to one, at which point the RateGen output also becomes

one. Therefore, periodic single pulses are generated once in every four consecutive cycles at

the RateGen output once the RateGen register is programmed with a value of four.
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Fig. 7.27 Block diagram of the Rate Generator
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Square Wave Generator

Square waveforms can also be generated by the timer as shown in Fig. 7.29. The pulse

duration of the square wave is initially stored in the SqWave register through a program bus.

Once the programming is finished, LoadSqWave = 1 loads the value to the Sqwave register

through the L-port of the 2-1 MUX to the input of the down counter. This is shown in

cycle 1 of the timing diagram in Fig. 7.30 with SqWaveOut = 3 as a numerical example. In

cycle 2, RData[31:0] becomes three and RateOut becomes zero since the 32-input AND gate

can only produce logic 1 when RData[31:0] = 1. The decremented RData value, (RData – 1)

= 2, is routed through the active D-port of the 2-1 MUX to the input of the down-counter. In

cycle 3, the RData[31:0] node becomes two, but the RateOut node still stays at zero. The

decremented RData value, (RData – 1) = 1, is routed to the input of the down-counter once

again. When RData[31:0] becomes equal to one in cycle 4, the 32-input AND gate produces

RateOut = 1, and activates the L-port of the 2-1 MUX. As a result, the down-counter is

reloaded with the value in the SqWave register. From this point forward, the circuit repeats

the same pattern, producing a pulse in every three cycles at the RateOut node. Although the

rate generator and the square wave circuits look identical, the square wave generator con-

tains an additional state machine whose clock is controlled by the RateOut node. Therefore,

at every positive edge of the RateOut signal, the value at the SqWave port alternates. If the

SqWave output is initially assumed to produce logic 0 between cycles 1 and 3, the positive

edge of the RateOut signal in cycle 4 switches the value of the SqWave output from logic 0

to logic 1. Similarly, the RateOut pulse in cycle 7 changes the value of the SqWave output

clock
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Fig. 7.28 Timing diagram of the Rate Generator (RateGen register in Fig. 7.27 is

programmed with a value of 4 as an example)
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back to logic 0. Therefore, the circuit in Fig. 7.29 creates a square waveform whose fre-

quency is fully programmable by the SqWave register.

Interrupt Generator

One of the most useful timer functions is to have a timer generate a predetermined interrupt

signal for the system. If an external event needs to be observed at a specific time or if

periodic sampling needs to be employed for an event, the system must have the means to

generate an interrupt. It achieves this by using the circuit in Fig. 7.31. This circuit is

composed of a basic down-counter whose output is configured to make a transition from

logic 0 to logic 1 when the count-down reaches zero.

As with the other timers, the count-down period is programmed in the GenInt register using

a program bus as shown in Fig. 7.31. Once programming is finished, the L-port of the 3-1
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Fig. 7.31 Block diagram of the Interrupt Generator
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MUX is activated by LoadGenInt = 1 to allow the value in the GenInt register to be loaded to

the down-counter. As a numerical example, assume that the GenInt register is programmed

with a value of four, which produces GenIntOut = 4 during cycle 1 in the timing diagram in

Fig. 7.32. In cycle 2, the contents of the down-counter input are transferred to the RData[31:0]

node. Therefore, RData[31:0] = 4 produces logic 1 at the Decrement node, which activates the

D-port of the 3-1 MUX, and allows the decremented value of RData, (RData – 1) = 3, to be

loaded to the input of the down-counter. In cycle 3, RData[31:0] = 3, but the Decrement node

stays at logic 1, keeping the D-port active for the rest of the count-down process. When the

RData[31:0] node finally reaches one in cycle 5, the Set node in Fig. 7.31 transitions to logic 1,

and turns on the S-port of the second 3-1 MUX. In cycle 6, the GenInt output transitions from

logic 0 to logic 1 after four cycles of count-down. Because the LoadGenInt input and the

Decrement node are both at logic 0, the Idle port of the 3-1 MUX automatically becomes

active. As a result, RData[31:0] = 0 keeps circulating back to the timer input until another

value is loaded to the GenInt register. The GenInt output needs to be reset by the active-high

Reset signal in Fig. 7.31 in order to generate another interrupt signal.

7.6 Display Adaptor

The display is one of the most crucial peripherals in a system because it establishes a link

between the user and the system. The format in all modern LCD or LED displays is composed

of an active image area surrounded by vertical and horizontal blanking regions [2]. The size of

the blanking regions is adjusted according to the response time of a particular display. Slower

displays require larger vertical and horizontal blanking regions to sync with the active image
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Fig. 7.32 Timing diagram of the Interrupt Generator (GenInt register in Fig. 7.31 is

programmed with a value of 4 as an example)
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which has a frame rate between 30 and 60 frames per second. Pixels of an active image are

fetched from the system memory and displayed on a non-interlaced screen following the

vertical and the horizontal blanking sections as shown in Fig. 7.33.

Vertical and horizontal blanking areas are made out of black pixels. On the other hand,

each pixel in the active image is composed of eight-bit wide Red (R), Green (G) and Blue

(B) components. The basic operation consists of fetching a 24-bit pixel from the system

memory and placing it in the active image area one at a time. Usually each display has a

frame buffer to store pixels from the system memory. When the data in the frame buffer is

exhausted, the display controller requests another block of data to be transferred from the

system memory. As the system complexity increases, bus traffic between the main memory

and the CPU (and the system peripherals) increases proportionally. As a result, the display

unit may have to wait before the next block of data arrives at its buffer. However, this is not

an acceptable solution since this situation also creates choppy images for the user. Therefore,

dual, quadruple or even higher frame buffer techniques are used to maintain continuous

stream of images to be displayed on the monitor without any interruption. A dual frame

buffer implementation is shown in Fig. 7.34 where image data is displayed from one frame

buffer while the other buffer is being filled.

Prior to image processing, the Horizontal Blank register, Vertical Blank register, Active

Image Pixel register and Active Image Line register are programmed using a separate

program bus as shown in Fig. 7.34. The program bus can be a serial bus because the

processing speed is not critical when the system programs the control, address and data

registers prior to normal operation. The reader should refer to the design examples and

review questions in Chapter 5 to devise a serial interface to program these registers. The data

stored in these four registers define the normal operational parameters of the display unit.
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Fig. 7.33 Non-interlaced display format with an active image of 1024 pixels by 1024 lines
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Fig. 7.34 The data-path of the display unit

The image data, on the other hand, is continuously fed to the display buffers, Buf0 and Buf1,

by a 32-bit wide system bus, WData[31:0], as shown in Fig. 7.34. Even though the bus

width is 32 bits, only the lower 24 bits are used in this architecture to transfer pixels to each

buffer. The display controller first places the incoming pixels from the system bus to both

Buf0 and Buf1, and then transfers pixels from one of these buffers to the image frame. The

controller also generates two timing attributes, SycnHB and SyncVB, to indicate the start of
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the horizontal blanking and the start of the vertical blanking sections of the frame, respec-

tively. This is done in order to synchronize the display adaptor with the monitor.

To illustrate the operation of the display unit, a five pixel wide, nine line tall active image

(the white area in Fig. 7.35) is considered as an example. This image is surrounded by two

lines of vertical blanking and three pixels of horizontal blanking (shaded area) in the same

figure. The numbers in each box represent a pixel component whether it belongs to the active

image or the blanking sections. Therefore, the component numbers, 0, 1 and 2, constitute the

first blank pixel in the vertical blanking section whereas the numbers, 57, 58 and 59,

correspond to the R, G and B components of the first pixel in the active image area. The

blank pixels have no values and equal to 0x00 as shown in Fig. 7.34. The active image

pixels, however, are fetched from one of the image buffers in Fig. 7.34 and placed in the

active frame in ascending order. For example, the component 57 is fetched first and placed at

the upper left corner of the image frame, and the component 263 is fetched last and placed at

the lower right corner.

The display unit is activated by CSDisplay = 1 as shown in cycle 1 of the timing diagram

in Fig. 7.36. This figure shows data-path signals in the upper rows and control signals in the

lower rows. Once active, the first component of the blanking pixel 0, 0x00, arrives at the

frame in cycle 2. Within the same cycle, the SycnVB signal becomes logic 1, indicating the

start of the vertical blanking for the frame. In cycles 3 and 4, the other two components of

the blanking pixel 0 arrive at the frame. The first line of the vertical blanking completes in
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Fig. 7.35 An example of an image frame composed of active image and blanking

components
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cycle 25. The second blanking line follows the same pattern as the first one: the first

component of the blanking pixel 0 arrives at the frame in cycle 26, and the last component of

the blanking pixel 7 arrives in cycle 49. Cycle 49 is also the cycle that resets the line counter

by ResetLine = 1 because the next line starts the active image. In cycle 50, SycnHB

becomes logic 1, signifying the start of horizontal blanking. From cycles 50 to 58, the first

line of horizontal blanking is formed prior to the active image. Cycle 58 also defines the

border between the horizontal blanking and the active image. In this cycle, the read enable

signal for Buf0, RE0, becomes logic 1 in order to read the first image pixel from this buffer.

Blanking pixels are supplied to the frame from the BK-port of the 3-1 MUX as shown in

Fig. 7.34, and delivered to the frame through FrameIn input.

The timing diagram in Fig. 7.37 is the continuation of Fig. 7.36 and focuses on the active

image pixel delivery. The R-component of the first image pixel comes into the image frame

in cycle 59 followed by the G and the B components in cycles 60 and 61, respectively. Since

the image data comes from the first display buffer, Buf0, the port assignment in the 3-1

MUX must be changed from port BK to port B0 by SelBuf0 = 1 from cycle 59 onwards.

Therefore, after the first image pixel is delivered to the frame, the address pointer for buffer

0, Addr0, is incremented by one in cycle 61 to be able to fetch the R-component of the next

pixel from Buf0 in cycle 62 (one cycle memory read latency). From cycles 59 to 73, the first

line of the active image is delivered to the frame by incrementing Addr0 from 0 to 4. Cycle

73 also indicates the start of the second horizontal blanking line. In this cycle, RE0 tran-

sitions to logic 0, and Addr0 stops incrementing because pixel flow from Buf0 needs to be

interrupted in order to start delivering blank pixels to the frame. To accommodate this, the

port assignment in the 3-1 MUX is changed from port B0 to port BK. After completing the

delivery of horizontal blanking pixels, the second line of the active image is delivered

between cycles 83 and 97. Addr0 is incremented from 5 to 9 during this period to fetch

pixels from Buf0 and form the second active image line. The rest of the image is delivered to

the frame by the end of cycle 265. In cycle 266, a new frame is formed with SyncVB = 1. As

in the previous frame, pixels that constitute the vertical blanking are followed by pixels that

form the horizontal blanking and the active image. The new active image pixels are delivered

from Buf1. In this example, both Buf0 and Buf1 are assumed to contain only 45 pixels, and

therefore each buffer has 3x45 = 135 bytes of image data as opposed to the architecture in

Fig. 7.34 that contains 1024 � 1024 = 1,048,576 active image pixels in each buffer.

Figure 7.38 shows the display controller design to manage the data-flow in Fig. 7.34. The

state machine in Fig. 7.38 is a Moore-type composed of a string of states, each responsible

for delivering blank or active image pixels to the frame. The state machine needs to keep

track of the pixel and line numbers in the frame, and be able to define the boundaries

between the blanking and the active image regions. Therefore, its functionality largely

depends on the pixel and the line counter values in Fig. 7.34.

The state machine stays in the IDLE state until it is externally activated by

CSDisplay = 1, which corresponds to cycle 1 of the timing diagram in Fig. 7.36. Once
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activated, the R-component of the first blank pixel enters the frame through the BK-port of

the 3-1 MUX, and prompts SelBlank = 1 in cycle 2. This refers to the START0 state in

Fig. 7.38. In cycle 3, the G-component of the first blank pixel is delivered to the frame. This

is shown as the VB0-G state in the state diagram. In this state, SelBlank = 1 in order to

transmit the G-component of the first blank pixel to the frame. The B-component of the first

blank pixel arrives in cycle 4, which corresponds to the VB0-B state. During this cycle,

SelBlank = 1 and IncPx = 1 to increment the pixel counter by one. At this point, the

controller checks if the end of the first vertical blanking line has been reached by forming

PxOut = (HBOut + AIPOut – 2). Here, PxOut corresponds to the output of the pixel

counter, HBOut corresponds to the number of horizontal blanking pixels in the Horizontal

Blanking register, and AIPOut corresponds to the number of active image pixels in the

Active Image Pixel register in Fig. 7.34. If the end has not been reached, the machine keeps

circling around the VB0-R, VB0-G and VB0-B states until PxOut becomes equal to

(HBOut + AIPOut – 2). This period translates from cycles 5 to 22 in the timing diagram in

Fig. 7.36. During this period, every time the B-component of a blank pixel is delivered to the

frame, the pixel counter increments by one. When the end point is detected, the state

machine goes to the Reset VB0-R state where it delivers the R-component of the last

blanking pixel that belongs to the first blanking line. This state corresponds to cycle 23 in the

timing diagram. The controller delivers the remaining G and B-components of the last

blanking pixel in cycles 24 and 25, which translate to the Reset VB0-G and Reset VB0-B

states, respectively. In cycle 25, the pixel counter is reset by ResetPx = 1, and the line

counter is incremented by IncLine = 1 in order to produce the next vertical blanking line.

However, the contents of the Vertical Blanking register, VBOut, needs to be checked prior to

the start of the next vertical blanking line in case this register is programmed to have only

one vertical blanking line. Therefore, while in the Reset VB0-G state, the line counter

output, LineOut, is compared against (VBOut - 1). If the line counter output is less than

(VBOut – 1), then the state machine first goes to the Reset VB0-B state and then back to the

VB0-R state in order to generate another blanking line as described in cycles 26 to 49 in the

timing diagram. If LineOut is equal to (VBOut – 1), the state machine goes to the Switch0

VB-to-HB state where it generates SelBlank = 1, ResetPx = 1 and ResetLine = 1 in order to

terminate the vertical blanking and start the first line of the horizontal blanking.

Cycle 50 starts the beginning of horizontal blanking region, and delivers the R-component

of the first horizontal blanking pixel to the frame. This cycle translates to the Sync HB0-A

state because SyncHB = 1 is also generated in this state. The state machine moves through

the HB0-G and HB0-B states in cycles 51 and 52, and checks if the end of the horizontal

blanking region has been reached by comparing the PxOut with (HBOut – 2). If PxOut <

(HBOut – 2), then more R, G and B blanking pixel components are brought into the frame
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through the BK-port of the 3-1 MUX. However, if PxOut = (HBOut – 2), then the state

machine enters the Reset HB0-R state to deliver the R-component of the last horizontal

blanking pixel in cycle 56 as this condition indicates the end of horizontal blanking. In

cycles 57 and 58, the machine traverses through the Reset HB0-G and the Reset HB0-B

states. The latter state resets the pixel counter by ResetPx = 1, and enables Buf0 by RE0 = 1

to start reading active image pixels.

In cycle 59, the state machine enters the R0 state to deliver the R-component of the first

active image pixel from Buf0. In this state, port 0 of the 3-1 MUX at the output of Buf0

becomes active by SelR0 = 1, and port B0 of the 3-1 frame MUX becomes active by

SelBuf0 = 1. The read enable input for Buf0 also stays at logic 1 by RE0 = 1. In cycle 60,

the state machine goes to the G0 state where it delivers the G-component of the first active

image pixel to the frame. This cycle requires SelG0 = 1 to activate port 1 of the 3-1 MUX at

the output of Buf0 while keeping SelBuf0 = 1 and RE0 = 1. Addr0 is also incremented in

this state by IncAddr0 = 1. In cycle 61, the controller reaches the B0 state where it incre-

ments the pixel counter by IncPx = 1, selects port 2 of the 3-1 MUX at the output of Buf0 by

SelB0 = 1, and maintains both SelBuf0 = 1 and RE0 = 1. In this state, the controller checks

if the end of active image has been reached by comparing PxOut against (AIPOut – 2). If the

controller finds PxOut < (AIPOut – 2), it goes back to the R0 state to retrieve more image

pixels from Buf0. This scenario corresponds to cycles 62 to 70 of the timing diagram in

Fig. 7.37. If the controller finds PxOut = (AIPOut – 2), it moves to the Reset R0 state in

cycle 71 to deliver the last R-component of the image pixel, and generates SelR0 = 1,

SelBuf0 = 1 and RE0 = 1. The state machine then moves to the Reset G0 state in cycle 72

and the Reset B0 state in cycle 73. In the Reset B0 state, the controller resets the pixel

counter by ResetPx = 1, increments the line counter by IncLine = 1, selects port 2 of the 3-1

Buf0 MUX by SelB0 = 1, and keeps SelBuf0 = 1. While in this state, the controller checks

to see if the active image is more than a single line or not, and compares the output of the

line counter, LineOut, against (AILOut – 2). If the controller finds that LineOut < (AILOut –

2), it first moves to the Sync HB0 state to generate SyncHB = 1, and then back to the HB0-G

state to start fetching horizontal blanking pixels for the next line. However, if the controller

finds that LineOut = (AILOut – 2), it realizes that it will be processing the last line of the

current frame. First, it goes to the Sync HB0-B state and generates SyncHB = 1, and then to

the Last HB0-G state to deliver the G-component of a horizontal blanking pixel.

The states from Last HB0-R to Reset Last-B0 are the exact replicas of the states from

HB0-R to Reset B0 except that in the Reset Last-G0 state, Buf0 address pointer is reset by

ResetAddr0 = 1, and in the Reset Last-B0 state, the line counter is reset by ResetLine = 1.

Once the controller exhausts all the active image pixels in Buf0, it switches to Buf1 to

construct the next image frame as shown in the state diagram of Fig. 7.39. In this figure, the
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states controlling the blanking and the image pixel delivery from Buf1 is exactly the same as

in Buf0. Once all the pixels are delivered to the frame from Buf1, the state machine in

Fig. 7.39 hands over the control of the display adaptor to the state machine in Fig. 7.38.

7.7 Data Converters

Analog-to-Digital Converter

All analog domains interface with digital systems through Analog-to-Digital Converters

(ADC). In Fig. 7.40, an analog signal from a sensor is amplified to a certain level before

sampling takes place in a sample-and-hold circuit inside the ADC. The sampled analog

signal is then converted into digital form and directed to the CPU for processing according to

an embedded program.

The signal resolution is an important factor to consider in an ADC design. It simply means

dividing a sampled analog signal by 2N number of voltage levels where N represents the

number of bits in the ADC. The second important consideration is the range of analog values

an ADC can capture and process.

Figure 7.41 describes the ADC resolution in a numerical example where an analog signal

changes between 0 V and 5 V. The bit resolution is only three bits, and therefore the ADC

uses 23 = 8 levels to identify the value of an analog signal at the ADC input. For example,

an analog signal of 2.501 V is identified by a digital output of 100. If the analog signal

increases to 3.124 V, the digital output that represents this voltage value still stays at 100. In

other words, in a three-bit ADC there is no difference between 2.501 V and 3.124 V in terms

of their digital representation. The 0.625 V step size is the natural occurring error in a

three-bit ADC, and it can be reduced only if the number of bits in the ADC is increased. In

general, increasing the number of ADC bits by one halves the error. Therefore, designing a

four-bit ADC instead of a three-bit ADC reduces the quantization error by 0.3125 V.

Sensor
Sample

Hold

Analog To 

Digital 

Converter

Micro-

controllerAMP

Small Analog Signal

Amplified Analog Signal Digital Input

Sampled Analog Signal

Digital to 

Analog 

Converter

Analog Signal

Digital Output

Fig. 7.40 Typical Analog-to-Digital and Digital-to-Analog Converter data-paths
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The reference voltage of an ADC is generally determined by the maximum voltage level

of the analog signal, and it is used to calculate the step size. In this three-bit ADC example in

Fig. 7.41, the reference voltage is 5 V because the amplified analog voltage at the input of

the ADC is limited not go beyond 5 V.

ADC samples non-periodic analog signals in regular time intervals as described in

Fig. 7.42. The time interval between sampling points is called the sampling period. The

sampling period is adjusted according to the processing speed of the ADC in order to

generate accurate digital outputs.

Once sampled, the analog voltage at the input of an ADC is held steady throughout the

sampling period while the conversion takes place as shown in Fig. 7.43. The shape of the

converted signal may be quite different from the original analog signal due to the ADC

resolution and the time duration between samples. In a three-bit ADC, sampling takes place
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Fig. 7.41 Input-output description of a three-bit ADC
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in 0.625 V increments. Therefore, each sampling point becomes subject to a dynamic

quantization error which changes between 0 V and 0.3125 V. For example, a three-bit ADC

samples 3.4 V according to its closest sampling level of 3.125 V, and produces a 0.275 V

error. Arbitrary signals that change with a frequency faster than the sampling frequency are

subject to much larger dynamic errors. When converted back to their analog form, these

signals show large deviations from their original shapes.

A basic sample-and-hold circuit consists of an NMOS transistor and a capacitor as shown

in Fig. 7.44. The control input simply turns on the N-channel MOSFET for a short period of

time, called the sampling width, during which the analog voltage level at the input is stored

on the capacitor. When the transistor is turned off, this analog value is held constant until the

next sampling point.

Flash ADC

The simplest ADC is the flash-type as shown in Fig. 7.45. This three-bit ADC contains 23 = 8

operational amplifiers. The analog signal is applied to all eight positive input terminals. The

reference voltage is distributed to each negative input terminal via a voltage divider circuit.

Each operational amplifier acts as a differential amplifier and amplifies the difference between

a continuously changing analog signal and the portion of the reference voltage.

Figure 7.46 describes the operation of the three-bit flash ADC and its encoder in a truth

table. When the analog voltage is less than or equal to 0.625 V, only Out[0] becomes logic

1, all other outputs from Out[1] to Out[7] become logic 0. When the analog signal exceeds

0.625 V but less than 1.25 V, only Out[0] and Out[1] become logic 1, and again all others

become logic 0. Higher analog voltages at the input successively produce more logic 1 levels

Control Input

Sampling Width

Analog Input

Capacitor

Quantized Signal

Fig. 7.44 A typical sample-and-hold circuit
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as shown in Fig. 7.46. An encoder is placed at the output stage of all operational amplifiers

to transform the voltage levels at Out[7:0] into a three-bit digital output, DOut[2:0]. The

digital output is subject to a maximum error of 0.625 V because only three bits are used for

conversion.

Out[7]

Reference voltage

R
Out[6]

Out[5]

Out[4] 

Out[3] 

Out[2] 

Out[1] 

Out[0] 

R

R

R

R

R

R

DOut[2]

DOut[1]

DOut[0]

F
L
A

S
H

 A
D

C
 E

N
C

O
D

E
R

Analog voltage

4.375V

3.750V

3.125V

2.500V

1.875V

1.250V

0.625V

R

0.0V

Fig. 7.45 Typical three-bit flash ADC schematic
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Ramp ADC

The ramp ADC uses only a single operation amplifier, but it employs an up-counter and a

Digital-to-Analog Converter (DAC) in a loop structure as shown in Fig. 7.47. The digital

output is obtained from the C[3:0] terminals, and progressively generates a final output

within several clock periods.

Out[7] Out[6] Out[5] Out[4] Out[3] Out[2] Out[1] Out[0] DOut[2] DOut[1] DOut[0]

0.625 > > 0.000

1.250 > VIN 

VIN 

VIN 

VIN 

VIN 

VIN 

VIN 

VIN 

> 0.625

1.875 > > 1.250

2.500 > > 1.875

3.125 > > 2.500

3.750 > > 3.125

4.375 > > 3.750

5.000 > > 4.375

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

1

1

1

1

0

0

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

Analog Input

Fig. 7.46 Three-bit flash ADC truth table describing its operation

4-bit Counter

DAC

S/H

Analog Input

+VCC = 5V

-VCC = 0V

C[3] C[0]C[2] C[1]

Reset

DACOUT

SHOUT

INCR

Fig. 7.47 Typical four-bit ramp ADC schematic
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The top portion of Fig. 7.48 describes the output voltage assignments of a four-bit ramp

ADC using two different types of number-rounding schemes. The down-rounding scheme

assigns a lower analog value to each digital output compared to the up-rounding scheme. For

example, the down-rounding scheme produces a digital output of C[3:0] = 0100 for analog

voltages between 1.0937 V and 1.4062 V applied to its input. If the up-rounding scheme is

used, the same digital output becomes equivalent to an analog voltage anywhere between

1.4062 V and 1.7187 V.

The middle table in Fig. 7.48 shows how the conversion takes place if the down-rounding

mechanism is used in an example. Prior to its operation, the four-bit up-counter is reset and

produces C[3:0] = 0000. Assuming an analog voltage of 2 V is applied to the input, which

must be kept constant until the conversion is complete, C[3:0] = 0000 causes the DAC

output, DACOUT, to produce 0 V according to the down-rounding scheme. Since this value

is less than 2 V at the sample/hold circuit output, SHOUT, the output of the differential

amplifier, INCR, transitions to the positive supply potential of the operational amplifier,

+VCC = 5 V, which prompts the four-bit counter to increment to C[3:0] = 0001. Conse-

quently, the DAC generates DACOUT = 0.3125 V according to the truth table in Fig. 7.48.

However, this value is still less than SHOUT = 2 V. Therefore, the differential amplifier

produces another INCR = 5 V which prompts the counter to increment again to C

[3:0] = 0010. Up-counting continues until C[3:0] = 0111 or DACOUT = 2.1875 V. Since

this last voltage is greater than SHOUT = 2 V, the differential amplifier output switches back

to its negative supply voltage, −VCC = 0 V, and stops the up-counter from incrementing

further. The digital output stays steady at C[3:0] = 0111 from this point forward, repre-

senting 2 V analog voltage with a dynamic error of 0.1875 V.

The table at the bottom part of Fig. 7.48 represents the conversion steps if the

up-rounding mechanism is used in this ADC. External reset still produces C[3:0] = 0000

initially. However, the DAC output starts the conversion with an increased amount of

0.3125 V instead of 0 V. The counter increments until C[3:0] = 0110, and produces

2.1875 V at the DACOUT node. At this value, INCR becomes 0 V, and the up-counter stops

incrementing further. As a result, C[3:0] = 0110 becomes the final ADC output for 2 V.

Successive Approximation ADC

The third type ADC is based on the successive approximation technique to estimate the

value of the analog voltage. This converter type is a trade-off between the flash-type and the

ramp-type ADC in terms of speed and the number of components used in the circuit. As a
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C[3] C[2] C[1] C[0]

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

Down-Round (V) Up-Round (V)

0.31250.0000

0.62500.3125

0.93750.6250

1.25000.9375

1.56251.2500

1.87501.5625

2.18751.8750

Step Size = 5/2
4

= 0.3125V

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

2.81252.5000

3.12502.8125

3.43753.1250

3.75003.4375

4.06253.7500

4.37504.0625

4.68754.3750

0 1 1 1 2.1875 2.5000

1 1 1 1 5.00004.6875

C[3]

Analog Input = 2V with Up-Rounding Mechanism

C[2] C[1] C[0]Step

0 0 0 0 5.0

0 0 0 1

0.3125

5.0

0 0 1 0

0.6250

5.0

0 0 1 1

0.9375

5.0

0 1 0 0

1.2500

5.0

0 1 0 1

1.5625

5.0

0 1 1 0

1.8750

0.02.1875

1

2

3

4

5

6

7

Final output with quantization error of 0.3125V 

C[3]

Analog Input = 2V with Down-Rounding Mechanism

C[2] C[1] C[0] DACOUT(V) Step INCR(V)

DACOUT(V) INCR(V)

0 0 0 0 5.0

0 0 0 1 0.3125 5.0

0 0 1 0 0.6250 5.0

0 0 1 1 0.9375 5.0

0 1 0 0 1.2500 5.0

0 1 0 1 1.5625 5.0

0 1 1 0 1.8750 5.0

0.00001

2

3

4

5

6

7

Final output with quantization error of 0.3125V 

0 1 1 1 2.1875 0.08

Fig. 7.48 Four-bit ramp ADC truth table describing its operation
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numerical example, a typical four-bit successive approximation ADC schematic is shown in

Fig. 7.49. In this figure, the up-counter in the ramp ADC is replaced by a control logic which

successively transforms an analog input into a digital output by a trial and error method. The

output is obtained at the C[3:0] terminal.

The top portion of Fig. 7.50 shows the truth table to operate a four-bit successive

approximation ADC. Two numerical examples in this figure illustrate the down-rounding

and up-rounding schemes used during conversion.

The first example in Fig. 7.50 illustrates the down rounding mechanism in a four-bit

successive approximation ADC. In this example, an analog voltage of 3.5 V is applied to the

analog input of the ADC. An external reset starts the converter at C[3:0] = 1000, which is

considered a mid point between C[3:0] = 0000, representing the minimum analog input of

0 V, and C[3:0] = 1111, representing the maximum analog input of 5 V for this ADC. For C

[3:0] = 1000, the DAC generates an initial analog voltage of 2.5 V at the DACOUT node.

Since this value is less than the sampled analog voltage of 3.5 V at the SHOUT node, the

operational amplifier produces IN = 5 V, and prompts the control logic to try a slightly

Control Logic

DAC

S/H

Analog Input

C[3] C[0]C[2] C[1]

Reset

DACOUT

SHOUT

IN

At Reset  C[3:0] = 1000 

DONE

+VCC = 5V

-VCC = 0V

Fig. 7.49 Typical four-bit successive approximation ADC schematic
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C[3] C[2] C[1] C[0]

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

Down-Round (V) Up-Round (V)

0.31250.0000

0.62500.3125

0.93750.6250

1.25000.9375

1.56251.2500

1.87501.5625

2.18751.8750

Step Size = 5/2
4

= 0.3125V

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

2.81252.5000

3.12502.8125

3.43753.1250

3.75003.4375

4.06253.7500

4.37504.0625

4.68754.3750

0 1 1 1 2.1875 2.5000

1 1 1 1 5.00004.6875

C[3]

Analog Input = 3.5V with Up-Rounding Mechanism

C[2] C[1] C[0]Step

1 0 0 0

1 1 0 0 4.0625

1 0 1 0 3.4375

2.81251

2

3

Final output with quantization error of 0.3125V 

Control Logic In

3.5 > 2.8125 

Thus try 2.8125 + (2.5/2) = 4.0625

START with (5.0/2) = 2.8125

3.5 < 4.0625 

Thus try 2.8125 + (2.5/4) = 3.4375

3.5 > 3.4375 

Stop at 3.4375 since there is no resolution under (2.5/8)

C[3]

Analog Input = 3.5V with Down-Rounding Mechanism

C[2] C[1] C[0] DACOUT(V)

DACOUT(V)

Step

1 0 0 0

1 1 0 0 3.7500

1 0 1 0 3.1250

1 0 1 1 3.4375

2.50001

2

3

4

Final output with quantization error of 0.3125V 

Control Logic In

3.5 > 2.5000 

Thus try 2.5 + (2.5/2) = 3.75

START with (5.0/2) = 2.5

3.5 < 3.7500 

Thus try 2.5 + (2.5/4) = 3.125

3.5 > 3.1250 

Thus try 2.5 + (2.5/4) + (2.5/8) = 3.4375

3.5 > 3.4375 

Stop at 3.4375 since there is no resolution under (2.5/8)

Fig. 7.50 Four-bit successive approximation ADC truth table describing down-rounding

and up-rounding approximation techniques
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higher digital output. As a result, the control logic produces C[3:0] = 1100 as its first trial,

which is equivalent to a midway point between C[3:0] = 1000 and 1111. DACOUT becomes

2.5 + (2.5/2) = 3.75 V. But, this new voltage is larger than SHOUT = 3.5 V, and the oper-

ational amplifier produces IN = 0 V in return. The drop at the IN node is an indication to the

control logic that its initial attempt of C[3:0] = 1100 was too large, and it must lower its

output. This time, the control logic tries C[3:0] = 1010, which is between C[3:0] = 1000 and

1100, and produces a DAC output, DACOUT = 2.5 + (2.5/4) = 3.125 V. This value, in turn,

generates IN = 5 V, and prompts the control logic to try a slightly higher output between

C[3:0] = 1010 and 1100. In the third round, the control logic produces C[3:0] = 1011.

DACOUT node becomes 2.5 + (2.5/4) + (2.5/8) = 3.4375 V and generates IN = 5 V. This

new input suggests that the control logic should try a slightly higher output in the next round,

producing 2.5 + (2.5/4) + (2.5/8) + (2.5/16) = 3.5937 V at DACOUT. However, 2.5/8 =

0.3125 V is the resolution limit for this four-bit ADC, and as a result, the controller stalls at

C[3:0] = 1011, revealing DACOUT = 3.4375 V. This voltage differs from SHOUT = 3.5 V

by only 0.0625 V.

The second example in Fig. 7.50 explains the successive approximation technique if the

up-rounding scheme is employed. The conversion again starts at C[3:0] = 1000, but with an

incremented value of 2.5 + 0.3125 = 2.8125 V at the DAC output. Since this voltage is below

SHOUT = 3.5 V, IN node becomes 5 V and prompts the control logic to produce a larger digital

output. The control logic responds to this with a digital output of C[3:0] = 1100, which

corresponds to 2.8125 + (2.5/2) = 4.0625V at the DACOUT node. As a result, IN node becomes

0 V, and forces the control logic to lower its digital output. This time, the control logic tries

C[3:0] = 1010 which is equivalent to 2.8125 + (2.5/4) = 3.4375 at the DACOUT node. Due to

the resolution limit of this four-bit ADC, this step also becomes the end of successive

approximation.

The control circuit of the four-bit ADC with down-rounding scheme is shown in Fig. 7.51.

In this figure, the approximation process starts at the midpoint, C[3:0] = 1000, corresponding

to DACOUT = 2.5 V according to the table in Fig. 7.50. When the external reset is removed,

and the difference between SHOUT and DACOUT (∆v) is found to be greater than the 0.3125 V

step size, the control logic either goes to the state 1.25 and produces C[3:0] = 0100 (equivalent

to 1.25 V), or to the state 3.75 and produces C[3:0] = 1100 (equivalent to 3.75 V) in the first

step of the successive approximation. This decision depends on the value of the control logic

input, IN. If IN = 0, which translates to the analog input to be less than 2.5 V, the next state

becomes the state 1.25. However, if IN = 1, the analog input is considered to be greater than

2.5 V, and the next state becomes the state 3.75. If ∆v is less than 0.3125 V, on the other

hand, the control logic cannot proceed further due to its resolution limit, and moves to the
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state DONE. In the second step of successive approximation, the state 1.25 either transitions

to the state 0.625 or to the state 1.875, depending on the value at the IN node. Similar

transitions take place from the state 3.75 to either the state 3.125 or the state 4.375, again

depending on the value of the IN node. After this point, the state machine performs one last

approximation to estimate the value of analog input voltage, and reaches the DONE state with

an output value as shown in Fig. 7.51.

7.8 Digital-to-Analog Converter (DAC)

The most common DAC utilizes the weighted summation method of digital inputs. A

three-bit DAC with a weighted binary adder is shown in Fig. 7.52 as an example.

This circuit is composed of two parts. The first part adds all three binary input bits, IN[2]

(the most significant bit), IN[1] and IN[0] (the least significant bit), and produces an output,

ADDOUT = − (0.5 IN[2] + 0.25 IN[1] + 0.125 IN[0]) according to the equation in

Fig. 7.53. The second part is an analog inverter which forms OUT = − ADDOUT.

Therefore, the circuit in Fig. 7.52 generates OUT = 0.5 IN[2] + 0.25 IN[1] + 0.125 IN[0],

where each binary value at IN[2:0] input is multiplied by the coefficients, 2−1, 2−2 and 2−3,

before they are added to produce an output. For example, the combination of IN[2] = 1,

IN[1] = 0 and IN[0] = 1, with +5 V and 0 V logic levels generates OUT = 2.5 + 0.625 =

3.125 V. All the other analog outputs in Fig. 7.53 can be generated using the equation in this

figure with a maximum error of 0.625 V.

4R

R

OUT

2R

8R

IN[2]

IN[1]

IN[0]

Weighted Binary Adder Analog Inverter with Unity Gain

ADDOUT

R

R

Fig. 7.52 Three-bit DAC schematic with weighted binary adder
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0.5 IN[2] 0.25 IN[1] 0.125 IN[0]=

IN[2] = 1, IN[1] = 0, IN[0] = 1 with +5V/0V logic levels 

ADDOUT =    2.5    0    0.625 =    3.125V

OUT = + 3.125V  with 0.625V quantization error 

IN[2] IN[1] IN[0] OUT(V)

OUT =    = 0.5 IN[2] + 0.25 IN[1] + 0.125 IN[0]

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0.000

0.625

1.250

1.875

2.500

3.125

3.750

4.375

Example:

Fig. 7.53 Three-bit DAC operation with weighted binary adder
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Review Questions

1. A DMA controller transfers four words of data, D1, D2, D3 and D4, from SRAM 1

(source memory) to SRAM 2 (destination memory) on a 32-bit wide bidirectional bus

as shown below. D1, D2, D3 and D4 are fetched from addresses, AS1, AS2, AS3 and

AS4, in the source memory and placed at the AD1, AD2, AD3 and AD4 addresses in

the destination memory, respectively. Since each SRAM memory has a single I/O port,

address and data cannot be transferred in the same clock cycle. Therefore, for the read

operation, data becomes available at the SRAM I/O port a cycle after a valid address is

presented. For the write operation, data has to be present at the SRAM port a cycle after

the valid address. The active-high RE and WE signals enable the SRAM for read or

write operations when a valid address is available.

The DMA controller has two programming ports to program the initial address and the

incremented address values. It uses ProgAddrS and ProgIncrS control inputs to ini-

tialize and increment the source address, and the ProgAddrD and ProgIncrD inputs to

initialize and increment the destination memory address. The active-high StartS pro-

duces the first address at AddrOutS. The IncrS input increments addresses based on the

initial address. Similarly, the StartD input produces the first address at the AddrOutD

port, and the IncrD increments addresses based on the initial address.

The Capture1 and Capture2 inputs capture data from the bus temporarily and store it in

the Buf1 and Buf2 data buffers, respectively. All active-high enable inputs enable the

tri-state buffers when they are at logic 1. Otherwise, there will be no connection

between the address pointers and the bus or between the memories and the bus.
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(a) Draw the schematic for the source and destination address pointers.

(b) Form a timing diagram to transfer four words of data from SRAM1 to SRAM2.

2. The waveforms shown below are generated by two different timers.

(a) A rate generating timer produces an active-high pulse in every 128 cycles as shown

below. Design this timer and draw its schematic.

(b) A one-shot timer produces a continuous pulse 100 cycles after the start signal as

shown below. Design this timer and draw its schematic.

3. An interrupt controller managing four hardware interrupts is connected to a 16-bit CPU,

which consists of a 16-bit wide instruction memory, Imem, a data memory, Dmem, a

program counter for the Imem, PC, a program counter for the data memory, DC, the

data registers A and B, and a controller. This schematic is shown below.

The interrupt protocol in this schematic is as follows:

Step 1: The active-high interrupt, INTR, is generated by the interrupt controller to

inform the CPU about the presence of an interrupt. The interrupt controller

must have a request from an external device with an interrupt ID before

generating INTR.

Step 2: The CPU acknowledges receiving an INTR with an active-high interrupt

acknowledge, INTA.

clock

1 2 3 125 126 127 00

Out

1

clock

Start

1 2 3 98 99 100 1010

Out

102
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Step 3: The interrupt controller produces an interrupt ID on the 16-bit bi-directional

data bus.

Step 4: The interrupt ID is loaded to the PC to access the interrupt service routine

(ISR) address.

Step 5: The ISR address is loaded to the PC.

Step 6: One of the four interrupt service instructions is fetched from the instruction

memory for a particular interrupt. The steps are as follows:

DC

Dmem

PC

Imem

A B

+

CPU Controller INTR

INTA

Int ID0

16

DIn

DC Addr

DIn/Out

16

0 21

sel port0

sel port1

sel port2

REDmem

WEDmem

REDC IncDC

PC Addr

WEA WEB

Int ID1

Int ID2

Int ID3

Req0

Req1

Req2

Req3

16

16

16

16

REPC IncPC

DOut

WEDC

WEPC

OEIC

Int ID

Interrupt

Controller
REImem

WEImem

16

16

16
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Step 6a: The first interrupt instruction specifies the data memory address to

be loaded to the DC.

Step 6b: The second instruction contains the value of A to be loaded to the

A register.

Step 6c: The third instruction contains the value of B to be loaded to the B

register.

Step 6d: The fourth instruction provides either the contents of the A register

or the contents of B register or the added results of both registers to

be loaded to the data memory at a DC address. This value will later

be used in the program (the related hardware is not shown in the

schematic above).

Step 7: When the four-cycle interrupt service is complete, the CPU lowers its INTA

signal. In response, the interrupt controller lowers its INTR signal a cycle after

the INTA input transitions to logic 0, and waits for the next interrupt.

Note: Imem or Dmem have SRAM configurations. Storing data at a valid address is

achieved by WE = 1 within the same clock cycle. Reading data from a memory address is

achieved by RE = 1 with a latency of two clock cycles (data is not read at the beginning of

the next clock cycle, but the one after next).

(a) If the priority scheme in the interrupt controller is such that device 0 has the highest

priority and device 3 has the lowest priority, design this controller with the I/O port

description shown on the schematic. Note that this controller can support only

hardware interrupts.

(b) Show a timing diagram outlining the complete interrupt service from step 1 to step 7

above.

(c) Show the state diagram of the controller, including all the inputs to operate the

instruction and data memories, registers etc.

4. A display unit works on a unidirectional bus that transmits 24-bit video pixels. Each pixel

is comprised of eight-bit wide R, G and B components which occupy the least significant

three bytes of the write-data bus (the most significant byte is always 0x00). The write-bus

fills a video buffer at a frequency of 2f. Similarly, the frequency of fetching data from a

buffer to fill a video frame is f (buffer emptying rate). Assume the horizontal and the

vertical blanking sections of the video frame are both zero.

The display unit is the highest priority peripheral on the bus because of the fact that it

requires a minimum rate of 30 frames/sec to process and display data. However, other
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peripherals in the system also use the same bus in order to send or receive data between

video bursts.

Each timing diagram below contains three vital entries for a frame buffer. The top row

indicates the ID number of a flag associated with an empty buffer. The middle row

indicates the ID number of an empty buffer. The bottom row shows the ID number of a

full buffer. The flag is a direct input to the CPU, and points out which buffer in the

display unit needs to be filled. Note that all buffers are considered full before data

transactions start. Each square in the timing diagram corresponds to filling or emptying

an entire buffer. Since filling a buffer takes half the time of emptying it, the number of

squares doubles at the bottom row relative to the middle row.

Suppose you have the flexibility of using a two buffer, a three buffer or a four buffer

system in the video unit. The key consideration in this design is to have enough frame

buffers in the system so that a continuous stream of data can be supplied to the display

unit while other peripherals use the bus.

Once full, define the length of the data burst from each buffer in the timing tables below.

Mark each entry with buffer numbers, and use the letters E or F to indicate whether each

buffer is empty or full, respectively. The video unit empties buffers in the following

order. In a two-buffer system, buffer 1 empties first, buffer 2 empties second. In a

three-buffer system, buffer 1 empties first, buffer 2 second, and buffer 3 third. In a

four-buffer system, buffer 1 empties first, buffer 2 second, buffer 3 third, and buffer 4

fourth. Indicate the flag number for each empty buffer inside the circle.

2. Buffer system:

3. Buffer system:

4. Buffer system:

Flag No

Empy No

Full No

Time

Flag No

Empy No

Full No

Time

Flag No

Empy No

Full No

Time

7.8 Digital-to-Analog Converter (DAC) 443



5. A three-bit successive approximation ADC is given below. A Sample-Hold circuit (S/H)

samples varying analog voltages at the Analog Input port in periodic time intervals and

directs them to the operational amplifier.

Use the empty timing diagram below and fill the blanks for Analog Input = 0.5 V with

down-rounding mechanism.

Control
Logic

DAC

S/H

Analog Input

+Vcc = 5V

-Vcc = 0V

C[2:0]

Reset

DACOUT

SHOUT

IN

At Reset  C[2:0] = 100 

3

clock

Reset

C[2:0]

DACOUT

IN
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6. A three-bit ramp ADC below operates with +VCC = 3 V and –VCC = 0 V. This ADC is

designed to take any analog input between 0 V and 3 V.

(a) Assume that the DAC has an up-rounding scheme to generate analog outputs from

digital inputs. Apply 1.2 V to the Analog Input port, and draw the timing diagram that

contains the clock, Reset, counter output (COUNTOUT), DAC output (DACOUT) and

operational amplifier output (INCR). Show what happens to the timing diagram when

the active-high Reset signal transitions to logic 1 after the ADC produces the desired

digital output.

(b) Assume that the rounding scheme has changed from up-rounding to down rounding.

(c) Assume that the DAC rounding scheme is changed from up-rounding to

down-rounding scheme. Apply 1.2 V to the Analog Input and generate the timing

diagram with the input and output signals listed above. Show what happens to the

timing diagram when the Reset signal transitions to logic 1 after the ADC produces

the desired digital output. Do you see any issues with the operation of this circuit?

(d) Now apply 2.9 V to the Analog Input port and generate the timing diagram with the

input and output signals listed above. Do you see any issues in the operation of this

circuit?

3-bit counter

DAC

S/H

Analog Input

+Vcc = 5V

-Vcc = 0V

Reset

DACOUT

SHOUT

INCR

3

COUNTOUT [2:0]
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7. The following circuit shows the block diagram of a simple transmitter-receiver. The

transmission protocol starts with the transmitter sending the request signal, Req, to the

receiver. The receiver acknowledges the request by producing an acknowledgement

signal, Ack, and starts reading data from the transmitter at the next positive edge of the

clock following the Ack signal. Once the data transmission ends, the transmitter keeps

sending the last data packet on the Data bus.

Transmitter Receiver

Req

Ack

Data

32
clockTx clockRx

(a) Assume the transmitter sends out three consecutive data packets, D0, D1, D2.

Complete the timing diagram below for the Ack and Data signals. Show which data

the receiver actually receives.

(b) In this case, the transmitter sends out three consecutive data packets, D0, D1, D2,

again, but uses a slower clock. Complete the timing diagram below for the Ack and

Data signals, and show which data the receiver acquires.

clockTx

clockRx

Req

Ack

Data

clockTx

clockRx

Req

Ack

Data
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8. A black-and-white display supports 256 shades of gray, ranging from white to black. The

physical display frame has 100 pixels in the x-direction and 100 lines in the y-direction,

and it requires a frame rate of 100 frames/sec. The display needs no horizontal or vertical

blanking pixels to synch with the display adaptor. The clock frequency of the display

adaptor is set to 1 MHz. The display adaptor is connected to an eight-bit wide high-speed

bus operating at 10 MHz to receive data. Once the adaptor recognizes that one of its

buffers is empty, it immediately sends a request signal to the bus arbiter to own the bus.

The acknowledgement from the bus arbiter requires 18 ms delay due to heavy bus traffic.

Once the acknowledgment is received, the display adaptor fills all of its buffers. Each

buffer contains exact number of pixels to fill only one frame.

(a) With the timing specs defined above, determine the number of buffers that need to be

used in this system. Draw a timing table that shows how these buffers are periodically

emptied and filled following an 18 ms bus waiting period. Note that this is not a

timing diagram that includes the frame clock, bus clock or propagation of data.

(b) Draw an architectural data-path of the display adaptor including the buffers, the

gray-scale frame and the related hardware (counters, multiplexers, controller etc.).

Make sure to generate all the internal I/O signals of the controller to operate the

arbiter and maintain the proper data flow in the display adaptor.

9. A display adaptor has an overlay feature where an overlay image is mapped over the

active image as long as the overlay image area is smaller than the active image area. The

system neither requires any blanking space nor needs a dual buffering scheme.

Assume the pixels in the image and overlay buffers are not separated into RGB com-

ponents, but rather integrated into single pixels when they are taken out of these buffers to

feed the frame. There is a certain synchronization mechanism between the image and the

overlay address counters, and also between the pixel and line counters. As soon as a pixel

is fetched from the image or overlay buffer, it is placed in the display frame with the aid

of the pixel and the line counter.

There are no write-enable controls for the buffers as these buffers will not be replenished

with new pixels once exhausted. The image is displayed only once. The read-enables for

both buffers are also kept at logic 1 until the buffers are empty. Therefore, the only

mechanism that aids the pixels out of these buffers and moves them to the display frame

is incrementing the address counters and switching the selector inputs at the 2-1 buffer

MUX. After removing the external reset, the operation of the display unit starts as shown

in the timing diagram.
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(a) Build the register file. Indicate the programmable values in each register to support

the operation of this unit.

(b) Fill in each blank space that corresponds to the numbers in the timing diagram (if

there are no numbers, ignore the entries), and complete the control signals, selImage

(to select the image buffer), selOL (to select the overlay buffer), IncrPix (to increment

the pixel counter), ResetPix (to reset the pixel counter to 0), IncrLine (to increment

the line counter) and IncrOL (to increment the overlay counter).

Use the following notation to represent the data when retrieving them from the data

buffers:

For the Image buffer, Data = IM [Image Buffer Address]

For the Overlay buffer, Data = OL [OL Buffer Address]

10. An interrupt controller interfaced with a three-stage RISC CPU is shown below. Once

an external interrupt (INTR0 to INTR15) is generated, the interrupt interface selects the

highest priority interrupt and generates a single interrupt (INTR) bit for the Interrupt

Control Unit (ICU). The ICU acknowledges the interrupt with an interrupt acknowledge

signal (INTA), which prompts the interface to send a four-bit interrupt ID (INTRID) to

the Interrupt Address Table (IAT). A 32-bit interrupt address is then produced from the

IAT which causes the program counter (PC) to jump and execute an Interrupt Service

Routine (ISR) program in the instruction memory. Before the ISR is executed, the

remains of the original program in the CPU pipeline have to be to be executed and

stored in the register file (RF). Also, the address of the next instruction in the user

program is stored in R31 in the RF. Upon the completion of a particular ISR, the

program returns to its original location by retrieving the address stored in R31 and

executes the rest of the user program.

In this particular case, INTR0 = 1, as the highest priority interrupt, prompts the interrupt

interface to generate INTRID = 0. This is the beginning of a four instruction long ISR0

cycle that starts at the address 100 as shown in the instruction memory.

Assuming there are a total of seven instructions in the user program, each instruction

written back to the RF is labeled as WUi. For example, the results of Ins1 are written

back to the RF as WU1, the results of Ins2 as WU2 etc. as shown in the timing diagram.

Similarly, each ISR instruction written back to the RF is labeled as WIi. For example,

the results of Intr1 are written back to the RF as WI1, the results of Intr2 as WI2 etc.

Also, once the PC generates a value, each instruction produces an RF output as DUi.

For example, Ins1 produces DU1, Ins2 produces DU2 etc. Similarly, each interrupt

instruction produces an RF output as DIi. For example, Intr1 produces DI1, Intr2

produces DI2 etc.

Based on the inputs in the preceding paragraphs, fill the blanks in the timing diagram

below, and indicate when each write takes place to the RF with a little arrow.

450 7 System Peripherals



In
te

rr
u

p
t

C
o

n
tr

o
l 
U

n
it

R
F

P
C

+
 1

IN
T

R
0

IN
T

R
1

IN
T

R
1
5

Interrupt Interface

IN
T

R
ID

IN
T

R

IN
T

A

In
te

rr
u

p
t 

A
d

d
re

s
s
 T

a
b

le

(I
A

T
)

D
O

u
tI
A

T

3
1

0

4

1
5 0

3
2

D
In

R
F

R
3
1

3
1

0

In
tr

1

In
tr

3

In
te

rr
u
p
t 

S
e
rv

ic
e
 

R
o
u
ti
n
e
 0

 

(I
S

R
0
)

In
s
1

In
s
tr

u
c
ti
o

n
 M

e
m

o
ry

s
e
lP

C

0

s
e
lI

s
e
lS

I
R

S
s
e
lC

P
C

O
u
t

selC

selS

selI

selR

selR31

3
1

0

In
s
2

In
s
3

In
s
4

In
s
5

R
E

T

1 2 3 4 5 1
0
0

C

D
-C

a
c
h
e

A L U

Instruction register

1

A
In

R
F

s
e
lR

3
1

0
1

3
1

0

In
tr

2
1
0
1

1
0

2

1
0

3

s
e
lR

selPC

c
lk

c
lk

c
lk

c
lk

1 0

If
 O

P
C

 =
 L

O
A

D
 s

e
l 
1
 e

ls
e
 s

e
l 
0

D
O

u
tR

F

A
In

A
IT

c
lk

U
s
e
r

p
ro

g
ra

m

7.8 Digital-to-Analog Converter (DAC) 451



11. Design an SPI (see Chapter 4 on serial bus) interface using an integrated transmitter

and receiver shown below. The eight-bit Shift Register at the interface transmits one-bit

data from the SDO port at the negative edge of SCK, and simultaneously receives

one-bit data from the SDI port at the following positive edge. The transmit data is first

loaded to the SPI Register using an eight-bit system bus. Subsequently, the contents of

the SPI Register are loaded to the Tx Buffer if the buffer is empty and then to the Shift

Register when it requires new data. In a similar fashion, when the Shift Register

acquires new eight new bits through its SDI port, it transfers its contents to Rx Buffer

first and then to the SPI Register. When the transmit function is desired, the received

data is considered junk data. When the receive function is desired, the transmit data is,

in turn, assumed junk. The two flags, TxF and RxF, update the SPI status register and

indicate if the TxBuffer and the RxBuffer are empty or not.

Design the SPI data-path and the controller using timing diagrams. The SCK applied to

the shift register is assumed to be a slower clock, and it has a period of eight system

clock periods. The designer should feel free to alter the design and add additional

hardware or signals when necessary to conclude a different implementation.

clk

INT0

INTR

INTA

INTRID

DOutIAT

PCOut

DInRF

AInRF

DOutRF

selI

selS

selC

selR

selPC

selR31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0

100

1 2

WU1

DU1

1 1
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Projects

1. Implement and verify the DMA in Fig. 7.7 that supports two identical 32x64 SRAM

memories using Verilog. The DMA should produce a timing diagram similar to the one

shown in Fig. 7.6 and include a controller in Fig. 7.8.

2. Implement and verify the interrupt controller in Fig. 7.15 that supports 256 hardware

interrupts using Verilog. Include the hardware for context switching, i.e. transferring the

contents of the entire register file to a temporary buffer prior to executing interrupt service

routine instructions.

3. Implement the one-shot timer in Fig. 7.24 using Verilog. Produce its timing diagram as

shown in Fig. 7.25.
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4. Implement the rate generator in Fig. 7.26 using Verilog. Produce its timing diagram as

shown in Fig. 7.27.

5. Implement and verify the display adaptor unit in Fig. 7.34 that supports a screen with

eight pixels, two blanking lines and nine active image lines as shown in Fig. 7.35.
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8Special Topics

This chapter introduces two core topics that may be part of a computing system. The first

topic is a brief introduction to programmable logic. The second topic is the analysis of a

basic data-driven processor that operates with arrival of new data.

When it comes to prototyping an application-specific digital block, the first thing that

comes to mind is the Field-Programmable-Gate-Array (FPGA) platform. This platform is

flexible enough to implement any combinatorial, sequential or asynchronous logic with ease.

Using programmable logic, we can create mega cells such as ALU blocks or simple

memories, logic blocks that perform specific functions, processors, even a System on Chip

(SoC) platform using a Hardware Design Language (HDL).

The second topic in this chapter describes a data-driven architecture that works with a

cluster of simple processors. Each processor in the cluster is designed to carry out specific

task(s), and each becomes active when valid data arrives from a neighboring processor. In a

data-driven system, either an individual processor carries out a specific task and transfers the

result to the next processor or every processor in the cluster simultaneously execute many

different tasks all at once to produce a single result.

8.1 Field-Programmable-Gate Array

The basic idea behind the Field-Programmable-Gate-Array (FPGA) architecture is the use of

Look-Up-Tables (LUT) [1, 2]. A typical three-input LUT in Fig. 8.1 contains eight registers

to store bits, an 8-1 MUX to select one of the eight register outputs, and a flip-flop at the

output of the 8-1 MUX to implement sequential logic. The programming phase consists of

serially distributing the desired bit values to all eight registers through the ProgIn port when

the Prog input is set to logic 1. This is achieved by using all eight LUT registers in a shift

register configuration, and shifting an eight-bit data from Bit[0] to Bit[7] at each positive

edge of the clock. The bottom register at the Bit[7] position has another output, ProgOut,
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connected to the ProgIn input of another LUT such that every LUT on the FPGA chip can be

serially programmed using a single wire to save wiring space.

In normal operation, bits stored in the LUT registers constitute the output values of the truth

table in Table 8.1. The inputs of the truth table, on the other hand, are the selectors of the 8-1

MUX, from LUTIn[0] to LUTIn[2], in Fig. 8.1. Therefore, any arbitrary truth table can be

produced simply by programming the LUT registers, needing no other conventional logic gate.

For example, when LUTIn[2] = LUTIn[1] = LUTIn[0] = 0 in Fig. 8.1, the 8-1 MUX routes

the value stored in Bit[0] to its output. Similarly, LUTIn[2] = LUTIn[1] = LUTIn[0] = 1

combination routes Bit[7] to the output. The 2-1MUX is used to bypass the flip-flop output if a

combinational logic implementation is preferred.

The number of registers in a LUT is determined by the number of outputs in the truth

table. For example, if there are three inputs in the truth table, this combination generates

23 = 8 possible outputs. Therefore, the LUT must contain eight registers. In general, N

inputs require 2N registers in a LUT.

In summary, in order to implement a logic function using FPGA, the inputs of a logic

function (truth table) must be applied to the MUX selectors, and the outputs must be stored

in the LUT registers according to Table 8.1.

To demonstrate how a combinational logic block is implemented in an FPGA platform,

we will design a four-bit Ripple-Carry-Adder (RCA) as shown in Fig. 8.2. The circuit

consists of four full adders all connected serially to propagate the carry bit from right to left.

The sum outputs, from SUM0 to SUM3, and the carry-out ports, from Cout0 to Cout3, have

to be generated by programming in the LUT registers.

Figure 8.3 describes how a full adder sum output is stored in a three-input LUT. This

process is the same to generate each sum output, from SUM0 to SUM3. In this figure, the

LUT output value at the first row (logic 0) is stored in the Bit[0] position, and the last output

entry at the last row (logic 1) is stored in the Bit[7] position. This bit arrangement in the LUT

Table 8.1 Three-input LUT truth table (when bypass port is set to 1)

LUTIn[2] LUTIn[1] LUTIn[0] LUTOut

0 0 0 Bit[0]

0 0 1 Bit[1]

0 1 0 Bit[2]

0 1 1 Bit[3]

1 0 0 Bit[4]

1 0 1 Bit[5]

1 1 0 Bit[6]

1 1 1 Bit[7]
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registers implements the SUM function if Cin, A and B are applied to the 8-1 MUX as

selector inputs. The bypass input at the output 2-1 MUX must also be set to logic 1 to bypass

the flip-flop stage since this design is not a sequential circuit.

The Cout function of the full adder is implemented similarly as shown in Fig. 8.4. The

Cout function in the last column of the truth table is programmed in the LUT registers while

Cin, A and B are applied to the 8-1 MUX as selector inputs. The bypass bit is also set to

logic 1 to bypass the flip-flop since the implementation is purely combinational.

Figure 8.5 shows the FPGA implementation of the four-bit RCA in Fig. 8.2 after the

programming phase is complete. In this design, each FPGA cell, called a cluster, is assumed

to contain two LUTs. While A0, A1, A2, A3, B0, B1, B2, B3 and Cin0 are external input

pins for the four-bit RCA, Cin1, Cin2 and Cin3 inputs are all internally generated from

Cout0, Cout1 and Cout2 function blocks, and routed between clusters to maintain inter-

connectivity. All the bypass inputs, from bypass-Cout0 to bypass-SUM3, have to be at logic

1 and stored in a separate LUT during programming phase.

FA0

A0 B0

SUM0

FA1

A1 B1

SUM1

FA2

A2 B2

SUM2

FA3

A3 B3

SUM3

Cin0
Cout0Cout1Cout2

Cout3

SUM0 = A0 + B0 + Cin0

SUM1 = A1 + B1 + Cin1

SUM2 = A2 + B2 + Cin2

SUM3 = A3 + B3 + Cin3

Cout0 = A0.B0 + Cin0.(A0 + B0)

Cout1 = A1.B1 + Cin1.(A1 + B1)

Cout2 = A2.B2 + Cin2.(A2 + B2)
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A commercial FPGA cluster contains a multitude of multiplexers connected to the LUT

inputs to accomplish the maximum flexibility in logic configuration [3]. Figure 8.6 shows

one such cluster configuration that contains two LUTs, each with three inputs. A cluster

configured this way is able to achieve maximum networking capability with other clusters in

addition to implementing many types of combinational and sequential logic circuits. Pro-

gramming these LUTs is achieved simply by connecting the ProgOut port of one LUT to the

ProgIn port of the neighboring LUT, and feeding the serial data from the ProgIn port as

shown in the figure.
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Fig. 8.6 A commercial FPGA cluster containing two LUTs per cluster
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The detailed schematic in Fig. 8.7 shows the FPGA implementation of Cluster 0 in

Fig. 8.5 but uses a commercial FPGA architecture in Fig. 8.6. Each 3-1 MUX selector input

from SelOut0[0] to SelOut1[5] is stored in a 12-bit shift register (LUT2) in Fig. 8.7.
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Fig. 8.7 Implementing SUM0 and Cout0 using a single cluster containing two LUTs

8.1 Field-Programmable-Gate Array 463



In this figure, SelOut1[i] = 0 and SelOut0[i] = 1 combination selects port 1 of the

3-1MUX where i changes from 0 to 5. Similarly, SelOut1[i] = 1 and SelOut0[i] = 0

combination selects port 2. When SelOut1[i] = SelOut0[i] = 0, the default port 0 is selected,

and an external input becomes one of the selector inputs for the 8-1 LUT MUX. The bypass

pins, bypass0 and bypass1, are also stored in a two-bit shift register (LUT3).

A Moore or Mealy type state machine can also be implemented using an FPGA platforms.

The state diagram in Fig. 8.8 produces the transition table in Table 8.2, which includes two

next state outputs, NS0 and NS1, two present state inputs, PS0 and PS1, an external input,

IN, and a present state output, OUT[2:0], to produce integer values between one and four.

For state assignments only one bit is allowed to change between neighboring states, i.e.

S0 = 00, S1 = 01, S2 = 11 and S3 = 10. The resultant circuit in Fig. 8.9 shows the locations

of the present and next states, the input and the output.

S0

S1

S2

S3

IN = 0

IN
 = 1

IN
 =

 1IN
 = 1

IN = 0

IN = 0

IN = 0
IN = 1

OUT = 1

OUT = 2OUT = 4

OUT = 3

Fig. 8.8 A Moore machine

Programming the NS0 function in Table 8.2 in a three-input LUT configuration is

explained in Fig. 8.10. In this figure, the NS0 column is distributed among eight LUT

registers, storing the first bit of NS0 in a LUT register at the Bit[0] position, and the last bit

of NS0 in a register at the Bit[7] position. The inputs, PS0, PS1 and IN, that generate NS0

are connected to the 8-1 MUX selector pins, LUTIn[0], LUTIn[1] and LUTIn[2], respec-

tively. Since the bypass input pin is set to logic 0, the NS0 node becomes the input of the

flip-flop, and the PS0 node becomes the output.
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Fig. 8.9 The circuit diagram for the Moore machine in Fig. 8.8

Table 8.2 The transition table for the Moore machine in Fig. 8.8
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The NS1 functionality is implemented in a similar fashion as shown in Fig. 8.11. The

NS1 column in Table 8.2 is stored in the LUT registers. PS0, PS1 and IN inputs are

connected to LUTIn[0], LUTIn[1] and LUTIn[2] MUX selector pins, respectively. The

bypass pin is set to logic 0 in order to form NS1 node at the input of the flip-flop and PS1

node at the output.
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Fig. 8.11 Programming the PS1/NS1 output with a three-input LUT
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The OUT[0], OUT[1] and OUT[2] outputs are also programmed in the LUT registers

according to Table 8.2, and shown in Figs. 8.12, 8.13 and 8.14, respectively. However, the

bypass input in each case must be set to logic 1 in order to bypass the flip-flop stage since

these outputs are completely combinational and do not require any clock in their paths.
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Fig. 8.12 Programming the OUT[0] output with a three-input LUT
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Figure 8.15 describes the implementation of the Moore machine in Fig. 8.9 after pro-

gramming each LUT in three different clusters. Cluster 0 generates NS0 and NS1 functions

implicitly but also produces PS0 and PS1 outputs. Cluster 1 and Cluster 2 implement OUT

[2:0]. The IN port is the only external input that goes to all three clusters to maintain the

logic functionality. All the bypass inputs from bypass-PS0 to bypass-OUT2 are stored in a

separate LUT.

The schematic in Fig. 8.16 shows the implementation of Cluster 0 in Fig. 8.15 in a

commercial FPGA platform in Fig. 8.6. In this schematic, all 3-1 MUX selector inputs from

SelOut0[0] to SelOut1[5], are stored in LUT2. Similarly, the bypass inputs, bypass0 and

bypass1, are stored in LUT3 to be used during normal operation.

1

0

clock

D Q

bypass-PS0 = 0

PS0

Bit[0]

Bit[7]

IN

P
S

0
 -

L
U

T

Cluster 0

Cluster 1

Cluster 2

NS0

1

0

clock

D Q

bypass-PS1 = 0

PS1

Bit[0]

Bit[7]

IN
P

S
1

 -
L

U
T

NS1

1

0

clock

D Q

bypass-OUT0 = 1

OUT[0]

Bit[0]

Bit[7]

PS0

PS1
IN

O
U

T
0
 -

L
U

T

1

0

clock

D Q

bypass-OUT1 = 1
Bit[0]

Bit[7]

IN

O
U

T
1
 -

L
U

T

1

0

clock

D Q

bypass-OUT2 = 1
Bit[0]

Bit[7]

IN

O
U

T
2
 -

L
U

T

PS0

PS1

PS0

PS1

PS0

PS1

PS0

PS1

OUT[1]

OUT[2]
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Fig. 8.16 Implementing PS0 and PS1 using a single cluster containing two LUTs
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8.2 Data-Driven Processors

Data-Flow Graphs

Programming data-driven processors is achieved by data-flow graphs [4]. Each graph con-

sists of a group of functional nodes and communication paths, connecting the nodes. Each

node in the flow-graph executes two incoming data tokens. When they arrive, the node

produces an output operand according to the function defined in the node. Therefore, a node

function can simply be defined by an instruction. Each instruction representing a functional

node contains an operation code (OPC), input operand(s) (OPER), and output operand node

addresses. All input-output paths among functional nodes are connected with directed

communication paths to guide the flow of data. With this picture in mind, operands that flow

into a functional node are executed according to the node’s operation code. Once executed in

the node, new operands form and flow out of the node to other nodes. A simple example is

given in Fig. 8.17. In this example, the operands, OPERS1 and OPERS2, are executed by the

node’s operation code, OPCS, when they arrive at the functional node, NS. After the exe-

cution, new operands form and flow out of the node to two new destination nodes, ND0 and

ND1, where they meet with two other operands, OPERD0 and OPERD1, respectively. The

data-flow program stops when all operands are executed.

The parallel nature of data-flow architecture makes parallel processing tasks quite achievable

in data-driven machines. While conventional processors are set to be maximally serial to

minimize hardware, data-driven architectures can be maximally parallel with up to one
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OPCS
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Fig. 8.17 Sample flow graph for a data-driven machine
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processor per operation to maximize performance. For the example in Fig. 8.17, two dif-

ferent data-driven processors can be used simultaneously to perform OPCD0 and OPCD1

following the operation at the node NS. Multi-processor platforms formed by a group of

conventional processors may have limitations to achieve certain parallel processing tasks. In

contrast, data-driven processors can time-share the processing load of several functional

nodes, and therefore reduce the hardware requirement to implement a data-flow graph.

Data-Flow Node Types

The types of data-flow nodes used in this architecture are classified according to the number

of input operands fed into the functional nodes. Figure 8.18 illustrates this classification.

Functional nodes that accept no inputs are nodes with constants (CONS). The contents of

this node type do not change during programming. Functional nodes that accept one input

are the unitary (UNIT) nodes. This node type transforms an operand as soon as it arrives at

its input. Invert (negate), Set and Reset are the unitary nodes in this architecture that require a

single input operand. Functional nodes that accept two input operands are the combinatorial

(COMB) nodes. This node type executes incoming operands when they are both valid at the

input. The operation of some combinatorial functional nodes, such as subtract and shift,

depends on the relative placement of the input operands. This is called the operand polarity.

It is reflected in the instruction format by defining input operands as left or right input

operands. In this architecture, operands with changing data values are directed to the left side

of a functional node, whereas constant operands or operands used as control signals are

placed on the right side of the functional node in a data-flow diagram.

While operands emanating from functional nodes are forwarded only to one destination

address in the earlier data-flow diagrams, this architecture offers the flexibility where the

same operand can be forwarded to two different destination addresses. This unique feature

saves the number of nodes used in the data-flow diagram as well as increases execution

speed of the program.
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OPEROUT
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Fig. 8.18 Functional node types
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Basic Data-Flow Program Structures

There are three basic programming structures in data-driven architectures when constructing

data-flow diagrams: sequential, conditional and recursive. Each structure is illustrated in

Fig. 8.19.

Sequential programming constructs imply that data-flow is unidirectional, from one func-

tional node to the next without any loops or paths related to a condition. The simple data-flow

diagram in Fig. 8.17 is one such example of the sequential programming structure. Another

example composed of multi-layer functional nodes is given in the top figure of Fig. 8.19.

The conditional programming structure consists of a functional node that accepts a con-

ditional input besides a data input. If the condition is satisfied, a valid operand at the data input

becomes a valid operand at the output. If the condition is not satisfied, the operand at the

output retains its old value. The conditional input enters the node from the right side since it is

considered to be a control input as mentioned earlier. Gate and Compare instructions are

considered conditional since the data-flow produced at the output of the node depends on

whether the condition is satisfied or not. The output operand does not change its value until

the condition is satisfied. An example of this type is shown in the middle figure of Fig. 8.19.

The recursive programming structure contains looping constructs in the form of a feedback

path from one node to another as shown in the bottom figure of Fig. 8.19. The number of

iterations in a loop continues until all input operands are exhausted. The loop can be broken to

allow a conditional node if needed, otherwise the loop is activated on the arrival of new

operands either from the right side or from the left side of the node.

A simple example in Fig. 8.20 combines all the programming structures mentioned

above. This example calculates the area under a straight line, Y = (X − 1), from X = 2 to

X = 3. The increment in the x-axis is defined to be DeltaX, which is equal to 0.1 in the flow

chart.

The flow chart in Fig. 8.20 has been transformed into a data-flow graph shown in

Fig. 8.21. All the nodes with constants in the data-flow graph in Fig. 8.21 are zero-input

nodes, which accept no operands. The only unitary functional node is the one with the SET

operation code. Upon the arrival of an operand to its single input, this node generates logic 1

at its output. Otherwise, its output stays at logic 0.

There are two types of two-input functional nodes in the same data-flow diagram. The

majority of these nodes are conditional type: they either wait for a condition to arrive

(GATE) or they have a permanent condition attached at their right port in terms of a

constant. Greater-Than-Or-Equal-To (GE), Less-Than (LT), Add-with-Constant (ADC), and

Multiply-with-Constant (MULC) functional nodes belong to the latter category.

The rest of the two-input nodes are sequential such as Add node (ADD) where polarity

information is not important for data execution.
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Fig. 8.19 Data-flow programming structures
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During the programming phase, the initial values of Xstart, Ystart and SUMstart are

stored at the proper arcs in Fig. 8.21. When program execution starts, Xstart = 2 is added to

a floating-point constant, C = 0.1, at the nodes 0 and 1, generating the first value of X.

While X is compared against C = 3 at the nodes 3 and 4, it is also directed to the node 2 for a

Gate operation, and added to C = −1 at the node 5, producing Y. Subsequently, Y is directed

to the node 6 to be added to Ystart = 1, and to the node 7 for another Gate operation. The

output of the node 6 multiplies with C = 0.05 at the node 8, producing the first incremental

area value, and it is directed to the node 9 to be added with SUMstart = 0. The output of the

node 9, SUM, is then forwarded to the nodes 10 and 11 for two other Gate operations.

Depending on comparisons at the nodes 3 and 4, the SUM output will either be forwarded

outside of the processor or forwarded to the node 12 in order to set this node. If the node is

set, Gate operations at the nodes 2, 7 and 11 take place, replacing the old values of Xstart,

Ystart and SUMstart with X, Y and SUM, respectively. Iterations continue until the node 10

becomes active and the result is delivered to the user.

X : 3

SUMstart = 0

Xstart = 2

Ystart = 1

DeltaX = 0.1

SUMstart = SUM

Xstart = X

Ystart = Y

X = Xstart + DeltaX

Y = X - 1

Area = 0.05 (Y + Ystart)

SUM = SUMstart + Area

SUM to host

X  <  3 

else

Fig. 8.20 Flow chart integrating the area under Y = (X − 1)
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Input Flags

An input operand to a functional node contains an operand flag to indicate whether or not the

data processing is complete. A high flag implies that the input operand is valid and ready to

be processed. The input operand flag goes to logic 0 as soon as the functional node processes

the input operand.

ADC

C = 0.1

C = 0.05

C = 3C = 3

C = -1

ADC

ADD GATE
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R
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Fig. 8.21 Data-flow graph integrating the area under Y = (X − 1)
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Nodal Networks

Data-flow diagrams in this architecture can be structured in three different ways. The first is a

direct connection among functional nodes: data flows from one node to another freely in an

unobstructed fashion as shown at the top left corner of Fig. 8.22. The only control mech-

anism for processing data at each functional node is that both input operand flags must be at

logic 1. The second and the third nodal networks use programmable routers to send operands

from the source to the destination nodes. The simple router at the top right corner of

Fig. 8.22 uses a local network to connect a group of functional nodes and thereby creates a

cluster. Note that the inputs to a functional node in a cluster can come from any functional

node in this network. This decision is made by a simple arbitration scheme in the router,

which dictates that any node in the process of generating a new input operand for itself has

priority over the other nodes in a cluster. In other words, if a neighboring node produces an

input operand for a particular node in a cluster while this particular node is in the process of

generating an input operand for itself, the arbiter stalls any data processing in the neigh-

boring node until the self-operand generation is complete. The bottom structure in Fig. 8.22

L R
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OPERA OPERB

OPCA

L R

NB

OPCB OPCC

NC

L
OPERC

OPCD

R

ND

L

N A

OPCA

NZ
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INTER-CLUSTER NETWORK

OPCA

N ZN A

OPCZ

LOCAL CLUSTER NETWORK 1  

N A

OPCA

N Z

OPCZ

L R L R L R L R

LOCAL CLUSTER NETWORK  N

Fig. 8.22 Data-flow graphs without router, and with local and hierarchical cluster networks
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illustrates the hierarchical organization of clusters where an inter-cluster network manages

many local cluster networks. While each cluster arbiter manages its own individual cluster,

all cluster-to-cluster communication is maintained by a separate inter-cluster arbiter.

Processor Design Overview

The processor implements the node functionality by reading the node instruction from the

memory, executing it, and writing the result back to the two destination node addresses

specified in the instruction. In order to implement this sequence, each processor needs to

have a memory, an ALU and a controller. The memory contains all nodal instructions. Each

nodal instruction consists of two input operands with their valid flags, an operation code and

the two destination node addresses where the results are sent as shown in Fig. 8.23.

Consider a processor implementing a single node. Initially, assume the processor is at

idle. When both operand flags in the instruction become valid, the controller starts. In the

first step, the controller generates a nodal address for the instruction that resides in the

memory. In the second step, the controller fetches the input operands and operation code

from this instruction and forwards them to the ALU. The ALU combines the input operands

and generates an output operand, which is directed to the first destination address. In the

third step, the controller writes the same output operand to the second destination address,

sets the operand flag at the first destination address, and clears input operand flags at the

source address. In the fourth and final step, the controller sets the operand flag at the second

destination address.

If the processor needs to execute more than one node, then each nodal address in the flow

graph must be mapped to a physical address in the memory. This approach automatically

transfers the left and the right nodal operands, the operation code and the destination

addresses of a particular node from the flow graph to an instruction in the memory. However,

during this process each operand flag is stored in a separate tag memory to allow the

controller to continuously search for valid operand flags. If the controller finds a node with

valid left and right operand flags, it sends the corresponding operands to the ALU for

execution. After the operands are processed and sent to the destination addresses in the

instruction, the controller points the next node to be processed. If there is no other node with

OPC V0 N0 P0FROPERR V1 N1 P1

Destination

Address 0

Destination

Address 1

FLOPERL

Left 

Operand 

Flag

Right 

Operand 

Flag

17 171 1 5 1 6 1 1 6 1

Fig. 8.23 Instruction format
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valid operand flags, the controller stalls the processor until an instruction with valid operand

flags emerges in the instruction memory.

The processing efficiency and speed in the processor can be increased by pipelining. After

an instruction is executed, sending the ALU result to a destination address can be overlapped

with tasks such as generating an address or fetching a different instruction. This can be

achieved using a dual port memory.

Instruction Format

In this architecture, the instruction format contains two 17-bit input operands, OPERL and

OPERR, two flags to validate the operands, FL and FR, one five-bit operation code, OPC, and

two eight-bit destination address fields. Each destination address is composed of a valid bit,

V, a six-bit node number, N, and a left-right polarity bit, P. The valid bits in the destination

address fields, V0 and V1 indicate the validity of the corresponding nodal address. This

instruction format is shown in Fig. 8.23.

Architecture and Operation

Figure 8.24 shows a simplified block diagram of a processor executing the simple program

in Fig. 8.17. Each node number in the data-flow graph in Fig. 8.17 corresponds to an address

in the instruction memory in Fig. 8.24.

The program execution starts when the controller detects an instruction with valid left and

right operandflags, such as the one at thememory locationNSwith FL = FR = 1. The controller

reads out the instruction and sends the operands, OPERS1 andOPERS2, and the operation code,

OPCS, to the ALU. The ALU executes the operands according to the OPCS, and the controller

clears both operand flags of the instruction, underlining the completion of this instruction. The

controller subsequently sends the ALU result to the first and second destination addresses, ND0

andND1, as data tokens as shown in Fig. 8.24.When the result is delivered to a valid destination

address, the controller automatically sets the operand flag to specify the validity of data for

further processing. For example, the right operand flag at ND0 is set when OPERA = OPERS1

(OPCS) OPERS2 is delivered to this address. Similarly, the controller sets the left operandflag at

ND1 when it delivers the same ALU result to this address in the next cycle.

After executing the instruction at NS, the controller detects the next instruction with valid

operand flags at the memory location ND0. Once again, the controller extracts the operation

code, OPCD0, and the operands, OPERD0 and OPERA, from the instruction and sends them

to the ALU for execution. Subsequently, the controller clears the operand flags at ND0 and

sends the ALU result as a left operand to the memory address NK. This is shown as the third

data token in Fig. 8.24. The controller performs the same set of tasks for the instruction

located at the address ND1 and forms the fourth data token. The program execution stops

when the controller can no longer find a pair of valid operand flags in the tag memory.

8.2 Data-Driven Processors 481



Implementation

Figure 8.25 shows the implemented instruction field format. Besides the operation code and

the input operand fields, each destination address in Fig. 8.23 is now expanded to contain an

additional seven-bit processor ID, ProcID, and a cluster ID, ClusID, to allow multiple

processor communication in a local network. In this architecture, we have the flexibility of

choosing a network ranging from 128 processors in a single cluster to two processors per

cluster for 64 different clusters. The presence of ClusID and ProcID enables independent but

simultaneous networking activities to take place among clusters and processors. In other

ClusID0 ProcID0OPC V0 N0OPERROPERL FRFL P0 ClusID1 ProcID1 V1 N1 P1

17 171 1 5
7

1 6 1
7

1 6 1

Fig. 8.25 Instruction format in the implementation
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Fig. 8.24 Processor architecture executing the program in Fig. 8.17
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words, the source processor can write the same ALU result to two different destination

processors within the same cluster or in different clusters.

Processor Micro-architecture

The simplified data-driven processor architecture shown in Fig. 8.24 is implemented in

Fig. 8.26. One of the essential elements in Fig. 8.26 is the presence of a dual-port RAM.

While the controller fetches an instruction from the first data port, it writes the ALU result of

another instruction to the second port to increase processor performance and programming

efficiency.

In this architecture, all operand flags are stored in a separate tag memory in the processor.

The left and right operand flags at each tag address are AND-gated and connected to the

node address generator as inputs. When the operand flags that belong to a specific tag

memory address become valid, the address generator uses this tag address as a read address,

RAddress, to read the corresponding instruction from the dual-port RAM. If there is more

than one set of valid flags in the tag memory, the node address generator selects a pair of

flags with the lowest nodal address value, and delivers this address to the memory. When

there are no more valid flags, the address generator produces a NoSelect signal for the
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Fig. 8.26 Processor data-path and micro-architecture
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network arbiter which, in turn, stalls the processor. From this moment on, the processor

suspends all its activity and waits for new operands to be delivered to the instruction

memory.

When a processor interacts with other processors in a network, it is quite possible that it

may receive a hold request from the network arbiter while attempting to write into a

neighboring processor. This hold signal is generated because the neighboring processor may

be busy processing data for itself or writing data to another processor as mentioned earlier.

When the source processor receives a hold signal, it stalls all its processing functions and

retains its internal status and output data values until the hold is removed. Therefore,

RAddress is also stored in the node retainer to preserve the node address, NS, and the source

operand polarity, PS, for the tag memory in case the network arbiter issues a hold.

Once the instruction at RAddress is read from the RData port of the dual-port memory, its

right and left operands are routed to the ALU along with the operation code for execution.

The source operands are also stored in the operand retainer in case the program execution is

put on a momentary hold by the network arbiter. Both of the destination addresses, WAddr0

and WAddr1, are buffered in the write address register and used alternately to deliver the

processed data from the Out terminal to destination processors. The write address register

also keeps the old write addresses for the duration of hold.

The processed data either produced locally or from other processors in a network is

eventually written to the dual-port RAM through the WData port. The destination address at

the WAddress port simply accompanies the newly arrived data, and it is directed to the tag

memory to update the corresponding operand flags.

Processor Programming

Prior to the program execution, instructions are loaded to the dual-port RAM through the

WData port in Fig. 8.26. While the program is loaded to the memory, operand flags of each

instruction are also stored in the tag memory.

Inter-processor Arbiter and Router

In a data-driven architecture, the organization of processors in a network is hierarchical.

A group of processors form a local cluster, in which each individual processor owns a pro-

cessor ID, ProcID, to communicate with other processors using a simple arbitration protocol.

A local cluster has also an identification number, ClusID, in a network. Only one pro-

cessor in a cluster can communicate with another processor in a different cluster at a given

time.

The inter-processor router connects each processor’s destination address and data output

to other processors address and data ports with a massive multiplexing network as shown in

Fig. 8.27. The arbiter is designed to give address and data transfer privileges to a single

processor while issuing a hold to all lower-priority processors in a cluster. There are two

general rules observed in the arbiter’s priority scheme. The first rule states that if a processor
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issues a write to itself, it has the highest priority over the other processors in a cluster. The

second rule is that if two or more processors issue write requests simultaneously to a

processor at idle, the highest priority among these processors belongs to the one with the

lowest ProcID.
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Fig. 8.27 Inter-processor arbiter and router

8.2 Data-Driven Processors 485



Review Questions

1. The following sum of products (SOP) function is given:

out ¼ ACþABCþB

Implement this function using three-input LUTs only.

2. The following product of sums (POS) function is given:

out ¼ ðAþBÞ : ðBþCÞ : ðAþBþCÞ

Implement this function using two-input LUTs only.

3. The following truth table needs to be implemented in FPGA.

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

A B C out

Assume the three-input LUT configuration is given below:

inputs

out

clock

bypass

Prog in

Prog out

0

1

2

3

4

5

6

7

D Q

1

0
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(a) Implement the truth table only with three-input LUTs.

(b) Implement the same truth table only with four-input LUTs.

(c) Implement the same truth table only with two-input LUTs.

4. Implement the 3-1 multiplexer below using three-input LUTs.

The definition of the MUX is given below:

If sel[1:0] = 00 or 11 then out = a

If sel[1:0] = 01 then out = b

If sel[1:0] = 10 then out = c

sel [1:0]

out

a

1

2

2

b

c

0

5. A simple Moore state machine that consists of two states is given below. After con-

structing the state and transitional tables, draw the circuit diagram of this state machine

using minimal number of logic gates and flip-flops.

Once the logic diagram is finalized, implement the state machine in FPGA using

two-input LUTs and three LUTs in a cluster. Draw the architectural diagram of this

FPGA platform, including interconnections.

Assign the values A = 0 and B = 1 to the state machine below.

A

B

IN = 0

IN = 0

IN = 1IN = 1

OUT = 1

OUT = 2
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6. A three-bit counter is given below. The Hold input activates port 1 of the 2-1 MUX to

retain the output value. Otherwise, the counter keeps incrementing by one.

1

10 Hold

clk

3

3

MuxOut

Out [2:0]

D
Q

Assume that the three-bit adder is simply a ripple-carry adder composed of three

full-adders (FA) with sum (Sum) and carry-out (Cout) outputs as shown below.

FA FA1 FA

A[2] B[2] A[1] B[1] A[0] B[0]

Sum[2]

Cin[0]=0
Cin[2] = Cout[1] Cin[1] = Cout[0]

Sum[1] Sum[0]

Sum[i] = A[i] ⊕ B[i] ⊕ Cin[i]

Cout[i] = A[i] . B[i] + Cin[i-1] . (A[i] + B[i])

Implement this circuit using three-input LUTs in FPGA platform.

Projects

1. Implement and verify the three-input LUT in Fig. 8.1 using Verilog.

2. Implement the four-bit ripple-carry adder in Fig. 8.2 using Verilog. Use three-input LUTs

from project 1 to create an FPGA implementation of the adder in Fig. 8.5. Perform

functional verification on the entire circuit.

3. Implement the Moore state machine in Fig. 8.8 and the corresponding logic diagram in

Fig. 8.9 using Verilog. Use three-input LUTs from project 1 to create an FPGA imple-

mentation of the state machine in Fig. 8.15. Perform functional verification on the entire

circuit.

488 8 Special Topics



References

1. Brown S, Francis R, Rose J, Vranesic Z. Field-programmable gate arrays. Springer, ISBN: 9780792392484

2. Ahmed E, Rose J (2004) The effect of LUT and cluster size on deep-submicron FPGA performance and density.

IEEE trans larg Scale Integr (VLSI) Syst 12(3):288–298

3. Brown S, Rose J (1996) FPGA and CPLD architectures: a tutorial. IEEE Design Test Comput 13(2):42–57

4. Bindal A, Brugada S, Ha T, Sana W, Singh M, Tejaswi V, Wyland D (2004) A simple micro-threaded data-driven

processor. IEEE Euromicro Symp Digital Syst Design

8.2 Data-Driven Processors 489



Appendix: An Introduction to Verilog
Hardware Design Language

A.1. Module Definition

A digital system in Verilog is defined in terms of modules as shown in Fig. A.1. Each

module has inputs and outputs with different bit widths. Modules can be integrated to form

bigger digital blocks as shown in Fig. A.2. In this figure, the top module contains four

smaller modules, each of which has inputs and outputs. They are interconnected with each

other to produce much larger system functionality with a new set of external input and output

signals.

moduleinputs outputs

Fig. A.1 A typical module in Verilog

module 1

module 2

module 3

module 4

top module

input 1

input 2

output 1

output 2

Fig. A.2 Module integration to form a much larger system
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When creating a Verilog code to represent a digital block such as in Fig. A.3, the module

name is written first. The input and output names are written in parentheses next to the

module name as shown below. Their order is not important. The module statement is

followed by separate input-output (I/O) statements and the description of the module.

module blockX (out, in); 

output out; 

input [3:0] in; 

/* module description here */ 

endmodule  

For a more specific example let us write a small Verilog code for the two-input AND gate

in Fig. A.4.

module andgate (out, in1, in2); 

output out; 

input in1, in2; 

/* module description here */ 

endmodule  

Now, let us integrate blockX in Fig. A.3 with the two-input AND gate in Fig. A.4 to form

a larger digital block as shown in Fig. A.5.

blockXin[3:0] out
4

Fig. A.3 A Verilog module, blockX, with in[3:0] and out

in1

in2
out

Fig. A.4 Two-input AND gate
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This new module, called blockY, has different I/O names due to the naming convention

used in the schematic in Fig. A.5. As a preference, the I/O names in the module definition

statement and in individual I/O statements list the outputs first and the inputs second.

However, this is not a requirement but a choice.

In addition, both the blockX and the two-input AND gate need to be instantiated inside

the blockY. This is achieved by using the “dotted” convention as shown below. Here, the

individual module I/O names are written outside the parentheses; the I/O names used in the

top module are written inside the parentheses. The names, i1 and i2, are the instantiation

names of the modules, andgate and blockX, respectively.

module blockY (out1, out2, a, b, c);

output out1, out2;

input [3:0] a;

input b, c;

andgate i1 (.out(out2),

.in1(b),

.in2(c));

blockX i2 (.out(out1),

.in[0](a[0]),

.in[1](a[1]),

.in[2](a[2]),

.in[3](a[3]));

/* the rest of the code here */

endmodule

blockX
in[3:0] out

4

in1

in2

out

a[3:0]

b

c

out1

out2

blockY

Fig. A.5 A Verilog module integrating blockX in Fig. A.3 and the two-input AND gate in

Fig. A.4
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Basic logic gates (or Verilog primitives) do not need instantiations. The two-input AND

gate in Fig. A.4 could have been written without any “dotted” instantiation in the top module

above.

The Verilog primitives are the following gates:

AND, NAND, OR, NOR, XOR, XNOR, BUF, NOT.   

Here, BUF corresponds to a buffer, and NOT corresponds to an inverter.

Example: Let us implement one-bit full adder using Verilog.

In a full adder, the sum and carry-out functions are shown as:

sum = a b  cin 

cout = a . b + cin . (a + b) 

In the functional equations above, cin corresponds to the carry-in input and cout corre-

sponds to the carry-out output of the full adder. The terms, a and b, are the two inputs to the

full-adder.

The schematic to produce sum and carry-out functions are shown in Fig. A.6. The

intermediate nodes are named as node1, node2, node3 and node4 as interconnecting nodes.

The Verilog code below contains no “dotted” instantiations. This style of Verilog code is

called structural where only primitive gates are used.

a

b

cin

cout

sum

node1

node2

node3

node4

Fig. A.6 Hardware implementation of the full adder
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module fulladder (sum, cout, a, b, cin); 

output sum, cout; 

input a, b, cin; 

/* structural style module description */ 

xor (node1, a, b); 

xor (sum, node1, cin); 

and (node2, a, b); 

or (node3, a, b); 

and (node4, cin, node3); 

or (cout, node2, node4);   

endmodule 

After the Verilog code is written, a test fixture needs to be produced to verify the module.

For our example of the one-bit full adder, Fig. A.7 illustrates the concept of building the test

fixture.

In this figure, the outputs of the full adder must be declared as the inputs to the test fixture

using the wire statement. The outputs of the test fixture are the inputs for the full adder, and

they should generate all the verification vectors needed to test the full adder thoroughly. For

each test input, the outputs of the test fixture must remain unchanged until a new set of

outputs are produced. Therefore, each output has a memory, and uses the reg statement in

Verilog. Also, the test fixture neither contains any I/O names in the module definition nor

has any input and output statements. Thus, the general structure of the test fixture becomes as

follows:

sumin1 sum

fulladder
cout

carryout

a

in2
b

carryin
cin

testfixture

Fig. A.7 Test fixture formation to verify the functionality of the full adder
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module testfixture; 

/* all test fixture outputs are declared as reg statements */ 

/* all test fixture inputs are declared as wire statements */ 

/* module instantiation here */ 

/* verification vectors here */ 

/* display results here */ 

endmodule 

The verification vectors are executed only once using the initial statement in Verilog. For

a combinational logic such as a full adder, these vectors are simply the inputs of the truth

table. The outputs, on the other hand, need to be either displayed or stored in a file in order to

be compared against the “expected” outputs. Therefore, for the one-bit full adder test fixture

shown in Fig. A.7, the Verilog code becomes as follows:

module testfixture; 

/* all test fixture outputs are declared as reg statements */ 

reg in1, in2, carryin; 

/* all test fixture inputs are declared as wire statements */ 

wire sum, carryout; 

/* module instantiation here */ 

fulladder   i1    (.sum(sum),  

                         .cout(carryout),  

                         .a(in1),  

                         .b(in2),  

                         .cin(carryin)); 

/* verification vectors here are executed only once due to initial statement */ 

initial 

begin 

carryin = 0; in1 = 0; in2 = 0; 

#10   in2 = 1; 

#10  in1 = 1; in2 = 0; 

#10   in2 = 1; 

#10 carryin = 1; in1 = 0; in2 = 0; 

#10   in2 = 1; 

#10  in1 = 1; in2 = 0; 

#10   in2 = 1; 

end

/* display results here */ 

endmodule 
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The “#” sign used in almost every statement inside the initial block indicates a delay

function. For example, the code waits for 10 time units after the first line (cin = 0; in1 = 0;

in2 = 0;) is executed before the value of in2 is changed from logic 0 to logic 1 in the second

line. Since in1, in2 and cin are all reg statements, their values are retained until changed.

Monitoring the results are achieved by the $time and $monitor statements. $time displays

the current simulation time. $monitor displays the variable value whenever the variable

value changes.

For example, $monitor ($time, output, input1, input2); statement displays simulation time

and the values of output, input1 and input2. On the other hand, $monitor ($time,,”output=%h

input=%b”, out, in \n); statement displays the simulation time, leaves a space between the

simulation time and “output” because of the extra comma, displays “output” in hexadecimal

format and “input” as binary format. After each set of simulation time, input and output, a new

line starts for the second set due to carriage return, “\n”, entry. One can also use “\t” to insert a

tab between the terms to achieve separation.

All Verilog files are stored with the “.v” extension after the file name, such as fulladder.v.

When executing the Verilog command to simulate multiple files, including the test fixture,

the command line should include the top module last and all the remaining modules inside

the top module first.

In this full adder example, we need to write fulladder.v first and then testfixture.v because

the test fixture contains the full adder module. Therefore, the command line becomes:

verilog fulladder.v testfixture.v

The notation for a comment in Verilog is identical to the ones used in C-programming.

For a single line comment, a pair of slashes, “//”, is used. For a multiple line comment, the

comment starts with a slash and a star, “/*”, and ends with a star and a slash, “*/”.

A.2. Numbers in Verilog

The numbers in Verilog are represented by three distinct terms:

SIZE   `BASE   VALUE 

Note that the tick mark, “`”, attached to the BASE entry is not apostrophe.

As an example, 32`h3C represents a 32-bit hexadecimal number, 0x0000003C. 8`b1

represents an eight-bit binary number, 00000001. Any time the size entry is omitted, the size

defaults to 32 bits. For example, `h8A corresponds to 0x0000008A. The base entry to

represent high impedance or floating wire is “`z”. For example, 8`bz means an eight-bit bus

with all its eight bits are floating or zzzzzzzz. Similarly, don’t care bits are shown by “`x”.

For example, 4`bx means four wires either at logic 0 or logic 1, and represents xxxx.
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A.3. Time Directives for Compiler

To mimic propagation delays in Verilog simulation, a timing directive is used. The directive,

`timescale, is preceded by a tick mark to point out that the command is for the compiler to

delay the execution of a Verilog statement if the statement starts with the pound mark, “#”.

The `timescale directive is the first line in a Verilog code. The statement does not end with

a semicolon and contains two entries separated by a “/” sign. The first entry corresponds to

the actual delay. The second entry represents the simulation resolution.

For example, `timescale 10 ns / 100 ps means each time the compiler sees a “#” sign in a

Verilog statement, it delays the execution of the statement by multiplies of 10 ns, depending

on the number that follows the “#” sign. The resolution is 100 ps. Therefore, for a delay of

10 ns, the simulation accuracy is 1:100.

Let us consider the following structural Verilog code as an example.

`timescale 1 ns / 100 ps 

module  inverter (out, in); 

output out;

input in; 

not #2 (out, in); //2 ns delay between input and output 

endmodule 

This is a module that represents a single inverter. The propagation delay in the inverter is

2 ns because the number following the “#” sign in the “not” gate is 2, and this number is

multiplied by 1 ns in the timescale directive. The simulation resolution is 100 ps. Therefore,

there is 1:20 accuracy when generating a delay function for the inverter.

Other common compiler directives are the `define and `include statements, and neither

ends with a semicolon. The `define statement defines a variable for the Verilog code. For

example, in the following Verilog code a variable called inv_delay corresponds a delay of

30 ps with 1 ps simulation resolution.

`timescale 10ps / 1ps 

`define inv_delay #3 

module  inverter (out, in); 

output out;

input in; 

not inv_delay (out, in); //30ps delay between input and output 

endmodule 

The `include statement fetches smaller modules from various directories and includes them

into a bigger module for simulation. For example, the following Verilog code brings the

full_adder.v module located in the verilog_modules directory to be used in bigger_module.v.



endmodule 

`include “verilog_modules/full_adder.v”

`timescale 10ps / 1ps 

`define inv_delay #3 

module bigger_module (out1, out2, in1, in2, in3);

…

…

A.4. Parameters

Parameters are used to replace numbers for enhancing the readability of Verilog code. The

parameter statement is not a compiler directive. Therefore, it is ended with a semicolon. The

statement has only one entry, which attaches a name to a number.

parameter name = value; 

Assume the following example: 

module  alu (out,in1,in2); 

output  [31:0] out; 

input  [31:0] in1,in2; 

…

…

endmodule 

The value, 31, can be replaced by the name, BUS, using the parameter statement to

enhance readability of the Verilog code. Thus,

module  alu (out,in1,in2); 

parameter BUS=31; 

output  [BUS:0] out; 

input  [BUS:0] in1,in2; 

…

…

endmodule 

A.5. Basics of Structural Verilog Modeling

Structural modeling was introduced in the earlier sections and described how to use basic

logic gates in a Verilog code. Structural Verilog eliminates the dotted convention when

instantiating Verilog primitives. The logic gates supported by Verilog are:
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AND NAND 

OR NOR 

XOR XNOR 

BUF NOT 

For example, a three-input NOR gate with inputs, in1, in2 and in3, is represented by:

nor (out, in1, in2, in3); 

As another example, a buffer with an input, in, and an output, out, is written as:

buf (out, in); 

In each structural statement, the output of the logic gate is listed first followed by the

inputs.

Tri-state buffers and inverters are represented by conditional structural statements. The

statement bufif1 represents a tri-state buffer with an active-high enable as shown in Fig. A.8.

This gate behaves like a buffer when enable = 1, and becomes an open circuit when

enable = 0. The structural Verilog statement for the tri-state buffer becomes:

bufif1 (out, in, enable); 

A tri-state buffer with an active-low enable signal shown in Fig. A.9 makes this logic gate

behave like a buffer when enable = 0, and an open-circuit when enable = 1.

in out

enable

Fig. A.8 Tri-state buffer with active-high enable

in out

enable

Fig. A.9 Tri-state buffer with active-low enable
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The structural Verilog statement for this gate uses a bufif0 statement:

bufif0 (out, in, enable); 

Tri-state inverters use the same active-high or active-low enable signals. To represent a

tri-state inverter with an active-high signal in Fig. A.10, the notif1 statement is used.



notif1 (out, in, enable); 

The tri-state inverter with an active-low enable signal in Fig. A.11 uses the notif0

statement as shown below.

notif0 (out, in, enable); 

in out

enable

Fig. A.11 Tri-state inverter with active-low enable
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in out

enable

Fig. A.10 Tri-state inverter with active-high enable

A.6. Behavioral Modeling

There are two types of procedural blocks in behavioral Verilog coding. The first one is called

the “initial” statement. Each Verilog statement included in the initial statement is executed

only once. The procedural block below shows the general form of the initial statement. The

statements in an initial block are enveloped with the “begin” and “end” clauses. The initial

statement may or may not come with a condition(s) listed in parentheses after the symbol

“@”. If the initial statement comes with a condition, the statement is executed when the

condition occurs. Otherwise, the program omits the initial statement.

initial @ (condition) 

 begin 

 statement 1; // all statements within the initial statement are executed only once 

 statement 2; 

…

…

end

As an example, let us consider a test fixture that verifies the functionality of a module with

two inputs, in1 and in2, and receives three outputs, a, b and c, from the module. The test

vectors applied to this module need to be executed only once. The form of the initial

statement will be as follows:



reg input1, input2; 

wire outa, outb, outc; 

testmodule i1   (.in1(input1), 

  .in2(input2), 

.a(outa), 

  .b(outb), 

  .c(outc)) 

initial 

begin 

input1 = 0; input2 = 0; 

#10 input2 = 1; 

#10 input1 = 1; input2 = 0; 

#10 input2 = 1; 

end

endmodule 

module test; 

The second type of procedural block is the “always” statement. This statement may also

come with a condition in parentheses. Unlike the initial statement, the always statement is

executed repeatedly. If the always statement comes with a condition, the execution of

statements within the always statement takes place only when the condition is encountered.

Otherwise, the program skips over the always statement. The general form of the always

statement is shown below.

always @ (condition) 

 begin 

 statement 1; // all statements within the always statement are executed repeatedly 

 statement 2; 

…

…

end

An example is to implement a flip-flop with two inputs, d and clock, and two outputs, q

and qbar.

endmodule 

`timescale 10ps / 1ps 

module flip_flop (q, qbar, d, clock); 

output q, qbar; // qbar is the inverted output, q 

input clock, d; 

reg q, qbar; 

always @ (posedge clock) 

 begin 

#2 q = d; 

#1 qbar = ~d; 

end
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In the Verilog code above, the logical value at the flip-flop output, q, becomes equal to the

logical value at the input, d, 20 ps after the rising edge of the clock. The logical value at the

qbar output waits for the completion of the first statement, and becomes equal to the inverted d

input 10 ps after the first statement. This waiting period from one statement to the next arises

because these two statements are the blocking type. In other words, when an assignment uses

the “=” sign in a statement inside the procedural block, the statement becomes a blocking

statement, which blocks the execution of the next statement until it is executed first. The reg

statement is also added to this program because values or other variables (inputs in this case)

are assigned to the outputs, q and qbar, inside the always procedural block.

The same Verilog code can be rewritten as:

`timescale 10ps / 1ps 

module flip_flop (q, qbar, d, clock); 

output q, qbar;  

input clock, d; 

reg q, qbar; 

always @ (posedge clock) 

 begin 

#2 q <= d; 

#3 qbar <= ~d; 

end

endmodule 

In this program, the first and the second statements in the always block become

non-blocking type due to the “<=” sign, and they are executed simultaneously. Therefore, the

output, q, becomes equal to the input, d, 20 ns after the positive edge of the clock. Similarly, the

output, qbar, becomes equal to the inverted input,*d, 30 ps after the positive edge of the clock.

More than one condition can be included in an initial or always procedural block. For

example, a flip-flop with an asynchronous active-low reset input can be modeled as follows:

`timescale  10ps/1ps

module  flip_flop (q, qbar, d, clock, reset); 

output   q, qbar; 

input  d, clock, reset; 

reg  q, qbar; 

always @ (posedge clock or negedge reset)   

begin 

if (reset == 0) 

  begin     

#2  q <= 0;

#2 qbar <= 1; 
end

else 

  begin 

#4  q <= d;

  #5 qbar <= ~d; 

  end

end

endmodule 



If the program encounters an active-low reset before the positive edge of clock, both q and

qbar outputs become logic 0 20 ps after the negative edge of reset. Otherwise, without any

reset, the flip-flop operates normally, and the output, q, becomes equal to the input, d, 40 ps

after the positive edge of the clock, and the output, qbar, becomes equal to the inverted input,

*d, 50 ps after the positive edge of the clock due to the non-blocking nature of these

assignments.

A.7. Arithmetic and Logical Operators in Verilog

There are two types of operators used in Verilog: arithmetic and logical. The arithmetic

operators simply add, subtract, multiply or divide the variables used in a program. The

symbol for each operation is given below:

Add   + 

Subtract  - 

Multiply   * 

Divide   / 

The logical operators execute all the logic functions, comparisons, bit shifting and con-

catenation. The symbol for each operation is given below:

Bitwise AND  &  

Bitwise NAND  ~&

Bitwise OR  |   

Bitwise NOR  ~|

Bitwise XOR  ^ 

Bitwise XNOR  ~^

Bitwise NOT  ~ 

Less than  < 

Greater than  > 

Greater than or equal >=

Less than or equal <=

Equal   ==

Logical left shift  <<

Logical right shift >>

Conditional  ? : 

Concatenation  { } 

For example, if four-bit variables, X and Y, are equal to 0110 and 1011, respectively, the

logical operations on X and Y become as follows:

~Y = 0100 

X & Y = 0010 

X ~| Y = 0000 
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As another example, let us assume A = 4’b1101 and B = 8’b01110101. Shifting B one bit

to the left becomes:

B << 1 = 11101010 

A & (B << 1) = 00001101 & 11101010 = 00001000 

A.8. Conditional Statement

Conditional statements are equivalent to the “if-then” statements in C-programming. They

follow the same format in C-language but enveloped between the begin and end clauses.

The simplest form of a conditional statement is given below:

begin 

if (condition1) 

 if (condition2) 

  if (condition3) 

  statement 1; 

…

  else  

statement 2; 

…

 else   

statement 3;

…

else 

statement 4; 

…

end

Conditions may also be combined using logical operators. For example, the Verilog code

below AND-gates all three conditions, condition 1, condition 2 and condition 3, and pro-

duces a single condition for the if-clause.

begin 

if (condition1 && condition 2 && condition 3) 

statement 1; 

…

else  

statement 2; 

…

end

The condition can include many operators as shown in the example below.
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begin 

if (a > 0) 

 if (x <= 0)

  y = 1;

 else  // x > 0 is implied 

  y != 2; 

else if (a == 0)

if (x < = 0) 

  y = 3;

 else  // x > 0 is implied 

  y != 4; 

else   // no if statement, thus a < 0 is implied 

 if (x <= 0)

  y = 5;

 else  // x > 0 is implied 

  y != 6;

end

A.9. Case Statement

Conditional statements can be written using a “case” statement. The example below

implements an 8-1 multiplexer in Fig. A.12 with a case statement.

in0

in1

in2

in7

out

0

1

2

7

sel [2:0]

3

Fig. A.12 8-1 MUX
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The case statement for this MUX can be written as follows:

`define sel_value0 3’b000

`define sel_value1 3’b001

`define sel_value2 3’b010

`define sel_value3 3’b011

`define sel_value4 3’b100

`define sel_value5 3’b101

`define sel_value6 3’b110

`define sel_value7 3’b111

module mux (out, sel, in0,in1, in2, in3, in4, in5, in6, in7); 

output out; 

input in0, in1, in2, in3, in4, in5, in6, in7; 

input [2:0] sel; 

reg out; 

always @ (sel or in0 or in1 or in2 or in3 or in4 or in5 or in6 or in7) 

In this code, the case statement is executed if any of the inputs, in0 to in7, or the select

input, sel [2:0], changes. Once inside the case statement, the output of the MUX, out,

becomes equal to one of the MUX inputs according to the input select signal, sel_value0 to

sel_value7. The output of the MUX, out, also needs to be declared with a reg statement

because this variable is declared inside the procedural block, and assigned with different

input values, in0 to in7. The default statement inside the case statement declares the value of

the output if none of the other cases apply. The case statement is enclosed between the case

and the endcase clauses. Since the case statement is in a procedural block it also needs the

begin and the end statements enveloping the case statement.
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begin 

case (sel) 

`sel_value0 : out = in0; 

`sel_value1 : out = in1; 

`sel_value2 : out = in2; 

…

`sel_value7 : out = in7; 

default:         out = in0; 

endcase 

end

endmodule 



A simple example is the implementation of a 4-1 MUX in Fig. A.13.

module mux (out, sel, in0, in1, in2, in3); 

output out; 

input in0, in1, in2, in3; 

input [1:0] sel; 

reg out; 

always @ (sel or in0 or in1 or in2 or in3) 

begin 

case (sel) 

2’b00 : out = in0;

2’b01 : out = in1;

2’b10 : out = in2;

2’b11 : out = in3;

default: out = in0; 

endcase 

end

endmodule 

The case statement can also be used to implement an Arithmetic Logic Unit (ALU) as

shown in Fig. A.14 because the ALU output is accompanied by a multiplexer.

in0

in1

in2

in3

out

0

1

2

3

sel [1:0]

2

Fig. A.13 4-1 MUX
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`define  XOR  2’b00

`define  SHIFT  2’b01   

`define  ADD  2’b10

`define  SUB 2’b11

module  alu (out, opcode, a, b); 

output  [7:0] out; 

input  [7:0] a, b; 

input [1:0] opcode; 

reg [7:0] out; 

always @ (opcode or a or b) 

begin 

case (opcode) 

`XOR: out = a ^ b;

`SHIFT: out = a << b;

`ADD: out = a + b;

`SUB: out = a - b; 

default: out = a + b; 

endcase 

end

endmodule 

A.10. Looping Statements

There are two useful looping statements in Verilog, the “for” statement and the “while”

statement. Both statements have to be included in a procedural block.

In the for-loop example given below, the variable, i, starts from 0, and stops at 10,

incrementing by 1. The variable, j, is defined in terms of the variable, i. The array that

follows determines a[j] in terms of a[i]. Thus,

for (i = 0; i <= 10; i ++)

begin 

 j = i + 1;

 a[j] = a[i] + 1;

end
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Fig. A.14 A simple ALU



The while-loop waits for the occurrence of an event. When the event takes place, the

statements in the while-loop are executed. In the example below, a for-loop is engaged, and the

variable, x[i], is determined in terms of a[i] and b[i] as long as the variable, sum, is not equal to 0.

while (sum != 0)

begin 

  for (i = 0; i < 10; i++) 

  begin 

  x[i] = a[i] - b[i]; 

end

end

A.11. State Machine Implentations

There are two types of state machines: Mealy-type and Moore-type. Both types can easily be

implemented in Verilog using case statements.

The present state of a state machine is defined by flip-flop outputs. The next state is

defined by flip-flop inputs because at the positive edge of clock the next state becomes the

present state.

A.12. Mealy Machine

The present state outputs of the Mealy machine stems from the present state and the present

state inputs. Therefore, if the present state inputs change during the clock period, this change

affects the present state outputs and the next state instantaneously as shown in Fig. A.15.

clock

Combinational

Logic

Present StateNext State

Present State 

Outputs
Present State 

Inputs

PS

NS

Present State Outputs

Present State Inputs

QD

Fig. A.15 Block diagram and state representation of Mealy machine
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The example in Fig. A.16 shows a Mealy-type state machine with four states. When

implementing this state machine in Verilog, it is best to divide the overall circuit topology

into two sections as shown in Fig. A.17.

The first section is purely combinational. This section’s inputs stem from the present state

and the present state inputs as shown in Fig. A.17. The outputs form the next state and the

present state outputs. Since both the outputs and the next state are functions of the inputs and

the present state, this section can conveniently be implemented with a multiplexer. The

second section constitutes a sequential logic circuit with flip-flop inputs and outputs. This

section, as we will see below, is implemented with an always statement.

S0

S1

S2

S3

IN = 0

OUT = 3

IN = 0

OUT = 1

IN = 0

OUT = 2

IN = 0

OUT = 4

IN = 1

OUT = 2
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 = 1

O
U
T = 2

IN
 =

 1
O

U
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= 
3IN

 = 1
O
U
T = 4

Fig. A.16 State diagram of a Mealy machine with four states (reset not shown for

simplicity)
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The Verilog code below first implements the combinational logic section of the state

machine then the sequential part. The numeric values corresponding to each of the four

present states in Fig. A.16 are assigned to the parameters, s0, s1, s2 and s3, using the

parameter statement because this simplifies the observation of the input and the output

values at a particular state.

The combinational part of the state machine is implemented by a case statement inside an

always procedural block, and executed if one of the multiplexer inputs, in and pstate,

changes. Here, the input, in, corresponds the only input, IN, in Fig. A.16, and the input,

pstate, corresponds to the present state. If the pstate input is assumed to be the selector input

to a multiplexer, the case statement then lists all possible combinations of the multiplexer

output as a function of pstate. The default in the case statement always corresponds to the

initial state of the state machine. In each case statement, the output assignments are always

non-blocking type because in real hardware the outputs are produced concurrently and

independent of each other.

The sequential part of the state machine is implemented by an always statement. How-

ever, this statement becomes active only at the positive edge of the clock and the negative

edge of the reset rather than static values of these two signals.

clock

Combinational

Logic
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Present State 
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Present State 
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State assignment part

Combinational logic part

reset

Fig. A.17 Segmentation of the Mealy machine (with asynchronous reset)
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// Mealy machine with asynchronous reset

module mealy (out, reset, in, clock);

output [2:0] out;

input reset, in, clock;

reg [2:0] out;

reg [1:0] nstate, pstate;

parameter s0=2’b00, s1=2’b01, s2=2’b10, s3 =2’b11;

always @ (in or pstate)

begin

case (pstate)

s0: begin

if (in == 0)

begin

out <=1;

nstate <= s0;

end

else

begin

out <= 2;

nstate <= s1;

end

end

end

s1: begin

if (in == 0 )

begin

out <= 2;

nstate <= s1;

end

else

begin

out <= 3;

nstate <= s2;

end

s2: begin

if (in ==0)

begin

out <= 3;

nstate <= s2;

end
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  else 

   begin 

   out < = 4;

   nstate <= s3; 

end

end

s3: begin 

  if (in ==0) 

   begin 

   out <= 4; 

   nstate <= s3; 

end

  else 

   begin 

   out < = 2; 

   nstate <= s1; 

end

end

default: begin 

  out <=1; 

  nstate <= s0; 

end

endcase

end

always @ (posedge clock or negedge reset) 

begin 

if (reset == 0) 

  pstate <= s0; 

 else  

  pstate <= nstate; 

end

endmodule 

A.13. Moore Machine

Implementing the Moore machine is not any different from the Mealy machine except the

formation of present state outputs. Figure A.18 shows the present state outputs of the Moore

machine to be only a function of the present state, and independent of any present state inputs.
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If we consider a four-state Moore machine in Fig. A.19, its implementation in Verilog

requires combining the two combinational logic sections of the circuit in Fig. A.20 with a

case statement, and implementing the sequential part with an always statement.

Implementing the combinational logic parts of the state machine is accomplished by a

multiplexer. The present state input, IN, and the present state, pstate, constitute the inputs to

this multiplexer. Implementing the sequential section of the state machine, on the other hand,

requires the next state of the state machine to be flip-flop inputs and the present state to be

flip-flop outputs.
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Present State 
Outputs

Present State 
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Fig. A.18 Block diagram and state representation of Moore machine
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Fig. A.19 State diagram of a Moore machine with four states (reset not shown for

simplicity)
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The program below assigns numeric values to all four states with a parameter statement.

The first always statement includes a case statement to show what happens to the multiplexer

outputs if one of the selector inputs changes. Again, all multiplexer outputs form concur-

rently. Therefore, all output assignments are defined to be non-blocking type. As opposed to

the Mealy machine, the present state outputs of the Moore machine are solely generated from

the present state. Therefore, for each state from s0 to s3 the output assignments are written

first, independent of any present state input.

The sequential part is implemented by an always statement which includes the edge

dependency of the clock and the reset. This statement is executed only if the indicated edges

of these two inputs take place. Otherwise, it is ignored.
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Fig. A.20 Segmentation of the Moore machine (with asynchronous reset)
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// Moore machine with asynchronous reset

module moore_async (out, reset, in, clock);

output [2:0] out;

input reset, in, clock; 

reg [2:0] out;

reg [1:0] nstate, pstate;

parameter s0=2’b00, s1= 2’b01, s2= 2’b10, s3= 2’b11;

always @ (in or pstate)

begin

case (pstate)

s0: begin

out <= 1;

if (in == 1)

nstate <= s1;

else

nstate <= s0;

end

s1: begin

out <= 2;

if (in == 1)

nstate <= s2;

else

nstate <= s1;

end

s2: begin

out <= 3;

if (in == 1)

nstate <= s3;

else

nstate <= s2;

end

s3: begin

out <= 4;

if (in == 1)

nstate <= s1;

else

nstate <= s3;

end

default: begin

out <= 1;

nstate <= s0;

end

endcase

end
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The Verilog code below implements the Moore machine with a synchronous reset. This

time, reset is not an isolated input to the flip-flops as in Fig. A.20, but instead it is applied to

the combinational logic block along with the other present state inputs.

always @ (posedge clock or negedge reset) 

 begin 

if (reset == 0)   

pstate <= s0; 

 else    

 end    

pstate <= nstate; 

endmodule 

//Moore machine with synchronous reset 

module  more_sync (out, reset, in, clock);

output   [2:0] out; 

input   reset, in, clock; 

reg  [2:0] out; 

reg   [1:0] nstate, pstate; 

parameter  s0= 2’b00, s1= 2’b01, s2 =2’b10, s3 = 2’b11;

always @ (in or reset or pstate) 

begin 

case (pstate) 

 s0:  begin 

  out <= 1;

  if (reset == 0 )   

nstate <=s0; 

  else   

begin 

if (in == 1) 

nstate <= s1; 

else 

nstate <= s0; 

end

end

 s1: begin 

  out <= 2;

if (reset == 0 )  

nstate <= s0; 

  else  

   begin  

   if (in == 1)  

nstate <= s2; 

   else    

nstate <= s1; 

end
end
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A.14. Principles of Register-Transfer-Logic Type Coding

The Register-Transfer-Logic (RTL) style of Verilog coding inherits many C-program con-

structs and implements the intended hardware with ease. Although structural or behavioral

Verilog coding may be necessary for certain types of logic blocks, RTL is still the most

common coding style to build hardware.

s2: begin

out <= 3;

if (reset == 0)

nstate <= s0;

else

begin

if (in == 1)

nstate <= s3;

else

nstate <= s2;

end

end

s3: begin

out <= 4;

if (reset == 0)

nstate <= s0;

else

begin

if (in == 1)

nstate <= s1;

else

nstate <= s3;

end

end

default: begin

out <= 1;

nstate <= s0;

end

endcase

end

always @ (posedge clock)

begin

pstate <= nstate;

end

endmodule
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Fig. A.21 Tri-state buffer implemented by conditional operator
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A.15. Wire Assignment

The first statement in RTL style coding is the wire statement. This statement is either

accompanied by an assign statement or declared by itself, and it resides outside the pro-

cedural block. In the first example below, the inputs, a and b, form an XOR gate with an

output, out. Separate wire and assign statements are used to implement the XOR gate.

wire out; 

assign out = a ^ b; 

However, the two statements can be combined to form a single wire statement.

wire out = a ^ b; 

If the implementation requires multiple wires in the form of a bus, then the statements for

the node, out, can be written as follows:

wire [7:0] out; 

assign out = a ^ b; 

or

wire [7:0] out = a ^ b; 

A.16. Conditional Operator

Another useful RTL construct is the conditional operator. Assume a tri-state buffer in

Fig. A.21.



The wire statement that includes the conditional operator can be written as follows:

wire out; 

assign out = enable ? in : 1’bz;

The “?” in the above statement signifies the condition for the input, enable, to be equal to

logic 1 or not. If enable is logic 0, then the output, out, becomes an open circuit. Since out is

only one bit, the high impedance state is shown as 1’bz.

The wire and assign statements can also be combined to produce a single statement.

wire out = enable ? in : 1’bz;

Another example is a 3-1 MUX shown in Fig. A.22.

wire out; 

assign out = (sel == 2’b00) ? a : (sel == 2’b01) ? b : c;

In this statement, if sel [1:0] = 00 then the output, out, becomes a. If sel [1:0] = 01 then

out becomes b. For all the other values of sel, out becomes c.

The same statement can also be written without the assign statement as:

wire out = (sel == 2’b00) ? a : (sel == 2’b01) ? b : c;

If the 3-1 MUX accepts bus inputs to produce a bus output as in Fig. A.23, then the wire

statement has to be modified to include the bus width.

a

b

c

out

0

1

2

sel [1:0]

2

Fig. A.22 A 3-1 MUX implemented by conditional operator
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wire [7:0] out = (sel == 2’b00) ? a : (sel == 2’b01) ? b : c;

The bus width of the inputs, a, b, c and sel, should be declared in the input statements

prior to the wire statement as shown below.

…

input [7:0] a, b, c; 

input [1:0] sel; 

…

wire [7:0] out = (sel == 2’b00) ? a : (sel == 2’b01) ? b : c;

…

A.17. Memory Declaration

Memory is declared by a reg statement in Verilog. Assume an SRAM-like memory with (x+1)

number of bits and (y+1) number of rows as shown in Fig. A.24. This memory is declared as

follows:

reg [x:0] fifo [y:0]; 

Here, “fifo” is the name of the memory with a dimension of [x:0] by [y:0].

x 0

y

0

y-1

Fig. A.24 (x+1) wide (y+1) deep memory
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A.18. Memory Addressing

Following the memory declaration, the memory addressing should be specified to locate a

specific data in the memory.

Assume an eight-bit wide memory with 16 rows in Fig. A.25. In order to access the most

significant bit (msb) and the least significant bit (lsb) of this memory at any row, an address

needs to be formed in the Verilog code.

…

input [3:0] address; 

reg [7:0] mem [15:0]; 

reg [7:0] row; 

reg msb, lsb; 

row = mem [address]; 

msb = row [7]; 

lsb = row [0]; 

…

In this example, the reg statement, reg [7:0] mem [15:0], declares a 8x16 memory with a

name, mem.

If the memory address is externally supplied to the memory, this input needs to be

declared in the input statement. Each row is declared with a second reg statement, reg [7:0]

row. Once the row declaration is finished, the most and the least significant bits are then

declared in the third reg statement, reg msb, lsb.

Therefore, eachbit in anarbitrary rowcanbeaccessedby the statement, row=mem[address],

in the Verilog program above. To access the most significant bit and the least significant bit

are accomplished by msb = row [7] and lsb = row [0], respectively.

7 0

15

0

lsbmsb

address [3:0]

Fig. A.25 An 8x16 memory
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A.19. Memory Modeling

Different types of memory require different styles of memory modeling. The simple SRAM

memory shown in Fig. A.26 has a single bidirectional data port and operates with a clock.

The data is written to an arbitrary row or read from an arbitrary row at the positive edge of

the clock signal once the memory address is specified.

Since the data port is bidirectional, this port needs to be declared as an inout statement.

Therefore, the Verilog program can be written as follows:

7 0

15

0

14

address [3:0]

WERE

clock

data [7:0]
8

Fig. A.26 An 8x16 single port, bidirectional memory
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module mem (data, address, WE, RE, clock); 

inout [7:0] data; 

input [3:0] address; 

input WE, RE, clock; 

reg [7:0] SRAM [15:0]; 

reg [7:0] data; 

reg [1:0] read_write_state; 

always @ (posedge clock) 

begin 

read_write_state = {WE, RE};       // curly brackets are for concatenating WE and RE 

case (read_write_state) 

2’b00: data = 8’bz;

2’b01: data = SRAM [address]; 

2’b10: SRAM [address] = data; 

2’b11: $display (“error”);  // WE and RE cannot be at logic 1 simultaneously

default: data = SRAM [address];    // SRAM needs to be in the read mode when idling 

encase 

end

endmodule 

In the example above, the case statement is formed in a procedural block because both the

read and the write cycles take place at the positive edge of the clock. When neither RE nor

WE is at logic 1, the bidirectional data port must be at a high impedance state, data = 8’bz.

When a read takes place, data is read out from a specified memory address and directed to

the bidirectional bus, data [7:0]. When a write takes place, data from the bidirectional bus is

written to a specified address, SRAM [address]. When both WE and RE are at logic 1, this

should be indicated as an error.

A set of if statements can also be used to replace the case statement except the case

statement is more compact, and it includes all possible cases to model a memory.

The following example models a unidirectional, byte addressable memory shown in

Fig. A.27 with two data ports. The input port, DataIn [31:0], is byte-addressable and

therefore contains four bytes. The output port, DataOut, is not byte-addressable, and it is

used to read all 32 bits of data. Thus,
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module mem (DataOut, DataIn, address, clock, ByteEn, WE, RE); 

output [31:0] DataOut; 

input [31:0] DataIn; 

input [3:0] address, ByteEn; 

input clock, RE, WE; 

reg [31:0] SRAM [15:0]; 

reg [31:0] temp; 

begin 

casex (ByteEn) 

4’b0000:   temp [31:0] = 32’bz;

4’b0001:   temp [7:0] = DataIn [7:0];

4’b0010:   temp [15:8] = DataIn [15:8]; 

4’b0011:   temp [15:0] = DataIn [15:0];

4’b0100:   temp [23:16] = DataIn [23:16];

4’b0101:   begin  

                temp [23:16] = DataIn [23:16]; 

                temp [7:0] = DataIn [7:0]; 

                end 

4’b0110:  temp [23:8] = DataIn [23:8];            

…

4’b1111:  temp [31:0] = DataIn [31:0];

default:   begin 

              temp [31:0] = 32’bx;

              $display (“no bytes are enabled”);

              end

endcase 

 SRAM [address] = temp; 

end

else if  (RE == 1 && WE == 0) 

 DataOut = SRAM [address]; 

else if  (RE == 0 && WE == 0) 

DataOut = 32’bz;

else 

display (“Error - RE and WE are enabled”);

end

endmodule 

always @ (posedge clock) 

begin 

if (WE == 1 && RE == 0) 
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A.20. A Few Words about Functional Verification

Functional verification is a very critical step in logic design and needs to cover every

possible corner case and input combination to a Verilog module. However, when the circuit

is not purely combinational but contains sequential components, the difficulty of functional

verification increases. A proper process in this case is to isolate the sequential sections from

the combinational sections of the circuit and verify each section individually before verifying

the entire system.

When a combinational circuit goes through a formal functional verification step, the best

method is to apply the inputs of the entire truth table as test vectors to the module, store the

circuit’s response in an output file, and then compare this output file with the one that

contains the expected outputs (the ouputs of the truth table) as shown in Fig. A.28.

However, if the circuit is sequential, each state-to-state transition needs to be examined in

the state machine when the inputs to the state change. Furthermore, the outputs from each

state need to match the expected output values.

It may be sufficient to do functional check using timing diagrams if the size of the circuit

is small. However, for bigger circuits, including many combinational and sequential mod-

ules, the verification process is applied to each individual module, and then to the entire

system. Both types of verification are essentially a file matching process as shown in

Fig. A.28.
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Fig. A.27 32x16 dual port, unidirectional memory
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