4 FREE BOOKLETS

FOUR SOLUTIONS MEMBERSHIP

SCRIPTING

VMware
Power Tools

Automating Virtual
Infrastructure Administration

Use Powerful Scripting Tools to Automate Time-Consuming Tasks!
« Companion Wb Site Provides You Dazens of Working Scripts
« 5ee How Virtualization Can Work for You

« Make VMper| and ViMcom Work for You

Al Muller

VISIT US AT

WWW.SyYyngress.com

Syngress is committed to publishing high-quality books for IT Professionals and
delivering those books in media and formats that fit the demands of our cus-
tomers. We are also committed to extending the utility of the book you purchase
via additional materials available from our Web site.

SOLUTIONS WEB SITE

To register your book, visit www.syngress.com/solutions. Once registered, you can
access our solutions@syngress.com Web pages. There you may find an assortment
of value-added features such as free e-books related to the topic of this book, URLs
of related Web site, FAQs from the book, corrections, and any updates from the
author(s).

ULTIMATE CDs

Our Ultimate CD product line offers our readers budget-conscious compilations of
some of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect
way to extend your reference library on key topics pertaining to your area of exper-
tise, including Cisco Engineering, Microsoft Windows System Administration,
CyberCrime Investigation, Open Source Security, and Firewall Configuration, to
name a few.

DOWNLOADABLE E-BOOKS

For readers who can’t wait for hard copy, we offer most of our titles in download-
able Adobe PDF form. These e-books are often available weeks before hard copies,
and are priced affordably.

SYNGRESS OUTLET
Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt
books at significant savings.

SITE LICENSING

Syngress has a well-established program for site licensing our e-books onto servers
in corporations, educational institutions, and large organizations. Contact us at
sales@syngress.com for more information.

CUSTOM PUBLISHING

Many organizations welcome the ability to combine parts of multiple Syngress
books, as well as their own content, into a single volume for their own internal use.
Contact us at sales@syngress.com for more information.

SYNGRESS®

SYN'&RESS®

Scripting
VMware

Power Tools for Automating Virtual
Infrastructure Administration

Al Muller
Andy Jones Technical Editor
David E. Williams Technical Editor
Stephen Beaver
David A. Payne
Jeremy Pries
David E. Hart

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or production
(collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from
the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold AS
IS and WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other inci-
dental or consequential damages arising out from the Work or its contents. Because some states do not allow the
exclusion or limitation of liability for consequential or incidental damages, the above limitation may not apply to
you.

You should always use reasonable care, including backup and other appropriate precautions, when working with
computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,”““Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Syngress Publishing, Inc. “Syngress: The
Definition of a Serious Security Library” ™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to
Think Like One™” are trademarks of Syngress Publishing, Inc. Brands and product names mentioned in this

book are trademarks or service marks of their respective companies.
KEY SERIAL NUMBER

001 HJIRTCV764
002 POY873D5FG
003 829KM8NJH2
004 BB298H54DS
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJ T
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Scripting VMware Power Tools: Automating Virtual Infrastructure Administration

Copyright © 2006 by Syngress Publishing, Inc. All rights reserved. Printed in Canada. Except as permitted under
the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer system, but they may not
be reproduced for publication.

Printed in Canada
1234567890
ISBN-10: 1-59749-059-8
ISBN-13: 978-1-59749-059-7

Publisher: Andrew Williams Page Layout and Art: Patricia Lupien
Acquisitions Editor: Gary Byrne Copy Editor: Michael McGee
Technical Editor: Andy Jones and David E. Williams Indexer: Nara Wood

Cover Designer: Michael Kavish

Distributed by O’Reilly Media, Inc. in the United States and Canada.
For information on rights, translations, and bulk sales, contact Matt Pedersen, Director of Sales and Rights, at
Syngress Publishing; email matt@syngress.com or fax to 781-681-3585.

Any statements expressed in this publication are those of the individual authors and do not necessarily represent
the views of their employers, who take no responsibility for any statement made herein. References to any prod-
ucts or services in this publication do not constitute or imply an endorsement, recommendation, or warranty
thereof by their employers.

Acknowledgments

Syngress would like to acknowledge the following people for their kindness
and support in making this book possible.

Syngress books are now distributed in the United States and Canada by
O’Reilly Media, Inc. The enthusiasm and work ethic at O’Reilly are incredible,
and we would like to thank everyone there for their time and eftorts to bring
Syngress books to market: Tim O’Reilly, Laura Baldwin, Mark Brokering, Mike
Leonard, Donna Selenko, Bonnie Sheehan, Cindy Davis, Grant Kikkert, Opol
Matsutaro, Steve Hazelwood, Mark Wilson, Rick Brown, Tim Hinton, Kyle
Hart, Sara Winge, C. J. Rayhill, Peter Pardo, Leslie Crandell, Regina Aggio,
Pascal Honscher, Preston Paull, Susan Thompson, Bruce Stewart, Laura
Schmier, Sue Willing, Mark Jacobsen, Betsy Waliszewski, Kathryn Barrett, John
Chodacki, Rob Bullington, Aileen Berg, and Wendy Patterson.

The incredibly hardworking team at Elsevier Science, including Jonathan
Bunkell, Ian Seager, Duncan Enright, David Burton, Rosanna Ramacciotti,
Robert Fairbrother, Miguel Sanchez, Klaus Beran, Emma Wyatt, Chris Hossack,
Krista Leppiko, Marcel Koppes, Judy Chappell, Radek Janousek, and Chris
Reinders for making certain that our vision remains worldwide in scope.

David Buckland, Marie Chieng, Lucy Chong, Leslie Lim, Audrey Gan, Pang Ai
Hua, Joseph Chan, and Siti Zuraidah Ahmad of STP Distributors for the
enthusiasm with which they receive our books.

David Scott, Tricia Wilden, Marilla Burgess, Annette Scott, Andrew Swafter,
Stephen O’Donoghue, Bec Lowe, Mark Langley, and Anyo Geddes of Woodslane
for distributing our books throughout Australia, New Zealand, Papua New
Guinea, Fiji, Tonga, Solomon Islands, and the Cook Islands.

Lead Author

Al Muller is a consultant for Callisma, a wholly owned subsidiary
of AT&T. He has been in the IT field since 1995, getting his start as
a database administrator in the Navy. In 2002 he began using
VMware’s GSX Server and within a year was involved in his first
virtualization project. Since then, he has been an eager proponent of’
virtualization technology and has worked on a number of difterent
server consolidation and virtualization projects. He holds a bach-
elor’s degree in English.

A native Californian, he lives in San Diego with his wife, Sara,
and their dog, Grace.

Al wrote Chapters 1 and 2.

Contributing Authors

Stephen Beaver (CCNA, MCSE, MCP+I1, VCP), Technical Editor
of VMware ESX Server: Advanced Technical Design Guide. He 1is cur-
rently a systems engineer with Florida Hospital in Orlando, FL.
Stephen is the lead architect for all the virtual systems throughout
the hospital. As such, he develops and touches every part of all
things virtual through all the systems life cycle—from design,
testing, integration, and deployment to operation management and
strategic planning. Stephen’s background includes positions as a
senior engineer with Greenberg Traurig P.A, where he designed and
deployed the company’s virtual infrastructure worldwide. Stephen
has over 10 years of experience in the industry with the last three
years almost completely dedicated to virtualization. Stephen is also
one of the most active participants in the VMware Technology

vii

viii

Network forums as well as being a presenter for VM World 2005
and the upcoming VM World 2006.
Stephen wrote Chapters 5 and 8.

David E. Hart (MCSE#300790, ASE #220919, VCP #4970) is a
senior consultant with Callisma. He currently provides senior-level
strategic and technical consulting to all Callisma clients in the
south-central region of the U.S. His specialties include virtualization
technologies, Microsoft Active Directory design and implementa-
tion, emerging technology planning, collaboration architecture and
design, content delivery design and implementations, enterprise
operating systems troubleshooting and optimization, and desktop
architecture design and implementation. David’s background spans
over 15 years in the industry and includes positions at one of the
top five consulting firms as the “South Central Microsoft Practice
and VMware Lead” for seven years, Microsoft Practice Lead and
Senior Microsoft Consultant at a top three telecommunication com-
pany for five years, and Desktop Enterprise Practice Lead for a
nationwide consulting firm for two years.

[wish to thank my peers at Callisma for asking me to con-
tribute to this book. I also wish to thank my biggest supporters: my
wife, Nirma, for putting up with me and all the noise and heat
coming from my oftice, and my two sons, Izzy and Corbin, for let-
ting me work when they’d rather have daddy time. Lastly, I'd like to
thank my parents, Don and Judy, for always encouraging me to
follow my dreams.

David wrote Chapter 4.

David E. Payne is an IT enthusiast with a decade of real-world
experience in the data center. David is currently CTO of Xcedex,
the only U.S.-based professional services firm solely focused on vir-
tualization solutions. David has been key in developing the virtual-
ization practice for Xcedex Professional Services. Specifically over
the last four years, David has been engaged in dozens of virtualiza-

tion initiatives, providing architecture guidance and hands-on ser-
vices for organizations of all sizes across the United States. His prac-
tical approach has taken some of the largest U.S. companies in
finance, retail, and manufacturing beyond the marketing spin and
into real results with today’s virtualization technologies. David is a
VMware Authorized Consultant (VAC) and a VMware Certified
Professional (VCP).

Xcedex is a VMware Premier Partner, joining this invitation-
only program as one of the first 10 partners in 2004. Xcedex is rec-
ognized nationwide for its professionalism, deep knowledge of
virtual infrastructure, and experience in real-world implementations.
With a laser focus on virtualization consulting, Xcedex has become
one of the top go-to service delivery partners for VMware, Dell, and
EMC.

David cowrote Chapter 7.

Jeremy Pries is a virtualization architect at Xcedex. He has an
extensive background in computing infrastructure dating back 10
years, with experience ranging from networking and storage to
security and Intel-based operating systems. Jeremy’s current focus is
100 percent on virtualization technologies, gaining valuable experi-
ence on some of the largest ESX implementations. Jeremy’s specialty
1s filling gaps in management tools to speed project timelines and
increase accuracy. His expertise has made him one of the most
sought after Xcedex architects. Jeremy is a VMware Authorized
Consultant (VAC) and a VMware Certified Professional (VCP).

Xcedex is a VMware Premier Partner, joining this invitation-
only program as one of the first 10 partners in 2004. Xcedex is rec-
ognized nationwide for its professionalism, deep knowledge of
virtual infrastructure, and experience in real-world implementations.
With a laser focus on virtualization consulting, Xcedex has become
one of the top go-to service delivery partners for VMware, Dell, and
EMC.

Jeremy cowrote Chapter 7.

Paul Summitt (MCSE, CCNA, MCP+I, MCP) holds a master’s
degree in mass communication. Paul has served as a network, an
Exchange, and a database administrator, as well as a Web and appli-
cation developer. Paul has written on virtual reality and Web devel-
opment and has served as technical editor for several books on
Microsoft technologies. Paul lives in Columbia, MO, with his life
and writing partner, Mary.

Paul cowrote Chapter 6.

Technical Editors

Andy Jones (MCSE+I, MCT, CCIA, CCEA, CCI, CCNA,
CCDA, MCIW, Network+, A+) is the Services Director for MTM
Technologies, previously known as Vector ESP. He provides compre-
hensive solutions focused on Citrix and Microsoft technologies for
clients ranging from 50 to 50,000 users, focusing mainly on archi-
tecting and deploying Access Infrastructure solutions for enterprise
customers. One of Andy’s primary focuses is in developing best
practices, processes, and methodologies surrounding Access
Infrastructure that take into consideration and integrate with virtu-
ally every part of a customer’s infrastructure.

In addition to field work and business development, Andy regu-
larly instructs Microsoft and Citrix courses. Andy holds a master’s
degree from Morehead State University.

David E. Williams works as an Infrastructure Manager for the
John H. Harland Company in Atlanta, GA. Harland is one of the
leading software companies focused on financial institutions, one of
the largest check printers in the country, and the leader in testing
and assessment solutions for the education market. In addition to
managing IT resources, he is also a senior architect and an advisory
engineer, providing technical direction and advice to Harland’s man-
agement team in long-range planning for new or projected areas of
enterprise projects.

He is also a principal at Williams & Garcia, LLC, a consulting
practice specializing in delivering effective enterprise infrastructure
solutions. He specializes in the development of advanced solutions
based on Microsoft technologies and strategic infrastructure designs.

David studied Music Engineering Technology at the University
of Miami, and he holds MCSE, MCDBA, VCP, and CCNA certifi-
cations.

When not re-architecting corporate infrastructures, he spends his
time with his wife and three children.

David wrote Chapter 3.

Companion Web Site

Some of the code presented throughout this book is available for
— download from www.syngress.com/solutions. Look for the Syngress
icon in the margins indicating which examples are available from

the companion Web site.

Xi

Contents

Chapter 1 Scripted Installation 1
Introduction 2
Setting Up the Scripted Installation 2

Creating the Script i 2
Remote Network Installation 10
Summary 11

Chapter 2 An Introduction to ESX

Native Tools and How to Use Them 13
Introduction 14
Esxtop ..o 14

Esxtop Overview 14
The Virtual Machine World 16
System World L 18
The Service Console World 18

Some Other Helpful Esxtop Metrics 18
WUSED 18
%Ready 18
WEUSED 18
WMEM ... 19

vmkfstools 19
Viewing Contents VMES Partition 19
Import/Export Files 20

Adding a New Virtual Disk, Blank
Virtual Disk, and Extending Existing Virtual Disks . . .20

vmware-cmd ... 21
VINKUSAZE . . . 23
Summary 24

xiii

Xiv Contents

Chapter 3 Scripting and Programming

for the Virtual Infrastructure. 25
Introduction 26
VMware Scripting APIs o 26

What Are the VMware Scripting APIs? 28
Installing the VMware Scripting APIs 30
Putting the VMware Scripting APIs to Work for You .. .31
Working with the VmCOMAPIL 32
Working with the VmPerl APT 46
Putting It All Together 53
VMware Virtual Infrastructure SDK 61
What Is the VMware Virtual Infrastructure SDK? 61
The VI SDK Architecture 62
Overview of the VMware
Virtual Infrastructure Web Service 64
Operations Available Using
the Virtual Infrastructure SDK 66
Developing with the Virtual Infrastructure SDK 1.168
Preparing the Virtual Infrastructure Web Service69
Working with the VMware WSDL 73
Virtual Infrastructure SDK 1.1
Concepts and Terminology 76
Developing Your Management Application 81
Developing with the Virtual Infrastructure SDK 2.096
Features Added to Virtual Infrastructure 2.0 96

Preparing the Virtual Infrastructure 2.0 Web Service .98
Working with the VMware VI SDK 2.0 WSDLs .. .100
Virtual Infrastructure

SDK 2.0 Concepts and Terminology 102
Developing Your Management Application 112
Performing Advanced Operations 128
Power Operations 128
Virtual Machine Migration 129
Working with Snapshots, 130
Working with Scheduled Tasks 131

Other VMware SDKSs 132

Contents

VMware Guest SDK oo 133
VMware CIM SDK o o 134
Summary 137
Chapter 4 BuildingaVM 139
Introduction 140
Creation of Virtual Machines
Utilizing Command-Line Tools 140
Creation of a Virtual Machine Configuration File 141
Creating Your Virtual Machine Configuration File . .143
Creation of a Virtual Machine Disk File 147
Registering Virtual Machines with ESX Server 149
Scripting Creation of Virtual Machines in ESX Shell 150
Scripting Creation of Virtual Machines in Perl Scripts157
Moditying Scripted VM Creation with Perl 166
Perl Script Components 168
VmPerl Commands 171
Cloning Virtual Machines Utilizing ESX Shell Scripts171
Cloning Virtual Machines Utilizing VmPerl Scripts 176
Summary 187
Chapter 5 ModifyingVMs 189
Introduction 190
The Virtual Machine VMDK File 190
VMDK Components 192
Version=1 192
CID=2af6d34d 193
parentCID=fHHHHE 193
file.create Type="twoGbMaxExtentSparse” 193
The Size in Sectors Value 193
The Disk Data Base Command 194
The Virtual Machine Configuration vinx File 196
vmx File Components 198
Floppy Drives and CD-ROMs for Virtual Machines 202
Graphics Emulation, Unique Identifiers 202
Priority, VMware Tools Settings, and Suspend 204

Autostart, Autostop, and Time Sync Options 204

XV

Xvi

Contents

Virtual Machine Conversion from IDE to SCSI 205
ddb.adapterType = “buslogic” 207
ddb.adapterType = “Isilogic” 207
Scripted Disconnect of IDE Devices 210

Dynamic Creation of Virtual Machines 213

Summary 221

Chapter 6 Instant Disk: How to P2V for Free 223

Introduction 224

What Isa P2V? . ..o o 224

P2V Techniques 225
VMware P2V Tool 225
Platespin PowerConvert 226
Barts/Ghost 227

The “Big Secret” of P2V 227

Instant Disk Overview 228

The Bad News 228

Prepping the ESX Host: Setting Up FTP on ESX Host .. .228
Prepping the Source Machine: Install the SCSI Driver232
Installing the SCSI Driver in Windows 2000/2003 .. .233

Installing the SCSI Driver in Windows NT 240
Continue Prepping the Source Machine: Validate 242
The Linux Rescue CD 242

Booting the Rescue CD 243
At the Command Prompt 247
Finding the Hard Drives and Storage 249

Linux and Hardware 251
Virtual Disk Files on the VMES 251
Starting the FTP Process 253
Creating a New Virtual Machine
and Pointing It to a New VMDK File 255

Windows VIMs 255

Post-P2V . . 257

Contents

Summary 258
Chapter 7 Scripting Hot Backups
and Recovery for Virtual Machines 259
Introduction 260
Anatomy of a VM Backup 260
Limitations 263
Layered REDO Logs 265
Hot VM Backup Sample Script 268
Choosing the Target for VM Backups 272
NES 273
Attributes of NES for VM Backups 273
CIFS 274
Attributes of CIFS for VM Backups 274
FTP 275
Attributes of FTP for VM Backups 275
VMES 276
Attributes of Copies to VMES for VM Backups277
Existing VM BackupTools 278
vmsnap.pl, vmsnap_all, and vmres.pl 278
vimbk.pl .. 279
Commercial Optionsot 280
VMX File Backups 281
Incorporating Hot VM
Backups into Your Recovery Plan 285
Crash Consistent State 288
Replication 289
Hot VM Backups as Part of the Recovery Plan 290
Hybrid Backup Strategy 294
Summary 296
Chapter 8 Other Cool Tools and Tricks 297
Introduction i i 298
Configuring PowerChute Network Shutdown in ESX298
Creating the PowerChute Package 298
Configuring Your ESX Host’s PowerChute 303

Configure PCNS Shutdown Settings on the UPS . .304

XVii

Xviii

Contents

Centralized User Management for ESX Server 306

Extending a Cloned (Deployed)

Windows VM’s Root Partition 324

Deploying a Windows VM with

an Expanded Root Partition 327

Summary 330
Appendix A All Scripts and Program Source........ 331

Chapter 1

Scripted Installation

Topics in this chapter:

m Setting Up the Scripted Installation
m Reviewing the Kickstart File

= Remote Network Installation

Chapter 1 * Scripted Installation

Introduction

If you are setting up your virtual infrastructure or plan on scaling it out and
will be building ESX host servers, this chapter is a must for you. The scripted
installation method is a fast, efficient, and sure way to provision ESX hosts,
and you’ll be amazed at how simple it is to set up. We’ll also review the
Kickstart file so you fully understand how this install method works, and
touch on the remote network install procedure as well.

Setting Up the Scripted Installation

Setting up the scripted installation correctly will make the process run
smoothly and provide you with a very satisfactory experience. As a result,
you’ll likely choose this method over any other for setting up ESX hosts that
have similar configurations. You’ll set up the script—a Kickstart configuration
file—Dbased on parameters you would normally select during an ESX server
install. If you want the exact configuration of the ESX server where you are
setting up the Kickstart file, then make the same choices you made when you
built it originally. (You did document that, right?)

After you have set up the Kickstart file, you have two options for building
new ESX servers: 1) From the new ESX server, insert the ESX Server instal-
lation CD in the local CD-ROM,; or 2) install ESX Server across the network
from installation files hosted on another ESX server. This second option is
convenient if your data center or server room is geographically remote or just
a pain to get to.

Additionally, the scripted installation method can run unattended.
However, like any unattended install of software, if something goes wrong,
you’ll be prompted to respond, and the install will hang until you do so.

Creating the Script

So to begin, as a prerequisite for the scripted installation method, you need to
have an ESX server built and ready to perform the setup for the scripted
installation. Some of the unique parameters you will be setting include the
following:

Scripted Installation * Chapter 1

m Installation Type Two types are available: 1) Initial Installation (for a
new install), and 2) Upgrade (it you are upgrading an existing ESX
server such as an ESX Server 2.5 host).

m Root Password
m Time Zone

m IP Address Information It is recommended you statically set your
ESX server IP address.

m Disk Partition Information
m Licensing Data This is a new “feature” in ESX 3.0.
You can choose DHCP if you want, but it is a good idea to have the IP
information at hand, and it’s recommended that your ESX server have static
IP addresses.

To create the script, log on to the prebuilt ESX Server via a Web browser.
You will be presented with the Web page shown in Figure 1.1.

Figure 1.1 The VMware ESX Server 3.0 Welcome Web Page

VMware ESX Server 3.0

Getting Started For Administrators

To access and manage your VMware ESX Server host, you miust
download and nstall the YMware virtual Infrastructure Client on a
computer running Microsoft wWindows 2000 or later. after runming
the installer, start the dient and log in to thes server.

Wirtual Infrastructurs Web Access
VMware Virtual Infrastructure Web Access
streamlines remote desktop deployment
by allawing you ta argamze and share
virtual rachnes using ardmary web

browser UELS

Download the Virtual Infrastructure Chant

ESX Searver Scripted Installer
Theis browser-based ubility allows you to
autamate hast pravigianing,

For Dovelopors

Wirtual Infrastructure SHK

The Wikware Virtual Infrastructure =

package conta
detailad doc :
to help you write your own management

programs

Chapter 1 * Scripted Installation

From this page, click the Log In To The Scripted Installer link under
the ESX Server Scripted Installer heading. You will then be presented with
the Scripted Install Web page, as shown in Figure 1.2.

Figure 1.2 The Scripted Install Web Page

Scripted Install
L Configurs your Wiwars ESM Server ba cgate and provide automated inctallation servicss

Rickstart Uptions

Installazion Type | imitial Installazion =|
Tnstallation Method [co-rem =]
N oy - =11 I
Metsork Method |I: HCP =]
ne Tons [Amerncaos_&ng=les =]

Root Passmord

Passwn |

g oir I

MNext I

You must now input the information you want for the Kickstart script. In
this example, the Installation Type field is set to Initial Installation, which
means that this Kickstart file will be for new servers. If you want to have a
script for upgrading existing ESX servers, you would change the install type
to Upgrade.

In the Installation Method box, you can select one of the following three
methods:

m CD-ROM This method allows you to install ESX Server from the
CD-ROM of the new server itself. This method may require physical
access to the server itself.

m Remote This method allows you to install ESX Server from a
remote server that contains the ESX Installation files. If you choose
this method, you will also need to include the URL and port
number of the remote server.

Scripted Installation * Chapter 1

m NFS This method allows you to use an NFS mount point. In the
Remote Server URL, you would input the hostname of the NFS
server and the mount point. For example, esx01:loadesx, where
esx01 is the server name and loadesx is the mount point.

In the Network Method section, you can choose DHCP if you want to
give your ESX server a dynamic IP address. Alternatively, you can select
Static IP if you want to set your ESX server with a static IP.

Swiss Army Knife...

Modifying IP Information

As mentioned earlier in this chapter, it's recommended that you give your
ESX server a static IP address, although you can use DHCP to provision
new ESX servers from the same Kickstart file. If you choose this method,
it's a good idea to go back and statically set the IP information and
change the hostname, or to create multiple Kickstart files with different
hostnames and statically set the IP information. Changing the host name
is a little complicated because you will need to regenerate the certificates
for the ESX server once the name of the host has been changed.

In the Time Zone section, choose the time zone you would like your
ESX server to be in. In the Reboot After Installation field, select Yes so
your ESX server will reboot itself after the installation is complete.

Make sure you give the Root account a strong password and click Next.

If you chose to give your ESX server a static IP address, the next window
you’ll see will concern networking options (see Figure 1.3).

Next, input all of the IP information needed. Enter the specific informa-
tion for your new ESX server, including the hostname and IP address, the
subnet mask in the Netmask field, the gateway, and the nameserver (DNS).
Use fully qualified domain names if you are running domains such as esx-
host01.domian-name.net. Select which network device you would like the
service console to run on and click Next.

Chapter 1 ¢ Scripted Installation

Figure 1.3 The Networking Options Page

| Scripted Install
Configure your WMware ESX Server to create and provide autornated installation
services

Networking Options

Hostname | esxhost01

1P Address: [192.168.1.20
Netrnask: 255.255.255.0
Gateway: | 192.168.1.1

Nameserver: I
Previous | Next |

The End User License Agreement (EULA) windows will appear (see
Figure 1.4).

Figure 1.4 EULA

EI Scripted Install
Configura your YMware EEX Server to create and provida automated installabon services

[v

END T2ZER LICENSE AGREEMEITT

FOR WHWARE |TH| ESX SEBRVER |THM|

and VOAVARE |TH| VIETULL SHAP(TX) 3O0FTULEL FRODUCTI
June 25, 2003 (vecs=ion 2.0)

UNVARE, INC. LICENSES THIZS ESX SERVER ZOFTWARE FRODUET To Yom
SUBJECT TOQ THE TERMS CONTAINEDP IN THIZ ENDP USER LICENSE
LAGREENRERT |"EULL"™). READ THI TERMS OF THIS EULL CARPEFULLY. BY
INSTALLING, COPYING OR OTHERWISE UIING THE SCFTWARE (AS DEFINED
EXLOW), YOU ACREX TQ EE BQUND EBY THE TERHIS QF THIZ EULA, iy
YOU DS ROT AGREE TS THE TEREMZ= OF TADS FULL, DO NOT TNSTALL,
COFY OH USE THE SOFTUARE. IN THIZ CASE PLEASE CONTACT TOUR
DISTRIBUTOR AND RETURN ALL DATL CARRIERS AND ALL ACCOMPANYING
DOCUMENTATION: THE DIZTRIDUTOR WILL REFUNDT ALL FEES ALREADY
FPRID UNDER THIS EULA.

NOTTICE _TO CIISTORNER

End User License Ageecmend

v 1 hsye r=ad a0 arccept th= i= s ni Hhe hiosnse sgr=ement

Of course, read the EULA, check the I Have Read And Accept The
Terms In The License Agreement checkbox, and then click Next.

The Partition Configuration page should appear. It’s here that you select
how your ESX server’s disk will be partitioned. A basic example can be seen
in Figure 1.5.

Scripted Installation * Chapter 1

Figure 1.5 The Partition Configuration Page

scrpted tnstall
Configure your WMmare ESX Server to create and provide automated installation cervices

Partition Configur

lI‘ ¥ou do Not kRow how to Dorttion Your 3) stc— pleass refer to Scricted Install documentation and
‘o gh the ot et b3 ETorG ACTHoD D OrEon

VWARNING:
All dovices culected belon will have all date erased bofare partibonc are created. Thic could reculc
inu llh!‘-'l'?hnl'l'h i e e o T T e Aa. Cataton s
Crive FEuE size e -
=1 [reaa 102 s =1
e el el o =
=] [1s00 feee =1
=1 | r [0 [vrtsz =1 =
=1 I EE [wrrbcores =1
=1 [remnitng [152 [e=t3 =1 T
[S<=I Disk 1 (cda, =1 | [[e=tz =1
[SCol Disk 2 (sa= =1 I [[emta = T
[Sc=t Disk 1 cedm =1 [[[etz =1
[S<=%C Divie = (ol =1 I B " [emts =1 T

Licensing Informanion

P revia Ul MExt

If you modity this, which surely you will, make sure you give it at least
the minimum required space to do so. Also, be aware that some SCSI card
manufacturers do not use SDA, employing instead other devices, such as
Compaq (HP)’s CCISS.

From the Drive list, choose a drive such as SDA, IDE (use /dev/hda),
CCISS, or one of many others. In the next column, choose the mount point,
such as root (/), boot (/boot), vinfs (vinfs3), swap (swap), and so on. Give
each mount point a size in the Size column (in megabytes, but do not use
MB as a suftix, such as in 102MB; use only the number 102, as shown in
Figure 1.5). Lastly, provide the type in the Type column, which ofters four
choices: ext3, swap, vimkcore, and vmfs3.

New to ESX 3.0 is the Licensing Mode. Thus, you must select the appro-
priate mode for your installation:

m Server Based This mode allows you to obtain a license automati-
cally from your license server, which may have been set up on your
VirtualCenter server.

m File Based This mode allows you to upload a license file

Chapter 1 * Scripted Installation

m Post Install This mode allows you to configure your licensing after
the install is complete.

Once you have completed the partitioning information and licensing
mode, click Next.

In the preceding example, Server-Based Licensing was chosen, so the next
page that appears is that for Server-Based Licensing Information, as shown in
Figure 1.6.You will add your license server information on this page.

Figure 1.6 The Server-Based Licensing Information Page

D Scripted Install
Configure your WMware ESH Server to create and provide attomated installation services

Server Based Licensing Information

T VCO1 part:| 8555
ES® Server(versior © WMTN version & Full version
Additional Options I~ vsSMP I™ Consolidated Backup

I~ wvirtualCenter Agent for ESX
™ virtualCenter YMotion

I virtualCenter DRS

I~ virtualCenter DAS

provious [Toxt_]

Fill in the License Server information, including its port number—for
example, 8555. In the Additional Options section, you may select vSMP
(virtual symmetric multi-processing) and/or Consolidated Backup.

Additionally, you can select any VirtualCenter options as well. Click Next
when you have finished.

If you chose File-Based licensing, you’ll be presented with the page shown
in Figure 1.7.

Scripted Installation * Chapter 1

Figure 1.7 The File-Based Licensing Information Page

-
| | Scripted Install
= Configure vour VMware ESX Server o create and provide autom ated instsllation sesvices

File Based Licensing Information

Ugload License Fila { hic file Browse

Fr(!vll:‘l.I3| et i

Input the license file, or click the Browse button to browse and select the
license file. Once you’ve done so, click Next.

Now you can choose Download Floppy Image or Download
Kickstart Image. The difterences between these two include the following:

m Floppy Image This provides you with a disk image of a VMware
ESX Server boot disk which can be used for unattended, scripted
installations of ESX Server.

m Kickstart Image This provides the kickstart image that can be used
by third-party deployment tools.

If you selected Download Floppy Image, save the image with an .img
file extension. If you did not select DHCP in the preceding step because you
want to create multiple images for multiple ESX hosts, go back and change
the hostname and static IP information and save the floppy images with
unique names.

VMware has modified the handling of partition tables so that ESX Server
automatically clears only the LUNs you specifically designate in the

Management Interface.

10

Chapter 1 * Scripted Installation

NoTEe

If you are considering booting from your SAN, you should adhere to the
following recommendations and work closely with your SAN
Administrator:

m Only present the LUN used for the operating system of the ESX
Server installation (known as the boot LUN) to the ESX host you
are building. Do not present the boot LUN to any other ESX host
or server. Do not share boot LUNs between servers.

m During the installation, ensure that you mask off all additional
LUNs—Iike for your vmfs partitions—other than the boot LUN
during the installation.

Remote Network Installation

Using a remote network installation to install ESX Server, create a boot
floppy image to run the installation instead of scripting the installation.
During the installation, you are asked to specify the location of the ESX
Server CD-ROM.

To perform a remote network installation with a boot floppy, you need to
follow three steps. First, use dd, rawwritewin, or rawrite to create a floppy
image called bootnet.img. This file is located on the ESX Server CD-ROM
in the /images directory. The second step is to put the boot floppy in your
ESX host, and then boot the server. When the installation starts, you will be
prompted to choose one of the following selections:

m HTTP This is the preferred installation method. Specify the name
of the remote machine where the ESX Server CD-ROM is located,
the root directory (/), and HTTP port 8555.

m NFS You must have an NFS server set up. Copy the ESX Server
CD-ROM to the NFS server and point the new system to the NFS
server.

m FTP You must have an FTP server set up. Copy the ESX Server
CD-ROM to the FTP server and point the new system to the FTP
server.

Scripted Installation * Chapter 1

The third step is to complete the installation, which is very similar to
installing ESX Server normally.

Summary

This chapter should have given you a good understanding of how to quickly
scale out your virtual infrastructure using scripted installation methods. You
should now be able to create an installation script that is customized for
either one specific ESX host or many.

1

An Introduction
to ESX Native

Tools and How
to Use Them

Topics in this chapter:

= Esxtop
m Vmkfstools
= Vmware-cmd

= Vmkusage

Chapter 2

13

14

Chapter 2 * An Introduction to ESX Native Tools and How to Use Them

Introduction

This chapter is going to review the tools that come native to all ESX servers.
It is important that, one, you understand these tools exist, and, two, you know
how to use them from the command line and how you can incorporate them
into scripts. VMware provides some very powerful tools that are built on
native Linux functionality and that are expanded for use within the ESX host
and the virtual machines residing on them.

Esxtop

Esxtop is a very simple yet powerful tool that can be used for diagnosing per-
formance issues of the ESX host as well as the virtual machines. In Linux,
there exists a comparable command-line tool, called Top, which can be used
similarly for Linux OSes to gather performance metrics. VMware has
expanded Esxtop to provide metrics specific to virtualization. Esxtop provides
real-time monitoring of virtual machine processes (also known as worlds).
Worlds are simply virtual machine processes run by the VMkernel. VMware
has identified three types of worlds, or virtual machine processes, which exist
in ESX Server. These are

m Virtual Machine
= System
m Service Console

But before delving too deep into specific processes or the worlds that
Esxtop monitors, let’s take a quick look at Esxtop when you run it.

Esxtop Overview

Esxtop comes installed natively when you install ESX Server, so there is
nothing you need to load. To run Esxtop, you need to access the service con-
sole of your ESX host. Once at the service console, type [root@esx01
root]# esxtop.

The output displayed will be similar to that shown in Figure 2.1.

An Introduction to ESX Native Tools and How to Use Them ¢ Chapter 2

Figure 2.1 Esxtop Output

Q:37am up 15 days, 4:31, 20 worlds, load average: 0.05, 0.05, 0.01, 0.00

FPCFU: 3.36%, 4.58% : 3.97% used total

LCPU: 2.80%, 0.56%, 1.09%, 3.50%

MEM: 3914752 managed(KB), 1482752 free(KB) : 62.12% used total

SWAP: 4193280 av(KB), O used(KB), 4151348 free(KB) : 0.00 HEx/s, 0.00 HBw/=
DISE vmhbaO:0:0: 0.00 /=, 8.35 wis, 0.00 ME:/=, 0.05 HBw/=

INIC wvmnicO: 29.63 pTx/s, 31.82 pRx/s, 0.05 MbTx/s=, 0.16 MbRx/s

INIC viomie2: 0.00 pT/=, 0.20 pRx/s, 0.00 MbTx/s, 0.00 MbRx/=

MIC vmnicl: 0.00 pTx/=, 0.20 pRx/s, 0.00 MaTx/s, 0.00 MbRx/s

VCPUID WID WTYPE 5USED READY %EUSED

1z8 128 idle 54,69 0.00 54.69

130 130 idle 52.21 .00 S52.21 oo
131 131 idle 42.26 .00 42.26 00
128 129 idle 42.26 .00 42.26 00
142 142 wren 2.41 33 41 22.00
127 127 console 86 oo =11 oo

146 146 “m
148 148 v
144 144 vim
143 143 vrom
147 147 v
140 140 driver
139 139 reset
138 136 reset
137 137 helper
136 136 helper
135 135 helper
134 134 helper
133 133 helper
132 132 helper

-3
s

e
w
O0O000000000O0O00000O0O0
=]
(=]
&
e
=0 === =R = = ==l B R U = = = =T =] -
o =
(="

O0O0O00DO0000O0000O0W
o
o
[u]
(=

o e e e e e e e O i 0 e R Y
o
o

Quickly going through the output, note on the top line the time, which
in this example 1s 9:37 a.m. This server has been up 15 days, 4 hours, and 31
minutes and is running 20 worlds. These worlds are not all virtual machines
(we will explain each of the different worlds further in the chapter). The load
average shows the load the ESX host’s CPUs are under. A load average of 1.0
means that the CPU is being fully utilized; thus, an average of 0.5 would
mean that the CPU is only being utilized at approximately 50 percent.You
can see from the example in Figure 2.1 that the CPUs are hardly being
touched on this ESX host, the highest running at 5-percent utilization.
However, if you run Esxtop and find that your CPUs are running consistently
at 1.0 or above, you may need to adjust the load of virtual machines on that
host or increase the number of CPUs on the host itself. The four load aver-
ages are collected every five seconds at one-, five-, and fifteen-minute inter-
vals, which give you a snapshot of the overall CPU load of your ESX host
during those time slices. The load averages can be used to quickly identify
CPU-bound hosts.

The PCPU line and the LCPU line show the number of physical proces-
sors, and if hyperthreading is enabled, the number of logical processors and
the utilization of each physical and logical processor as well as their averages.

15

16

Chapter 2 * An Introduction to ESX Native Tools and How to Use Them

CCPU displays the percentage of toatl CPU time as reported by the Service
Console.

The MEM line shows the total amount of physical memory on the ESX
host, the amount of free or nonutilized memory, and the percentage of used
memory—in this example, 62.12 percent.

The SWAP line displays a metric you want to pay attention to. The first
number shows the amount of swap given to the ESX host, which in the pre-
ceding example is 4193280 (KB). Swapping is not necessarily a bad thing.
However, excessive swapping can indicate a memory issue and can cause per-
formance degradation. If you see persistently high levels of swapping, which
would be shown in the used section, you may need to add physical memory
to the ESX host, adjust the amount of memory allocated to your virtual
machines, or increase your swap space on the ESX host.

The next section is the disk which will give you the performance data
for your disks on the ESX host. If you are experiencing issues related to
disk read/write performance or simply want to monitor disk performance,
you can review this data. There will be an entry for each LUN per Target
per HBA.

The NIC section will give you statistics on the performance of all of your
NICs dedicated to virtual machines (VmnicO on up). As shown in Figure 2.1,
there will be one line per NIC.

Now let’s take a look at the difterent types of worlds or processes Esxtop
monitors.

The Virtual Machine World

A virtual machine world is the process under which a specific virtual
machine’s virtual processor is run. If you are experiencing an issue with a spe-
cific virtual machine, this is one place you will want to check out. So what
processes are virtual machine world processes? In Figure 2.2, see the high-
lighted processes from an Esxtop readout from ESX 2.X.

An Introduction to ESX Native Tools and How to Use Them ¢ Chapter 2

Figure 2.2 Virtual Machine Processes

Q:2Zam wup 15 days, 4:16, Z0 worlds, load average: 0.04, 0.07, 0.02, 0.01
PCPU: 4.22%, 2.26% : 3.24% used total
LCPU: 3.73%, 0.49%, 1.17%, 1.09%

MEM: 35914752 managed (KB), 1481728 free(KB) : 62.15% used total

ISWAP: 4193280 av(KB), 0 used(KB), 4151348 free(KE) : 0.00 MBr/s, 0.00 MEw/s
DISE vmhbad:0:0: 0.00 r/s, 9.35 w/s, 0.00 MBr/s=, 0.05 HBw/=

INIC vinnicO: 2.19 pTx/s, 3.58 pRx/s, 0.00 MbTx/s, 0.00 MbRx/s

INIC vinniec2: 0.00 pTxis, 0.20 pRx/=, 0.00 MbTx/=, 0.00 MbRx/=
NIC wvinnicl: 0.00 pTx/s, 0.20 pRx/s3, 0.00 MbTx/=, 0.00 MbRx/=

WTYPE
idle

idle 1] . .
130 130 idle 3g. 58 0.00 38.58 .00
128 1258 idle 37.34 0.00 37.34 .00
0

console
vaid

driver

For quick identification of the type of world each of these processes are,

see the WTYPE column. The virtual machine world is denoted by vmm.

What is not readily evident is which vmm world relates to the specific virtual

machine name. However, by examining the VCPUID you can map that
number to the VMID found in the MUI. This is shown in Figure 2.3

Figure 2.3 VMID in MUI

ﬁ - D m= fsO1

% e D’ E exOl .
ﬁ - D E ch:IZE-: :
E - P = frriElZ.

17

18 Chapter 2 * An Introduction to ESX Native Tools and How to Use Them

NoTE

The PID number shown in Figure 2.3 is the Process ID, which can be seen
if you run Top from the service console. You can perform functions such as
kill using the PID, which is like pulling the plug on your virtual machine. Be
careful with this. In ESX 3.0 we are given the name of the VM, so there is
no longer any question about which ID goes with which VM.

System World

System worlds are created to run a number of system services. Idle worlds are
created for each processor on your ESX host. Idle worlds run an idle loop pro-
cess, consuming free CPU cycles when the CPUs have nothing else to run.
Additionally, helper worlds are run for specific system tasks and driver worlds are
specific drivers within your ESX host. This value is no longer listed in ESX 3.0

The Service Console World

The service console 1s itself a world which runs by default on cpu0.

Some Other Helpful Esxtop Metrics

In this section, we discuss other Esxtop metrics that are useful for monitoring
the performance of virtual machines.

%USED

The %USED metric identifies how much of a physical processor’s utilization
is being used by the virtual machine’s virtual processor.

%R eady/%Wait

The %READY /%Wait metric shows the percentage of time a virtual machine
was waiting but could not get scheduled on a physical processor. VMware
recommends this number be under 5 percent.

%EUSED

The %EUSED metric shows how much of the maximum physical processor
utilization a virtual machine is currently using.

An Introduction to ESX Native Tools and How to Use Them ¢ Chapter 2

%MEM

The %MEM metric shows how much physical memory is utilized by each
virtual machine and world.

vmkfstools

vmkfstools is a powerful command-line tool that comes native to ESX Server.
The tool can create and manipulate VMDK files, performing such tasks as
importing and exporting disk files, growing and shrinking existing disk files,
and committing REDO or snapshot files. The tool can also create VMFES par-
titions and has a host of other capabilities. To see the full range and power of
the vmkfstools command, from your service console type man vmkfstools.

We will next examine some common and very helpful ways to use vmkfs-
tools and its associated arguments.

Viewing Contents VMES Partition

Similar to the Linux command Is, if you want to view the contents of a
VMES volume on your ESX host, type vimkfstools =1 vinfs_label. This
command works only on ESX 2.X

You may specify the HBA number, SCSI target, LUN number, and parti-
tion number. For example, from the service console, type vimkfstools -1
vimmhba0:0:0:11.

Figure 2.4 displays the output from running vmkfstools —I. By adding an h
after the =1, the size of the files on the VMES partition are displayed in a
more human-readable format. So the command in the preceding example
would look like vimkfstools —lh vimhba0:0:0:11.

Figure 2.4 Vmkfstools—I Output

[cootResx-zerver0l root] f vmkfscools -1 vmhbal:0:0:11
MNeme: local (public)
Capacicy 50610115584 (48258 file blocks * 1048576), 10501488640 (10015 blocks) avail
Permiszssion Uid Gid Attr Byte= (Blocks) Last Modified Filensme

o o svap 2146435072 (2047) Hay 27 19:49 SwapFile.vawvp

(n]] dizsk 4194304000 (4000) Jun 1 20:03 cluscer-01.vmdk

0 o disk 4194304000 (4000) Jun 1 19:54 server=02.vmdk

v] o disk 4194304000 (4000) Jun 1 20:03 server-03.vmdk

o] dizk 4194304000 (4000) Jum 1 20:03 =rv-nodel.vmdk

0 o di=sk 4194304000 (4000) Jun 1 20:03 srv-nodel.vidk
rW———==== 0 o disk 4294967296 (4096) Junm 1 20:03 ntd.vmdk
i o o di=sk 104857600 (100) Jun 1 20:03 guoruml.vmdk
EW——=———= 0 o disk 2097152000 (2000) Mar 6 21:30 serverZkOl.vmdk
. e 0 o disk 2097152000 (2000) Jun 1 20:03 server-20.vmdk
rf——————— 0 o disk 4194304000 (2000) Jun 1 20:03 server-05.vmdk
ol o o di=k 4194304000 (4000} Jun 1 12:29 webserver-01.vmdk

19

20

Chapter 2 * An Introduction to ESX Native Tools and How to Use Them

Import/Export Files

As mentioned earlier, if you need to import or export .vindk files onto your
VMES partition, you can use the vmkfstools command. VMware recommends
using vmkfstools rather than the Linux command cp to do this. For example,
if you need to export a virtual disk from a VMES partition to a different loca-
tion on your ESX Server, type

vmkfstools -e /targetdirectory/filename.vmdk

/vmfs/volume label/sourcefile.vmdk

One reason you would want to do this is to move a virtual machine tem-
plate from the VMES volume to a directory that contains your template
Images on your server.

If you need to import a virtual disk file from VMware Server or
Workstation, you will first need to scp or ftp the .vmdk file(s) onto a direc-
tory of your ESX host (not the VMES partition) and then run the following
command in ESX 2.X:

vmkfstools -1 source directory name /vmfs/volume label/targetfile.vmdk
In ESX 3.x the command has changed because the vmkfstools export
command is deprecated. In ESX 3.X the command is as follows

'vimkfstools -1 srcDisk -d 2gbsparse dstDisk'

Adding a New Virtual Disk, Blank
Virtual Disk, and Extending Existing Virtual Disks

A very cool use of vimkfstools is its capability to create and modify existing
.vmdk files. For example, if you need to create a new blank virtual disk type
from the service console, use the following syntax:

vmkfstools -c size vmfs-name:vmdk-name

Example:
vmkfstools -c 2024m SanRaidl:dataOl.vmdk
What this allows you to do is add a new 2GB hard disk which can then

be added to existing virtual machines and formatted at the OS level within
the VM.

An Introduction to ESX Native Tools and How to Use Them ¢ Chapter 2

But what if you need to extend or grow an existing virtual disk? For this,
you would type the following syntax:

vmkfstools -X new-size vmfs-name:vmdk-name

Example:

vmkfstools -X 12288m SanRaidl:database.vmdk

The preceding command extends the existing database.vimdk from its
existing size to 12288 megabytes.

NoTEe

The virtual machine will need to be powered off prior to extending the
virtual disk. VMware recommends that you make a full backup on the
VMDK file prior to completing this task. If you want to extend the parti-
tion within the virtual machine itself, you may need to use a utility like
Partition Magic for the VM to recognize the additional space added to
the disk file. Or you will need to create an additional partition within the
virtual machine itself.

Swiss Army Knife...

man vmkfstools

Become familiar with vmkfstools command. To obtain a full list of the
arguments associated with vmkfstools, from the service console, type
man vmkfstools

vmware-cmd

The vmware-cmd command allows you to perform many different tasks related
to virtual machines. If you type vimware-cmd from the service console, you
will see that vmware-cmd has both Server Operations and VM Operations.
Figure 2.5 shows the Server Operations that can be performed on the service
console using vmware-cmd. As you can see from the list, you can register and
unregister virtual machines and get/set resource variables.

21

22 Chapter 2 * An Introduction to ESX Native Tools and How to Use Them

Figure 2.5 Vmware-cmd Server Operations

Server Operations:
Fuar/bin/vmware-cmd -1
fusr/bin/vmihre-cmd -3 register <config file_ path>
fuse/bin/vmuare-cmd -3 unregister <config file path>
fuscr/bin/vovare-cmd -3 getresource <variable>
fusr/bin/vmuare-cmd -3 secresource <variable> <value>

For example, if you type

vmware-cmd -1

from the service console, a list of registered virtual machines and the path to
the .vmx configuration file will be displayed.

Figure 2.6 shows the VM Operations that can be performed from the ser-
vice console using the vmware-cmd utility. You can stop, start, reset, and sus-
pend virtual machines, add and commit .redo files (very powerful; especially
for backups which will be discussed later in the book), as well as get informa-
tion about the virtual machine.

Figure 2.6 Vmware-cmd VM Operations

VH Operations:
fusc/bin/vmvare-cmd <cfg> getconnectedusers
Fusc/bin/vioware-cmd <cfg> get=tate
fusc/bin/vmvare-cod <cfg> SCart <poverop mode>
fusc/binfvoware-cmd <cfg> stop Kpoverop mode>
Jfusr/bin/vmware-cmd <cfg> reset ﬂpovcroFand:>
fusc/bin/vmvare-cmwd <cfg> suspend <powerop_mode>
Fusc/bin/vovare=cmd <cfg> setconfig <variable> <value>
Susc/bin/vovare-cood <cfg> getconfig <variable>
Juse/bin/vnware-cmd <cfgr setguestinfo <variable> <value>
Juse/bin/vovare-cmd <cfg> getguestinfo <variable>
Fusp/bin/vovare-cmd <cfgr gecid
Juse/bin/vvare-cmd <cig> getpid
fusc/bin/vmware-cmd <cfg> getproductinfo <prodinfo>
Juse/bin/vovare-cod <cfg> connectdevice <device name>
Fusr/bin/vmware-cmd <cfg> disconnectdevice {dev?ce_name>
Jusc/bin/vmware-cmd <cfg> gecconfigfile
fusc/bin/vware-cmd <cfg:> getheartbeat
fuse/bin/vovare-cod <cILg> GETUPT ime
fusr/bin/vevare-cmd <cfg> getremoteconnsctions
fuse/bin/vnmware-cmd <cfg> gettoolslastactive
Juse/bin/vovare-cmd <cfg> getresource <variable>
Fusr/bin/vmvare-cmd <cfg:> setresource <variable> <value:
fusc/bin/vmware-cmd <cfg> addredo <disk device name>
fusc/bin/vmware=cmd <cfg> commit qdlsk_dev1ce_name> Clevel> <fresze> <wait>
Juse/bin/vmvare-cmd <cfg> answer

For example, to add a .redo file to a virtual machine, type the following
syntax from the service console:

An Introduction to ESX Native Tools and How to Use Them ¢ Chapter 2

vmware-cmd <cfg> addredo scsil:0

NoTEe

The scsi0:0 in the preceding command is the actual scsi device name of
the virtual machine. This command works only with ESX 2.X. With 3.X
the use of snapshots has replaced redo files

If the command runs successfully, the resultant output would look some-
thing like:

Addredo (scsi0:0) = 1

To commit the redo you just added, type

Vmware-cmd <cfg> commit scsi0:0 001

vmkusage

Although not a command-line tool, vinkusage is a great tool for trou-
bleshooting and one you should be aware of. Monitoring the utilization of
servers in the past was not the most exciting work. In the past, a server maxed
could mean a lot of work for an administrator. Now, allocating more memory,
an additional CPU, hard drive, or NIC is a process of minutes not days or
weeks. Monitor the performance of your virtual machines to ensure you meet
your service level agreements. Use the excellent VirtualCenter for this. You
can also use vmkusage, which provides the utilization of your ESX Server as
well as all running virtual machines.

NoTEe

Vmkusage is not included with ESX 3.x. The next section applies only to
ESX 2.x

To start vimkusage, from the command line of your ESX Server’s service
console, type

23

24

Chapter 2 * An Introduction to ESX Native Tools and How to Use Them
vmkusagectl install

This will create the utilization reports in the /var/log/vmkusage directory.
These reports will be updated every five minutes by default. You view the
reports with a Web browser by typing

https://esxservername.corp.com/vmkusage.

Substitute the URL with the appropriate information in your environ-
ment. You will see a window similar to that shown in Figure 2.7.

Figure 2.7 Vmkusage

B yrware E5H Servar esal @ 2005-06-11 16:05:01
[E%2 MUL] Time Morizom: [Fecant] [Csdy] [Weekliy] Yiempoints: [Storage] [fatwork) [ry Regort] [Text Report]
le
1 Bunning ¥irtual Machines
M [Mrmory etwark Starage
WID MName VOPUs Shares Aff Uptime Used |Size Target Shared Active WiCs Fhts Bytes HOAs Ops Bytes
B0 (model L L0900 |4,5,2,3 | Zhidaldis |ledls | 393K |304H |22ZH (26H 2 1.4R |185K |1 2R | 200m
1] Memory Het Pt et Hb Disk Ops Disk KB
System
100 . . 10 . T N pr— . 1.0 s . 1.0 - . 10
] L LX2: 0E nE
o o G ggl———ts n.o—
o 12000 100 1200 am
150 nedel Sefmmaraihode 1_2k 3 mrMatEsterprde. vins (1)
1m0 1.0 1o 1.0 1
] LXT: & [} o
< == ! o
e o ~r —— 0.0 - 0.0 - 0o

You can pull very specific utilization reports that you will find important
for capacity planning, future demand availability, server sizing, and hardware
purchasing. The HTML files and vimkusage graphs are located in
/usr/lib/vmware-mui/apache/htdocs/vmkusage.

Summary

These native tools are powerful and you can create many different scripts
calling these commands. It is recommended that you become thoroughly
familiar with these tools and use them to unlock the power and flexibility of
your virtual infrastructure. Of course, be sure to thoroughly test all of your
scripts and commands in a test environment prior to using them in
production.

Chapter 3

Scripting and

Programming

for the Virtual
Infrastructure

Topics in this chapter:

m VMware Scripting APIs
m VMware Virtual Infrastructure SDK

m Other VMware SDKs

25

26

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Introduction

Simplification of administration and its related overhead is a strategic impera-
tive that most companies are mandating. Although programmatic automation
has existed in the Windows and Linux operating systems for some time now,
getting a complete solution for system management and automation often
requires purchasing expensive third-party, proprietary software that was difti-
cult to learn and sometimes suffered from compatibility issues. Fortunately,
VMware has incorporated a variety of interfaces that you can take advantage
of to simplify the management of your virtual infrastructure. In this chapter,
we will discuss the available APIs and SDKs as they apply to the following
VMware products and versions:

m VMware ESX Server 3.0 and 2.5.x

m VMware Server and VMware GSX Server 2.x or later

m VMware VirtualCenter 2.0 and 1.x

So, without further ado, let’s jump into scripting and programming tech-

niques for VMware ESX, VMware Server, and VMware VirtualCenter. To
help you establish a firm foundation in writing code for VMware products,
we will discuss several techniques and technologies in this chapter, specifically:

m VMware scripting APIs

m VMware VirtualCenter SDK

m Other VMware SDKs

VMware Scripting APIs

With the release of the VMware scripting application programming interfaces
(APIs), VMware has been offering two components that you can use to
develop custom code to manage your VMware ESX, VMware GSX, and
VMware Server hosts directly: VmCOM and VmPerl. These APIs have no
dependency on any other VMware product, such as VirtualCenter, and are
available for use as quickly as you can download them from VMware’s site.

Scripting and Programming for the Virtual Infrastructure « Chapter 3 27

VmCOM is a Component Object Model (COM) interface you can use
with any language that supports the instantiation of COM objects, such as
VB.NET, VBScript, C++, C#, Python, Delphi, and Java, just to mention a
few. You must install this interface on a machine with a supported version of
the Microsoft Windows operating system. VmCOM is not supported on the
Linux platform.

VmPerl is an API that can be utilized through the Perl scripting language.
You can install this component on either a Windows-based or a Linux-based
admin client.

Master Craftsman

Choosing an IDE

To efficiently develop, edit, debug, and test your code, you should stan-
dardize on an integrated development environment (IDE) that supports
the language(s) you plan to write in. Several commercial and open-source
products are available, so your decision will really be based on preference.
When choosing an IDE, you should look for products that offer file man-
agement, integrated building/debugging/testing, deployment, source
control, and reference tools to assist with rapid, yet accurate, coding. The
following IDEs are good choices when developing against any of the APIs
and SDKs discussed in this chapter:

m Microsoft Visual Studio (commercial) For example, most
COM developers opt for Microsoft Visual Studio as the pre-
ferred IDE since it supports all of the Microsoft languages.
With Visual Studio 2005, you get a powerful IDE, code snip-
pets, mobile device support, source control, and code profiling
tools. To make coding even easier and faster, you get great
features like Intellisense, which helps you with code against
methods and properties for objects that you instantiate and
provides an “auto-complete” function (Visual Studio only runs
on Windows). For those on a budget, a free version is avail-
able, called Visual Studio Express, which provides more than
enough features to support development against the Scripting
APIs. For more information, see http:/msdn.microsoft.com.

Continued

28

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

NetBeans IDE (open source) A fast and feature-rich tool for
developing Java software. It includes support for AWT/Swing,
Servlets and JSP, and J2EE (EJB and Web services). It also
includes a database engine and a J2EE-compliant application
server. For more information, visit www.netbeans.org.

Eclipse (open source) Available as a complete SDK, Eclipse is
a leading open-source IDE, as well as a suite of tools for
building applications based on the Eclipse platform. By adding
development components, you can customize the Eclipse plat-
form as an IDE for Java (using JDT), C/C++ (using CDT), or
both. It runs on a wide range of operating systems, including
Windows, Linux, Mac OS, Solaris, AlX, and HP-UX. For more
information, visit www.eclipse.org.

ActiveState Komodo (commercial) For Perl development, the
Komodo IDE from ActiveState is a good choice. Not only does
it support Perl, but you can use it for Python, Tcl, and Ruby
development as well. Komodo is available for Windows,
MacOS, and Linux. For more information, visit www.actives-
tate.com.

Sapien Technology’s PrimalScript (commercial) This is one
of the more cost-effective, yet powerful, commercial IDEs
available. It provides the same scripting language support as
Komodo, but also adds support for VBScript, Actionscript, and
KiXtart. It also supports Web development efforts in ASP,
ColdFusion, JSP, and PHP...a plus if your code is going to have
a browser-based Ul. For more information, visit
www.sapien.com.

Both components are supported by VMware ESX Server as well as

VMware Server/GSX. There are some differences when targeting operations
against the different VMware server products, so we’ll indicate any discrepan-
cies as we discuss the APIs further in this chapter.

What Are the VMware Scripting APIs?

The interfaces for VmCOM and VmPerl are functionally the same. Both
interfaces allow developers and savvy administrators to tap into the power of
VMware ESX or VMware Server/GSX hosts programmatically. Even more

Scripting and Programming for the Virtual Infrastructure « Chapter 3

important, they support a wide range of object-oriented languages, allowing
just about anyone to immediately write code to simplify the administration
and management of their virtual infrastructure. Although the two interfaces
are technically different, both provide task automation functionality, such as
virtual machine registration, performing power operations on virtual
machines, and information gathering and sending to and from the virtual
machine’s guest operating system. All sessions between the API and the
VMware ESX or VMware Server host are secured and use a single TCP port
for communication (TCP port 902 is the default), as shown in Figure 3.1.

Figure 3.1 The VMware Scripting APl Architecture

/a4
-

VMware ESX 2.x or later \

’,

Windows Client
1o VmCOM or

<):‘l> VmPerl

/a¥/

VMware GSX 2.x or later

o,

S Linux Client
0 VmPerl only
NS
VMware Server

Tip

For Windows installations, you’ll also need to install Perl support, such as
ActivePerl from ActiveState, to use the VmPerl API. Additional Perl mod-
ules may also be required to support certain features needed to work
with the API.

29

30

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

VmCOM support is built into Windows by default if you plan on using
an interpreted language based on Microsoft’s scripting technology (VBScript
or JScript). However, if you plan on using a language that requires you to
compile your code, such as VB.NET, C#, Java, or Delphi, you will need to
install some additional development tools.

Installing the VMware Scripting APIs

Before you can create your own custom scripts to manage your ESX servers,
you must install the VMware Scripting APIs on the workstation or server
where your scripts will run. The APIs are available at no cost from VMware at
www.vmware.com/support/developer/scripting_download.html.

You must log in to the site with your VMware store account and accept
the license agreement. You will then be presented with the download links
for:

. COM API for Windows
m Perl API for Windows
m Perl API for Linux

To install the scripting API on a Windows client machine, follow these
steps:

1. Run the installer package with an account that has administrator
rights on the Windows client machine. The naming convention for
the installer package is VMware-VmCOMAPI-x.x.x-yyyyy.exe
(for the VmCOM API) or VMware-VmPerl-x.x.x-yyyyy.exe (for
the VmPerl API), where “x.x.x” is the ESX Server version the API is
for, and “yyyyy” is the build number.

2. Agree to the license agreement by selecting Yes, I accept the
terms in the license agreement.
Click Next.

4. Choose the install location by either accepting the default directory
or clicking Change and browsing to your preferred location.

5. Click Next.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

6. Click Install to begin the copying of files.

7. Click Finish when prompted after the install is complete.

To install the scripting API on a Linux client machine, follow these steps:

1. Copy the VmPerl package to the Linux client machine where the

scripts will be run.
2. Log on to the machine as root.

3. Untar the installation package. The naming convention for the
package is VMware-VmPerl-x.x.x-yyyyy.tar.gz, where “x.x.x" is
the specific ESX version number and “yyyyy” is the build number.

4. Change to the directory where the extracted files are found, and run
the install script ./vimware-install.pl.

5. Agree to the license agreement by pressing Enter when prompted.

6. Enter the installation path for the VmPerl binaries or accept the
default destination directory.

7. Enter the installation path for the VmPerl libraries or accept the
default destination directory.

Putting the VMware
Scripting APIs to Work for You

Once the VMware Scripting APIs have been installed on your management
client or server, the next step is to dive in and develop some code to become
familiar with the capabilities of the APIs. In this section, we will review the
various components for both VmCOM and VmPerl. If you are only familiar
with Windows administration, you may feel more comfortable with the
VmCOM methods and properties using a scripting language such as
Microsoft’s VBScript or JScript. If you have a Linux or UNIX background,
you should feel right at home with the modules or packages exposed by the
VmPerl API using the Perl scripting language. You will find the following
examples helpful in either case since the functionality of both VmCOM and
VmPerl is the same.

31

32

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Working with the VimmCOM API

The VmCOM API exposes five objects that are used to establish, maintain
communication, and interact with a VMware ESX server or virtual machine.
Two of these objects will serve as primary objects that expose the methods
and properties you will use in your scripts to interact with, or gather informa-
tion from, your hosts and virtual machines. In function, these objects are sim-
ilar to the VMware::VmPerl::Server and VMware::VmPerl:: VM modules
provided by the VmPerl API, discussed later in this chapter. They are

m VmServerCtl Used to create a session with an ESX host and
expose the services and functionality of the API’s server interfaces.

m VmCtl Used to manage and perform operations against a virtual
machine on a particular ESX host.

Supporting these primary objects are three other objects that provide a
secondary, supporting role. These support objects provide the input or output
resources needed to pass to the primary object’s properties and methods.
They are

= VmConnectParams Provides host information and authentication
credentials used when establishing a connection to an ESX host.

m VmcCollection Provides a collection or array of properties or other
interfaces to be passed to the primary objects.

® VmQuestion Provides an interactive interface to respond to ques-
tions or error conditions for a virtual machine running on an ESX
host.

The process begins by establishing a connection with an ESX or GSX
host, or a virtual machine on a particular host using the Connect() method of
either an instantiated VmServerCtl or VmCtl object. VmServerCtl. Connect()
method uses the VmConnectParams object to set the target host information
and credentials to establish the connection. The VinCtl. Connect() method also
uses the VmConnectParams object, just as the VimServerCtl does, in addition to
the configuration file name for the target virtual machine. After you have
connected to an ESX server host or a virtual machine on that host, you can
then call the other methods and properties of the VmCOM component.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

As with any COM API, you must expose the VmCOM objects first by
either creating an instance of those objects or retrieving an instance of the
objects as a returned value for a property. We will discuss this in further detail
shortly.

Depending on what your script does, you work with instances of one or
more of the following objects:

m VmConnectParams
m VmCollection

m VmServerCtl

. VmCitl

Before we jump deeper into these topics, we should discuss the develop-
ment environment within which you will be writing your code. Commonly,
VmCOM development is done in a Microsoft development language, be it
VBScript or one of the .NET languages (VB.NET, C++, or C#). If you opt
to write code in the latter, the IDE best suited for the job is Microsoft Visual
Studio.

Although every IDE provides its own set of strengths and benefits, devel-
opment efforts surrounding COM objects find themselves at home with
Microsoft Visual Studio 2005. Two key things that I would like to call out are
the ease of including VmCOM in your code and using Intellisense to speed
up your development and reduce time spent debugging your code.

If you opt to use Visual Studio 2005 as your IDE, you need to reference
the VmCOM Type Library, as shown in Figure 3.2, after creating a new pro-
ject or solution.

If the library was successfully referenced and included in the project, you
should see it listed in the References tree in the Solution Explorer, as por-
trayed in Figure 3.3.You will also be able to browse the API with VS 2005’
Object Browser, as shown in Figure 3.4. Not enough can be said about
coding with the appropriate tool for your language. The more feature-rich
the tool is, the easier and faster your coding will go.

33

34 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Figure 3.2 Referencing the VMware VmCOM 1.0 Type Library

-

%]

Twpﬁt —

| #eT | COM | projects | Browse || Recent|

Component Mame &
WMware VmCOM 1.0 Type Library
¥OBTrans 1.0 Type Library
VoiceCH 1.0 Type Library
volume Shadow Copy Service 1.0 ..
vpshel2 1.0 Type Library

Typelib Ve... | Path [

_ C:¥Program Fies{Mware
C:'Program Fies\Intervic
C:'¥Program Fies'Commo
CHWINDOWSsystem32
C:'Program Files\Commo

5

V5 WebBrowsing Service C:'\Program Fias'Microso
VSDebuwg 1.0 Type Library C:'Program Fies\Microso
w5Debug 8.0 Type Library C:'Program Fies\Microso
¥sHelp C:'¥Program Files'WCommo
¥sHelp30 C:'\¥Program Fles\Commo
VsHostProd ib C:'¥Program Fies\Commao
VETEridge C:\Program Fias\laro\

w3ext 1.0 Type Library CoWINDOWS \system32 20

Wave MSP 2,0 Type Library CHWINDOWS \system32 —
‘uwfm-rit 1.0 Twne | ihrary | . F:'P(rrln'nFiﬂ'n‘h‘:[l l?
4 L 2

o PR e e D e e
DO 00 00000 o0 o 0o

Loc [come |

Figure 3.3 The VMCOMLib Reference in Solution Explorer

> 1 X

- [=d My Project

= | References

..... 3 System

----- «J System.Data

----- «{ 2 System.Deployment

----- <2 System.Drawing

----- «J System.\Windows.Forms
----- « 2 System.Xml

But enough of the formalities...let’s move on and take a look at the
VmCOM objects.

Scripting and Programming for the Virtual Infrastructure « Chapter 3 35

Figure 3.4 Using the Object Browser to View the Methods and Properties of
the VmCt/ Object

E =
Fie Ed&t View Project Buld Debug Data Tooks Window Community Help
P . ¢ g] - 0 =] | Detug s a .
?__ Object Browser]
E.&-.nm;:-ﬂwm | A -r]_ﬁ’wv
E < = = L % Addftedo(String)
i @ AresweerQuesBon(VMOOMLB, VeCuestion, Integer)
B -3 Interop, VMODOMLE kad % Commit{3tring, Integer, Integer, [nteger)
= () oM & Cornect{VMOOMLUB, VCannectParams, Srng)
=0 IvmColacton % CornectDevice(String)
== INmConnetParams @ DiscorrectDevis(String)
=0 imcd % Reset{MCOMLD. YmPowerOphiode)
== INmCRR) @ Starb{VMCOMLb. VmPowerOphlade)
=0 _IvmCHEvents & Stop{VMOOIHLD, VmPowerOpMode)
j 'vamsu:; @ Suspend (VMCOMLD, imPawerCpode)
T¥mServer 8 Copabites() As Integer
=0 IWmSarverCH2 5 Config{String) As String
- _;['-'-!Gerva'tﬁvglt :Il ConfigFletame(] As Siring
Y _MIDL__MIDL_itf) 5 DevicelsConnected (Stng) As Integer
af _MIDL__MIDL i, 7 ExecutionState() As VMCOMLD. VmExecutionState
of _MIDL__MIDL_itf) 5 GuestinfolString) As Siring
“f vmColection 5 Heartbeat() As Integer
4 VmConnectParams R 160) As Integer
i3 vm S PendingQuestion(] As VMCOMLB, VmQuestion
i WmErr 57 Pid]) As Integer
o ¥mExEutOnState 5 ProductinfoVMOOMLD. VmProdinfaType) As Integer
uf WmPlatform I3 RemoteConnectons() As Integer
o VmPowenCpiode 57 Resource{String) As String
ﬁ ¥mPredinfoType 757 ToolsLastactive() As Integer
¥mProduct 5 Uptime() As Integer
“Af VmQuestion
VmConnectParams

The VmConnectParams provides the host information and user credentials
required by the Connect() method for either the VMServerCtl or VmCitl object,
and exposes properties whose values you can set, as shown in Table 3.1.You
can use these properties for data retrieval or modification through your script
or application.

36

SYNGRESS

syngress.com

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Table 3.1 VmConnectParams Properties

Property Name Description

Hostname A string value that represents the DNS host name of the
VMware ESX or GSX host or its IP address.

Port An integer value representing the TCP port that should

be used to establish a connection with the VMware ESX
or GSX host. This property is optional. If omitted, the
default value of 0 (zero) will be used, telling the
Connect() method to use the standard management TCP
port 902.

Username A string value containing the username to pass as cre-
dentials for the connection.

Password A string value containing the password for the user set
in the Username property.

The following demonstrates the instantiation of the VimConnectParams
object in VBScript and how to set the properties listed earlier.

Set objConnParams = CreateObject ("VmCOM.VmConnectParams")

objConnParams.hostname = "esxserverl"
objConnParams.username = "adminuserl"
objConnParams.password = "passwordl"
IVmCollection

This is a good point to introduce the next object in our discussion, the
I’mCollection object. Although you will never instantiate it directly, there are a
couple of properties in the other objects we will discuss that return a
I’mCollection. The Registered 1VmNames property of the IVmServerCtl object and
the Choices property of the IV'mQuestion object both return a range of ele-
ments, or values, as a mCollection object.

A VmCollection object has two properties: Count, which is an integer value
for the number of elements in the collection; and Ifem(index), which is a string
value that returns the specific element represented by the index value you
pass. You can navigate the elements returned by stepping through them as you
would an array, or access a specific element by referencing its index. You will

Scripting and Programming for the Virtual Infrastructure « Chapter 3

see examples of this later in the chapter as we work with those properties that

return VmCollection objects.

VmServerCtl

The VVmServerCtl object 1s used to interact with a specific VMware ESX or
GSX host. This object exposes two properties and three methods, as shown

in Table 3.2. One particular property, Registered VmNames, returns a

I’mCollection object that contains a complete list of virtual machines regis-

tered on the host. This property will prove particularly useful as you query

for the host’s inventory:.

Table 3.2 VmServerCtl Properties and Methods

Item Type

Description

RegisteredVmNames Property

Returns a listing of all registered VMs
on the VMware ESX or GSX host as a
Vm~Collection object.

Used syntactically with a particular
system resource variable, this property
returns the value as a string variant.

Used to establish a connection with a
VMware ESX or GSX host. You must
reference a VmConnectParams object
when calling the method.

Used to register a VM on a host. You
must reference the configuration file
name of the VM being targeted.

User to unregister a VM on a host. You
must reference the configuration file
name of the VM being targeted.

Resource Property

Connect Method

RegisterVm Method

UnregisterVm Method

NoTE

The VmCOM API limits the total number of concurrent connections sup-
ported by the API. Connections established by the VmCt/ object and the
VmServerCtl object cannot exceed 62 when using the API. Keep this in
mind when you run scripts concurrently to manage VMs and hosts. If

37

38

SYNGRESS

syngress.com

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

you need to perform multiple tasks against a particular virtual machine
or host, and you cannot do so in the same connection, try chaining the
tasks synchronously, thus freeing connections by destroying instantiated
VmCtl and VMServerCtl objects before establishing new ones.

The following continues from our last code example, adding the instantia-
tion of the ImServerCtl object and connecting to the host using the previ-
ously defined IVmConnectParams object.

Set objVMServer = CreateObject ("VmCOM.VmServerCtl")
objVMServer.Connect objConnParams
objVMList = objVMServer.RegisteredVmNames
for vmIndex = 1 to objVMList.Count
WScript.Echo VM.objVMList (vmCounter)
vmCounter = vmCounter + 1

next

In this example, we connect to the host according to the property values
set in the IVmConnectParams object earlier, retrieve the collection of registered
VMs, and enumerate them, writing their configuration file path as output.

NoTE

Like most methods of the VmCOM component objects, Connect() runs
synchronously. The script will not continue until the connection attempt
has finished successfully, failed, or timed out after two minutes of
waiting to connect.

I’'mCtl

Similar to the VimServerCtl object, the 1VmCtl object 1s used to gather infor-
mation from or control a virtual machine running on a VMware ESX or
GSX host. 'mCtl exposes quite a few properties and methods, making this
object quite powerful. What makes it even more unique than the other
VmCOM objects we have discussed so far is that several of the properties and

Scripting and Programming for the Virtual Infrastructure « Chapter 3

methods use symbolic constant enumerations (SCE) which must be inter-

preted. As this can get quite complicated, we will review the various proper-

ties and methods along with their relationship and dependency on SCEs. You

can also reference the VMware Scripting API User’s Manual which provides

additional information about each method and property we briefly mention

in this chapter.

Tables 3.3 and 3.4 outline the properties and methods exposed by VinCitl,
including the references to the SCEs, and Table 3.5 lists the symbolic constant

enumerations and their interpreted values.

Table 3.3 VmCt/ Properties

Property Name

Description

ExecutionState
PendingQuestion
Guestinfo(key)
Config (key)
ConfigFileName
Heartbeat
ToolsLastActive
DevicelsConnected

(dev)
Productinfo(type)

Uptime

PID
Resource(name)
ID

Returns the current state of the VM. Returns the SCE
VmExecutionState.

Returns a VmQuestion object (a VmCollection) with the
details of the question if the VM is in a stuck state.

Accesses the shared variables (discussed later in this
chapter).

Accesses the configuration variables defined in the con-
figuration files of the VM.

Returns just the name of the configuration file, not the
path.

Returns the heartbeat count generated by the VMware
Tools in the guest OS.

Returns an integer representing the number of seconds
since the last heartbeat was detected.

Returns a Boolean value concerning the state of the
specified device.

Returns information concerning the VMware product.
Returns the SCEs VmProductinfoType, VmProduct, or
VmPlatform.

Returns the uptime of the Guest OS running in the VM.
Returns the process ID of a running VM.

Accesses the VM resource variable passed as “name”.
Returns the UUID for a running VM.

Continued

39

40

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Table 3.3 continued VmCt/ Properties

Property Name Description

Capabilities Returns the access permissions for the current user.

RemoteConnections Returns the number of users connected to the VM
remotely.

Note that Resource, ID, Capabilities, and RemoteConnections only apply to
virtual machines running on a VMware ESX host. These properties will
return an error when attempting to retrieve values from a virtual machine
running on a VMware GSX host.

Table 3.4 vmCt/ Methods

Method Name Description

Connect(params,name) Establishes a connection to a VM. You must
pass a VmConnectParams object and the
configuration file name of the VM you are
connecting to.

Start(mode) Powers on or resumes a VM. Utilizes the SCE
VmPowerOpMode to control the behavior of
the operation.

Stop(mode) Shuts down and powers of a VM. Utilizes the
SCE VmPowerOpMode to control the
behavior of the operation.

Reset(mode) Shuts down and reboots a VM. Utilizes the
SCE VmPowerOpMode to control the
behavior of the operation.

Suspend (mode) Suspends a VM. Utilizes the SCE
VmPowerOpMode to control the behavior of
the operation.

AddRedo(diskName) Adds a redo log to a running VM'’s virtual
disk.

Commit(diskName,level, Commits changes in redo logs for a running

freeze,wait) VM'’s virtual disk.

AnswerQuestion(question, Replies to a question for a stuck VM with a

choice) specific answer.

Continued

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Table 3.4 continued VmCt/ Methods

Method Name Description

ConnectDevice(dev) Connects a specific device to a running VM.

DisconnectDevice(dev) Disconnects a specific device from a running
VM.

SetRunAsUser(uname, pwd) Runs the VM as a specified user under the

credentials passed by the method.

RunAsUser Returns the name of the user running the
VM. Does not return the password.

Note that AddRedo() and Commit() only apply to virtual machines running
on a VMware ESX host. These properties will return an error when
attempting to retrieve values from a virtual machine running on a VMware
GSX host. Likewise, SetRunAsUser() and RunAsUser() only apply to virtual
machines running on a VMware GSX host, and will return errors if invoked
against a VMware ESX host.

NoTEe

Similar to VmServerCtl, the total number of concurrent connections per
VM is limited and cannot exceed two when using the API. To establish
new connections to the VM, free up a connection by destroying instanti-
ated VmCt/ objects first.

Table 3.5 VmCt/ Symbolic Constant Enumerations (SCE)

SCE Name Value Description

VmExecutionState VmExecutionState On VM is powered on.
VmExecutionState Off VM is powered off.

VmExecutionState_ VM is suspended.
Suspended

VmExecutionState VM is awaiting input from
Stuck user.

Continued

a1

42

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Table 3.5 continued VmCt/ Symbolic Constant Enumerations (SCE)

SCE Name Value Description
VmExecutionState VM is in an unknown state.
Unknown

VmPowerOpMode VmPowerOpMode Soft Runs predefined scripts via the

VmProdInfoType

VmProduct

VmPlatform

VmPowerOpMode_Hard

VMware Tools in the Guest OS
and attempts to gracefully
perform the operation.

No scripts are run.
Immediately and uncondition-
ally performs the operation.

VmPowerOpMode_TrySoftAttempts to perform the oper-

vmProdInfo_Product
vmProdInfo_Platform
vmProdInfo_Build

vmProdinfo_Version_
Major

vmProdInfo_Version_
Minor

vmProdInfo_Version_
Revision

vmProduct_ WS

vmProduct_GSX
vmProduct_ESX
vmProduct_UNKNOWN
vmPlatform_WINDOWS

ation with the
VmPowerOpMode_Soft
behavior. If it fails to do so,
the operation will then be per-
formed as a
VmPowerOpMode_Hard.

Returned as VmProduct.
Returned as VmPlatform.
Product’s build number.

Product’s major version
number.

Product’s minor version
number.

Product’s revision number.

Product is VMware
Workstation.

Product is VMware GSX Server.
Product is VMware ESX Server.
Product is unknown.

Host platform is an MS
Windows OS.

Continued

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Table 3.5 continued VmCt/ Symbolic Constant Enumerations (SCE)

SCE Name Value Description
vmPlatform_LINUX Host platform is a Linux OS.
vmPlatform_VMNIX Host platform is the ESX Server

service console.
vmPlatform_UNKNOWN Host platform is unknown.

Using our previous example, we can utilize the established connection via

I’mServerCtl and the VmCollection of virtual machines on our host to query
the uptime for each of the registered VMs using VmCtl. The following
retrieves the configuration file name for each VM, connects to the VM, and

gets the value from the uptime property. The results are then echoed as output.

For each ConfigFile in objVMList

syngress.com

Next

Set objVM = CreateObject ("VmCOM.VmCt1l")
objVM.Connect objConnParams, ConfigFile
vmUptime = objVM.Resource ("cpu.uptime")

WScript.Echo "Uptime for VM " & ConfigFile & " is " & VMUptime

With VmCOM, you can also write scripts that perform configuration

management activities on your hosts and VMs. Focusing on establishing con-

figuration standards, you can ensure that optimal and approved configurations
are always maintained without having to use the VMware ESX/GSX MUI to
do so. For example, a sample script may ensure that no floppy drives are left

connected to the VM. On a host running many VMs, leaving physical

devices, such as floppy and optical drives, places unnecessary load on the ser-
vice console (ESX) or host OS (GSX).
The following demonstrates how you can accomplish this via a simple

script. After connecting to the ESX host and retrieving a IVmCollection of all

registered VMs, the script connects to each VM individually, checks the con-

nection status of the floppy device, and disconnects it accordingly.

' Set parameters used to connect to the ESX Server.

syngress.com

Set objConnParams = CreateObject ("VmCOM.VmConnectParams")

objConnParams.hostname = "esxserverl "

43

44

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

objConnParams.username = "adminuserl"

objConnParams.password = "passwordl"

' Establish connection with ESX host
Set objVMServer = CreateObject ("VmCOM.VmServerCtl")

objVMServer.Connect objConnParams

' Obtain list of registered VMs on host

Set objVMList = objVMServer.RegisteredVmNames

' Step through list of VMs and connect to each one
' individually. Disconnect floppy drive, if connected
For each ConfigFile in objVMList
Set objVM = CreateObject ("VmCOM.VmCt1l")
objVM.Connect objConnParams, ConfigFile
vmDevice = "floppyO"
if objVM.DeviceIsConnected (vmDevice) Then

objVM.DisconnectDevice (vmDevice)

vmDeviceStatus = "Now Disconnected"
Else

vmDeviceStatus = "Was already disconnected"
End If

WScript.Echo "Floppy for VM " & ConfigFile & ":"
WScript.Echo vbTab & "Status: " & vmDeviceStatus
WScript.Echo

Next

objVM = Nothing
objVMServer = Nothing

objConnParams = Nothing

SYNGRESS

syngress.com

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Managing Guests with User-Defined Variables

As mentioned earlier, another unique feature within the VMware Scripting
API is the ability to pass data between a script and a running virtual machine.
This can be accomplished in any direction—either passing information from
the script to a running virtual machine or passing information from inside a
running virtual machine to a script. The VMware Tools service facilitates the
interaction between the script and the virtual machine.

To pass information to or from the running virtual machine, you must set
the GuestInfo class of variable using the I"mCtl object.You can define any
number of key names and assign any string value to them. The following
example assumes that you have already established a connection to a specific
VM using the VmCtl object. Here we pass specific values to be retrieved later
inside the Guest OS.

Set objVM = CreateObject ("VmCOM.VmCt1l")

objVM.Connect objConnParams, "/home/vmware/serverl/serverl.vmx"
objVM.GuestInfo ("Department") = "Accounting"

objVM.GuestInfo ("CostCenter") = "5008620"

objVM.GuestInfo ("Priority") = "Low"

Once these values have been set, the information can be retrieved using
the VMuwareService.exe command for Windows guests or the vmware-guestd
command for Linux guests. In a similar fashion, you can use those commands
to set rather than get values to user-defined variables and retrieve them via
VmCOM scripts.

NoTEe

When passing information using Guestinfo, the data is not persistent. If
the virtual machine is powered off and all sessions connected to the vir-
tual machine are closed, the information originally shared with the VM is
lost. When the VM is powered on again, all Guestinfo variables are again
undefined.

45

46

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Working with the VmPerl API

The VmPerl API provides four Perl modules that are used to establish, main-
tain communication, and interact with a VMware ESX or GSX server or vir-
tual machine. Two of the modules are functionally equivalent to the
I’mServerCtl and VmCtl objects exposed by the VmCOM API, as discussed
earlier in this chapter. Both of these modules will serve as the primary mod-
ules for your Perl scripts. They are

® VMware::VmPerl::Server Used to create a session with an ESX
or GSX host and expose the services and functionality of the API’s
server interfaces.

m VMware::VmPerl::VM Used to manage and perform operations
against a virtual machine on a specific ESX or GSX host.

Also, similar to the supporting objects in the VmCOM API, there are two
supporting modules provided by the VmPerl API. These modules are used as
the inputs or outputs to the properties and methods exposed by the primary
modules. They are

® VMware::VmPerl::ConnectParams Provides host information

and authentication credentials used when establishing a connection to
an ESX or GSX host.

® VMware::VmPerl::Question Provides an interactive interface to

respond to questions or error conditions for a virtual machine run-
ning on an ESX or GSX host.

The process begins by establishing a connection with an ESX or GSX
host or a virtual machine on a particular host using the Connect() method of
either the VMuware::VmPerl::Server or VMuware::VimPerl::1VM objects. The
parameter $connectparams provides the appropriate input for the Connect()
method when establishing the connection to a host or virtual machine.

VMuware:: VmPerl: : Connect Params

The VMuware::VinPerl:: ConnectParams module provides the host information
and user credentials required by either the $server->connect() or $vm->connect(),
as well as the methods listed in Table 3.6.

SYNGRESS

syngress.com

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Table 3.6 VMware: :VmPerl: :ConnectParams Methods

Method Description

$connectparams->get_hostname() A string value that represents the DNS
host name of the VMware ESX or GSX
host or its IP address.

$connectparams->get_port() An integer value representing the TCP
port that should be used to establish a
connection with the VMware ESX or
GSX host. This property is optional.

$connectparams->get_username() A string value containing the username
to pass as credentials for the connec-
tion.

$connectparams->get_password() A string value containing the password
for the user set in the Username prop-
erty.

The following demonstrates the instantiation of the
VMuware:: VmPerl:: ConnectParams object:
use VMware::VmPerl;
use VMware::VmPerl::ConnectParams;

use strict;

my SsName = "esxserverl";
my S$port = 902;
my Suser = "adminuserl";

my Spasswd = "passwordl";

my S$connectParams =

VMware: :VmPerl: : ConnectParams: :new ($sName, Sport, Suser, Spasswd) ;

VMuware:: VmPerl::Server

The VMuware::VmPerl::Server module is used for programmatic interaction
with, and manipulation of, VMware ESX or GSX hosts running virtual

47

48 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

machines. Table 3.7 lists the methods associated with this module. With these

methods, you can

m Connect to a server.

m List the virtual machines on that server.

m Register and unregister configuration files for virtual machines.

m Create virtual machine objects

m Disconnect from the server

Table 3.7 VMware::VmPerl: :Server Methods

Method

Description

$server->connect()

$server->is_connected()
$server->get_last_error()

$server->registered_vm_
names()
$server->register_vm()

$server->unregister_vm()

$server->get_resource()

$server->set_resource()

Used to establish a connection with a
VMware ESX or GSX host. You must pass
$connectParams that specifies host informa-
tion and authentication credentials.

Used to determine if a connection exists.

Returns an array with information about the
last error.

Returns an array with the configuration file
name of each virtual machine registered with
the host.

Registers a virtual machine with the host.
You must pass the configuration file name
for the virtual machine.

Unregisters a virtual machine from the host.
You must pass the configuration file name
for the virtual machine.

Gets the value of a particular ESX Server
system resource variable. You must pass the
variable name. This method applies to ESX
Servers only.

Sets the value of a particular ESX Server
system resource variable. You must pass the
variable name. This method applies to ESX
Servers only.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

VMuware:: VmPerl:: VM

The VMuware::VimPerl:: VM module is used for controlling interaction with
virtual machines on VMware ESX or GSX hosts. Table 3.8 lists the methods
associated with this module. Examples of operations provided by this
module are

m Connect to a virtual machine.

m Check a virtual machine’s state.

m Start, stop, suspend, and resume virtual machines.
m Query and modify configuration file settings.

®m Answer status questions from virtual machines.

m Get a basic heartbeat from a virtual machine.

m Pass parameters to and from VMware tools in each virtual machine.

Table 3.8 VMware::VmPerl: : VM Methods

Method Description

$vm->connect() Used to establish a connection with virtual
machines running on a VMware ESX or GSX
host. You must pass $connectParams and the
configuration file name for the desired vir-
tual machine.

$vm->is_connected() Used to determine if a connection exists.

$vm->get_last_error() Returns an array with information about the
last error.

$vm->start() Powers on a virtual machine. You must pass

VM_POWEROP_MODE for the appropriate
behavior for this operation.

$vm->stop() Powers off a virtual machine. You must pass
VM_POWEROP_MODE for the appropriate
behavior for this operation.

$vm->reset() Powers off and then powers on a virtual
machine as a single operation. You must pass
VM_POWEROP_MODE for the appropriate
behavior.

49

50

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Table 3.8 continued VMware: :VmPerl: : VM Methods

Method

Description

$vm->suspend()

$vm->add_redo()

$vm->commit()

$vm->get_connected_users()

$vm->get_execution_state()
$vm->get_guest_info()

$vm->set_guest_info()

$vm->get_heartbeat()

$vm->get_tools_last_active()

$vm->get_config_file_name()
$vm->get_config()

Suspends a virtual machine. You must pass
VM_POWEROP_MODE for the appropriate
behavior for this operation.

Used to add a redo log to a virtual SCSI disk.
You must pass a reference to the target disk
for this operation. This method applies to
ESX Servers only.

Commits all changes in a redo log to a vir-
tual SCSI disk. You must pass a reference to
the target disk for this operation along with
the LEVEL, FREEZE, and WAIT parameters.
This method applies to ESX Servers only.

Returns a list of users connected to the host.

The list includes connections via a VmCOM or
VmPerl API session, MUI, and remote console
sessions.

Returns the virtual machine’s current state.

Returns the value of a shared variable of the
VMware Tools running in a virtual machine,
as referenced by the passed key index.

Sets the value of a shared variable of the
VMware Tools running in a virtual machine,
as referenced by the passed key index.

Returns the current count for a virtual
machine’s heartbeat as generated by the
VMware Tools.

Returns the number of seconds since the last
heartbeat was detected by the VMware Tools
running inside a virtual machine.

Returns the name of the configuration file.

Returns the value of a variable from the con-
figuration file of a virtual machine. You must
pass the name of the variable to retrieve.

Continued

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Table 3.8 continued VMware::VmPerl: :VM Methods

Method

Description

$vm->set_config ()

$vm->get_product_info()

$vm->get_pending_question()

$vm->answer_pending_

question()

$vm->device is_connected()

$vm->connect_device()

$vm->disconnect_device()

$vm->get_resource()

$vm->set_resource()

$vm->get_uptime()

$vm->get_id()
$vm->get_pid()

Sets the value of a variable from the configu-
ration file of a virtual machine. You must
pass the name of the variable to set. Note
that some variables cannot be changed while
a virtual machine is powered on, such as
memory size or CPU count.

Returns information about the VMware
product.

Returns a VMware::VmPerl::Question object
with information regarding any pending
questions.

Used to answer a pending question with an
available selection, as indicated by the
VMware: :VmPerl::Question object.

Used to determine if a virtual device is cur-
rently connected. You must pass a reference
to the device to target for this operation.

Connects a currently disconnected virtual
device. You must pass a reference to the
device to target for this operation.

Disconnects a currently connected virtual
device. You must pass a reference to the
device to target for this operation.

Returns the value of a virtual machine
resource variable. You must pass a reference
of the variable to target for this operation.
This method applies to ESX Servers only.

Sets the value of a virtual machine resource
variable. You must pass a reference of the
variable to target for this operation. This
method applies to ESX Servers only.

Returns the uptime of the guest OS in a
virtual machine.

Returns the UUID of a virtual machine.
Returns the process ID of a virtual machine.

51

52

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Table 3.8 continued VMware: :VmPerl: : VM Methods

Method Description

$vm->get_capabilities() Returns the permission of the user used to
establish the connection. This method
applies to ESX Servers only.

$vm->get_runas_user() Returns the name of the user running the vir-
tual machine. This method applies to GSX
Servers only.

$vm->set_runas_user() Sets the user credentials for the virtual
machine to run under the next time a power-
on operation is performed. You must pass
the username and password as parameters
for this method. This applies to GSX Servers
only.

In addition to these methods, the VMuware::VimPerl:: 1M module exposes

symbolic constants that also provide inputs and outputs to methods in Table
3.8.They are

s VM_EXECUTION_STATE Specifies the state or condition of
the virtual machine.

s VM_POWEROP_MODE Specifies the behavior of a power tran-
sition operation.

= VM_PRODINFO_PRODUCT Specifies the name of the
VMware product.

= VM_PRODINFO_PLATFORM Specifies the host’s platform.
VMuware:: VmPerl:: Question

The VMuware::VmPerl:: Question module provides an interface to answer
pending questions or error conditions that leave virtual machines in a stuck
execution state. As a sub-object to the VMuware::VimPerl:: VM module, you
instantiate the Question object by calling the get_pending question() method.
Table 3.9 lists the methods associated with this module.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Table 3.9 VMware: :VmPerl: :Question Methods

Method Description
$question->get_id() Returns an integer value to identify the question.
$question->get_text() Returns the text of the question as a string value.

$question->get_choices () Returns an array of string values that represent all
of the possible answers to the question.

Putting It All Together

With the objects that we have reviewed, you can build simple yet powertul
scripts and applications to manage your VMware ESX and GSX Servers and
the virtual machines that run on them. Similar to how scripting with WSH
and WMI has revolutionized Windows administration similar to what Unix
administrators have always enjoyed, you can automate many VMware admin-
istration tasks, ensuring that each host and VM has a consistent and managed
configuration.

You will really reap the benefits of the VmCOM and VmPerl API as you
write scripts and applications to address tasks that were either too complex to
perform manually (and subsequently never performed) or too difficult to
manage in an infrastructure that frequently changes. In this section, we will
review some examples of how the APIs can solve some common problems.

NoTE

For all these examples, and for all of your own development efforts, be
sure to have the appropriate Scripting API installed on your development
machine, as well as on your test machine, if not the same.

Example 1: Disconnecting Devices from Every Registered VM

Often, VMware administrators put excessive loads on the Service Console by
leaving devices that are seldom used connected to the hosted VMs. In partic-
ular, administrators should try to disconnect virtual CD/DVD-ROM drives,

especially in Windows-based VMs, as well as floppy drives (probably the most

53

54

SYNGRESS

syngress.com

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

unused device), to minimize the overhead these devices place on the Service
Console. For our first example, we will demonstrate a simple administration
script using VmPerl to perform this administration task easily, regardless of
how many VMs are running on the VMware host.

First, we begin by ensuring that the Perl modules are located and can be
used by the script. This is only a consideration that needs to be addressed in
Perl scripts running on a Windows-based machine.

This script will disconnect the following devices from the
running VMs on the target ESX or GSX server:
* floppy0

* idel: 0

Add paths when running script on a Windows machine
BEGIN {
if ($70 eq "MSWin32") {
@INC = (
Set the path to your VmPerl Scripting directory if different

'C:\Program Files\VMware\VMware VmPerl Scripting
API\perl5\site perl\5.005',

'C:\Program Files\VMware\VMware VmPerl Scripting
API\perl5\site perl\5.005\MSWin32-x86"') ;

}

Next, we begin instantiating our Perl modules. In this example, we will
only need VMuware::VimPerl:: ConnectParams, VMuware::VmPerl::Server, and
VMuware:: VmPerl:: VM.
use VMware: :VmPerl;
use VMware: :VmPerl: :ConnectParams;
use VMware: :VmPerl: :Server;
use VMware: :VmPerl: :VM;

use strict;

SYNGRESS

syngress.com

SYNGRESS

syngress.com

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Then we define our connection parameters and establish a connection
with our VMware host. It 1s always a good practice to code error handling
each time you invoke a method. The most basic way to handle any exception
is to simply stop the execution of the script with the die directive.

Create a Connect Params object; no params to new() connects to local

machine

my S$sName = "esxserverl";
my Sport = 902;

my Suser = "adminuserl";

my S$passwd = "passwordl";

my $connectParams =

VMware: :VmPerl: : ConnectParams: :new ($sName, Sport, Suser, Spasswd) ;

Create a Server object

my S$server = VMware::VmPerl::Server::new() ;

Connect to the server using the connect_params
if (! $server->connect ($connect params)) {

die "Could not connect to local server\n";

Next, we enumerate the VMs registered with the VMware host and
attempt to disconnect the floppy drive and CD-ROM drive from each VM.
In this example, we are assuming that only one floppy drive exists as floppy0
and that only one CD/DVD-ROM exists on the IDE bus as ide1:0.

Get a list of registered vmxs
my @list=$server->registered vm names() ;
foreach my $vmx (@list) {
my $vm = VMware: :VmPerl::VM: :new() ;
if ($vm->connect ($connect params, $vmx)) {
print "\n" . $vm->get_config("displayName") ;

if ($vm->disconnect device ("floppy0")) {

55

56 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

print "\n\tFloppy disconnected.";
} else {

print "\n\tFloppy not disconnected.";

}

if ($vm->disconnect device("idel:0")) {
print "\n\tCD-ROM disconnected.";

} else {

print "\n\tCD-ROM not disconnected.";

}

} else {

print "\nCould not connect to VM.";

This script can be easily modified to perform other operations against
each VM, such as initiating a snapshot, suspending them, or simply gathering
information about each VM as part of a documentation process.

Example 2: Simple GUI to List All Virtual Machines

This example follows a simple workflow, demonstrated in Figure 3.5. First,
you capture the basic information as required by the VmConnectParams
object in one form.Then you will pass that information to another form that
will connect the VMware host and retrieve the list of VMs using the
I’mCollection object. Finally, you will display the configuration file information
for each registered VM.

The first step is to create two forms, one called frimConnect and the other
called frmVMList. An example of frmConnect is shown in Figure 3.6.This form
is composed of three labels, three text boxes (vHostName, vUserName, and
vPassword), and one button (btnConnect).

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Figure 3.5 Process Diagram for Simple GUI Application

Open
frmConnect
v
Get Inputs
vHostName
vUserName
vPassword
btnConnect Invoke Open
clicked ConneciToHost frmVMList
Display Registered
VMs’ config files
\/\

Figure 3.6 The Connection Form in Design Mode

7 VmCOM Example - Microsoft Visual Studio

Fle Edt Vew Project EBudd Debug Data Format
i bl L b oo

Tools Window Community Help

e R’ RS

frmComect.vb® " frmConnect.vh [Design]™®

Pt -J'Jl,}f;

&7 Connect to VMware Server E@]
Erter the host name: of the GSX or ESX Server,
Ertar the user nama for the connection:

Enter the passwond for the user:

Lu]

The btnConnect control is then used to pass this data to_frm I’MList. This is
accomplished by creating a new instance of frml/MList and assigning the

57

58 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Connect ToHost method to the click event of the control, as shown in the fol-
lowing code fragment.

Public Class frmConnect
syngress.com
Private Sub btnConnect Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnConnect.Click
Dim VMListForm As New frmVMList
VMListForm.ConnectToHost (vHostName.Text, vUserName.Text,
vPassword.Text)
VMListForm. Show ()

End Sub

End Class

The logic in frmVMList captures the value for the host name, username,
and password to build to connection parameters. After establishing the con-
nection to the host, we then enumerate all of the VMs registered with the
VMware host and retrieve the configuration file for each one, afterward
adding that string value to a listbox control visible in the form.The following
code shows how this is done.

Public Class frmVMList

syngress.com
Dim objConnParams As New VMCOMLib.VmConnectParams
Dim objVMServer As New VMCOMLib.VmServerCtl
Dim objVMList As New VMCOMLib.VmCollection

Dim ConfigFile As String

Friend Sub ConnectToHost (ByVal HostName As String, ByVal UserName As _
String, ByVal Password As String)

objConnParams.Hostname = HostName

objConnParams.Username = UserName

objConnParams.Password = Password

objVMServer.Connect (objConnParams)

objVMList = objVMServer.RegisteredVmNames

For Each ConfigFile In objVMList

1bxVMs.Items.Add (ConfigFile)

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Next

End Sub

Private Sub btnClose Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnClose.Click
Me.Close ()

End Sub

End Class

Figure 3.7 shows a sample output from running our VmCOM sample
application. Although this example is basic, you can easily expand on its code
base and create your own management application.

Figure 3.7 A Sample Listing Showing the Configuration Files for Each
Registered VM

-~

o' Registered VMs g@-\

/homevmware./p2vassist p2vassist v ”
Shome Avmware,maroni/marani v '
shomesvmware ‘webgatewaywebgateway . vmx
shomevmware/ec-app1/ec-app 1 vmx
ShomeAvmwareAab1Aab 7 v

Sroot Avmwareec-wss 1/ecwss 1 vmx

Sroot Avmware‘ec-mail 1/ec-mail 1 v
frootAvmware/ec-sa l/ec-sa 1 vmx _i
shomeAemwares Ubuntu/Ubuntu v]

Close

Example 3:'lest Automation with VMuware

Quality management departments are regularly challenged by the difficulties
and expense of configuration testing. To truly certify that software products
will run on the wide variety of hardware and software that exists in the field,
they must run tests against a daunting variety of configurations. Virtual
machines provide a great way to cost-eftectively provision the various config-
urations which the test application runs, including hardware differences (for

59

60

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

example, amount of memory, network speed, graphics display resolution, and
so on) and software difterences (such as OS version, service packs, browsers

and their versions, shared libraries, and so forth). However, managing a large
library of virtual machines can itself present challenges to the testing process.

You can help realize great benefits by enhancing quality and functional
testing further with virtual machines by including automation in the test
cycle. By identifying and documenting the testing process and workflow, you
can then create automation scripts that quality analysts and managers can run
to “initialize” their test environment prior to running a battery of tests, and
then release those resources when the test is complete.

The diagram shown in Figure 3.8 demonstrates a process diagram out-
lining the steps that the automation scripts must take, easily built on Perl or
an ActiveX-compatible scripting language. This workflow can involve interac-
tion with other interfaces, such as ADO, WSH, and WMI; however, the
Scripting APIs play a big role in the design and execution of this testing pro-
cess. Although we do not show any script samples here, the operations to be
performed are well-documented in the programming and reference guides
provided by VMware.

Figure 3.8 Sample Process Diagram for Test Automation with VMware
(| = |)

hat tests
are there?

Display available
test cases fo
choose from

Query for
available test
cases

QAor (M
Database

Query for
Select test required VMs
cse for chosen
test

¥

Connect fo The logic for this part of
VMware the process is developet
Host using the Scripting API

or other VMware SDK
Get collection
of WMs

Step throug|
collection

FOR EACH VM...

G

Is VM .
require
?or this

fest case ?

Power on
VM

4

END
application

Scripting and Programming for the Virtual Infrastructure « Chapter 3

VMware Virtual Infrastructure SDK

Even more powerful than the VMware Scripting APIs, VMware has released
Virtual Infrastructure (VI) SDK to give developers a standards-based avenue
to manage their VMware investment. Today, there are two versions of the VI
SDK tied to the two predominant releases of the VMware ESX Server and
VirtualCenter products. In this section, we will review the architecture of the
VI SDK 2.0 (for managing ESX 3.0 and VirtualCenter 2.0), as well as the VI
SDK 1.1 (for managing ESX Server 2.5.x and VirtualCenter 1.x).

Why continue to discuss the original VI SDK release 1.1? With the
release of the Virtual Infrastructure 3 and VI SDK 2.0 in June 2006, VMware
is banking on lots of customers upgrading to the latest release to take advan-
tage of the additional benefits and features available. However, the conversion
to this major upgrade will take some time, as customer test their upgrade
strategies, gain acceptance from the user and business community, and actually
perform the upgrades in accordance with their internal change management
processes. In addition, VI SDK 1.1 scripts can still be run against the new ver-
sion 1if configured for backwards-compatibility.

In the following sections, we will review the architecture and composition
of the VI SDK, developing with the SDK 1.1, and developing with the SDK
2.0. Each version of the SDK 1is discussed separately because of the substantial
differences between them; however, the concepts discussed can be incorpo-
rated in your development activities regardless of which version you are
coding for.

What Is the VMware Virtual Infrastructure SDK?

About the time that VMware released ESX Server 2.x, VMware
VirtualCenter started to really become the central tool for managing the vir-
tual infrastructure. Although the Management User Interface, or MUI, con-
tinued to be available, it was primarily used for host configuration while
administrators chose to manage the virtual machines themselves with the
VirtualCenter client. As the virtual infrastructure continued to grow, the MUI
also showed its weakness in managing larger farms or arrays of VMware hosts,
since each MUI instance can manage one and only one VMware host.

61

62

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

The paradigm change of VI, management shifting its focus to managing in
groups in a hierarchal manner rather than managing individual resources was
further heightened by the introduction of new infrastructure features such as
virtual machine migration, new provisioning techniques and options, and
managing virtual machines independently of what VMware host they are
running on. Such an extensive and complex management scope provided
opportunities to ISVs and savvy administrators and developers to create
custom tools to increase the efticiency of managing VI; however, they needed
internal hooks into the products to be able to do so in an open manner.

VMware responded to this need by releasing and continuing to enhance
the Virtual Infrastructure SDK. With the VI SDK, developers can integrate
the management of VMware’s server products into their existing data center
management solutions or develop a new solution from the ground up. With
the release of VI SDK 2.0, VMware has expanded the capability of the SDK
to include managed objects and a robust, yet less complex, object model that

supports all the previous operations, as well as new ones, such as host configu-
ration, DRSS, and HA feature set.

The VI SDK Architecture

The VMware VI SDK is made up of two important elements, the VMware
VirtualCenter Web Service and the actual SDK package itself, which contains
the supporting binaries needed, samples, and reference and programming
guide documentation.

Before starting to develop with the SDK, you must understand its archi-
tecture. As shown in Figure 3.9, the VI SDK 1.1 interfaces with the Web ser-
vice component of VirtualCenter via SOAP calls over HTTP or HTTPS.
This interface is the only available Web service for managing virtual machines
running VMware ESX hosts. Without VirtualCenter, administrators and
developers must utilize the VMware Scripting APIs discussed earlier in this
chapter to perform a more limited set of operations against virtual machines.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Figure 3.9 The Virtual Infrastructure SDK 1.1 Architecture

> Proprietary

(TCP port 902)
RN

VirtualCenter
Console

Calls via SOAP
(HTTP/HTIPS)
—

VirtualCenter
Server

[Web Service] [Viriuul(enier)
vma_exe vpxd exe

ay/s

Management System

running SDK app A
\@ VmPerl

\

S ESX1 ESX2 ESX3
Management Client

In contrast, Figure 3.10 shows the updated architecture of the VI SDK
2.0, both with and without VirtualCenter implemented. Beginning with the
VI SDK 2.0, VMware has standardized the SDK for both ESX hosts and
VirtualCenter. In addition, VMware has overhauled the object model and
hierarchy of the SDK and included robust host management operations as
well. As a result, management applications built on VI SDK 2.0 are more
powerful and no longer have a dependency on VirtualCenter. That does not
mean that the SDK replaces VirtualCenter, though, as enterprises should still
implement VirtualCenter to maximize their management capabilities and
potential.

The VirtualCenter console, or client, still connects to VirtualCenter using
the proprietary VMware communication protocol over TCP port 902, the
same as the communication between the VirtualCenter server and the regis-
tered ESX hosts. Although the two communication interfaces are different,
they both expose the same operations that administrators can use to accom-
plish the same set of tasks.

63

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Figure 3.10 The Virtual Infrastructure SDK 2.0 Architecture

S Proprietary ()
N (TCP port 902) e
N — |82
EE
VirtualCenter 5 e
Console
R
Calls via SOAP S|y
(H'ITP/HT]-PS) =% VirtualCenter
\\: Ss Server
—> |ZE
® JE— =2 =
N —/
N VirtualCenter
Management System (ommunication]
running SDK app SOAP calls to ESX
directly o ESX v
v v 3

ESX1 ESX2 ESX3
t_t 1
| Vm(OM VmPerl |
Management Management Management
Client Client Client

7

Overview of the VMware
Virtual Infrastructure Web Service

As previously mentioned, there are two components to the VMware SDK, the
Web Service and the SDK package itself. The web service installs as part of
the VirtualCenter installation, and as part of the ESX installation (version 3.0
only), and serves as the gateway to all of the advanced management operations
that can be performed against VirtualCenter, ESX Server, and virtual
machines.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

What Are Web Services?

According to the W3C, a Web service is a software system designed to sup-
port interoperable machine-to-machine interaction over a network. It has an
interface that is described in a format called a Web Service Description
Language (WSDL), which is an Extensible Markup Language (XML)-based
description on how to communicate with the Web service. Other systems
interact with the Web service in a manner prescribed by its interface, or
WSDL, by exchanging XML messages that are enclosed in a Simple Object
Access Protocol (SOAP) envelope. These messages are typically conveyed
using HTTP, and normally comprise XML in conjunction with other Web-
related standards. Software applications written in various programming lan-
guages and running on various platforms can use Web services to exchange
data over computer networks like the Internet in a manner similar to inter-
process communication on a single computer.

This interoperability is due to the use of open standards. These standards
are defined and maintained by several committees and organizations respon-
sible for the architecture and standardization of Web services, such as:

m Organization for the Advancement of Structured Information
Standards (OASIS)

= World Wide Web Consortium (W3C)
m Web Services Interoperability Organization (WS-I)

The latter organization, WS-I, is a charter that promotes interoperability
across platforms, applications, and programming languages. Its goal is to be a
standards integrator to help Web services advance in a structured, coherent
manner. There are so many standards that need to be coordinated to address
basic Web service interoperability issues, and the standards are all being devel-
oped in parallel and independently. To overcome these issues, the WS-I has
developed the concept of a profile, defined as a set of named Web services
specifications at specific revision levels, together with a set of implementation
and interoperability guidelines recommending how the specifications may be
used to develop interoperable Web services.

65

66

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

I"Muware VI SDK Conformance and Web Service Standards

Both the VMware Infrastructure SDK 1.1 and 2.0 conform to the WS-I Basic
Profile 1.0, which expresses a set of assertions about the format and interoper-
ation of the SOAP messages and the WSDL document exchanged between
clients and the Web service itself. This profile covers and ensures compliance
with the following:

m XML Schema 1.0

m SOAP 1.1
= WSDL 1.1
= UDDI 2.0

One of the advantages of Web services is that they are language-agnostic;
any programming language may be used to access the interface. In practice, an
adequate Web services toolkit must be available and supported by the chosen
language; however, administrators and developers can design management
applications based on the SDK with any language and toolkit they choose
thanks to the high level of testing and compliance to the above standards.

Operations Available

Using the Virtual Infrastructure SDK

The API exposed by the VI Web service provides a powerful set of operations
that can be performed when managing your virtual infrastructure. These
operations can be categorized into three areas—basic, element management,
and virtual computing. The exact set of operations available to you will
depend on which version of the VI SDK you are developing against, and
what VMware products you are using.

Operations for Basic Web Service Client Interaction

Each version of the VI SDK has standard functionality to facilitate establishing
and maintaining connections with the VI Web service. These operations are
used regardless of what function or role your applications will have. These
basic operations include

m Logging in to the Web service

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Logging oft from the Web service
Traversing up and down the object hierarchy

Grabbing a handle of objects and items exposed by the Web service

Operations for Element Management

Element management consists of the operations used to manage the physical

host machine running the VMware ESX Server software. All versions of the

VI SDK expose APIs for the following element management operations:

Virtual machine creation
Virtual machine deletion

Virtual machine configuration, including all attributes found in the
corresponding VMX file

Virtual machine power operations, including power on, power off,
reset, suspend, and resume

Virtual machines inventory in a flat namespace

Virtual disk configuration and management

Virtual machine guest OS customization

Physical host and virtual machine performance data collection

Event and alert management

In addition to these, VI SDK 2.0 also adds the following element manage-
ment operations that facilitate additional management capabilities for the

physical components in the virtual infrastructure:

Virtual machine inventory with a nested folder hierarchy
Filtered property collection using the Property Collector
Host connection and disconnection from VirtualCenter
Host reboots or shuts down

Datastore creation and removal from a specific host

Internet service and firewall configuration for a specific host

67

68

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

m Detection and configuration of storage attached to a host

m Configuration of network interfaces and virtual switches, and config-
uration for a specific host

Operations for Virtual Computing

Virtual computing consists of the operations used to manage the virtual
infrastructure as a whole without targeting any specific host. These operations
are more geared towards the virtual machines themselves, providing an API to
the features that make VMware VI such a powerful platform. All versions of
the VI SDK expose the following virtual computing operations:

m Direct virtual machine management, regardless of which physical host
the virtual machines are running on

m Virtual machine migration via VMotion

m Virtual machine provisioning using templates and cloning

The VI SDK 2.0 also adds operations that take advantage of the new fea-
tures release with VirtualCenter 2.0 and ESX 3.0. These new virtual com-
puting operations are

m Distributed Availability Services (DAS), allowing virtual machines to
failover to another host in the event of a host failure

m Distributed Resource Scheduling (DRS), supporting the migration of
virtual machines from one host to another based on resource require-
ments and desired load-balancing results.

Developing with the
Virtual Infrastructure SDK 1.1

The first step to developing with either SDK 1is to download the appropriate
SDK package. The latest package for VI SDK 1.1 when this book was pub-
lished was build 19058 for VirtualCenter 1.3.The SDK package is distributed
as a Zip file that contains two primary directory paths. The first path contains
the wsdlProxyGen.exe tool, and the second path contains code samples and
automation scripts for building the samples, documentation, and sample
vma.wsdl and autoprep-types.xda files.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Tip

It is recommended that you always download and use the latest version
of the SDK, available on VMware’s site at
www.vmware.com/support/developer. Although code that you write
against the SDK released alongside a previous release of VirtualCenter
may work, it is a good practice to make sure that the SDK is the same
version as your VirtualCenter installation or newer.

Central to any interaction or development with a Web service is the con-
sumption of that Web service by the client application. In order to consume
the Web service, we must follow three basic steps:

1. Prepare the VI Web service by modifying the configuration file as
needed.

2. Generate the proxy class of the VI Web service and consume the
Web service source file.

3. Write the code for your management application.

As we walk through these steps, we will demonstrate them in both C#
and VB using Microsoft Visual Studio 2005. Even so, this example and walk-
through can easily be modified for Java or Perl development. For additional
examples of using VI SDK 1.1 in those languages, see the samples included
with the SDK Package.

Preparing the Virtual Infrastructure Web Service

Out of the gates, the VMware VI Web service has an initial configuration
based on the configuration options selected during the VirtualCenter installa-
tion. However, you may find it necessary to modify those configuration set-
tings in order to support your custom management applications. Since the
Web service is only used by custom applications with this release of the SDK,
any configuration changes made will not impact the functionality of the
VirtualCenter client or its interaction with the ESX hosts that are managed
by VirtualCenter.

69

70 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

The recommended approach is to test your changes, and then commit
them. To do both, you use vma.exe. But first, let’s review the configuration
options and discuss the syntax for the vma.exe command. Code Listing 3.1 1s a
sample of a vmaConfig.xml file.

Code Listing 3.1 A vmaConfig.xml File
<vma>

syngress.com

<service>

<wsdl>vma.wsdl</wsdl>

<eventlog rollover="true" file="vma" level="info"
console="true"/>

<sslport>8443</sslports>

<externalSchemas>

<schema>autoprep-types.xsd</schema>

</externalSchemas>

<sslCert>C:\Documents and Settings\All Users\Application
Data\VMware\VMware VirtualCenter\VMA\server.pem</sslCert>

<sslCAChain>C:\Documents and Settings\All Users\Application
Data\VMware\VMware VirtualCenter\VMA\root.pem</sslCAChain>

</service>

<subjectss>

<subject>
<implementation>VCenter 1.l</implementations>
<path>/vcenter</path>
<hostname>localhost</hostname>
<port>905</port>
<eventlog level="info"/>
<ssls>true</ssl>
<preload>true</preloads>
<index>

<defaultFarm>Default Farm</defaultFarm>

Scripting and Programming for the Virtual Infrastructure « Chapter 3

</index>
</subject>
</subjects>

</vma>

Three elements, or sections, make up the Web service configuration:
service, externalSchemas, and subjects. The service element, a top-level element, 1s
used to configure the Web service itself. The externalSchemas element, a child
element of the service, contains a list of all the XSD files that should be
included and exposed in addition to the vma.wsdl file. These files are used to
customize the VI Web service’s schema, and should not be modified.
Currently, the only XSD listed is autoprep-types.xsd, which is used to per-
form customization operations against the guest operating system running in
a virtual machine. The subjects element, another top-level element, contains
child elements, or individual subject elements, that hold configuration
attributes used to support connections to other data sources. Only one subject
is currently supported, and represents the connection the Web service estab-
lished with the VirtualCenter Server. Table 3.10 and Table 3.11 describe the
configuration attributes for the two top-level elements, service and subjects.

Table 3.10 Service Configuration Attributes

Element Description

Eventlog Configures the event logging of the Web service.
Sslport The port the HTTPS listener is configured to listen on.
sslCert The certificate file and path.

ssICAChain The certificate CA chain file and path.

Table 3.11 Subjects Configuration Attributes

Element Description

Path Beginning of the VirtualCenter hierarchy.

Hostname The host name of the VirtualCenter server. Default is
“localhost”.

Continued

71

72

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Table 3.11 continued Subjects Configuration Attributes

Element Description

Port TPC port for the proprietary VMware communication
with the VirtualCenter server. This is not the same port
used for SOAP HTTP-based communication.

Ssl Boolean parameter for whether the VirtualCenter con-
nection should be secured with SSL.

defaultFarm The server farm in VirtualCenter that connections will
default to.

periodicPerfRefresh Boolean parameter for performance counters. This

Enable attribute is not documented in any of the SDK docu-

mentation and does not exist by default. It should only
be added if this functionality is needed and will be
used.

authorizationEnable Boolean parameter for the state of managing security
with object ACLs. By default, this attribute is not
declared in vmaConfig.xml and is enabled. To disable
the use of ACLs, add this attribute with the value of
false.

Once you have determined what parameters need to be adjusted, you
should test those new parameters. You can do this by manually running the VI
Web service from a command line. The following steps demonstrate a sample
testing process for validating your changes.

1. Make a copy of the vmaConfig.xml file from c:\Documents and
Settings\All Users\Application Data\VMware\VMware
VirtualCenter\VMA

2. Edit the copy of vmaConfig.xml with the updated parameters.
Among your changes, set eventlog to verbose and console to true.

3. From a command line, change to the directory where the copy of
vmaConfig.xml exists.

4. From that directory, run the Web service manually using the fol-
lowing vma.exe statement: <InstallDrive>:\Program
Files\VMware\VMware VirtualCenter\vma.exe —config
vmaConfig.xml

Scripting and Programming for the Virtual Infrastructure « Chapter 3

5. To commit your changes, either copy your modified vmaConfig.xml
file to the directory mentioned in step 1 or use the vma.exe com-
mand with —update and the appropriate option switches.

6. Restart the VMware VirtualCenter Web Service using the Services
MMC snap-in.

Working with the VMware WSDL

With the Web service configured and ready to use, you can now generate a
proxy class, or stub, for the VI Web service. This is done by consuming the
service source file, or WSDL.You can view the WSDL by browsing the
appropriate URL, such as https://esx1.sample.com:8443/?wsdl. The server
name and port number will vary, depending on how you have configured
your VI Web service.

You can choose to create a proxy using any method. However, you should
ensure that any declarations to types defined by the WSDL that conflict with
NET classes are escaped. For example, a stub in the proxy source code for
the type CPUPerf (WSDL-defined) with a field called system would nor-
mally look like the following snippet:

Public System as SystemInfo
Since this field will conflict with the .NET predefined class System, it
should be escaped by explicitly declaring the field as an XML element

attribute and using a name other than “System” in the class declaration, as fol-
lows:

<System.Xml.Serialization.XmlElementAttribute ("System")>

Public VMSystem As SystemInfo

NoTE

Since our examples here will be based on .NET languages in the

Microsoft Visual Studio 2005 IDE, most developers will opt for using
the build in a WSDL.exe proxy generator from the command line or
including a Web Reference in the project. However, due to misclass-

73

74

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

ifications when running WSDL.exe, these are not valid methods for
generating the proxy. For more information, see
http://support.microsoft.com/default.aspx?scid=kb;en-us;326790.

The sample application included with the SDK Package demonstrate this
workaround, and can be directly included in your projects.

Alternately, VMware provides a proxy generator tool, wsdIProxyGen.exe,
which you can use to create the appropriate proxy class for either C# or
VB.NET. This tool is a simple GUI that will parse the vma.wsdl file as well as
any external schemas referenced, such as autoprep-types.xsd, to create a
proper reference source code file. Figure 3.11 demonstrated sample input
when using this tool to create a reference file for your project. Using the fol-
lowing steps, you can create your own WSDL proxy to use in your project.

1. Run wsdlProxyGen.exe on any Microsoft Windows 2000, XP, or 2003
system.

2. In the Input section, enter or browse to the location of the vma.wsdl
file that is included in the SDK Package. For example, the file may be
located at C:\VMware-sdk-e.x.p-
19058\SDK\WebService\wsdl\vma.wsdl.

3. In the Output section, enter or browse to the location where you
want the resulting output source code file to be located. To reduce
steps, you should enter the path to your existing Visual Studio pro-
ject, if you have created one already. This file should be named appro-
priately for the language that it will be compiled in, such as
reference.vb tor VB.NET projects, or reference.cs tor C# projects.

4. Select the appropriate output language you want the resulting source
code to be in. This, of course, should match the language your project
1s in.

5. Click Generate.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Figure 3.11 VMware's wsdlProxyGen Tool

'S¢ WSDL Proxy Generator

i =X

Input: {%

Flease. specify below the WSOL file for which you want to generate proxy code:

Dutput:

[\WMuare-sdce x 015058\ S DK Web Service wad wma wsd

Please, specify belew the file path for the cutput source code:

|: \MyProjectsh SDK Sample velerence v

Dutput Language:
2 = [isusl Basic]

Generate

=

Looking at the resulting file, you will notice important .NET 2.0 names-
paces included (if you are developing in Visual Studio .NET 2003, you will
see .NET 1.1 namespaces). It is possible that one of the required namespaces,
such as System.Web.Services, may not exist as a reference in the project, and
will need to be manually added to avoid compilation errors. If you do receive
any errors when compiling that state a particular type “is not defined” or that
a type “is not a member” in the proxy file you created (as shown in Figure
3.12), add the appropriate reference to the project and attempt to compile

again.

Figure 3.12 Compilation Errors Received When System.Web.Services Is Not

Imported

Error List

|i3 102 Errors | | 0y 0 Warnings | ([) 0 Messages
Description

not defined.

@ 3 U s not a member of 'SCKSample Viware. vma. vmaService'.
Q@ 4 Type 'System.\Web Services Protocols. SoapDocumentMethodAttribute’ is reference.vb

@ 5 'Tnwvoke'is not @ member of 'SDKSample. Vihvare. wma. vmaserice”,

File

n Type ‘System. Web. Services. WebServiceBindingAttribute’ is not defined,
@ 2 Type ‘System.\WVeb.Services, Protocols. SoapHitpClentProtocol is not referenca.vb
defined.

reference vb

reference. vb

75

76

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Virtual Infrastructure
SDK 1.1 Concepts and Terminology

With all of that preparation out of the way, you are probably ready to jump
in and start writing some code. An understanding of the data model and
datatypes will allow you to perform the element management and virtual
computing operations programmatically. This logical structure of the VI
Web service is critical to your success in developing effective and functional
applications.

Path Hierarchy

There are several key concepts that must be understood prior to diving into
code development against the SDK. The logical presentation of Web service’s
data and methods is in the structure of a path hierarchy, similar to a file
system’s hierarchy of directories and files. In this comparison, files are the
target of most file system operations, although some operations can be per-
formed against directories as well. Also, directories can contain file or other
directories, forming a type of hierarchy that can be traversed. Similarly, the
objects exposed by the VI Web service are arranged in a hierarchical struc-
ture, as shown in Figure 3.13.This structure can be traversed to accomplish VI
management tasks in your applications.

Figure 3.13 The Virtual Infrastructure SDK 1.1 Path Hierarchy

customProperty
datastore
event

template
unk

=

iy

webservice

Scripting and Programming for the Virtual Infrastructure « Chapter 3

One particular path, /vcenter, can be a particularly large hierarchy. It rep-
resents the hierarchy that administrators see using the VirtualCenter client. It
can also be one that changes regularly, as administrators reorganize virtual
resources into farms and groups. This can cause challenges to your application
since targeting a particular host or virtual machine using this path requires
that you know its complete path in VirtualCenter. For example, you may have
two virtual machines located at the following path:

/vcenter/FarmGroupl/VirtualMachineGroupl/VirtualMachineA

/vcenter/FarmGroupl/VirtualMachineGroup2/VirtualMachineB

An administrator may choose to relocate VirtualMachineB to a new
Virtual Machine Group, VirtualMachineGroup3, resulting in a path as follows:

/vcenter/FarmGroupl/VirtualMachineGroup3/VirtualMachineB

Without any knowledge of this change, operations that targeted
VirtualMachineB would now fail unless the referenced path was altered to
reflect the virtual machine’s new location. Although it is possible to keep
track or identify paths by recursively traversing the entire /vcenter hierarchy
to seek out a host or virtual machine, you may choose to use the /host or
/vm paths instead. Both /host and /vm are a flat namespace, shortcuts if you
will, that contain every host and virtual in the /vcenter hierarchy. Because of
its flat nature, you don’t have to know its exact path to target it in your appli-
cation. This can be particularly useful if the only input you have is the host or
virtual machine name.

‘Terminology

While traversing the hierarchy, you will deal with objects and items. Objects
are described by an XML document and are the central focus of the VI Web
service. This XML document describes the type associated with the object as
well as its value. Some objects have child objects that are referenced as nodes
in the XML document, and subsequently have their own structure as well.
Continuing with our file system analogy, the following is a list of objects
exposed by the VI Web service that compare with directories:

77

78

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

m Container
m Farm

m VirtualMachineGroup

All of these objects are containers by nature; however, Farms and
VirtualMachine Groups are special containers with limitations and boundaries
imposed on them. Containers are logical assemblies, or arrays, of items.

A container object is the most general and highest-level object type. The
Farm and VirtualMachineGroup objects are also containers, but contain a lim-
ited subset of item types. Farms represent the farms in VirtualCenter and are
located in the /vcenter path. They can only contain the VirtualMachineGroup,
Host, and VirtualMachine objects. The VirtualMachine Group object is also a rep-
resentation of the same in VirtualCenter and located in /venter. It can only
contain the other VirtualMachineGroup and VirtualMachine objects.

The items, again comparable to files in a file system, are only found
within these three object types. They are secured using an ACL, the same
security definition you configure in the VirtualCenter client. Each item is
identified by a key, which is a unique handle assigned to the item during the
session.

The remaining objects, shown in continuation, are all comparable with
files in a file system, and are handled similarly:

m Host

m VirtualMachine
m Task

m TaskSchedule

m EventDeclList

m EventCollection
m PerfFilter

m PerfCollection

m Template

Scripting and Programming for the Virtual Infrastructure « Chapter 3 79

In order to work with all of these objects, you will need to get their
Handle or vHandle. A handle is a pointer or token that is associated with each
object during your connection session. Handles uniquely reference each
object; so consequently there can only be one handle per object and only one
object per handle. These handles are needed to invoke any operations against
the object. Handles are retrieved using the GetContents method.

vHandles are similar to handles, but refer to the state of the object at a
particular point in time. As objects can change over time, vHandles can be
used to determine if any changes have occurred since the last time informa-
tion was retrieved. vHandles are updated with the GetUpdates method and are
very efticient since only XML dift documents are sent with the changes, if
any, rather than the entire XML document describing the object.

Programming Logic for the SDK

Interaction between your management applications and the Web service will
involve certain activities. Which activities you will need to perform will be
based on what task you are trying to accomplish. Your application needs to
obtain handles to each object that you will perform operations against as ref-
erenced by their path.You can then read information about the object
through the returned XML document, request updated information about the
object, modify and commit any changes (using the PutUpdates method), and
perform any operations exposed by the Web service.

Your programming logic should also factor in all of the concepts we have
discussed so far. For example, if you need to make sure you have the latest
information about an object, use the GetUpdates method rather than calling
GetContents. The XML dift document that is returned tends to be much
smaller, reducing overall network bandwidth. However, you must have a valid
vHandle to be able to call the GetContents method.

You should also take the Web service’s security model into consideration,
as well as how the VM and Host objects are identified. Hosts are referenced
using their host name, fully qualified DNS name (FQDN), or IP address, all
of which are ways to identify network resources that administrators are
familiar with. VMs, however, are not referenced by name or IP, but rather by
their universally unique identifier, or UUID. The UUID is a 128-bit hexadec-
imal number, sometimes called a GUID, and may look something like:

564d71c5-d04d-b62e-748a-9020f0ee481e.

80

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Data Models and Datatypes

Several data models are presented by the Web service, each one focusing on a

particular part of VI management. Table 3.12 lists each of these data models

exposed by the Web service. Each data model represents a logic structure of

datatypes in a hierarchical organization, providing information about ESX

hosts, virtual machines, and VirtualCenter-specific items as well.

Table 3.12 Data Models Exposed by the Virtual Infrastructure Web Service

Model

Description

Core Data Model

Host Machine Data Model

Virtual Machine Data Model

Describes the hierarchy of the Web service,
including the Container, ViewContents, and
Update datatypes.

Describes the ESX host and its configuration.
One particular configuration item is whether
the host supports the Non-Uniform Memory
Architecture, or NUMA. This data model
includes the HostInfo, CPUInfo, Memoryinfo,
Networkinfo, and Volumelnfo datatypes.

Describes the configuration of a virtual
machine and its “shares” on the host it is
running on. This data model includes the
VirtualMachinelnfo, Guestinfo, and
VirtualHardware datatypes.

Performance Metric Data Model Describes the performance metrics and coun-

Event Data Model

ters exposed by the Web service. This model
is dependent on the
periodicPerfRefreshEnable attribute being set
in the vmaConfig.xml file. The primary
datatype for this data model is PerfCollector.

Describes both ESX host and virtual machine
events that are generated and received by
VirtualCenter. This data model includes the
EventDeclList and EventCollection datatypes.

Continued

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Table 3.12 continued Data Models Exposed by the Virtual Infrastructure
Web Service

Model Description

Task Data Model Describes the various tasks that have been
created or can be created, as well as those
that can be started programmatically. This
data model includes the Task and
TaskSchedule datatypes.

Template Data Model Describes the templates found in the
VirtualCenter template repository used to
create new virtual machines. This data model
only contains a single datatype, Template.

Guest Customization Data Describes the configuration items that can be

Model customized when creating new virtual
machines from templates. The primary
datatype for this data model is autoprep.
This data model is directly linked to auto-
prep-types.xsd referenced as an external
schema in vmaConfig.xml.

As described earlier, the data models contain information that can be
retrieved by your management application. This information is accessed as a
datatype that is presented in a hierarchical organization and retrieved as a
response to certain methods, such as GetContents, GetUpdates, QueryPetfData,
and others.

Datatypes contain one or more fields that further describe the datatype.
These fields can be retrieved, modified using the PutUpdates method if sup-
ported, or linked to other datatypes within the data model’s hierarchy. The field
values can either be one of the common types, xsd:int, xsd:string, xsd:long, and
xsd:Boolean, or references to another datatype through a special field, or key.

There are too many datatypes to list in this chapter. However, you can get
a complete listing by referencing pages 37-112 of the Virtual Infrastructure
SDK Reference Guide available for download at www.vmware.com/support/
developer/vc-sdk.

Developing Your Management Application

We are now ready to dive into coding management applications. Your applica-

81

82

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

m Systems management

m Performance management
= Provisioning

m Utility computing

®m Disaster recovery

m Clustering

m Niche vertical applications

In the previous sections, we discussed all of the core concepts, termi-
nology, and data models. Using that information, we will look at several code
examples in both Visual Basic and C#, and we will discuss the process of
connecting to the Web service, obtaining the handle for objects, and working
with those objects.

The Connection Process

Your application must first connect to the Web service using methods
exposed by the stub you created. At this point, you have already created a new
project in Visual Studio and have generated the stub, of proxy class, and
included it in your project. Code Listings 3.2 and 3.3 demonstrate how to
connect to the VI Web service.

Code Listing 3.2 C# Script for Connecting to VI Web Service

SYNGRESS

using System;

using VMware.vma;

protected vmaService vma_;

string url = "https://esxl.sample.com:8443";
string username = "adminuserl";
string password = "passwordl";

public void Connect (string url, string username, string password) {

vma_ = new vmaService() ;

Scripting and Programming for the Virtual Infrastructure « Chapter 3 83

vma_.Url = url;
vma_ .CookieContainer = new System.Net.CookieContainer() ;

vma_ .Login (username, password) ;

Code Listing 3.3 VB.NET Script for Connecting to VI Web Service

Imports VMware.vma

Protected vma As VMware.vma.vmaService

Dim url As String = "https://esxl.sample.com:8443"
Dim username As String = "adminuserl"
Dim password As String = "passwordl"

Public Function Connect (url As string, username As string, password As _
string)
vma = New vmaService
vma.Url = url
vma .CookieContainer = New System.Net.CookieContainer
vma .Login (username, password)

End Function

In the preceding example, we started with some declarations, including
the required string variants for the URL for the Web service, the username to
use in the connection, and its password. We also declared an instance of the
class VMuware.vima.vmaService as via. This will be the base class that exposes
the Web service.

The properties of the vmaService class needed to properly handle a con-
nection to the Web service are vma.Url and vma.CookieContainer. The
CookieContainer is a special system container that will host a collection of
cookies collected during our session, a requirement if your application will
need to maintain session state. With those properties set, we can then call the

84

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Login method, passing the user credentials we established previously. Upon
successfully logging in to the VI Web service, the following response is
received.

<?xml version="1.0" encoding="UTF-8"7?>

<env:Envelope xmlns:xsd="http://www.w3.0org/2001/XMLSchema"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<env:Body>
<LoginResponse xmlns="urn:vmal'"s>
</LoginResponse>
</env:Body>

</env:Envelope>

Since this is a process that is required for any type of management appli-
cation that you develop, the remaining examples in this section will assume
that vma has already been declared and a session with the VI Web service has
already been successfully established.

Handling SSL Certificates

In most cases, you will connect to the Web service through the HTTPS lis-
tener instead of HTTP. By default, every VirtualCenter installation comes
with a certificate that is used to secure the VI Web service. However, as
shown in Figure 3.14, the certificate is not a valid one for production use
since it was not issued by a trusted root certificate authority (CA).You can
choose to handle this condition one of two ways. First, you can replace the
certificate with a valid one from a trusted CA and update the
vmaConfig.xml accordingly, as discussed earlier in the chapter. Another
option would be to handle the “bad” certificate programmatically in your
application. Although the certificate cannot be trusted, it can still be used to
encrypt the HTTP data payload transmitted between the management
client and the Web service.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Figure 3.14 A Default VMware Test Certificate

ertinicate Zx
General | Details %mﬁtaﬁnn Path
Certificate Information
This certificate cannot be verified up to a trusted
certification authority.
TIssued to: vma
Issued by: VMware Test Certificate Authority
valid from 11/14/2003 to 11/13/2006
nstall Certificate. ..

The latter option is the most common and still provides adequate security
for most situations. The examples found in the SDK package all include a
sample workaround which we will discuss briefly. The key component is the
CertPolicy.vb or CertPolicy.cs file, which can be copied from any sample and
added to your project. Using the
System.Security.Cryptography. X509Certificates .NET component and
hashtables, the CheckValidationR esult function is passed the certificate and
assesses its validity. If the function detects any issues with the certificate, it will
then display a message box stating any problems that were found, and pre-
senting the management client user the option to continue regardless.

To take advantage of this certificate validation functionality, you can
implement ICertificatePolicy. Then you must pass ICertificatePolicy to
ServicePointManager.CertificatePolicy before any Web service method calls
are made. Include the following code in the client code. Before you make the
Web service method call from the client code, the following statement must
be executed in C#:

System.Net.ServicePointManager.CertificatePolicy = new CertPolicy () ;

In VB.NET the code is as follows:

System.Net.ServicePointManager.CertificatePolicy = New CertPolicy

85

86 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

In addition to using the CertPolicy distributed in the SDK package, you
can create you own CertPolicy that will validate, for example, all certificates.
The script shown in Code Listings 3.4 and 3.5 implements ICertificatePolicy
and then accepts every request under SSL.

Code Listing 3.4 C# Script for Implementing ICerfificatePolicy

syngress.com

using System.Security.Cryptography.X509Certificates;

public class CertPolicy : ICertificatePolicy {
public bool CheckValidationResult (
ServicePoint svcPnt
, X509Certificate cert
, WebRequest reqg
, int certProblem) ({
return true;
} // end CheckValidationResult

} // class CertPolicy

Code Listing 3.5 VB.NET Script for Implementing ICerfificatePolicy

Imports System.Net
syngress.com

Imports System.Security.Cryptography.X509Certificates
Public Class CertPolicy Implements ICertificatePolicy
Public Function CheckValidationResult (ByVal _
svcePnt As ServicePoint, ByVal cert As X509Certificate,
ByVal req As WebRequest, ByVal certProblem As Integer)
As Boolean Implements ICertificatePolicy.CheckValidationResult
Return True
End Function

End Class

SYNGRESS

syngress.com

SYNGRESS

syngress.com

SYNGRESS
syngress.com

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Obtaining with Object Handles

Once connected, you can now target specific objects in order to get or
modify their information or perform operations. The ResolvePath method is
used to obtain the handle for the object represented by the path, and the
GetContents method is used to retrieve the XML document that is the value
of the object. Code Listings 3.6 and 3.7 continue our sample code:

Code Listing 3.6 C# Script for Obtaining Information with ResolvePath and
GetContents

string path = "/vm";
string handle = vma_.ResolvePath (path) ;
ViewContents contentsXML = vma_.GetContents (handle) ;

Container objContainer = (Container) contentsXML.body;

Code Listing 3.7 VB.NET Script for Obtaining Information with ResolvePath
and GetContents

Dim contentsXML As VMware.vma.ViewContents

Dim objContainer As VMware.vma.Container

Dim path As String = "/vm"
Dim handle As String = vma.ResolvePath (path)
contentsXML = = vma.GetContents (handle)

objContainer = CType (contentsXML.body, VMware.vma.Container)

In this example, we target /vm of the VI Web service hierarchy. We obtain
its handle by invoking ResolvePath and passing it the string value of the path
as set by vPath. The returned XML document from invoking ResolvePath is
similar to Code Listing 3.8.

Code Listing 3.8 XML Document Returned by Invoking ResolvePath

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >

87

88 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

<env:Body>
<GetContentsResponse xmlns="urn:vmal">
<returnvals>
<handle>vma-0000-0000-0008</handle>
<vHandle>vma-0000-0000-0008@c2f53ca4e000003</vHandle>
<body xsi:type="Container"s>
<item>
<key>vma-vm-00000000011</key>
<name>564d0£f8b-3bde-1003-fel9-0f77cc3lal3dc</name>
<types>VirtualMachine</type>
</item>
<item>
<key>vma-vm-00000000012</key>
<name>564d71c5-d04d-b62e-748a-9020f0eed48le</name>
<types>VirtualMachine</type>
</item>
<item>
<key>vma-vm-00000000014</key>
<name>564d63db-9aaf-97af-4c47-8562eldc65e0</name>
<type>VirtualMachine</type>
</item>
<item>
<key>vma-vm-00000000015</key>
<name>564d71b4-dlfc-£fdb9-9c4b-125b3badb32a</name>
<types>VirtualMachine</type>
</item>
</body>
</returnval>
</GetContentsResponse>
</env:Body>

</env:Envelope>

Scripting and Programming for the Virtual Infrastructure « Chapter 3

With that handle, we then obtain the contents of the object located at the
path using GetContents, retrieving its descriptive XML document as a
ViewContents datatype, converting the body of the returned document to a
collection of relevant items as a Container datatype. In some cases, you will
want to retrieve updates from an object to process or evaluate items that have
changed. Although you can request the full contents XML document again,
doing so may generate a large amount of network traffic and impact applica-
tion performance. Instead, utilize the GetUpdates method to retrieve just the
items that have changed, passing with the vHandle of the object to update.

The vHandle is an item that is passed along with the handle in the results
of calling the GetContents method. In fact, the vHandle consists of the handle
plus a time stamp. For example, an object may have a handle of vma-o0000-
0000-0008. Consequently, the vHandle returned with a handle by GerContents
1S vma-0000-0000-0008@c2£53ca4e000003. Every time an item is updated, the
vHandle will change, denoting that an update is available. The timestamp is
used as a reference point and lets the Web service know if the information
that the management client has is older than what is currently available. Code
Listings 3.9 and 3.10 demonstrate the use of vHandles in C# and VB.NET,
respectively.

Code Listing 3.9 C# Script for Using vHandles

SYNGRESS

while (
myTask.currentState.Equals (TaskRunState.running) ||
myTask.currentState.Equals (TaskRunState.scheduled) ||
myTask.currentState.Equals (TaskRunState.starting)
) A
VMware.vma.VHandleList vhlist = new VHandleList () ;

vhlist.vHandle = new string[] { vc.vHandle };

UpdateList ul vma_ .GetUpdates (vhlist, true);
for (int u = 0; u < ul.update.Length; u++) {
for (int ¢ = 0; c < ul.update[u].change.Length; c++) {
if (ul.update[u].changel[c].target == "currentState") ({

myTask.currentState =

89

920 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

(TaskRunState)ul.update [u] .change [c] .val;
} else if (ul.update[u] .change(c].target ==
"percentCompleted")
myTask.percentCompleted =
(Single)ul.update [u] .change[c] .val;
Console.Write("..." +

myTask.percentCompleted.ToString()) ;

Code Listing 3.10 VB.NET Script for Using VHandles

While migrateTask.currentState = VMware.vma.TaskRunState.running Or _
syngress.com
- migrateTask.currentState = VMware.vma.TaskRunState.scheduled Or _
migrateTask.currentState = VMware.vma.TaskRunState.starting
Dim vhlist As VMware.vma.VHandlelList = New VMware.vma.VHandleList
vhlist.vHandle = New String() {vc.vHandle}
Dim ul As VMware.vma.UpdateList = vma.GetUpdates(vhlist, True)
For u = 0 To ul.update.Length - 1
For ¢ = 0 To ul.update(u).change.Length - 1
If (ul.update(u).change(c).target = "currentState") Then
migrateTask.currentState = ul.update (u) .change(c) .val
ElseIf (ul.update(u).change(c).target = "percentCompleted") Then
migrateTask.percentCompleted = ul.update (u) .change (c) .val
Console.Write("..." + migrateTask.percentCompleted.ToString())
End If
Next c
Next u

End While

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Here we pass the vHandleList (an array of vHandles to be updated) to the
GetUpdates method. This method has a Boolean parameter that defines
whether the Web service should wait to send a response until at least one of
the vHandles in the vHandleList changes. This blocking action is less intensive
than polling for updates on a regular interval and also a more real-time
response for change notifications. The dift that returns as an XML document
consists of change elements that describe the changes in the update.

Retrieving Items and Performing Operations

The containers consist of items that each have a key, name, type, and ACL.
The key is also the handle for the item named. Issuing GetContents against an
object that is not a container will return an XML document that contains
information relevant to that object type, such as Hosts and virtual machines.
In Code Listings 3.11 and 3.12, we demonstrate enumerating all virtual
machines in a particular Virtual Machine Group and their CPU and memory
performance configuration.

Code Listing 3.11 C# Script for Enumerating VMs in a Particular Group

SYNGRESS

string path = "/vcenter/ESXFarml/ProductionVMs-Fin";
string handle = vma_.ResolvePath (path) ;

ViewContents contentsXML = vma_.GetContents (handle) ;
Container objContainer = (Container) contentsXML.body;

Item[] 1listVMs = objContainer.item;

for (int i = 1; i <= listVMs.Length-1; i++)
{
contentsXML = vma_.GetContents (listVMs (i) .key) ;
VirtualMachine vm = contentsXML.body;
string Name = vm.info.name
int cfgNumCPU = vm.hardware.cpu.count
string cfgCPUShares = vm.hardware.cpu.controls.shares
int cfgSizeMem = vm.hardware.memory.sizeMb
string CfgMemShares = vm.hardware.memory.controls.shares

string msg = vmName + "\t"+ cfgNumCPU + "\t" + cfgCPUShares +

91

92 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

"\t" + cfgSizeMem + "\t" + CfgMemShares;

System.Console.WriteLine (msg) ;

Code Listing 3.12 VB.NET Script for Enumerating VMs in a Particular
Group

Dim path, handle, vmName, cfgCPUShares, CfgMemShares, msg As String
gl Dim i, cfgNumCPU, cfgSizeMem As Integer
Dim contentsXML As VMware.vma.ViewContents
Dim objContainer As VMware.vma.Container

Dim 1listVMs() As VMware.vma.Item

Dim vm As VMware.vma.VirtualMachine

path = "/vcenter/ESXFarml/ProductionVMs-Fin"

handle = vma.ResolvePath (path)

contentsXML = vma.GetContents (handle)

objContainer = CType (contentsXML.body, VMware.vma.Container)

listVMs = objContainer.item

For i = 0 To listVMs.Length - 1
contentsXML = vma.GetContents (listVMs (i) .key)
vm = contentsXML.body
vmName = vm.info.name
cfgNumCPU = vm.hardware.cpu.count
cfgCPUShares = vm.hardware.cpu.controls.shares
cfgSizeMem = vm.hardware.memory.sizeMb
CfgMemShares = vm.hardware.memory.controls.shares
msg = vmName & vbTab & cfgNumCPU & vbTab & cfgCPUShares & _

vbTab & cfgSizeMem & vbTab & CfgMemShares

System.Console.WriteLine (msg)

Next i

SYNGRESS

syngress.com

SYNGRESS

syngress.com

SYNGRESS
syngress.com

Scripting and Programming for the Virtual Infrastructure « Chapter 3

This example outputs the name, number of virtual CPUs, configured
CPU shares, the amount of memory allocated, and the configured memory
shares for each virtual machine in the ProductionVMs-Fin Virtual Machine
Group. We also take advantage of the virtual machine data model, traversing
the various data types in the data model’s hierarchy.

We can use a similar set of logic to perform operations against a single
object or a group of objects. Code Listings 3.13 and 3.14 demonstrate per-
forming a virtual machine migration operation via VMotion.

Code Listing 3.13 C# Script for Migrating a VM via VMotion

string handleHost = vma_.ResolvePath (pathHost) ;
string handleVM = vma_.ResolvePath (pathVvM) ;
ViewContents contentsXML = vma_.MigrateVM(handleVM, handleHost,

Level .normal) ;

Code Listing 3.14 VB.NET Script for Migrating a VM via VMotion

Dim handleHost, handleVM As String

Dim contentsXML As VMware.vma.ViewContents

handleHost = vma.ResolvePath (pathHost)
handleVM = vma.ResolvePath (pathVM)

contentsXML = vma.MigrateVM(vm, host, VMware.vma.Level.normal)

In this example, the handles for both the virtual machine and the target
host are retrieved using ResolvePath. The Migratel’M method is then invoked
to initiate the migration process. The request to migrate the virtual machine is
returned with a new handle for the task, as well as an XML document that
describes the task’s details. This particular operation, like many others, can be
monitored by using the returned vHandle to retrieve updates on the task’s
progress. For example, Code Listing 3.15 is a sample result from a Stop "M
operation.

Code Listing 3.15 Results for a StopVM Operation

<?xml version="1.0" encoding="UTF-8"?>

93

94 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

<env:Envelope xmlns:xsd="http://www.w3.0org/2001/XMLSchema"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<env:Body>
<StopVMResponse xmlns="urn:vmal">
<returnvals>
<handles>vma-task-active-0a810</handle>
<vHandle>vma-task-active-0a8l10@c2f53ca4e000001</vHandle>
<body xsi:type="Task">
<causesuser</cause>
<entity>vma-vm-00000000012</entity>
<eventCollector>vma-0000-0000-009b</eventCollector>
<operationName>Power off VM</operationName>
<queueTime>2006-07-12T00:56:10-05:00</queueTime>
<allowCancel>false</allowCancel>
<currentStates>starting</currentStates>
</body>
</returnvals>
</StopVMResponse>
</env:Body>

</env:Envelope>

Updating Interior Nodes

Just as you can use the GetUpdates method to retrieve a list of changes that are
of the Change datatype, you can also work with changes using the PutUpdates
method. Some of the data values, or interior nodes, returned by GetContents
or GetUpdates can be edited, inserted into, deleted, moved, or replaced. By
using the PutUpdates method, you can make on-the-fly configuration changes
to effectively manage your virtual infrastructure. Code Listings 3.16 and 3.17
demonstrate how to change the priority of a virtual machine by adjusting the
shares allocated to its vCPUs.

Code Listing 3.16 C# Script for Changing the Priority of a VM

SYNGRESS
- ViewContents vc = vma_.GetContents(vm) ;

syngress.com

SYNGRESS

syngress.com

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Change change = new Change() ;

change.target = "hardware/cpu/controls/shares";
change.val = "high";

change.op = ChangeOp.edit;

change.valSpecified = true;

ChangeReqgList changelList = new ChangeReqList () ;
ChangeReq changeReq = new ChangeReq() ;

changeReqg.handle = vc.handle;

changeReq.change = new Change[] { change };

ChangeReq[] changeRegs = new ChangeReqg[] { changeReqg };
changelist.req = changeRegs;

UpdateList updateList = vma_.PutUpdates (changeList) ;

Code Listing 3.17 VB.NET Script for Changing the Priority of a VM

Dim vc As VMware.vma.ViewContents = vma.GetContents (vm)
Dim change As New VMware.vma.Change

change.target = "hardware/cpu/controls/shares"
change.val = "high"

change.op = VMware.vma.ChangeOp.edit

change.valSpecified = True

Dim changelList As New VMware.vma.ChangeRegList

Dim changeReq As New VMware.vma.ChangeReqg
changeReqg.handle = vc.handle

changeReq.change = New VMware.vma.Change () {change}
Dim changeRegs () As VMware.vma.ChangeReq = {changeReq}
changelist.req = changeRegs

Dim updatelList As VMware.vma.UpdatelList = vma.PutUpdates (changeList)

In this example, we used several datatypes to perform the update opera-
tion. PutUpdates is passed a ChangeReqList as input. This datatype is an array of
the ChangeReq datatypes containing the handles or vHandles of the objects to

95

96

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

be updated. Each change in the set is of the Change datatype. This interface
allows multiple changes to an object to be performed by using one
PutUpdates call.

Developing with the
Virtual Infrastructure SDK 2.0

With the release of Virtual Infrastructure (VI) 3, VMware has made a con-
siderable departure from the architecture of the ESX Server and
VirtualCenter products. Similarly, the latest VI SDK supporting this release
has substantially changed. We will review the primary changes and key con-
cepts that you need to know to effectively develop code against the new
SDK, as well as introduce some of the new features available in VI 3 and
exposed by the SDK.

Addressing each of the changes in detail is outside the scope of this
book. However, VMware has made available guides to ease your introduc-
tion to the VI SDK 2.0. If you are a seasoned VI SDK developer, these
guides will be instrumental in helping you transition to the new SDK.The
code references in this chapter are Microsoft-centric, focused on VB.Net or
C#.You can reference the programming and reference guides for additional

information about developing against the VI SDK 2.0 in Java or Perl.

Features Added to Virtual Infrastructure 2.0

Let’s dive in now with a discussion of the difterences between the two ver-
sions of the SDK, principally regarding what new items or functionality
have been added, as shown in Table 3.13.You can perform all of the same
operations in VI SDK 2.0 that you could in VI SDK 1.x; however, VMware
has made some substantial changes with the new releases. The following is a

list of some of those new features.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Table 3.13 New Features Added to Virtual Infrastructure SDK 2.0

Category

Feature

Description

Virtual Infrastructure
Management

Object Model

Web service availability

Host configuration

All ESX and
VirtualCenter features
available

Consolidated inventory
hierarchy

Abstraction of
resources

PropertyCollector

Searchlndex

The VI SDK 2.0 is now avail-
able through both the Virtual
Infrastructure Web service
hosted on the VirtualCenter
Management Server as well
as the Web service running
on the ESX hosts themselves.
The latter is provisioned by
the host agent.

ESX hosts can now be config-
ured via the SDK.

All of the new features in ESX
3.0 and VirtualCenter 2.0 are
available programmatically
through the VI Web service.

All manageable objects and
data are now located within
a single inventory hierarchy
or tree, including hosts, vir-
tual machines, data centers,
networks, and datastores.

The new SDK offers a
complete abstraction of VI
resources, including physical
computer resources, resource
pools, and clusters.

A new mechanism that sup-
ports filtering of complex
resources.

A mechanism for searching
the inventory hierarchy for a
specific managed entity
based on one of its proper-
ties, such as name, UUID, or
IP address.

97

98 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

In addition to the new and enhanced features, VI SDK 2.0 has changed
from the perspective of the Web service itself. Hosted by both the
VirtualCenter Management Server as well as the ESX server’s host agent, the
definition of the Web service has also changed substantially.

Preparing the Virtual Infrastructure 2.0 Web Service

The VMware VI 2.0 Web service has an initial configuration based on the
configuration options selected during the VirtualCenter installation. You can
customize the Web service, just as you can the VI 1.0 Web service, if you find
it necessary to modify those configuration settings in order to support your
custom management applications. The Web service is available on both the
VirtualCenter Management Server and the ESX Server, each with its own
configuration location and parameters.

For the VirtualCenter Management Server, you can find the Web service
configuration at C:\Documents and Settings\All Users\Application
Data\lVMuware\VMware Virtual Center\wpxd.cfg. On an ESX host, you must
modify the /etc/vmware/hostd/config.xml tile. This file is the configuration file
for all host agent functions, not just the VI Web service, so you should exer-
cise caution modifying this file in particular. Code Listing 3.18 shows the port
configuration for the HTTP/HTTPS proxy.

Code Listing 3.18 Port Configuration for the HTTP/HTTPS Proxy
<proxyDatabase>

<server 1d="0">

<namespace> / </namespaces
<host> localhost </hosts>
<port> -1 </ports>

</servers>

<server id="1">
<namespace> /sdk </namespace>
<host> localhost </hosts>
<port> -2 </ports>

</servers>

<redirect id="2">/ui</redirects>

Scripting and Programming for the Virtual Infrastructure « Chapter 3

<gserver id="3">

<namespace> /mob </namespace>

<host> localhost </host>
<port> 8087 </ports>
</server>

</proxyDatabase>

Table 3.14 describes some of the properties you may want to consider
changing to customize the VI Web service to support your management
applications. You should create a backup copy of the configuration files,
though, before making any changes. Once you have saved the updated version
of the configuration file, you must restart the Web service. On a
VirtualCenter Management Server, this can be done using the Services con-
trol panel applet. On an ESX host, you can restart the host agent with the

command service mgmt-vimware restart.

Table 3.14 Configuration Information for the VirtualCenter Web Service

Description

Element Node/ltem
ws1x Enabled
Datafile
vpxd namespace
(proxyDatabase)

Boolean that defines whether the
Web service should support the 1.x
SDK calls. Notice that enabling this
will disable some functionality in the
SDK 2.0 realm. This only applies to
the VirtualCenter Web service.

File path to the WS1X file needed to
set up the VI SDK 1.x-compatible
environment. This only applies to the
VirtualCenter Web service.

Relative path of the site being
configured, such as “/”, “/sdk”, or
“/mob”.

Continued

29

100

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Table 3.14 continued Configuration Information for the VirtualCenter Web
Service

Element Node/ltem Description

host The host that is being proxied. This

(proxyDatabase) value should always be the manage-
ment server. You may want to change
the value to the host name if your
security policy requires that you
remove the localhost reference from
the local DNS cache.

port The port that the HTTP/HTTPS process

(proxyDatabase) hosting the management site is lis-
tening on.

Serializeadds The DAS parameter. Boolean value for

whether VirtualCenter should add
proposed VMs in a serial manner or
concurrently. The default value is
true. This only applies to the
VirtualCenter Web service.

vmacore TaskMax Maximum number of concurrently
running threads for task-related oper-
ations. If you notice that your tasks
queue up excessively, you can
increase this number. 70 is the
default. This only applies to the
VirtualCenter Web service.

Working with the VMware VI SDK 2.0 WSDLs

The VMware VI SDK 2.0 Web Service is far more complex than its prede-
cessor. As a result, the WSDLs that describe the interaction with the Web ser-
vice are much larger in size compared to the WSDL for VI SDK 1.x.There
are two options at your disposal for obtaining the necessary stubs to work in
your VB.Net or C# code: user-generated stubs or pre-generated, VMware
provided stubs.

If you choose to generate your own stubs, you can either run the
Build2003.cmd or Build2005.cmd commands found in the SDK package or

Scripting and Programming for the Virtual Infrastructure « Chapter 3

run wsdl.exe directly. The following example shows the portion of the build
batch files for Visual Studio 2005 included in the SDK package that generates
the .CS stubs and compiles them as VimService2005.dll.

wsdl /n:VimApi /out:stage\VimObjects.cs ..\..\vimService.wsdl ..\..\vim.wsdl

csc /t:library /out:VimService2005.d11l stage*.cs

This sample generates a stub file, VimObjects.cs, in the \stage directory.
This stub is a merge of vimService.wsdl and vim.wsdl.You can choose to include
VimObjects.cs directly in your source code for your project, or reference
VimService in your project, being sure to include VimService.dll in your /bin
directory. A similar approach would be used for VB.NET, which creates as
output the VimObjects.vb stub that you can compile to create
VimService2005.d1l.

The simpler option would be to use the reference.vb or reference.cs files
found in the \SDK directory of the SDK package and include that file in
your project, or copy the VimService2005.dll found in the \SDK\sam-
ples_2_0\DotNet directory of the SDK package to the \bin directory and
reference it in your project.

Tip

The performance of creating new objects from the VimService class
when using .NET Framework 2.0 is slower than .NET Framework 1.1,
mostly due to the way the .NET 2.0 generates XML serializer assemblies
at runtime. One approach to work around this is to generate the assem-
blies in advance using the sgen.exe tool from Microsoft, as described in
http://msdn2.microsoft.com/en-us/library/bk3w6240.aspx. However, this
approach is complicated and renames the namespace and associated
classes, requiring a deeper knowledge of .NET development.

Another approach would be to extract the functions needed from
the generated class while still referencing the VimService DLL. This is par-
ticularly useful for simpler projects that do not require all of the
methods and functions exposed by VimService. One way to perform this
extract would be to execute the following steps:

1. Create a new class (in this example, myClass) that inherits from
the SoapHttpClientProtocol class.

2. Open \stage\VimObjects.cs, included in the VI SDK 2.0 package.

101

102

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure
3. Copy the class XmlincludeAttribute, removing any items you
do not need in your project.

4. Include a reference to VimService2005.dll and place “using Vim”
in myClass for each method retained.

5. Locate each method and copy/paste the code to myClass.

Virtual Infrastructure SDK
2.0 Concepts and Terminology

The key to moving forward with your development efforts using VI SDK 2.0
is your understanding of the SDK’s architecture. Whether you have experi-
ence developing with the previous VI SDK 1.x or you are new to program-
ming against the VI SDK, you will find that the concepts and terminology are
critical to the functionality you plan on incorporating into your next man-
agement application. In this section, we will discuss the object model and
review a few of the critical management objects central to most development
efforts.

Data and Managed Objects

Managed objects are composite objects that exist on ESX host and the
VirtualCenter 2 management server. They do not exist in the WSDL schema,
but are passed indirectly as references, called managed object references, in the
WSDL data stream between the Web service and the management client.
Data objects, in turn, are also composite objects that are passed by value
between the management client and Web service.

Since data objects are actually passed between client and Web service, they
are treated in an object-oriented manner. The WSDL schema is not object-
oriented itself; however, the class hierarchy of the WSDL can be represented
as a hierarchical chain of properties that are exposed by instantiated data
objects. The key distinguishing factor for data objects is that they only have
properties, or values, not methods. Those values are passed in SOAP messages
compliant to the WSDL schema as XML elements serialized by the Web ser-
vice and client. Operations, in contrast, are components of methods contained
in managed objects.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Throughout your coding efforts, you must obtain managed object refer-
ences. These references are derived from managed object methods, or opera-
tions, presented by the WSDL schema.You can learn more about the
managed object associated with the reference by:

m Calling a method associated with the managed object that reports its
properties.

m Calling a method associated with the managed object that returns a
data object. The value defined in the data objects can tell you more
about the managed object itself.

= Create a property collector filter that can be used to retrieve the proper-
ties from or monitor the managed object. Property collectors will be
discussed in more detail later in the chapter.

Managed Entity Inventory

Using the VI SDK 2.0, you can manage your infrastructure’s virtual machines
and host resources using a hierarchical model that represents the inventory, as
shown in Figure 3.15.This inventory, as found in VirtualCenter, contains
managed entities of various types, including datacenters, resource pools, virtual
machines, and hosts. The managed entities are organized and grouped into
folders. This hierarchical inventory is in its most complete form when
working with the VirtualCenter product. A more limited version of the
inventory model is available on hosts.

Host Agent versus Virtual Center Feature Set

VirtualCenter 2 has not changed in function from its predecessor,
VirtualCenter 1.x. The product is still designed to help Virtual Infrastructure
administrators design, deploy, and manage virtual machines and, new to this
release, hosts. The hosts can either be the ESX 3, ESX 2.x, or VMware Server
(formerly GSX Server).

103

104

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Figure 3.15 Logical Representation of the Managed Entity Inventory from
the VirtualCenter Hierarchy

Service Instance

(Fo@er)
VirtualMachine(s) (ComputeResource)
i1l)
(ResourcePool) ("HostA) ("HostB)

The major differences between using the SDK to manage through the
Service Instance presented by VirtualCenter and the Service Instance pre-
sented by a stand-alone host are

® Management of resources Refined control of resource pools that
scale across more than one host, treating resources as a collective
whole rather than that oftered by a single physical host. This is also
supplemented by VMware DRS and VMware HA, features not avail-
able on standalone hosts.

m Provisioning of new virtual machines Deployment of new vir-
tual machines from templates rather than clones. Template deploy-
ment also allows guest OS customization.

m Migration Using the VMotion technology that has made VMware
ESX an enterprise-ready product, virtual machines can be relocated
from one physical host to another. This action can be invoked manu-
ally or based on the automation logic facilitated by VMware DRS.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

m Clustering A configuration item defining how virtual machines and
associated storage failover to available resources on two or more
physical hosts. This is the essence of VMware HA.

® Monitoring The ability to configure and report against the data
center as a whole. Response to detected conditions can be invoked at
a physical or virtual level.

The host agent basically exposes a subset of the VirtualCenter feature set,
limited to those operations that can be implemented on a single host. If you
mistakenly invoke an operation against a standalone host instead of a
VirtualCenter management server, the SDK will throw a NotSupported excep-
tion. Although this is not a fatal exception, you will want to code for it
accordingly while also preventing users of your client from targeting opera-
tions against invalid targets.

Data Models and Data Types

All management entities can be grouped into data models that represent the
structure they stand for. For example, all power operations, virtual hardware
definition, and guest OS information are found in the data model for virtual
machines. Table 3.15 and Table 3.16 provide a summary of each data model.
Additional information can be found in the documentation accompanying
the VI SDK 2.0 package.

Table 3.15 Service Instance, Folder, and Datacenter Data Models

Data Model Name SDK 1.x Equivalent Description

Service Instance Server Farm This managed object type repre-
sents the central entry or access
point for the management data
and operations. It describes the
virtual infrastructure’s capabili-
ties, licensing, and discovered
host machines. The properties of
the Service Instance include the
root folder of the managed
entity inventory, the session man-
ager, and the property collector.

Continued

105

106

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Table 3.15 continued Service Instance, Folder, and Datacenter Data Models

Data Model Name SDK 1.x Equivalent

Description

Folder

Datacenter

Farm Group, Virtual
Machine Group

Farm

This managed object type
represents a folder. This object
type is used to organize virtual
machines, hosts, and host
resources. Folders can be
nested, but its contents must be
consistent with the child Type
associated with the folder. The
key features of the folder man-
aged type

This managed object type
groups virtual machines and
hosts under a top-tier construct.
The entire object represents a
single management unit con-
tained in the root folder of the
associated Service Instance. The
key features are virtual machine
management methods, man-
aged entity management
methods, computer resource
management for clusters, data-
center objects, and task infor-
mation.

Table 3.16 Virtual Machine and Host Resource Data Models

Data Model Name

Sub-Objects

Description

VirtualMachine

VirtualMachine
Summary
VirtualMachine
ConfigSpec
CustomizationSpec
Manager

Task

Describes the data type used to
model a virtual machine. This
managed object type contains
sub-objects which contain the
majority of its properties. Use
this object type to:

Define or retrieve basic proper-
ties for a virtual machine

Continued

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Table 3.16 continued Virtual Machine and Host Resource Data Models

Data Model Name Sub-Objects

Description

HostSystem HostCapability
HostConfiginfo
HostConnectinfo
HostDatastore
Browser
HostRuntimelnfo
HostHardwarelnfo
HostListSummary

Datastore DatastoreSummary
HostSystem
VirtualMachine

View or set virtual machine con-
figuration parameters
Customize the virtual machine
during deployment from a
template

Perform power operations

List or identify the resources
available to, and used by, the
virtual machine

Describes the host machine
configuration. Use this data type
to manage the physical hosts
upon which your virtual
machines are running. Use this
object to:

Define or retrieve basic proper-
ties for a particular host
Retrieve information about the
capability of the host’s hard-
ware and software

View or set the host configura-
tion properties

View the host’s hardware
Connect to the interface to
access files in the datacenter

Describes data types used to
manage physical storage
resources. Use this data type to
gain access to the catalog of
storage devices attached to the
host systems in the datacenter.
Some of the information avail-
able includes the total capacity
and free space, as well as the
path of the physical storage.

Continued

107

108

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Table 3.16 continued Virtual Machine and Host Resource Data Models

Data Model Name

Sub-Objects

Description

ComputeResource

ResourcePool

ComputeResource
Summary
EnvironmentBrowser
ResourcePool

ResourceConfigSpec
ResourcePool
Summary
ComputerResource
VirtualMachine

Describes the model used to
hosts as resources with which to
run virtual machines. The
compute resource exported by
the Web service can represent a
single host or a cluster of hosts
available to run virtual
machines. Each
ComputeResource contains the
following:

List of hosts

List of datastores

List of network objects
Summary information, including
resource usage and availability
An environment browser that
facilitates access to hardware
information, configuration
objects, and files stored on the
associated datastores.

Describes the division of
available host resources,
whether individual or
aggregated, available to run
virtual machines. Use this
datatype to create divisions of
CPU and memory resources that
are presented to virtual
machines. Those resources can
be configured with upper and
lower limits as well as with
shares, similar to ESX 2.x.

Continued

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Table 3.16 continued Virtual Machine and Host Resource Data Models

Data Model Name Sub-Objects Description
ClusterComput ClusterConfiginfo Describes additional
Resource ClusterDrs components not exposed by the

Recommendation ComputeResource data type

ClusterDrsMigration used by VMware HA and

HostSystem VMware DRS features. The

Task operations and properties avail-
able to support DRS and HA
include AddHost Task and
Movelnto_Task,
RecommendHostsforVm and
ApplyRecommendation,
ReconfigureCluster_Task, and
many others.

It 1s recommended that you keep the Web-based Reference Guide that is
included in the SDK package to reference additional information on the pre-

viously mentioned datatypes and sub-objects covered in the preceding tables.

There are a few datatypes worth mentioning briefly, though, since they sup-

port monitoring and managing the virtual infrastructure as a whole. Those

datatypes are as follows:

SessionManager Provides control of sessions, including login and
log oft operations

AuthorizationManager Controls access to objects. The access con-
trol is defined in a permission object that includes the managed
entity reference, user or group name, and role.

PropertyCollector Used to create property filters that only exist
during the user’ session. Once the session is destroyed, so are the fil-
ters. These filters expose efticient methods that management clients
can use to obtain values for properties or target-specific managed
objects. In function, the PropertyCollector 1s similar to the GetContents
and GetUpdates methods of VI SDK 1.x.

EventManager Provides historical information about changes that
have taken placed with managed entities.

109

110 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

m TaskManager Similar to EventManager, this datatype provides real-
time information about tasks in progress, queued, or recently com-

pleted.

m ScheduledTaskManager Used to manage scheduled tasks that are
not already in progress or queued.

m AlarmManager Used to manage alarms that resulted from defined
conditions or situations.

m PerformanceManager Provides an interface that can be used to
collect performance statistics for hosts and virtual machines.

Programming Logic for the VI SDK 2.0

Similar to the VI SDK 1.x logic, your management application will follow a
standard logical flow regardless of the functionality you have coded it for. You
should take into consideration the managed entity inventory hierarchy as pre-
viously discussed in this chapter and make good use of property collector fil-
ters to minimize traversal times spent traversing through what may be a rather
extensive hierarchical structure.

As mentioned before, you will be working with either managed objects or
data objects. As input, most operations require a reference to a managed
object (called a managed object reference) and possibly a few additional
string, integer, or Boolean values. In some cases, you may need to pass a data
object in its entirety, usually called a spec object. Those operations will either
return a data object which contains values for you to work with, or another
managed object reference for additional operations invocations.

In most cases, you will code the following steps in the workflow of your
application. While reviewing these steps, notice some of the objects refer-
enced and the relationships they have with other objects.

m Establish a session with the Web service. This clearly is the first step
for you application. You must obtain a session token by successfully
logging into the Web service. This token is used to invoke operations
from your client throughout the duration of each user’ session.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

m Instantiate the Servicelnstance managed object. This is a core action
that must take place to gain access to the underlying managed and
data objects.

m Retrieve the ServiceContent data object. This is a very common action
that you will perform, and it is accomplished by invoking the
RetrieveServiceContent operation. This is a prerequisite to instantiating
a PropertyCollector managed object.

® Once you have made it this far, you can now work with specific
managed objects within your inventory.You can target those objects
by constructing a PropertyFilterSpec. This data object type defines the
managed object you wish to target, the properties of that object, and
the manner within which you traverse the inventory.

m With a managed object reference for the PropertyCollector and the
PropertyFilterSpec that you constructed, you can then retrieve the
properties of the targeted managed object. This is accomplished by
invoking the RetrieveProperties operation, which will return an
ObjectContent data object containing all of the information as defined
by the PropertyFilterSpec.

m Additionally, you can get regular updates for any of those properties
by invoking one of several operations. Those operations are
CreateFilter, CheckForUpdates, and WaitForUpdates. These operations are
similar in function to the GetUpdates operation in the VI SDK 1.x,
but are more powerful. They require for input the PropertyCollector
managed object reference, and return either a PropertyFilter managed
object reference that you can work with later, or the updates you can
work with directly in an UpdateSet data object.

During all of this, you may run into further complications as you deal
with permissions in complex entities such as Datacenter, ComputeResource, or
ClusterComputerResource. The complexity is usually related to the parent-child
relationships they tend to form in the inventory tree and the corresponding

ACLs of those child objects.

111

112

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Developing Your Management Application

With all those formalities behind us, we’re now ready to begin the coding
process. The techniques and logic are similar to what you read in the section
for VI SDK 1.x. However, with a new object model and some new features,
the departure from the previous version is significant enough to spend some
time reviewing code samples for some of the popular operations you may
perform.

In this section, we will look at some unique tools VMware has provided
to assist with SDK development, as well as more deeply explore the opera-
tions and processes you will incorporate into your management application.

Managed Object Browser and Other Tools

Before beginning, we should introduce you to an invaluable tool that
VMware has included with every ESX host and VirtualCenter: the Managed
Object Browser (MOB). We’ll also look at a few useful tools in the Visual
Studio IDE.The MOB, however, is a Web-based utility that is hosted on the
VirtualCenter management server and host agents. To access the MOB,
browse to one of the following URLs:

m For VirtualCenter: https://<your_server>:8443/mob

m For Host Agents: https://<your_server>/mob

NoTE

The TCP port references in the URL (8443 for VirtualCenter and the stan-
dard 443 for the host agent) assume that the default ports are being
used. If you have changed the ports, please account for this in the URL.

Once you successfully authenticate to the MOB, you will be presented
with a page similar to that shown in Figure 3.16. This page represents the
instantiation of the Servicelnstance object, the main gateway to the exposed
managed and data objects. For each object that you view through the MOB,
you will see a list of the properties and methods associated with that object.

Scripting and Programming for the Virtual Infrastructure « Chapter 3 113

Figure 3.16 The Servicelnstance Object Displayed in the Managed Object
Browser

Home |

Managed Object Type: ManagedObjectReference:ServiceInstance

Managed Object ID: ServiceInstance

Properties
NAME TYPE VALUE
capability Capability | capability
content | ServiceContent | content
serverClock DateTime | "2006-08-20T04:26:27.400819Z"
Methods

DateTime | CurrentTime

HostvMaotionCompatibility[] | QueryWMotionCompatibility

ServiceContent | RetrieveServiceContent

Event[] | VWalidateMigration

In some cases, as defined in the data model for that particular datatype or
managed entity, properties are references to another object, usually a data
object. The value of such properties is the name of the data object, which is
displayed in the Value column as a hyperlink (such as capability and content in
Figure 3.16). Similarly, you can invoke methods by clicking the corresponding
sub-object in the Name column, also displayed as a hyperlink.

Tip

To work with the Managed Object Browser, you must have pop-ups dis-
abled completely or at least for the URL of your MOB in your Web
browser.

Let’s explore the power of the MOB by reviewing a simple walk-through.
We will gather information about our Web service host by performing the
following steps:

1. Connect to the Managed Object Browser by browsing the appro-
priate URL and entering in valid credentials when prompted.

114 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

2. Click the RetrieveServiceContent hyperlink under Methods. A
new window will open.

3. Click Invoke Method.

At this point, you will see the Method Invocation Result displaying var-
ious items in table form, as shown in Figure 3.17.The Name column repre-
sents the actual name of the managed or data object in the SDK. The Type
column tells you more about that object and can help you map the object
back to the appropriate data model for additional information. The Value
column will either display the actual value or collection of values (for data
objects) or a link to another data object or managed object. Remember that
managed objects are never passed directly. Instead, a reference to that managed
object is returned by operations. In this example, we see the value of the
Aboutlnfo data object. This value is represented as a collection and gives you
plenty of information about the Web service.

Figure 3.17 Method Invocation Result from Invoking the
RetrieveServiceContent Operation

3 ittps:/1ab1-vdemand net:0443 - Managed ObyecyBrowser - Mozl Firefor CEX

(ONON T NER L)

Managed Object Type: j vicell
Managed Object ID: ServiceInstance
Method: RetrieveServiceContent
ServiceContent RetrieveServiceContent
Parameters
NAmE e | vauwe
Invoke Method
Method Invocation Result: ServiceContent 1

about Aboutinfo | [= e

string | Unset

string | “VMware VirtualCenter

VMwar
2.0.0 build-24599"

Unset

DiaoMar [
Done lsbLvdenand.net:os43 (3 8 02195 @ (A Advode @) Now:Party Coudy, a3 15| sumeszo p | manesoor

Although not much has been documented about the MOB, it will still
serve as a great test or troubleshooting tool. If you need more information

Scripting and Programming for the Virtual Infrastructure « Chapter 3

about the value you must pass, such as a reference to managed objects that are
required as input to an operation call, capture some samples of the returned
managed object references to ensure that your input data is compliant with
the WSDL schema for all complex types.

Microsoft has also provided some useful tools and functionality in the
Visual Studio IDE that you will find handy. As we discussed earlier in the
chapter, the Object Browser, as shown in Figure 3.18, can prove to be useful
as a quick reference to the various properties, methods, and datatypes of
VimService2005. The following figure shows the IVimApi namespace and
associated classes. Highlighting any class will reveal the properties and
methods defined by that class, as well as their input and return values.

Figure 3.18 Visual Studio 2005 Object Browser Showing the VimAPI
Namespace

Object Browser

Browse: All Components v ., Gm ?_j =R
<Search> - LJ hd AboutInfol)
2 apiType
=+ YimServicez005 - ﬁ] apiversion
=4} vimapi =7 buid
e 25 Fullhamne
“i¢ AccountCreatedEvent ﬁ] lacaleBuild
“% AccountRemovedEvent ﬁ“ localetersion
“t% AccountUpdatedEvent B name
"‘f? AcquireLocalTicketCompletedEventargs ﬁ] osType
=il AcquirelocalTicketCompletedEventHandler ﬁ‘ productLineld
"‘f? AcquireMks TicketCompletedEventArgs ﬁ] wendor
iy AcquireMksTicketCompletedEventHandler ﬁ] wersion
“t% Action

“t% AddauthorizationRoleCompletedEventargs

i AddauthorizationRoleCompletedEventHandler
“1% AddCustomFieldDefCompletedEventArgs

i AddCustomFieldDefCompletedEventHandlsr
“1% AddHost_TaskCompletedEventargs

_14 AddHost_TaskCompletedEventHandler

_14 AddInternetScsiSendTargetsCompletedEventHs
_h AddInternetscsistaticTargetsCompletedEventH.
_14 AddPortGroupCompletedEventHandler

“14 AddServiceConsolevirtualNicCompletedEventAr
il AddserviceConsolevirtualNicCompletedEventHa
“1% AddstandaloneHost_TaskCompletedEventargs
_14 AddstandaloneHost_TaskCompletedEventHand|

]y oy O

Another great feature about developing in Visual Studio is Intellisense, as
shown in Figure 3.19.The IDE is ever mindful about objects that get instanti-
ated, and as you code with those objects, the IDE will present you with the
valid methods and properties related to your location of the object-oriented
hierarchy, as well as hints on the syntax and datatypes expected. In the fol-

115

116

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

lowing figure, the IDE is aware of that _service as an instance of the VimService
object and is helping to identify valid properties, methods, and events based
on what has been typed so far, “_service. QueryVM”.

Figure 3.19 Visual Studio 2005's Intellisense Feature Enumerating Properties
and Methods of VimService

_Service = new VimServicel(]:
service.Url = url:;
service.Queryvm

_SELVIC ¢ oenmfsDatastoreCreateOptionsCompleted ~

i QuerywmfsDatastoreExtendOptions
_Sic = = QueryvmfsDatastoreExtendOptionshsync
& QueryvmfsDatastoreExtendOptions Completed
R = WA ey Y MotionCompatibility
_ser =4 QueryYMationCompatibilicyAsyne
3 # QueryWMotionCompatibilityCompleted
iy ReadhextEvents
state W ReadNextEventsAsync
_if Lt ¥ ReadhextEventsCompleted b

The Connection Process

Now you are ready to start some simple coding exercises. Although we step
through some code snippets in this section, you can find complete applica-
tions in the samples included with the SDK. Our purpose here is to break

down a lot of that complicated code to explore the various operations you
may perform in your own management applications.

As the first step, you will need to connect the client to the Web service
either using the stub you created or using the one that came with the SDK
package. Assuming you have already created a new project, you will want to
make a reference to the VimService2005.dll in your project. This will present
the VVimApi namespace for us to use in our code.

To log on to the Web service, perform the following steps:

Create a new managed object reference.

2. Create a reference to the Web service URL. Optionally, you can
define how to handle cookies as part of the HTTP-based SOAP
interaction.

SYNGRESS
syngress.com

Scripting and Programming for the Virtual Infrastructure « Chapter 3

3. Retrieve the ServiceContent data object from the service instance.

4. Obtain the session manager reference to be used when invoking the
login operation

5. Call the Login operation, passing the referenced session manager,
username, and password.

Code Listings 3.19 and 3.20 demonstrate a simple logon process and
assume you have captured the values of url, username, and password as input or
arguments to work with. Remember that the URL to the Web service is
https:// <your_server>/sdk.

Code Listing 3.19 C# Script for Logging on to the Web Service

using System;

using VimApi;

protected VimService _service;
protected ServiceContent _sic;

protected ManagedObjectReference _svcRef;

public void Connect (string url, string username, string password) {
_service = new VimService() ;
_service.Url = url;

_service.CookieContainer = new System.Net.CookieContainer() ;
_svcRef = new ManagedObjectReference () ;

_svcRef.type = "Servicelnstance";

_svcRef.Value = "Servicelnstance";

_sic = _service.RetrieveServiceContent (_svcRef) ;

if (_sic.sessionManager != null) ({

_service.Login(_sic.sessionManager, username, password, null);

117

118

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Code Listing 3.20 VB.NET Script for Logging on to the Web Service

Imports System

syngress.com

Imports VimApi

protected _service As VimService
protected _sic As ServiceContent

protected _svcRef as ManagedObjectReference

Public Function connect (url As string, username as String, password As _
String)

_service = New VimService

_service.Url = url

_service.CookieContainer = New System.Net.CookieContainer

_svcRef = New ManagedObjectReference
_svcRef .type = "Servicelnstance"

_svcRef.Value = "ServiceInstance"

_sic = _service.RetrieveServiceContent (_svcRef)

if (_sic.sessionManager != null)
_service.Login(_sic.sessionManager, username, password, null)
End if

End Function

In this example, we reference the VimAPI namespace that will facilitate
access to the various objects needed in our management application. We
declare and instantiate three variables. _service serves as a primary object of type
VimService. _sic serves as our ServiceContent managed object. _sucRef represents
an instance of the Managed ObjectReference object type. Upon instantiation, we
set the appropriate values for the URL and cookie container for the client

Scripting and Programming for the Virtual Infrastructure « Chapter 3

and invoke the Login operation. You will notice that we must pass the refer-
ence to the sessionManager managed object as one of the input parameters of
the login operation.

Handling SSL Certificates

With VI SDK 2.0, we are faced with the same potential problems sur-
rounding PKI management and certificate issues for your management appli-
cation that we experienced with earlier SDKs. In most cases, you will connect
to the Web service through the HTTPS listener instead of HTTP. The default
certificate used by the VI Web service is not a valid one for production use
since it was not issued by a trusted root certificate authority (CA).You can
choose to handle this condition one of two ways. First, you can replace the
certificate with a valid one from a trusted CA and update the vpx configura-
tion as reviewed earlier in this chapter. Another option would be to handle
the “bad” certificate programmatically in your application. Although the cer-
tificate cannot be trusted, it can still be used to encrypt the HTTP data pay-
load transmitted between the management client and the Web service.

The latter option is the most common and still provides adequate security
for situations where the Web service is only accessible on your internal net-
work. The examples found in the SDK package all include a sample
workaround which we will discuss briefly. The key component is the
CertPolicy.cs file, which can be copied from any sample and added to your
project. Using the System. Security. Cryptography. X509 Certificates namespace and
hashtables, the CheckValidationResult function 1s passed the certificate and assesses
its validity. If the function detects any issues with the certificate, it will then
display a message box stating any problems that were found, presenting the
management client user the option to continue regardless.

To take advantage of this certificate validation functionality, you can
implement ICertificatePolicy. Then you must pass ICertificatePolicy to
ServicePointManager. Certificate Policy before any Web service method calls are
made. Include the following code in the client code. Before you make the
Web Service method call from the client code, the following statement must
be executed:

System.Net.ServicePointManager.CertificatePolicy = new CertPolicy () ;

119

120

SYNGRESS

syngress.com

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

In addition to using the CertPolicy distributed in the SDK package, you
can create you own CertPolicy that will validate, for example, all certificates.
The following sample code implements ICertificatePolicy and then accepts
every request under SSL:
using System.Net;

using System.Security.Cryptography.X509Certificates;

public class CertPolicy : ICertificatePolicy {
public bool CheckValidationResult (
ServicePoint svcPnt
, X509Certificate cert
, WebRequest req
, int certProblem)
return true;
} // end CheckvalidationResult

} // class CertPolicy

Retrieving Property Information

Collecting information from any managed objects requires that you create a
PropertyFilterSpec data object. This object contains two properties: propSet, a set
of PropertySpec data objects, and objectSet, a set of ObjectSpec data objects (see
Table 3.17).

Table 3.17 Details Concerning the Definition of These Properties as Required
for the PropertyFilterSpec

Item Object Comprised Object Properties

propSet PropertySpec type Value that represents the type of
managed object being collected.

all Boolean value that tells the
PropertySpec to retrieve all available proper-
ties of the managed object (is set to TRUE).

Continued

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Table 3.17 continued Details Concerning the Definition of These Properties
as Required for the PropertyfFilterSpec

Item

Object

Comprised Object Properties

objectSet

selectSet

ObjectSpec

SelectionSpec
TraverseSpec

pathSet Comma-separated list of property
names identifying the properties whose
values should be retrieved for the managed
object. This implies that the “all” property
was set to FALSE or omitted.

obj Defines the managed object reference
where the collection begins.

skip Boolean value that tells the ObjectSpec
whether the object defined in “obj"” is part
of the selection for property retrieval.

selectSet (Optional) Is made up of one or
more SelectionSpec data objects, which in
turn contain TraversalSpec data objects.
Each managed object is a property of the
original managed object defined in “obj”,
and can be traversed or have its properties
retrieved as well.

type Value that represents the type of
managed object for the TraversalSpec.

path The property name that contains the
managed object reference as a value. This
reference is where the traversal will go next.

skip Boolean value that tells the
SelectionSpec or TraversalSpec whether the
referenced object is part of the selection for
property retrieval.

selectSet An array of SelectSpec objects
defining the next step of the traversal. The
SelectionSpec can be a TraversalSpec if fur-
ther traversing is necessary.

Mastering the PropertyCollector, filters, and inventory traversal will be key

to developing efficient and powerful management applications. With this latest

121

122

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

release, the frontier is still fairly unexplored, but in time you will develop a
strategy that works best for you in your development efforts.

Since property management is such an important area in the new SDK,
we will review two examples in C# that should help demonstrate the basic
techniques. The first example demonstrates a simple PropertyFilterSpec with no
traversal. In this example, we will monitor a task by retrieving specific infor-
mation about it.

We start by declaring pSpec as a new instance of PropertySpec. Setting the
type to “Task”, we can focus on managed objects of the desired type. We also
set the all property to FALSE because we only want to retrieve specific infor-
mation, “info.state”, as defined in the array pathSet.

PropertySpec pSpec = new PropertySpec() ;
pSpec.Type = "Task";
pSpec.all = false; pSpec.allSpecified = true;

pSpec.pathSet = new String[] { "info.state" };

Next, we declare oSpec as a new instance of ObjectSpec. By setting the
property obj to the managed object reference of the specific task that we are
focusing on, we define it as the starting point. Since the skip property is not
set to TRUE and selectSet is not defined, the managed object referenced in obj
will be checked to see if it matches pSpec. Type, or “type”, and there will be no
traversal to other managed objects. Consequently, this will be the only object

that is checked.
ObjectSpec oSpec = new ObjectSpec() ;

oSpec.0Obj = taskMgdObjRef;

With pSpec and oSpec defined, we can now construct the PropertyFilterSpec.
We do so by declaring _pfsec as a new instance of PropertyFilterSpec, setting its
ObjectSpec property to oSpec and its PropertySpec to pSpec.

PropertyFilterSpec _pfSpec = new PropertyFilterSpec () ;
_pfSpec.ObjectSet = new ObjectSpec[] { oSpec };

_pfSpec.PropSet = new PropertySpec|[] { pSpec };

SYNGRESS

syngress.com

Scripting and Programming for the Virtual Infrastructure « Chapter 3

We have everything we need to retrieve the results of the collection. First,
we need to declare a PropertyCollector managed object reference from the
ServiceContent data object.

ManagedObjectReference _svcRef = new ManagedObjectReference() ;
_svcRef.type = "Servicelnstance";

_svcRef.Value = "Servicelnstance";
ServiceContent _sic = VimService.RetrieveServiceContent (_svcRef) ;

ManagedObjectReference pCollector = sic.PropertyCollector();

Next, we invoke the retrieveProperties operation, passing it the
PropertyCollector managed object reference and the PropertyFilterSpec that we
constructed. The resulting ObjectContent is then used alongside a
DynamicProperty array to store the values retrieved, which we then write to
the console. Note that the variable _service was declared and defined upon
establishing a connection with the Web service.

ObjectContent [] ocary = vimService.retrieveProperties (pCollector,

new PropertyFilterSpec[] { pfSpec });

if (ocary != null) {
ObjectContent oc = null;
ManagedObjectReference mor = null;
DynamicProperty[] pcary = null;
DynamicProperty pc = null;
oc = ocaryl[0];
mor = oc.obj;

pcary = oc.propSet;

Console.WriteLine ("Object Type : " + mor.type);

Console.WriteLine ("Reference Value : " + mor.Value) ;

if (pcary != null) {

123

124

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

pc = pcaryl[0];
Console.WriteLine (" Property Name : " + pc.name) ;

Console.WriteLine (" Property Value : " + pc.val);

When simple property retrieval isn’t wanted or it doesn’t fit the situation,
you must incorporate object traversal through the entity inventory to collect
the information you need. This is particularly true when you do not know
where the object you desire to manage is located and you need to traverse the
inventory recursively. The following example reviews the steps you will need
in order to enumerate all of the virtual machines in the inventory regardless
of where they are located. Our objective is to collect the properties
guest.hostName and guest.guestFull Name.

We begin by creating a new PropertySpec instance, followed by a single
ObjectSpec property:

PropertySpec pSpec = new PropertySpec() ;
pSpec.Type = "VirtualMachine";
pSpec.all = false; pSpec.allSpecified = true;

pSpec.pathSet = new String[] { "guest.hostName", "guest.guestFullName" };

ObjectSpec oSpec = new ObjectSpec() ;
oSpec.0Obj = refDataCenter;

oSpec.Skip = FALSE;

We supposed that the variable refDataCenter was declared and defined earlier
as a managed object reference to a datacenter managed object. We now define
the traversal path. The TiaversalSpec objects will use the Datacenter managed
object as a starting point and will cover the six possible paths through the
hierarchy, as shown in the following list:

m Folder to childEntity (folderTSpec)

m Datacenter to hostFolder (dc2Host T Spec)
m Datacenter to vimFolder (dc2VimTSpec)

Scripting and Programming for the Virtual Infrastructure « Chapter 3 125

m ComputeResource to resourcePool (cr2Rp T Spec)
m ComputeResource to host (cr2ZHostT'Spec)

m resourcePool to resourcePool (rp2RpTSpec)

Code Listing 3.21 demonstrates how the TraversalSpec objects are defined.

Code Listing 3.21 Defining TraversalSpec Objects

W TraversalSpec dc2HostTSpec = new TraversalSpec() ;

dc2HostTSpec.Type = "Datacenter";

dc2HostTSpec.Path = "hostFolder";

dc2HostTSpec.SelectSet = new SelectionSpec|[] {recursiveSpec};

TraversalSpec dc2VmTSpec = new TraversalSpec() ;
dc2VmTSpec.Type = "Datacenter";
dc2VmTSpec.Path = "vmFolder";

dc2VmTSpec.SelectSet = new SelectionSpec[] {recursiveSpec};

TraversalSpec cr2RpTSpec = new TraversalSpec() ;
cr2RpTSpec.Type = "ComputeResource";

cr2RpTSpec.Path

"resourcePool";

TraversalSpec cr2HostTSpec = new TraversalSpec() ;
cr2HostTSpec.Type = "ComputeResource";

cr2HostTSpec.Path

"host";

TraversalSpec rp2rpTSpec = new TraversalSpec|() ;
rp2rpTSpec.Type = "ResourcePool";

rp2rpTSpec.Path

"resourcePool";

TraversalSpec folderTSpec = new TraversalSpec() ;
folderTSpec.Type = "Folder";

folderTSpec.Path

"childEntity";

126 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

folderTSpec.SelectSet = new SelectionSpec|[] {recursiveSpec,
dc2VmTSpec,
dc2HostTSpec,
cr2RpTSpec,
cr2HostTSpec,

rp2rpTSpec} ;

In order to finalize the declaration of the PropertyFilterSpec, we must next
define the ObjectSpec and reterencing folderTSpec as the SelectSet property. This
will be the starting point of the traversal at every possible path, collecting data
along the way. At that point, we can construct the PropertyFilterSpec, as shown
Code Listing 3.22.

Code Listing 3.22 PropertyFilterSpec

oSpec.SelectSet = new SelectionSpec[]{folderTSpec};
syngress.com
PropertyFilterSpec pfSpec = new PropertyFilterSpec() ;
pfSpec.PropSet = new PropertySpec[] {pSpec};

pfSpec.ObjectSet = new ObjectSpec[] {ospec};

Other Retrieval Mechanisms

In addition to these techniques, you can also retrieve information through
several other mechanisms. You can search for managed object by Searchindex
API rather than the PropertyCollector. There are some inherent differences
between the two, as shown in the following list:

m SearchAPI returns the first managed entity match, while
PropertyCollector returns as many items as matched within the scope of
its search.

m SearchAPI only works with a small group of managed entities, while
PropertyCollector works with all managed objects.

m SearchAPI is much easier to work with.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

The SearchAPI allows a client to query the entity inventory for a specific
management object using a variety of search attributes. The common man-
aged objects types retrieved using this mechanism are VirtualMachine and
HostSystem. One thing to keep in mind, though, is that a user cannot find a
managed object that it does not have access, so ensuring the proper setting for
the ACLs of the objects in question is important. The SearchAPI has the fol-
lowing six operations associated with it:

m FindByDatastorePath

® FindByDnsName

®» FindBylnventoryPath

= FindBylp

® FindByUuid

m FindChild

You can also retrieve updates for previously collected properties. This is

done using one of three operations, as shown in Table 3.18. Each operation
has its pros and cons, however, so you must match these characteristics against

the goal of your code and the functional and efficiency requirements you may
have.

Table 3.18 Three Operations to Get Updates on Properties

Operation Pros Cons
RetrieveProperties Same process as retrieving Retrieves all of the
the original values for the properties as defined in
targeted properties. the PropertyfFilterSpec,

whether they have
changed or not; least
efficient use of network

bandwidth.
CheckForUpdates Efficient use of network Runs synchronously, so it
bandwidth; only returns returns immediately,
properties that have whether there were any
changed. changes or not.

Continued

127

128

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Table 3.18 continued Three Operations to Get Updates on Properties

Operation Pros Cons

WaitForUpdates Efficient use of network Runs asynchronously, so
bandwidth; only returns it does not return until a
properties that have change has occurred;
changed. will wait or listen indefi-

nitely if change is not
detected or
CancelWaitForUpdates is
called.

Performing Advanced Operations

Now that you know how to retrieve information about managed objects and
obtain the value of data objects found within your inventory, you are ready to
tackle performing management operations against those managed entities.
This is where the power of any SDK comes in, as you can build powerful
applications that analyze properties of the managed objects and, in turn,
invoke the appropriate set of operations as a response.

In this section, we will discuss a few of the common operations that can
be accomplished programmatically with the SDK. Reviewing each of the
operations in this chapter would be lengthy and is beyond the scope of this
book. However, both the Virtual Infrastructure SDK Programming Guide and the
Virtual Infrastructure SDK Reference Guide will help tremendously and serve as a
great look-up guide when needed.

Power Operations

To control the power state of a particular virtual machine, you can call any
of the following operations: PowerOnVVM_Task, PowerOffVVM_Task (for
“hard” shutdowns), or ShutdownGuest (for “cold” shutdowns),
SuspendVM_Task, and ResetVM_lask. Code Listing 3.23 demonstrates the
PowerOft VM_Task operation.

Scripting and Programming for the Virtual Infrastructure « Chapter 3 129

Code Listing 3.23 PowerOffVM_Task
ManagedObjectReference MgdObjRef VM =
syngress.com

_service.findByInventoryPath(sic.SearchIndex(), pathVM);

ManagedObjectReference MgdObjRef Host =
_service.findByInventoryPath(sic.SearchIndex (), pathHost);
ManagedObjectReference MgdObjRef Task =

_service.PowerOffVM (MgdObjRef VM, MgdObjRef Host) ;

Virtual Machine Migration

The MigratelVM_Task operation is used to migrate an existing virtual machine,
regardless of power state. Migrating a virtual machine from one host to
another is different than moving a virtual machine because the disk files
themselves are not migrated, just the ownership of the virtual machine. The
operation has the following required and options parameters that are passed
when being invoked:

m VirtualMachine managed object reference The reference to the
VirtualMachine managed object.

m Pool A reference to a ResourcePool managed object.
m Host A reference to a HostSystem managed object.

m Priority The priority level that you want to set for the migration
task.

m State If specified, the migration will only proceed if the power state
of the virtual machine matches this parameter.

Code Listing 3.24 demonstrates the MigrateVM_Task operation.

Code Listing 3.24 MigrateVM Task
ManagedObjectReference MgdObjRef VM =
syngress.com

_service.findByInventoryPath(sic.SearchIndex (), pathVM) ;

ManagedObjectReference MgdObjRef Host =
_service.findByInventoryPath(sic.SearchIndex (), pathHost) ;

ManagedObjectReference MgdObjRef RPool =

130 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

_service.findByInventoryPath(sic.SearchIndex(), pathResourcePool) ;
ManagedObjectReference MgdObjRef Task =

_service.MigrateVM (MgdObjRef VM, MgdObjRef RPool, MgdObjRef Host

VirtualMachineMovePriority.highPriority,

VirtualMachinePowerState.poweredOn) ;

Working with Snapshots

New to Virtual Infrastructure 3 is the ability to create multiple points-in-time
snapshots and to revert back to other snapshots—a functionality similar to
that available in the VMware Workstation product. The operations
CreateSnapshot_"lask, RevertToSnapshot_'lask, and RemoveSnaphost_"lask can be
used to manage your snapshot processes programmatically. Each operation has
its own set of parameters that are passed upon invocation. For example, the
CreateSnapshot_'lask has the following for parameters:

m Name A friendly string value to name the snapshot.

m Description A user-defined string value that describes the snapshot,
such as “Pre-SP1 Snapshot #3 Created on 2006/08/20”.

® Memory A Boolean value that tells the operation whether a
memory dump should be included with the snapshot

® Quiesce A Boolean value that tells the virtual machine, via VMware
Tools, to quiesce the file system prior to taking the snapshot. If set to
TRUE, the snapshot will be power-down consistent, rather than
crash-consistent, as with previous versions of the ESX Server
product.

Refer to the Virtual Infrastructure SDK Programming Guide for more
information about each of these operations. Code Listing 3.25 demonstrates
the CreateSnapshot_lask operation.

Code Listing 3.25 CreateSnapshot_Task

w ManagedObjectReference MgdObjRef VM =

_service.findByInventoryPath(sic.SearchIndex(), pathVM) ;

boolean memoryDump = false;

Scripting and Programming for the Virtual Infrastructure « Chapter 3

boolean quiesceFileSys = true;

string snapName = "Pre-SP1 Snapshot #3";

string snapDescription = "Pre-SP1 Snapshot #3 Created on 2006/08/20";

ManagedObjectReference MgdObjRef Task =

_service.CreateSnapshot Task (MgdObjRef VM, snapName, snapDescription,

memoryDump, quiesceFileSys) ;

Working with Scheduled Tasks

You can programmatically create scheduled tasks. To do this, you invoke the

CreateScheduledlask operation and configure the task with the

Scheduled TaskSpec data objects. This operation has the following parameters:

ScheduledTaskManager managed object reference This reference
is derived from the scheduledlaskManager property of the
ServiceContent data object.

ManagedEntity managed object reference The target entity for
the action in the task.

Spec The ScheduledTaskSpec object.

The ScheduledTaskSpec also has various parameters that are defined as

properties of the data object. Those properties are

Action Defines the action performed against the targeted managed
entity.

Scheduler A TaskScheduler data object that is used to define when
the action takes place.

Enabled A Boolean property for whether the task is enabled or dis-
abled.

Name A user-friendly name for the task.
Description A user-defined description of the task.

Notification A string value for the e-mail notification associated
with the task.

Code Listing 3.26 demonstrates the CreateScheduledTask operation.

131

132 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Code Listing 3.26 CreateScheduledTask

w ManagedObjectReference MgdObjRef VM =

_service.FindByInventoryPath(_sic.SearchIndex(), pathVM) ;

MethodActionArgument [] mActArgumnt = new MethodActionArgument () ;
MethodAction mAction = new MethodAction() ;

mActArgumnt .Value = MgdObjRef VM;

ma.Argument = mActArgumnt;

ma.Name = "MigrateVM";

DailyTaskScheduler dtScheduler = new DailyTaskScheduler() ;
dtScheduler.Hour = 12;

dtScheduler.Minute = 0;

ScheduledTaskSpec tSpec = new ScheduledTaskSpec() ;
tSpec.Action = mAction;
tSpec.Scheduler = dtScheduler;

tSpec.Enabled = true;

tSpec.Name = "Migrate virtual machine";
tSpec.Description = "Migrate virtual machine at noon") ;
tSpec.Notification = "VMAdmin@syngress.com";

_service.createScheduledTask (_sic.ScheduledTaskManager,MgdObjRef VM, tSpec) ;

For more information, download and review the VMuware Virtual
Infrastructure SDK Programming Guide and the HTML-based VMuware Virtual
Infrastructure SDK Reference Guide.

Other VMware SDKs

In an effort to give developers and administrators even more control over
their Virtual Infrastructure, VMware has provided additional SDKs designed
to meet specific management needs. In addition to the VMware Scripting

Scripting and Programming for the Virtual Infrastructure « Chapter 3

APIs and the Virtual Infrastructure SDK, VMware also offers the VMware
Guest SDK and the CIM SDK. We will review each of these SDKs briefly.

VMware Guest SDK

Newly introduced with Virtual Infrastructure 3 is the VMware Guest SDK or
Guest API. This interface provides access to certain data for the guest oper-
ating system running inside a virtual machine. The SDK is facilitated by the
VMware Tools, implying that the tools must be installed in order for your
management application to be able to hook into the API. In addition, the
Guest SDK 1is a read-only API, intended only to provision a mechanism for
data collection.

Using the VMware Guest SDK, you can monitor and collect data for the
statistics (shown in Table 3.19) about the virtual machine environment.

Table 3.19 Statistics Available Through the Guest SDK

Item Statistic

Memory The total amount of memory allocated to the guest OS.
The amount of memory in use at the time of data
collection.

The upper limit of memory available to the guest OS, if
not equal to the total amount of memory allocated.
The number of shares allocated for memory resources.

CPU The amount of CPU resources guaranteed.
Minimum reserved rate that the virtual machine is allowed
to run, even when idle.
The number of shares allocated for CPU resources.
CPU time scheduled on the hosting ESX Server for the vir-
tual machine’s CPU resources.

Miscellaneous The runtime since the last power-on event or reset of the
virtual machine.
The ability of the API to provide accurate data.

The Guest API run-time component exists as a library that is installed
with VMware Tools version 3.0 and higher. For Windows guest operating sys-
tems, the library file is vm GuestLib.dll; for Linux, the library is libvim GuestLib.so.

133

134 Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Tip

By default, the run-time component of the Guest API is enabled. Even at
idle, this causes the virtual machine to consume CPU cycles, although
the amount may be negligible. You may want to consider disabling this
component to avoid utilizing unnecessary resources.

To disable the run-time component, edit the config file by either
adding the following line or, if it already exists, changing the value as
shown in the following:

isolation.tools.guestlibGetInfo.disable = "TRUE"

The run-time component exposes several data types, functions, and a
library of Error Messages that you can use to troubleshoot the environment.
As a read-only set of API calls, it does not support any operations to perform
actions within the virtual machine, such as reconfiguration, power operations,
or interaction with other members of the virtual infrastructure. If you need to
perform operations, you should utilize the Virtual Infrastructure SDK (pre-
terred) or Scripting APIs.

For more information, please consult the VMuware Guest SDK Programming
Guide.

VMware CIM SDK

Available as 1.0 or 2.0 releases for ESX 2.x or ESX 3, respectively, the
VMware CIM SDK is the final oftering to developers and administrators for
managing components of the virtual infrastructure. This SDK is compliant
with Common Information Model (CIM) standards and supports the Storage
Management Initiative Specification (SMI-S) schema for storage manage-
ment. Since the focus of the SDK is on storage, it allows developers and
administrators to:

m View and identify logical storage resources using a CIM-compliant
application, whether it be “home-grown” or a commercially
available tool.

m View allocation of storage resources to virtual machines.

Scripting and Programming for the Virtual Infrastructure « Chapter 3

m View the physical layer of the storage presented to the hosts associ-
ated with the managed virtual machines.

® Monitor the components responsible for facilitating access to storage,
including, but not limited to, host bus adapters, CIM/SMS-S—com-
pliant connectivity devices, and compliant storage servers/arrays
themselves.

The CIM SDK is based on standards defined by the DMTF and WBEM
bodies, even though it is targeted to storage management and not the overall
management of the ESX hosts. The SDK is provisioned by two components
as listed next and as illustrated in Figure 3.20:

m Pegasus CIMOM A popular open-source CIMOM application that
is installed with, and runs inside, the Service Console of ESX hosts.

= Set of Managed Object Format (MOF) files MOF files that
can be compiled and used on management clients to interact with
the CIMOM process on the server.

Figure 3.20 The CIM SDK Process for Communication

)
=
HTTP/HTIPS =
£ VMware
N—""ESX Server

Management System
CIM SDK -based application

135

136

Chapter 3 ¢ Scripting and Programming for the Virtual Infrastructure

Covering the CIM SDK 1in detail is beyond the scope of this chapter. If
you are interested in developing management applications that take advantage

of the SDK for storage management purposes, you will want to make sure

you are familiar with CIM concepts and principles as well as the SMI-S

schema profile. For more information about the VMware CIM SDK, please
see the VMuware CIM SDK Programming Guide. It you are looking for addi-
tional information regarding CIM and SMI-S, visit the following sites:

Distributed Management Task Force (DMTF) www.dmtf.org

Common Information Model (CIM)
www.dmtf.org/standards/cim/

OpenPegasus www.openpegasus.org

Storage Networks Industry Association (SNIA)
www.snia.org/home

Storage Management Initiative Specification (SMI-S)
www.snia.org/smi/tech_activities/smi_spec_pr/spec/

Scripting and Programming for the Virtual Infrastructure « Chapter 3

Summary

Beginning with the release of ESX Server 2.x and evolving into the Virtual
Infrastructure 3 product line, VMware has uniquely positioned their virtual-
ization technology in such a way that clearly distinguishes them from their
competition. Combined with the inherit flexibility and performance that
ESX Server and VirtualCenter provide at a functional level, the ability to
develop custom management client applications to help administer, manage,
and monitor your virtual infrastructure makes their technology the choice for
many operations. Even with a limited background in scripting or program-
ming, you can develop programs that will help automate and ease your
administration through the VMware Scripting APIs, Virtual Infrastructure
SDK, Guest SDK, and CIM SDK.

137

Chapter 4

Building a VM

Topics in this chapter:
m Creation of Virtual Machines Utilizing
Command-Line Tools

m Scripting Creation of Virtual Machines in
ESX Shell

m Scripting Creation of Virtual Machines in
Perl Scripts

m Cloning Virtual Machines Utilizing ESX Shell
Scripts

m Cloning Virtual Machines Utilizing VmPerl
Scripts

139

140

Chapter 4 * Building a VM

Introduction

VMware provides many useful command-line tools for the creation and
cloning of virtual machines. In this chapter, you will gain a working under-
standing of these tools and how to leverage them to automate virtual machine
creation. At the end of this chapter, you will be able to script the creation and
cloning of virtual machines to automate your virtual machine setup.

Creation of Virtual Machines
Utilizing Command-Line Tools

VMware ESX Server has tools available for command-line creation and
cloning of virtual machines. These tools are available via the service console
and require that you access the service console with root-level privileges.

Tip

Remote access to ESX Server by default is disabled for the root account.
Create an additional account on your ESX server. Log in with this new
account and use the su — root command. This command will allow you
to assume root level privileges.

Three main steps are involved to create a virtual machine utilizing the
command-line tools.

m Creation of a virtual machine configuration file
m Creation of a virtual machine disk file

m Registering the virtual machine with ESX Server
We accomplish the preceding tasks by utilizing the following tools:

m text editor such as VI
m vmkfstools

® vmware-cmd

Building a VM * Chapter 4

Creation of a Virtual
Machine Configuration File

Virtual machine configurations are stored as files with a .vmx extension. The
VMX file is just a text file with specific fields that define the virtual machine’s
configuration. A very short vinx file only needs 14 lines to support a virtual
machine that encompasses one CPU, one hard drive, and one network adapter.
You could create a VMX file with just three lines but it would be of minimal
value. Code Listings 4.1 and 4.2 show sample VMX configurations.

Code Listing 4.1 ESX 2.x VMX Code

guestOS = "winnetenterprise"
config.version = "6"
virtualHW.version = "3"
scsiO.present = "true"
scsiO.sharedBus = "none"
scsiO.virtualDev = "lsilogic"
memsize = "512"
scsi0:0.present = "true"

scsi0:0.fileName "ESX Created VM.vmdk"

scsiO:0.deviceType = "scsi-hardDisk"
ethernet0.present = "true"
ethernet0.allowGuestConnectionControl = "false"
ethernet0.networkName = "VM Network"

ethernet0.addressType = "vpx"

Code Listing 4.2 ESX 3.x VMX Code

guestOS = "winnetenterprise"
config.version = "8"

virtualHW.version = "4"
scsiO.present = "true"
scsi0O.sharedBus = "none"
scsi0.virtualDev = "lsilogic"

memsize = "512"

141

142

Chapter 4 * Building a VM

scsiO:0.present = "true"

scsiO:0.fileName = "ESX Created VM.vmdk"
scsi0:0.deviceType = "scsi-hardDisk"
ethernet0.present = "true"
ethernet0.allowGuestConnectionControl = "false"
ethernet0.networkName = "VM Network"

ethernet0.addressType = "vpx"

As you can tell from Code Listings 4.1 and 4.2, the only difference is in
the values of the config.version and virtualHW.version entries. These values
relate to the version of ESX Server you are running. To check the values for
these fields, open up an existing virtual machine’s configuration file in a text
editor.

NoTEe

It doesn’t matter whether you use upper- or lowercase, but always make
sure to use “ “ for the values in an (VMX) file.

Once you start a VM using a VMX configuration file like the ones shown
in Code Listings 4.1 and 4.2, VMware will generate additional entries in the
VMX.These entries identify the virtual machine and set default values for the
virtual machine. Examples of these types of entries are shown in Code
Listing 4.3

Code Listing 4.3 VMware Autogenerated VMX Entry Examples

uuid.bios = "56 4d ee 3c 52 06 a3 de-be 4a 73 9c cc 79 25 2b "
ethernet0.generatedAddress = "00:50:56:a7:42:e2"
powerType.powerOff = "default"

powerType.powerOn = "default"

powerType.suspend = "default"

powerType.reset = "default"

Building a VM * Chapter 4

NoTE

Configuration files for virtual machines created with VMware ESX Server

2.0 and later use the .vmx extension. Earlier versions of ESX Server used
the .cfg extension.

Creating Your Virtual Machine Configuration File

You now have a basic understanding of how a virtual machine configuration
file is constructed and are ready to build your own. The steps that follow
detail how to create a new virtual machine configuration file.

m Log in locally or connect to your ESX server remotely.

m Log in with an ID that has root privileges (see the Tip in the pre-
vious section), as shown in Figure 4.1.

Figure 4.1 Gaining Root Level Access on ESX Server

£ root@-ESX3-51:~

login as: dh913s =
Adh2138E192.168.1.109' s password:

[dh21380 —-EZE3-31 dh9138]4% su — root

Password:

[rootl -ESX3-51 rootl# []

[~

m Change to the location of where you want to put your new virtual
machine. Virtual machine configuration files (VMX) have to be
stored in the same location as the other virtual machine files (VSWP,
VMDXK, and so on). See Figure 4.2.

143

144 Chapter 4 ¢+ Building a VM

Figure 4.2 Virtual Machine Storage Location

o root(@ -E5X3-51:/vmfs/volumes/storagel /Y

[tootl -ESX3-31 root] # =
[rootl -E3X3-51 root] #

[rootl-E3X3-51 root] #

[rootl -E3¥3-51 root] #

[rootl -E3¥3-31 root] #

[rootl -E3¥3-31 root] #

[rootl -E3X3-31 root]#

[rootl-E3X3-31 root]#

[rootl-E3X3-31 root]#

[rootl-E3X3-31 root]#

[rootl-E3X3-31 root]#

[tootfl-ESX3-31 root]# cd Svmfs/volumes/storagel/VH

[rootB-E5xs-51 vml#] =

m Create a new directory to store your new virtual machine in newvm
and change to that directory (see Figure 4.3).

Figure 4.3 Virtual Machine Working Directory

£~ root@ -ESX3-51:/ymis/volumes/storagel /M /newym

[rootl -ESX3-51 root]# =
[tootfd -E3X3-31 root]#

[tootd -ESE3-31 root]#

[rootl -ESXE3-31 root]#

[tootd -ESX3-31 root]#

[tootfd -E3X3-31 root]#

[tootd -ESE3-31 root]#

[rootl -ESX3-51 root]#

[tootd -ESX3-31 root]#

[tootd -EZE3-31 root]# cd Svmis/volumes/storagel/VH

[rootd -ESE3-31 VM]# mkdir newvm

[rootd -E3X3i-31 VM]# cd newmn

[rootl -ESX3-51 newv] # [] =

® You are now ready to create your new virtual machine configuration
file. We are going to use the built-in text editor VI to create our con-
figuration file. Type vi newvm.vmx and press Enter (see Figure

4.4).

Building a VM * Chapter 4

Figure 4.4 Creating a New Virtual Machine Configuration File in VI

£~ 1oot@-E5%3-51: /vmfs/volumes/storagel /M /newym

"newvin. vinx ™ [Mew File]

m Press I to turn on inserting (you will see the word insert at the

bottom of the screen).

m Type in the following example virtual machine configuration file (see

Code Listing 4.4).

Code Listing 4.4 Example Virtual Machine Configuration File

config.version = "6"
virtualHW.version = "3"

memsize = "256"

floppy0.present = "false"

displayName = "newVM"

guestOS = "winNetStandard"
ide0:0.present = "TRUE"
ide0:0.deviceType = "cdrom-raw"
ide:0.startConnected = "false"
floppy0.startConnected = "FALSE"
floppy0 .fileName = "/dev/£do"
EthernetO.present = "TRUE"
Ethernet0.connectionType = "monitor dev"
Ethernet0O.networkName = "VM Network"
Ethernet0.addressType = "vpx"
scsiO.present = "true"

scsi0.sharedBus = "none"

145

146

Chapter 4 ¢+ Building a VM

scsiO.virtualDev = "lsilogic"
scsi0:0.present = "true"
scsi0O:0.fileName = "newvm.vmdk"
scsiO:0.deviceType = "scsi-hardDisk"

m Press the Esc key to exit the insert mode, then press and hold Shift
and press ZZ to save and exit (see Figure 4.5).

Figure 4.5 Saving the VMX File in VI

2~ roob@ -ES¥3-51:/vmfs/volumes/storagel /M /newym

config.version = ™"3"
virtualHW.wversion = 4"

memsize = "256"

floppy0d.present = "false™
displaylame = "neyWH"

guestOl = "winMNetZtandard™
idef:0.present = "TRUE"
idel:0.deviceType = "cdrom-raw™
ide:0.startConnected = "falzse"
floppy0.startConnected = "FLLIE™
floppyd.£ilelName = "/dev/£d0™
Ethernetl.present = "TRIOE"
EchernecO.connectionType = "monitor dev”
Ethernetl.networklMName = "V Network™
Ethernetcl. addressType = "wpx™
scsil.present = "trus™
scsil.sharedBus = "none™
scgil.virtualley = "lsilogic™
scsil:0.present = "Lrue™
scsif:0.filelName = "newvmn. Vindk™
scsil:0.deviceType = "sosi-hardDisk™

-- IN3ERT --

m Typels -1 to get a directory listing. You should now see your new
virtual machine configuration file (see Figure 4.6).

Building a VM * Chapter 4

Figure 4.6 Completed Creation of VMX File

2 root@ -ESX3-51: /vmfs/volumes/storagel Y M /newym

[rooth -ESX3-51 root] # [+
[rootl —E3X3I-31 root]#

[rootl -E3X3-31 root] #

[rootl —E3X3I-31 root]#

[rootl —ESX3-31 root]#

[rootl ~ESX3-31 rooc] #

[rootl —E3X3-31 root]# cd /vmfs/volumes/atoragel/VH
[rootl -ESX3-31 VH]# mkdir newvm

[rootl -ESX3-31 VH]# cd newvo
[rootl —ESX3I-31 newvm] # vi newvm. vix
[rootl —EZX3-31 newwm] # 1ls -1

total 64
—EW-r——E—— 1 root rooct 596 Oct 5 13:06 newvm. vinx
[rootB-ESE3-51 newan] # [=]

You are now ready to go on to the next section to create the virtual disk
newvm.vimdk that you will be referencing in your configuration file.

NoTE

Do not log out or close your ESX session just yet. You will continue from
this point in the next section.

Creation of a Virtual Machine Disk File

VMware has a command-line utility, called vmkfstools, which can be used for
the creation of VMES file systems and virtual machine disk files. In this
chapter, we will only focus on the options that pertain to virtual disks. For a
tull listing of command options, type vimkfstools in a console session or
man vmkfstools. Code Listing 4.5 lists the vmkfstools options that pertain to
virtual disks.

Code Listing 4.5 vmkfstools Command Options for Virtual Disks

vmkfstools
OPTIONS FOR VIRTUAL DISKS:
vmkfstools -c¢ --createvirtualdisk # [gGmMkK]

-d --diskformat [zeroedthick]|

147

148 Chapter 4 ¢+ Building a VM

eagerzeroedthick|
thick]|
thin]
-a --adapterType [buslogic|lsilogic]
-w --writezeros
-j --inflatedisk
-U --deletevirtualdisk
-E --renamevirtualdisk srcDisk
-1 --clonevirtualdisk srcDisk
-d --diskformat [rdm:<devices>|rdmp:<devices |
raw:<devices>|thin|2gbsparse]
-X --extendvirtualdisk # [gGmMkK]
-M --migratevirtualdisk
-r --createrdm /vmfs/devices/disks/...
-q --queryrdm
-z --createrdmpassthru /vmfs/devices/disks/...
-Q --createrawdevice /vmfs/devices/generic/...
-v --verbose #
-g --geometry

vmfsPath

In our example, we will create a 4GB virtual disk called newvm.vmdk and
assign it a SCSI LSI Logic adapter. In the console, type the following: vimkfs-
tools —c 4g newvm.vindk —a Isilogic. Then, press Enter (see Figure 4.7).

Figure 4.7 Creating the Virtual Disk

2~ root{@ -ESX3-51:/vymfs/volumes/storagel /¥YM /newvm

[rootl-ESE3-31 newv] # =
[rootl -E3X3I-31 newvm] #

[rootl -E3X3-31 newvm] #

[rootl -ESX3-31 newvm] #

[rootl -E3X3I-31 newvm] #

[rootl -E3X3I-31 newvm] #

[rootl -E3X3I-31 newvm] #

[rootl-ESX3-31 newvm] # ls -1

total 64

—rW-r—--r—-- 1 root root 596 Oct 8 13:068 newTn. vinx

[rootl —E3E3-31 newvm] # vmkfstools -c¢ 4g newwm.wvmdk —a lsilogic

[rootl -ES¥3-51 newm) # [] j

Building a VM * Chapter 4

We have now created a virtual disk file newvm.vmdk in the same location
as our virtual machine configuration file. The last step is to register this new
virtual machine with ESX Server.

Registering Virtual Machines with ESX Server

VMware includes the vmware-cmd command tool for performing various
operations on virtual machines and the server. In this chapter, we will focus
on the virtual machine registration option of this tool -s register. For more
information on all available tool options, type vimware-cmd at the console
command prompt.

Type the following all on one line in the console window to register the
new virtual machine with the ESX server:

vmware-cmd -s register "Your Path"/newvm/newvm.vmx

“Your Path” should be in a similar format to /vmfs/volumes/storage1/ (see
Figure 4.8).

Figure 4.8 Registering a Virtual Machine with ESX

£ roobi@-ESX3-51: /ymfs/volumes/storage1 M /newym

[root@ -E3X3-31 newvm] # =
[Eootf@ -ESX3-31 newvm] #

[rootld —EZX3-31 newvm] #

[rootl -ESX3-31 newvm] #

[rootld —EZX3-31 newvm] #

[rootl -ESX3-31 newvm] #

[rootld —E3X3-31 newwvin] #

[root@ -ESX3I-31 newvm] #

[rootfd -E3X3I-31 newvm] #

[root@ -E3X3-31 newvm] #

[rootid -E3X3I-31 newwv] #

[root@ -E3X3-31 newv] # vinware-cwd -3 register Svmfs/volumes/storage 1/ VHS newvn
/eI . VIns

regizster [fvfs/volumes, storagel,/ VIS newn newi . vin] = 1

[rootl-ESE3-31 new] # [] 5

A returned value of “1” after running this command indicates a successful
registration of the virtual machine. Open up the GUI of your ESX server to
verify that the new VM is listed. At this point, you are ready to power on the
virtual machine and install your operating system. You have successfully cre-
ated a new virtual machine utilizing the VMware command-line tools.

149

150

Chapter 4 * Building a VM

WARNING

If when turning on the virtual machine for the first time you receive the
error message “Cannot open disk <diskname.vmdk>:The system cannot
find the file specified. Bad value for scsi0:0.virtualDev,” this means your
virtual machine configuration file has the wrong values for config.ver-
sion and virtual[HW.version. Update the values for these two fields with
the appropriate ones for your version of ESX.

Scripting Creation
of Virtual Machines in ESX Shell

Scripting the creation of virtual machines is simpler than one might think. We
will leverage you new gained experience from previous sections on utilizing
the VMware tools to automate the VM creation process. In the previous sec-
tion, you manually created a virtual machine configuration file and virtual
disk. You then registered the virtual machine with ESX Server. We’re going to
now essentially take all those commands and steps and automate them in a
script that you can run repeatedly and customize to build various types of vir-
tual machines.

The VMware ESX shell is simply the service console operating system.
This operating system is a custom version of Linux that VMware created. In
Linux, you can create a simple text file to automate commands and then exe-
cute it. If you are familiar with DOS batch files, then this will be easy for
you. Code Listing 4.6 shows an example of scripted VM creation.

Code Listing 4.6 Scripted VM Creation

VM Creation Script #########HHF#HHEHHIHEHHHAHHHHAHHHESHHH
#Script Version 1.1
#Author David E. Hart

#Date 10-05-06

Purpose|

Building a VM * Chapter 4

This script will create a VM with the following attributes;
Virtual Machine Name = ScriptedVM

Location of Virtual Machine = /VMFS/volumes/storagel/ScriptedVM
Virtual Machine Type = "Microsoft Windows 2003 Standard"

Virtual Machine Memory Allocation = 256 meg

H+ O H O HF= O H O H H*

#NVM is name of virtual machine (NVM). No Spaces allowed in name
#NVMDIR is the directory which holds all the VM files
#NVMOS specifies VM Operating System

#NVMSIZE is the size of the virtual disk to be created

FHEFHFHHH A R

Default Variable settings - change this to your preferences
NVM="ScriptedvM" # Name of Virtual Machine
NVMDIR="ScriptedVvM" # Specify only the folder name to be created; NOT the

complete path
NVMOS="winnetstandard" # Type of OS for Virtual Machine
NVMSIZE="4g" # Size of Virtual Machine Disk

VMMEMSIZE="256" # Default Memory Size

End Variable Declaration

mkdir /vmfs/volumes/storagel/$NVMDIR # Creates directory

exec 6>&1 # Sets up write to file
exec 1>/vmfs/volumes/storagel/$NVMDIR/SNVM.vmx # Open file

write the configuration

echo config.version = '"'6'"! # For ESX 3.x the value is 8
echo virtualHW.version = '"'3'"'" # For ESX 3.x the value is 4

echo memsize = '"'SVMMEMSIZE'"'

151

152 Chapter 4 * Building a VM

echo floppy0O.present = '"'TRUE'"' # setup VM with floppy

echo displayName = '"'SNVM'"™!' # name of virtual machine
echo guestOS = '"'SNVMOS'"!'

echo

echo ide0:0.present = '"'TRUE'"'

echo ide0:0.deviceType = '"'cdrom-raw'"'

echo ide:0.startConnected = '"'false'"' # CDROM enabled
echo floppy0O.startConnected = '"'FALSE'"'

echo floppy0.fileName = '"'/dev/£do'"!

echo EthernetO.present = '"'TRUE'"'

echo EthernetO.networkName = '"'VM Network'"' # Default network
echo Ethernet0.addressType = '"'vpx'"!'

echo

echo scsiO.present = '"'true'"!'

echo scsi0.sharedBus = '"'none'"!'

echo scsi0O.virtualDev = '"'lsilogic'"

echo scsi0:0.present = '""'true'"!' # Virtual Disk Settings
echo scsiO:0.fileName = '"'SNVM.vmdk'"'

echo scsi0:0.deviceType = '"'scsi-hardDisk'"!

echo
close file

exec 1>&-

make stdout a copy of FD 6 (reset stdout), and close FD6
exec 1>&6

exec 6>&-

Change permissions on the file so it can be executed by anyone

chmod 755 /vmfs/volumes/storagel/SNVMDIR/SNVM.vmx

#Creates 4gb Virtual disk

cd /vmfs/volumes/storagel/SNVMDIR #change to the VM dir

Building a VM * Chapter 4

vinkfstools -c SNVMSIZE SNVM.vmdk -a lsilogic

#Register VM

vmware-cmd -s register /vmfs/volumes/storagel/$NVMDIR/S$SNVM.vmx

NoTE

The standard format for values for the VMX file are to encase them in

double quotes, such as memsize = “256"”. When scripting the creation
of the VMX, you need to use single quote, double quote, single quote.
So the previous example would be memsize = '“’256'"". You must do

this for VMX values.

The script in Code Listing 4.6 will create a virtual machine that has the

following characteristics:

A VM called ScriptedVM in a directory named ScriptedVM on
storagel

A VM that will be assigned 256MB of memory

A VM that will have a 4GB SCSI hard drive (Isilogic controller)
A VM configured for a Windows 2003 standard operating system
A floppy drive assigned, not connected at startup

A CD-ROM attached to the ESX server’s CD-ROM drive, not con-
nected at startup

An Ethernet adapter connected to the VM Network, enabled at startup

The exec commands in the script are system-level commands in Linux to

set up the writing to, and saving of, the script file. It redirects the console

screen’s output to the script file. The use of the echo commands in the script

sends the commands to the screen which are redirected to the file for

writing. The file is then closed and the virtual configuration file, VMX, is

saved. The permissions are changed on the configuration file so any user on

ESX can access the virtual machine. Then the script creates the virtual disk
and registers the VM with the ESX server.

153

154 Chapter 4 ¢+ Building a VM

Use the following process to set up your script on the ESX server:

m Log in locally or connect to your ESX server remotely.

m Log in with an ID that has root privileges (see Figure 4.9).

Figure 4.9 Gaining Root Level Access on ESX Server
Zrroot@-E5X3-51:~

login as: dh913g =
dh21380192.1658.1.109's password:
[dh91380 -E3X3-51 dh91358]§ =u - root
Pas=sword:

[rootE-ESE3-31 rootl# []

m Change to the location or create a location of where you would like
to store your scripts (see Figure 4.10).

Figure 4.10 Script Storage Location

£ root{@-E5¥3-51: /homefuser/scripts

[root@-ESX3-51 user] # L+
[rootl -ESE3I-31 user]#

[rootl -ESX3-31 user]#

[rootl -ESX3-31 user]#

[rootl -ESX3-31 user]#
[root@-ESE3-31 user]#

[rootl -E3X3-31 user]#

[rootl -ESX3-31 user]#

[rootl -ESX3-31 user]#
[root@-ESE3I-31 user]#

[rootl -E3X3i-31 user]#
[rootl-E3X3-31 user]#
[root@-ESX3-31 user]# mwkdir scripts
[root@ -E3X3i-31 user]# cd scripts
[rootl-ESX3-51 scriptsl# | =

m Type VI newvm.script and press Enter.

m Press I for insert and type in the script as shown in Code Listing 4.6
(see Figure 4.11).

Building a VM * Chapter 4

Figure 4.11 Using VI to Create Shell Script

! oink{o OIME 2 D 10| <
H# make ztdout a copy of FD & (reset stdout), and close FDe =
execs 1x&6
exes Bx&—

ff Change permissions on the file so it can he executed by anyone
chmod 755 Svwfs/volumes/storagel/ SHVNDIES SHWVH. v

HCreates 4gbh Virtual disk
cd fvmfa/volumes/storagel/ SNVHDIR H#ohange to the WM dir
vkfstools —o (NVMIIZE SHNVM.wvmdk -a lsilogic

HRegister WH
viware—cwd -3 register Svwfs/volumes/storagel/ SHVNDIRS SHWVH. v

-- INSERT —- j

m Press Esc and then press and hold Shift while pressing ZZ to exit
and save.

® You should now have a file called newvm.script listed. Before you
run the script, you must set permissions on it. To do this, type
chmod 755 newvm.script (see Figure 4.12).

Figure 4.12 Setting Permissions on Script File

£ root@-ES5X3-51:/homefuser/scripts

[rootB-ESEi-31 scripts]# =
[rootl -ESE3-31 scripts]#

[rootl-ESE3-31 scripts]#

[root@-E3X3-31 script=a]#

[rootl -ESE3-31 scripts]#

[rootl-EZX3-31 scripts]#

[root@-EZXE3-31 scripts]#

[rootl -ESE3-31 scripts]#

[rootl-E3X3-31 scripts]#

[root@ -ESZXE3-31 scripts]#

[rootl -EZXE3-31 scripts]#

[rootR-E3X3-31 scripts]# ./ newvmw.script

~hash: ./newvm.script: Permission denied

[rootl-EZX3-31 scripts]l# clmwod 755 newvin.sScript

[rootB-ESX3-51 scriprs]#] j

®m Run the script by typing ./newvm.script (see Figure 4.13).

155

156

Chapter 4 * Building a VM

Figure 4.13 The Execution of Shell Script

[rootld -ESX3-51
[rootld —E3X3-31
[rootld —-E3X3-31
[rootld —-E3X3-31
[rootld -ESX3-51

[roocl-E3E3I-31
[rootl-E3E3-31

[rootld -ESX3-31
[rootld-E3X3-31
newvin. SCript

[root@ -E3X3-31

[rootld-ESX3-31

register [/vmfs/volumes/storagel/ScriptedVM/ ScriptedVd.vx) = 1

7 roob@-ESX3-51: /homefuserfscnpts

storagel] #
storagel] #
storagel] # cd /
/1# cd home
home] # 1=

home] # cd user
uzer]# l=

user]# cd scripts
scriprts]# 1=

scripts]# LS newvn. Script

3

soripts] # D

The virtual machine has now been created and registered with ESX. The
next steps are for you to power it on and install the guest operating system.
Creating scripts in ESX shell will save you time and effort in creating new

virtual machines in your environment.

Tip

VMware ESX shell is just a customized version of Linux. For more infor-
mation on scripting in shell, reference Linux shell information and exam-

ples.

Swiss Army Knife...

Creating

Templates with

the Scripted VM Creation Script

You can create multiple copies of the Scripted VM Creation script all with
unique configurations. Save each of these customized scripts with a
descriptive name such as 2003std512m4g.script or 2003ent1g4g.script.
You could use the ESX shell command cp Source.script Target.script to
copy the first script and then use VI to customize the second one. Change

Continued

Building a VM * Chapter 4

each script to store its VMs in a staging area and each VM with a unique
name. Now when you need to build those types of VMs you have template
scripts to do it with. You could even chain together running of these scripts
so you can create complete virtual system setups.

If you are not comfortable with utilizing VI as a text editor, you could
also use a text editor such as Notepad on your PC to create your script.
Once you have completed your script, highlight the whole script and
select copy. Connect to your ESX server with a tool like Putty and run the
VI command. Select | for input, and then paste in your script. All the script
examples in this book were created on ESX Server using that method.
Alternatively, you could also create the script file locally and then use a
tool like WinSCP to copy the file to your ESX server.

Scripting Creation of
Virtual Machines in Perl Scripts

VMware ESX Server supports additional scripting languages such as VmPerl.
VmPerl is VMware’s version of the Per]l programming language. VMware has
designed VmPerl to provide task automation and simple, single-purpose user
interfaces. VmPerl’s main purpose is to interact with the virtual machines on
ESX Server.You can query status, start and stop virtual machines, as well as
manage snapshots. With some creative scripting we can have VmPerl create
our virtual machines for us as well. Scripting in VmPerl is not for beginners.
If you’ve never scripted in Perl before then review the sample VmPerl Script
and note the code comments in the script. VmPerl is a customized version of
Perl, so research the Perl language in general for more information on how to
program in Perl. The example script in Code Listing 4.7 was written so it
could be easily modified to suit your particular needs. It is a basic VmPerl
script with a menu-driven interface. Leveraging the knowledge you’ve gained
in the previous sections will help you understand the script interactions.
Novices in scripting should find the next script example very easy to under-
stand and follow. Experienced scripters may find the script rudimentary and
know of alternate ways to accomplish similar tasks. Whatever your scripting
experience, I hope you find the example scripts in this chapter thought pro-
voking and insightful.

157

158 Chapter 4 * Building a VM

NoTEe

VMware in its latest release of ESX Server 3.0 is moving toward more
mainstream scripting languages. Scripting APIs such as VmCom and
VmPerl are being deprecated. What this means is that VMware prefers
that you use a new set of APIs for programming languages such as Java,
Visual .NET, and so on. ESX 3.0 will continue to support VmPerl and ESX
shell scripting, and all the sample scripts in the chapter have been tested
on ESX 3.0.

VmPerl allows for flexibility on how you go about creating your virtual
machines. In our example script (see Code Listing 4.7), I used VmPerl’s user
input and file manipulation commands to accomplish the three primary tasks
when creating virtual machines.

m Creating the virtual machine configuration file (VMX)
m Creating the virtual machine disk file (VMDK)

m Registering the virtual machine with ESX Server

NoTEe

The script shown in Code Listing 4.7 is meant to be used for educational
purposes. Further development in the area of “error checking” and “han-
dling” should be done prior to utilizing it in a production environment.
It is meant only to show what can be done with VmPerl.

Code Listing 4.7 Scripted VM Creation with Perl

#!/usr/bin/perl -w

use VMware: :VmPerl;
use VMware: :VmPerl: :Server;
use VMware: :VmPerl: :ConnectParams;

#use strict;

Building a VM * Chapter 4

VM Menu Driven Creation Script #######H###H##
#Script Version 1.8
#Author David E. Hart

#Date 10-05-06

#

- +

#Purpose \

B .

This script presents a menu for automatically building
virtual machine config files (VMX) and Dis files (VMDK)

This script demonstrates how to automate the setup

of virtual environments

R S e LT +

#vmname = virtual machine name, will be used for disk as well
#vmmem = amount of memory assigned to VM

#vmos = OS that VM is configured for

#vmdisk = size of VM disk

FHEFHHHHH A R R

main: # main menu

system("clear") ;

print " MAIN MENU \n";

print "------------------- Virtual Machine Creation --------- \n";
print "\n";

print "\n";

print "\n";

print " 1) Create a Custom VM \n";

print "\n";

print " 2) Create VM's from Defined Templates \n";

print "\n";

159

160 Chapter 4 * Building a VM

print " 3) View ESX's registered VM's \n";
print "\n";

print " 4) Exit \n";

print "\n";

print " Your Selection - ";

$menuopt = <>; chomp $menuopt; # Get user selection
if ($menuopt == 1) { # Get input for custom VM

system("clear") ;
print "What do you want to name your VM? ";
Svmname = <>; chomp Svmname; # use chomp to remove carriage return
print "How much memory do you want to assign? ";
$vmmem = <>;chomp $vmmem;
print "Do you want to run Windows 2003STD as the 0S? (y/n) ";
$vmos = <>;chomp $vmos;
if ($vmos eq "y") {
Svmos = "winNetStandard";
} # Only 2 options for this example
else {
print "Do you want to run Windows 2003Ent as the 0S? (y/n) ";
$vmos2 = <>;chomp $vmos2;
if ($vmos2 eq "y") {

Svmos = "winnetenterprise";

}

print "What size hard disk do you want to set up (gb)? ";

$vmdisk = <>;chomp $vmdisk;

print "\n";
$Sx = writevmx () ; # Subrouting for creating VMX file
if ($x == 1) {

print "VMX File written successfully \n";

}

Sw = setper(); # Subroutine to set permissions so anyone can

use VM

if (Smenuopt == 2)

menul :

Building a VM * Chapter 4

print "Permissions set successfully \n";

}

Sy = createdisk(); # subrouting to create VMDK disk file
if (8y == 1) {
print "Virtual disk created successfully \n";
}
$z = registervm(); # subroutine to register VM with ESX
if ($z == 1) {

print "VM registered successfully \n";

}

print "Press the ENTER key to continue ...";

Spause

= <STDIN>;

goto main

}

{ # option to displays the templates

system("clear") ;

print
print
print
print
print
print
print
print
print
print
print

print

Smenulopt = <>;

" Defined Templates \n";
L \I'l",‘

n\nn;

ll\nll;

" 1) Windows 2003std VM with 256m, 4gb drive \n";
n\nn;

" 2) Windows 2003ent VM with 1gig, 8gb drive \n";
ll\n";

n\nn;

"\1’1",‘

ll\n";

" Your Selection - ";

chomp S$menulopt;

if ($menulopt == 1) {
Svmname = "2003std25m4gb";
Svmmem = "256"; # change and add on similar sections

161

162 Chapter 4 * Building a VM

Svmdisk = "4"; # to create templates for your environment
Svmos = "winnetstandard";
Sx = writevmx () ;
if ($x == 1) {
print "VMX File written successfully \na";
}
Sw = setper();
if (Sw == 1) {
print "Permisions set successfully \na";
}
Sy = createdisk() ; # Call subroutines to create VMs
if ($y == 1) {
print "Virtual disk created successfully \na";
}
$z = registervm() ;
if ($z == 1) {
print "VM registered successfully \na";
}
print "Press the ENTER key to continue ...";
Spause = <STDIN>;

goto main

}

if ($menulopt == 2) {
Svmname = "2003Entlgb8gb";
Svmmem = "1024";
Svmdisk = "8";
Svmos = "winnetenterprise";
Sx = writevmx () ;
if ($x == 1) {

print "VMX file written successfully \na";

}

Sw = setper();
if ($w == 1) {

print "Permissions set successfully \na";

Building a VM * Chapter 4

}

Sy = createdisk() ;
if ($y == 1) {
print "Virtual disk created successfully \na";
}
$z = registervm() ;
if ($z == 1) {
print "VM registered successfully \na";
}
print "Press the ENTER key to continue ...";
Spause = <STDIN>;
goto main
}
else {

goto menul;

}

if (Smenuopt == 3) { # Use a function of VmPerl to display registered VMs

server

rights

VMware: :

system("clear") ;

my ($server name, $user, S$passwd) = @ARGV; # Assume running in ESX

my S$port = 902; # with appropriate

VmPerl: :ConnectParams: :new($server name, $port, Suser, Spasswd) ;
VMware: :VmPerl: :ConnectParams: :new (undef, $Sport, Suser, $passwd) ;

my $connect params = VMware::VmPerl::ConnectParams: :new() ;

Establish a persistent connection with server
my S$server = VMware: :VmPerl::Server::new() ;
if (!$server->connect ($connect params)) {

my ($error number, $error string) = $server->get last error();

163

164 Chapter 4 * Building a VM

die "Could not connect to server: Error Serror number:

Serror string\n";

}

print "\nThe following virtual machines are registered:\n";

Obtain a list containing every config file path registered with the

server.
my @list = $server->registered vm names () ;
if (!defined($1list[0])) ({
my (Serror number, $error string) = $server->get last error();
die "Could not get list of VMs from server: Error $error number:
n
"Serror_string\n";
}
print "s_\n" foreach (elist);
Destroys the server object, thus disconnecting from the server.
undef Sserver;
print "Press the ENTER key to continue ...";
Spause = <STDIN>;
goto main
}
if ($menuopt == 4)
goto endl
}
sub writevmx { # Subroutine to Create VM's VMX config file
$file = '/vmfs/volumes/storagel/perlvm/perlvm.vmx';

Name the file
S$file = "/vmfs/volumes/storagel/perlvm/" . Svmname . ".vmx";

open (INFO, ">$file"); # Open for output

Building a VM * Chapter 4 165

print INFO 'config.version = "6" ' . "\n";
print INFO 'virtualHW.version = "3" ' . "\n";
print INFO 'memsize = "' . $vmmem . '" ' . "\n";
print INFO 'floppyO.present = "TRUE" ' . "\n";
print INFO 'displayName = "' . Svmname . '" ' . "\n";
print INFO 'guestOS = "' . $vmos . '" ' . "\n";
print INFO 'ide0:0.present = "TRUE" ' . "\n";
print INFO 'ideO:0.deviceType = "cdrom-raw" ' . "\n";
print INFO 'ide:0.startConnected = "false" ' . "\n";
print INFO 'floppyO.startConnected = "FALSE" ' . "\n";
print INFO 'floppyO.fileName = "/dev/£do" ' . "\n";
print INFO 'EthernetO.present = "TRUE" ' . "\n";
print INFO 'EthernetO.connectionType = "monitor dev" ' . "\n";
print INFO 'EthernetO.networkName = "VM Network" ' . "\n";
print INFO 'EthernetO.addressType = "vpx" ' . "\n";
print INFO 'scsiO.present = "true" ' . "\n";
print INFO 'scsiO.sharedBus = "none" ' . "\n";
print INFO 'scsiO.virtualDev = "lsilogic" ' . "\n";
print INFO 'scsiO:0.present = "true" ' . "\n";
print INFO 'scsiO:0.fileName = "' . $vmname . '.vmdk" ' . "\n";
print INFO 'scsiO:0.deviceType = "scsi-hardDisk" ' . "\n";
close (INFO) ; # Close the file
}
sub createdisk ({ # Subroutine to create virtual disk
Scr = "vmkfstools -c¢ " . Svmdisk . "g " . "
/vmfs/volumes/storagel/perlvm/". Svmname . ".vmdk -a lsilogic";

system("Scr") ;

}i

sub registervm { # Subroutine to register VM with ESX Server

166

Chapter 4 * Building a VM

$rg = "vmware-cmd -s register /vmfs/volumes/storagel/perlvm/"

Svmname . ".vmx";

system("Srg") ;

sub setper({ # Subroutine to set permission on VMX file

$pm = "chmod 755 /vmfs/volumes/storagel/perlvm/" . $vmname .

"ovmx";

system("Spm") ;

endl:

Modifying Scripted VM Creation with Perl

The script shown in Code Listing 4.7, and later in Code Listing 4.11, pro-
vides static mapping for VM creation. This is sufficient for an example, but
not very practical for real-world scenarios. We will modify the script to sup-
port end-user input of VM destination pathing. We will accomplish this by
adding a new variable $vmpath to our script and adding the appropriate fol-
lowing sections.

® Add new variable vmpath to scripts variable notes section

#vmname = virtual machine name, used for disk as well
#vmmem = amount of memory assigned to VM

#vmos = OS that VM is configured for

#vmdisk = size of VM disk

#vmpath = path to VM directory, (must already exist)

FHEFHH R

®m Add new prompt in Custom VM Creation section, “option 1.

print "What size hard disk do you want to set up (gb)? ";

Building a VM * Chapter 4 167

$vmdisk = <>;chomp $vmdisk;

print "\n";

print "Path to Save VM (ie. /vmfs/volumes/storagel/vm/";
Svmpath = <>;chomp Svmpath;

print "\n";

® Add new prompt in Defined Templates section, “option 2.”

Svmos = "winnetstandard";
print "Path to Save VM (ie. /vmfs/volumes/storagel/vm/";
Svmpath = <>;chomp Svmpath;

print "\n";

m Update subroutine “writevimx’.

Sfile = $vmpath . $vmname . ".vmx";

m Update subroutine “createdisk”.
Scr = "vmkfstools -c " . $vmdisk . "g " . S$vmpath . $vmname . ".vmdk
-a lsilogic";

system("Scr") ;

m Update subroutine “registerVM”.

Srg = "vmware-cmd -s register " .S$vmpath . Svmname . ".vmx";

system("$rg") ;
m Update subroutine “setper”.

Spm = "chmod 755 " . $vmpath . $vmname . ".vmx";

system("Spm") ;

The script will now prompt you for VM destination when creating new
VM. Please note that when entering the destination file path, you should
include the leading and trailing “/”.

When the script in Code Listing 4.7 is executed on the ESX server, a
menu will be displayed (see Figure 4.14).

168

Chapter 4 * Building a VM

Figure 4.14 The Perl Script VM Creation Menu

7 moot@-ESK3-51:/home fuser/scripts/perl

MLIN MENT &
——————————————————— Virtual Machine Creation —-—-————-——

1) Create a Custom VH

21 Create VN's from Defined Tewmplates
31 View EZX's regilistered VH's

4] Exit

Tour Selection - |:|

1]

Perl Script Components

Utilizing the script in Code Listing 4.7, you can do the following tasks:

m Create a custom VM with parameters that you supply.
m Create VMs from predefined templates.
m View listing of VMs currently registered on the ESX server.
m Exit the script.
This script was written to be easily customized by you, the reader.
Variables have been set up for key VM-related options enabling simple modi-

fications. Let’s dissect this script to get a better understanding of VmPerl.
Code Listing 4.8 shows the key variables.

Code Listing 4.8 Scripted Creation of VM with Perl Key Variables

Svmname = virtual machine name, will be used for disk as well
Svmmem = amount of memory assigned to VM
Svmos = OS that VM is configured for

Svmdisk = size of VM disk

These variables in the program are either dynamic or static depending
upon which option in the script you choose. The first option presented on the

Building a VM * Chapter 4

menu shown in Figure 4.14 is Create A Custom VM. This option will prompt
you for the variables listed in Code Listing 4.8, as shown in Figure 4.15.

Figure 4.15 Perl Script Custom Creation of VM

2 root@-ESX3-51: fhomefuserfscripts/perl

That do you Want to Wswne your VMY ScriptedPerlWVH _‘I
How much mwemory do yvou want Lo assign? 512

Do wou want to Bun Windows Z0033TD as the 037 (vwnl v
That size hard disk do wou want to setup (gh)? 4

WME File written successfully

register (/vwis/volumes/storagel/ per lvin/ ScriptedPer IVH . vinx) = 1
Press the ENTER key to continue ...D

.

If you select the second option, Create VM’s from Defined Templates,

the values are set statically in that section. Code Listing 4.9 shows an example
where these values are set in the code.

Code Listing 4.9 Perl Script Static Variables for Template VM Creation

if (Smenulopt == 1) {
$vmname = "2003std25m4gb";
Svmmem = "256";
Svmdisk = "4";
Svmos = "winnetstandard";

It’s a simple task to add additional menu options for more templates.
Adding sections like those in Code Listing 4.9 will enable to you to define a
bigger selection of templates for your environment.

169

170 Chapter 4 * Building a VM

Master Craftsman...

VM Procurement Automation

The example script provides basic VM procurement with two templates
and a custom VM creation option. Typical production environments have
a multitude of system types and requirements. You can modify the script
to meet your needs and provide for procurement of VMs for varying situ-
ations such as:

m Procurement of new virtual machines for customers
m Procurement of groups of servers
m Automated environment setups (lab testing, and so on)

Because the script is written in VmPerl, which is just a VMware-cus-
tomized version of Perl, you can leverage Perl’s additional features and
characteristics. Perl code can be executed from within a Web browser
enabling you to create a VM procurement Web site. You could host this
new Web site on the ESX server itself, and create a “Self-Service” pro-
curement architecture. These are just some suggestions and ideas to get
you thinking about the possibilities that VmPerl provides.

The third menu choice option in the script is View ESX’s Registered
VM’s. This section utilizes the VmPerl API to access the ESX server. For more
information on the VmPerl API, download the ESX server SDK. This section
of the code connects to the local ESX server with your current userid and
password on port 902. It then queries ESX Server for a listing of registered
VMs. Figure 4.16 shows the output generated by this option.

Building a VM * Chapter 4

Figure 4.16 Perl Script Query of ESX Server for Registered VMs

The following wirtual machines are registered:
fvmfs/volumes/ 4505hE04-eTh53946-7c49-00144f20b65c,/ESY Created VM/ESE Created VH.wvm

X
AvmEs/volumes/ 4505hE04-oThE3946-7049-00144f20h65e/ SoriprtedVvl/ SoriptedVl. viux
Avmis/volumes/ 4505bf0d-cThE3946-Todd-001445f20b 65 per Lvin/ ScriptedPer 1VH . vinx
Swmis/volumes/4505bf04-c7h53946-7049-00144F20b 65,/ Virtual Center Z2.0/Virtual Cente
r Z.0.wvmx

FPre=s= the ENTEER key to cohtinue ...D

VmPerl Commands

VmPerl by itself cannot create virtual machine files or register virtual
machines. To accomplish these tasks, we must use the tools available. The
sample VmPerl script utilizes the command “system” to access the following
VMware tools:

m vmkfstools

B vmware-cmd

Do those tools sound familiar? By now you’ve become quite adept at uti-
lizing these tools for the creation of virtual machines. The latter sections of
the code contain the subroutines that handle the virtual machine disk cre-
ation createdisk, and VM registration registervm. It is in these subroutines that
we use the tools listed earlier.

Utilizing the example script, and with your working knowledge of the
VMware tools from previous sections, you should have a competent under-
standing of how to create virtual machines from a VmPerl script.

Cloning Virtual Machines
Utilizing ESX Shell Scripts

As we’ve seen in previous sections, VMware provides you with built-in tools
to accomplish most virtualization tasks. Cloning is the process of copying an

171

172

Chapter 4 * Building a VM

existing virtual machine’s virtual disk to a new file for a new virtual machine
to use. The source virtual machine is considered to be the template VM.
Understand that cloning creates an exact replica of the VM’s disk contents. It
is very similar to disk imaging. So when this clone is configured and turned
on in ESX Server it will come up with all the same attributes as the template
VM. To address this, the template VM should be prepared in advanced for
cloning. For Microsoft Windows—based servers, you would use Sysprep to pre-
pare the template image for cloning. Using template images saves an enor-
mous amount of time when procuring servers for all types of situations.
Because the template VM has the operating system preinstalled and config-
ured, setup time for new systems is drastically reduced.

To clone an existing template virtual machine, we will use the VMware
utility vmkfstools. We will use the -i option which instructs vmkfstools to
import an existing template VM’s disk file (VMDK) and copy it. The com-
mand syntax is as follows:

Vmkfstools -I /pathtoTemplateVM/template.vmdk

/pathtoDestinationVM/newvm.vmdk

The cloning process does not create a virtual machine configuration file
or register the new virtual machine with ESX Server. We will leverage what
you’ve learned in the previous sections to modify the ESX shell script from
Code Listing 4.6.

We need to modify the part of the script that calls vmkfstools to create
the 4GB virtual disk. We are instead going to use the -i command and clone
an existing virtual disk. If you’ve been implementing the scripts in the pre-
vious sections, then you will have an example virtual machine disk that we
can use for this section. If not, create a quick empty VM via any of the ESX
GUI methods: Virtual Client, Virtual Infrastructure Client (ESX 3.0), Web,
and so on.

Once you have your source template virtual disk ready, go ahead and edit
the code to support cloning (see Code Listing 4.10).

Building a VM * Chapter 4

Code Listing 4.10 ESX Shell Script VM Creation Utilizing Cloning

VM Creation Script Utilizing Cloning ####H##H#HH$HEHHHHEHEHEH
#Script Version 1.2
#Author David E. Hart

#Date 10-05-06

This script will create a VM utilizing the cloning option of # the

vmkfstools command tool;

The New Virtual Machine Configuration will be set as follows
Virtual Machine Name = ScriptedCloneVM

Location of Virtual Machine = /VMFS/volumes/storagel/ScriptedVM
Virtual Machine Type = "Microsoft Windows 2003 Standard"

Virtual Machine Memory Allocation = 256 meg

#
#
#
#
#
#

#NVM is name of virtual machine (NVM). No Spaces allowed in name
#NVMDIR is the directory which holds all the VM files

#NVMOS specifies VM Operating System

FHEFHHHHHH T R R

Default Variable settings - change this to your preferences
NVM="ScriptedCloneVM" # Name of Virtual Machine
NVMDIR="ScriptedCloneVM" # Specify only the folder name to be created;

NOT the complete path
NVMOS="winnetstandard" # Type of OS for Virtual Machine

VMMEMSIZE="256" # Default Memory Size

End Variable Declaration

173

174

Chapter 4 * Building a VM

mkdir /vmfs/volumes/storagel/SNVMDIR # Creates directory

exec 6>&1 # Sets up write to file

exec 1>/vmfs/volumes/storagel/$NVMDIR/SNVM.vmx # Open file

write the configuration

echo config.version = '"'e'"! # For ESX 3.

x the value is 8

echo virtualHW.version = '"'3'"' # For ESX 3.x the value is 4

echo memsize = '"'SVMMEMSIZE'"'

echo floppyO.present = '""'TRUE'"' # setup VM with floppy

echo displayName = '"'SNVM'"!' # name of virtual machine

echo guestOS = '"'SNVMOS'"'
echo
echo i1de0:0.present = '"'TRUE'"'

echo ide0:0.deviceType = '"'cdrom-raw'"'

echo ide:0.startConnected = '"'false'"' # CDROM enabled

echo floppy0.startConnected = '"'FALSE'"'

echo floppy0.fileName = '"'/dev/fdo'""'

echo EthernetO.present = '"'TRUE'"!'

echo EthernetO.networkName = '"'VM Network'"'
echo Ethernet0.addressType = '"'vpx'"'

echo

echo scsiO.present = '"'true'"'

echo scsi0.sharedBus = '"'none'"!'

echo scsiO.virtualDev = '"'lsilogic'"

Default network

echo scsiO:0.present = '"'true'™!' # Virtual Disk Settings

echo sceil:0.fileName = '"'SNVM.vmdk'"'

echo scsi0:0.deviceType = '"'scsi-hardDisk'"!'

echo
close file

exec 1>&-

make stdout a copy of FD 6 (reset stdout),

and close FDé6

Building a VM * Chapter 4

exec 1>&6

exec 6>&-

Change permissions on the file so it can be executed by anyone

chmod 755 /vmfs/volumes/storagel/SNVMDIR/SNVM.vmx

#Clone existing Template VM's VMDK into current directory
cd /vmfs/volumes/storagel/$NVMDIR #change to the VM dir

vmkfstools -i /vmfs/volumes/storagel/ScriptedVM/ScriptedVM.vmdk $NVM.vmdk

#Register VM

vmmware-cmd -s register /vmfs/volumes/storagel/$NVMDIR/S$SNVM.vmx

When you execute the script, the status of the cloning process will be dis-
played (see Figure 4.17).

Figure 4.17 Cloning Process

27 roob@-ESX3-51:/homefuser/scripts/shell

[rootB-ESX3-51 shelll# ls =]
clone.script

[rootB-ESX3-31 shell]# ./clone.script

Destination disk format: VMFI thick

Cloning disk '/vmfa/voluwes/storagel/ScriptedVl/ Soriptedvl. vindk! .. .

Clone: 4% dane.l:l

5

When the script finishes, you will have a new cloned copy of the template
VM ready for use. Log on to the ESX GUI and validate that the new VM is
registered and available.

The ability to script the cloning of existing template VMs allows you to
pre-stage your virtual environments for your particular needs. For instance,
you could have a Windows Lab of four servers pre-staged. Just run the
WindowsLab script and all four VMs are created and ready to go. In the next
chapter, you will learn how to perform operations on VMs such as starting
and stopping VMs via scripting.

175

176

Chapter 4 * Building a VM

Cloning Virtual Machines
Utilizing VmPerl Scripts

You already know the benefits of cloning, but by utilizing the VmPerl
scripting language you can build scripted procurement systems. VmPerl pro-
vides you more flexibility and more functionality than shell scripting. This
allows you to be more creative in your approach to VM creation. We will add
the cloning functionality to the example script in Code Listing 4.7. We will
also add a new menu option for cloning and a new subroutine. In addition,
we will use the VMware command tool vmkfstools with the -i option for
cloning as we did in the previous chapter. Code Listing 4.11 shows the new
Perl script with cloning.

Code Listing 4.11 Scripted VM Creation with Perl Utilizing Cloning

#!/usr/bin/perl -w

use VMware: :VmPerl;
use VMware: :VmPerl: :Server;
use VMware: :VmPerl: :ConnectParams;

#use strict;
VM Menu Driven Creation Script with Cloning #####H#H##H##H##
#Script Version 1.3

#Author David E. Hart

#Date 10-05-06

This script presents a menu for automatically building

#
virtual machine config files (VMX) and disk files (VMDK)
This script demonstrates how to automate the setup

#

of virtual environments and includes cloning of VMs

Building a VM * Chapter 4
#Custom Variables Section
#vmname = virtual machine name, will be used for disk as well
#vmmem = amount of memory assigned to VM
#vmos = OS that VM is configured for

#vmdisk = size of VM disk

FHEFHEHHH A R

main: # main menu

system("clear") ;

print " MAIN MENU \n";

print "---------mmmem oo Virtual Machine Creation --------- \n";
print "\n";

print "\n";

print "\n";

print " 1) Create a Custom VM \n";

print "\n";

print " 2) Create VM's from Defined Templates \n";
print "\n";

print " 3) View ESX's registered VM's \n";

print "\n";

print " 4) Clone an Existing VM \n";

print "\n";

print " 5) Exit \n";

print "\n";

print " Your Selection - ";

Smenuopt = <>; chomp S$menuopt; # Get user selection
if (Smenuopt == 1) { # Get input for custom VM

system("clear") ;

print "What do you Want to Name your VM? ";

S$vmname = <>; chomp S$vmname; # use chomp to remove carriage return
print "How much memory do you want to assign? ";

Svmmem = <>;chomp $vmmem;

177

178 Chapter 4 * Building a VM

print "Do you want to run Windows 2003STD as the 0S? (y/n) ";
$vmos = <>;chomp $vmos;
if ($vmos eq "y")
S$vmos = "winNetStandard";
} # Only 2 options for this example
else {
print "Do you want to run Windows 2003Ent as the 0S? (y/n) ";
$vmos2 = <>;chomp $vmos2;
if ($vmos2 eq "y") {

Svmos = "winnetenterprise";

}
print "What size hard disk do you want to set up (gb)? ";

$vmdisk = <>;chomp $vmdisk;

print "\n";
$Sx = writevmx () ; # Subrouting for creating VMX file
if ($x == 1) {

print "VMX file written successfully \n";

}

Sw = setper(); # Subroutine to set permissions so anyone can

use VM
if ($w == 1) {
print "Permissions set successfully \n";
}
Sy = createdisk(); # subrouting to create VMDK disk file
if ($y == 1) {
print "Virtual disk created successfully \n";
}
$z = registervm(); # subroutine to register VM with ESX
if ($z == 1) {
print "VM registered successfully \n";
}
print "Press the ENTER key to continue ...";

Spause = <STDIN>;

if ($menuopt == 2) {

menul:

Building a VM * Chapter 4

goto main

}

option to display the templates

system("clear") ;

print " Defined Templates \n";

print " mmem e \n"

print "\n";

print "\n";

print " 1) Windows 2003std VM with 256m, 4gb drive \n";
print "\n";

print " 2) Windows 2003ent VM with 1gig, 8gb drive \n";
print "\n";

print "\n";

print "\n";

print "\n";

print " Your Selection - ";

Smenulopt = <>; chomp Smenulopt;

if (Smenulopt == 1) {
Svmname = "2003std25m4gb";
Svmmem = "256"; # change and add on similar sections
$vmdisk = "4"; # to create templates for your environment
$vmos = "winnetstandard";
S$x = writevmx () ;

if ($x == 1) {

print "VMX file written successfully \na";

Sw = setper();
if ($w == 1) {
print "Permissions set successfully \na";

}

Sy = createdisk() ; # Call subroutines to

if ($y == 1) {

create VM's

179

180 Chapter 4 * Building a VM

print "Virtual disk created successfully \na";
1
$z = registervm() ;
if ($z == 1) {
print "VM registered successfully \na";
1
print "Press the ENTER key to continue ...";
Spause = <STDIN>;

goto main

}

if ($menulopt == 2) {
$vmname = "2003Entlgb8gb";
Svmmem = "1024";
Svmdisk = "8";
Svmos = "winnetenterprise";
Sx = writevmx () ;
if ($x == 1) {

print "VMX file written successfully \na";
}
Sw = setper();
if ($w == 1) {
print "Permissions set successfully \na";
}
Sy = createdisk() ;
if (sy == 1) {
print "Virtual disk created successfully \na";
}
$z = registervm() ;
if ($z == 1) {
print "VM registered successfully \na";
}
print "Press the ENTER key to continue ...";
Spause = <STDIN>;

goto main

Building a VM * Chapter 4

}

else {

goto menul;

}

if ($menuopt == 3) { # Use a function of VmPerl to display registered VMs

server

rights

VMware: :

system("clear") ;

my ($server name, suser, S$passwd) = @ARGV; # Assume running in ESX

my Sport = 902; # with appropriate

VmPerl: :ConnectParams: :new($server name, $port, $user, Spasswd) ;
VMware: :VmPerl: : ConnectParams: :new (undef, Sport, Suser, $Spasswd) ;

my $connect params = VMware::VmPerl::ConnectParams: :new() ;

Establish a persistent connection with server
my $server = VMware::VmPerl::Server::new() ;
if (!$server->connect ($connect params)) {
my ($error_number, S$error string) = $server->get last error();

die "Could not connect to server: Error S$error number:

Serror string\n";

server.

}

print "\nThe following virtual machines are registered:\n";

Obtain a list containing every config file path registered with the

my @list = $server->registered vm names() ;
if (!defined($1list[0])) {
my ($error number, S$error string) = S$server->get last error();

die "Could not get list of VMs from server: Error $error number:

181

182 Chapter 4 * Building a VM

"$error string\n";

print "$ \n" foreach (@list);

Destroys the server object, thus disconnecting from the server.
undef $server;

print "Press the ENTER key to continue ...";

$pause = <STDIN>;

goto main

1
if ($menuopt == 4) {
system("clear");
print " Clone Existing VM.s \n";
print " = emee e oo \n";
print "\n";
print "\n";
print " 1) Clone ScriptedVM \n";
print "\n";
print " 2) Clone ScriptedPerlVM \n";
print "\n";
print "\n";
print "\n";
print "\n";
print " Your Selection - ";

$menu4opt = <>; chomp $menudopt;

if ($menudopt == 1) {
$vmname = "ScriptedPerlCloneVM";
$vmmem = "256"; # change and add on similar sections
$vmdisk = "4"; # to create templates for your environment
$vmos = "winnetstandard";

$vmpath ="/vmfs/volumes/storagel/ScriptedVM/ScriptedVM.vmdk";

$x = writevmx();

Building a VM * Chapter 4

if ($x == 1) {
print "VMX file written successfully \na";
}
$w = setper();
if ($w == 1) {
print "Permissions set successfully \na";
}
$y = clonedisk(); # Call subroutines to create VM's
if ($y == 1) {
print "Virtual disk cloned successfully \na";
}
$z = registervm();
if ($z == 1) {
print "VM registered successfully \na";
}
print "Press the ENTER key to continue ...";
$pause = <STDIN>;
goto main

}

if ($menudopt == 2) {

$vmname = "ScriptedPerlVMClone";
$vmmem = "1024";

$vmdisk = "8";

$vmos = "winnetenterprise";

$vmpath ="/vmfs/volumes/storagel/perlvm/ScriptedPerlVM";

$x = writevmx();
if ($x == 1) {
print "VMX file written successfully \na";
}
$w = setper();
if ($w == 1) {
print "Permifsions set successfully \na";

}

183

184 Chapter 4 * Building a VM

$y = clonedisk();
if ($y == 1) {
print "Virtual disk cloned successfully \na";
}
$z = registervm();
if ($z == 1) {
print "VM registered successfully \na";
}
print "Press the ENTER key to continue ...";
$pause = <STDIN>;
goto main
}
else {

goto menul;

}
}
if ($menuopt == 5) {
goto endl
}
sub writevmx { # Subroutine to create VM's VMX config file
$file = '/vmfs/volumes/storagel/perlvm/perlvm.vmx';

Name the file

$file = "/vmfs/volumes/storagel/perlvm/" . $vmname . ".vmx";
open (INFO, ">sfile"); # Open for output

print INFO 'config.version = "6" ' . "\n";

print INFO 'virtualHW.version = "3" ' . "\n";

print INFO 'memsize = "' . $Svmmem . '" ' . "\n";

print INFO 'floppyO.present = "TRUE" ' . "\n";

print INFO 'displayName = "' . Svmname . '" ' . "\n";

Building a VM * Chapter 4

print INFO 'guestOS = "' . $vmos . '" ' . "\n";
print INFO 'ide0:0.present = "TRUE" ' . "\n";
print INFO 'ide0O:0.deviceType = "cdrom-raw" ' . "\n";
print INFO 'ide:0.startConnected = "false" ' . "\n";
print INFO 'floppyO.startConnected = "FALSE" ' . "\n";
print INFO 'floppyO.fileName = "/dev/fdo" ' . "\n";
print INFO 'EthernetO.present = "TRUE" ' . "\n";
print INFO 'EthernetO.connectionType = "monitor dev" ' . "\n";
print INFO 'EthernetO.networkName = "VM Network" ' . "\n";
print INFO 'EthernetO.addressType = "vpx" ' . "\n";
print INFO 'scsiO.present = "true" ' . "\n";
print INFO 'scsiO.sharedBus = "none" ' . "\n";
print INFO 'scsiO.virtualDev = "lsilogic" ' . "\n";
print INFO 'scsiO:0.present = "true" ' . "\n";
print INFO 'scsiO:0.fileName = "' . $vmname . '.vmdk" ' . "\n";
print INFO 'scsiO:0.deviceType = "scsi-hardDisk" ' . "\n";
close (INFO) ; # Close the file
}
sub createdisk { # Subroutine to create virtual disk
Scr = "vmkfstools -c¢ " . S$vmdisk . "g " . "
/vmfs/volumes/storagel/perlvm/". $vmname . ".vmdk -a lsilogic";
system("$cr") ;
}i
sub clonedisk { # Subroutine to create virtual disk
$cr = "vmkfstools -i " . $vmpath . " " . »
/vmfs/volumes/storagel/perlvm/" . $vmname . "vmdk";
system("$cr");
}i
sub registervm { # Subroutine to register VM with ESX server
Srg = "vmware-cmd -s register /vmfs/volumes/storagel/perlvm/"

Svmname . ".vmx";

185

186 Chapter 4 * Building a VM

system("$rg") ;

sub setper({ # Subroutine to set permission on VMX file

$pm = "chmod 755 /vmfs/volumes/storagel/perlvm/" . Svmname .

"ovmx";

system("S$pm") ;

endl:

The preceding code is highlighted with the changes necessary to support
cloning. When the code is executed, you now have a new menu option #4,
for cloning of virtual machines. The code currently clones ScriptedVM.vmdk
and ScriptedPerlVM.vmdk, created from previous sections. You can easily
modify the code to request the name of the VMs to clone.You could even
have the code generate a list of VMs registered with the ESX server and then
you would select from this list. The script is provided as an example of how
you would go about setting up your own VMs to use as templates and how
to automate creating clones of these. Go ahead and expand the sample script
to include other options such as “lab setup” where the option clones a series
of virtual templates to set up a virtual test environment.

Master Craftsman...

Using Clones to Set Up Virtual Environments

The example script provides basic VM procurement via custom entry, tem-
plates, and cloning. Custom VM entry and templates provide you new
VMs ready for the installation of an operating system, while cloning pro-
vides you with a prebuilt virtual machine ready for use. Create clone tem-
plates of your most common server types in your environment for fast
deployment in your virtual infrastructure. You can, in essence, set up vir-
tual labs in a matter of minutes versus hours.

Building a VM * Chapter 4

Summary

In this chapter, you learned how to use the built-in command-line tools from
VMware—namely, vmkfstools and vmware-cmd—to build and clone virtual
machines. You also learned how to use ESX shell scripting to incorporate
these tools and automate the VM and cloning process. We showed you how
to employ VmPerl for advanced scripting of VM creation and cloning. We
then showed you how to use the code examples to build a rough VM cre-
ation and cloning architecture for you to expand on.You should now have a
good understanding of what you can script on the ESX server as it relates to

virtual machine creation.

187

Chapter 5

Modifying VMs

Topics in this chapter:

m The Virtual Machine VMDK File
m The Virtual Machine Configuration vmx File
m Converting IDE Drives to SCSI Drives

m Dynamic Creation of Virtual Machines

189

190

Chapter 5 * Modifying VMs

Introduction

This chapter expands on the virtual machine’s creation that was introduced in
Chapter 4. To begin, we will discuss the two main components of a virtual
machine, the .vmx and the .vindk files. Then we will look at the hardware
and version level of these files, as well as how we can change the files to be
able to migrate a virtual machine’s disk file from one VMware platform to
another.

Virtual machines are made up of two files. The vmx file is the virtual
machine’s configuration file, while the virtual machine disk format (VMDK)
file 1s the virtual machine’s disk file or hard drive. We will examine these files
and the different settings that can be used. Afterward, as an example, we will
change a virtual machine’s IDE disk to a SCSI disk.

To conclude, we will dynamically create a virtual machine using a script,
as well as modity the script to build the virtual machine in a few different
ways.

Tip

As a best practice, always make a backup of the files you are going to
edit before you edit.

The Virtual Machine VMDK File

When working with virtual machines, there are two main components or
files that need to be understood. The first is the VMDK file. But what exactly
is the VMDK file? A virtual machine disk (VMDK) file is an encapsulation of
an entire server or desktop environment in a single file. In a way, it can be
seen as the hard drive for a virtual machine.

The VMDK file can have four different forms. Type 0 (monolithic sparse
disk), Type 1 (growable; split into 2GB files), Type 2 (single pre-allocated;
monolithic sparse disk), and Type 3 (pre-allocated; split into 2GB files). Types
1,2, and 3 use a disk descriptor file, while type 0 does not. To make changes
to the VMDK file, you need to be able to open and view the disk descriptor;

Modifying VMs ¢ Chapter 5 191

otherwise, with the type O single disk, you would need to edit a very large
binary file with a hex editor—an unwise choice. A better option, if you have
the VMDK file on a VMES file system, 1s to use vmkfstools to easily export
the file in a Type 3 format.

For example:

Vmkfstools -e /mnt/bigspace/toputfile/thedisk.vmdk
vmhba0:0:0:1:thedisk.dsk

If you mount a file share to ESX and use the VMware File Manager to
copy the VMDXK file to this share, ESX uses the preceding command auto-
matically when making the copy.

Tip

VMware does not support the use of VMDK files moved from a VMFS
volume to a non-VMFS file system using SCP or FTP without first
employing the vmkfstools export command or the file manager in the
VMware Management Interface.

We should now have the VMDK file in a Type 1 growable split or a Type
3 preallocated split. You should now see a 1KB VMDK file. This is your disk
descriptor file (see Figure 5.1).

Figure 5.1 The Disk Descriptor File

Folders = Mame Size
(3 2K3Image ~

& @cmlxaR.vmx 2KB

3 Temp ?crmmmasnm.vmdk 133,352 KB

3 veao = CITRIX-DR-s002, vmdk 3,643 KB

) vista < CITRIX-DR-s003.vmdk 2,083,392 KB

3) winkP 3 % CITRIX-DR-5004. vmdk 1,461,056 KB

< 3 = CITRIX-DR-s005. vmdk 64 KB

Using a text editor, we can open the disk descriptor file and view its con-
tents. Code Listing 5.1 is one example of a disk descriptor file.

192 Chapter 5 * Modifying VMs

Code Listing 5.1 A Disk Descriptor File

Disk DescriptorFile

syngress.com

version=1
CID=2afed34d
parentCID=ffffffff

createType="twoGbMaxExtentSparse"

Extent description
RW 4192256 SPARSE "Windows-s001.vmdk"
RW 4192256 SPARSE "Windows-s002.vmdk"

RW 4096 SPARSE "Windows-s003.vmdk"

The Disk Data Base

#DDB

ddb.adapterType = "ide"
ddb.geometry.sectors = "63"
ddb.geometry.heads = "1l6"
ddb.geometry.cylinders = "8322"
ddb.virtualHWVersion = "4"

ddb.toolsVersion =

VMDK Components

In the following subsections, we’ll discuss the various parameters, settings, and
commands related to VMDKs.

Version=1

The version parameter is the version of the disk descriptor file and not the
VMDK file. Currently, in all VMware products, the disk descriptor version
is 1.

Disk DescriptorFile

version=1

Modifying VMs ¢ Chapter 5

CID=2at6d34d

Every time a VMware product opens up the vmx file, it creates a random 32-
bit value and uses that value for the content identification or CID value.

parentCID=fttttt

This parameter is the parent content identification which 1is used to specify
whether the disk descriptor file is part of a snapshot file. If no snapshot file is
being used, the value of this parameter is fftttttt.

file.create Type=""twoGbMaxExtentSparse”

The createType describes which type of file this is. There are currently 11 dif-
ferent values for this depending on the format of the data. Many values that
exist in some products do not exist in others. The three values you see most
often, especially with VMware’s ESX server, are
"twoGbMaxExtentSparse", ""monolithicSparse", and
"monolithicFlat". Performing a manual change would make the disk unus-
able and has caused my VMware workstation host to crash. If you need to
change the type of file, use the tool vmware-vdiskmanager to change the

type.

Extent description
RW 4192256 SPARSE "Windows-s001.vmdk"
RW 4192256 SPARSE "Windows-s002.vmdk"

RW 4096 SPARSE "Windows-s003.vmdk"

The preceding list shows files (typically VMDKSs) that are used to store
data blocks for the guest operating system.

The values in those lines reveal the access mode of the VMDK, the size in
sectors of the VMDAK, the type of the extent, and the location of the VMDK
data file.

The Size in Sectors Value

The Size in Sectors value is required for a VMware Server to properly ini-
tialize the VMDK file. This value must be calculated based on the total byte
size of the VMDXK file and the number of bytes per sector. The Bytes per

193

194

SYNGRESS

syngress.com

Chapter 5 * Modifying VMs

Sector 1s a static value of 512. The equation to calculate this value, as shown
next, is quite simple.

Size in Sectors = (VMDK Byte Size — 512) / Bytes per Sector

The Disk Data Base Command

The Disk Data Base command will tell the virtual machine’s hardware every-
thing it needs to know to access the VMDK files. This is the actual disk
geometry that the VMDK represents as a disk to the virtual machine. In
Code Listing 5.2, this disk descriptor represents an IDE virtual disk with 63
sectors on 16 heads with 8,322 cylinders. It is important that the proper disk
geometry be chosen to prevent “geometry mismatch” errors on the restored
virtual machine (see Table 5.1).

Code Listing 5.2 A Disk Descriptor for an IDE Virtual Disk

The Disk Data Base

#DDB

ddb.adapterType = "ide"
ddb.geometry.sectors = "63"
ddb.geometry.heads = "1l6"
ddb.geometry.cylinders = "8322"
ddb.virtualHWVersion = "4"

ddb.toolsVersion = "6404"

Table 5.1 Disk Geometry

Disk Size Heads Sectors
<=1GB o4 32
>1GB and <=2GB 128 32
>2GB 255 63

Cylinders = (VMDK ByteSize — 512) / (Heads * Sectors * Bytes per
Sector)

Modifying VMs ¢ Chapter 5 195

Three different adapter types can currently be used with virtual machines.

m ide For an IDE drive

®m buslogic For a buslogic SCSI controller driver

m Isilogic For a Isilogic SCSI controller driver
One particular thing to notice in this section is the

ddb.virtualHW Version. This version number is the VMware platform the vir-
tual machine is running on.

Swiss Army Knife...

Scripting the Backup of

Virtual Machine’s Configuration Files

In the next section, we will dig into the vmx configuration file for the vir-
tual machines. Before that, however, let’s put together a script to take
care of one of the most important things we can do with these files:
backing them up. This script is what | am using in my VMware ESX servers.
They will back up all the configuration files for all the virtual machines,
compress them into a tar file along with the vm-list file, and put them on
a share on the network. The vme-list file is the list of registered virtual
machines on an ESX server. This script runs daily and if | were to lose one
of the ESX hosts, | could grab the backup file, register the virtual
machines, and | am all set.

#!/bin/sh

Virtual Machine VMX Backup

Stephen Beaver

DOW="date +%a~ # Day of the week e.g. Mon

mount -t smbfs //server/share /mnt/smb -o
username=username/domain, password=password

SRC_DIR=/home/vmware/ #Directory will all vm configuration files

DST DIR=/mnt/smb #Destination path which in this case is the mount
point

BASE DIR=/home #Base directory to put the vmlist file

HOST="ESX-Server Name"

Continued

196 Chapter 5 * Modifying VMs

echo "src dir ="$SRC DIR

echo "dst dir ="$DST_DIR

cp -f /etc/vmware/vm-list /home/vmware/vm-list

tar -czvf "$DST DIR/vm backup S$SHOST-S$DOW.tar.gz" "S$SSRC DIR"
umount /mnt/smb

exit

The Virtual Machine Configuration vmx File

The vmx file 1s the configuration file that stores all the virtual machine’s spe-
cific settings in one nice neat place. Code Listing 5.3 1s an example of a vimx

file.

Code Listing 5.3 A vmx File

#!/usr/bin/vmware

il config.version = "6"
scsi0:0.present = "TRUE"
scsiO:0.name = "ESX SAN4:2K900.vmdk"
scsi0:0.mode = "persistent"
scsiO.present = "true"
scsi0O.virtualDev = "vmxbuslogic"
memSize = "512"
displayName = "2K900"
guestOS = "win2000Serv"
ethernetO.present = "true"
ethernet0.connectionType = "monitor dev"
ethernet0.devName = "bond0"
ethernet0.networkName = "FH_Network"
Ethernet0.addressType = "vpx"
Ethernet0.generatedAddress = "00:50:56:9d:4d:10"
Ethernet0.virtualDev = "vmxnet"
floppy0.present = "true"
floppy0.startConnected = "false"
idel:0.present = "true"

idel:0.fileName = "/dev/cdrom"

idel:0.deviceType = "atapi-cdrom"
idel:0.startConnected = "FALSE"
draw = "gdi"

uuid.bios =

uuid.location =

uuid.action = "keep"
priority.grabbed = "normal"
priority.ungrabbed = "normal"

isolation.tools.dnd.disable = "TRUE"

suspend.Directory = "/vmfs/vmhbal:0:83:

autostart = "true"
autostop = "softpoweroff"
tools.syncTime = "FALSE"

Modifying VMs ¢ Chapter 5

"50 1d 07 5c¢ a9 £3 2b dd-8b 3e 83 10 b2 ea 89 0b"

"56 4d b5 45 28 5a b0 20-29 52 da f8 22 74 60 14"

This vimx file came from one of my virtual machines on a VMware ESX

server. Let’s take a look at the different settings in the file. As a rule, virtual

machines will only read the full vinx file when the virtual machine is pow-

ered on. Thus, you should edit the virtual machine’s vmx file when the virtual

machine is off only. I have come across this scenario while playing around in

the lab. There, I had a virtual machine and made a manual change to the con-

tiguration file. ESX knew I made a change and so it paused the virtual

machine to ask me a question: “The configuration file for this VM has

changed. Do you wish to reload the configuration file?” If the virtual

machine in my production environment had instead been paused, I would

have had a few people to answer to.

config.version = "6"
scsiO:0.present = "TRUE"
scsi0:0.name = "ESX SAN4:2K900.vmdk"

scsi0:0.mode = "persistent"

197

198

Chapter 5 * Modifying VMs

scsiO.present = "true"

scsiO.virtualDev = "vmxbuslogic"

vimx File Components

In this subsection, we’ll discuss the various parameters, settings, and com-
mands related to vmx files.

—

config.version

This 1s the hardware version level. When we talked about downgrading the
disk descriptor file, this is what we must change to control the hardware ver-
sion so it will work in the different products. What we see next are the set-
tings for the SCSI drive. Scs10:0 is the virtual machine’s boot drive.

€«

Scsi0:0.present =

This lets the host know that the virtual machine has a SCSI drive present.
This can have an entry of True or False.

—

Scsi0:0.name

This is the name and path of the VMDXK file that the virtual machine will
use. In the earlier example, “ESX_SAN4:2K900.vmmdk” points to a common
name of a LUN on the SAN called ESX_SAN4, and the 2K900.vimdk is the
disk file located on the LUN.

Scsi0:0.mode =

This setting 1s the mode of the disk file. The following four disk modes are
available.

m Persistent Changes are immediately and permanently written to
the virtual disk.

m Nonpersistent Changes are discarded when the virtual machine
powers oft.

m Undoable Changes are saved, discarded or appended at your discre-
tion.

Modifying VMs ¢ Chapter 5

m Append Changes are appended to a redo log when the virtual
machine powers off.

scsiO.present = 7

This setting lets the host know this virtual machine has a SCSI controller. The
value can be True for present, and False for no SCSI.

—

scsiO.virtualDey =
This setting determines what SCSI drivers the controller is using. Two dif-
terent values can be used here.
m vmxbuslogic When using the buslogic SCSI driver
m vmxlsilogic When using the Isilogic SCSI driver
These are also the settings we would change on the vmx file to switch
from an IDE disk to a SCSI.

The next part of the configuration vmx file is the memory, name, and
guestOS, all of which do not need much explanation:

. memSize = “512” How much memory the virtual machine is
allocated

m displayName = “2K900” The display name of the virtual machine

m guestOS = “win2000Serv” Which operating system the VM 1is

running

The next part concerns the Ethernet adapter and whether Virtual Center
is used to monitor this virtual machine (see the following example).

ethernetO.present = "true"
ethernet0.connectionType = "monitor dev"
ethernet0.devName = "bondO"
ethernet0.networkName = "FH Network"
Ethernet0.addressType = "vpx"
Ethernet0O.generatedAddress = "00:50:56:9d:4d:10"

Ethernet0.virtualDev = "vmxnet"

199

200 Chapter 5 * Modifying VMs

f =

ethernetQ.presen

This value defines whether the network settings are read and processed. This
value can be “true” or “false.” If the value is “true,” then all other parameters
are then processed. If the value is “false,” then all other network parameters
for that device are ignored.

Tip

ethernet0.startConnected = "“true”

EthernetO.present = “true” also sets startConnected to “TRUE”,
though this may not appear in the vmx (another silent default).
So if you want the device to be present—but not at boot-time—you
must use

ethernet0.startConnected = “FALSE".

— «»

ethernetQ.connectionType

This parameter concerns virtual networks. Your choices for this value are

PR TS EE TS

“bridged”, “hostonly”, “nat”, “monitor_dev”, and “custom”. The custom set-
tings are an expert way to use a combination of “connectionType” and
“vne.t”. A good example of this would be the following:

ethernet0.connectionType = "CUSTOM"

And the exact number of the VNET you want might look like:

ethernet0.vnet = "VMNETO"

ethernetO.devName = “”

This parameter is the actual name of the device being used. This could be one
of the virtual ethernet cards like vimnicO, or in this case a bond of two eth-
ernet cards together called “bond0”.

Modifying VMs ¢ Chapter 5

— «»

ethernetQ.network Name

This is the name of the virtual switch that the virtual machine will be using
for networking. In this example, the virtual switch’s name is FH_Network.

»

EthernetQ.address Type = “vpx

This parameter is only present when the virtual machine is on an ESX server
that is controlled by Virtual Center.

EthernetQ.generated Address =

This parameter is the MAC address of the virtual machine. In this case, the
MAC address is generated by the host application.

VMware has a special range of MAC addresses that are allocated for the
virtual machines. The following lists the different ranges of addresses.

m 00:05:69:00:00:00 Automatically assigned by MUI when building a
VM without VirtualCenter (ESX <2.0)

m 00:0¢:29:00:00:00 Automatically assigned by MUI when building a
VM without VirtualCenter as well as the other VMware products
(ESX 2.0 +, all VMware)

m 00:50:56:00:00:00 — 00:50:56:3f:ff:ff Manually configured MACs

m 00:50:56:80:00:00 — 00:50:56:bf:ff:ff VirtualCenter-generated
MAC:s

EthernetO.virtualDev = “viance” or “vmxnet” or “e1000”

This parameter is to define the virtual adapter itself. The choices available are

m vlance This is based on the AMD PCNet 32 and has the most
backward compatibility. Take note that if you use vlance with your
virtual machine, the VM will only show what it is connected at
10mb. This is presented for backward compatibility only and does not
represent the actual speed with which the VM is communicating.
The VM will use all the bandwidth given to it.

m vmxnet This is a VMware custom high-performance vmxnet virtual
network adapter which allows for faster networking performance.

201

202

Chapter 5 * Modifying VMs

This is the adapter you should use whenever possible, given it ofters
better performance than the vlance driver and less overhead.

m e1000 This is the Intel pro 1000 adapter, which is the default virtual
NIC when choosing a 64-bit guest. It can be manually edited in the
config file.

Floppy Drives and CD-ROMs for Virtual Machines

The following parameter is the configuration of the floppy and CD-ROM
for the virtual machine. Notice that [have startConnected set to “false” for
these devices. As a rule of thumb, I recommend leaving these disconnected
until you need them.

floppy0.present = "true"
floppy0.startConnected = "false"
idel:0.present = "true"
idel:0.fileName = "/dev/cdrom"
idel:0.deviceType = "atapi-cdrom"
idel:0.startConnected = "false"

Notice that the parameter ide1:0.fileName is currently set to
“dev/cdrom.” This is the emulation of the CD-ROM device that shows up as
a VMware CD-ROM and not the actual physical host CD-ROM device. By
changing the fileName and deviceType values, you can also mount ISO
images to the virtual machine.

idel:0.fileName = "/iso/nameof.iso

idel:0.deviceType = "cdrom-image"

Graphics Emulation, Unique Identifiers

VMware products offer two modes for host emulation of the graphics inside
the virtual machine: GDI (Graphics Device Interface; the classic Windows
graphics mode) and DirectDraw (a mode designed for games and other appli-
cations that write directly to the hardware).

draw = "gdi"

Modifying VMs ¢ Chapter 5

In general, Windows guest operating systems (Windows 95, Windows 98,
Windows NT, and Windows 2000) perform better in GDI mode than in
DirectDraw mode, while Linux guest operating systems (or any guest oper-
ating systems that use an X server) run much better in DirectDraw mode.

WARNING

DirectDraw on Windows 2000 is fairly buggy, so the virtual machine dis-
plays a cautionary message if you try to enable it. In addition, some spe-
cific issues have been identified on both Windows NT and Windows
2000 hosts when the virtual machine is using DirectDraw mode.

Once you start a virtual machine, the VMware host will then generate
another two lines to identify the virtual machine. Whenever you change the
path to the vimx-file, either by renaming or moving to a different location,
VMware wants to update these lines to reflect that change (see the following

example).
uuid.location = "56 4d ee 3c 52 06 a3 de-be 4a 73 9c cc 99 15 1f"
uuid.bios = "56 4d ee 3c 52 06 a3 de-be 4a 73 9c cc 99 15 1f"

If you've ever moved a virtual machine from one host to another, then
when you start the machine you’ve probably seen a message similar to this:

The virtual machine’s configuration file has changed its loca-
tion since its last poweron. Do you want to create a new
unique identifier (UUID) for the virtual machine or keep the
old one?

Your choices are Keep, Create, Always Keep, and Always Create. If you
choose Always Keep or Always Create, then the parameter uuid.action is
added to the vmx file (see the following example).

uuid.action = "Keep" or "Create"

The values you can use here are Keep or Create for Always Keep and
Always Create.

203

204 Chapter 5 * Modifying VMs

Priority, VMware Tools Settings, and Suspend

The “grabbed: HIGH - ungrabbed: NORMAL” setting is useful if you have
many background processes or applications and you do not care if they run
with fairly low relative priority while a virtual machine is in the foreground.
In return, you get a very noticeable performance boost using a virtual
machine while another virtual machine is running or while some other pro-
cessor-intensive task (a compile, for example) is running in the background
(see the following example).

priority.grabbed = "high" or "normal"

The reverse is true of the “grabbed: NORMAL - ungrabbed: LOW” set-
ting. If your host machine feels too sluggish when a virtual machine is run-
ning in the background, you can direct the virtual machine to drop its
priority when it does not have control of the mouse and keyboard. As with
the high setting, this is a heavy-handed change of priority, so the virtual
machine (and any background applications inside) runs much more slowly.

priority.ungrabbed = "normal" or "low"

isolation.tools.dnd.disable = ‘““True’’ or ““False’’

This setting is to enable/disable Host/Guest drag and drop interface. The
values you can use here are “True” and “False”.

suspend. Directory = ‘“‘/vmfs/vmhbal:0:83:1”

This parameter is the location the host should use to “suspend” a virtual
machine. The following example was taken from an ESX server that is
attached to a SAN. Notice that the path is made up of the true path
vimhba1:0:83:1 and not the friendly name that I set for the LUN:
/vmfs/ESX_SAN4/.

Autostart, Autostop, and Time Sync Options

In this section, we’ll discuss autostart, autostop, and time sync options that you
can be used for configuring a virtual machine. The following example shows
autostart and autostop command scripts.

autostart = "true" or "false"

Modifying VMs ¢ Chapter 5

autostop = "softpoweroff" or "poweroff"
autostart.order = ""

autostop.order = ""

You can configure a virtual machine to automatically begin when the
host starts up from a reboot and also to automatically power oft or shut down
the guest OS when the host is being shut down. When you utilize this
option, the autostart and autostop options are added to the virtual machine’s
vmx file.You can also take this a step further and define the startup and shut-
down order of the virtual machines using the autostop.order and
autostart.order. By default, it would use order number x10.To give you an
example, if you wanted VM1 to be the first virtual machine started and the
last virtual machine to shutdown, you would set the configuration this way:

autostart.order = "10"

autostop.order = "10"

To change this to be the third virtual machine started, change the number
from 10 to 30.

tools.syncTime = "FALSE" or "TRUE"

The tools.syncTime Option

The last option in my vmx file is the tools.syncTime. This option is used to
determine if the virtual machine is going to update its time with the host
time via the VMware tools or not.

Virtual Machine
Conversion from IDE to SCSI

You may find the need to be able to move virtual machines around from one
platform to another. For example, I encourage people to utilize VMware
Workstation in order to work on a virtual machine while on the go. I have
had several instances where a virtual machine was created on VMware
Workstation, but unfortunately was not created in legacy mode or had an
IDE drive. As a result, when attempting to migrate to ESX, it would fail until
some changes were made.

205

206 Chapter 5 * Modifying VMs

Therefore, here we will examine changing an IDE drive to a SCSI drive.
Before we change the settings, we need to get the SCSI drivers in the system
first. The easiest way to do this is to add another hard disk to the virtual
machine as a secondary drive. Configure this drive to be a SCSI drive. Start
the virtual machine with the new drive attached and, the SCSI drivers are
now in place, allowing us to continue and really edit the files. When we open
the descriptor file for a virtual machine using an IDE drive, it looks like the
sample in Code Listing 5.4.

Code Listing 5.4 Descriptor File for a Virtual Machine Using an IDE Drive

Disk DescriptorFile

syngress.com

version=1
CID=2af6d34d
parentCID=ffffffff

createType="twoGbMaxExtentSparse"

Extent description
RW 4192256 SPARSE "Windows-s001.vmdk"
RW 4192256 SPARSE "Windows-s002.vmdk"

RW 4096 SPARSE "Windows-s003.vmdk"

The Disk Data Base

#DDB

ddb.adapterType = "ide"
ddb.geometry.sectors = "63"
ddb.geometry.heads = "1l6"
ddb.geometry.cylinders = "8322"
ddb.virtualHWVersion = "4"

ddb.toolsVersion = "6404"

Starting with the ddb.adapterType you can see that this was indeed an
IDE drive. There are a total of three difterent options for this setting. We’ll
discuss each in this section.

Modifying VMs ¢ Chapter 5

ddb.adapterType = “buslogic”

This entry converts the disk into a SCSI-disk with a BusLogic Controller.
This is the standard for Windows 2000 virtual machines.

ddb.adapterType = “Isilogic”

This entry converts the disk into a SCSI-disk with LSILogic Controller. This
is the standard for Windows 2003 virtual machines.

ddb.adapterType = "ide"

This entry converts the disk into an IDE-disk with Intel-IDE Controller.

Next, let’s open the SCSI disk that we used to get the drivers in the vir-
tual machine and use it to give us the section, heads, and cylinder values we
need.

ddb.adapterType = "buslogic™"
ddb.geometry.cylinders = "522"
ddb.geometry.heads = "255"

ddb.geometry.sectors = "63"

Put this all together and we have a new SCSI disk for our virtual
machine.

There is one change left to be done, however. We will need to change the
ddb.virtualHW Version. The ddb.virtualHW Version is dependent upon which
VMware platform you are using. You may need to change the version number
to get the virtual machine to start in certain cases, namely moving a virtual
machine in to ESX Server.

Change the ddb.virtualHW Version = “4” and make it
ddb.virtualHW Version = “3”.You now have a legacy virtual machine disk file
you have converted from IDE to SCSI.You’ve also brought the virtual
machine disk file down to legacy mode so that it can run on ESX.

Disk DescriptorFile
version=1
CID=826d3b6e
parentCID=ffffffff

createType="twoGbMaxExtentSparse"

207

208 Chapter 5 * Modifying VMs

Extent description
RW 4192256 SPARSE "Windows-s001.vmdk"
RW 4192256 SPARSE "Windows-s002.vmdk"

RW 4096 SPARSE "Windows-s003.vmdk"

The Disk Data Base

#DDB

ddb.adapterType = "buslogic™"
ddb.geometry.sectors = "63"
ddb.geometry.heads = "255"
ddb.geometry.cylinders = "522"
ddb.virtualHWVersion = "3"

ddb.toolsVersion = "6309"

To complete this process we need to make an adjustment in the vmx file
in order to change the IDE values to SCSI. Code Listing 5.5 is an example of
a disk file that’s been configured to use an IDE.

Code Listing 5.5 Configuring a Disk to Use an IDE
config.version = "8"

syngress.com

virtualHW.version = "4"
scsi0O.present = "TRUE"

memsize = "200"

ide0:0.present = "TRUE"
ide0:0.fileName = "Windows.vmdk"
idel:0.present = "TRUE"
idel:0.fileName = "auto detect"
idel:0.deviceType = "cdrom-raw"

floppy0 .fileName = "A:"

ethernet0.present = "TRUE"
usb.present = "TRUE"
sound.present = "TRUE"

sound.virtualDev = "esl371"

Modifying VMs ¢ Chapter 5

displayName = "Windows XP Professional 1"
guestOS = "winxppro"

nvram = "winxppro.nvram"

ide0:0.redo = ""

ethernet0.addressType = "generated"

uuid.location = "56 4d b7 df d7 1d 42 ca-3e 81 5d a3 5e 05 7a f7"
uuid.bios = "56 4d b7 df d7 1d 42 ca-3e 81 5d a3 5e 05 7a f£7"
tools.remindInstall = "FALSE"

ethernet0.generatedAddress = "00:0c:29:05:7a:£7"

ethernet0.generatedAddressOffset = "0O"

idel:0.autodetect = "TRUE"

idel:0.startConnected = "TRUE"

tools.syncTime = "FALSE"

To finish the change from IDE to SCSI we need to adjust these lines in
the vimx file (see Table 5.2).

Table 5.2 VMX Old and New Settings

From the Old Settings To the New Settings
config.version = “8" config.version = “6"
virtualHW.version = “4" virtualHW.version = “3”
ide0:0.present = “TRUE" scsi0.present = “TRUE”

ide0:0.fileName = “Windows.vmdk"” scsi0:0.present = “TRUE"
scsi0:0.fileName = “Windows.vmdk”

Now we have completed downgrading the virtual hardware and also
changed a virtual machine from using an IDE drive to a SCSI drive. This vir-
tual machine will now start and run in VMWare ESX server. By using the
example of taking a virtual machine from VMware Workstation and getting it
to run to VMware ESX Server, we have gone from one extreme of the
VMware product line (workstation) to the other extreme (ESX Server).

209

210

SYNGRESS

syngress.com

Chapter 5 * Modifying VMs

Scripted Disconnect of IDE Devices

As a general rule, you should always have the CD-ROM and floppy drive dis-
connect so they don’t take away resources from the service console. This is
also true if you place a CD-ROM in the physical host’s drive, because all the
virtual machines will not start to autorun the CD-ROM. VMotion also won't
work if either the CD-ROM or the floppy is connected. The script shown in
Code Listing 5.6 will disconnect all these devices in virtual machines that are
registered on ESX Server. This script was originally posted on the VMware
community forum by Stuart Thompson (aka, Mr-T) and Matt Pound, and it
includes a few additions by me.

Code Listing 5.6 Disconnecting Devices in Virtual Machines Registered on
an ESX Server

#!/bin/bash
IDE / Floppy Disconnect Script
Script by: Stuart Thompson and Matt Pound

Edit by: Steve Beaver (Added floppy drive)

vmwarelist="vmware-cmd -1~
vmwarelist="echo $vmwarelist | sed -e 's/ /*/g'"
vmwarelist="echo $vmwarelist | sed -e 's/.vmx/.vmx /g'">
for vm in Svmwarelist
do

vm="echo $vm | sed -e 's/*/ /g'"

vm="echo $vm | sed -e 's/ \//*/g'"

if [“vmware-cmd "$vm" getstate | sed -e 's/getstate() = //'> = "on"]
then
echo Looking @ $vm
IDEBUS="seq 0 1~
for i in SIDERUS;
do
echo BUS : $i

IDEDEVICE="seq 0 1~

Modifying VMs ¢ Chapter 5

for j in S$IDEDEVICE;

do
PRESENT="vmware-cmd "S$vm" getconfig ide$i:$j.present cut -£3
_d nons
if [$PRESENT = "true"]
then
TYPE="vmware-cmd "$vm" getconfig ide$i:$j.deviceType |
cut -f3 -4 " "°
if [[$TYPE == "atapi-cdrom" || $TYPE == "cdrom-image"]]
then
echo Found CDROM on IDESi:$j
vmware-cmd "Svm" disconnectdevice ide$i:S$j
fi
fi
done
done

fi

done

Swiss Army Knife...

vmwarelist="vmware-cmd -I’

You can change this value to point to a specific path of a virtual machine

and have these scripts set up to run on only one virtual machine instead
of all virtual machines.

Vmwarelist='/home/vmware/vmserver/vmserver.vmx

Employing this script as a base, you can choose many options using the
vmware-cmd to make a change to all of your registered virtual machines.
Take a look at Code Listing 5.7, which shows how you can start all your reg-
istered machines.

211

212

SYNGRESS

syngress.com

Chapter 5 * Modifying VMs

Code Listing 5.7 Starting All Registered Virtual Machines

#!/bin/bash
vmwarelist="vmware-cmd -1°
vimwarelist="echo $vmwarelist | sed -e
vmwarelist="echo $vmwarelist | sed -e
for vm in Svmwarelist
do

vm="echo $vm | sed -e 's/*/ /g'>

vm="echo $vm | sed -e 's/ \//*/g'"

's/ /*/g'"

's/.vmx/.vmx /g'”

if [“vmware-cmd "$vm" getstate | sed -e 's/getstate() = //'> = "off"

then

echo Found s$vm that is off, Starting S$vm

vmware-cmd "Svm" start
fi

done

Now, let’s take a look at a script to
running.
#!/bin/bash
vmwarelist="vmware-cmd -1
vimwarelist="echo $vmwarelist | sed -e
vmwarelist="echo $vmwarelist | sed -e
for vm in Svmwarelist
do

vm="echo $vm | sed -e 's/*/ /g'>

vm="echo $vm | sed -e 's/ \//*/g'"

stop those virtual machines that are

's/ /*/g'"

's/.vmx/.vmx /g'”

if [“vmware-cmd "$vm" getstate | sed -e 's/getstate() = //'> = "on"]

then

echo Found $vm that is on, Stopping $vm

vmware-cmd "S$vm" stop trysoft
fi

done

]

SYNGRESS

syngress.com

Modifying VMs ¢ Chapter 5

Code Listing 5.8 1s one more example of this script, which will reboot all
of the running virtual machines. This is very handy if you have installed
updates or anything else and want to delay the reboot till later.

Code Listing 5.8 Script for Rebooting All Running Virtual Machines

#!/bin/bash
vmwarelist="vmware-cmd -1~
vmwarelist="echo $vmwarelist | sed -e 's/ /*/g'>
vmwarelist="echo $vmwarelist | sed -e 's/.vmx/.vmx /g'">
for vm in Svmwarelist
do

vm="echo $vm | sed -e 's/*/ /g'">

vm="echo $vm | sed -e 's/ \//*/g'"

if [“vmware-cmd "$vm" getstate | sed -e 's/getstate() = //'> = "on"]
then

echo Found $Svm that is on, Rebooting $vm

vmware-cmd "$vm" reset trysoft
fi

done

Dynamic Creation of Virtual Machines

Now that we have looked at what makes up the vmx file, let’s generate some
scripts to dynamically create virtual machines. First, we’ll take a script and
modify it so we can create a virtual machine that will use a golden image as
its base. We’ll then make a couple of changes so we can take advantage of
Altiris in the VM creation. We will then modity the script so that a virtual
machine will be created and then start the VM with the installation CD
mounted to begin the installation.

Code Listing 5.9 shows script that uses a golden image disk file. A golden
image disk file is a fully loaded and patched virtual machine vmx file that has
had sysprep run on it so it can be cloned.

213

214 Chapter 5 * Modifying VMs

\WARNING

Please make sure you look through these scripts and make any changes
needed to match your environment. Pay attention to the vmhba path
and double-check these values with the values in your own environment.

Code Listing 5.9 Using a Golden Image Disk File to Dynamically Create a
Virtual Machine

#!/bin/bash

gl #Scripting VMware Power Tools: Automating Virtual Infrastructure

Administration

#Dynamic Creation of a new Virtual Machine using a Golden Image
#Stephen Beaver

#HH#H#H#USER MODIFICATIONH#HH#H#HAHEHEHHIHH#H

#VMNAME is the name of the new virtual machine

#VMOS specifies which Operating System the virtual machine will have
#GLDIMAGE is the path to the "Golden Image" VMDK file
#DESTVMFS is the path to VMFS partition that the VMDK file
HH#HHHHH A HH AR
VMOS="winNetStandard"

VMMEMSIZE="256"
GLDIMAGE="/vmfs/FHVMFS1/Windows 2003 Standard.vmdk"
DESTVMFS="vmhba0:0:0:10"

HH#HH#H#END MODIFICATIONH####

LOG="/var/log/$1l.log"

echo "Start of Logging" > $LOG

echo "Importing Golden Image Disk File VMDK" >> SLOG
vmkfstools -i $GLDIMAGE S$DESTVMFS:S$1.vmdk

echo "Creating VMX Configuration File" >> S$LOG

mkdir /home/vmware/$1

exec 6>&1

exec 1>/home/vmware/$1/$1.vmx

write the configuration file

Modifying VMs ¢ Chapter 5 215

echo #!/usr/bin/vmware

echo config.version = '"'6'"!

echo virtualHW.version = '"'3'm!

echo memsize = '"'SVMMEMSIZE'"'

echo floppy0O.present = '"'TRUE'"'

echo usb.present = '"'FALSE'"'

echo displayName = '"'s1'"!

echo guest0OS = '"'SVMOS'"!'

echo suspend.Directory = '"'/vmfs/vmhba0:0:0:10/'""'
echo checkpoint.cptConfigName = '"'$1'"!
echo priority.grabbed = '"'normal'™"'
echo priority.ungrabbed = '"'normal'"'

echo idel:0.present = '"'TRUE'™'

echo idel:0.fileName "rauto detect'"!

echo idel:0.deviceType = '"'cdrom-raw'"'
echo idel:0.startConnected = '"'FALSE'"!'
echo floppy0.startConnected = '"'FALSE'"'
echo floppy0.fileName = '"'/dev/fdo'""'

echo EthernetO.present = '"'TRUE'"'

echo EthernetO.connectionType = '"'monitor dev'"'
echo Ethernet0.networkName = '"'NetworkO'"'
echo draw = '"'gdi'""'

echo

echo scsiO.present = '"'TRUE'"'

echo scsi0O:1.present = '""'TRUE'"'

echo scsil0:1.name = '"'SDESTVMFS:$1.vmdk'"'
echo scsiO:1.writeThrough = '"'TRUE'"'

echo scsiO.virtualDev = '"'vmxlsilogic'"'
echo

close file

exec 1>&-

make stdout a copy of FD 6 (reset stdout), and close FD6
exec 1>&6

exec 6>&-

216

SYNGRESS

syngress.com

Chapter 5 * Modifying VMs

echo "VMX Configuration File Created Successfully" >> $SLOG
#Change the file permissions

chmod 755 /home/vmware/$1/$1.vmx

#Register the new VM

echo "Registering .vmx Configuration" >> S$LOG

vmware-cmd -s register /home/vmware/$1/$1.vmx

echo "VMX Initialization Completed Successfully" >> SLOG

NoTEe

Notice that the preceding script uses a golden image file that is local to
that machine. If your golden image is located on a network share, you
can easily mount that share and import the file from there. To mount a
network share you can use the following command:

mount -t smbfs //server/share /mnt/smb -o
username=username/domain, password=password

Next, we’ll take the same script and make a few changes so it will work
with an ESX Server managed with Altiris. At the end of this script, the virtual
machine i1s started and should boot PXE, which Altiris can then take over and
use to install the operating system (see Code Listing 5.10).

Code Listing 5.10 Creating a New Virtual Machine to Use with an ESX
Server Managed by Altiris

#!/bin/bash

#Scripting VMware Power Tools: Automating Virtual Infrastructure

Administration

#Creates a new Virtual Machine for use with Altiris

#Stephen Beaver

HHH#HHUSER MODIFICATION#H#H##H#HHHHHHHHIH

#VMNAME is the name of the new virtual machine

#VMOS specifies which Operating System the virtual machine will have

#DESTVMFS is the path to the VMFS partition of the VMDK file

Modifying VMs ¢ Chapter 5

#VMDSIZE is the size of the Virtual Disk File being created ex (500mb) or

(109)

HHHHHHHHHFHH AR H AR
VMNAME="vm_name"

VMOS="winNetStandard"

VMMEMSIZE="256"

DESTVMFS="vmhba0:6:0:1 #Must use the vmhba path
VMDSIZE="10g"

#####END MODIFICATION#####
LOG="/opt/altiris/deployment/adlagent/bin/logevent"
SLOG -1:1 -ss:"Creating VMX Configuration File"
mkdir /home/vmware/S$SVMNAME

exec 6>&1

exec 1>/home/vmware/S$VMNAME/$SVMNAME . vinx

write the configuration file

echo #!/usr/bin/vmware

echo config.version = '"'6'"!

echo virtualHW.version = '"'3'"!

echo memsize = '"'SVMMEMSIZE'"'

echo floppyO.present = '"'TRUE'"'

echo usb.present = '"'FALSE'"'

echo displayName = '"'S$VMNAME'™"!'

echo guest0OS = '"'SVMOS'"'

echo suspend.Directory = '"'/vmfs/vmhba0:0:0:5/'""
echo checkpoint.cptConfigName = '"'$SVMNAME'"'
echo priority.grabbed = '"'normal'™"'

echo priority.ungrabbed = '"'normal'"'

echo idel:0.present = '"'TRUE'"!

echo idel:0.fileName '"rauto detect'"!

echo idel:0.deviceType = '"'cdrom-raw'"'
echo idel:0.startConnected = '"'FALSE'"!'
echo floppy0.startConnected = '"'FALSE'"'
echo floppy0.fileName = '"'/dev/fdo'""'

echo EthernetO.present = '"'TRUE'"!

217

218

Chapter 5 * Modifying VMs

echo EthernetO.connectionType = '"'monitor dev'™"'
echo EthernetO.networkName = '"'NetworkO'"'

echo draw = '"'gdi'"!

echo

echo scsi0O.present = '"'TRUE'"'

echo scsi0O:1.present = '"'TRUE'"'

echo scsiO:1.name = '"'vinhba0:0:0:5:SVMNAME.vmdk'""'
echo scsiO:1.writeThrough = '"'TRUE'"!'

echo scsi0O.virtualDev = '"'vmxlsilogic'"!

echo

close file

exec 1>&-

make stdout a copy of FD 6 (reset stdout), and close FD6
exec 1>&6

exec 6>&-

SLOG -1:1 -ss:"VMX Configuration File Created Successfully"
#Change the file permissions

chmod 755 /home/vmware/$SVMNAME/$VMNAME . vimx

#Create the Virtual Disk

SLOG -1:1 -ss:"Creating Virtual Disk"

vmkfstools -c¢ $SVMDSIZE vmhbaO:0:0:5:SVMNAME . vmdk

SLOG -1:1 -ss:"Virtual Disk Created Successfully"
#Register the new VM

SLOG -1:1 -ss:"Registering VMX Configuration"

#Registering .vmx Configuration"

vmmware-cmd -s register /home/vmware/$VMNAME/$VMNAME .vmx
SLOG -1:1 -ss:"VMX Initialization Completed Successfully"
#Starting the Virtual Machine

SLOG -1:1 -ss:"Starting the Virtual Machine"

vmware-cmd /home/vmware/$VMNAME/SVMNAME.vmx start

SLOG -1:1 -ssg:"Virtual Machine Started"

SLOG -1:1 -ss:"Passing control to Altiris for PXE boot and install of

vM"

SYNGRESS

syngress.com

Modifying VMs ¢ Chapter 5

Let’s make one more change to the script so that when the virtual

machine first boots up with a brand-new disk, it will boot from the virtual
CD-ROM that has an ISO file mounted to it (see Code Listing 5.11).

Code Listing 5.11 Creating a New Virtual Machine That Boots to an I1SO

#!/bin/bash

#Scripting VMware Power Tools: Automating Virtual Infrastructure

Administration

#Creates a new Virtual Machine booting to an ISO

#Stephen Beaver

##H#HHUSER MODIFICATIONHHH#H#HHHH#HHHAH#E

#VMNAME is the name of the new virtual machine

#VMOS specifies which Operating System the virtual machine will have
#GLDIMAGE is the path to the "Golden Image" VMDK file

#DESTVMFS is the path to the VMFS partition of the VMDK file
#VMDSIZE is the size of the Virtual Disk File being created ex (500mb) or
(109)

#ISOIMAGE is the path and file name of the ISO file you are using
HHHHHHH A HH A H AR R

VMOS="winNetStandard"

VMMEMSIZE="256"
GLDIMAGE="/vmfs/FHVMFS1/Windows 2003 Standard.vmdk"
DESTVMFS="vmhba0:0:0:10"

VMDSIZE="10g"

ISOIMAGE" /vmfs/ESX SAN/Windows2000.iso"

HHHH#HEND MODIFICATION###H#H#

LOG="/var/log/$1.log"

echo "Start of Logging" > $SLOG

echo "Importing Golden Image Disk File VMDK" >> $SLOG

vmkfstools -1 SGLDIMAGE S$DESTVMFS:$1.vmdk

echo "Creating VMX Configuration File" >> $SLOG

mkdir /home/vmware/S$1

exec 6>&1

exec 1>/home/vmware/$1/$1.vmx

219

220

Chapter 5

Modifying VMs

write the configuration file

echo #!/usr/bin/vmware

echo config.version = '"'e'"!
echo virtualHW.version = '"'3'"!
echo memsize = '"'SVMMEMSIZE'"'
echo floppyO.present = '"'TRUE'"'
echo usb.present = '"'FALSE'"'
echo displayName = '"'$1'"!'

echo guestOS = '"'sVMOS'"!

echo suspend.Directory =

v /ymEs/vmhba0:0:0:10/ ' !

echo checkpoint.cptConfigName = '"'$1'"!
echo priority.grabbed = '"'normal'"'

echo priority.ungrabbed = '"'normal'"'

echo idel:0.present = '"'TRUE'"'

echo ide0:0.present = '"'TRUE'"'

echo ide0:0.fileName = '"'SISOIMAGE'"'

echo ide0:0.deviceType = '"'cdrom-image'™"'
echo floppy0O.startConnected = '"'FALSE'"'
echo floppy0.fileName = '"'/dev/£fdo'"!'

echo EthernetO.present = '"'TRUE'"'

echo Ethernet0.connectionType = '"'monitor dev'"!'
echo EthernetO.networkName = '"'NetworkO'"'
echo draw = '"'gdi'"!

echo

echo scsi0O.present = '"'TRUE'"'

echo scsi0O:1.present = '"'TRUE'"!'

echo scsiO:1.name = '"'SDESTVMFS:$1.vmdk'"'
echo scsiO:1.writeThrough = '"'TRUE'"'

echo scsi0O.virtualDev = '"'vmxlsilogic'"!

echo

close file

exec 1>&-

make stdout a copy of FD 6

exec 1>&6

(reset stdout),

and close FD6

Modifying VMs ¢ Chapter 5

exec 6>&-

#Create the Virtual Disk

echo "Creating Virtual Disk" >> $LOG

vmkfstools -c¢ SVMDSIZE vmhbaO:0:0:5:3$VMNAME . vmdk

echo "Virtual Disk Created Successfully" >> $LOG

echo "VMX Configuration File Created Successfully" >> S$LOG
#Change the file permissions

chmod 755 /home/vmware/$1/$1.vmx

#Register the new VM

echo "Registering .vmx Configuration" >> S$SLOG

vmware-cmd -s register /home/vmware/$1/31.vmx

echo "VMX Initialization Completed Successfully" >> $SLOG
#Starting the Virtual Machine

echo "Starting the Virtual Machine" >> SLOG

vmware-cmd /home/vmware/$VMNAME/$VMNAME.vmx start

echo "Virtual Machine Started" >> S$SLOG

Summary

Let’s review what we’ve covered. First, we took a solid look at the virtual disk
files (*.vindk). We opened up the disk descriptor file, reviewed its contents,
and converted an IDE virtual disk file to a SCSI virtual disk file. We then
took an in-depth look at the settings inside the virtual machine configuration
files (*.vmx) and finished the IDE-to-SCSI conversion.

[presented a few scripts that covered backing up the configuration files of
the virtual machines, and how to build virtual machines. I also discussed a few
options for making changes to all (or one) virtual machines at the same time.
You can use bits and parts of these different scripts to open the door to var-
ious types of automation. Using the native “sed” program, for example, you
have the ability to script the edits to any of the files you need. This gives you
a wide range of options that can be scripted and automated. The vmware-
cmd tool also opens a lot of doors thanks to the difterent choices available.
Run vmware-cmd from the service console to view all the options and
syntax.

221

Chapter 6

Instant Disk: How

to P2V for Free

Topics in this chapter:

s What Is a P2V?

m P2V Techniques

m The “Big Secret” of P2V
= Instant Disk Overview

m Prepping the ESX Host: Setting Up FTP on
ESX Host

m Prepping the Source Machine: Install the
SCSI Driver

m Continue Prepping the Source Machine:
Validate

m The Linux Rescue CD

s At the Command Prompt

m Finding the Hard Drives and Storage
m Virtual Disk Files on the VMFS

m Starting the FTP Process

m Creating a New Virtual Machine and
Pointing It to a New VMDK File

223

224

Chapter 6 ¢ Instant Disk: How to P2V for Free

Introduction

Your overall goal is to consolidate that server room full of hardware into a
more easily managed and less expensive to operate and maintain integrated
system. Some of your current mission-critical servers may be hosted on older
hardware that can’t be, or are difticult to be, replaced. Virtualization is the
answer, but how do you achieve this goal?

What Is a P2V?

A key component when building a virtual infrastructure is establishing a
physical to virtual (P2V) migration process. As a guideline, the “do no harm”
mantra 1s a very important concept when performing P2V migrations. What
this means is that your source physical server should not be damaged in any
way during your P2V process. This permits a fail-back strategy if the P2V
does not complete for whatever reason. Some commercial P2V methods add
directories into the file system and entries into the Registry. These changes
remain, especially if the P2V process does not complete or fails, and can
render the source physical server inoperable. No tool you use should ever
cause harm to the original server, but amazingly there are tools that do
exactly that and yet are out there gaining market share today.

Whether your P2V is successful or not, your original physical server must
remain intact with no harm done. Again, you may need to go back to the
original server for more reasons than you thought.

For example, suppose the physical server you P2V is a critical production
server and you are creating a new development machine from a copy of the
real one? If the P2V was unsuccessful, you just need to bring up the original
production server and be confident that your process has in no way added
directories, Registry entries, or anything that will render the source produc-
tion server unusable or uncertified.

Another key reason you do not want to “touch” the source server and
inject any potentially dangerous changes is illustrated with the following
example. Let’s say your P2V of a production or dev server is successtul but the
application owner says that errors exist within the Event log. Having your
source server operational, you can turn it back on and parse the logs yourself

Instant Disk: How to P2V for Free * Chapter 6

to see if the problem was preexisting. Since we do a block-by-block transfer
in our line of work, it has been our experience that the problem was already
there and we simply carried it over into the newly created virtual machine.
We have seen this many, many times. Thus, it is a very good idea to go
through the logs prior to a migration and note any errors so as to have them
corrected prior to the migration.

P2V Techniques

Many difterent P2V techniques and methods exist, but most involve software
that must be purchased. The following subsections provide a brief description
of how some of these tools work. This is not meant as a how-to guide for
each of these methods, but an explanation of the underlying technology of
each P2V process.

VMware P2V Tool

VMware P2V Tool is an easy-to-use, enterprise-class, market-proven tool that
can take an image of an existing physical system and create a VMware virtual
machine. While this tool is both fast and reliable, its cost as well as the fact
that it’s restricted to virtualizing only Windows NT 4 to Windows Server
2003 systems does limit its use except in very large enterprises.

The basic process is simple, as shown in Figure 6.1.

Figure 6.1 The Basic Process When Using the VMware P2V Tool

P Y{sim source
dis

B
i P2Vboot (D
[_ i | POV Assistont [B4

=
= Source Computer > perform system
reconfiguration

I : I | Bootable target disk

Clone as hootable virtual disk

(reate clone and

Host containing Virtual
machine with boot disk

Source disk
w/0S

225

226

Chapter 6 ¢ Instant Disk: How to P2V for Free

The VMware P2V Tool comes on a self-booting CD-ROM. The disk is
placed in the target source computer’s CD-ROM player and is run against the
selected disk with its installed operating system. The P2V Assistant then cre-
ates the clone, performs the system reconfiguration, and now the clone is a
bootable virtual disk being hosted on a system with new physical hardware.

Platespin PowerConvert

Currently in release 6.0, Platespin PowerConvert appears to be a much more
sophisticated enterprise-class product than VMware’s P2V tool. PowerConvert
allows any kind of conversion and also supports Microsoft Virtual Server’s
format. As with VMware’s offering, however, Platespin’s product is also pricey.
For that extra expense though, you get the following:

m The capability to drag and drop virtual machines from older VMware
server technology into VMware Infrastructure 3.

m Limiting downtime for production servers running Windows 2000,
Windows 2003, and Windows XP operating systems to only a brief
(as little as one to five minutes) interruption by allowing the virtual
machine to remain live as its OS, applications, and data are migrated
to the new VMware Infrastructure 3 hosts.

m The capability to completely automate the Discover, Configure, and
Convert functionality.

m The capability to reconfigure the CPU, the disk, and network and
memory resources on the new target virtual machines.

m The capability to upgrade multiple virtual machines simultaneously
onto new VMware Infrastructure 3 hosts.

In addition to the features previously mentioned, you can add hardware-
independent images and Platespin becomes quite a power tool. How 1is it
used? It’s fully automated. Choose the source, the destination, and then start
the process.

Instant Disk: How to P2V for Free * Chapter 6

Barts/Ghost

A less-expensive enterprise-class alternative is the use of a boot CD-ROM
such as Bart’s Network Boot Disk (www.nu2.nu/bootdisk/network), which is
free, and a cloning tool such as Symantec’s Ghost, which is not. Adding
another free tool, Ultimate-P2V (a plug-in for Bart) allows you to clone a
physical machine to a virtual machine.

Several versions of tools are available that work in a similar fashion.

The “Big Secret” of P2V

Dozens of different ways exist to move data from a physical server to a virtual
one and there are many difterent philosophies about how to reconfigure the
hardware, but we’ve discovered that the easiest and most reliable method is to
let Windows reconfigure itself. Sound too easy?

The Big Secret is that before we copy the source physical server, we install
the VMware virtual SCSI driver. This applies to Windows 2000 and 2003. For
Windows NT, we install the built-in NT BusLogic driver. But wait, doesn’t
this go against the “do no harm” mantra? Actually, no. Installing a built-in or
supplied driver such as this is very minimal in its eftect, but absolutely neces-
sary in any P2V process since the operating system needs to have the SCSI
driver in order to read the virtual disks. Initially, we weren’t comfortable
installing it either, but having installed it now literally thousands of times
without any problems to speak of, we can say with confidence that the proce-
dure is quite safe.

Once you install the virtual SCSI driver, you can copy the physical
machine to your ESX host any way you like. This chapter explains the easiest
way to do this without having to purchase any software. And the method
described here is one of the safest and fastest.

After the new virtual machine boots, Windows will fix itself. Linux and
Netware will need to be manually fixed. However, after the machine is up
and running, you just need to clean up the drivers. By actually learning our
methodology and understanding a little about the process, you should be able
to achieve great success in your P2V migrations.

227

228 Chapter 6 ¢ Instant Disk: How to P2V for Free

Instant Disk Overview

The next thing to do then is to examine the steps of the process. These steps
are

1. Install the virtual VMware SCSI driver on the physical source
machine.

2. Reboot the physical machine using a Linux boot disk, in rescue
mode.

3. Cat (cat is like type in DOS) the hard drives (/dev/sd[abcd] or
/dev/hd?) and FTP them directly to the /vmfs file system on your
ESX host.

4. Reboot the virtual machine, and Windows will redetect the
hardware.

5. Install the VMware tools.

6. Remove the old network and other hardware.
7. Optionally shrink or expand the virtual disk.
8. Test.

Once finished, you’ll have an Instant Disk.

The Bad News

This Instant Disk method will not work on all machines, only on those phys-
ical servers that have modern RAID controllers. Original Compaq Smart
Array 2 and Smart Array 3 controllers used special vendor-specific SCSI
blocking, which is outside of the norm.

Prepping the ESX Host:
Setting Up FTP on ESX Host

Before we start installing drivers and rebooting servers, let’s start by making
sure the ESX host is ready to be used. We use FTP to directly transfer the
image of the hard drive from the physical source server that is being P2V’d
onto the VMES of the ESX host.

Instant Disk: How to P2V for Free * Chapter 6

Why use FTP? Because FTP is the fastest way to move the raw data from
the source server’s hard drive. With FTP, we move data nearer to wire speed,
or as fast as the physical source server can read it off its hard drives. Isn’t
secure FTP better? It may be secure, but it is not fast. Secure FTP goes
through SSH, which greatly slows down the performance. We chose to use
NCFTPPUT. Why, you might ask? We use NCFTPPUT because it will allow
us to FTP a stream of data.

Let’s start by making sure FTP is running on your ESX host server. If it
isn’t, you must turn it on. Either do it in the MUI or through the command
line. If for security reasons you do not keep FTP running on your ESX
Server, then you simply can turn it off.

Through the MUI you would go to the Options tab and then select
Security settings. The best choice is to choose Custom. This way, you can turn
on FTP without turning on Telnet or other services. Select the FTP check
box and save your selection.

From the command line on your ESX host, type ntsysv.

Then go to the bottom (using the down arrow) and check the wu-ftpd
box (see Figure 6.2).

Figure 6.2 Starting the FTP Daemon on the ESX Server

{C) 2000-2001 Red Hat, Inc.

Services

This is the FTP server service. Tab to OK and press Enter to save the
changes.
From the command line, type service xinetd restart.

229

230 Chapter 6 ¢ Instant Disk: How to P2V for Free

This command will tell the xinetd service to restart, which will then
enable FTP.

NoTEe

xinetd is the daemon used to manage the Internet daemon running on
your ESX Server.

You need to create a user so you can FTP into the ESX host server. By
default, ROOT cannot FTP in, and you do not want to change this. It’s a
good security practice to limit ROOT’s access.

Since you need to check permissions and set up a user, it’s easier to do all
of this from the command line of your ESX host. For example, create a user
named PHD from the command line, by typing adduser phd. Then type
passwd phd.

You will be prompted to add the password for the user phd.You need to
enter the password twice. If done correctly, the process should look something
like the screenshot in Figure 6.3.

Figure 6.3 Creating User from the Command Line

[TootBesx01 root]§ adduser ryanharris
[rootBesx01 root]# passwd ryanharris

Changing password for user ryanharris

New password:

Retype new password:

passud: all authentication tokens updated successfully
[rootBesx01 roocl#]

Now you need to test the FTP and make sure your user can log in suc-
cessfully. From the command line of your ESX Server, type ftp localhost.
You should be prompted for the User and Password, use “phd” and the
password you assigned to phd. Once you can successtully log in, change the
directory to the /vmfs folder by typing c¢d /vmfs/ your vinfs partition.
Ensure you can create new files on your VMES of choice. For our example,
we’re going to use /vmfs/LOCAL.
You will probably need to change the permissions of the VMES you want to
use, which would be the vimhbaX: X: X: X name.

Instant Disk: How to P2V for Free * Chapter 6

To change the permissions on your VMES partition, you should be at the
ESX console, and then cd to your/vmfs folder.

From the command line, type c¢d /vmfs. Then type 1l (same as Is —).

Your vmhba folders should be shown, along with a nice name for each.
For the VMES you want to use, we’ll change the permissions to 777, which
will allow your phd user to write to them. Thus, type chmod 1777
vimhbaX:X:X:X (use the correct name).

Now you need to test the FTP and make sure it works. Create a small test
file, then FTP it to the /vmfts/LOCAL. Type the following:

cd /tmp

date > testfile

This is the date command and the greater than sign (>), then a new file
name, such as testfile. Type 1.

You should see the newly created file, called testfile. If you were to cat
this file, it should contain the current date string. Type cat testfile.

Now, from the /tmp folder, you're going to FTP into localhost and try to
put this file on the /vmfs. Type ftp localhost.

You now want to log in as “phd” and put in the password, so type cd
/vmfs. Then, type dir.

“dir” will give you a directory listing from the FTP command prompt.
You should see your available vmfs file systems. You want to cd into the direc-
tory you are working with, so type cd LOCAL (use your name here;
LOCAL is our example).

If this is successful and we do a pwd command, FTP will tell us our current
folder. This should now be /vmfs/LOCAL. Type pwd.

You should get a response like 257 “/vmts/LOCAL” is the current direc-
tory. Now you are going to “put” the testfile to the server. Type put testfile
and press Enter and the local testfile will be transferred to the remote testfile.
You’ll then receive confirmation that this transfer has occurred and how long
it took.

Now if you input a dir command again, you should see your testfile on
your VMES. Type dir and press Enter.

At this point, you have enabled FTP and verified that you can successfully
put a file on your VMES file system.You can delete the test file now. If you

231

232

Chapter 6 ¢ Instant Disk: How to P2V for Free

want to delete it from the FTP prompt. Type del testfile, or you can exit
FTP and just delete the file /vmfs using the rm command. To exit FTP, type
bye.

The last thing we want to do to make our work easier is to copy a few
programs to our /home/phd folder. This is the home directory that was cre-
ated when we added the user phd to the ESX host.

When doing our transfer of data form the source server, there are a few
programs we need that are not included in a standard Linux rescue image. But
all the programs we need already exist on the ESX host itself. Because we use
the programs from the ESX host itself, we are limited to which versions of
Linux rescue images we can use.

Let’s create a p2v folder in our /home/phd folder to put copies of the
programs we need to use. Type mkdir /home/phd/p2v. We also need to
copy ncftpput and mii-tool to our /home/phd/p2v folder, so type cp
/ust/bin/ncftpput /home/phd/p2v.Then type cp /sbin/mii-tool
/home/phd/p2v.

Other optional programs like phdcat should be copied to your
/home/phd/p2v folder. At this point, the ESX host server should be ready for
some P2V action.

Prepping the Source
Machine: Install the SCSI Driver

Now you are ready to prep and get the physical source machine ready for
Instant Disk P2V.You need the VMware SCSI driver, available from
www.vmware.com/download/esx/ at the bottom of the page of SCSI Disk
Drivers. VMware supplies this driver to be used in a virtual machine, but by
installing in your physical first, it makes doing P2Vs very easy.

You need to load this driver onto your source server if you are using
Windows 2000, Windows XP, or Windows 2003.You must do this for all
machines, whether they are IDE and SCSI machines. The easiest thing to do
is put the vmscsi.flp back onto a floppy or extract the contents and put them
on a file share. If you copy this vmscsi.flp to your ESX host (or any Linux
server), you can easily turn it back into a floppy. A FLP file is just a floppy
ISO.

Instant Disk: How to P2V for Free * Chapter 6

On the ESX host, you just cat the flp image to the floppy device. To do
so, type cat vmscsi.flp > /dev/fd0. This will write the image in the flp file
back to a floppy that you can use to install on the source servers.You can also
turn the FLP file back into a real floppy using rawrite (Google it), an open-
source utility that allows you to write raw floppy images to floppy drives in
Windows.

Installing the SCSI Driver in Windows
2000/2003

When working with Windows 2000 or Windows 2003, you must install the
vmscsi.sys driver using the specified method. On the source server, go to the
Control Panel and select Add/Remove Hardware (see Figure 6.4).

Figure 6.4 Choose the Add/Remove Hardware Icon in the Control Panel

B3 Control Panel =] ES

File Edit Wiew Fawotites Tools Help |ﬁ

Bk - = ‘ Q) gearch [Falders @‘ IR TR TS | L

Address I&i"l Control Panel j oo
. = =] Name * | Comment |
}U e e Installs, removes, and troubleshoots hardware
[%Addeema Proneam Installs and remy oengrams and Windows components
Control Panel Admmustrat| Installs, remaves, and troubleshaots hardware l‘a settings Far your camputer
% Automatic Updates Sek up Windows to automatically deliver important updates
Add/Remove Hardware @ DateTime: Sets the date, time, and time zone for your computer
Installs, removes, and traubleshoats Display Custaizes your desktop display and screen saver
hardware QEFo\der Options Custornizes the display of files and Falders, changes file assacistions, and makes network files available offline
Windows Update Fonts Displays and manages fonts on your computer
Windows 2000 Support @Gama Controllers Adds, removes, and configures game controller hardware such as joysticks and gamepads
@Internet Options Canfigure wour Internet display and connection settings.
%Keybuard Customizes your keyboard settings
:?‘j]mansing Changes licensing options
b Mouse Customizes your mouse sekkings
Network and Dialup Connections Connects to other computers, networks, and the Internet
@ Phone and Modem Options Configures your telephone dialing rules and modem properties
Power Options Configures energy-saving setkings For your computer
(& Printers Adds, removes, and configures local and network printers
@Ragiuna\ (ptions Customizes settings For display of languages, numbers, times, and dates
Scanners and Cameras Configures installed scanners and cameras
(E) Scheduled Tasks Schedules computer tasks ko run automatically
(fj%Sounds and Multimedia Assigns sounds ko events and configures sound devices
QSVstEm Provides system information and changes environment settings

Installs, removes, and troubleshooks hardware ‘

;ﬂstart”] @ 53 H (s3] Control Panel EAE ram

233

234

Chapter 6 ¢ Instant Disk: How to P2V for Free

Next, choose Add/Troubleshoot a Device (see Figure 6.5).

Figure 6.5 Choose Add/Troubleshoot a Device

Add/Remove Hardware Wizard]

Choose a Hardware Task G
Wwhich hardware task do you want to perform? >

S
Select the hardware tazk you want to peiform, and then click Next.
' Add/Troubleshoot a device !

‘Choose this option if you are adding a new device to your computer or are havmg;
iproblems getting a device working.

" Uninstall/Unplug a device

Choose this option to uninstall 3 device or to prepare the computer to unplug a
device.

< Back I HNext > I Cancel I

You then want to select Add a New Device (see Figure 6.6).

Figure 6.6 Choose Add a New Device

Add/Remove Hardware Wizard L

Choose a Hardware Device

s
Which hardware device da you want 1o troubleshoot?

The following hardware is alieady installed on your computer. | you are having problems
with one of these devices. select the device, and then click Next.

If you are attempting to add a device and it is not shown below. select Add a new
device, and then click Next.

Devices =

<Fi Sound Blaster 16 or AWE 32 or compatible [WDM)
=D Floppy disk drive

LI NECYMW ar VMware IDE CDR10
DVMwassVniual IDE Hard Drive

=1 |54PNP Read Data Port

B2 AMD PCNFT Familu P Fthamet Adanter 2 ll

< Back I Mext > I Cancel]

You do not want Windows to search for the new device, so select No (see
Figure 6.7).

You are presented with a list of different types of hardware to install. You
want to select SCSI and RAID Controllers (see Figure 6.8).

Figure 6.7 Choose the No Option to

Instant Disk: How to P2V for Free * Chapter 6

Select the Device from a Hardware List

Find New Hardware v
Windows can also detect hardware that is not Plug and Play compatible. \?
When Windows detects new hardware. it checks the current settings for the device
and installs the comect driver.

Do you want Windows to search for your new hardware?
" Yes, search for new hardware
& [No. Twantto select the hardware from a list
< Back I Hext > I Cancel
Figure 6.8 Choose the SCSI and RAID Controllers Option
Hardware Type \
Wwhat type of hardware do you want to install? \Q\
Select the type of hardware you want to install.
Hardware types:
</ Other devices ;I

R PCMCIA adapters
= PCMCIA and Flash memory devices
7 Ports [COM & LPT)
¢ Printers

= SCS| and RAID controllers
§)- Sound. video and game controllers
=] System devices
=BT ana divas

I

< Back I Mext > I Cancel |

After clicking Next, youre shown

a list of known SCSI drivers. Here you

want to click Have Disk (see Figure 6.9).

After clicking Have Disk, you are
want to install (see Figure 6.10). If you

asked for the location of the driver you
re using the vmscsi.sys driver on a

floppy, you just need to insert the floppy and press Enter. Or you can browse
to a network share and install the vmscsi.sys driver from there.

235

236

Chapter 6 ¢ Instant Disk: How to P2V for Free

Figure 6.9 Choose the Have Disk Option

Add/Remove Hardware Wizard

Select a Device Driver
Which driver do you want to install for this device?

|

Select the manufacturer and model of your hardware device and then click Mext. If you
= have a disk that contains the driver you want to install, click Have Disk.
Manufacturers: Models:
Adaptec - | | Adaptec AHA-1502 SCS1 Host Adapter -
BuslLogic Adaptec AHA-1505 SCSI Host Adapter
Compagq Adaptec AHA-1510 SC51 Host Adapter
Future Domain Corporation Adaptec AHA-1512 SCSI Host Adapter
Mylex Adaplec AHA 151X /AHAA 53(ot AIC 6260/41C-6360 T}_l
NCR BN A e
1Ll snmunimn hd st i anbs seae 4Kl T L

< Back Next> Cancel |

Figure 6.10 Enter or Browse to the Location of the Driver and Click OK
[install Frompisk x|

I R e
[Cooa |

Copy manufacturer's files from:

= T _sowe. |

When you browse to the correct path, you are shown the vmscsi.inf file.
Select this file and click Open (see Figure 6.11).

Figure 6.11 Select the File and Click the Open Button
2]

Look in: | (4 vm

History

o

Desktop

=

o « ®@efE-

My Documents

T

My Computer

{:“E‘

My Network P

File pame:

|vmsn:si inf ‘i

[Setup Information (~inf) | e

Files of type:

Instant Disk: How to P2V for Free * Chapter 6

Then you are back to the Install from Disk prompt. Click OK (see Figure
6.12).
Figure 6.12 The Install from Disk Prompt

x|
Insert the manufacturer's installation disk into the drive 0K I

‘\3 selected, and then click OK.
Cancel

LCopy manufacturer's files from:
[Mexshuym

After clicking OK, you're asked if you want to install the VMware SCSI
Controller. Select it and click Next (see Figure 6.13).

Figure 6.13 Click Next to Continue the Installation

Add/Remove Hardware Wizard =

Select a Device Driver
Which driver do you want to install for this device? \Q

Select the manufacturer and model of your hardware device and then click Mext. If you
& have a disk that contains the driver you wanit to install, click Have Disk

Models:

WiMware SCSI Controller

Have Disk... |
< Back I Hext > I Cancel I

You then are asked to confirm that you want to install the VMware SCSI
Controller. Click Next (see Figure 6.14).

237

238 Chapter 6 ¢ Instant Disk: How to P2V for Free

Figure 6.14 Confirm the Installation

Start Hardware Installation N
‘windows is ready to install drivers for your new hardware.

@% YMware SCSI Controller

Windows will use default settings to install the software for this hardware device. To
install the software for your new hardware, click Next

Cancel I

Windows might complain about it not being signed with a digital signa-
ture. Click Yes to continue (see Figure 6.15).

Figure 6.15 If Windows Complains, Click Yes to Continue the Installation

Digital Signature Not Found x|

The Microsoft digital signature affirms that software has
been tested with Windows and that the software has not
been altered since it was tested.

The software you are about to install does not contain a
Microsoft digital signature. Therefore, there is no
guarantee that this software works correctly with
Windows.

YMweare SCSI Controller

If you want to search for Microsoft digitally signed
software, visit the Windows Update Web site at
http: / /windowsupdate. microsoft.com to see if one is
available.

Do you want to continue the installation?

Mo | More Info I

Youre now done installing the vmscsi.sys driver (see Figure 6.16).

Instant Disk: How to P2V for Free * Chapter 6

Figure 6.16 The Device Driver Is Installed

Add/Remove Hardware Wizard

Completing the Add/Remove
Hardware Wizard

The following hardware was installed:
YMware SCSI Controller

\Windows has finished installing the software for this device.
For the hardware to work, you will have to restart the
computer

Ta view or change the resources for this
device, click Resources,

Resources...

To close this wizard, click Finish.

Afterward, you’ll be asked if you want to reboot the server. Say No at this

time.

If you're not sure if the vmscsi.sys driver is installed, you can right-click
My Computer, go to Computer Management, and then click Device
Manager (see Figure 6.17).You should see the VMSCSI Controller driver as a
nonworking device. This is normal since you’re not running a virtual machine

yet.

Figure 6.17 The VMSCSI Controller Driver Is Seen as a Nonworking Device

Tree |

ation vew || & = |B@| 2| A

BETE]

B Computer]

E Computer Management (Local)
-] ﬁ System Tools
#-|L] Event Viewer
¥ % System Information
+ & Performance Logs and Alerts
0} Shared Folders
Device Manager
¥ Local Users and Groups
Bl '_"g Storage
|_] Disk Management
“" Disk Defragmenter
=) Logical Drives
+I- g Removable Storage
[_ﬁ! Services and Applications

2 Disk drives
B pisplay adapters
£} DVDJCD-ROM drives
2 Floppy disk contrallers
=D Floppy disk drives
=3 IDE ATAJATAPI controllers
3 Imaging devices
|8 Keyboards
* ('j Mice and other pointing devices
- H Network adapters
[Ports (COM & LPT)
=) c SCSIand RAID controllers
(3!" YMware SCSI Controller
=] \f Sound, video and game controllers
- Audio Codecs
Legacy Audio Drivers
Legacy Video Capture Devices
Media Control Devices
Standard Game Port
|- Video Codecs
¥ g:é System devices
¥ Universal Serial Bus controllers =

-0

239

240

Chapter 6 ¢ Instant Disk: How to P2V for Free

Installing the SCSI Driver in Windows NT

If you are doing a Windows N'T P2V, then you need to use the built-in
Buslogic SCSI driver from the Windows NT CD-ROM. You will probably
need the Windows NT CD-ROM to do this.

Go to the Control Panel and select SCSI Adapters (see Figure 6.18).

Figure 6.18 Select SCSI Adapters

B Control Panel

| Ele Edt View Go Favoites Help -
= . = . (= % m @ = &7 .
! ! Up Cut Copy Paita U Delsta Propaities Ve
| éddress [51 Cortral Panel =i
Control Panel
‘ -
T & B B o5 5 4
Accessibily Add/Remove Consols Date/Tune Davices I'J-\'.nlay Fird Fast
SCSs1 Rdap!l'r!_ O pteors Programs
Add/Remove SCS1 adapters and
wiew their properties.) =y F = <
) & gm F 4 &3 D
Forts Intesnat Feyboad Licensing MadandFax Madems Mouse
- A
k] 5 jpl!]
MSDTC Mulimedis Metwak ~ ODBCDsa PCCad Podz Prindeiz
Sowces [FCMCIA]
. :- - ,‘% E—E _‘- =
Fegona EIEEEEEE Sever Seavices Sounds System Tape Devices
Seltings
Z @ B
T elsphony uUPs Viwate Tools
Add/Rlemove 5051 adapters and view theil propsrties. 51 My Computer

Add the new device.You want to select the BusLogic MultiMaster PCI
SCSI Host Adapters (see Figure 6.19).

Figure 6.19 Choose the BusLogic MultiMaster PCl SCSI Host Adapters

Click the driver you want to install, and then click OK.
= If you have an installation disk for a driver that is not in the list, click Have
Disk.

Manufacturers: SCSI Adapter

[Standard mass storage coil BusLogic FlashPoint PCI SCSI Host Adapter
Adaptec BusLogic MultiMaster EISA SCS| Host Adapters
Advanced Micro Devices [BusLogic MuliM aster PLI SLSI Host Adapters
AMI BuslLogic MultiMaster SCSI Host Adapters
BusLogic

Compaq -

4| »

Instant Disk:

How to P2V for Free * Chapter 6

You have to add the ATAPI CD-ROM to the CD-ROM in the Control
Panel, also. If you do not add the IDE CD-ROM driver now, and it is not
installed, you will have difficulty installing the VMware Tools (see Figure

6.20).

Figure 6.20 Install the ATAPI CD-ROM

Install Driver
<

Manufacturers:

Click the driver you want ta install, and then click OK.
Disk.

SCSI Adapter

If you have an installation disk for a driver that is not in the list, click Have

[Standard mass storage colfy
Adaptec
Advanced Micro Devices [

Al
| 4|

BuszLogic
Compaq

IDE CD-ROM [ATAPI 1.2)/Dual-channel PCI IDE Cor

o]

Have Disk... |

Cancel |

At this point the source server should be ready to go (see Figure 6.21).
You may also have various other SCSI drivers installed. Leave these alone. Do
not disable or remove any drivers at this time. Remember, cause no harm to

your physical server.

Figure 6.21 The Two Adapters You Have Just Added Are Now Started

SCSI Adapters

Devices Drivers I

@=- Installed SCSI Adapter drivers are listed below.

Busl ogic MultiM aster PCI SCS1 Host Adapters

IDE CD-ROM [ATAPI 1.2)/Dual-channel PCI IDE Co..

[Started)

0K

I Cancel I

Once you have installed the BusLogic and the IDE CD-ROM drivers

you will be asked to reboot. Do not reboot yet.

241

242

Chapter 6 ¢ Instant Disk: How to P2V for Free

Continue Prepping
the Source Machine: Validate

Once you have the correct SCSI driver installed in your physical machine,
there are a few steps left to perform.

1. Run scandisk and make sure your drives have no problems. If you
have scandisk errors, this can cause a problem in the new virtual
machine.

Do not defrag at this time.

Note the existing network configuration.

N

Note the way the hard drives are lettered.
5. Note the drive letter of the CD-ROM drive.

Things to be concerned about:

If you are using Windows 2003 and employing the original build that
came with your server, you might have to deal with Windows Licensing issues
once you move it into a virtual machine. Be prepared with your License Key
and the Microsoft Support phone number.

The Linux Rescue CD

Now that the source server has the VMware SCSI driver installed, we can
reboot it using a Linux rescue c¢d and commence with the P2V.

Since we are working with ESX 2.x, we need to use a version of Linux
boot CD with it that is binary-compatible. This is because we are going to
use ncftpput from the ESX host. We've had good experience using the Fedora
3 Core rescue image or the Red Hat 9 disk 1. Fedora Core 4 is not binary-
compatible with the ESX host, so you should download the Fedora Core 3
from http://download.fedora.redhat.com/pub/fedora/linux/core/3/.You can
use disk 1 or the rescue image. Download this ISO and burn it to a CD using
your favorite software. If you're going to do much older hardware, it’s a good
idea to burn the CD at a slow speed such as 4x. The Red Hat Linux 9 CD 1
can be downloaded from http://mirrors.kernel.org/redhat/redhat/
linux/9/en/1s0/1386/. Sometimes with really old hardware you need to use
something older, like a Red Hat 7.2 CD.

Instant Disk: How to P2V for Free * Chapter 6

Booting the Rescue CD

Put the Linux rescue CD into the CD-ROM drive and boot the physical
source server from it. At the boot prompt, type linux rescue (see Figure 6.22).
Unless you're using the FC3 rescue image, it will default to rescue mode.

Figure 6.22 To Enter the Rescue Mode, Press the Enter Key

Fedora

the <ENTER> key.

= Use the funct sted below for more information.

boot !

If you have screen issues, where the screen is unreadable after booting, you
can try the no frame bufter option. To do so, type linux rescue nofb. The
Linux kernel will start booting and will auto-detect the hardware.

The first question regards choosing your language. For our demonstration,
we’ve chosen English (see Figure 6.23). At these Linux rescue prompts, you
can click OK and continue by pressing the F12 key.

Second question is choose the keyboard type, press F12 to continue. Or

choose your correct keyboard if it’s different or nonstandard (see Figure 6.24).

243

244 Chapter 6 ¢ Instant Disk: How to P2V for Free

Figure 6.23 Choose What Language You Will Use

Welcome to Fedora Core

Choose a Language

What language would you like to use
during the installation process?

Catalan
Chinese(Simplified)
Chinese(Traditional) #
Croatian

Czech

Danish

Dutch

=

(Tab>s<Alt-Tab> between elements | <(Space> selects | <F12> next screen

Figure 6.24 Choose Your Keyboard Type

Welcome to Fedora Core

Keyboard Type
What type of keyboard do you have?

sg-latinl
sk-querty
slovene

sv-latinl

{Tab>/<Alt-Tab> between elements | <{Space> selects | <F1Z> next screen

Third question is whether you want to start network services. You should
choose Yes (see Figure 6.25), or just press F12.

Instant Disk: How to P2V for Free * Chapter 6

Figure 6.25 Start Network Services

Setup Networking

Do you want to start the network
interfaces on this system?

[]

<Tab>/<Alt-Tab> between elements i <Space> selects I <F12> next screen

Set up and configure the first network card ethO. If you have DHCP
enabled, choose it or enter the IP address. You should use the existing IP
address of the physical server (see Figure 6.26).

Figure 6.26 Enable DHCP on the First Network Card ethQ

Network Configuration for ethd
Network Device: eth@
[.]1 Configure using DHCP

IP Address
Netmask

0K

<Tab>/<Alt-Tab> betueen elements | <Space> selects | <F12> next screen

245

246 Chapter 6 ¢ Instant Disk: How to P2V for Free

If you have more than one network card, it will ask you to configure
them, too. If you do not use DHCP, you will also have to enter a default
gateway and DNS servers. We usually just go by IP address. If our network
doesn’t seem to configure correctly, we’ll take a look at it once rescue mode
1s booted.

Lastly, the rescue image will appear.

Choose Skip, which will give you a command-line prompt. Even if this is
a Linux P2V, you should still choose Skip (see Figure 6.27).

Figure 6.27 Click the Skip Button to Get to the Command-Line Prompt

Rescue |

The rescue envir will now mpt to Find
your Linux installation and mount it under the
directory /mnt/sysimage. You can then make any
changes required to your system. If you want
to proceed with this step choose ’Continue’ .
You can also choose to mount your file systems
read-only instead of read-write by choosing

' Read-Only’ .

If for some reason this process fails you can
choose ‘Skip’ and this step will be skipped and
you will go directly to a command shell.

<Tab>/<Alt-Tab> between elements | <Space> selects | <F12> next screen

The other options will search for an existing Linux environment and try
to mount it, as shown in Figure 6.28.

If you choose the Skip button, or if there are no Linux partitions to
mount, you will be directed to a shell, as shown in Figure 6.29.

Instant Disk: How to P2V for Free * Chapter 6 247

Figure 6.28 Other Options Will Try to Mount an Existing Linux Environment

Rescue Mode

You don’t have any Linux partitions. Press
return to get a shell. The system will reboot
automatically when you exit from the shell.

{Tab>-<Alt-Tab> between elements i <Space) selects i <F1Z> next screen |

Figure 6.29 You're Now in the Shell

When finished please exit from the shell and your system will reboot.

sh-3.88%

At the Command Prompt

Once you're at the command prompt, you want to make sure your net-
working 1s up and working. Try to ping your ESX host by name or IP
address. If you did not enter a DNS server or used DHCP, then you will need
to use the IP address instead.

248

Chapter 6 ¢ Instant Disk: How to P2V for Free

If the network is not working, check the network configuration. Typing
ifconfig will give you a list of your network adapters and their IP addresses.
Sometimes with the rescue image it will default to using the highest num-
bered network adapter in your physical server, while you might be actually
using the first one.

You can turn oft a network card by typing ifconfig eth0 down.

This assumes we want to turn oft ethO. If you want to rerun DHCP for
an eth device, the command is pump —i ethl.

You can set the IP address manually by typing ifconfig ethl
xxx.xxx.xxx.xxx. (For example: ifconfig ethl 10.10.10.12.)

This will default to a Class A address, but it should be okay. If your ESX
host 1s not on the same segment as the source server, you will have to add a
route to it. We're going to add the route for the ESX host directly, so type
route add <esx host IP> gw <default gateway IP>. (For example:
route add 136.157.32.121 gw 10.10.10.1.)

Try to ping your ESX host again. If you’re able to ping it, we can move
onto FTP. If you can’t, then you're still having network problems. If you have
more than one network adapter, try using the other one.

Remember, you can check the multiscreens and look for errors. By
default, youre on screen 1, which is Alt + F1; screens Alt + F3 and up show
kernel output and possible error messages. Screen Alt + F2 is another com-
mand line-like screen F1.

Next, you want to change directory to the /tmp folder (which is writable
in the rescue image because it is a RAM drive) and download the contents of
the p2v folder from the ESX host. To do so, type cd /tmp. Then type ftp
<ESX host IP>.

You should be asked to log in to the FTP service. Log in as phd and make
sure you can successfully connect.You should be in the phd home folder,
which is /home/phd. By doing a dir, you should see the p2v folder. Change
directory into the p2v folder by doing c¢d p2v and do a dir again.You should
see the ncftpput, mii-tool, phdcat, and any other tools you put in this
folder.

You’ll want to get the contents of this folder. To get all programs, type
mget *.

Instant Disk: How to P2V for Free * Chapter 6

You will be prompted to confirm before each file. If you type prompt
first, it will default to Yes for all files. For example, if you type:

prompt.
mget *.

FTP will transfer the files, placing them in the /tmp folder on your source
machine. Remember, this is a RAM drive and does not touch the hard drives
in the physical source server at all. Do no harm!

You need to make these programs you just downloaded executable by
using the chmod command.You can chmod all the files in the /tmp folder
because it’s the easiest thing to do. So type chmod 777 *.

Now we can check the network connection and make sure we’re running
full duplex and that everything is the way it should be. By running mii-tool,
you can check the speed and duplex of the network devices. If they are
incorrect, you can change them by using mii-tool. To run mii-tool, you need
to ./ it. That again is dot slash and then the mii-tool. Or you could com-
pletely path the name /tmp/mii-tool. Type: .

/mii-tool.
or
./mii-tool =h

for the help and command options. The dot slash means to run the program
from the current folder, which is /tmp. If our path was set up for /tmp, then
this wouldn’t be necessary. Once the network is all-good, we move onto the
hard drives.

Finding the Hard Drives and Storage

Next, you need to find the hard drive devices, which are normally /dev/sda
(/dev/sdb and so on). But some SCSI controllers do not use standard device
names. This means most Compaq RAID cards and some other RAID cards
such as Mylex are different from the norm. If youre going to P2V a SAN-

249

250

Chapter 6 ¢ Instant Disk: How to P2V for Free

attached drive, it should appear as a normal SCSI drive just like local attached
storage.

By typing fdisk -1, you should get a list of all the known hard drive
devices, which should look like the following example:

Disk /dev/sda: 41.9 GB, 41943040000 bytes

255 heads, 63 sectors/track, 5099 Cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/sdal * 1 5098 40949653+ 7 HPFS/NTFS

If you have multiple hard drives, then they should all be listed. Compagq,
HP, and other RAID controllers may not show when doing the fdisk —1. You
will need to do the fdisk —1 against the actual device name. For newer
Compaq RAID controllers, try fdisk -1 /dev/ida/c0d0 (c = controller 0; d
= drive 0); for older Compags, try fdisk -1 /dev/cciss/c0d0 (c = controller
0; d = drive 0).

For Mylex RAID cards, it would be fdisk -1 /dev/rd/c0d0 (c =
controller 0; d = drive 0).

For Instant Disk, you are going to copy the whole hard drive, which
means every sector, every byte, everything. Because Instant Disk copies the
whole drive, the cylinders must be normal. If not, the partition boundaries
will not line up and it won’t work.

For the /dev/sda (or whatever drive), the cylinders must be 16065 *
512 = 8225280. This is the same for IDE hard drives also since all IDEs
should be this value. As mentioned previously, old Compaq computers using
Smart Array 2/3s do not use standard cylinders. If your server has these
values, then the Instant Disk methodology discussed in this chapter will not
work for you. If your source server has dynamic disks or is using some form
of software spanning or RAID, you can still use Instant Disk.

For example, your source server is an old NT server with three 4-gigabyte
hard drives as a RAID 5.You just need to Instant Disk all the hard drives, and
then add all three drives to the new virtual machine. It should work fine.
Except that leaving it like this is not the best solution. However, once success-
fully converted into a virtual machine, you can add another hard drive to it

Instant Disk: How to P2V for Free * Chapter 6

and use a Windows tool to copy the partition from the three-drive RAID 5
onto a normal basic single disk.

The greatest thing here 1s that you can P2V almost any server, then you
can fix it, update it, and convert the hard drives. In fact, you can do anything

you want to it.

Linux and Hardware

In Linux, hardware devices are accessed as if they were files. At least the ones
we are going to deal with.Your first SCSI hard drive in Linux would be
/dev/sda. The a means drive one, while b, as in /dev/sdb, would be drive 2,
and so on. For IDE, it would be /dev/hda for your first drive.

By accessing this file, you access the hard drive at the hardware level,
below the data and partitions. This allows you raw access to the drive. This is
the fastest way to get data from the drive.

If you were to cat /dev/sda, you would get the raw dumping of that
SCSI Hard drive. Do not do this yet.

The basic idea is that you cat /dev/sda > newdisk.vimdk, which
means you are copying the raw hard drive (/dev/sda) and putting it into a
file called newdisk.vimdk, except you’re going to copy it across the network
and write directly to the VMEFS using FTP.

This newly created newdisk.vmdk is almost an ESX virtual disk file. The
only difference between an ESX .vimdk (.dsk) file and a real hard drive image
is a 512 record at the end of the file. This is how ESX knows the file is a vir-
tual disk.

Virtual Disk Files on the VMFS

As mentioned before, there is little difference between a raw hard drive image
and an ESX virtual disk file. (In Workstation and GSX, a pre-allocated virtual
disk is the same as a raw hard drive, which is the same as an ESX virtual disk
without the 512-byte record.)

Because of the format of an ESX virtual disk file, there is very little
chance of corrupting a virtual disk (unlike Workstation or GSX) when using
virtual cow disks or virtual hard drives split into pieces.

251

252

Chapter 6 ¢ Instant Disk: How to P2V for Free

If you were to create a file on a VMES file system and add the 512-byte
record to the end it, it would be a valid ESX virtual disk file.

The following is a little exercise to show you how this works and how
ESX manages the VMES.

Create a small empty virtual disk file. You must path the complete file
name. To do so, type vikfstools —c 1m /vimfs/LOCAL/test.vindk.

This will create an empty 1-megabyte virtual disk file named test.vimdk.
Change directory to your VMES file system and do an 11 (Is —-1). You should
see the newly created virtual disk file. (For our example, this is cd
/vmfs/LOCAL.) Then, type 1l

You should see output similar to that shown next:

-YW------ 1 root root 1049088 Jan 12 23:41 test.vmdk

The new virtual disk file you created has a size of 1,049,088 bytes. You
created this file as 1 megabyte in size—that 1s, 1024 ? 1024 bytes =
1,048,576. It we add the 512 bytes—1,048,576 + 512 = 1,049,088—you get
the same file size as the newly created file.

If you look at the last 2000 bytes of this file you will see a lot of NULLs
and the VMware 512-byte record. Type tail —c 2000 test.vimdk | cat -
vet.

The cat —vet will show us binary characters in a readable format. Notice
all the “@ (NULLS), and then some text that says “This is a VMware ESX
server disk image.” Those last 512 characters at the end are the VMware ESX
512-byte record. Not a lot of data in it.

Now if you were to echo some text on to the end of this file test.vimdk,
ESX would know about it and re-add the 512-byte record to keep it as a
valid virtual disk file. Once a file 1s a valid disk, ESX will try and keep it a
valid disk. Let’s do this. Type echo THIS IS A TEST OF INSTANT
DISK >> test.vindk.

The “>> which is a greater than—greater than sign, means to append
data onto the end of the file. Now, if you tail and cat the file again, you will
see the original VMware record, followed by the message you echoed, fol-
lowed again by a new VMware record at the end.

Before we start the FTP process, we need to create an empty virtual disk
file in your VMES that will be the virtual disk drive. By creating a valid disk

Instant Disk: How to P2V for Free * Chapter 6

file first, then FTPing on top of it, the file will remain a valid virtual disk.
Because ESX does this for us, you can do an Instant Disk P2V almost any-
where without any special software.

Create a new virtual disk that will represent your physical source server.
Our source drive 1s 40gig, so let’s create an empty 40gig drive.You could
create a 1M empty virtual drive, but creating it the same size as your physical
source server is a good idea since you can make sure you have enough space
to create it. Type vimkfstools —c 40G /vimfs/LOCAL/newdisk.vidk.

Now that you created an empty virtual disk called newdisk.vimdk, you
just have to make sure you use the same name when you FTP the source

hard drive.

NoTE

If you copied your source hard drive to a local drive or USB drive instead,
you can still use the tool from our Web site to convert the file into a
valid virtual disk after you copy the file to the VMFS. Read about USB
and other methods in the last few pages of this chapter.

Starting the FTP Process

Now we're going to FTP the raw hard drive into your VMES on your ESX
host and create an Instant Disk. If you have the phdcat program, use it instead
of cat in the following command. It will give you the amount of data copied
and the average speed. Without it, you get no feedback on the source server
side.

Type:

cat /dev/sda | /tmp/ncftpput —u <username> -p <password> —c
<remote esx host ip> <Full /vimnfs

path and new file name>

For example:
cat /dev/sda | /tmp/ncftpput —u phdbot —p “p2v>’ —c 10.10.10.1
/vimfs/LOCAL/newdisk.vimdk.

253

254

Chapter 6 ¢ Instant Disk: How to P2V for Free

With phdcat: phdcat /dev/sda | /tmp/ncftpput —u phdbot —p
“p2v” —c 10.10.10.1
/vimfs/LOCAL/newdisk.vindk

If it 1s working, you won't see anything until it is done, but you can go
check out your /vimfs/LOCAL on the ESX host and watch the
newdisk.vimdk grow bigger.

If you are using phdcat, then you are getting a speed and total amount of
data copied.You will see total megabytes copied and average megabytes per
second. If you are on a 100MB network, the max wire speed will be 11MB a
second. If you are on gigabit, you can see speeds much higher, getting 25MB
to 35MB a second.

By pushing hard drive images to your ESX host, you can really test out
your network performance. If you are getting 1MB/sec or less, then you are
running at 10mb or running half duplex on 100mb. Or youre copying data
from a really old server.

This speed is dependent on the physical source hard drive speed and your
network speed. We say this is the fastest method for copying images because it
reads the hard drive sequentially, block by block, as fast as it can go.

When using other P2V methods by other vendors to copy the data, they
claim they are faster because they only copy the data and not the empty
space. But this is not totally true. These other methods open the file system
on the physical source server and proceed to copy all the files, one by one.
For each and every file on your source server, the hard drive needs to seek
and read each file. This can be incredibly slow when you have thousands of
files.

If you are getting 10MB/sec (not bits), which means you are copying
10MB of real data each second, that is 30+ gigabytes an hour.You can run
multiple Instant Disk conversions at the same time and you can really flex
your network. But if you are going to do multiple conversions, only write to
one VMES file system at a time. If you have two conversions going to the
same VMES, it will be slower and it will fragment the virtual disk files on the
VMES as the new virtual VMDK files are being created.

After the FTP process is completed, you need to make a new virtual
machine using the newly created virtual disk file as a preexisting disk.

Instant Disk: How to P2V for Free * Chapter 6

Master Craftsman...

Instead of Using FTP

Besides using FTP to push the source hard drive image to the ESX host,
you can copy the hard drives to another local drive or to a local USB drive.

Why would you do this? Suppose you have a remote location, you
can have them attach an external USB drive and walk them through
copying the hard drives to the USB drive. Then they mail you the USB
drive, and you FTP the images to the ESX host server using Instant Disk.

If you're going to use a USB drive, then you have to use a Linux
Rescue image that uses the 2.6 kernel, like the Fedora Core 4 rescue
image. If not, by using regular USB, the speed is too slow, topping out at
1MB/sec if you're lucky. Using the FC4 rescue CD and a USB drive, you can
achieve speeds like 25MB/sec.

You can literally go onsite with a laptop and an external USB drive
and image lots of machines, and then come back to your data center and
fire up some virtual machines.

Creating a New Virtual Machine
and Pointing It to a New VMDK File

It’s time now to create the new virtual machine. Here, too, there are a few
items you need to make sure you have under control to insure a positive out-
come.

Windows VMs

If you are creating a Windows 2003+ machine that normally uses the [sibus-
logic SCSI driver, you must change it back to the buslogic in the configuration.
You can always add it back later after the Isi fuson (Isibuslogic) driver has been
loaded into the virtual server.

Remember to change the Network Adapter to the vimxnet instead of the
vlance when you create the virtual machine (unless it is a N'T4 virtual). Also,

255

256

Chapter 6 ¢ Instant Disk: How to P2V for Free

before you boot the virtual machine the first time, it’s best to put the newly
created virtual drive into UNDOABLE mode since it’s quicker to commit all
your changes than to re-FTP the physical hard drive again if something goes
wrong.

When booting Windows 2003+, it may appear to hang for a while. This is
normal for the first boot. If it really hangs, just power it off, and then back
on.

NoTEe

If you're using newer versions of Windows that require activation, they
will need to be reactivated after you bring them up as a virtual machine.
Be aware of your licensing and Microsoft product codes when starting.

After the virtual machine comes up, you should be able to log in and
install VMware Tools. As a prerequisite, the admin password is needed.

After you log in, Windows will continue to redetect hardware and make
changes. Keep hitting Yes or Continue. Afterwards, install VMware Tools and
you can start some cleanup.

You usually do not have to remove the old devices except for the old net-
work cards. It won’t matter if you leave them in, but when you assign the
same [P address to the new VMware NIC, it will warn you about it being the
same as a disabled NIC. Plus, by leaving the old hardware drivers installed,
you can always do a V2P (virtual to physical) conversion.

To remove unused hardware in Windows 2000, go to the Control Panel,
select Add/R emove Hardware, choose Remove, then Show Hidden, and
delete the old hardware.

In Windows 2003+, they changed it. However, even though it looks more
detailed, it’s actually quicker and easier. You’ll need to open a ecmd prompt.

Type set devimgr_show_nonpresent_devices=1.Then, type
devimmgmt.msc.

Now choose Show Hidden from the menu and you should see your
hidden hardware. Delete what you want. Since you already installed VMware

Instant Disk: How to P2V for Free * Chapter 6

Tools, you also will see a duplicate vmscsi.sys driver that’s not being used.
Delete it also.

Post-P2V

Finally, there are a few tasks you should deal with after completing the P2V

process. While not a complete list, these tasks might include the following:

Scandisk

Defrag

ZeroFill

Install the VMware Tools

Remove any legacy hardware drivers
Disable legacy services

NT hal.dll and kernels

Enable automatic updates on NT
Determine DSK per drive
Move/resize any partitions needed

Resize any drives/dsk

257

258 Chapter 6 ¢ Instant Disk: How to P2V for Free

Summary

Hopetully, you are now on the way to virtualizing your server farm after
completing this chapter. P2P is a vital and necessary component of your vir-
tualization infrastructure.

Chapter 7

Scripting Hot

Backups and

Recovery for
Virtual Machines

Topics in this chapter:

m Anatomy of a VM Backup
m Existing VM Backup Tools
= VMX Backups

= Backup and Restore Methodology

259

260

Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

Introduction

You probably picked up this book because you need to automate some func-
tions in your virtual infrastructure. Scripting is all about automating our
menial tasks. And no menial task begs for automation more than regular
backups. Fortunately, VMware provides a rich platform for effective backup
and restore solutions that can be controlled through scripts. In this chapter, we
will exploit the functionality provided by VMware ESX Server to perform
hot (that is, live, while VM is running) backups of our virtual machines. We’ll
show how to back up the data files and config files. In addition, we’ll veer a
bit out of the command line and into some consultative topics. We’ll discuss
the whys and hows of recovery planning for a virtual infrastructure. This will
help you decide how you should implement a solution using the scripts and
technologies presented in this chapter.

Anatomy of a VM Backup

Before getting into details, it is important to briefly discuss the fundamentals
of a VM backup. The feature of virtualization that enables disaster recovery
backup is encapsulation. In the VMware ESX world, this is the virtual hard
disk, or VMDK. A VMDXK file contains the entire contents of a hard disk, the
partitions, boot sector, files, everything. A VMDK takes the thousands of files
involved in a typical OS and bundles them all together in one VMDK file.
We have the ability to create a copy of a VMDK and use this as a complete
backup, then treat the backup as we would any file, choosing where to store
the file and for how long.

For the purposes of this chapter, we will assume that a VMDK stored on a
VMES volume is a type 2 file, and an exported VMDK is type 1.They are the
only file types supported by ESX 2.x. For review, a type 2 file is a preallo-
cated virtual disk, and type 1 is a growable virtual disk split into 2GB files.

Because the data inside a live VMDK file may be constantly changing,
simply making a copy of a VMDK file will result in corruption without some
additional technology. Now it is not practical for most organizations to power
off a virtual machine prior to backup. Instead a REDO log may be placed on
the VMDK file prior to making a copy. The VMDK is placed in append

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

mode, and all changes are written to an alternate file. The REDO log file has
the extension .REDO.

Let’s walk through a visual representation of the high-level backup process
referencing native tools shipped with ESX to perform the operation. Figure
7.1 1s a virtual machine in its simplest form. A VMX file references a single
VMDXK file on a VMES volume.

Figure 7.1 Normal State, Persistent Disk

vm vmx
scsi 0:1.name = vmfs:file.vmdk

vmfs-voll

The first step of the process is to create a REDO log on the VMDK. The
command vmware-cmd provides a quick and easy way to create a REDO log
(see Figure 7.2):

vimware-cmd /home/vmware/vm/vm.vmx addredo scsiO:1

Figure 7.2 REDO Is Applied to the VMDK

vm vmx ‘
scsi 0:1.name = vmfs:file.vmdk

file.vmdk file.vmdk.REDO

vmfs-voll

261

262

Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

vmware-cmd 1s 2 command-line tool that ships with ESX and is for man-
aging virtual machines. We are using one of many functions in this tool,
addredo. The only argument to this function is the SCSI address of the
VMDK in question. The command refers to the logical SCSI ID assigned to
the disk file of the virtual machine, found in the VMX file. Don’t confuse this
SCSI ID with the physical SCSI ID of your hard disks or SAN LUNs. A
number of ways exist to find the SCSI address, including Virtual Center,
MUI, or the VMX. This command shows all SCSI lines in the VMX; only
devices with the present flag set to TRUE are really there:

grep scsi /home/vmware/vm/vm.vmx

At this point, changes are being made to the REDO and the VMDK is
static. You may now safely make a copy of this file. To keep things simple, we
will export this VMDK to an ext3 filesystem (see Figure 7.3). Backup target
options are discussed in more detail later in the chapter. The syntax of this
command is a bit different than you might expect: vimkfstools —e <target>
<source>.The result is a file on the ext3 /vmimages volume in a type 3
format.

vmkfstools -e /vmimages/file.vmdk /vmfs/vmfs-voll/file.vmdk

Figure 7.3 VMDK Is Exported

vm vmx
scsi 0:1.name = vmfs:file.vmdk

file.vmdk file.vmdk.REDO

vmfs-voll

export

file.vmdk

/vmimages

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

After the export is complete, your next step is to put things back into a
normal operating state. This means applying all changes stored in the REDO
file back to the VMDK file (see Figure 7.4). Again, vmware-cmd 1s the simplest
tool to use.

vmware-cmd /home/vmware/vm/vm.vmx commit scsiO:1 0 1 1

Figure 7.4 REDO Is Committed

vm.vmx
scsi 0:1.name = vmfs:file.vmdk

REDO is applied
oD

O\

file.vmdk file.ymdk.REDO

vmfs-voll

The syntax of this command is

vmware-cmd <cfg> commit <disk_device name> <level> <freeze> <wait>

<level> only applies when you have more than one REDO. Actual usage
of this option is covered in the “Layered REDO Logs” section of this chapter.

<freeze> is ignored and a freeze 0 is used unless <level> is 1.

<wait> 0 returns when commit begins; 1 returns after the commit is
completed.

Limitations

[t is important to discuss some of the limitations of this type of backup. The
limitations include

m Crash Consistent State The most important thing to understand is
that once a REDO log is placed on the disk file, the disk file is now
in a crash consistent state. The guest operating system is not aware

263

264 Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

that this has happened. It is as reliable as pressing the power button
on the machine, or crash consistent.

m File-Level Recovery Challenges Another limitation of this type
of backup i1s the fact that doing a file-level restore can take a signifi-
cant amount of time. The entire disk file must be restored and
mounted somewhere before you can copy off the file in question.
This is a function better left to an agent running inside the guest that
is intended as a file-level recovery agent. File-level agents will also
help with indexing, versioning and searching. If you must pursue a
file-level restore without an agent, the VMware Diskmount utility is

your friend. It will save you a significant amount of time mounting
VMDXK files and looking for the file in question.

m Wall-Clock Time We are talking about a significant amount of data
here. Depending on the size of the environment, it may not be prac-
tical to copy entire VMDK files around on a regular basis. As your
environment grows, you may be looking at a lack of wall clock time
to accomplish your backups. Factors that will effect the time your
backup takes are the amount of data inside a VMDAK, the speed of
the disk subsystem, available resources in the service console, and the
type of transport used to move the backup data.

m Performance Considerations There are performance considera-
tions when running with a REDO log. The REDO file grows 16MB
at a time. Each file growth requires a SCSI reservation on the LUN.
Also, the REDO log needs to be committed after you have a copy of
the file. This will rewrite all changes back to the VMDK file. All of
this activity requires CPU from the ESX service console and
increases activity on the disk subsystem. Resources in the service
console are generally limited to 1 CPU, < 1GB RAM, 1 NIC, and 1
SCSI/RAID device. Considering that this represents a fairly under-
powered server, you will run into limitations when trying to do mul-
tiple concurrent backups. The available resources will likely limit you
to 2—4 concurrent backups before the service console becomes too
overloaded. Overloading the service console is very risky. If the ser-
vice console crashes, so does the ESX server and all the VMs running

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7 265

on it. Use caution, test, and fall on the side of conservatism when
planning how many backups to do at once.

m Frozen Disk Files While the REDO log is being applied to the
VMDK file, the disk is frozen, meaning I/O is halted. If the REDO
1s small, application of the REDO log is relatively quick. If you have
been running with a REDO for some time, this frozen state may
cause problems. The suggested way to approach this situation is to use
a second REDO log on the VMDAK, while the first is being applied.
The method for applying this strategy is covered next.

Layered REDO Logs

As mentioned, while the REDO log is being applied (committed), [/O to the
VMDK is frozen. If your REDO file is large enough, users and applications
will experience some problems due to the amount of time this takes. A
common technique used to mitigate the risk of the commit taking too long is
to use two REDO files. The freeze is only necessary while applying the last
REDO log. As we pick up the previous walk-though of a backup, we will
replace the final commit step with a slightly different process.

First, we add a second REDO log right after our export is completed. The
syntax to add this second REDO is exactly like the first (see Figure 7.5):

vinware-cmd /home/vmware/vm/vm.vmx addredo scsiO:1

Figure 7.5 Second REDO Created

vm vmx _
scsi 0:1.name = vmfs:file.vmdk

file.vmdk file.vymdk.REDO file.vmdk.REDO.REDO

vmfs-voll

266 Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

At this point, all transactions are written to the REDO.REDO file. We can
commit the first REDO log to the VMDK using the following command.

vmware-cmd /home/vmware/vm/vm.vmx commit scsiO:1 1 0 1
We give the commit command the following options:

m <level> = 1 This tells ESX to only commit one of the two REDO
logs.

B <freeze> = 0 We will not freeze I/O to the VMDXK while the
commit is running.

m <wait> = 1 Wait for the commit to complete before returning.

As seen in Figure 7.6, we are now in a familiar state with one REDO on
the VMDAK, except this one is hopefully smaller than the first.

Figure 7.6 First REDO Has Been Applied

vm vmx
scsi 0:1.name = vmfs:file.vmdk

file.vmdk file.vymdk .REDO.REDO

vmfs-voll
\ D

Finally, we will commit the remaining REDO file. Regardless of the
freeze option chosen, we are now going to freeze the VMDK.

vmware-cmd /home/vmware/vm/vm.vmx commit scsiO:1 0 0 1

When complete, this command will leave you as you started. One VMDK
and no REDO files (see Figure 7.7).

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7 267

Figure 7.7 Backup Is Complete; Back to the Normal Operating State

v vmx
sesi 0:1.name = vmfs:file.vmdk

file.vmdk file.vmdk.REDO

vmfs-voll

Master Craftsman...

Detecting the Current Mode for a VM Disk

Before you start adding and committing REDO log files to running virtual
machines, you need to know what state the current disk file is in. You
want to be sure a disk file is in Persistent mode before going to work on
starting a hot backup. We've included some code as part of this Master
Craftsman tip that you can use to determine the current mode of your
disk file.

#!/usr/bin/perl -w

#

This script is an example only

Usage: detectDiskMode.pl <vmxConfigFile> <scsiDisks>

#

Example: detectDiskMode.pl /home/vmware/vm/vm.vmx scsiO:1

use VMware: :VmPerl;
use VMware: :VmPerl: :ConnectParams;

use VMware: :VmPerl: :VM;

Continued

268 Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

use strict;

User variables

my ($cfg, $disk) = @ARGV;

Connect to the virtual machine
my Sparams = VMware: :VmPerl: :ConnectParams: :new() ;
my $vm = VMware::VmPerl::VM: :new/() ;

Svm->connect (S$Sparams, $cfg);

Retrieve the mode of the disk in question

my S$mode = S$vm->get config("S$disk.mode") ;

if ($mode ne "persistent") ({
print "Warning: Smode\n";
} else {
print "Smode\n";

} # End if not persistent

Svm->disconnect () ;

Hot VM Backup Sample Script

Using the preceding information, you could put together a quick shell script
to run a hot backup. Now, we can pull together all of the concepts shown
earlier, except we’ll use Perl as the scripting language this time. The following
script does exactly what was discussed previously, but processes all disk files
for the VM 1n order. This script has the following objectives:

m The only command-line option is to provide the path to the virtual
machine VMX file (required).

m Script will find all VMDK files attached to the virtual machine.

m Process each VMDK, one at a time.

SYNGRESS

syngress.com

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

m Apply a REDO log to the VMDK.
m Vmkfstools export on the VMDK.
= Apply a second REDO log.

m Commit the first REDO log.

m Commit the final REDO log.

This script shown in Code Listing 7.1 is an example only and should not
be used in a production environment. It lacks user feedback and error
checking/reporting.

Code Listing 7.1 Perl Script for Running a Hot Backup of a VM

#!/usr/bin/perl -w

This script is an example only

Usage: simpleBackup.pl <vmxPaths>

use VMware: :VmPerl;

use VMware: :VmPerl: :Server;

use VMware: :VmPerl: :ConnectParams;
use VMware: :VmPerl: :VM;

use strict;

User variables

my Starget="/vmimages";
my $cfg=$ARGV[0] ;

print "Scfg\n";

Set up a connection to a virtual machine
my S$params = VMware: :VmPerl::ConnectParams: :new() ;
my $vm = VMware::VmPerl::VM: :new() ;

$vm->connect ($Sparams, S$cfg);

No smooth way to return the number of scsi controllers
We will cycle through all possibilities checking if it is present
for (my $scsiController=0; $scsiController<=3; S$scsiController++) {

my S$presentScsiController = $vm->get config("scsi$scsiController.present") ;

If it is there, we will continue processing

269

270 Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

if ($presentScsiController eq "true") {

Again, cycle through all possible scsi IDs
for (my $scsiID=0; $scsiID<=15; $scsiID++) {

my S$presentScsiID = S$vm-
>get_config ("scsi$scsiController:$scsilID.present");

if (SpresentScsiID eq "true") {
Get the path to the vmdk

my $vmdk = $vm->get config("scsi$scsiController:$scsiID.name") ;

Svmdk format is now vmfsvol:vmdk

Let's break this up into 2 variables

my ($Svmfsvol, svmdkname) = split (':',svmdk) ;
my $vmdkPath = "/vmfs/$vmfsvol/$vmdkname" ;

Add the first redo

$vm->add_redo ("scsi$scsiController:$scsiID") ;

Do a backup
“/usr/sbin/vmkfstools -e /Starget/Svmdkname S$vmdkPath™;

Add a second redo

S$vm->add_redo ("scsi$scsiController:$scsiID") ;

Wait a second for the redo to be created

sleep (1) ;

First commit with same options as vmware-cmd

Svm->commit ("scsi$scsiController:$scsiID", 1, 0, 1);

Commit final redo
Svm->commit ("scsi$scsiController:$scsiID", 0, 0, 1);
End If SCSI ID is present
b
End for SCSI ID Cycle
Y
} # End If SCSI Controller is present
End for SCSI Controller Cycle
Y

Cleanup

$vm->disconnect () ;

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

Master Craftsman...

Answer VM Questions from a Script

After some events occur, VMware ESX Server won’t continue until you
answer a question. ESX requires your answer to the question before the
process can resume. For example, if you accidentally try to add a third
REDO log, a question is generated. This question has only one answer, OK.
Once you answer the question, the process resumes.

The problem here is that your scripts need to be able to answer these
questions as they come up. Otherwise, your script will pause indefinitely.
The following code can be used in your scripts to answer single option
questions. You could also easily modify the script to answer more difficult
questions.

#!/usr/bin/perl -w

#

This script is an example only

Usage: detectQuestion.pl <vmxConfigFiles>
#

use VMware: :VmPerl;

use VMware: :VmPerl: :ConnectParams;
use VMware: :VmPerl: :VM;

use VMware: :VmPerl: :Question;

use strict;

User variables

my (Scfg) = @ARGV;

Connect to the virtual machine
my S$params = VMware::VmPerl::ConnectParams: :new() ;
my Svm = VMware::VmPerl::VM: :new() ;

Svm->connect ($params, S$cfg);

Continued

271

272 Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

Check for a question. Will return undef if
no questions.

my S$question = $vm->get pending question() ;

If Squestion is defined, there is an outstanding question
if (defined $question) {
my Stext = S$question->get text () ;
my @choices = S$question->get choices() ;
if ($#choices == 0) {
There is only one choice, easy to answer it
$vm->answer question ($question,0) ;
print "Question answered: Stext\n";
} else {
print "More than one choice.\n";
print "Choices: @choices\n";
} # End if only one choice
} else {
print "No Questions\n";

} # Endif

Cleanup

$vm->disconnect () ;

Choosing the Target for VM Backups

At some point, when writing your backup script, you’ll need to decide where
your backups will go.You’ll also need to decide how to get them there. In
most cases, you’ll choose some type of mass storage device, like a file server, a
NAS device, or a SAN array as the target to store your backups. How you get
those backups to the chosen target can vary greatly. Considering that the
VMware ESX service console is running a modified version of Red Hat
Linux, there are a plethora of options available as to where you may target
your VM backups. Some protocols copy faster data than others. Some are
simpler to use in scripting. Some integrate better with your chosen storage

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

target. We’ll cover some of the available options and provide some recom-
mendations on when to use each.

In this section, we’ll address the transports available for backups and dis-
cuss where the data will be stored. We won'’t address specific storage types,
such as specific SAN arrays or NAS providers. We’ll talk about these in more
general terms. Since we’re more concerned here about the transport protocols
used to get your backups from ESX to your target storage.

Some of the more common and popular ways of moving backup data are
NES, CIFES, FTP, and copies to VMES. We'll define each of them here, and
then discuss the benefits of each in turn. Each of the following methods is
listed in our order of preference. Consider these options when deciding what
will be best for your scripting needs.

NFS

Network File System (NFES) is a common file sharing protocol used mainly in
UNIX and Linux environments. It could be considered the standard file
sharing protocol for * NIX systems. NFS works by exporting a file system
from one machine and making it available to the network. Other systems use
an NFS client to mount the exported file system at a mount point on their
local file system. The exported file system is then accessible from the mount
point as if it were part of the local file system.

NES is a fairly simple way to share, or export, a file system from one
machine and access it from another. Generally, we like NFS for facilitating all
file sharing from the ESX service console, especially for VM backups. NES is
fast, native to the service console, and simple to use in scripts.

Attributes of NFS for VM Backups

In this section, we’ll discuss the pros and cons of using NFS for VM backups.
Pros
The pros of using NFES for backups include:

m NFS doesn’t require authentication, so you don’t have to code in
usernames and passwords.

m NFS is very fast over Gigabit Ethernet networks.

273

274

Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

m NES is usually an available option on a NAS device.

m NFES exports mounts directly into the file system on mount points.
Very easy to copy data back and forth using native copy commands
like ¢p and vmkfstools.

Cons
The cons of using NFS for backups include:

m NFES does not have any native support in Windows. Requires
Services for UNIX. Not recommended.

m NEFS is not as secure as other options, due to lack of authentication
and data encryption.

CIFS

Common Internet File System (CIFS) is a standard implementation of the
SMB (Server Message Block) protocol largely developed by Microsoft. It is
essentially the base protocol that Windows uses to copy data between systems.
Windows file servers and many NAS devices use CIFS as the protocol to
authenticate and transfer data.

Linux uses an open-source implementation called SAMBA to interact
with CIFS servers. In order to copy data to a Windows share, you’ll need to
install the SAMBA client on your ESX service console. CIFES is second on
our list of transports because it is a more complicated implementation than
NFS. It needs authentication and sometimes requires a two-step process to
copy a VM.

Attributes of CIFS for VM Backups
Now we’ll discuss the pros and cons of using CIES for VM backups.

Pros
The pros of using CIES for VM backups include:

m CIFS is easy to integrate into a Windows sharing environment.

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

m CIFS 1s commonly the preferred, or only, protocol supported on an
NAS device.

m CIFS can be mounted, via SAMBA, to a local mount point.

Cons
The cons of using CIFS for VM backups include:

m CIFS is more difticult to configure in the service console.
m CIFS requires SAMBA installation and configuration.

m SAMBA has been less stable than NES in our experience.
m CIFS is not as fast as NFS over GigE.

m CIFS is a very chatty protocol, which decreases performance over
latent connections.

FTP

File Transport Protocol (FTP) is a very common protocol for copying data
over a network. It is a standards-based protocol that is supported on nearly
every modern computing platform. FTP is useful for copying backups to a
file server. It is natively supported on the ESX service console. It is pretty
easily scripted and has a substantial amount of reference resources available on
the Internet.

Attributes of FTP for VM Backups
In this section we’ll weigh the pros and cons of using FTP for VM backups.

Pros
The pros of using FTP for VM backups include:

m FTP servers are common and supported natively on most servers.

m FTP copies data quickly over a noncongested network.

275

276 Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

Cons
The cons of using FTP for VM backups include:

m FTP often requires a server platform as a target since many NAS
devices do not support it natively.

m FTP takes all available bandwidth it can for copying. It may step on
other network traffic.

m FTP does not have the capability to mount on the local file system.

m FTP generally requires authentication, but without certificates it
sends usernames and passwords in clear text.

m FTP passwords must be coded into your scripts. This is insecure and
will break the script if accounts and passwords change.

VMES

VMware File System (VMES) is the file system used for virtual machine disk
file storage in VMware ESX server. It is a distributed file system, which means
it can be accessed by multiple ESX servers at the same time and not corrupt
any data. VMES locks individual files rather than entire volumes. This means
many ESX servers can access files from the same VMES volumes without any
trouble.

The nature of VMFS makes it an attractive target for VM backups. A
VMES volume can be designated as a backup target and shared across all of
your ESX servers. This way, backups can be directed straight from the
source VMES to the target backup VMFES volume. Since the .vmdk file
format doesn’t need to change when moving from VMES to VMES, you
can copy the .vimmdk files directly. This simplifies the scripting required to
move data around.

Don’t be too easily lulled into using VMES as your backup target.
Generally, we prefer to use non-VMES targets for VM backups. VMES isn’t a
good file system for sharing files (for example, there is no support for directo-
ries), it only supports a maximum of 192 files, and it has SCSI reservation
issues when copying large amounts of data. You're better oft using one of the
methods discussed earlier for a permanent solution for backup targets.

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

Attributes of Copies to VMES for VM Backups

Now we’ll discuss the pros and cons of using copies to VMFS for VM
backups.

Pros

The pros of using copies to VMES for VM backups include

Cons

Sharing VMES volumes between ESX servers is easy.

Scripting syntax 1s fairly simple and doesn’t require additional mounts
or connection syntax as FTP or CIFS might.

VMES is often stored on SAN LUNs, which can help facilitate a
larger backup strategy. (For example, back up to VMES, then take a
snapshot and/or replicate the SAN LUN.)

The cons of using copies to VMES for VM backups include:

VMES doesn’t scale well in large environments. It’s not practical to
attach a VMES to more than 16 ESX servers.You can run into con-
tention issues and SCSI reservation problems when performing a
large number of simultaneous backups to a single VMES.

VMES was designed to host large VM disk files, not be a file server.

VMES has no support for a directory structure. Organizing backup
files in a sensible way is difficult.

There are limits to the number of files that can be stored in a VMFS
volume. Each VMES extent can hold 192 files. Most often you’ll only
have one extent, and are therefore limited to 192 total files in the
VMES. This 1s a big inhibitor for doing a large-scale backup solution
with a VMES target.

277

278 Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

Tip

Never use the co command when copying .vmdk files. Always use vmkfs-
tools. An undocumented, but useful switch for vmkfstools copies a
.vmdk in one command and is very fast. This method exports and
imports the VMFS in one step. The syntax is as follows:

vinkfstools -e /vmfs/vmfsname/target.vmdk -d vmfs /vmfs/vmfs-

name/source.vmdk

If you're going to use VMFS for backup storage, dedicate an LUN to
it. Don’t combine active VMs on the same VMFS that you're using for
backups. You could run into major performance problems due to the
large amount of SCSI reservations that can occur on the VMFS volume
during copies. These locks, if frequent enough, will be noticed by your
VMs and can cause undesirable results.

Existing VM Backup Tools

Now that you know the basics of a hot backup, we hope that you do not set
out to write your own backup application without checking out some
existing applications. There are many options, both free and commercial, that
cover the full spectrum of price and support. Before you sit down and rein-
vent the wheel, check out some of the wheels that have been created before.
We’ll go into detail about some affordable (free) options and provide guidance
on where to look for commercial solutions.

vmsnap.pl, vmsnap_all, and vmres.pl

VMware ESX 2.x ships with three scripts that work together to create a
backup system. vimsnap.pl will back up a single virtual machine, while
vmsnap_all.pl will call vmsnap.pl for all virtual machines on the host. vimres.pl is
the restore portion. The three tools are fully supported by VMware with no
additional charges other than the original ESX licensing.

vmsnap.pl has basically the same logic as the simple sample we went
through in the beginning of the chapter. It will manage the REDO log pro-
cess for you and copies VMDK files using a vmkfstools export. It will also back
up your VMX, nvram, and virtual machine log files. The script also handles

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

logging, local or remote. The output destination options include local
filesystem and ssh. VMware refers to the ssh destination as an archive server in
the documentation.

vmsnap_all.pl is essentially identical to vmsnap.pl in functionality, except
that it will back up all VMs on an ESX server.

This application has some downsides, however. It does not natively sup-
port keeping multiple versions, and will even overwrite files by default. If you
have a requirement to keep more than one version of a backup, you need to
apply additional scripting and sweep up the output files using a different
backup system on a regular basis. Also, vmsnap.pl is missing file compression
capabilities.

Tip

The three native scripts, vmsnap.pl, vmsnap_all, and vmres.pl, are a
good place to start for ideas to apply towards your own scripts. They
expose many ESX functions that are useful for other purposes.

vmbk.pl

We have to make mention of vmbk.pl in this text. Considering that this Perl
script is made freely available by Massimiliano Daneri, and it has a broad
range of fantastic features and functionality, we feel obliged to promote his
efforts and provide a link to his Web site. You can find the scripts and infor-
mation at www.vimts.net/.

Basically, vmbk.pl employs many of the functions we’ve described in this
chapter. It uses Perl as the scripting engine (our personal favorite). Its main
function is to perform hot VM backups. It adds .REDO logs to running VMs
and exports the .vidk files using vmkfstools. It grabs the VM config files,
.VMX and CMOS files, then facilitates the transfer of the backup files via
NES, CIFES, FTP, or through Veritas NetBackup to a backup target—for
example, NAS, SAN, or tape. At that point, it commits the .REDO log files
back to the running VM.

279

280 Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

vmbk.pl is a good option to consider as a script, given that you can
immediately start using it for backups. It also provides a great place to start if
you're looking to incorporate some of these features we’ve discussed into
scripts of your own.

Commercial Options

Many commercial options are available that perform VM backups in various
ways. Thus, the following reasons should be considered when deciding
whether to use a commercial product versus writing your own scripts:

® You don’t have to write your own application. This can save a
tremendous amount of time and/or money.

m They carry support contracts. If things break, you have a professional
to call. It also helps you keep your job if you have a real disaster.

m The vendors are generally continuing to add features and functions
that will make your life easier.

m Scripted solutions generally require significant knowledge of the
Linux shell. If your staft is not comfortable here, a Windows GUI
option, provided commercially, will make life easier for your admins.

If you're interested in looking at a few options, consider some that we have
worked with and feel have good approaches and appropriate pricing models:

®m Vizioncore esxRanger
www.vizioncore.com/esxrangerPro.html

m esXpress

WWWw.esxpress.com/

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7 281

Swiss Army Knife...

Using Backup Technologies for Other Purposes

In the new world of virtualization, users are continuing to come up with
unique uses for the technology. One idea discovered in the field is using
backup technologies as version control tools for the support and devel-
opment of software products. This is a rather simple but useful technique
for the software development community.

The idea is that as your software goes through its various versions,
an archive backup is written to a file system and stored with the version
number referenced in the description. This can be simply one VM, or a
complicated multitier environment. When a customer calls looking for
help with an old version of your software, you can restore the complete
environment to an alternate virtual infrastructure. Use this duplicate ver-
sion to facilitate re-creating and solving the problem. In the physical
world, this would be a large and possibly expensive task due to the
amount of hardware required. In the virtual world, you can do this
entirely from your desk or couch with a minimal amount of hardware.

VMX File Backups

Thus far, our focus for backup has been on VMDK files. While VMDXK files
are critical because they contain your actual data, VMX files are also impor-
tant. They tend to sit on the local disk of an ESX host, and a copy of the
configuration is not located in the VirtualCenter database. Oftentimes, the
local copy of the VMX file is your only record of the configuration of each
virtual machine. It would be a disaster to lose the local disk and need to
figure out each virtual machine’s configuration when the heat is on.

282 Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

Tip

Maintain an inventory of your virtual machines outside of ESX or
VirtualCenter. We recommend creating a spreadsheet that has the con-
figuration details for all of your virtual machines. Include every option
listed in the VM configuration. With the VMX files stored on the local
file system of ESX server, this document will prove invaluable in a dis-
aster.

Things you should document:

m The virtual machine name

Which ESX host it resides on

The path to the config files

The number of CPUs

The amount of RAM

Each virtual disk, its SCSI ID, and its path to the VMDK file
The virtual disk mode settings—for example, Persistent versus
Undoable, and so on

Any other peripherals and their config information

The startup order in relation to other VMs on the ESX host
The performance policy settings—for instance, the CPU and
RAM shares and Min/Max settings

Many of the products listed in the existing VM backup tools section of
this chapter cover VMX backups, but you may be looking outside of the
existing tools for your VMX backups. An option would be to install a local
backup agent in the service console and configure it to back up the /home
directory on a regular basis. If you don’t want to shell out for the agent costs
just to back up a couple MB of data, then you can easily put together a script
to copy the VMX files once a day.

The script shown in Code Listing 7.2 is an example of how to copy
VMX files using Perl. This is intended to be a starting point. By default, it will
copy to a locally mounted directory on the ESX host. Also included is an
example line to copy to another host via SSH.

The script does not do many things that you may wish to cover.You
could add /etc/vmware/ to store your ESX configuration files. You could add
/var/log to cover the log files in case of system crash or security incident.

SYNGRESS

syngress.com

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7 283

Also, you may want some versioning on the files to store older VMX files to
find out what has changed.

Code Listing 7.2 Perl Script for Copying VMX Files

#!/usr/bin/perl -w
#
This script is an example only

Usage: vmxBackup.pl

use VMware: :VmPerl;

use VMware: :VmPerl: :Server;

use VMware: :VmPerl: :ConnectParams;
use VMware: :VmPerl: :VM;

use strict;

User variables

my Starget="/vmimages/vmxBackup";

Setup a connection to the local ESX host
my S$params = VMware::VmPerl::ConnectParams: :new() ;
my Shost = VMware::VmPerl::Server::new() ;

Shost->connect ($params) ;

List of registered virtual machines

my @vmlist = $host->registered vm names() ;

foreach my $vm (@vmlist) {
Get the displayName of the wvm
We will use the displayName to title the backup output file
my $vmo = VMware::VmPerl::VM: :new() ;
$vmo->connect ($params, S$vm) ;

my $displayName = $vmo->get config("displayName") ;

Finally, you may have some problems with special characters
I recommend removing them to prevent hassles.
This line will remove (and) and spaces.

$displayName =~ s/[\() 1//9;

284 Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

This will tell us what directory the vmx is in.

my @path = split("/",$vm) ;

my S$dir;

my $Scnt=0;

until ($cnt == $#path) { $dir = $dir . "$path[Scnt]/"; Scnt++; }

Here is the actual backup command

my $cmd = “tar cvzpf \"Starget/SdisplayName.tgz\" \"s$dir\"~;

To go remote via ssh, use this command instead
Remember to set up ssh key auth first

#my $cmd = “tar cvzpf - \"$dir\" | ssh user\@host \"dd
of=\"Starget/$displayName.tgz\"\" " ;

Cleanup
$vmo->disconnect () ;

} # End foreach vm

Cleanup

Shost->disconnect () ;

This script will copy all registered VMX files to the location specified. It
will cover all files in the directory with the VMX, such as nvram and log files.
Be aware, in its current form, the files will be overwritten each time the script
1s run. The output is tar gzip format with the filename of the configured dis-
play name .tgz.

Swiss Army Knife...

Scripting the Synchronization
of VMX Files to Another ESX Host

You may have a need to store VMX files on another ESX host, preregis-
tered. This may be due to a couple of reasons. First, you are replicating
the SAN-based VMFS volumes and have warm servers waiting to be used
at the DR site. Second, you have a need to recover a failed ESX host very
fast—fast enough to warrant the additional complication of managing a

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

sync process. The preceding sample VMX backup script could be slightly
modified to cover this situation. Only a couple of simple changes need be
made.

1. The tar statement must use SSH, and needs to explode the tar-
ball on the remote side. An example is shown next. Note the
capital P options on both sides. This will preserve file paths.
my Scmd = “tar cvzPpf - \"$dir\" | ssh user\@host \"tar
zxPf -"\"";

2. Following the tar command, the VMX needs to be registered.
We recommend using vmware-cmd to accomplish this.

Incorporating Hot VM
Backups into Your Recovery Plan

Up to this point, we have discussed the essential knowledge needed to per-
form backups and restores with scripts. We also covered a few very useful
scripts packaged into applications, some free and some commercial. Where do
you go from here? Well, you’ve now got to assimilate all this technical infor-
mation and merge it into your backup/restore/disaster recovery strategy. This
section 1s where the rubber meets the road. We're going to dive into why and
how you would use hot VM backups as part of your total recovery strategy.

Before we dig in, let’s pause and face reality for a moment. Have you ever
had an end user give you a high-five after a standard nightly backup job? I
didn’t think so. No one really cares about backups. No one was ever consid-
ered a hero after their backups successfully completed. What does matter,
what people love, and what will get you much praise and many free lunches
are successful restores. When you restore the sales forecast spreadsheet an end
user lost after a week of work, you become the instant hero. Backups are
important, restores are critical. The time it takes to restore data matters. The
data integrity of restores matters. The amount of data your business can afford
to lose and keep on running matters.

With the perspective that restores are what matters most, let’s discuss how
to incorporate hot VM backups (and restores) into your recovery strategy.

285

286

Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

When talking about a backup strategy and disaster recovery, it’s critically
important to start with the end result in mind. You should know now what
you need to have happen after a disaster occurs. Without getting into a full out
discussion of DR planning topics, let’s cover a few basic DR planning topics.

Some key information you need to know about every application or set
of data in your environment is its RTO and RPO. Let’s define these
acronyms.

. RTO (Recovery Time Objective) This is the amount of time that
may elapse after a disaster until the application or data needs to be
operational. In other words, the RTO is your deadline for recovery.

s RPO (Recovery Point Objective) This is the largest amount of
time that may exist between the present and the last recoverable
point in time for the application or data. In other words, the RPO 1is
how much data, measured in time, you can afford to lose.

Before you can determine your backup strategy, you should go through
and inventory your systems, group them into applications and data sets, and
then determine the RTO and RPO for each one. Done correctly, this process
1sn’t really completed by the IT staft. It’s a process that is highly dependent on
the opinion of those that run your business. If the business says that the CRM
database has an RTO of 12 hours and an RPO of five minutes, then your job
is now defined. At this point, you can apply strategy and tools to accomplish
those objectives. Without those guidelines, it’s impossible to create a recovery
strategy that 1s valid to your business.

Often, as you take the guidelines from your business and translate that into
tools, human resources, and ultimately expenses, you may get a different
answer regarding what the RTOs and RPOs are. Money talks, loud. A few
rules of thumb when it comes to determining how redundant to make your
systems based on recovery requirements:

m The lower the recovery requirements (RTO and RPO times), the
more expensive and difticult the solution to achieve them will be.
Zero downtime and zero data loss, for example, generally require
completely redundant systems with expensive replication software
and high availability clustering. Whereas a slightly less resilient system

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

can be implemented that is good enough with much less investment
and generally highly satisfactory results.

®m The more complicated your redundancy systems are, the more prone
you are to failures. We’ve often seen “highly available” systems end up
with more downtime than less redundant systems. In most cases, it
happens because the system became so complex in an effort to be
redundant that the human factor mismanaged it.

m The K.I.S.S. factor most often works better than over engineering.
K.I.S.S. = Keep It Simple Stupid. A simple system, compared to a
complex system with many moving parts, generally has less chance of
tailing. Simply put, fewer components equates to fewer failures.

Once you and the business come to agreement on what needs to be pro-
tected, you’ll get the opportunity to dig through the myriad tools and tech-
niques to determine the best way to get it done.You’ll then be armed with
the data you need to determine what tools, scripts, agents, applications,
libraries, arrays, replication, and so on to use for backup and recovery:.

Now, the scope of this work is not to teach you how to do disaster
recovery planning. However, we thought it very important to frame the con-
cepts of hot VM backups within the discussion about disaster recovery plan-
ning. There seem to be misconceptions in the community about what hot
VM backups can do. Often, they are given more credit than they deserve.
Rarely have we found an enterprise implementation of VMware that can be
tully protected by a standalone hot VM backup tool. Now that you’ve been
through this chapter and understand what hot VM backups can do, you can
start to figure out where it fits in your plan.

Let’s simply state the functionality of hot VM backups by listing what they
can and cannot do in the two lists shown in Table 7.1. In this table, the plus
column stands for functions that hot backups can do; the minus column
stands for functions they cannot do.

287

288

Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

Table 7.1 Capabilities of Hot Virtual Machine Backups

Plus Minus

Perform zero downtime backups Perform file level backups and restore
of VMs without a performance hit

Capture the entire state of the VM, Create detailed catalogs of backed-up

including boot, sector, OS, and files.

applications.

Back up virtual machines Close files and databases before taking a

without guest OS agents. backup. State of backed-up VM is crash
consistent.

Be written to disk, tape, or
network shares.

Crash Consistent State

Let’s define crash consistent and explain why it matters to you. Have you ever
pulled the power from a server while the OS is running? How about hold the
power button down for 15 seconds or so? Or, have you ever pulled the fiber
cable from a server that boots from SAN? The state that your server is in after
it reboots 1s a crash consistent state. Crash consistent state usually follows an
abrupt and immediate power off or freeze of the operating system.The OS
and applications were not made aware of the shutdown, so consequently they
didn’t do any of the things they normally do before powering oft. Some of
these activities are quite important, such as committing transactions to a
database and closing files, writing uncommitted data from memory to files,
committing outstanding I/Os to disk, and other items of this sort. When the
server comes back up, it has to deal with the sometimes unpleasant and often
very messy situation of cleaning up after the crash.

The good news is that most operating systems and applications are aware
that crashes occur once in a while. They have mechanisms built into them to
recover from this type of disaster. Databases write uncommitted data to trans-
action logs before it is written to the database. File systems have journaling
features that log any changes to a temporary journal before committing them
to the main file system. These transaction logs and journals are used to replay
data that wasn’t committed before the crash back into the main data set.

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

Keep in mind, however, that crash consistent means that there is a chance
that you may have corrupted data, broken file systems, uncommitted transac-
tions, or untold other failures after a crash. We need to throw this warning
out there even though in the vast majority of instances with standard applica-
tions there are no problems coming out of crash consistent states.

When you perform a hot backup of a virtual machine, you are essentially
freezing the disk and taking a snapshot of it. At the exact moment you add a
REDO log to a .vindk file, the state of the data is frozen, whether or not
files are open or closed and databases are running or quiesced. The good news
1s that VMware takes care to commit any transactions that are in flight to the
.vmdk file when the .REDO log is added. In 99+ percent of the cases, you’ll
have no problem recovering the data in the .vmdk file.

WARNING

We said 99+ percent of the time you'll be able to recover the data in the
.vmdk file. That doesn’t mean it will meet your usability expectations. If
you have an application that doesn’t like to be frozen in the middle of a
transaction, then you may have a situation where your data is recovered,
but useless. The disclaimer is this: test test test this functionality out
before you rely on it as part of your disaster recovery plan. That should
go without saying, but we’ve been consulting long enough to know that
there isn't much that we leave unsaid and unchecked.

Replication

If you can’t afford to lose any data, then hot VM backups are not for you.
Neither are file-level backups.You just graduated to an advanced level of
backups, called replication. Data replication can be performed at the file
system level or at the storage array level. High-end solutions require a lot of
bandwidth and can provide synchronous replications of all data. Synchronous
replication ensures no data is lost. For situations with less bandwidth, asyn-
chronous solutions queue up replications and trickle them over connections
at set times. These can be five minutes behind or 24 hours behind. It’s
adjustable based on your configuration.

289

290

Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

Real-time replication is currently the best solution for zero data loss envi-
ronments. It’s the only way to guarantee that you don’t lose a single transac-
tion during a disaster. Replication is reliable and it works, but it comes with a
price. Replication solutions are generally many times more expensive than
traditional backup methods. However, if you need it, you need it, and you’ll
be willing to pay for it. If not, then it’s time to compromise.

Hot VM Backups as Part of the Recovery Plan

Now, you've taken the earlier advice and considered where this type of
backup/restore procedure will fit into your disaster recovery plan.You’ve con-
sidered which of your applications recover well from crash consistent states
and which absolutely do not.You've decided that you’ll enable journaling on
your ext3 and reiser file systems and you’ll use transaction logs with your
Exchange and SQL servers. Good. Now let’s discuss a common approach for
using hot VM backups in your plan.

To begin with, it’s important to understand that one of the major limita-
tions of a hot VM backup is it has absolutely no knowledge of the files inside
the .vidk file. If you need to recover that sales forecast spreadsheet that is
backed up inside a .vmdk file, youre going to have to find it yourself. There is
no catalog of files contained inside the guest OS file system that you can refer
to. To achieve file-level restores, you’ll need to use a file-level backup tool in
addition to your hot VM backup tool.

Let’s walk through the steps to determine the correct recovery strategy for
your applications and data sets. The five-step process shown in Figure 7.8 will
help you establish the correct policy for each application.

Step Ome:Take an Inventory of Your Virtual Machines

You can’t plan for recovery unless you know what you have. A wise
Electronic Janitor once told me, the majority of IT is inventory. To begin,
create a simple spreadsheet that contains a detailed inventory of your virtual
machines and the applications running within them.You’ll need to record at
least:

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

Figure 7.8 Process to Determine Backup Strategy

Take Inventory
of VMs
Determine Recovery Determine Recovery
o Appl t Back
Point Obiective for »| Time Objective > ppTy c::;e:qeeg: up
Each VM for Each VM »
h 4
Document Your
Results

7 N

m The operating system
m Which applications run on each OS

m The location where data is stored

Especially note if some data for your VM is not stored in VMES volumes.
This data will need to be addressed individually.

Now that you’ve begun this document, you’ll be able to use it as a foun-
dation for building out the rest of the recovery plan. Expand the spreadsheet
during the next few steps to include RTO and RPO requirements for each

virtual machine.

Step Tivo: Determine the Recovery Point Objective for Each VM

The recovery point will tell you how often you need to perform a backup of
your VM. Answer the following question for each VM:

How much data can I afford to lose?

Once you know how much data you can afford to lose, you can decide
the frequency of your backup jobs. If you can afford to lose seven days work,
then only back up once a week. If you can afford to lose up to 24 hours of
work, then a daily backup is perfect.

291

292

Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

Step Three: Determine the Recovery Time Objective for Each VM

Earlier, we discussed planning for recovery first. At this step, think about the
type of recovery that will be required for this application or data set.

Answer the following question for each VM:

How fast does it have to be recovered after a disaster? (RTO)

The time required to recover a VM is often overlooked when applying a
blanket backup strategy to systems. If you only have a tape backup of an
application, the recovery time will include the process of installing a new
operating system, setting up a backup agent, and restoring the application data
from tape. This process at a minimum will be several hours. If your RTO is
less than those several hours, rethink your tool selection.

Hot VM backups take about as much time to restore as they do to back
up. If youre using compression on the backups, then the recovery time will
go faster. The compression calculations are not as intense on a recovery as
they are on a backup.

Step Four: Apply the Right Backup Job to the Need

Once you have the business requirement for how fast you need to recover,
and how much data you can afford to lose, you can use this information to
decide on the right backup tool. The tool must back up frequently enough to
meet the RPO and be able to provide recovery quick enough to meet the
RTO.

At this point, you have gathered enough information to decide which
type of backup tool will meet your recovery requirements.

Table 7.2 shows a general comparison between the different
backup/recovery tools we’ve discussed in this chapter.You can use this as a
starting point to help decide which tool fits your recovery requirements best,
and, ultimately, to determine whether hot VM backups are for you.

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

Table 7.2 A Comparison of Backup Tools

Backup Type Min RTO* Min RPO~** Cost Complexity
VM hot backup < one hour 24 hours Low Low

Tape backup agent 1-24 hours 24 hours Medium Medium
Storage replication < five minutes Real time High High

* Minimum Recovery Time Objective is an estimate based on experience of
the time required to recover typical data using the specified tool. Your
situation may vary greatly depending largely on the amount of data to be
backed up and recovered.

** Minimum RPO depends on the frequency of backups. For example, daily
backups provide a < 24-hour RPO, while weekly backups provide a < seven-
day RPO.

Decide here whether a crash consistent copy of the VM will meet your
requirements, or whether you need file-level protection and restore capability
as well. Your application may require a special agent to perform a proper
backup and restore—examples are open file agents, exchange agents, and SQL
database agents.

If crash consistent is good enough and the recovery time is acceptable,
then a hot VM backup is perfect for you. If you need file-level recovery, then
you need file-level backups as well. If your requirements say that you need
zero downtime, and your budget supports the need, explore highly available
solutions with storage replication.

At this point, you need to prioritize which VMs (applications) are more
important than others. The importance of the VM determines its priority in a
recovery. You probably can’t do all your restores at the same time, and you're
more likely to perform recoveries in a serial manner. So, decide which VMs
are the most important and categorize them as your top-tier systems. These
will be the systems that get restored first after a disaster. Other VMs will be
categorized as a lower tier, and will therefore be recovered after the top-tier
VMs. Make sure to set expectations with your end users that top-tier systems
will be restored first. To change the priority will either cost more money or
require a reprioritization of the order in which systems will be recovered.

293

294

Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

Step Five: Document Your Results

It is critical to document your plan. Although there seems to be a general
aversion to documentation in the I'T community, it is nevertheless of utmost
importance. If your plan is not documented, you will have a difficult time
explaining it to others. If the plan is not documented, you may find yourself
in trouble during a disaster. For that matter, make sure your documented plan
is stored outside of the system it is protecting. If the plan is stored on the file
server, and the file server goes down, you won’t have much luck reviewing
the plan. Keep a digital and printed copy of the plan at all times. Copies of
the plan should be kept in multiple locations in the event a location is inac-
cessible as part of the disaster.

Hybrid Backup Strategy

For systems that have file-level restore needs, the hybrid approach generally is
best. The hybrid backup strategy combines the best attributes of the hot VM
backup with the best attributes of the file-level backup. The advantage of the
hot VM backup is that the restore is fairly quick and requires little user inter-
vention. Once the server is restored, the last file-level backup can be applied
to bring the data back to as current as possible. This approach eliminates the
need to reinstall an operating system and tape backup agent. Helping you
avoid having to search for OS CD-ROMs, drivers, and agent install disks
during a disaster. These are small issues that can waste precious minutes and
hours during a disaster.

Let’s review a common hybrid backup strategy.

Backup method:

m Take a hot VM backup regularly, such as once per week.
Take a file-level backup using an agent in the guest OS every day.

Restore method:
To recover the entire server:

1. Perform a restore of the entire VM from the last hot VM backup.

2. Apply the latest file-level restore to that VM.

Scripting Hot Backups and Recovery for Virtual Machines ¢ Chapter 7

The advantage here is that you can recover the entire VM very quickly
using the hot VM backup, and then bring its files up-to-date with the last
file-level restore. This will bring your server up to a state where the OS is
fully configured, the backup agent is already loaded and working, and data is
current to the last hot backup. This entire effort is achieved with a minimal
amount of human intervention. All that is left at this point is restoring data
from the last incremental backup.You didn’t have to build an OS from
scratch, load the backup agent, and then perform a full system restore. You
saved yourself hours of work, eliminated countless opportunities for human
error, and in the end recovered your data much faster.

Table 7.3 shows an example of what a hybrid backup schedule may look
like. It combines the file-level backup agent with hot VM backups, called Full
VM Server images. To sum up the following schedule, a full image of the VM
is captured once a week with the hot VM backup script—in this case,
esxRanger. Then a daily file-level backup is taken using the CommVault
agent. (CommVault is a backup software ISV.) Once a week, the repository of
VM images is also copied to tape. The retention times listed here are subject
to change based on your specific requirements. The times shown in Table 7.3
are merely examples to get you started on your plan.

Table 7.3 Example Backup Schedule

Backup Type Tool Media Schedule Retention

File-level backup Example, Tape Daily One month
CommVault (CommVault
Media Server)

Full VM server Example, Hot Disk (Linux Weekly One week
image VM backup NFS export on

script SAN LUN)
Tape backup of Example, Tape Weekly Two months
full server CommVault (CommVault
image files Media Server)

This backup schedule is also represented in Figure 7.9.

295

296 Chapter 7 ¢« Scripting Hot Backups and Recovery for Virtual Machines

Figure 7.9 Virtual Machine Backup Process

Virtual machine full image backup
! ::!
- Backup script Server to run
]) REDO I.Og udded Service X d Hot VM Buckup
to disk file lssved __ _ - - Seript
2) Disk file copied --"
3) REDO Log
committed
Original .VMDK is
exported,
compressed, and — Ethernet
copied to NFS target
Weekly tape backup Backup
Backup ~ media server
agent
Linux Fiber
NFS Server
Tape library
Summary

If you’ve mastered the topics in this section, you are well on your way to a
complete backup solution for your VMware virtual infrastructure. You should
be able to confidently script hot backups of your virtual machines and their
related config files. You are now armed with information about alternative
commercial solutions, and have the knowledge to apply what you’ve learned

to your overall recovery strategy.

Chapter 8

Other Cool

Tools and Tricks

Topics in this chapter:
m Configuring PowerChute Network
Shutdown in ESX

m Centralized User Management for ESX
Server

s Extending a Cloned (Deployed) Windows
VM’s Root Partition

297

298

Chapter 8 * Other Cool Tools and Tricks

Introduction

In this chapter, I'll explain how to do a couple of cool things to VMware
ESX Server to make your life as an administrator easier. First, I'll show you
how to install APC PowerChute Network Shutdown, also known as PCINS,
on VMware ESX Server.

Servers nowadays come with more than one power supply. In some
remote offices where I once installed VMware ESX, there was a separate UPS
for each power supply—and yet there’s only one way for VMware ESX
Server to be controlled by one UPS.

Centralized user management for VMware ESX Server has always been a
big thing for me. This was even more so before VirtualCenter came into play.
I'll later share with you a script that lets you query a directory for members
of a given group, and from that you can add the users, assign permissions to
the users, and do just about anything else a little creative thought might
engender.

Configuring PowerChute
Network Shutdown in ESX

Basically, because the ESX service console has no GUI, and because
PowerChute has a Java GUI Installer, the only way to install APC
PowerChute Network Shutdown for Linux is to use a helper Red Hat Linux
virtual machine to install PCNS into, then tar up the resulting binaries and
transport them into ESX.

This solution has been tested on ESX 2.5.0,2.5.1,2.5.2,2.5.3, 3.0.0, and
3.0.1 and is theoretically okay on all ESX 2.x versions. I worked with Kim
Wisniewski (aka, kimono) from the VMware Community forums and came
up with the following method to accomplish this.

Creating the PowerChute Package

1. Create a Red Hat Linux 7.3 virtual machine, or use an existing Red
Hat workstation if you have access to one. (Red Hat Linux 9.0 and
Red Hat Enterprise Linux 3 were tested and worked okay, also.)

Other Cool Tools and Tricks * Chapter 8

2. Download APC PowerChute Network Shutdown 2.2.1 and place it
in your root directory. You can download this file from
www.apc.com—the filename to look for is pecns221lnx.bin. This
document cannot link directly to the file since registration is required
to download.

3. Install PCNS 2.2.1 into the VM by entering ./pcns221lnx.bin from
a terminal window (see Figure 8.1).

Figure 8.1 PowerChute Install

{# Console: REDHAT1
Fle Edi v

e213587c @ redhatconsolez:~
| Eile Edit View Teminal Go Help
35 [roct@redhat-consolez root]# cd /usr/local/bin
[roct@redhat-consolez bin]# 1ls
jvm PowerChute
[rooct@redhat-consolez bin]# cd PowerChute/
Bl |[rocteredhat-consolez PowerChutel# ls
bin install.htm mll.cfg powerchute.sh silentInstall.ini
comp JExpress META-INF psaggregator.mll uninstall
comps.mll lib pens.pid relnotes.htm
[EventLog mll.bak PowerChute shutdownerlets.mll
[roct@redhat-consolez PowerChute]# ./ /uninstall
Killing PowerChute Network Shutdown. PID= 1351
Done.
[roct@redhat-consolez PowerChute]# cd /root
[roct@redhat-consolez root]# 1s
anaconda-ks.cfg install.log minicom.log pwrchute
identitydb.obj install.log.syslog pcns221lnx.bin pwrchute.
[roct@redhat-consolez root]# ./pcns221lnx.bin
Preparing wizard...
searching for JvM...
Starting the wizard...
[root@redhat-consolez root]# ls
anaconda-ks.cfg install.log minicom.log pwrchute
identitydb.obj install.log.syslog pcns22llnx.bin pwrchute.
[roct@redhat-consolez root]# ./pcns221lnx.bin

Sun Oct 02 2
02:49

4. For the installation, use the default installation location
/usr/local/bin/PowerChute and Install to Single UPS Device.

5. For the management card IP, enter the IP address of the UPS that the
target ESX server will eventually be installing PCNS onto. It does
not matter if the Management Card is not contactable due to firewall

299

300 Chapter 8 * Other Cool Tools and Tricks

restrictions. It is only important to enter these details so the configu-
ration file for the PCNS (a file called /usr/local/bin/PowerChute/
m11.cfg) file is correct. Figure 8.2 shows a screenshot of the installer
finishing the PowerChute registration process.

Figure 8.2 PowerChute Registration

bl Inatallar

D O T

PowerChute
Metwork Shutdown

for Linux

Ty 1 T
B afniding 10 Miknddeerdnt Cardin
g PRQETRDN 10 M anagement Candi{s)
wrifying fomumanic afon Wil M anaoemant Carois)
| Warifen communication wah
Regisiration Rejuss
ComTnicE Bg Pt iUy
ICHc haan b contine
|
1

a8 =

6. Tar up the installation from your helper virtual machine using the
following command from a terminal window on your helper VM.

tar -pzvecf /root/pwrchute.tar.gz /usr/local/bin/jvm/usr/local/bin/PowerChute

7. Copy the tar ball either directly to your target ESX host or to your
software repository location.

scp root@helpermachine:/pwrchute.tar.gz c:\pwrchute.tar.gz

Other Cool Tools and Tricks * Chapter 8

NoTE

Some of the SCP commands in this document presume you already have
downloaded and installed an SCP utility like Putty or OpenSSH in a
Cygwin environment. There are several free and commercially available
SSH clients available on the Web to perform SCP operations. In my
example, I'm using Putty. By using Putty, the executable for the program
is “PSCP.EXE” in Windows, which you can rename to SCP.EXE and put in
your system path! This is a very handy thing to do for your Windows
workstation when working with ESX and other UNIX systems.

8. Also it is wise to copy the /usr/local/bin/PowerChute/m11.cfg
file from your helper VM and store it somewhere convenient as this
(binary and unreadable) file contains the IP address of the UPS. This
way you only need to install PCNS into your helper VM once per
target UPS, then it 1s trivial to replace m11.cfg file on each ESX host
to connect to the right UPS.You can maintain a repository of
m11.ctg’s for each UPS you connect to. If you only have one, or if
you have a central management card in an enterprise-class UPS (such
as the APC Symmetra), then you do not need to do this. For
example, to copy the m11.cfg somewhere on your Windows host, use
the following:

scp root@<IP OF YOUR HELPER VMs>:/usr/local/bin/PowerChute/mll.cfg c:\mll.cfg
To install the TAR package onto your ESX host, perform the following
steps:
1. Copy the TAR ball to the root directory of your ESX host:

scp pwrchute.tar.gz root@your-host.where.com:

Make sure pwrchute.tar.gz ends up at the root directory on the
ESX host, to ensure when you extract that it all goes to the correct
locations
2. Extract it by typing the following at your ESX host’s console:

cd /

301

302

Chapter 8 * Other Cool Tools and Tricks
tar -zxvf pwrchute.tar.gz

This will re-create the same directory structure and files when
PCNS is installed into your helper VM.

3. Add the symbolic links to allow PCNS to start up.*

ln -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rc0.d/S99PowerChute
1ln -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rcl.d/S99PowerChute
In -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rc2.d/S99PowerChute
ln -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rc3.d/S99PowerChute
1ln -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rc4.d/S99PowerChute
In -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rc5.d/S99PowerChute
cp /usr/local/bin/PowerChute/PowerChute /etc/init.d/PowerChute

NoTEe

| had to create the symbolic links manually because using chkconfig to
install the service did not work.

* These commands make an ideal shell script!

4. Copy M11.CFEG, if necessary, to your ESX host by typing

scp ¢:\ml1-UPS1l.cfg root@your-host:/usr/local/bin/PowerChute

5. Start and stop PCNS (and see what happens...) using the following
(note the syntax):

/etc/rc.d/init.d/PowerChute
Usage PowerChute [start|stop]

6. Start PCNS by typing

/etc/rc.d/init.d/PowerChute start

At this stage, PowerChute is installed and running on your ESX host and
is talking to (1) whichever UPS management card you configured when you
installed it into your helper VM, or (2) the one you specified in the m11.cfg
file you chose to copy over earlier.

That’s great news! But how do I configure it?!

Other Cool Tools and Tricks * Chapter 8

Configuring Your ESX Host’s PowerChute

Now we’ll show you how to configure your ESX host’s PowerChute.

1. Log on to the PCNS Web interface using HTTP://YOUR-
HOST.WHERE.COM:3052.

2. From the Configure Shutdown option, untick Turn Off UPS.
This is very important for enterprise environments.

3. From the Configure Events option, set up the UPS: On Battery
event to shut down the system after 600 seconds. (This is for the sake
of this example only. The real setting will depend on your environ-
ment and requirements...) Figure 8.3 shows an example of config-
uring PowerChute for a network shutdown.

Figure 8.3 PowerChute Configuration

{Bh Console: REDHAT1 =] B3
Elle Edit ¥M
File Edit View Go Bookmarks Tools Window Help
L . = QA & = 1]
my Forvard Relaad Stop ‘& hitp:/fesxk101.esx.ad.curtin.edu.au:3052f I"”@.Sﬂrﬂh‘ Prnt m’
4y Home | WfBookmarks ¢ Red Hat Network E§Support EShop &4 Products E4Training
@ | £ Powerchute Network Shutdown [2 APC Netwark Management Card |
Baftery: Replaced @ O O lad
PowerChute
Network Shutdown Battery: Replacement Needed @ O O O
Communication: Established @ O O
nt Log @
Configure Events Communication: Lost while on Battery O O O
Communication: Management Card cannot communicate with
the UPS @ O O O
i Communication: PowerChute cannot communicate with the =
:UPS Information Management Card @ @ @ Q
Help
Input Power: Restored @ O O
Runtme: Exceeded @ O O O
Runtme: Normal Again @ O O
SmarBoost: Activated @ @ (4] s
SmartTrim: Activated @ O O
UPS Overload: Corrected @ O O
UPS: On Battery @ O O @
UPS: Overloaded @ Q@ O o
[+
% L 2 E8 | Done [—]
‘A \ & I g Sun Oct02
T 2NN O
A

303

304

Chapter 8 * Other Cool Tools and Tricks

NoTEe

When configuring PCNS, it's best to Ctrl + Refresh the application’s
frames after each item you change since the application is buggy and
sometimes looks like your changes haven’t stuck. You may even have to
do this multiple times (in Firefox) as well as right-click and refresh the
right-hand frame so it updates with your new configuration. This is a
noted bug with APC, and they do not seem to want to fix it.

Configure PCNS Shutdown Settings on the UPS

These additional steps may be required, depending on your UPS and whether
or not ESX host to UPS communications were successful. It is highly recom-
mended you check the UPS anyway after configuring your new hosts.

1. Log on to your UPS’s management cards Web interface with
HTTP://YOUR-MANAGEMENT-CARD.WHERE.COM.
(This may be https if your management card is equipped.)

Figure 8.4 Remove Helper Addresses

B Console: REDHATL
Fle Edt UM

84 AP C Network Management Card - Mozilla
Fle Edt View Go Bookmarks Tools Window Help

L. .2 B = = 5
Back | Fomvard Reload Stop [& mmpsipzez tm71:4 [~][a-Search] Print
4} Home | WfBookmarks ¢ Red Hat Network (& Support EShop & Products @ Training
“d) [¢ Powerchute Network Shutdown, [# APC Network Management Card | p
- Shutdown Behavior Setings Z
Network Maximum Shutdown Time: 2 minutes |
Management On-Rattary Shutdown Rehavior: Rehoot On [ine Retum 7]
Authentication Phrase: <hidden auth. phrase>
Apply | _Cancel ol
Add PowerChute® Clients
Add Client IP Address: 134.7.69.198
Add| cancel

PowerChute®

=

Remove PowerChute® Clients

Configured Client IP Addresses:

Logout

» Help

Links B Remove ‘Cancel

‘%@@ =Y T som

Other Cool Tools and Tricks * Chapter 8

Remove any of your virtual machine helper IP addresses from the
management card. Theyre unnecessary (see Figure 8.4).

Check and add the 1P addresses of all of the ESX hosts you’re connecting to
this UPS.

Master Craftsman...

How to Uninstall PowerChute

It's easy to uninstall PowerChute from your helper virtual machine. Just
enter the following from the terminal window:

cd

./uninstall

symbolic links:

rm

rm

rm

rm

rm

rm

rm

the Java folder for anything else before you do this! On a default ESX 2.x
server system, there is no jvm directory anyway, so unless you have
installed some other third-party jvm-based product, PowerChute should
be the only thing using it.

rm

rm

/usr/local/bin/PowerChute

To uninstall from ESX is a little trickier. You need to first remove the

/etc/rc.d/rc0.d/S99PowerChute
/etc/rc.d/rcl.d/S99PowerChute
/etc/rc.d/rc2.d/S99PowerChute
/etc/rc.d/rc3.d/S99PowerChute
/etc/rc.d/rc4.d/S99PowerChute
/etc/rc.d/rc5.d4/S99PowerChute

/etc/init.d/PowerChute

Then, finally remove the files and folders. Be sure you're not using

-rf /usr/local/bin/jvm

-rf /usr/local/bin/PowerChute

Continued

305

306

Chapter 8 * Other Cool Tools and Tricks

Centralized User
Management for ESX Server

When I first started building VMware ESX Server systems, VirtualCenter was
not yet out, which left a problem of centralized user management. Basically, at
that time there was none. I knew that this was going to be a big issue with
each and every VMware ESX Server that I added to the infrastructure. Some
basic documentation at that time existed letting VMware ESX Server authen-
ticate to Active Directory and some other Lightweight Directory Access
Protocol or LDAP-driven directories, but that only covered authentication. I
needed a way to get the users added to the local host server.

As a refresher, Lightweight Directory Access Protocol is an Internet pro-
tocol that e-mail and other programs use to look up directory information
from a server. Because LDAP is an open protocol, applications need not
worry about the type of server hosting the directory.

The LDAP search script was created to answer this need. This is part of
my ESX server build and configuration to this day. In ESX 2.X, I needed to
add a couple of RPM to be installed. These Open LDAP packages are what
the service console uses to search remote directories.

rpm -ivh openldap-2.0.11-13.1386.rpm
rpm -ivh openldap-clients-2.0.11-13.i386.rpm

To have the ability to authenticate using LDAP, you would also need this
package:

rpm ivh nss_ldap-185-1.1i386.rpm

NoTEe

In ESX 3.0, LDAP is configured using a different method to accomplish
this. The packages are already in place and just need to be configured.
The commands for ESX 3.0 to configure the server for LDAP searches is
esxcfg-auth --enableldapauth --ldapserver=domain.com --
ldapbasedn=DC=domain, DC=com
To enable Active Directory Authentication in ESX 3.x, the command is
as follows

Other Cool Tools and Tricks * Chapter 8

esxcfg-auth --enablead --addomain domain.com --addc domain.com--
enablekrb5 --krb5Srealm=domain.com --krb5kdc=domain.com

Once these packages are installed, you will need to configure them for
your environment with a list of directory servers to use. When the RPMs are
installed, they create a new folder /etc/openldap/. The file 1dap.conf in that
folder is the one we need to edit and match the environment you are
working in. Figure 8.5 shows an example of the /etc/openldap/ldap.conf file.
Code Listing 8.1 shows an example of /etc/ldap.conf. The relative sections
you would edit are shown. Several more options can be configured, but these
are outside the scope of this book. To learn more, check out the OpenLDAP
project at www.openldap.org/.

Figure 8.5 /etc/openldap/Idap.conf

B /etc/openldapdap. conf - oot @fhosesx001
ol BRAIRXE - aHH e D

$0penlDAP: pkg/ldap/libraries/libldap/ldap.conf,v 1.4.8.6 2000/09/05 17:54:328 kurt Exp %
#

LDAP Defaults

#

See ldap.conf(5) for details
This file should be world readable but not world writasble.

HOST domain.net
BASE cu=administrators,dc=domain,dc=com
URI ldap://domain.com ldaps://domain.com: 636

#5IZELIMIT 12
#TIMELIMIT 15
#L0EREF never
#HOST 10.0.0.100

#BASE dc=domain,dc=com

Code Listing 8.1 /etc/Idap.conf

@(#)$Id: ldap.conf,v 1.24 2001/09/20 14:12:26 lukeh Exp $
——

#
This is the configuration file for the LDAP nameservice

switch library and the LDAP PAM module.
#

307

308 Chapter 8 * Other Cool Tools and Tricks

PADL Software
http://www.padl.com
#

Your LDAP server. Must be resolvable without using LDAP.

host domain.com

The distinguished name of the search base.
base dc=example,dc=com

base ou=administrators,dc=domain,dc=com

Another way to specify your LDAP server is to provide a
uri with the server name. This allows you to use

Unix Domain Sockets to connect to a local LDAP Server.
#uri ldap://127.0.0.1/

#uri ldaps://127.0.0.1/

uri ldap://domain.com

#uri ldaps://domain.com

#uri ldapi://%$2fvar%2frun%2fldapi sock/

Note: %2f encodes the '/' used as directory separator

The LDAP version to use (defaults to 3
if supported by client library)

ldap_version 3

The distinguished name to bind to the server with.
Optional: default is to bind anonymously.

binddn cn=proxyuser,dc=example,dc=com

The credentials to bind with.
Optional: default is no credential.

bindpw secret

The distinguished name to bind to the server with
if the effective user ID is root. Password is
stored in /etc/ldap.secret (mode 600)

#rootbinddn cn=manager,dc=example,dc=com

The port.

Optional: default is 389.

#port 389

The search scope.
scope sub
#scope one

#scope base

Search timelimit

#timelimit 30

Bind timelimit
#bind timelimit 30

OpenLDAP SSL mechanism

Other Cool Tools and Tricks * Chapter 8

start_tls mechanism uses the normal LDAP port, LDAPS typically 636

#ssl start_tls

#ssl on

NoTE

On all client machines, both /etc/Idap.conf and /etc/openldap/Idap.conf
need to contain the proper server and search base information for your

organization.

The simplest way to do this is to run the authconfig application and
select Use LDAP on the User Information Configuration screen. In ESX
3.0, use the esxcfg-auth command from the shell.

You can also edit these files by hand, and in my case | have precon-
figured files that | can just copy and paste into place for speedy deploy-

ment.

The most important thing in these configuration files are the names
and locations of the LDAP servers and the port to use to connect, as well
as the account to bind with and the password to use. | do not have this
configured here, and the script includes that information as part of the

command.

309

310

Chapter 8 * Other Cool Tools and Tricks

Now that we have things configured, we can set up the LDAP search
script to add and remove users for us. The script presented next will do three
searches of the LDAP directory and add or remove the members of the
groups that the script is searching. In this specific case, the three difterent
groups represent three difterent security levels for the users on the VMware
ESX Server.

The first group that’s searched will just add the user and not add that user
to any groups. My original thought for this was that if members of the help
desk needed to log on to ESX, they would be able to see the status of the dif-
terent virtual machines and the status of the host itself. I like to consider this
as the “read only” search.

The second group that’s searched adds the users the script finds, but also
adds those users to a flagship group that I have already created on the host.
Rights would be given to the virtual machines so that the flagship group
could control or administer the virtual machines. I like to call this the “oper-
ator” mode. These could easily be broken down so that the script could search
for a Linux group as well as a windows group and assign the correct group
depending on the virtual machines those users would control.

The third and last group for this script is what I call the ESX admin
group. The users that are in this group would get added to the VMware ESX
Server as a user with uid=0. This is basically equal to the root account.

In most cases, now that VirtualCenter is a big part of managing the virtu-
alization hosts, one search or group may be all that’s needed to have ESX host
access. The limit of how far you can take things with this script is just your
imagination.

When this scripts runs, it creates the file and folders it needs automatically.
The default location is /ust/LDAP, but you can easily change it to match your
needs. If something should go haywire, just delete the working directory and
let the script re-create from scratch. Also, if needed, remove any users before
starting from scratch. I have not had any issues except for an error message
stating that the account already existed. Other than that, there were no prob-
lems. I have this script set up as a cron job in /etc/cron.hourly/, which runs
every hour on the hour.

SYNGRESS

syngress.com

Other Cool Tools and Tricks * Chapter 8

Code Listing 8.2 shows an example of the LDAP search script. You should
only need to make changes in the “User Edit Area”; nothing else should
require edits.

Code Listing 8.2 The LDAP Search Script

HHHHHHHH AR
#!/bin/bash
LDAP Search Script to add and remove users based on AD Group Membership

Steve Beaver

#H###H# A Start User Edit Area ########
This first part sets up the variables for the member search

If there is an error doing the search, the script will move on to the
next group search

base="-b DC=domain, DC=com"
Replace with your domain name
#user="-D CN=LDAPUSER, OU=VMWare, DC=domain, DC=com"
user="-D LDAPUSER@DOMAIN.COM"
Notice you can use LDAP DN or you can use the AD Full Account
pass="-w password"
The AD user password
ADgroupl="ESX VIEW"
The 1st AD group -- Read Only Privilege
ADgroup2="ESX OP"
The 2nd AD group -- VM Admin Privilege
ADgroup3="ESX ADMIN"
The 3rd AD group -- Root Privilege
esxgroup="ESXFlagGroup"
The ESX group you would like the users to be a member off
programdir="/usr/LDAP"
The directory this script will use to run
#H#### End User Edit Area #####

HEHHHHH A
More variables that do not need to be edited
cmd="1ldapsearch -x -LLL"
pipe="-u -tt -T ${programdir}"
pipe2="-u -tt -T ${programdir}/Member"
filterl="CN=${ADgroupl} member"
filter2="CN=${ADgroup2} member"

311

312

Chapter 8 * Other Cool Tools and Tricks

filter3="CN=${ADgroup3} member"
filtersam="samAccountName"

FHEFHH R

Sanity Check to make sure all the files and folders needed are in place or
create them

if test ! -x "$Sprogramdir" ; then

mkdir S$programdir

mkdir S$programdir/Member

mkdir Sprogramdir/Member/New

mkdir S$programdir/Member/01d

echo > $programdir/Member/New/$ADgroupl.txt

echo > S$Sprogramdir/Member/0ld/$ADgroupl.txt

echo > $programdir/Member/New/$SADgroup?2.txt

echo > $programdir/Member/01d/$ADgroup?.txt

echo > S$Sprogramdir/Member/New/$ADgroup3.txt

echo > $programdir/Member/01d/$ADgroup3.txt
fi
HH#HHHHHAHHHH A HH NEW SEARCH HHHHHHH A HH AR HH
The first search to find the group and see who, if any, are members
VIEW search ()
{

${cmd} ${base} ${user} ${pass} ${pipe} ${filterl}

if ["$?" -ne "0"]; then

printf "ERROR running LDAP Search script exiting"
return
fi

VIEW_search member

Now that I have a temp file for each user, I need to collect and list them
in a file to read from

If I find no users in the group, then there's no need to continue. Return
and move on

VIEW search member ()

{

cd S$programdir

Other Cool Tools and Tricks * Chapter 8

ls -1 S$programdir/ldapsearch-member-* > S$programdir/filelist.txt
if ["$?" -ne "O0"]; then
printf "No Members moving on... "
return
fi
declare LINE
declare MEMBER
cat $programdir/filelist.txt |
while read abc
do case $abc in
Member) echo Sabc ;;
*) awk '{print $0}' $abc >> $programdir/ulist.txt ;;
esac
done
sed 's/,0U=.*//g' S$programdir/ulist.txt > S$programdir/mlist.txt

VIEW search sam

Now I have a list in a usable format.
Time to search again to get the samAccountName or userid

of each user in the group.

VIEW_search sam ()
{
infile="$programdir/mlist.txt"
cat Sinfile |
while read def

do ${cmd} ${base} ${user} ${pass} s{pipe2} "$def"
${filtersam}

done
rm -R Sprogramdir/ldapsearch*
rm -R Sprogramdir/filelist.txt
rm -R Sprogramdir/ulist.txt
rm -R Sprogramdir/mlist.txt

mv -f S$programdir/Member/New/SADgroupl.txt
$programdir/Member/01d/3SADgroupl. txt

VIEW search create

313

314 Chapter 8 * Other Cool Tools and Tricks

Now that I have a temp file for each user, I need to collect and list them
in a file to read from

Sort the list and compare the old one with the new to see if I need to add
Oor remove users

The useradd command below gives the user the READ ONLY privilege

VIEW search create ()
{
cd $programdir/Member

ls -1 Sprogramdir/Member/ldapsearch-* >
$programdir/Member/filelist.txt

cat $programdir/Member/filelist.txt |
while read xyz

do awk '{print $0}' $xyz | tr [:upper:] [:lower:] >>
Sprogramdir/Member/SADgroupl. txt

done
rm -R $programdir/Member/ldapsearch*
rm -R $programdir/Member/filelist.txt

mv -f Sprogramdir/Member/$ADgroupl.txt
Sprogramdir/Member/New/SADgroupl.txt

sort -f -o S$programdir/Member/New/$ADgroupl.txt
Sprogramdir/Member/New/SADgroupl.txt

comm -1 -3 S$Sprogramdir/Member/New/$ADgroupl.txt
$Sprogramdir/Member/01d/$ADgroupl.txt > $programdir/remuser.txt

comm -2 -3 S$programdir/Member/New/$ADgroupl.txt
$programdir/Member/01d/$ADgroupl.txt > $programdir/adduser.txt

cat $programdir/remuser.txt |
while read oldlist
do userdel -r $oldlist
done
rm -R $programdir/remuser.txt
cat $programdir/adduser.txt |
while read newlist
do useradd -M S$newlist
done
rm -R $programdir/adduser.txt

}
FHEHH R NEW SEARCH FHEH R HH

The first search to find the group and see who if any are members

OP_search ()

Other Cool Tools and Tricks * Chapter 8

${cmd} ${base} ${user} ${pass} ${pipe} ${filter2}

if ["$?" -ne "0"]; then
printf "ERROR running LDAP Search script exiting"
return

fi

OP_search member

Now that I have a temp file for each user, I need to collect and list them
in a file to read from

If I find no users in the group, then there's no need to continue. Return
and move on

OP_search member ()
{
cd $programdir
ls -1 S$programdir/ldapsearch-member-* > S$programdir/filelist.txt
if ["$?" -ne "0"]; then
printf "No Members moving on... "
return
fi
declare LINE
declare MEMBER
cat $programdir/filelist.txt |
while read abc
do case S$abc in
Member) echo S$abc ;;
*) awk '{print $0}' S$Sabc >> $programdir/ulist.txt ;;
esac
done
sed 's/,0U=.*//g' $programdir/ulist.txt > $programdir/mlist.txt

OP_search_sam

Now I have a list in a usable format.
Time to search again to get the samAccountName or userid

of each user in the group.

315

316 Chapter 8 * Other Cool Tools and Tricks

OP_search sam ()
{
infile="$programdir/mlist.txt"
cat $infile |
while read def

do ${cmd} ${base} ${user} ${pass} ${pipe2} "Sdef"
${filtersam}

done
rm -R $programdir/ldapsearch*
rm -R $programdir/filelist.txt
rm -R $programdir/ulist.txt
rm -R $programdir/mlist.txt

mv -f $Sprogramdir/Member/New/$ADgroup?2.txt
$programdir/Member/01d/$ADgroup?2 . txt

OP_search_create

Now that I have a temp file for each user, I need to collect and list them
in a file to read from

Sort the list and compare the old with the new to see if I need to add or
remove users

The useradd command below gives the user ESX VM Admin privilege

OP_search create ()
{
cd $programdir/Member

ls -1 Sprogramdir/Member/ldapsearch-* >
$programdir/Member/filelist.txt

cat $programdir/Member/filelist.txt |
while read xyz

do awk '{print $0}' S$xyz | tr [:upper:] [:lower:] >>
$programdir/Member/$SADgroup? . txt

done
rm -R $programdir/Member/ldapsearch*
rm -R $programdir/Member/filelist.txt
mv -f $Sprogramdir/Member/$SADgroup?2.txt
$programdir/Member/New/$ADgroup?2 . txt
sort -f -o $programdir/Member/New/SADgroup?2.txt
$programdir/Member/New/$ADgroup?2 . txt

comm -1 -3 Sprogramdir/Member/New/S$ADgroup?.txt
Sprogramdir/Member/01d/$SADgroup2.txt > Sprogramdir/remuser.txt

Other Cool Tools and Tricks * Chapter 8

comm -2 -3 Sprogramdir/Member/New/S$ADgroup?2 .txt
$programdir/Member/01d/SADgroup2.txt > S$programdir/adduser.txt

cat $programdir/remuser.txt |
while read oldlist
do userdel -r Soldlist
done
rm -R $Sprogramdir/remuser.txt
cat $programdir/adduser.txt |
while read newlist
do useradd -M -g $esxgroup S$newlist
done
rm -R Sprogramdir/adduser.txt
}
HHHHHHHHHHH A HH NEW SEARCH HH#HHHHHAHHH AR RS
The first search to find the group and see who if any are members
ADMIN search ()
{
${cmd} ${base} ${user} ${pass} ${pipe} ${filter3}
if ["$?" -ne "0"]; then
printf "ERROR running LDAP Search script exiting"
return
fi

ADMIN_ search member

Now that I have a temp file for each user, I need to collect and list them
in a file to read from

If I find no users in the group, then there's no need to continue. Return
and move on

ADMIN search member ()
{
cd S$programdir
ls -1 $programdir/ldapsearch-member-* > $programdir/filelist.txt
if ["$?" -ne "O0"]; then
printf "No Members moving on... "
return
fi
declare LINE

317

318 Chapter 8 * Other Cool Tools and Tricks

declare MEMBER
cat $programdir/filelist.txt |
while read abc
do case $abc in
Member) echo S$Sabc ;;
*) awk '{print $0}' $Sabc >> $programdir/ulist.txt ;;
esac
done
sed 's/,0U=.*//g' Sprogramdir/ulist.txt > Sprogramdir/mlist.txt
ADMIN_ search sam

Now I have a list in a usable format.
Time to search again to get the samAccountName or userid

of each user in the group.

ADMIN search sam ()
{
infile="$programdir/mlist.txt"
cat $infile |
while read def

do ${cmd} ${base} ${user} ${pass} ${pipe2} "S$def"
${filtersam}

done
rm -R $programdir/ldapsearch*
rm -R $programdir/filelist.txt
rm -R $programdir/ulist.txt
rm -R $programdir/mlist.txt

mv -f Sprogramdir/Member/New/$SADgroup3.txt
$programdir/Member/01d/$ADgroup3 . txt

ADMIN_ search create

Now that I have a temp file for each user, I need to collect and list them
in a file to read from

Sort the list and compare the old with the new to see if I need to add or
remove users

The useradd command below gives the user root privilege

ADMIN search create ()

Other Cool Tools and Tricks * Chapter 8

cd $Sprogramdir/Member

ls -1 sprogramdir/Member/ldapsearch-* >
$programdir/Member/filelist.txt

cat $programdir/Member/filelist.txt |
while read xyz
do awk '{print $0}' $xyz | tr [:upper:] [:lower:] >»>
$programdir/Member/$ADgroup3 . txt
done
rm -R Sprogramdir/Member/ldapsearch*
rm -R Sprogramdir/Member/filelist.txt

mv -f S$programdir/Member/SADgroup3.txt
$programdir/Member/New/SADgroup3 . txt

sort -f -o S$programdir/Member/New/SADgroup3.txt
$Sprogramdir/Member/New/$SADgroup3 . txt

comm -1 -3 Sprogramdir/Member/New/$ADgroup3.txt
$programdir/Member/01d/SADgroup3.txt > S$programdir/remuser.txt

comm -2 -3 Sprogramdir/Member/New/S$ADgroup3.txt
$programdir/Member/01d/$SADgroup3.txt > S$programdir/adduser.txt

cat $programdir/remuser.txt |
while read oldlist
do userdel -r Soldlist
done
rm -R Sprogramdir/remuser.txt
cat $programdir/adduser.txt |
while read newlist
do useradd -o -u 0 -g Sesxgroup S$newlist
done

rm -R Sprogramdir/adduser.txt

HH#H#H4#H##E This section is the main body which calls all the functions
listed above

VIEW_ search
OP_search
ADMIN_ search
exit

Done

319

320

Chapter 8 * Other Cool Tools and Tricks

Now that you’ve had a chance to look over the script, let’s break the
script down and see what’s really happening behind the scenes. The script will
first look for the working directory—in this case, /ust/LDAP—to see if it
exists. If the script finds the directory and folders are not created, it will create
them. Once the structure is there, the script will start its first search. The
search will get the members of a group and write those members to tempo-
rary files, as shown in Figure 8.6.

Figure 8.6 Temporary Search Files
o mot@FHOSESXDEVDD1-/ust/LDAP

[root@FHOSESXDEVOO01 LDAP]# 1= =
ldapsearch-menber—-02vi0C ldapsearch-member-MbjO0ZEe
ldapsearch-menber—-9ECogK ldapsearch-member-wgX7Tn
ldapsearch-menber—J4Rcmv ldapsearch-member-zY¥YG3rg

[root@FHOSESXDEVOO1 LDAFP]# I

If we look at the content of the temporary files, we see something like the
following;:

CN=User3,0U=Administrators, DC=DOMAIN, DC=COM

The next step the script performs is to create a file called filelist.txt that
lists all the temp files (as shown in Figure 8.7).

Figure 8.7 Search File List

B/ /usc/LDAPAilelist ixt - root@fhosesxde... [H[=] [E3

Al B & BX% © (8 #H,>
fusr/LDAP/ldapsearch-member-02vi0C
fusr/LDRP/ldapsearch-member-9ECogK
fusr/LDAP/ldapsearch-member-J4Rcmv
fusr/LDRE/ldapsearch-member-Mbj0Z8
fusr/LDAP/ldapsearch-member-wgX7In
fusr/LDAP/ldapsearch-member-z¥G3rg

Line: 1/6 Character: 47 (x2F) 4|

From that list of all the temporary files, the script then reads the content
of each of these temporary files and creates another text file called ulist.txt.
That file lists all of the users, as shown in Figure 8.8.

Other Cool Tools and Tricks * Chapter 8

Figure 8.8 Search User List

B /usr/LDAP/ulist txt - root@fhosesxdev001 |_ (O] <]
ol (B2 RXHE o AEE, R

CN=User3,0U=Administrators, DC=DOMAIN, DC=COM
CH=Userl,0U=Rdministrators, DC=DOMAIN, D
CN=User6,0U=Administrators, DC=DOMAIN, D
CH=User2,0U=Rdministrators, DC=DOMAIN, D
CN=User5,0U=RAdministrators, DC=DOMAIN, D
CH=Userd| OU=Rdministrators, DC=DOMAIN, DC=COM

Line: 6/6 Character: 44 {ba2C)

Using the sed tool, the script then edits the file ulist.txt to strip everything

but the “CN=User”, and then adds this to another file called mlist.txt, as
shown in Figure 8.9.

Figure 8.9 Edited Search List

B flEe v e s s 53 Ak B
1 ust/LDAP /miist bd - root @hosesxdeviD1] |

CH=User3

CH=Userl

CH=Useré

CH=User2

CN=Users

m=U5er4|

Once the script has just the username, it then does another LDAP search
to find the SamAccountName or login identification of the user and puts the

results of that search into temp files in a new location: /usr/LDAP/Member/
(as shown in Figure 8.10).

Figure 8.10 Second Search Output

£ root @FHOSESXDEVD01-/usr/| DAP/Member

[root@FHOSESXDEVO01 Member]# 1s =
ldapsearch-sAMAccountName-44kuSf ldapsearch-sAMAccountName-oQFgDd
ldapsearch-sAMAccountName-AWWwIgi ldapsearch-sAMAccountName-pHNTvZS
ldapsearch-sAMAccountName-bawd4He ldapsearch-sAMAccountName-zXECFc

[rooTt@FEOSESXDEV001 Member]#]

Taking a look at the content of the temporary files, we see the

sAMAccountName or Sam Account Name of the users, as shown in Figure
8.11.

321

322 Chapter 8 * Other Cool Tools and Tricks

Figure 8.11 sAMAccountName List
B /usr/1 DAP/Member/___ [H[m] B3

oL B v o v ompy »
_ [7usr/LDAP /Member filelist £t - root
Users3|

The script will then remove any and all temporary files, as well as move
the last master list of users from /usr/LDAP/Member/New/ADGroup.txt to
/ust/LDAP/Member/Old/ADGroup.txt.

The same steps as that shown earlier will continue, but the script will use
/ust/LDAP/Member/ to work out of instead of /ust/LDAP. The script then
makes a list of all the sAMAccountName temporary files and pipes that list to

a new text file called /usr/LDAP/Member/filelist.txt (as shown in Figure
8.12).

Figure 8.12 The New Member File List

B’ /ust/1L DAP/Member/filelist ixt - root@fhosesx001 | _ O]]
Mool B BXE o AME 8D

/usr/LOAF/Menber/ldapsearch-sAMAccountlame-TW914e
/usr/LOAP/Menber/ldapsearch-sAMAccountlame-hBEm3g
/usr/LORP/Menber/ldapsearch-sAMAccountName-kjWeTd
Susr/LDAP/Menber/ldapsearch-siMAccountlame-UCERmb
/usr/LDAF/Menber/ldapsearch-sAMAccountName-wzo219
Susr/LDAP/Menber/ldapsearch- sA}’AcccuntNa:ne—ZHlecl

Line: 6/6

The script will then read each of those temporary files and make sure
everything is in lower case format, as well as create the master user list for that
group in another file called ADGroup.txt, which is shown in Figure 8.13.

Figure 8.13 The Edited Member File List

&L |f‘usr/LDAPKMember/New/FHO-E
User3
Userl
Userd
[User2
Users
Taerd

Other Cool Tools and Tricks * Chapter 8

You may have noticed that in some of the searches the users were listed in
a random format. This can make any comparison to the old or last search list
impossible. The script’s next function is to take the ADGroup.txt and sort
everything alphabetically (see Figure 8.14).

Figure 8.14 Sorted Member File List

B /ust/L DAP/Member/__ [9=] B3
1y 5 & B X @

Userl
User2
User3
Taerd
Users
Useré

Line: 6/6 4

The script then moves this new master user list to
/ust/LDAP/Member/New/ADGroup.txt. The script will then do a compar-
ison of the old and new user list.

/usr/LDAP/Member/New/ADGroup . txt
/usr/LDAP/Member/01d/ADGroup . txt

If there are any users that are in the new ADGroup.txt file that are not in
the old ADGroup.txt file, the script then adds those users to the ESX server
using the useradd command. The same 1s true for the reverse. If the script finds
users in the old. ADGroup.txt file that are not in the new ADGroup.txt file, it
will remove those users from the ESX server.

NoTE

There are a couple of things to take note of. In this search and example,
the Common Name (CN=) is the same as the SamAccountName. This
may not always be the case and is why the multiple searches are done.

The big difference in each section is the way the users are added to the
ESX server.

323

324

Chapter 8 * Other Cool Tools and Tricks

In the first search, the goal was for a user to have “read only” access rights.
To accomplish this, the user would not be added to any groups by using -M
switch.

The home directory for that user would not be created as well.

do useradd -M $newlist

For the VM Admin or regular user, the only difference is that I assign
those users to be a member of a group that will give those users permissions
to the virtual machines needed.

do useradd -M -g S$esxgroup Snewlist

Lastly for the ESX server administrators, I use the —o switch which allows
the account to be created with a non-unique or duplicate UID (Uniform
Identification). The —u switch lets me specify the numerical value of the user’s
ID. In this case, the users are created with a UID of 0 giving those accounts
the root equivalent.

do useradd -o -u 0 -g S$esxgroup S$newlist

Extending a Cloned (Deployed)
Windows VM'’s Root Partition

I will show you how to leverage the additional power of Microsoft’s Sysprep
utility to extend a newly cloned, or deployed, Windows virtual machine’s root
partition from the original clone size to a size greater than the originally
deployed root partition.

\WARNING

Make any modifications to your VirtualCenter installation only if you are
comfortable with making these changes. | strenuously recommend you
make backups of the files you modify before making any modifications.

Jase McCarty (a.k.a., Jasemccarty) from the VMware Community forums
came up with the ability to take a standard Clone, or Template, and deploy it

Other Cool Tools and Tricks * Chapter 8

with a root partition size greater than the original Clone, or Template,
without using any third-party tools.

This becomes very useful in the virtualization world by giving the admin-
istrators the ability to deploy Windows VM’s with variable sizes, which in
turn means less templates will be necessary, while being more flexible with
regards to virtual disk space.

Well that sounds great but how does it work. Microsoft’s Sysprep, which is
utilized by VMware VirtualCenter, has a minimal Sysprep configuration that
is used to customize Windows Virtual Machines.

When VMware VirtualCenter clones/deploys a Windows VM, an oppor-
tunity is given to customize the guest OS. This process “drops oft” a generic
sysprep.inf (and other necessary files) to have Windows perform this task.

The additional setting we need to add to the generated sysprep.inf is the
ExtendOEMPartition setting in the Unattended section.

The ExtendOEMPartition setting contains the options shown in Table
8.1.

Table 8.1 ExtendOEMPartition Options

Setting Value Result
ExtendOEMPartition 0 Do not extend
1 Extend to the end of the disk
X Extend the volume X megabytes

Source: http://support.microsoft.com/kb/240126/

If we modify the process of creating the generic sysprep.inf, then we can
grow our partition to the full size of an expanded virtual disk file before it is
powered on the first time.

For the initial setup, you will need to modify two files that VMware has
provided that generate the sysprep.inf file:

m Gensysprepinf.vbs The actual script that generates the sysprep.inf
file

m Autoprep.wsf The script handling some duties in the deployment
of a VM

325

326 Chapter 8 * Other Cool Tools and Tricks

They are typically located in (as of this writing) C:\Program
Files\VMware\VMware VirtualCenter\scripts for VC 1.x, and
C:\Program Files\VMware\VMware VirtualCenter 2.0\scripts for VC
2.x.

These files are encoded using the Microsoft Script Encoder, which you
can find here:
www.microsoft.com/downloads/details.aspx?FamilyId=E7877F67-C447-4873-
B1B0-21F0626A6329&displaylang=en (as of this writing).

You will need to decode these files to be able to work with them. I will
not cover the process of decoding these files here, but for more information,
check out the Windows Script Decoder which can be found at the this
address: www.virtualconspiracy.com/index.php?page=scrdec/intro.

When the files have been decoded, you will need to edit
gensysprepinf.vbs to include the ExtendOEMPartition setting.

Look for the [Unattended] section:
outStr = "[Unattended]" & vbCrLf _
syngress.com " OemSkipEula=Yes" & vbCrLf _

" InstallFilesPath=\sysprep\i386" & vbCrLf
vbCrLf _

" [GuiUnattended] " & vbCrLf _

AdminPassword=" & mAdminPassword & vbCrLf _
" OEMSkipRegional=1" & vbCrLf

" TimeZone=" & mTimeZone & vbCrLf _

R R R R R R R R

" OemSkipWelcome=1" & vbCrLf

And change it to:

outStr = "[Unattended]" & vbCrLf _

" OemSkipEula=Yes" & vbCrLf _

" ExtendOemPartition=1" & vbCrLf _

" InstallFilesPath=\sysprep\i386" & vbCrLf
vbCrLf _

" [GuiUnattended] " & vbCrLf

" AdminPassword=" & mAdminPassword & vbCrLf _
" OEMSkipRegional=1" & vbCrLf

" TimeZone=" & mTimeZone & vbCrLf _

R R R R R R R R R

" OemSkipWelcome=1" & vbCrLf

Other Cool Tools and Tricks * Chapter 8

Then save gensysprepinf.vbs. Because Gensysprepinf.vbs is no longer
encoded, autoprep.wst will need to be modified also. Decode autoprep.wst,
and look for the following line:

<script language="VBScript.Encode" src="gensysprepinf.vbs"/>

Then change it to:

<script language="VBScript" src="gensysprepinf.vbs"/>

Then save autoprep.wsf.
The configuration changes are complete.

If you work with clones, you also have the ability to add the
ExtendOEMPartition to the sysprep.inf file, which you can create using the
setupmgr.exe that comes with Microsoft Sysprep Utility. Once you have cre-
ated the sysprep.inf file, you can add the ExtendOEMPartition value to the
Unattended section of the file:

; SetupMgrTag
BAECER) [Unattended]

oemSkipEula=Yes

InstallFilesPath=C:\sysprep\i386

ExtendOEMPartition=1

Deploying a Windows VM
with an Expanded Root Partition

Now let’s deploy a Windows VM with an expanded root partition.

1.

Clone/Deploy a Windows VM and leave the Automatically Power
On option in the Clone Virtual Machine Wizard unchecked, as in
Figure 8.15 for VirtualCenter 1.4, or leave the Power On The New
Virtual Machine After Creation option unchecked in VirtualCenter
2.0, as shown in Figure 8.16.

327

328 Chapter 8 * Other Cool Tools and Tricks

Figure 8.15 In VC 1.4: Uncheck “Automatically Power On”

VMware YirtualCenter Clone Yirtual Machine Wizard

Specify the Yirtual Machine's Location

Enter the locations on the destihation host to place the wvittual machine's

configuration and disk, files.
D atastores
Mame Free Space |
storage 26470 MB

art running the wvirttual maching automatically after it iz created.
< Back | Hest > | Cancel |

Figure 8.16 In VC 2.0: Uncheck “Power on the New Virtual Machine after
Creation”

lone ¥irtual Machine Wizard

1= B3

Ready to Complete New Yirtual Machine
Are these the options you want to use?

Mame and Folder When yau click Finish, a task will be started that will create the new wirtual machine.
Host f Clusker
Dataskare The virbual machine will be created with the Following options:
[Guest Customization Wirtual Machine ko Clone: CLOMEL
Ready to Complete Mame: TEST
Folder: M
HoskfCluster: wig-01
Datastore: LOCALSTORAGE

Guesk 05 Custamization Specification: Create a new specification

[~ Power on the new virtual machine after creation

‘ou will not be able ko use or edit the virtual machine until the task completes. If the task
invokves creation of a wirtual disk it could take seweral minutes ta complete.

Help |

This will give you the opportunity to resize the disk before it runs
Sysprep.

Other Cool Tools and Tricks * Chapter 8

2. Use Putty to SSH to an ESX server that has access to the LUN that
has the .vmdk on it. (This can be a SAN LUN or on local storage.)

3. Use vimkfstools =X Size[gGmMKK] and the full path of the
.vmdk. For example, if using a 2GB .vmdk, the following command
would resize the .vimdk to 10GB:

[root@esxserver ~]# vmkfstools -X 10G /vmfs/storage/winvm.vmdk

And with that, youre done. When the Windows VM powers on, the root
partition (C:\) will automatically extend to the new .vmdk size of 10GB,
rather than having a 2GB partition and an 8GB empty partition.

329

330 Chapter 8 * Other Cool Tools and Tricks

Summary

So let’s review what we have done so far in this chapter. First, we installed
APC’s Network Shutdown, which is also called PCNS. We used a helper
Linux virtual machine that has a graphical interface or GUI to help with the
installation and do the configuration to point to the correct UPS. We also
learned how to set up Kerberos authentication with ESX and how to search
Active Directory or another kind of LDAP server with a script allowing cen-
tralized users management for all the ESX servers. Finally, we made a change
to the Sysprep scripts to be able to make a template that can have the boot
drive grow to fill up an expanded disk, and what to add to the sysprep.inf files
on clones to accomplish the same thing.

Appendix A

All Scripts and

Program Source

In this appendix, we’ve compiled the key scripts cited in this book.You can

use this appendix as a quick reference point to review these scripts.

331

332 Appendix A ¢ All Scripts and Program Source

Scripts from Chapter 3

The following demonstrates the instantiation of the VimConnectParams object in VBScript and
how to set the properties listed earlier.

Set objConnParams = CreateObject ("VmCOM.VmConnectParams")
objConnParams.hostname = "esxserverl"
objConnParams.username = "adminuserl"
objConnParams.password = "passwordl"

The following continues from the previous code example, adding the instantiation of the
VmServerCtl object and connecting to the host using the previously defined VimConnectParams
object.

Set objVMServer = CreateObject ("VmCOM.VmServerCtl")
objVMServer.Connect objConnParams
objVMList = objVMServer.RegisteredVmNames
for vmIndex = 1 to objVMList.Count
WScript.Echo VM.objVMList (vmCounter)
vmCounter = vmCounter + 1
next

The following demonstrates how you can ensure that no floppy drives are left connected to
the VM. After connecting to the ESX host and retrieving a VinCollection of all registered VMs,
the script connects to each VM individually, checks the connection status of the floppy device,
and disconnects it accordingly.

' Set parameters used to connect to the ESX Server.

Set objConnParams = CreateObject ("VmCOM.VmConnectParams")
objConnParams.hostname = "esxserverl "
objConnParams.username = "adminuserl"
objConnParams.password = "passwordl"

' Establish connection with ESX host
Set objVMServer = CreateObject ("VmCOM.VmServerCtl")
objVMServer.Connect objConnParams

' Obtain list of registered VMs on host
Set objVMList = objVMServer.RegisteredVmNames

' Step through list of VMs and connect to each one
' individually. Disconnect floppy drive, 1if connected
For each ConfigFile in objVMList
Set objVM = CreateObject ("VmCOM.VmCtl")
objVM.Connect objConnParams, ConfigFile
vmDevice = "floppy0"
if objVM.DeviceIsConnected (vmDevice) Then
objVM.DisconnectDevice (vmDevice)
vmDeviceStatus = "Now Disconnected"
Else
vmDeviceStatus = "Was already disconnected"

All Scripts and Program Source* Appendix A

End If
WScript.Echo "Floppy for VM " & ConfigFile & ":"
WScript.Echo vbTab & "Status: " & vmDeviceStatus

WScript.Echo
Next

objVM = Nothing
objVMServer = Nothing
objConnParams = Nothing

To pass information to or from the running virtual machine, you must set the GuestInfo class
of variable using the VmCitl object.You can define any number of key names and assign any
string value to them. The following example assumes that you have already established a connec-
tion to a specific VM using the VVmCtl object. Here we pass specific values to be retrieved later
inside the Guest OS.

Set objVM = CreateObject ("VmCOM.VmCtl")

objVM.Connect objConnParams, "/home/vmware/serverl/serverl.vmx"
objVM.GuestInfo ("Department") = "Accounting"

objVM.GuestInfo ("CostCenter") = "5008620"

objVM.GuestInfo ("Priority") = "Low"

The following demonstrates the instantiation of the VMuware::VmPerl:: ConnectParams object:

use VMware: :VmPerl;
use VMware: :VmPerl::ConnectParams;
use strict;

my $sName = "esxserverl';
my S$port = 902;

my Suser = "adminuserl";
my Spasswd = "passwordl";

my S$connectParams =
VMware: :VmPerl: :ConnectParams: :new ($sName, Sport, Suser, Spasswd) ;

It is always a good practice to code error handling each time you invoke a method. The most
basic way to handle any exception is to simply stop the execution of the script with the die
directive.

Create a Connect Params object; no params to new() connects to local machine

my $sName = "esxserverl";
my S$port = 902;

my Suser = "adminuserl";
my Spasswd = "passwordl";

my S$connectParams =
VMware: :VmPerl: :ConnectParams: :new ($SsName, Sport, Suser, Spasswd) ;

Create a Server object
my Sserver = VMware::VmPerl::Server::new() ;

333

334

Appendix A ¢ All Scripts and Program Source

Connect to the server using the connect_params
if (!$server->connect ($connect params)) {
die "Could not connect to local server\n";

Next, we enumerate the VMs registered with the VMware host and attempt to disconnect
the floppy drive and CD-ROM drive from each VM. In this example, we are assuming that only
one floppy drive exists as floppy0 and that only one CD/DVD-ROM exists on the IDE bus as
ide1:0.

Get a list of registered vmxs
my @list=$server->registered vm names () ;
foreach my $vmx (@list) {

my $vm = VMware::VmPerl::VM::new() ;

if ($vm->connect ($connect params, $vmx)) {
print "\n" . $vm->get config("displayName") ;
if ($vm->disconnect device ("floppy0")) {

print "\n\tFloppy disconnected.";
} else {
print "\n\tFloppy not disconnected.";

if ($vm->disconnect device("idel:0")) {
print "\n\tCD-ROM disconnected.";
} else {

print "\n\tCD-ROM not disconnected.";

}
} else {
print "\nCould not connect to VM.";

The btnConnect control is then used to pass this data to frm I’MList. This is accomplished by
creating a new instance of frm/MList and assigning the Connect’ToHost method to the click event
of the control, as shown in the following code fragment.

Public Class frmConnect
Private Sub btnConnect Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnConnect.Click
Dim VMListForm As New frmVMList
VMListForm.ConnectToHost (vHostName.Text, vUserName.Text,
vPassword.Text)
VMListForm. Show ()
End Sub
End Class

The logic in frm IVMList captures the value for the host name, username, and password to
build to connection parameters. After establishing the connection to the host, we then enumerate
all of the VMs registered with the Vmware host and retrieve the configuration file for each one,
afterward adding that string value to a listbox control visible in the form. The following code
shows how this is done.

All Scripts and Program Source* Appendix A

Public Class frmVMList
Dim objConnParams As New VMCOMLib.VmConnectParams
Dim objVMServer As New VMCOMLib.VmServerCtl
Dim objVMList As New VMCOMLib.VmCollection
Dim ConfigFile As String

Friend Sub ConnectToHost (ByVal HostName As String, ByVal UserName As _
String, ByVal Password As String)

objConnParams.Hostname = HostName
objConnParams.Username = UserName
objConnParams.Password = Password

objVMServer.Connect (objConnParams)
objVMList = objVMServer.RegisteredVmNames
For Each ConfigFile In objVMList
1bxVMs.Items.Add (ConfigFile)
Next
End Sub

Private Sub btnClose Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnClose.Click
Me.Close ()
End Sub

End Class

Code Listing 3.1 A vmaConfig.xml File

<vmas>
<services>
<wsdl>vma.wsdl</wsdl>
<eventlog rollover="true" file="vma" level="info"
console="true"/>
<sslport>8443</sslport>
<externalSchemas>
<schema>autoprep-types.xsd</schema>
</externalSchemas>
<sslCert>C:\Documents and Settings\All Users\Application
Data\VMware\VMware VirtualCenter\VMA\server.pem</sslCerts>
<sslCAChain>C:\Documents and Settings\All Users\Application
Data\VMware\VMware VirtualCenter\VMA\root.pem</sslCAChain>

</services

<subjects>
<subject>
<implementation>VCenter 1.1l</implementations>
<path>/vcenter</path>
<hostname>localhost</hostnames>
<port>905</port>
<eventlog level="info"/>
<ssl>true</ssl>
<preload>true</preloads>

335

336 Appendix A ¢ All Scripts and Program Source

<index>
<defaultFarm>Default Farm</defaultFarm>
</index>
</subject>
</subjects>
</vmas>

Code Listing 3.2 C# Script for Connecting to VI Web Service

using System;
using VMware.vma;

protected vmaService vma_;

string url = "https://esxl.sample.com:8443";
string username = "adminuserl";
string password = "passwordl";

public void Connect (string url, string username, string password) ({

vma_ = new vmaService () ;
vma_.Url = url;
vma_.CookieContainer = new System.Net.CookieContainer() ;

vma_.Login (username, password) ;

Code Listing 3.3 VB.NET Script for Connecting to VI Web Service

Imports System
Imports VMware.vma

Protected vma As VMware.vma.vmaService

Dim url As String = "https://esxl.sample.com:8443"
Dim username As String = "adminuserl"
Dim password As String = "passwordl"

Public Function Connect (url As string, username As string, password As _

string)
vma = New vmaService
vma.Url = url
vma .CookieContainer = New System.Net.CookieContainer
vma .Login (username, password)
End Function

Code Listing 3.4 C# Script for Implementing ICerfificatePolicy

using System.Net;
using System.Security.Cryptography.X509Certificates;

public class CertPolicy : ICertificatePolicy {

All Scripts and Program Source* Appendix A

public bool CheckValidationResult (
ServicePoint svcPnt
, X509Certificate cert
, WebRequest reqg
, int certProblem) {
return true;
} // end CheckvalidationResult
} // class CertPolicy

Code Listing 3.5 VB.NET Script for Implementing ICerfificatePolicy

Imports System.Net
Imports System.Security.Cryptography.X509Certificates
Public Class CertPolicy Implements ICertificatePolicy
Public Function CheckValidationResult (ByVal _
svcPnt As ServicePoint, ByVal cert As X509Certificate,
ByVal req As WebRequest, ByVal certProblem As Integer)
As Boolean Implements ICertificatePolicy.CheckValidationResult
Return True
End Function
End Class

Code Listing 3.6 C# Script for Obtaining Information with ResolvePath and
GetContents

string path = "/vm";

string handle = vma_.ResolvePath (path) ;

ViewContents contentsXML = vma_.GetContents (handle) ;
Container objContainer = (Container) contentsXML.body;

Code Listing 3.7 VB.NET Script for Obtaining Information with ResolvePath
and GetContents

Dim contentsXML As VMware.vma.ViewContents
Dim objContainer As VMware.vma.Container

Dim path As String = "/vm"

Dim handle As String = vma.ResolvePath (path)

contentsXML = = vma.GetContents (handle)

objContainer = CType (contentsXML.body, VMware.vma.Container)

In this example, we target /vm of the VI Web service hierarchy. We obtain its handle by
invoking ResolvePath and passing it the string value of the path as set by vPath. The returned
XML document from invoking ResolvePath is similar to Code Listing 3.8.

Code Listing 3.8 XML Document Returned by Invoking ResolvePath

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"> Continued

337

338 Appendix A ¢ All Scripts and Program Source

<env:Body>
<GetContentsResponse xmlns="urn:vmal"s>
<returnval>
<handle>vma-0000-0000-0008</handle>
<vHandle>vma-0000-0000-0008@c2f53ca4e000003</vHandle>
<body xsi:type="Container"s
<item>
<key>vma-vm-00000000011</key>
<name>564d0f8b-3bde-1003-fel9-0f77cc3la3dc</name>
<types>VirtualMachine</type>
</item>
<item>
<key>vma-vm-00000000012</key>
<name>564d71c5-d04d-b62e-748a-9020f0ee481le</name>
<typesVirtualMachine</type>
</item>
<item>
<key>vma-vm-00000000014</key>
<name>564d63db-9aaf-97af-4c47-8562eldc65e0</name>
<typesVirtualMachine</type>
</item>
<item>
<key>vma-vm-00000000015</key>
<name>564d71b4-dlfc-£fdb9-9c4b-125b3ba0b32a</name>
<types>VirtualMachine</type>
</item>
</body>
</returnval>
</GetContentsResponses>
</env:Body>
</env:Envelopes>

Code Listing 3.9 C# Script for Using vHandles

while (
myTask.currentState.Equals (TaskRunState.running) ||
myTask.currentState.Equals (TaskRunState.scheduled) ||
myTask.currentState.Equals (TaskRunState.starting)
) |
VMware.vma.VHandleList vhlist = new VHandleList() ;
vhlist.vHandle = new string[] { vc.vHandle };
UpdateList ul = vma_.GetUpdates(vhlist, true);
for (int u = 0; u < ul.update.Length; u++) ({
for (int ¢ = 0; ¢ < ul.update[u].change.Length; c++) {
if (ul.update[u] .change[c] .target == "currentState")
myTask.currentState =
(TaskRunState)ul.update [u] .change[c] .val;
} else if (ul.update[u].changel[c].target ==

All Scripts and Program Source* Appendix A

"percentCompleted") {
myTask.percentCompleted =
(Single)ul.update [u] .change [c] .val;
Console.Write("..." +

myTask.percentCompleted.ToString()) ;

Code Listing 3.10 VB.NET Script for Using VHandles

While migrateTask.currentState = VMware.vma.TaskRunState.running Or _

migrateTask.currentState = VMware.vma.TaskRunState.scheduled Or _
migrateTask.currentState = VMware.vma.TaskRunState.starting
Dim vhlist As VMware.vma.VHandleList = New VMware.vma.VHandleList

vhlist.vHandle = New String() {vc.vHandle}
Dim ul As VMware.vma.UpdateList = vma.GetUpdates(vhlist, True)
For u = 0 To ul.update.Length - 1
For ¢ = 0 To ul.update (u).change.Length - 1
If (ul.update(u).change(c).target = "currentState") Then
migrateTask.currentState = ul.update (u) .change(c) .val
ElseIf (ul.update(u) .change(c).target = "percentCompleted") Then
migrateTask.percentCompleted = ul.update (u) .change(c) .val
Console.Write("..." + migrateTask.percentCompleted.ToString/()
End If
Next c
Next u
End While

Code Listing 3.11 C# Script for Enumerating VMs in a Particular Group

string path = "/vcenter/ESXFarml/ProductionVMs-Fin";
string handle = vma_.ResolvePath (path) ;

ViewContents contentsXML = vma_.GetContents (handle) ;
Container objContainer = (Container) contentsXML.body;
Item[] 1listVMs = objContainer.item;

for (int i = 1; 1 <= listVMs.Length-1; i++)

{
contentsXML = vma_.GetContents (listVMs (i) .key) ;
VirtualMachine vm = contentsXML.body;
string Name = vm.info.name
int cfgNumCPU = wvm.hardware.cpu.count
string cfgCPUShares = vm.hardware.cpu.controls.shares
int cfgSizeMem = vm.hardware.memory.sizeMb
string CfgMemShares = vm.hardware.memory.controls.shares
string msg = vmName + "\t"+ cfgNumCPU + "\t" + cfgCPUShares +

"\t" + cfgSizeMem + "\t" + CfgMemShares;

System.Console.WriteLine (msg) ;

339

340

Appendix A ¢ All Scripts and Program Source

Code Listing 3.12 VB.NET Script for Enumerating VMs in a Particular
Group

Dim path, handle, vmName, cfgCPUShares, CfgMemShares, msg As String
Dim i, cfgNumCPU, cfgSizeMem As Integer

Dim contentsXML As VMware.vma.ViewContents

Dim objContainer As VMware.vma.Container

Dim listVMs () As VMware.vma.Item

Dim vm As VMware.vma.VirtualMachine

path = "/vcenter/ESXFarml/ProductionVMs-Fin"
handle = vma.ResolvePath (path)
contentsXML = vma.GetContents (handle)

objContainer = CType (contentsXML.body, VMware.vma.Container)

listVMs = objContainer.item

For i = 0 To listVMs.Length - 1
contentsXML = vma.GetContents (listVMs (1) .key)
vm = contentsXML.body
vmName = vm.info.name
cfgNumCPU = vm.hardware.cpu.count
cfgCPUShares = vm.hardware.cpu.controls.shares
cfgSizeMem = vm.hardware.memory.sizeMb
CfgMemShares = vm.hardware.memory.controls.shares
msg = vmName & vbTab & cfgNumCPU & vbTab & cfgCPUShares & _

vbTab & cfgSizeMem & vbTab & CfgMemShares

System.Console.WriteLine (msg)

Next 1

Code Listing 3.13 C# Script for Migrating a VM via VMotion

string handleHost = vma_.ResolvePath (pathHost) ;

string handleVM = vma_.ResolvePath (pathVM) ;

ViewContents contentsXML = vma_.MigrateVM(handleVM, handleHost,
Level.normal) ;

Code Listing 3.14 VB.NET Script for Migrating a VM via VMotion

Dim handleHost, handleVM As String
Dim contentsXML As VMware.vma.ViewContents

handleHost = wvma.ResolvePath (pathHost)
handleVM = vma.ResolvePath (pathVM)
contentsXML = vma.MigrateVM(vm, host, VMware.vma.Level.normal)

This particular operation, like many others, can be monitored by using the returned vHandle
to retrieve updates on the task’s progress. For example, Code Listing 3.15 is a sample result from a
Stop VM operation.

Code Listing 3.15 Results for a StopVM Operation

All Scripts and Program Source* Appendix A

<env:Envelope xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<env:Body>
<StopVMResponse xmlns="urn:vmal'">
<returnval>
<handle>vma-task-active-0a810</handle>
<vHandle>vma-task-active-0a810@c2£53ca4e000001</vHandle>
<body xsi:type="Task">
<cause>user</cause>
<entity>vma-vm-00000000012</entity>
<eventCollector>vma-0000-0000-009b</eventCollectors>
<operationName>Power off VM</operationNamex>
<queueTime>2006-07-12T00:56:10-05:00</queueTime>
<allowCancel>false</allowCancel>
<currentStatesstarting</currentState>
</body>
</returnvals>
</StopVMResponse>
</env:Body>
</env:Envelope>

Code Listings 3.16 and 3.17 demonstrate how to change the priority of a virtual machine by
adjusting the shares allocated to its vCPUs.

Code Listing 3.16 C# Script for Changing the Priority of a VM

ViewContents vc = vma_.GetContents (vm) ;

Change change = new Change () ;

change.target = "hardware/cpu/controls/shares";
change.val = "high";

change.op = ChangeOp.edit;

change.valSpecified = true;

ChangeReqList changeList = new ChangeReqgList () ;
ChangeReq changeReq = new ChangeReq() ;

changeReqg.handle = vc.handle;

changeReqg.change = new Changel[] { change };

ChangeReq[] changeRegs = new ChangeReq[] { changeReq };
changelist.req = changeRedgs;

UpdateList updateList = vma_.PutUpdates (changeList) ;

Code Listing 3.17 VB.NET Script for Changing the Priority of a VM

Dim vc As VMware.vma.ViewContents = vma.GetContents (vm)
Dim change As New VMware.vma.Change

change.target = "hardware/cpu/controls/shares"
change.val = "high"

change.op = VMware.vma.ChangeOp.edit

change.valSpecified = True

341

342

Appendix A ¢ All Scripts and Program Source

Dim changeReq As New VMware.vma.ChangeReq

changeReqg.handle = vc.handle

changeReqg.change = New VMware.vma.Change () {change}

Dim changeRegs() As VMware.vma.ChangeReq = {changeReq}
changelist.req = changeRegs

Dim updatelList As VMware.vma.UpdateList = vma.PutUpdates (changeList)

Code Listing 3.18 Port Configuration for the HTTP/HTTPS Proxy

<proxyDatabase>

<server 1d="0">
<namespace> / </namespace>
<host> localhost </host>
<port> -1 </ports>

</servers>

<server 1id="1">
<namespace> /sdk </namespace>
<host> localhost </hosts>
<port> -2 </ports>

</servers

<redirect id="2">/ui</redirects>

<server 1d="3">
<namespace> /mob </namespace>
<host> localhost </hosts>
<port> 8087 </ports>

</servers

</proxyDatabase>

The following example shows the portion of the build batch files for Visual Studio 2005
included in the SDK package that generates the .CS stubs and compiles them as
VimService2005.d11.

wsdl /n:VimApi /out:stage\VimObjects.cs ..\..\vimService.wsdl ..\..\vim.wsdl
csc /t:library /out:VimService2005.d11 stage*.cs

Code Listing 3.19 C# Script for Logging on to the Web Service

using System;
using VimApi;

protected VimService _service;
protected ServiceContent _sic;
protected ManagedObjectReference _svcRef;

public void Connect (string url, string username, string password) ({
_service = new VimService();
_service.Url = url;
_service.CookieContainer = new System.Net.CookieContainer() ;

_svcRef = new ManagedObjectReference () ;
_svcRef.type = "ServiceInstance";

All Scripts and Program Source* Appendix A

_svcRef.Value = "Servicelnstance";
_sic = _service.RetrieveServiceContent (_svcRef) ;

if (_sic.sessionManager != null) ({
_service.Login(_sic.sessionManager, username, password, null);

Code Listing 3.20 VB.NET Script for Logging on to the Web Service

Imports System
Imports VimApi

protected _service As VimService
protected _sic As ServiceContent
protected _svcRef as ManagedObjectReference

Public Function connect (url As string, username as String, password As _
String)
_service = New VimService
_service.Url = url
_service.CookieContainer = New System.Net.CookieContainer

_svcRef = New ManagedObjectReference

_svcRef.type = "ServiceInstance"

_svcRef.Value = "Servicelnstance"

_sic = _service.RetrieveServiceContent (_svcRef)

if (_sic.sessionManager != null)
_service.Login(_sic.sessionManager, username, password, null)

End if

End Function

In addition to using the CertPolicy distributed in the SDK package, you can create you own
CertPolicy that will validate, for example, all certificates. The following sample code implements
ICertificatePolicy and then accepts every request under SSL:

using System.Net;
using System.Security.Cryptography.X509Certificates;

public class CertPolicy : ICertificatePolicy ({
public bool CheckValidationResult (
ServicePoint svcPnt
, X509Certificate cert
, WebRequest reqg
, int certProblem) {
return true;
} // end CheckvalidationResult

} // class CertPolicy

343

344

Appendix A ¢ All Scripts and Program Source

Next, we invoke the retrieveProperties operation, passing it the PropertyCollector man-
aged object reference and the PropertyFilterSpec that we constructed. The resulting ObjectContent is
then used alongside a DynamicProperty array to store the values retrieved, which we then write to
the console. Note that the variable service was declared and defined upon establishing a con-
nection with the Web service.

ObjectContent [] ocary = vimService.retrieveProperties (pCollector,
new PropertyFilterSpec[] { pfSpec });

if (ocary !'= null) {
ObjectContent oc = null;
ManagedObjectReference mor = null;
DynamicProperty[] pcary = null;
DynamicProperty pc = null;
oc = ocaryl[0];
mor = oc.obj;
pcary = oc.propSet;

Console.WriteLine ("Object Type : " + mor.type);
Console.WriteLine ("Reference Value : " + mor.Value);
if (pcary !'= null) {

pc = pcary[0];

Console.WriteLine (" Property Name : " + pc.name);

Console.WriteLine (" Property Value : " + pc.val);

We begin by creating a new PropertySpec instance, followed by a single ObjectSpec property:

PropertySpec pSpec = new PropertySpec() ;

pSpec.Type = "VirtualMachine";

pSpec.all = false; pSpec.allSpecified = true;

pSpec.pathSet = new String[] { "guest.hostName", "guest.guestFullName" };

ObjectSpec oSpec = new ObjectSpec() ;

oSpec.0bj = refDataCenter;
oSpec.Skip = FALSE;

Code Listing 3.21 Defining TraversalSpec Objects

TraversalSpec dc2HostTSpec = new TraversalSpec() ;

dc2HostTSpec.Type = "Datacenter";
dc2HostTSpec.Path = "hostFolder";
dc2HostTSpec.SelectSet = new SelectionSpec![] {recursiveSpec};

TraversalSpec dc2VmTSpec = new TraversalSpec() ;
dc2VmTSpec.Type = "Datacenter";

dc2vmTSpec.Path = "vmFolder";

dc2VmTSpec.SelectSet = new SelectionSpec[]{recursiveSpec};

All Scripts and Program Source* Appendix A

TraversalSpec cr2RpTSpec = new TraversalSpec() ;

cr2RpTSpec.Type = "ComputeResource";
cr2RpTSpec.Path = "resourcePool";

TraversalSpec cr2HostTSpec = new TraversalSpec() ;
cr2HostTSpec.Type = "ComputeResource";
cr2HostTSpec.Path = "host";

TraversalSpec rp2rpTSpec = new TraversalSpec() ;
rp2rpTSpec.Type = "ResourcePool";

rp2rpTSpec.Path = "resourcePool";

TraversalSpec folderTSpec = new TraversalSpec();

folderTSpec.Type = "Folder";

folderTSpec.Path = "childEntity";

folderTSpec.SelectSet = new SelectionSpec[]{recursiveSpec,
dc2VmTSpec,
dc2HostTSpec,
Cr2RpTSpec,
cr2HostTSpec,
rp2rpTSpec} ;

At that point, we can construct the PropertyFilterSpec, as shown Code Listing 3.22.
Code Listing 3.22 PropertyFilterSpec

oSpec.SelectSet = new SelectionSpec|]{folderTSpec};

PropertyFilterSpec pfSpec = new PropertyFilterSpec() ;
pfSpec.PropSet = new PropertySpec([] {pSpec};
pfSpec.ObjectSet = new ObjectSpec([] {ospec};

Code Listing 3.23 demonstrates the PowerOft VM_Task operation.
Code Listing 3.23 PowerOffVYM_Task

ManagedObjectReference MgdObjRef VM =
_service.findByInventoryPath(_sic.SearchIndex (), pathVM);
ManagedObjectReference MgdObjRef Host =
_service.findByInventoryPath(_sic.SearchIndex (), pathHost);
ManagedObjectReference MgdObjRef Task =
_service.PowerOffVM (MgdObjRef VM, MgdObjRef Host) ;

Code Listing 3.24 MigrateVM Task

ManagedObjectReference MgdObjRef VM =
_service.findByInventoryPath(sic.SearchIndex (), pathVM);
ManagedObjectReference MgdObjRef Host =

_service.findByInventoryPath(sic.SearchIndex (), pathHost) ;
ManagedObjectReference MgdObjRef RPool =
_service.findByInventoryPath(_sic.SearchIndex (), pathResourcePool) ;

ManagedObjectReference MgdObjRef Task =
_service.MigrateVM (MgdObjRef VM, MgdObjRef RPool, MgdObjRef Host

345

346 Appendix A ¢ All Scripts and Program Source

VirtualMachineMovePriority.highPriority,
VirtualMachinePowerState.poweredOn) ;

Code Listing 3.25 CreateSnapshot_Task

ManagedObjectReference MgdObjRef VM =

_service.findByInventoryPath(_sic.SearchIndex(), pathVM);
boolean memoryDump = false;
boolean quiesceFileSys = true;
string snapName = "Pre-SP1l Snapshot #3";
string snapDescription = "Pre-SP1 Snapshot #3 Created on 2006/08/20";

ManagedObjectReference MgdObjRef Task =
_service.CreateSnapshot_Task (MgdObjRef VM, snapName, snapDescription,
memoryDump, quiesceFileSys) ;

Code Listing 3.26 CreateScheduledTask

ManagedObjectReference MgdObjRef VM =
_service.FindByInventoryPath(sic.SearchIndex(), pathVM) ;

MethodActionArgument [] mActArgumnt = new MethodActionArgument () ;
MethodAction mAction = new MethodAction() ;

mActArgumnt .Value = MgdObjRef VM;

ma.Argument = mActArgumnt ;

ma.Name = "MigratevM";

DailyTaskScheduler dtScheduler = new DailyTaskScheduler () ;
dtScheduler.Hour = 12;
dtScheduler.Minute = 0;

ScheduledTaskSpec tSpec = new ScheduledTaskSpec() ;
tSpec.Action = mAction;

tSpec.Scheduler = dtScheduler;

tSpec.Enabled = true;

tSpec.Name = "Migrate virtual machine";
tSpec.Description = "Migrate virtual machine at noon") ;
tSpec.Notification = "VMAdmin@syngress.com";

_service.createScheduledTask (_sic.ScheduledTaskManager,MgdObjRef VM, tSpec) ;

Scripts from Chapter 4

Code Listing 4.1 ESX 2.x VMX Code
guestOS = "winnetenterprise"
config.version = "6"

virtualHW.version = "3"

scsi0O.present = "true"
scsi0O.sharedBus = "none"
scsi0O.virtualDev = "lsilogic"

All Scripts and Program Source* Appendix A 347

memsize = "512"

scsi0:0.present = "true"

scsi0:0.fileName = "ESX Created VM.vmdk"
scsiO:0.deviceType = "scsi-hardDisk"
ethernet0.present = "true"
ethernet0.allowGuestConnectionControl = "false"
ethernet0.networkName = "VM Network"
ethernet0.addressType = "vpx"

Code Listing 4.2 ESX 3.x VMX Code

guestOS = "winnetenterprise"
config.version = "8"

virtualHW.version = "4"

scsiO.present = "true"

scsiO.sharedBus = "none"
scsi0.virtualDev = "lsilogic"

memsize = "512"

scsiO:0.present = "true"
scsi0O:0.fileName = "ESX Created VM.vmdk"
scsiO:0.deviceType = "scsi-hardDisk"
ethernetO.present = "true"
ethernet0.allowGuestConnectionControl = "false"
ethernet0.networkName = "VM Network"
ethernet0.addressType = "vpx"

Once you start a VM using a VMX configuration file like the ones shown in Code Listings
4.1 and 4.2, VMware will generate additional entries in the VMX. These entries identify the vir-
tual machine and set default values for the virtual machine. Examples of these types of entries are
shown in Code Listing 4.3

Code Listing 4.3 VMWare Auto Generated VMX Entry Examples
uuid.bios = "56 4d ee 3c 52 06 a3 de-be 4a 73 9c cc 79 25 2b "
ethernet0.generatedAddress = "00:50:56:a7:42:e2"
powerType.powerOff = "default"

powerType.powerOn = "default"

powerType.suspend = "default"

powerType.reset = "default"

Code Listing 4.4 Example Virtual Machine Configuration File
config.version = "6"
virtualHW.version = "3"

memsize = "256"

floppy0.present = "false"
displayName = "newVM"

guestOS = "winNetStandard"
ide0:0.present = "TRUE"
ide0:0.deviceType = "cdrom-raw"
ide:0.startConnected = "false"
floppy0.startConnected = "FALSE"
floppy0 .fileName = "/dev/£do"
Ethernet0.present = "TRUE"

348 Appendix A ¢ All Scripts and Program Source

Ethernet0.connectionType = "monitor dev"
Ethernet0.networkName = "VM Network"
Ethernet0.addressType = "vpx"
scsiO.present = "true"

scsi0O.sharedBus = "none"
scsiO.virtualDev = "lsilogic"
scsiO:0.present = "true"

scsiO:0.fileName = "newvm.vmdk"
scsi0:0.deviceType = "scsi-hardDisk"

Code Listing 4.5 vmkfstools Command Options for Virtual Disks
vmkfstools
OPTIONS FOR VIRTUAL DISKS:
vinkfstools -c --createvirtualdisk # [gGmMkK]
-d --diskformat [zeroedthick]|
eagerzeroedthick]|
thick]|
thin]
-a --adapterType [buslogic|lsilogic]
-w --writezeros
-j --inflatedisk
-U --deletevirtualdisk
-E --renamevirtualdisk srcDisk
-1 --clonevirtualdisk srcDisk
-d --diskformat [rdm:<devices>|rdmp:<devices |
raw:<devices|thin|2gbsparse]
-X --extendvirtualdisk # [gGmMkK]
-M --migratevirtualdisk
-r --createrdm /vmfs/devices/disks/...
-g --queryrdm
-z --createrdmpassthru /vmfs/devices/disks/...
-Q --createrawdevice /vmfs/devices/generic/...
-v --verbose #
-g --geometry
vmfsPath

Code Listing 4.6 Scripted VM Creation

VM Creation Script ############H#HHHHHHHHHHHHHHHHHHHHHHHH
#Script Version 1.1

#Author David E. Hart

#Date 10-05-06

#

#H-------- +

Purpose|

#-------- -

This script will create a VM with the following attributes;

Virtual Machine Name = ScriptedvM

Location of Virtual Machine = /VMFS/volumes/storagel/ScriptedVM
Virtual Machine Type = "Microsoft Windows 2003 Standard"

Virtual Machine Memory Allocation = 256 meg

All Scripts and Program Source* Appendix A

#

R +

#Custom Variable Section for Modification|

Bom oo

#NVM is name of wvirtual machine (NVM). No Spaces allowed in name
#NVMDIR is the directory which holds all the VM files

#NVMOS specifies VM Operating System

#NVMSIZE is the size of the virtual disk to be created

R

Default Variable settings - change this to your preferences
NVM="ScriptedvM" # Name of Virtual Machine
NVMDIR="ScriptedvM" # Specify only the folder name to be created; NOT the

complete path

NVMOS="winnetstandard" # Type of OS for Virtual Machine
NVMSIZE="4g" # Size of Virtual Machine Disk
VMMEMSIZE="256" # Default Memory Size

End Variable Declaration

mkdir /vmfs/volumes/storagel/$SNVMDIR # Creates directory

exec 6>&1 # Sets up write to file
exec 1>/vmfs/volumes/storagel/SNVMDIR/$NVM.vmx # Open file

write the configuration

echo config.version = '"'6'"! # For ESX 3.x the value is 8
echo virtualHW.version = '"'3'"' # For ESX 3.x the value is 4
echo memsize = '"'$SVMMEMSIZE'"'

echo floppy0.present = '"'TRUE'"' # setup VM with floppy

echo displayName = '"'S$NVM'"!' # name of virtual machine
echo guestOS = '"'S$SNVMOS'"'

echo

echo ide0:0.present = '"'TRUE'"'

echo ide0:0.deviceType = '"'cdrom-raw'"'

echo ide:0.startConnected = '"'false'"' # CDROM enabled

echo floppy0.startConnected = '"'FALSE'"'

echo floppy0.fileName = '"'/dev/fdo'"'

echo EthernetO.present = '"'TRUE'"'

echo EthernetO.networkName = '"'VM Network'"' # Default network
echo Ethernet0.addressType = '"'vpx'"'

echo

echo scsiO.present = '"'true'"'

echo scsiO.sharedBus = '"'none'"'

echo scsiO.virtualDev = '"'lsilogic'™'

echo scsiO:0.present = '""'true'"' # Virtual Disk Settings
echo scsi0O:0.fileName = '"'$SNVM.vmdk'"'

echo scsiO:0.deviceType = '"'scsi-hardDisk'"!'

echo

349

350

Appendix A ¢ All Scripts and Program Source
exec 1>&-

make stdout a copy of FD 6 (reset stdout), and close FD6
exec 1>&6
exec 6>&-

Change permissions on the file so it can be executed by anyone
chmod 755 /vmfs/volumes/storagel/$NVMDIR/SNVM.vmx

#Creates 4gb Virtual disk
cd /vmfs/volumes/storagel/SNVMDIR #change to the VM dir
vmkfstools -c $NVMSIZE $SNVM.vmdk -a lsilogic

#Register VM
vimware-cmd -s register /vmfs/volumes/storagel/SNVMDIR/SNVM.vmx

Code Listing 4.7 Scripted VM Creation with PERL

#!/usr/bin/perl -w

use VMware: :VmPerl;

use VMware::VmPerl: :Server;

use VMware::VmPerl: :ConnectParams;
#use strict;

VM Menu Driven Creation Script
#Script Version 1.8

#Author David E. Hart

#Date 10-05-06

This script present a menu for automatically building

Virtual Machine config files (VMX) and Dis files (VMDK)

This script demonstrates how to could automate the setup
of a virtual environments

Bommm e +

#Custom Variables Section

R +

#vmname = virtual machine name, will be used for disk as well
#vmmem = amount of memory assigned to VM

#vmos = OS that VM is configured for
#vmdisk = size of VM disk
HH##HHHEFHH R R R

main: # main menu

system("clear") ;

print " MAIN MENU \n";

print "------------------- Virtual Machine Creation --------- \n";
print "\n";

All Scripts and Program Source* Appendix A

print "\n";
print "\n";
print " 1) Create a Custom VM \n";
print "\n";
print " 2) Create VM's from Defined Templates \n";
print "\n";
print " 3) View ESX's registered VM's \n";
print "\n";
print " 4) Exit \n";
print "\n";
print " Your Selection - ";
Smenuopt = <>; chomp S$menuopt; # Get user selection
if ($menuopt == 1) # Get input for custom VM
system("clear") ;
print "What do you Want to Name your VM? ";
$vmname = <>; chomp Svmname; # use chomp to remove carriage return
print "How much memory do you want to assign? ";
Svmmem = <>;chomp $vmmem;
print "Do you want to Run Windows 2003STD as the 0S? (y/n) ";
$vmos = <>;chomp S$vmos;
if ($vmos eq "y") {
$vmos = "winNetStandard";
} # Only 2 options for this example
else {
print "Do you want to Run Windows 2003Ent as the 0S? (y/n) ";
$vmos2 = <>;chomp $vmos2;
if ($vmos2 eq "y") {
Svmos = "winnetenterprise";
1
1
print "What size hard disk do you want to setup (gb)? ";
$vmdisk = <>;chomp S$vmdisk;
print "\n";
$x = writevmx () ; # Subrouting for creating VMX file
if ($x == 1) {
print "VMX File written successfully \n";
1
Sw = setper(); # Subroutine to set permissions so anyone can use
VM
if ($w == 1) {
print "Permisions set successfully \n";
1
$y = createdisk(); # subrouting to create VMDK disk file
if ($y == 1) {
print "Virtual Disk Created successfully \n";
1
$z = registervm(); # subroutine to register VM with ESX
if ($z == 1) |

print "VM registered successfully \n";

}

351

352

Appendix A ¢ All Scripts and Program Source

Spause = <STDIN>;
goto main

—

if ($menuopt == 2) { # option to displays the templates

menul :

system("clear") ;

print " Defined Templates \n";
print " e \n";
print "\n";
print "\n";
print " 1) Windows 2003std VM with 256m, 4gb drive \n";
print "\n";
print " 2) Windows 2003ent VM with 1gig, 8gb drive \n";
print "\n";
print "\n";
print "\n";
print "\n";
print " Your Selection - ";
Smenulopt = <>; chomp S$Smenulopt;
if ($menulopt == 1) {
Svmname = "2003std25m4gb";
Svmmem = "256"; # change and add on similar sections
Svmdisk = "4"; # to create templates for your environment
Svmos = "winnetstandard";
SxX = writevmx() ;
if ($x == 1) {

if

print "VMX File written successfully \na";
}

Sw = setper();
if ($w == 1) {
print "Permisions set successfully \na";

}

Sy = createdisk();
if ($y == 1) {
print "Virtual Disk Created successfully \na";
}

$z = registervm();
if ($z == 1) {
print "VM registered successfully \na";

}
print "Press the ENTER key to continue ...";
Spause = <STDIN>;
goto main

}

Call subroutines to

($menulopt == 2) {

Svmname = "2003Entlgb8gb";
Svmmem = "1024";

Svmdisk = "8";

$Svmos = "winnetenterprise";

create VM's

All Scripts and Program Source* Appendix A

if ($x == 1) {
print "VMX File written successfully \na";
}
Sw = setper();
if (Sw == 1) {
print "Permisions set successfully \na";
1
Sy = createdisk();
if ($y == 1) {
print "Virtual Disk Created successfully \na";
1
$z = registervm() ;
if ($z == 1) {
print "VM registered successfully \na";
}
print "Press the ENTER key to continue ...";
Spause = <STDIN>;
goto main
1
else {
goto menul;

}

if ($menuopt == 3) { # Use a function of VMPERL to display registered VM's

system("clear") ;

my ($server name, $user, S$passwd) = @ARGV; # Assume running in ESX
server

my S$port = 902; # with appropriate
rights

VMware: :VmPerl: :ConnectParams: :new($server name, $port, Suser, $passwd) ;
VMware: :VmPerl: :ConnectParams: :new (undef, $port, Suser, $Spasswd) ;
my S$Sconnect params = VMware::VmPerl::ConnectParams: :new() ;

Establish a persistent connection with server

my S$Sserver = VMware::VmPerl::Server::new() ;
if (!$server->connect ($connect params))
my ($error number, $error string) = $server->get last error();

die "Could not connect to server: Error $error number:
$error_string\n";

1
print "\nThe following virtual machines are registered:\n";

Obtain a list containing every config file path registered with the
server.
my @list = $server->registered vm names() ;
if (!defined($1list[0])) {
my ($error number, $error string) = $server->get last error();

353

354

Appendix A ¢ All Scripts and Program Source

"serror_ string\n";

print "$ \n" foreach (e@list);
Destroys the server object,
undef S$Sserver;

print
Spause = <STDIN>;

goto main

1
if ($menuopt == 4) {
goto endl

}

sub writevmx {

"Press the ENTER key to continue ...";

Subroutine to Create VM's VMX config file

thus disconnecting from the server.

"\1’1" ;

"\1’1" ;

$file = '/vmfs/volumes/storagel/perlvm/perlvm.vmx';

the file
Sfile = "/vmfs/volumes/storagel/perlvm/" $vmname "ovmx";
open (INFO, "s>$file"); # Open for output
print INFO 'config.version = "6" ' "\n";
print INFO 'virtualHW.version = "3" ' "\n";
print INFO 'memsize = "' Svmmem o "\n";
print INFO 'floppyO.present = "TRUE" ' "\n";
print INFO 'displayName = "' Svmname . '" ! "\n";
print INFO 'guestOS = "!' Svmos tno "\n";
print INFO 'ideO:0.present = "TRUE" ' "\n";
print INFO 'ideO:0.deviceType = "cdrom-raw" ' "\n";
print INFO 'ide:0.startConnected = "false" ' "\n";
print INFO 'floppyO.startConnected = "FALSE" ' "\n";
print INFO 'floppyO.fileName = "/dev/fdo" ' "\n";
print INFO 'EthernetO.present = "TRUE" ' "\n";
print INFO 'EthernetO.connectionType = "monitor dev" '
print INFO 'EthernetO.networkName = "VM Network" ' "\n";
print INFO 'EthernetO.addressType = "vpx" ' "\n";
print INFO 'scsiO.present = "true" ' . "\n";
print INFO 'scsiO.sharedBus = "none" ' "\n";
print INFO 'scsiO.virtualDev = "lsilogic" ' "\n";
print INFO 'scsiO:0.present = "true" ' "\n";
print INFO 'scsi0O:0.fileName = "' Svmname 'ovmdk" !
print INFO 'scsi0O:0.deviceType = "scsi-hardDisk" ! "\n";

close (INFO) ;

Subroutine to Create
Svmdisk
Svmname

sub createdisk ({
Scr = "vmkfstools -c "

/vmfs/volumes/storagel/perlvm/" .

Close the file

Virtual Disk
n g n . n
".vmdk -a lsilogic";

Name

All Scripts and Program Source* Appendix A

system("Scxr") ;

i

sub registervm { # Subroutine to Register VM with ESX server
$rg = "vmware-cmd -s register /vmfs/volumes/storagel/perlvm/"
Svmname . ".vmx";

system("Srg") ;

sub setper({ # Subroutine to set permission on VMX file
$pm = "chmod 755 /vmfs/volumes/storagel/perlvm/" . $vmname . ".vmx";
system("Spm") ;

endl:

Code Listing 4.8 Scripted Creation of VM with Perl Key Variables

Svmname = virtual machine name, will be used for disk as well
Svmmem = amount of memory assigned to VM

$Svmos = OS that VM is configured for

Svmdisk = size of VM disk

Code Listing 4.9 Perl Script Static Variables for Template VM Creation

if ($menulopt == 1) {
Svmname = "2003std25m4gb";
Svmmem = "256";
Svmdisk = "4";
Svmos = "winnetstandard";

Once you have your source Template virtual disk ready, go ahead and edit the code to sup-
port cloning (see Code Listing 4.10)

Code Listing 4.10 ESX Shell Script VM Creation Utilizing Cloning
VM Creation Script Utilizing Cloning ######H#H#H##H#H#HHHHHH#H
#Script Version 1.2

#Author David E. Hart

#Date 10-05-06

#

#-------- +

Purpose|

#-------- oo -

This script will create a VM utilizing the cloning option of # vmkfstools
command tool;

The New Virtual Machine Configuration will be set as follows

Virtual Machine Name = ScriptedCloneVM

Location of Virtual Machine = /VMFS/volumes/storagel/ScriptedVM

Virtual Machine Type = "Microsoft Windows 2003 Standard"

Virtual Machine Memory Allocation = 256 meg

H oH H H H H

355

356 Appendix A ¢ All Scripts and Program Source

R e e e +
#Custom Variable Section for Modification|
Bommm oo -

#NVM is name of virtual machine (NVM). No Spaces allowed in name
#NVMDIR is the directory which holds all the VM files
#NVMOS specifies VM Operating System

R R R R

Default Variable settings - change this to your preferences
NVM="ScriptedCloneVM" # Name of Virtual Machine
NVMDIR="ScriptedCloneVM" # Specify only the folder name to be created; NOT

the complete path
NVMOS="winnetstandard" # Type of OS for Virtual Machine
VMMEMSIZE="256" # Default Memory Size

End Variable Declaration

mkdir /vmfs/volumes/storagel/$NVMDIR # Creates directory

exec 6>&1 # Sets up write to file
exec 1>/vmfs/volumes/storagel/SNVMDIR/SNVM.vmx # Open file

write the configuration

echo config.version = '"'6'"™! # For ESX 3.x the value is 8
echo virtualHW.version = '"'3'"' # For ESX 3.x the value is 4
echo memsize = '"'SVMMEMSIZE'"'

echo floppy0O.present = '"'TRUE'"' # setup VM with floppy

echo displayName = '"'SNVM'"' # name of virtual machine
echo guestOS = '"'SNVMOS'"'

echo

echo ide0:0.present = '"'TRUE'"'

echo ide0:0.deviceType = '"'cdrom-raw'"'

echo ide:0.startConnected = '"'false'"' # CDROM enabled

echo floppy0.startConnected = '"'FALSE'"'

echo floppy0.fileName = '"'/dev/fdo'"!'

echo EthernetO.present = '"'TRUE'"'

echo EthernetO.networkName = '"'VM Network'"' # Default network
echo EthernetO.addressType = '"'vpx'"'

echo

echo scsiO.present = '"'true'"!'

echo scsi0O.sharedBus = '"'none'"'

echo scsiO.virtualDev = '"'lsilogic'"

echo scsiO:0.present = '"'true'"' # Virtual Disk Settings
echo scsi0O:0.fileName = '"'SNVM.vmdk'"'

echo scsiO:0.deviceType = '"'scsi-hardDisk'"

echo
close file
exec 1>&-

All Scripts and Program Source* Appendix A

make stdout a copy of FD 6 (reset stdout), and close FD6
exec 1>&6
exec 6>&-

Change permissions on the file so it can be executed by anyone
chmod 755 /vmfs/volumes/storagel/$NVMDIR/SNVM.vmx

#Clone existing Template VM's VMDK into current directory
cd /vmfs/volumes/storagel/$SNVMDIR #change to the VM dir
vmkfstools -i /vmfs/volumes/storagel/ScriptedVM/ScriptedVM.vmdk $NVM.vmdk

#Register VM
vmware-cmd -s register /vmfs/volumes/storagel/$SNVMDIR/$NVM.vmx

Code Listing 4.11 Scripted VM Creation with Perl Utilizing Cloning

#!/usr/bin/perl -w

use VMware: :VmPerl;

use VMware: :VmPerl::Server;

use VMware::VmPerl: :ConnectParams;
#use strict;

VM Menu Driven Creation Script with Cloning
#Script Version 1.3

#Author David E. Hart

#Date 10-05-06

This script present a menu for automatically building

Virtual Machine config files (VMX) and Disk files (VMDK)

This script demonstrates how to could automate the setup
of a virtual environments and includes Cloning of VM.s

B +

#Custom Variables Section |

i +

#vmname = virtual machine name, will be used for disk as well
#vmmem = amount of memory assigned to VM

#vmos = OS that VM is configured for
#vmdisk = size of VM disk
HH##HHHHHH S A

main: # main menu

system("clear") ;

print " MAIN MENU \n";

print "----------------—-- Virtual Machine Creation --------- \n";
print "\n";

357

358

Appendix A ¢ All Scripts and Program Source

print "\n";

print "\n";

print " 1) Create a Custom VM \n";

print "\n";

print " 2) Create VM's from Defined Templates \n";
print "\n";

print " 3) View ESX's registered VM's \n";
print "\n";

print " 4) Clone an Existing VM \n";

print "\n";

print " 5) Exit \n";

print "\n";

print " Your Selection - ";

Smenuopt = <>; chomp S$menuopt; # Get user selection
if ($menuopt == 1) { # Get input for custom VM

system("clear") ;
print "What do you Want to Name your VM? ";

Svmname = <>; chomp S$vmname; # use chomp to remove carriage return
print "How much memory do you want to assign? ";
Svmmem = <>;chomp Svmmem;
print "Do you want to Run Windows 2003STD as the 0S? (y/n) ";
$vmos = <>;chomp S$Svmos;
if ($vmos eq "y") |
Svmos = "winNetStandard";
} # Only 2 options for this example
else ({

print "Do you want to Run Windows 2003Ent as the 0S? (y/n) ";
$vmos2 = <>;chomp S$vmos2;
if ($vmos2 eq "y") {
Svmos = "winnetenterprise";
}
}

print "What size hard disk do you want to setup (gb)? ";

Svmdisk = <>;chomp $vmdisk;

print "\n";

$x = writevmx () ; # Subrouting for creating VMX file
if ($x == 1) {

print "VMX File written successfully \n";

}

Sw = setper(); # Subroutine to set permissions so anyone can

if ($w == 1) {
print "Permisions set successfully \n";
}
Sy = createdisk(); # subrouting to create VMDK disk file
if ($y == 1) {
print "Virtual Disk Created successfully \n";
}
$z = registervm(); # subroutine to register VM with ESX
if ($z == 1) {

use

All Scripts and Program Source* Appendix A

}

print "Press the ENTER key to continue ...";
Spause = <STDIN>;
goto main

—

if ($menuopt == 2) { # option to displays the templates

menul:

system("clear") ;

print " Defined Templates \n";
print " eeeeeeeee oo \n";
print "\n";
print "\n";
print " 1) Windows 2003std VM with 256m, 4gb drive \n";
print "\n";
print " 2) Windows 2003ent VM with 1gig, 8gb drive \n";
print "\n";
print "\n";
print "\n";
print "\n";
print " Your Selection - ";
Smenulopt = <>; chomp S$menulopt;
if ($menulopt == 1) {
Svmname = "2003std25m4gb";
Svmmem = "256"; # change and add on similar sections
$vmdisk = "4"; # to create templates for your environment
Svmos = "winnetstandard";
$x = writevmx () ;
if ($x == 1) {

if

print "VMX File written successfully \na";
1
Sw = setper|();
if ($w == 1)
print "Permisions set successfully \na";

}

Sy = createdisk() ; # Call subroutines to create VM's

if ($y == 1) {
print "Virtual Disk Created successfully \na";
}
$z = registervm();
if ($z == 1) {
print "VM registered successfully \na";
}
print "Press the ENTER key to continue ...";
Spause = <STDIN>;
goto main
}
($menulopt == 2) {
Svmname = "2003Entlgb8gb";
Svmmem = "1024";

359

360 Appendix A ¢ All Scripts and Program Source

$Svmos = "winnetenterprise";
SxX = writevmx() ;
if ($x == 1) {

print "VMX File written successfully \na";

}
Sw = setper();
if ($w == 1) {
print "Permisions set successfully \na";

}
$y = createdisk();
if (sy == 1) {
print "Virtual Disk Created successfully \na";
}
$z = registervm();
if ($z == 1) {
print "VM registered successfully \na";
}
print "Press the ENTER key to continue ..."
Spause = <STDIN>;
goto main
}
else {
goto menul;

}

if ($menuopt == 3) { # Use a function of VMPERL to display registered VM's

system("clear") ;

my ($server name, $user, $passwd) = @ARGV; # Assume running in ESX
server

my Sport = 902; # with appropriate
rights

VMware: :VmPerl: :ConnectParams: :new($server name, $port, $Suser, $Spasswd) ;
VMware: :VmPerl: :ConnectParams: :new (undef, $Sport, Suser, Spasswd) ;
my $connect params = VMware::VmPerl::ConnectParams: :new() ;

Establish a persistent connection with server
my S$Sserver = VMware::VmPerl::Server::new() ;
if (!$server->connect ($connect params)) {
my ($error_number, S$Serror string) = $server->get last error();
die "Could not connect to server: Error Serror_number:
Serror_string\n";

}
print "\nThe following virtual machines are registered:\n";
Obtain a list containing every config file path registered with the

server.

my @list = S$server-s>registered vm names () ;

All Scripts and Program Source* Appendix A 361

my ($error number, S$error_string) = $server->get last_error();
die "Could not get list of VMs from server: Error $error number: ".
"sSerror string\n";

print "$ \n" foreach (@list);

Destroys the server object, thus disconnecting from the server.
undef S$server;

print "Press the ENTER key to continue ...";

Spause = <STDIN>;

goto main

if ($menuopt == 4)

system("clear") ;

print " Clone Existing VM.s \n";

print " e \n";

print "\n";

print "\n";

print " 1) Clone ScriptedvM \n";

print "\n";

print " 2) Clone ScriptedPerlVM \n";

print "\n";

print "\n";

print "\n";

print "\n";

print " Your Selection - ";

Smenud4opt = <>; chomp S$menudopt;

if ($menudopt == 1) {
Svmname = "ScriptedPerlCloneVM";
Svmmem = "256"; # change and add on similar sections
Svmdisk = "4"; # to create templates for your environment
$vmos = "winnetstandard";

$vmpath ="/vmfs/volumes/storagel/ScriptedVM/ScriptedVM.vmdk" ;
Sx = writevmx () ;
if ($x == 1) {
print "VMX File written successfully \na";
}
Sw = setper();
if (Sw == 1) {
print "Permisions set successfully \na";
1
Sy = clonedisk() ; # Call subroutines to create VM's
if ($y == 1) {
print "Virtual Disk Cloned successfully \na";
1
$z = registervm() ;
if ($z == 1) {
print "VM registered successfully \na";

362

Appendix A ¢ All Scripts and Program Source

print "Press the ENTER key to continue ..."
Spause = <STDIN>;
goto main

}

if ($menudopt == 2) {
Svmname = "ScriptedPerlVMClone";
Svmmem = "1024";
Svmdisk = "8";
$Svmos = "winnetenterprise";

Svmpath ="/vmfs/volumes/storagel/perlvm/ScriptedPerlVM";

Sx = writevmx() ;
if ($x == 1) {
print "VMX File written successfully \na";

}

Sw = setper();
if ($w == 1) {
print "Permisions set successfully \na";
}

Sy = clonedisk() ;
if ($y == 1) {
print "Virtual Disk Cloned successfully \na";

}
$z = registervm() ;
if ($z == 1) {
print "VM registered successfully \na";
}
print "Press the ENTER key to continue ..."
Spause = <STDIN>;
goto main
}
else {
goto menul;

if ($menuopt == 5) {
goto endl
1
sub writevmx { # Subroutine to Create VM's VMX config file
Sfile = '/vmfs/volumes/storagel/perlvm/perlvm.vmx';
the file
$file = "/vmfs/volumes/storagel/perlvm/" . $vmname . ".vmx";
open (INFO, "s>S$file"); # Open for output
print INFO 'config.version = "6" ' . "\n";

print INFO 'virtualHW.version = "3" ' . "\n";

Name

All Scripts and Program Source* Appendix A

print INFO 'floppyO.present = "TRUE" ' . "\n";
print INFO 'displayName = "' . S$Svmname . '" ' . "\n";
print INFO 'guestOS = "' . $vmos . '" ' . "\n";
print INFO 'ideO:0.present = "TRUE" ' . "\n";
print INFO 'ide0:0.deviceType = "cdrom-raw" ' . "\n";
print INFO 'ide:0.startConnected = "false" ' . "\n";
print INFO 'floppyO.startConnected = "FALSE" ' . "\n";
print INFO 'floppyO.fileName = "/dev/£d4d0o" ' . "\n";
print INFO 'EthernetO.present = "TRUE" ' . "\n";
print INFO 'EthernetO.connectionType = "monitor dev" ' . "\n";
print INFO 'EthernetO.networkName = "VM Network" ' . "\n";
print INFO 'Ethernet0O.addressType = "vpx" ' . "\n";
print INFO 'scsiO.present = "true" ' . "\n";
print INFO 'scsiO.sharedBus = "none" ' . "\n";
print INFO 'scsiO.virtualDev = "lsilogic" ' . "\n";
print INFO 'scsiO:0.present = "true" ' . "\n";
print INFO 'scsi0O:0.fileName = "' . $vmname . '.vmdk" ' . "\n";
print INFO 'scsi0O:0.deviceType = "scsi-hardDisk" ' . "\n";
close (INFO) ; # Close the file
}
sub createdisk { # Subroutine to Create Virtual Disk
$Scr = "vmkfstools -c¢ " . $vmdisk . "g " . "
/vmfs/volumes/storagel/perlvm/". $vmname . ".vmdk -a lsilogic";

system("$cr") ;

}i

sub clonedisk { # Subroutine to Create Virtual Disk
$cr = "vmkfstools -i " . $vmpath . " " . "
/vmfs/volumes/storagel/perlvm/" . $vmname . "vmdk";

system("Scr") ;

}i

sub registervm { # Subroutine to Register VM with ESX server
$rg = "vmware-cmd -s register /vmfs/volumes/storagel/perlvm/"
Svmname . ".vmx";

system("Srg") ;

sub setper({ # Subroutine to set permission on VMX file
$pm = "chmod 755 /vmfs/volumes/storagel/perlvm/" . $vmname . ".vmx";
system("Spm") ;

endl:

363

364 Appendix A ¢ All Scripts and Program Source

Scripts from Chapter 5

Code Listing 5.1 A Disk Descriptor File

Disk DescriptorFile

version=1

CID=2af6d34d

parentCID=ffffffff
createType="twoGbMaxExtentSparse"

Extent description

RW 4192256 SPARSE "Windows-s001.vmdk"
RW 4192256 SPARSE "Windows-s002.vmdk"
RW 4096 SPARSE "Windows-s003.vmdk"

The Disk Data Base
#DDB

ddb.adapterType = "ide"
ddb.geometry.sectors = "63"
ddb.geometry.heads = "16"
ddb.geometry.cylinders = "8322"
ddb.virtualHWVersion = "4"
ddb.toolsVersion =

If you need to change the type of file, use the tool vmware-vdiskmanager to change the type.

Extent description

RW 4192256 SPARSE "Windows-s001.vmdk"
RW 4192256 SPARSE "Windows-s002.vmdk"
RW 4096 SPARSE "Windows-s003.vmdk"

Code Listing 5.2 A Disk Descriptor for an IDE Virtual Disk

The Disk Data Base
#DDB

ddb.adapterType = "ide"
ddb.geometry.sectors = "63"
ddb.geometry.heads = "16"
ddb.geometry.cylinders = "8322"
ddb.virtualHWVersion = "4"
ddb.toolsVersion = "6404"

Code Listing 5.3 A vmx File

#!/usr/bin/vmware

config.version = "6"
scsi0:0.present = "TRUE"
scsiO:0.name = "ESX SAN4:2K900.vmdk"

scsi0:0.mode = "persistent"

All Scripts and Program Source* Appendix A

scsiO.present = "true"

scsiO.virtualDev = "vmxbuslogic™"

memSize = "512"

displayName = "2K900"

guestOS = "win2000Serv"

ethernet0.present = "true"
ethernet0.connectionType = "monitor dev"
ethernet0.devName = "bond0"
ethernet0.networkName = "FH_Network"
Ethernet0.addressType = "vpx"
Ethernet0.generatedAddress = "00:50:56:9d:4d:10"
Ethernet0.virtualDev = "vmxnet"

floppy0.present = "true"

floppy0.startConnected = "false"

idel:0.present = "true"

idel:0
idel:0.deviceType = "atapi-cdrom"
idel:0.startConnected = "FALSE"

.fileName = "/dev/cdrom"

draw = "gdi"

uuid.bios = "50 1d 07 5c a9 £3 2b dd-8b 3e 83 10 b2 ea 89 0b"
uuid.location = "56 4d b5 45 28 5a b0 20-29 52 da £8 22 74 60 1d"
uuid.action = "keep"

priority.grabbed = "normal"

priority.ungrabbed = "normal"

isolation.tools.dnd.disable = "TRUE"
suspend.Directory = "/vmfs/vmhbal:0:83:1"

autostart = "true"
autostop = "softpoweroff"

tools.syncTime = "FALSE"

The following parameter is the configuration of the floppy and CD-ROM for the virtual

machine. Notice that I have startConnected set to “false” for these devices. As a rule of thumb, I

recommend leaving these disconnected until you need them.

floppy0.present = "true"
floppy0.startConnected = "false"
idel:0.present = "true"
idel:0.fileName = "/dev/cdrom"
idel:0.deviceType = "atapi-cdrom"
idel:0.startConnected = "false"

The following example shows autostart and autostop command scripts.

autostart = "true" or "false"

autostop = "softpoweroff" or "poweroff"
autostart.order = ""

autostop.order = ""

365

366

Appendix A ¢ All Scripts and Program Source

Code Listing 5.4 Descriptor File for a Virtual Machine Using an IDE Drive

Disk DescriptorFile

version=1

CID=2af6d34d

parentCID=ffffffff
createType="twoGbMaxExtentSparse"

Extent description

RW 4192256 SPARSE "Windows-s001.vmdk"
RW 4192256 SPARSE "Windows-s002.vmdk"
RW 4096 SPARSE "Windows-s003.vmdk"

The Disk Data Base
#DDB

ddb.adapterType = "ide"
ddb.geometry.sectors = "63"
ddb.geometry.heads = "16"
ddb.geometry.cylinders = "8322"
ddb.virtualHWVersion = "4"
ddb.toolsVersion = "6404"

There is one change left to be done, however. We will need to change the
ddb.virtualHW Version. The ddb.virtualHW Version is dependent upon which VMware platform
you are using. You may need to change the version number to get the virtual machine to start in
certain cases, namely moving a virtual machine in to ESX Server.

Change the ddb.virtualHW Version = “4” and make it ddb.virtualHW Version = “3”.You
now have a legacy virtual machine disk file you have converted from IDE to SCSI.You've also
brought the virtual machine disk file down to legacy mode so that it can run on ESX.

Disk DescriptorFile

version=1

CID=826d3b6e

parentCID=ffffffff
createType="twoGbMaxExtentSparse"

Extent description

RW 4192256 SPARSE "Windows-s001.vmdk"
RW 4192256 SPARSE "Windows-s002.vmdk"
RW 4096 SPARSE "Windows-s003.vmdk"

The Disk Data Base
#DDB

ddb.adapterType = "buslogic"

ddb.geometry.sectors = "63"
ddb.geometry.heads = "255"
ddb.geometry.cylinders = "522"
ddb.virtualHWVersion = "3"

ddb.toolsVersion = "6309"

All Scripts and Program Source* Appendix A 367

Code Listing 5.5 Configuring a Disk to Use an IDE

config.version = "8"
virtualHW.version = "4"
scsiO.present = "TRUE"

memsize = "200"

ide0:0.present = "TRUE"
ide0:0.fileName = "Windows.vmdk"
idel:0.present = "TRUE"
idel:0.fileName = "auto detect"
idel:0.deviceType = "cdrom-raw"
floppy0 .fileName = "A:"
ethernet0.present = "TRUE"
usb.present = "TRUE"
sound.present = "TRUE"
sound.virtualDev = "esl371"
displayName = "Windows XP Professional 1"
guestOS = "winxppro"

nvram = "winxppro.nvram"

ide0:0.redo = ""

ethernet0.addressType = "generated"

uuid.location = "56 4d b7 df d7 1d 42 ca-3e 81 5d a3 5e 05 7a f7"
uuid.bios = "56 4d b7 df d7 1d 42 ca-3e 81 5d a3 5e 05 7a f7"
tools.remindInstall = "FALSE"

ethernet0.generatedAddress = "00:0c:29:05:7a:£7"
ethernet0.generatedAddressOffset = "0O"

idel:0.autodetect = "TRUE"

idel:0.startConnected = "TRUE"

tools.syncTime = "FALSE"

Code Listing 5.6 Disconnecting Devices in Virtual Machines Registered on
an ESX Server

#!/bin/bash

IDE / Floppy Disconnect Script

Script by: Stuart Thompson and Matt Pound
Edit by: Steve Beaver (Added floppy drive)

vmwarelist="vmware-cmd -1°
vmwarelist="echo $vmwarelist | sed -e 's/ /*/g'>
vmwarelist="echo $vmwarelist | sed -e 's/.vmx/.vmx /g'>
for vm in S$vmwarelist
do

vm="echo $vm | sed -e 's/*/ /g'"

vm="echo $vm | sed -e 's/ \//*/g'>

if [“vmware-cmd "$Svm" getstate | sed -e 's/getstate() = //' = "on"]

368

Appendix A ¢ All Scripts and Program Source

echo Looking @ $vm
IDEBUS="seq 0 1~
for i in S$SIDEBRUS;
do
echo BUS : $i
IDEDEVICE="seq 0 1°
for j in $IDEDEVICE;

do
PRESENT="vmware-cmd "$vm" getconfig ide$i:$j.present | cut -£3 -d
if [$PRESENT = "true"]
then
TYPE="vmware-cmd "$vm" getconfig ide$i:$j.deviceType | cut
-f3 -4 " *
if [[$TYPE == "atapi-cdrom" || S$TYPE == "cdrom-image"]]
then
echo Found CDROM on IDES$i:$j
vmware-cmd "Svm" disconnectdevice ide$i:$j
fi
fi
done
done
fi
done

Code Listing 5.7 Starting All Registered Virtual Machines

#!/bin/bash

vmwarelist="vmware-cmd -1~

vmwarelist="echo $vmwarelist | sed -e 's/ /*/g'"
vmwarelist="echo $vmwarelist | sed -e 's/.vmx/.vmx /g'’>
for vm in S$vmwarelist

do
vm="echo $vm | sed -e 's/*/ /g'"
vm="echo $vm | sed -e 's/ \//*/g'"
if [“vmware-cmd "Svm" getstate | sed -e 's/getstate() = //' > = "off"]
then
echo Found $vm that is off, Starting $vm
vmware-cmd "S$vm" start
fi
done

Now, let’s take a look at a script to stop those virtual machines that are running.

#!/bin/bash

vmwarelist="vmware-cmd -1~

vmwarelist="echo $vmwarelist | sed -e 's/ /*/g'’
viwarelist="echo $vmwarelist | sed -e 's/.vmx/.vmx /g'’
for vm in S$vmwarelist

do

All Scripts and Program Source* Appendix A

vm="echo $vm | sed -e 's/*/ /g'~
vm="echo $vm | sed -e 's/ \//*/g'>

if [“vmware-cmd "$vm" getstate | sed -e 's/getstate() = //'> = "on"]
then
echo Found $vm that is on, Stopping $vm
vmware-cmd "sSvm" stop trysoft
fi
done

Code Listing 5.8 is one more example of this script, which will reboot all of the running
virtual machines. This is very handy if you have installed updates or anything else and want to
delay the reboot till later.

Code Listing 5.8 Script for Rebooting All Running Virtual Machines

#!/bin/bash

vmwarelist="vmware-cmd -1"

vmwarelist="echo $vmwarelist | sed -e 's/ /*/g'>
vmwarelist="echo $vmwarelist | sed -e 's/.vmx/.vmx /g'>
for vm in Svmwarelist

do
vm="echo $vm | sed -e 's/*/ /g'
vm="echo $vm | sed -e 's/ \//*/g'>
if [“vmware-cmd "$vm" getstate | sed -e 's/getstate() = //'> = "on"]
then
echo Found S$vm that is on, Rebooting S$vm
vmware-cmd "Svm" reset trysoft
fi
done

Code Listing 5.9 Using a Golden Image Disk File to Dynamically Create a
Virtual Machine

#!/bin/bash

#Scripting VMware Power Tools: Automating Virtual Infrastructure Administration
#Dynamic Creation of a new Virtual Machine using a Golden Image
#Stephen Beaver

HHH#H#USER MODIFICATION##H#HHH##H#HHHHH#H#H

#VMNAME is the name of the new virtual machine

#VMOS specifies which Operating System the wvirtual machine will have
#GLDIMAGE is the path to the "Golden Image" VMDK file

#DESTVMFS 1is the path to VMFS partition that the VMDK file

HHHHHHHH A HH I HH

VMOS="winNetStandard"

VMMEMSIZE="256"

GLDIMAGE="/vmfs/FHVMFS1/Windows 2003 _Standard.vmdk"
DESTVMFS="vmhba0:0:0:10"

HH#H#H#HEND MODIFICATIONH####

LOG="/var/log/$1.log"

369

370 Appendix A ¢ All Scripts and Program Source

echo "Start of Logging" > S$LOG

echo "Importing Golden Image Disk File VMDK" >> S$SLOG
vmkfstools -i S$GLDIMAGE S$DESTVMFS:S$1.vmdk

echo "Creating VMX Configuration File" >> $SLOG

mkdir /home/vmware/$1

exec 6>&1

exec 1>/home/vmware/$1/31.vmx

write the configuration file

echo #!/usr/bin/vmware

echo config.version = '"'6'"™!

echo virtualHW.version = '"'3'"!

echo memsize = '"'SVMMEMSIZE'"'

echo floppy0.present = '"'TRUE'"'

echo usb.present = '"'FALSE'"'

echo displayName = '"'S1'"!'

echo guest0OS = '"'SVMOS'"!'

echo suspend.Directory = '"'/vmfs/vmhba0:0:0:10/"'""
echo checkpoint.cptConfigName = '"'$1'"!
echo priority.grabbed = '"'normal'"'

echo priority.ungrabbed = '"'normal'"'

echo idel:0.present = '"'TRUE'"'

echo idel:0.fileName = '"'auto detect'™'
echo idel:0.deviceType = '"'cdrom-raw'"'
echo idel:0.startConnected = '"'FALSE'"!'
echo floppy0.startConnected = '"'FALSE'"!'
echo floppy0.fileName = '"'/dev/fdo'""'

echo EthernetO.present = '"'TRUE'"'

echo EthernetO.connectionType = '"'monitor dev'™"'
echo EthernetO.networkName = '"'NetworkO'"'
echo draw = '"'gdi'""'

echo

echo scsiO.present = '"'TRUE'"'

echo scsiO:1.present = '"'TRUE'"'

echo scsilO:1.name = '"'SDESTVMFS:$1.vmdk'"'
echo scsiO:1.writeThrough = '"'TRUE'"'

echo scsiO.virtualDev = '"'vmxlsilogic'"'
echo

close file

exec 1>&-

make stdout a copy of FD 6 (reset stdout), and close FD6
exec 1>&6

exec 6>&-

echo "VMX Configuration File Created Successfully" >> S$LOG
#Change the file permissions

chmod 755 /home/vmware/$1/$1.vmx

#Register the new VM

echo "Registering .vmx Configuration" >> S$SLOG

vmware-cmd -s register /home/vmware/$1/31.vmx

echo "VMX Initialization Completed Successfully" >> S$SLOG

All Scripts and Program Source* Appendix A 371

Code Listing 5.10 Creating a New Virtual Machine to Use with an ESX
Server Managed by Altiris

#!/bin/bash

#Scripting VMware Power Tools: Automating Virtual Infrastructure Administration
#Creates a new Virtual Machine for use with Altiris

#Stephen Beaver

HH#H#H#HUSER MODIFICATIONH#H#H#HHHH#H#HHHHHHHH

#VMNAME is the name of the new virtual machine

#VMOS specifies which Operating System the virtual machine will have
#DESTVMFS is the path to the VMFS partition of the VMDK file
#VMDSIZE is the size of the Virtual Disk File being created ex (500mb) or (10g9)
HH#HHHHH AR

VMNAME="vm_name"

VMOS="winNetStandard"

VMMEMSIZE="256"

DESTVMFS="vmhbaO:6:0:1 #Must use the vmhba path

VMDSIZE="10g"

HH##H#HHEND MODIFICATION#####
LOG="/opt/altiris/deployment/adlagent/bin/logevent"

SLOG -1:1 -ss:"Creating VMX Configuration File"

mkdir /home/vmware/S$VMNAME

exec 6>&1

exec 1>/home/vmware/$VMNAME/SVMNAME . vmx

write the configuration file

echo #!/usr/bin/vmware

echo config.version = '"'6'"!

echo virtualHW.version = '"'3'"!

echo memsize = '"'SVMMEMSIZE'"'

echo floppy0.present = '"'TRUE'"'

echo usb.present = '"'FALSE'"'

echo displayName = '"'SVMNAME'"'

echo guestOS = '"'SVMOS'"'!'

echo suspend.Directory = '"'/vmfs/vmhbaO:0:0:5/'""
echo checkpoint.cptConfigName = '"'SVMNAME'"'
echo priority.grabbed = '"'normal'"'

echo priority.ungrabbed = '"'normal'"'

echo idel:0.present = '"'TRUE'"'

echo idel:0.fileName = '"'auto detect'™"!'

echo idel:0.deviceType = '"'cdrom-raw'"'
echo idel:0.startConnected = '"'FALSE'"'
echo floppy0.startConnected = '"'FALSE'"'
echo floppy0.fileName = '"'/dev/fdo'"'

echo EthernetO.present = '"'TRUE'"'

echo Ethernet0.connectionType = '"'monitor_ dev'"'
echo EthernetO.networkName = '"'NetworkQO'"'
echo draw = '"'gdi'"’'

echo

echo scsiO.present = '""'TRUE'"!

echo scsiO:1.present = '"'TRUE'"'

372

Appendix A ¢ All Scripts and Program Source

echo scsiO:1.name = '"'vmhba0:0:0:5:SVMNAME.vmdk'""'
echo scsi0O:1.writeThrough = '"'TRUE'"'

echo scsiO.virtualDev = '"'vmxlsilogic'"'

echo

close file

exec 1>&-

make stdout a copy of FD 6 (reset stdout), and close FD6
exec 1>&6

exec 6>&-

SLOG -1:1 -ss:"VMX Configuration File Created Successfully"
#Change the file permissions

chmod 755 /home/vmware/$VMNAME/$VMNAME . vmx

#Create the Virtual Disk

SLOG -1:1 -ss:"Creating Virtual Disk"

vmkfstools -c¢ SVMDSIZE vmhbaO:0:0:5:SVMNAME.vimdk

SLOG -1:1 -ss:"Virtual Disk Created Successfully"
#Register the new VM

SLOG -1:1 -ss:"Registering VMX Configuration"

#Registering .vmx Configuration"

vmware-cmd -s register /home/vmware/$SVMNAME/$VMNAME.vmx
SLOG -1:1 -ss:"VMX Initialization Completed Successfully"
#Starting the Virtual Machine

SLOG -1:1 -ss:"Starting the Virtual Machine"

vmmware-cmd /home/vmware/$VMNAME/SVMNAME.vmx start

SLOG -1:1 -ss:"Virtual Machine Started"

SLOG -1:1 -ss:"Passing control to Altiris for PXE boot and install of VM"

Code Listing 5.11 Creating a New Virtual Machine That Boots to an ISO

#!/bin/bash

#Scripting VMware Power Tools: Automating Virtual Infrastructure Administration

#Creates a new Virtual Machine booting to an ISO

#Stephen Beaver

#####USER MODIFICATION######H#H

#VMNAME is the name of the new virtual machine

#VMOS specifies which Operating System the virtual machine will have
#GLDIMAGE 1is the path to the "Golden Image" VMDK file

#DESTVMFS is the path to the VMFS partition of the VMDK file
#VMDSIZE is the size of the Virtual Disk File being created ex (500mb) or
#ISOIMAGE is the path and file name of the ISO file you are using
HH##HHFFHH A SR R

VMOS="winNetStandard"

VMMEMSIZE="256"

GLDIMAGE="/vmfs/FHVMFS1/Windows 2003 Standard.vmdk"
DESTVMFS="vmhba0:0:0:10"

VMDSIZE="10g"

ISOIMAGE" /vmfs/ESX_ SAN/Windows2000.iso"

HH#H#H#H#END MODIFICATION#####

LOG="/var/log/$1l.log"

echo "Start of Logging" > S$SLOG

echo "Importing Golden Image Disk File VMDK" >> SLOG

(109)

All Scripts and Program Source* Appendix A

vmkfstools -i SGLDIMAGE S$DESTVMFS:S$1.vmdk
echo "Creating VMX Configuration File" >> $LOG
mkdir /home/vmware/S$1

exec 6>&1

exec 1>/home/vmware/$1/$1.vmx

write the configuration file

echo #!/usr/bin/vmware

echo config.version = '"'6'"!

echo virtualHW.version = '"'3'"!

echo memsize = '"'$SVMMEMSIZE'"'

echo floppy0.present = '"'TRUE'"'

echo usb.present = '"'FALSE'"'

echo displayName = '"'$1'"!'

echo guestOS = '"'SVMOS'"'

echo suspend.Directory = '"'/vmfs/vmhba0O:0:0:10/'""
echo checkpoint.cptConfigName = '"'s1'"!'
echo priority.grabbed = '"'normal'"'

echo priority.ungrabbed = '"'normal'"'

echo idel:0.present = '"'TRUE'"'

echo ide0:0.present = '"'TRUE'"'

echo ide0:0.fileName = '"'SISOIMAGE'"'

echo ide0:0.deviceType = '"'cdrom-image'"'
echo floppy0.startConnected = '"'FALSE'"'
echo floppy0.fileName = '"'/dev/fdo'"'

echo EthernetO.present = '"'TRUE'"'

echo EthernetO.connectionType = '"'monitor dev'"™'
echo Ethernet0.networkName = '"'NetworkO'"'
echo draw = '"'gdi'""'

echo

echo scsiO.present = '""'TRUE'"!

echo scsiO:1.present = '"'TRUE'"'

echo scsiO:1.name = '"'S$DESTVMFS:$1.vmdk'"'
echo scsiO:1.writeThrough = '"'TRUE'"'

echo scsiO.virtualDev = '"'vmxlsilogic'"'
echo

close file

exec 1>&-

make stdout a copy of FD 6 (reset stdout), and close FD6
exec 1>&6

exec 6>&-

#Create the Virtual Disk

echo "Creating Virtual Disk" >> S$SLOG

vimkfstools -c¢ $SVMDSIZE vmhbaO:0:0:5:S$VMNAME. vindk

echo "Virtual Disk Created Successfully" >> $LOG

echo "VMX Configuration File Created Successfully" >> SLOG
#Change the file permissions

chmod 755 /home/vmware/$1/$1.vmx

#Register the new VM

echo "Registering .vmx Configuration" >> SLOG

vmmware-cmd -s register /home/vmware/$1/$1.vmx

373

374

Appendix A ¢ All Scripts and Program Source

#Starting the Virtual Machine

echo "Starting the Virtual Machine" >> S$SLOG
vmware-cmd /home/vmware/$VMNAME/SVMNAME.vmx start
echo "Virtual Machine Started" >> S$SLOG

Scripts from Chapter 6

By typing fdisk —1, you should get a list of all the known hard drive devices, which should look
like the following example:

Disk /dev/sda: 41.9 GB, 41943040000 bytes

255 heads, 63 sectors/track, 5099 Cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System

/dev/sdal * 1 5098 40949653+ 7 HPFS/NTFS

Starting the FTP Process

Type:

cat /dev/sda | /tmp/ncftpput —u <username> -p <password> —c <remote esx
host ip> <Full /vinfs

path and new file name>

For example:
cat /dev/sda | /tmp/ncftpput —u phdbot —p “p2v’’ —c 10.10.10.1
/vimfs/LOCAL/newdisk.vmdk.
With phdcat: phdcat /dev/sda | /tmp/ncftpput —u phdbot —p “p2v”> —c 10.10.10.1
/vimfs/LOCAL/newdisk.vindk

Scripts from Chapter 7

The syntax of the vmware-comd command is

vmware-cmd <cfg> commit <disk device name> <level> <freeze> <waits>

First, we add a second REDO log right after our export is completed. The syntax to add this
second REDO is exactly like the first:

vimware-cmd /home/vmware/vm/vm.vmx addredo scsiO:1

Determining the Current Mode of Your Disk File

#!/usr/bin/perl -w

#
This script is an example only

Usage: detectDiskMode.pl <vmxConfigFile> <scsiDisks>
#

#

Example: detectDiskMode.pl /home/vmware/vm/vm.vmx scsiO:1

All Scripts and Program Source* Appendix A 375

use VMware: :VmPerl::ConnectParams;
use VMware: :VmPerl: :VM;
use strict;

User variables
my (Scfg, $disk) = @ARGV;

Connect to the virtual machine

my Sparams = VMware: :VmPerl::ConnectParams: :new() ;
my $vm = VMware::VmPerl::VM: :new() ;

Svm->connect ($Sparams, S$cfg);

Retrieve the mode of the disk in question
my Smode = $vm->get config("sdisk.mode") ;

if ($mode ne "persistent")
print "Warning: $mode\n";
} else {
print "$mode\n";
} # End if not persistent

Svm->disconnect () ;

Code Listing 7.1 Perl Script for Running a Hot Backup of a VM

#!/usr/bin/perl -w

#

This script is an example only
Usage: simpleBackup.pl <vmxPaths>

use VMware: :VmPerl;

use VMware: :VmPerl::Server;

use VMware: :VmPerl: :ConnectParams;
use VMware: :VmPerl: :VM;

use strict;

User variables

my Starget="/vmimages";
my $cfg=$SARGV[O0];

print "$cfg\n";

Set up a connection to a virtual machine

my Sparams = VMware::VmPerl::ConnectParams: :new() ;
my Svm = VMware::VmPerl::VM::new() ;

Svm->connect ($params, Scfg);

No smooth way to return the number of scsi controllers
We will cycle through all possibilities checking if it is present
for (my $scsiController=0; $scsiController<=3; S$scsiController++) {
my SpresentScsiController = $vm->get config("scsi$scsiController.present");

376 Appendix A ¢ All Scripts and Program Source

If it is there, we will continue processing
if ($presentScsiController eq "true") {

Again, cycle through all possible scsi IDs
for (my $scsiID=0; $scsiID<=15; $scsiID++) {
my $presentScsiID = $vm->get config("scsis$scsiController:$scsiID.present") ;
if ($presentScsiID eq "true") ({
Get the path to the vmdk
my $vmdk = $vm->get config("scsi$scsiController:$scsiID.name") ;

Svmdk format is now vmfsvol:vmdk
Let's break this up into 2 variables

my (Svmfsvol, $vmdkname) = split (':',$Svmdk) ;
my $vmdkPath = "/vmfs/$vmfsvol/$vmdkname";

Add the first redo
$vm->add_redo ("scsi$scsiController:$scsiID") ;

Do a backup
~/usr/sbin/vmkfstools -e /$target/sSvmdkname S$vmdkPath™;

Add a second redo
$vm->add_redo ("scsi$scsiController:$scsiID") ;

Wait a second for the redo to be created
sleep (1) ;

First commit with same options as vmware-cmd
Svm->commit ("scsi$scsiController:$scsiID", 1, 0, 1);

Commit final redo
Svm->commit ("scsi$scsiController:$scsiID", 0, 0, 1);
} # End If SCSI ID is present
} # End for SCSI ID Cycle
} # End If SCSI Controller is present
} # End for SCSI Controller Cycle

Cleanup
$vm->disconnect () ;

The following code can be used in your scripts to answer single option questions. You could
also easily modify the script to answer more difficult questions.

#!/usr/bin/perl -w

#

This script is an example only

Usage: detectQuestion.pl <vmxConfigFile>

#

use VMware: :VmPerl;
use VMware: :VmPerl: :ConnectParams;

All Scripts and Program Source* Appendix A 377

use VMware: :VmPerl: :VM;
use VMware::VmPerl::Question;
use strict;

User variables
my ($cfg) = @ARGV;

Connect to the virtual machine

my Sparams = VMware: :VmPerl::ConnectParams: :new() ;
my $vm = VMware::VmPerl::VM: :new() ;

Svm->connect ($Sparams, S$cfg);

Check for a question. Will return undef if
no questions.
my Squestion = $vm->get pending question();

If Squestion is defined, there is an outstanding question
if (defined $question) {
my $text = S$question->get text();
my @choices = $question->get choices() ;
if ($#choices == 0) {
There is only one choice, easy to answer it
$vm->answer question(Squestion,0);
print "Question answered: $text\n";
} else {
print "More than one choice.\n";
print "Choices: @choices\n";
} # End if only one choice
} else {
print "No Questions\n";
} # Endif

Cleanup
Svm->disconnect () ;

Code Listing 7.2 Perl Script for Copying VMX Files

#!/usr/bin/perl -w

#

This script is an example only
Usage: vmxBackup.pl

use VMware: :VmPerl;

use VMware: :VmPerl::Server;

use VMware: :VmPerl: :ConnectParams;
use VMware: :VmPerl: :VM;

use strict;

User variables
my Starget="/vmimages/vmxBackup";

378

Appendix A ¢ All Scripts and Program Source

Setup a connection to the local ESX host

my Sparams = VMware::VmPerl::ConnectParams: :new() ;
my Shost = VMware: :VmPerl::Server::new() ;
Shost->connect ($Sparams) ;

List of registered virtual machines
my @vmlist = S$host->registered vm_names() ;

foreach my $vm (@vmlist) {
Get the displayName of the wvm
We will use the displayName to title the backup output file
my S$vmo = VMware::VmPerl::VM::new() ;
$vmo->connect ($params, S$vm) ;
my $displayName = $vmo->get config("displayName") ;

Finally, you may have some problems with special characters
I recommend removing them to prevent hassles.

This line will remove (and) and spaces.

$displayName =~ s/[\() 1//g;

This will tell us what directory the vmx is in.

my @path = split("/",Svm);

my $dir;

my $cnt=0;

until ($cnt == $#path) { $dir = $dir . "$pathl$cnt]l/"; Scnt++; }

Here is the actual backup command
my Scmd = “tar cvzpf \"Starget/SdisplayName.tgz\" \"s$dir\"~;

To go remote via ssh, use this command instead
Remember to set up ssh key auth first
#my Scmd = “tar cvzpf - \"$dir\" | ssh user\@host \"dd
of=\"Starget/$displayName.tgz\"\"~;
Cleanup
Svmo->disconnect () ;
} # End foreach vm

Cleanup
Shost->disconnect () ;

This script will copy all registered VMX files to the location specified. It will cover all files
in the directory with the VMX, such as nvram and log files. Be aware, in its current form, the
files will be overwritten each time the script is run. The output is tar gzip format with the file-
name of the configured display name .tgz.

Scripts from Chapter 8

Add the symbolic links to allow PCNS to start up.*

All Scripts and Program Source* Appendix A

1ln -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rc0.d/S99PowerChute
1ln -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rcl.d/S99PowerChute
1ln -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rc2.d/S99PowerChute
1n -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rc3.d/S99PowerChute
ln -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rc4.d/S99PowerChute
ln -s /etc/rc.d/init.d/PowerChute /etc/rc.d/rc5.d/S99PowerChute
cp /usr/local/bin/PowerChute/PowerChute /etc/init.d/PowerChute

To uninstall from ESX is a little trickier. You need to first remove the symbolic links:

rm /etc/rc.d/rc0.d/S99PowerChute
rm /etc/rc.d/rcl.d/S99PowerChute
rm /etc/rc.d/rc2.d/S99PowerChute
rm /etc/rc.d/rc3.d/S99PowerChute
rm /etc/rc.d/rcd4.d/S99PowerChute
rm /etc/rc.d/rc5.d/S99PowerChute
rm /etc/init.d/PowerChute

Code Listing 8.1 /etc/Idap.conf
@ (#)$Id: ldap.conf,v 1.24 2001/09/20 14:12:26 lukeh Exp $

This is the configuration file for the LDAP nameservice
switch library and the LDAP PAM module.

PADL Software
http://www.padl.com

H oH H H H H H H*

Your LDAP server. Must be resolvable without using LDAP.
host domain.com

The distinguished name of the search base.
base dc=example,dc=com
base ou=administrators,dc=domain,dc=com

Another way to specify your LDAP server is to provide a
uri with the server name. This allows you to use

Unix Domain Sockets to connect to a local LDAP Server.
#uri ldap://127.0.0.1/

#uri ldaps://127.0.0.1/

uri ldap://domain.com

#uri ldaps://domain.com

#uri ldapi://%$2fvar$2frun%$2fldapi sock/

Note: %2f encodes the '/' used as directory separator

The LDAP version to use (defaults to 3
1f supported by client library)

ldap version 3

The distinguished name to bind to the server with.

379

380

Appendix A ¢ All Scripts and Program Source

Optional: default is to bind anonymously.
binddn cn=proxyuser,dc=example,dc=com

The credentials to bind with.
Optional: default is no credential.
bindpw secret

The distinguished name to bind to the server with
if the effective user ID is root. Password is

stored in /etc/ldap.secret (mode 600)

#rootbinddn cn=manager,dc=example,dc=com

The port.
Optional: default is 389.
#port 389

The search scope.
scope sub

#scope one

#scope base

Search timelimit
#timelimit 30

Bind timelimit
#bind timelimit 30

OpenLDAP SSL mechanism

start_tls mechanism uses the normal LDAP port, LDAPS typically 636
#ssl start_tls

#ssl on

Code Listing 8.2 The LDAP Search Script

HH##HHHHHH A HHHHH

#!/bin/bash

LDAP Search Script to add and remove users based on AD Group Membership
Steve Beaver

HHHHHHHE Start User Edit Area HH#HHHH###

This first part sets up the variables for the member search

If there is an error doing the search, the script will move on to the next
group search

base="-b DC=domain,DC=com"

Replace with your domain name

#user="-D CN=LDAPUSER, OU=VMWare, DC=domain, DC=com"

user="-D LDAPUSER@DOMAIN.COM"

Notice you can use LDAP DN or you can use the AD Full Account
pass="-w password"

The AD user password

ADgroupl="ESX VIEW"

All Scripts and Program Source* Appendix A

The 1lst AD group -- Read Only Privilege
ADgroup2="ESX OP"

The 2nd AD group -- VM Admin Privilege
ADgroup3="ESX_ADMIN"

The 3rd AD group -- Root Privilege

esxgroup="ESXFlagGroup"

The ESX group you would like the users to be a member off

programdir="/usr/LDAP"

The directory this script will use to run

End User Edit Area #H####
HEHH

More variables that do not need to be edited

cmd="1ldapsearch -x -LLL"

pipe="-u -tt -T ${programdir}"

pipe2="-u -tt -T ${programdir}/Member"

filterl="CN=${ADgroupl} member"

filter2="CN=${ADgroup2} member"

filter3="CN=${ADgroup3} member"

filtersam="samAccountName"

HEHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHFHFHHHHHHHHHH

Sanity Check to make sure all the files and folders needed are in place or
create them

if test ! -x "$programdir" ; then

mkdir $programdir

mkdir S$programdir/Member

mkdir S$programdir/Member/New

mkdir Sprogramdir/Member/01d
$programdir/Member/New/$ADgroupl . txt
$programdir/Member/01d/$ADgroupl. txt

echo >
>

echo > $programdir/Member/New/S$ADgroup?2.txt
>
>
>

echo
echo Sprogramdir/Member/01d/S$SADgroup? . txt
Sprogramdir/Member/New/$SADgroup3 . txt
$programdir/Member/01d/$ADgroup3 . txt

echo
echo
fi
HEHHHHHHHHHHHHHH NEW SEARCH HH#HHHHHHH A HHH
The first search to find the group and see who, if any, are members
VIEW search ()
{
${cmd} s${base} ${user} ${pass} ${pipe} ${filteri}
if ["s?" -ne "O"]; then
printf "ERROR running LDAP Search script exiting™"
return
fi
VIEW_search member

Now that I have a temp file for each user, I need to collect and list them in
a file to read from

381

382

Appendix A ¢ All Scripts and Program Source

If I find no users in the group, then there's no need to continue. Return and
move on

VIEW_ search member ()
{
cd S$programdir
ls -1 S$programdir/ldapsearch-member-* > S$programdir/filelist.txt
if ["s$?" -ne "0"]; then
printf "No Members moving on... "
return
fi
declare LINE
declare MEMBER
cat $programdir/filelist.txt |
while read abc
do case $abc in
Member) echo S$abc ;;
*) awk '{print $0}' Sabc >> S$programdir/ulist.txt ;;
esac
done
sed 's/,0U=.*//g' Sprogramdir/ulist.txt > S$Sprogramdir/mlist.txt
VIEW_search sam

Now I have a list in a usable format.
Time to search again to get the samAccountName or userid
of each user in the group.

VIEW_search sam ()
{
infile="$programdir/mlist.txt"
cat $infile |
while read def
do ${cmd} ${base} ${user} ${pass} ${pipe2} "Sdef"
${filtersam}
done
rm -R S$programdir/ldapsearch*
rm -R Sprogramdir/filelist.txt
rm -R $programdir/ulist.txt
rm -R $programdir/mlist.txt
mv -f S$programdir/Member/New/SADgroupl.txt
$programdir/Member/01d/SADgroupl.txt
VIEW_search_create

Now that I have a temp file for each user, I need to collect and list them in
a file to read from

Sort the list and compare the old one with the new to see if I need to add or
remove users

The useradd command below gives the user the READ ONLY privilege

All Scripts and Program Source* Appendix A

VIEW_search create ()
{
cd Sprogramdir/Member
ls -1 Sprogramdir/Member/ldapsearch-* > Sprogramdir/Member/filelist.txt
cat $programdir/Member/filelist.txt |
while read xyz
do awk '{print $0}' $xyz | tr [:upper:] [:lower:] >>
$programdir/Member/$ADgroupl . txt
done
rm -R Sprogramdir/Member/ldapsearch*
rm -R Sprogramdir/Member/filelist.txt
mv -f $programdir/Member/$ADgroupl.txt
$programdir/Member/New/$ADgroupl . txt
sort -f -o $programdir/Member/New/$ADgroupl.txt
Sprogramdir/Member/New/SADgroupl . txt
comm -1 -3 S$Sprogramdir/Member/New/$ADgroupl.txt
$programdir/Member/01d/$ADgroupl.txt > Sprogramdir/remuser.txt
comm -2 -3 S$programdir/Member/New/$ADgroupl.txt
$programdir/Member/01ld/$ADgroupl.txt > Sprogramdir/adduser.txt
cat $programdir/remuser.txt |
while read oldlist
do userdel -r S$oldlist
done
rm -R Sprogramdir/remuser.txt
cat S$programdir/adduser.txt |
while read newlist
do useradd -M S$newlist
done
rm -R Sprogramdir/adduser.txt

}
FHEHHH NEW SEARCH R

The first search to find the group and see who if any are members
OP_search ()
{
${cmd} s${base} ${user} ${pass} ${pipe} ${filter2}
if ["s?" -ne "O"]; then
printf "ERROR running LDAP Search script exiting™"
return
fi
OP_search member

Now that I have a temp file for each user, I need to collect and list them in
a file to read from
If I find no users in the group, then there's no need to continue. Return and

move on

OP_search _member ()

{

383

384 Appendix A ¢ All Scripts and Program Source

ls -1 S$programdir/ldapsearch-member-* > S$programdir/filelist.txt
if ["s$?" -ne "0"]; then
printf "No Members moving on... "
return
fi
declare LINE
declare MEMBER
cat S$programdir/filelist.txt |
while read abc
do case $abc in
Member) echo S$abc ;;
*) awk '{print $0}' Sabc >> S$programdir/ulist.txt ;;
esac
done
sed 's/,0U=.*//g' Sprogramdir/ulist.txt > S$Sprogramdir/mlist.txt
OP_search sam

Now I have a list in a usable format.
Time to search again to get the samAccountName or userid
of each user in the group.

OP_search _sam ()
{
infile="$programdir/mlist.txt"
cat $infile |
while read def
do ${cmd} ${base} ${user} ${pass} ${pipe2} "Sdef"
${filtersam}
done
rm -R S$programdir/ldapsearch*
rm -R Sprogramdir/filelist.txt
rm -R $programdir/ulist.txt
rm -R $programdir/mlist.txt
mv -f S$programdir/Member/New/SADgroup?2 .txt
$programdir/Member/01d/SADgroup?2 . txt
OP_search_create

Now that I have a temp file for each user, I need to collect and list them in
a file to read from

Sort the list and compare the old with the new to see if I need to add or
remove users

The useradd command below gives the user ESX VM Admin privilege

OP_search create ()

{
cd $programdir/Member
ls -1 sprogramdir/Member/ldapsearch-* > Sprogramdir/Member/filelist.txt
cat S$programdir/Member/filelist.txt |

All Scripts and Program Source* Appendix A

do awk '{print $0}' $xyz | tr [:upper:] [:lower:] >>
$programdir/Member/$ADgroup2 . txt
done
rm -R Sprogramdir/Member/ldapsearch*
rm -R Sprogramdir/Member/filelist.txt
mv -f $programdir/Member/$ADgroup?2.txt
$programdir/Member/New/$ADgroup?2 . txt
sort -f -o $programdir/Member/New/$ADgroup?2.txt
Sprogramdir/Member/New/SADgroup?2 . txt
comm -1 -3 S$Sprogramdir/Member/New/$ADgroup?2.txt
$programdir/Member/01d/$ADgroup2.txt > Sprogramdir/remuser.txt
comm -2 -3 S$programdir/Member/New/$ADgroup?2.txt
$programdir/Member/01ld/$ADgroup2.txt > Sprogramdir/adduser.txt
cat $programdir/remuser.txt |
while read oldlist
do userdel -r S$oldlist
done
rm -R Sprogramdir/remuser.txt
cat S$programdir/adduser.txt |
while read newlist
do useradd -M -g S$Sesxgroup Snewlist
done
rm -R Sprogramdir/adduser.txt
1
HEHHHRH U H U HHEH NEW SEARCH HiHHHSHH SRR
The first search to find the group and see who if any are members
ADMIN_ search ()
{
${cmd} s${base} ${user} ${pass} ${pipe} ${filter3}
if ["$?" -ne "O"]; then
printf "ERROR running LDAP Search script exiting™"
return
fi
ADMIN_ search member

Now that I have a temp file for each user, I need to collect and list them in
a file to read from
If I find no users in the group, then there's no need to continue. Return and

move on

ADMIN_search member ()
{
cd sprogramdir
1ls -1 Sprogramdir/ldapsearch-member-* > Sprogramdir/filelist.txt
if ["$?" -ne "0"]; then
printf "No Members moving on... "
return
fi
declare LINE

385

386 Appendix A ¢ All Scripts and Program Source

cat $programdir/filelist.txt |
while read abc
do case Sabc in
Member) echo S$abc ;;
*) awk '{print $0}' S$Sabc >> S$programdir/ulist.txt ;;
esac
done
sed 's/,0U=.%*//g' $programdir/ulist.txt > $programdir/mlist.txt
ADMIN search_ sam

Now I have a list in a usable format.
Time to search again to get the samAccountName or userid
of each user in the group.

ADMIN search sam ()
{
infile="$programdir/mlist.txt"
cat $infile |
while read def
do ${cmd} ${base} ${user} ${pass} ${pipe2} "Sdef"
${filtersam}
done
rm -R S$programdir/ldapsearch*
rm -R Sprogramdir/filelist.txt
rm -R Sprogramdir/ulist.txt
rm -R $programdir/mlist.txt
mv -f Sprogramdir/Member/New/S$SADgroup3.txt
$programdir/Member/01d/SADgroup3.txt
ADMIN_search_create

Now that I have a temp file for each user, I need to collect and list them in
a file to read from

Sort the list and compare the old with the new to see if I need to add or
remove users

The useradd command below gives the user root privilege

ADMIN_ search create ()
{
cd $programdir/Member
ls -1 Sprogramdir/Member/ldapsearch-* > S$Sprogramdir/Member/filelist.txt
cat $programdir/Member/filelist.txt |
while read xyz
do awk '{print $0}' $xyz | tr [:upper:] [:lower:] >>
S$programdir/Member/SADgroup3 . txt
done
rm -R $programdir/Member/ldapsearch*
rm -R Sprogramdir/Member/filelist.txt
mv -f S$programdir/Member/$SADgroup3.txt

All Scripts and Program Source* Appendix A

sort -f -o $programdir/Member/New/$ADgroup3.txt
$programdir/Member/New/$ADgroup3 . txt
comm -1 -3 S$programdir/Member/New/$ADgroup3.txt
$programdir/Member/01d/$ADgroup3.txt > $programdir/remuser.txt
comm -2 -3 S$programdir/Member/New/$ADgroup3.txt
$programdir/Member/01d/$ADgroup3.txt > Sprogramdir/adduser.txt
cat S$programdir/remuser.txt |
while read oldlist
do userdel -r $oldlist
done
rm -R Sprogramdir/remuser.txt
cat S$programdir/adduser.txt |
while read newlist
do useradd -o -u 0 -g S$Sesxgroup S$newlist
done
rm -R Sprogramdir/adduser.txt

HEHAHAHAH This section is the main body which calls all the functions listed
above

VIEW_ search

OP_search

ADMIN_search

exit

Done

When the files have been decoded, you will need to edit gensysprepinf.vbs to include the
ExtendOEMPartition setting.
Look for the [Unattended] section:

outStr = "[Unattended]" & vbCrLf _

" OemSkipEula=Yes" & vbCrLf _

" InstallFilesPath=\sysprep\i386" & vbCrLf
vbCrLf _

"[GuiUnattended] " & vbCrLf _

AdminPassword=" & mAdminPassword & vbCrLf _
" OEMSkipRegional=1" & vbCrLf _

" TimeZone=" & mTimeZone & vbCrLf _

" OemSkipWelcome=1" & vbCrLf

R R R R R R R R

And change it to:

outStr = "[Unattended]" & vbCrLf _

" OemSkipEula=Yes" & vbCrLf _

" ExtendOemPartition=1" & vbCrLf _

" InstallFilesPath=\sysprep\i386" & vbCrLf _
vbCrLf _

"[GuiUnattended]" & vbCrLf _

" AdminPassword=" & mAdminPassword & vbCrLf _
" OEMSkipRegional=1" & vbCrLf

" TimeZone=" & mTimeZone & vbCrLf _

" OemSkipWelcome=1" & vbCrLf

R R R R R R R R R

387

A

Active Directory, 306307
ActiveState Komodo, 28
adapter types, 195
ADGroup.txt, 322-323
advanced operations, VI SDK
power operations, 128-129
scheduled tasks, 131-132
snapshots, 130—-131
virtual machine migration, 129-130
AlarmManager datatype, 110
Altiris, 216-218
APC. See PowerChute Network Shutdown
application programming interfaces (APIs). See
VMware scripting APIs
architecture, VI SDK, 62—-64
asynchronous replication, 287
ATAPI CD-ROM, 241
AuthorizationManager datatype, 109
automation
with VMware, 26
with VMware scripting APIs, 29, 53—60
Autoprep.wsf, 325-327
autostart, 204—205
autostop, 204-205

B

backup
of configuration files, 195-196
before editing, 190
with layered REDO logs, 264-266
VMDXK file with redo log, 259-262
VMDXK file with redo log, limitations of, 262-
264
backup, target choice for
CIFES, 273-274
FTP, 274-275
in general, 271-272
NEFS, 272-273
VMES, 275-277
backup and restore
backup tools, 277-280
hot VM backups in recovery plan, 284-295
sample script, 267-271
target choice for VM backup, 271-277
VM backup fundamentals, 259-267
VMX file backups, 280-284
backup tools, 277-280, 291-293
Bart’s Network Boot Disk, 227
blank virtual disk, 20-21
boot
Linux rescue CD, 243-247
LUN, booting from SAN, 10
remote network installation of ESX server,

10-11

Index

VM that boots to ISO, 218-221
BusLogic MultiMaster PCI SCSI Host Adapters,
240-241

C

C#
connection to VI Web service, 82—83
enumeration of VMs in particular group, 91-92
ICertificatePolicy in, 85, 86
migration of VM via VMotion, 93
object handles, obtaining, 87
PropertyFilterSpec in, 122-124
vHandles script, 89-90
VM priority script, 94-95
Web service login, 117
“cannot open disk” error, 150
cat
FTP process in P2V, 253-254
virtual disk file, 252
CD-ROM
disconnect of, 210
disconnection of devices from VMs, 53-56
ESX server installation, 2, 4
VM configuration parameter, 202
VM that boots to ISO, 218
central processing unit (CPU), 15, 262
certificates, SSL, 84-86, 119-120
CertPolicy.cs file, 119-120
.cfg extension, 143
Change datatype, 95-96
CheckForUpdates operation, 111, 127
CheckValidationR esult function, 119
chmod command, 249
CID value, 193
CID=2af6d34d, 193
CIFS (Common Internet File System), 273-274
CIM (Common Information Model), 134-136
cloned partitions, 324-327
cloning
for virtual environments, 187
VMs with ESX shell scripts, 171-175
VMs with VMPerl scripts, 176-187
ClusterComputR esource data model, 109
clustering, with VMware host agent, 105
COM (Component Object Model), 27
command line tools, VM creation with, 140-150
command prompt, Instant Disk P2V, 247-249
commands, VmPerl, 172
commercial tools, for VM backups, 278
commit, 263, 264
Common Information Model (CIM), 134—-136
Common Internet File System (CIES), 272-273
Compaq RAID cards, 249-250
Component Object Model (COM), 27
ComputerResource data model, 108
configuration

389

390 Index

standards with VMCtl object, 43—44 disconnection
testing, automation with VMware scripting of devices from VM, 53-56
APIs, 59—60 of IDE devices, 210-213

VM configuration file, creation of, 141-147 disk, 263
config.version = “”, 198 Disk Data Base command, 194—-195
Connect () method disk descriptor file

for VmCOM connection, 32 for IDE virtual disk, 194

of VmPerl API, 46 opening/viewing, 190-192

of VmServerCtl object, 37, 38 for VM using IDE drive, 206—209
connection process disk file

VI SDK 1.1, 82-84 state, detection of, 265—266

VI SDK 2.0, 116-119 virtual disk file on VMES, 251-253
connections VM, creation of, 147—149

with VMCtl object, 41 . See also backup and restore; VMDK file

with VMServerCtl object, 37-38 disk geometry, 194
container object, 78 disk modes, 198—199
conversion, IDE to SCSI, 205-213 Distributed Availability Services (DAS), 68
CookieContainer, 83 Distributed Resource Scheduling (DRS), 68
Core Data model, 80 “do no harm” mantra, 224
Count property, 36 documentation, 293
cp command, 276 download
CPU (central processing unit), 15, 263 of Linux rescue CD, 242
crash consistent state of VI SDK, 68-69

backup with redo log, 262-263 . See also Web site resources

recovery after, 287-288 downtime, 284-285
CreateFilter operation, 111 DRS (Distributed Resource Scheduling), 68
CreateScheduledTask operation, 131-132 DVD-ROM, 53-56
CreateSnapshot_Task operation, 130-131 dynamic creation, of VMs, 213-221
createType, 193 Dynamic Host Control Protocol (DHCP),

245-246

D

Daneri, Massimiliano, 278

E

DAS (Distributed Availability Services), 68 Eclipse, 28
data models element management, 67—-68
of VI SDK 1.1, 80-81 End User License Agreement (EULA), 6
of VI SDK 2.0, 105-110 ESX host
data objects at command prompt, 247-249
Managed Object Browser, 112-115 Linux rescue CD, 242247
programming logic for VI SDK 2.0, 110-111 P2V, FTP process, 253-254
mn VI SDK 2.0, 102-103 P2V preparation, 228-232
Datacenter data model, 106 PowerChute, configuring, 303-304
Datacenter managed object, 124-125 scripted installation method, 2—-11
Datastore data model, 107 SCSI driver installation for P2V, 232-241
datatypes ESX Server 3.0, VMware, 158
for updating interior nodes, 95-96 ESX Server 3.0 Welcome Web Page, VMware, 3—4
of VI SDK 1.1, 80-81 ESX Server, native tools
of VI SDK 2.0, 105-110 Esxtop, 14-19
ddb.adapterType, 206208 vmkfstools, 19-21
ddb.adapterType = “buslogic”, 207 vmkusage, 23-24
ddb.adapterType = “Isilogic”, 207 vmware-cmd, 21-23
ddb.virtualHW Version, 195, 207 ESX Server, VMware
devices, disconnect of, 53-56 Altiris managed, VM creation for, 216218
DHCP (Dynamic Host Control Protocol), centralized user management for, 306-324
245-246 disconnection of IDE devices on, 210-211
die directive, 55 PCNS, configuring in, 298-302
DirectDraw, 202-203 question answering from script, 269-270
disaster recovery registering VMs with, 149150
crash consistent state, 287-288 VI SDK 2.0 features, 97
hot VM backups as part of, steps for, 289-293 VI SDK and, 61
hot VM backups in recovery plan, 284-287 VM conversion from IDE to SCSI, 205-209
hybrid backup strategy, 293-295 VmCOM objects and, 32

replication, 288-289 VMDXK file copy, 191

VMware scripting APIs and, 28-29

Web service contiguration, 98, 99
ESX shell

scripting creation of VM in, 150-157

scripts, cloning VMs with, 171-175
ESX virtual disk file, 251-253
esXpress, 278
Esxtop

monitoring performance of VMs, 18-19

overview of, 14-16

service console world, 18

system world, 18

virtual machine world, 16—18
Ethernet adapter, 199-202
Ethernet0.addressType = “vpx”, 201

ethernet0.connectionType = “”, 200
ethernet0.devName = “”, 200
Ethernet0.generatedAddress = “”, 201
ethernet0O.networkName = “”, 201
ethernet0.present = “”, 200

Ethernet0.virtualDev = “vlance” or “vmxnet” or
“e10007, 201-202
EULA (End User License Agreement), 6
%EUSED metric, 18
Event Data model, 80
EventManager datatype, 109
export
of VMDXK file, 260261
with vmkfstools, 20
Extensible Markup Language. See XML
document
externalSchemas element, 71

F:

Farm object, 78
fdisk -1, 250
Fedora Core 3, 242
File Based Licensing mode, 7
file system. See VMware File System
File Transfer Protocol (FTP)
on ESX host, 228-232
in P2V migration process, 253-254
remote installation of ESX server, 10
virtual disk file on VMES and, 252-253
for VM backups, 273274
file.create Type=""twoGbMaxExtentSparse”, 193
file-level recovery
backup with redo log, 262
file-level backups for, 291
hybrid backup strategy for, 292—294
floppy drive
disconnect of, 210
disconnection of devices from VMs, 53-56
VM configuration parameter, 202
VMCitl object and, 43—44
floppy image
of ESX server, 9
for remote installation of ESX server, 10
VMware SCSI driver installation, 232-233
Folder data model, 106
freeze, 263, 286—287
frmConnect form, 5658

Index 391

frmVMList form, 5659
FTP. See File Transfer Protocol

G

GDI (Graphics Device Interface), 202-203
Gensysprepinf.vbs, 325-327
GetContents method

for handle retrieval, 79

object handles, obtaining, 89

retrieval of items, 91-92

for XML document retrieval, 87
GetUpdates method, 79, 89-91
golden image disk file, 213-216
graphical user interface (GUI), 56-59
Graphics Device Interface (GDI), 202-203
graphics emulation, 202-203
Guest Customization Data model, 81
guest management, 45
GuestInfo class, 45

H

handles
object handles, obtaining, 87-91
for objects, 79
for VM migration via VMotion, 93
hard drives, 249-251
hardware
removal in Windows, 256257
vmx file settings, 198
helper worlds, 18
hierarchy
consolidated inventory hierarchy, 97
managed entity inventory, 103, 104
host agent, 103-105
Host Machine Data model, 80
hosts
configuration with VI SDK 2.0, 97
data models, 107-109
reference for, 79
HostSystem data model, 107
hot backup
hybrid backup strategy, 292—294
incorporation in recovery plan, 283-294
sample script for, 266—268
hybrid backup strategy, 292294
Hypertext Transfer Protocol (HTTP), 10, 98-99

ICertificatePolicy, 85-86, 119-120
IDE. See integrated development environment
idle worlds, 18
import with vmkfstools, 20
installation
scripted, 2-11
of SCSI driver for P2V, 232241
of VMware scripting APIs, 30-31
Instant Disk

392 Index

command prompt, 247-249
copying hard drives to USB drive, 255
ESX host, FTP setup on, 228-232
FTP process, 253-254
hard drives/storage, finding, 249251
Linux rescue CD, 242-247
new VM, creation of, 255-257
P2V, description of, 224225
P2V techniques, 225-227
source machine, SCSI driver installation, 227,
232241
source machine, validation of, 242
steps of process, 228
virtual disk files on VMES, 251-253
integrated development environment (IDE)
choice of, 27-28
devices, scripted disconnect of, 210-213
SCSI conversion settings, 199
VM conversion from IDE to SCSI, 205-213
for VmCOM, 33-34
Intel pro 1000 adapter, 202
Intellisense, Microsoft Visual Studio, 115116
interior nodes, 94-96
inventory
hierarchy with VI SDK 2.0, 97, 103, 104
of VMs, 288—-289
IP address
of ESX server, 3, 5
for P2V, 248
ISO file
mounting to VM, 202
VM that boots to, 218-221
isolation.tools.dnd.disable = “True” or “False”,
204
Item (Index) property, 36—37

K

Kickstart file
downloading, 9
information entering, 410
set up, 2

K.I.S.S. factor, 285

Komodo, ActiveState, 28

L

layered REDO logs, backup with, 264-266
license agreement, 30
Licensing Mode, ESX server installation, 7-9
Lightweight Directory Access Protocol (LDAP)
tor ESX Server user management, 306—-309
search script, 310-324
Linux
CIFS backup, 273-274
hardware, P2V and, 251
use of VmPerl, 31
VMware scripting APIs installation on, 31
Linux rescue CD
in Instant Disk process, 228
for P2V migration, 242-247

for P2V with USB, 255
load averages, 1516
login, VI Web service, 83—84, 116-119
Isibuslogic SCSI driver, 255

M

MAC address, 201
man vmkfstools, 21
managed entity inventory
programming logic and, 110
with VI SDK 2.0, 103, 104
Managed Object Browser (MOB), 112-115
Managed Object Format (MOF) files, 135
managed object references
obtaining, 103
passing of, 102
managed objects
programming logic for VI SDK 2.0, 110-111
property information, retrieval of, 120-126
retrieval mechanisms, 126—128
in VI SDK 2.0, 102-103
management application development, VI SDK
1.1

application functions, 81-82
connection process, 82—-84
interior nodes, updating, 94-96
object handles, obtaining, 87-91

retrieval of items, performing operations, 91-94

SSL certificates, handling, 84-86
management application development, VI SDK
2.0

connection process, 116—119

Managed Object Browser, 112-115

property information, retrieval of, 120-126

retrieval mechanisms, 126—128

SSL certificates, handling, 119-120

Visual Studio IDE tools for, 115-116
Management User Interface (MUI), 61-62
McCarty, Jase, 324
%MEM metric, 19
Microsoft Visual Studio

features of, choice of, 27

for management application development,

115-116

VmCOM in, 33-34
Microsoft Windows

use of VmCOM, 31

VM creation in P2V process, 255-257

VMware scripting APIs and, 29-31
Microsoft Windows 2000, 233-239
Microsoft Windows 2003, 233-239, 242
Microsoft Windows NT, 240-241
MigrateVM method, 93
MigrateVM_Task operation, 129-130
migration

of VM in VI SDK 2.0, 104

of VM via VMotion, 93

. See also P2V (physical to virtual) migration
mii-tool, 249
MOB (Managed Object Browser), 112-115
MOF (Managed Object Format) files, 135
monitoring

with Esxtop, 14-19
with host agent, 105
with vmkusage, 22-23
mount point, 7
mounting, 202, 216
MUI (Management User Interface), 61-62
Mylex RAID cards, 249-250

N

ncftpput, 229, 242

NET classes, 73, 75

NetBeans IDE, 28

network card, 245-247, 248

Network File System (NES)
mount point, ESX server installation method, 5
remote installation of ESX server, 10
for VM backups, 271-272

Network Interface Card (NIC), 16

network share, 216

networking options, for ESX server, 5-6

o)

Object Browser
for management application development, 115
VmCitl object view with, 33, 35

object handles, 87-91

object traversal, 124-126

objects
data objects, managed objects in VI SDK 2.0,

102-103

enumeration of VMs in particular group, 91-93
Managed Object Browser, 112-115
migration of VM via VMotion, 93
programming logic for VI SDK 2.0, 110-111
property information, retrieval of, 120-126
retrieval mechanisms, 126—128
of VI SDK 1.1, 77-79
of VmCOM API, 32—44

oSpec, 122

P

P2V (physical to virtual) migration
command prompt, 247249
copying hard drives to USB drive, 255
description of, 224-225
ESX host, FTP setup on, 228-232
FTP process, 253-254
hard drives/storage, finding, 249251
Linux rescue CD, 242247
new VM, creation of, 255-257
source machine, SCSI driver installation, 227,
232-241
source machine, validation of, 242
steps of, 228
techniques, 225-227
virtual disk files on VMEFS, 251-253
package, PowerChute, 298-302

Index 393

parentCID={itf, 193
partition
cloned Windows VM root, extending, 324-327
expanded root, deploying Windows VM with,
327-329
Partition Configuration page, 67
password, 231
path hierarchy, 76-77
PCNS. See PowerChute Network Shutdown
Pegasus CIMOM, 135
performance
of NICs, 16
of VMDK backup with redo log, 263-264
Performance Metric Data model, 80
PerformanceManager datatype, 110
Perl API. See VmPerl API
Perl scripts
backup sample script, 267-271
components of, 168-171
scripted VM modification with, 166—167
VM creation with, 157-168
vmbk.pl, 278-279
. See also VMPerl scripts
phdcat program, 232, 253-254
physical source server. See source physical server
physical to virtual migration. See P2V (physical to
virtual) migration
Platespin PowerConvert, 226
ports, 98-99
Post Install Licensing mode, 8
Pound, Matt, 210
power operations, 128—129
PowerChute Network Shutdown (PCNS)
configuring in ESX, 298-302
ESX hosts, configuring, 303—-304
overview of, 298
UPS, configuring shutdown settings on,
304-305
PowerOft VM_Task operation, 128-129
PrimalScript, Sapien Technology, 28
priority
script for changing VM priority, 94-96
settings for VM, 204
of VM for backup, 292
process diagram, 60
programming logic
for VI SDK 1.1,79
for VI SDK 2.0, 110-111
property information, retrieval of, 120-126
PropertyCollector
function of, 97, 109
programming logic for VI SDK 2.0, 111
for PropertyFilterSpec, 123
PropertyFilterSpec data object
programming logic for VI SDK 2.0, 111
property information, retrieval of, 120-126
proxy class, 7375
pSpec, 122
Putty
for SCP operations, 301
Windows VM deployment and, 329
PutUpdates method
for datatypes, 81
for updating interior nodes, 94—96

394 Index

Q

questions, answering from script, 269270

R

%READY metric, 18
real-time replication, 288
reboot
script for rebooting virtual machines, 213
source server with Linux rescue CD, 242-247
recovery
backup with redo log, limitations of, 263
hot VM backups in recovery plan, 284-295
. See also backup and restore; disaster recovery
Recovery Point Objective (RPO)
backup tool choice and, 291-292
definition of, 285
recovery requirements, 285-286
for VM, determination of, 290
Recovery Time Objective (RTO)
backup tool choice and, 291-292
definition of, 285
recovery requirements, 285-286
for VM, determination of, 291
Red Hat 9 disk 1, 242
REDO log
backup, limitations of, 262264
in backup sample script, 268—269
crash consistent state and, 288
layered, backup with, 264-265
with vmbk.pl backup tool, 278
on VMDK for backup, 259-260
vmware-cmd operations for, 22-23
redundancy, 284-285
reference.cs file, 101
reference.vb file, 101
RegisteredVMNames property, 37
RegisterVM method, 37
registration, of VMs with ESX server, 149-150
remote access, 140
remote network installation, 2, 4, 10-11
RemoveSnapshot_Task operation, 130
replication, 287-288
ResolvePath method, 86—87, 93
Resource property, 37
ResourcePool data model, 108
resources
abstraction of with VI SDK 2.0, 97
Virtual Center management of, 104
. See also Web site resources
restores, 283
. See also disaster recovery; recovery
retrieval
mechanisms, 126—128
of property information, 120-126
RetrieveProperties operation
programming logic for VI SDK 2.0, 111
tor PropertyFilterSpec, 123—-124
for updates on properties, 127
RetrieveServiceContent operation, 111
RevertToSnapshot_Task operation, 130

ROQOT, access limitations, 230
root partition

expanded, deploying Windows VM with,

327-329

Windows VM, extending cloned, 324-327
RPO. See Recovery Point Objective
RTO. See Recovery Time Objective
run-time component, 133-134

S

SAMBA, 274-275
SAN, 10
Sapien Technology PrimalScript, 28
scandisk, 242
SCE. See Symbolic Constant Enumerations
schedule, hybrid backup, 294-295
scheduled tasks, 131-132
ScheduledTaskManager datatype, 110
ScheduledTaskSpec data object, 131
SCP utilities, 301
scripted installation
Kickstart file, 4-10
remote network installation, 10—11
script creation, 2—4
steps of, 2
scripting/programming for virtual infrastructure.
See Virtual Infrastructure (VI) SDK;
VMware scripting APIs
scripts
backup sample script, 267-271
LDAP search, 310-324
Perl, components of, 168-171
Perl, VM creation with, 157-168
for VM creation in ESX shell, 150-157
VMPerl, cloning VMs with, 176187
SCSI
VM conversion from IDE to SCSI, 205-213
VMX file settings for SCSI drive, 198—199
SCSI driver
for P2V, installation of, 227, 228, 232-241
Windows VM creation, 255

SCSI 1D, 260

Scsi0:0, 198—199
Scsi0:0.mode = “”, 198-199
Scsi0:0.name = “”, 198
Scsi0:0.present = 7, 198
scsi0.present = 7, 199
scsi0.virtualDev = “”, 199
SDKs

VMware CIM SDK, 134-136
VMware Guest SDK, 133—134
. See also Virtual Infrastructure (VI) SDK
search script, LDAP, 310-324
SearchIndex API
function of, 97
for information retrieval, 126—128
secure FTP, 229
Secure Shell (SSH) clients, 301
Secure Sockets Layer (SSL) certificates
handling, VI SDK 1.1, 84-86
handling, VI SDK 2.0, 119-120
“sed” program, 221

server, 22-23
. See also ESX Server, VMware; source physical
server
Server Based Licensing mode, 7, 8
Server Operations, 21-22
service console world, 18
service element, 71
Service Instance data model, 105
ServiceCenter object, 111
ServiceContent object, 117
Servicelnstance managed object, 111
Servicelnstance object, 112-113
ServicePointManager.CertificatePolicy, 85,
119-120
SessionManager datatype, 109
Simple Object Access Protocol (SOAP), 65, 66
Size in Sectors value, 193—194
SMI-S (Storage Management Initiative
Specification), 134
snapshots, 130-131
SOAP (Simple Object Access Protocol), 65, 66
software products, 279
source physical server
FTP process in P2V, 253-254
FTP setup for P2V, 228-232
Linux rescue CD, 242-247
P2V migration safety, 224-225
SCSI driver installation for P2V, 227, 232-241
validation of, 242
virtual disk file on VMES, 251-253
spec object, 110
SSH (Secure Shell) clients, 301
SSL (Secure Sockets Layer) certificates
handling, VI SDK 1.1, 84-86
handling, VI SDK 2.0, 119-120
start, registered virtual machines, 211-212
state, of disk file, 265—266
StopVM operation, 93-94
storage, VMware CIM SDK for, 134-136
Storage Management Initiative Specification
(SMI-S), 134
stubs, 100-102
subjects element, 71-72
suspend, virtual machine, 204
suspend.Directory = “/vmfs/vmhbal:0:83:17, 204
swap, of ESX host, 16
Symantec’s Ghost, 227
Symbolic Constant Enumerations (SCE)
of VMC:tl object, 41-43
of VMCtl object properties/methods, 39—-41
VMware::VmPerl::VM module and, 52
synchronous replication, 287
sysprep.inf, 325
system world, 18
System.Security.Cryptography. X509Certificates
namespace, 119

T

target, choice for VM backup, 271-277
Task Data model, 81

TaskManager datatype, 110

tasks, scheduled, 131-132

Index 395

Template Data model, 81
Template VM, 172-175
templates, for new virtual machines, 104
test
automation with VMware scripting APIs, 59-60
FTP on ESX host, 231-232
VI Web service preparation, 72-73
Thompson, Stuart (Mr-T), 210
time
backup tool choice and, 290-291
backup with redo log, limitations of, 263
for recovery, 285
RPO/RTO determination for backup, 290-291
time sync options, 205
timestamp, 89
tools
for P2V migration, 225-227
for VM backup, 277-280
. See also command line tools; PowerChute
Network Shutdown
tools, ESX Server
Esxtop, 14-19
vmkfstools, 19-21
vmkusage, 23-24
vmware-cmd, 21-23
tools.syncTime option, 205
transport protocols, 270-276
TraversalSpec objects, 124—126
type 1 file, 258
type 2 file, 258
Type Library, VmCOM, 33, 34

U

Ultimate-P2V, 227
UNDOABLE mode, 256
Uniform Resource Locators (URLs)

for Managed Object Browser, 112

Web service login, 116-119

. See also Web site resources
Uninterruptible Power Supply (UPS), 304-305
unique identifier, 203
universally unique identifier (UUID), 79
UnregisterVM method, 37
updates

of interior nodes, 94-96

property update operations, 111, 127-128

of vHandles, 89-91
UPS (Uninterruptible Power Supply), 304—305
URLs. See Uniform Resource Locators
USB drive

copying hard drives to, 255

virtual disk file conversion from, 253
%USED metric, 18
user

FTP on ESX host, 231

management for ESX Server, 306-324
user-defined variables, 45
utilities, SCP, 301
UUID (universally unique identifier), 79

396 Index

V ‘WSDL, 100-102
Virtual Machine Data model, 80
virtual machine disk (VMDK) file
backup fundamentals, 259-262
backup of configuration files, 195-196
backup sample script, 267-269

VB.NET
connection to VI Web service, 83-84
enumeration of VMs in particular group, 92-93

ICertificatePolicy in, 85-86 5 ; _

migration of VM Vi?. VMotion, 93 Ezzigg Ezrogblité%};cgcgoof, 2n-=277

object fhan%les’ ‘.’bmm&lg’ 87 05 backup with layered REDO logs, 264-266
script for changing VM priority, 95-96 backup with REDO log, limitations of, 262-
vHandles script, 90-91 264

Web service login, 118-119

VBScript, 36 components, 192-195

crash consistent state and, 288

/vcenter path,l77 definition of, 190

version _COHU“O ,279 disk descriptor file, 190-192

version=1 parameter, 192 hot backup limitations, 289

Vl‘fl‘andlés . vmkfstools for, 21-23
unction of, 79 Virtual Machine Group, 91-93

script for using, 89-91
VI SDK. See Virtual Infrastructure (VI) SDK
VimApi namespace, 116-119
VimObjects.cs stub file, 101 virtual machines (VMs)

VimService class, 101-102 backu v

: ; p, target choice for, 271-277
virtual adapter, 201202 backup fundamentals, 259-267
virtual computing, 68 data models, 106—-107

virtual disk di : :
isconnection of devices from, 53—56
file on VMFS, 251-253 guest management, 45

virtual machine migration. See P2V (physical to
virtual) migration
virtual machine world, 1618

vmkfstools for, 20-21, 172 GUI to list all VMs. 56—59
virtual environments, 187 N _
Virtual Infrastructure SDK Reference Guide, 81 ?Big\ig/[s}élg}“ég;eeii?g 65%5@3?73289 3

Virtual Infrastructure (VI) SDK
advanced operations, 128—132
architecture of, 62—64
development of, 61-62
operations available using, 66—68

migration, 129-130
new, creation of, 255-257
power operations, 128—129
virtual machines (VMs), building
with command line tools, 140—-150

versions of, 61 : : : _
VI SDK 1.1, concepts/terminology, 7681 E\?gr(vsig\i}l;tgria%, cloning with, 171175
VI'SDK 1.1, download of, 6869 scripting in ESX shell, 150157
VI SDK 1.1, management application scripting in Perl, 157-171
development, 81-96 VMPerl scripts, cloning with, 176187

VI SDK 1.1, Web Service preparation, 6973

VI SDK 1.1 WSDL. 73-75 virtual machines (VMs), modifying

dynamic creation of virtual machines, 213-221

VI SDK 2.0, concepts/terminology, 102—111 IDE to SCSI conversion. 205-213

VI SDK 2.0, management application overview of. 221 ’
development, 112-128 VMDK file, 190-196

VI SDK 2.0, new features, 9698 VMX file. 196-205

VI SDK 2.0, Web Service preparation, 98-100 VirtualCcnté:r

VI SDK 2.0,WSDL, 100-102 Host Agent vs., 103-105

Web Service, 64—66 Managed Object Browser of, 112

Virtual Infrastructure (VI) SDK 1.1

concepts, terminology, 76—81 modifications to, 324

path hierarchy, 77

coverage of, 61
download of, 6869 Q/]% EBE ir'l%f%af:lézs’ o7
management apphcat{on development, 81-96 VirtualCenter Management Server, 98, 99-100
Web Service preparation, 69—73 VirtualCenter Web Service
WSDL, 73-75 overview of, 64—66

Virtual Infrastructure (VI) SDK 2.0 preparation for VI SDK 1.1, 6973
architecture of, 63, 64 VI SDK architecture, 62—64

concepts, terminology, 102-111 virtualization. 14

coverage of, 61 . . . See also P2V (physical to virtual) migration
element management operations with, 67—68 VirtualMachine data model. 106—107
management application development, 112-128 VirtualMachineGroup objeét 78

new features of, 62, 96-98 . Visual Studio. See Microsoft Visual Studio
virtual computing operations with, 68 Vizioncore esxRanger, 279

vlance, 201
VM Operations, 2223
VM_EXECUTION_STATE, 52
VM_POWEROP_MODE, 52
VM_PRODINFO_PLATFORM, 52
VM_PRODINFO_PRODUCT, 52
vma.exe command, 70-71
vmbk.pl, 277-278
VmCollection object

function of, 32

for GUI to list all VMs, 56

properties of, 36-37
VmCOM API

automation with, 53

features of, 28—30

function of, 26-27

GUI to list all VMs, 5659

IDE and, 33-34

installation of, 30-31

objects of, 32-33

Index 397

installation of, 30-31

modules of, 46

test automation with, 59—60

use of, 31

VMware::VmPerl::ConnectParams module,
4647

VMware::VmPerl::Question module, 52-53

VMware::VmPerl::Server module, 4748

VMware::VmPerl::VM module, 49-52

VMPerl scripts

cloning VMs with, 176-187
commands, 171
VM creation with, 157—-158

VmQuestion object, 32, 36
vmres.pl, 277

VMs. See virtual machines
VmServerCtl object

function of, 32
properties, methods of, 37-38
VmCollection and, 36

test automation with, 59—60 vmsnap_all.pl, 276, 277

use of, 31 vmsnap.pl, 276277

user-defined variables, 45 VMware CIM SDK, 134-136

VmCollection object, 36-37 VMware CIM SDK Programming Guide, 136
VmConnectParams, 35-36 VMware File System (VMES)

VmCitl object, 38—44
VmPerl modules and, 46
VmServerCtl object, 37-38
working with, 32—45
VmCOM Type Library, 33, 34
VmConnectParams object
connection to host with, 38
function of, 32, 35
for GUI to list all VMs, 56
properties of, 36
VmCitl object
configuration standards, 43—44
function of, 32

guest management with user-defined variables,
45

properties, methods of, 38—41
Symbolic Constant Enumerations, 41-43
viewing with Object Browser, 35

VMDXK file. See virtual machine disk (VMDK)

file
VMES. See VMware File System
vmkfstools
cloning with VmPerl scripts and, 176-187
command line cloning with, 172-173
for copying VMDX file, 276
function of, 19
import/export files, 20
virtual disk operations, 2021
VMES, creation with, 147-148
VMES partition, viewing contents of, 19
vmkusage, 23-24
vm-list file, 195
VMotion
CD-ROM/floppy connection and, 210
for VM migration, 93, 104
VmPerl API
disconnection of devices from VMs, 53-56
features of, 28—30
function of, 27

FTP on ESX host, 230232

FTP process in P2V, 253-254
partition, viewing contents of, 19
viewing contents with vmkfstools, 21
virtual disk files on, 251-253

tor VM backups, 274-276
vmkfstools for creation of, 147—148

VMware Guest SDK, 133—134

VMware P2V Tool, 225-226
VMware scripting APIs
disconnection of devices from VM, 53-56
GUI to list all VMs, 5659
IDE choice, 27-28
installation of, 30-31
test automation, 59—-60
VmCOM, working with, 32—45
VmCOM/VmPerl, 26-27, 28
VmCOM/VmPerl functionality, 28-30
VmPerl, working with, 46-53
VMware SDKs, 132—-136
VMware Server/GSX, 28-29
VMware Tools, 133

VMware Virtual Infrastructure SDK. See Virtual

Infrastructure (VI) SDK

VMware virtual SCSI driver

installation in Windows 2000/2003, 233—239

installation in Windows NT, 240—241

for P2V, installation of, 227, 228, 232-233
VMWare Workstation, 205
vmware-cmd

for disconnection of IDE devices, 211-213

for layered REDO log, 263264

options of, 221

for REDO log, 259-261

VM operations with, 21-23

VM registration with, 149-150
vmware-guestd command, 45
vmwarelist="vmware-cmd -1°, 211
VMwareService.exe command, 45

398 Index

vmware-vdiskmanager, 193
VMware.vma.vmaService class, 83—84
VMware::VmPerl::ConnectParams module
disconnection of devices from VMs, 54-55
function of, 46
methods of, 46—47
VMware::VmPerl::Question module
function of, 46
methods of, 52-53
VMware::VmPerl::Server module
disconnection of devices from VMs, 54-55
function of, 46
methods of, 4748
VMware::VmPerl::VM module
disconnection of devices from VMs, 54-55
function of, 46
methods of, 49-52
VMX file

autostart, autostop, time sync options, 204-205

components of, 198-202
creation of, 141-147
definition of, 190
example of, 196-197
floppy drive, CD-ROM configuration, 202
golden image disk file, 213-216
graphics emulation, 202-203
IDE to SCSI conversion and, 208—-209
priority settings, 204
VMX file backups, 280-284
importance of, 280
inventory of virtual machines, 281
Perl script for copying VMX files, 281-283
synchronization of, 283-284
vmxnet, 201-202

W

WaitForUpdates operation, 111, 128
wall-clock time, 263
Web service
availability, 97
client interaction operations, 66—67
connection process, 82—-84, 116—-119
consumption of, 69
data models, datatypes, 80-81
definition of, 65
Managed Object Browser and, 113-114
overview of, 64—66
path hierarchy, 76-77
programming logic, 79, 110
SSL certificates, 119
VI SDK 1.1 preparation, 69-73
VI SDK 1.1 terminology, 77-79
VI SDK 2.0 preparation, 98100
VI SDK 2.0 WSDLs and, 100-102
VI SDK architecture, 62—-64
WSDL for proxy class, 73—75
Web Service Description Language (WSDL)
data objects, managed objects in VI SDK 2.0,
102-103
VI SDK 1.1,73-75
VI SDK 2.0, 100-102
as Web service interface, 65

Web service standards and, 66
Web Services Interoperability Organization (WS-
I), 65-66
Web site resources
IDE, 27-28
Linux rescue CD, 242
Managed Object Browser, 112
OpenLDAP, 307
P2V migration tools, 227
VI SDK download, 69

Virtual Infrastructure SDK Reference Guide, 81

VM backup tools, 278

vmbk.pl backup tool, 277

VMware CIM SDK, 136

VMware scripting APIs, 30

VMware SCSI driver, 232

WSDL, 74
Windows. See Microsoft Windows
Windows VM, 327-329
Windows VM Root Partition, 324-327
worlds

Esxtop monitoring of, 14-16

service console world, 18

system world, 18

virtual machine world, 16—18
WSDL. See Web Service Description Language
wsdlProxyGen.exe, 74-75
WS-I (Web Services Interoperability

Organization), 65—66

X

xinetd, 230

XML document
object description by, 77
object handles, obtaining, 87-89
programming logic and, 79

XML Schema Detinition (XSD) files, 71

	Scripting VMware Power Tools: Automating Virtual Infrastructure Administration
	Contents
	Chapter 1 Scripted Installation
	Introduction
	Setting Up the Scripted Installation

	Chapter 2 An Introduction to ESX Native Tools and How to Use Them
	Introduction
	Esxtop
	Summary

	Chapter 3 Scripting and Programming for the Virtual Infrastructure
	Introduction
	VMware Scripting APIs
	VMware Virtual Infrastructure SDK
	Other VMware SDKs
	Summary

	Chapter 4 Building a VM
	Introduction
	Creation of Virtual Machines Utilizing Command-Line Tools
	Scripting Creation of Virtual Machines in ESX Shell
	Scripting Creation of Virtual Machines in Perl Scripts
	Cloning Virtual Machines Utilizing ESX Shell Scripts
	Cloning Virtual Machines Utilizing VmPerl Scripts
	Summary

	Chapter 5 Modifying VMs
	Introduction
	The Virtual Machine VMDK File
	Virtual Machine Conversion from IDE to SCSI
	Dynamic Creation of Virtual Machines
	Summary

	Chapter 6 Instant Disk: How to P2V for Free
	Introduction
	What Is a P2V?
	P2V Techniques
	The “Big Secret” of P2V
	Instant Disk Overview
	The Bad News
	Prepping the ESX Host: Setting Up FTP on ESX Host
	Prepping the Source Machine: Install the SCSI Driver
	Continue Prepping the Source Machine: Validate
	The Linux Rescue CD
	At the Command Prompt
	Finding the Hard Drives and Storage
	Virtual Disk Files on the VMFS
	Starting the FTP Process
	Creating a New Virtual Machine and Pointing It to a New VMDK File
	Summary

	Chapter 7 Scripting Hot Backups and Recovery for Virtual Machines
	Introduction
	Anatomy of a VM Backup
	Hot VM Backup Sample Script
	Choosing the Target for VM Backups
	Existing VM Backup Tools
	VMX File Backups
	Summary

	Chapter 8 Other Cool Tools and Tricks
	Introduction
	Configuring PowerChute Network Shutdown in ESX
	Centralized User Management for ESX Server
	Extending a Cloned (Deployed) Windows VM’s Root Partition
	Deploying a Windows VM with an Expanded Root Partition
	Summary

	Appendix A All Scripts and Program Source
	Index

