
DESIGNING
AUDIO EFFECT

PLUG-INS IN C++

W I L L P I R K L E

bbooooll ssttddccalll CReverb::processAuddiiiooFFrrame(float* pppppppIIInnnpppuuu
ppuppuutBuffeerr,, ppuutBuff ,

 UUUIIINNTTTT uuNNuummOOOOOuuuuuu
{

//
////// DDDDoooo LLLEEFFTT ((MMOONNOO)) CChhaannnneell;; tthherree iiss aaalllwwwwaayyss att lleastt

///////// (INSERRRTTTTT EEEEEEfffffffffffffeeeeeeect)))

// MMMoonnoo--Inn, SSSteereeeooo---OOOuuutt (AAUUXXXXXXXX EEEEEEEEEEfffffffffffffffffffeeeeeeecccccccctttttttt))))))))
iiif(((N III ttChhh l 1 && NNN OOOOO t ttCh ll

WITH DIGITAL AUDIO SIGNAL PROCESSING THEORY

bool __stdcall CReverrbb::proccessAAAuuudioFrame(float* pInnnpppuuutttBBBuuuffffffeeerr,,
A ddii FF (fl * IIIA i F (flp pooooll ____ssttddccaallool __stdcal

UUINT N mmInputChannels, UINT uNumOutpuuttCChhhannels)ttBBBuuffffffeeerrrttBBuuffffeerrtBuffeerr,,tBuffeetBuffeerrt

// output = input -- change thhiiss ffoorr mmeeaanniinnggffuull ppprroocccceeeesssssiinngg

// DDoo LLEEFFTT ((MMOONO)) CChhannel; thheeree iss aallwwwwaaaayyys aatt lleeaaast one input/one
//// (INSERT EEffeecctt)//// DDoo LLEEFFTT (// Do LEFT ((ppppppOutputBufffffffeeeer[0] = ppInppuuttBBuuffer[[00]] mm_fVolume;DDoo LLEEEEFFFT (MONO) Channnneel; theree iis DDoo LL FFT (MONO) Channel; there is

SEERRRRRTTT Eff tt)))S TT))

ifff((uuNNNuuummmIIInnnppppuutttCCCCCCCChhhhhhhhaaaaaaaaannnnnnnnnnnnnnnnnnnnnnnneeeeeeelssss ======= 1 && uNNuummmmmOOOOutpppuuutChhanne
 // MM pOuuttppuutttBBBuufffffeerrr[[[11]] = pIInnnppuutttttttttBBBBBBBBBufffffffffffeeeeeer[0]*m_fVVooollluuuuummmmmeeeee;no Inn SSStereeeooo OOOuuutt (AUUUUUUUUUUXXXXXXXXXX EEEEEEEffffffffffffffect)))no Inn SSStereeoo OOOut (AUUUUXXXXX EEffffect))

 Designing Audio Effect
Plug-Ins in C++

Designing Audio Effect
Plug-Ins in C++

 With Digital Audio Signal Processing Theory

 Will Pirkle

 First published 2013

by Focal Press

 70 Blanchard Road, Suite 402, Burlington, MA 01803

 Simultaneously published in the UK

by Focal Press

 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

 Focal Press is an imprint of the Taylor and Francis Group, an Informa business

 © 2013 Taylor and Francis

 The right of Will Pirkle to be identifi ed as author of this work has been asserted by him/her in accordance with

sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

 All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any elec-

tronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in

any information storage or retrieval system, without permission in writing from the publishers.

 Notices
 Knowledge and best practice in this fi eld are constantly changing. As new research and

 experience broaden our understanding, changes in research methods, professional practices, or medical treatment

may become necessary.

 Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using

any information, methods, compounds, or experiments described herein. In using such information or methods

they should be mindful of their own safety and the safety of others, including parties for whom they have a profes-

sional responsibility.

 Product or corporate names may be trademarks or registered trademarks, and are used only for identifi cation and

explanation without intent to infringe.

 Library of Congress Cataloging-in-Publication Data
 Pirkle, William C., author.

 Designing audio effect plug-ins in C++ with digital audio signal processing theory/Will Pirkle.

 pages cm

 Includes bibliographical references and index.

 ISBN 978-0-240-82515-1 (paperback)

1. Computer sound processing. 2. Plug-ins (Computer programs)

3. C++ (Computer program language) I. Title.

 MT723.P57 2013

 006.4’5—dc23

 2012024241

 ISBN: 978-0-240-82515-1 (pbk)

 ISBN: 978-0-123-97882-0 (ebk)

 Typeset in Times

 Project Managed and Typeset by: diacriTech

 Dedicated to

my father and mother
C.H. Pirkle

and
J.V. Pirkle

 Contents

 Introduction ...xvii

 Chapter 1: Digital Audio Signal Processing Principles ..1
 1.1 Acquisition of Samples .. 1
 1.2 Reconstruction of the Signal .. 3
 1.3 Signal Processing Systems .. 4
 1.4 Synchronization and Interrupts .. 5
 1.5 Signal Processing Flow .. 6
 1.6 Numerical Representation of Audio Data .. 7
 1.7 Using Floating-Point Data ... 9
 1.8 Basic DSP Test Signals .. 10

1.8.1 DC and Step ...10

1.8.2 Nyquist ...11

1.8.3 ½ Nyquist ...11

1.8.4 ¼ Nyquist ...12

1.8.5 Impulse ...12

 1.9 Signal Processing Algorithms .. 13
 1.10 Bookkeeping .. 13
 1.11 The One-Sample Delay .. 15
 1.12 Multiplication .. 16
 1.13 Addition and Subtraction ... 17
 1.14 Algorithm Examples and the Difference Equation .. 18
 1.15 Gain, Attenuation, and Phase Inversion ... 18
 1.16 Practical Mixing Algorithm ... 19
Bibliography ... 20

 Chapter 2: Anatomy of a Plug-In ...21
 2.1 Static and Dynamic Linking .. 21
 2.2 Virtual Address Space and DLL Access .. 22
 2.3 C and C++ Style DLLs .. 24
 2.4 Maintaining the User Interface .. 25
 2.5 The Applications Programming Interface ... 27
 2.6 Typical Required API Functions .. 29
 2.7 The RackAFX Philosophy and API ... 31

2.7.1 __stdcall ...31

Bibliography ... 34

vii

viii Contents

 Chapter 3: Writing Plug-Ins with RackAFX ..35
3.1 Building the DLL ... 35
3.2 Creation ... 36
3.3 The GUI ... 36
3.4 Processing Audio ... 37
3.5 Destruction ... 38
3.6 Your First Plug-Ins ... 38

3.6.1 Project: Yourplugin ...39

3.6.2 Yourplugin GUI ..39

3.6.3 Yourplugin.h File ..39

3.6.4 Yourplugin.cpp File ..40

3.6.5 Building and Testing ..40

3.6.6 Creating and Saving Presets ...40

3.6.7 GUI Designer ...40

3.7 Design a Volume Control Plug-In .. 40
3.8 Set Up RackAFX for Use .. 41
3.9 Setup Preferences... 43

3.9.1 Project: Volume ..44

3.9.2 Volume GUI ..45

3.9.3 Confi gure a Slider Control ...46

3.9.4 Volume.h File..48

3.9.5 Volume.cpp File ..50

3.10 Design a Volume-in-dB Plug-In... 54
3.10.1 Project: VolumedB ..56

3.10.2 VolumedB GUI ...56

3.10.3 VolumedB.h File ...56

3.10.4 VolumedB.cpp File ...57

3.11 Design a High-Frequency Tone Control Plug-In ... 58
3.11.1 Project: SimpleHPF ..60

3.11.2 SimpleHPF GUI ...60

3.11.3 SimpleHPF.h File ...60

3.11.4 SimpleHPF.cpp File ..62

3.12 Design a High-Frequency Tone Control with Volume Plug-In 66
3.12.1 Project: SimpleHPF ..66

3.12.2 SimpleHPF GUI ...66

3.12.3 SimpleHPF.h File ...66

3.12.4 SimpleHPF.cpp File ..67

3.13 The User Plug-In Menu in RackAFX .. 69

 Chapter 4: How DSP Filters Work ..71
 4.1 First-Order Feed-Forward Filter .. 74
 4.2 Design a General First-Order Feed-Forward Filter ... 84
 4.3 First-Order Feed-Back Filter ... 88
 4.4 Design a General First-Order Feed-Back Filter... 89

Contents ix

4.4.1 Project FeedBackFilter ...89

4.4.2 FeedBackFilter GUI ...89

4.4.3 FeedBackFilter.h File ...89

4.4.4 FeedBackFilter.cpp File ...90

 4.5 Observations .. 94
4.5.1 General ...94

4.5.2 Feed-Forward Filters ..95

4.5.3 Feed-Back Filters ...95

Bibliography ... 95

 Chapter 5: Basic DSP Theory ...97
 5.1 The Complex Sinusoid... 97
 5.2 Complex Math Review .. 100
 5.3 Time Delay as a Math Operator ... 102
 5.4 First-Order Feed-Forward Filter Revisited .. 103

5.4.1 Negative Frequencies ...104

5.4.2 Frequencies Above and Below 6Nyquist ..106

 5.5 Evaluating the Transfer Function H(v) ... 106
5.5.1 DC (0 Hz) ...107

5.5.2 Nyquist (p) ...108

5.5.3 ½ Nyquist (p/2) ..109

5.5.4 ¼ Nyquist (p/4) ..109

 5.6 Evaluating e jv ... 112
 5.7 The z Substitution .. 114
 5.8 The z Transform ... 114
 5.9 The z Transform of Signals .. 116

 5.10 The z Transform of Difference Equations .. 117
 5.11 The z Transform of an Impulse Response .. 118
 5.12 The Zeros of the Transfer Function ... 119
 5.13 Estimating the Frequency Response: Zeros ... 121
 5.14 Filter Gain Control ... 122
 5.15 First-Order Feed-Back Filter Revisited ... 123
 5.16 The Poles of the Transfer Function .. 124

5.16.1 DC (0 Hz) ...128

5.16.2 Nyquist (p) ...128

5.16.3 ½ Nyquist (p/2) ..129

5.16.4 ¼ Nyquist (p/4) ..130

 5.17 Second-Order Feed-Forward Filter .. 132
5.17.1 DC (0 Hz) ...139

5.17.2 Nyquist (p) ...139

5.17.3 ½ Nyquist (p/2) ..140

5.17.4 ¼ Nyquist (p/4) ..140

 5.18 Second-Order Feed-Back Filter ... 142
5.18.1 DC (0 Hz) ...148

5.18.2 Challenge ..149

x Contents

 5.19 First-Order Pole-Zero Filter: The Shelving Filter ... 149
5.19.1 DC (0 Hz) ...155

5.19.2 Challenge ..155

 5.20 The Bi-Quadratic Filter .. 157
Bibliography ... 162

 Chapter 6: Audio Filter Designs: IIR Filters ..163
 6.1 Direct z-Plane Design .. 163
 6.2 Single Pole Filters .. 164

6.2.1 First-Order LPF and HPF ...164

 6.3 Resonators ... 165
6.3.1 Simple Resonator ...165

6.3.2 Smith-Angell Improved Resonator ..168

 6.4 Analog Filter to Digital Filter Conversion ... 170
6.4.1 Challenge ..178

 6.5 Effect of Poles or Zeros at Infi nity .. 178
 6.6 Generic Bi-Quad Designs .. 181

 6.6.1 First-Order LPF and HPF ...182

6.6.2 Second-Order LPF and HPF ..183

6.6.3 Second-Order BPF and BSF ..184

6.6.4 Second-Order Butterworth LPF and HPF ..184

6.6.5 Second-Order Butterworth BPF and BSF ..185

 6.6.6 Second-Order Linkwitz-Riley LPF and HPF ...186

6.6.7 First- and Second-Order APF ...188

 6.7 Audio Specifi c Filters .. 188
6.7.1 Modifi ed Bi-Quad ..189

6.7.2 First-Order Shelving Filters ...189

6.7.3 Second-Order Parametric/Peaking Filter: Non-Constant-Q191

6.7.4 Second-Order Parametric/Peaking Filter: Constant-Q192

6.7.5 Cascaded Graphic EQ: Non-Constant-Q ..194

6.7.6 Cascaded Graphic EQ: Constant-Q ..195

 6.8 Design a Resonant LPF Plug-In .. 196
6.8.1 Project: ResonantLPF ...197

6.8.2 ResonantLPF GUI ..197

6.8.3 ResonantLPF.h File ..198

6.8.4 ResonantLPF.cpp File ..199

 6.9 The Massberg Analog-Matched Low-Pass Filter .. 201
6.9.1 First-Order Massberg LPF..201

6.9.2 Second-Order Massberg LPF ...203

Bibliography ... 204
References... 205

 Chapter 7: Delay Effects and Circular Buffers ...207
 7.1 The Basic Digital Delay ... 209
 7.2 Digital Delay with Wet/Dry Mix ... 214

Contents xi

7.2.1 Frequency and Impulse Responses...214

7.2.2 The Effect of Feedback ..218

 7.3 Design a DDL Module Plug-In.. 224
7.3.1 Project: DDLModule ..225

7.3.2 DDLModule GUI ...225

7.3.3 DDLModule.h File ...226

7.3.4 DDLModule.cpp File ...226

7.3.5 Declare and Initialize the Delay Line Components228

7.3.6 DDLModule.h File ...230

7.3.7 DDLModule.cpp File ...230

 7.4 Modifying the Module to Be Used by a Parent Plug-In 233
7.4.1 DDLModule.h File ...233

7.4.2 DDLModule.cpp File ...234

 7.5 Modifying the Module to Implement Fractional Delay 235
7.5.1 DDLModule.cpp File ...238

 7.6 Design a Stereo Digital Delay Plug-In .. 239
7.6.1 Project: StereoDelay ...239

7.6.2 StereoDelay GUI ..241

7.6.3 StereoDelay.h File ..241

7.6.4 StereoDelay.cpp File ..242

 7.7 Design a Stereo Crossed-Feedback Delay Plug-In .. 244
 7.8 Enumerated Slider Variables .. 245

7.8.1 Constructor ...246

7.8.2 PrepareForPlay() ..246

7.8.3 UserInterfaceChange() ...246

7.8.4 ProcessAudioFrame() ...247

 7.9 More Delay Algorithms ... 248
7.9.1 Advanced DDL Module ...248

 7.9.2 Delay with LPF in Feedback Loop ..248

 7.9.3 Multi-Tap Delay ...249

 7.9.4 Ping-Pong Delay ..250

 7.9.5 LCR Delay ..250

Bibliography ... 251

 Chapter 8: Audio Filter Designs: FIR Filters ...253
 8.1 The IR Revisited: Convolution .. 253
 8.2 Using RackAFX’s Impulse Convolver .. 258

8.2.1 Loading IR Files ...258

8.2.2 Creating IR Files ..259

8.2.3 The IR File Format ...261

 8.3 Using RackAFX’s FIR Designer ... 262
 8.4 The Frequency Sampling Method.. 263

8.4.1 Linear-Phase FIR Using the Frequency Sampling Method263

 8.5 Complementary Filter Design for Linear Phase FIR Filters 266
 8.6 Using RackAFX’s Frequency Sampling Method Tool 267

xii Contents

 8.7 Designing a Complementary Filter .. 269
 8.8 The Optimal (Parks-McClellan) Method ... 270
 8.9 Using RackAFX’s Optimal Method Tool .. 271

 8.10 Design a Convolution Plug-In ... 273
8.10.1 Project: Convolver ..275

8.10.2 Convolver.h File ...275

8.10.3 Convolver.cpp File..276

 8.11 Numerical Method FIR Filters .. 281
 8.11.1 Moving Average Interpolator ...282

 8.11.2 Lagrange Interpolator ...284

 8.11.3 Median Filter ..284

Bibliography ... 287

 Chapter 9: Oscillators ..289
 9.1 Direct Form Oscillator ... 289

9.1.1 Initial Conditions ..290

 9.2 Design a Direct Form Oscillator Plug-In ... 292
9.2.1 Project: DirectOscillator ...292

9.2.2 DirectOscillator GUI ..292

9.2.3 DirectOscillator.h File ..294

9.2.4 DirectOscillator.cpp File ..295

9.2.5 Improving the Oscillator Design ..297

 9.3 The Gordon-Smith Oscillator .. 299
 9.4 Wave Table Oscillators .. 301
 9.5 Design a Wave Table Oscillator Plug-In .. 303

9.5.1 Project: WTOscillator ...303

9.5.2 WTOscillator GUI ..303

9.5.3 WTOscillator.h File ..304

9.5.4 WTOscillator.cpp File ..305

 9.6 Adding More Wave Tables ... 308
9.6.1 WTOscillator.h File ..308

9.6.2 WTOscillator.cpp File ..309

9.6.3 WTOscillator GUI ..310

9.6.4 WTOscillator.h File ..310

9.6.5 WTOscillator.cpp File ..311

 9.7 Band-Limited Additive Wave Tables ... 312
9.7.1 WTOscillator GUI ..313

9.7.2 WTOscillator.h File ..313

9.7.3 WTOscillator.cpp File ..314

9.7.4 Saw-Tooth...317

9.7.5 Square Wave ...317

 9.8 Additional Oscillator Features (LFO) .. 320
9.8.1 WTOscillator.h File ..320

9.8.2 WTOscillator.cpp File ..321

9.8.3 WTOscillator.h File ..321

9.8.4 WTOscillator.cpp File ..322

Contents xiii

9.9 Bipolar/Unipolar Functionality .. 324
9.9.1 WTOscillator GUI ..324

9.9.2 WTOscillator.cpp File ..325

Bibliography ... 326

 Chapter 10: Modulated Delay Effects ..327
 10.1 The Flanger/Vibrato Effect .. 328
 10.2 The Chorus Effect .. 331
 10.3 Design a Flanger/Vibrato/Chorus Plug-In ... 334

10.3.1 Project: ModDelayModule ...335

10.3.2 ModDelayModule GUI ..336

10.3.3 ModDelayModule.h File ..336

10.3.4 ModDelayModule.cpp File ..337

10.3.5 PrepareForPlay() ..340

10.3.6 Challenge ..342

 10.4 Design a Stereo Quadrature Flanger Plug-In ... 342
10.4.1 Project: StereoQuadFlanger ...342

10.4.2 StereoQuadFlanger GUI ...342

10.4.3 StereoQuadFlanger.h File ...342

10.4.4 StereoQuadFlanger.cpp File ...343

10.4.5 Challenges ..345

 10.5 Design a Multi-Unit LCR Chorus Plug-In .. 345
10.5.1 Project: StereoLCRChorus ...346

10.5.2 StereoLCRChorus GUI ..346

10.5.3 StereoLCRChorus.h File ..346

10.5.4 StereoLCRChorus.cpp File ..347

 10.6 More Modulated Delay Algorithms ... 350
10.6.1 Stereo Cross-Flanger/Chorus (Korg Triton®) ...350

10.6.2 Multi-Flanger (Sony DPS-M7®) ..350

10.6.3 Bass Chorus ..350

10.6.4 Dimension-Style (Roland Dimension D®) ...351

10.6.5 Deca-Chorus (Sony DPS-M7®) ..354

Bibliography ... 355

 Chapter 11: Reverb Algorithms ...357
 11.1 Anatomy of a Room Impulse Response .. 358

11.1.1 RT60: The Reverb Time ...359

 11.2 Echoes and Modes ... 360
 11.3 The Comb Filter Reverberator ... 364
 11.4 The Delaying All-Pass Filter Reverberator .. 368
 11.5 More Delaying All-Pass Filter Reverberators .. 370
 11.6 Schroeder’s Reverberator ... 372
 11.7 The Low-Pass Filter–Comb Reverberator ... 373
 11.8 Moorer’s Reverberator ... 375
 11.9 Stereo Reverberation .. 376

 11.10 Gardner’s Nested APF Reverberators .. 377

xiv Contents

 11.11 Modulated APF and Comb/APF Reverb ... 381
 11.12 Dattorro’s Plate Reverb .. 382
 11.13 Generalized Feedback Delay Network Reverbs .. 385
 11.14 Other FDN Reverbs ... 389
 11.15 An Example Room Reverb .. 391
 11.16 RackAFX Stock Objects .. 394

11.16.1 COnePoleLPF ...394

11.16.2 CDelay ..395

11.16.3 CCombFilter ...396

11.16.4 CLPFCombFilter ..396

11.16.5 CDelayAPF ..398

 11.17 Design the Room Reverb ... 398
11.17.1 Project: Reverb ...398

11.17.2 Reverb GUI ..398

11.17.3 Reverb.h ..402

11.17.4 Reverb.cpp ..403

11.18 Challenge ... 408
Bibliography ... 409
References .. 409

 Chapter 12: Modulated Filter Effects...411
 12.1 Design a Mod Filter Plug-In: Part I Modulated fc ... 412

12.1.1 Project: ModFilter ..413

12.1.2 ModFilter GUI ..413

12.1.3 ModFilter.h File ..413

12.1.4 ModFilter.cpp File ..416

 12.2 Design a Mod Filter Plug-In: Part II, Modulated fc, Q 419
12.2.1 ModFilter GUI ..419

12.2.2 ModFilter.h File ..419

12.2.3 ModFilter.cpp File ..420

 12.3 Design a Mod Filter Plug-In: Part III, Quad-Phase LFOs 423
12.3.1 ModFilter GUI ..423

12.3.2 ModFilter.cpp File ..424

 12.4 Design an Envelope Follower Plug-In ... 425
 12.5 Envelope Detection .. 428

12.5.1 Project EnvelopeFollower ..430

12.5.2 EnvelopeFollower GUI ...430

12.5.3 EnvelopeFollower.h File ...431

12.5.4 EnvelopeFollower.cpp File ...432

 12.6 Design a Phaser Plug-In... 436
12.6.1 Project Phaser ...440

12.6.2 Phaser GUI ...440

12.6.3 Phaser.h File ...440

12.6.4 Phaser.cpp File ...441

Contents xv

 12.7 Design a Stereo Phaser with Quad-Phase LFOs .. 446
12.7.1 Phaser GUI ...446

12.7.2 Phaser.h File ...446

12.7.3 Phaser.cpp File ...447

Bibliography ... 451
References... 451

 Chapter 13: Dynamics Processing ..453
 13.1 Design a Compressor/Limiter Plug-In ... 457

13.1.1 Project: DynamicsProcessor ...458

13.1.2 DynamicsProcessor: GUI ...458

13.1.3 DynamicsProcessor.h File ..459

13.1.4 DynamicsProcessor.cpp File ..460

13.1.5 DynamicsProcessor.cpp File ..465

 13.2 Design a Downward Expander/Gate Plug-In ... 466
13.2.1 DynamicsProcessor.h File ..466

13.2.2 DynamicsProcessor.cpp File ..466

 13.3 Design a Look-Ahead Compressor Plug-In ... 468
13.3.1 DynamicsProcessor: GUI ...469

13.3.2 DynamicsProcessor.h File ..470

13.3.3 DynamicsProcessor.cpp File ..470

 13.4 Stereo-Linking the Dynamics Processor ... 472
13.4.1 DynamicsProcessor: GUI ..472

13.4.2 DynamicsProcessor.cpp File ..473

 13.5 Design a Spectral Compressor/Expander Plug-In ... 475
13.5.1 Project: SpectralDynamics ...476

13.5.2 SpectralDynamics: GUI ...476

13.5.3 Additional Slider Controls ..477

13.5.4 Spectral Dynamics Buttons ..477

13.5.5 Spectral Dynamics Metering ..477

13.5.6 SpectralDynamics.h File ..478

13.5.7 SpectralDynamics.cpp File ...479

 13.6 Alternate Side-Chain Confi gurations ... 486
Bibliography ... 487
References... 487

 Chapter 14: Miscellaneous Plug-Ins ...489
 14.1 Design a Tremolo/Panning Plug-In ... 489

14.1.1 Project: TremoloPanner ..490

14.1.2 TremoloPanner: GUI ..490

 14.2 Design a Ring Modulator Plug-In ... 494
14.2.1 Project: RingModulator ..494

14.2.2 RingModulator: GUI ..494

14.2.3 RingModulator.h File ...495

14.2.4 RingModulator.cpp File ...495

xvi Contents

 14.3 Design a Wave Shaper Plug-In .. 497
14.3.1 Project: WaveShaper ...498

14.3.2 WaveShaper: GUI ...498

Bibliography ... 500

 Appendix A: The VST® and AU® Plug-In APIs ...501
 A.1 Compiling as a VST Plug-In in Windows ... 501
 A.2 Wrapping Your RackAFX Plug-In .. 503
 A.3 Comparison of Objects/Methods/GUIs .. 505
 A.4 VST Plug-In without Wrapping .. 506

A.4.1 Default GUI ...507

A.4.2 Signal Processing ..509

 A.5 VST Plug-In with RackAFX Wrapping .. 512
A.5.1 Default GUI ...512

 A.6 AU Overview .. 514
A.6.1 Default GUI ...515

A.6.2 Signal Processing ..516

 Appendix B: More RackAFX Controls and GUI Designer519
 B.1 The Alpha Wheel and LCD Control .. 519
 B.2 The Vector Joystick Control .. 521
 B.3 Using the sendUpdateGUI() Method .. 525
 B.4 Using GUI Designer.. 525

Index ..531

 Introduction

 When I started teaching in the Music Engineering Technology Program at the University of

Miami in 1996, we were writing signal processing algorithms in digital signal processing

(DSP) assembly language and loading them on to DSP evaluation boards for testing. We had

also just begun teaching a software plug-in programming class, since computers were fi nally

at the point where native processing was feasible. I began teaching Microsoft’s DirectX ® in

1997 and immediately began a book/manual on converting DSP algorithms into C++ code for

the DirectX platform. A year later I had my fi rst manuscript of what would be a thick DirectX

programming book. However, I had two problems on my hands: fi rst, DirectX is bloated

with Common Object Model (COM) programming, and it seemed like the lion’s share of the

book was really devoted to teaching basic COM skills rather than converting audio signal

processing algorithms into C++, creating a graphical user interface (GUI), and handling

user input. More importantly, developers had dropped DirectX in favor of a new, lean, cross-

platform compatible plug-in format called Steinberg VST ® , written in “straight” C++ without

the need for operating system (OS) specifi c components. After taking one look at the Virtual

Studio Technology (VST) applications programming interface (API), I immediately dropped

all DirectX development, wrote VST plug-ins all summer, and then switched to teaching it the

following year. And, I put my now-obsolete manuscript on the shelf.

 After half a dozen semesters teaching VST programming, a few things had become clear.

For any given project, the students were spending more time dealing with setting up and

maintaining a GUI than they were with the audio signal processing code. Instead of being on

the Internet to look for cool processing algorithms, they were searching for knob and switch

bitmaps. While I can certainly appreciate a nice-looking GUI, I was trying to teach audio

signal processing and not graphic design. I next spent some time trying to come up with some

kind of way to speed up the GUI programming, and I wrote a helper program that let students

defi ne lists of variable names, data types, minimum, maximum, and initial values. Then it

would synthesize the code for handling part of the GUI interaction. The actual GUI itself was

another problem, and I spent years trying to come up with a way to free the students (and

myself) from dealing with the hassles of designing and maintaining a GUI. Around 2004,

as a result of a consulting job, I needed to come up with a simple C++ based audio signal

processing API—my own plug-in format. I would also need to write my own plug-in client,

xvii

xviii Introduction

the software that would load and process data through my plug-ins. I was determined to write

an API that was far simpler and leaner than even VST. And, I wanted my client software

to handle 100% of the GUI details so I could focus on the signal processing work for my

consulting client. This would also make great software to teach audio signal processing and

plug-in programming simultaneously.

 Since 2009 I’ve been using my RackAFX™ software in the classroom at both the graduate

and undergraduate levels. My students never cease to amaze me with what they design.

Currently, RackAFX runs on the Windows ® OS and generates plug-ins that are compatible

with it and optionally VST as well. You can develop your plug-in in RackAFX, then use it in

any Windows VST client. RackAFX runs in tandem with Microsoft Visual Studio compilers,

even the free ones. It sets up your project fi les, writes GUI code for you, and allows you to

remotely launch some compiler functions from its control surface. Once you understand

how the RackAFX API works, learning other commercial plug-in APIs will be much easier

because most plug-in APIs share similar methods and set-up sequences. And, since RackAFX

plug-ins are written in C++, the plug-in objects can be compiled on different platforms and

embedded (or wrapped) to operate in just about any signal processing environment. We are

currently running RackAFX plug-ins in Apple’s iOS ® in one of my other classes.

 In the fall of 2010 I began writing and handing out chapters, one at a time, to students in a

graduate-level class. The chapters combined DSP theory, audio algorithms, and programming

in the proportions I had always wanted, including difference equations and derivations that

were fully worked out. The RackAFX API requires zero GUI programming. It isn’t tied to a

licensed product that I have to worry will become obsolete or will change in complexity or

underlying design. Most importantly, if you can learn to write RackAFX plug-ins, you can

learn to write for just about any other API on the platform you choose. See Appendix A for

more information.

 Those initial grad students helped shape the direction and fl ow of the book (perhaps without

knowing it). I wanted the book to be aimed at people with programming skills who wanted

to get into audio signal processing or the other way around. Academic types that are tired of

using mathematical software to try to do real-time signal processing should also benefi t. The

API does not require a steep learning curve.

 Chapter 1 presents the number systems, sample indexing, and basic block diagram algorithm

components. Chapter 2 explains how plug-ins are packaged in software and Chapter 3

immediately starts you writing plug-ins. Chapters 4 and 5 are the basic DSP theory chapters.

Feel free to skip these chapters if you already have a strong DSP background or if you don’t

care about it. Chapter 6 is a cookbook of infi nite impulse response (IIR) and audio specifi c

fi lter designs. Chapter 7 introduces delay lines and delay effects. The circular buffering they

require is necessary for Chapter 8’s fi nite impulse response (FIR) tools and convolution

plug-in.

 Introduction xix

 Chapter 9 introduces oscillator design, which is needed in Chapter 10’s modulated delay

effects: fl anger, chorus and vibrato effects. Chapter 11 includes the analysis of a collection

of reverberator modules and an example reverb design. Chapter 12 returns to the modulation

theme with modulated fi lter effects, including my own phaser, while Chapter 13 introduces

dynamics processor design. Chapter 14 is a clean-up chapter of miscellaneous effects

algorithms. The two appendices can be read any time after Chapter 3, where you design

your fi rst plug-ins. Appendix A deals with the VST and Audio Units (AU) ® formats, their

similarities and differences, and how to use RackAFX objects inside them. Appendix B shows

how to use the GUI designer to drag and drop GUI elements on your control surface—0%

GUI coding, guaranteed. And, if you have the tools and skills to make and maintain your own

GUI, there are options for that as well.

 My colleagues Ken Pohlmann, Joe Abbati, Colby Leider, Chris Bennett, and Rey Sanchez

had nothing but encouragement and enthusiasm for the book/software effort. Like many of

the students, they watched RackAFX evolve—even change names—from a fairly bland, gray

academic interface into a highly customizable personal plug-in development lab with a drag-

and-drop GUI designer. Of course those features and enhancements came from suggestions,

comments, and critiques from the numerous students who used the software in class. The API

would not be as robust today without their invaluable input and feedback. Stefan Sullivan

tirelessly beta-tested the software, even in the middle of his thesis work; his comments led

to many of the features in the current product. The RackAFX power users (students who

went above and beyond the parameters of their projects and pushed the envelope of the API)

include Mike Chemistruck, Greg Dion, Felipe Espic, Chen Zhang, Tim Schweichler, Phil

Minnick, Sherif Ahmed, Scott Dickey, Matan Ben-Asher, Jay Coggin, Michael Everman, and

Jordan Whitney.

 I hope you enjoy learning the audio effects theory and plug-in design from the book and

that each chapter opens up a new treasure box of cool audio gems you can use to make your

own truly unique audio effects in your own audio effect laboratory. The software FAQs,

sample code, and tutorials are all available at the website www.willpirkle.com and you are

encouraged to upload your own plug-ins and videos as well. I can’t wait to hear what you

cook up in your lab!

 Will Pirkle

 June 1, 2012

www.willpirkle.com

1

 The fi rst affordable digital audio devices began appearing in the mid-1980s. Digital signal

processing (DSP) mathematics had been around since the 1960s and commercial digital

recordings fi rst appeared in the early 1970s, but the technology did not become available

for widespread distribution until about 15 years later when the advent of the compact

disc (CD) ushered in the age of digital audio. Digital sampling refers to the acquisition

of data points from a continuous analog signal. The data points are sampled on a regular

interval known as the sample period or sample interval. The inverse of the sample period

is the sampling frequency. A compact disc uses a sampling frequency of 44,100 Hz,

producing 44,100 discrete samples per channel each second, with a sample interval of about

22.7 microseconds (µS). While digital sampling applies to many different systems, this book

is focused on only one of those applications: audio.

 During the course of this book, you will learn both DSP theory and applications. This is

accomplished by experimenting with your own DSP algorithms at the same time as you

learn the theory using the included software, RackAFX™. The goal is to understand how

the DSP algorithms translate into C11 code. The resulting plug-ins you write can be

used to process audio in real time. Because plug-ins are software variations on hardware

designs, it’s worth examining how the hardware systems operate, the typical audio coding

formats, and the algorithm building blocks you will be using to implement your own

software versions.

 1.1 Acquisition of Samples

 The incoming analog audio signal is sampled with an analog-to-digital converter (ADC

or A/D). A/Ds must accurately sample and convert an incoming signal, producing a valid

digitally coded number that represents the analog voltage within the sampling interval. This

means that for CD audio, a converter must produce an output every 22.7 mS. Figure 1.1 shows

the block diagram of the input conversion system with LFP, A/D, and encoder.

 Violating the Nyquist criteria will create audible errors in the signal in the form of an

erroneously encoded signal. Frequencies higher than Nyquist will fold back into the

 CHAPTER 1

Digital Audio
Signal Processing Principles

Input LPF ADC Output
Bitstream
10011101 Encoder

fs 2
1

(b) >Nyquist

n

n

(a) Nyquist

2 Chapter 1

spectrum. This effect is called aliasing because the higher-than-Nyquist frequencies are

encoded “in disguise” or as an “alias” of the actual frequency. This is easiest explained

with a picture of an aliased signal, shown in Figure 1.2 .

 Figure 1.1: The input conversion system ultimately results in
numerical coding of the band-limited input signal.

 Figure 1.2: (a) The Nyquist frequency is the highest frequency that can be encoded
with two samples per period. (b) Increasing the frequency above Nyquist but keeping the

sampling interval the same results in an obvious coding error—the aliased signal is the result.

 The sampling theorem states that a continuous analog signal can be sampled into discrete data
points and then reconstructed into the original analog signal without any loss of information—
including inter-sample fluctuations—if and only if the input signal has been band-limited so
that it contains no frequencies higher than one-half the sample rate, also known as the Nyquist
frequency or Nyquist rate . Band-limited means low-pass filtered (LPF). Band-limiting the input
 signal prior to sampling is also known as adhering to the Nyquist criteria .

Input
Bitstream

Decoder DAC LPF Output
fs 2 1

fs 2
1

LPF

Impulse

(x)
sin(x)

10011101

Digital Audio Signal Processing Principles 3

 Once the aliased signal is created, it can never be removed and will remain as a permanent

error in the signal. The LPF that band-limits the signal at the input is called the anti-aliasing
fi lter . Another form of aliasing occurs in the movies. An analog movie camera takes 30 pictures

(frames) per second. However, it must often fi lm objects that are rotating at much higher rates

than 30 per second, like helicopter blades or car wheels. The result is visually confusing—the

helicopter blades or car wheels appear to slow down and stop, then reverse directions and

speed up, then slow down and stop, reverse, and so on. This is the visual result of the high-

frequency rotation aliasing back into the movie as an erroneous encoding of the actual event.

 1.2 Reconstruction of the Signal

 The digital-to-analog converter (DAC or D/A) fi rst decodes the bit-stream, then takes the

sampled data points or impulses and converts them into analog versions of those impulses.

The D/A output is then low-pass fi ltered to produce the fi nal analog output signal, complete

with all the inter-sample fl uctuations. As with the A/D diagram, the decoder and D/A are

both inside the same device (a chip). Figure 1.3 shows the conceptual block diagram of the

decoding end of the system.

 The output fi lter is called the reconstruction fi lter and is responsible for re-creating the

seemingly missing information that the original sampling operation did not acquire—all the

inter-sample fl uctuations. The reason it works is that low-pass fi ltering converts impulses into

smeared out, wiggly versions. The smeared out versions have the shape f (x) 5 sin(x)/ x which

is also called the sinc() function and somewhat resembles the profi le of a sombrero, as shown

in Figure 1.4 .

 Figure 1.3: The digital bit-stream is decoded and converted into
an analog output using a low-pass fi lter to reconstruct the analog signal.

 Figure 1.4: The ideal reconstruction fi lter creates a smeared output with a damped
oscillatory shape. The amplitude of the sin(x)/x shape is proportional to the

amplitude of the input pulse.

LPF

fs 2
1

4 Chapter 1

 When a series of impulses is fi ltered, the resulting set of sin(x)/ x pulses overlap with

each other and their responses all add up linearly. The addition of all the smaller

curves and damped oscillations reconstructs the inter-sample curves and fl uctuations

(Figure 1.5).

 1.3 Signal Processing Systems

 Signal processing systems combine data acquisition devices with microprocessors to

run mathematical algorithms on the audio data. Those algorithms are the focus of this

book. Today’s plug-ins are descendents of stand-alone hardware effects processors which

are based on DSP chips. A DSP chip is a highly specialized processor designed mainly

to run DSP algorithms. A DSP would function poorly as a central processing unit (CPU)

for a personal computer because it only has a small but highly specialized instruction

set. DSP devices (or just “DSPs”) feature a core processor designed to multiply and

accumulate data because this operation is fundamental to DSP algorithms. Because this

process is repeated over and over, modern DSPs use pipelining to fetch the next data

while simultaneously processing the current data. This technique greatly improves the

effi ciency of the system. A typical signal processing system consists of the following

components (Figure 1.6):

• Data acquisition devices (A/D and D/A)

• A DSP chip

• Memory to store the algorithm program (program memory)

• Memory to store the algorithm data (data memory)

• A user interface (UI) with buttons, knobs, switches, and graphic displays

 Music synthesis devices are an embedded version of a CPU1DSP arrangement. The

microcontroller or microprocessor manages the UI and keyboard, while the DSP performs

the audio synthesis and effects algorithms. Practical implementations now involve multiple

DSPs, some of which are custom designed specifi cally for sound synthesis. An example

block diagram is shown in Figure 1.7 .

 Figure 1.5: The sin(x)/x outputs of the LPF are summed together to reconstruct
the original band-limited input waveform; the inter-sample

information has been reconstructed.

ADC Input

Output DAC

DSP

User Interface
and

Control Surface

Data
Memory

Program
Memory

Data
Memory

Program
Memory

DSP DAC Output

User Interface
and

Control Surface

Microcontroller
or

Microprocessor

Digital Audio Signal Processing Principles 5

 1.4 Synchronization and Interrupts

 There are two fundamental modes of operation when dealing with incoming and outgoing

audio data: synchronous and asynchronous. In synchronous operation, all audio input and

output data words are synchronized to the same clock as the DSP. These are typically simple

 Figure 1.6: A simple signal processing system. The algorithm in this case is
inverting the phase of the signal; the output is upside-down.

 Figure 1.7: Block diagram of a synthesizer.

6 Chapter 1

systems with a minimum of input/output (I/O) and peripherals. More-complex systems

usually involve asynchronous operation, where the audio data is not synchronized to the DSP.

Moreover, the audio itself might not be synchronous, that is, the input and output bit-streams

might not operate on the same clock. A purely synchronous system will be more foolproof,

but less fl exible.

 An asynchronous system will almost always be interrupt-based. In an interrupt-based

design, the processor enters a wait-loop until a processor interrupt is toggled. The processor

interrupt is just like a doorbell. When another device such as the A/D has data ready to

deliver, it places the data in a predesignated buffer, and then it rings the doorbell by toggling

an interrupt pin. The processor services the interrupt with a function that picks up the data,

and then goes on with its processing code. The function is known as an interrupt-service
routine or an interrupt handler . The interrupt-based system is the most effi cient use of

processor time because the processor can’t predict the exact clock cycle when the data will

be ready at the input.

 Another source of interrupts is the UI. Each time the user changes a control, clicks a button,

or turns a knob, the updated UI control information needs to be sent to the DSP so it can alter

its processing to accommodate the new settings. This is also accomplished via interrupts and

interrupt handlers. The interrupt is sometimes labeled INT, INTR, or IRQ (interrupt request

line) in block diagrams or schematics.

 1.5 Signal Processing Flow

 Whether the processing is taking place on a DSP chip or in a plug-in, the overall processing

fl ow, also known as the signal processing loop, remains basically the same. For a DSP chip,

the processes in the loop will be encoded in the program memory’s set of instructions, often

in a nearly pure-inline fashion for optimization of the processor’s cycles. For a plug-in, each

processing block more or less takes on the form of a function in code, allowing for maximum

fl exibility.

 The processing loop in Figure 1.8 consists of

• A one-time initialization function to set up the initial state of the processor and prepare

for the arrival of data interrupts

• An infi nite wait-loop, which does nothing but wait for an interrupt to occur

• An interrupt handler which decodes the interrupt and decides how to process—or

 ignore—the doorbell

• Data reading and writing functions for both control and data information

• A processing function to manipulate and create the audio output

• A function to set up the variables for the next time around through the loop, altering

 variables if the UI control changes warrant it

Do One-Time
Initialization

Wait for Data
Interrupt

INTR

Is Audio
INTR?

Read Input
Data

Write
Output
Data

Set Up Variables
& Data for Next

Loop

Process
&

Create Audio
Output Data

yes

Read
Control

Data

no

no Is Control
INTR?

yes

Digital Audio Signal Processing Principles 7

 For the sampling theorem to hold true, the audio data must be arriving and leaving on a strictly

timed interval, although it may be asynchronous with the DSP’s internal clock. This means

that when the DSP does receive an audio INTR it must do all of the audio processing and

handle any UI interrupts before the next audio INTR arrives in one sample interval. The

interrupt handling scheme is prioritized such that the audio data interrupt is the most

important. Thus, while servicing the audio data interrupt, the DSP might be set up to ignore

all other interrupts (except the reset interrupt) until the audio data is fi nished processing.

 1.6 Numerical Representation of Audio Data

 The audio data can be numerically coded in several different ways. Basic digital audio

theory reveals that the number of quantization levels available for coding is found by

 Equation 1.1 .

 q 5 2N (1.1)

 where N is the bit depth of the system.

 Thus, an 8-bit system can encode 2 8 values or 256 quantization levels. A 16-bit system can

encode 65,536 different values. Figure 1.9 shows the hierarchy of encoded audio data. As a

system designer, you must fi rst decide if you are going to deal with unipolar (unsigned) or

bipolar (signed) data. After that, you need to decide on the data types.

 Figure 1.8: The fl owchart for an audio signal processing system.

Unipolar or Bipolar

Integer Fractional

Fixed-Point Floating
Point

8 Chapter 1

• Unipolar or unsigned data is in the range of 0 to 1Max, or 2Min to 0, and only has one

polarity (1 or 2) of data, plus the number zero (0).

• Bipolar or signed data varies from 2Min to 1Max and is the most common form today.

It also includes the number zero (0).

• Integer data is represented with integers and no decimal place. Unsigned integer

 audio varies from 0 to 165,535 for 16-bit systems. Signed integer audio varies

from 232,768 to 132,767 for the same 16-bit audio. In both cases, there are 65,536

 quantization levels.

• Fractional data is encoded with an integer and fractional portion, combined as int.frac

with the decimal place separating the parts (e.g. 12.09).

 Within the fractional data subset are fi xed- and fl oating-point types. Fixed-point data fi xes

the number of signifi cant digits on each side of the decimal point and is combined as int-

sig-digits.frac-sig-digits . “8.16” data would have 8 signifi cant digits before the decimal place

and 16 afterwards. Floating-point data has a moving mantissa and exponent which code the

values across a range predetermined by the Institute of Electrical and Electronics Engineers

(IEEE). The positive and negative portions are encoded in 2’s complement so that the addition

of exactly opposite values (e.g., 20.5 and 10.5) always results in zero. Figure 1.10 reveals

how the quantization levels are encoded. The dashed lines represent the minimum and

maximum values.

 A fundamental problem is that the number of quantization levels will always be an even number

since 2 N is always even. In bipolar systems, you would very much like to have the number zero

(0) encoded as the number 0. If you do that, then you use up one of your quantization levels for

it. This leaves an odd number of levels which cannot be split exactly in half. That creates the

anomaly you see in Figure 1.10 —there are always more negative (2) quantization levels than

positive ones for bipolar coding. For the unipolar case, there is no value which exactly codes

the zero or midpoint level; in Figure 1.10 it is midway between 127 and 128.

 Figure 1.9: The hierarchy of numerical coding.

Fractional
Bipolar

16-Bit
Bipolar

8-Bit
Bipolar

8-Bit
Unipolar

+0.9999
+0.9998

32,767
32,766

127
126

255
254

0.0002
0.0001

0
–0.0001
–0.0002

2
1
0

– 1
–2

2

1
0

– 1
– 2

129
128

127
126

–0.9999
–1.0000

–32,767
–32,768

– 127
– 128

1
0

Digital Audio Signal Processing Principles 9

 This slight skewing of the data range is unavoidable if you intend on using the number zero

in your algorithms, and that is almost guaranteed. In some systems the algorithm limits the

negative audio data to the second most negative value. This is because phase inversion is

common in processing algorithms, either on purpose or in the form of a negative-valued

coeffi cient or multiplier. If a sample came in with a value of 232,768 and it was inverted,

there would be no positive version of that value to encode. To protect against that, the

232,768 is treated as 232,767. The audio data that travels from the audio hardware adapter

(DSP and sound card) as well as that stored in WAV fi les is signed-integer based. However,

for audio signal processing, we prefer to use fl oating-point representation.

 1.7 Using Floating-Point Data

 In many audio systems, the DSP and plug-in data is formatted to lie on the range of 21.0 to

11.0 (which is simplifying the real range of 21.0 to 10.9999). In fact the plug-ins you code

in this book will all use data that is on that same range. The reason has to do with overfl ow.

In audio algorithms, addition and multiplication are both commonplace. With integer-based

numbers, you can get into trouble quickly if you mathematically combine two numbers that

result in a value that is outside the range of known numbers.

 Consider the 16-bit integer bipolar format on the range of 232,768 to 132,767. Most of the

values on this range, when multiplied together, will result in a product that is outside these

 Figure 1.10: A comparison of several different types of data representations. The fl oating-
point version is fi xed for a range of 21.0 to 10.9999, though any range can be used.

+ 1.0 DC

Step

–1.0

10 Chapter 1

limits. Addition and subtraction can cause this as well, but only for half the possible values.

However, numbers between 21.0 and 11.0 have the interesting property that their product

is always a number in that range. Converting an integer value to a fractional value along the

normalized range of 21.0 to 11.0 in an N -bit digital audio system is easy, as is the reverse

conversion shown in Equation 1.2 :

 Fraction 5
Integer

2N

 Integer 5 Fraction * 2N

(1.2)

 where N is the bit depth of the system.

 1.8 Basic DSP Test Signals

 You need to know the data sequences for several fundamental digital signals in order to begin

understanding how the DSP theory works. The basic signal set consists of

• Direct Current (DC) and step: DC is a 0Hz signal

• Nyquist

• ½ Nyquist

• ¼ Nyquist

• Impulse

 The fi rst four of these signals are all you need to get a ballpark idea of the frequency response

of some basic DSP fi lters. The good news is that all the sequences are simple to remember.

 1.8.1 DC and Step

 The DC or 0 Hz and step responses can both be found with the DC/step input sequence:

{…0, 0, 1, 1, 1, 1, 1, 1, 1, 1…}.

 This signal in Figure 1.11 contains two parts: the step portion where the input changes from

0 to 1 and the DC portion where the signal remains at the constant level of 1.0 forever. When

 Figure 1.11 Representation of the DC/Step sequence.

+1.0

–1.0

+ 1.0

–1.0

Digital Audio Signal Processing Principles 11

you apply this signal to your DSP fi lter and examine the output, you will get two pieces of

information. The step portion will tell you the transient attack time and the DC portion will

give you the response at DC or 0 Hz.

 1.8.2 Nyquist

 The Nyquist input sequence represents the Nyquist frequency of the system and is

independent of the actual sample rate. The Nyquist sequence is {…21, 11, 21, 11, 21,

11, 21, 11…}.

 The Nyquist frequency signal in Figure 1.12 is the highest frequency that can be encoded. It

contains the minimum of two samples per cycle with each sample representing the maximum

and minimum values. The two-sample minimum is another way of stating the Nyquist

frequency as it relates to the sampling theorem.

 1.8.3 ½ Nyquist

 The ½ Nyquist input sequence in Figure 1.13 represents the ½ Nyquist frequency of the

system and is independent of the actual sample rate. The signal is encoded with four samples

 Figure 1.12 The Nyquist sequence.

 Figure 1.13 The ½ Nyquist sequence has four samples per cycle.

+1.0

–1.0

+1.0

–1.0

12 Chapter 1

per cycle, twice as many as Nyquist. The ½ Nyquist sequence is {…21, 0, 11, 0, 21, 0, 11,

0, 21, 0, 11, 0, 21, 0, 11, 0…}.

 1.8.4 ¼ Nyquist

 The ¼ Nyquist input sequence in Figure 1.14 represents the ¼ Nyquist frequency of the

system and is independent of the actual sample rate. It is encoded with eight samples

per cycle. The ¼ Nyquist sequence is {…0.0, 0.707, 11.0, 0.707, 0.0, 20.707, 21.0,

20.707, 0.0…}.

 1.8.5 Impulse

 The impulse shown in Figure 1.15 is a single sample with the value 1.0 in an infi nitely long

stream of zeros. The impulse response of a DSP algorithm is the output of the algorithm after

applying the impulse input. The impulse sequence is {…0, 0, 0, 0, 1, 0, 0, 0, 0,…}.

 Figure 1.14 ¼ Nyquist sequence has eight samples per cycle.

 Figure 1.15 The impulse is a single nonzero sample value in a sea of zeros.

x(n)
h(n)

Processing Algorithm
Audio Signal

y(n)

Digital Audio Signal Processing Principles 13

 1.9 Signal Processing Algorithms

 In the broadest sense, an algorithm is a set of instructions that completes a predefi ned task.

The signal processing loop in Figure 1.8 is a picture of an algorithm for processing audio and

control (UI) data in real time. In the specialized case of audio signal processing, an algorithm

is a set of instructions that operates on data to produce an audio output bit-stream. Most of

the exercises in this book involve processing incoming audio data and transforming it into

a processed output. However, synthesizing a waveform to output also qualifi es and in this

special case, there is no real-time audio input to process. Most of the plug-ins in this book

use the effects model, where an input sequence of samples is processed to create an output

sequence, as shown in Figure 1.16 .

 Conventions and rules:

• x (n) is always the input sequence; the variable n represents the location of the n th sample

of the x -sequence.

• y (n) is always the output sequence; the variable n represents the location of the n th

sample of the y -sequence.

• h (n) is the impulse response of the algorithm; a special sequence that represents the

 algorithm output for a single sample input or impulse.

• For real-time processing, the algorithm must accept a new input sample (or set of

 samples), do the processing, then have the output sample(s) available before the next

input arrives; if the processing takes too long, clicks, pops, glitches, and noise will be

the real-time result.

 1.10 Bookkeeping

 You can see that there are already three sequences to deal with: the input, output, and

impulse response, all of which are coded with the same variable n to keep track of the

location of samples within the sequence. The fi rst step is to decide how to use n to do

this bookkeeping task. Using it to represent the absolute position in the sequence would

quickly become tiresome—how do you deal with indexing numbers like x (12,354,233)?

 Figure 1.16: An audio signal processing algorithm that converts
an input sequence x(n) into an output sequence y(n).

sample
The first input

x(0)
x(1)

x(2)

x(3)

x(10)

x(11)
x(12)

sample
The 12th input

14 Chapter 1

 Figure 1.17 shows an input signal, x (n), starting from t 5 0 or x (0). The x (0) sample is the

fi rst sample that enters the signal processing algorithm. In the grand scheme of things, x (0)

will be the oldest input sample ever. Indexing the numbers with absolute position is going to

be a chore as the index values are going to become large, especially at very high sample rates.

 Another problem with dealing with the absolute position of samples is that algorithms

do not use the sample’s absolute position in their coding. Instead, algorithms use the

position of the current sample and make everything relevant to that sample. On the next

sample period, everything gets reorganized in relation to the current sample again. It

might sound confusing at fi rst, but it is a much better method of keeping track of the

samples and more importantly, defi ning the I/O characteristics of the algorithm, called

the transfer function . Figure 1.18 shows the input signal frozen at the current time,

 x (n), and the other samples are indexed based on its location. One sample period later

(Figure 1.19) you can see the frame of reference has shifted to the right and that x (n) has

now become x (n 2 1).

 Bookkeeping rules:

• The current sample is labeled “ n .”

• Previous samples are negative, so x (n 2 1) would be the previous input sample.

• Future samples are positive, so x (n 1 1) would be the next input sample relative to the

current one.

• On the next sample interval, everything is shuffl ed and referenced to the new current

sample, x (n).

 Figure 1.17: Using the absolute position within the sequence is one way to keep track,
but the index values are going to get very large very quickly.

(n– 4) x

x (n– 3)

x (n–2)

Sample
Current Input

(n–1) x

(n + 4) x
(n + 3) x

(n + 2) x

(n+1) x

The Past (n) x
The Future

(n– 4) x

(n– 5) x x (n– 3)

(n– 2) x

x (n–1)

Sample
Current Input

x (n + 2)
x (n + 3)

x (n+1)

The Future
x (n)

The Past

Digital Audio Signal Processing Principles 15

 1.11 The One-Sample Delay

 Whereas analog processing circuits like tone-controls use capacitors and inductors to alter the phase

and delay of the analog signal, digital algorithms use time-delay instead. You will uncover the

math and science behind this fact later on in Chapters 4 and 5 when you start to use it . In algorithm

 Figure 1.18: DSP algorithms use the current sample location as the reference location
and all other samples are indexed based on that sample. Here you can see the current

state of the algorithm frozen in time at the current input sample x(n).

 Figure 1.19: One sample period later, everything has shifted. The previous x(n) is now indexed
as x(n − 1) and what was the next sample, x(n + 1) now becomes the current sample.

In z . -1 Out z –1

Out

In

16 Chapter 1

diagrams, a delay is represented by a box with the letter z inside. The z -term will have an

exponent such as z 25 or z 12 or z 0 —the exponent codes the delay in samples following the same

bookkeeping rules, with negative (2) exponents representing a delay in time backward (past

samples) and positive (1) representing delay in forward time (future samples). You call z the

 delay operator and as it turns out, time-delay will be treated as a mathematical operation.

 You are probably asking yourself how you can have a positive delay toward the future, and

the answer is that you can’t for real-time signal processing. In real-time processing you

never know what sample is going to come in next. However, in non-real-time processing

(for example, an audio fi le that you are processing offl ine) you do know the future samples

because they are in the fi le. Figure 1.20 shows two common ways to denote a one-sample

delay in an algorithm block diagram.

 Delay rules:

• Each time a sample goes into the delay register (memory location), the previously stored

sample is ejected.

• The ejected sample can be used for processing or deleted.

• The delay elements can be cascaded together with the output of one feeding the input of

the next to create more delay time.

 If a sample x (n) goes into the one-sample delay element, then what do you call the sample

that is ejected? It’s the previous sample that came in, one sample interval in the past. So, the

output sample is x (n 21). In Figure 1.21 you can see how delay elements can be cascaded

with outputs taken at multiple locations generating multiple samples to use in the algorithm.

 1.12 Multiplication

 The next algorithm building block is the scalar multiplication operation. It is a sample-by-

sample operator that simply multiplies the input samples by a coeffi cient. The multiplication

operator is used in just about every DSP algorithm around. Figure 1.22 shows the multiplication

operator in action. The inputs are simply scaled by the coeffi cients.

 Figure 1.20: Two common ways to draw a delay; the one-sample delay is
represented with the z−1. Both versions are equivalent.

x(n)

x(n)

x(n)
x(n–1)

z–1 z–1

x(n -1)

x(n–2)

(a)

(b)

(c) x(n–1)

x(n–2)

z–1

z–1

x (n) a0 a0x(n)

Y(n) b 1 b1Y(n)

∑∑ a(n) a(n)+ b(n)

a(n)

b(n)

a(n)+ b(n)

b(n) b(n)

a(n)

a(n) a(n) – b(n)

b(n)

a(n) – b(n) +

–

–

z–1

Digital Audio Signal Processing Principles 17

 1.13 Addition and Subtraction

 Addition and subtraction are really the same kind of operation—subtracting is the addition of a

negative number. There are several different algorithm symbols to denote addition and subtraction.

The operation of mixing signals is really the mathematical operation of addition. Figure 1.23

shows several ways of displaying the addition and subtraction operation in block diagrams.

 Figure 1.21: Three delay algorithms: (a) one-sample delay, (b) two one-sample
delays cascaded, producing two different outputs, x(n 2 1) and x(n 2 2),

notice that (c) is functionally identical to (b).

 Figure 1.22: The multiplication operator is displayed as a triangle and
a coeffi cient letter or number inside or just above it.

 Figure 1.23: Addition and subtraction diagrams for two input sequences a(n) and b(n);
these are all commonly used forms of the same functions.

Difference Equations

x(n)

x(n)

p(n)

z -1

a2

q(n)

a

2.5

0.5

-1.0

y(n) = x(n –1)

y(n) = a
2 x (n)

y(n) = p(n) + q(n) ∑

y(n) = ax(n)

y(n) = 2.5x(n)

y(n) = 0.5x(n)

y(n) = –x(n)

x(n)

x(n)

x(n)

x(n)

(a)

(b)

(c)

(d)

18 Chapter 1

 1.14 Algorithm Examples and the Difference Equation

 By convention, the output sequence of the DSP algorithm is named y (n) and the mathematical

equation that relates it to the input is called the difference equation . Combining the operations

will give you a better idea of what the difference equation looks like. Figure 1.24 shows the

difference equations for several combinations of algorithm building blocks. The output y (n) is

a mathematical combination of inputs.

 1.15 Gain, Attenuation, and Phase Inversion

 As shown in Figure 1.25 , a simple coeffi cient multiplier will handle the three basic audio

processing functions of gain, attenuation, and inversion. If the coeffi cient is a negative

number, phase inversion will be the result. If the coeffi cient has a magnitude less than 1.0,

attenuation will occur, while amplifi cation occurs if the magnitude is greater than 1.0.

 Figure 1.24: The difference equations relate the input(s)
to the output via mathematical operations

 Figure 1.25: Examples of simple multiplier algorithms. Notice the different notation with the
coeffi cient placed outside the triangle; this is another common way to designate it. (a) Simple

scalar multiplication by an arbitrary value “a”. (b) Gain is accomplished with a coeffi cient
magnitude greater than one. (c) Attenuation reduces the size of the input value with a coeffi cient

that is less than one. (d) Phase inversion turns the signal upside down by using a negative
coeffi cient; a value of 21.0 perfectly inverts the signal.

p(n)

q(n)

p(n)

q(n)

y(n) = ap(n) + bq(n)

y(n) = 0.5p(n) + 0.5q(n)

(a)

(b)

∑

∑

∑a

b

0.5

0.5

p(n)

q(n)

r(n)

s(n)

y(n) = ap(n) + bq(n) + cr(n) + ds(n) a

b

c

d

Digital Audio Signal Processing Principles 19

 1.16 Practical Mixing Algorithm

 A problem with mixing multiple channels of digital audio is the possibility of overfl ow or

creating a sample value that is outside the range of the system. You saw that by limiting

the bipolar fractional system to the bounds of 21.0 to 11.0, multiplication of any of these

numbers always results in a number that is smaller than either, and always within the same

range of 21.0 to 11.0. However, addition of signals can easily generate values outside the 61

limits. In order to get around this problem, N-channel mixing circuits incorporate attenuators

to reduce the size of the inputs, where the attenuation value is 1/N. When mixing two channels,

the attenuators each have a value of ½ while a three-channel mixer would have attenuators with

a value of 1/3 on each mixing branch. If all channels happen to have a maximum or minimum

value at the same sample time, their sum or difference will still be limited to 61. Figures 1.26

and 1.27 show the generalized mixing and weighted-sum algorithms.

 Figure 1.26: (a) Generalized mixer/summer with a separate coeffi cient on each
line and (b) a normalized mixer which will not overfl ow or clip.

 Figure 1.27: An example of a weighted-sum algorithm; each sample
from each channel has its own weighting coeffi cient, a–d.

20 Chapter 1

 In the next chapter, you will be introduced to the anatomy of a plug-in from a software point

of view. In Chapters 6 through 14 , you will learn how DSP theory allows you to combine

these building blocks into fi lters, effects, and oscillators for use in your own plug-ins.

 Bibliography

 Ballou, G. 1987. Handbook for Sound Engineers , pp. 898–906. Indiana : Howard W. Sams & Co.

 Jurgens, R. K., ed. 1997. Digital Consumer Electronics Handbook , Chapter 2. New York: McGraw-Hill.

 Kirk, R. and Hunt, A. 1999. Digital Sound Processing for Music and Multimedia , Chapter 1. Massachusetts :

Focal Press.

 KORG, Inc. 1991. KORG Wavestation SR Service Manual. Tokyo, Japan: KORG Inc .

 Limberis, A. and Bryan, J. 1993. An architecture for a multiple digital-signal processor based music synthesizer

with dynamic voice allocation. Journal of the Audio Engineering Society , Preprint No. 3699 .

 Pohlmann, K. C. 2011. Principles of Digital Audio , pp. 16–30. New York: McGraw-Hill.

 Stearns, S. D. and Hush, D. R. 1990. Digital Signal Analysis , pp. 44–52. Englewood Cliffs, NJ: Prentice-Hall.

21

 A plug-in is a software component that interfaces with another piece of software called the

client in order to extend the client’s capabilities in some way. For example, Internet browsers

use plug-ins that implement added functions like searching and text messaging. In computer

audio systems, a plug-in is usually an audio effect of some kind. However, a plug-in could

also implement an oscilloscope or frequency analyzer function. Synthesizer plug-ins extend

the client’s functionality by working as musical instruments.

 In order to start writing plug-ins, you need to know how the plug-in connects to and

communicates with the client. Windows ® plug-ins are typically packaged as dynamic link

library, or DLL, fi les. Apple ® plug-ins are packaged in a bundle which is confi gured as a

 component . The main difference between the two is in the lingo their designers use to describe

them. Rather then try to accommodate both DLL and component labels during this discussion,

we will just use DLL to describe both in conceptual form. Specifi c programmatic differences

in the formats will be addressed and can be found on the website www.willpirkle.com .

 2.1 Static and Dynamic Linking

 C++ compilers include sets of precompiled libraries of functions for you to use in your

projects. Perhaps the most common of these is the math library. If you try to use the sin()

method you will typically get an error when you compile stating that “sin() is not defi ned.”

In order to use this function you need to link to the library that contains it. The way you do this

is by placing #include <math.h> at the top of your fi le. Depending on your compiler, you might

also need to tell it to link to math.lib. When you do this, you are statically linking to the math.h

library, a precompiled set of math functions in a .lib fi le. Static linking is also called implicit

linking. When the compiler comes across a math function, it replaces the function call with the

precompiled code from the library. In this way, the extra code is compiled into your executable.

You cannot un-compile the math functions. Why would you do this? Suppose a bug is found

in the sin() function and the math.h library has to be re-compiled and redistributed. You would

then have to re-compile your software with the new math.h library to get the bug fi x.

 The solution is to link to the functions at run time. This means that these precompiled

functions will exist in a separate fi le, which your executable will know about and communicate

with, but only after it starts running. This kind of linking is called dynamic linking or explicit

 CHAPTER 2

Anatomy of a Plug-In

www.willpirkle.com

CLIENT (.exe) CLIENT (.exe)

Calls

<math.h> functions

math.dll functions
Returns

(a) Static Linking (b) Dynamic Linking

22 Chapter 2

 Figure 2.1: (a) In static linking the functions are compiled inside the client.
(b) In dynamic linking the functions are located in a different fi le.

This requires a communications mechanism between the
client and DLL to call functions and return information.

linking and is shown in Figure 2.1 . The fi le that contains the precompiled functions is the

DLL. It is more complicated because extra steps must be taken during run-time operation

rather than relying on code compiled directly into the executable. The advantage is that if a

bug is found in the library, you only need to redistribute the newly compiled fi le rather than

re-compiling your executable. The other advantage is that the way this system is set up—a

client that connects to a component at run time—works perfectly as a way to extend the

functionality of a client without the client knowing anything about the component when it is

compiled. This is simplifi ed when the DLL is loaded into the same virtual address space as the

client. If you already understand this, you can skip the next section; otherwise, read on.

 2.2 Virtual Address Space and DLL Access

 When you start a program (client) in a Windows 32-bit operating system (OS), the fi rst

thing that happens is the OS creates a new virtual machine and virtual address space. The

maximum amount of memory that can be accessed by a 32-bit microprocessor is 2 32 or

about 4 gigabytes of memory. The client executable believes it has a full 4 gigabytes of

memory and that its executable is loaded into part of this memory block. This block of

memory is also called the process address space. The OS is responsible for maintaining this

illusion for the client as well as all the other executables that are running on the system. This

is done through virtualization of the microprocessor, memory, and peripherals.

Process Address Space A Process Address Space B

The Process A The Process B

CLIENT (A.exe) CLIENT (B.exe)

plugin_2.dll functions

4 gigabytes

plugin_1.dll functions

(a) An in-process DLL (b) An out-of-process DLL
0x00000000

OxFFFFFFFF

Anatomy of a Plug-In 23

 While that topic could be the subject of another book, the main thing you need to know is

that typically when the client loads the DLL and begins the communication process, the

DLL is loaded into the same virtual address space as the client. This means that the client

code might as well have the DLL code compiled into it since the addressing requires no

translation. It should be noted that a DLL can be loaded into another process space or even on

another machine across a network. In this case it is called an “out of process DLL”; however,

inter-process communication is complicated and requires OS and/or network function calls.

We will not be considering out of process DLLs here. With the DLL in the same process

address space as the client, there is no extra overhead and the communication uses in-process

addressing. Both types are shown in Figure 2.2 .

 In order to use the code in a DLL the client must perform two activities:

1. Load the DLL into the process address space.

2. Establish the communication mechanism for functions to be called.

 Figure 2.2: The process address space is a 4-gigabyte memory map starting at address
0x00000000 and going to 0xFFFFFFFF. When the client is launched it is placed inside the

memory space. (a) An in-process DLL communicates directly with the client while
(b) an out-of-process DLL communication requires OS intervention.

24 Chapter 2

 In the Windows OS, the three functions that are used to complete these tasks are

1. LoadLibrary(): Loads the DLL into the process address space.

2. GetProcAddress(): Retrieves pointers to functions in the DLL.

3. FreeLibrary(): Unloads the DLL from the process address space.

 2.3 C and C++ Style DLLs

 A DLL written in the C programming language consists of a set of stand-alone functions.

There is no main () function. The functions can be defi ned and implemented in one .c fi le or

can be broken into an interface fi le (.h) and implementation fi le (.c)—either way, the DLL

performs a set of isolated functions. A problem with using the C programming language to

write a DLL is the persistence of data. In C (and C++) the curly brackets {} defi ne the scope

of a function.

 A fundamental problem is that the data declared inside a function cannot persist from one

call to the next. One solution involves using global variables, which is generally frowned

upon. A better solution to this problem is for the DLL to dynamically declare a data structure

(e.g., using malloc()) that will hold all the persistent variables and then pass a pointer to this

data structure back to the client to maintain. During subsequent calls to the DLL, the client

passes the pointer back to the DLL as a function argument so that it may operate on the

persistent data. This is shown in Figure 2.3 . When the DLL is no longer needed, it clears the

memory by deleting the structure.

 In the C++ programming language, the class data type defi nes an object that is a collection

of member variables and member functions which can operate on those variables. By

packaging a plug-in as a C++ class, you get several advantages; fi rst, all of the benefi ts of

C++ (encapsulation, polymorphism, etc.) are available during the coding process. Second,

rather than allocating a data structure and returning a pointer to it, the DLL can create a new

instance of the plug-in object and pass a pointer to the object to the client. Now, the client can

simply call functions on the object—it does not have to communicate with the DLL again

until it is time to either unload the DLL or, better yet, create another instance of the plug-in

object. This leads to a third advantage over the C-based DLL: the client can create multiple

plug-ins easily. The DLL can serve up multiple instances of the object. Sometimes, the

plug-in is referred to as a server and this becomes another kind of client-server system. This

is illustrated in Figure 2.4 .

 Any variable declared inside a function, after the first open curly bracket { is only defined
for the duration of the function. After the closing curly bracket } is encountered, the variable
ceases to exist.

CLIENT (.exe) SERVER (.dll)

customDataStruct *pData;

Call DLL init() init()
pData = new customDataStruct

CLIENT (.exe)

customDataStruct *pData;

do_something(pData);

SERVER (.dll)

do_something(pData)
x = pData->oldSample ;
etc...

bSuccess

Anatomy of a Plug-In 25

 2.4 Maintaining the User Interface

 Most plug-ins have an associated graphical user interface (GUI or UI) with controls for

manipulating the device. There are several schemes, but in general, when a new instance of

the plug-in is created, a new child window is created with the GUI embedded in it. Whenever

a GUI control changes state, a function on the plug-in is called. The client or GUI passes the

plug-in information about which control changed and the new value or state of the control.

The plug-in then handles the message by updating its internal variables to affect the change in

signal processing. Generally, the GUI appearance (the position of the sliders or knobs or the

states of switches) is controlled automatically by the client or the GUI code itself. There are

three different ways the GUI can be handled:

1. The client creates, maintains, and destroys the GUI and forwards control-change

 messages to the plug-in.

2. The client creates, maintains, and destroys the GUI but the GUI communicates directly

with the plug-in.

3. The plug-in creates, maintains, destroys, and communicates directly with the GUI,

 independent of the client.

 Figure 2.3: In a C-style DLL, the client fi rst calls an initialization function
and the DLL returns a pointer to a dynamically allocated data structure

(pData), which the client stores. Later, the client calls a function
do_something() and passes the pointer back to the DLL as a
function argument. The DLL accesses the stored data, uses it,

and then typically responds with a success fl ag.

CLIENT (.exe)

CPIugln *pPlugln;

SERVER (.dll)

create()
Return new customPlugln;

Call create()

SERVER (.dll)

SERVER (.dll) CLIENT (.exe)

CPIugln *pPlugln1;
CPIugln *pPlugln2;

pPlugln1->do_Something();
pPlugln2->do_Something();

pPlugln->do_Something();

CLIENT (.exe)

CPIugln *pPlugln;

26 Chapter 2

 Figures 2.5 through 2.7 show the three basic GUI scenarios. The fi rst difference is in who

creates, maintains, and destroys the GUI. When the client creates and maintains the GUI, it

creates it as a child window which has the benefi t that if the client is minimized or closed,

the child windows will be hidden or destroyed accordingly. Therefore, the fi rst two scenarios

are more common. Some plug-ins can accommodate stand-alone GUI operation in addition

to the client-child confi guration. The second difference is in how the communication fl ows:

indirectly routed through the client or directly from the GUI to the plug-in. The RackAFX

software uses the second paradigm; the client creates the GUI but the GUI communicates

directly with the plug-in when controls are modifi ed.

 Figure 2.4: In a C++ plug-in, the client calls a creation function and the DLL (server)
creates the object and passes a pointer to it back to the client. The client uses this

pointer for future calls to the plug-in without having to bother communicating
with the DLL. The client might also create multiple instances of the plug-in

and then use the resulting pointers to implement processing functions.

Client

CtrlChange(0xFCEE, 254) Message Handler

Window Control
Create, Destroy

User Interface
and

Control Surface

UI_Change(Slider 1, 0.75)

Plug-In

UI_Changed()

Anatomy of a Plug-In 27

 2.5 The Applications Programming Interface

 In order for the client-server scheme to work, both the client and DLL/plug-in must agree on

the naming of the functions. This includes the creation function and all of the functions that

the client will be able to call on the plug-in object. The plug-in might have other functions

that the client doesn’t know about, but they must agree on a basic set of them. Additionally,

rules must be set up to defi ne the sequence of function calls; the plug-in’s author (that’s you)

will need to understand how the client intends to use the object.

 The client must make sure that once it establishes these rules it adheres to them in future

versions to avoid breaking the plug-in. On the other hand, the plug-in must also promise to

implement the basic required functions to make the plug-in work. So, you can see that there

is an implied contract between the client and DLL server. This contract is the applications

 Figure 2.5: In this scenario, the client maintains the GUI and receives control
change messages from it; the client then optionally translates that

information before forwarding it to the plug-in.

Client

Window Control
Create, Destroy

Plug-In

UI_Changed() CtrlChange(0xFCEE. 254)

User Interface
and

Control Surface

Plug-In

UI_Changed() CtrlChange(0xFCEE, 254)

Window Control
Create, Destroy User Interface

and
Control Surface

28 Chapter 2

 Figure 2.6: In this scenario, the client maintains the GUI,
which communicates directly with the plug-in.

 Figure 2.7: In another scenario, the plug-in maintains and communicates
directly with the GUI without interference from the client.

Anatomy of a Plug-In 29

programming interface or API. It is a defi nition of the functions an object must implement

to be considered a proper plug-in as well as any additional functions that may be called

or overridden. It defi nes the function prototypes and describes how the functions will be

called and used. The API is written by the client manufacturer and is made available to

programmers who want to create plug-ins for that target client. Some examples are Direct-X ® ,

VST ® , AU ® , and AAX ® . Each of these manufacturers publishes an API that describes the

contract with the plug-in developers. However, the basic operation and core functionality are

generally the same.

 C++ is especially useful here. Since the plug-in is an instance of a C++ object, the client

manufacturer can specify that the plug-in is a derived class of a special base class that it

defi nes. The base class is made to be abstract, containing virtual functions that the derived

class overrides. These virtual functions provide the common functionality of the plug-in.

There are two options here:

1. The manufacturer defi nes the base class as abstract and then provides default

implementations of the virtual functions. Typically, the default implementations

do nothing but return a success code. The plug-in authors then override whichever

methods they need to. For example, the plug-in might not care about responding

to Musical Instrument Digital Interface (MIDI) messages, so the default implementation

of the MIDI function will suffi ce.

2. The manufacturer defi nes the base class as a pure abstract base class by making one or

more of the virtual functions pure virtual functions. A pure abstract base class cannot

be instantiated; only derived classes that implement all the pure virtual functions can.

This forms a binding contract between the plug-in developer and the client manufac-

turer since the derived class won’t work properly unless it implements the pure abstract

 functions that the client specifi es.

 The RackAFX software uses the fi rst method, supplying default implementations for all

virtual functions. As the plug-in author, you only override the functions you need to. But

what are the typical required functions and were do they come from?

 2.6 Typical Required API Functions

 Plug-ins are designed after the hardware devices that they replace. The audio processing

loop is the same as the hardware version you saw in Chapter 1 . Figure 2.8 shows a software

variation on that fl owchart.

 Although the various plug-in APIs are different in their implementations, they share

a common set of basic operations. Table 2.1 details the responsibility of each

function.

Object Creation

Do One-Time
Initialization

Get Ready for
Audio Streaming

Wait for a
Function Call

Function Called

Process
Audio?

no

ves Read Input
Data

no Control
Change?

yes Read
Control

Data

Process
&

Create Audio
Output Data

Setup Variables
& Data for Next

Loop

Write
Output
Data

30 Chapter 2

 Table 2.1: The typical core operations that plug-in APIs share.

Function Responsibility

One-time initialization Called once when the plug-in is instantiated, this function implements any
one-time-only initialization, usually consisting of initializing the plug-in variables,
GUI, and allocating memory buffers dynamically.

Destruction Called when the plug-in is to be destroyed, this function de-allocates any memory
declared in the one-time initialization and/or in other functions that allocate
memory. If there are any owned child-windows, the plug-in destroys them here.

Prepare for streaming Called after the user has hit the play button or started audio streaming but before
the data actually fl ows. This function is usually used to fl ush buffers containing
old data or initialize any variables such as counters that operate on a per-play
basis (not found in some APIs).

Process audio The main function that does the actual signal processing. This function receives
audio data, processes it, and writes out the result. This is the heart of the plug-in.

Get UI control info Called to get information about a UI control—its name or label.

Set UI control info Called when the plug-in needs to change the control information like its name or
label.

Get UI control value Called to get the value for the UI control that will set its appearance on the
control surface.

Set UI control value Called when the user makes a change to the plug-in’s controls, this function is the
message handler to deal with the user input. It usually causes a change or update
in the plug-in’s internal variables.

 Figure 2.8: The software version of the DSP audio-processing loop. Most APIs also include
functions to get or set information about the controls.

Anatomy of a Plug-In 31

 2.7 The RackAFX Philosophy and API

 The fundamental idea behind the RackAFX software is to provide a platform for rapidly

developing real-time audio signal processing plug-ins with a minimum of coding, especially

with regard to the UI. In fact, most of the details of the connection between the RackAFX

plug-in and the RackAFX UI screen are hidden from the developer so that he or she may

concentrate more on the audio signal processing part and less on the UI details.

 The RackAFX API specifi es that the plug-in must be written in the C++ language and

therefore takes advantage of the base class/derived class paradigm. The RackAFX API

specifi es a base class called CPlugIn from which all plug-ins are derived.

• RackAFX will automatically write C++ code for you to create a blank plug-in by creating

a derived class of CPlugIn.

• As you add and remove controls from the control surface, the RackAFX client will auto-

matically update your C++ code accordingly.

• This lets you focus on the signal processing and not the UI, making it a great tool for both

rapid plug-in development and for teaching how to write plug-ins.

• After learning RackAFX, you will be able to understand other companies’ APIs and learn

to write plug-ins in their formats quickly and easily.

• Because the plug-in objects you create are written in C++, you can easily move them

around between other APIs or computer platforms. You can wrap them to work easily in

other systems too.

 You only need to implement fi ve functions in RackAFX to create a plug-in:

1. Constructor

2. Destructor

3. prepareForPlay()

4. processAudioFrame()

5. userInterfaceChange()

 Figure 2.9 shows where these functions fi t into the real-time audio processing loop.

 2.7.1 __stdcall

 In the RackAFX code you will see the qualifier __stdcall preceding each function prototype as
well as implementation. The __stdcall calling convention is there for future compatibility with
other compilers as well as other third-party software. The __stdcall is a directive that lets the
compiler know how the stack will be cleaned up after function calls; it has no effect on the
math, logic, or audio processing, so you can essentially ignore it.

Plug-In Creation

Constructor prepareForPlay

Plug-In
Destruction

Destructor

Do Signal
Processing

userlnterfaceChange

processAudioFrame

Wait for a Function Call

32 Chapter 2

 Here is part of the interface fi le for the CPlugIn object plugin.h, which defi nes the contract

or base class object interface for the primal six methods:

 /*

 RackAFX(TM) Rapid Plug-In Development (RaPID) Client

 Applications Programming Interface

 Base Class Object Defi nition

 Copyright(C) Will Pirkle 2002-2012

 In order to write a RackAFX Plug-In, you need to create a C++ object that is

 derived from the CPlugIn base class. Your Plug-In must implement the

constructor, destructor and virtual Plug-In API Functions below.

 */

 // RackAFX abstract base class for DSP fi lters

 class CPlugIn

 {

 public:

 // Plug-In API Member Methods:

 // The followung 5 methods must be impelemented for a meaningful Plug-In

 //

 // 1. One Time Initialization

 CPlugIn();

 Figure 2.9: The RackAFX C++ plug-in version of the
real-time audio processing loop in Figure 2.8 .

Anatomy of a Plug-In 33

 // 2. One Time Destruction

 virtual ~CPlugIn(void);

 // 3. The Prepare For Play Function is called just before audio streams

 virtual bool __stdcall prepareForPlay();

 // 4. processAudioFrame() processes an audio input to create an audio

output

 virtual bool __stdcall processAudioFrame(fl oat* pInputBuffer,

 fl oat* pOutputBuffer,

 UINT uNumInputChannels,

 UINT uNumOutputChannels);

 // 5. userInterfaceChange() occurs when the user moves a control.

 virtual bool __stdcall userInterfaceChange(int nControlIndex);

 The fi ve functions in Table 2.2 are the core RackAFX API—implement them and you

have a legitimate RackAFX plug-in. Best of all, the RackAFX plug-in designer will write

and provide default implementations of all these functions for you. You need only to go in

and alter them to change your plug-in’s behavior. See Appendix A for a comparison of the

RackAFX API and other commercially available formats as well as notes on using RackAFX

plug-in objects inside API wrappers for other formats.

 Table 2.2: The RackAFX API core functions.

RackAFX Function Remarks

CPlugIn ()
Parameters: • none

The constructor for the plug-in object, this function is the one-time initialization
function.

~CPlugIn ()
Parameters: • none

The destructor for the plug-in.

prepareForPlay()
Parameters: • none

Function is called just before audio begins streaming. The audio fi le’s sample
rate, bit depth, and channel counts are extracted and then set by the client just
before calling this method.

processAudioFrame()
Parameters:

The most important function in the API; this is where the audio processing is handled.
You might do all the processing in this function or use it to call sub-functions. You are
responsible for writing the data to the output buffer via pOutputBuffer.

• pInputBuffer A pointer to one frame of audio input data. A frame is a set of channels as
defi ned by uNumInputChannels.

• pOutputBuffer A pointer to one frame of audio output data. A frame is a set of channels as
defi ned by uNumOutputChannels.

• uNumInputChannels The number of input channels in this frame of data. Currently, this value will be
either 1 (mono) or 2 (stereo).

• uNumOutputChannels The number of output channels in this frame of data. Currently, this value will be
either 1 (mono) or 2 (stereo).

userInterfaceChange()
Parameters:

Function is called after the user changes a control in the RackAFX UI. RackAFX will
automatically update the variable linked to this control prior to calling this method.

• nControlIndex The index of the control that was moved and whose value RackAFX has changed.

34 Chapter 2

 Bibliography

 Apple Computers, Inc. 2011. The Audio Unit Programming Guide . https://developer.apple.com/library/

mac/#documentation/MusicAudio/Conceptual/AudioUnitProgrammingGuide/Introduction/Introduction.html.

Accessed August 7, 2012.

 Bargen, B. and Donnelly, P. 1998. Inside DirectX , Chapter 1. Redmond, WA: Microsoft Press.

 Coulter, D. 2000. Digital Audio Processing , Chapters 7–8. Lawrence, KS: R&D Books.

 Petzold, C. 1999. Programming Windows , Chapter 21. Redmond, WA: Microsoft Press.

 Richter, J. 1995. Advanced Windows , Chapters 2 and 11. Redmond, WA: Microsoft Press.

 Rogerson, D. 1997. Inside COM , Chapters 1–2. Redmond, WA: Microsoft Press.

 Steinberg.net . The Steinberg VST API . http://www.steinberg.net/nc/en/company/developer/sdk_download_portal.

html. (Note: you must create a free developer's account to download the API.) Accessed August 7, 2012.

http://www.steinberg.net/nc/en/company/developer/sdk_download_portal.html.
http://www.steinberg.net/nc/en/company/developer/sdk_download_portal.html.
https://developer.apple.com/library/mac/#documentation/MusicAudio/Conceptual/AudioUnitProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/#documentation/MusicAudio/Conceptual/AudioUnitProgrammingGuide/Introduction/Introduction.html

35

 The RackAFX plug-in designer will help you write your plug-in. When you create a new

RackAFX project, it will set up a new Visual C11 project folder for you and populate your

project with all the fi les you will need. It will automatically create a new derived class based

on the name of your project. When you set up graphical user interface (GUI) controls like

sliders and buttons, it will write and maintain the code for you. You will be switching back

and forth between RackAFX and your C11 compiler. There are buttons on the RackAFX

GUI that will let you jump to the compiler as well as launch compiler functions like

rebuilding and debugging. You will use RackAFX to maintain your GUI and your compiler to

write the signal processing code.

 3.1 Building the DLL

 RackAFX sets up your compiler to deliver your freshly built dynamic link libraries (DLL)

to the /PlugIns folder in the RackAFX application directory. If you ever want to see, move,

or delete your DLL you can fi nd this folder by using the menu item PlugIn > Open PlugIns

Folder. Each time you create a new project, RackAFX creates a pass-through plug-in by

default; you are urged to build and test the DLL right after creating the new project to check

your audio input/output (I/O) and any other connections. You then write over the pass-through

code with your own processing algorithm.

 After a successful build, you use RackAFX to test and debug the plug-in. You tell RackAFX

to load the DLL and create your plug-in. The client needs to handle four basic operations

during the lifecycle of your component:

1. Creation of the plug-in

2. Maintaining the UI

3. Playing and processing audio through the plug-in

4. Destruction of the plug-in

 CHAPTER 3

Writing Plug-Ins with
RackAFX

RackAFX Client

Call creation method

CPIugln* pPlugln

Can now use pPlugln to
call methods on your

object

.DLL

createObject()

Return new yourPlugln;

pYourPlugln

Constructor

initUI()

36 Chapter 3

 3.2 Creation

 When you load a plug-in in RackAFX, you are actually passing the system a path to the DLL

you’ve created. RackAFX uses an operating system (OS) function call to load the DLL into its

process space. Once the DLL is loaded, RackAFX fi rst runs a compatibility test, then requests

a pointer to the creation method called createObject(). It uses this pointer to call the method

and the DLL returns a newly created instance of your plug-in cast as the PlugIn* base class

type. From that point on, the RackAFX client can call any of the base class methods on your

object. Figure 3.1 shows the fl ow of operation during the creation phase.

 Your constructor is where all your variables will be initialized. The very fi rst line of code

in the constructor has been written for you; it calls initUI(), which is a method that handles

the creation and set up of your GUI controls. You never need to modify the initUI() method;

RackAFX maintains this code for you.

 3.3 The GUI

 When you set up GUI elements such as sliders and buttons, RackAFX adds member variables

to the .h fi le of your derived plug-in class. Each slider or button group controls one variable

in your code. You set up each control with minimum, maximum, and initial values as well as

supplying the variable name and data type. As the user moves the control, RackAFX calculates

the variable’s new value and delivers it to your plug-in automatically, updating it in real time.

In some cases, this is all you will need and there is nothing left to write. In other cases, you will

 Figure 3.1: The new operator in createObject() dynamically creates your
plug-in, which calls your constructor; the constructor in turn calls initUI()

to create and initialize the user controls.

ID = 2 RackAFX Client yourPlugln

(Hidden)
controlVariable

userlnterfaceChange(2)

Calculate new variable value

Update in plug-in

Notify plug-in that
control with ID = 2 has changed

Control

123.45

Writing Plug-Ins with RackAFX 37

need to perform more calculations or logic processing in addition to just changing the control

variable. So, in addition to changing and updating your internal GUI variable, RackAFX will

also call the userInterfaceChange() method on your plug-in, shown in Figure 3.2 .

 3.4 Processing Audio

 When the user loads an audio fi le and hits the Play button, a two-step sequence of events

occurs. First, the client calls prepareForPlay() on the plug-in. The plug-in will do any last

initializations it needs before audio begins streaming. prepareForPlay() is one of the most

important functions to deal with. Your plug-in has variables declared in it (see PlugIn.h) that

contain information about the currently selected audio fi le:

 // information about the current playing-wave fi le
 int m_nNumWAVEChannels;
 int m_nSampleRate;
 int m_nBitDepth;

 Just prior to calling prepareForPlay(), the client sets these values on your plug-in object.

The reason this is done at this point is that the user can load multiple audio fi le types of

varying channels (mono or stereo), sample rates, and bit depths at any time; thus, this

is a per-play method. Many algorithms require these values to be known before certain

things can be created or initialized. Almost all fi ltering plug-ins require the sample rate in

order to calculate their parameters correctly. After prepareForPlay() returns, audio begins

streaming. When audio streams, the client repeatedly calls processAudioFrame(), passing

it input and output buffer pointers as shown in Figure 3.3 . This continues until the user hits

Pause or Stop.

 Figure 3.2: The sequence of events when the user moves the control with ID = 2 starts with a
hidden change to the underlying linked variable, followed by a call to userInterfaceChange()

passing the control’s ID value as the parameter.

Play RackAFX Client yourPlugln

m_nSampleRate
m_nBitDepth
m_nNumWAVEChannels

prepareForPlay()

processAudioFrame()

(Hidden)

Input

Output

Load audio file-specific data

Update in plug-in

Call prepareForPlay()

Enter audio processing loop

Input
Audio

file
data

Audio interface

38 Chapter 3

 Figure 3.3: The sequence of events during the play/process operation; audio data from the fi le is
processed in the plug-in and sent to the audio adapter for monitoring.

 3.5 Destruction

 When the user unloads the DLL either manually or by loading another plug-in, the client fi rst

deletes the plug-in object from memory, which calls the destructor. Any dynamically declared

variables or buffers need to be deleted here. After destruction, the client unloads the DLL

from the process space.

 3.6 Your First Plug-Ins

 You can break the audio processing down into two very fundamental types:

1. Processing that only works on the current audio sample; requires no memory elements

2. Processing that requires the current and past audio samples; requires memory elements

Writing Plug-Ins with RackAFX 39

 We’ll start with the fi rst type and make a simple volume control. After that, we’ll design a

simple Audio Equalizer (EQ) control that will require memory elements. You will need the

following installed on your computer:

• RackAFX

• Microsoft Visual C11 Express® 2008 or 2010 (both are free from Microsoft)

• Microsoft Visual C11 Professional® 2008 or 2010

 There is no advantage to having the full version of Visual C11 (aka VC11) in RackAFX

programming unless you plan on using your own GUI resources. Make sure that Visual

C11 is installed on the same machine as RackAFX. See the website www.willpirkle.com

for updates on supported compiler platforms. Once you understand the fl ow of writing and

testing your plug-ins, you will fi nd that you can move easily and swiftly through the rest of

the book’s projects because they all follow the same design pattern and the design chapters

will use the same conventions for each project.

 3.6.1 Project: Yourplugin

 The fi rst step will always be the creation of a new project. In this phase, RackAFX creates the

C11 project directory and fi les along with a derived class based on the project name.

 3.6.2 Yourplugin GUI

 Next, you lay out your GUI controls based on the algorithm you are following and decide

on the variable data types and names that will connect the GUI elements to your plug-in.

This generally starts with writing the difference equation(s) for the algorithm. Variables in

the difference equation will map to member variables and GUI controls in your plug-in.

Abstracting the GUI from the algorithm requires that you decide which parameters you want

the user to be able to adjust, as well as the variable names, min, max, and initial values,

and data types. You can change your mind later and remove GUI elements or alter their

parameters. A full-featured GUI designer allows you to fi nalize your plug-in’s controls and

package them in a neat and clean GUI. Often during the prototyping phase, you set up many

sliders and controls and work on the voicing of the plug-in. Then, you hide some of them for

the fi nal product, only allowing the user access to a specifi c set of controls over a specifi c set

range of values. This last step is part of the voicing of the fi nal product.

 3.6.3 Yourplugin.h File

 The next phase involves adding your own member variables and member methods to the

derived plug-in class. The variables and methods will depend on the algorithm you are

implementing. In the fi rst plug-in there are no extra variables or methods to supply.

www.willpirkle.com

40 Chapter 3

 3.6.4 Yourplugin.cpp File

 In this step, you will add the new member method implementations (if you have any). Then, you

will step through the .cpp fi le, altering and fi lling in the base class methods, typically in this order:

1. Constructor

2. prepareForPlay()

3. userInterfaceChange()

4. processAudioFrame()

 Once these methods have been implemented, you will technically have a working plug-in.

 3.6.5 Building and Testing

 Finally, you will build the DLL, fi nding and fi xing any issues. After the build succeeds, you

can load it into the RackAFX client. You can use audio fi les, the oscillator, or your sound

adapter input as the audio stimulus for your plug-in. You can run your plug-in in three modes:

Insert, Mono > Stereo AUX, or Stereo > Stereo AUX to mimic the various ways a plug-in is

used in a digital audio workstation (DAW).

 3.6.6 Creating and Saving Presets

 The presets are created and maintained on the main RackAFX UI. After you load your plug-in

you can move the controls as you like and then save them as a preset. You use the Save Preset

button on the toolbar. The presets will be saved inside a fi le until the next time you compile

your plug-in; after that, the presets will be built into the DLL. You can add, modify, or delete

the presets any time the plug-in is loaded.

 3.6.7 GUI Designer

 Once you have debugged and fi nished your plug-in, you can optionally use the GUI designer

to create a compact, visually appealing GUI. See Appendix B and the website www.

willpirkle.com for the latest details on using the GUI designer tools. In general, the book

skips the GUI designer phase because it is so open ended; you are free to layout your fi nal

GUI however you wish. Check the website often for the latest news and example GUIs as

well as video tutorials.

 3.7 Design a Volume Control Plug-In

 The easiest meaningful plug-in to write is a volume control, which uses a single scaling

variable, a 2 , depicted in Figure 3.4 .

www.willpirkle.com
www.willpirkle.com

x(n) a2 y (n) = a2x(n)

Writing Plug-Ins with RackAFX 41

 Coefficients in a block diagram (or transfer function or algorithm) become float member variables
in your plug-in code.

 Figure 3.4: The volume control
block diagram.

• a 2 5 0: Mute

• a 2 5 1.0: Max volume

 The output samples y (n) are a scaled version of the input x (n) and the scaling factor is named

a 2 . a 2 is called a coeffi cient in the algorithm. The algorithm states that a 2 will vary between

0 (mute) and 1.0 (full volume).

 3.8 Set up RackAFX for Use

 Start the RackAFX software. You will start in prototype view, where you will see a blank

control surface as shown in Figure 3.5 . Your GUI may look slightly different or have different

background images.

 The control surface is what you use to create your UI. It is full of assignable controls you can

connect to your plug-in’s variables. The surface consists of:

• 40 assignable sliders (continuous controls).

• Universal LCD control with 1024 more continuous controls.

• Project controls (open, load, edit, rebuild, debug, jump to C11).

• Vector joystick (advanced, see website for more details).

• Assignable buttons.

• 10 assignable LED meters.

• Plug-in routing controls to test insert and aux effect modes.

• Prototype tab, the main GUI.

• GUI designer tab, which opens the designer for editing; you must have GUI controls

declared fi rst. See the website for more details.

 The menu and toolbar consist of two parts: the left and right side. The left side (Figure 3.6)

implements the majority of the software functionality, while the right side (Figure 3.7)

maintains lists.

1
2

3

4

5

6

7

8 9

1 2 3 4 5 6 7 8

Preset List MIDI Input List Audio File List

42 Chapter 3

 Figure 3.6: The menu and toolbar on the left handle most of your
plug-in development.

 Figure 3.5: When you start RackAFX, it opens in prototype view. It features the control surface
and plug-in routing controls.

 Figure 3.7: The dropdown boxes on the right let you store and recall presets,
choose a MIDI input controller (advanced), and keep track of the audio fi les

you have been using.

Open Load Edit

C++ Debug Rebuild

Writing Plug-Ins with RackAFX 43

 The menu items include:

• File: Manage projects by creating, editing or clearing the project.

• Modules: Built-in plug-ins that you can use for analysis and testing.

• User plug-ins: Each new plug-in you design gets loaded into this menu; you can audition

or show off your plug-in in a standalone fashion.

• Audio: Manage all audio commands.

• Plug-in: Tools for loading/unloading and presets.

• View: Access the different windows.

• Help: Help information.

 The toolbar items include:

1. New project, open project folder, open audio fi le

2. Set up low-level audio

3. Audio input mode: File, analog audio input, oscillator, user oscillator/synth

4. Transport controls: Play, loop, pause, stop, bypass

5. Additional windows: Analyzer, block diagram, status window

6. Plug-in tools: Synchronize code, load, reset, unload

7. GUI windows: Custom GUI, RackAFX MIDI Piano

8. Presets: Save, delete

 Finally, there is a bank of buttons that allow you to manipulate your projects as well as

control the C11 compiler shown in Figure 3.8 . The buttons are set up as follows:

• Open: Open an existing project.

• Load: Load/unload the DLL from process space.

• Edit: Change an existing project’s settings.

• Rebuild: Rebuild the project.

• Debug: Launch the debugger.

• ->C11: Jump to the C11 compiler and restore if minimized.

 3.9 Setup Preferences

 Before you start working on projects, take some time to confi gure your preferences. This is

where you will choose your C11 compiler and set your default directories. Choose View >

Preferences to get the interface shown in Figure 3.9 .

 Figure 3.8: The Project/Compiler buttons make it easy to
work with projects and control your compiler.

1

2

3

4

44 Chapter 3

 In the preferences you need to:

1. Choose your default folders for projects, WAVE fi les, and default WAVE fi les. You can

use whatever directory you want for your project folder and you can also open projects

from any other folder at any time; the default is simply for conveniently grouping all your

projects together.

2. Choose a Visual C11 compiler.

3. Set the C11 options. Enable C11 Control/Switching should be left on for all but the

most advanced users. C11 control/switching allows RackAFX to control Visual Studio,

save fi les, launch the debugger, and so on.

4. Set up the edit options when entering information in the GUI slider/button dialogs.

 3.9.1 Project: Volume

 Create a new project with the menu, toolbar, or Ctrl1N and name it “Volume.” The New/Edit

Project window will appear and you can enter your project name. As you enter the name, the

.h and .cpp fi les will be automatically named.

 Notice the two C11 fi les listed in Figure 3.10 —these are the interface (.h) and implementation

(.cpp) fi les that RackAFX will create for you. They will contain a derived object named

CVolume which will contain the bulk of your plug-in code. When you hit OK, several things

happen. If you have C11 Control enabled in your preferences (it’s the default) then you will

 Figure 3.9: The preferences interface.

C++ files for your derived class

New project name

Writing Plug-Ins with RackAFX 45

see your C11 compiler start up. In Visual C11 you will see a new project and solution

named “Volume.” If you expand the Volume project then you can see the fi les that RackAFX

wrote for you. Your derived class is contained in Volume.h and Volume.cpp. Before continuing,

it’s worth taking a peek into the RackAFXDLL.cpp fi le and locating the creation mechanism

createObject():

 //RackAFX Creation Function
 DllExport CPlugIn* createObject()
 {
 CPlugIn* pOb = new CVolume; // ***
 return pOb;
 }

 This is the method that the client calls on your DLL—you create the plug-in object with the

 new operator and return the pointer to the client. The DllExport specifi er is OS-specifi c for

calling a method in a DLL.

 3.9.2 Volume GUI

 You need to make sure you know the difference equation for each algorithm you want

to implement. The difference equation relates the input and output samples and is what

you are going to convert to C11 in order to make your plug-in. For this example, the

equation is

 y(n) 5 a2x(n) (3.1)

 Figure 3.10: The top section of the New/Edit Project window. Notice that your
project name becomes the name of a C11 object, so you will receive errors if you
name the project in a way that produces illegal C11 syntax. Below this are more

advanced settings that we will cover later.

Right-click

Control 0

46 Chapter 3

 In RackAFX, you can see that all the sliders and buttons are disabled; the sliders don’t move

and the edit boxes won’t accept text. You fi rst need to set up some controls to create your UI

or control surface.

 Now, decide how to handle the difference equation. Notice the use of Hungarian notation for

handling the variable names. See the website for more information if you are not familiar

with this kind of naming convention—you are certainly free to name your variables whatever

you like.

• Let’s have only one volume coeffi cient and share it between the channels so that each

channel has the same volume control.

• Let’s have one slider control the volume coeffi cient.

• The coeffi cient a 2 will become a fl oat member variable in the code; let’s decide to name it

“m_fVolume.”

• We’ll name the slider “Volume” on the GUI and link it to the variable m_fVolume.

• Slider minimum 5 0.

• Slider maximum 5 1.0.

• Initial setting 5 0.75.

 3.9.3 Confi gure a Slider Control

 Choose the fi rst slider in the upper left and right-click just inside the outer bounding box; a

slider properties box appears (Figure 3.11). Note: Your dialog may look slightly different.

 You need to fi ll out the slider properties with the proper values. You will notice that the

uControlID value is 0 for this slider. This is the ID number that will link the slider to a

 Each slider or button control on the UI will map to and control a member variable in your plug-in.

 Figure 3.11: Right-click inside the bounding box of a slider and the slider properties
window appears. This is how you confi gure the slider and link it to a variable.

The dropdown list exposes
the choices for data type

Writing Plug-Ins with RackAFX 47

variable in the object. You cannot edit this cell. Start with the control name and enter

“Volume.” Hit Enter to advance to the next cell. For this version of the plug-in there are no

units, so use backspace to delete it. The next cell is one of the most important—it is the data

type for the variable that the slider will be linked with; the choices are available from a drop-

down list. As shown in Figure 3.12 , you can select the data type with the mouse, or you can

just type the fi rst letter (e.g., “d” for double) while the box is highlighted.

 You can create variables of the following types:

• fl oat

• double

• integer

• enum: An enumerated Unsigned Integer (UINT) using a list of strings for the enum, for

example {LPF, HPF, BPF, Notch}. We will work with enumerated UINTs later in the book.

 We decided to use the fl oat data type and to name the variable m_fVolume—it is really

important to decide on a name and stick with it. Changing the variable name later can be

tricky, so do yourself a favor and plan ahead. The completed slider properties are shown in

 Figure 3.13 . The low and high limits are set and the initial value is set to 0.75. Do not worry

about the MIDI control or other properties for this slider; see the website for details on these

enhancements. After you are fi nished, choose the OK button to save the code.

 Our control surface is pretty simple—it just consists of a single volume slider. If you realize

you’ve made a mistake or left something out, just right-click in the slider box and fi x the problem.

You can also remove the slider by clicking the Remove Ctrl button on the properties window.

 Figure 3.12: The data type is selected from a dropdown list control.

UI Item Property I
uControiType Slider

uControiiD 0

Control Name Volume

Units

Data Type float

Variable Name m_fVolume

Control Low Limit 0.00

Control High Limit 1.00

Initial Value 0.75

MIDI Control false

MIDI Control Channel 1

MIDI Control Type Continous Controller

MIDI Controller Number/Name 3 Continuous controller #3

Control Method automatic (recommended)

Menu Group none

48 Chapter 3

 Your plug-in code will use the index value 0 (uControlID in the properties dialog) to map to

the m_fVolume variable, which is controlled by the slider named “Volume” on the UI.

 3.9.4 Volume.h File

 Before we add the code, look around the plug-in object fi les (volume.h and volume.cpp) to

get a better understanding of what’s going on and what you’ll need to modify. First, open the

volume.h fi le and look inside:

 // RackAFX abstract base class for DSP fi lters
 class CVolume : public CPlugIn
 {
 public: // plug-in API Functions
 //

 Figure 3.13: The completed slider properties.

 As you add, edit, or remove controls from the main UI you will notice that RackAFX will fl ash to
the compiler and back as it writes the code for you. You might use this fl ashing as a signal that
the code update is synchronized. If you don’t like it, minimize the compiler and the fl ashing will
not occur. There is a special check-box in View > Preferences to start the compiler minimized for
this very reason.

Writing Plug-Ins with RackAFX 49

 // 1. One Time Initialization
 CVolume();

 <SNIP SNIP SNIP>

 // 7. userInterfaceChange() occurs when the user moves a control.
 virtual bool userInterfaceChange(int nControlIndex);

 // Add your code here: -- //

 // END OF USER CODE --- //

 // ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! ----------------------- //
 // **--0x07FD--**
 fl oat m_fVolume;

 // **--0x1A7F--**
 // -- //
 };

 Aside from the main plug-in functions we discussed in Chapter 2 , you will see some more

commented areas of code. In the fi rst part marked // Add your code here: you can add more

variables or function defi nitions just like you would in any .h fi le. Try to keep your code in

the denoted area to make it easier to fi nd and read. The area below that says:

 // ADDED BY RACKAFX—DO NOT EDIT THIS CODE!!!

 is very important—you will see your member variable m_fVolume declared in this area. This

is the portion of the .h fi le that RackAFX modifi es when you add, edit, or delete controls from

your control surface. It is imperative that you let RackAFX maintain this part of the C11

code. There are several other portions of code in the .cpp fi le that have similar warnings and

interesting hex symbols (0x1A7F, etc.); do not edit the code contained between the hex codes

or commented areas.

 You will see the notation <SNIP SNIP SNIP> frequently in the printed code as a reminder that
code has been cut out for easier reading.

 RackAFX writes C++ code for you! But, you have to be careful not to alter the RackAFX C++
code in any way. You can always tell if the code is RackAFX code because there will be warning
comments and strange hex codes surrounding the RackAFX code. The RackAFX code is left for
you to see only as a backup to your debugging and should never be altered by anyone except
RackAFX.

50 Chapter 3

 In this case, check to verify that RackAFX added the fl oat member variable m_fVolume as you

anticipated. Next, move on to the volume.cpp fi le and have a look at it, starting from the top.

 3.9.5 Volume.cpp File
 Constructor and destructor

 The constructor is the One-Time-Init function and is set up to:

• call initUI(): This is where your GUI controls are initialized; m_fVolume is initialized

to 0.75 inside this function. It is important to make sure this remains the fi rst line of the

constructor so that your GUI variables are always initialized fi rst.

• Set the plug-in name variable: This is what you will see in the user plug-in menu and on

the GUI windows.

• Set the plug-in defaults (snipped out here); you will rarely need to change these variables.

• Give you a place to fi nish any of your own initializations at the end.

 The destructor is empty because nothing has been allocated dynamically in this plug-in.

 CVolume::CVolume()
 {
 // Added by RackAFX - DO NOT REMOVE
 //
 // Setup the RackAFX UI Control List and Initialize Variables
 initUI();
 // END InitUI

 // built in initialization
 m_PlugInName = "Volume";

 // Default to Stereo Operation:
 // Change this if you want to support more/less channels

 <SNIP SNIP SNIP>

 // Finish initializations here
 }

 /* destructor()
 Destroy variables allocated in the contructor()

 */
 CVolume::~CVolume(void)
 {

 }

 prepareForPlay()

 There is nothing to write yet since there are no custom controls or other allocations.

Writing Plug-Ins with RackAFX 51

 processAudioFrame()

 This function is where the signal processing action happens. Above the defi nition is a

comment block as a reminder of how to get the audio data samples into and out of the I/O

buffers. Currently, RackAFX only supports mono and stereo plug-ins. The left and right

channels are accessed using the normal array-indexed C11 pointer mechanism. Of special

note is the reminder that all values in and out are (and should be) between −1.0 and 11.0.

 /* processAudioFrame

 // ALL VALUES IN AND OUT ON THE RANGE OF -1.0 TO + 1.0

 LEFT INPUT = pInputBuffer[0];
 RIGHT INPUT = pInputBuffer[1]

 LEFT OUTPUT = pInputBuffer[0]
 LEFT OUTPUT = pOutputBuffer[1]

 */
 bool __stdcall CVolume::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,
 UINT uNumInputChannels, UINT uNumOutputChannels)
 {
 // output = input -- change this for meaningful processing
 //
 // Do LEFT (MONO) Channel; there is always at least one input/one output
 (INSERT Effect)
 pOutputBuffer[0] = pInputBuffer[0];

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)
 pOutputBuffer[1] = pInputBuffer[0];

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 pOutputBuffer[1] = pInputBuffer[1];

 return true;

 }

 Take a look at the function as RackAFX wrote it for you—it is designed to pass audio through

unmodifi ed. In this case, you simply write the output buffer with the data from the input

buffer. In your processAudioFrame() function, get used to always processing the fi rst channel

then optionally processing the second one. This makes it easy to write mono/stereo capable

plug-ins and will also make it easier to extend when RackAFX has more channel options.

Because the code is already done, you could compile it right now and try it in RackAFX as a

sanity check to make sure your audio hardware is set up properly. In fact, we’ll do that right

after examining the last few functions in the fi le (I promise you will write code shortly).

52 Chapter 3

 userInterfaceChange()

 Perhaps the second most important function is userInterfaceChange(), which is called when

the user changes a control on the control surface:

 /* ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! ----------------------------- //
 --0x2983--

 Variable Name Index

 m_fVolume 0

 --0xFFDD--
 // --- */
 // Add your UI Handler code here --- //
 //

 As with processAudioFrame(), there is a “hint” comment above the function defi nition which

reminds you how RackAFX has mapped your variable to a control index. In this case, the

m_fVolume variable is mapped to index 0.

 bool __stdcall CVolume::userInterfaceChange(int nControlIndex)
 {
 // decode the control index, or delete the switch and use brute force calls
 switch(nControlIndex)
 {
 case 0:
 {
 break;
 }

 default:
 break;
 }

 return true;
 }

 userInterfaceChange() implements the fi rst part of a switch/case statement in case you need

to decode the control index and do something to the data before fi nally altering your code to

refl ect the change. Often, you will have nothing to write here either.

 Build the plug-in. Since the default plug-in behavior is to simply pass audio unaffected,

you can build the project now and test it in RackAFX to make sure everything is working

properly. Rebuild your project from the compiler or from RackAFX’s Rebuild button. You

should get a clean build with no errors.

Writing Plug-Ins with RackAFX 53

 At this point, you have built a DLL which is designed to serve up CVolume objects when the

client requests them. The problem is that RackAFX doesn’t yet know your CVolume plug-in

is available. During the debugging phase, you need to get used to manually loading and

unloading the DLL. You do this with the Load button or the toolbar/menu item. After you

hit Load, RackAFX calls the appropriate functions to load your DLL into its address space.

You will see the control surface change to refl ect that your plug-in is loaded. You will also

see the Load button change to read Unload. When it is time to go back to C11, modify, and

recompile, you’ll need to unload the project fi rst so you can reload it in its later state.

 Use Audio > Load Audio File to load a test fi le. Then use the transport control buttons to

play, loop, and pause or stop the fi le. The volume control should have no effect since we

haven’t written any code yet. Make sure you get audio at this point before continuing; if you

don’t, check your audio adapter settings.

 In order to make the volume control slider work, we need to wire it into the processing code.

The volume slider is directly mapped to the volume coeffi cient m_fVolume; as the slider

moves from 0.0 to 1.0, so does the volume coeffi cient. So, the algorithm is simple to write:

just multiply the input audio sample by the volume coeffi cient and set the output to that value.

Switch to your C11 compiler and fi nd the processAudioFrame() function. Modify it by doing

the multiplication described above, which implements the difference equation for the fi lter.

 bool __stdcall CVolume::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,
 UINT uNumInputChannels, UINT uNumOutputChannels)

 {
 // output = input -- change this for meaningful processing
 //
 // Do LEFT (MONO) Channel; there is always at least one input/one output
 // (INSERT Effect)
 pOutputBuffer[0] = pInputBuffer[0]*m_fVolume;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pInputBuffer[0]*m_fVolume;

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pInputBuffer[1]*m_fVolume;

 return true;
 }

 You should always build and test your brand-new project fi rst before modifying any code! You
want to do this to make sure there are no C++ errors (you might have inadvertently hit a key or
changed some code), as well as to make sure your audio system is working and you can hear the
audio data.

Plug-In

processAudioFrame()

= pBuffer[0]*m_fVolume

Raw Data: 0.0 to 1.0

Volume

0.75

54 Chapter 3

 There are only three lines to modify, one for the fi rst channel and another two for the other

routing combinations. The modifi cation is shown in bold where you are scaling the input by

the volume coeffi cient. Can you see how this relates to the difference equation? If not, stop

now and go back to fi gure it out. Now, rebuild the project and reload it into RackAFX. Try the

slider and you will see that the volume does indeed change. Congrats on your fi rst plug-in!

 What makes this plug-in so easy and quick to develop is that the slider volume control

maps directly to a variable that is used in the processAudioFrame() function, as depicted in

 Figure 3.14 . This means the data coming from the slider can be used directly in the algorithm.

The data coming from the slider and controlling m_fVolume is said to be raw data . You use

the raw value to affect the signal processing algorithm.

 3.10 Design a Volume-in-dB Plug-In

 This next example will show you how to cook your raw data to be used in the signal

processing algorithm. The VolumedB plug-in will also be a volume control, but will operate

in dB instead of using a raw multiplier. You may have noticed that your previous volume

control didn’t seem to do much in the upper half of the throw of the slider. This is because

your ears hear logarithmically and so linear defl ections of the slider do not correspond to

linear changes in perceived loudness. To fi x this, we’ll design another plug-in that will operate

in decibels (dB). The block diagram is identical to the fi rst project, only the control range of

values has changed.

• a 2 5 −96 dB: Mute

• a 2 5 0 dB: Max volume

 Now, the volume control is specifi ed in dB, so you need a formula to convert the dB value

to a scalar multiplier for the algorithm. You should memorize the dB equations now if you

 Figure 3.14: Here is the connection between the slider and the variable in the
calculation. The processAudioFrame() function is using the raw slider data directly.

Plug-In

processAudioFrame()

= pBuffer[0]*m_fVolume

userlnterfaceChange()

Cooking
Function

Cooked
Data:

~0.0 to 1.0
Raw Data: -96.0 to 0.0

m_fVolume = 10
m_fVolume_dB /20

Volume

–6.00 dB

Writing Plug-Ins with RackAFX 55

haven’t already, since they will reappear over and over in audio plug-ins. This is the cooking
formula that will take the raw data from the slider −96 to 0 dB and cook it into a variable we

can use in our scalar multiplication:

dB 5 20log(x)

x 5 10

dB
20

 (3.2)

 You set up the cooking formula by implementing the userInterfaceChange() function which

is always called when the user changes anything on the control surface. When the user moves

the slider, you cook the data. This is shown conceptually in Figure 3.15 .

 The cooking function simply converts the dB into a scalar multiplier. In this case, the

cooking function is short enough to simply leave inside the userInterfaceChange() function;

as the cooking functions become more complex, you will probably want to break them out

into separate functions, which are called from userInterfaceChange(). Remember the two

RackAFX rules you’ve learned so far:

 Figure 3.15: The volume-in-dB plug-in will have a single slider that generates values
between −96 and 0.0 dB; you need to cook the raw dB values to use in your plug-in.

 Coeffi cients in a block diagram (or transfer function or algorithm) become fl oat member variables
in your plug-in code. Each slider or button control on the UI will map to and control a member
variable in your plug-in.

56 Chapter 3

 In the fi rst plug-in, the variable was shared between the slider and the algorithm. Now

we need two variables, one for the raw slider data and the other for the cooked algorithm

processing. We will name them as follows:

• m_fVolume_dB: The raw slider data

• m_fVolume: The cooked value used in the algorithm

 3.10.1 Project: VolumedB

 Using the same method as before, create a new project named “VolumedB.” As before, you

don’t have to worry about the advanced options at the bottom of the new project window.

Your compiler will automatically start.

 3.10.2 VolumedB GUI

 We only need a single slider control. It will be adjustable from −96 to 0 dB. Set up the GUI

in RackAFX by choosing a slider and right-clicking inside the bounding box. Set the slider

according to Table 3.1 .

 Table 3.1: The slider properties for the VolumedB project.

Slider Property Value

Control name Volume
Units dB

Variable type fl oat
Variable name m_fVolume_dB

Low limit –96
High limit 0

Initial value –6

 3.10.3 VolumedB.h File

 RackAFX has written the code and declared the variable fl oat m_fVolume_dB but we still

need to declare our second variable named m_fVolume, which stores the cooked data. Open

the VolumedB.h fi le and declare the variable in the user declarations area:

 // abstract base class for DSP fi lters
 class CVolumedB : public CPlugIn
 {
 public: // plug-in API Functions

 <SNIP SNIP SNIP>

 // Add your code here: --- //

 // our Cooked Volume Multiplier
 fl oat m_fVolume;

 // END OF USER CODE -- //

Writing Plug-Ins with RackAFX 57

 3.10.4 VolumedB.cpp File
 Constructor

• Cook and initialize the member variable.

• Use the pow() function.

 CVolumedB::CVolumedB()
 {

 // Added by RackAFX - DO NOT REMOVE
 //
 // Setup the RackAFX UI Control List and Initialize Variables
 initUI();
 // END InitUI

 <SNIP SNIP SNIP>

 // Finish initializations here

 // Cook the raw data:
 m_fVolume = pow(10.0, m_fVolume_dB/20.0);

 }

 prepareForPlay()

 There is nothing to do here because the volume variable does not need to be reset on each

play event.

 userInterfaceChange()

• Decode the control ID value.

• Cook the raw data using the formula.

• When the plug-ins get more complex, you can create separate cooking functions and then

share the functions as needed.

• Make sure you check your control ID values from the comments so that they match properly.

 bool __stdcall CVolumedB::userInterfaceChange(int nControlIndex)
 {

 // decode the control index, or delete the switch and use brute force calls
 switch(nControlIndex)
 {

 case 0:
 {

 // Cook the raw data:
 m_fVolume = pow(10.0, m_fVolume_dB/20.0);

 }

 default:
 break;

 }

 return true;
 }

58 Chapter 3

 processAudioFrame()

• Implement the difference equation.

 bool __stdcall CVolumedB::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,
 UINT uNumInputChannels, UINT uNumOutputChannels)

 {
 // output = input -- change this for meaningful processing
 //
 // Do LEFT (MONO) Channel; there is always at least one input/one output
 // (INSERT Effect)
 pOutputBuffer[0] = pInputBuffer[0]*m_fVolume;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pInputBuffer[0]*m_fVolume;

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pInputBuffer[1]*m_fVolume;

 return true;
 }

 Build and test your plug-in. You should now hear a smooth volume transition as you move

the slider. Depending on your sound system and volume levels, you might not hear much

below −40 dB.

 3.11 Design a High-Frequency Tone Control Plug-In

 This example will show you how to implement the last of the digital signal processing (DSP)

algorithm building blocks: the delay element (z 2N), where N is the number of samples of

delay. In this example, N 5 1, so we are dealing with a one-sample delay, a fundamental

building block for many DSP algorithms. Although we won’t get to the theory of how this

delay creates a tone control until the next chapter, it’s worth it to go ahead and build a plug-in

that uses it. After this exercise, you will be able to build almost any kind of DSP fi lter that

uses one-sample-delay elements—and that’s a lot of DSP fi lters. The later examples in the

book will not be as detailed regarding the operation of RackAFX and your C11 compiler, so

make sure you understand how to manipulate the software as needed to complete the project.

 Figure 3.16 shows the block diagram for the fi lter.

 The design equation is as follows:

0.0 # a1 # 0.49

a0 5 a121.0
 (3.3)

x(n) y(n)

z-1

a0

a1

Writing Plug-Ins with RackAFX 59

 You already know that the coeffi cients a 0 and a 1 will become fl oat member variables in our

plug-in. But what about the one-sample-delay element, z 21 ? In hardware, this would be a

register to store the sample for one clock period. In software, it simply becomes another fl oat

variable, but it must be able to persist over the lifetime of a processing cycle. Therefore, like

the coeffi cients, it will become a fl oat member variable of our plug-in object.

 You will do an example using arrays of fl oats in Chapter 7 when you implement digital delay

lines that require long strings of z 21 elements. For now, we need to implement the single

 z 21 element in the block diagram. Right away, we need to decide if we are going to support

multichannel (stereo) operation.

 The last rule is really important and it is easy to get into trouble if you do not follow it. Unless

the algorithm specifi cally deals with multichannel data, you will need to implement a separate

algorithm for each channel, which means having separate coeffi cient and data (z 21) elements

for each channel. Even if you might be able to share the coeffi cients, you can never share the

delay elements. We will need to declare variables for the following:

• Left channel a 0 and a 1 variables

• Left channel z 21 variable

• Right channel a 0 and a 1 variables

• Right channel z 21 variable

 Figure 3.16: The HF tone control block diagram.

 A DSP filtering algorithm, which is only described in mono or single channel format, that is,
one input, x (n), and one output, y (n), cannot share delay elements between multiple channels.
This means that you must duplicate your algorithms so that you have one set of variables for
the left channel and one for the right channel.

 Delay elements will become float member variables in your plug-in object. For single-delay
 elements, you can simply assign separate variables. For multiple-sample-delay elements you
may also use float arrays to store the data.

60 Chapter 3

 3.11.1 Project: SimpleHPF

 This plug-in is going to implement a very primitive HF (high frequency) tone control

that behaves like a high-pass fi lter. It will attenuate low frequencies, leaving only the

highest frequencies intact. Using the same method as before, create a new project named

“SimpleHPF.” Check your compiler to make sure the project was created properly.

 3.11.2 SimpleHPF GUI

 This simple plug-in will only have one slider that will control the value of the a 1 coeffi cient.

The other coeffi cient is calculated from it. The specifi cations show that a 1 varies between 0

and 0.49. Set up the slider according to the properties in Table 3.2 .

 Table 3.2: The slider properties for the SimpleHPF project.

Slider Property Value

Control name a1

Units

Variable type fl oat

Variable name m_fSlider_a1

Low limit 0.0

High limit 0.49

Initial value 0

 3.11.3 SimpleHPF.h File

 To fi gure out what the CSimpleHPF object is going to have to do, fi rst write the difference

equation. Examine it and fi gure out which components are going to become coeffi cients

and which are going to be memory locations. Also, fi gure out any intermediate variables

you might need. You can fi gure out the difference equation by using the rules you learned in

 Chapter 1 to chart the input and output signals. Make sure you understand how this equation

is formed from the block diagram in Figure 3.17 .

 The difference equation is as follows:

 y(n) 5 a0
x(n) 1 a1x(n 2 1) (3.4)

 Next, fi gure out which block diagram components become variables in your C11 code.

The coeffi cients a 0 and a 1 will become a fl oat member variable in the code. Even though we

might be tempted to share the coeffi cients, these are separate left and right algorithms that

have separate delay elements, so let’s implement two sets, one each for the left and right

channels.

y(n) a0

z
-1

x(n)

a0x(n)

a1x(n-1)

x(n-1)
a1

Writing Plug-Ins with RackAFX 61

I named mine:

 m_f_a0_left

 m_f_a1_left

 m_f_a0_right

 m_f_a1_right

 The z 21 element will also need to become a member variable and we will defi nitely need one

for each channel because these can never be shared. I named mine

 m_f_z1_left

 m_f_z1_right

 The slider will only modify its own m_fSlider_a1 value. We will calculate the values for the

other coeffi cients using it. We will need to modify the userInterfaceChange() function just

like the preceding example to wire the slider into the algorithm. Jump to your C11 compiler

and go to the SimpleHPF.h fi le to add your member variables. Notice the variable that

RackAFX added in the code below:

 // 5. userInterfaceChange() occurs when the user moves a control.
 virtual bool userInterfaceChange(int nControlIndex);

 // Add your code here: --- //
 fl oat m_f_a0_left;
 fl oat m_f_a1_left;

 fl oat m_f_a0_right;
 fl oat m_f_a1_right;

 fl oat m_f_z1_left;
 fl oat m_f_z1_right;

 // END OF USER CODE -- //

 // ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! ------------------------------- //
 // **--0x07FD--**

 Figure 3.17: The HF tone control block diagram with annotations showing the signal math.

62 Chapter 3

 fl oat m_fSlider_a1;
 // **--0x1A7F--**
 // --- //

 3.11.4 SimpleHPF.cpp File
 Constructor

• Set our coeffi cient values to match the initialized slider settings.

• Calculate the new a 0 values.

• Clear out the z 21 variables.

 CSimpleHPF::CSimpleHPF()
 {

 <SNIP SNIP SNIP>

 // Finish initializations here
 m_f_a1_left = m_fSlider_a1;
 m_f_a1_right = m_fSlider_a1;

 m_f_a0_left = m_f_a1_left - 1.0;
 m_f_a0_right = m_f_a1_right - 1.0;

 m_f_z1_left = 0.0;
 m_f_z1_right = 0.0;

 }

 prepareForPlay()

 bool __stdcall CSimpleHPF::prepareForPlay()
 {

 // Add your code here:
 m_f_z1_left = 0.0;
 m_f_z1_right = 0.0;

 return true;
 }

 processAudioFrame()

 The logic for the signal processing of one channel will be as follows:

• Read the delayed value x (n 21) out of the z 21 element.

• Implement the difference equation.

• Write the current input x (n) into the delay variable; it will be x (n 21) next time around.

• Do this for both channels.

Writing Plug-Ins with RackAFX 63

 bool __stdcall CSimpleHPF::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumChannels)
 {

 // Do LEFT (MONO) Channel
 //
 // Input sample is x(n)
 fl oat xn = pInputBuffer[0];

 // READ: Delay sample is x(n-1)
 fl oat xn_1 = m_f_z1_left;

 // Difference Equation
 fl oat yn = m_f_a0_left*xn + m_f_a1_left*xn_1;

 // WRITE: Delay with current x(n)
 m_f_z1_left = xn;

 // Output sample is y(n)
 pOutputBuffer[0] = yn;

 OK, now it’s your turn to implement the other channel. Give it a try by yourself before

proceeding. You should have something like this for the rest of the function:

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = yn ;

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 {

 // Input sample is x(n)
 fl oat xn = pInputBuffer[1];

 // Delay sample is x(n-1)
 fl oat xn_1 = m_f_z1_right;

 // Difference Equation
 fl oat yn = m_f_a0_right*xn + m_f_a1_right*xn_1;

 // Populate Delay with current x(n)
 m_f_z1_right = xn;

 // Output sample is y(n)
 pOutputBuffer[1] = yn;

 }

 return true;
 }

64 Chapter 3

 userInterfaceChange()

• Store the new a 1 values.

• Cook the slider data to get the a 0 values.

 bool __stdcall CSimpleHPF::userInterfaceChange(int nControlIndex)
 {

 switch(nControlIndex)
 {

 case 0:
 {

 // save a1
 m_f_a1_left = m_fSlider_a1;
 m_f_a1_right = m_fSlider_a1;

 // calculate a0
 m_f_a0_left = m_f_a1_left - 1.0;
 m_f_a0_right = m_f_a1_right - 1.0;

 break;
 }
 default:

 break;
 }
 return true;

 }

 Build and load the project, open an audio fi le, and test your plug-in to make sure it’s working

properly. This plug-in is a simple low-cut fi lter and with the slider all the way down, you should

hear no difference in the music. When you move the slider up, you will lose more and more bass

frequencies, allowing only the high frequencies to pass. The cut-off frequency is approximately

11 kHz and the slider controls the amount of low frequency cut. You should easily be able to hear

the effect, even over small speakers. Now, to get a little more information about the plug-in’s

operation, use RackAFX’s analysis tools. Stop the music from playing with the transport control.

Launch the analyzer window by clicking on the Analyzer button in the toolbar or choose View >

Analyzer. The analyzer pops up as shown in Figure 3.18 (yours may look slightly different).

 The analyzer is a powerful tool for checking your plug-in’s performance. The basic controls are

1. Scope/spectrum analyzer.

2. Basic graphing options.

3. Scope controls.

4. Real-time response buttons, which let you measure the frequency, phase, impulse, and

step responses of the plug-in (audio must not be streaming to use these).

 Flush out delay elements in preparation for each play event in the plug-in. You generally do not
want old data sitting inside these storage registers. The only exceptions are delay-looping effects
where you exploit the old data. This is done in prepareForPlay().

1

2

4

3

10Hz 100Hz 1kHz 10kHz

+12.0dB

0.0dB

-12.0dB

-24.0dB

-36.0dB

-48.0dB

-60.0dB

Writing Plug-Ins with RackAFX 65

 Figure 3.18: The audio analyzer.

 Figure 3.19: A fl at frequency response with a 1 = 0.0.

 Click on the Frequency button and you will get a frequency response plot of the fi lter. Move

the slider all the way down and you should get a fl at response, as shown in Figure 3.19 . If you

move the slider all the way up so that a 1 5 0.49, you get the response in Figure 3.20 .

+12.0dB

0.0dB

-12.0dB

-24.0dB

-36.0dB

-48.0dB

-60.0dB
10Hz 100Hz 1kHz 10kHz

66 Chapter 3

 3.12 Design a High-Frequency Tone Control with Volume Plug-In

 This fi nal example will show you how to deal with more than one slider control by simply

adding a volume-in-dB control to the block diagram. The plan is to add another slider to

the existing plug-in; the new slider will control the overall volume of the plug-in in dB. You

already know how to implement both parts of it, so this exercise is really more about adding

new controls to an existing project.

 3.12.1 Project: SimpleHPF

 Open your SimpleHPF project in RackAFX using the Open button or the menu/toolbar items.

 3.12.2 SimpleHPF GUI

 Add the new volume slider: Right-click on the second slider group and add a new slider

for the volume control, in dB, and use the exact same variable name and settings as in the

VolumedB project. You should end up with a GUI like that in Figure 3.21 .

 3.12.3 SimpleHPF.h File

 Add your own m_fVolume variable to handle the cooked volume data, just as before.

 // Add your code here: --- //
 fl oat m_f_a0_left;
 fl oat m_f_a1_left;

 fl oat m_f_a0_right;
 fl oat m_f_a1_right;

 fl oat m_f_z1_left;
 fl oat m_f_z1_right;

 fl oat m_fVolume;

 Figure 3.20: A fi lter that appears to boost high frequencies. You can see that
it is really cutting the low frequencies instead; this is something you might only

have realized by using the audio analyzer.

a1
0.00

Volume

-6.00

Writing Plug-Ins with RackAFX 67

 // END OF USER CODE -- //

 // ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! -------------------------------- //

 // **--0x07FD--**

 fl oat m_fSlider_a1;
 fl oat m_fVolume_dB;

 // **--0x1A7F--**
 // --- //

 3.12.4 SimpleHPF.cpp File
 Constructor

• Cook the volume data after the fi lter initializations.

 CSimpleHPF::CSimpleHPF()
 {

 <SNIP SNIP SNIP>
 m_f_a0_left = −1.0;
 m_f_a1_left = 0.0;

 m_f_a0_right = −1.0;
 m_f_a1_right = 0.0;

 m_f_z1_left = 0.0;
 m_f_z1_right = 0.0;

 m_fVolume = pow(10.0, m_fVolume_dB/20.0);
 }

 prepareForPlay()

 There is nothing to add here because the volume variable does not need to be reset on each

play event.

 Figure 3.21: The new SimpleHPF GUI with added volume-in-dB control.

68 Chapter 3

 processAudioFrame ()

• Add the volume control scaling after the fi ltering operation.

 // Do LEFT (MONO) Channel; there is always at least one input/one output
 // (INSERT Effect)
 // Input sample is x(n)
 fl oat xn = pInputBuffer[0];

 // READ: Delay sample is x(n−1)
 fl oat xn_1 = m_f_z1_left;

 // Difference Equation
 fl oat yn = m_f_a0_left*xn + m_f_a1_left*xn_1;

 // WRITE: Delay with current x(n)
 m_f_z1_left = xn;

 // Output sample is y(n)
 pOutputBuffer[0] = yn*m_fVolume;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = yn*m_fVolume;

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 {

 // Input sample is x(n)
 fl oat xn = pInputBuffer[1];

 // Delay sample is x(n-1)
 fl oat xn_1 = m_f_z1_right;

 // Difference Equation
 fl oat yn = m_f_a0_right*xn + m_f_a1_right*xn_1;

 // Populate Delay with current x(n)
 m_f_z1_right = xn;

 // Output sample is y(n)
 pOutputBuffer[1] = yn*m_fVolume;

 }

 userInterfaceChange()

• Cook the volume data.

• Make sure you check your control ID values in case you chose different sliders than I did.

Writing Plug-Ins with RackAFX 69

 bool __stdcall CSimpleHPF::userInterfaceChange(int nControlIndex)
 {

 // decode the control index
 switch(nControlIndex)
 {

 case 0:
 {

 m_f_a1_left = m_fSlider_a1;
 m_f_a1_right = m_fSlider_a1;

 m_f_a0_left = m_f_a1_left - 1.0;
 m_f_a0_right = m_f_a1_right - 1.0;

 break;
 }
 case 1:
 {

 m_fVolume = pow(10.0, m_fVolume_dB/20.0);
 break;

 }
 default:

 break;
 }
 return true;

 }

 Build and test your code to make sure the plug-in works as expected. You now understand the

basics of writing a plug-in from a block diagram and design equations.

 Add some presets

 Now that you have a GUI with more than one control, try adding some presets. If you look

at the preset list in the toolbar, you will see the fi rst one is named Factory Preset. This preset

contains your initial settings for the GUI controls. You cannot delete this preset and it is

automatically updated whenever you add, edit, or delete controls. This preset takes you back

to your initial state. With your plug-in loaded and (optionally) audio streaming through it,

adjust the controls to affect the signal. Hit the Save Preset button on the toolbar or choose

it from the plug-in menu. A box will pop up allowing you to name the preset. You can also

overwrite an existing preset. You can store up to 32 presets in your plug-in.

 3.13 The User Plug-In Menu in RackAFX

 As you write more plug-ins, you will notice that they begin to automatically populate the user

plug-in menu item in RackAFX. By now, you should have three plug-ins in this menu. There

are a few things you need to understand about this menu.

70 Chapter 3

• It allows you to play with the plug-ins without having to open your compiler and manu-

ally load and unload the DLLs.

• You can select different plug-ins from this menu while audio is streaming and they will

automatically slot in and out, so you can audition or show off your plug-ins quickly.

• It allows RackAFX to behave just like other plug-in clients by loading all the DLLs it

fi nds in its PlugIns folder at once when you start the software. This can be dangerous!

 That last item poses a problem during the course of development—if you write a DLL that

does bad things in the constructor, such as hold pointers with garbage values or try to access

memory that hasn’t been allocated, it may crash RackAFX when it fi rst starts up. If your

DLL behaves really badly, you might even wound the OS too. This is a diffi cult issue to avoid

without complicated rules for commissioning and decommissioning the plug-in. Additionally,

you will have the same problem if you are developing a commercial plug-in and you are

using a third-party client; most of these are designed to fi rst open all the DLLs in their plug-in

folder and check to make sure the plug-ins can be instantiated. If you write a bad DLL, you

might also crash these clients and/or the OS. In at least one commercially available client,

if your plug-in crashes during startup, it will not be loaded again in future launches. When

RackAFX loads your DLL, it does some error checking to try to make sure your plug-in is

legal, but it can’t check the validity of your construction code.

 If RackAFX crashes each time you open it, remove the last DLL you were working on from the
PlugIns folder. Alternatively, you can remove all the DLLs—you will want to copy them and
restore them later when you find the bad DLL that caused the crashing. Writing a DLL is chal-
lenging and fun, but since you are writing a component, you can wind up with crashes like this.

71

 During the course of this book you will learn how to implement the following effects:

• EQs/tone controls

• Delay

• Flanger/chorus

• Compressor/limiter/tremolo

• Reverb

• Modulated fi lters/phaser

 The EQ/tone control theory is the most diffi cult of all the effects to explain in a simple

way. These effects are based on DSP fi lter theory which involves complex algebra, that

is, the algebra of complex numbers. Complex numbers contain real and imaginary parts.

There are two basic ways to explain basic DSP theory. The fi rst is intuitive and involves

no complex math but requires some bookkeeping and can be tedious. The second method

uses complex algebra to solve the problem. We’ll start with the intuitive method, and then

(optionally, if you desire) make the leap into complex math. Don’t worry—we don’t want

to get mired down in theory and forget the fun part, which is making audio effects. If you

skip the second part, you will still be able to code EQ and tone control plug-ins, but you will

better understand where the equations come from if you know a little theory too. The transfer

functions you will learn along the way will reappear in many effects algorithms.

 In Figure 4.1 you can see the 26 dB/octave roll-off indicative of a fi rst-order fi lter. A digital

version of the analog fi lter should have the same shape and roll-off. A key difference is that

the digital fi lter will not operate beyond the Nyquist frequency.

 The phase response plot shows the relative phases of different frequencies upon exiting the

fi lter. During the fi ltering process, the phases of different frequencies get shifted forward or

backward. In Figure 4.2 , the 1 kHz frequency is shifted by 245 degrees compared to the

input. At very high frequencies, the phase shift approaches 290 degrees. This phase shift is

not a side effect of the fi ltering but an integral part of how it works.

 To understand the ramifi cations of the phase shifting, consider a complex waveform entering

the fi lter. Fourier showed that a complex, continuous waveform could be decomposed into a

 CHAPTER 4

How DSP Filters Work

+12.0dB

0.0dB

-12.0dB

-24.0dB

-36.0dB

-48.0dB

-60.0dB
10Hz 100Hz

-6dB/octave

1kHz 10kHz

- 45 degrees

10kHz 1kHz 100Hz 10Hz

+90.0°

+60.0°

+30.0°

0.0°

-30.0°

-60.0°

-90.0°

72 Chapter 4

set of sinusoids with different frequencies and amplitudes. Figure 4.3 shows a fi lter in action.

The input is decomposed into four sinusoids, a fundamental, and three harmonics. The peak-

amplitudes of the components are shown as dark bars to the left of the y axes.

 We observe several features of the output:

• The composite waveform is smoothed out.

• The amplitude and phase shift of the fundamental are unchanged.

• The three harmonics have decreasing amplitudes and more phase shift as you go higher

in frequency.

 Figure 4.4 shows the same fi lter with the information plotted differently; here, the amplitudes

and phases are plotted against frequency rather than dealing with a set of time-domain

sinusoids. You can see by the output frequency response plot that this fi lter is a kind of

low-pass fi lter. Its curve is similar to Figure 4.1 , the analog equivalent.

 Figure 4.2: The phase response plot of the analog fi lter in Figure 4.1 shows how the
phase of the output is shifted across frequencies.

 Figure 4.1: The fundamental analysis tool for a DSP fi lter is its frequency response plot.
This graph shows how the fi lter amplifi es or attenuates certain bands of frequencies.

Amplitude

Time
FILTER

Amplitude

Amplitude

f1

Time

Amplitude

f2

Time

Amplitude

f3

Time

Amplitude

f4
Time

Time

f4

Amplitude

Time

f3

Amplitude

f
2

Amplitude

Time

Time

f1

Amplitude

Time

Frequency

Frequency
f
4

f
3

f
2

f
1

-90°

-45°

0°

Phase
Shift

f
1

f
2

f
3

f
4

Amplitude

FILTER

Amplitude

f
1

f
2

f
3

f
4

Frequency

Frequency
f
4

f
3

f
2

f1

-90°

-45°

0°

Phase
Shift

How DSP Filters Work 73

 Figure 4.3: A complex waveform is fi ltered into a smoothed output. The input and output are
decomposed into their Fourier-series components.

 Figure 4.4: The same information is plotted as frequency and phase responses.

y(n) Σ

a0x(n)

a0 x(n)

Z
-1

x(n-1)
a1

a1x(n-1)

Y(n) Σ 0.5 x(n)

Z -1

0.5

74 Chapter 4

 4.1 First-Order Feed-Forward Filter

 In order to get a grip on the nature of digital fi ltering, start with the fi rst-order feed-forward

fi lter shown in a block diagram in Figure 4.5 . You’ve already seen a version of it in the HPF

tone control you coded in the last chapter.

 The difference equation is as follows:

 y(n) 5 a0x(n) 1 a1x(n 2 1) (4.1)

 You can tell why it’s called feed forward—the input branches feed forward into the summer.

The signal fl ows from input to output. There is no feedback from the output back to the input.

Now, suppose we let the coeffi cients a 0 and a 1 both equal 0.5 in Figure 4.6 .

 In order to analyze this fi lter we can go the easy but tedious route or the diffi cult but elegant

route. Let’s start with the easy way. In order to fi gure out what this does, you apply the fi ve

basic digital test signals you learned in Chapter 1 to the fi lter and then manually push the

values through and see what comes out. You only need a pencil and paper or a simple

calculator . The fi ve waveforms we want to test are:

1. DC (0 Hz)

2. Nyquist

 Figure 4.5: The fi rst-order feed-forward fi lter.

 Figure 4.6: What kind of fi lter is this? What are its frequency and phase responses?

Step/DC (0 Hz)
{...0,1,1,1,1,1,1...}

0

0

x(n-1)

y(n) = (0.5) * (0.0) + (0.5) * (0.0) = 0.0

TRASH
0.5

Z
-1

0

0 0.5 y(n)

0.5

0.5

Z

How DSP Filters Work 75

 Figure 4.7: On the fi rst iteration the input sample is used in the difference
equation to create the output, x(n) 5 0, y(n) 5 0 and then the

input is shifted into the delay register.

3. ½ Nyquist

4. ¼ Nyquist

5. Impulse

 For each audio sample that enters there are two phases to the operation:

1. Read phase: The sample is read in and the output is formed using the difference equation

and the previous sample in the delay register.

2. Write phase: The delay element is overwritten with the input value—the sample stored in

the single z 21 register is effectively lost.

 Start with the DC/step input and begin sequentially applying the samples into the fi lter shown

in Figures 4.7 through 4.10 .

 Now, observe the amplitude and phase shift of the input versus output—the output amplitude

eventually settles out to a constant 1.0 or unity gain condition, so at DC or 0 Hz, the output

 In a feed-forward filter, the amount of time smearing is equal to the maximum delayed path
through the feed-forward branches.

1

0

x(n -1) 0.5

Z
-1

0.5 y(n) = (0.5) * (1.0) + (0.5) * (0.0) = 0.5

y(n)

TRASH

0

1

Z
-1

0.5

0.5

76 Chapter 4

equals the input. However, there is a one sample delay in the response, causing the leading

edge of the step-input to be smeared out by one sample interval. This time smearing is a

normal consequence of the fi ltering.

 Next, repeat the process for the Nyquist frequency (DC and Nyquist are the easiest, so we’ll

do them fi rst). The fi lter behaves in an entirely different way when presented with Nyquist

(Figures 4.11 through 4.14).

 Now, make your observations about amplitude and phase. The amplitude at Nyquist

eventually becomes zero after the one-sample-delay time. The phase is hard to tell because the

signal has vanished. Why did the amplitude drop all the way to zero at Nyquist? The answer

is one of the keys to understanding digital fi lter theory: the one-sample delay introduced

 Figure 4.8: The process continues with each sample. Here the input 1.0 is
combined with the previous input; the second output y(n) 5 0.5.

 Delay elements create phase shifts in the signal. The amount of phase shift depends on the
amount of delay as well as the frequency in question.

1

1

x(n-1)

y(n) = (0.5) * (1.0) + (0.5) * (1.0) = 1. 0

Z

0.5

-1

0.5

0.5 1

Z
-1

1

y(n)

0.5
TRASH

x(n- 1) 0.5

Z
-1

1

y(n) = (0.5) * (1.0) + (0.5) * (1.0) = 1.0 0.5 1

How DSP Filters Work 77

Figure 4.9: The sequence continues until we observe a repeating pattern;
1.0 is repeating here.

exactly 180 degrees of phase shift at the Nyquist frequency and caused it to cancel out

when recombined with the input branch through a 0 .

 In the case of Nyquist, the one-sample delay is exactly enough to cancel out the original

signal when they are added together in equal ratios. What about other frequencies like

1.0

Input

1.0

1.0

1.0

Output

y(n) = (0.5) * (+1.0) + (0.5) * (0.0) = 0.5

Nyquist Response
+ 1 , - 1 , + 1 , - 1

1

0 z
- 1

0.5

x(n-1) 0.5

+1 y(n) 0.5

Z
-1

0.5

0

TRASH

78 Chapter 4

 Figure 4.11: The Nyquist sequence is applied to the fi lter. Notice how the delay
element has been zeroed out. The output for the fi rst iteration is y(n) 5 0.5.

 Figure 4.10: The input and output sequences for the fi lter in Figure 4.6 at DC or 0 Hz.

½ and ¼ Nyquist? They are a bit more laborious to work through but worth the effort. By

now you can see how the data moves through the fi lter, so let’s use a table (Table 4.1) and

move the data through it instead. The ½ Nyquist sequence is x (n) 5 {…0, 11.0, 0.0, 21.0,

0.0, 11.0, 0.0, …}.

y (n) = (0.5) * (-1.0) + (0.5) * (+1.0) = 0.0

x(n-1) 0.5

+ 1 Z
-1

0.5 -1

y(n) -1

0.5
TRASH

Z -1
+1

0.5

How DSP Filters Work 79

 Table 4.1: The manual labor continues as we work
through the ½ Nyquist frequency.

x(n) x(n 2 1) y(n) 5 0.5x(n) 1
0.5x(n 2 1)

0 0 0

1 0 0.5

0 1 0.5

21 0 20.5

0 21 20.5

1 0 0.5

0 1 0.5

21 0 20.5

0 21 20.5

 Can you see how x (n) becomes x (n 2 1) for the next row? The x (n 2 1) column holds a one-

sample-delayed version of the input x (n). The output is y (n) 5 {0, 10.5, 10.5, 20.5, 20.5,

10.5, 10.5}.

 Figure 4.12: The second iteration at Nyquist produces an output y(n) 5 0.

+1

x(n-1)

y(n) = (0.5) * (+1.0) + (0.5) * (-1.0) = 0.0

-1 Z

0.5

0.5

y(n) +1 0.5

-1

TRASH

Z
-1

0.5

-1 0.5 y(n) = (0.5) * (-1.0) + (0.5) * (+1.0) = 0.0

x(n-1)

+1 Z -1

0.5

80 Chapter 4

 Next we observe the amplitude and phase relationship from input to output in Figure 4.15 .

At fi rst it might seem diffi cult to fi gure out the sequence {…20.5, 20.5, 10.5, 10.5, …}.

½ Nyquist is also encoded with a repeating sequence of four values (0, 1, 0, 21).

 Work through ¼ Nyquist the same way (Table 4.2). The ¼ Nyquist frequency sequence is

 x (n) 5 {0, 0.707, 1, 0.707, 0, 20.707, 21, 20.707, 0, …}.

 Figure 4.13: Continuing the operation at Nyquist, we see that eventually the
output settles to a repeating 0, 0, 0, 0 sequence.

+ 1. 0

-1.0

Input

+1.0

-1.0

Output

How DSP Filters Work 81

 Table 4.2: ¼ Nyquist input/output.

x(n) x(n 2 1) y(n) 5 0.5x(n) 1
0.5x(n 2 1)

0 0 0

0.707 0 10.354

1 0.707 10.854

0.707 1 10.854

0 0.707 10.354

20.707 0 20.354

21 20.707 20.854

20.707 21 20.854

0 20.707 20.354

 The output is y (n) 5 {…10.354, 10.854, 10.854, 10.354, 20.354, 20.854, 20.854,

20.354, 10.354, …}. Analysis of the output sequence reveals the phase-shifted and slightly

attenuated output signal at ¼ Nyquist. Both the phase shift and the attenuation are smaller

than ½ Nyquist. As you can see in Figure 4.16 there is also one sample of time smearing at

the start of the signal.

 Finally, apply the impulse sequence and fi nd the impulse response. The impulse response

is the third analysis tool. The impulse response defi nes the fi lter in the time domain like the

frequency response defi nes it in the frequency domain. The basic idea is that if you know how

the fi lter reacts to a single impulse you can predict how it will react to a series of impulses of

varying amplitudes. Take a Fast Fourier Transform (FFT) of the impulse response and you

get the frequency response. An inverse FFT converts the frequency response back into the

impulse response. For this fi lter the impulse response is simple (Table 4.3).

 Figure 4.14: The input and output sequences for the fi lter in Figure 4.6 at Nyquist.

+1.0

Input

Phase Shift

-1.0

+ 1. 0

Time
Smearing

Output

-1.0

+ 1.0

Input

Output

Phase Shift

-1.0

+ 1. 0

Time
Smearing

-1.0

82 Chapter 4

 Figure 4.15: The input/output relationship in time at ½ Nyquist. The ½ Nyquist
 frequency is attenuated almost by one-half. The output is also phase
shifted by 45 degrees. The leading edge of the fi rst cycle is smeared

out by one sample's worth of time.

 Figure 4.16: The input/output relationship at ¼ Nyquist.

+1.0

-1.0

Output

-1.0

+1.0

Input

How DSP Filters Work 83

 Table 4.3: The impulse response input/output relationship.

x(n) x(n 2 1) y(n) 5 0.5x(n) 1
0.5x(n 2 1)

0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

 Here you can see that the impulse is fl attened and smeared out. It is actually two points on

a sin(x)/(x)-like curve, as shown in Figure 4.17 . Now, you can combine all the frequency

amplitude and phase values into one big graph, as shown in Figure 4.18 .

 We observe that this digital fi lter is a low-pass variety with a typical low pass fi lter (LPF)

magnitude response. However the phase response is quite interesting—it is linear instead of

nonlinear like the analog example at the beginning of the chapter. In fact, this simple fi lter is

a linear phase fi lter .

 Figures 4.19 and 4.20 show the measured frequency and phase responses for this fi lter.

Compare it with our estimation. Notice the linear phase produces a straight line only

when plotted on the linear frequency axis. What makes this fi lter a low-pass fi lter? It is a

combination of the coeffi cients and the fi lter topology (fi rst-order feed-forward). There are

three basic topologies: feed forward (FF), feed back (FB), and a combination of

FF/FB. Once the topology has been chosen, it’s really the coeffi cients that determine what

the fi lter will do.

 Figure 4.17: The time domain plots of the impulse response input/output.

 A feed-forward filter will be a linear phase filter if its coefficients are symmetrical about their
center. In this case (0.5, 0.5) is symmetrical. Another example would be (20.25, 0, 20.25).

Magnitude

1.0
0.9

0.7

0.0

Phase

Frequency

Nyquist Nyquist

Angle

fs/2 fs/4
Nyquist

fs/8

1
2

1
4

-90°

-45°

0°

84 Chapter 4

 Figure 4.18: Final frequency and phase response plots for the digital fi lter in
 Figure 4.6 . Notice that this is a linear frequency plot since ½ Nyquist is

halfway across the x-axis. The phase at Nyquist pops back up to 0 degrees
since there is no Nyquist component present (output 5 0).

 4.2 Design a General First-Order Feed-Forward Filter

 To illustrate this and crystallize it as a concept, modify your SimpleHPF fi lter so that two

sliders control the a 0 and a 1 coeffi cients directly. Also, alter the range of values they can

control to (21.0 to 11.0). Then, experiment with the two values and watch what happens in

the analyzer. How to do this is described next.

 Open your SimpleHPF project and modify the user interface (UI). First, change the values for

the a 1 slider to match the new low and high limits. As usual, you right-click inside the slider’s

bounding box and alter the limits and initial value (shown in bold) as in Table 4.4 .

+12.0dB

0.0dB

–12.0dB

–24.0dB

–36.0dB

–48.0dB

–60.0dB
2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

+90.0°

+60.0°

+30.0°

0.0°

–30.0°

–60.0°

–90.0°
2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

+12.0dB

0.0dB

–12.0dB

–24.0dB

–36.0dB

–48.0dB

–60.0dB
10Hz 100Hz 1kHz 10kHz

+90.0°

+60.0°

+30.0°

0.0°

–30.0°

–60.0°

–90.0°
10Hz 100Hz 1kHz 10kHz

How DSP Filters Work 85

 Figure 4.19: Measured frequency and phase response plots for the fi lter you just analyzed by
hand. These are plotted with a linear frequency base.

 Figure 4.20: Measured frequency and phase response plots with log frequency base.

86 Chapter 4

 Table 4.4: The altered a 1 slider properties.

Slider Property Value

Control Name a1

Units

Variable Type fl oat

Variable Name m_fSlider_a1

Low Limit 21.0

High Limit 11.0

Initial Value 0.0

 Now add a new slider for the a 0 coeffi cient just below the a 1 slider (Table 4.5).

 Table 4.5: The new a 0 slider properties.

Slider Property Value

Control Name a0

Units

Variable Type fl oat

Variable Name m_fSlider_a0

Low Limit 21.0

High Limit 11.0

Initial Value 1.0

 Change the userInterfaceChange() function to directly map the slider values to the coeffi cient

values. The new slider has a control ID of 10; always check your nControlIndex value since it

might be different depending on your UI.

 Variable Name Index

 m_fSlider_a1 0

 m_fVolume_dB 1

 m_fSlider_a0 10

 bool CSimpleHPF::userInterfaceChange(int nControlIndex)

 {

 switch(nControlIndex)

 {

+12.0dB

0.0dB

–12.0dB

–24.0dB

–36.0dB

–48.0dB

–60.0dB

a0 = 1.0 a1 = 1.0

a0=1.0 a1 = -0.5

a0 = 1.0 a1 = -0.9

10Hz 100Hz 1kHz 10kHz

How DSP Filters Work 87

 case 0:

 // direct map to the a1 Slider

 m_f_a1_left = m_fSlider_a1;

 m_f_a1_right = m_fSlider_a1;

 break;

 case 1:

 // cook the Volume Slider

 m_fVolume = pow(10.0, m_fVolume_dB/20.0);

 break;

 case 10:

 // direct map to the a0 Slider

 m_f_a0_left = m_fSlider_a0;

 m_f_a0_right = m_fSlider_a0;

 break;

 default:

 ; // do nothing

 }

 return true;

 }

 Rebuild the DLL and load it. Place the volume control at 0 decibels (dB) (maximum) and set

a 0 and a 1 to 1.0 (maxima); then open the analyzer and hit the Frequency button—play with the

different values for a 0 and a 1 . Figure 4.21 shows the response with various coeffi cient values.

 After you play around with the controls, there are several things to note from this experiment:

• You can get a low-pass or high-pass response, or anything between, including a fl at

response (a 0 5 1.0, a 1 5 0.0).

 Figure 4.21: Three different combinations of coeffi cient settings
yield three different fi lters.

x (n)

a0x(n)

×

a0 y(n)

z -1

–b1y(n –1) –b1 y(n – 1)

88 Chapter 4

• Inverted settings give the identical frequency response but the phase responses will be

inverted (use the Phase button and have a look for yourself).

• You can get gain out of the fi lter.

• You can also get attenuation out of the fi lter.

 4.3 First-Order Feed-Back Filter

 A fi rst-order feed-back fi lter is shown in Figure 4.22 .

 The difference equation is as follows:

 y(n) 5 a0
x(n) 2 b1y(n 2 1) (4.2)

 You can see the feed-back nature of the fi lter; the output y (n) is fed back into the summer

through a one-sample-delay z 21 element. Notice that the feedback coeffi cient has a negative

sign in front of it and the difference equation refl ects this with the 2b 1 term. The negative

sign is for mathematical convenience and will make more sense in the next chapter when we

analyze the difference equations in more detail. Also notice that there is no b 0 coeffi cient—

there will not be a b 0 coeffi cient in any of the feed-back fi lters. To analyze this without math

requires going through the same procedure as before, analyzing the amplitude and phase of

the basic test signals. Another option would be to code it as a plug-in in RackAFX and map

the coeffi cients directly to the sliders as you did in the previous example. Then, you can

experiment with the coeffi cients and see how they affect the fi lter’s frequency, phase,

DC/step, and impulse responses.

 The topology of the filter determines its difference equation. The coefficients (a N) of a filter
determine its filter frequency and phase response and therefore its type (HPF, LPF, etc.) and
its sonic qualities. Your plug-in implements the difference equation in processAudioFrame().
Your plug-in calculates the coefficients in userInterfaceChange() in response to the user making
changes to the control surface.

 Figure 4.22: First-order feed-back fi lter block diagram.

ao b1

I 1.00 I I 0.00 I

l f

How DSP Filters Work 89

 4.4 Design a General First-Order Feed-Back Filter
 4.4.1 Project FeedBackFilter

 Create a new RackAFX project called “FeedBackFilter.” The plan is for this fi lter to let you

directly control the coeffi cients with UI sliders and use the analyzer to check the resulting fi lters.

 4.4.2 FeedBackFilter GUI

 The GUI will consist of two sliders, one for the a 0 coeffi cient and the other for the b 1

coeffi cient. You can use any two sliders you like, but make sure you keep track of the control

index values later on. Figure 4.23 shows my version of the GUI. Right-click near the sliders

you want to use and set them up according to Table 4.6 .

 4.4.3 FeedBackFilter.h File

 Add the z 21 elements and a 0 , b 1 coeffi cient variables for the right and left channels in your .h fi le:

 // Add your code here: --- //

 fl oat m_f_a0_left;

 fl oat m_f_b1_left;

 Figure 4.23 The GUI for the FeedBackFilter project.

Slider Property Value

Control Name b1

Units

Variable Type fl oat

Variable Name m_fSlider_b1

Low Limit 21.0

High Limit 11.0

Initial Value 0.0

Slider Property Value

Control Name a0

Units

Variable Type fl oat

Variable Name m_fSlider_a0

Low Limit 21.0

High Limit 11.0

Initial Value 1.0

 Table 4.6 : The a0 slider properties.

90 Chapter 4

 fl oat m_f_a0_right;

 fl oat m_f_b1_right;

 fl oat m_f_z1_left;

 fl oat m_f_z1_right;

 // END OF USER CODE -- //

 4.4.4 FeedBackFilter.cpp File

 Constructor

• Initialize the internal a 0 and b 1 variables to match our GUI variables.

• Zero out the delay line elements.

 CFeedBackFilter::CFeedBackFilter()

 {

 // Added by RackAFX - DO NOT REMOVE

 //

 // Setup the RackAFX UI Control List and Initialize Variables

 initUI();

 // END InitUI

 <SNIP SNIP SNIP>

 // Finish initializations here

 //

 // setup our coeffi cients

 m_f_a0_left = m_fSlider_a0;

 m_f_b1_left = m_fSlider_b1;

 m_f_a0_right = m_fSlider_a0;

 m_f_b1_right = m_fSlider_b1;

 // fl ush the memory registers

 m_f_z1_left = 0.0;

 m_f_z1_right = 0.0;

 }

 prepareForPlay()

• Flush the z -1 storage registers.

 bool __stdcall CFeedBackFilter::prepareForPlay()

 {

 // Add your code here:

 m_f_z1_left = 0.0;

How DSP Filters Work 91

 m_f_z1_right = 0.0;

 return true;

 }

 processAudioFrame()

• Implement the difference equation in processAudioFrame(); notice the (2) sign in the

difference equation too.

 bool __stdcall CFeedBackFilter::processAudioFrame(fl oat* pInputBuffer, fl oat*

pOutputBuffer, UINT uNumInputChannels, UINT uNumOutputChannels)

 {

 // Do LEFT (MONO) Channel; there is always at least one input/one output

 // (INSERT effect)

 // Input sample is x(n)

 fl oat xn = pInputBuffer[0];

 // Delay sample is y(n-1)

 fl oat yn_1 = m_f_z1_left;

 // Difference Equation

 fl oat yn = m_f_a0_left*xn - m_f_b1_left*yn_1;

 // Populate Delay with current y(n)

 m_f_z1_left = yn;

 // Output sample is y(n)

 pOutputBuffer[0] = yn;

 // Mono-In, Stereo-Out (AUX effect) -- COPY for now

 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = yn;

 // Stereo-In, Stereo-Out (INSERT effect)

 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 {

 // Input sample is x(n)

 fl oat xn = pInputBuffer[1];

 // Delay sample is x(n-1)

 fl oat yn_1 = m_f_z1_right;

92 Chapter 4

 // Difference Equation

 fl oat yn = m_f_a0_right*xn - m_f_b1_right*yn_1;

 // Populate Delay with current y(n)

 m_f_z1_right = yn;

 // Output sample is y(n)

 pOutputBuffer[1] = yn;

 }

 return true;

 }

 userInterfaceChange()

• Update the coeffi cients when the user changes a slider.

• Check your nControlIndex values to make sure you are processing the correct control.

 bool CFeedBackFilter::userInterfaceChange(int nControlIndex)

 {

 // add your code here

 switch(nControlIndex)

 {

 case 0:

 // map the a0 Slider

 m_f_a0_left = m_fSlider_a0;

 m_f_a0_right = m_fSlider_a0;

 break;

 case 1:

 // map the b1 Slider

 m_f_b1_left = m_fSlider_b1;

 m_f_b1_right = m_fSlider_b1;

 break;

 default:

 ; // do nothing

 }

 return true;

 }

 Build and load the plug-in into RackAFX. Open the analyzer and use the Frequency, Phase,

Impulse, and Step buttons to analyze the output. Play with the controls. Notice fi rst that the a 0

slider only controls the gain and phase of the signal; in the frequency response this just moves

the curve up or down and it disappears when a 0 5 0.0, which makes sense. The real action is

with the b 1 control; try the examples in Figures 4.24 through 4.26 .

+12.0dB

+8.0dB

+4.0dB

0.0dB

–4.0dB

–8.0dB

–12.0dB
10Hz 100Hz 1kHz 10kHz

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

0 17 34 51 68 85 102 119 136 153

+24.0dB

+18.0dB

+12.0dB

+6.0dB

0.0dB

–6.0dB

–12.0dB
10Hz 100Hz 1kHz 10kHz

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

0 17 34 51 68 85 102 119 136 153

How DSP Filters Work 93

 Figure 4.25: a 0 5 1.0 and b 1 5 0.9; the frequency response has a steeper
high-pass response than before and has gain of 120 dB at Nyquist,

while the impulse response shows considerable ringing.

 Figure 4.24: a 0 5 1.0 and b 1 5 0.5; the frequency response is high-pass/low-shelf in nature
and has gain above 11 kHz, while the impulse response shows slight ringing.

+12.0dB

+8.0dB

+4.0dB

0.0dB

–4.0dB

–8.0dB

–12.0dB
10Hz 100Hz 1kHz 10kHz

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

0 17 34 51 68 85 102 119 136 153

94 Chapter 4

 What happened in that last fi lter? Why was there no frequency response? The fi lter became

unstable and blew up . It blew up because the b 1 coeffi cient was 1.0, which introduced 100%

positive feedback into the loop. The output recirculated through the feedback loop forever

causing the infi nite ringing seen in the step and impulse responses. Also notice that as the b 1

variable was increased, the gain at Nyquist also increased. With b 1 5 1.0, the gain at Nyquist

is actually infi nite.

 4.5 Observations

 In doing these exercises, you have made a lot of progress—you know how to implement both

feed-forward and feed-back fi lters in a plug-in. You also have a good intuitive knowledge

about how the coeffi cients control the fi lter type. Plus you got to blow up a fi lter, so that is

pretty cool. Here are some observations.

 4.5.1 General

• Feed-forward and feed-back topologies can both make high-pass or low-pass-shaped

fi lter responses.

• The coeffi cients of the fi lter ultimately determine the kind of fi lter and what it sounds like.

• The phase shift introduced by the delay element(s) is responsible for the fi ltering operation.

 Figure 4.26: a 0 5 1.0 and b 1 5 1.0; the frequency response has
blown up while the impulse response rings forever.

How DSP Filters Work 95

 4.5.2 Feed-Forward Filters

• Operate by making some frequencies go to zero; in the case of a 0 5 1.0 and a 1 5 1.0, the

Nyquist frequency went to zero; this is called a zero of transmission or a zero frequency

or just a zero .

• The step and impulse responses show smearing. The amount of smearing is exactly equal

to the total amount of delay in the feed-forward branches.

• Don’t blow up.

• Are called fi nite impulse response (FIR) fi lters because their impulse responses, though

they may be smeared, are always fi nite in length.

 4.5.3 Feed-Back Filters

• Operate by making some frequencies go to infi nity; in the case of a 0 5 1.0 and b 1 5 1.0,

the Nyquist frequency went to infi nity and with a 0 5 1.0 and b 1 5 21.0, DC or 0 Hz

went to infi nity; this is called a pole of transmission or a pole frequency or just a pole .

• The step and impulse responses show overshoot and ringing or smearing depending on

the coeffi cients. The amount of ringing or smearing is proportional to the amount of

feedback.

• Can blow up (or go unstable) under some conditions.

• Are called infi nite impulse response (IIR) fi lters because their impulse responses can

become infi nite.

 The problem now is that we want to be able to specify the fi lter in a way that makes sense

in audio—a low-pass fi lter with a cut-off of 100 Hz or a band-pass fi lter with a Q of 10 and

center frequency of 1.2 kHz. What we need is a better way to analyze the fi ltering than just

randomly trying coeffi cients, and we need methods to come up with fi lter coeffi cients based

on how we specify the fi lter. In the next chapter, we’ll work on the basic DSP theory that will

make this happen.

 Bibliography

 Dodge, C. and Jerse, T. 1997. Computer Music Synthesis, Composition and Performance , Chapters 3 and 6.

New York: Schirmer.

 Steiglitz, K. 1996. A DSP Primer with Applications to Digital Audio and Computer Music , Chapter 4. Menlo Park,

CA: Addison-Wesley.

97

 You want to get a grip on the underlying digital signal processing (DSP) theory of

fi lters for several reasons. It helps to understand the anatomy of the fi lter because you

have to implement it in code; a deeper understanding of the theory can only help your

coding strategy. Also, the same DSP fi lter analysis and mathematical models can be

applied to other effects including delay, chorusing, reverb, and compression. In order to

intuitively understand the foundation of DSP theory, you need to review some math and

engineering concepts.

 5.1 The Complex Sinusoid

 The analysis and design of digital fi lters uses the sinusoid as its basic stimulus function.

Since Fourier showed that a signal can be decomposed into sinusoids, if you know how the

system reacts to a sinusoidal stimulus at a bunch of different frequencies, you can plot the

frequency and phase responses like you did by hand in the last chapter. This is akin to the

impulse response—since the input signal is a train of impulses of varying amplitudes, if you

know how the fi lter responds to a single impulse, you can fi gure out how it will respond to

multiple impulses. You also did this by hand when you took the impulse response of the

low-pass fi lter.

 Everyone is familiar with the sine and cosine functions—sine and cosine are related by

an offset of 90 degrees and the sine function starts at zero, whereas cosine starts at 1.0. In

 Figure 5.1 you can identify the sine and cosine waveforms by their starting position. But what

about the sine-like waveform that starts at an arbitrary time in the lower plot? Is it a sine that

has been phase shifted backwards or a cosine that has been phase shifted forward? You have

to be careful how you answer because sine and cosine have different mathematical properties;

their derivatives are not the same and it usually becomes diffi cult when you try to multiply

them or combine them in complex ways. Add a phase offset to the argument of the sin() or

cos() function and then it really turns into a mess when you do algebra and calculus with

them. What you need is a function that behaves in a sinusoidal manner, encapsulates both sine

and cosine functions, and is easy to deal with mathematically. Such a function exists, and it’s

called the complex sinusoid:

 Complex sinusoid 5 e
jvt (5.1)

 CHAPTER 5

Basic DSP Theory

A Sine

Cosine

A Sinusoid

t

t

98 Chapter 5

 Euler’s equation is shown below:

 eju 5 cos(u) 1 jsin(u)

 j 5 "21
(5.2)

 You can see that it includes both sine and cosine functions. The j term is the imaginary

number, the square root of 21 (mathematicians call it i but since that represents current

in engineering, we rename it j instead). The j is known as the phase rotation operator;

multiplying a function by j rotates the phase by 90 degrees.

 Suppose you want to shift the phase of a waveform by 180 o , thereby inverting it. Mathematically,

you can do this by multiplying the waveform by 21, inverting the values of all its points. Suppose

you wanted to invert the waveform again (which would bring it back to its original shape)—you

could do that by multiplying by 21 again. But suppose that you only wanted to shift the phase by

90 o ? Is there a number (h) you could use as a multiplier to shift by 90 o ? In other words,

 90-degree shifted waveform 5 (original waveform) (h)

 You don’t know what h is yet, but you can fi gure it out. Suppose you then wanted to shift the

waveform by another 90 degrees, which would be the same as shifting the original waveform

by 180 degrees. You would multiply it by h again. You’d then have the following :

 180-degree shifted waveform 5 (original waveform) (h)(h)

5 (original waveform) (h)2

5 (original waveform) (21)

 Figure 5.1: Sine, cosine, and sinusoid signals.

Basic DSP Theory 99

 This leads to Equation 5.3 :

 h2 5 21

 h 5 "21 5 j
(5.3)

 So, you can perform a conceptual 90-degree phase shift by multiplying a waveform by j .
A 290-degree phase shift is accomplished by multiplying by 2 j . Some other useful

relationships with j are

 j2 5 21

1

j
5 2j

(5.4)

 Euler’s equation is complex and contains a real part (cos) and imaginary part (sin), and the

plus sign (1) in the equation is not a literal addition—you can’t add real and imaginary

numbers together. In a complex number of the format A 1 j B, the two parts coexist as part of

one complex number.

 For our purposes, we replace the u with vt instead, where v is the frequency in radians/

second and t is the time variable. Plug in various values for t and you get the plot in

 Figure 5.1 when you plot the sine and cosine in the same plane. So, we will reject using the

sin() and cos() functions independently and adopt the complex sinusoid as a prepackaged

mixture of the two. The reason is partly mathematical—as it turns out, e is simple to

deal with mathematically. You only need to learn four rules (Equation 5.5) in addition

to Euler’s equation.

Euler’s equation: ejvt 5 cos(vt) 1 jsin(vt)

 The four rules:

 eaeb 5 e(a1b) or eatebt 5 e(a1b)t

ea

eb 5 e(a2b) or
eat

ebt 5 e(a2b)t

d(eat)

dt
5 aeat

 3eatdt 5
1

a
eat

(5.5)

 So, what Euler’s equation is really describing is a sine and cosine pair of functions,
 coexisting in two planes that are 90 degrees apart. The word orthogonal is the engineering term
for 90 degrees apart .

-2 + j2

2 + j3

2 - j1

Re

Im

100 Chapter 5

 The two equations in Equation 5.5 demonstrate that e behaves like a polynomial (x 2 * x 5 5 x 7)

even when the argument is a function of time, t . Equation 5.5 also shows how simply it behaves

in calculus—multiple derivatives or integrations are done by simply multiplying the argument’s

constant (a or 1/a) over and over. Before we leave this topic, make sure you remember how

to deal with complex numbers—you’ll need it to understand where the frequency and phase

responses come from.

 5.2 Complex Math Review

 Because a complex number has both real and imaginary parts, it cannot be plotted on a single

axis. In order to plot a complex number, you need two axes: a real and imaginary axis. The

two axes are aligned at right angles, just like the x - and y -axes in two-dimensional geometry.

They are orthogonal. The x -dimension is the real axis (Re), and the y -dimension is the

imaginary axis (Im). So, a complex number is plotted as a point on this x-y plane, also called

the complex plane . Complex numbers are usually written in the form A 1 j B where A is the

real part and B is the imaginary part. Notice that the notation always stays in the form A 1 j B

even when common sense might contradict it. For the point in the second quadrant, you still

write 22 1 j 2 even though j 2 2 2 might look nicer. Also notice that you write 2 2 j 1 instead

of just 2 2 j . The points are plotted the way you would plot (x , y) pairs in a plane (Figure 5.2).

 This example plots points as (x 1 jy) pairs; this is called the Cartesian coordinate system.

You can also use polar notation to identify the same complex numbers. In polar notation, you

specify the radius (R) and angle (u) for the vector that results from drawing a line from the

origin of the axes out to the point in question. For example, consider the point 2 1 j 3 above.

You could plot this point in polar form as shown in Figure 5.3 .

 We are leaving the Cartesian form (2 1 j 3) for reference. Normally, all you would see is R

and u. Most engineers prefer polar notation for dealing with complex numbers. The polar

number is often written as R < u. Fortunately for us, the conversion from Cartesian to polar

 Figure 5.2 : Several points plotted in the complex plane using
the Cartesian (x, y) coordinate system.

Im

R

θ

2 + j3

Re

Basic DSP Theory 101

notation is simple. Starting with a complex number in the form A 1 j B, you can fi nd the

resulting radius and angle from Equations 5.6 and 5.7 .

 R 5 "A2 1 B2 (5.6)

 u 5 tan21 cB
A
d (5.7)

 The radius (R) is sometimes called the magnitude and the angle u is called the argument . You

sometimes only care about the square of the magnitude (called the “magnitude-squared” or

| R | 2) (Equation 5.8).

 0R 0 2 5 A2 1 B2 (5.8)

 Equation 5.9 shows how to extract the magnitude and phase from a transfer function.

 H 5
num

denom

0H 0 5
0 num 0
0 denom 0

Arg(H) 5 Arg(num) 2 Arg(denom)

(5.9)

then

and

 Figure 5.3: Plotting 2 1 j 3 in polar form.

 The frequency response plots of filters are actually magnitude responses of a complex function
called the transfer function of the filter. The phase response plots are actually argument responses
of this function. The transfer function is complex because it contains complex numbers; many
transfer functions are actually quite simple. We use the letter H to denote a transfer function.

102 Chapter 5

 5.3 Time Delay as a Math Operator

 The next piece of DSP theory you need to understand is the concept of time delay as a

mathematical operator. This will be pretty easy since we are going to exploit the simple

mathematical behavior of the e jvt function. First, consider a complex sinusoid and a delayed

complex sinusoid (Figure 5.4).

 How does the delay of n seconds change the complex sinusoid equation? Since positive

time goes in the positive x direction, a delay of n seconds is a shifting of 2 n seconds. In the

complex sinusoid equation, you would then replace t with t2n . In other words, any point

on the delayed curve is the same as the nondelayed curve minus n seconds. Therefore, the

delayed sinusoid is

 Delayed sinusoid 5 e
jv(t2n) (5.10)

 But, by using the polynomial behavior of e and running Equation 5.5 in reverse, you can

rewrite it as shown in Equation 5.11 :

 ejv(t2n) 5 ejvte2 jvn (5.11)

 It’s a subtle mathematical equation but it says a lot: if you want to delay a complex sinusoid

by n seconds, multiply it by e 2jvn —this allows us to express time delay as a mathematical

operator.

 In the last two sections you’ve learned that phase rotation and time delay can both be

expressed as mathematical operators.

 Time delay can be expressed as a mathematical operator by multiplying the signal to be delayed
 n seconds by e 2jvn . This is useful because e 2jvn is not dependent on the time variable. In
 discrete-time systems, the n refers to samples rather than seconds.

 Figure 5.4: A complex sinusoid e jvt and another one delayed by n seconds.

A

e
jωt

e
jω(t-n)

t

n sec

x(t) a0 e
jωt

ejωt

a0

y(t)

e–jω1

a0
ejωt

+ a{ ejωt e–jωt

ejωt e–jω1
a,

a1
ejωt e–jω1

Basic DSP Theory 103

 5.4 First-Order Feed-Forward Filter Revisited

 Being able to express delay as the mathematical operation of multiplication by e 2jvn means

you can take the block diagram and difference equation for a DSP fi lter and apply a sinusoid

to the input in the form of e jvt rather than having to plug in sequences of samples as you did

in Chapter 4 . Then, you can see what comes out of the fi lter as a mathematical expression

and evaluate it for different values of v (where v 5 2p f with f in Hz) to fi nd the frequency

and phase responses directly rather than having to wait and see what comes out then try

to guesstimate the amplitude and phase offsets. Consider the fi rst-order feed-forward fi lter

from the last chapter but with e jvt applied as the input signal, shown in a block diagram

in Figure 5.5 .

 The difference equation is as follows:

 y(t) 5 a0e
jvt 1 a1 3ejvte2 jv1 4 (5.12)

 Figure 5.5 shows the familiar block diagram but this time with the input x (t) and output y (t)
instead of x (n) and y (n). Notice the delay element has been replaced by e 2jv1 since there is

a one-sample delay. When you apply the complex sinusoid e jvt to the input, the difference

equation uses the delay-as-multiplication operation to produce the output. With a little math

you can arrive at Equation 5.13 .

 y(t) 5 a0e
jvt 1 a1 3ejvte2 jv1 4

 5 e
jvt 1a0 1 a1e

2 jv1 2
 and the input x(t) 5 ejvt so

 y(t) 5 x(t) 1a0 1 a1e
2 jv1 2

 The transfer function is defined as the ratio of output to input, therefore

y(t)

x(t)
5 a0 1 a1e

2 jv1

(5.13)

 Figure 5.5: Block diagram of a fi rst-order feed-forward
fi lter with signal analysis.

104 Chapter 5

 What is so signifi cant about this is that the transfer function is not dependent on time

even though the input and output signals are functions of time. The transfer function

(Equation 5.14) is only dependent on frequency v, so we call it H(v).

 H(v) 5 a0 1 a1e
2 jv1 (5.14)

 Notice that the transfer function is complex.

 But what values of v are to be used in the evaluation? We know that v 5 2p f , but do we

really care about the frequency in Hz? In Chapter 4 when you analyzed the same fi lter, you

applied DC, Nyquist, ½ Nyquist, and ¼ Nyquist without thinking about the actual sampling

frequency. This is called normalized frequency and is usually the way you want to proceed in

analyzing DSP fi lters. The actual sampling rate determines Nyquist but the overall frequency

range (0 Hz to Nyquist) is what we care about. To normalize the frequency, you let f 5 1 Hz

in v 5 2p f , then v varies from 0 to 2p or across a 2p range. There is also one detail we have

to be aware of: negative frequencies.

 5.4.1 Negative Frequencies

 You may have never thought a frequency could be negative, but it can. When you fi rst learned

about the concept of a waveform’s frequency, you were taught that the frequency is 1/T,

where T is the period, as shown in Figure 5.6 .

 The reason the frequencies came out as positive numbers is because the period is defi ned as

 t 2 2 t 1 , which makes it a positive number. But, there’s no reason you couldn’t defi ne the

period to be the other way around: T 5 t 1 2 t 2 , except that it implies that time is running

backwards. Mathematically, time can run backwards. This means that for every positive

frequency that exists, there is also a negative “twin” frequency. When you look at a frequency

response plot you generally only look at the positive side. Figure 5.7 shows a low-pass

response up to the highest frequency in the system, Nyquist.

 However, in reality, the fi lter also operates on the negative frequencies just the same in

a mirror image. In this case, as the negative frequencies get higher and higher, they are

attenuated just like their positive counterparts (Figure 5.8). And it makes sense too. If

 The transfer function of the filter is the ratio of output to input. The frequency response of the filter
is the magnitude of the transfer function evaluated at different frequencies across its spectrum.
The phase response of the filter is the argument (or angle) of the transfer function evaluated at
different frequencies across its spectrum.

 To produce the frequency and phase response graphs, you evaluate the function for various val-
ues of v then find the magnitude and argument at each frequency. The evaluation uses Euler’s
equation to replace the e term and produce the real and imaginary components.

+π π/2 0 - π / 2 -π

-Nyquist H +Nyquist

+ Nyquist

+f

H

- f
-Nyquist

t 2 1 t

T = t2 - t1

t

A H

Nyquist f

Basic DSP Theory 105

you take an audio fi le and reverse it in time, then run it through a low-pass fi lter, the same

frequency fi ltering still occurs.

 For fi lter evaluation, v varies on a 0 to 2p radians/second range and one way to think about

this 2p range is to split it up into the range from 2p to 1p corresponding to 2Nyquist to

1Nyquist (Figure 5.9).

 Figure 5.6: The classic way of defi ning the
period, T .

 Figure 5.7: The classic way of showing a
frequency response plot only shows the positive

portion.

 Figure 5.8: The more complete frequency response plot contains
both positive and negative sides.

 Figure 5.9: One way to divide the 2p range of frequencies includes
both positive and negative frequencies.

2π
fs

3π/2 1/2 fs
π π/2 0

H

106 Chapter 5

 5.4.2 Frequencies Above and Below 6Nyquist

 The sampling theorem sets up the Nyquist criteria with regards to completely recovering the

original, band-limited signal without aliasing. However, frequencies above Nyquist and all

the way up to the sampling frequency are also allowed mathematically. And in theory, any

frequency could enter the system and you could sample it without limiting Nyquist. For a

frequency or phase response plot, the frequencies from Nyquist up to the sampling frequency

are a mirror image about Nyquist. This is another way to divide up the 2p range by going

from 0 Hz to the sampling frequency (Figure 5.10).

 Notice that in either method the same information is conveyed as we get both halves of the

curves, and in both cases, Nyquist maps to p and 0 Hz to 0 and positive frequencies map to

the range 0 to p.

 5.5 Evaluating the Transfer Function H(v)

 DSP fi lter transfer functions will contain e 2jvn terms that need to be evaluated over the

range of 0 to p; the way to do this is by using Euler’s equation to decompose the sinusoid

into its real (cos) and imaginary (sin) components. Then, evaluate the cos and sin terms

at the frequency in question. In the last chapter you manually calculated the input/output

relationship of a fi lter by cranking through the fi lter operation, one step at a time. In this

improved method, you only need to solve the transfer function equation. Start with the block

diagram in Figure 5.11 .

 The transfer function is as follows:

 H(v) 5 a0 1 a1e
2 jv1 (5.15)

 Figure 5.10: Mapping the 0 to 2p range of frequencies
across the 0 to fs range.

 To evaluate the transfer function, let v vary from 0 to p and get the first half of the response.
The other half is a mirror image of the data.

a0 Σ x(t)

-jωl

e

a1

y(t)

Basic DSP Theory 107

 Use the fi lter coeffi cients a 0 5 0.5, a 1 5 0.5. You can use Table 5.1 to help with the

evaluation. Evaluate at the following frequencies:

• DC: 0

• Nyquist: p

• ½ Nyquist: p/2

• ¼ Nyquist: p/4

 Evaluation is a two-step process for each frequency:

1. Use Euler’s equation to convert the e terms into real and imaginary components.

2. Find the magnitude and argument of the complex equation.

 5.5.1 DC (0 Hz)

 H(v) 5 0.5 1 0.5e2 jv1

 5 0.5 1 0.5(cos(v) 2 jsin(v))

 5 0.5 1 0.5(cos(0) 2 jsin(0)) (5.16)

 5 0.5 1 0.5(1 2 j0)

 5 1.0 1 j0

 Figure 5.11: First-order feed-forward
block diagram.

 Table 5.1: Sine and cosine function evaluations at DC, ¼ Nyquist,
½ Nyquist, ¾ Nyquist, and Nyquist.

Frequency v cos(v) sin(v)
0 1.0 0.0

p/4 0.707 0.707
p/2 0.0 1.0

3p/4 0.707 20.707
p 21.0 0.0

Output

-1.0

+1.0 + 1.0

-1.0

Input

108 Chapter 5

 Find the magnitude and phase at this frequency:

 0H(v) 0 5 "(a 1 jb)(a 2 jb)

 5 "(1 1 j0)(1 2 j0)

 5 1.0

 Arg(H) 5 tan21(b/a)

5 tan21(0/1)

 (5.17)

 5 0.0+

 Compare these mathematical results (Equations 5.16 and 5.17) with the graphical ones from

the last chapter (Figure 5.12).

 5.5.2 Nyquist (p)

 H(v) 5 0.5 1 0.5e2 jv1

 5 0.5 1 0.5(cos(v) 2 jsin(v))

 5 0.5 1 0.5(cos(p) 2 jsin(p)) (5.18)

 5 0.5 1 0.5 (21 2 j0)

 5 0 1 j0

 0H(v) 0 5 "(a 1 jb)(a 2 jb)

 5 "(0 1 j0)(0 2 j0)

 5 0.0 (5.19)

 Arg(H) 5 tan21(b/a)

 5 tan21(0/0)

 5 0+

 Figure 5.12: The graphical results show the same information. The magnitude
is 1.0 and the phase shift is 0.

+ 1.0

-1.0 -1.0

Input

+1.0

Output

Basic DSP Theory 109

 The inverse tangent argument is 0/0 and the phase or Arg(H) is defi ned to be 0 under this

condition. The C11 function you use is arctan2 (im,re), which performs the inverse tangent

function; it will also evaluate to 0 in this case. Now, compare our results to the last chapter’s

graphical results (Figure 5.13).

5.5.3 ½ Nyquist (p/2)

 H(v) 5 0.5 1 0.5e2 jv1

 5 0.5 1 0.5(cos(v) 2 jsin(v))

 5 0.5 1 0.5(cos(p/2) 2 jsin(p/2)) (5.20)

 5 0.5 1 0.5(0 2 j1)

 5 0.5 2 j0.5

 0H(v) 0 5 "(a 1 jb)(a 2 jb)

 5 "(0.5 1 j0.5)(0.5 2 j0.5)

 5 "0.25 1 0.25 5 "0.5

 5 0.707

 Arg(H) 5 tan21(b/a)

(5.21)

 5 tan21(20.5/0.5)

 5 245+

 Compare this to the last chapter’s graphical results (Figure 5.14); the magnitude is 0.707 with

a phase shift of 245 degrees, and the results agree.

 5.5.4 1/4 Nyquist (p/4)

 H(v) 5 0.5 1 0.5e2 jv1 (5.22)

 5 0.5 1 0.5(cos(v) 2 jsin(v))

 Figure 5.13: The graphical results show the same information at Nyquist—the magnitude is 0
and there is no phase shift since there is nothing there to shift.

Output

Input

+ 1.0

-1.0

Phase Shift

+ 1.0

Time
Smearing

-1.0

110 Chapter 5

 5 0.5 1 0.5(cos(p/4) 2 jsin(p/4))

 5 0.5 1 0.5(0.707 2 j0.707)

 5 0.853 2 j0.353

 0H(v) 0 5 "(a 1 jb)(a 2 jb)

 5 "(0.853 1 j0.353)(0.853 2 j0.353)

 5 "0.728 1 0.125 5 "0.853

 5 0.923

 Arg(H) 5 tan21(b/a)

(5.23)

 5 tan21(20.353/0.853)

 5 222.5+

 Compare to the last chapter’s graphical results (Figure 5.15); you can see how much more

accuracy we get with the mathematical calculation. The magnitude and phase shift look about

right when compared to the graphs.

 Now, you can combine all the evaluations together and sketch out the frequency response of

the fi lter (Figure 5.16).

 Figure 5.14: Graphical results from the last
chapter at ½ Nyquist.

+1.0

Input

-1.0

Phase Shift

+1.0

Time
Smearing

Output

-1.0

Magnitude

1.0
0.9

0.7

0.0

Phase
0°

-45°

-90°

1/4 Nyquist
fs/8

½ Nyquist
fs/4

Nyquist
fs/2

Angle

Frequency

Basic DSP Theory 111

 Figure 5.15: Graphical results from the last chapter at ¼ Nyquist.

 Figure 5.16: The fi nal composite frequency and phase response plots show the same results as
the last chapter, but with a lot less work.

+π
π/4

j0.707

π/4

Im π/2

3π /4

0Hz

Re 0.707

R = 1

112 Chapter 5

 Table 5.2: The magnitude and angle of e jv from DC to Nyquist.

Frequency p e jv = cos(v) 1 jsin(v) | e jv | Arg(e jv)
DC (0Hz) 1 1 j0 1.0 0
¼ Nyquist 0.707 1 j0.707 1.0 p/4
½ Nyquist 0 1 j1 1.0 p/2
Nyquist 21 1 j0 1.0 p

 Figure 5.17: The positive frequencies map to
the upper half of the unit circle.

 Hopefully, this quick example has convinced you that it is better to do a little complex math

than have to analyze and design these fi lters by brute force analysis of time domain input

sequences.

 5.6 Evaluating e jv

 In the evaluation of the transfer function, you had to substitute values of v from 0 to p into

the e jv terms of the equation. But what would the plot look like if you evaluate a single e jv
term? You saw that the use of Euler’s equation produced the real and imaginary components

of the term and now it’s time to plot them over the range of 0 to p.

 If you evaluate e jv over more frequencies and plot the resulting values in the complex plane,

you get an interesting result. The frequencies in Table 5.2 from 0 to 1p map to an arc that is

the top half of a circle with radius 5 1.0, shown in Figure 5.17 . Remember, the magnitude

is the radius and the argument is the angle when using polar notation, which simplifi es the

Im

-π/2

- π / 4

0Hz

Re

-π

- 3 π / 4

Basic DSP Theory 113

analysis. You don’t have to keep track of the real and imaginary parts. The evaluation at

v 5 p/4 is plotted on the curve. The circle this arc is laying over would have a radius of 1.0

and is called the unit circle . If you evaluate e jv over the negative frequencies that correspond

to 0 to 2p, you get a similar but inverted table (Table 5.3).

 This table translates to a mapping across the lower half of the same unit circle (Figure 5.18).

The negative frequencies increase as you move clockwise from 0 Hz, the radius stays 1.0

during the entire arc.

 Why bother to evaluate e jv ? It will be useful very soon when we start picking apart the

transfer functions in an effort to fi gure out how to design fi lters. It also shows the limited

“frequency space” of the digital domain. All the frequencies that could exist from 2Nyquist

to 1Nyquist map to outline of a simple unit circle. In contrast the analog domain has an

infi nitely long frequency axis and an infi nite frequency space.

 Table 5.3: The magnitude and angle of e jv from DC to 2Nyquist.

Frequency v e jv 5 cos(v) 1 jsin(v) | e jv | Arg(e jv)

DC (0Hz) 1 1 j0 1.0 0
2¼ Nyquist 0.707 2 j0.707 1.0 2p/4
2½ Nyquist 0 2 j1 1.0 2p/2
2Nyquist 21 1 j0 1.0 2p

 Figure 5.18: The negative frequencies map to the
lower half of the unit circle.

114 Chapter 5

 5.7 The z Substitution

 It’s going to get messy having to write e jv so often and we know e jv behaves like a polynomial

mathematically. So, we can simplify the equations by making a simple substitution of

 Equation 5.24 .

 z 5 ejv (5.24)

 This is just a substitution right now and nothing else. Making the substitution in Equation 5.24

and noting the resulting transfer function is now a function of z , not v, we can write it like

 Equation 5.25 :

 H(z) 5 a0 1 a1z
21 (5.25)

 The reason this is useful is that it turns the transfer function into an easily manipulated

polynomial in z . In this case, the polynomial is a fi rst-order polynomial (the highest exponent

absolute value is 1) and this is the real reason the fi lter is named a fi rst-order fi lter—it’s the

polynomial order of the transfer function.

 5.8 The z Transform

 The z substitution does a good job at simplifying the underlying polynomial behavior of

 e jv and it lets us use polynomial math to solve DSP problems. But, there is an interesting

application of z 5 e jv that simplifi es the design and analysis of digital fi lters. In the graph

from Chapter 1 (Figure 5.19) you can see how the indexing of the samples determines their

place in time. The future samples have positive indices and the past (delayed) samples have

negative indices.

 We’ve seen that e jv is the delay operator, so e 2jv1 means one sample of delay, or one

sample behind the current one. Likewise, e 2jv2 would be two samples behind and e 1jv4
indicates 4 samples ahead or in the future. That means that e jv could also be used as a

book-keeping device since it can relate the position in time of something (a sample,

for us).

 The rules for implementing the z transform on a discrete signal or difference equation are

easy and can often be done by inspection. The current sample x (n) or y (n) transforms into the

signal X (z) or Y (z). Instead of thinking of the sample x (n) you think of the signal X (z), where

 X (z) is the whole signal—past, present, and future.

 The order of a filter is the order of the polynomial in the transfer function that describes it. The
order of the polynomial is the maximum absolute exponent value found in the equation.

Past input
samples

The Past x(n) The Future

x(n + 2)
X(n+1)

x(n + 3)

x(n+4)

x = The input
sequence

Future input
samples

x(n-2)
x(n-4)

X(n-1)

x(n-3)
Amplitude

Current input
sample

Basic DSP Theory 115

• x (n) → X (z)

• y (n) → Y (z)

 Instead of thinking of the sample x (n 2 1) as being delayed by one sample, you think of the

signal X (z) delayed by one sample, z 21 . The delayed signals are the result of the whole signal

multiplied by the z 2 N terms:

• x (n 2 1) → X (z) z 21

• y (n 2 1) → Y (z) z2 1

• x (n 2 2) → X (z) z 22

• y (n 1 6) → Y (z) z 16

 Figure 5.19: Our book-keeping rules shown graphically.

 The z transform changes a sequence of samples in n to a sequence of samples in z by replacing
the indices …n21, n, n11… with …z 21 , z, z 11 … This works because multiplication by z = e jv
represents the operation of delay or time shift. The resulting transformed sequence now is a
function of the complex frequency e jv , therefore it transforms things from the time domain into
the complex frequency domain .

+1.0

0.75

0.5

0.25

–1.0

116 Chapter 5

 You can see that this concept relies on the ability to express delay as a mathematical operator.

It not only allows us to express an algorithm based on z , it also lets us express a signal based

on z . Mathematically, the z transform is

 X(z) 5 a
n51`

n52`

x(n)z2n (5.26)

 5.9 The z Transform of Signals

 Remember, x (n) is the sequence of samples just like the ones you used for analysis.

 Figure 5.20 shows an example. This simple, fi nite length signal consists of fi ve samples.

The remaining zero samples don’t need to be counted.

 x(n) 5 50, 0.25, 0.5, 0.75, 1.06

 The sequence x (n) could also be written x (n) 5 { x (0), x (1), x (2), x (3), x (4)}, so using

 Equation 5.26 we transform x(n) into X(z) and write Equation 5.27 :

 X(z) 5 0z0 1 0.25z21 1 0.5z22 1 0.75z23 1 1.0z24 (5.27)

 You could read Equation 5.27 as follows: “The whole signal X (z) consists of a sample with

an amplitude of 0 at time 0 followed by a sample with an amplitude of 0.25 one sample later

and a sample with an amplitude of 0.5 two samples later and a sample with an amplitude of

0.75 three samples later and . . .” This should shed light on the fact that the transform really

involves the book-keeping of sample locations in time and that the result is a polynomial. You

can multiply and divide this signal with other signals by using polynomial math. You can mix

two signals by linearly combining the polynomials.

 Figure 5.20: A simple signal for analysis.

+1.0

–1.0

Basic DSP Theory 117

 Let’s do one more example regarding the transformation of an input signal. This

time, let’s choose the DC signal—it goes on forever. Figure 5.21 shows the DC signal

with the fi rst sample at 1.0 and all preceding samples at 0.0 with a sequence of

 x (n) 5 {1, 1, 1, 1, 1…}.

 Using Equation 5.26 you can directly write the z transform as (remember, 1 z 0 5 1) in

 Equation 5.28 :

 X(z) 5 1 1 z21 1 z22 1 z23 1 c 1 z2` (5.28)

 While that looks like an ugly, infi nitely long equation, it can also be represented in a closed
form . In fact, a closed form representation exists for this polynomial using a polynomial

series expansion, as shown in Equation 5.29 :

 X(z) 5 1 1 z21 1 z22 1 z23 1 c 1 z2`

 5

1

1 2 z21
 (5.29)

 5

z

z 2 1

 5.10 The z Transform of Difference Equations

 The z transform of signals is interesting, but something fascinating happens when you take

the z transform of a difference equation, converting it into a transfer function in z all at once.

And, the same easy rules apply. Let’s do that with the basic fi rst-order feed-forward fi lter. The

difference equation is

 y(n) 5 a0x(n) 1 a1x(n 2 1) (5.30)

 Figure 5.21: The DC signal is infi nite in length.

118 Chapter 5

 Taking the z transform:

 Y(z) 5 a0X(z) 1 a1X(z)z21

 Y(z) 5 X(z) 3a0 1 a1z
21 4

 H(z) 5
Y(z)

X(z)
5 a0 1 a1z

21

 This is a really useful result—you got the fi nal transfer function in just a handful of steps,

using the simple z transform rules. Let’s recap what you had to do before you learned how to

take the z transform of a difference equation:

• Redraw the block diagram with e 2jvn operators in the n -sample delay elements.

• Apply the complex sinusoid e 2jvt to the input.

• Find out what comes out, y (t), and formulate the transfer function H(v).

• Apply the z substitution to the transfer function.

 Taking the z transform does all these steps at once and we’re left with the same simple

polynomial in z . If we evaluate the transfer function for different values of z 5 e jv , we can

fi nd the frequency and phase plots. You’ll get more practice taking the z transforms of more

difference equations soon.

 5.11 The z Transform of an Impulse Response

 The z transform of a difference equation results in the transfer function. But what if you

don’t have the difference equation? Suppose you only have a black box that performs some

kind of DSP algorithm and you’d like to fi gure out the transfer function, evaluate it, and plot

the frequency and phase responses. It can be done without knowing the algorithm or any

details about it by taking the impulse response of the system. You apply the input sequence

 x (n) 5 {1, 0, 0, 0, 0…} and capture what comes out, which we’ll call h (n). If you take

the z transform of the impulse response, you get the transfer function expanded out into a

series form.

 In fact, this is exactly what the RackAFX software’s audio analyzer does—it takes the

impulse response of the fi lter and then runs a z transform on it to make the magnitude and

phase plots you see on the screen. Mathematically, Equation 5.31 is identical to Equation 5.26

except we’ve changed the signal from X to H :

 The z transform of the impulse response h (n) is the transfer function H (z) as a series expansion.
Evaluate the transfer function to plot the frequency and phase responses.

+1.0

–1.0

+1.0

–1.0

Input Output

Basic DSP Theory 119

 H(z) 5 a
n51`

n52`

h(n)z2n (5.31)

 Try this on the fi rst-order feed-forward fi lter we’ve been working on; you already have the

impulse response “captured” from the last chapter (Figure 5.22).

 The impulse response is h (n) 5 {0.5, 0.5}. Applying the z transform yields Equation 5.32 :

 H(z) 5 0.5z0 1 0.5z21

 5 0.5 1 0.5z21
(5.32)

 Notice that this is the identical result as taking the z transform of the difference equation and

the fi lter coeffi cients (0.5, 0.5) are the impulse response {0.5, 0.5}.

 5.12 The Zeros of the Transfer Function

 When we used the coeffi cients a 0 5 a 1 5 0.5 we wound up with a fi lter that completely

destroys the Nyquist frequency and you saw how its output became 0 in both the manual

and complex sinusoid evaluations. We noted that feed-forward fi lters have zeros of
transmission or zero frequencies or just zeros when their output becomes zero. In both the

manual and complex sinusoid evaluations, we just got lucky when we stumbled upon this

value as Nyquist happened to be one of the signals we were testing or evaluating. There’s

a way to precisely fi nd these critical frequencies by using the polynomial result of the z

transform. You probably remember factoring polynomials in high school or college. When

you did that, you set the polynomial equal to 0 and then you factored to fi nd the roots of

the polynomial. What you were really doing was fi nding the zeros of the polynomial, that

 Figure 5.22: The impulse response from the fi rst-order feed-forward fi lter.

Zero at +π

Im

Re

120 Chapter 5

is, the values of the dependent variable that make the polynomial become zero. You can do

the same thing with the transfer function by setting it equal to zero and then factoring the

polynomial. Suppose a 0 5 a 1 5 0.5 and we factor the transfer function in Equation 5.32 to

get Equation 5.33 :

 H(z) 5 0.5 1 0.5z21

 5 0.5 1
0.5

z

(5.33)

 You can fi nd the zero by inspection—it’s the value of z that forces H (z) to be 0 and in

this case there is a zero at z 5 21.0. But what does it mean to have a zero at 21.0?

This is where the concept of evaluating e jv comes into play. When you did that and

plotted the various points, noting they were making a unit circle in the complex plane,

you were actually working in the z -plane, that is, the plane of e jv . The location of the

zero at z 5 21.0 is really at the location z 5 21.0 1 j 0 purely on the real axis and

at Nyquist. In Figure 5.23 the zero is shown as a small circle sitting at the location

 z 5 21.0.

 There are several reasons to plot the zero frequencies. First, you can design a fi lter directly

in the z -plane by deciding where you want to place the zero frequencies fi rst, then fi guring

out the transfer function that will give you those zeros. Secondly, plotting the zeros gives

you a quick way to sketch the frequency response without having to evaluate the transfer

function directly. You can estimate a phase plot too, but it is a bit more involved. So,

you have two really good reasons for wanting to plot the zeros; one for design, the other

for analysis.

 Figure 5.23: Zero is plotted in the z -plane at its
location on the real axis z 5 21 1 j 0.

+ˊ

ˊ/2
Im

ˊ/4

0 Hz

Re
2.0

1.4
14

1.846

0.0

2.0

1.4

2.0
1.8

[H]

1.846 1.414

1/4 Nyquist

fs/8

İ Nyquist

fs/4

Nyquist

fs/2

Frequency

Basic DSP Theory 121

 5.13 Estimating the Frequency Response: Zeros

 An interesting property of the z -plane and z transform is that you can measure the frequency

response graphically on the z -plane. In the simplest case of only one zero, the method is as

follows:

• Locate each evaluation frequency on the outer rim of the unit circle.

• Draw a line from the point on the circle to the zero and measure the length of this vector.

Do it for each evaluation frequency.

• The lengths of the lines will be the magnitudes at each frequency in the frequency

 response.

 In Figure 5.24 you can see the complete operation, fi rst drawing and measuring the lines—

you can use graph paper and a ruler, if you want—then building the frequency response

plot from them. Notice also that the magnitude of a line drawn from Nyquist to the zero

at 21 has a length of zero. The lengths of the vectors are the mathematical defi nition of

magnitude and you are evaluating the whole fi lter at once. These z -plane plots are going

to be useful for fi lter design. You can also derive the phase response, which involves

measuring the angles of incidence of each vector on the zero. With multiple zeros, it

becomes cumbersome. But, estimating the frequency response is pretty simple, even for

more complex fi lters.

 You might notice that even though this frequency response looks like the one we produced

earlier, the gain values are not the same. In this fi lter, the gain is 2.0 at DC, and in ours,

it’s half of that. In fact, this fi lter’s magnitudes at the evaluation frequencies are all twice

what ours are.

 Figure 5.24: The geometric interpretation shows how the length of each vector from the
evaluation frequency to the zero is really a magnitude in the response.

122 Chapter 5

 5.14 Filter Gain Control

 The last thing you need to do is remove the overall gain factor from the transfer function so that

overall fi lter gain (or attenuation) can be controlled by just one variable. This is actually pretty

simple to do, but requires re-working the transfer function a bit. The idea is to pull out the a 0

variable as a multiplier for the whole function. This way, it behaves like a volume knob, gaining

the whole fi lter up or down. The way you do it is to normalize the fi lter by a 0 (Equation 5.34):

 H(z) 5 a0 1 a1z
21

 5
a0

a0

1
a1

a0

z21

 5 a0 c1 1
a1

a0

z21 d (5.34)

 Let a1 5
a1

a0

 H(z) 5 a0 31 1 a1z
21 4

 By normalizing by a 0 and using the a 1 variable you can produce a transfer function that looks

basically the same in the polynomial but pulls a 0 out as a scalar multiplier—a gain control.

Where is the zero of the new transfer function in Equation 5.35 ?

 H(z) 5 a0 31 1 a1z
21 4

 5 a0 c1 1
a1

z d (5.35)

 Once again, by inspection we can tell that if z 5 2a 1 then the function will become 0

regardless of the value of a 0 . This transfer function has a zero at 2a 1 . If you plug our values

of a 0 5 a 1 5 0.5, you still get the same zero at 21.0. The difference is in the gain of the fi lter.

 After extracting the magnitude response from the z -plane plot, scale it by your a 0 value. This makes

the response in Figure 5.24 match our others because everything gets multiplied by a 0 5 0.5. The

idea of controlling the gain independently of the magnitude response is useful in audio fi lters, so

we will keep it and use it in all future analyses.

 At this point, you have all the DSP theory tools you need to understand the rest of the

classical DSP fi lters (fi rst-order feed back, second-order feed forward and feed back) as well

as many fi lter design techniques. The rest of the chapter will be devoted to applying these

same fundamentals to the other classical DSP fi lters but we will move much more quickly,

 The graphical interpretation method of evaluating a filter in the z -plane assumes the filter is nor-
malized so that a 0 5 1.0.

x(n) a0 y(n)

z-1

–b1

X(z) a0

a0X(z)

Y(z)

z-1

–b1

Y(z)z-1

–b1Y(z)z–1

Basic DSP Theory 123

 Figure 5.25: The fi rst-order feed-back fi lter.

 Figure 5.26: Pushing the input X (z) through the algorithm produces the z transform.

applying each analysis technique to the other algorithms. For example, we will dispense with

the evaluation of e jv terms and start off directly in the z transform of the difference equations.

 5.15 First-Order Feed-Back Filter Revisited

 Now let’s go through the same analysis technique on the fi rst-order feed-back fi lter from the

last chapter. We can move much more quickly now that we have the basic DSP theory down.

There will be many similarities but also several key differences when dealing with feed-back

designs. You already saw that the feed-back topology can blow up or ring forever and that

the feed-forward design cannot. We will fi nd a way to fi gure out if this is going to happen

and how to prevent it. Start with the original fi rst-order feed-back fi lter (block diagram in

 Figure 5.25) and its difference equation.

 The difference equation is as follows:

 y(n) 5 a0x(n) 2 b1y(n 2 1) (5.36)

 Step 1: Take the z transform of the difference equation

 This can be done by inspection, using the rules from Section 5.8 (Figure 5.26). Therefore, the

 z transform is shown in Equation 5.37 .

 Y(z) 5 a0X(z) 2 b1Y(z)z21 (5.37)

124 Chapter 5

 Step 2: Fashion the difference equation into a transfer function

 Now apply some algebra to convert the transformed difference equation to H (z). The

process is always the same: separate the X (z) and Y (z) variables, then form their quotient

(Equation 5.38).

 Y(z) 5 a0X(z) 2 b1Y(z)z21

 Separate variables:

 Y(z) 1 b1Y(z)z21 5 a0X(z)

 Y(z) 31 1 b1z
21 4 5 a0X(z) (5.38)

 Y(z) 5
a0X(z)

1 1 b1z
21

 From H(z):

H(z) 5
Y(z)

X(z)
5

a0

1 1 b1z
21

 Step 3: Factor out a 0 as the scalar gain coeffi cient

 In this case, this step is simple since pulling a 0 out is trivial, as in Equation 5.39 . However, in

more complex fi lters this requires making substitutions as you did in the last section.

 H(z) 5
a0

1 1 b1z
21

 5 a0

1

1 1 b1z
21

(5.39)

 5.16 The Poles of the Transfer Function

 The next step in the sequence is to do a quick estimation of the frequency response using

the graphical interpretation method in the z -plane. The pure feed-forward fi lter you analyzed

produced zeros of transmission or zeros at frequencies where its output becomes zero. A pure

feed-back fi lter produces poles at frequencies where its output becomes infi nite. We were able

to make this happen by applying 100% feed-back in the last chapter. For the simple fi rst-order

case, fi nding the poles is done by inspection.

 When the denominator of the transfer function is zero, the output is infinite. The complex
 frequency where this occurs is the pole frequency or pole.

Basic DSP Theory 125

 Examining the transfer function, we can fi nd the single pole in Equation 5.40 :

 H(z) 5 a0

1

1 1 b1z
21

 5 a0

1

1 1
b1

z

 (5.40)

 5 a0

z

z 1 b1

 By rearranging the transfer function, you can see that the denominator will be zero when

 z 5 2b 1 and so there is a pole at z 5 2b 1 . You might also notice something interesting

about this transfer function—it has a z in the numerator. If z 5 0, then this transfer function

has a zero at z 5 0. This zero is called a trivial zero because it has no impact on the fi lter’s

frequency response. Thus, you can ignore the zero at z 5 0. In fact, you can also ignore poles

at z 5 0 for the same reason.

 And, if you look back at the transfer function in the feed-forward fi lter in Equation 5.35 you

can see that it also had a pole in Equation 5.41 :

 H(z) 5 a0 31 1 a1z
21 4

 5 a0 c1 1
a1

z d (5.41)

 Pole at z 5 0

 The poles are plotted in the z -plane in the same manner as the zeros but you use an x to

indicate the pole frequency. In Equation 5.40, the pole is at 2b 1 1 j 0 and so it is a real pole

located on the real axis in the z -plane. For this fi lter let’s analyze it with a 0 5 1.0 and

b 1 5 0.9. You wrote a plug-in and implemented this fi lter in the last chapter. The results

are shown in Figure 5.27 .

 Let’s see how this is estimated fi rst, and then we can do a direct evaluation as before.

 Step 4: Estimate the frequency response

 The single pole is plotted on the real axis at z 5 20.9 1 j 0 and a trivial zero at z 5 0 1 j 0

(Figure 5.28). In the future, we will ignore the trivial zeros or poles.

 A pole or zero at z 5 0 is trivial and can be ignored for the sake of analysis since it has no
effect on the frequency response.

+24.0 dB

+18.0 dB

+12.0 dB

+6.0 dB

0.0 dB

–6.0 dB

–12.0 dB 10 Hz 100 Hz 1 kHz 10 kHz

–0.9
Trivial zero

Im

Re

126 Chapter 5

 In the simplest case of only one pole, the method for estimating the frequency response is as

follows:

• Locate each evaluation frequency on the outer rim of the unit circle.

• Draw a line from the point on the circle to the pole and measure the length of this vector.

Do it for each evaluation frequency.

• The inverse of the lengths of the lines will be the magnitudes at each frequency in the

frequency response in Equation 5.42 .

Magnitude 5

1

Lp

Lp 5 length from evaluation frequency to pole

(5.42)

 Thus, the mechanism is the same as for the one-zero case, except you take the inverse of the

length of the vector. This means that as you near the pole, the vector becomes shorter, but the

 Figure 5.27: The frequency response of the fi rst-order feed-back fi lter with these coeffi cients.

 Figure 5.28: The pole is plotted in the z -plane along with the trivial zero.

Im

1.9 Re
–0.9

0.1

H

10.0

0.0

0.55
0.52

0.74

1/1.9 = 0.52 1/1.8 = 0.55

fs/8
1/4 Nyquist

fs/4

1
/2 Nyquist

1/1.3 = 0.74

fs/2
Nyquist

Frequency

1/0.1 = 10

Basic DSP Theory 127

amplitude becomes larger—exactly opposite of the zero case. You can see from Figure 5.29

that our estimate is pretty close to what we saw in the real world when we coded the fi lter

and tested it. Note the gain at Nyquist is 10.0; convert that to dB and you get 120 dB of gain,

which is what we expect.

 Step 5: Direct evaluation of frequency response

 Now you can evaluate the fi lter the same way as before using Euler’s equation to separate

the real and imaginary components from the transfer function. Evaluate at the following

frequencies:

• DC: 0

• Nyquist: p

• ½ Nyquist: p/2

• ¼ Nyquist: p/4

 First, get the transfer function in a form from Equation 5.43 to use for all the evaluation

frequencies:

H(z) 5 a0

1

1 1 b1z
21

 a0 5 1.0 b1 5 0.9

H(z) 5
1

1 1 0.9z21

 z 5 ejv

(5.43)

 Next, let’s make a simplifi cation in the magnitude response equation and use the reduced

form in Equation 5.44 . Next, evaluate.

 0 a 1 jb 0 5 "(a 1 jb)(a 2 jb)

 5 "a2 1 b2

(5.44)

 Figure 5.29: Estimating the frequency response of the fi rst-order feed-back design.

128 Chapter 5

 5.16.1 DC (0 Hz)

 H(v) 5
1

1 1 0.9e2 jv1

 5
1

1 1 0.9 3cos(v) 2 jsin(v) 4
 5

1

1 1 0.9 3cos(0) 2 jsin(0) 4 (5.45)

 5
1

1 1 0.9 31 2 j0 4
 5

1

1.9

 5 0.526 1 j0

 0H(v) 0 5 "a2 1 b2

 5 "0.5262 1 02

 5 0.526

 Arg(H) 5 tan21(b/a)
(5.46)

 5 tan21(0/0.526)

 5 0.08

 5.16.2 Nyquist (p)

 H(v) 5
1

1 1 0.9e2jv1

 5
1

1 1 0.9 3cos(v) 2 jsin(v) 4
 5

1

1 1 0.9 3cos(p) 2 jsin(p) 4 (5.47)

 5
1

1 1 0.9 321 2 j0 4
 5

1

0.1

 5 10 1 j0

Basic DSP Theory 129

 0H(v) 0 5 "a2 1 b2

 5 "10.02 1 02

 5 10.0

 Arg(H) 5 tan21
 (b/a) (5.48)

 5 tan21
 (0/10.0)

 5 0.08

 5.16.3 ½ Nyquist (p/2)

 H(v) 5
1

1 1 0.9e2jv1

 5
1

1 1 0.9 3cos(v) 2 jsin(v) 4
 5

1

1 1 0.9 3cos 1p/2 2 2 jsin 1p/2 2 4 (5.49)

 5
1

1 1 0.9 30 2 j1 4
 5

1

1 2 j0.9

 H(v) 5
1

1 2 j0.9

 0H(v) 0 5
0 1 0

0 1 2 j0.9 0
 5

1

"a2 1 b2

 5
1

"1 1 0.81
 (5.50)

 5 0.743

 Arg(H) 5 Arg(Num) 2 Arg(Denom)

 5 tan21
 (0/1) 2 tan21

 (20.9/1)

5 1428

130 Chapter 5

 5.16.4 ¼ Nyquist (p/4)

 H(v) 5
1

1 1 0.9e2jv1

 5
1

1 1 0.9 3cos(v) 2 jsin(v) 4
 5

1

1 1 0.9 3cos(p/4) 2 jsin(p/4) 4 (5.51)

 5
1

1 1 0.636 2 j0.636

 5
1

1.636 2 j0.636

 H(v) 5
1

1.636 2 j0.636

 0H(v) 0 5
0 1 0

0 1.636 2 j0.636 0
 5

1

"1.6362 1 0.6362
 (5.52)

 5 0.57

 Arg(H) 5 Arg(Num) 2 Arg(Denom)

 5 tan21(0/1) 2 tan21(20.636/1.636)

5 1218

 Make a special note about how we have to handle the magnitude of a fraction with numerator

and denominator. You need to use the two equations in Equation 5.9 to deal with this. The

main issue is that the phase is the difference of the Arg(numerator) 2 Arg(denominator). If

the numerator was a complex number instead of 1.0, you would need to take the magnitude

of it separately then divide. The fi nal composite frequency/phase response plot is shown in

 Figure 5.30 . You can see that the phase behaves linearly until it gets near the pole, and then it

behaves nonlinearly. This is not a linear phase fi lter.

 Step 6: z transform of impulse response

 From Chapter 4 you will recall that the impulse response rings for this particular set of

coeffi cients (Figure 5.31). Finding the impulse response by hand is going to be tedious. There

are a lot of points to capture and it could take many lines of math before the impulse settles

out. Fortunately, you can use RackAFX to do the work for you. The frequency and phase

response plots are made using a z transform of the impulse response.

10.0

H

0.74
0.55
0.52
0.0

90

45

0

o

o

o

1/0.1 = 10

1/1.3 = 0.74 1/1.8 = 0.55 1/1.9 = 0.52

1/4 Nyquist
fs/8 fs/4

½ Nyquist
fs/2

Nyquist

Angle

1.000
0.707
0.500

-0.500
-0.707
-1.000

0.000

0 17 34 51 68 85 102 119 136 153

Frequency

Basic DSP Theory 131

 In Figure 5.32 we observe excellent agreement with our evaluation; the response is down 26

dB at DC (0.52) and 120 dB at Nyquist (10) and the phase is 45 degrees at p/2. You followed

six steps in evaluation of this fi lter:

1. Take the z transform of the difference equation.

2. Fashion the difference equation into a transfer function.

3. Factor out a 0 as the scalar gain coeffi cient.

 Figure 5.30: The fi nal frequency and phase response plots.

 Figure 5.31: The impulse response of the fi lter in question.

+24.0 dB

+12.0 dB

0.0 dB

12.0 dB –

– 24.0 dB

– 36.0 dB

– 48.0 dB 2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

+90.0

+60.0

+30.0

0.0

–30.0

–60.0

–90.0 °
°
°
°
°
°
°

2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

x(n) a o

Z
- 1

a 1

Z
- 1

a 2 x(n–2)

x (n –1)

∑ y(n)

132 Chapter 5

4. Estimate the frequency response.

5. Direct evaluation of frequency response.

6. z transform of impulse response as a fi nal check.

 5.17 Second-Order Feed-Forward Filter

 Analysis of the second-order feed-forward fi lter proceeds much like the fi rst-order fi lters

you’ve seen so far, but there’s a bit more math we have to deal with. The topology of a

second-order feed-forward fi lter is shown in the block diagram in Figure 5.33 .

 Figure 5.32: RackAFX’s frequency and phase responses are taken from the z transform of the
impulse response. Compare these measured results to the response we predicted using direct

evaluation in Figure 5.30 —notice these are plotted in dB rather than raw magnitudes.

 Figure 5.33: Second-order feed-forward fi lter.

Basic DSP Theory 133

 The difference equation is as follows:

 y(n) 5 a0x(n) 1 a1x(n 2 1) 1 a2x(n 2 2) (5.53)

 Steps 1 & 2: Take the z transform of the difference equation and fashion it into a
transfer function

 We can combine steps to save time. The z transform can be taken by inspection, using the

rules from Section 5.8 , and then you need to get it into the form Y (z)/ X (z) for the transfer

function in Equation 5.54 .

 y(n) 5 a0x(n) 1 a1x(n 2 1) 1 a2x(n 2 2)

 Y(z) 5 a0X(z) 1 a1X(z)z21 1 a2X(z)z22 (5.54)

 5 X(z) 3a0 1 a1z
21 1 a2z

22 4
Form the transfer function H(z):

 H(z) 5
output

input
5

Y(z)

X(z)
5 a0 1 a1z

21 1 a2z
22

 Step 3: Factor out a 0 as the scalar gain coeffi cient

 We’ll need to make some substitutions to get this in the form we are used to, shown in

 Equation 5.55 :

H(z) 5 a0 1 a1z

21 1 a2z
22

Let a1 5
a1

a0

 a2 5
a2

a0

 H(z) 5 a0(1 1 a1z
21 1 a2z

22)

(5.55)

 Step 4: Estimate the frequency response

 First, this is a pure feed-forward fi lter, so you know there will only be nontrivial

zeros; there are no poles to deal with. This transfer function is a second-order function

because of the z 22 term. In fact, this is a quadratic equation. In order to fi nd the poles

or zeros, you need to fi rst factor this equation and fi nd the roots. The problem is that

this is a complex equation, and the roots could be real, imaginary, or a combination

of both. The mathematical break that we get is that our coeffi cients a 1 and a 2 are real
numbers . The only way that could work out is if the locations of the zeros are complex

conjugates of one another. When you multiply complex conjugates together the imaginary

component disappears. So, with some algebra, you can arrive at the deduction shown in

 Equation 5.56 :

 H(z) 5 1 1 a1z
21 1 a2z

22 (5.56)

Im

Re

R

R

θ

–θ

134 Chapter 5

 can be factored as

 H(z) 5 (1 2 Z1z
21)(1 2 Z2z

21)

 where

 Z1 5 Re
ju 5 a 1 jb

 Z2 5 Re2ju 5 a 2 jb

 This analysis results in two zeros, Z 1 and Z 2 , located at complex conjugate positions in the

 z -plane. Figure 5.34 shows an arbitrary conjugate pair of zeros plotted in the z -plane. You can

see how they are at complementary angles to one another with the same radii. Remember, any

arbitrary point in the z -plane is located at Re ju and the outer rim of the circle is evaluated for

R 5 1 and u between 2p and 1p (or 0 to 2p).

 But, how do the complex conjugate pair of zeros at Re ju and Re 2ju relate to the coeffi cients

a 1 and a 2 ? The answer is to just multiply everything out, use Euler’s equation, and compare

functions as shown in Equation 5.57 :

 H(z) 5 a0(1 1 a1z
21 1 a2z

22) (5.57)

 5 a0(1 2 Z1z
21)(1 2 Z2z

21)

 where

 Z1 5 Re
ju

 Z2 5 Re2 ju

 11 2 Z1z
21 2 11 2 Z2z

21 2 5 11 2 Re
juz21 2 11 2 Re2 juz21 2

 5 1 2 Re
juz21 2 Re2 juz21 1 R2 1e

jue2 ju 2z22

 Figure 5.34: A complementary pair of zeros in the z -plane.

Im

Re
45°

–45°

0.9

0.9

Basic DSP Theory 135

 noting that (e
jue2 ju) 5 e

ju2 ju 5 e0 5 1

 5 1 2 (Re
ju 1 Re2 ju)z21 1 R2z22

 5 1 2 R(cos(u) 1 jsin(u) 1 cos(u) 2 jsin(u))z21 1 R2z22

 5 1 2 2Rcos(u)z21 1 R2z22

 compare functions:

 H(z) 5 a0(1 1 a1z
21 1 a2z

22)

 5 a0(1 2 2Rcos(u)z21 1 R2z22)

 then

 a1 5 22Rcos(u)

 a2 5 R2

 Equation 5.57 shows how the coeffi cients a 1 and a 2 create the zeros at the locations Re ju and

Re 2ju . Once again you see that the coeffi cients are the fi lter—they determine the locations of

the zeros, and these determine the frequency and phase responses of the fi lter. To estimate,

we’ll need some coeffi cients to test with. Use the following: a 0 5 1.0, a 1 5 21.27, a 2 5 0.81.

Now, calculate the location of the zeros from Equation 5.35 ; since a 0 5 1.0, then a 1 5 21.27

and a 2 5 0.81. Start with a 2 then solve for a 1 as shown in Equation 5.58 . The zeros are

plotted in Figure 5.35 .

 R2 5 a2 5 0.81 (5.58)

 R 5 "0.81 5 0.9

 Figure 5.35: The complementary pair of zeros in the z -plane at radii 0.9 and
angles 645 degrees.

136 Chapter 5

 then

 22R cos(u) 5 21.27

2(0.9)cos(u) 5 1.27

 cos(u) 5
1.27

2 (0.9)

 u 5 arccos(0.705)

 u 5 458

 Evaluating the frequency response of the complex pair is similar to before, but with an extra

step. When estimating the frequency response with more than one zero:

• Locate each evaluation frequency on the outer rim of the unit circle.

• Draw a line from the point on the circle to each zero and measure the length of these

vectors. Do it for each evaluation frequency.

• For each evaluation frequency, the magnitude of the transfer function is the product of
the two vectors to each zero pair.

 Mathematically, this last rule looks like Equation 5.59 :

 0H(ejv) 0 v 5 a0q
N

i51

Ui

 where

(5.59)

 N 5 filter order

Ui 5 geometric distance from the point v on the unit circle to the ith pole

 Follow the progression in Figures 5.36 through 5.39 through the four evaluation frequencies,

starting at DC (0 Hz). Finally, put it all together in one plot and sketch the magnitude

response in Figure 5.40 .

 Figure 5.36: The magnitude response at 0 Hz (DC) is the product of the two vectors
drawn to each zero, or 0.49.

I m

0.7

Re

0.7

4.0
H

2.0

0.49

0.0
0.7*0.7 0.49 Frequency

fs 8

1 4 Nyquist Nyquist 1
2

fs 4

Nyquist
fs 2

Im
π/4

0.1

1.4
Re

H
4.0

2.0

0.0
0.14
0.49

0.1*1.4=0.14

fs/8
1/4 Nyquist

fs/4
½ Nyquist

fs/2
Nyquist

Frequency

π/2 Im

0.7

1.8
Re

0.0
0.14
0.49

1.26

2.0

4.0
H

0.7*1.8=1.26

fs/8
1/4 Nyquist

fs/4
 ½ Nyquist

fs/2
Nyquist

Frequency

Im

1.75

1.75

π
Re

0.0
0.14
0.49

1.26

2.0

3.1

4.0
H

1.75*1.75 = 3.1

fs/8
1/4 Nyquist

fs/4
½ Nyquist

fs/2
Nyquist

Frequency

Basic DSP Theory 137

 Figure 5.37: At ¼ Nyquist, the two vectors multiply out to 0.14.

 Figure 5.38: At ½ Nyquist, the response reaches 1.26 as the vectors begin
to stretch out again.

 Figure 5.39: At Nyquist, the response reaches a maximum of 3.7 as the vectors stretch out
to their longest possible lengths.

H
4.0

3.1

2.0

1.26

0.49
0.14
0.0

1/4 Nyquist
fs/8

1/2 Nyquist
fs/4

Frequency

Nyquist
fs/2

138 Chapter 5

 Step 5: Direct evaluation

 Now you can evaluate the fi lter the same way as before using Euler’s equation to separate

the real and imaginary components from the transfer function. Evaluate at the following

frequencies:

• DC: 0

• Nyquist: p

• ½ Nyquist: p/2

• ¼ Nyquist: p/4

 First, get the transfer function in the form of Equation 5.60 to use for all the evaluation

frequencies:

 H(z) 5 a0(1 1 a1z
21 1 a2z

22)

Where: a1 5
a1

a0

 a2 5
a2

a0

 H(z) 5 1 2 1.27z21 1 0.81z22

 Let: z 5 ejv (5.60)

 H(v) 5 1 2 1.27e2 j1v 1 0.81e2 j2v

 Figure 5.40: The combined response reveals a band-stop (notch) type of fi lter. The minimum
amplitude occurs at the zero frequency, where the vector product is the lowest; this is where the

smallest vector is obtained when evaluating on the positive frequency arc.

Basic DSP Theory 139

Apply Euler’s Equation:

 H 1v 2 5 1 2 1.27 3cos 1v 2 2 j sin 1v 2 4 1 0.81 3cos 12v 2 2 j sin 12v 2 4
 Now evaluate for each of our four frequencies in Equations 5.61 through 5.68 .

 5.17.1 DC (0 Hz)

 H (v) 5 1 2 1.27 3cos(v) 2 jsin(v) 4 1 0.81 3cos(2v) 2 jsin(2v) 4
 5 1 2 1.27 3cos(0) 2 j sin(0) 4 1 0.81 3cos(2*0) 2 j sin(2*0) 4

 5 1 2 1.27 31 2 j0 4 1 0.81 31 2 j0 4 (5.61)

 5 1 2 1.27 1 0.81

 5 0.54 1 j0

 0H(v) 0 5 "a2 1 b2

 5 "0.542 1 02

 5 0.54

 Arg(H) 5 tan21(b/a)
(5.62)

 5 tan21(0/0.54)

 5 0.08

 The exact magnitude is 0.54, which is pretty close to our estimated value of 0.49 using the

 z -plane graphical method.

 5.17.2 Nyquist (p)

 H (v) 5 1 2 1.27 3cos(v) 2 j sin(v) 4 1 0.81 3cos(2v) 2 j sin(2v) 4
 5 1 2 1.27 3cos(p) 2 j sin(p) 4 1 0.81 3cos(2p) 2 j sin(2p) 4

 5 1 2 1.27 321 2 j0 4 1 0.81 31 2 j0 4 (5.63)

 5 1 1 1.27 1 0.81

 5 3.08

 0H(v) 0 5 "a2 1 b2

 5 "3.082 1 02

 5 3.08

 Arg(H) 5 tan21(b/a)

(5.64)

 5 tan21(0/3.08)

 5 0.08

140 Chapter 5

 The exact magnitude is 3.08, which is pretty close to our estimated value of 3.1 using the

 z -plane graphical method.

 5.17.3 ½ Nyquist (p/2)

 H (v) 5 1 2 1.27 3cos(v) 2 j sin(v) 4 1 0.81 3cos(2v) 2 j sin(2v) 4
 5 1 2 1.27 3cos(p/2) 2 j sin(p/2) 4 1 0.81 3cos(2p/2) 2 j sin(2p/2) 4

 5 1 2 1.27 3cos(p/2) 2 j sin(p/2) 4 1 0.81 3cos(p) 2 j sin(p) 4
(5.65)

 5 1 2 1.27 30 2 j1 4 1 0.81 321 2 j0 4
 5 1 1 j1.27 2 0.81

 5 0.19 1 j1.27

 0H (v) 0 5 "a2 1 b2

 5 "0.192 1 1.272

 5 1.28

 Arg(H) 5 tan21(b/a)
(5.66)

 5 tan21(1.27/0.19)

 5 828

 The exact magnitude is 1.28, which is pretty close to our estimated value of 1.26 using the

 z -plane graphical method.

 5.17.4 ¼ Nyquist (p/4)

 H(v) 5 1 2 1.27 3cos(v) 2 j sin(v) 4 1 0.81 3cos(2v) 2 j sin(2v) 4
 5 1 2 1.27 3cos(p/4) 2 j sin(p/4) 4 1 0.81 3cos(2p/4) 2 j sin(2p/4) 4

 5 1 2 1.27 3cos(p/4) 2 j sin(p/4) 4 1 0.81 3cos(p/2) 2 j sin(p/2) 4 (5.67)

 5 1 2 1.27 30.707 2 j0.707 4 1 0.81 32j1 4
 5 0.11 1 j0.08

 0H(v) 0 5 "a2 1 b2

 5 "0.112 1 0.082

 5 0.136

 Arg(H) 5 tan21(b/a)
(5.68)

 5 tan21(0.08/0.11)

 5 368

 The exact magnitude is 0.136, which is pretty close to our estimated value of 0.14 using the

 z -plane graphical method.

+12.0 dB

+6.0 dB

0.0 dB

–6.0 dB

–12.0 dB

–18.0 dB

–24.0 dB
2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

+90.0°

+60.0°

+30.0°

0.0°

–30.0°

–60.0°

–90.0°
2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

Basic DSP Theory 141

 Step 6: z transform of impulse response

 This second-order feed-forward fi lter is actually pretty easy to examine for its impulse

response. For an impulse stimulus, the impulse response h (n) is h (n) 5 {1.0, 21.27, 0.81}.

Taking the z transform of the impulse response is easy, as shown in Equation 5.69 :

 H (z) 5 a
n51`

n52`

h(n)z2n

 5 1.0z0 2 1.27z21 1 0.81z22 (5.69)

 5 1 2 1.27z21 1 0.81z22

 This is exactly what we expect. This should help you understand two more very important

details about pure feed-forward fi lters.

 In a pure feed-forward fi lter:

 • The coefficients {a 0 , a 1 , a 2 ,…} are the impulse response, h (n).
 • The transfer function is the z transform of the coefficients.

 Figure 5.41: Plots using RackAFX’s z -transform of the impulse response.

 Finally, I’ll use RackAFX to verify the frequency and phase response from our analysis by

using a plug-in I wrote for second-order feed-forward fi lters. Figure 5.41 shows the frequency

and phase response plots.

x(n) a0 y(n)

Z–1

–b1

Z–1

–b2

142 Chapter 5

 5.18 Second-Order Feed-Back Filter

 Analysis of the second-order feed-back fi lter starts with the block diagram and difference

equation. Figure 5.42 shows the topology of a second-order feed-back fi lter.

 The difference equation is as follows:

 y(n) 5 a0x(n) 2 b1y(n 2 1) 2 b2y(n 2 2) (5.70)

 Steps 1 to 3: Take the z transform of the difference equation to get the transfer function,
then factor out a 0 as the scalar gain coeffi cient

 We’ll continue to combine steps. Once again, the z transform can be taken by inspection using

the rules from Section 5.8 , and then you need to get it into the form Y (z)/ X (z) for the transfer

function in Equation 5.71 .

 y(n) 5 a0x(n) 2 b1y(n 2 1) 2 b2y(n 2 2)

 Y(z) 5 a0X(z) 2 b1Y(z)z21 2 b2Y(z)z22

 Separate variables:

 Y (z) 1 b1Y (z)z21 1 b2Y (z)z22 5 a0X (z)

 Y (z) 31 1 b1z
21 1 b2z

22 4 5 a0X (z)

 Form transfer function:

 H (z) 5
Y (z)

X (z)
5

a0

1 1 b1z
21 1 b2z

22

 Factor out a0:

 H (z) 5 a0

1

1 1 b1z
21 1 b2z

22

(5.71)

 Figure 5.42: Second-order feed-back fi lter.

Basic DSP Theory 143

 Step 4: Estimate the frequency response

 Now you can see why the feed-back fi lter block diagrams have all the b coeffi cients negated.

It puts the quadratic denominator in the fi nal transfer function in Equation 5.71 in the same

polynomial form as the numerator of the feed-forward transfer function. Thus, you can use

the same logic to fi nd the poles of the fi lter; since the coeffi cients b 1 and b 2 are real values, the

poles must be complex conjugates of each other, as shown in Equation 5.72 :

 H (z) 5 a0

1

1 1 b1z
21 1 b2z

22

 can be factored as

 H (z) 5 a0

1

(1 2 P1z
21)(1 2 P2z

21)

 where

 P1 5 Reju

 P2 5 Re2ju

 11 2 P1z
21 2 11 2 P1z

21 2 5 1 2 2R cos(u)z21 1 R2z22

 therefore

 H (z) 5 a0

1

1 1 b1z
21 1 b2z

22

 5 a0

1

(1 2 2R cos(u)z21 1 R2z22)

 and

(5.72)

 b1 5 22R cos(u)

 b2 5 R2

 This results in two poles, P 1 and P 2 , located at complex conjugate positions in the z -plane.

 Figure 5.43 shows an arbitrary conjugate pair of poles plotted in the z -plane. You can see how

they are at complementary angles to one another with the same radii.

 To estimate we’ll need some coeffi cients to test with. Use the following: a 0 5 1.0, b 1 5 21.34,

b 2 5 0.902. Now, calculate the location of the poles from Equation 5.72 :

 R2 5 b2 5 0.902 (5.73)

 R 5 "0.902 5 0.95

 then

 22R cos(u) 5 21.34

 2(0.95)cos(u) 5 1.34

Im

R
θ

Re

–θ R

Im

45°

–45°
Re

0.9
5

0.95

144 Chapter 5

 cos(u) 5
1.34

2(0.95)

 u 5 arccos(0.707)

 u 5 458

 Figure 5.44 shows the complex conjugate pair of poles plotted in the z -plane at angles 645 8

and radii of 0.95. Evaluating the frequency response of the complex pair is similar to before,

but with an extra step. When estimating the frequency response with more than one pole:

• Locate each evaluation frequency on the outer rim of the unit circle.

• Draw a line from the point on the circle to each pole and measure the length of these

vectors. Do it for each evaluation frequency.

• For each evaluation frequency, the magnitude of the transfer function is the product of the
inverse lengths of the two vectors to each pole pair.

 Figure 5.43: A complementary pair of poles in the z -plane.

 Figure 5.44: The poles of the fi lter.

Basic DSP Theory 145

 Mathematically, this last rule looks like Equation 5.74 :

 0H(ejv) 0 v 5 a0

1

q
N

i51

Vi

 where

 N 5 the filter order

 Vi 5 the geometric length from the point (v) on the unit circle to the ith pole

(5.74)

 Thus, the process is the same as with the zeros, except that you take the inverse of the length

to the pole.

 For feed-forward fi lters:

• The closer the frequency is to the zero, the more attenuation it receives.

• If the zero is on the unit circle, the magnitude would go to zero at that point.

 For feed-back fi lters:

• The closer the evaluation frequency is to the pole, the more gain it receives.

• If a pole is on the unit circle, the magnitude would theoretically go to infi nity, and it

would produce an oscillator, ringing forever at the pole frequency.

 You blew up the fi rst-order feed-back fi lter as an exercise in Chapter 4 . All feed-

back fi lters are prone to blowing up when their poles go outside the unit circle.

We can now continue with the estimation process for our standard four evaluation

frequencies. This time, we’ll convert the raw magnitude values into dB. The reason

for doing this is that there will be a very wide range of values that will be diffi cult to

sketch if we don’t use dB. Follow the evaluation sequence in Figures 5.45 through

 5.48 . Finally, you can put it all together to form the frequency response plot in

 Figure 5.49 .

 In a digital filter:
 • Zeros may be located anywhere in the z -plane, inside, on, or outside the unit circle since the

filter is always stable; it’s output can’t go lower than 0.0.
 • Poles must be located inside the unit circle.
 • If a pole is on the unit circle, it produces an oscillator.
 • If a pole is outside the unit circle, the filter blows up as the output goes to infinity.

Im

0.71

0.71

R e

H (dB)
24

12

0

–12

–24

–36

1

0.71
*

1

0.71
= 1.98 = 5.9dB

fs/8

1/4 Nyquist ½ Nyquist

fs/4 fs/2

Nyquist

Frequency

Im

0.05

Re

1.41

4 π

(dB) H
24

12

0

–12

–24

–-36

0.05

1
*

1

1.41
= 14.2 = 23.0 dB

fs/8

1/4 Nyquist

fs/4

1/2 Nyquist
fs/2

Nyquist

Frequency

π 2 Im

0.71

1.84

Re

H (dB)
24

12

0

–12

–24

–36

fs/8

1/4 Nyquist

fs/4

1/2 Nyquist
fs/2

Nyquist

0.71

1
*

1

1.84
= 0.76 = -2.32dB

Frequency

146 Chapter 5

 Figure 5.47: The magnitude response at p/2 is 22.98 dB.

 Figure 5.46: The magnitude response at 1/4 Nyquist is a whopping 123 dB since the
inverse of 0.05 is a large number.

 Figure 5.45: The magnitude response at 0 Hz (DC) is the product of the inverse of the
two vectors drawn to each zero, or (1/0.71)(1/0.71) 5 5.9 dB.

71 2 Im

1.8

ji

1.8

Re

–36

–24

–12

0

12

24
(dB) H

fs/8
1/4 Nyquist

fs/4
V-z Nyquist

fs/2
Nyquist

Frequency

1.8
1

1.8
1

= 0.31 =–10.1 dB

H
24

(dB)

12

0

–12

–24

–36

fs/8

1/4 Nyquist
fs/4

½ Nyquist
fs/2

Nyquist

Frequency

Basic DSP Theory 147

 Step 5: Direct evaluation

 Now you can evaluate the fi lter the same way as before using Euler’s equation to separate the

real and imaginary components from the transfer function. Evaluate at the following frequencies:

• DC: 0

• Nyquist: p

• ½ Nyquist: p/2

• ¼ Nyquist: p/4

 First, get the transfer function in a form to use for all the evaluation frequencies:

 H (z) 5 a0

1

1 1 b1z
21 1 b2z

22
 (5.75)

 5
1

1 2 1.34z21 1 0.902z22

 Figure 5.48: The magnitude response at Nyquist is 210.1 dB.

 Figure 5.49: The composite magnitude response of the fi lter shows that it is a resonant low-pass
fi lter; the resonant peak occurs at the pole frequency.

148 Chapter 5

 Let z 5 ejv.

 H (v) 5
1

1 2 1.34e2j1v 1 0.902e2j2v

 Apply Euler’s equation:

 H (v) 5
1

1 2 1.34e2j1v 1 0.902e2j2v

 H (v) 5
1

1 2 1.34 3cos(v) 2 j sin(v) 4 1 0.902 3cos(2v) 2 j sin(2v) 4

 Now evaluate for each of our four frequencies starting with DC.

 5.18.1 DC (0 Hz)

 H (v) 5
1

1 2 1.34 3cos(v) 2 1 2 j0 j sin(v) 4 1 0.902 3cos(2v) 2 j sin(2v) 4
 5

1

1 2 1.34 3cos(0) 2 j sin(0) 4 1 0.902 3cos(2*0) 2 j sin(2*0) 4
 5

1

1 2 1.34 31 2 j0 4 1 0.902
 (5.76)

 5
1

1 2 1.34 1 0.902

 5
1

0.562 1 j0

 H (v) 5
1

0.562 1 j0

0H (v) 0 5
0 1 0

0 0.562 1 j0 0
 5

1

"a2 1 b2
 (5.77)

 5
1

"0.5622
5 1.78 5 5.00 dB

 Arg (H) 5 Arg (Num) 2 Arg (Denom)

 5 tan21(0/1) 2 tan21(0/0.562)

 5 08

 Remember that for magnitudes of fractions, you need to take the magnitude of the numerator

and denominator separately; also for phase, the total is the difference of the Arg(num) and

Arg(denom). The direct evaluation yields 5.0 dB and shows our sketch evaluation was a little

off at 5.9 dB.

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

0 17 34 51 68 85 102 119 136 153

Basic DSP Theory 149

 5.18.2 Challenge

 Finish the rest of the direct evaluation calculations on your own. The answers are in Table 5.4 .

The exact evaluation once again produces results pretty close to our estimated version. You

can get the complete answers at the RackAFX websites.

 Step 6: z transform of impulse response

 The impulse response for this fi lter is shown in Figure 5.50 . Once again, fi nding the impulse

response by hand is going to be tedious. Instead, I will use RackAFX to do the analysis so we

can compare our estimated and direct evaluation results. The measured responses are shown

in Figure 5.51 .

 5.19 First-Order Pole-Zero Filter: The Shelving Filter

 The fi rst-order pole-zero fi lter consists of a fi rst-order pole and fi rst-order zero in the same

algorithm. The topology in the block diagram in Figure 5.52 is a combination feed forward

and feed back since it contains both paths.

 The difference equation is as follows:

 y(n) 5 a0x(n) 1 a1x(n 2 1) 2 b1y(n 2 1) (5.78)

 Steps 1 to 3: Take the z transform of the difference equation to get the transfer function,
then factor out a 0 as the scalar gain coeffi cient

 Y(z) 5 a0X(z) 1 a1X(z)z21 2 b1Y(z)z21 (5.79)

 Figure 5.50: Impulse response of the fi lter from RackAFX.

 Table 5.4: Challenge answers.

Frequency (v) zH(v)z Arg(H)

Nyquist (p) 210.2 dB 0.08

½ Nyquist (p/2) 22.56 dB 285.88

¼ Nyquist (p/4) 123.15 dB 240.38

+24.0 dB

+16.0 dB

+8.0 dB

0.0 dB

–8.0 dB

–16.0 dB

–24.0 dB
2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

+180 .0°

+120.0°

+60.0°

0.0°

–60.0°

–120.0°

–180.0°
2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

x(n) y(n) ∑a0

z –1

a1

Z –1

–b1

150 Chapter 5

 Separate variables:

 Y(z) 1 b1Y(z)z21 5 a0X(z) 1 a1X(z)z21

 Y(z) 31 1 b1z
21 4 5 X(z) 3a0 1 a1z

21 4

 Form the transfer function:

 H(z) 5
Y(z)

X(z)
5

a0 1 a1z
21

1 1 b1z
21

 Factor out a0:

 H(z) 5 a0

1 1 a1z
21

1 1 b1z
21

 where

 a1 5
a1

a0

 Figure 5.52: First-order pole-zero fi lter.

 Figure 5.51: RackAFX’s frequency and phase responses are taken from the z -transform
of the impulse response.

Im

Re

0.71

0.92

Basic DSP Theory 151

 Step 4: Estimate the frequency response

 This transfer function has one pole and one zero and both are fi rst order. Like the other fi rst-

order cases, we can fi nd the pole and zero by inspection of the transfer function:

H(z) 5 a0

1 1 a1z
21

1 1 b1z
21

 5 a0

1 1
a1

z

1 1
b1

z

 (5.80)

 In the numerator, you can see that if z 5 2a 1 the numerator will go to zero and the transfer

function will go to zero. In the denominator, you can see that if z 5 2b 1 the denominator

will go to zero and the transfer function will go to infi nity. Therefore we have a zero

at z 5 2a 1 and a pole at z 5 2b 1 . For this example, use the following values for the

coeffi cients: a 0 5 1.0, a 1 5 20.92, b 1 5 20.71. Then, a 1 5 20.92, and so we now have

a zero at z 5 2a 1 5 0.92 1 j 0 and a pole at z 5 2b 1 5 0.71 1 j 0. The pole/zero pair

are plotted in Figure 5.53 .

 Evaluating the frequency response when you have mixed poles and zeros is the same as

before, but you have to implement both magnitude steps.

• Locate each evaluation frequency on the outer rim of the unit circle.

• Draw a line from the point on the circle to each zero and measure the length of these

vectors. Do it for each evaluation frequency.

• Draw a line from the point on the circle to each pole and measure the length of these

vectors. Do it for each evaluation frequency.

 Figure 5.53: The pole and zero are both purely real and plotted on the real axis in the z -plane.

152 Chapter 5

• Multiply all the zero magnitudes together.

• Multiply all the inverse pole magnitudes together.

• Divide the zero magnitude by the pole magnitude for the fi nal result at that frequency.

 Mathematically, this last rule looks like Equation 5.81 :

0H (ejv) 0 v 5 a0

q
N

i51

Ui

q
N

i51

Vi

 where

(5.81)

 N 5 the filter order

 Ui 5 the geometric length from the point (v) on the unit circle to the ith zero

 Vi 5 the geometric length from the point (v) on the unit circle to the ith pole

 Equation 5.81 is the fi nal, generalized magnitude response equation for the geometric

interpretation of the pole/zero plots in the z -plane. For completeness, here’s the equation for

calculating the phase response of a digital fi lter using the geometric method:

 Arg(H(ejv))|v 5 a
N

i51

ui 2 a
N

i51

fi

 where

(5.82)

 N 5 the filter order

 ui 5 the angle between the ith zero and the vector Ui

fi 5 the angle between the ith pole and the vector Vi

 Equations 5.81 and 5.82 together complete the DSP theory for pole/zero interpretation for

estimating the frequency and phase responses of any fi lter. So, let’s do the analysis for this

fi lter—by going through the math, you can see the tug of war going on between the pole and

zero. Follow the analysis sequence in Figures 5.54 through 5.58 .

 Step 5: Direct evaluation

 You can evaluate the fi lter the same way as before using Euler’s equation to separate

the real and imaginary components from the transfer function. Evaluate at the following

frequencies:

• DC: 0

• Nyquist: p

• ½ Nyquist: p/2

• ¼ Nyquist: p/4

Im

0.08

Re

0.29

Im

1.70 1.75

Re

π/4

π/2 Im

1.40

1.30

Re

H (dB)

24

12

0

–12

–24

–36

0.08 *
1

0.29
= 0.27 = –11.1 dB

1/4 Nyquist

fs/8

1/2 Nyquist

fs/4

Frequency

Nyquist

fs/2

H (dB)

24

12

0

–12

–24

–36

1.75 *
1

1.70
= 1.02 = 0.17 dB

Frequency

1/4 Nyquist

fs/8

1/2 Nyquist

fs/4

Nyquist

fs/2

H (dB)
24

12

0

–12

–24

–36

1.40 *
1

1.30
= 1.07 = 0.64 dB

1/4 Nyquist

fs/8

1/2 Nyquist

fs/4

Frequency

Nyquist

fs/2

Basic DSP Theory 153

 Figure 5.54: The magnitude response at DC is 211.1 dB. Look at the equation and
you can see the zero value bringing down the total while the pole value is trying to push it
back up. In this case, the zero wins and the response is down almost 12 dB. Geometrically,

you can see this is because the zero is closer to the evaluation point and so it has more
effect on the outcome.

 Figure 5.55: The magnitude response at p is almost unity gain because the pole and zero
distances are almost the same. The tug of war ends in stalemate here at 0.17 dB of gain.

 Figure 5.56: With the pole slightly closer to the evaluation frequency, the magnitude response at
p/2 picks up a bit to 10.64 dB.

I m

Re

1.71

1.92

π

H (dB)
24

12

0

–12

–24

–36

1/4 Nyquist

fs/8

½ Nyquist

fs/4

Nyquist

fs/2

1.92 *
1

1.71
= 1.12 = 1.00 dB

Frequency

H (dB)
24

12

0

–12

–24

–36

1/4 Nyquist

fs/8

½ Nyquist

fs/4

Nyquist

fs/2

The Shelf

Frequency

154 Chapter 5

 First, get the transfer function in a form to use for all the evaluation frequencies

(Equation 5.83). Then evaluate at our four frequencies.

 H (z) 5
a0 1 a1z

21

1 1 b1z
21

 (5.83)

 5
1 2 0.92z21

1 2 0.71z21

 Let z 5 ejv

H (v) 5
1 2 0.92e2j1v

1 2 0.71e2j1v

 Figure 5.57: At p/4 the pole/zero ratio favors the pole and the response perks up to
1.0 dB; notice that this is the frequency where the pole is clearly dominating,

but just barely.

 Figure 5.58: The composite frequency response plot shows a 212 dB low shelving fi lter
response, a useful fi lter in audio.

Basic DSP Theory 155

 Apply Euler’s equation:

 H (v) 5
1 2 0.92e2j1v

1 2 0.71e2j1v

 H (v) 5
1 2 0.92 3cos(v) 2 j sin(v) 4
1 2 0.71 3cos(v) 2 j sin(v) 4

 5.19.1 DC (0Hz)

 H (v) 5
1 2 0.92 3cos(v) 2 j sin(v) 4
1 2 0.71 3cos(v) 2 j sin(v) 4

 5
1 2 0.92 3cos(0) 2 j sin(0) 4
1 2 0.71 3cos(0) 2 j sin(0) 4

 5
1 2 0.92 31 2 j0 4
1 2 0.71 31 2 j0 4 (5.84)

 5
0.08 1 j0

0.29 1 j0

 0H(v) 0 5
0 0.08 1 j0 0
0 0.29 1 j0 0

 5
"a2 1 b2

"a2 1 b2

 5
"0.082

"0.292
5 0.276 5 211.2 dB (5.85)

 Arg(H) 5 Arg(Num) 2 Arg(Denom)

 5 tan21(0/0.08) 2 tan21(0/0.29)

 5 08

 By now this should be getting very familiar; the only difference in this situation is that we

have to evaluate the numerator and denominator, but the method is the same.

 15.19.2 Challenge

 Finish the rest of the direct evaluation calculations on your own. The answers are in Table 5.5 .

 Table 5.5: Challenge answers.

Frequency (v) zH(v)z Arg(H)

Nyquist (p) 1.00 dB 0.0o

½ Nyquist (p/2) 0.82 dB 7.23o

¼ Nyquist (p/4) 0.375 dB 16.60o

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

0 17 34 51 68 85 102 119 136 153

+12.0 dB

+6.0 dB

0.0 dB

–6.0 dB

–12.0 dB

–18.0 dB

–24.0 dB

+12.0 dB

+6.0 dB

0.0 dB

–6.0 dB

–12.0 dB

–18.0 dB

–24.0 dB

+90.0°

+60.0°

+30.0°

0.0°

–30.0°

–60.0°

–90.0°

2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

10 Hz 100 Hz 1 kHz 10 kHz

10 Hz 100 Hz 1 kHz 10 kHz

156 Chapter 5

 Thus, once again the direct evaluation backs up the estimation from the z -plane. Because

we have a feedback path, extracting the impulse response will be tedious but we can use

RackAFX’s pole/zero fi lter module to analyze the impulse response. Figure 5.59 shows the

measured impulse response, while Figure 5.60 shows the frequency and phase responses.

 Figure 5.59: Impulse response of the fi rst-order shelving fi lter.

 Figure 5.60: Frequency and phase responses of the fi rst-order shelving fi lter.

x(n) y (n) ∑ a0

a1

a2

–b1

–b2

–1
Z

z–1

–1 z

–1 z

Basic DSP Theory 157

 A fi rst-order shelving fi lter is a pole-zero design. The shelf will be located in the region

between where the zero dominates and where the pole dominates. When neither really

dominates, the response is approximately unity gain. The RackAFX frequency and phase

plots are shown in Figure 5.60 ; the log frequency plot has been included to reveal the

textbook shelving fi lter curve.

 5.20 The Bi-Quadratic Filter

 The last fi lter topology to study is the bi-quadratic (or bi-quad) fi lter. The bi-quad consists of

two second-order components: a second-order feed-forward and a second-order feed-back

fi lter combined together as shown in the block diagram in Figure 5.61 . The resulting transfer

function will have two quadratic equations, thus the name.

 The difference equation is as follows:

 y(n) 5 a0x(n) 1 a1x(n 2 1) 1 a2x(n 2 2) 2 b1y(n 2 1) 2 b2y(n 2 2) (5.86)

 Steps 1 to 3: Take the z transform of the difference equation to get the transfer function,
then factor out a 0 as the scalar gain coeffi cient

y(n) 5 a0x(n) 1 a1x(n 2 1) 1 a2x(n 2 2) 2 b1y(n 2 1) 2 b2y(n 2 2)

Y(z) 5 a0X(z) 1 a1X(z)z21 1 a2X(z)z22 2 b1Y(z)z21 2 b2Y(z)z22

 Separate variables:

 Y(z) 1 b1Y(z)z21 1 b2Y(z)z22 5 a0X(z) 1 a1X(z)z21 1 a2X(z)z22

 Y(z) 31 1 b1z
21 1 b2z

22 4 5 X(z) 3a0 1 a1z
21 1 a2z

22 4

 Form transfer function

 H(z) 5
Y(z)

X(z)
5

a0 1 a1z
21 1 a2z

22

1 1 b1z
21 1 b2z

22

 Figure 5.61: The bi-quad.

Im

Re

R
z

zRP

R P

φ

– φ

θ

158 Chapter 5

 Factor out a0

 H (z) 5 a0

1 1 a1z
21 1 a2z

22

1 1 b1z
21 1 b2z

22

 where (5.87)

 a1 5
a1

a0

 a2 5
a2

a0

 Step 4: Plot the poles and zeros of the transfer function

 The bi-quad will produce a conjugate pair of zeros and conjugate pair of poles from the

numerator and denominator respectively. Calculating these locations is the same as in the

pure second-order feed forward and feed back topologies. All you need to do is plot them in

the same unit circle. The transfer function becomes (by simple substitution from previous

sections):

 H(z) 5 a0

1 2 2Rz cos(u)z21 1 Rz
2z22

1 2 2Rp cos(f)z21 1 Rp
2z22

 (5.88)

 Figure 5.62 shows a pair of poles and a pair of zeros plotted together. Each has its own

radius, R z and R p , and angle, u and w. The same kind of pole/zero tug of war goes on with the

bi-quad, only now there are more competing entities.

 Estimating the frequency response is complicated by the additional poles and zeros, but the

rules are still the same:

• Locate each evaluation frequency on the outer rim of the unit circle.

• Draw a line from the point on the circle to each zero and measure the length of these

 vectors. Do it for each evaluation frequency.

 Figure 5.62: Second-order poles and zeros.

Im

Re

θ
φ

Basic DSP Theory 159

• Draw a line from the point on the circle to each pole and measure the length of these

 vectors. Do it for each evaluation frequency.

• Multiply all the zero magnitudes together.

• Multiply all the inverse pole magnitudes together.

• Divide the zero magnitude by the pole magnitude for the fi nal result at that frequency.

 Using the following coeffi cients, a 0 5 1.0, a 1 5 0.73, a 2 5 1.00, b 1 5 20.78, b 2 5 0.88,

we can directly fi nd the pole and zero locations from Equation 5.88 (note that because a 0

is 1.0, you don’t have to calculate the a terms). The pairs of poles and zeros are plotted in

 Figure 5.63 .

 Zeros are calculated as follows:

 a2 5 R2
z 5 1.00

 Rz 5 "1.00 5 1.00

 and

 a1 5 22R cos(u) 5 0.73

 2(1.00) cos(u) 5 0.73

 cos(u) 5 0.365

(5.89)

 u 5 arccos(0.365)

 u 5 68.68

 Poles are calculated as follows:

 b2 5 R2
p 5 0.88

 Rp 5 "0.88 5 0.94

 Figure 5.63: Pole/zero plot for the example bi-quad fi lter.

+24.0 dB

+12.0 dB

0.0 dB

–12.0 dB

–24.0 dB

–36.0 dB

–48.0 dB
2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

Effect of the zero

Effect of the pole

160 Chapter 5

 and

 b1 5 22R cos(f) 5 20.78

 2 (0.94) cos(f) 5 0.78

 cos(f) 5
0.78

2(0.94)
 (5.90)

 f 5 arccos(0.414)

 f 5 65.58

 The poles and zeros are in close proximity to each other. The zero is directly on the unit

circle (R z 5 1.0), so we expect a notch to occur there. The pole is near the unit circle but not

touching it, so we expect a resonance there.

 We are not going to go through the full response estimation or direct evaluation since it’s just

repetitive algebra at this point. But, we can use RackAFX’s bi-quad module to set up the fi lter

and evaluate it (Figure 5.64). The frequency response clearly shows the resonant peaking due

to the pole, then the sudden notch due to the nearby zero.

 In Figure 5.64 , it’s easy to locate the places where the pole or zero dominates. In the low

frequencies, the pole dominates and at high frequencies the zero dominates. This is an

example of a direct z -plane design where we place a pole and zero pair directly in the z -plane,

then calculate the coeffi cients. In the next chapter, we will examine some basic Infi nite

Impulse Response (IIR) design techniques and the direct z -plane method will be the fi rst.

 Final Review Notes

 In this chapter you learned the basics of DSP theory; specifi cally, you learned the sequence:

1. Take the z transform of the difference equation.

2. Fashion the difference equation into a transfer function.

3. Factor out a 0 as the scalar gain coeffi cient.

 Figure 5.64: The plot from RackAFX shows the resonant peak and notch formed
by the pole and zero.

Basic DSP Theory 161

4. Estimate the frequency response.

5. Direct evaluation of frequency response.

6. z transform of impulse response as a fi nal check.

 For geometric estimation, the frequency response and phase responses of a fi lter can be found

with Equations 5.91 and 5.92 .

 0H (ejv) 0 v 5 a0

q
N

i51

Ui

q
N

i51

Vi

 where

(5.91)

 N 5 the filter order

 Ui 5 the geometric length from the point (v) on the unit circle to the ith zero

 Vi 5 the geometric length from the point (v) on the unit circle to the ith pole

 Arg(H (ejv))|v 5 a
N

i51

ui 2 a
N

i51

fi

 where (5.92)

 N 5 the filter order

 ui 5 the angle between the ith zero and the vector Ui

 fi 5 the angle between the ith pole and the vector Vi

 For direct evaluation, you simply plug in various values for frequency and crank through the

algebra. We applied this same routine to feed-forward, feed-back, and combination types of

algorithms, and then used RackAFX to check our results. We also classifi ed the fi lters into

IIR and Finite Impulse Response (FIR) types.

 IIR Filters

• Any fi lter with a feed-back path is IIR in nature, even if it has feed-forward branches

as well.

• The feed-back paths in IIR fi lters produce poles in the z -plane and the poles cause gain to

occur in the magnitude response.

• An IIR fi lter can blow up when its output steadily increases toward infi nity, which occurs

when the poles are located outside the unit circle.

• If the IIR fi lter also has feed-forward branches it will produce zeros as well as poles.

• IIR fi lters can have fast transient responses but may ring.

 FIR Filters

• The FIR fi lter only has feed-forward paths.

• It only produces zeros in the z -plane.

162 Chapter 5

• The FIR fi lter is unconditionally stable since its output can only go to zero in the

worst case.

• FIR fi lters will have slower transient responses because of the time smearing they do on

the impulse response.

• The more delay elements in the FIR, the poorer the transient response becomes.

 Bibliography

 Ifeachor, E. C. and Jervis, B. W. 1993. Digital Signal Processing: A Practical Approach , Chapter 3. Menlo Park,

CA: Addison-Wesley.

 Kwakernaak, H. and Sivan, R. 1991. Modern Signals and Systems , Chapter 3. Englewood Cliffs, NJ: Prentice-Hall.

 Moore, R. 1990. Elements of Computer Music , Chapter 2. Englewood Cliffs, NJ: Prentice-Hall.

 Oppenheim, A. V. and Schafer, R. W. 1999. Discrete-Time Signal Processing (2nd ed.), Chapter 3. Englewood

Cliffs, NJ: Prentice-Hall.

 Orfanidis, S. 1996. Introduction to Signal Processing , Chapters 10–11. Englewood Cliffs, NJ: Prentice-Hall.

 Steiglitz, K. 1996. A DSP Primer with Applications to Digital Audio and Computer Music , Chapters 4–5. Menlo

Park, CA: Addison-Wesley.

163

 It’s time to put the theory into practice and make some audio fi lters and equalizers (EQs).

You know that the coeffi cients of a fi lter determine its frequency response and other

characteristics. But how do you fi nd the coeffi cients? There are two fundamental ways to fi nd

the coeffi cients of the infi nite impulse response (IIR) fi lter:

• Direct z -plane design

• Analog fi lter to digital fi lter conversion

 This chapter uses the following fi lter naming conventions:

• LPF: Low-pass fi lter

• HPF: High-pass fi lter

• BPF: Band-pass fi lter

• BSF: Band-stop fi lter

 6.1 Direct z-Plane Design

 In this fi rst category of design techniques, you manipulate the poles and zeros directly in

the z -plane to create the response you want. You take advantage of the simple equations that

relate the coeffi cients to the pole/zero locations. Consider the bi-quad. Equation 6.1 shows the

numerator. Equation 6.2 shows the denominator.

then

H(z) 5 a0(1 1 a1z
21 1 a2z

22)

5 a0(1 2 2Rcos (u)z21 1 R2z22)

a1 5 22Rcos (u)

a2 5 R2

(6.1)

 CHAPTER 6

Audio Filter Designs: IIR Filters

y(n)

-1
z

x(n) a0

–b1

164 Chapter 6

then

H(z) 5 a0 c 1

1 1 b1z
21 1 b2z

22 d
5 a0 c 1

(1 2 2Rcos(u)z21 1 R2z22)
d

b1 5 22Rcos(u)

b2 5 R2

(6.2)

 For the numerator or denominator, the a 1 or b 1 coeffi cients are in direct control over the

angles of the zeros or poles. The distance R to the zeros or poles is determined by both a 1 , a 2

or b 1 , b 2 . For fi rst-order fi lters, the coeffi cients only control the location of the pole and zero

on the real axis. There are no conjugate pairs. However, careful placement of the pole and

zero can still result in useful audio fi lters.

 6.2 Single Pole Filters

 A block diagram of a single pole fi lter is shown in Figure 6.1 .

 The difference equation is as follows:

 y(n) 5 a0x(n) 2 b1y(n 2 1) (6.3)

 6.2.1 First-Order LPF and HPF

 Specify:

• f c , the corner frequency

 Figure 6.1: The fi rst-order feed-back fi lter and difference equation.

High frequencies are far
enough that they get

attenuation

Low frequencies are
close to the pole and get

gain

Im

Re

Audio Filter Designs: IIR Filters 165

 Figure 6.2: The fi rst-order LPF has a single pole and zero on the real axis.

 The design equations are as follows:

 LPF HPF

uc 5 2pfc/fs uc 5 2pfc/fs

g 5 2 2 cos(uc) g 5 2 1 cos(uc)

b1 5 "g2 2 1 2 g b1 5 g 2 "g2 2 1

a0 5 1 1 b1 a0 5 1 2 b1

 (6.4)

 These simple fi rst-order fi lters work by moving the pole back and forth across the real axis

while holding a fi xed zero at Nyquist. When the pole is on the right side of the unit circle,

low frequencies are gained up due to their close proximity to the pole. High frequencies

are close to the zero and get attenuated (Figure 6.2). This produces the low-pass response

in Figure 6.3 .

 When the pole/zero pair are reversed, the opposite effect happens and the high frequencies are

now boosted with low frequencies attenuated. There is also a zero at 0 Hz. This produces the

high-pass response. These are simple but very useful designs and are found in many effects

including delay and reverb algorithms.

 6.3 Resonators

 A resonator is a band-pass fi lter that can be made to have a very narrow peak. The simple

version uses a second-order feed-back topology.

 6.3.1 Simple Resonator

 A block diagram of a simple resonator is shown in Figure 6.4 .

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
10Hz 100 Hz 1kHz 10 kHz

x(n) a0 y(n)

z–1

-1 z

–b1

–b2

166 Chapter 6

 The difference equation is as follows:

 y(n) 5 a0x(n) 2 b1y(n 2 1) 2 b2y(n 2 2) (6.5)

 Specify:

• f c , center frequency

• BW , 3 dB bandwidth; or Q , quality factor

 Figure 6.4: Second-order feed-back fi lter block diagram.

 Figure 6.3: Linear and log frequency responses of the one-pole low-pass fi lter with f c = 1 kHz.

Re

b1 and b2 control the
angle of
the pole

b2 controls the radius
of the pole

Im

R

R

Audio Filter Designs: IIR Filters 167

 Figure 6.5: The location of the resonator’s conjugate poles are
determined by the coeffi cients.

 The design equations are as follows:

uc 5 2pfc/fs

W 5 fc/Q

b2 5 ea22p
BW
fs
b

b1 5
24b2

1 1 b2

 cos(uc)

a0 5 (1 2 b2)Å1 2
b2

1

4b2

(6.6)

 The resonator works by simple manipulation of the conjugate poles formed with the second-

order feed-back network. The b 2 term controls the distance out to the pole which makes the

resonant peak sharper (when the pole is close to the unit circle) or wider (when the pole is

farther away from the unit circle). The b 1 and b 2 terms control the angle of the pole, which

controls the center frequency, shown in Figure 6.5 . The a 0 term is used to scale the fi lter so its

peak output is always normalized to unity gain or 0 dB.

 The drawback to this design is that it is only symmetrical in frequency response at one

frequency, p/2, when the low-frequency and high-frequency magnitude vectors are

symmetrical. At all other frequencies, the response is shifted asymmetrically. When the pole

is in the fi rst quadrant, it is nearer to the low frequencies than high frequencies and so the

Im

Re

+12.0 dB

0.0 dB

–12.0 dB

–24.0 dB

–36.0 dB

–48.0 dB

–60.0 dB
10Hz 100 Hz 1kHz 10 kHz

+12.0 dB

0.0 dB

–12.0 dB

–24.0 dB

–36.0 dB

–48.0 dB

–60.0 dB
10Hz 100 Hz 1kHz 10kHz

Re

Im

168 Chapter 6

 Figure 6.6: The asymmetrical response shape when the pole is in the fi rst quadrant; notice
the difference in gain at DC versus Nyquist. This fi lter has f s = 44.1 kHz,

 f c = p/4 = 5.5125 kHz, and Q = 10.

 Figure 6.7: The asymmetrical response shape when the pole is in the second quadrant; notice the
difference in gain at DC versus Nyquist. This fi lter has f s = 44.1 kHz,

 f c = 3p/4 =16.5375 kHz, and Q = 10.

low end is boosted (Figure 6.6). The opposite happens (Figure 6.7) when the pole moves to

the second quadrant and the high frequencies get the boost. The solution to the asymmetry

problem is a really useful fi lter, especially for making fi lter banks of extremely narrow band-

pass fi lters.

 6.3.2 Smith-Angell Improved Resonator

 A block diagram of a Smith-Angell improved resonator is shown in Figure 6.8 .

 The difference equation is as follows:

 y(n) 5 a0x(n) 1 a2x(n 2 2) 2 b1y(n 2 1) 2 b2y(n 2 2) (6.7)

x(n)

-1 z

-1 z

a2 -b2

-1
Z

z-1

y(n)

-b1

a0

Audio Filter Designs: IIR Filters 169

 Specify:

• f c , center frequency

• BW , 3 dB bandwidth; or Q , quality factor

 The design equations are as follows:

 uc 5 2pfc/fs

 BW 5 fc/Q

 b2 5 ea22p
BW
fs
b

b1 5

24b2

1 1 b2

 cos(uc)

 a0 5 1 2 "b2

 a2 5 2a0

 (6.8)

 This design is also gain normalized with a 0 and as before, the radius is set with b 2

fi rst, then b 1 is calculated using the b 2 coeffi cient and the desired pole frequency. The

fi lter is not truly normalized to 0.0 dB; there is actually a slight fl uctuation of less

than 1 dB.

 The improved resonator is also named the Smith-Angell resonator, after its inventors. They

improved the design by dropping two zeros into the fi lter, one at z 5 1 and one at z 5 21 in

order to pin down DC and Nyquist with a response of zero. This forces the fi lter to become

somewhat more symmetric (but not entirely) and has the advantage of making the band pass

even more selective in nature (Figure 6.9).

 Figure 6.8: Block diagram for the Smith-Angell
improved resonator.

Im

Re

+12.0 dB

0.0 dB

–12.0 dB

–24.0 dB

–36.0 dB

–48.0 dB

–60.0 dB
10Hz 100Hz 1kHz 10 kHz

170 Chapter 6

 6.4 Analog Filter to Digital Filter Conversion

 A more widely used approach to fi lter design is to fi rst start with the classic analog designs

and then convert them into digital versions. There’s good reason to do this because there

are many excellent analog designs already done for us. We just need a way to make them

work in our digital world. While analog fi lter design is outside the scope of the book,

there are many similarities between the two design worlds. For example, both analog

and digital fi lter design involve a transfer function that you manipulate to produce poles

and zeros. They also both use a transform to get from the time domain to the frequency

domain. A fundamental difference is that in analog, there is no Nyquist restriction and all

frequencies from 2` to 1` are included. Also, in analog, reactive components or circuits

like inductors, capacitors, and gyrators (a circuit that simulates an inductor) are used to

create the phase shift that is at the heart of the fi ltering operation. Table 6.1 summarizes the

similarities and differences.

 Table 6.1: The differences between analog and digital fi lter design technique.

Digital Analog

• Uses a transfer function to relate I/O

• Delay elements create phase shift

• Uses the z transform (sampled time to

frequency)

• Poles and zeros in the z-plane

• Nyquist limitation

• Poles must be inside the unit circle for

stable operation

• Uses a transfer function to relate I/O

• Reactive components create phase shift

• Uses the Laplace transform (continuous

time to frequency)

• Poles and zeros in the s-plane

• All frequencies from 2` to 1` allowed

• Poles must be in the left-hand part of the

s-plane for stable operation

 Figure 6.9: The effect on the resonator shape with the added zeros to hold down DC and
Nyquist. This fi lter has f s = 44.1 kHz, f c = p/4 = 5.5125 kHz, and Q = 20

(notice how close the poles are to the unit circle).

½ Nyquist lm

Nyquist 0 Hz

Re

–½ Nyquist

–Nyquist

–½ Nyquist
σ

0 Hz

½ Nyquist

Nyquist

j ω
+ oo

– oo

Audio Filter Designs: IIR Filters 171

 In Figure 6.10 you can see the s -plane on the right—it is also a complex plane. The

real axis is named the s axis and the imaginary axis is the j v axis. The j v axis is the

frequency axis and it spans 2` to 1` rad/sec. The unit circle maps to the portion on the

 j v axis between 2Nyquist and 1Nyquist. In order to transform an analog fi lter design

into a digital fi lter design, we need a mapping system to get the poles and zeros from

the s -plane to become poles and zeros in the z -plane. Once we have that, the coeffi cients

that produce those poles and zeros in the digital locations can be calculated. In the

analog world, poles that are close to the j v axis will result in poles that are close to the

unit circle in the digital world. The problem is that poles and zeros can exist anywhere

along the j v axis, even at frequencies outside the digital Nyquist zone. It is common

for analog designs to have a pole or a zero at 2` and/or 1` on either the s and/or

 j v axes.

 In Figure 6.11 you can see the problem: the pair of zeros close to the j v axis at ½ Nyquist

will map to locations close to the unit circle at the ½ Nyquist angles. But what about the

pair of poles that are outside the Nyquist frequency in the s -plane? The other way to think

about the issue is that in the analog s -plane, the entire left-hand side, including all the infi nite

frequencies, must map to the interior of the unit circle in the z -plane. Also, the entire right-

hand plane must map to the exterior of the unit circle, as shown in Figure 6.12 .

 So, what we need is a mathematical device to make the transformation from the s -plane to

the z -plane. It must map an infi nitely large area into the unit circle. Fortunately, many of

these mathematical transforms already exist. The one best suited for us is called the bilinear

transform, and we can use it to transform an analog transfer function, H (s) into a digital

one, H (z).

 Figure 6.10: Comparison of the unit circle in the z -plane with the s -plane.

½ Nyquist lm

Nyquist

Nyquist –½

Re

+ oo

jω

Nyquist

½ Nyquist

σ
–½ Nyquist

–Nyquist

½ Nyquist lm

Nyquist 0 Hz

Re

–½ Nyquist

-Nyquist

–Nyquist
σ

0 Hz

½ Nyquist

Nyquist

j ω

lm

Re
σ

jω

– oo

+ oo

+ oo

– oo

– oo

172 Chapter 6

 Figure 6.11: Mapping the poles and zeros from the analog s -plane to the digital z -plane.

 Figure 6.12: Mapping the infi nitely large left-hand plane into the fi nite space inside the unit
circle and the right-hand plane into the exterior of the unit circle.

Audio Filter Designs: IIR Filters 173

 We wish to convert an analog transfer function H (s) into a sampled equivalent H (z).

Effectively, this means we need a way to sample the continuous s -plane to produce the

sampled z -plane version. In other words, we need to create a sampled analog transfer function

 H s (s) where the subscript s stands for “sampled.” We seek to fi nd a function g (z) such that

 Equation 6.9 holds true.

 H(s) h
s5g(z)

H(z) (6.9)

 Since the sample interval is T , then the term e j v T would correspond to one sample in time.

So, if we evaluate H (z) by letting z 5 e j v T then we will arrive at the sampled analog transfer

function H s (s) in Equation 6.10 :

 H(s) h
s5g(z)

H(z) h
z5ejvT

Hs(s) (6.10)

 To solve, we note that s 5 j v (the analog defi nition of s) and z 5 e j v T to get Equation 6.11 :

 z 5 esT

 ln(z) 5 ln(esT)

 ln(z) 5 sT

or

 sT 5 ln(z)

 (6.11)

 We now have the relationship between s and z , but we need to deal with taking the natural log

of z , which doesn’t have a closed form solution. If we use the Taylor series expansion for ln(),

we get Equation 6.12 for Re(z) > 0:

 sT 5 2 c z 2 1

z 1 1
1

1

3
az 2 1

z 1 1
b3

2
1

5
az 2 1

z 1 1
b5

1
1

7
az 2 1

z 1 1
b7

2 ... d
Taking the first term only

 s 5
2

T

z 2 1

z 1 1

 (6.12)

 This fi rst term approximation of the general solution is the bilinear transform. The bilinear

transform we use is Equation 6.13 :

 s 5
z 2 1

z 1 1
 (6.13)

 The 2/ T term washes out mathematically, so we can neglect it. This equation does the

mapping by taking values at the infi nite frequencies and mapping them to Nyquist. So, a pole

or zero at 2` or 1` is mapped to Nyquist. The other frequencies between Nyquist and 2`

or 1` Hz are squeezed into the little region right around Nyquist, just inside the unit circle,

as shown in Figure 6.13 .

Nyquist

½ Nyquist lm

Re

–½ Nyquist
– oo

–Nyquist

–½ Nyquist
σ

½ Nyquist

Nyquist

jω
+ oo

174 Chapter 6

 The bilinear transform maps analog frequencies to their corresponding digital frequencies

nonlinearly via the tan() function (Equation 6.14):

where

va 5 tan cvd/fs

2
d

va 5 the analog frequency

vd 5 the mapped digital frequency

fs 5 the sample rate

(6.14)

 The tan() function is linear at low values of v but becomes more nonlinear as the frequency

increases. At low frequencies, the analog and digital frequencies map closely. At high

frequencies, the digital frequencies become warped and do not map properly to the analog

counterparts. This means that a given analog design with a cutoff frequency f c might have the

wrong digital cutoff frequency after the conversion.

 The solution is to pre-warp the analog fi lter so that its cutoff frequency is in the wrong

location in the analog domain, but will wind up in the correct location in the digital

domain. To pre-warp the analog fi lter, you just use the same equation (Equation 6.14)

applied to the cutoff frequency of the analog fi lter. When you combine all the operations

you get the bilinear Z transform, or BZT. The step-by-step method of conversion is as

follows (Ifeachor 1993):

 Figure 6.13: The bilinear transform maps the area outsize the Nyquist zone on the left-hand
plane to an area just inside the circle near Nyquist.

Audio Filter Designs: IIR Filters 175

1. Start with an analog fi lter with a normalized transfer function H (s)—“normalized” means

the cutoff frequency is set to v 5 1 rad/sec; this is the typical way analog transfer func-

tions are described and specifi ed.

2. Choose the cutoff frequency of the digital fi lter v d ; get the pre-warped analog corner

frequency using Equation 6.15 :

 va 5 tan cvd/fs

2
d (6.15)

3. Scale the normalized fi lter’s cutoff frequency out to the new analog cutoff v a by replacing

 s with s /v a in the analog transfer function.

4. Apply the bilinear transform by replacing s with Equation 6.13 :

 s 5
z 2 1

z 1 1
 (6.13)

5. Manipulate the transfer function H (z) algebraically to get it into the familiar form so you

can identify the coeffi cients (format the numerator and denominator to match the transfer

functions you studied in the last chapter); this is often the most diffi cult part.

 NOTE: This only works for LPF designs but, fortunately, there are easy conversions. The

difference is in the step where you scale the analog fi lter’s cutoff frequency just before

applying the bilinear transform. How it works is described next.

 For LPF and HPF:

• Specify v d , the desired digital cutoff frequency.

• Calculate the pre-warped analog cutoff with Equation 6.14 :

where

va 5 tan cvd/fs

2
d

va 5 the analog frequency

vd 5 the mapped digital frequency

fs 5 the sample rate

(6.14)

 For BPF and BSF:

• Specify v dL and v dH , the lower and upper corner frequencies of the digital fi lter.

• Calculate the two analog corner frequencies with Equation 6.16 :

vaL 5 tan cvdL/fs

2
d

vaH 5 tan cvdH/fs

2
d

v0
2 5 vaLvaH

W 5 vaH 2 vaL

(6.16)

R
VOUT

c

VIN

176 Chapter 6

 Next, scale the fi lter with Equation 6.17 :

Filter Type Scaling Factor

LPF s 5
s

va

HPF s 5
va

s

BPF s 5
s2 1 v2

0

Ws

BSF s 5
Ws

s2 1 v2
0

(6.17)

 Example:

 Convert the basic resistor-capacitor (RC) analog LPF in Figure 6.14 into a digital LPF. The

sample rate is 44.1 kHz and the desired cutoff frequency is 1 kHz.

 Step 1: Get the normalized H (s):

 H(jv) 5
1

jvRC 1 1

 Let s 5 jv

 Normalize by setting RC 5 1

 H(s) 5
1

s 1 1

 (6.18)

 Step 2: Calculate the pre-warped analog cutoff:

fc 5 1 kHz

vd 5 2pfc 5 6283.2 rad/sec
 (6.19)

 va 5 tanavdT

2
b 5 tan c (6283.2)(1/44100)

2
d 5 0.07136 (6.20)

 Figure 6.14: A simple analog RC low-pass fi lter.

Audio Filter Designs: IIR Filters 177

 Step 3: De-normalize the analog transfer function H (s) with the appropriate factor:

H(s) 5
1

s 1 1

s 5
s

va
 because this is an LPF

H'(s) 5
1

s/va 1 1
5

1

s/0.07136 1 1

5

0.07136

s 1 0.07136

 (6.21)

 Step 4: Apply the BZT:

H(z) 5 H'(s)|s5(z21)/(z11)

5

0.07136

z 2 1

z 1 1
1 0.07136

5

0.07136(z 1 1)

z 2 1 1 0.07136(z 1 1)

5

0.07136z 1 0.07136

z 2 1 1 0.07136z 1 0.07136

5

0.07136z 1 0.07136

z 1 0.07136z 2 0.9286

(6.22)

 Get into standard H(z) format:

 5

0.07136 1 0.07136z21

1 1 0.07136 2 0.9286z21

 H(z) 5

0.0667 1 0.0667z21

1 2 0.8667z21
5

a0 1 a1z
21

1 1 b1z
21

 Equation 6.22 is in the format that we need with the numerator and denominator properly

formed to observe the coeffi cients. From the transfer function, you can see that:

• a 0 5 0.0667

• a 1 5 0.0667

• b 1 5 –0.8667

 The difference equation is Equation 6.23 :

 y(n) 5 0.0667x(n) 1 0.0667x(n 2 1) 1 0.8667y(n 2 1) (6.23)

x(n) 0.0667 Σ

–1

Z

0.0667 0.8667

–1
Z

y(n)

178 Chapter 6

 The block diagram of the completed design reveals a pole-zero fi lter. This makes

sense—the original analog fi lter had a pole at s 5 21 and a zero at infi nity. The digital

equivalent has a pole at z 5 0.8667 and a zero at z 5 21 (Nyquist) both on the real axis

(Figure 6.15).

 6.4.1 Challenge

 The analog transfer function of a second-order LPF is Equation 6.24 :

 H(s) 5
1

s2 1 (1/Q)s 1 1
 (6.24)

 The analog LPF has the following specifi cations: Q 5 1, f c 5 1 kHz, f s 5 44.1 kHz. Apply

the bilinear transform and some algebra to fi nd the coeffi cients. (Answer: a 0 5 0.0047,

a 1 5 0.0095, a 2 5 0.0047, b 1 5 21.8485, b 2 5 0.8673.)

 6.5 Effect of Poles or Zeros at Infi nity

 In the analog transfer function (Equation 6.19) of the previous example, you can see that

there is an analog pole at s 5 21 since that would make the transfer function go to infi nity,

and there is a zero at s 5 ` because that will cause H (s) to become 0.0. There is also a zero

at s 5 2`. Interestingly, these two infi nity values are in the same location because the reality

is that the s and j v axes actually wrap around an infi nitely large sphere and touch each other

at 6`. So, in this fi rst-order case engineers only show the single zero at infi nity and they

choose to use the one at 2` so this transfer function’s pole and zero would be plotted like

 Figure 6.16 in the s -plane. For low-pass zeros at infi nity, the bilinear transform maps the zero

at infi nity to z 5 21 (Nyquist) (Figure 6.17).

 Figure 6.15: The digital equivalent of the analog RC low-pass fi lter.

j ω

–1 σ

lm jω

–1
Re

σ

Audio Filter Designs: IIR Filters 179

 Next consider the second-order analog low-pass fi lter transfer function:

 H(s) 5
1

s2 1 (1/Q)s 1 1

which factors as

 H(s) 5
1

(s 2 P)(s 2 P*)

 (6.25)

 This transfer function has a pair of conjugate poles at locations P and P * or (a 1 bj v) and

(a 2 bj v) as well as a pair of zeros at 6`. The bilinear transform maps the poles on the

 Figure 6.16: The pole at s 5 21 and the zero at s 5 6`
plotted in the s -plane.

 Figure 6.17: The bilinear transform maps real zeros at infi nity to the Nyquist
frequency in the z -plane.

Im

Re

– bjω

a

σ

+bj ω

jω

Amplitude

1.0

0.0
1/4 Nyquist ½ Nyquist

fs/8 fs/4
Nyquist Frequency

Heading to
zero at infinity

Analog Filter

Digital Filter

fs/2

180 Chapter 6

left side of the s -plane to locations inside the unit circle. Once again, it maps the zeros at 6`

to z 5 21 or the Nyquist frequency (Figures 6.18 and 6.19).

 There are several methods of overcoming this problem (Orfanidis 1997 ; Massberg 2011).

The Massberg approach is discussed further in Section 6.9 . Even with the error in the BZT,

it is still an excellent tool for converting existing designs. You will notice that in the design

methods, we start with the desired cutoff frequency (and Q , where applicable) and calculate

the coeffi cients.

 Figure 6.19 : The zero at infi nity causes an error in the upper part of the frequency.
The error is worst at the Nyquist frequency; the analog error is exaggerated for

the purposes of illustration.

 Figure 6.18: The bilinear transform maps imaginary zeros at infi nity
to Nyquist in the z -plane.

Audio Filter Designs: IIR Filters 181

 6.6 Generic Bi-Quad Designs

 The following classical analog fi lters are converted to digital and implemented as bi-quad

topologies:

• LPF (low-pass fi lter)

• HPF (high-pass fi lter)

• BPF (band-pass fi lter)

• BSF (band-stop fi lter)

• Second-order Butterworth LPF and HPF

• Second-order Linkwitz2Riley LPF and HPF (good for crossovers)

• First- and second-order all-pass fi lters (APF)

 Low-pass and high-pass fi lters are characterized by their corner frequency f c and (for second-order

and higher) their Q or resonant peaking value. A Q of 0.707 is the highest value Q can assume

before peaking occurs. It is called the Butterworth or maximally fl at response. With a Q of 0.707

the 23 dB point of the fi lter will be exactly at f c . For these designs, once the Q rises above 0.707,

it will correspond to the peak frequency and not the 23 dB frequency. Equations 6.26 through

 6.29 relate the Q , peak frequency, 23 dB frequency, and the peak magnitude values.

 f23dB 5 fcÇa 1

2Q2
2 1b 1 Åa

1

2Q2
2 1b2

1 1 (6.26)

 fc 5
f23dB

Ça 1

2Q2
2 1b 1 Åa

1

2Q2
2 1b2

1 1

 (6.27)

 Peak gain 5

Q2

"Q2 2 0.25
 1Q . 0.707 only 2 (6.28)

 PeakdB 5 20log 1peak gain 2 (6.29)

 Band-pass, band-stop, graphic, and parametric EQs are specifi ed by their center frequency f c
and Q or bandwidth (Equation 6.30). Depending on the fi lter, the arithmetic (Equation 6.31)

or geometric (Equation 6.32) mean is used to relate fc and the band edges fU and fL.

 Q 5
fc

BW
 (6.30)

 Arithmetic mean 5 fc 5
fU 2 fL

2
 (6.31)

Geometric mean 5 fc 5 "fU fL

(6.32)

x(n) a0 y(n)×

z –1

a1

z –1

a2 –b 2

–b 1

z
- 1

z
-1

182 Chapter 6

 The block diagram is shown in Figure 6.20 .

 The difference equation is as follows:

 y(n) 5 a0x(n) 1 a1x(n 2 1) 1 a2x(n 2 2) 2 b1y(n 2 1) 2 b2y(n 2 2) (6.33)

 6.6.1 First-Order LPF and HPF

 Specify:

• f c , corner frequency; see Figure 6.21 for examples

 The design equations are as follows:

 LPF HPF

uc 5 2pfc/fs uc 5 2pfc/fs

 g 5
 cos uc

1 1 sin uc

 g 5
 cos uc

1 1 sin uc

a0 5
1 2 g

2
a0 5

1 1 g

2

a1 5
1 2 g

2
a1 5 2a1 1 g

2
b

a2 5 0.0 a2 5 0.0

b1 5 2g b1 5 2g

b2 5 0.0 b2 5 0.0

 (6.34)

 Figure 6.20: Generic bi-quad structure.

+12.0 dB

0.0 dB

–12.0 dB

–24.0 dB

–36.0 dB

–48.0 dB

–60.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

fc = 100 Hz

fc = 1 kHz

Audio Filter Designs: IIR Filters 183

 6.6.2 Second-Order LPF and HPF

 Specify:

• f c , corner frequency

• Q , quality factor controlling resonant peaking; Figure 6.22 shows the effect of Q and

peaking

 The design equations are as follows:

 LPF HPF

uc 5 2pfc / fs uc 5 2pfc / fs

d 5
1

Q
 d 5

1

Q

b 5 0.5

1 2
d

2
 sin uc

1 1
d

2
 sin uc

 b 5 0.5

1 2
d

2
 sin uc

1 1
d

2
 sin uc

g 5 10.5 1 b 2cos uc g 5 10.5 1 b 2cos uc

a0 5
0.5 1 b 2 g

2.0
a0 5

0.5 1 b 1 g

2.0

a1 5 0.5 1 b 2 g a1 5 2 10.5 1 b 1 g 2
a2 5

0.5 1 b 2 g

2.0
a2 5

0.5 1 b 1 g

2.0

b1 5 22g b1 5 22g

b2 5 2b b2 5 2b

 (6.35)

 Figure 6.21 : First-order LPF with f c = 100 Hz, 250 Hz, 500 Hz, and 1 kHz.

+30.0 dB

+15.0 dB

0.0 dB

-15.0 dB

-30.0 dB

-45.0 dB

-60.0 dB
10Hz 100 Hz 1 kHz 10 kHz

Q = 10

Q = 0.707

184 Chapter 6

 6.6.3 Second-Order BPF and BSF

 Specify:

• f c , corner frequency

• Q , quality factor controlling width of peak or notch 5 1/ BW; Figure 6.23 shows the BSF

version

 Note: These fi lter coeffi cients contain the tan() function, which is undefi ned at p/2 and then

fl ips negative between p/2 and p. The argument is u c /2 Q , so care must be taken with these

fi lters to ensure that u c /2 Q does not fall on the range of p/2 to p. One solution is to clamp the

value of u c /2 Q so that it never equals or exceeds p/2.

 The design equations are as follows:

 BPF BSF

uc 5 2pfc / fs uc 5 2pfc / fs

b 5 0.5

1 2 tan 1uc /
2Q 2

1 1 tan 1uc /
2Q 2 b 5 0.5

1 2 tan 1uc /
2Q 2

1 1 tan 1uc /
2Q 2

g 5 10.5 1 b 2cos uc g 5 10.5 1 b 2cos uc

a0 5 0.5 2 b a0 5 0.5 1 b

a1 5 0.0 a1 5 22g

a2 5 2 10.5 2 b 2 a2 5 0.5 1 b

b1 5 22g b1 5 22g

b2 5 2b b2 5 2b

(6.36)

 6.6.4 Second-Order Butterworth LPF and HPF

 Specify:

• f c , corner frequency

 Figure 6.22: Second-order LPF responses: f c = 1 kHz, Q = 0.707, 2, 5, 10.
Notice that as the Q rises above 0.707, f c becomes the peak frequency.

+12.0dB

0.0 dB

-12.0dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

BW = 500 Hz

BW = 10 kHz

Audio Filter Designs: IIR Filters 185

 Butterworth low-pass and high-pass fi lters are specialized versions of the ordinary second-

order low-pass fi lter. Their Q values are fi xed at 0.707, which is the largest value it can

assume before peaking in the frequency response is observed.

 The design equations are as follows:

 LPF HPF

 C 5
1

 tan(pfc / fs)
 C 5 tan(pfc / fs)

a0 5
1

1 1 "2C 1 C2
a0 5

1

1 1 "2C 1 C2

a1 5 2a0 a1 5 22a0

a2 5 a0 a2 5 a0

b1 5 2a0(1 2 C2) b1 5 2a0(C
2 2 1)

b2 5 a0(1 2 "2C 1 C2) b2 5 a0(1 2 "2C 1 C2)

(6.37)

 6.6.5 Second-Order Butterworth BPF and BSF

 Specify:

• f c , corner frequency

• BW , bandwidth of peak/notch 5 f c / Q

 Butterworth BPF and BSF are made by cascading (BPF) or paralleling (BSF) a Butterworth

LPF and Butterworth HPF.

 Note: These fi lter coeffi cients contain the tan() function, which is undefi ned at p/2 and then

fl ips negative between p/2 and p. The argument is p f c BW / f s , so care must be taken with these

fi lters to ensure that p f c BW / f s does not fall on the range of p/2 to p. One solution is to clamp

the value of p f c BW / f s so that it never equals or exceeds p/2.

 Figure 6.23: Second-order BSF responses: f c = 1 kHz, bandwidth = 500 Hz (narrowest),
2 kHz, 5 kHz, and 10 kHz (widest).

186 Chapter 6

 The design equations are as follows:

 BPF BSF

C 5
1

 tan(pfc
BW / fs)

C 5 tan(pfcBW / fs)

D 5 2 cos(2pfc
/

fs) D 5 2 cos(2pfc

/

fs)

a0 5
1

1 1 C
a0 5

1

1 1 C

a1 5 0.0 a1 5 2a0D

a2 5 2a0 a2 5 a0

b1 5 2a0(CD) b1 5 2a0D

b2 5 a0(C 2 1) b2 5 a0(1 2 C)

 (6.38)

 6.6.6 Second-Order Linkwitz–Riley LPF and HPF

 Specify:

• f c , corner frequency (26 dB)

 Second-order Linkwitz–Riley LPFs and HPFs are designed to have an attenuation of 26 dB

at the corner frequency rather than the standard 23 dB, shown in Figure 6.24. When these

fi lters are placed in parallel with the same cutoff frequency, their outputs sum exactly and

the resulting response is fl at. They are often used in crossovers. We use them for the spectral

dynamics processor later on.

 The design equations are as follows:

 LPF HPF

uc 5 pfc
/

fs uc 5 pfc

/

fs

Vc5 pfc Vc 5 pfc

k 5
Vc

 tan(uc)
k 5

Vc

 tan(uc)

d 5 k2 1 Vc
2 1 2kVc d 5 k2 1 Vc

2 1 2kVc

a0 5
Vc

2

d
a0 5

k2

d

a1 5 2
Vc

2

d
a1 5

22k2

d

a2 5
Vc

2

d
a2 5

k2

d

b1 5
22k2 1 2Vc

2

d
b1 5

22k2 1 2Vc
2

d

b2 5
22kVc 1 k2 1 Vc

2

d
b2 5

22kVc 1 k2 1 Vc
2

d

 (6.39)

0.0 dB

-2.0 dB

-4.0 dB

-6.0 dB

-8.0 dB

-10.0 dB

-12.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

Linkwitz-Riley

Butterworth

Im

R

R e

Phase

1/R

0°

–90°

–180°

π/4 π/2 3π/4 π

Angle

Audio Filter Designs: IIR Filters 187

 All pass fi lters have interesting designs that yield equally interesting results. Their frequency

responses are perfectly fl at from DC to Nyquist. However, the phase responses are the

same as those in fi rst- and second-order LPFs. You get all of the phase shift but none of the

frequency response change. These fi lters can be found in crossovers and reverb algorithms.

They are also used for the phaser effect. APFs are designed with pole-zero pairs whose pole/

zero radii are reciprocals of one another. For a fi rst-order APF, the pole lies somewhere on the

real axis inside the unit circle at radius R . The zero lies outside the unit circle at radius 1/ R

(Figure 6.25).

 If you think about the geometric interpretation and analysis of the transfer function, as you

move around the unit circle, your vector distances from the pole and zero will always be

reciprocals, or 1/each other. The amplitude response is then fl at but the phase response does

change because it is not based on the distance to the point in question but rather on the angle

of incidence of the ray line drawn from the analysis point to the pole or zero. The second-

order APF has complementary poles and zeros also at reciprocal radii (Figure 6.26).

 Figure 6.24: A comparison between Butterworth and Linkwitz–Riley fi lters
each with f c = 1 kHz; the Linkwitz–Riley fi lter is down −6 dB at f c .

 Figure 6.25: The fi rst-order APF has a fl at frequency response but shifts
the phase of the signal by −90 degrees at f c (p/2 in this example).

Im

R

1/R

Phase

0°

-180°

-360°

Re

Π/4 Π/2 3Π/4

Angle

Π

188 Chapter 6

 6.6.7 First- and Second-Order APF

 Specify:

• f c , corner frequency

• Q , steepness of phase shift at f c (second-order only)

 The design equations are as follows:

 First-Order APF Second-Order APF

a 5
 tan 1pfc / fs 2 2 1

 tan 1pf
c / fs 2 1 1

 a 5
 tan 1pQ / fs 2 2 1

 tan 1pQ / fs 2 1 1

 b 5 2cos uc

a0 5 a a0 5 2a

a1 5 1.0 a1 5 b 11 2 a 2
a2 5 0.0 a2 5 1.0

b1 5 a b1 5 b 11 2 a 2
b2 5 0.0 b2 5 2a

 (6.40)

 6.7 Audio Specifi c Filters

 The basic classical fi lters provide many functions in audio and can be very musical

(e.g., resonant low-pass fi lters in synthesizers) but you also need fi lters that are very audio

specifi c. These fi lters are found all throughout plug-ins and have been used in mixing

consoles and other audio gear for decades. These designs are often not found in DSP

textbooks because of their specifi c audio-only functions. These fi lters include:

• Shelving fi lters

• Parametric EQ

• Graphic EQ

 Figure 6.26 : The second-order APF adds another −90 degrees of phase shift at f c (p/2 here).

2 -b

-1
Z

1
-b

Z
-1

Σ 0 a x(n)

0 d

0 c Σ y(n)

-1
Z

1 a

-1
Z

2 a

Audio Filter Designs: IIR Filters 189

 These all require a slightly modifi ed bi-quad structure. The reason is that these fi lters require

mixing the original, unfi ltered input directly with the output in a mix ratio. The ratio is

controlled by two more coeffi cients, c 0 and d 0 .

 6.7.1 Modifi ed Bi-Quad

 You can see that the fi lter in Figure 6.27 is a bi-quad with two extra coeffi cients, c 0 and d 0 ,

which make the wet-dry mix ratio needed for these fi lter types.

 6.7.2 First-Order Shelving Filters

 Low shelving

 Specify:

• f c , low shelf frequency

• Low-frequency gain/attenuation in dB

 High shelving

 Specify:

• f c , high shelf frequency

• High-frequency gain/attenuation in dB

 Figure 6.27: The modifi ed bi-quad required for audio fi lters.

10 kHz 1 kHz 100 Hz 10 Hz
-12.0 dB

-8.0 dB

-4.0 dB

0.0 dB

+4.0 dB

+8.0 dB

+12.0 dB

190 Chapter 6

 The design equations are as follows:

 Low Shelving High Shelving

uc 5 2p fc / fs uc 5 2p fc / fs

 m 5 10Gain(dB)/20
 m 5 10Gain(dB)/20

 b 5
4

1 1 m
 b 5

1 1 m

4

 d 5 b tan 1uc/2 2 d 5 b tan 1uc/2 2
 g 5

1 2 d

1 1 d
 g 5

1 2 d

1 1 d

a0 5
1 2 g

2
a0 5

1 1 g

2

a1 5
1 2 g

2
a1 5 2 a1 1 g

2
b

a2 5 0.0 a2 5 0.0

b1 5 2g b1 5 2g

b2 5 0.0 b2 5 0.0

c0 5 m 2 1.0 c0 5 m 2 1.0

d0 5 1.0 d0 5 1.0

(6.41)

 Shelving fi lters are used in many tone controls, especially when there are only two, bass

and treble, which are almost always implemented as shelf types. The fi lters have a corner

frequency and gain or attenuation value. Figure 6.28 shows a family of shelving fi lter

response curves.

 Figure 6.28: Low and high shelving fi lter responses. The low shelf frequency = 400 Hz,
high shelf frequency = 5 kHz, with a variety of boost/cut settings.

10 kHz 1 kHz 100 Hz 10 Hz
-6.0 dB

-3.0 dB

0.0 dB

+3.0 dB

+6.0 dB

+9.0 dB

+12.0 dB

Audio Filter Designs: IIR Filters 191

 6.7.3 Second-Order Parametric/Peaking Filter: Non-Constant-Q

 Specify:

• f c , center frequency

• Q quality factor

• Gain/attenuation in dB

 Parametric EQs allow you to adjust the center frequency, Q and boost or cut creating any

arbitrary bumps or notches in the frequency response (Figure 6.30). The parametric EQ is a

variation on the ordinary band-pass and band-stop fi lters that generates symmetrical boost/

cut curves and mixes in the dry signal to create the fi nal response. A true digital parametric

EQ not only has independent controls, but each control only varies one coeffi cient in the

fi lter. The parametric EQs in this section afford the same frequency response but adjustments

in any parameter require a recalculation of all the coeffi cients. These fi lters are also called

peaking fi lters.

 This parametric EQ is not constant-Q, which means the bandwidth varies depending on the

boost/cut value. Some analog fi lters have the same issue, although there is occasional debate

over whether or not this is desirable in an EQ design. Figure 6.29 shows this EQ with three

different boost curves with a center frequency of 1 kHz and Q 5 1.0; therefore, the bandwidth

should also be 1000 Hz.

 Note: These fi lter coeffi cients contain the tan() function, which is undefi ned at p/2 and then

fl ips negative between p/2 and p. The argument is u c /2 Q , so care must be taken with these

fi lters to ensure that u c /2 Q does not fall on the range of p/2 to p. One solution is to clamp the

value of u c /2 Q so that it never equals or exceeds p/2.

 Figure 6.29: The non-constant-Q peaking fi lter has different bandwidths for
different gain values; the bandwidth widens as the gain is reduced.

 f c = 1 kHz, Q = 0.707.

10 kHz 1 kHz 100 Hz 10Hz
-12.0

-8.0

-4.0

0.0

+4.0

+8.0

+12.0 dB

dB

dB

dB

dB

dB

dB

192 Chapter 6

 The design equations are as follows:

uc 5 2pfc
/

fs

 m 5 10Gain(dB)/20

 z 5
4

1 1 m

 b 5 0.5
1 2 z tan 1uc/2Q 2
1 1 z tan 1uc/2Q 2

 g 5 10.5 1 b 2cos uc

a0 5 0.5 2 b

a1 5 0.0

a2 5 2(0.5 2 b)

b1 5 22g

b2 5 2b

c0 5 m 2 1.0

d0 5 1.0

 (6.42)

 6.7.4 Second-Order Parametric/Peaking Filter: Constant-Q

 Specify:

• f c , center frequency

• Q , quality factor

• Gain/attenuation in dB

 This design creates an almost perfect constant-Q fi lter with only a small amount of error

for low-boost (or cut) values (Figure 6.31). The effect of the constant-Q design is clearly

evidenced in the frequency response plot (Figure 6.32).

 Figure 6.30 : A set of responses for the non-constant-Q parametric/peaking
fi lter with a variety of boost/cut settings. f c = 1 kHz, Q = 2.

10 kHz 1 kHz 100 Hz 10 Hz
-6.0

-3.0

0.0

+3.0

+6.0

+9.0

+12.0 dB

dB

dB

dB

dB

dB

dB

Audio Filter Designs: IIR Filters 193

 The design equations are as follows:

 K 5 tan(p fc /

fs)

V0 5 10boost/cut(dB)/20

 d0 5 1 1
1

Q
K 1 K2

 e0 5 1 1
1

V0Q
K 1 K2

(6.43)

 Boost Cut

a 5 1 1
V0

Q
K 1 K2 a0 5

a

d0

 a0 5

d0

e0

b 5 2 1K2 2 1 2 a1 5

b

d0

 a1 5
b

e0

g 5 1 2
V0

Q
K 1 K2 a2 5

g

d0

 a2 5
d

e0

d 5 1 2
1

Q
K 1 K2 b1 5

b

d0

 b1 5
b

e0

h 5 1 2
1

V0Q
K 1 K2 b2 5

d

d0

 b2 5
h

e0

 c0 5 1.0 c0 5 1.0

 d0 5 0.0 d0 5 0.0

 Figure 6.31: The constant-Q peaking fi lter preserves the bandwidth over most
of the range of boost/cut values. f c = 1kHz, Q = 0.707.

10 kHz 1 kHz 100 Hz 10 Hz
-12.0

-8 .0

-4 .0

0.0

+4.0

+8.0

+12.0 dB

dB

dB

dB

dB

dB

dB

194 Chapter 6

 6.7.5 Cascaded Graphic EQ: Non-Constant-Q

 Specify:

• f c , center frequency

• Gain/attenuation in dB

 The graphic EQ is a fi xed Q variation on the parametric EQ. In a graphic EQ, the user only

has control over the boost and cut of a set of fi lters tuned to fi xed center frequencies. The Q

that is used will depend on the boost or cut settings as well as the number of bands of EQ.

For non-constant-Q graphic EQs, the method of fi nding the proper Q can be diffi cult because

the bandwidth will change for various settings of the boost/cut. The value for Q is sometimes

chosen so that when all the controls are set to the maximum boost or cut values, the frequency

response is as fl at as possible.

 The Q for constant-Q fi lters is easy to calculate knowing the number of bands split across the

10 octaves of audio. It is a good starting point for developing a non-constant-Q EQ plug-in;

experimentation may be needed to fi nd the ideal Q for your particular design. You might also

allow the user to adjust the value within reason. The equation relating Q to the number of EQ

bands is Equation 6.44 .

N 5
Number of modules

10

Q 5
"2N

2N 2 1

 (6.44)

 For a 10-band graphic EQ, Q 5 1.414, while for a 31-band (aka 1/3 octave) EQ, Q 5 4.32.

The center frequencies of the bands are usually found with the following International

Organization for Standardization (ISO) standard equation:

 Figure 6.32 : A set of responses for the constant-Q parametric/peaking fi lter with a
variety of boost/cut settings. f c = 1 kHz, Q = 2.

10 kHz 1 kHz 100 Hz 10 Hz
0.0 dB

dB +6.0

+12.0 dB

+18.0 dB

+24.0 dB

dB +30.0

+36.0 dB

x(n)

Non-
constant-Q

peaking
filter 1

fc = 64 Hz

Non-
constant-Q

peaking
filter 2

fc = 125 Hz

Non-
constant-Q

peaking
filter 3

fc = 250 Hz

Non-
constant-Q

peaking
filter 10

fc = 16 kHz

y(n)

Audio Filter Designs: IIR Filters 195

q 5
Number of bands

10

fn 5 1000*2
n@q

n 5 0, 61, 62, 63, etc ...

 (6.45)

 For a 10-band EQ, this works out (with rounding) to 32 Hz, 64 Hz, 125 Hz, 250 Hz, 500 Hz,

1 kHz, 2 kHz, 4 kHz, 8 kHz, and 16 kHz.

 The cascaded graphic EQ topology is shown in Figure 6.33 . It consists of a simple series

cascade of each of the fi lter modules. The non-constant-Q graphic uses the same non-

constant-Q peaking fi lter algorithm, but with the Q fi xed according to Equation 6.42 . You can

get a good feel for how the Q affects the overall response by looking at a plot with all controls

set to the maximum boost (or cut). For a 10-band non-constant-Q graphic, we observe the

combined response shown in Figure 6.34 .

 6.7.6 Cascaded Graphic EQ: Constant-Q

 Specify:

• f c , center frequency

• Gain/attenuation in dB

 Figure 6.33: The cascaded graphic EQ topology; this is for a 10-band design
using the ISO center frequencies. The design equations for each module use

the non-constant-Q algorithm above.

 Figure 6.34: At the prescribed constant-Q value of Q = 1.414 we observe rippling and
an increased high-frequency response with all controls at maximum boost.

y(n)

constant-Q
peaking
filter 10

f c = 16 kHz

constant-Q
peaking
filter 3

f c = 250 Hz

constant-Q
peaking
filter 2

fc = 125 Hz

constant-Q
peaking
filter 1

fc = 64 Hz

x(n)

+30.0 dB

+25.0 dB

+20.0 dB

+15.0 dB

+10.0 dB

+5.0 dB

0.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

196 Chapter 6

 The constant-Q graphic EQ follows the same design pattern (Figure 6.35) except that you

use the constant-Q peaking fi lter in each of the modules. The equations for fi nding the center

frequencies and Q are the same as above. Bohn (1986) recommends not rounding the ISO

center frequencies but rather use the exact values. Figure 6.36 shows the composite response

with all controls set to full boost.

 6.8 Design a Resonant LPF Plug-In

 We’ll continue with a resonant LPF design. The fi lter will use the second-order bilinear

transform design and the bi-quad structure for implementation. After that you will redesign

the fi lter using the Massberg technique for analog emulation and examine the differences.

Note: This fi lter is found in RackAFX’s module menu item under “HP/LP Filter” for you to

experiment with and use to check your own implementations.

 For this project, we’ll be using our fi rst built-in object. I’ve already prepared a bi-quad object

for you to use in this (or any other) project. It is not a RackAFX plug-in but rather a simple

C11 object that accomplishes only one task: the bi-quad structure realization. The bi-quad

can be used to make any fi rst- or second-order feed-forward or feed-back type fi lter. Let’s take

a moment to check out the CBiquad object. You can fi nd the interface in the pluginconstants.h

 Figure 6.35: The cascaded graphic EQ topology; this is for a 10-band design using the
exact unrounded ISO center frequencies. The design equations for each module use the

constant-Q algorithm above.

 Figure 6.36: The 10-band constant-Q graphic EQ with the prescribed Q = 1.414
produces less low-frequency rippling and a decreased high-frequency response

with all controls at maximum boost.

Audio Filter Designs: IIR Filters 197

fi le and the implementation in the pluginobjects.cpp fi les, respectively. The CBiquad object

has the members and variables in Table 6.2 .

 You can see that this object is simple; it only has two functions, one to reset and the other to

do the bi-quad calculation. The coeffi cients must be calculated externally—this object has

no knowledge of the fi lter type that it is implementing, the sample rate, and so on. You will

see that this simple object will also save you a lot of coding for fi lters in later chapters. We

will need to set up the user interface (UI) and then link the variables to the bi-quad objects in

userInterfaceChange().

 6.8.1 Project: ResonantLPF

 Create the project and name it “ResonantLPF,” then add the sliders for the graphical user

interface (GUI).

 6.8.2 ResonantLPF GUI

 Figure 6.37 shows what your fi nal GUI will look like. You will need the controls shown in

 Table 6.3 .

 Table 6.2: The CBiquad object interface.

CBiquad

Member Variables Purpose

protected:
float m_f_Xz_1
float m_f_Xz_2
float m_f_Yz_1
float m_f_Yz_2

Implements the four delay elements needed for the bi-quad:
x(n − 1), x(n − 2), y(n − 1) and y(n − 2) in these protected
variables

public:
float m_f_a0
float m_f_a1
float m_f_a2
float m_f_b1
float m_f_b2

The fi lter coeffi cients

Member Functions

void fl ushDelays() Initialize all delay elements with 0.0s

fl oat doBiQuad(fl oat f_xn) Do one cycle of fi lter operation; return value is y(n)

Parameters

• fl oat f_xn Input: the current input sample, x(n)

198 Chapter 6

 6.8.3 ResonantLPF.h File

 RackAFX provides you with the built-in bi-quad object named CBiquad and you don’t

need to do anything at all to add it to your project. You can just declare your bi-quad objects

directly in the .h fi le like you would any other object:

 CBiquad m_LeftLPF; // or whatever you like to name it

 Here’s my .h fi le with the left and right LPF objects declared:

 // Add your code here: --- //
 CBiquad m_LeftLPF;
 CBiquad m_RightLPF;

 // END OF USER CODE -- //

 We’ll also need a function to calculate the bi-quad’s coeffi cients (a 0 , a 1 , a 2 , b 1 , and b 2) and we

can share this between the left and right objects (i.e., both LPFs will have the same cutoff and

 Q , so they will also have the same coeffi cients). Declare this now:

 // Add your code here: --- //
 CBiquad m_LeftLPF;
 CBiquad m_RightLPF;

 Table 6.3: The GUI controls for the resonant LPF.

Slider Property Value

Control Name Fc

Units Hz

Variable Type fl oat

Variable Name m_f_fc_Hz

Low Limit 100

High Limit 5000

Initial Value 1000

Slider Property Value

Control Name Q

Units

Variable Type fl oat

Variable Name m_f_Q

Low Limit 0.5

High Limit 20

Initial Value 0.707

 Figure 6.37: The resonant LPF GUI.

1000.0 Hz
Fc Q

0.71

Audio Filter Designs: IIR Filters 199

 void calculateLPFCoeffs(fl oat fCutoffFreq, fl oat fQ);

 // END OF USER CODE -- //

 6.8.4 ResonantLPF.cpp File

 Write the calculateLPFCoeffs() function in the .cpp fi le by using Equation 6.35 . I have used

the same intermediate coeffi cient names here too.

 void CResonantLPF::calculateLPFCoeffs(fl oat fCutoffFreq, fl oat fQ)
 {

 // use same terms as in book:
 fl oat theta_c = 2.0*pi*fCutoffFreq/(fl oat)m_nSampleRate;
 fl oat d = 1.0/fQ;

 // intermediate values
 fl oat fBetaNumerator = 1.0 — ((d/2.0)*(sin(theta_c)));
 fl oat fBetaDenominator = 1.0 + ((d/2.0)*(sin(theta_c)));

 // beta
 fl oat fBeta = 0.5*(fBetaNumerator/fBetaDenominator);

 // gamma
 fl oat fGamma = (0.5 + fBeta)*(cos(theta_c));

 // alpha
 fl oat fAlpha = (0.5 + fBeta — fGamma)/2.0;

 // left channel
 m_LeftLPF.m_f_a0 = fAlpha;
 m_LeftLPF.m_f_a1 = 2.0*fAlpha;
 m_LeftLPF.m_f_a2 = fAlpha;
 m_LeftLPF.m_f_b1 = —2.0*fGamma;
 m_LeftLPF.m_f_b2 = 2.0*fBeta;

 // right channel
 m_RightLPF.m_f_a0 = fAlpha;
 m_RightLPF.m_f_a1 = 2.0*fAlpha;
 m_RightLPF.m_f_a2 = fAlpha;
 m_RightLPF.m_f_b1 = —2.0*fGamma;
 m_RightLPF.m_f_b2 = 2.0*fBeta;

 }

 prepareForPlay()

• Flush the bi-quad buffers.

• Cook the raw variables.

 bool __stdcall CResonantLPF::prepareForPlay()
 {

200 Chapter 6

 // Add your code here:
 m_LeftLPF.fl ushDelays();
 m_RightLPF.fl ushDelays();

 // calculate the initial values
 calculateLPFCoeffs(m_f_fc_Hz, m_f_Q);

 return true;
 }

 userInterfaceChange()

• If the user moves either slider then we have to recalculate all the coeffi cients because they

are interdependent on both f c and Q .

• There is no need to check the slider nControlIndex value here.

 bool __stdcall CResonantLPF::userInterfaceChange(int nControlIndex)
 {

 // update coeffs for next time
 calculateLPFCoeffs(m_f_fc_Hz, m_f_Q);

 return true;
 }

 processAudioFrame()

• Call the methods on the fi lter objects to do the processing.

• They will automatically update their own delay lines and maintain themselves so the code

is simple.

 bool __stdcall CResonantLPF::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,
 UINT uNumInputChannels, UINT uNumOutputChannels)

 {
 // Do LEFT (MONO) Channel; there is always at least one input/one output
 // (INSERT Effect)
 pOutputBuffer[0] = m_LeftLPF.doBiQuad(pInputBuffer[0]);

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0]; // Just copying

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = m_RightLPF.doBiQuad(pInputBuffer[1]);

 return true;
 }

 Build and test your resonant LPF. Use the analyzer’s frequency and phase response features

to verify that all is working as you would expect. You now have a working resonant LPF, but

Frequency
High shelf f Nyquist

fs/2 fs/4

½ Nyquist

fs/8

1/4 Nyquist

Gain at
Nyquist

Nyquist
½ Gain at

0.0

Amplitude
(dB)

Desired Low-Pass
Response

Gain Matching Point

Shelving filter
with high shelf

frequency above
Nyquist

Error

Audio Filter Designs: IIR Filters 201

the Nyquist response is always clamped to 0.0, so let’s investigate a technique to make the

response more closely match the original analog fi lter.

 6.9 The Massberg Analog-Matched Low-Pass Filter

 At the 131st Audio Engineering Society Convention in 2011, Michael Massberg presented a

solution to the clamping problem, producing fi rst- and second-order low-pass fi lters that very

closely match their analog counterparts near and at the Nyquist frequency. It takes advantage

of the fact that a shelving fi lter with a very high upper shelf frequency has a roll-off portion

that very closely resembles the roll-off of a low-pass fi lter. In a nutshell, the idea is to design

a shelving fi lter whose upper shelf frequency is above Nyquist. In the range from DC to

Nyquist, it will resemble a low-pass fi lter (Figure 6.38). A unique matching scheme is applied

to force the two responses to match their gains exactly at a point halfway between the gain

at DC and the gain at Nyquist in decibels, with a slight error at points above that frequency.

The result is a fi lter that has an excellent approximation to the analog response it is trying

to mimic.

 Massberg used fi rst- and second-order shelving fi lters to produce analog-matched low-

pass fi lters applying the bilinear transform to produce the fi nal result. Figure 6.39 shows a

comparison of the standard digital LPF and the Massberg LPF.

 6.9.1 First-Order Massberg LPF

 Specify:

• f c , corner frequency

 Figure 6.38 : The Massberg fi lter uses a shelving fi lter as a prototype. In the range from
DC to Nyquist, it very closely resembles the desired low-pass fi lter. The two curves are

displaced slightly.

10 kHz 1 kHz 100 Hz 10 Hz
-60.0 dB

-45.0 dB

-30.0 dB

-15.0 dB

0.0 dB

+15.0 dB

dB +30.0 Massberg

Unmodified LPF

202 Chapter 6

 The design equations are as follows:

 g1 5
2

É4 1 a

fs

fc
b2

 ac

 gm 5 max 1"0.5, "g1 2
 vm 5

2pfc"1 2 g2
m

gm

 Vm 5 tanavm

2 fs
b

 Vs 5 Vm

"1g2
m 2 g2

1 2 11 2 g2
m 2

1 2 g2
m

(6.46)
 g0 5 Vs 1 1

 a0 5 Vs 1 g1

 a1 5 Vs 2 g1

 b 5 Vs 2 1

 a0 5
a0

g0

 a1 5
a1

g0

 a2 5 0

 b1 5
b1

g0

 b2 5 0

 Figure 6.39: The Massberg and unmodifi ed LPF responses with f c = 5 kHz and Q = 10.
The difference in the high-frequency response is evident.

Audio Filter Designs: IIR Filters 203

 6.9.2 Second-Order Massberg LPF

 Specify:

• f c , corner frequency

• Q , quality factor controlling resonant peaking

 The design equations are as follows:

 uc 5 2p fc / fs

g1 5
2

Ça2 2 a"2p

uc
b2b 1 a 2p

Quc
b2

Calculate Vs depending on the value of Q:

Q . "5? Q # "5?

gr 5
2Q2

"4Q2 2 1
 vm 5 ucå

2 2
1

2Q2
1 Å

1 2 4Q2

Q

4
1

4

g1

2

vr 5 ucÅ1 2
1

2Q

2
 Vm 5 tanavm

2
b

Vr 5 tanavr

2
b Vs 5

uc 11 2 g2
1 2 1/4

2
 (6.47)

Vs 5 Vrag2
r 2 g2

1

g2
r 2 1

b1/4

 Vs 5 min 1Vs, Vm 2

Calculate the pole and zero frequencies (v), gains (g) and Qs

vp 5 2 arctan 1Vs 2 vz 5 2 arctan a Vs

"g1

b

gp 5
1

Åa1 2 avp

uc
b2b 1 a vp

Quc
b2

 gz 5
1

Åa1 2 avz

uc
b2b 1 a vz

Quc
b2

Qp 5 Ç
g1(g

2
p 2 g2

z)

(g1 1 g2
z)(g1 2 1)2

 Qp 5 Ç
g2

1(g
2
p 2 g2

z)

g2
z(g1 1 g2

p)(g1 2 1)2

204 Chapter 6

g0 5 V2
s 1

1

Qp

 Vs 1 1

a0 5 V2
s 1

"g1

Qz

 Vs 1 g1

a1 5 2 1V2
s 2 g1 2 b1 5 2 1V2

s 2 1 2
a2 5 V2

s 2
"g1

Qz

 Vs 1 g1 b2 5 V2
s 2

1

Qp

 Vs 1 1
(6.48)

a0 5
a0

g0

a1 5
a1

g0

 b1 5
b1

g0

a2 5
a2

g0

 b2 5
b2

g0

 Challenge: Modify your digital resonant LPF plug-in to add the Massberg fi lter option, then

experiment with high-fi delity music and listen for the differences in sound.

 Biblio graphy

 Allred, R. 2003. Second-order IIR fi lters will support cascade implementations: 5 part digital audio application

tutorial. EE Times Design Guide . http://www.eetimes.com/design/audio-design/4009473/Second-order-IIR-

Filters-will-support-cascade-implementations—5-Part-digital-audio-application-tutorial. Accessed August 15,

2012.

 Berners, D. P. and Abel, J. S. 2003. Discrete-time shelf fi lter design for analog modeling. Journal of the Audio
Engineering Society , preprint 5939.

 Bohn, D. 1986. Constant-Q graphic equalizers. Journal of the Audio Engineering Society 34(9): 611–25.

 Bohn, D. 2008. Bandwidth in octaves versus Q in band-pass fi lters. Application Note 170. Mukilteo,

WA: Rane Corp.

 Dodge, C. and Jerse, T. 1997. Computer Music Synthesis, Composition and Performance , Chapter 6. New York:

Schirmer.

 Giles, M., ed. 1980. The Audio/Radio Handbook . Santa Clara, CA: National Semiconductor Corp.

 Kwakernaak, H. and Sivan, R. 1991. Modern Signals and Systems , Chapter 9. Englewood Cliffs, NJ:

Prentice-Hall.

 Lane, J. et al. 2001. DSP Filters , Chapters 4–10 and 20. Carmel, IN: Howard W. Sams & Co.

 Lane, J. and Hillman, G. 1991. Implementing IIR/FIR Filters with Motorola’s DSP56000/DSP56001 . APR7/D

Rev1. Schomberg, ON: Motorola, Inc.

 Leach, M. 1999. Introduction to Electroacoustics and Audio Amplifi er Design , Chapter 6. Dubuque, IA:

Kendall-Hunt.

 Lindquist, C. 1977. Active Network Design , Chapter 2. Miami: Steward & Sons.

 Lindquist, C. 1999. Adaptive and Digital Signal Processing , Chapter 5. Miami: Steward & Sons.

 Massberg, M. 2011. Digital low-pass fi lter design with analog-matched magnitude response. Journal of the Audio
Engineering Society , preprint 8551 (Massberg 2011).

 Moore, R. 1990. Elements of Computer Music , Chapter 2. Englewood Cliffs, NJ: Prentice-Hall.

http://www.eetimes.com/design/audio-design/4009473/Second-order-IIRFilters-will-support-cascade-implementations%E2%80%945-Part-digital-audio-application-tutorial
http://www.eetimes.com/design/audio-design/4009473/Second-order-IIRFilters-will-support-cascade-implementations%E2%80%945-Part-digital-audio-application-tutorial

Audio Filter Designs: IIR Filters 205

 Motorola, Inc. 1991. Digital Stereo 10-Band Graphic Equalizer Using the DSP56001 . APR2/D. Schomberg, ON:

Motorola, Inc.

 Oppenheim, A. V. and Schafer, R. W. 1999. Discrete-Time Signal Processing , 2nd ed., Chapter 7. Englewood

Cliffs, NJ: Prentice-Hall.

 Smith, J. O. and Angell, J. B. 1982. A constant gain digital resonator tuned by a single coeffi cient. Computer
Music Journal 4(4): 36–40.

 Zöler, U. 2011. Digital Audio Effects , 2nd ed., Chapter 2. West Sussex, U.K.: John Wiley & Sons.

References

Ifeachor, Emmanuel C. and Jervis, Barrie W. 1993. Digital Signal Processing: A Practical Approach. Menlo Park:

Addison-Wesley. pp. 398–400.

Orfanidis, Sophacles. 1997. Digital Parametric Equalizer Design with Prescribed Nyquist-Frequency Gain.

Journal of the Audio Engineering Society 45(6): 444–55.

207

 Before we can start looking at some fi nite impulse response (FIR) algorithms, we need to

deal with the concept of long delay lines or circular buffers. Not only are they used for the

delay effects, but also they are needed to make long FIR fi lters. In this chapter we’ll take a

break from the DSP fi lter algorithms and develop some digital delays. If you think back to the

infi nite impulse response (IIR) fi lters you’ve worked on so far you will remember that after

implementing the difference equation, you need to shuffl e the z −1 delay element values. You

do this by overwriting the delays backwards, like this:

 m_f_z2 5 m_f_z1;

 m_f_z1 5 xn ; // xn is the input sample

 Suppose you had a fi lter that was higher than a second-order one and you had to implement

 z −4 using discrete variables for each delay element. You might wind up writing something like

this to do the shuffl ing:

 m_f_z4 5 m_f_z3;

 m_f_z3 5 m_f_z2;

 m_f_z2 5 m_f_z1;

 m_f_z1 5 xn ; // xn is the input sample

 But what happens when the delay line gets really long, like z −1024 or, for a 1-second digital

delay, z −44100 ? It’s going to be diffi cult to implement the delay shuffl ing this way. Not only

would it be tedious to code, it would also be very ineffi cient to have to implement all those

read/write operations each sample period. The answer to the problem of long delay lines is

called circular buffering.

 Digital signal processors (DSPs) have an interesting feature in the address generation unit

(AGU), which allows you to declare a buffer of data to be addressed circularly. This kind of

addressing is not built into the C++ programming language’s array access operation. We will

have to code the mechanism ourselves. When you declare a buffer, the addressing is linear.

 CHAPTER 7

Delay Effects and
Circular Buffers

START LOOP

pBuffer[n]

Buffer

Increment pointer by +5 samples

Buffer Buffer Buffer

pBuffer[n + 5]

pBuffer[n + 10]

pBuffer[n + 15] ???

208 Chapter 7

This means that the pointer will add or subtract the offset you provide and move linearly to

the next location. Suppose you declare a buffer of fl oats like this:

 fl oat Buffer[1024];

 and a pointer to the buffer:

 fl oat* pBuffer = &Buffer[0];

 and then you enter a loop which accesses the data, incrementing by fi ve addresses each time

through the loop:

 for(int n=0; n<someNumber; n+=5)
 {
 fl oat data = pBuffer[n];
 }

 What happens if the pointer is accessed outside the buffer, as shown in Figure 7.1 ? Usually

a crash or debug halt. You always have to be careful when setting up a loop like that one

to make sure the pointer never accesses outside the buffer. But what if you are stuck with

a certain sized buffer and a different sized loop so that you are never sure if the pointer is

going to go outside the buffer on the next iteration? In a DSP chip, when you declare a buffer

to be circular, you are setting up a pointer access mechanism. Reads and writes are made

with a pointer, which is incremented or decremented by some amount to generate the next

access location. If the amount of offset causes the pointer to go outside the bounds of the

buffer, it automatically wraps to the other side, including the amount of offset, as depicted

in Figure 7.2 .

 Figure 7.1: After several accesses, the pointer goes outside the buffer into an unknown location,
usually resulting in a crash.

START LOOP

pBuffer[n]

Buffer

Increment pointer by +5 samples

Buffer

pBuffer[n + 5]

Buffer

pBuffer[n + 10]

pBuffer[n + 15]

Buffer

x(n)
x(n)+(fb)*y(n)

(fb)*y(n)

Z –D

fb

x(n– D)+(fb)*y(n–D)
y(n)

Delay Effects and Circular Buffers 209

 Circular buffers are useful in audio signal processing. You can create circular buffers of audio

samples or buffers of coeffi cients and loop through and access them automatically. Let’s

start with the most obvious use and make a digital delay effect.

 7.1 The Basic Digital Delay

 The digital delay effect or DDL (digital delay line) consists of a long buffer for storing

audio samples. The samples enter one end of the buffer and come out the other end after D

samples of delay, which corresponds to D sample periods. A feedback path allows for delay

regeneration, or repeated echoes, as shown in Figure 7.3 . With the feedback control fb set

to 0, there is only a single delayed sample. With any other value, repeated echoes will form

at the rate corresponding to the length of the delay line. The block diagram is shown in

 Figure 7.3 .

 The difference equation is as follows:

 y(n) 5 x(n2D) 1 fb * y(n2D) (7.1)

 Figure 7.2: In a circular buffer, the pointer is automatically wrapped back to the top and
offset by the proper amount to continue the access-by-fi ve-samples loop.

 Figure 7.3: Basic DDL.

210 Chapter 7

 From the difference equation in Equation 7.1 , you can see that the output consists of an input

sample delayed by D samples plus a scaled version of the output at that time, fb * y (n 2 D). The

sequence of accessing the delay line during the processAudioFrame() function is as follows:

1. Read the output value, y(n), from the DDL and write it to the output buffer.

2. Form the product fb * y (n).

3. Write the input value, x(n) 1 fb * y(n), into the delay line.

 You might notice that s o m ethi ng i s missing here: the shuffl ing of the samples through the

delay. If we use a circular buffer as the delay line, then we don’t have to shuffl e data around,

but we do have to keep track of the read and write access locations in the buffer and wrap the

pointers as needed. In order to understand how the buffer operates to make a delay, consider

a circular buffer that we’ve been writing samples into each sample period and automatically

wrapping the pointer (or index) back to the top of the buffer as needed. The code would look

something like this:

 // buffer size, 1 second of audio data
 int nBufferLength = 44100;

 fl oat Buffer[nBufferLength];
 .
 .
 .
 . // somewhere else in code:
 int nIndex = 0;
 .
 .

 // inside a loop of some kind:
 pBuffer[nIndex] = audioSample;

 nIndex++;

 // if we go outside the buffer
 if(nIndex >= nBufferLength) // if we hit nBufferLength, we are one sample outside
 nIndex = 0; // wrap the pointer back to the top for the next iteration
 .
 .

 Suppose this has been going on for some time, and we are left with the buffer looking

like Figure 7.4 after the last write access and just before we increment the pointer index.

If pBuffer is pointing to the current sample value x (n)

• Where is the x (n 21) sample (the youngest delayed value)?

• Where is the oldest sample in the delay?

 In Figure 7.5 the youngest sample, x (n 21), is in the location just before pBuffer[i], that is

pBuffer[i21]. The oldest sample is found by working backwards to the top of the buffer,

pBuffer[i]

Buffer

x(n)

Buffer

etc...

x(n –2)
x(n –1)

x(n)

x(n –D +1)

pBuffer[i]

Youngest delayed sample

Oldest delayed sample

Delay Effects and Circular Buffers 211

wrapping back to the bottom, and locating the oldest sample written; it is at pBuffer[i11].

If the pointer is accessing the samples sequentially from top to bottom, then the youngest

sample is just above x (n) and the oldest is just below it. It is easy to understand that the

youngest sample is x (n 21) but why is the oldest sample labeled x (n2 D 11) rather than

 x (n 2 D)?

 The answer to the question is that we overwrote the actual oldest sample, x (n 2 D), when we

wrote in x (n). This is one of the reasons for our rule about always performing reads before

writes in our algorithms. This means that to get the oldest sample in the delay, you must fi rst

read out pBuffer[i] before writing into it. In other words, before the write access, the buffer

looks like Figure 7.6 ; you can see the oldest value x (n 2 D) is actually the location of the

current write operation.

 The steps for creating the delay line in your plug-in are as follows:

1. Decide on the maximum amount of delay you need to provide.

2. Declare read and write index values.

 Figure 7.4: After many loops through the buffer, pBuffer[i] points to x (n).

 Figure 7.5: The youngest and oldest samples in the delay line.

pBuffer[i]

Buffer

etc...

x(n–2)
x(n–1)
x(n–D)

x(n–D+1)

Youngest delayed sample

Oldest delayed sample

212 Chapter 7

3. Declare a fl oat buffer for each channel, right and left: for very long delay lines this is

traditionally done with the new operator in the constructor of the plug-in.

4. Initialize the buffers with 0.0 using the memset() function.

 During the processAudioFrame() function, you will need to

• Use the read and write index values to operate the delay.

• Increment or decrement the indices according to the algorithm you are using.

• Check to see if you need to wrap the index values for the next sample period.

 In order to use the delay line, the user needs to provide a value for the delay amount in samples

(in Section 7.3 we will allow them to enter the delay in milliseconds instead, but we will convert

this to a sample count inside the delay). In your code, there are two basic ways to do this:

1. Subtract the delay amount (in samples) from your write index, wrapping the pointer

 backwards if needed, to locate the delayed sample.

2. Store a read index and offset the two indices when the user changes the delay amount.

 The second option is better because you only have to offset the index values and perform

the subtraction/wrap when the user changes the delay value, instead of each time through

the processAudioFrame() loop. Suppose the user selects 100 samples of delay time.

You have declared two indices, m_nRead and m_nWrite, to use for buffer. During the

processAudioFrame() function you will need to do the following fi ve steps.

 Step 1: Read out the delayed audio data, d (n2 D 2100), which is 100 samples behind the

current x (n) sample time; this value is y (n), the current output value (Figure 7.7).

 fl oat yn = pBuffer[m_nRead];

 Step 2: Form the input combination input + feedback * output:

 fl oat xn = pInputBuffer[0] + m_fFeedBack*yn;

 Figure 7.6: The location of the oldest audio sample x (n – D).

pBuffer[m_nRead]

100 sample offset

m_nRead = m_nWrite –100

pBuffer[m_nWrite]

d(n – D – 100)

Buffer

pBuffer[m_nRead]

100 sample offset

Buffer

d(n–D–100)

x(n) + fb*y(n) pBuffer[m_nWrite]

Delay Effects and Circular Buffers 213

 m_fFeedBack is declared in your .h fi le; this example code is for processing the left channel,

pInputBuffer[0].

 Step 3: Write the input data into the delay line at the m_nWrite location (Figure 7.8).

 Step 4: Increment the read and write pointers by one to set up for the next time through the

function; check for wrapping and do that if necessary. Can you think of other ways to do this?

 // inc/wrap
 m_nWrite++;
 if(m_nWrite >= m_ nBufferLength)
 m_nWrite = 0;

 m_nRead++;

 if(m_nRead >= m_ nBufferLength)
 m_nRead = 0;

 Figure 7.7: The delayed sample is read at location d (n – D –100), 100 samples before
the current write location.

 Figure 7.8: The delayed sample plus feedback is written into the current write location.

214 Chapter 7

 Notice that we wrap if the incremented index hits nBufferLength because this references the

location just one sample outside the delay line.

 Step 5: In the event that the user changes the delay time, you need to recalculate the m_nRead

index to accommodate it. Note that once set up, the m_nWrite index is never changed except

to increment it through the line. In this example, the user has selected nSamples of delay in

the plug-in.

 // user selects nSample delay
 // fi rst subtract the index
 m_nRead = m_nWrite - nSamples;

 // the check and wrap BACKWARDS if the index is negative
 if (m_nRead < 0)
 m_nRead += nBufferLength; // amount of wrap is Read + Length

 7.2 Digital Delay with Wet/Dry Mix

 Although there may be some instances where you don’t need a wet/dry mix, in general when

you make a delay plug-in, you still want to hear your unaffected signal. This can be done

by using the plug-in as an Auxiliary (AUX) Send effect rather than an insert effect. But, to

provide both capabilities, you need to provide the user with a wet/dry ratio control. The block

diagram is slightly modifi ed as shown in Figure 7.9 .

 The difference equation is as follows:

 y(n) 5 dry * x(n) 1 wet * 3x(n2D) 1 fb * y(n2D) 4 (7.2)

 7.2.1 Frequency and Impulse Responses

 Consider the basic delay with no feedback applied and with the wet/dry ratio at 1:1. The

block diagram and difference equation would then reduce down to Figure 7.10 .

 The difference equation is as follows:

 y(n) 5 x(n) 1 x(n2D) (7.3)

 To fi nd the frequency response, fi rst take the z transform of the difference equation and form

the transfer function:

y(n) 5 x(n) 1 x(n2D)

Y(z) 5 X(z) 1 X(z)z2D

 5 X(z)(11z2D)

H(z) 5
Y(z)

X(z)
5 11z2D

(7.4)

x(n) Z –D

Dry

Wet y(n)

fb

x(n) Z –D

1

1 y(n)

Delay Effects and Circular Buffers 215

 Next, calculate the poles and zeros of the transfer function. We can see that this is a pure

feed-forward fi lter in its current state so there are only zeros. We need to fi nd the roots of the

equation for H (z):

 0 5 1 1 z2D

 5 zD 1 1

 zD 5 21

Let z 5 ejv

 ejDv 5 21

 Apply Euler

 cos(Dv) 1 j sin(Dv) 5 21

 (7.5)

 The roots (zeros) of the function lie wherever D v causes the equation to evaluate to 21 1 j 0,

and we know this will happen when Equation 7.6 holds true.

cos(Q) 1 j sin(Q) 5 211 j0

if

Q 5 ;p, ; 3p, ; 5p, etc...

 (7.6)

 Figure 7.9: A more useful digital delay incorporates wet and dry controls.

 Figure 7.10: The simplifi ed DDL of D samples delay.

216 Chapter 7

 Notice that both 6p produce the desired result of 21 1 j 0 as well as all the odd

multiples of p: 63p, 65p, and so on. So the actual solution to fi nd the roots becomes

 Equation 7.7 :

cos(Dv) 1 j sin(Dv) 5 21 1 j0

if

Dv 5 ; p, ; 3p, ; 5p, ..., ; Np

until

N . D21

or

zeros at v 5 ;
kp

D
 k 5 1, 3, 5, ..., D

 (7.7)

 After N . D 21, the whole mathematical sequence repeats again, cycling through odd

multiples of p. This means that there are D zeros spread equally around the unit circle. This

makes sense—the fundamental theorem of algebra predicts D roots for a polynomial of

order D . Now consider the simple case of D 5 2 samples; we get Equation 7.8 :

cos(2v) 1 j sin(2v) 5 21

if

v 5 ;
kp

D
 k 5 1, 3, 5, ..., D

v 5 ;
p

2

(7.8)

 There are two zeros, one at 1p/2 and the other at 2p/2. Plot those on the unit circle in the

 z -plane and you can see what the frequency response will be, shown in Figure 7.11 . You

can see from Figure 7.11 that the zeros produce a notch (zero of transmission) at 6p/2. In

fact, when the delay time is very small, your ears hear the effect as a frequency response

change; your ears cannot discriminate two samples that are only 23 uS apart as separate

echoes. Now consider what would happen if we increase the delay amount to four samples,

as in Figure 7.12 . Finally, what would happen if the delay is an odd value, like D 5 5

(Figure 7.13)?

cos(Dv) 1 j sin(Dv) 5 21 1 j0

cos(4v) 1 j sin(4v) 5 21 1 j0

v 5 ;
pk

D
 k 5 1, 3, 5, ..., D

v 5 ;
p

4
, ;

3p

4

(7.9)

Im

Re

+12.0dB

0.0dB

-12.0dB

-24.0dB

-36.0dB

-48.0dB

-60.0dB
2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Im

Im

Re

+12.0dB

0.0dB

-12.0dB

-24.0dB

-36.0dB

-48.0dB

-60.0dB
2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Re

+12.0dB

0.0dB

-12.0dB

-24.0dB

-36.0dB

-48.0dB

-60.0dB
2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Delay Effects and Circular Buffers 217

cos(Dv) 1 j sin(Dv) 5 21 1 j0

cos(5v) 1 j sin(5v) 5 21 1 j0

v 5 ;
kp

5
 k 5 1, 3, 5, ..., D21

v 5 ;
p

5
, ;

3p

5
, ;

5p

5

v 5 ;
p

5
, ;

3p

5
, ; p

(7.10)

 This kind of frequency response in Figure 7.13 is called inverse comb fi ltering . As we add

more and more samples of delay, we add more and more notches to the response. You can use

 Figure 7.11: The z -plane pole/zero plot and resulting frequency response.

 Figure 7.12: The z -plane pole/zero plot and resulting frequency response for D = 4 samples.

 Figure 7.13: The z -plane pole/zero plot and resulting frequency response for D = 5 samples.

+12.0dB

0.0dB

-12.0dB

-24.0dB

-36.0dB

-48.0dB

-60.0dB
2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

+12.0dB

0.0dB

-12.0dB

-24.0dB

-36.0dB

-48.0dB

-60.0dB
10Hz 100Hz 1kHz 10kHz

218 Chapter 7

the built in module in RackAFX to experiment. Figures 7.14 and 7.15 show the frequency

response for 32 samples of delay—it’s an inverse comb fi lter with 16 zeros in the positive

frequency domain.

 7.2.2 The Effect of Feedback

 When you add feedback to the delay, two things happen: fi rst, for long delays your ear will

hear discrete repeating echoes that decay away after the signal is removed. As the delay time

gets shorter and shorter, the echoes merge, begin to ping, and then the actual fi ltering (which

has been going on all the time) now dominates what you hear.

 In Figure 7.16 , you can see the effect of feedback on the impulse response. The initial

impulse is the one through the dry path, and the next identical-sized one is the fi rst output

of the delay line. The echoes decay, being reduced 90% on each trip through the fi lter.

To understand the effect on frequency response, write the transfer function and take the z

transform. To make it easier to fi nd the pole frequencies, let the feedback value become 100%

 Figure 7.15: Frequency response (log) with D = 32 samples.

 Figure 7.14: Frequency response (linear) with D = 32 samples.

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

0 102 204 306 408 510 612 714 816 918

x(n)
x(n) + fb*s(n)

Z –D

fb

s(n)
1

1

y(n)

Delay Effects and Circular Buffers 219

or 1.0, as shown in the block diagram in Figure 7.17 ; even though we know this would result

in oscillation, it will make calculating the frequencies easier.

 The difference equation is as follows:

 y(n) 5 x(n) 1 x(n2D) 2 fb * x(n2d) 1 fb * y(n2D) (7.11)

 To derive the difference equation, label the output of the delay line s (n) (Equation 7.12):

(7.12)

The input to the delay line 5 x(n) + fb* s(n)

therefore

s(n) 5 x(n2D) 1 fb * s(n2D)

and

y(n) 5 x(n) 1 s(n)

5 x(n) 1 x(n2D) 1 fb * s(n2D)

 Figure 7.16: Impulse response with 90% feedback, 32 samples of delay.

 Figure 7.17: Block diagram of the DDL with feedback.

220 Chapter 7

rearranging:

s(n) 5 y(n) 2 x(n)

s(n 2 D) 5 y(n2D) 2 x(n2D)
(7.13)

 Substituting Equation 7.13 into Equation 7.12 gives you the following difference equation:

y(n) 5 x(n) 1 x(n2D) 1 fb * 3y(n2D) 2 x(n2D) 4

5 x(n) 1 x(n2D) 1 fb * y(n2D) 2 fb*x(n2D)
 (7.14)

 To fi nd the transfer function, separate variables and take the z transform:

y(n) 2 fb*y(n2D) 5 x(n) 1 x(n2D) 2 fb*x(n2D)

 Y(z) 2 fbY(z)z2D 5 X(z) 1 X(z)z2D 31 2 fb 4
 Y(z) 31 2 fbz2D 4 5 X(z) 31 1 z2D 2 fbz2D 4
 H(z) 5

Y(z)

X(z)
5

1 1 z2D 2 fbz2D

12fbz2D

 H(z) 5
1 1 (12fb)z2D

12fbz2D

(7.15)

 The new transfer function has both zeros (which we already calculated) and poles. The poles

are caused by the feedback and will occur whenever the denominator becomes zero. If we let

 fb 5 1.0, then equation Equation 7.15 reduces to Equation 7.16 .

H(z) 5
1

1 2 z2D

 0 5 1 2 z2D

 0 5 zD 2 1

 zD 5 1

Let z 5 ejv

ejDv 5 1

Apply Euler

cos(Dv) 1 j sin(Dv) 5 1

cos(U) 1 j sin(U) 5 1 1 j0

if

U 5 0, ; 2p, ; 4p, ; 6p, etc...

(7.16)

Im

Re

+36.0dB

+20.0dB

+4.0dB

-12 .0dB

-28 .0dB

-44 .0dB

-60 .0dB
2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Delay Effects and Circular Buffers 221

cos(Dv) 1 j sin (Dv) 5 1 1 j0

if

Dv 5 0, ;
2p

D
, ;

4p

D
, ;

6p

D
, . . ., ;

Np

D

until

N . D21

or

poles at v 5 ;
kp

D
 k 5 0, 2, 4, 6, . . ., D

 (7.17)

 Equation 7.17 shows that the poles will occur at even multiples of p and DC (0 Hz) when

Euler’s equation becomes 11 j 0; the analysis is nearly identical to the zero case. Consider the

case of four samples:

cos(Dv) 1 j sin(Dv) 5 1 1 j0

cos(4v) 1 j sin(4v) 5 1 1 j0

v 5 ;
pk

D
 k 5 0, 2, 4, 6, ..., D

v 5 0, ;
p

2
, ;

4p

4

v 5 0, ;
p

2
, ; p

(7.18)

 Figure 7.18 shows the effect of 100% feedback – the response is technically infi nite at the

pole frequencies. It produces a comb fi lter (with the teeth of the comb pointing up) rather

than the inverse comb fi lter you saw when examining the zeros. The amount of feedback will

affect the radius of the poles and the zeros, but not the pole or zero frequencies, which are

 Figure 7.18: The z -plane pole/zero plot and resulting frequency response for D = 4 samples with
 fb = 1.0. The peaks theoretically go to infi nity.

Im

Re

Im

Re

+12.0dB

0.0dB

–12.0dB

–24.0dB

–36.0dB

–48.0dB

–60.0dB 2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

+12.0dB

0.0dB

–12.0dB

–24.0dB

–36.0dB

–48.0dB

–60.0dB 2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

222 Chapter 7

 Figure 7.20: The z -plane pole/zero plot and resulting frequency response for D = 4 samples,
50% feedback.

 Figure 7.19: The z -plane pole/zero plot and resulting frequency response for D = 4 samples,
75% feedback.

only dependent on the amount of delay. Consider the transfer function with a feedback value

of 0.75:

H(z) 5
1 1 (12fb)z2D

12 fbz2D

H(z)|fb50.75 5
110.25z2D

120.75z2D

 (7.19)

 The poles will have a radius of 0.75, while the zeros will have a radius of 0.25. This will

result in the z -plane plot and frequency response in Figure 7.19 . You can see that the lowered

radius results in less gain at the pole frequencies. The peaks are now softer and the overall

gain is reduced down to about 18 dB from infi nity. If you continue to drop the feedback to

50% (0.5) then the poles and zeros will be distributed at equal radii, as shown in Figure 7.20 .

 As the feedback gets smaller and smaller, the response will turn into the pure inverse comb

fi ltering when the poles disappear (by converging on z 5 0) and the response goes to 0.0 at

the zero frequencies. What would happen if we inverted the feedback? This would mean that

the feedback value is a negative percentage. Consider –50% feedback and look at the transfer

function in Equation 7.20 :

Im

Re

+12.0dB

0.0dB

–12.0dB

–24.0dB

–36.0dB

–48.0dB

–60.0dB
2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

0 102 204 306 408 510 612 714 816 918

Delay Effects and Circular Buffers 223

H(z) 5
1 1 (12fb)z2D

12fbz2D

H(z)|fb5 21 5
111.5z2D

110.5z2D

 (7.20)

 If you look at Equation 7.20 , you can fi gure out that the pole frequencies are going to lie at

the zero frequencies (notice the signs of the coeffi cients). The zeros will be at a radius of 1.5,

while the poles will be at 0.5. A frequency lying on the unit circle will be under the infl uence

of all four poles and zeros.

 For the four-sample delay, a feedback value of –62% will make the frequency response

perfectly fl at, but with –3 dB of attenuation seen in Figure 7.21 . The poles will have radii of

0.62 with the zeros at radii of 1.38. This means you can create a delay that has no comb/inverse

comb fi ltering, but only at this particular value. Other negative feedback values will give

varying degrees of cancellation. In practice, the poles will dominate and small peaks can appear

at high inverted feedback values. In the time domain, the echoes will alternate between positive

and negative values each time they are fl ipped in the feedback path, shown in Figure 7.22 .

 Figure 7.21: At –62% feedback with 4 samples of delay, the frequency response
becomes fl at but slightly attenuated.

 Figure 7.22: The effect of inverted feedback on the impulse response; feedback
is –90% here.

x (n)

fb_in(n)

fb_out(n) fb

Dry

Wet y(n) ∑Z
–D

224 Chapter 7

 7.3 Design a DDL Module Plug-In

 In the previous projects, it was easy enough to simply declare left and right delay elements

and coeffi cients for our simple fi lters. However, as the fi lters become more complex, this

becomes more tedious and is also bad coding practice since we have replicated some code.

For educational purposes, it is better to split the code out at fi rst, but now it’s time to think

modularly. More complicated delay effects like the stereo cross feedback or LCR (left center

right) delay will be easier to implement if we have a fl exible delay module to work with. In this

project, you will create a DDL module that you can use in many other projects. It is going to be

a slight modifi cation on the above DDL + wet/dry control. Here are the specifi cations:

• Implements an n -sample delay line, user controllable, up to 2 seconds of delay.

• Delay is given in milliseconds.

• Has feedback capable of –100% to +100% operation.

• Has wet/dry mix ratio control; 50/50 is an equal mix while 100/0 is full wet (delay only).

• Allows the feedback sample to be taken from the delay line, or supplied “outside” the

module; the reason for this will become evident later.

• Allows access to the current feedback output sample. This allows you to insert other

 effects into the feedback path by using the switch to choose feedback_in; it also allows

for cross coupling the feedback paths of stereo modules.

 The block diagram is given in Figure 7.23 .

 For this design, let’s implement a mono-only version. We can then make stereo versions

by making two of our member variables the module object. That’s right—you can use one

plug-in inside another by making it a member object. First, let’s get started on the DDL

module. Note: For the initial DDL modules, don’t worry about the feedback path switching.

We need to get the delay debugged and running fi rst.

 Figure 7.23: Our more fl exible DDL module; a switch allows the user to choose where the
feedback sample is taken. Here it is using the normal output feedback path. The feedback output

is available for use at the fb_out pin.

Delay Effects and Circular Buffers 225

 7.3.1 Project: DDLModule

 By now, you should be getting good at RackAFX programming, so we can move more

quickly through the process. Create the project and add the sliders.

 7.3.2 DDLModule GUI

 Here is the fi nal graphical user interface (GUI) for the DDL module in Figure 7.24 . You can

use my variable names or make up your own. You will need the controls shown in Table 7.1 .

We do not need a switch for the feedback option on the UI; it will only be needed by the

super plug-in that includes this module as a member object.

 Figure 7.24: The DDL Module GUI.

 Table 7.1: GUI controls for the DDL module

Slider Property Value

Control Name Delay

Units mSec

Variable Type fl oat

Variable Name m_fDelay_ms

Low Limit 0

High Limit 2000

Initial Value 0

Slider Property Value

Control Name Feedback

Units %

Variable Type fl oat

Variable Name m_f_Feedback_pct

Low Limit –100

High Limit 100

Initial Value 0

(continued)

Delay Feedback Wet/Dry
0.00 % 0.00 mSec 0.00 %

226 Chapter 7

Table 7.1: GUI controls for the DDL module (Continued)

Slider Property Value

Control Name Wet/dry

Units %

Variable Type fl oat

Variable Name m_f_WetLevel_pct

Low Limit 0

High Limit 100

Initial Value 50

 7.3.3 DDLModule.h File

 In the .h fi le, add the cooked variables, m_fDelayInSamples, m_fFeedback, and

m_fWetLevel:

 // Add your code here: --- //
 fl oat m_fDelayInSamples;
 fl oat m_fFeedback;
 fl oat m_fWetLevel;
 // END OF USER CODE -- //

 // ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! -------------------------------- //
 // **--0x07FD--**

 fl oat m_fDelay_ms;
 fl oat m_fFeedback_pct;
 fl oat m_fWetLevel_pct;
 // **--0x1A7F--**
 // --- //

 Note: I named the RackAFX controls with _ms and _pct appended to remind me that

these values need to be cooked to be used.

 Note: The delay time cooked variable is a fl oat, m_fDelayInSamples rather than an integer

number of samples. This is because we will allow fractional delay in a future version of the

module. For now, though, we will treat it as an integer.

 7.3.4 DDLModule .cpp File

 Constructor

• Initialize variables.

Delay Effects and Circular Buffers 227

 CDDLModule::CDDLModule()
 {
 <SNIP SNIP SNIP>
 // Finish initializations here
 m_fDelayInSamples = 0;
 m_fFeedback = 0;
 m_fDelay_ms = 0;
 m_fFeedback_pct = 0;
 m_fWetLevel = 0;

 }

 The formula for fi guring out the delay time in samples from the delay time in milliseconds is

 Equation 7.21 .

 Samples delay 5 (D mSec) c sample rate

1000
d (7.21)

 Cooking the feedback value is easy—just divide by 100 to convert the percent to a raw

multiplier. The same thing is true for the wet level value. In this project, we’ll introduce the

concept of a cooking function to handle the work. Because we are planning on using this

plug-in as a module for future development, it will be a good idea. From this point on, you

should get in the habit of making a cooking function. In this case, we will keep it simple and

have the cooking function recalculate all the plug-in’s variables regardless of which ones

actually change. This is an effort to educate fi rst. You can always go back and streamline

your functions and code after the plug-in has been tested and is functioning. First, declare the

cooking function in the .h fi le:

 // Add your code here: --- //
 fl oat m_fDelayInSamples;
 fl oat m_fFeedback;
 fl oat m_fWetLevel;

 void cookVariables();
 // END OF USER CODE -- //

 Write the function:

 // function to cook the variables
 void CDDLModule::cookVariables()
 {
 m_fFeedback = m_fFeedback_pct/100.0;
 m_fWetLevel = m_fWetLevel_pct/100.0;
 m_fDelayInSamples = m_fDelay_ms*((fl oat)m_nSampleRate/1000.0);
 }

 Then, we can add the cooking function to

• The end of the constructor()

• prepareForPlay()

• userInterfaceChange()

228 Chapter 7

 Constructor

 CDDLModule::CDDLModule()
 {

 <SNIP SNIP SNIP>

 // Finish initializations here
 <SNIP SNIP SNIP>
 m_fFeedback_pct = 0;
 m_fWetLevel = 0;
 cookVariables();

 }

 prepareForPlay()

 bool __stdcall CDDLModule::prepareForPlay()
 {

 // cook
 cookVariables();

 return true;

 }

 Notice the big change made here—rather than a switch/case statement, we just go ahead and

cook all the data.

 userInterfaceChange()

 bool __stdcall CDDLModule::userInterfaceChange(int nControlIndex)
 {

 // cook
 cookVariables();

 return true;
 }

 Now that the UI details are taken care of, we can get to the business of declaring the delay

line, initializing it, and fi nally implementing the effect.

 7.3.5 Declare and Initialize the Delay Line Components

 For a delay line, you will need the following variables:

• A fl oat* which points to a buffer of samples

• An integer read index

• An integer write index

• An integer that is the size of the buffer in samples

Delay Effects and Circular Buffers 229

 Add them to your .h fi le:

 // Add your code here: --- //
 fl oat m_fDelayInSamples;
 fl oat m_fFeedback;
 fl oat m_fWetLevel;

 fl oat* m_pBuffer;
 int m_nReadIndex;
 int m_nWriteIndex;
 int m_nBufferSize;
 // END OF USER CODE -- //

 The delay line will be created dynamically. It will be destroyed in the destructor. The problem

is that we don’t yet know what the sample rate will be; we won’t know that until the user

loads a new fi le and begins playing it. Just before RackAFX calls your prepareForPlay()

function, it sets the sample rate on your plug-in’s m_nSampleRate variable. Therefore, we

will have to dynamically create and fl ush out the buffer each time prepareForPlay() is called.

In the constructor, we set the m_pBuffer to NULL as a fl ag to know that it is uninitialized, as

well as zero the buffer size and read and write index values.

 Constructor

 CDDLModule::CDDLModule()
 {
 <SNIP SNIP SNIP>

 m_fFeedback_pct = 0;
 m_fWetLevel = 0;

 // reset
 m_nReadIndex = 0;
 m_nWriteIndex = 0;

 // no buffer yet because we don’t have a sample rate yet

 m_pBuffer = NULL;
 m_nBufferSize = 0;

 // cook
 cookVariables();

 }

 prepareForPlay()

• Create the buffer now that we know the sample rate.

 bool __stdcall CDDLModule::prepareForPlay()
 {

 // setup our delay line
 m_nBufferSize = 2*m_nSampleRate; // 2 seconds delay @ fs

230 Chapter 7

 // delete it if it exists
 if(m_pBuffer)
 delete [] m_pBuffer;

 // create the new buffer
 m_pBuffer = new fl oat[m_nBufferSize];

 return true;
 }

 Destructor

• Delete the buffer.

 CDDLModule::~CDDLModule(void)
 {

 // delete buffer if it exists
 if(m_pBuffer)

 delete [] m_pBuffer;
 }

 To initialize the buffer with 0.0, use the the memset function. That memset() fl ushes the

buffer of data, and we need to do this each time prepareForPlay() is called so we don’t play

out old data at the onset. We are going to be fl ushing and resetting the buffer in several places

in code, so it is also a good thing to make into a function.

 7.3.6 DDLModule.h File

 // Add your code here: --- //
 fl oat m_fDelayInSamples;
 fl oat m_fFeedback;
 fl oat m_fWetLevel;

 void cookVariables();
 void resetDelay();
 // END OF USER CODE -- //

 7.3.7 DDLModule.cpp File

 // function to fl ush buffer and set Write pointer back to top
 // read pointer will be calculated based on write pointer location
 void CDDLModule::resetDelay()
 {

 // fl ush buffer
 if(m_pBuffer)

 memset(m_pBuffer, 0, m_nBufferSize*sizeof(fl oat));

 // init read/write indices
 m_nWriteIndex = 0; // reset the Write index to top
 m_nReadIndex = 0; // reset the Read index to top

 }

Delay Effects and Circular Buffers 231

 You can also modify the cooking function to add the code for updating the read index; set

the read and write indices depending on the amount of delay time, so you can use a modifi ed

version of the code from Section 7.1 . Note: The delay in samples is cast to an integer using

the casting method (int).

 // function to cook the variables
 void CDDLModule::cookVariables()
 {

 m_fFeedback = m_fFeedback_pct/100.0;
 m_fWetLevel = m_fWetLevel_pct/100.0;
 m_fDelayInSamples = m_fDelay_ms*((fl oat)m_nSampleRate /1000.0);

 // subtract to make read index
 m_nReadIndex = m_nWriteIndex - (int)m_fDelayInSamples; // cast as int!

 // check and wrap BACKWARDS if the index is negative
 if (m_nReadIndex < 0)

 m_nReadIndex += m_nBufferSize; // amount of wrap is Read + Length
 }

 prepareForPlay()

• Reset the delay in prepareForPlay() after creating the buffer and before cookVariables().

 bool __stdcall CDDLModule::prepareForPlay()
 {

 // setup our delay line
 m_nBufferSize = 2*m_nSampleRate; // 2 seconds delay @ fs

 // delete it if it exists
 if(m_pBuffer)

 delete [] m_pBuffer;

 // create the new buffer
 m_pBuffer = new fl oat[m_nBufferSize];

 // reset
 resetDelay();

 // then cook
 cookVariables();

 return true;

 }

 processAudioFrame()

• The fl owchart for the processAudioFrame() function is shown in Figure 7.25 .

 Note: We have one minor detail to deal with, and this is going to happen when we use the

delay line in a read-then-write fashion. If the user has chosen 0.00 mSec of delay, then

y(n) = DDL[read] DDL[write] =
x(n) + fb*y(n)

Output =
wet*y(n) + (1-wet)*x(n)

Increment:
read++
write++

Check for wrap

232 Chapter 7

the write pointer and read pointer will be the same. This also occurs if the user selects the

 maximum delay value since we want to read the oldest sample before writing it. So, we need

to make a check to see if there is no delay at all and deal with it accordingly.

 bool __stdcall CDDLModule::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,
 UINT uNumInputChannels, UINT uNumOutputChannels)
 {

 // SYNC CODE: DO NOT REMOVE - DO NOT PLACE CODE BEFORE IT
 WaitForUIChangeDone();
 setProcessAudioDone(false);
 // END SYNC CODE

 // Do LEFT (MONO) Channel
 // Read the Input
 fl oat xn = pInputBuffer[0];

 // Read the output of the delay at m_nReadIndex
 fl oat yn = m_pBuffer[m_nReadIndex];

 // if zero delay, just pass the input to output
 if(m_fDelayInSamples == 0)

 yn = xn;

 // write the input to the delay
 m_pBuffer[m_nWriteIndex] = xn + m_fFeedback*yn;

 // create the wet/dry mix and write to the output buffer
 // dry = 1 - wet
 pOutputBuffer[0] = m_fWetLevel*yn + (1.0 - m_fWetLevel)*xn;

 // incremnent the pointers and wrap if necessary
 m_nWriteIndex++;
 if(m_nWriteIndex >= m_nBufferSize)

 m_nWriteIndex = 0;

 m_nReadIndex++;
 if(m_nReadIndex >= m_nBufferSize)

 m_nReadIndex = 0;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0]; // copy MONO!

 Figure 7.25: Flowchart for processAudioFrame().

Delay Effects and Circular Buffers 233

 // DDL Module is MONO - just do a copy here too
 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0]; // copy MONO!

 // SYNC CODE: DO NOT REMOVE
 setProcessAudioDone();

 return true;

 }

 Build and test the module in RackAFX to make sure it works. You should get a generic delay

effect with up to two seconds of delay. We only have two items to take care of to complete

this fi rst version of the module. The fi rst is easy: we need to provide the user of the module

with a way to choose external feedback and have access to the feedback variable. The second

is more diffi cult: we need to be able to handle fractional delay.

 In order for someone to use this module inside another plug-in and get access to the feedback

path, we need to provide some functions that will only be called by a plug-in parent. We also

need to modify the processAudioFrame() function to use an externally supplied feedback sample.

 7.4 Modifying the Module to Be Used by a Parent Plug-In

 It’s actually pretty easy to modify this module to work as an internal module for a plug-in. We

need to provide a variable for the feedback sample and allow the user to set this value. We also

need to provide a way to allow the user to get the current feedback value. Finally, we need a

switch to allow the user to select the external feedback mode. That switch will be in the form

of a boolean fl ag. After we get the variables set up, we can modify the processAudioFrame()

function to use the external feedback sample.

 7.4.1 DDLModule.h File

 Declare the following new variables:

 bool m_bUseExternalFeedback ; // fl ag for enabling/disabling
 fl oat m_fFeedbackIn ; // the user supplied feedback sample value

 Also, declare and implement the get/set functions. They are so short you can just put them in

the .h fi le rather than implementing them in the .cpp fi le.

 // Add your code here: --- //
 fl oat m_fDelayInSamples;
 fl oat m_fFeedback;
 fl oat m_fWetLevel;

 void cookVariables();
 void resetDelayLine();

234 Chapter 7

 fl oat* m_pBuffer;
 int m_nReadIndex;
 int m_nWriteIndex;
 int m_nBufferSize;

 bool m_bUseExternalFeedback; // fl ag for enabling/disabling
 fl oat m_fFeedbackIn; // the user supplied feedback sample value

 // current FB is fb*output
 fl oat getCurrentFeedbackOutput(){return m_fFeedback*m_pBuffer[m_nReadIndex];}

 // set the feedback sample
 void setCurrentFeedbackInput(fl oat f){m_fFeedbackIn = f;}

 // enable/disable external FB source
 void setUsesExternalFeedback(bool b){m_bUseExternalFeedback = false;}
 // END OF USER CODE -- //

 The current feedback sample output is found at m_pBuffer[m_nReadIndex] and multiplied

by the feedback coeffi cient as per the block diagram. By allowing the user to get and set the

feedback, we allow them to break into the loop and insert other effects, or use the feedback

output for some other purpose altogether.

 7.4.2 DDLModule.cpp File

 processAudioFrame()

• Modify the function to allow the use of externally supplied feedback samples:

 bool __stdcall CDDLModule::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,
 UINT uNumInputChannels, UINT uNumOutputChannels)
 {

 // Do LEFT (MONO) Channel
 // Read the Input
 fl oat xn = pInputBuffer[0];

 // Read the output of the delay at m_nReadIndex
 fl oat yn = m_pBuffer[m_nReadIndex];

 // if zero delay, just pass the input to output
 if(m_fDelayInSamples == 0)

 yn = xn;

 // write the input to the delay
 if(!m_bUseExternalFeedback)
 m_pBuffer[m_nWriteIndex] = xn + m_fFeedback*yn; // normal
 else
 m_pBuffer[m_nWriteIndex] = xn + m_fFeedbackIn; // external feedback

Delay Effects and Circular Buffers 235

 // create the wet/dry mix and write to the output buffer
 // dry = 1 - wet
 pOutputBuffer[0] = m_fWetLevel*yn + (1.0 - m_fWetLevel)*xn;

 etc…

 You can see that the change required is very minor—just a switch to change the feedback

sample value. Of course if the user enables this option, then they are responsible for placing

meaningful data in the fFeedbackIn variable.

 Rebuild and test the code to make sure it still works properly. In the next section, we will use

the module to make two different plug-ins:

1. Stereo digital delay

2. Stereo crossed-feedback delay

 7.5 Modifying the Module to Implement Fractional Delay

 Before we work on the bigger projects, we need to take care of the problem of

fractional delay. We would like the user to be able to get any amount of delay they want.

By implementing only sample-based delay, we are limiting the user to choosing delays

that are multiples of the sample period, about 23 uSec. You might think that is enough

accuracy; however, there are several instances where this won’t be enough. The fi rst

is the case of a delay that is beats-per-minute (BPM) synchronized (e.g., delay is set

to a multiple of the song’s BPM to create synchronized echoes or percussion effects).

The second case is that of modulated delays like chorus and fl anging, which require

smooth modulations from one delay time to another. Linear interpolation will provide

acceptable results.

 Suppose our delay is in a state where we have calculated our delay position to be at sample

location 23.7183 samples. We need to fi nd the value of the data at the location 0.7183

between sample 23 and sample 24. In Figure 7.26 you can see a graphic representation of

the interpolation method. Since it’s linear interpolation, a line is drawn between the adjacent

samples and the interpolated value is found on the line at 0.7183 the distance between the

two samples.

 In polynomial interpolation such as LaGrange interpolation, a curve is drawn between the

points (or a series of points), and then the interpolated value is found on that curve. There are

several ways to implement the linear interpolation but the easiest method is to treat it like a

DSP fi lter. Another way of thinking about interpolation is as a weighted sum. For example,

if the interpolation point is 0.5 between samples 1 and 2, then the interpolated value is made

up of 50% of sample 1 plus 50% of sample 2. In the above case, our interpolated distance is

0.7183, so we can view the output as

y = mx + b

23 24

23.7183

Sample 24
x(n)

frac = 0.7183

Sample 23
x(n-1)

1-frac

frac

y(n)

236 Chapter 7

 interp_output 5 (0.7183)(Sample 2) 1 (0.2817)(Sample 1)

 Here is a linear interpolation function you can use; it is already declared in your

pluginconstants.h fi le:

 fl oat dLinTerp (fl oat x1, fl oat x2, fl oat y1, fl oat y2, fl oat x);

 You give it a pair of data points (x 1, y 1) and (x 2, y 2), plus a distance between them on the

 x -axis (x), and it returns the interpolated value using the weighted sum method. The fi rst part

of the code checks for a potential divide by zero fault that technically should not happen. You

should also be aware that linear interpolation is a form of feed-forward fi ltering. The block

diagram of the above function would look like Figure 7.27 .

 Thus, in the processAudioFrame(), we need to fi nd the two sample values that our actual

delay time needs, then do the interpolation. It is pretty straightforward except the situation

 Figure 7.27: Linear interpolation as a kind of feed-forward fi lter. The z –1 element
is removed since we do not know if the interpolated samples will always be

exactly one sample apart. For example, what if the next fractional delay
sample is at location 56.2394?

 Figure 7.26: Linear interpolation of sample values.

Buffer

Current
input
sample

x(n –3)
x(n –2)

x(n–1)

x(n)

x(n –2.4)

Delay Effects and Circular Buffers 237

where we are interpolating across the wrap boundary (from the last sample in the buffer

to the fi rst one). Suppose the user enters a delay time that corresponds to 2.4 samples of

delay. In the cookVariables() function, we locate the read index to be two samples before

the write pointer because we cast the value to an integer, stripping out the fractional part.

The actual delay we really want is 0.4 samples between the current sample and the one

before it. In other words, x (n 22.4) rather than x (n 22). You can see that we need a sample

that is between x (n 22) and x (n 23); in Figure 7.28 it happens to be a distance of 0.4

between them.

 We need to modify our code as follows:

• We are already calculating and updating the fi rst sample that we need to interpolate; it is

located with the index value at m_nReadIndex, so there is nothing to change in the cook-

ing function.

• In the processAudioFrame() function, we need to interpolate between our current read

location m_nReadIndex and the location just before it in the buffer, m_nReadIndex-1.

• Since we are only focused on a single pair of samples at any time and we know they are

one sample apart, we can use the values 0 and 1 for the interpolation function as x 1 5 0,

 x 2 5 1; then we interpolate the fractional distance between them. You can use m_nRead-

Index but you will get in trouble when you are interpolating across the wrap boundary of

the buffer.

• We will need to check for a wrap condition backward if m_nReadIndex–1 takes us out-

side the top of the buffer.

 We can get the fractional value from our m_fDelayInSamples in several ways; here is one of

them:

 float fFracDelay 5 m_fDelayInSamples – (int)m_fDelayInSamples

 Figure 7.28: Fractional interpolation.

238 Chapter 7

 It really only comes down to locating the sample 1 behind our current read index, then using

the linear interpolation code to get the fractional value. There are two extreme conditions to

consider:

• At the maximum delay time, the read and write indices will be equal and the fractional

part of the delay in samples will be 0 so no interpolation will occur—this is OK.

• If the delay in samples is less than 1, the read and write indices will also be equal, but this

will be a problem. In this case, we need to interpolate between the current x (n) and the

sample at x (n 21), one sample behind the read location. Branching will be necessary to

catch this event and handle it.

 7.5.1 DDLModule.cpp File

 processAudioFrame()

• Modify the code to do the interpolation.

 bool __stdcall CDDLModule::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,
 UINT uNumInputChannels, UINT uNumOutputChannels)
 {
 // Do LEFT (MONO) Channel
 // Read the Input
 fl oat xn = pInputBuffer[0];

 // Read the output of the delay at m_nReadIndex
 fl oat yn = m_pBuffer[m_nReadIndex];

 // if delay < 1 sample, interpolate between input x(n) and x(n-1)
 if(m_nReadIndex == m_nWriteIndex && m_fDelayInSamples < 1.00)
 {
 // interpolate x(n) with x(n-1), set yn = xn
 yn = xn;
 }
 // Read the location ONE BEHIND yn at y(n-1)
 int nReadIndex_1 = m_nReadIndex - 1;
 if(nReadIndex_1 < 0)
 nReadIndex_1 = m_nBufferSize-1; // m_nBufferSize-1 is last location

 // get y(n-1)
 fl oat yn_1 = m_pBuffer[nReadIndex_1];

 // interpolate: (0, yn) and (1, yn_1) by the amount fracDelay
 fl oat fFracDelay = m_fDelayInSamples - (int)m_fDelayInSamples;

 // linerp: x1, x2, y1, y2, x
 fl oat fInterp = dLinTerp(0, 1, yn, yn_1, fFracDelay); // interp frac between them

 // if zero delay, just pass the input to output
 if(m_fDelayInSamples == 0)
 yn = xn;

Delay Effects and Circular Buffers 239

 else
 yn = fInterp;

 // write the intput to the delay
 if(!m_bUseExternalFeedback)
 m_pBuffer[m_nWriteIndex] = xn + m_fFeedback*yn; // normfInterpal
 else
 m_pB uffer[m_nWriteIndex] = xn + m_fFeedbackIn; // external feedback

sample
 }

 Now, build and test the module. Try a variety of delay settings. If you hear a repetitive

click in your output that is exactly the same rate as the delay time, then there is something

wrong during the interpolation across the wrap boundary of buffer[0] to buffer[size–1]. Only

advance to the next section when you have this project fully debugged and functional. We will

be including it in the next project, a stereo digital delay.

 7.6 Design a Stereo Digital Delay Plug-In

 In this project, we use two DDL modules in one parent plug-in. RackAFX makes it easy

to do this by allowing you to add other plug-in components (.h and .cpp fi les) into a new

project. It will automatically #include the components too. However, if you use external

modules or other fi les you might need to manually #include these. In Figure 7.29 you can

see that we now have two DDL modules declared as member objects of the new plug-in.

The plug-in implements its own interface of three sliders, which we use to control our

modules.

 7.6.1 Project: StereoDelay

 Create a project named “StereoDelay.” When you create the project, you have the option of

including other modules in your code, seen in Figure 7.30 . RackAFX fi nds all of the existing

RackAFX projects in the default directory you supply and lists them here. You use the Add

button to move them into your project. If you have a project located in another directory that

is not the default, you will need to move the fi les on your own (copy them to the new project

directory and #include them in the new <project>.h fi le and add them into the compiler).

RackAFX will automatically copy them and #include whichever modules you choose. In

this case, choose the DDL module.

 When you use a plug-in as a module for another parent plug-in you must create and implement
a new UI. The child plug-in objects will not expose their sliders to RackAFX, but you can
manipulate the UI variables. All other aspects of the child objects work as expected. In this
plug-in, we will implement another UI to control the modules. See Appendix A.2 for advanced
control of the UI variables.

Figure 7.29: Block diagram of our stereo delay .

x(n) Left

m_DDL_Left

fb_in(n)

fb_out(n)

m_DDL_Right

x(n) Right

Z-D

Dry

Wet

fb

Dry

Wet Z-D

fb_in(n)

fb_out(n) fb

y(n) Left

y(n) Right

Feedback Wet/Dry

210.94 mSec 16.41% 50.00 %

Existing Plug-Ins: Your Project:

SimpleHPF.h
Volume.h
VolumedB.h

DDLModule.h

Add

You can use Stock Objects and/or existing Plug-Ins in your new Plug-In.

240 Chapter 7

 Figure 7.30: Adding existing modules can be done programmatically through RackAFX.

 You can see in Figure 7.30 that I added “DDLModule.h” to the project. After completing the

new project dialog, check your new <plugin>.h fi le:

 #pragma once

 #include "pluginconstants.h"

Delay Effects and Circular Buffers 241

 #include "DDLModule.h"
 #include "plugin.h"

 // abstract base class for DSP fi lters
 class CStereoDelay : public CPlugIn
 {
 public: // Plug-In API Functions

 //
 // 1. One Time Initialization
 CStereoDelay();

 etc …

 7.6.2 StereoDelay GUI

 Your GUI will look like that in Figure 7.29 and you use the same setup from the DDLModule

in Table 7.1 .

 7.6.3 StereoDelay.h File

 In the .h fi le, declare two member objects of type CDDLModule. Also, add a function

called setDelayVariables() to transfer our global delay variables to the member objects and

optionally have the member objects cook the data:

 // Add your code here: --- //
 CDDLModule m_DDL_Left;
 CDDLModule m_DDL_Right;

 // function to pass our variables to member delays
 void setDelayVariables(bool bCook);
 // END OF USER CODE -- //

 Our DDLModules are just C++ objects, so you can treat them as such and call their member

functions and set their member variables. Before implementing the function above, go ahead

and add your UI sliders, exactly the same as before with the same variable names. You will

have something like this:

 // ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! -------------------------------- //
 // **--0x07FD--**

 fl oat m_fDelay_ms;
 fl oat m_fFeedback_pct;
 fl oat m_fWetLevel_pct;

 // **--0x1A7F--**
 // --- //

242 Chapter 7

 7.6.4 StereoDelay.cpp File

 Write the setDelayVariables() function. The Boolean fl ag allows you to optionally call the

cooking functions on the members:

 void CStereoDelay::setDelayVariables(bool bCook)
 {
 // forward our variables over to the member objects

 m_DDL_Left.m_fDelay_ms = m_fDelay_ms;
 m_DDL_Right.m_fDelay_ms = m_fDelay_ms;

 m_DDL_Left.m_fFeedback_pct = m_fFeedback_pct;
 m_DDL_Right.m_fFeedback_pct = m_fFeedback_pct;

 m_DDL_Left.m_fWetLevel_pct = m_fWetLevel_pct;
 m_DDL_Right.m_fWetLevel_pct = m_fWetLevel_pct;

 // cook, if desired
 if(bCook)
 {

 m_DDL_Left.cookVariables();
 m_DDL_Right.cookVariables();

 }
 }

 Constructor

• Initialize the delay variables and cook them; this version does not use the external feed-

back option, so set the bool accordingly.

 CStereoDelay::CStereoDelay()
 {

 <SNIP SNIP SNIP>

 // Finish initializations here
 m_DDL_Left.m_bUseExternalFeedback = false;
 m_DDL_Right.m_bUseExternalFeedback = false;

 // set and (true) cook the delays
 setDelayVariables(true);

 }

 prepareForPlay()

• Set the delay variables.

• Forward the calls to prepareForPlay() on the member objects, which will cook them.

The DDL module will handle fl ushing the buffers and so on.

Delay Effects and Circular Buffers 243

 bool __stdcall CStereoDelay::prepareForPlay()
 {

 setDelayVariables(false);

 m_DDL_Left.prepareForPlay();
 m_DDL_Right.prepareForPlay();

 return true;

 }

 userInterfaceChange()

• Set the delay variables and cook them whenever one of our controls changes. This could

be streamlined for better effi ciency.

 bool __stdcall CStereoDelay::userInterfaceChange(int nControlIndex)
 {

 // set and cook the variables
 setDelayVariables(true);

 return true;

 }

 processAudioFrame()

• Forward the processAudioFrame() call to the member objects.

• Remember that we need to send it only one channel at a time and make sure it is the cor-

rect one. Note the “address of” operator (&) to point to the single memory location we

pass it.

 bool __stdcall CStereoDelay::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumInputChannels, UINT uNumOutputChannels)
 {

 // Do LEFT (MONO) Channel; there is always at least one input/one output
 // forward call to sub-object: pInput, pOutput, 1 input ch, 1 output ch
 m_DDL_Left.processAudioFrame(&pInputBuffer[0], &pOutputBuffer[0], 1, 1);

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0]; // just copy

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 // forward call to sub-object pInput, pOutput, 1 input ch, 1 output ch
 m_DDL_Right.processAudioFrame(&pInputBuffer[1], &pOutputBuffer[1], 1, 1);

 return true;
 }

x(n) Left

m_DDL_Left

fb_in(n)

fb_out(n)

m_DDL_Right

x(n) Right

fb_in(n)

fb_out(n)

z –D

fb

Dry

Wet y(n) Left ∑

∑∑

∑

Dry

Wet y (n) Right
z –D

fb

Delay Feedback Wet/Dry Type

109.38 mSec 60.16% 50.00% CROSS

244 Chapter 7

 Rebuild and test the project and you now have a stereo version of the previous project.

Hopefully, you have a better idea of how powerful it can be to create modules that are

combined, though it does take a bit of extra work on the module since you have to think

ahead and implement functions or variables that are not required for standalone (simple)

plug-in operation. Next, we’ll exercise the module by converting this plug-in to a crossed

feedback delay. We’re going to do this in a specifi c way so we can later use an enumerated

variable to switch between normal and crossed-feedback operation.

 7.7 Design a Stereo Crossed-Feedback Delay Plug-In

 A crossed-feedback delay is implemented by crossing the feedback paths of the two delay

lines. We will add this functionality to the existing StereoDelay project. This is where we will

use the external feedback option that we built into the module. In Figure 7.31 you can trace

the feedback paths to see that they are crossed into the opposite delay line. You will be

surprised at how easy it is to convert the delay into a crossed-feedback delay:

• Enable the external feedback function with the boolean fl ag.

• Use the getCurrentFeedbackOutput() and setCurrentFeedbackInput() functions to “cross

the beams” of the feedback paths.

 Figure 7.31: Block diagram of the crossed-feedback delay.

Slider Properties
Type

learn MIDI

Channel --n/a-­

Control Type --n/a-­

Control Name --n/a--

UI Item

uControiType

uControiiD

Control Name

Units

Data Type (
Variable Name \.
Control low limit

Control High limit

Initial Value

MIDI Control

MIDI Control Channel

MIDI Control Type

MIDI Controller Number/Name

Control Method

Menu Group

Property

Slider

3

Type

-enum

m_uDelayType
......
u.uu

1.00

0.00

false

1

Continous Controller

3 Continuous controller #3

automatic (recommended)

none - -
STRINGS <ep"atod by '""k OIWI CROS_:)
aces will be removed from '
m and Maximum values will be

, . . . I

Enter enumerated list of
or use the default. All sp
strings. The Initial, Minimu
automatically calculated. NOTE. max1mum IS 256 stnngs.

The the first STRING will be the Initial (default) value.
The strings will switch as the user moves the slider.

I I OK I
I I Cancel I

Copy Existing:

I none [~

I Remove Ctrl I

Delay Effects and Circular Buffers 245

 7.8 Enumerated Slider Variables

 You can see from Figure 7.31 that there is a new slider control for the GUI to select

between normal and crossed-feedback operation. You can take advantage of RackAFX’s

enumerated UINT variable to make a slider that selects between multiple enumerated

values, like a multi-position switch. In our case, we only have two positions right now:

normal and cross.

 Right-click on a slider to bring up the properties dialog and add a new slider/variable

combination, as shown in Figure 7.32 . Choose “enum” for the data type and create a variable

called m_uDelayType—the variable will be an unsigned integer type (UINT). The low, high,

and initial value cells will no longer be editable; RackAFX will fi gure them out depending on

what you type in the enumerated variable box. You type in the values separated by commas.

The fi rst value will be the default value.

 In the box at the bottom, type in the strings which will be shown in the slider control

(keep them short); you can have as many enumerated variables as you want, but in this

 Figure 7.32: The enumerated UINT data type.

246 Chapter 7

case, we only need NORM and CROSS. Go to your plug-in’s .h fi le to see the new

variables:

 // ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! -------------------------------- //
 // **--0x07FD--**

 fl oat m_fDelay_ms;
 fl oat m_fFeedback_pct;
 fl oat m_fWetLevel_pct;
 UINT m_uDelayType;
 enum{NORM,CROSS};
 // **--0x1A7F--**
 // --- //

 For enumerated variables, the fi rst one in the list will be the default, with the slider at the

bottom. The other strings will appear in sequence when you move the slider up. The UINT

will automatically be updated. We can use this as a directly controlled variable so there’s

nothing to add in userInterfaceChange(). Make the edits discussed next.

 7.8.1 Constructor

• Initialize the delay type to NORM.

 CStereoDelay::CStereoDelay()
 {

 <SNIP SNIP SNIP>

 // Finish initializations here
 m_DDL_Left.m_bUseExternalFeedback = false;
 m_DDL_Right.m_bUseExternalFeedback = false;

 // set and (true) cook the delays
 setDelayVariables(true);

 // init the delay type
 m_uDelayType = NORM;

 }

 7.8.2 PrepareForPlay()

 Nothing to do; we don’t care what mode we’re in and don’t want to reset the mode each time

the user plays audio.

 7.8.3 UserInterfaceChange()

 Nothing to do; we are using this as a direct control variable.

Delay Effects and Circular Buffers 247

 7.8.4 ProcessAudioFrame()

• Use the enumerated variable in a switch/case statement to modify the feedback as

required. For CROSS operation:

• Set the external feedback fl ag to true.

• Get the left feedback output and write it to the right feedback input.

• Get the right feedback output and write it to the left feedback input.

• Call the processAudioFrame() functions on the DDL modules.

 bool __stdcall CStereoDelay::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumInputChannels, UINT uNumOutputChannels)
 {

 switch(m_uDelayType)
 {
 case CROSS:

 // CROSS FB DELAY --- NOTE: MUST HAVE STEREO FILE! ---------------- //
 m_DDL_Left.m_bUseExternalFeedback = true;
 m_DDL_Right.m_bUseExternalFeedback = true;

 // cross the Feedbacks
 m_DDL_Left.setCurrentFeedbackInput(m_DDL_Right.getCurrent
FeedbackOutput());

 m_DDL_Right.setCurrentFeedbackInput(m_DDL_Left.getCurrent
FeedbackOutput());

 break;

 case NORM: // clear the fl ags

 m_DDL_Left.m_bUseExternalFeedback = false;
 m_DDL_Right.m_bUseExternalFeedback = false;
 break;

 default: // deault is NORM operation; clear the fl ags

 m_DDL_Left.m_bUseExternalFeedback = false;
 m_DDL_Right.m_bUseExternalFeedback = false;
 break;

 }

 // SHARED CODE --- //
 // Do LEFT (MONO) Channel; there is always at least one input/one output
 // forward call to sub-object: pInput, pOutput, 1 input ch, 1 output ch
 m_DDL_Left.processAudioFrame(&pInputBuffer[0], &pOutputBuffer[0], 1, 1);

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0]; // just copy

x(n)

ext_x(n)

fb_in(n)

fb_out(n) fb

Z –D y(n) ∑ ∑

delay_out

fb_in2

Dry

Wet

248 Chapter 7

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 // forward call to sub-object pInput, pOutput, 1 input ch, 1 output ch
 m_DDL_Right.processAudioFrame(&pInputBuffer[1], &pOutputBuffer[1], 1, 1);

 return true;
 }

 Rebuild and test the plug-in; exercise the new delay type control as well.

 Recapping some of the things you learned:

• Declaring, fl ushing, and manipulating delay lines as circular buffers.

• Implementing fractional delay times using interpolation.

• Using a plug-in as a child module for a parent plug-in.

• How to add an enumerated UINT variable for type selection or using a slider as a

 multi-pole switch.

 7.9 More Delay Algorithms

 Here are some ideas for a more complex DDL module and other delay plug-ins.

 7.9.1 Advanced DDL Module

 The more fl exible module in Figure 7.33 allows the parent to have access to the input and pre-

wet output of the delay line and the input and output of the feedback path. Another module

(low-pass fi lter, for example) could be inserted here or it could be used for more crossed-

delay modes.

 7.9.2 Delay with LPF in Feedback Loop

 Analog delays suffer a high frequency loss on each path through the delay line/feedback

path. This can be modeled with a LPF in the feedback path, as shown in Figure 7.34 . You can

 Figure 7.33: A DDL module with more input and feedback path options.

x (n) y(n)∑

LPF

∑

Dry

Wet

fb

Z –D

x(n) y (n)∑

Dry

Wet

fb

Z –D

Tap1

Tap2

∑

Tap3

Tap4

Delay Effects and Circular Buffers 249

 Figure 7.35: A four-tap multi-tap delay line.

 Figure 7.34: An analog delay modeled with an LPF in the feedback loop.

try fi rst- or second-order fi lters with or without resonance for a variety of interesting delay

effects. For other ideas, try changing the type (LPF, high-pass fi lter, band-pass fi lter, band-

stop fi lter) or location (before or after the fb coeffi cient). Be careful with adding resonant or

high-gain fi lters in the feedback loop. You could also inject some fi ltered white noise into the

feedback path to simulate the noisy characteristics of typical analog delays.

 7.9.3 Multi-Tap Delay

 The multi-tap delay line shown in Figure 7.35 produces four separate delays from one

unit. Only the longest delay is fed back in this version. You create the multiple taps by

simply declaring more read index values (m_nReadIndexTap_1, m_nReadIndexTap_2,

etc..); the multiple taps are used and incremented exactly the same as the single tap case.

Left x(n)

LEFT

××

××

z -D

Dry

Wet Left y(n)

fb

fb

RIGHT

z -D Wet

Dry

Right y(n) Right x(n)

250 Chapter 7

 Figure 7.36: The ping-pong delay builds on the cross-feedback delay by crossing the
inputs as well as the feedback paths to produce the back and forth ping-pong

effect. You will probably want to design the advanced DDL module
fi rst and use its input, output, and feedback ports.

You can also experiment with multiple feedback paths, fi lters, or setting your tap times using

BPM and musical rhythms (e.g., delays on eighth and quarter notes).

 7.9.4 Ping-Pong Delay

 Figure 7.36 shows how the ping-pong delay cycles the delay back and forth between the left

and right channels.

 7.9.5 LCR Delay

 The LCR delay in Figure 7.37 based on the Korg Triton ® has both LPF and HPF in the

feedback path (both are switchable or bypass-able) for multiple feedback tone shaping

options.

Left x(n)

LEFT

CENTER

RIGHT

Right x(n) Right y(n)

Left y(n)

×

××

×

LPF HPF

fb

Dry

Wet

Wet

Wet

Dry

Z -D

Z -D

Z -D

Delay Effects and Circular Buffers 251

 Bibliography

 Coulter, D. 2000. Digital Audio Processing , Chapter 11. Lawrence, KS: R&D Books.

DSP56KFAM/AD. Schomberg, ON: Motorola, Inc.

Korg, Inc. 2000. Triton-Rack Parameter Guide, Tokyo: Korg, Inc.

Motorola, Inc. 1992. DSP56000 Digital Signal Processor Family Manual.
Roads, C. 1996. The Computer Music Tutorial, Chapter 3. Cambridge, MA: The MIT Press.

 Figure 7.37: The LCR delay, based on the LCR delay in the Korg Triton ® .

253

 Infi nite impulse response (IIR) fi lters have several attractive properties:

• They only require a few delay elements and math operations.

• You can design them directly in the z -plane.

• You can use existing analog designs and convert them to digital with the Bilinear

z-Transform (BZT) ; the fact that IIR topologies somewhat resemble the signal fl ow in

analog fi lters emphasizes their relationship.

• You can get extreme resonance/gain by placing poles very near the unit circle.

• You can make fi lters, EQs, and so on with controls that link to the coeffi cients directly or

indirectly for real-time manipulation of the plug-in.

 Their main drawback is that they can become unstable and blow up, or oscillate. Their

impulse responses (IRs) can be infi nite. Finite impulse response (FIR) fi lters have all zeros

and a fi nite IR. They are unconditionally stable so their designs can never blow up. However,

they can put out all zeros, a constant value, a series of clicks or pulses, or other erroneous

output, but they don’t actually go unstable.

 You can also make a linear phase fi lter with an FIR, just like the simple feed-forward (FF)

topology you analyzed in Chapters 5 and 6 ; a linear phase fi lter is impossible to make with

an IIR topology, although you can approximate it by adding phase compensation fi lters.

However, the one thing that separates FIR fi lters from all other kinds, including analog

counterpart fi lters, is that their coeffi cients a 0 , a 1 , …, a N are the IR of the fi lter. You proved

that when you manually pushed an impulse through the simple FF fi lter in Chapter 4 , and

then again when taking the z transform of the IR of the same fi lter in Chapter 5 .

 8.1 The IR Revisited: Convolution

 In Chapter 1 you saw how the digitized signal was reconstructed into its analog version by

fi ltering through an ideal low-pass fi lter (LPF). When the series of impulses is fi ltered, the

resulting set of sin(x)/ x pulses overlap with each other and their responses all add up linearly.

The addition of all the smaller curves and damped oscillations reconstructs the inter-sample

curves and damped fl uctuations (Figure 8.1).

 CHAPTER 8

Audio Filter Designs: FIR Filters

254 Chapter 8

 Figure 8.1: The sin(x)/ x outputs of the LPF are summed together to reconstruct the original
band-limited input waveform.

 If you know how a system affects one single impulse, you can exactly predict how it will affect
a stream of impulses (i.e., a signal) by doing the time domain overlay. If you have the IR of a
system, you have the algorithm for the system coded in a single function.

 In the time domain, you can see how the IR of each sample is overlaid on the others and that

the summing together of the peaks and valleys of the sin(x)/ x shape ultimately creates the

portions in between the samples which appeared to have been lost during the sampling process.

 The process of overlaying the IR on top of the input stream of impulses x (n) and adding up the

results to get the fi nal time domain output y (n) is called convolution. Convolution is a mathematical

operation used in many fi elds of science; digital audio processing is just one of them. The

mathematical symbol for convolution is * which can be confusing because this is used to represent

the multiplication operation in C/C++. In the above example, you convolved the input signal x (n)

with the IR h (n) by overlaying the h (n) signal on top of each input impulse, then summing up

signals to create the fi nal output y (n). Mathematically, you would write this as Equation 8.1 :

 y(n) 5 x(n) * h(n) (8.1)

 Visually, it’s easy to understand the concept of overlaying the signals and adding them to

get the fi nal result, but how do you describe that mathematically? The answer is that this

kind of operation is a special circumstance of a more generalized operation of convolution.

Mathematically, convolution for discrete signals is described in Equation 8.2 :

 c(n) 5 f(n) * g(n) 5 a
1`

m52`

f(n)g(n 2 m) (8.2)

 In this case, f and g are two generalized signals and neither of them has to be an IR.

Convolution is commutative, so that f * g 5 g * f , or Equation 8.3 :

c(n) 5 f(n) * g(n) 5 a
1`

m52`

f(n)g(n 2 m)

c(n) 5 g(n) * f(n) 5 a
1`

m52`

g(n)f(n 2 m)

 (8.3)

Two signals f and g

Convolution c(0)

Convolution c(1) Convolution c(4)

Convolution c(3)

Convolution c(2)

f g

C(0) = 0

C(1)

n

C(4) = 0

n

C(3)

n

C(2)
n

Audio Filter Designs: FIR Filters 255

 The operation this equation is describing is not simple. On the right-hand side of

 Equation 8.3 the function f (n) is one signal while the function g (n 2 m) represents the

second signal reversed in time. The multiplication/summation of the two across 2` to

1` describes the process of sliding the two signals over each other to create overlapping

areas. On each iteration, the area under the curve of overlap between g (n 2 m) and f (n)

is computed. This results in a third (output) signal c (n). This signal c (n) is made up of

the overlapping area of the two input signals. This operation is shown graphically in

 Figures 8.2 and 8.3 .

 Thus, the convolution of two arbitrary signals is quite involved mathematically. If the two

signals have any complexity at all, the resulting convolution signal is generally not

distinguishable as a linear combination of the two. If you know the IR of a system h (n),

you can convolve it with the input signal x (n) to produce the output signal y (n). This is the

equivalent of multiplying the transfer function H (z) with the input signal X (z) to produce

 Figure 8.2: Two signals f and g are convolved. These are discrete signals but the
sample symbols have been removed to make it easier to see; instead they are shown as
continuous. In the fi rst step, c (0), one of the signals is reversed and the two are pushed

up next to each other. As the convolution progresses through each step c (1) to c (4),
the overlapping areas are calculated and stored.

f(n) g(n)

n n

c(n)

c(1) c(2) c(3)

n

x(n) y(n) a0

a 1

z
–1

z–1

z–1

z–1

a 2

a3

a N

∑

256 Chapter 8

the output Y (z). Thus convolution in the time domain is multiplication in the frequency (z)

domain (Equation 8.4).

 y(n) 5 x(n) * h(n) 4 Y(z) 5 X(z)H(z) (8.4)

 To understand how a FF fi lter implements convolution fi rst rearrange the block diagram. Let’s

consider a long FIR fi lter with N 1 1 coeffi cients in Figure 8.4 .

 Figure 8.3: The convolution of f and g results in c (n), consisting of fi ve samples c (0) through
 c (4), which represent the overlap areas.

 Figure 8.4 : The familiar FIR feed-forward structure expanded out to N delay taps with
 N 1 1 coeffi cients. It is important to see that there is one less delay element than coeffi cients

since a 0 is multiplied against the original undelayed signal.

The input signal marches
through the delay line this way

One output sample is generated
each sample period; the

summation of the portion of the
signal "caught" in the delay line

x(n) z -1 z -1 z -1 z -1

a0 a1 a2 a3 aN

∑
y(n)

x(n) z -1 z -1 z -1 z -1

h(0) h(1) h(2) h(N)

∑
y(n)

Audio Filter Designs: FIR Filters 257

 Next, mentally rotate the structure so it looks like Figure 8.5 . In Figure 8.5 you can see that at

any given time, a portion of the input signal x (n) is trapped in the delay line. On each sample

period, the input signal slides to the right and a summation is formed with the product of the

coeffi cients and the samples x (n 2 d). The words “sliding, summation and product” are key

here—they’re the same words used to describe convolution.

 In Figure 8.6 , the input signal x (n) moves through the delay line being convolved with

the IR on each sample period. Since each sample in the delay line is an impulse, and each

impulse is symmetrical when reversed, this is the same as conceptually overlapping the IR

on top of each sample and scaling by the sample value. The result is the fi nal summation of

all the peaks and valleys of the IR with the delayed signal x (n). Thus, an FIR fi lter exactly

implements discrete convolution in the time domain. This ultimately gives us a whole new

way to fi lter a signal—by convolving against an impulse.

 Figure 8.5: This rotated version is sometimes called a transverse delay line or a
transverse structure.

 Figure 8.6: You can also think of the coeffi cients as being frozen in the h (n) buffer while the input
signal marches one sample to the right on each iteration.

258 Chapter 8

 So, if an ideal LPF has an IR in the shape sin(x)/ x and we sample the IR, we get a discrete

IR h (n). The more samples we take, the more accurate our version of the IR becomes. This

introduces the fi rst way to design a FIR fi lter: fi nd an IR you like, sample it, and convolve

with it to produce the fi ltered output.

 8.2 Using RackAFX’s Impulse Convolver

 RackAFX has a built-in module to do impulse convolution and a directory of IR fi les that you

can experiment with. The impulses are stored in a directory called IR1024 and they are all

1024-point IRs. Some of them came from RackAFX itself—you can save IRs of any plug-in

you make, then load them into the convolver module. You will also learn to write your own

convolution plug-in and tell RackAFX that your software would like to receive IRs any time a

user loads or creates one using the built-in tools.

 First, let’s look at the Impulse Convolver tool. Open the modules menu item in RackAFX.

There are two built-in FIR modules: the Impulse Convolver 1024 and the FIR Designer

located at the bottom of the list. Choose the Impulse Convolver 1024 module. The analyzer

will then appear with the IR directory populated and additional IR buttons enabled. These

will allow you to load an IR fi le into the convolver.

 8.2.1 Loading IR Files

 On the right side of the analyzer (Figure 8.7), you will see a box full of the IRs in your

IR1024 directory. You might not have the exact same list as this one but you will have the

fi le “optimal.64.sir” in the list. All the IR fi les are named with the “.sir” suffi x and must

be created in RackAFX or loaded using the RackAFX IR fi le format (see the website for

details). RackAFX automatically saves your IRs as .wav fi les so you can use them in other

applications. You can fi nd these .wav fi les in your IR1024 directory. If you want to convolve

with your own .wav fi les, see the website for code examples.

 Figure 8.7: The IR fi les are visible in the analyzer window.

IR1024 Files
freqsamp.sir
impulse.sir
impulse156fir.sir
impulse16fir.sir
impulse_HPF.sir
impulse_LPF.sir
optimal.64.sir
optimal.sir

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

0 102 204 306 408 510 612 714 816 918

+12.0dB

0.0 dB

–12.0 dB

–24.0 dB

–36.0 dB

–48.0 dB

–60.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

Audio Filter Designs: FIR Filters 259

 At the bottom right, you will see the buttons for loading and saving IR fi les. The fi rst two,

Save h(n) and Load h(n), will save and load the .sir fi les from the IR1024 directory. The lower

two buttons save and load the IR to the clipboard. The IR is actually C++ code, and you can

use the clipboard to paste this code directly into your own source code. You might do this to

hard-code a particular IR or for testing purposes, or to set a default IR.

 To get started, click on the fi le named “optimal.64.sir” and then click the Load h(n) File

button (you can also double-click on the fi le name to load it). The IR for the fi le will load

into the analyzer as well as the Impulse Convolver module itself. You will automatically be

switched into the impulse view to see the imported fi le data (Figure 8.8). Next, click on the

Frequency Response button to see the fi lter’s frequency response (Figure 8.9). This LPF was

designed to have a cutoff frequency of 500 Hz and a very steep roll-off of about 50 dB/oct.

Load a wave fi le and play the fi le through the convolver. It will implement this 500-Hz LPF

exactly. Try loading some other IR fi les and playing audio through them.

 8.2.2 Creating IR Files

 You can capture the IR of any RackAFX plug-in, including your own. As an example let’s

capture the IR of a built-in module fi rst. Open the module named “HP/LP Filter” from the

module menu. Then, open the analyzer, click on the Frequency button and adjust the slider

 Figure 8.8: The IR for the optimal.64.sir fi le.

 Figure 8.9: The frequency response for the optimal.64.sir fi le.

+24.0 dB

+10.0 dB

–4.0 dB

–18.0dB

–32.0 dB

–46.0 dB

–60.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

0 102 204 306 408 510 612 714 816 918

260 Chapter 8

controls to give you a unique shape. For example, I will make a highly resonant LPF by

setting the Q to 12 (Figure 8.10).

 Click on the Impulse button in the analyzer. The IR of the fi lter is shown in Figure 8.11 .

This IR completely captures the fi lter at these particular settings (f c 5 1 kHz, Q 5 12).

If we store the IR of the IIR fi lter, we can load it into the convolver and turn it into a FIR

fi lter instead.

 Click on the Save h(n) File button and name it. It will then appear in the list of available IRs. Play

a wave fi le through the module and remember what it sounds like. Now, go back and open the

Impulse Convolver 1024 module from the module menu. You will see your freshly created IR

in the list. Double-click on it to load it and you will see the original IR. Click on the Frequency

button and you will see the original frequency response. Next, play a wave fi le through the

convolver and you should hear something that is remarkably similar to the original IIR fi lter.

 But, how similar is it? The IR convolver module can convolve up to 1024-point IRs. If the IR

of the original fi lter is longer than 1024 points, then the resulting FIR fi lter will not be exactly

perfect. However, if it is shorter than 1024 points (meaning that the IR becomes 0.0 and

remains that way at some point in the IR duration) then the resulting FIR will be a dead-on

accurate version of the original. If you look at the IR for the original fi lter, you can see that it

 Figure 8.10: The frequency response for the resonant LPF test fi lter.

 Figure 8.11: The ringing IR of the resonant LPF.

Audio Filter Designs: FIR Filters 261

is still just barely ringing right there at the end, so we are not getting an exact duplicate, but

upon listening you should hear that they are nearly identical.

 8.2.3 The IR File Format

 The IR fi le actually contains C++ code and you can quickly understand how it works by using

the clipboard functions. In the analyzer window that you still have pulled up, click on the

button h(n) → Clipboard and after the success message, open a text editor or a C++ compiler.

Then, use the operating system (OS) paste function to paste the clipboard data into your

editor. You will see something like this at the top:

 // h(n) Impulse Response

 // Length 5 1024

 m_nIRLength 5 1024;

 m_h_Left[0] 5 0.00000000;

 m_h_Left[1] 5 0.00503618;

 m_h_Left[2] 5 0.01998402;

 m_h_Left[3] 5 0.03938961;

 m_h_Left[4] 5 0.05777339;

 m_h_Left[5] 5 0.07477701;

 m_h_Left[6] 5 0.09007415;

 m_h_Left[7] 5 0.10337673;

 etc…

 This is the IR data starting with the length (1024) and then the left and right channels

respectively. If you scroll to the bottom, you will see the last few samples of the IR:

 m_h_Right[1016] 5 -0.00000850;

 m_h_Right[1017] 5 0.00004104;

 m_h_Right[1018] 5 0.00008918;

 m_h_Right[1019] 5 0.00013495;

 m_h_Right[1020] 5 0.00017745;

 m_h_Right[1021] 5 0.00021589;

 m_h_Right[1022] 5 0.00024953;

 m_h_Right[1023] 5 0.00027775;

 This was my resonant LPF and you can see that it is still ringing, even after 1024 samples.

If you listen to a wave fi le through a fi lter like this, you can hear pinging sounds at the peak

resonant frequency. These pinging noises are the ringing of the fi lter. If you look at the C++

code you can tell that the IR data appears to be some kind of member variable information for

a C++ object because of the “m_” Hungarian notation used to describe the data.

Optimal
method

Frequency
sampling
method

Shared
controls

262 Chapter 8

 8.3 Using RackAFX’s FIR Designer

 RackAFX has a powerful built-in module called FIR Designer that lets you use two popular

methods to design FIR fi lters: the optimal method and the frequency sampling method. The

optimal method is sometimes called the “Parks–McClellan algorithm.” When the module fi rst

opens, you will see the new controls at the right side, as shown in Figure 8.12 .

 This module creates IRs. You can save the IRs to a fi le or the clipboard using the same

buttons as before. If your plug-in has the m_bWantIRs fl ag set, any time the user hits the

Calculate button to make a new IR, it will automatically be delivered and copied into the

plug-in’s default IR arrays. Even though the FIR Designer defaults to the optimal method for

design, let’s begin with the frequency sampling method since the optimal method relies on it.

 All RackAFX plug-ins already have two default IR arrays declared as m_h_Left[1024] and
m_h_Right[1024] and another variable m_nIRLength that defi nes how much of the 1024 point
IR buffer is being used. The FIR designer will let you create IRs with variable sizes—in many
cases, you don’t need all 1024 points to describe the IR of the system. You tell RackAFX that
you want it to populate your IR arrays by setting a fl ag m_bWantIRs in your plug-in constructor.
When a user loads or creates an IR in the analyzer, it is automatically delivered to your plug-in.

 Figure 8.12: The FIR designer controls consist of three parts. The order slider and edit box
and the Calculate and Complement buttons are shared between both methods. You enable the

method of choice using the radio button controls.

Audio Filter Designs: FIR Filters 263

 8.4 The Frequency Sampling Method

 The frequency sampling method is really interesting because it lets you design any kind

of frequency response you want—it can be any arbitrary shape and it does not have to be

a classical fi lter type (LPF, high-pass fi lter [HPF], band-pass fi lter [BPF], band-stop fi lter

[BSF]), but you can make these types if you want to. The frequency sampling method

involves these steps:

1. Decide on a desired frequency response and plot it in the frequency domain.

2. Sample the frequency response at evenly spaced intervals determined by the fi lter order

you choose.

3. Take the inverse discrete cosine-transform (DCT) of the sampled frequency response to

get the sampled IR (the DCT is simply the real part of the fast Fourier transform [FFT]).

4. Load the sampled IR into a convolver and go.

 8.4.1 Linear-Phase FIR Using the Frequency Sampling Method

 Choose:

 N 5 number of coefficients

 Calculate:

 For N 5 odd:

• (N 1 1)/2 5 number of samples in frequency domain, starting at 0 Hz

 For N 5 even

• N /2 5 number of samples in frequency domain, starting at 0 Hz

 ∆ f 5 f s / N 5 frequency spacing, starting at 0 Hz

 Calculate the fi lter coeffi cients a 0 to a N /2 with Equation 8.5 :

For N 5 odd

an 5
1

N
cH(0) 1 2 a

(N21)/2

i51

`H(i)| cos | c2pi cn 2
N 2 1

2
d ^N d ` d

For N 5 even

an 5
1

N
cH(0) 1 2 a

N/221

i51

`H(i)| cos | c2pi cn 2
N 2 1

2
d ^N d ` d

 (8.5)

 Note: This produces half the coeffi cients; the other half are a mirror image, as shown in the

example below. Because the IR is guaranteed to be symmetrical about its center, it produces a

linear phase FIR fi lter every time.

264 Chapter 8

 Example: Design an LPF with a cutoff of 5.5 kHz, f s 5 44.1 kHz, N 5 16.

 Solution:

1. N 5 16, which produces eight sampled points in the frequency domain with a spacing

of 2.756 kHz.

2. Sample the plot, producing the magnitude response, H (i) (Figure 8.13).

 For this plot notice that:

• The plot is linear in frequency. To design a frequency sampling method fi lter by hand, it

is often easier to start with a linear frequency axis.

• The point at Nyquist is not used; it is there to pin down the response that would occur

after Nyquist.

 The sampled frequency response is read directly off the plot: (0 dB 5 1.0, −60 dB 5 0.001).

 u H (i)u 5 {1.0, 1.0, 1.0, 0.001, 0.001, 0.001, 0.001, 0.001}

1. Use Equation 8.5 to extract IR h (n), which are the coeffi cients, a n .

 a 0 5 0.04858366

 a 1 5 0.00364087

 a 2 5 20.05199205

 a 3 5 20.07047625

 a 4 5 20.02194221

 a 5 5 0.08695625

 a 6 5 0.21101949

 a 7 5 0.29421023

 a 8 5 0.29421023

 a 9 5 0.21101949

 a 10 5 0.08695625

 a 11 5 20.02194221

 a 12 5 20.07047625

 a 13 5 20.05199205

 a 14 5 0.00364087

 a 15 5 0.04858366

 Notice the symmetry about a 7 to a 8 boundary.

2. Measure the response (Figure 8.14).

 The resulting fi lter is guaranteed to exactly match the desired frequency response at the

sampled points only. In between the sampled points, the frequency response can do anything;

+12.0dB

0.0 dB

–12.0 dB

–24.0 dB

–36.0 dB

–48.0 dB

–60.0 dB

0 Hz 2.7 kHz 5.5 kHz 8.2 kHz 11 kHz 13.7 kHz 16.5 kHz 19 kHz Nyquist

2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHZ 16 kHz 18 kHz 20 kHz

+12.0 dB

0.0 dE

–12.0 dB

–24.0 dB

–36.0 dB

–48.0 dB

–60.0 dB
2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

Audio Filter Designs: FIR Filters 265

rippling in the pass band and stop band can occur as shown here. You can see that this is a

pretty bad rendition of our desired response.

 The fi rst lobe in the stop band only produces about −14 dB of attenuation, which is poor

considering that we wanted a fi lter that would have a stop-band attenuation of −60 dB.

To improve the response, you have several choices:

• Relax the specifi cations.

• Add more points to the desired response.

• Increase the fi lter order.

 Relax the specifi cations and roll off the response less steeply by changing the point at 8.2 kHz

to 212 dB (0.25) instead of 260 dB (Figure 8.15). Now, the sampled frequency response is

 u H (i)u 5 {1.0, 1.0, 1.0, 0.25, 0.0, 0.0, 0.0, 0.0}

 The resulting magnitude response | H (f)| is shown in Figure 8.16 .

 Figure 8.13: Here is our prototype LPF with cut-off at 5.5 kHz; its response becomes −60 dB
(0.001) at 8.2 kHz, which is a steep roll-off.

 Figure 8.14: The resulting low-pass fi lter magnitude response.

+12.0dB

0.0 dB

-12.0dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB 2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

266 Chapter 8

 8.5 Complementary Filter Design for Linear Phase FIR Filters

 This technique results in a complementary fi lter, rotated about the center of the Nyquist

bandwidth, that is, rotated about Nyquist/2. To convert an LPF to HPF or vice versa on a linear

phase FIR:

 For N 5 even

• Multiply the even-numbered coeffi cients by 21.

 For N 5 odd

• Multiply the odd-numbered coeffi cients by 21.

 This will rotate the frequency response around Nyquist/2 such that an LPF will become an

HPF. However, they will not share the same cutoff frequency, but will rather be mirror images

of each other. Thus, the fi rst fi lter design above with a cutoff point of 5.5 kHz would produce

an HPF with a cutoff frequency 5.5 kHz below Nyquist . Table 8.1 shows the coeffi cients,

while Figure 8.17 shows the frequency response.

 Figure 8.15: The same design with specifi cations relaxed; the slope is less steep.

 Figure 8.16: The relaxed magnitude response shows improved stop-band attenuation.
Now, the fi rst lobe in the stop band has moved to a magnitude of about 230 dB, an

improvement of about 15 dB.

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB 2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 18 kHz 14 kHz 16 kHz 20 kHz

Audio Filter Designs: FIR Filters 267

 Table 8.1: The LPF and complementary HPF coeffi cients for the current design.

Low-Pass Filter Complementary High-Pass Filter

a0 5 0.02598719
a1 5 0.01331121
a2 5 20.02018474
a3 5 20.05761180
a4 5 20.04827195
a5 5 0.04957144
a6 5 0.20692666
a7 5 0.33027202
a8 5 0.33027202
a9 5 0.20692666

a10 5 0.04957144
a11 5 20.04827195
a12 5 20.05761180
a13 5 20.02018474
a14 5 0.01331121
a15 5 0.02598719

a0 5 20.02598719
a1 5 0.01331121
a2 5 0.02018474
a3 5 20.05761180
a4 5 0.04827195
a5 5 0.04957144
a6 5 20.20692666
a7 5 0.33027202
a8 5 20.33027202
a9 5 0.20692666

a10 5 20.04957144
a11 5 20.04827195
a12 5 0.05761180
a13 5 20.02018474
a14 5 20.01331121
a15 5 0.02598719

 8.6 Using RackAFX’s Frequency Sampling Method Tool

 RackAFX allows you to implement frequency sampling method fi lters by drawing responses

directly on the analyzer’s frequency response plots. You can place as many points as you

like as well as choose the order (even only) of the fi lter. The previous examples were done

using the frequency sampling method tool. Let’s do an example similar to the last one but

in the log frequency domain instead. First, click on the radio button marked frequency

sampling method and you will see a red horizontal line appear on the graphs. Make sure the

frequency axis is log. In this design, let’s try to make a resonant LPF with a peak frequency

around 1 kHz.

 Figure 8.17: The complementary HPF has its cut-off point at 16.5 kHz and you can see the
rotation about the ½ Nyquist frequency.

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

268 Chapter 8

 You will see two boxes on the red line, one at DC, the other at Nyquist. These points cannot

be removed. To enter points and move them, use the following rules:

• Right-click on the red line to add a new point.

• Click on the new point and drag it up or down.

• To remove a point, right-click on it and choose “delete point” from the pop-up menu.

• Hit the Calculate button when you are done to view the resulting fi lter.

 Hit the Frequency Sampling button and note the fi lter order of 64 (if it is not 64, change it

with the slider or the edit control). Create a resonant LPF with a peak frequency of 1 kHz. In

 Figure 8.18 you can see the bandwidth of the peak is 1.5 kHz and the response goes to 260

dB at 5 kHz. Next, hit the Calculate button to get Figure 8.19 .

 You can use the order slider to slowly increase the fi lter order until the response matches your

sampled points as closely as possible. You can move the slider, or type an order into the edit

box and hit the Tab button to inject it. You can also use the small up/down arrow buttons to

advance the order up or down in even increments. Typically, the way you would use this is to

fi rst get close with the slider, then use the up/down arrows to fi ne tune the design. Figure 8.20

shows the same fi lter with the order set to 164.

 Figure 8.18: The prototype resonant LPF sampled points.

 Figure 8.19: The 64-tap FIR fi lter produces marginal results with poor stop-band attenuation.

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB 2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

Audio Filter Designs: FIR Filters 269

 Play an audio fi le through the new fi lter and listen to the resonant LPF characteristics. Here

are some interesting things you can do in RackAFX while the audio fi le is playing or looping:

• You can move the order control; the fi lter will be updated in real time and you can hear

the results.

• You can add or remove points on the desired response or move them around, then hit

Calculate to update the fi lter in real time, and you can also hear the results.

• You can save the IR as a fi le, then load it into the Impulse Convolver module just as

before.

 8.7 Designing a Complementary Filter

 You can convert any design into a complementary design by hitting the Complementary

button. With the current 164 th -order resonant LPF, fi rst switch to the linear scale

(Figure 8.21).

 Hit the Complement button to create the complementary HPF fi lter. The original design

points are left to show you the complementary nature of the fi lter. You can clearly see the

rotation about ½ Nyquist here (Figure 8.22). You can perform this operation while audio

 Figure 8.20: The 164th -order FIR fi lter produces an excellent match to the specifi cations.

 Figure 8.21: The linear domain frequency response of the 1-kHz LPF.

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

270 Chapter 8

fi les are playing in RackAFX as well. If you look at the IRs in the .sir fi le you can see the

operation of negating the odd-numbered coeffi cients.

 8.8 The Optimal (Parks–McClellan) Method

 FIR fi lters produce all zeros in the z -plane. You can see the effect of these zeros in the

frequency sampling method fi lters we designed—they create the notches and humps in the

frequency response. In general, we seek to minimize the humps in the pass band and set some

kind of limit for the largest lobe we see in the stop band. In the frequency sampling fi lters,

we changed the design specifi cations or the order of the fi lter to get a response that satisfi ed

our initial desired response to some extent. The optimal method is an algorithm for designing

classical fi lters (LPF, HPF, BPF, BSF). You can create fi lters with extremely steep roll-off

edges that would be diffi cult to synthesize in the analog domain. The word “optimal” comes

from the engineering phrase “optimal in the Chebychev way,” which describes a fi lter design

with a certain kind of rippling in the pass band and stop band.

 The LPF in Figure 8.23 might be specifi ed like this:

• Pass-band ripple: less than 0.1 dB

• Stop-band attenuation: greater than −24 dB

 The pass-band ripple (0.1 dB) and stop-band attenuation (−24 dB) are converted into

weighting values using Equation 8.6 :

Pass-band weight 5 (10

pb_ripple(dB)@20) 2 1

Stop-band weight 5 (10
sb_atten(dB)@20)

 (8.6)

 The optimal method uses these weighting values in its design calculation. The weightings

give acceptable error tolerances in each band. It the weights are equal, then there will be

 Figure 8.22: The complementary HPF shows the mirror image nature of complementary fi lter
designs; the new resonant peak is 1 kHz below Nyquist.

10 kHz 1 kHz 100 Hz 10 Hz
-60.0 dB

-48.0 dB

dB -36.0

-24.0 dB

-12.0 dB

0.0 dB

+12.0 dB

Pass-band ripple
Stop-band
attenuation

Audio Filter Designs: FIR Filters 271

an equal deviation from the ideal in both bands. This is called an equiripple design. The

specifi cations for the optimal method are:

• The pass-band and stop-band frequencies

• The maximum pass-band ripple and minimum stop-band attenuation

• The order of the fi lter (the number of zeros in the frequency response)

 The algorithm works by fi rst distributing the zeros out equally across the frequency axis. This

is going to produce a series of humps in the pass band (the ripple) and lobes in the stop band.

The ripples and lobes will produce a set of maxima and minima frequencies. The problem is

that for a given specifi cation, the locations of the extremal frequencies are not known before

hand. The optimal method must use a search algorithm to iteratively move the locations

around until a solution is found that is within the tolerance of the specifi cations. The optimal

method uses an algorithm called the Remez exchange method to iteratively move the zeros

around until a solution converges. It must be noted that the Remez exchange algorithm is not

guaranteed to converge for a given set of specifi cations.

 Once the Remez exchange method fi nds the locations of the extremal frequencies, the

resulting H (f) graph is sampled using the frequency sampling method to produce the IR,

which is the set of FIR fi lter coeffi cients. To summarize the method:

• Specify the fi lter parameter and order.

• Equally distribute zeros across the spectrum.

• Set the pass-band and stop-band weights.

• Use the Remez exchange algorithm to iteratively fi nd the location of the zeros.

• Sample the resulting frequency response to produce the fi nal IR.

 8.9 Using RackAFX’s Optimal Method Tool

 RackAFX lets you design any of the four classical fi lter types using the equiripple weighting

for the pass band and stop band. BPF and BSF fi lters have an additional band edge to specify,

 Figure 8.23: An FIR LPF can be specifi ed by the acceptable ripple in the pass band (barely
observable here) and the minimum stop-band attenuation.

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

272 Chapter 8

but the meaning of pass-band ripple and stop-band attenuation is the same for all fi lter types.

You can start with an LPF design by clicking on the Optimal button. Try the following fi lter

specifi cations:

• Type: LPF

• F_pass low: 1 kHz (the low edge cut-off frequency)

• F_stop low: 2 kHz (the lowest frequency that must receive the required stop band

 attenuation)

• Filter order: 16

 Now, use the Calculate button to generate the fi lter. You can see from Figure 8.24 that the

fi lter is not performing exactly to specifi cations. Although the pass band looks good, the stop

band does not. Next, begin increasing the order of the fi lter using the slider or nudge buttons

until you get the stop-band attenuation you desire; for −48 dB of attenuation, you will need a

104 th -order fi lter as shown in Figure 8.25 . Finally, check the IR and you will see a truncated

version of the sin x (x)/ x function (Figure 8.26).

 Figure 8.24: The pass-band ripple is well within spec; however, the stop-band attenuation is only
getting to about −12 dB.

 Figure 8.25: The 104 th -order optimal method LPF produces the desired stop-band attenuation.

1.000
0.707
0.500

0.000

-0.500
-0.707
-1.000

0 102 204 306 408 510 612 714 816 918

Audio Filter Designs: FIR Filters 273

 Experiment:

• Load a wave fi le and audition the fi lter.

• Try the other fi lter types (HPF, BPF, BSF).

• Adjust the order control noting when the Remez exchange algorithm fails to converge or

the fi lter blows up.

• Try to fi nd the lowest possible fi lter order to just match the desired specifi cations.

• Save IR fi les with various fi lters you design.

• Copy and paste the IR code into your own convolution plug-in.

 8.10 Design a Convolution Plug-In

 In order to implement the convolution (FIR) algorithm you need to use the delay line theory

from the last chapter. The fi lters often need hundreds or thousands of delay elements and you

know that a circular buffer works perfectly for storing and updating a sequence of x (n), x (n 2 1),

 x (n 2 2)… In addition, the IR will need to be stored in a buffer and accessed sequentially with a

pointer like the input buffer. The convolution equation in Equation 8.2 accumulates from 2` to

1` which uses both past and future data. We can only use past data and so we only need half of

the equation. The generalized FIR convolution equation is Equation 8.7 :

 y(n) 5 h0x(n) 1 h1x(n 2 1) 1 h2x(n 2 2) 1 ... 1 hM(n 2 M) (8.7)

 The number of delay elements required is M −1 since the fi rst term h 0 x (n) operates on the

current, undelayed input signal. So, a 64-tap FIR requires 63 delay elements. Remember

from Chapter 7 that when we access a circular buffer and write the current input sample,

we are overwriting the oldest sample, x (n 2 M) but we can use this to our advantage in this

 Figure 8.26: The IR for the 104 th -order optimal method LPF.

 The Remez exchange algorithm is not guaranteed to converge. You will receive an error message
if it does not converge. Even if the algorithm does converge, the resulting IR is not guaranteed
to be finite. Increasing the filter order will not necessarily produce a better design.

h(D) x (n - 5)

etc... etc...

x(5) x (n - D - 1)

x (n) h(4)

x (n - 1) h(3)

x (n - 2) h(2)

h(3)x(n - 3)

h(1)

h(0)

x (n - 3)

x (n - 4)

Input Buffer x Impulse Buffer h

x (n - 5) h(D)

etc... etc...

x (n - D - 1) x(5)

h(4) x (n)

x (n - 1)

x (n - 2)

h(3)

h(2)

h(1)

h(0)

x (n - 3)

x (n - 4)

Input Buffer x Impulse Buffer h

h(1)x(n - 1)

Impulse Buffer h Input Buffer x

x (n - 4)

x (n - 3)

x (n - 2)

x (n - 1)

x (n)

x (n - D - 1)

etc...

x (n - 5) h(D)

etc...

x(5)

h(4)

h(3)

h(2)

h(1)

h(0) h(0)x(n)

h(2)x(n-2)

Impulse Buffer h Input Buffer x

x (n - 4)

x (n - 3)

x (n - 2)

x (n - 1)

x (n)

x (n - D - 1)

etc...

x (n - 5) h(D)

etc...

x(5)

h(4)

h(3)

h(2)

h(1)

h(0)

274 Chapter 8

case by using a 64-element circular buffer to implement a 64-tap FIR and by writing in the

fi rst sample before doing the convolution operation. This will give us a buffer with x (n)

through x (n 2 M 2 1) lined up and ready for access. We will have an identically sized buffer

to store the IR, h (n). During the convolution operation we will zip through both buffers at

the same time, accumulating the product of each operation. The only tricky thing is that the

IR buffer will be reading sequentially from top to bottom exactly once each sample period to

create the sequence h (0), h (1), h (2), and so on. The input buffer will be circular and reading

 backwards to create the sequence x (n), n (n 2 1), x (n 2 2), and so on, shown graphically in

 Figure 8.27 .

 If you look at your base class fi le, PlugIn.h, you will fi nd the declarations of your built-in IR

buffers and variables:

 // impulse response buffers!

 fl oat m_h_Left[1024];

 fl oat m_h_Right[1024];

 // the length of the IR from 0 to 1024

 int m_nIRLength;

 // fl ag to set to request impulse responses from the UI

 bool m_bWantIRs;

 Figure 8.27: The fi rst four multiplication operations for a convolution operation shows how one
buffer reads backward while the other reads forward.

Audio Filter Designs: FIR Filters 275

 8.10.1 Project: Convolver

 Create a new RackAFX project; I named mine “Convolver.” It has no GUI elements

to set up.

 8.10.2 Convolver.h File

 Declare the variables you need to implement a stereo convolution and remember that the IR

buffers and length variables are already declared for you. We need the following:

• Buffer to hold the x input for the left channel

• Buffer to hold the x input for the right channel

• Read index for the IR delay line (buffers)

• Read index for the input (x) buffers

• Write index for sequentially writing input samples into the delay lines

 // Add your code here: -- //

 //

 // pointers to the left and right input buffers

 fl oat* m_pBufferLeft;

 fl oat* m_pBufferRight;

 // read index for delay lines (input x buffers)

 int m_nReadIndexDL;

 // read index for impulse response buffers

 int m_nReadIndexH;

 // write index for input x buffer

 int m_nWriteIndex;

 These variables are shown in Table 8.2 .

 Table 8.2: IR variables

Variable Description

m_h_Left[1024] The IR buffer for the left channel
m_h_Right[1024] The IR buffer for the right channel
m_nIRLength The length of the current convolution
m_bWantIRs A fl ag to tell RackAFX to populate your IR

buffers automatically whenever the user
loads an IR fi le or creates a fi lter with the
FIR Designer tool

276 Chapter 8

 8.10.3 Convolver.cpp File

 Constructor

• Create the buffers.

• Flush the buffers; reset to 0.0.

• Reset all indices.

 CConvolver::CConvolver()

 {

 <SNIP SNIP SNIP>

 // Finish initializations here

 // set our max buffer length for init

 m_nIRLength = 1024; // 1024max

 // dynamically allocate the input x buffers and save the pointers

 m_pBufferLeft = new fl oat[m_nIRLength];

 m_pBufferRight = new fl oat[m_nIRLength];

 // fl ush x buffers

 memset(m_pBufferLeft, 0, m_nIRLength*sizeof(fl oat));

 memset(m_pBufferRight, 0, m_nIRLength*sizeof(fl oat));

 // fl ush IR buffers

 memset(&m_h_Left, 0, m_nIRLength*sizeof(fl oat));

 memset(&m_h_Right, 0, m_nIRLength*sizeof(fl oat));

 // reset all indices

 m_nReadIndexDL = 0;

 m_nReadIndexH = 0;

 m_nWriteIndex = 0;

 }

 You can see that we’ve allocated the memory for input buffers of maximum size 1024. We’ve

also fl ushed out all buffers by setting all data to 0.0 with memset() and fi nally reset the

indices to all point to the tops of the buffers.

 Destructor

• Since we allocated memory in the constructor, we need to remove it in the destructor:

 CConvolver::~CConvolver(void)

Audio Filter Designs: FIR Filters 277

 {

 // free up our input buffers

 delete [] m_pBufferLeft;

 delete [] m_pBufferRight;

 }

 prepareForPlay()

• We also need to fl ush the buffers and reset the indices:

 bool __stdcall CConvolver::prepareForPlay()

 {

 // Add your code here:

 // fl ush buffers

 memset(m_pBufferLeft, 0, m_nIRLength*sizeof(fl oat));

 memset(m_pBufferRight, 0, m_nIRLength*sizeof(fl oat));

 // reset indices
 m_nReadIndexDL = 0;

 m_nReadIndexH = 0;

 m_nWriteIndex = 0;

 return true;

 }

 processAudioFrame()

• Implement the convolution loop.

 The loop will need to do the following operations (these are not streamlined in the code for

ease of reading; you can always improve on the code by combining steps together). You are

implementing the operation in Figure 8.27 :

• Read the current sample x (n) and write it into the buffer.

• Reset the delay line read pointer to the current input sample, x (n); the pointer needs to be

reset because its value will change and be destroyed later in the loop.

• Reset the IR read index to point to the top of the buffer at location 0.

• Set up the accumulator and create the convolution loop.

• After forming each product h (i)x (n 2 i), increment the IR buffer read pointer and

 decrement the delay line read pointer.

• Check for a wrap after the delay line pointer is decremented.

• Write the output sample.

278 Chapter 8

• Process the second (right) channel the same way.

• Increment the delay line write index and wrap if necessary.

 bool __stdcall CCConvolver::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,

 UINT uNumInputChannels, UINT uNumOutputChannels)

 {

 // Do LEFT (MONO) Channel; there is always at least one input/one output

 // Read the Input

 fl oat xn = pInputBuffer[0];

 // write x(n) -- now have x(n) -> x(n–1023)

 m_pBufferLeft[m_nWriteIndex] = xn;

 // reset: read index for Delay Line -> write index

 m_nReadIndexDL = m_nWriteIndex;

 // reset: read index for IR - > top (0)

 m_nReadIndexH = 0;

 // accumulator

 fl oat yn_accum = 0;

 // convolve:

 for(int i=0; i<m_nIRLength; i++)

 {

 // do the sum of products

 yn_accum += m_pBufferLeft[m_nReadIndexDL]*m_h_Left[m_nReadIndexH];

 // advance the IR index

 m_nReadIndexH++;

 // decrement the Delay Line index

 m_nReadIndexDL--;

 // check for wrap of delay line (no need to check IR buffer)

 if(m_nReadIndexDL < 0)

 m_nReadIndexDL = m_ nIRLength -1;

 }

 // write out

 pOutputBuffer[0] = yn_accum;

 Now you should try to write the code for the second (right) channel. After you’re done, check

it against the following code:

 // Mono-In, Stereo-Out (AUX Effect)

 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0]; // just copy

Audio Filter Designs: FIR Filters 279

 // Stereo-In, Stereo-Out (INSERT Effect)

 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 {

 // Read the Input

 xn = pInputBuffer[1];

 // write x(n) -- now have x(n) -> x(n–1023)

 m_pBufferRight[m_nWriteIndex] = xn;

 // reset: read index for Delay Line -> write index

 m_nReadIndexDL = m_nWriteIndex;

 // reset: read index for IR - > top (0)

 m_nReadIndexH = 0;

 // accumulator

 yn_accum = 0;

 // convolve:

 for(int i=0; i<m_nIRLength; i++)

 {

 // do the sum of products

 yn_accum +=

 m_pBufferRight[m_nReadIndexDL]*m_h_Right

[m_nReadIndexH];

 // advance the IR index

 m_nReadIndexH++;

 // decrement the Delay Line index

 m_nReadIndexDL--;

 // check for wrap of delay line (no need to check IR buffer)

 if(m_nReadIndexDL < 0)

 m_nReadIndexDL = m_nIRLength-1;

 }

 // write out

 pOutputBuffer[1] = yn_accum;

 }

 // incremnent the pointers and wrap if necessary

 m_nWriteIndex++;

 if(m_nWriteIndex >= m_nIRLength)

 m_nWriteIndex = 0;

 return true;

 }

280 Chapter 8

 Increment the buffer write pointer after the end of the right channel processing. The reason

is that it is shared between both left and right (just like the IR buffer read index is shared

between the left and right IR buffers). Build and test the code; in order to quickly test the

code, you can use a feature of the FIR Designer and copy an IR to the clipboard, then paste

it into the constructor. Open the FIR Designer and use the default optimal method LPF

design—it will automatically be calculated when you fi rst see the FIR Designer interface. Hit

the button h(n) → Clipboard to copy the IR code to your Windows clipboard. Now, go to the

constructor and use the paste function Ctrl+V to load in the IR code. Do this at the end of all

the initialization stuff you wrote in Step 2. It should look like this:

 Constructor

 CConvolver::CConvolver()

 {

 <SNIP SNIP SNIP>

 // reset all indices

 m_nReadIndexDL = 0;

 m_nReadIndexH = 0;

 m_nWriteIndex = 0;

 // h(n) Impulse Response

 // Length = 1024

 m_nIRLength = 65;

 m_h_Left[0] = −0.00057406;

 m_h_Left[1] = −0.00016395;

 m_h_Left[2] = −0.00015001;

 m_h_Left[3] = −0.00007587;

 m_h_Left[4] = 0.00007552;

 m_h_Left[5] = 0.00029672;

 m_h_Left[6] = 0.00063462;

 m_h_Left[7] = 0.00108109;

 etc...

 m_h_Right[1018] = 0.00000000;

 m_h_Right[1019] = 0.00000000;

 m_h_Right[1020] = 0.00000000;

 m_h_Right[1021] = 0.00000000;

 m_h_Right[1022] = 0.00000000;

 m_h_Right[1023] = 0.00000000;

 }

Audio Filter Designs: FIR Filters 281

 This IR has 65 samples and will create a 65-tap FIR fi lter. Compile the dynamic link

library (DLL) and load it into RackAFX. Play a wave fi le through it; it’s an LPF at

1 kHz, so this will be easy to verify by ear. Open the analyzer window and look at the

frequency and IRs—these will also be identical to the original design. Now that you have

verifi ed that your convolution works properly, you can set the IR fl ag in your constructor

to let RackAFX know to deliver your IRs when the user makes, loads, or calculates

them. You can also remove or comment-out the default IR code you pasted in to do the

initial testing:

 CConvolver::CConvolver()

 {

 <SNIP SNIP SNIP>

 // reset all indices

 m_nReadIndexDL = 0;

 m_nReadIndexH = 0;

 m_nWriteIndex = 0;

 // set the fl ag for RackAFX to load IRs into our convolver

 m_bWantIRs = true;

 }

 Now, build and load your DLL. Next, open the analyzer window and you will see two

new buttons on the right below the IR/FIR design area. Because your plug-in wants

IRs, RackAFX reveals these two hidden buttons on the analyzer panel allowing you

to use either the FIR Designer or the IR directory to create or load IR fi les. As soon

as this window opens, it delivers the current IR loaded, which is the optimal LPF

design by default. If you change the design it will remember it if you close the

analyzer.

 Load a wave fi le and hit Play—this will play the optimal LPF design. Now, hit one of the

other buttons (HPF, BPF, or BSF) and the IR will automatically be calculated and loaded

into your plug-in, even if an audio fi le is playing. Test the other IR tools, like the frequency

sampling method and the IR Directory, and listen to the resulting fi lters.

 8.11 Numerical Method FIR Filters

 The last type of FIR fi lters consists of numerical methods and is not based on IRs or

convolution, even though many of them implement a convolution loop. There are books full of

numerical methods for performing all kinds of operations, from integration and differentiation

to moving averages and interpolation. In this section we will examine a few algorithms and if

y(n)

×

0.2 0.2 0.2 0.2 0.2

Z
-1 -1 Z -1 Z -1 Z x(n)

282 Chapter 8

it interests you, get a book on numerical methods and you will have a plethora of algorithms

to try out. Some of these fi lters can be implemented as FIR topologies while others are better

suited for a straight mathematical function call.

 8.11.1 Moving Average Interpolator

 Choose:

 N 5 number of points to interpolate, minimum 5 2

 Calculate:

 ak 5
1

N
 , where 0 # k # N 2 1 (8.8)

 The moving average interpolator (or MA fi lter) in Figure 8.28 implements a sliding window

of N samples wide, over which the input samples are averaged. Each sample gets an equal

weight of 1/ N .

 Example: Design a fi ve-point MA fi lter.

 Solution:

 N 5 5, so a k 5 1/5 5 0.20

 To code this in RackAFX, you would fl ush the IR buffers, then set the fi rst fi ve values of each

impulse array to 0.2 and set the m_nIRLength variable to 5:

 // disable RackAFX IRs for the MA fi lter test

 m_bWantIRs = false;

 // h(n) Impulse Response

 // MA Filter N = 5

 Figure 8.28: The implementation of a fi ve-point MA fi lter.

10 kHz 1 kHz 100 Hz 10 Hz
-60.0 dB

-48.0 dB

-36.0 dB

-24.0 dB

-12.0 dB

0.0 dB

+12.0 dB

Audio Filter Designs: FIR Filters 283

 m_nIRLength = 5;

 m_h_Left[0] = 0.2;

 m_h_Left[1] = 0.2;

 m_h_Left[2] = 0.2;

 m_h_Left[3] = 0.2;

 m_h_Left[4] = 0.2;

 m_h_Right[0] = 0.2;

 m_h_Right[1] = 0.2;

 m_h_Right[2] = 0.2;

 m_h_Right[3] = 0.2;

 m_h_Right[4] = 0.2;

 }

 Of course you could also write a function to calculate and populate the IR buffers, but this

one is short enough to code by hand if you want.

 The frequency response (Figure 8.29) of an MA fi lter is always an LPF. The more samples

that are averaged, the more stop-band attenuation and the more zeros get inserted into the

 z -plane. For this fi lter there is a pair of complex conjugate zeros which produce two null

points in the response.

 You can see this is a pretty poor LPF compared to some of the optimal fi lter designs, but these

fi lters can be very useful, for example to smooth the response of an audio detector output or

to insert in the feedback path of a delay line module to gently roll off high frequencies on

each pass through the delay. You can get better stop-band attenuation by increasing the order

of the fi lter. This will also effectively pull in the corner frequency, which looks like about

2.5 kHz here. Experiment with higher-order MA fi lters, or add a slider to let the user adjust

the window size. This exact fi lter already exists as a RackAFX module called a “Smoothing

Filter” for you to experiment with.

 Figure 8.29: The MA fi lter with a window of 5 samples.

284 Chapter 8

 8.11.2 Lagrange Interpolator

 Choose:

 N 5 number of points to interpolate, minimum 5 2

 Calculate:

 aj 5 q
n

k 5 0
k 2 j

x 2 xk

xj 2 xk
 (8.9)

 The Lagrange interpolator uses a polynomial of order j 2 1 to interpolate across the

window of points that you give it. The window is of length j in the above equation. This is

a complex fi lter because the coeffi cients change every sample period and they are based on

the window of input values, x 0 to x j . This fi lter can be implemented as a pure math function

call. To facilitate your coding, a Lagrange interpolation function is implemented in your

pluginconstants.h fi le:

 /*

 Function: lagrpol() implements n-order Lagrange Interpolation

 Inputs: double* x Pointer to an array containing the x-coordinates of the

 input values

 double* y Pointer to an array containing the y-coordinates of the

 input values

 int n The order of the interpolator, this is also the length of

 the x,y input arrays

 double xbar The x-coorinates whose y-value we want to interpolate

 Returns The interpolated value y at xbar. xbar ideally is between the middle two
 values in the input array, but can be anywhere within the limits, which
 is needed for interpolating the fi rst few or last few samples in a table
 with a fi xed size.

 */

 8.11.3 Median Filter

 Choose:

 N 5 number of points in window 5 odd

 Calculate:

 Acquire samples in windows of N values, then sort and choose the median value as the

output.

x(n) z -1 z -1 z -1 z -1

Sort low to high and find median value

y(n)

9

8

7

6

5

4

3

2

1

0

0 1 1 1 2

0 1 1 2 2

0 1 1 2 3

0 1 2 3 3

Window 0 : 1

Window 1 : 1

Window 2 : 1

Window 3 : 2

Sample (n)

Audio Filter Designs: FIR Filters 285

 The median fi lter (Figure 8.30) is a very interesting and somewhat strange algorithm. It has

no IR or frequency response. It smoothes an input signal, which is an LPF type of operation,

but it preserves transient edges, which is very un-LPF in nature. It has applications in noise

reduction without losing high-frequency transients. Its central algorithm uses a sorting

mechanism to sort the window of data by amplitude. The median value is chosen from the

sort operation as the output. When the next sample arrives, the window is re-sorted and the

next median value is obtained. To understand how it smoothes a signal without affecting

high-frequency transients, consider the following example.

 Example: Design a fi ve-point median fi lter and test with example.

 Consider this input sequence: x 5 {1, 2, 1, 0, 1, 2, 3, 3, 2, 1, 9, 8, 9, 9, 7, 5, 5, 4} in

 Figure 8.31 .

 Figure 8.30: The block diagram of a fi ve-point median fi lter implementation.

 Figure 8.31: The fi rst four windows of the median fi lter produce an output sequence {1,1,1,2}.

9

8

7

6

5

4

3

2

1

0

0 1 1 1 2

0 1 1 2 2

0 1 1 2 3

0 1 2 3 3

1 2 2 3 3

1 2 2 3 3

1 2 3 3 9

1 2 3 8 9

1 2 8 9 9

1 8 9 9 9
Sample (n)

7 8 9 9 9

5 7 8 9 9

5 5 7 9 9

3 5 5 7 9

286 Chapter 8

 You can see a transient edge where the signal jumps from 1 to 9 and then another transient

where it drops from 9 to 7 to 5. The fi rst window operates on the fi rst fi ve samples and

sorts them from low to high. Then, the median value is chosen as the output. The median

value is shown in a box in the center of each window. You can see the smoothing effect

immediately—the fi rst three samples out of the fi lter are all 1, even though the fi rst three

samples vary from 1 to 2. Figures 8.32 and 8.33 show the result of median fi ltering the signal

in Figure 8.31 .

 FIR fi lters can be complicated to design and long convolutions in direct form are slow. You

can use the FIR design tools when you need to create linear-phase fi lters with very steep

roll offs (optimal method) or fi lters with arbitrary frequency responses (frequency sampling

method). You might also want to investigate other FIR designs such as the windowing method

and the recursive frequency sampling method.

 Figure 8.32: The complete set of median fi lter outputs for the sliding-window-of-fi ve operation.

9

8

7

6

5

4

3

2

1

0
Sample (n)

Audio Filter Designs: FIR Filters 287

 Bibliography

Ifeachor, E. C. and Jervis, B. W. 1993. Digital Signal Processing, A Practical Approach, Chapters 4 and 6. Menlo

Park, CA: Addison-Wesley.

Kwakernaak, H. and Sivan, R. 1991. Modern Signals and Systems, Chapters 3 and 9. Englewood Cliffs, NJ:

Prentice-Hall.

Lindquist, C. 1999. Adaptive and Digital Signal Processing, Chapter 10. Miami: Steward & Sons.

Oppenheim, A. V. and Schafer, R. W. 1999. Discrete-Time Signal Processing, 2nd ed., Chapter 7. Englewood

Cliffs, NJ: Prentice-Hall.

 Figure 8.33: Input and output sequences plotted together and shifted to show the smoothing of
the steady-state portions and preservation of the transient edges.

289

 Oscillators fi nd several uses in audio effects and plug-ins. The obvious use is as an audio test

signal like the one RackAFX provides on the main interface. Additive synthesis of musical

sounds uses multiple sinusoidal oscillators at harmonic frequencies to create complex

waveforms. Wavetable synthesis stores a periodic waveform in a table for interpolation

and playback when the musician strikes a key or a MIDI message is sent. Low-frequency

oscillators (LFOs) are used in the design of modulated delay lines and modulated fi lters.

Oscillators broadly fall into two categories: direct calculation and table lookup. We desire

oscillators that have several important features:

• Stability over a wide range of frequencies

• No aliasing

• Purity of sinusoid (low THD+N) for sinusoidal oscillators

• Quadrature phase outputs

• Simplicity of calculation

 9.1 Direct Form Oscillator

 We can make a sinusoidal oscillator by placing a pair of poles directly on the unit circle in the

 z- plane. This produces a sinusoid at the pole angle (or frequency). The radius of the pole is

always 1.0. Using the fundamental digital signal processing (DSP) z -plane equations, we can

directly write the transfer function and difference equations:

H(z) 5 a0 c 1

1 1 b1z
21 1 b2z

22 d
 5 a0 c 1

1 2 2Rcos(Q)z21 1 R2z22 d
 y(n) 5 2cos(Q)y(n 2 1) 2 y(n 2 2)

 (9.1)

 Since the pole radius is 1.0, then the b 2 coeffi cient is 1.0 as well. The b 1 coeffi cient is then

 22cos(u), where u is the pole frequency from 0 to p.

 CHAPTER 9

 Oscillators

Im

1
.0

θ

-θ

1
.0

Re

y(n)

2cos(θ)
Z

-1

- b 1

-1
Z

–1.0

- b
2

290 Chapter 9

 You can see that the block diagram in Figure 9.1 has no input. Oscillators do not have inputs;

instead they have initial conditions which, once started, will cause eternal oscillation. DSP

theory suggests that kick-starting the system with an impulse will cause it to self-oscillate,

which it does. However, the amplitude and phase are dependent on the frequency, u. For an

oscillator, we would like to precisely control the amplitude and starting phase so that they are

exact. If we are trying to create a sinusoid with an initial phase offset of 0 degrees, then the

fi rst sample out of our oscillator at n 5 0 would be 0.0, and the second sample out would be

sin(v nT) where n 5 1 and T 5 1/ f s .

 9.1.1 Initial Conditions

 Suppose we want to generate the above sinusoid, oscillating at 500 Hz. If we want the fi rst

sample out to be 0.0, then continue rising after that, we need to initialize the delays as if a

sinusoid had been oscillating, up to the point when we turn on the oscillator. So we can set

our initial state by preloading those last two samples into the delays in our oscillator/fi lter, as

shown in Figure 9.2 .

 The sinusoid is oscillating at sin(v nT) where n 5 0, 1, 2, 3… after the oscillator starts and T

is the sample period. The previous two samples with f o 5 500 Hz and f s 5 44,100 Hz would

be sin(v(21 T)) and sin(v(22 T)), which are –0.0712 and –0.1532, respectively. The direct

form oscillator block diagram is shown in Figure 9.3 .

 The difference equation is as follows:

 y(n) 5 2b1y(n 2 1) 2 b2y(n 2 2) (9.2)

 Figure 9.1: The direct form sinusoidal oscillator z -plane and block diagram.

IF the oscillator starts here

THEN these must have been
the previous two samples out of
the oscillator: y(n–1) andy(n–2)

y(n)

-1 z

-b1

z-1

-b2

Oscillators 291

 Specify:

• f o, desired oscillation frequency

 The design equations are as follows:

u 5
2pfo

fs

b1 5 22cos(u)

b2 5 1.0

Initial conditions:

y(n 2 1) 5 sin(21u)

y(n 2 2) 5 sin(22u)

 (9.3)

 Figure 9.2: Initial conditions that would have produced a sinusoid whose fi rst output sample is 0.0.

 Figure 9.3: The direct form oscillator is really the feedback side of the bi-quad structure.

292 Chapter 9

 9.2 Design a Direct Form Oscillator Plug-In

 In our fi rst version of the direct form oscillator we are going to make it as simple as possible

by restarting the oscillator when the user changes the oscillator frequency. This means we

are going to recalculate the initial conditions as if the oscillator was starting from a phase

of 0 degrees and the fi rst sample out would have a value of 0.0. After we have that up and

running, we will modify it to change frequency on the fl y, automatically back-calculating the

initial conditions for any given output sample. Here are the oscillator’s specifi cations:

• Monophonic sinusoidal oscillator.

• We will need to implement a second-order feed-back block.

• We will need a slider for the user to control the oscillation frequency in Hz.

• We will need a cookFrequency() function to calculate our coeffi cients and reset our initial

conditions when the user moves the frequency slider.

• The oscillator’s range will be 200 Hz to 6 kHz.

• We need to assign Start and Stop buttons.

 9.2.1 Project: DirectOscillator

 Create a new project in RackAFX. On the new project dialog, make sure you check the box

“Output Only Synthesizer Plug-In”—you must select this for any synthesis plug-in; you will

not be able to play a wave fi le through it (Figure 9.4).

 9.2.2 DirectOscillator GUI

 Add a frequency slider (Figure 9.5) to the user interface (UI) with the parameters in Table 9.1 .

Next, set up the assignable buttons to create start and stop functions. Right-click inside the

box labeled “Assignable Buttons” but do not click on a button, only in the area in between.

A dialog pops up (Figure 9.6) that lets you set the button names. Choose “Start,” “Stop,” and

make the last one blank with “ ” by entering the strings in the edit boxes. The buttons will

automatically use the text you enter. Do not check the “Latching” buttons. See the website for

notes on how to use latching buttons.

 Table 9.1: The GUI control for the DirectOscillator plug-in

Slider Property Value

Control Name Frequency

Units Hz

Variable Type fl oat

Variable Name m_fFrequency_Hz

Low Limit 200

High Limit 6000

Initial Value 1000

Oscillators 293

 These assignable buttons will trigger your userInterfaceChange() function with their

nControlIndex values of 50, 51, and 52. See the userInterfaceChange() function for more

details.

 Figure 9.4: Make sure you check the “Output Only Synthesizer Plug-In”
box for your oscillators.

 Figure 9.5: The DirectOscillator GUI.

294 Chapter 9

 9.2.3 DirectOscillator.h File

 In the .h fi le, declare the variables you need to implement the oscillator:

 // Add your code here: --- //
 //
 // coeffi cients, 2nd Order FB
 fl oat m_f_b1;
 fl oat m_f_b2;

 // delay elements, 2nd Order FB
 fl oat m_f_y_z1;
 fl oat m_f_y_z2;

 // fl ag to start/stop oscillator
 bool m_bRunOscillator;

 // function to cook the Frequency and set initial conditions
 void cookFrequency();
 //
 // END OF USER CODE -- //

 Figure 9.6: The assignable button setup; notice that the last button is blank.
RackAFX will hide it when you load the plug-in.

Oscillators 295

 9.2.4 DirectOscillator.cpp File
 Constructor

• Turn off the oscillator by setting the fl ag you declared in the .h fi le. You will need to do

these two steps any time you make an oscillator or other output-only plug-in.

 CDirectOscillator::CDirectOscillator()
 {

 <SNIP SNIP SNIP>

 // Finish initializations here
 // turn off
 m_bRunOscillator = false;

 // set 0
 m_f_b1 = 0;
 m_f_b2 = 0;

 // fl ush memory
 m_f_y_z1 = 0;
 m_f_y_z2 = 0;

 // call the cooking function to calc coeffs
 // and set initial states
 cookFrequency();

 }

 Implement the cooking function according to the design equations:

 void CDirectOscillator::cookFrequency()
 {

 // Oscillation Rate = theta = wT = w/fs
 fl oat f_wT = (2.0*pi*m_fFrequency_Hz)/(fl oat)m_nSampleRate;

 // coeffi cients according to design equations
 m_f_b1 = –2.0*cos(f_wT);
 m_f_b2 = 1.0;

 // set initial conditions so that fi rst sample out is 0.0
 m_f_y_z1 = sin(–1.0*f_wT); // sin(wnT) = sin(w(–1)T)
 m_f_y_z2 = sin(–2.0*f_wT); // sin(wnT) = sin(w(–2)T)

 }

 prepareForPlay()

• Call the cooking functions to initialize the oscillator:

 bool __stdcall CDirectOscillator::prepareForPlay()
 {

 // Add your code here:

296 Chapter 9

 // calc coeffs and initial conditions
 cookFrequency();

 retur true;
 }

 processAudioFrame()

• Implement the second-order feed-back fi lter.

• Check the oscillator fl ag. If the oscillator is not running you must send 0.0 samples to

the output stream and then return without further processing. This is done at the very

 beginning of the function.

 bool __stdcall CDirectOscillator::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumChannels)

 {
 //
 // output = input -- change this for meaningful processing
 //
 // Do LEFT (MONO) Channel
 //
 // if not running, write 0s and bail
 if(!m_bRunOscillator)
 {
 // zero it all out

 pOutputBuffer[0] = 0.0;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = 0.0;

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = 0.0;

 return true;
 }

 // otherwise, do the oscillator
 // do difference equation y(n) = –b1y(n-2) – b2y(n–2)
 pOutputBuffer[0] = –m_f_b1*m_f_y_z1 – m_f_b2*m_f_y_z2;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0];

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0];

Oscillators 297

 // shuffl e memory
 m_f_y_z2 = m_f_y_z1;
 m_f_y_z1 = pOutputBuffer[0];

 return true;
 }

 userInterfaceChange()

• Call the frequency cooking function and implement the start and stop functions.

• Make sure your nControlIndex values match your switch/case statement.

 bool __stdcall CDirectOscillator::userInterfaceChange(int nControlIndex)
 {

 // cook variables
 switch(nControlIndex)
 {
 case 0: // freq

 cookFrequency();
 break;

 case 50: // start
 m_bRunOscillator = true;
 break;

 case 51: // stop
 m_bRunOscillator = false;
 break;

 default:
 break;

 }
 return true;

 }

 Build and load the dynamic link library (DLL). Then, hit the Start and Stop buttons to control

your oscillator. Play with the frequency slider to change the value. You will notice a lot of

clicking due to the discontinuities that occur each time the oscillator is reset to re-trigger from

the 0.0 value. Other than that problem, the output should be a pure sinusoid with very low

distortion and noise.

 9.2.5 Improving the Oscillator Design

 One of the drawbacks of oscillators is their initial conditions usually must be met (there are

noise generators and other devices that can start up in a random state). In this case, we must

preload the delay elements with samples that would have occurred before the initial output

sample. If the user changes the frequency of oscillation, the initial states must change too. The

problem is that the oscillator can be in any state when the user changes the controls. Suppose

the user decreased the frequency of oscillation a bit and that the oscillator had some values in

y(n –1) shared

Next y(n)

y(n – 2)
newly

calculated

298 Chapter 9

 y (n 2 1) and y (n 2 2). Then to set up the new initial state, you can share the y (n 2 1) value

between the two sinusoids and calculate a new y (n 2 2) value. The next sample out of the

oscillator is at the new rate, using the new initial state you created (Figure 9.7).

 The initial conditions from the design equations are in Equation 9.4 :

Initial conditions:

y(n 2 1) 5 sin(vnT)

y(n 2 2) 5 sin(v(n 2 1)T)

 (9.4)

 Our problem is that we do know the new frequency, v, and since the sample rate is also

known, then we also know v T , but we don’t know what sample interval n we are on.

However, we can fi gure it out as follows:

• Take the inverse sin of the y (n 2 1) delay element.

• Find the value of n by dividing it by v T .

• arcsine() returns a value between –p/2 to +p/2 which is the rising edge of the sinusoid

like the original initial conditions.

• If we are on the rising edge, calculate the new y (n 2 2) value as sin((n – 1)v T).

• If we are on the falling edge, calculate the new y (n 2 2) value as sin((n + 1)v T).

 It is simple to change in the cookFrequency() function as follows, so make the change in your

code. Note the use of commenting out the original initial condition code in case you want to

refer to it later. Also note the logic to see if we are rising or falling. We need this because the

arcsine() function only returns the angle for half a sinusoid. If you think about it, this makes

sense. If you give it a value of 0.707, it can’t tell if the angle is 45 degrees or 135 degrees,

both of which produce a sine of 0.707.

 void CDirectOscillator::cookFrequency()
 {

 // Oscillation Rate = theta = wT = w/fs
 fl oat f_wT = (2.0*pi*m_fFrequency_Hz)/(fl oat)m_nSampleRate;

 Figure 9.7: The new initial state samples, y (n 2 1) and y (n 2 2); we share the y (n 2 1)
sample as if it was from the new frequency and alter the y (n 2 2) value to

relocate it on the new sinusoid.

Oscillators 299

 // coeffi cients according to design equations
 m_f_b1 = –2.0*cos(f_wT);
 m_f_b2 = 1.0;

 // set initial conditions so that fi rst sample out is 0.0

 // m_f_y_z1 = sin(–1.0*f_wT); // sin(wnT) = sin(w(–1)T)
 // m_f_y_z2 = sin(–2.0*f_wT); // sin(wnT) = sin(w(–2)T)

 // re calculate the new initial conditions
 // arcsine of y(n–1) gives us wnT
 double wnT1 = asin(m_f_y_z1);
 // fi nd n by dividing wnT by wT
 fl oat n = wnT1/f_wT;

 // re calculate the new initial conditions
 // asin returns values from –pi/2 to +pi/2 where the sinusoid
 // moves from –1 to +1 -- the leading (rising) edge of the
 // sinewave. If we are on that leading edge (increasing)
 // then we use the value 1T behind.
 //
 // If we are on the falling edge, we use the value 1T ahead
 // because it mimics the value that would be 1T behind
 if(m_f_y_z1 > m_f_y_z2)

 n–=1;
 else

 n+=1;

 // calculate the new (old) sample
 m_f_y_z2 = sin((n)*f_wT);

 }

 Build and load the DLL. Then, hit the Start and Stop buttons to control your oscillator. Play

with the frequency slider to change the value. If you change the slider too much you will still

hear a click on some of the discontinuities due to the fact that the frequencies are so far apart

that it produces a noticeable shift in the waveform.

 Now that you understand how to code a direct calculation oscillator in RackAFX, next are a

few more example oscillator designs for you to try out. Remember that you must set the fl ag

m_bOutputOnlyPlugIn to make the oscillators work properly in RackAFX. You must provide

a start/stop mechanism as well. Sample code is included to help you along.

 9.3 The Gordon–Smith Oscillator

 The Gordon–Smith oscillator uses a pair of delay elements arranged in a circular confi guration

to produce both sin and cos oscillations. The two outputs are almost perfectly in quadrature

phase (90 degrees apart) only differing by half a sample period. Its sinusoidal oscillation

is pure enough to be used in audio test equipment. And, because each output only uses one

yq (n)

–1
Z

y(n)

ï1
Z

y(n –1)

yq(n ï 1)

300 Chapter 9

delay element, there are no initial states to update when the frequency is changed; the single

 y (n – 1) sample is shared with the new frequency the same way as in the direct form oscillator.

Only the coeffi cient e needs to be updated. A small amplitude variation is observed when the

oscillation frequency changes, but it is small enough to not cause clicks or pops in the output.

It sounds just as smooth as the direct form oscillator when the frequency is adjusted slowly.

 The two outputs are labeled y (n) and y q (n) where the “q” stands for quadrature. Therefore, there

are two difference equations. The difference equation for y q (n) must be solved fi rst because y (n)

is dependent on it. A Gordon–Smith oscillator block diagram is shown in Figure 9.8 .

 The difference equations are as follows:

yq(n) 5 yq(n 2 1) 2 Py(n 2 1)

y(n) 5 Pyq 1 y(n 2 1)
 (9.5)

 Specify:

• f o , desired oscillation frequency

 The design equations are as follows:

u 5
2pfo

fs

P 5 2sin(u/2)

Initial conditions:

y(n 2 1) 5 sin(21u)

yq(n 2 1) 5 cos (21u)

(9.6)

 Figure 9.8: The Gordon–Smith Oscillator.

Oscillators 301

 The C++ code for the Gordon–Smith oscillator looks as follows (two memory elements have

been declared, m_f_yn_z and m_f_yq_z, as well as a coeffi cient m_fGorSmithEpsilon). In

cookFrequency():

 // calculate HS Epsilon
 fl oat f_wT = (2.0*pi*m_fFrequency_Hz)/(fl oat)m_nSampleRate;
 m_fGorSmithEpsilon = 2.0*sin(f_wT/2.0);

 In processAudioFrame():

 // form yq(n) fi rst
 fl oat f_yqn = m_f_yq_z - m_fGorSmithEpsilon*m_f_yn_z;

 // y(n)
 fl oat f_yn = m_fGorSmithEpsilon*f_yqn + m_f_yn_z;

 // shuffl e delays
 m_f_yq_z = f_yqn;
 m_f_yn_z = f_yn;

 // write out
 pOutputBuffer[0] = f_yn;

 etc…

 9.4 Wave Table Oscillators

 A wave table oscillator is, as its name implies, a table-based system for creating periodic

signals. A circular buffer is preloaded with one cycle, minus one sample, of a waveform.

The waveform may be mathematical (sin, cos, pulse, square, saw, triangle, etc.) or it might

be arbitrary or a recorded signal. The basic idea is that you read through the table and output

samples from it. Consider a table of 1024 samples consisting of one cycle of a sinusoid,

minus one sample (Figure 9.9).

 Suppose you start at i 5 0 and during each sample period, you read out one value and

advance to the next. At the end of the buffer, you wrap around and start all over. If you

did read out one value per sample period, what would be the resulting frequency of the

waveform?

 The answer is f table 5 f s / L when the index increment is exactly 1.0 through the table. For a

1024-point wave table at a 44,100 Hz sample rate, the table frequency is 43.06 Hz. If you

happen to really need a super precise sinusoid at exactly 43.06 Hz, then this method will

produce nearly perfect results. The only factor is the precision of the sinusoid loaded into the

table. If you had a saw-tooth waveform stored in the table, it too would have a fundamental

frequency of 43.06 Hz.

 Most likely, you are going to want to make any arbitrary frequency you like, perhaps with an

emphasis on musical pitch frequencies. With the exception of the note A, these are going to be

Last sample is the
one just before 0.0

First sample at 0.0

i = 0 i =1023

302 Chapter 9

fl oating-point numbers with fractional parts. To make any frequency, you calculate the inc

value with Equation 9.7 :

 inc 5 L

fdesired

fs

 (9.7)

 L is the table length and f desired is the target frequency. The increment value you get back will

be used to skip through the table, moving forward by inc during each sample interval. If inc is

less than 1.0, then the desired frequency is below the table frequency, and if it is above 1.0 it

must be greater than the table frequency. If the inc is 2.0, then the resulting frequency is twice

the table frequency. Most likely, the inc value is going to be noninteger and will therefore

consist of an integer part and a fractional part. For example, if inc 5 24.9836 then the integer

part would be 24 and the fractional part 0.9836. Here, the integer part is called int and the

fractional part is called frac .

 As with the delay module you built in Chapter 8 , there are several options for dealing with the

fractional part of the increment value. You could:

• Truncate the value, and forget frac .

• Linearly interpolate the table frac distance between int and int + 1.

• Use polynomial interpolation or another interpolation method instead of linear

 interpolation.

 If you truncate the inc value, then you have multiple problems—the note you synthesize

won’t be exactly in tune. Additionally, it will be distorted because of the inaccuracy in the

 Figure 9.9: One cycle minus one sample of a sinusoid. The table is indexed with the
value i which starts at 0; the last entry in the table is at i 5 1023 and it is the

sample just before the waveform starts all over again.

Frequency

440.0 Hz

Waveform
Sine

Saw
Tri

Square

Mode
Normal

Band-limit

Polarity
Bipolar

Unipolar

Oscillators 303

transcription out of the table. Linear and polynomial interpolation both overcome these

problems, though there is still distortion in the output. The industry standard is a fourth-order

Lagrange interpolation on the wave table, where the neighboring four points (two to the left

and two to the right) of the target interpolated value are used.

 Before we code a wave table oscillator, there is one thing you need to be aware of: the danger

of a wave table is that the cycle of data stored inside might be full of aliasing components.

In other words, you can create a table of data that could have never made it past the input

low-pass fi lter (LPF) if it were an analog signal being sampled. We will be doing just that

and creating some signals that do alias, on purpose. Then, we’ll examine a way to synthesize

common signals without aliasing. The only meaningful signal that won’t alias is a sinusoid,

so we can start there.

 9.5 Design a Wave Table Oscillator Plug-In

 To code a wave table oscillator you need to create a table of data and initialize it in the

constructor. A fl oating-point index value is used for inc and it will keep track of the current

read location. Linear interpolation will be used to extract samples from the table. The circular

buffer will run as long as the oscillator is engaged. Thus, we need to start with a plug-in

design similar to the direct form oscillator. We can use the assignable buttons to trigger the

oscillator to simulate MIDI note-on and note-off messages, and we can provide a slider for

frequency control.

 9.5.1 Project: WTOscillator

 Create a new RackAFX project and make sure to check the synthesizer plug-in box (if you

forget, you can always change it later).

 9.5.2 WTOscillator GUI

 The fi nal GUI will feature a frequency control and multiple radio button controls for

waveform, mode, and polarity. Ultimately, it will have the controls shown in Figure 9.10 .

 Figure 9.10: The fi nal WTOscillator GUI.

304 Chapter 9

 First, add a frequency slider to the UI and connect it to a variable named m_fFrequency_

Hz with the limits 25 Hz to 4.2 kHz and an initial setting of 440 Hz (Table 9.2). The

limits are chosen as such because they are close to the lower and upper fundamental

frequencies of the notes on a standard (88 key) piano or synthesizer. Next, set up

the assignable buttons to create start and stop functions just like you did for the

DirectOscillator plug-in.

 Table 9.2: GUI controls for the wave table oscillator plug-in.

Slider Property Value

Control Name Frequency

Units Hz

Variable Type fl oat

Variable Name m_fFrequency_Hz

Low Limit 25

High Limit 4200

Initial Value 440

 9.5.3 WTOscillator.h File

 Declare the variables you need to implement the oscillator:

 // Add your code here: --- //
 //
 // Array for the Table
 fl oat m_SinArray[1024]; // 1024 Point Sinusoid

 // current read location
 fl oat m_fReadIndex; // NOTE its a FLOAT!

 // reset the read index
 void reset()
 {
 m_fReadIndex = 0.0;
 }

 // our inc value
 fl oat m_f_inc;

 // our cooking function
 void cookFrequency();

 // our note on/off message
 bool m_bNoteOn;

 // END OF USER CODE -- //

Oscillators 305

 You can see that we’ve added the necessary ingredients (array, read index, inc , note-on/off),

as well as two functions:

• cookFrequency() to update the inc value when the frequency changes.

• reset(), which just relocates the read index to the top of the buffer.

 9.5.4 WTOscillator.cpp File

 Constructor

• Turn off the oscillator by setting the fl ag you declared in the .h fi le.

 CWTOscillator::CWTOscillator()
 {

 <SNIP SNIP SNIP>
 // Finish initializations here
 // setup array
 for(int i = 0; i < 1024; i++)
 {

 // sample the sinusoid, 1024 points
 // sin(wnT) = sin(2pi*i/1024)
 m_SinArray[i] = sin(((fl oat)i/1024.0)*(2*pi));

 }

 // clear variables
 m_fReadIndex = 0.0;
 m_f_inc = 0.0;

 // silent
 m_bNoteOn = false;

 // initialize inc
 cookFrequency();

 }

 In the constructor, you set the fl ags and set up the wave table by sampling it for 1024 points.

This version is set up to produce the one-cycle-minus-one-sample waveform we desire. Write

the cooking function:

 void CWTOscillator::cookFrequency()
 {

 // inc = L*fd/fs
 m_f_inc = 1024.0*m_fFrequency_Hz/(fl oat)m_nSampleRate;

 }

 prepareForPlay()

• Reset the oscillator.

• Cook the variables.

306 Chapter 9

 bool __stdcall CWTOscillator::prepareForPlay()
 {

 // Add your code here:
 // reset the index
 reset();

 // cook curent frequency
 cookFrequency();

 return true;
 }

 userInterfaceChange()

• Handle the slider control to cook the variables.

• Handle the start/stop buttons to turn the fl ag on/off and cook variables if turning on.

• Make sure your nControlIndex variables match with your GUI controls.

 bool __stdcall CWTOscillator::userInterfaceChange(int nControlIndex)
 {

 // add your code here
 switch(nControlIndex)
 {
 case 0:

 cookFrequency();
 break;

 // note on
 case 50:

 reset();
 cookFrequency();
 m_bNoteOn = true;
 break;

 // note off
 case 51:

 m_bNoteOn = false;
 break;

 default:

 break;
 }
 return true;

 }

 processAudioFrame()

• Implement the table look up.

• Notice that as with the delay line, we shift the frame of reference of the interpolated

points to be between n = 0 and n = 1, then just use the frac component to fi nd the value

between the samples.

Oscillators 307

 bool __stdcall CWTOscillator::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumChannels, UINT uNumOutputChannels)
 {

 // Do LEFT (MONO) Channel
 // if not running, write 0s and bail
 if(!m_bNoteOn)
 {

 pOutputBuffer[0] = 0.0;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = 0.0;

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = 0.0;

 return true;
 }
 // our output value for this cycle
 fl oat fOutSample = 0;

 // get INT part
 int nReadIndex = (int)m_fReadIndex;

 // get FRAC part
 fl oat fFrac = m_fReadIndex – nReadIndex;

 // setup second index for interpolation; wrap the buffer if needed
 int nReadIndexNext = nReadIndex + 1 > 1023 ? 0 : nReadIndex + 1;

 // interpolate tht output (x1,x2,y1,y2,frac) – notice the way we set x1 and x2
 // to 0 and 1, then only use the frac value while nReadIndex and nReadIndexNext
 // acquire the values from the table
 fOutSample = dLinTerp(0, 1, m_SinArray[nReadIndex], m_SinArray[nReadIndexNext],

 fFrac);

 // add the increment for next time
 m_fReadIndex += m_f_inc;

 // check for wrap
 if(m_fReadIndex > 1024)

 m_fReadIndex = m_fReadIndex – 1024;

 // write out
 pOutputBuffer[0] = fOutSample;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = fOutSample;

 // Stereo-In, Stereo-Out (INSERT Effect)

308 Chapter 9

 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 pOutputBuffer[1] = fOutSample;

 return true;
 }

 Build and run the oscillator and check the pitch using the analyzer window. Adjust the

oscillation frequency with the slider. Add a volume control slider if you wish.

 9.6 Adding More Wave Tables

 The sinusoidal oscillator is interesting, but you can implement any kind of table

you want. You will see that adding more tables is actually easy since they all use

the same frequency of oscillation equation. In this section we will add the following

table types:

• Saw-tooth

• Triangle

• Square

 These three waveforms will be mathematically as close as you can get in a discrete

time system, but they will alias when played back. However, we still want to

implement them because we can use the wave table oscillator as an LFO for

upcoming effects like chorus and flanger. To add more tables we need to do the

following:

• Add more arrays to store the tables.

• Initialize the arrays in the constructor.

• Provide the user with a way to switch oscillator types.

 9.6.1 WTOscillator.h File

 Start with the new arrays in the .h fi le:

 // Add your code here: ---
 //
 // Array for the Table
 fl oat m_SinArray[1024]; // 1024 Point Sinusoid
 fl oat m_SawtoothArray[1024]; // saw
 fl oat m_TriangleArray[1024]; // tri
 fl oat m_SquareArray[1024]; // sqr

 // current read location
 fl oat m_fReadIndex; // NOTE its a FLOAT!

Oscillators 309

 9.6.2 WTOscillator.cpp File

 Constructor

• These three new wave tables will be bipolar like the sinusoid table and swing between

–1.0 and +1.0, and they will all start with the fi rst sample 5 0.0.

 CWTOscillator::CWTOscillator()
 {

 m_PlugInName = "WTOscillator";

 // set our oscillator fl ag:
 this->m_bOutputOnlyPlugIn = true;

 // slope and y-intercept values for the
 // Triangle Wave
 // rising edge1:
 fl oat mt1 = 1.0/256.0;
 fl oat bt1 = 0.0;

 // rising edge2:
 fl oat mt2 = 1.0/256.0;
 fl oat bt2 = –1.0;

 // falling edge:
 fl oat mtf2 = –2.0/512.0;
 fl oat btf2 = +1.0;

 // Sawtooth
 // rising edge1:
 fl oat ms1 = 1.0/512.0;
 fl oat bs1 = 0.0;

 // rising edge2:
 fl oat ms2 = 1.0/512.0;
 fl oat bs2 = –1.0;

 // setup arrays
 for(int i = 0; i < 1024; i++)
 {

 // sample the sinusoid, 1024 points
 // sin(wnT) = sin(2pi*i/1024)
 m_SinArray[i] = sin(((fl oat)i/1024.0)*(2*pi));

 // saw, triangle and square are just logic mechanisms
 // can you fi gure them out?

 // Sawtooth
 m_SawtoothArray[i] = i < 512 ? ms1*i + bs1 : ms2*(i-511) + bs2;

310 Chapter 9

 // Triangle
 if(i < 256)

 m_TriangleArray[i] = mt1*i + bt1; // mx + b; rising edge 1
 else if (i >= 256 && i < 768)

 m_TriangleArray[i] = mtf2*(i–256) + btf2; // mx + b; falling edge
 else

 m_TriangleArray[i] = mt2*(i–768) + bt2; // mx + b; rising edge 2

 // square:

 m_SquareArray[i] = i < 512 ? +1.0 : –1.0;
 }

 etc…

 9.6.3 WTOscillator GUI

 In order to let the user adjust the table, you can use the enumerated unsigned integer type

(UINT) variable in the slider or the radio buttons. I will use the radio buttons and set them

up here—right-click in the area around the buttons you want to label and fi ll in the properties

with Table 9.3 . The enumerated UINT variable lets you make the switch between oscillators.

You set up the UINT variable name and the string of labels for the radio buttons here.

 Table 9.3: The button properties for the oscillator type control.

Slider Property Value

Control Name Osc Type

Units

Variable Type enum

Variable Name m_uOscType

Enum String sine,saw,tri,square

 Note : Here, we use a radio button list with an enumerated string.

 9.6.4 WTOscillator.h File

 In the .h fi le, you can see where RackAFX added the variable:

 // ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! -------------------------------//
 // **--0x07FD--**

 fl oat m_fFrequency_Hz;
 UINT m_uOscType;
 enum{sine,saw,tri,square};

 // **--0x1A7F--**
 // --- //

Oscillators 311

 The m_uOscType is the switch variable and the enumerated list {sin, saw, tri, square}

represents the integer set {0, 1, 2, 3}, which maintains the state of the switch.

 9.6.5 WTOscillator.cpp File

 processAudioFrame()

• A switch/case statement is used to choose the table to interpolate . Every other facet of the

operation is the same as before, only the table is different.

 bool __stdcall CDirectOscillator::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumChannels, UINT uNumOutputChannels)
 {
 // Do LEFT (MONO) Channel
 <SNIP SNIP SNIP>
 // setup second index for interpolation; wrap the buffer if needed
 int nReadIndexNext = nReadIndex + 1 > 1023 ? 0 : nReadIndex + 1;

 // interpolate the output
 switch(m_uOscType)
 {
 case sine:
 fOutSample = dLinTerp(0, 1, m_SinArray[nReadIndex],
 m_SinArray[nReadIndexNext], fFrac);
 break;

 case saw:
 fOutSample = dLinTerp(0, 1, m_SawtoothArray[nReadIndex],
 m_SawtoothArray[nReadIndexNext], fFrac);
 break;
 case tri:
 fOutSample = dLinTerp(0, 1, m_TriangleArray[nReadIndex],
 m_TriangleArray[nReadIndexNext], fFrac);
 break;
 case square:
 fOutSample = dLinTerp(0, 1, m_SquareArray[nReadIndex],
 m_SquareArray[nReadIndexNext], fFrac);
 break;
 // always need a default
 default:
 fOutSample = dLinTerp(0, 1, m_SinArray[nReadIndex],
 m_SinArray [nReadIndexNext], fFrac);
 break;
 }
 // add the increment for next time
 m_fReadIndex += m_f_inc;
 <SNIP SNIP SNIP>
 return true;
 }

 Build and test the oscillator. Use the analyzer window to view the waveforms in time and

frequency. Notice the large amount of upper harmonics in the non-sinusoidal waveforms—

312 Chapter 9

some of those harmonics are actually aliased backwards. We’ll need a way to get around the

aliasing if we want to synthesize these waveforms for listening; however, we can still use this

oscillator as a very effective LFO if we want.

 9.7 Band-Limited Additive Wave Tables

 If you looked at the analyzer’s fast Fourier transform (FFT) window you saw an abundance of

upper harmonics in the saw-tooth, triangle, and square waves. That is because mathematically,

these waveforms contain harmonics out to infi nite frequency. Equations 9.8 through 9.10

show the Fourier series equations for these waveforms.

y(n)SAW 5 a
`

k51

(21)k11
1

k
sin(kvnT)

5 csin 1vnT 2 2
1

2
sin 12vnT 2 1

1

3
sin 13vnT 2 2

1

4
sin 14vnT 2 1 ... d

(9.8)

 The saw-tooth waveform has both even and odd harmonics scaled according to (1/ k):

 y 1n 2TRI 5 a
`

k50

121 2 k 1

12k 1 1 2 2 sin 1 12k 1 1 2vnT 2

 5 csin(vnT) 2
1

9
sin(3vnT) 1

1

25
sin(5vnT) 2

1

49
sin(7vnT) 1 c d

 (9.9)

 The triangle waveform has only odd harmonics. The (–1) k term alternates the signs of

the harmonics. The harmonic amplitudes drop off at a rate given by 1/(2 k + 1) 2 which is

exponential in nature.

y(n)SQUARE 5 a
`

k50

1

2k 1 1
sin((2k 1 1)vnT)

5 csin(vnT) 1
1

3
sin(3vnT) 1

1

5
sin(5vnT) 1

1

7
sin(7vnT) 1 c d

 (9.10)

 The square wave is also composed of odd harmonics like the triangle wave. The harmonic

amplitudes drop off at a rate of 1/(2 k + 1), which is not as severe as the triangle wave.

Therefore, the square wave has higher-sounding harmonics and a more gritty texture.

 Using these Fourier series equations, you can implement Fourier synthesis (or additive

synthesis) to build up a waveform that is band-limited to Nyquist. Let’s modify the existing

wave table oscillator to optionally use band-limited tables instead. The fi rst version will be

somewhat primitive, but will be a beginning source that you can use to make much more

advanced synthesizer oscillators. This version will also span the frequencies of the piano.

 The highest note on a piano is C8, vibrating at about 4186 Hz. Five times this value is

20,930 Hz, which is just barely below Nyquist. This means that we can synthesize our tables

Oscillators 313

with the fundamental plus the next fi ve harmonics (also called partials) of the series given

in Equations 9.8 through 9.10 and create our band-limited tables. The tables will therefore

potentially contain the fundamental, 2nd, 3rd, 4th, 5th, and 6th harmonics. In order to do this,

you need to modify the plug-in to allow for another mode: normal or band-limited. You can

do this with another enumerated UINT data type, using either a slider or radio-button bank.

I will use another radio button bank in this example.

 9.7.1 WTOscillator GUI

 Start with the UI and add another enumerated UINT by right-clicking inside the second bank

of radio buttons and fi lling out the properties in Table 9.4 .

 Table 9.4: The button properties for the mode switches between “normal”
and “bandlimited” on the UI.

Button Property Value

Control Name Mode

Units

Variable Type enum

Variable Name m_uTableMode

Enum String normal,bandlimit

 9.7.2 WTOscillator.h File

 This new information appears in the .h fi le:

 // ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! ------------------------------- //
 // **--0x07FD--**

 fl oat m_fFrequency_Hz;
 UINT m_uOscType;
 enum{sine,saw,tri,square};
 UINT m_uTableMode;
 enum{normal,bandlimit};

 // **--0x1A7F--**
 // --- //

 As long as we are in the .h fi le, we need to add more arrays for our band-limited tables. We

want to keep these separate from the other tables to provide both modes of operation.

 // Add your code here: --- //
 //
 // Array for the Table

314 Chapter 9

 fl oat m_SinArray[1024]; // 1024 Point Sinusoid
 fl oat m_SawtoothArray[1024]; // saw
 fl oat m_TriangleArray[1024]; // tri
 fl oat m_SquareArray[1024]; // sqr

 // band limited to 5 partials
 fl oat m_SawtoothArray_BL5[1024]; // saw, BL = 5
 fl oat m_TriangleArray_BL5[1024]; // tri, BL = 5
 fl oat m_SquareArray_BL5[1024]; // sqr, BL = 5

 // current read location
 fl oat m_fReadIndex; // NOTE its a FLOAT!

 9.7.3 WTOscillator.cpp File

 Constructor

• Initialize the tables according to the Fourier series equations. One of the problems with

the additive method is that the fi nal tables may be slightly outside the range of (21.0 to

11.0), so we need to make normalized tables by saving the maximum value, then divid-

ing each table by its maximum.

 Here is the code for the fi ve-partial tables:

 CWTOscillator::CWTOscillator()
 {
 <SNIP SNIP SNIP>

 // rising edge2:
 fl oat ms2 = 1.0/512.0;
 fl oat bs2 = –1.0;

 // setup arrays
 // to keep track of max-es for normalization later
 fl oat fMaxTri = 0;
 fl oat fMaxSaw = 0;
 fl oat fMaxSqr = 0;

 for(int i = 0; i < 1024; i++)
 {
 // sample the sinusoid, 1024 points
 // sin(wnT) = sin(2pi*i/1024)
 m_SinArray[i] = sin(((fl oat)i/1024.0)*(2*pi));

 <SNIP SNIP SNIP>

 // square: 1st sample is zero!
 if(i==1)
 m_SquareArray[i] = 0.0;

Oscillators 315

 else
 m_SquareArray[i] = i < 512 ? +1.0 : –1.0;
 // zero to start, then loops build the rest
 m_SawtoothArray_BL5[i] = 0.0;
 m_SquareArray_BL5[i] = 0.0;
 m_TriangleArray_BL5[i] = 0.0;

 // sawtooth: += (–1)^g+1(1/g)sin(wnT)
 for(int g=1; g<=6; g++)
 {
 double n = double(g);
 m_SawtoothArray_BL5[i] += pow((fl oat)–1.0,(fl oat)(g+1))*
 (1.0/n)*sin(2.0*pi*i*n/1024.0);
 }

 // triangle: += (–1)^g(1/(2g+1+^2)sin(w(2n+1)T)
 // NOTE: the limit is 3 here because of the way the sum is constructed
 // (look at the (2n+1) components
 for(int g=0; g=3; g++)
 {
 double n = double(g);
 m_TriangleArray_BL5[i] += pow((fl oat)–1.0, (fl oat)n)*
 (1.0/pow((fl oat)(2*n + 1),
 (fl oat)2.0))*
 sin(2.0*pi*(2.0*n + 1)*i/1024.0);
 }

 // square: += (1/g)sin(wnT)
 for(int g=1; g<=5; g+=2)
 {
 double n = double(g);
 m_SquareArray_BL5[i] += (1.0/n)*sin(2.0*pi*i*n/1024.0);
 }
 // store the max values
 if(i == 0)
 {
 fMaxSaw = m_SawtoothArray_BL5[i];
 fMaxTri = m_TriangleArray_BL5[i];
 fMaxSqr = m_SquareArray_BL5[i];
 }
 else
 {
 // test and store
 if(m_SawtoothArray_BL5[i] > fMaxSaw)
 fMaxSaw = m_SawtoothArray_BL5[i];

 if(m_TriangleArray_BL5[i] > fMaxTri)
 fMaxTri = m_TriangleArray_BL5[i];

316 Chapter 9

 if(m_SquareArray_BL5[i] > fMaxSqr)
 fMaxSqr = m_SquareArray_BL5[i];
 }
 }
 // normalize the bandlimited tables
 for(int i = 0; i < 1024; i++)
 {
 // normalize it
 m_SawtoothArray_BL5[i] /= fMaxSaw;
 m_TriangleArray_BL5[i] /= fMaxTri;
 m_SquareArray_BL5[i] /= fMaxSqr;
 }
 etc…
 }

 Because each sample in the table is built additively, you fi rst zero out the value, then enter the

loops to accumulate the additive signal in the sample slot. To increase the number of partials,

you just increase the limit in the for() loops above.

 processAudioFrame()

• A switch/case statement is used to change between normal and band-limited versions.

 bool __stdcall CWTOscillator::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumInputChannels,
 UINT uNumOutputChannels)
 {

 // SNIP SNIP SNIP>

 // setup second index for interpolation; wrap the buffer if needed
 int nReadIndexNext = nReadIndex + 1 > 1023 ? 0 : nReadIndex + 1;

 // interpolate the output
 switch(m_uOscType)
 {

 case sine:
 fOutSample = dLinTerp(0, 1, m_SinArray[nReadIndex],

 m_SinArray[nReadIndexNext], fFrac);
 break;

 case saw:

 if(m_uTableMode == normal) // normal
 fOutSample = dLinTerp(0, 1, m_SawtoothArray[nReadIndex],
 m_SawtoothArray[nReadIndexNext],
 fFrac);

 else // bandlimited
 fOutSample = dLinTerp(0, 1,
 m_SawtoothArray_BL5[nReadIndex],
 m_SawtoothArray_BL5[nReadIndexNext],

Oscillators 317

 fFrac);
 break;

 case tri:
 if(m_uTableMode == normal) // normal

 fOutSample = dLinTerp(0, 1, m_TriangleArray[nReadIndex],
 m_TriangleArray[nReadIndexNext],
 fFrac);

 else // bandlimited
 fOutSample = dLinTerp(0, 1,

 m_TriangleArray_BL5[nReadIndex],
 m_TriangleArray_BL5[nReadIndexNext],
 fFrac);

 break;
 case square:

 if(m_uTableMode == normal) // normal
 fOutSample = dLinTerp(0, 1, m_SquareArray[nReadIndex],
 m_SquareArray[nReadIndexNext],
 fFrac);

 else // bandlimited
 fOutSample = dLinTerp(0, 1, m_SquareArray_BL5[nReadIndex],

 m_SquareArray_BL5[nReadIndexNext],
 fFrac);

 break;

 // always need a default
 default:

 fOutSample = dLinTerp(0, 1, m_SinArray[nReadIndex],
 m_SawtoothArray[nReadIndexNext], fFrac);

 break;
 }
 // add the increment for next time
 m_fReadIndex += m_f_inc;
 etc…
 }

 Build and test the oscillator. Switch between the different modes and listen to the results, then

use the analyzer to compare the oscillators in frequency and time. Next are some screenshots

showing the differences for the saw-tooth and square waves.

 9.7.4 Saw-Tooth

 Figure 9.11 shows a normal saw-tooth waveform. Figure 9.12 shows a band-limited saw-tooth

waveform.

 9.7.5 Square Wave

 Figure 9.13 shows a normal square wave. Figure 9.14 shows a band-limited square wave.

1.000
0.707
0.500

0.000

-0.500
-0.707
-1.000

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
10 Hz 100 Hz 1 kHz 10 kHz

0 17 34 51 68 85 102 119 136 153

1.000
0.707
0.500

0.000

-0.500
-0.707
-1.000

0 17 34 51 68 85 102 119 136 153

+12.0 dB

0.0 dB

-12.0 dB

-24.0 dB

-36.0 dB

-48.0 dB

-60.0 dB
10 Hz 100 Hz 1k Hz 10k Hz

318 Chapter 9

 Figure 9.12: The fi ve-harmonic band-limited saw-tooth waveform with f 5 1 kHz in the time
domain (top) and frequency domain (bottom). The aliasing is gone for this 1 kHz signal; it would
reappear when the frequency was raised to the point that the highest harmonic went outside the

Nyquist boundary. The fundamental plus the fi ve harmonic peaks are clearly visible.

 Figure 9.11: The mathematically perfect saw-tooth waveform with f 5 1 kHz in the time domain
(top) and frequency domain (bottom), which shows aliasing in the frequencies between

10 kHz and Nyquist.

1.000
0.707
0.500

–0.500
–0.707
–1.000

0.000

+12.0 dB

0.0 dB

–12.0 dB

–24.0 dB

–36. 0 dB

–48. 0 dB

–60. 0 dB

0 17 34 51 68 85 102 119 136 153

10 H z 100 Hz 1 kHz 10 kHz

1.000
0.707
0.500

–0.500
–0.707
–1.000

+12.0dB

0.0 dB

–12.0 dB

–24.0 dB

–36.0 dB

–48.0 dB

–60.0 dB

0.000

0 17 34 51 68 85 102 119 136 153

10 Hz 100 Hz 1 kHz 10 kHz

Oscillators 319

 Figure 9.14: The fi ve-harmonic band-limited square wave with f 5 1 kHz
in the time domain (top) and frequency domain (bottom). The aliasing

is gone for this 1 kHz signal. There are only two harmonics (the third and fi fth)
because the next harmonic would be outside our limit.

 Figure 9.13: The mathematically perfect square wave with f 5 1 kHz in the time
domain (top) and frequency domain (bottom), which shows aliasing in the

frequencies between 10 kHz and Nyquist. The square wave
contains only the odd harmonics.

y (n) yq(n)

320 Chapter 9

 9.8 Additional Oscillator Features (LFO)

 For the modulated delay lines in the next chapters, we will need to use LFOs with a couple of

additional properties. Specifi cally, we need

• A quadrature phase output

• Unipolar or bipolar operation

• Option to invert the output by 180 degrees

• A doOscillate() function that returns both outputs

 All of these are easy to add to the current project. To make a quadrature phase output, we

only need to declare a second read index which samples the table along with the current one.

The quad phase read index will be initialized one-quarter of the way through the table to set

up the quad phase output (Figure 9.15).

 9.8.1 WTOscillator.h File

• Add a new variable for the inverted output option.

• Add a new variable for the quad phase read index; initialize it in reset().

 // Add your code here: ---

 <SNIP SNIP SNIP>
 // current read location
 fl oat m_fReadIndex; // NOTE its a FLOAT!
 fl oat m_fQuadPhaseReadIndex; // NOTE its a FLOAT!

 Figure 9.15: The concept of two read index values separated by one-quarter of the buffer;
as long as they advance together by the same distance they will stay in quad phase. We currently
have a bipolar oscillator which can easily be converted to a unipolar output by dividing by 2, then

shifting the whole waveform up by 0.5.

Oscillators 321

 // invert output
 bool m_bInvert;

 // reset the read index
 void reset()
 {

 m_fReadIndex = 0.0; // top of buffer
 m_fQuadPhaseReadIndex = 256.0; // 1/4 of our 1024 point buffer

 }

 9.8.2 WTOscillator.cpp File

 Constructor

• Initialize the new index variable in the constructor; it will be reset to the proper value

later.

 CWTOscillator::CWTOscillator()
 {

 <SNIP SNIP SNIP>
 // clear variables
 m_fReadIndex = 0.0;
 m_fQuadPhaseReadIndex = 0.0;
 m_f_inc = 0.0;

 // silent
 m_bNoteOn = false;

 // norm phase
 m_bInvert = false;
 etc…

 }

 9.8.3 WTOscillator.h File

 Add the doOscillate() function. It needs to be called externally in future projects. It

also needs to provide both quad phase outputs. It will be a mono function. It requires

no input argument and we can test it from within the plug-in by sending the two phases

out to the left and right channels, then view it with the analyzer. In the .h fi le, add the

following:

 // Add your code here: --//
 //
 // funciton to do the Oscillator; may be called by an external parent Plug-In too
 // pYn is the normal output
 // pYqn is the quad phase output
 void doOscillate(fl oat* pYn, fl oat* pYqn);

 // Array for the Table

322 Chapter 9

 fl oat m_SinArray[1024]; // 1024 Point Sinusoid
 fl oat m_SawtoothArray[1024]; // saw
 fl oat m_TriangleArray[1024]; // tri
 fl oat m_SquareArray[1024]; // sqr

 Etc…

 9.8.4 WTOscillator.cpp File

 Add the new function doOscillate() to the .cpp fi le. Cut and paste the contents of the

processAudioFrame() for the left channel only. Just about everything is duplicated for the

quad phase output. Of course, you can go in and streamline this code for more effi ciency, but

you can clearly see the operation of the two outputs here. Add the stuff in bold to the code

you copied from processAudioFrame():

 void CWTOscillator::doOscillate(fl oat* pYn, fl oat* pYqn)
 {

 // IMPORTANT: for future modules, bail out if no note-on event!
 if(!m_bNoteOn)
 {

 *pYn = 0.0;
 *pYqn = 0.0;
 return;

 }
 // our output value for this cycle
 fl oat fOutSample = 0;
 fl oat fQuadPhaseOutSample = 0;

 // get INT part
 int nReadIndex = (int)m_fReadIndex;
 int nQuadPhaseReadIndex = (int)m_fQuadPhaseReadIndex;

 // get FRAC part – NOTE no Quad Phase frac is needed because it will be the same!
 fl oat fFrac = m_fReadIndex – nReadIndex;

 // setup second index for interpolation; wrap the buffer if needed
 int nReadIndexNext = nReadIndex + 1 > 1023 ? 0 : nReadIndex + 1;
 int nQuadPhaseReadIndexNext = nQuadPhaseReadIndex + 1 > 1023 ? 0 :

 nQuadPhaseReadIndex + 1;

 // interpolate the output
 switch(m_uOscType)
 {

 case sine:
 fOutSample = dLinTerp(0, 1, m_SinArray[nReadIndex],

 m_SinArray[nReadIndexNext], fFrac);
 fQuadPhaseOutSample = dLinTerp(0, 1,

 m_SinArray[nQuadPhaseReadIndex],
 m_SinArray[nQuadPhaseReadIndexNext], fFrac);

 break;

Oscillators 323

 case saw:
 if(m_uTableMode == normal) // normal
 {

 fOutSample = dLinTerp(0, 1, m_sawtoothArray[nReadIndex],
 m_SawtoothArray[nReadIndexNext], fFrac);

 fQuadPhaseOutSample = dLinTerp(0, 1,
 m_SawtoothArray[nQuadPhaseReadIndex],
 m_SawtoothArray[nQuadPhaseReadIndexNext], fFrac);

 }
 else // bandlimited
 {

 fOutSample = dLinTerp(0, 1,
 m_SawtoothArray_BL5[nReadIndex],
 m_SawtoothArray_BL5[nReadIndexNext], fFrac);

 fQuadPhaseOutSample = dLinTerp(0, 1,
 m_SawtoothArray_BL5[nQuadPhaseReadIndex],
 m_SawtoothArray_BL5[nQuadPhaseReadIndexNext],

fFrac);
 }
 break;

 case tri:
 // ETC… FOLLOW THE SAME LOGIC AS THE OTHER TABLES //

 case SQUARE:
 // ETC… FOLLOW THE SAME LOGIC AS THE OTHER TABLES //
 // always need a default
 default:

 fOutSample = dLinTerp(0, 1, m_SinArray[nReadIndex],
 m_SinArray [nReadIndexNext], fFrac);

 fQuadPhaseOutSample = dLinTerp(0, 1,
 m_SinArray[nQuadPhaseReadIndex], m_SinArray
[nQuadPhaseReadIndexNext], fFrac);

 break;
 }

 // add the increment for next time
 m_fReadIndex += m_f_inc;
 m_fQuadPhaseReadIndex += m_f_inc;

 // check for wrap
 if(m_fReadIndex > 1024)

 m_fReadIndex = m_fReadIndex – 1024;

 if(m_fQuadPhaseReadIndex > 1024)
 m_fQuadPhaseReadIndex = m_fQuadPhaseReadIndex – 1024;

 // invert?
 if(m_bInvert)
 {

 fOutSample *= –1.0;
 fQuadPhaseOutSample *= –1.0;

 }

324 Chapter 9

 // write out
 *pYn = fOutSample;
 *pYqn = fQuadPhaseOutSample;

 }

 processAudioFrame()

• Use the doOscillate() function.

 bool __stdcall CWTOscillator::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumInputChannels, UINT uNumOutputChannels)
 {

 // Do LEFT (MONO) Channel
 // if not running, write 0s and bail
 if(!m_bNoteOn)
 {

 pOutputBuffer[0] = 0.0;
 if(uNumOutputChannels == 2)

 pOutputBuffer[1] = 0.0;
 return true;

 }

 // some intermediate variables for return
 fl oat fY = 0;
 fl oat fYq = 0;

// call the oscilator function, return values into fY and fYq
 doOscillate(&fY, &fYq);

 // write fY to the Left
 pOutputBuffer[0] = fY;

 // write fYq to the Right
 if(uNumOutputChannels == 2)
 {

 pOutputBuffer[1] = fYq;
 }
 return true;

 }

 Build and test the code. Figure 9.16 clearly shows the quad phase output: the sin() in the left

channel, cos() is in the right channel.

 9.9 Bipolar/Unipolar Functionality
 9.9.1 WTOscillator GUI

 Add the bipolar/unipolar switch to the UI using the next bank of radio buttons with the

properties in Table 9.5 . Edit it like you did with the previous buttons and give it the

enumerations. I named my variable “m_uPolarity” and used “bipolar” and “unipolar” as my

string/enums. The default will be bipolar.

1.000
0.707
0.500

–0.500
–0.707
–1.000

0.000

0 17 34 51 68 85 102 119 136 153

0 17 34

–0.500
–0.707
–1.000

0.000

1.000
0.707
0.500

51 68 85 102 119 136 153

Oscillators 325

 Table 9.5: The button properties for the polarity control.

Slider Property Value

Control Name Polarity

Units

Variable Type enum

Variable Name m_uPolarity

Enum String bipolar,unipolar

 9.9.2 WTOscillator.cpp File

 Add the bipolar/unipolar functionality to the very last part of doOscillate() to divide by 2 then

shift by 0.5 as follows:

 void CWTOscillator::doOscillate(fl oat* pYn, fl oat* pYqn)
 {

 <SNIP SNIP SNIP>
 // write out
 *pYn = fOutSample;
 *pYqn = fQuadPhaseOutSample;

 // create unipolar; div 2 then shift up 0.5
 if(m_uPolarity == unipolar)

 Figure 9.16: The quadrature-phase outputs of the left and right signals. Note: You must put the
scope in free running mode to see the phase differences between channels.

1.000
0.707
0.500

0.000

–0.500
– 0.707
– 1 .000

0 17 34 51 68 85 102 119 136 153

326 Chapter 9

 {
 *pYn /= 2.0;
 *pYn += 0.5;

 *pYqn /= 2.0;
 *pYqn += 0.5;

 }
 }

 Build and test the code; Figure 9.17 shows the output for a unipolar sinusoid.

 Here are some projects to try:

• Higher-resolution tables; each octave of the piano fi ngerboard gets its own table with as

many harmonics as the upper note of the octave permits.

• A two-oscillator synth module with a detuning control for one of the oscillators.

• An oscillator that only plays musical pitches.

 In the next chapter, we’ll use our new wave table oscillator to make modulated delay effects.

 Bibliography

 Dattorro, J. 2003. Effect design, Part 3, oscillators: Sinusoidal and pseudonoise. Journal of the Audio Engineering
Society , 50(3): 114–146.

Gordon, J. W. and Smith, J. O. 1985. A sine generation algorithm for VLSI applications. Proceedings from the
International Computer Music Conference, pp. 165–168.

 Moore, R. 1990. Elements of Computer Music , Chapter 3. Englewood Cliffs, NJ: Prentice-Hall.

 Roads, C. 1996. The Computer Music Tutorial , Chapter 2. Cambridge, MA: The MIT Press.

 Figure 9.17: Unipolar operation, sinusoid.

327

 Perhaps the most interesting kinds of audio effects, from both listening and engineering

standpoints, are the modulated delay effects. They include the chorus and fl anger/vibrato;

additionally, modulated delays are also found in some reverb algorithms. These time-varying

fi lters are actually quite sophisticated and fun to implement, and we have gone to great

lengths to create useful sub-modules. These include the digital delay effect or DDL (digital

delay line) module and the wave table oscillator. If you can design, build, and implement

modulated delay effects, then you are well on your way to profi ciency in audio effects coding.

These effects have parameters and coeffi cients which change on every sample period.

 Figure 10.1a shows the standard delay line or DDL. The output is fed back via the fb

coeffi cient. The delay is constant until the user changes it to another fi xed value. In the

modulated delay line (MDL) in Figure 10.1b the amount of delay is constantly changing over

time. The system only uses a portion of the total available delay amount.

 CHAPTER 10

Modulated Delay Effects

 Figure 10.1: (a) A static delay and (b) modulated delay effect.

x (n)

(a)

Z – D y (n)

fb

x(n)

Modulation depth

(b)

Read index

y (n) fb

Z – D

Σ

Σ

328 Chapter 10

 The modulation depth relates to the size of the portion of the delay line that is being read.

The modulation rate is the speed at which the read index moves back and forth over the

modulated delay section. A low-frequency oscillator (LFO) is used to modulate the delay

amount and the LFO can be just about any kind of waveform, even noise. The most common

waveforms are triangle and sinusoid. In order to make a modulated delay effect, you fi rst need

to make a delay line, and then modify it to constantly change and update the read location on

each sample interval.

 10.1 The Flanger/Vibrato Effect

 The fl anger effect gets its name from the original analog method of running two tape

machines slightly out of sync with each other by placing a thumb on the fl ange (the ring

that holds the tape) of one machine’s reel and applying pressure to slow down the tape

ever so slightly. Other variations include rubbing the fl ange circularly. The effect creates

a time-varying delay that falls out of sync, then back in sync with the fi rst tape machine.

The effect has been compared to the whoosh of a jet engine, or the sound of a phaser effect.

No matter how you defi ne it, the fl anger has a unique sound. The effect is heard on numerous

recordings.

 In order to simulate the fl anger effect, you need a delay line whose read index moves away

from, then back to the top or starting point of the delay. When the read pointer is back to the

top, there is no delay and as it moves away from the write index, the pitch is modulated down.

When the index turns around and moves back, the pitch is modulated up—this is the Doppler

effect in practice. When the output of the modulated delay is sent out 100% wet, with no dry

signal, the effect is that of vibrato—the pitch shifts up and down as the pointer moves back

and forth. When the dry signal is mixed with the wet signal, the pitch shifting changes into

the fl anging effect. The amount of delay time varies between 0 and about 7–10 mSec; at a

44,100 Hz sample rate, this corresponds to around 308 to 410 samples. Feedback is usually

added to increase the effect by creating resonances or anti-resonances, depending on whether

the feedback is normal or inverted.

 Figure 10.2 shows the two states of the modulator with increasing and decreasing pitch

shifting due to the Doppler effect. Figure 10.3 shows alternate ways of diagramming the same

modulator. The vibrato and fl anger are the same effect underneath the hood—it’s only the mix

ratio that determines which effect you have. Because the delay is constantly moving around

we are once again faced with options on how to handle the fractional delay that is required;

after you calculate the number of samples of delay (which will most likely have a fractional

component) you can

• Truncate the value and just use the integer part.

• Round the value up or down.

Modulated Delay Effects 329

 Figure 10.2: (a) As the delay increases , the pitch drops. At the end of the delay, the
index turns around and begins heading back toward the write index (b), increasing

the pitch; the maximum delay here is about 10 mSec at 44,100 Hz.

 Figure 10.3: (a) The simplest form of the f langer/vibrato effect. The dotted lines show the limits
of the delay modulation, from 0.0 (no delay) to the full range, z2D samples. (b) An alternate

version shows the LFO connection to the modulation index to the delay line.

x(n)

(a)

x(n)

(b)
increasing pitch

Decreasing delay,

fb y(n)

y (n)

Z –410

fb
decreasing pitch
Increasing delay,

Z –410 Σ

Σ

Σ

Σ

x (n)

(a)

x (n)

fb

Z – D

Z – D

(b)
fb

LFO
Wet

y (n)

Dry

Σ

Wet

Dry

Σ y(n)

330 Chapter 10

• Interpolate the delayed value using linear or polynomial interpolation.

• Use an all-pass fi lter to make the fractional delay (see the Bibliography).

 The fl anger/vibrato controls consist of:

• Modulation depth: how much of the available range is used.

• Modulation rate: the rate of the LFO driving the modulation.

• LFO type: usually sinusoidal or triangular, but may be anything.

• Feedback: as with the normal delay, the feedback has a big effect on the fi nal

product.

• Wet/dry control: 100% wet 5 vibrato; 50/50 5 fl anger.

 As shown in Figure 10.4 , the fl anger/vibrato technically always starts with 0.0 samples of

delay. Because of this, we’d like to have a LFO that can generate a unipolar output from

0.0 to 11.0, which we can then map to a range of delays, from 0 to about 410 samples or

so. Figure 10.5 shows a stereo version of the fl anger. A common LFO modulates both delay

lines, but the phases are off by 90 degrees, putting them in quadrature or quad-phase. The

effect is interesting as the two LFOs seem to chase each other, one on the left and the other

on the right.

 The flanger technically modulates the delay right down to 0 samples. For analog

tape flanging, this occurs when the two tape machines come back into perfect

synchronization. This is called through-zero flanging or TZF. This means that for an

instant, the output is double the input value. For low frequencies and/or high feedback

values, this can cause a problem when the flanger delay time is between 0 and about

0.1 mSec and the waveform is at a peak location. In this case, large valued samples

near each other on the waveform sum together, producing an increased and sometimes

distorted bass response.

 Figure 10.4: Two modulation depth settings; zero is always the minimum delay.

Mod depth = Low

 Z – D Z – D

Mod depth = High

Modulated Delay Effects 331

 Table 10.1: Delay times for the fl anger and chorus effects.

Min Delay (mSec) Max Delay (mSec) Feedback (%)

Flanger 0.0 7–10 299 to 1 99

Chorus 7 20–40 Typically 0

 10.2 The Chorus Effect

 The chorus effect appeared in the late 1970s and was used on countless recordings during the

1980s, becoming a signature sound effect of that decade. The chorusing effect can produce

a range of effects from a subtle moving sheen to a swirling sea-sick de-tuned madness. Like

the fl anger, it is also based on a modulated delay line, driven by an LFO. Although different

manufacturers adopted different designs, the basic algorithm for a single chorusing unit is the

same. The differences between a fl anger and chorus are shown in Table 10.1 .

 Figure 10.5: A stereo quadrature fl anger; the dotted lines at the LFO show its 90-degree
offset modulation. The max depth spans the entire delay line.

Left In Z – flanger

Right In Right Out

fb Wet

Wet fb

0 O

90O
LFO

Left Out

Dry

flanger – Z Σ Σ

Σ

Dry

Σ

332 Chapter 10

• Analog chorus units typically do not use any feedback (because our DDL module already

has feedback, we can keep it for experimentation purposes).

• The range of delay times over which the device operates is the most signifi cant

 difference.

 The read index is modulated about the center of the pointer but the center is set to avoid the

keep-out zone (Figures 10.6 and 10.7). Also, the modulation depth and the location of the

center of the delay area vary across manufacturers (Figure 10.8).

 Figure 10.6: The basic chorus module. Note the feedback path is optional and not
found in typical analog chorus units. The gray area is the fl anger keep-out zone.

 Figure 10.7: An alternative block diagram that describes the same chorus module.

 Figure 10.8: (a) and (b) are two different chorus modules with the same
maximum depth (dotted lines) but a different center of operation.

x (n) ×
min

Dry

× y (n) Z D

fb
LFO

Wet

Dry

∑ Y(n)

(a)

Z – D

(b)

Z D –

x(n) ∑
min

Z –D

fb Wet

∑

Modulated Delay Effects 333

 Many variations on the basic chorus module exist, including:

• Multiple chorus modules with different centers of operation

• Different LFO frequency or LFO phases applied to different modules

• Series modules

• Parallel modules

• Bass modules with a low-pass fi lter/high-pass fi lter on the front end

 Figure 10.9 shows the stereo quad chorus with the left and right LFOs out of sync by

90 degrees. In this permutation, the maximum depths of the left and right channels are

independent, as well as the ability to adjust them. The fl owchart for the basic modulated delay

effect for each processAudioFrame() is shown in Figure 10.10 .

 Figure 10.9: A stereo quadrature chorus; feedback paths are optional.

 Figure 10.10: The fl owchart for modulated delay effects.

Dry

Left Out Left In chorus – Z

fb

fb

∑ ∑

Wet

Wet

0°

90°
LFO

Z
– chorus

Dry

∑ ∑ Right Out Right In

DDLModule:
processAudioFrame()

-Cook variables
-Set delay time

DLLModule:

based on LFO
delay offset

Calculate new

value
Generate LFO

334 Chapter 10

 You will use the DDL module to do most of the low-level work and generate the delayed

values. The LFO will generate values that will be used to calculate the current delay offset.

Since the LFO is varying, the delay offset will need to be recalculated on each sample

interval.

 10.3 Design a Flanger/Vibrato/Chorus Plug-In

 Now we get down to the business of coding these effects. Because of the large number of

variations, we should start by coding a module that can be used in larger parent plug-in

objects. Figure 10.11 shows the block diagram.

 We will provide several user interface (UI) components to control the plug-in and their

variables are available for a parent plug-in to use as well. We will use the existing DDL

module and wave table oscillator plug-ins. Since the DDL module has feedback path control,

there will be many ways to combine these modules into sophisticated units. The controls we

will provide for the user are discussed next. The plan of operation is as follows:

• LFO: needs to be set up to run unipolar and with the non-band-limited tables.

• The chorus delay offset control will effectively move the center of operation for the

modulated delay.

• The vibrato mode will force the feedback value to 0.0% since it does not sound good with

feedback.

• prepareForPlay()

• Reset the LFO and start it by setting the m_bNoteOn fl ag; also set up the LFO and

DDL modules.

• Set the DDL m_nSampleRate variable; it needs this value to initialize its buffer

 properly.

• Forward the prepareForPlay() call to the child objects, LFO and DDL.

 Figure 10.11: Generic modulated delay block diagram;
it can be any type of fl anger/vibrato/chorus.

x(n) y(n)∑

Dry

Wet fb

Z –D

LFO

∑

Modulated Delay Effects 335

• processAudioFrame()

• Call the doOscillate() function on the LFO.

• Use the LFO value to calculate a delay offset in milliseconds for the DDL module.

• Write the new delay time to the DDL module and call its cooking function.

• Call processAudioFrame() on the DDL module to get the current output sample.

• userInterfaceChange()

• Call the update functions for the LFO and DDL.

• Call the type switching function to change from fl anger to vibrato and chorus.

 We’ll go ahead and plan on some helper functions to make this process easier. This is

not going to be the most streamlined or effi cient code, but once you have it mastered you

can always go back and improve it. Although this is a diffi cult project, you only need two

member variables and four functions to accomplish the design.

 The member objects are as follows:

 CWTOscillator m_LFO; // our LFO
 CDDLModule m_DDL; // our delay line module

 The member variables are as follows:

 fl oat m_fMinDelay_mSec; // min delay time
 fl oat m_fMaxDelay_mSec; // max delay time

 The member functions are as follows:

 fl oat updateLFO(); // change/set the type and rate
 fl oat updateDDL(); // change/set the wet/dry and feedack
 fl oat cookModType(); // set up the min/max delay times
 fl oat calculateDelayOffset(fl oat fLFOSample); // convert the LFO to a delay value

 10.3.1 Project: ModDelayModule

 Start a new project and make sure to include your WTOscillator and DDLModule objects

(Figure 10.12).

 Figure 10.12: Project settings for the ModDelayModule.

336 Chapter 10

 Table 10.2 : The GUI components, variable names, and values.

Slider Property Value

Control Name Depth
Units %

Variable Type fl oat
Variable Name m_fModDepth_pct

Low Limit 0
High Limit 100

Initial Value 50

Slider Property Value

Control Name Rate
Units Hz

Variable Type fl oat
Variable Name m_fModFrequency_Hz

Low Limit 0.02
High Limit 5

Initial Value 0.18

Slider Property Value

Control Name Feedback
Units %

Variable Type fl oat
Variable Name m_fFeedback_pct

Low Limit -100
High Limit 100

Initial Value 0

Slider Property Value

Control Name Chorus Offset
Units mSec

Variable Type fl oat
Variable Name m_fChorusOffset

Low Limit 0
High Limit 30

Initial Value 0

Button Property Value

Control Name Mod Type
Units

Variable Type enum
Variable Name m_uModType
Enum String Flanger, Vibrato, Chorus

Button Property Value

Control Name LFO
Units

Variable Type enum
Variable Name m_uLFOType
Enum String tri,sin

 10.3.2 ModDelayModule GUI

 Set up the graphical user interface (GUI) in RackAFX with Table 10.2 .

 10.3.3 ModDelayModule.h File

 Add the member objects, variables, and function declarations to the .h fi le:

 // Add your code here: --- //
 CWTOscillator m_LFO; // our LFO
 CDDLModule m_DDL; // our delay line module

 // these will depend on the type of mod
 fl oat m_fMinDelay_mSec;
 fl oat m_fMaxDelay_mSec;

Modulated Delay Effects 337

 // functions to update the member objects
 void updateLFO();
 void updateDDL();

 // cooking function for mod type
 void cookModType();

 // convert a LFO value to a delay offset value
 fl oat calculateDelayOffset(fl oat fLFOSample);

 // END OF USER CODE -- //

 10.3.4 ModDelayModule.cpp File

 Constructor

• Initialize all variables.

 CModDelayModule::CModDelayModule()
 {

 <SNIP SNIP SNIP>

 // Finish initializations here
 m_fMinDelay_mSec = 0.0;
 m_fMaxDelay_mSec = 0.0;
 m_fChorusOffset = 0.0;

 m_LFO.m_fFrequency_Hz = 0;
 m_LFO.m_uOscType = m_uLFOType; // triangle enum{tri,sin};

 m_DDL.m_bUseExternalFeedback = false;
 m_DDL.m_fDelay_ms = 0;

 }

 Write the update() functions:

 // LFO function to set:
 // - the LFO Frequency
 // - the oscillator type
 void CModDelayModule::updateLFO()
 {
 // set raw data
 m_LFO.m_fFrequency_Hz = m_fModFrequency_Hz;
 m_LFO.m_uOscType = m_uLFOType;

 // cook it
 m_LFO.cookFrequency();
 }

338 Chapter 10

 // DDL function to set:
 // - the DDL Feedback amount (disabled for Vibrato)
 void CModDelayModule::updateDDL()
 {
 // test and set if needed
 if(m_uModType != Vibrato)
 m_DDL.m_fFeedback_pct = m_fFeedback_pct;

 // cook it
 m_DDL.cookVariables();
 }

 Write the cookModType() function using the information in Table 10.3 —this method is called

when the user changes the effect type.

 Table 10.3: The default delay line settings for the various effects.

Min Delay (mSec) Max Delay (mSec) Wet/Dry (%) Feedback (%)

Flanger 0 7–10 50/50 2100 to 1100
Vibrato 0 7–10 100/0 0
Chorus 7 20–40 50/50 Typically 0

 // cookMod() function:
 /*
 Min Delay (mSec) Max delay (mSec) Wet/Dry(%) Feedback(%)
 Flanger 0 7-10 50/50 −100 to +100
 Vibrato 0 7-10 100/0 0
 Chorus 5 20-40 50/50 −100 to +100

 */
 void CModDelayModule::cookModType()
 {
 switch(m_uModType)
 {
 case Flanger:
 {
 m_fMinDelay_mSec = 0;
 m_fMaxDelay_mSec = 7;
 m_DDL.m_fWetLevel_pct = 50.0;
 m_DDL.m_fFeedback_pct = m_fFeedback_pct;
 break;
 }
 case Vibrato:
 {
 m_fMinDelay_mSec = 0;
 m_fMaxDelay_mSec = 7;
 m_DDL.m_fWetLevel_pct = 100.0;
 m_DDL.m_fFeedback_pct = 0.0; // NOTE! no FB for vibrato
 break;
 }

Modulated Delay Effects 339

 case Chorus:
 {
 m_fMinDelay_mSec = 5;
 m_fMaxDelay_mSec = 30;
 m_DDL.m_fWetLevel_pct = 50.0;
 m_DDL.m_fInputAttenuation = 1.0;
 break;
 }

 default: // is Flanger
 {
 m_fMinDelay_mSec = 0;
 m_fMaxDelay_mSec = 7;
 m_DDL.m_fWetLevel_pct = 50.0;
 m_DDL.m_fFeedback_pct = m_fFeedback_pct;
 break;
 }
 }
 }

 Write the calculateDelayOffset() function. It works by taking the LFO value from 0 to 1.0

and mapping it on to the range from min to max delay. Then, this value is scaled by the depth

percent value so that at 100% the maximum range is used. For the chorus, we effectively

move the operating range and chorus center by adding a delay offset to the minimum value,

then using that as the starting (reference) point in the calculation.

 // calculateDelayOffset():
 /*
 fLFOSample: a value from 0.0 to 1.0 from the LFO object

 returns: the calculated delay time in mSec for each effect

 NOTES: - the range for the fl anger/vibrato is simply mapped from min to max
 starting at min: fLFOSample*(m_fMaxDelay_mSec - m_fMinDelay_mSec)) +
 m_fMinDelay_mSec

 - the range for the Chorus includes the starting offset
 fStart = m_fMinDelay_mSec + m_fChorusOffset;
 */
 if(m_uModType == Flanger || m_uModType == Vibrato)
 {
 // fl anger 0->1 gets mapped to 0->maxdelay
 return (m_fModDepth_pct/100.0)*(fLFOSample*(m_fMaxDelay_mSec —
 m_fMinDelay_mSec)) + m_fMinDelay_mSec;
 }
 else if(m_uModType == Chorus)
 {

 // chorus adds starting offset to move delay range
 fl oat fStart = m_fMinDelay_mSec + m_fChorusOffset;

340 Chapter 10

 return (m_fModDepth_pct/100.0)*(fLFOSample*(m_fMaxDelay_mSec —
 m_fMinDelay_mSec)) + fStart;

 }
 }

 10.3.5 PrepareForPlay()

• Forward the call to prepareForPlay() on the member objects.

• Reset and start up the LFO in unipolar mode.

 bool __stdcall CModDelayModule::prepareForPlay()
 {
 // Add your code here:
 m_LFO.prepareForPlay();

 // DDL needs to know sample rate to initialize its buffer
 m_DDL.m_nSampleRate = m_nSampleRate;
 m_DDL.prepareForPlay();

 m_LFO.m_uPolarity = 1; // 0 = bipolar, 1 = unipolar
 m_LFO.m_uTableMode = 0; // normal, no band limiting
 m_LFO.reset(); // reset it

 // initialize
 cookModType();
 updateLFO();
 updateDDL();

 // start the LFO!
 m_LFO.m_bNoteOn = true;

 return true;
 }

 userInterfaceChange()

• Call the update functions and cook the mod type. We won’t bother with the switch/case

statement since changes to any slider will require updates of the LFO and DDL.

• Make sure your nControlIndex values match your GUI components.

 bool __stdcall CModDelayModule::userInterfaceChange(int nControlIndex)
 {

 // change the min/max limits; set wet/dry and Feedback
 if(nControlIndex == 41) // 41 is mod type switch

 cookModType();

 // else just call the other updates which handle all the rest
 //
 // frequency and LFO type
 updateLFO();

Modulated Delay Effects 341

 // Wet/Dry and Feedback
 updateDDL();

 return true;
 }

 processAudioFrame()

• Call the doOscillate() function on the LFO.

• Use the LFO value to calculate a delay offset in milliseconds for the DDL module.

• Write the new delay time to the DDL module and call its cooking function.

• Call processAudioFrame() on the DDL module to get the current output sample.

 bool __stdcall CModDelayModule::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumInputChannels,
UINT uNumOutputChannels)

 {
 // Do LEFT (MONO) Channel
 //
 // 1. Get LFO Values, normal and quad phase
 fl oat fYn = 0;
 fl oat fYqn = 0;
 m_LFO.doOscillate(&fYn, &fYqn);

 // 2. calculate delay offset
 fl oat fDelay = 0.0;
 if(m_uLFOPhase == quad)

 fDelay = calculateDelayOffset(fYqn); // quadrature LFO
 else

 fDelay = calculateDelayOffset(fYn); // normal LFO

 // 3. set the delay & cook
 m_DDL.m_fDelay_ms = fDelay;
 m_DDL.cookVariables();

 // 4. get the delay output one channel in/one channel out
 m_DDL.processAudioFrame(&pInputBuffer[0], &pOutputBuffer[0], 1, 1);

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0];

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0];

 return true;
 }

 Build and test the module. Be sure to listen to the fl anger as the delay hits the zero point.

342 Chapter 10

 10.3.6 Challenge

 Add another radio button switch to turn on or off TZF that we employ. To turn off TZF,

set the minimum delay time for fl anging to a nonzero value (try 0.1 mSec to begin with) in

the cookModType() method. You now have a working modulated delay module that can be

combined in many ways to create a wide variety of modulated delay effects. Let’s try a couple

of them now.

 10.4 Design a Stereo Quadrature Flanger Plug-In

 The block diagram of the stereo quad fl anger is shown in Figure 10.5 and it consists of

two identical fl anger delay lines running off of LFO values that are in quadrature phase.

Since our mod delay module has a built-in LFO and delay, we can assemble this plug-in

quickly.

 10.4.1 Project: StereoQuadFlanger

 Make sure to add all the existing modules when you create the new StereoQuadFlanger

project:

• ModDelayModule.h.

• DDLModule.h (because ModDelayModule # includes it).

• WTOscillator.h (because DDLModule #includes it).

 10.4.2 StereoQuadFlanger GUI

 We will use a simpler UI consisting of the controls shown in Table 10.4 .

 10.4.3 StereoQuadFlanger.h File

 In the .h fi le, declare two instances of the ModDelayModule, one for the left and one for the

right. Also add one helper function to initialize and update the modules. These two member

variables and the one function are all that you need.

 // Add your code here: --- //
 CModDelayModule m_ModDelayLeft;
 CModDelayModule m_ModDelayRight;

 void updateModDelays();
 // END OF USER CODE -- //

Modulated Delay Effects 343

 Table 10.4 : The GUI elements for the StereoQuadFlanger.

Slider Property Value

Control Name Depth

Units %

Variable Type fl oat

Variable Name m_fModDepth_pct

Low Limit 0

High Limit 100

Initial Value 50

Slider Property Value

Control Name Rate

Units Hz

Variable Type fl oat

Variable Name m_fModFrequency_Hz

Low Limit 0.02

High Limit 5

Initial Value 0.18

Button Property Value

Control Name LFO

Units

Variable Type enum

Variable Name m_uLFOType

Enum String tri,sin

 10.4.4 StereoQuadFlanger.cpp File

 Add the one helper function updateModDelays(); this is also the function that forces the two

mod lines into quad phase:

 // update all parameters of the ModDelayModules:

 /*

 - setup for stereo quad phase

 - mod depth

 - mod rate

 - feedback

 - mod type = 0 = fl anger

 - LFO type

 - call the update() functions to cook everything

 */
 void CStereoQuadFlanger::updateModDelays()
 {

 // setup quad phase
 m_ModDelayLeft.m_uLFOPhase = 0; // 0: normal
 m_ModDelayRight.m_uLFOPhase = 1; // 1: quad phase

 m_ModDelayLeft.m_fModDepth_pct = m_fModDepth_pct;
 m_ModDelayRight.m_fModDepth_pct = m_fModDepth_pct;

Slider Property Value

Control Name Feedback

Units %

Variable Type fl oat

Variable Name m_fFeedback_pct

Low Limit 2100

High Limit 100

Initial Value 50

344 Chapter 10

 m_ModDelayLeft.m_fModFrequency_Hz = m_fModFrequency_Hz;
 m_ModDelayRight.m_fModFrequency_Hz = m_fModFrequency_Hz;

 m_ModDelayLeft.m_fFeedback_pct = m_fFeedback_pct;
 m_ModDelayRight.m_fFeedback_pct = m_fFeedback_pct;

 // FLANGER!
 m_ModDelayLeft.m_uModType = 0;
 m_ModDelayRight.m_uModType = 0;

 m_ModDelayLeft.m_uLFOType = m_uLFOType;
 m_ModDelayRight.m_uLFOType = m_uLFOType;

 // cook them
 m_ModDelayLeft.updateLFO();
 m_ModDelayLeft.updateDDL();

 m_ModDelayRight.updateLFO();
 m_ModDelayRight.updateDDL();

 }

 prepareForPlay()

• Forward the call to the member objects.

• updateModDelays().

 bool __stdcall CStereoQuadFlanger::prepareForPlay()
 {

 // Add your code here:
 // call forwarding!
 m_ModDelayLeft.prepareForPlay();
 m_ModDelayRight.prepareForPlay();

 // don’t leave this out – it inits and cooks
 updateModDelays();

 return true;
 }

 userInterfaceChange()

• updateModDelays().

 bool __stdcall CStereoQuadFlanger::userInterfaceChange(int nControlIndex)

 {
 // just do a brute force update of all
 updateModDelays();

 }

Modulated Delay Effects 345

 processAudioFrame()

• Forward the processAudioFrame() function to the member objects to do the processing.

 bool __stdcall CStereoQuadFlanger:: processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumInputChannels,

UINT uNumOutputChannels)

 {

 // Do LEFT (MONO) Channel
 m_ModDelayLeft.processAudioFrame(&pInputBuffer[0], &pOutputBuffer[0], 1, 1);

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0];

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 m_ModDelayRight.processAudioFrame(&pInputBuffer[1], &pOutputBuffer[1],
1, 1);

 return true;
 }

 Build and test the project. The code is so sparse because we already did most of the work.

The only tricky part about this is making sure you have the objects properly initialized and

cooked and that you forward the calls correctly. If you have errors or crashes, it’s probably

because your objects are not properly initialized.

 10.4.5 Challenges

• Add a control to toggle TZF mode.

• Add a control to let you turn on and off quad phase (it’s currently hard-coded “on”).

• Add more LFO shapes.

 10.5 Design a Multi-Unit LCR Chorus Plug-In

 This LCR or left-center-right chorus (based on the Korg Triton ®) uses three

chorusing modules run by three independent LFOs, each with its own depth and rate

controls (Figure 10.13). If we play it right, we can code this with a minimum of effort,

but we have to be very careful about book-keeping since we have many variables here.

The UI will also be more complicated, with three sliders per chorus module: depth, rate,

and feedback. The LFO type is fi xed as a triangle for all units. L is in quad phase, R is in

inverse-quad phase, and C is normal.

346 Chapter 10

 10.5.1 Project: StereoLCRChorus

 Make sure to add all the existing modules when you create the new project:

• ModDelayModule.h.

• DDLModule.h (because ModDelayModule #includes it).

• WTOscillator.h (because DDLModule #includes it).

 10.5.2 StereoLCRChorus GUI

 This project contains repeated sets of controls. There are depth, rate, and feedback values for

each of the three modules. The sets of controls share the same min and max values. You will

have nine slider controls in all. Use Table 10.5 to set up the controls.

 10.5.3 StereoLCRChorus.h File

 Declare your member objects in the .h fi le. Also, declare an update() function to modify the

parameters all at once.

 // Add your code here: --- //
 //
 // One module for each LCR

 Figure 10.13: The LCR chorus.

Left In

∑

Left In

Chorus L Left Out ∑

Right Out∑ Chorus R

Chorus C

0.5

0.5

90°

LFO

0°

LFO

–90°

LFO

Depth L

Rate L

Depth C

Rate C

Depth R

Rate R

Modulated Delay Effects 347

 CModDelayModule m_ModDelayLeft;
 CModDelayModule m_ModDelayCenter;
 CModDelayModule m_ModDelayRight;

 // function to transfer out variables to it and cook
 void updateModules(); // you could split this out into smaller functions
 // END OF USER CODE -- //

 10.5.4 StereoLCRChorus.cpp File

 Constructor

 There is nothing to initialize in the constructor because we have no variables; the member

objects will initialize themselves at construction time. Implement the updateModules() function

next. We need to set up the LFO phases and invert fl ags according to the block diagram. We

also need to put the modules in chorus mode and call the internal update functions:

 // updateModules()

 /*

 - set LFO Phases

 - set LFO inversion (right only)

 - Mod Depths

 - Mod Freqs

 - Feedback

 - Mod Types = chorus (2)

 - LFO Types = triangle (0)

 - call updaters

 */

 void CStereoLCRChorus::updateModules()

 {
 // setup quad phase

 Table 10.5: GUI elements for the LCR chorus.

Depth (%) Rate (Hz) Feedback (%)

Min 5 0
Max 5 100

Initial L 5 50
Initial C 5 50
Initial R 5 50
Variable names:

m_fModDepth_pct_L
m_fModDepth_pct_C
m_fModDepth_pct_R

Min 5 0.02
Max 5 5

Initial L 5 0.18
Initial C 5 0.27
Initial R 5 0.49

Variable names:
m_fModFrequency_Hz_L
m_fModFrequency_Hz_C
m_fModFrequency_Hz_R

Min 5 2100
Max 5 1100

Initial L 5 0
Initial C 5 0
Initial R 5 0

Variable names:
m_fFeedback_pct_L
m_fFeedback_pct_C
m_fFeedback_pct_R

348 Chapter 10

 m_ModDelayLeft.m_uLFOPhase = 1; // 1: quad phase
 m_ModDelayCenter.m_uLFOPhase = 0; // 0: normal
 m_ModDelayRight.m_uLFOPhase = 1; // 1: quad phase

m_ModDelayLeft.m_LFO.m_bInvert = false;
 m_ModDelayCenter.m_LFO.m_bInvert = false;
 m_ModDelayRight.m_LFO.m_bInvert = true; // this one is inverted

 m_ModDelayLeft.m_fModDepth_pct = m_fModDepth_pct_L;
 m_ModDelayCenter.m_fModDepth_pct = m_fModDepth_pct_C;
 m_ModDelayRight.m_fModDepth_pct = m_fModDepth_pct_R;

 m_ModDelayLeft.m_fModFrequency_Hz = m_fModFrequency_Hz_L;
 m_ModDelayCenter.m_fModFrequency_Hz = m_fModFrequency_Hz_C;
 m_ModDelayRight.m_fModFrequency_Hz = m_fModFrequency_Hz_R;

 m_ModDelayLeft.m_fFeedback_pct = m_fFeedback_pct_L;
 m_ModDelayCenter.m_fFeedback_pct = m_fFeedback_pct_C;
 m_ModDelayRight.m_fFeedback_pct = m_fFeedback_pct_R;

 // CHORUS!
 m_ModDelayLeft.m_uModType = 2;
 m_ModDelayCenter.m_uModType = 2;
 m_ModDelayRight.m_uModType = 2;

 m_ModDelayLeft.m_uLFOType = 0; // triangle
 m_ModDelayCenter.m_uLFOType = 0;// triangle
 m_ModDelayRight.m_uLFOType = 0;// triangle

 // cook them
 m_ModDelayLeft.updateLFO();
 m_ModDelayCenter.updateLFO();
 m_ModDelayRight.updateLFO();

 m_ModDelayLeft.updateDDL();
 m_ModDelayCenter.updateDDL();
 m_ModDelayRight.updateDDL();

 }

 prepareForPlay()

• Forward the calls to prepareForPlay() to the member objects.

 bool __stdcall CStereoLCRChorus::prepareForPlay()
 {

 // Add your code here:
 // call forwarding!
 m_ModDelayLeft.prepareForPlay();
 m_ModDelayCenter.prepareForPlay();
 m_ModDelayRight.prepareForPlay();

Modulated Delay Effects 349

 // don’t leave this out – it inits and cooks
 updateModules();

 return true;
 }

 UserInterfaceChange()

• Just do a brute force update of all modules (you can streamline this later):

 bool __stdcall CStereoLCRChorus::userInterfaceChange(int nControlIndex)
 {

 // add your code here
 // brute force update
 updateModules();

 return true;
 }

 ProcessAudioFrame()

• Split and sum the L 1 R to feed the center chorus.

• Split and sum the outputs (L 5 L 1 C) and (R 5 R 1 C).

 bool __stdcall CStereoLCRChorus:: processAudioFrame(fl oat* pInputBuffer, fl oat*

 pOutputBuffer, UINT

 uNumInputChannels, UINT

 uNumOutputChannels)
 {

 // declare some output variables
 fl oat fChorusOut_L = 0;
 fl oat fChorusOut_C = 0;
 fl oat fChorusOut_R = 0;

 // get the left and right inputs; note the setup for mono
 fl oat fLeftIn = pInputBuffer[0];
 fl oat fRightIn = pInputBuffer[0];

 // if stereo
 if(uNumInputChannels == 2)

 fRightIn = pInputBuffer[1];

 // form the center channel
 fl oat fCenterIn = 0.5*fLeftIn + 0.5*fRightIn;

 // call the processAudioFrame()
 m_ModDelayLeft.processAudioFrame(&fLeftIn, &fChorusOut_L, 1);
 m_ModDelayCenter.processAudioFrame(&fCenterIn, &fChorusOut_C, 1);
 m_ModDelayRight.processAudioFrame(&fRightIn, &fChorusOut_R, 1);

350 Chapter 10

 // sum to create Left Out
 pOutputBuffer[0] = fChorusOut_L + fChorusOut_C;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0];

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = fChorusOut_R + fChorusOut_C;

 return true;
 }

 Build and test the code. Try to fi nd the most interesting settings for different instruments

then go back and set your own initial values accordingly. Be sure to save lots of presets—this

plug-in can produce a wide variety of sounds.

 10.6 More Modulated Delay Algorithms

 In addition to the extra algorithms in Sections 10.1 and 10.2, next are some more designs for

you to experiment with. Remember to fi gure out the UI fi rst then code it using the modules

we’ve already built.

 10.6.1 Stereo Cross-Flanger/Chorus (Korg Triton ®)

 Like the quadrature version, the only difference between the fl anger and chorus is in the

module setting—the same block diagram is used for both. The LFO can be engaged in normal

or quadrature phase (Figure 10.14).

 10.6.2 Multi-Flanger (Sony DPS-M7 ®)

 The DPS-M7 has some intensely thick modulation algorithms. This one has two fl anger

circuits that can be combined in parallel or series on either channel. The channels are also

cross mixable. Each module marked “fl anger” contains a complete fl anger module: depth,

rate, feedback, and wet/dry. Note also the use of pre-delays with feedback too. All LFOs and

pre-delays are independent and fully adjustable (Figure 10.15).

 10.6.3 Bass Chorus

 The bass chorus in Figure 10.16 splits the signal into low-frequency and high-frequency

components and then only processes the high-frequency component. This leaves the

fundamental intact. The comb fi ltering of the chorus effect smears time according to how

Modulated Delay Effects 351

much delay is being used. For the bass guitar, this results in a decreased fundamental with an

ambiguous transient edge or starting point. Because bass players need to provide a defi ned

beat, the bass chorus will preserve this aspect of the instrument. If you want to implement

this effect, use the Linkwitz–Riley low-pass and high-pass fi lters to split the signal. Invert

the output of one of the fi lters—it doesn’t matter which one—so that their phase responses

sum properly.

 10.6.4 Dimension-Style (Roland Dimension D ®)

 This chorus unit (Figure 10.17) is based on the Roland Dimension D ® chorus. Known for

its subtle transparent sound, it features a shared but inverted LFO and an interesting output

section where each output is a combination of three signals:

1. Dry

2. Chorus output

3. Opposite channel chorus output, inverted and high-pass fi ltered

 Figure 10.14: A stereo cross-fl anger/chorus.

Left In ∑

Right In ∑

Left Out ∑

Right Out ∑

Dry

Wet

Wet

Dry

fb

fb

Z –D

0°

90°
LFO

z –D

352 Chapter 10

 Figure 10.16: A bass chorus.

 Figure 10.15: DPS M7 multi-fl anger.

Left In

Parallel/series

Pre-Delay

Pre-Delay Flanger 1

Flanger 2

Pan 1

Pan 2

∑

∑

Left Out

∑

∑

 ∑

LPF

∑

LPF

∑

LFO

LFO

Out 1

Out 2

Dry

Wet

LPF

∑

LPF

∑

Pre-Delay Flanger 3

LFO

LFO

Flanger 4

Out 3

Out 4 Pan 4

∑

∑

∑

Pan 3

Wet

Dry Right Out

Right In

Parallel/series

Pre-Delay

fb

z –D

fb

z –D

fb

z –D

fb

z –D

Bass In

LPF

HPF ∑

Dry

Wet

LFO

Bass Out ∑ Z –chorus

fb

Modulated Delay Effects 353

 Figure 10.17 : A dimension-style chorus.

 The controls on the original unit consisted of four switches only; these were hardwired

presets and changed

• The LFO rate (either 0.25 Hz or 0.5 Hz)

• The depth

• For one preset, the wet/dry mix ratios for the two channels (W L vs D L , W R vs D R)

 Here I have added two more level controls for experimentation, W CL and W CR , which are the

fi ltered, inverted chorused signals from the opposite (crossed) channels. Experiment with

various rate, depth, and output mixture combinations as well as different high-pass fi lter cut-

off frequencies.

Left In

Right In

Left Out ∑

Right Out ∑

Rate

Depth
LFO

HPF

HPF

DL

WL

WCL

WCR

WL

DR

0°

–180°

–1

–1

Z –chorus

Z –chorus

fc

354 Chapter 10

 10.6.5 Deca-Chorus (Sony DPS-M7 ®)

 The deca-chorus has 10 (deca) chorus units, 5 per channel. Each chorus has its own pre-delay,

LFO, gain, and pan control. It can also run in a mono mode (10 chorus units in parallel)

(Figure 10.18).

 Figure 10.18: DPS-M7 deca chorus.

Left In

Right In

Left Out

∑

∑

∑

 ∑

Right Out

Pre-Delay 1 Chorus 1

Pre-Delay 2

Pre-Delay 3

Pre-Delay 4

Pre-Delay 5

Pre-Delay 1

Pre-Delay 2

Pre-Delay 3

Pre-Delay 4

Pre-Delay 5

Chorus 2

Chorus 3

Chorus 4

Chorus 5

Chorus 1

∑

∑

∑

∑

Chorus 2

Chorus 3

Chorus 4

Chorus 5

LFO 1

LFO 2

LFO 3

LFO 4

LFO 5

LFO 1

LFO 2

LFO 3

LFO 4

LFO 5

Pan 1

Pan 2

Pan 3

Pan 4

Pan 5

Pan 1

Pan 2

Pan 3

Pan 4

Pan 5

Out 1

Out2

Out3

Out4

Out5

Out1

Out2

Out3

Out4

Out5

Dry

Wet

Wet

Dry

Modulated Delay Effects 355

 Bibliography

 Cole, M. 2007. “Roland dimension C clone for Eventide 7000, Orville and H8000.” Accessed August 2012

from http://www.eventidestompboxes.com/forummedia/PATCHES/Orville/ProFXalgorithms/Roland%20

Dimension%20C.doc .

 Coulter, D. 2000. Digital Audio Processing , Chapter 11. Lawrence, KS: R&D Books.

 Dattorro, J. 1997. Effect design part 2: Delay line modulation and chorus. Journal of the Audio Engineering
Society , 45(10): 764–786 .

Korg, Inc. 2000. Triton Rack Parameter Guide. Tokyo: Korg Inc.

 Phillips, D. 1991. Wavestation SR Reference Guide. Tokyo: Korg Inc.

 Roads, C. 1996. The Computer Music Tutorial , Chapter 3. Cambridge, MA: The MIT Press.

 Roland Corporation. 1990. “Boss CH-1 schematics.” Accessed August 2012 from http://superchorusmods.blogspot.

com/2009/08/schematics.html.

Sony, Corp. 1995. DPS-M7 Manual. Tokyo: Sony Corp.

 White, P. 2001. “Understanding and emulating vintage dffects.” Sound on Sound Magazine. Accessed August 2012

from http://www.soundonsound.com/sos/jan01/articles/vintage.asp .

http://www.eventidestompboxes.com/forummedia/PATCHES/Orville/ProFXalgorithms/Roland%20Dimension%20C.doc
http://www.eventidestompboxes.com/forummedia/PATCHES/Orville/ProFXalgorithms/Roland%20Dimension%20C.doc
http://superchorusmods.blogspot.com/2009/08/schematics.html
http://superchorusmods.blogspot.com/2009/08/schematics.html
http://www.soundonsound.com/sos/jan01/articles/vintage.asp

357

 Reverb algorithms might represent the Holy Grail of audio signal processing. They have an

appeal that seems universal, perhaps because we live in a reverberant world. Our ears are

time-integrating devices that use time domain cues and transients for information, so we are

sensitive to anything that manipulates these cues. In this chapter, we discuss reverb algorithms

as applied mainly to room simulation. There are two general ways to create the reverberation

effect:

• Reverb by direct convolution—the physical approach.

• Reverb by simulation—the perceptual approach.

 In the physical approach, the impulse response of a room is convolved with the input signal

in a large fi nite impulse response (FIR) fi lter. For large rooms, these impulse responses

might be 5 to 10 seconds. In the mid 1990s, Gardner developed a hybrid system for fast

convolution that combined direct convolution with block fast Fourier transform (FFT)

processing (Gardner 1995). Around the same time, Reilly and McGrath (1995) described

a new commercially available system that could process 262,144-tap FIR fi lters for

convolving impulses over 5 seconds in length. The required processing power is sometimes

too large to be practical in a plug-in. Aside from the computing expense, another drawback

to this approach is that an impulse response is frozen in time, and measures the room at one

location only, under a certain set of conditions. To create a reverb unit (or reverberator)

that is general enough to provide many different reverbs of different spaces would require

a large library of impulse response fi les. In addition, its parameters can’t be adjusted in

real time.

 The perceptual approach aims to simulate the reverberation with enough quality to fool the

ears and give the same perception of real reverb but with much less processing power. The

advantages are numerous, from the minimal processing required to the ability to vary many

parameters in real time. Browne (2001) proposed a hybrid system combining a short impulse

response convolution along with recursive fi ltering, combining both approaches. There are

several key engineers who developed much of the theory still in use today. These include

Schroeder’s (1962) initial work in the early 1960s with continued research and contributions

from Moorer, Griesinger, Gerzon, Gardner, Jot, Chaigne, Smith, Roscchesso, and others

 CHAPTER 11

Reverb Algorithms

358 Chapter 11

across the decades. Most of this chapter is owed to their work in the fi eld. We will focus on

the perceptual approach and try to fi nd computationally effi cient algorithms for interesting

reverberation effects.

 Griesinger (1989) states that it is impossible to perfectly emulate the natural reverberation of

a real room and thus the algorithms will always be approximations. It seems that the area of

reverberation design has the most empirically derived or trial-and-error research of just about

any audio signal processing fi eld. There is no single “correct” way to implement a reverb

algorithm, so this chapter focuses on giving you many different reverberator modules to

experiment with.

 11.1 Anatomy of a Room Impulse Response

 The fi rst place to start is by examining impulse responses of actual rooms. There are several

popular methods for capturing the impulse response, from cap pistols and balloons to

deconvolution of chirp signals and pseudo random sequences. The resulting time domain plot

is useful for investigating the properties of reverberation.

 Figure 11.1 shows the impulse response plots for two very different spaces; a large concert

hall and a cathedral. The initial impulse is followed by a brief delay called the pre-delay . As

the impulse pressure wave expands, it comes into contact with the nearby structures—walls,

fl oor, and ceiling—and the fi rst echoes appear. These initial echoes, called early refl ections ,

are important to the simulation of reverb because of the auditory cues we get from them. The

pressure wave continues to expand and more refl ections occur, with refl ected signal upon

refl ected signal piling on top of each other while decaying in energy. The resulting reverb

“tail” is called late reverberation or subsequent reverberation .

 The top impulse response in Figure 11.1 is a modern concert hall designed for a pleasing

reverberant quality. The initial refl ections are from irregularly shaped back and side walls

and they pile up in amplitude; they are also piling up in density, shown as the impulse

gets “fatter” in the middle section. The dense reverberant tail follows, which decays in an

exponential fashion, and the sound pressure energy is absorbed by the seats and acoustical

room treatments. The cathedral is a different story. After a short pre-delay, a few large early

refl ections arrive from the nearby structures but they don’t increase in amplitude or density

in the same way as the hall. The reverb’s decay is also much longer in time as there is little in

the cathedral to absorb the sound pressure.

 The block diagram in Figure 11.2 shows the three components we observe. However, there

is debate as to whether or not this is a good way to break the problem down. Some feel

that the reverb algorithm should not need to separate out the early refl ections from the late

reverberation. In other words, a good algorithm will create all of the reverberation aspects

at once.

Reverb Algorithms 359

11.1.1 RT 60 : The Reverb Time

 The most common measurement for reverb is the RT 60 reverb time. Reverb time is measured

by fi rst stimulating the room into a reverberant state, then turning off the source and plotting

the pressure-squared level as a function of time. The amount of time it takes for this energy

decay curve to drop by 60 dB is the reverb time , or RT 60 . Sabine’s (1973) pioneering work in

this area leads to the following formula in Equation 11.1 :

 RT60 5 0.5
VR

SRARAve

 (11.1)

where

VR 5 volume of room in ft3

SR 5 surface area of room in ft2

ARAve 5 average absorption coefficient

 Figure 11.1: The impulse responses of a large hall and cathedral.

 Figure 11.2: A generalized model of a reverb algorithm.

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

0 3087 6174 9261 12348 15435 18522 21609 24696 27783

0 3087 6174 9261 12348 15435 18522 21609 24696 27783

Large Concert Hall

Cathedral

Late Reverberation Early Reflections

Input Pre-Delay Early Reflections Late Reverberation

Dry

ER

Wet

Output ∑

360 Chapter 11

 Sabine measured and tabulated the absorption coeffi cients for various materials. The units

are given in Sabines . A room made of several materials is fi rst partitioned to fi nd the partial

surface area of each material type, then the average is found by weighting the areas with the

absorption coeffi cients and summed. The reverb time is probably the most common control,

found on just about every kind of reverb plug-in.

 11.2 Echoes and Modes

 In Schroeder’s early work, he postulates that a natural sounding artifi cial reverberator has

both a large echo density and a colorless frequency response. The echo density is simply the

number of echoes per second that a listener experiences in a given position in the reverberant

environment (Equation 11.2).

 ED 5
echoes

second
 (11.2)

 If the echo density is too low the ear discerns the individual echoes and a fl uttering sound is

the result. As the echo density increases, the echoes fuse together, producing a wash of sound.

Schroeder (1962) postulated that for a natural-sounding reverb, the echo density needs to

be 1000 echoes/second. Greisinger (1989) increases this to 10,000 echoes/second or more.

Statistically, the echo density is shown in Equation 11.3 , which reveals that the echoes build

up as the square of time.

 Echo density ~
4pc3

VR

 t
2 (11.3)

where

c 5 speed of sound

t 5 time

VR 5 volume of room

 Reverb is often modeled statistically as decaying white noise, which implies that ideal

reverberant rooms have fl at frequency responses. A room’s geometry can be used to predict

its frequency response. The dimensions of the room can be used to calculate the frequencies

that will naturally resonate as the wave bounces back and forth between parallel surfaces. An

untreated rectangular room will have multiple resonances and anti-resonances.

 Given a rectangular room with length, width, and height of l , w , and h , the resonances are

found in Equation 11.4 , a well-known and useful equation for predicting room resonances,

also called modes (Beranek 1986). As the frequency increases, so do the number of

resonances.

Reverb Algorithms 361

where

fe 5
c

2Åa
nx

l
b2

1 any

w
b2

1 anz

h
b2

nx, ny, nz 5 half wave numbers 0, 1, 2, 3...

l, w, h 5 length 1x 2 , width 1y 2 and height 1z 2 of the room

(11.4)

 Above a certain frequency the resonances overlap and fuse together. Each resonant frequency

has its own envelope whose curve is bell (band-pass fi lter [BPF]) shaped, meaning that it has

a peak resonance at the mode frequency, but is still excitable at frequencies around it and

thus the quality factor (Q) of the curve relates to this excitability. The number of resonances

increases with frequency. Figure 11.3 shows a fi ctitious room example with the bell-shaped

resonances.

 The modal density is the number of resonant peaks per Hz. Physicists call the resonant

frequencies or modes eigenfrequencies (note this is not an acoustics-specifi c term; an

eigenfrequency is the resonant frequency of any system). Schroeder’s second postulation is that

for a colorless frequency response, the modal density should be 0.15 eigenfrequencies/Hz or

one eigenfrequency every 6.67 Hz or approximately 3000 resonances spread across the audio

spectrum. Thus, it makes sense that good reverberant environments have interesting geometries

with many nonparallel walls. The multitude of resonances is created by the many paths an

impulse can take from the source to the listener. Kuttruff (1991) derived the approximation for

 Figure 11.3: The resonances of a room all contribute to create the
fi nal frequency response. When the bandwidths of the modes overlap,

they fuse together. The dotted line represents the combined frequency response.

Amplitude
(dB)
0.0

–3.0

–inf
Frequency

362 Chapter 11

the modal density as it relates to the volume of the room and modal frequency. Equation 11.5

shows that the resonances build up as the square of frequency.

where

Dm 5
4pVR

c3
f 2m

VR 5 volume of the room

 fm 5 modal frequency in question

 (11.5)

 The energy decay relief plot (or EDR) shows how the energy decays over both frequency and

time for a given impulse response of a room. Figure 11.4 shows a very simple fi ctitious EDR.

 In Figure 11.4 , notice that the frequency axis comes out of the page; low frequencies are in

the back. It also shows that this room has a resonant peak, which forms almost right away

 Figure 11.4: The EDR shows time (x -axis), frequency (z -axis) and
amplitude (y -axis) of the energy decay of a room.

 Schroeder’s rules for natural reverb:

 • Echo density: At least 1000 echoes/sec (Greisinger: 10,000 echoes/sec)
 • Modal density: At least 0.15 eigenfrequencies/Hz

 In physical rooms we know that:

 • Echo density increases with the square of time.
 • Modal density increases with the square of frequency.

Amplitude

0.0 dB

–20 dB

–40 dB

–60 dB

–80 dB

–100 dB

–120 dB
0.0

Time
2.0 sec

20 kHz

DC

A resonant frequency

Fr
eq

ue
nc

y

Reverb Algorithms 363

in time. In an EDR, the modal density is shown across the z -axis (frequency) while the echo

density appears across the x -axis (time). This simplifi ed plot shows just one resonance and no

echo density build-up for ease of viewing. Figure 11.5 shows the EDR of an actual room, in

this case a theater. The eigenfrequencies are visible as the ridges that run perpendicularly to

the frequency axis.

 Figure 11.6 shows the EDR for a cathedral. In this case, the echo pile-ups are clearly visible

running perpendicular to the time axis. Comparing both EDRs shows that both rooms have

high echo and modal densities; therefore, they should be good reverberant spaces. Both

EDRs show an initial high frequency roll-off and, especially in the theater’s case, the high

frequencies decay faster than the low frequencies. The high-frequency decay is a property of

the treatment of the room surfaces along with the fact that the air absorbs high frequencies

more easily than low frequencies. The high-frequency energy decay in the theater is caused

by the carpet, seats, and acoustic treatment which the cathedral lacks. Therefore, for a good

quality reverb, we will need to take this high-frequency decay into account along with the

echo and modal density.

 Reverb algorithms are typically made of arrangement of modules called reverberator
modules . From our basic observations we can tell that good reverberator modules are going

to produce dense echoes along with a large number of resonances. If the resonances are

distributed properly across the spectrum, the reverb will sound fl at. If they are not, there

will be metallic pinging and other annoyances that will color the frequency response in an

 Figure 11.5: An EDR for a theater.

M
ag

ni
tu

de
 (d

B
)

Time (sec)
Freq (Hz)

–10

–20

–30

–40

–50

–60

–70

–80

–90

–100

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9 104

103

10
2

364 Chapter 11

unnatural way. The majority of the rest of the chapter is devoted to revealing, analyzing, and

explaining these building blocks and the algorithms that use them. The best place to start is

with Schroeder’s reverb modules.

 11.3 The Comb Filter Reverberator

 One of the reverberator modules that Schroeder proposed is a comb fi lter. Remember that we

are looking for modules that produce echoes and the comb fi lter with feedback will do just

that. The comb fi lter reverberator is familiar looking because it’s also the delay with feedback

algorithm you studied in Chapter 7 . We derived the difference equation and transfer function

for the comb fi lter in Figure 11.7 in Chapter 7 :

y(n) 5 x(n2D) 1 gy(n2D)

and

H(z) 5
z2D

12gz2D

(11.6)

 We also performed a pole-zero analysis and generated frequency plots. We showed that the

feedback path caused a series of poles evenly spaced around the inside of the unit circle. The

resulting impulse response is easy to predict as the echo recirculates through the feedback

path, being attenuated by multiplying by g each time through the loop.

 Figure 11.6: An EDR for a cathedral.

-20

-40

-60

-80

-100

-120

-140

M
ag

ni
tu

de
 (d

B
)

1

2

3

4

5

6 10
4

10
3

10
2

Freq (Hz)
Time (sec)

Reverb Algorithms 365

 While Figure 11.8 might look simple, the results certainly trend in the right direction. The

frequency response plot shows a set of resonant peaks that could correspond to a room’s

eigenfrequencies and the impulse response shows a set of decaying impulses, mimicking the

energy loss as the echoes bounce off of surfaces. The modal density for a comb fi lter is given

by Jot and Chaigne (1991) in Equation 11.7 .

where

Md 5
D

fs

Df 5
fs

D

D 5 the delay length

 fs
5 the sample rate

 (11.7)

 Figure 11.7: The basic comb fi lter.

 Figure 11.8: The poles in the z -plane produce the resonances. The feedback that
creates those poles also recirculates and scales the echoes by g . In this example,

 D = 8 samples, feedback = 80%.

x(n) z–D

g

y(n) ∑

Im

Re

+12.0dB

0.0 dB

–12.0dB

–24.0 dB

–36.0 dB

–48.0 dB

–60.0 dB
2 kHz 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz 14 kHz 16 kHz 18 kHz 20 kHz

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

g
g 2

g
3

g 4

0 22 44 66 88 110 132 154 176 198

366 Chapter 11

 So, the comb fi lter produces D resonances across DC to f s (or D /2 resonances from DC

to Nyquist) with each resonance separated by D f 5 f s / D . This is exactly what we found

when we analyzed the comb fi lter in Chapter 7 . In order to get Schroeder’s desired

0.15 eigenfrequencies/Hz from DC to 20 kHz at f s 5 44,100, you would need D 5 6622.

This also makes sense because we need about 3000 (D /2) resonances to cover the range

from DC to 20 kHz. The problem is that while we will get the desired number of

resonances, they will be linearly spaced rather than piling up as the square of frequency,

as Equation 11.5 predicts. Additionally, it will take 6622 samples (~150 mSec with a

44.1 kHz sample rate) before the reverberator begins outputting samples. Schroeder was

able to achieve high density by placing comb fi lters in parallel, then summing the results.

This would then cause the comb fi lter responses to overlap, however, care must be taken

when choosing the delay lengths—if they are mathematically related then resonances or

anti-resonances will color the sound.

 Figure 11.9 shows an example of four comb fi lters in parallel. Each has its own delay time

(D 1– D 4) and gain (g 1– g 4). However, care must be taken with the gain values. As you

remember from Chapter 7 , the value of g alone determines the pole radii. If the poles of each

fi lter have the same radii, their impulses will decay at the same rate. This is desirable since

it mimics an uncolored reverberation pattern. If the pole radii are different for the different

comb fi lters then the resulting reverberation will have undesirable coloration in it. The pole

radii are given in Equation 11.8 by Gardner (Kahrs and Bradenberg 1998). The relationship

between the pole radii, the delay D and the reverb time RT 60 is given in Equation 11.9 .

 where

 r 5 g1/D

 g 5 the feedback gain

D 5 the delay length

 (11.8)

 RT60 5
3DT

s

log11/g2

or

1/g 5 10

3DTs

RT60

or

(11.9)

g 5 10

23DTs

RT60

Ts is the sample period

Reverb Algorithms 367

 This means we can control the reverb time by using the gain factor or the delay length D . The

tradeoff is that if we increase g to increase reverb time, the poles get very near the unit circle,

causing resonances. If we increase D , then the echoes become distinctly audible rather than

smearing together. This means that there is a tradeoff of the modal density versus the echo

density in the design. The modal density for a parallel bank of N comb fi lters in Equation

11.10 is given by Jot (1991). From Equation 11.10 you can see that the modal density remains

constant across all frequencies, which is not what happens in real rooms where the modal

density increases with the square of the frequency (Equation 11.5).

 Figure 11.9: Four comb fi lters in parallel.

where

where

Di 5 the delay length of the ith comb filter

Ts 5 the sample period

Md 5 NDTs

 D 5 the mean delay length of all filters averaged

Md 5 a
N

i50

DiTs

or
(11.10)

x(n) ∑ Z –D1 ∑ y(n)

g1

∑ Z –D2

g2

∑ Z –D3

g3

Z –D4 ∑

g4

368 Chapter 11

 The echo density for the parallel combs with delay lengths close to each other is given in

 Equation 11.11 (Jot 1991).

Ed 5 a
N

i50

1

DiTs

Di 5 the delay length of the ith comb filter

Ed 5
N

DTs

 D 5 the mean delay length of all filters averaged

 (11.11)

 Knowing the desired M d and E d you can then calculate the number of parallel comb fi lters N

with average delay time DT s with Equation 11.12 .

N 5 "EdMd

DTs 5 "Md /Ed

 (11.12)

 Plugging Schroeder’s values of M d 5 0.15 eigenfrequencies/Hz and E d 5 1000 echoes/sec

into Equation 11.12 yields N 5 12 and the average delay time DT s 5 12 mSec.

 11.4 The Delaying All-Pass Filter Reverberator

 Schroeder also proposed the delaying all-pass fi lter (APF) as a reverberator unit. The impulse

response is a decaying set of echoes but the frequency response is technically fl at. Schroeder’s

APF is shown in Figure 11.10 . In Figure 11.11 , you can see that we get echoes that decay

faster than the comb fi lter and at a different rate. It has a fl at magnitude response due to the

APF reciprocal zero/pole radii. However, as Gardner points out, our ears only perform a

short-time integration, whereas the APF requires an infi nite integration time to achieve the fl at

response, so we will still hear some timbral coloration in this unit.

 Figure 11.10: Schroeder’s APF reverberator.

where

or

where

x(n) -g

c(n)
Z–D

g

d(n)

1-g2

∑

∑ y(n)

Reverb Algorithms 369

 Inspection of the block diagram in Figure 11.10 reveals that this is a rather complex feed-

back/feed-forward structure. We need to extract the difference equation so we can synthesize

the reverb unit. To start, we label the nodes c (n) and d (n) in the block diagram, then fashion

the output y (n) with respect to them:

c(n) 5 x(n)1gd(n)

d(n) 5 c(n)z2D

y(n) 5 2gx(n)1(12g2)d(n)

 (11.13)

 Now, we expand out the internal nodes and use the familiar time and frequency shifting

properties of the z transform to continue Equation 11.14 .

d(n) 5 c(n)z2D

 5 x(n2D) 1 gd(n2D)

y(n) 5 2gx(n)1(12g2) 3x(n2D)1gd(n2D) 4 (11.14)

 Examining the last term in Equation 11.14 , d (n 2 D), we can rearrange Equation 11.13 to

continue and get Equation 11.15 :

so

d(n) 5
y(n)1gx(n)

(12g2)

d(n2D) 5
y(n2D)1gx(n2D)

(12g2)

 (11.15)

 Substituting Equation 11.15 back into Equation 11.14 you get the difference equation in

 Equation 11.16 :

y(n) 5 2gx (n) 1 (12g2) cx (n2D) 1 gay (n2D) 1 gx(n2D)

(12g2)
b d

 5 2gx (n) 1 (12g2) x (n2d) 1 gy(n2D) 1 g2x (n2D)

 5 2gx (n)1x(n2d)1gy (n2D)

(11.16)

 Figure 11.11: Impulse response of Schroeder’s APF reverberator; the frequency response is fl at.
The delay time was D = 35 mSec with g = 0.6.

1.000
0.707
0.500

0.000

–0.500
–0.707
–1.000

-g

1- g2

g - g3
g2-g4

0 2205 4410 6615 8820 11025 13230 15435 17640 19845

370 Chapter 11

 11.5 More Delaying All-Pass Filter Reverberators

 There are multiple ways to synthesize the delaying APF. Figure 11.12 shows another one.

 D eriving the difference equation is easier for this version; we only need to defi ne one extra

node, w (n) in Equation 11.17 :

grouping:

w(n)5 x (n) 1 gw(n2D)

y(n) 5 2gw(n)1w(n2D)

 5 2g 3x (n)1gw(n2D)4 1 3x (n2D) 1 gw(n22D) 4
 5 2gx (n)2g2w (n2D) 1 x (n2D) 1 gw (n22D

 5 2gx (n) 1 x (n2D) 2 g2w (n2D) 1 gw (n22D)

 (11.17)

 In order to fi nish, fi nd y (n 2 D) from the second line in Equation 11.18 and notice that this is

the same as the last two terms in Equation 11.17 .

 y(n) 5 2gw(n) 1 w(n2D)

y (n2D) 5 2gw (n2D) 1 w (n22D)

gy (n2D) 5 2g2w (n2D) 1 gw (n22D)

 (11.18)

 Thus, the last two terms in Equation 11.17 can be replaced by gy (n 2 D), and the fi nal

difference equation matches Schroeder’s APF:

 y(n) 5 2gx (n) 1 x (n2D) 1 gy (n2D) (11.19)

 Figure 11.13 shows another version of the same APF. The proof that it has the same

difference equation is easy if you look at the node w (n) in Equation 11.20 :

w(n) 5 x (n) 1 gw (n2D)

y (n) 5 2gw (n) 1 w(n2D)
 (11.20)

 Figure 11.12: Another version of the delaying all-pass reverberator.

then

and

x(n)
w(n)

y(n)

z-D

-g

g

∑ ∑

Reverb Algorithms 371

 These are the fi rst two lines in the derivation for the delaying APF above. Figure 11.14 shows

yet another structure. To fi gure this one out, once again fi nd the internal node w (n) as it relates

to the output in Equation 11.21 :

 w (n) 5 x (n) 1 gy (n)

 y(n) 5 2gx (n) 1 w (n2D)

w (n2D) 5 x (n2D) 1 gy (n2D)

 y (n) 5 2gx (n) 1 x (n2D) 1 gy (n2D)

 (11.21)

 Equation 11.21 is identical to Equation 11.20 , but care must be taken in the synthesis

of this in code—you must form the internal nodes fi rst to avoid a zero-delay loop (the

 x (n) 1 gy (n) term above). Inverted APFs simply swap signs on the g coeffi cients. This has

the effect of inverting the impulse response while keeping the frequency response

theoretically fl at. By combining both inverting and regular delaying APFs, you can try to

achieve a more uncorrelated echo density.

 Figure 11.13: Alternate version of the delaying APF; the transfer function and difference
equations are identical to the other structures.

 Figure 11.14: Another delaying APF structure.

then

and

x(n)

gw(n-D)

w(n)

-gw(n)

y(n)

g

-g

z -D

w(n-D)

∑

∑

x(n)
w(n) ∑

-g gy(n)

g

y(n)

-gx(n)

z -D

w(n-D) ∑

372 Chapter 11

 11.6 Schroeder’s Reverberator

 Schroeder combined a parallel comb fi lter bank with two APFs to create his fi rst design. The

comb fi lters produce the long series of echoes and the APFs multiply the echoes, overlaying

their own decaying impulse response on top of each comb echo. The resulting reverberation

unit, shown in Figure 11.15 , sounds marginal but it is very simple to implement.

 Schroeder suggests that the ratio of smallest to largest delay in the comb fi lters should be

about 1:1.5 and originally specifi ed a range of 30–45 mSec in total. The 1:1.5 ratio rule turns

out to be useful for just about any set of parallel comb fi lters.

 The comb fi lters should have the following properties:

• Choose the delays to have the 1:1.5 ratio above.

• Choose delay times that have no common factors (e.g., 2191, 2971, 3253, 3307).

• Set the gain values according to Equation 11.9 .

 Figure 11.15: Schroeder’s original reverb design.

x(n) Z –D1 -g5

Z
–D5

g5

-g6

Z–D5

g6

y(n)

g1

Z
-D2

g2

Z
–D3

g3

Z–D4

g4

∑

∑

∑

∑

∑

∑

∑ ∑

∑

Reverb Algorithms 373

 Figure 11.16: The LPF and comb fi lter combination.

 The APFs should have the following properties:

• Choose delays that are much shorter than the comb fi lters, 1 mSec to 5 mSec.

• Set both gain values the same, between 0.5 and 0.707.

 11.7 The Low-Pass Filter–Comb Reverberator

 One of the things missing from the original Schroeder reverb is the fact that in a real

room, high frequencies decay much more rapidly than low frequencies, as shown in the

EDRs of Figure 11.6 (Moorer 1979). Placing a low-pass fi lter (LPF) in the comb fi lter’s

feedback path will roll off the high-frequency content of successive echoes exponentially,

which is what we want. The LPF–comb reverberator block diagram is shown in

 Figure 11.16 .

 The LPF is chosen to be a one-pole feedback type (infi nite impulse response [IIR]) so that it

will introduce not only low-pass fi ltering, but also its own impulse response into the echoes

going through the feedback path. In Figure 11.17 the LPF is shown in the dotted box; notice

that it is turned around backward to follow the fl ow of the feedback path.

 To fi nd the difference equation, it is easier to start in the frequency domain with the z

transforms of the comb and fi rst-order feed-forward fi lter, since we are already familiar with

them by now (Equation 11.22).

 HC(z) 5
z2D

12g1z
2D

HLP(z) 5
1

12g2z
21

 (11.22)

x(n) zïD

g1 LPF

y(n) ∑

374 Chapter 11

 Figure 11.17: The LPF–comb fi lter expanded.

 Filtering the feedback loop in the frequency domain is done by simply multiplying the LPF

transfer function by the feedback term g 1 z 2D in Equation 11.23 .

H(z) 5
z2D

12HLP(z)g1z
2D

 5
z2D

12g1z
2D 1

12g2z
21

 5
z2D

12
g1z

2D

12g2z
21

Y(z)

X(z)
5

z2D

12
g1z

2D

12g2z
21

 (11.23)

 The next step is to separate variables and multiply out the denominator:

 Y(z) c12
g1z

2D

12g2z
21 d 5 X(z)z2D

 Y(z) 312g2z
21 2 g1Y(z)z2D 4 5 X(z)z2D(12g2z

21)

Y(z) 2 g2Y(z)z21 2 g1Y(z)z2D 5 X(z)z2D 2g2X(z)z2Dz21

Y(z) 2 g2Y(z)z21 2 g1Y(z)z2D 5 X(z)z2D 2g2X(z)z2D21

 (11.24)

x(n) z–D y(n)

g1

z–1

g2

∑

∑

Reverb Algorithms 375

 Lastly, take the inverse z transform by inspection:

then

Y (z) 2 g2Y(z)z21 2 g1Y(z)z2D 5 X(z)z2D 2 g2
X(z)z2D21

y (n) 2 g2y (n21) 2 g1y(n2D) 5 x (n2D) 2 g2x (n2D21)

y (n) 5 x (n2D) 2 g2x (n2D21) 1 g2y (n21) 1 g1y(n2D)

 (11.25)

 In order for the fi lter combination to remain stable (after all, it is a massive feedback system)

 g 1 and g 2 can be related as in Equation 11.26 :

where

g 5
g2

12g1

g , 1.0

 (11.26)

 Because the RT 60 determines the pole radii, and therefore the value of g 1 , you can rearrange

 Equation 11.26 as Equation 11.27 :

where

g2 5 g(12g1)

g , 1.0

 (11.27)

 11.8 Moorer’s Reverberator

 Moorer proposed a similar design to Schroeder’s reverberator which uses a parallel bank of

LPF–comb fi lters. Because the LPFs remove energy from the system, more units are needed

in parallel for a given reverb time. Moorer’s reverb sounds better because it mimics the high-

frequency losses of a real room.

 In Figure 11.18 you can see the differences from Schroeder’s reverb—there are more comb

units and only one all-pass on the output. The same care must be taken to ensure the pole radii

of the comb fi lters are still the same, using Equation 11.9 to set them according to the desired

reverb time. Table 11.1 shows Moorer’s preset values for a reverb time of about 2 seconds.

 Table 11.1: Some settings for Moorer’s reverb.

Comb Filter Delay (mSec) gCOMB (48 kHz) gLPF (48 kHz)

1 50 0.46 0.4482
2 56 0.47 0.4399
3 61 0.475 0.4350

4 68 0.48 0.4316
5 72 0.49 0.4233
6 78 0.50 0.3735

All-Pass Filter Delay (mSec) g –
1 6 0.7 –

 Note: RT 60 2 seconds, total g 5 0.83

and

376 Chapter 11

 11.9 Stereo Reverberation

 Conducting listening tests, Schroeder (1984) found that listeners overwhelmingly preferred

a stereo reverb to a mono version of the same algorithm. Both Schroeder and Moorer’s

reverbs can be adapted for stereo usage. In fact, this scheme can be used with just about any

reverb consisting of comb and APFs. The fi rst thing to note is that mathematically, there is

no reason why you can’t place the APFs before the comb fi lters since their transfer functions

multiply in the z domain. Then, the individual outputs of the comb fi lters can be combined

through a mixing matrix to provide the left and right outputs. The mixing matrix is an array

of weighting values for each comb fi lter’s output. Jot proposed that the matrix should be

orthogonal for the most uncorrelated output. The mixing matrix is shown in Equation 11.28 .

The rows are the outputs of the comb fi lters and the columns are left and right. Figure 11.19

shows a mixing matrix for the left channel of a Schroeder reverb unit.

 gD11 11

11 21

11 11

11 21

T (11.28)

 Figure 11.18: Moorer’s reverb.

LPF

LPF

∑

∑

∑

∑

∑

∑ ∑ ∑ ∑

LPF

LPF

LPF

LPF

x(n) y(n)

g7

-g7

g 1

 g 2

 g3

 g4

 g5

 g6

Z

Z

Z

Z

Z

Z

Z

-D1

-D2

 -D3

-D4

 -D5

 -D6

-D7

Reverb Algorithms 377

 Figure 11.19: A stereo implementation for a Schroeder reverb—only one channel is shown for
clarity; the right output is fashioned in a similar way. Notice the mix matrix values do not have to

be 61.0 but need to follow the orthogonality of alternating signs.

 11.10 Gardner’s Nested APF Reverberators

 Schroeder experimented with reverbs made only from delaying APF modules in series. The

abundant time smearing suggested that this might be a viable option. Unfortunately the

consensus was that this reverb sounded metallic and that it didn’t build up the echo density

fast enough. Schroeder’s original series APFs started with the maximum delay in the fi rst

module (about 100 mSec) and then decreased by 0.3 for each successive module, through fi ve

modules. Gardner (1992) noted that Schroeder (1962), Gerzon (1972), and Moorer (1979) all

experimented with nesting multiple all-pass structures, but without success. He suggested a

strategy for nesting delaying APF modules along a single transversal delay line. In order to

understand how this works, re-fashion the delaying APF structure using the transversal delay

line structure you saw in Chapter 8 . Figure 11.20 shows the same delaying APF structure as

shown in Figure 11.13 but with the delay replaced by a set of single delay elements.

Left Out

Comb 3

Comb 1 +0.7

Comb 2 +0.7

+0.7

Comb 4 +0.7

Comb 1 +0.7

Comb 2 -0.7

Comb 3 +0.7

Comb 4 -0.7

APF1 APF1 Right In

Similar
for Right

Out

×

×

×

×

×

APF1 APF1 Left In

378 Chapter 11

 The sequence of operation—reading before writing—is key for implementing this design.

Specifi cally, you need to

1. Read the output of the last delay cell, x (n 2 D).

2. Read the value of the fi rst delay cell, x (n).

3. Form the new value for the last cell 2 gx (n) 1 x (n 2 D) and write it back into the cell as y (n).

4. Form the new value for the fi rst cell x (n) 5 x (n) 1 gy (n).

 Gardner’s idea was to nest multiple APF structures inside each other so that they shared

the same delay line. This would produce layers of embedded echoes. Figure 11.20 shows a

delaying APF with a total delay time of z 25 . Nesting another APF with a delay of z 23 inside it

results in Figure 11.21 .

 Gardner also devised a new schematic representation of his nested fi lter structures that

removes the clutter of the delay cells, gain, and summation components. Figure 11.22 shows

a nested APF structure. The outer APF has a delay time D 2 and gain g 2 while the inner

APF uses D 1 and g 1 as its values. Additionally, pre- and post-delays may be added to the

transversal delay line before and after the nested structure as shown in Figure 11.23 .

 Figure 11.20: The delaying APF structure sitting across a transversal delay line.

 Figure 11.21: Two delaying APF structures sharing the same delay line.

-g 2

2 g

-1 -1 -1 z z z -1 z y(n) -1 z x(n)

1 g

1 -g

-g

g

y(n)

×

×

×

×

××

-1 z -1 z -1 z -1 z -1 z x(n)

Reverb Algorithms 379

 Consider the nested APF structure in Figure 11.24 . It has an outer APF with a delay time of

35 mSec with g 5 0.3 and two inner APFs with delay and gain values of 22 mSec (g 5 0.4)

and 8.3 mSec (g 5 0.6). This is actually the fi rst part of one of Gardner’s larger designs.

 Figure 11.25 shows the impulse responses as each APF is added to the structure.

 You can certainly see how the echo density begins to grow as you add each APF unit. We note

several things about the nesting system:

• In the example, the fi rst nested APF is 22 mSec in length; because of the commutative

property of the delay operator, it doesn’t matter where the 22 mSec delay is placed within

the 35 mSec outer element.

• The 8.3 mSec APF is not nested inside the 22 mSec APF; it comes anywhere after it but

still inside the outer APF.

 Figure 11.23: Pre- and post-delays of length N and M have been added to the nested APF
structure. The second diagram shows how Gardner would lay this out schematically.

 Figure 11.22: A nested APF schematic; Gardner gave the delay times in mSec.

Input Output

D1(g1)

D2(g2)

-g1

g1

z -1 z -1 z -1 z -1 z -1 z -N x(n)

g
2

-g
2

z -M y(n)

Input Output

M N

380 Chapter 11

• Echo density piles up as time increases.

• The system can produce ringing or instabilities.

• The system still sounds metallic.

 Gardner’s solution to the ringing or metallic sound was to create a feedback path around

the entire system with an LPF in the loop, thus embedding the nested APFs in a massive

comb fi lter. He also notes that his reverb designs were ultimately arrived at by trial-and-

error. Figure 11.26 shows Gardner’s three reverb designs for small, medium, and large room

simulations. In each algorithm, the reverb time is controlled by the loop gain or “g” control

(notice there are two of them in the medium room algorithm).

 Figure 11.25: (a) The output of the single outer APF with delay of 35 mSec and gain of 0.3
shows the typical APF impulse response. (b) The fi rst nested APF with delay of 22 mSec has

been added. (c) The second nested APF with delay of 8.3 mSec has been added to the fi rst two.

 Figure 11.24: Three APFs—an outer fi lter and two nested units.

Output Input

35 (0.3)

22 (0.4) 8.3 (0.6)

1.000
0.707
0.500

0.000

-0.500
-0.707
-1.000

0 4410 8820 13230 I7640 22050 26460 30870 35280 39690

(b)

(a)

1.000
0.707
0.500

0.000

-0.500
-0.707
-1.000

0 4410 8820

 8820

13230 17640 22050 26460 30870 35280 39690

(c)
1.000
0.707
0.500

0.000

-0.500
-0.707
-1.000

0 4410 13230 17640 22050 26460 30870 35280 39690

Reverb Algorithms 381

 Figure 11.26: From top to bottom these are Gardner’s nested APF reverb algorithms for small,
medium, and large room simulations. Notice that the medium room algorithm in the middle has
two input locations. Also notice the use of pre- and post-delays on some of the nested modules.

 11.11 Modulated APF and Comb/APF Reverb

 The modulated delay line can be used to further increase time smearing and echo density

by using it in an APF module. The low-frequency oscillator (LFO) rate is kept low (<1 Hz)

and the depth also very low (10–20 samples) to ensure that the detuning and chorusing effect

is not overly obvious. In 1997, Dattorro presented a plate reverb algorithm “in the style of

Greisinger,” revealing the use of a modulated APF. He also notes that the modulated fi lter

technically mimics a room whose walls are slowly moving back and forth.

 Frenette (2000) showed that the use of modulated delay lines could reduce the computational

requirements without a perceptual reduction in quality of reverb. Frenette used modulated

LPF

fc= 2.6 kHz

g

4 17 31 3
0.14

30 (0.25) 76 (0.25)

120(0.5) 87 (0.5)

62 (0.25) 12(0.3) 8 (0.3)

Input

Output 0 14

0.34
Large

LPF g

fc= 2.5 kHz

g
15 67 5 108

9.8(0.6)

39 (0.3)

Input

30 (0.5) 22 (0.5) 8.3 (0.7)

35 (0.3)

Input

Medium
0.5

0.5

0.5

Output

Output 0.5

fc=4.2kHz

LPF
g

24

Input

35 (0.3)

22 (0.4) 8.3 (0.6) 30 (0.4)

66(0.1)

Small

0.5

382 Chapter 11

 Figure 11.27: A modulated APF.

 Figure 11.28: Block diagram of Dattorro’s reverb.

comb fi lters (chorus modules) in addition to modulated APFs to further reduce the overall

complexity and memory requirements. The modulated APF is shown in Figure 11.27 .

 The modulated APF in Figure 11.27 modulates only the very end of the delay line, producing

a delay described by Equation 11.29 :

 Delay 5 z(2D 1 u(nT)) (11.29)

 where u (nT) is the discrete time modulation signal (LFO). The inverting version can be

implemented with a swap of the g coeffi cients, as with the other APFs.

 11.12 Dattorro’s Plate Reverb

 Dattorro’s plate reverb algorithm in Figure 11.28 has a block diagram that reveals its fi gure-8

recirculating tank circuit. This fi gure-8 circuit could be applied to the other reverb block

diagrams to generate countless variations on this theme.

-g

z-D

x(n)

g

y(n)

x(n) Pre-Delay LPF1 APF1 APF2 APF3 APF4

Delay 2 APF5 LPF2 Delay 1 Modulated APF1

Modulated APF2 Delay 3 LPF3 APF6 Delay 4

c b a g5

e f d

g5

Reverb Algorithms 383

 You might notice something strange about Figure 11.29 —it has no output y (n) node. In fact,

the left and right outputs are taken from various locations within the delay lines, marked a–f

in the diagram. This is a mono-in, stereo-out reverberator. The fi rst LPF is marked “diffusion”

while the second pair (LPF2 and LPF3) are designated “damping.” The fi rst fi lter controls

the diffusion in the series APFs while the second pair controls the high-frequency roll-off

in the tank circuit. These LPFs are all DC -normalized single pole feedback fi lters shown in

 Figure 11.30 .

 Table 11.2 gives the various values for the fi lters, followed by the equations that give the left

and right outputs. The original design was for a sample rate of 29.8 kHz. Values for f s 5 44.1

kHz are calculated and given in the tables. Figure 11.30 shows the entire reverb algorithm

block diagram. Table 11.3 lists the control ranges and defaults.

 Table 11.2: Gain and delay values for Dattorro’s plate reverb.

APF Dx Delay (samples)

fs = 29.8 k

Delay (samples)

fs = 44.1 k

g (index) g (value)

1 142 210 1 0.75

2 107 158 1 0.75

3 379 561 2 0.625

4 277 410 2 0.625

9 2656 3931 3 0.5

10 1800 2664 3 0.5

Fixed Delay Dx Delay (samples)
fs = 29.8 k

Delay (samples)
fs = 44.1 k

– –

7 4217 6241 – –

8 4453 6590 – –

11 3136 4641 – –

12 3720 5505 – –

Mod APF Dx Delay (samples)
fs = 29.8 k

Delay (samples)
fs = 44.1 k

g (index) g (value)

5 908 +/–8 1343+/–12 4 0.7

6 672 +/–8 995+/–12 4 0.7

 Figure 11.29: (a) DC-normalized one-pole fi lter, easy to use in reverb algorithms, including the
comb fi lter and LPF type module. (b) This version merely reverses the effect of the slider or control.

y(n) g x(n) y(n) 1-g x(n)

(a) g

- 1
z

(b)

× ×

1-g

-1 z

384 Chapter 11

 Figure 11.30: Dattorro’s plate reverb algorithm.

g5 z -D12

g5 -D11 z

-g4

d

Damping z-1

z-D9

g4

g5

1-d

z-D7

g3

z-D5

-g3

-g1

Z
-D2

g1

-g1

z-D1

g1

Right In

Left In
Pre-Delay

z-D bw

Bandwidth z-1

1-bW

g2

z-D3

-g2

g2

Z
-D4

-g2

-g3

z-D6

g3

z-D8

1-d

Damping z-1

d

g5

g4

z-D10

-g4

Reverb Algorithms 385

 Table 11.3: Control values for Dattorro’s plate reverb.

Control Range Default

Decay (g5) 0.0–1.0 0.5

Bandwidth 0.0–1.0 0.9995

Damping 0.0–1.0 0.0005

 The left and right outputs (Equation 11.30) are summed from points within the delay lines

labeled a–f in Figure 11.28 .

 fs 5 29.8 kHz:

yL 5 a 3266 4 1 a 32974 4 2 b 31913 4 1 c 31996 4 2 d 31990 4 2 e 3187 4 2 f 31066 4
yR 5 d 3353 4 1 d 33627 4 2 e 31228 4 1 f 32673 4 2 a 32111 4 2 b 3335 4 2 c 3121 4
 fs 5 44.1 kHz:

yL 5 a 3394 4 1 a 34401 4 2 b 32831 4 1 c 32954 4 2 d 32945 4 2 e 3277 4 2 f 31578 4
yR 5 d 3522 4 1 d 35368 4 2 e 31817 4 1 f 33956 4 2 a 33124 4 2 b 3496 4 2 c 3179 4

 (11.30)

 11.13 Generalized Feedback Delay Network Reverbs

 Another approach to reverberation is to realize that the listener is experiencing dense

echoes caused by multiple refl ections off of surfaces along with potentially constructive or

destructive interference. The generalized feedback delay network (FDN) approach began with

Gerzon’s work in 1972 on preserving energy in multichannel reverberators. It was continued

by Stautner and Puckette (1982) as well as Jot and Chaigne (1991). Generally speaking, the

idea is to model the room with some number of delay lines with potential feedback paths to

and from every delay line in the system. The inputs and outputs of each delay line are also

scaled by some values b and c . Consider a simple version that consists of two delay lines with

feedback paths to and from each one shown in Figure 11.31 .

 If you look at Figure 11.31 and think about Schroeder’s parallel comb fi lter bank, you can see

that this is a variation, indeed a generalization, on the structure. In the general FDN, every

possible feedback path is accounted for. Additionally, each delay line has input and output

amplitude controls. If you let b 1, b 2, c 1, and c 2 all equal 1.0 and set g 12 and g 22 to 0.0, you

get Schroeder’s parallel comb fi lter network exactly. Notice how the feedback coeffi cients are

labeled:

• g 11: Feedback from delay line 1 into delay line 1

• g 12: Feedback from delay line 1 into delay line 2

• g 21: Feedback from delay line 2 into delay line 1

• g 22: Feedback from delay line 2 into delay line 2

386 Chapter 11

 An equivalent way to look at Figure 11.31 is shown in Figure 11.32 . Y ou can see that the

feedback coeffi cients have been grouped together in what looks like a linear algebra matrix.

The total energy is preserved if the matrix of coeffi cients is unitary . A unitary matrix

multiplied by its transpose matrix results in the identity matrix . The transpose matrix is

formed by turning the rows into columns and vice versa. These matrices are square. The

identity matrix is a square matrix whose diagonal values are all 1. An FDN that uses a unitary

matrix for its coeffi cients is called a unitary feedback delay network or UFDN.

 Examine the gain matrix G in Equation 11.31 :

G 5 c 0 1

21 0
d

Then multiplying it by its transpose yields

 GGT 5 c 0 1

21 0
d c0 21

1 0
d 5 c1 0

0 1
d (11.31)

 Figure 11.31: A two-delay-line feedback network.

Dry

x(n) b1 z-D1
c1 y(n)

g11

g12

b2 z
-D2

c2

g22

g21

Reverb Algorithms 387

 Figure 11.32: Another version of the two-delay-line FDN.

 It is a unitary matrix. This reverberator would ring forever because of 1.0 gain values. Jot

proposed adding an absorptive coeffi cient k to each delay line. For a colorless reverb, the

value for k in Equation 11.32 is given by Jot.

where

k 5 gM

M 5 the length of the delay

 g 5 the decay factor, set by the user

 (11.32)

 In Figure 11.33 , each delay line undergoes the proper attenuation to keep the reverb colorless.

However, it does not include the frequency dependent absorptive losses we noted from the

energy decay relief diagrams. To accomplish this, Jot then suggested inserting LPFs instead

 Figure 11.33: The FDN with decay factor control.

x(n) y(n)

∑

 ∑ ∑ b1

b2

g11
g12

g21

g22

Dry

c1

c2

Z –D1

Z –D2

x(nn) y(n)

γ

∑

∑ ∑b1

b2

k1

k2

c1

c2

g11

g12
g21
g22

Dry

Z –D1

Z –D2

388 Chapter 11

of the static attenuators. The LPF magnitudes are cleverly chosen in relation to the frequency-

dependent reverb time, RT 60 (v) in Equation 11.33 :

 20 log 1 |h| 2 5
260Ts

RT60 1v 2 M (11.33)

where

 M 5 delay length

 h 5 the magnitude of the filter at some frequency v

 The problem with this setup is that the pole radii are no longer the same (circular in the z

plane) and we know that this produces coloration in the signal. The solution (Jot 1992) was to

add a correction fi lter at the end of the whole system, T (z), whose magnitude is proportional

to the inverse square root of the frequency-dependent reverb time, RT 60 (v). This is shown in

 Figure 11.34 .

 Finally, Figure 11.35 shows a generalized version of the FDN. It does not include the absorptive

loss components (either static k values or H LPFs) for clarity. The feedback matrix is always square,

 N × N , where N is the number of delay lines. Because it is square, it can be made to be unitary.

 As an experiment, you can try to implement a four delay line version using the unitary matrix

 Equation 11.34 and gain coeffi cients proposed by Stautner and Puckette (1982), who were

researching multichannel reverb algorithms.

 G 5
g

"2
≥

0 1 1 0

21 0 0 21

1 0 0 21

 0 1 21 0

¥ (11.34)

where

0 g 0 , 1.0

 You can also try to de-correlate the four delay line outputs by using Jot’s orthogonal matrix

and set the coeffi cients c N according to Equation 11.35 :

 C 5 g2 ≥
1

21

1

21

¥
(11.35)

where

0 g2 0 , 1.0

Reverb Algorithms 389

 11.14 Other FDN Reverbs

 Smith (1985) developed a variation on the FDN theme with his waveguide reverberators.

Each waveguide consists of a two delay lines that move in opposite directions with

coupling coeffi cients for connecting waveguides together. Any number of waveguides may

be connected in any geometric pattern or shape, leading to a generalized set of scattering

matrices. The scattering matrices are similar to the feedback matrices—they contain the

coeffi cients that control the waveguide junction gains. The scattering matrices may also

 Figure 11.34: Addition of absorptive LPFs to the delay lines, plus a correction fi lter T (z) at the end.

 Figure 11.35: A generalized, N -delay-line FDN.

x(n) y(n) ∑ ∑

∑

 ∑ b1

b2

c1

c2

g11 g21

g12 g22

Dry

z–D1

z
–D2

H(z)

H(z)

LP1

LP2

T(z)

x(n) y(n) ∑

∑

∑

 ∑ b1

b2

bN

c1

c2

cN

Dry

g11 g21 gN1

g12 g22 gN2

g1N g2N gNN

z–D1

z–D2

z–DN

390 Chapter 11

be made to be lossless by adhering to mathematical conditions involving the matrices’

eigenvalues and eigenvectors (Smith and Rocchesso 1994).

 Dahl and Jot (2000) proposed another UFDN type of reverb algorithm based on a structure

they call the absorbent all-pass fi lter (AAPF). Figure 11.36 shows the block diagram of the

AAPF which consists of a standard delaying APF with an LPF inserted in signal path. They

combined an early refl ections block that consisted of a multi-tapped delay line with a late

reverberation block. In their late reverberation model, they use series AAPFs in a UFDN loop

as shown in Figure 11.37 . The block marked M is the unitary feedback matrix that mixes and

creates the inputs for the fi lter loops.

 Chemistruck, Marcolini, and Pirkle (2012) also experimented with FDNs for reverb

algorithms. They used the genetic algorithm (GA) to generate coeffi cients for feedback delay

and fi ltering blocks in their proposed system. A random unitary matrix generator was coded

to seed the GA so that the starting point is a UFDN. Their overall algorithm block diagram

consists of a four-delay line FDN followed by a diffusion block, as shown in Figure 11.38 .

The GA was only used to fi nd the delay network coeffi cients while the diffusion block

remained constant throughout.

 Figure 11.36: The absorbent APF features an LPF and attenuator in line with the delay element.

 Figure 11.37: Dahl and Jot’s late reverberator using a unitary feedback matrix M
and absorbent APFs.

x(n) -D z LPF

-g

a y(n)

Left Input

M

AAPF L1 AAPF L2 AAPF L3 AAPF L4 z-D
LPF gL AAPF L5 AAPF L6

Left Output

Right Input

AAPF R1 AAPF R2 AAPF R3 AAPF R4 Z-D
LPF gR AAPF R5 AAPFR6

Right Output

g

Reverb Algorithms 391

 Two different FDNs were used; the normal four-delay line and the delay and LPF in series

(Figure 11.35 , but without the correction fi lter on the output). An impulse response was taken

for the target listening environment. The GA fi tness function used the time domain envelope

of the target impulse response for the matching criteria on the output of the system. During

each iteration, the top 35% of offspring candidates were kept and inter-mated. Mutation rates

of 10% for the delay coeffi cients and 5% for the LPF cutoff frequencies were used. More

details can be found in the original reference.

 We’ve analyzed many types of reverberator building blocks and complete algorithms. By now

you should be able to see that reverb design is fairly open-ended. An example room reverb

design follows.

 11.15 An Example Room Reverb

 For an example reverb, we have assembled a combination of reverberator modules to

implement a mono-in, stereo-out reverb. The reverb is based on many of the modules and

classic algorithms we’ve studied so far. The idea is to produce a realistic-sounding algorithm

that uses several of the more common reverberator modules so that you can use it as a

springboard for your own designs. It is a good place to start your experiments because it

features a variety of reverberator modules to help you get a better understanding of how

the parameters change the overall reverb sound. Figure 11.39 shows the stereo impulse

response for the factory preset; notice the pre-delay, early refl ections, and late reverb sections

are all present. Figure 11.40 shows the block diagram and graphical user interface (GUI)

components for the example reverb. The complete algorithm consists of the following:

• Pre-delay with output attenuation.

• Input LPF (“bandwidth”).

• Two input APF diffusion modules.

• Two parallel comb fi lter banks; four comb fi lters per bank; one bank for left output, one

for right.

 Figure 11.38: The FDN and diffusion network from the GA reverb.

x(n)

Four-Delay FDN

y(n)

Z
-D

Z
-DI2

Z
-D/3

Z
-D/4

a0

Diffusion Network

392 Chapter 11

• Two comb fi lters in each bank are LPF–comb fi lters.

• Each parallel comb fi lter bank feeds an output LPF (“damping”).

• The output LPF damping control also adjusts the LPF–comb fi lter g values.

• Each output LPF feeds an output APF diffusion module.

• A single RT 60 Control for all comb fi lter gain variables.

• Individual APF and LPF controls for all parameters.

 You can see many familiar components of this algorithm. The inputs are summed together to

form a mono-signal and the left and right outputs are taken from two separate parallel comb

fi lter echo generation units. The input bandwidth and output damping fi lters are the same

as the Dattorro version but they also control the LPF–comb fi lter cutoffs. The parallel comb

fi lter banks are reminiscent of the Schroeder and Moorer algorithms. These reverb algorithms

often contain multiple instances of the same kinds of fi lters—APF, Comb, LPFComb, and so

on. RackAFX provides you with several of these stock objects to use in your plug-ins. This

will allow you to quickly assemble variations on the algorithms. Here are some key points for

the design:

• We follow Schroeder’s rule of about 1:1.5 ratio for shortest to longest comb fi lter delay

(27.50 to 39.34 is our range, almost exactly 1:1.5).

• The RT 60 time is used to calculate the gain variables for the comb fi lters for a less colored

sound.

• The diffusion APFs alternate the sign of the g coeffi cient to create inverted/normal

 diffusion.

 Figure 11.39: A stereo impulse response of the reverb plug-in, 100% wet output.

1.000
0.707
0.500

0.000

ï0.500
ï0.707
ï1.000

1.000
0.707
0.500

0.000

ï0.500
–0.707
–1.000

0 4410 8820 13230 17640 22050 26460 30870 35280 39690

0 4410 8820 13230 17640 22050 36-160 30870 35280 39690

Reverb Algorithms 393

Figure 11.40: The room reverb algorithm.

• Adjusting the input APF delays has an effect on early refl ections.
• Adjusting the output APF delays has a tonal coloration effect on the fi nal reverb.
• The key to less ringing/metallic sound is getting the parallel comb fi lter delays just right,

and not violating the 1:1.5 rule.
• The parallel comb fi lter attenuators, c0—c 7 are hard-coded as 0.15, but there are several

ways you could experiment with this, or allow the user to control it. They also have alter­
nating signs, which was found to greatly reduce pinging.

• You can also provide unequal weighting such that the shorter (or longer) combs are more
(or less) emphasized.

Left In

Right In

0.5

0.5

Bandwidth Input Diffusion

Pre-Delay LPF1 APF1 APF2

Combl c0

Comb2

LPFComb3

LPFComb4

Comb5

Comb6

LPFComb7

LPFComb8

c1

c2

c3

c3

c5

c6

c7

LPF3

Damping

Damping

LPF2 APF3 Left Out

Output Diffusion

APF4 Right Out

PComWDly PCombTDly PCombSDIy

394 Chapter 11

 11.16 RackAFX Stock Objects

 You can use any or all of the following stock objects in your plug-in—you just have to let

RackAFX know when you create your project initially. The stock objects consist of the following:

• COnePoleLPF

• CDelay

• CCombFilter

• CLPFCombFilter

• CDelayAPF

 When you tell RackAFX to add them to your project, RackAFX automatically copies the fi les,

#includes them, and adds them to your C11 project fi le. Here’s a quick reference guide to the

objects. With these objects, coding our example reverb unit will be much easier than you think.

 11.16.1 COnePoleLPF

 Implements a one-pole LPF with a single coeffi cient, g in Figure 11.41. Table 11.4 shows

object members.

 Figure 11.41: The one-pole LPF.

 Table 11.4 : The COnePoleLPF object.

Member Variables Purpose

fl oat m_fLPF_g Implements the one and only gain coeffi cient g.

fl oat m_fLPF_z1 Register to hold the single sample delay, z21.

Member Functions

void setLPF_g(fl oat fLPFg)
Parameters:
• fl oat fLPFg

set() function for gain coeffi cient.
Input: the new gain value.

void init() Function to initialize and clear out the z21 register.

bool processAudio(fl oat* pInput, fl oat* pOutput)
Parameters:
• fl oat* pInput
• fl oat* pOutput

Process one input sample.

Input: pointer to a fl oat input sample.
Output: pointer to the output sample destination.

x(n) y(n) ∑ 1-g

g

z –1

Reverb Algorithms 395

 11.16.2 CDelay

 Implements a delay of D samples with an output attenuator. This is also the base class for

other stock objects in Figure 11.42. Table 11.5 shows object members.

 Table 11.5: The CDelay object .

Member Variables Purpose

fl oat m_fDelayInSamples Implements the one and only gain coeffi cient g
fl oat m_fOutputAttenuation Output attenuation variable
fl oat* m_pBuffer Pointer to our dynamically declared buffer
int m_nReadIndex Current read location
int m_nWriteIndex Current write location
int m_nBufferSize Max buffer size
int m_nSampleRate Sample rate
fl oat m_fDelay_ms Delay in mSec, set by the parent plug-in
fl oat m_fOutputAttenuation_dB Output attenuation in dB, set by the parent plug-in
Member Functions
void init(int nDelayLength)
Parameters:
• int nDelayLength

Declare the buffer and initialize it with 0.0s

Input: the buffer length in samples
void cookVariables() Function to cook delay (nSec) and attenuation (dB) to the variables

actually used in the calculation
void resetDelay() Reset the pointers to top, fl ush buffer
void setDelay_mSec(fl oat fmSec)
Parameters:
• fl oat fmSec

Called by parent to set the delay in mSec

Input: the desired delay time
void setSampleRate(int nFs)
Parameters:
• int nFs

Set the sample rate; called by parent

Input: the sample rate integer
void setOutputAttenuation_
dB(fl oat fAttendB)
Parameters:
• fl oat fAttendB

Set the output attenuator; called by parent

Input: the attenuation in dB
fl oat readDelay() Read the delay with the user defi ned delay time without incrementing

any pointers or writing input data
fl oat readDelayAt(fl oat fmSec)
Parameters:
• fl oat fmSec

Read the delay at an arbitrary delay time without incrementing any
pointers or writing input data; caller must make sure that this does
not exceed max delay time
Input: the delay time to read

void writeDelayAndInc(fl oat
fDelayInput)
Parameters:
• fl oat fDelayInput

Write the input value and increment the pointer indices

Input: the input audio sample
bool processAudio(fl oat* pInput,
fl oat* pOutput)
Parameters:
• fl oat* pInput
• fl oat* pOutput

Processes one input sample

Input: pointer to a fl oat input sample
Output: pointer to the output sample destination

396 Chapter 11

 11.16.3 CCombFilter

 Implements a D -sample comb fi lter with feedback coeffi cient g in Figure 11.43. Table 11.6

shows object members.

 Table 11.6: The CCombFilter object.

Member Variables Purpose

fl oat m_fComb_g The one and only feedback gain coeffi cient g

Member Functions

void setComb_g(fl oat fCombg)
Parameters:
• fl oat fCombg

set() function for feedback gain coeffi cient
Input: the new feedback gain value

void setComb_g_with_RTSixty(fl oat fRT)
Parameters:
• fl oat fRT

Set the feedback gain using the RT60 time

Input: RT60 time in mSec

CDelay Base Class Overrides

bool processAudio(fl oat* pInput, fl oat* pOutput)
Parameters:
• fl oat* pInput
• fl oat* pOutput

Process one input sample

Input: pointer to a fl oat input sample
Output: pointer to the output sample destination

 11.16.4 CLPFCombFilter

 Implements a D -sample comb fi lter with LPF in feedback loop (with coeffi cient g 2) and

feedback coeffi cient g 1 in Figure 11.44. Table 11.7 shows object members.

 Figure 11.42: The delay with output attenuator.

 Figure 11.43: The comb fi lter.

x(n) y(n) z –D a0

x(n) y(n) ∑

g

z–D

Reverb Algorithms 397

 Table 11.7: The CLPFCombFilter object.

Member Variables Purpose

fl oat m_fComb_g The one and only feedback gain coeffi cient g1

fl oat m_fLPF_g The LPF gain coeffi cient, g2

fl oat m_fLPF_z1 Register for one pole LPF

Member Functions

void setComb_g(fl oat fCombg)
Parameters:
• fl oat fCombg

set() function for feedback gain coeffi cient
Input: the new feedback gain value

void setComb_g_with_RTSixty(fl oat fRT)
Parameters:
• fl oat fRT

void setComb_g_with_RTSixty(fl oat fRT)
Parameters:
fl oat fRT

void setLPF_g(fl oat fOverAllGain)
Parameters:
• fl oat fOverAllGain

Set the LPF gain knowing an overall gain value; uses
Equation 11.27
Input: the overall gain in Equation 11.27

CDelay Base Class Overrides

void init(int nDelayLength)
Parameters:
• int nDelayLength

Dynamically create and init the buffer
Input: delay length in samples

bool processAudio(fl oat* pInput, fl oat* pOutput)
Parameters:
• fl oat* pInput
• fl oat* pOutput

Process one input sample
Input: pointer to a fl oat input sample
Output: pointer to the output sample destination

 Figure 11.44: The LPF–comb fi lter.

x(n) y(n) ∑

∑

z–1

g1

g2

z–D

398 Chapter 11

 11.16.5 CDelayAPF

 Implements a D -sample delaying APF in Figure 11.45. Table 11.8 shows object members.

 Table 11.8: The CDelayAPF object.

Member Variables Purpose

fl oat m_fAPF_g The one and only gain coeffi cient g

Member Functions

void setAPF_g(fl oat fAPFg)
Parameters:
• fl oat fAPFg

set() function for gain coeffi cient
Input: the new gain value

CDelay Base Class Overrides

bool processAudio(fl oat* pInput, fl oat* pOutput)
Parameters:
• fl oat* pInput
• fl oat* pOutput

Process one input sample
Input: pointer to a fl oat input sample
Output: pointer to the output sample destination

 11.17 Design the Room Reverb
 11.17.1 Project: Reverb

 Start a new project named “Reverb” and be sure to check the box to automatically include the

stock reverb objects.

 11.17.2 Reverb GUI

 The fi rst thing to do is decide on a user interface to control the reverb’s modules. Since this

is a learning tool as well, we will give the user many more controls than they would normally

 Figure 11.45: The delaying APF.

x(n)

∑

∑

y(n)

–g

g

z–D

Reverb Algorithms 399

fi nd on a reverb for the purpose of experimentation. Refer back to Figure 11.37 , which has

the block diagram and GUI components with it. There are going to be a lot of sliders to set

up since this is a complex design (Table 11.9). However the use of the stock reverb objects is

going to make the rest of the design easy.

 Table 11.9 : UI Control Properties for the Room Reverb: Pre-Delay

Slider Property Value Slider Property Value

Control Name Pre Delay Control Name Pre Dly Atten

Units mSec Units dB

Variable Type fl oat Variable Type fl oat

Variable Name m_fPreDelay_mSec Variable Name m_fPreDelayAtten_dB

Low Limit 0 Low Limit –96

High Limit 100 High Limit 0

Initial Value 40 Initial Value 0

 Input Diffusion

Slider Property Value

Control Name Bandwidth

Units

Variable Type fl oat

Variable Name m_fInputLPF_g

Low Limit 0

High Limit 1

Initial Value 0.45

Slider Property Value Slider Property Value

Control Name APF1 Dly Control Name APF1 g

Units mSec Units

Variable Type fl oat Variable Type fl oat

Variable Name m_fAPF_1_Delay_mSec Variable Name m_fAPF_1_g

Low Limit 0 Low Limit 21

High Limit 100 High Limit 1

Initial Value 13.28 Initial Value 0.7

400 Chapter 11

Slider Property Value Slider Property Value

Control Name APF2 Dly Control Name APF2 g

Units mSec Units

Variable Type fl oat Variable Type fl oat

Variable Name m_fAPF_2_Delay_mSec Variable Name m_fAPF_2_g

Low Limit 0 Low Limit 21

High Limit 100 High Limit 1

Initial Value 28.13 Initial Value 20.7

 Parallel Comb Filter Bank 1

Slider Property Value Slider Property Value

Control Name PComb1 Dly Control Name PComb2 Dly

Units mSec Units mSec

Variable Type fl oat Variable Type fl oat

Variable Name m_fPComb_1_Delay_mSec Variable Name m_fPComb_2_Delay_mSec

Low Limit 0 Low Limit 0

High Limit 100 High Limit 100

Initial Value 31.71 Initial Value 37.11

Slider Property Value Slider Property Value

Control Name PComb3 Dly Control Name PComb4 Dly

Units mSec Units mSec

Variable Type fl oat Variable Type fl oat

Variable Name m_fPComb_3_Delay_mSec Variable Name m_fPComb_4_Delay_mSec

Low Limit 0 Low Limit 0

High Limit 100 High Limit 100

Initial Value 40.23 Initial Value 44.14

 Parallel Comb Filter Bank 2

Slider Property Value Slider Property Value

Control Name PComb5 Dly Control Name PComb6 Dly

Units mSec Units mSec

Variable Type fl oat Variable Type fl oat

Variable Name m_fPComb_5_Delay_mSec Variable Name m_fPComb_6_Delay_mSec

Low Limit 0 Low Limit 0

High Limit 100 High Limit 100

Initial Value 30.47 Initial Value 33.98

Reverb Algorithms 401

Slider Property Value Slider Property Value

Control Name PComb7 Dly Control Name PComb8 Dly

Units mSec Units mSec

Variable Type fl oat Variable Type fl oat

Variable Name m_fPComb_7_Delay_mSec Variable Name m_fPComb_8_Delay_mSec

Low Limit 0 Low Limit 0

High Limit 100 High Limit 100

Initial Value 41.41 Initial Value 42.58

 Input Diffusion and Damping

Slider Property Value

Control Name Damping

Units

Variable Type fl oat

Variable Name m_fLPF2_g2

Low Limit 0

High Limit 1

Initial Value 0.5

Slider Property Value Slider Property Value

Control Name APF3 Dly Control Name APF3 g

Units mSec Units

Variable Type fl oat Variable Type fl oat

Variable Name m_fAPF_3_Delay_mSec Variable Name m_fAPF_3_g

Low Limit 0 Low Limit 21

High Limit 100 High Limit 1

Initial Value 9.38 Initial Value 20.6

Slider Property Value Slider Property Value

Control Name APF4 Dly Control Name APF4 g

Units mSec Units

Variable Type fl oat Variable Type fl oat

Variable Name m_fAPF_4_Delay_mSec Variable Name m_fAPF_4_g

Low Limit 0 Low Limit 21

High Limit 100 High Limit 1

Initial Value 11 Initial Value 0.6

Pre Dly PD Atten Bandwidth APF1 Dly APF1g APF2 Dly APF2g RT60 WeliDry

I 40.0 mSec I I 0.00 dB II 0.45 11 13.28mSec ll 0.7 I I 28.1 mSec I I - 0.54 I 1 1800 mSec I I 50.00% I

t l + ~ l ~ ~ + +
PComb1 Dly PComb2 Dly PComb3 Dly PComb4 Dly Damping APF3 Dly APF3g

131.71 mSec I 137.11 mSec I 140.23 mSec I 144 .14 mSec I I 0.49 I I 9.38 mSec I I -0.60 I

~ ~ + + + ~ ~
PComb5 Dly PComb6 Dly PComb7 Dly PComb8 Dly APF4 Dly APF4g

I 30.47 II 33.98 II 41.41 II 42.58 I 111 .00 mSec I I 0.60 I

~ ~ ~ + ~ l

402 Chapter 11

 Reverb Output

Slider Property Value Slider Property Value

Control Name Reverb Time Control Name Wet/Dry

Units mSec Units %

Variable Type fl oat Variable Type fl oat

Variable Name m_fRT60 Variable Name m_fWet_pct

Low Limit 0 Low Limit 0

High Limit 5000 High Limit 100

Initial Value 1000 Initial Value 50

 Build the UI using the list of controls above; the variable names I used in the project are

listed in the table . You can use your own variable names but you will need to make sure they

are correctly implemented. Figure 11.46 shows my GUI; I grouped sets of controls together,

following the algorithm block diagram.

 11.17.3 Reverb.h

 In the .h fi le, declare the member objects plus one cooking function that will change all

modules at once (it’s not streamlined but it is simple to cook all at once). There is a stock

object for each block in the algorithm.

 Figure 11.46: The completed reverb prototype GUI.

Reverb Algorithms 403

 // Add your code here: –––––––––––––––––––––––––––- //
 //
 // Pre-Delay Block
 CDelay m_PreDelay;

 // input Diffusion
 COnePoleLPF m_InputLPF;
 CDelayAPF m_InputAPF_1;
 CDelayAPF m_InputAPF_2;

 // parallel Comb Bank 1
 CCombFilter m_ParallelCF_1;
 CCombFilter m_ParallelCF_2;
 CLPFCombFilter m_ParallelCF_3;
 CLPFCombFilter m_ParallelCF_4;

 // parallel Comb Bank 2
 CCombFilter m_ParallelCF_5;
 CCombFilter m_ParallelCF_6;
 CLPFCombFilter m_ParallelCF_7;
 CLPFCombFilter m_ParallelCF_8;

 // damping
 COnePoleLPF m_DampingLPF1;
 COnePoleLPF m_DampingLPF2;

 // output diffusion
 CDelayAPF m_OutputAPF_3;
 CDelayAPF m_OutputAPF_4;

 // function to cook all member object's variables at once
 void cookVariables();

 // END OF USER CODE ––––––––––––––––––––––––––––– //

 11.17.4 Reverb.cpp

 Write the only extra function, cookVariables():

 // function to cook all variables at once
 void CReverb::cookVariables()
 {

 // Pre-Delay
 m_PreDelay.setDelay_mSec(m_fPreDelay_mSec);
 m_PreDelay.setOutputAttenuation_dB(m_fPreDelayAtten_dB);

 // input diffusion
 m_InputAPF_1.setDelay_mSec(m_fAPF_1_Delay_mSec);
 m_InputAPF_1.setAPF_g(m_fAPF_1_g);

404 Chapter 11

 m_InputAPF_2.setDelay_mSec(m_fAPF_2_Delay_mSec);
 m_InputAPF_2.setAPF_g(m_fAPF_2_g);

 // output diffusion
 m_OutputAPF_3.setDelay_mSec(m_fAPF_3_Delay_mSec);
 m_OutputAPF_3.setAPF_g(m_fAPF_3_g);

 m_OutputAPF_4.setDelay_mSec(m_fAPF_4_Delay_mSec);
 m_OutputAPF_4.setAPF_g(m_fAPF_4_g);

 // comb fi lters
 // set delays fi rst...
 m_ParallelCF_1.setDelay_mSec(m_fPComb_1_Delay_mSec);
 m_ParallelCF_2.setDelay_mSec(m_fPComb_2_Delay_mSec);
 m_ParallelCF_3.setDelay_mSec(m_fPComb_3_Delay_mSec);
 m_ParallelCF_4.setDelay_mSec(m_fPComb_4_Delay_mSec);
 m_ParallelCF_5.setDelay_mSec(m_fPComb_5_Delay_mSec);
 m_ParallelCF_6.setDelay_mSec(m_fPComb_6_Delay_mSec);
 m_ParallelCF_7.setDelay_mSec(m_fPComb_7_Delay_mSec);
 m_ParallelCF_8.setDelay_mSec(m_fPComb_8_Delay_mSec);

 // …then calculate comb g's from RT60:
 m_ParallelCF_1.setComb_g_with_RTSixty(m_fRT60);
 m_ParallelCF_2.setComb_g_with_RTSixty(m_fRT60);
 m_ParallelCF_3.setComb_g_with_RTSixty(m_fRT60);
 m_ParallelCF_4.setComb_g_with_RTSixty(m_fRT60);
 m_ParallelCF_5.setComb_g_with_RTSixty(m_fRT60);
 m_ParallelCF_6.setComb_g_with_RTSixty(m_fRT60);
 m_ParallelCF_7.setComb_g_with_RTSixty(m_fRT60);
 m_ParallelCF_8.setComb_g_with_RTSixty(m_fRT60);

 // LPFs
 m_DampingLPF1.setLPF_g(m_fLPF2_g2);
 m_DampingLPF2.setLPF_g(m_fLPF2_g2);
 m_InputLPF.setLPF_g(m_fInputLPF_g);

 // LPF–comb fi lters
 m_ParallelCF_3.setLPF_g(m_fLPF2_g2);
 m_ParallelCF_4.setLPF_g(m_fLPF2_g2);
 m_ParallelCF_7.setLPF_g(m_fLPF2_g2);
 m_ParallelCF_8.setLPF_g(m_fLPF2_g2);

 }

 Constructor

 There is nothing to do here because the child-object constructors handle these details.

Reverb Algorithms 405

 prepareForPlay()

• Initialize all the objects with their max delay times; all delay times except the pre-delay

have maximum values of 100 mSec.

• Initialize the pre-delay for its maximum of 2 seconds.

• Reset all delays.

• Set the sample rate for the delays.

• Cook all the variables at once.

• Init the delays to fl ush buffers.

 bool __stdcall CReverb::prepareForPlay()
 {

 // Add your code here:
 // up to 2 seconds predelay
 m_PreDelay.init(2.0*(m_nSampleRate));

 // init up to 100 mSec
 m_InputAPF_1.init(0.1*(m_nSampleRate));
 m_InputAPF_2.init(0.1*(m_nSampleRate));

 // 100 mSec each max
 m_ParallelCF_1.init(0.1*(m_nSampleRate));
 m_ParallelCF_2.init(0.1*(m_nSampleRate));
 m_ParallelCF_3.init(0.1*(m_nSampleRate));
 m_ParallelCF_4.init(0.1*(m_nSampleRate));
 m_ParallelCF_5.init(0.1*(m_nSampleRate));
 m_ParallelCF_6.init(0.1*(m_nSampleRate));
 m_ParallelCF_7.init(0.1*(m_nSampleRate));
 m_ParallelCF_8.init(0.1*(m_nSampleRate));

 // 100 mSec each max
 m_OutputAPF_3.init(0.1*(m_nSampleRate));
 m_OutputAPF_4.init(0.1*(m_nSampleRate));

 // init the three LPFs
 m_InputLPF.init();
 m_DampingLPF1.init();
 m_DampingLPF2.init();

 // Call all delay resets
 m_PreDelay.resetDelay();
 m_InputAPF_1.resetDelay();
 m_InputAPF_2.resetDelay();

 m_ParallelCF_1.resetDelay();
 m_ParallelCF_2.resetDelay();
 m_ParallelCF_3.resetDelay();
 m_ParallelCF_4.resetDelay();
 m_ParallelCF_5.resetDelay();

406 Chapter 11

 m_ParallelCF_6.resetDelay();
 m_ParallelCF_7.resetDelay();
 m_ParallelCF_8.resetDelay();

 m_OutputAPF_3.resetDelay();
 m_OutputAPF_4.resetDelay();

 // set sample rates on combs (needed to calc g values)
 m_ParallelCF_1.setSampleRate(this->m_nSampleRate);
 m_ParallelCF_2.setSampleRate(this->m_nSampleRate);
 m_ParallelCF_3.setSampleRate(this->m_nSampleRate);
 m_ParallelCF_4.setSampleRate(this->m_nSampleRate);
 m_ParallelCF_5.setSampleRate(this->m_nSampleRate);
 m_ParallelCF_6.setSampleRate(this->m_nSampleRate);
 m_ParallelCF_7.setSampleRate(this->m_nSampleRate);
 m_ParallelCF_8.setSampleRate(this->m_nSampleRate);

 // fl ush buffers
 m_InputLPF.init();
 m_DampingLPF1.init();
 m_DampingLPF2.init();

 // cook everything
 cookVariables();
 return true;

 }

 userInterfaceChange()

• Call the one and only cooking function

 bool __stdcall CReverb::userInterfaceChange(int nControlIndex)
 {

 // add your code here
 cookVariables();
 return true;

 }

 processAudioFrame()

 In this function, you tie all the member objects together by creating variables to pass into/

out of their processAudio() functions. By stepping through the code, you can see just how the

series and parallel elements are connected. You can always go back and make this code more

streamlined by removing intermediate variables, and so on. The four outputs of each comb

fi lter bank are mixed at 15% ratios with alternating signs.

 bool __stdcall CReverb::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer, UINT
 uNumInputChannels, UINT uNumOutputChannels)

 {
 //
 // output = input – change this for meaningful processing

Reverb Algorithms 407

 //
 // Form our input = L + R (if there is a R)
 //
 fl oat fInputSample = pInputBuffer[0];
 if(uNumInputChannels == 2)
 {

 // mix
 fInputSample += pInputBuffer[1];
 // attenuate by 0.5
 fInputSample *= 0.5;

 }

 // begin the series/parallel signal push
 // Pre-Delay
 fl oat fPreDelayOut = 0;
 m_PreDelay.processAudio(&fInputSample, &fPreDelayOut);

 // Pre-Delay Out -> fAPF_1_Out
 fl oat fAPF_1_Out = 0;
 m_InputAPF_1.processAudio(&fPreDelayOut, &fAPF_1_Out);

 // fAPF_1_Out -> fAPF_2_Out
 fl oat fAPF_2_Out = 0;
 m_InputAPF_2.processAudio(&fAPF_1_Out, &fAPF_2_Out);

 // fAPF_2_Out -> fInputLPF
 fl oat fInputLPF = 0;
 m_InputLPF.processAudio(&fAPF_2_Out, &fInputLPF);

 // comb fi lter bank
 // variables for each output
 fl oat fPC_1_Out = 0;
 fl oat fPC_2_Out = 0;
 fl oat fPC_3_Out = 0;
 fl oat fPC_4_Out = 0;
 fl oat fPC_5_Out = 0;
 fl oat fPC_6_Out = 0;
 fl oat fPC_7_Out = 0;
 fl oat fPC_8_Out = 0;
 fl oat fC1_Out = 0;
 fl oat fC2_Out = 0;

 // fInputLPF -> fPC_1_Out, fPC_2_Out, fPC_3_Out, fPC_4_Out
 m_ParallelCF_1.processAudio(&fInputLPF, &fPC_1_Out);
 m_ParallelCF_2.processAudio(&fInputLPF, &fPC_2_Out);
 m_ParallelCF_3.processAudio(&fInputLPF, &fPC_3_Out);
 m_ParallelCF_4.processAudio(&fInputLPF, &fPC_4_Out);

 // fInputLPF -> fPC_5_Out, fPC_6_Out, fPC_7_Out, fPC_8_Out
 m_ParallelCF_5.processAudio(&fInputLPF, &fPC_5_Out);
 m_ParallelCF_6.processAudio(&fInputLPF, &fPC_6_Out);

408 Chapter 11

 m_ParallelCF_7.processAudio(&fInputLPF, &fPC_7_Out);
 m_ParallelCF_8.processAudio(&fInputLPF, &fPC_8_Out);

 // form outputs: note attenuation by 0.15 for each and alternating signs
 fC1_Out = 0.15*fPC_1_Out - 0.15*fPC_2_Out + 0.15*fPC_3_Out - 0.15*fPC_4_Out;
 fC2_Out = 0.15*fPC_5_Out - 0.15*fPC_6_Out + 0.15*fPC_7_Out - 0.15*fPC_8_Out;

 // fC1_Out -> fDamping_LPF_1_Out
 fl oat fDamping_LPF_1_Out = 0;
 m_DampingLPF1.processAudio(&fC1_Out, &fDamping_LPF_1_Out);

 // fC2_Out -> fDamping_LPF_2_Out
 fl oat fDamping_LPF_2_Out = 0;
 m_DampingLPF2.processAudio(&fC2_Out, &fDamping_LPF_2_Out);

 // fDamping_LPF_1_Out -> fAPF_3_Out
 fl oat fAPF_3_Out = 0;
 m_OutputAPF_3.processAudio(&fDamping_LPF_1_Out, &fAPF_3_Out);

 // fDamping_LPF_2_Out -> fAPF_4_Out
 fl oat fAPF_4_Out = 0;
 m_OutputAPF_4.processAudio(&fDamping_LPF_2_Out, &fAPF_4_Out);

 // form output = (100-Wet)/100*x(n) + (Wet/100)*fAPF_3_Out
 pOutputBuffer[0] = ((100.0 - m_fWet_pct)/100.0)*fInputSample +

 (m_fWet_pct/100.0)*(fAPF_3_Out);

 // Do RIGHT Channel if there is one
 if(uNumOutputChannels == 2)
 {

 // form output = (100-Wet)/100*x(n) + (Wet/100)*fAPF_4_Out
 pOutputBuffer[1] = ((100.0 - m_fWet_pct)/100.0)*fInputSample +

 (m_fWet_pct/100.0)*(fAPF_4_Out);
 }
 return true;

 }

 Build and test the example reverb module. Use RackAFX’s impulse response tool in the

analyzer to tweak your settings. Adjust the impulse response time according to your RT 60

times. Notice how the impulse response can drastically change with only a slight modifi cation

of the parameters. Also, try adjusting the mix coeffi cients for the comb fi lter outputs by

alternating signs or using different weightings. Visit the website www.willpirkle.com for

more example reverb algorithms and code.

 11.18 Challenge

 Design your own reverb. Start by implementing some of the classics (Schroeder, Moorer)

and some of the more recent versions (Gardner, Jot, Dattorro) combining different modules.

www.willpirkle.com

Reverb Algorithms 409

Or start with the reverb design here and modify it. For example, try replacing the APFs with

nested all-pass modules or add or remove comb fi lters. You can easily identify ringing and

oscillations using the impulse response tool, so keep it open as you experiment.

 Bibliography

 Griesinger, D. 1995. How loud is my reverberation? Journal of the Audio Engineering Society , preprint 3943, pp. 1–11.

 Roads, C. 1996. The Computer Music Tutorial , Chapter 3. Cambridge, MA: The MIT Press.

 References

 Beranek, L. 1986. Acoustics . New York: American Institute of Physics.

 Browne, S. 2001. “Hybrid reverberation algorithm using truncated impulse response convolution and recursive

fi ltering.” Master’s diss., University of Miami, Miami, FL.

 Chemistruck, M., Marcolini, K., and Pirkle, W. 2012. Generating matrix coeffi cients for feedback delay networks

using genetic algorithms. Journal of the Audio Engineering Society, preprint N/A.

 Dahl, L. and Jot, J-M. 2000. A reverberator based on absorbent all-pass fi lters. Proceedings of the COST G-6
Convention on Digital Audio Effects , DAFX-00, pp. 1–6.

 Dattorro, J. 1997. Effect design part 1: Reverberators and other fi lters. Journal of the Audio Engineering Society 45(9):

660–665.

 Frenette, J. 2000. “Reducing artifi cial reverberation requirements using time-variant feedback delay networks.”

Master’s diss., University of Miami, Miami, FL.

 Gardner, W. G. 1992. “The virtual acoustic room.” Master’s diss., Massachusetts Institute of Technology, Boston, MA.

 Gardner, W. G. 1995. Effi cient convolution without input-output delay. Journal of the Audio Engineering Society 43(3):

127–135.

 Gerzon, M. A. Synthetic stereo reverberation. Studio Sound Magazine , January 14, 1972.

 Griesinger, D. 1989. Practical processors and programs for digital reverberation. 7th International Conference of
the Audio Engineering Society , pp. 187–195.

 Jot, J-M. and Chaigne, A. 1991. Digital delay networks for designing artifi cial reverberators. Journal of the Audio
Engineering Society , preprint 3030, pp. 1–16.

 Jot, J-M. 1992. “Design and implementation of a sound spatializer based on physical and perceptual models.”

PhD diss., Telecom, Paris.

Kahrs, M. and Brandenberg, K. 1998. Applications of Digital Signal Processing to Audio and Acoustics , Chapter 3.

Boston: Kluwer Academic Publishers.

 Kuttruff, H. 1991. Room Acoustics . New York: Elsevier.

 Moorer, J. A. 1979. About this reverberation business. Computer Music Journal 3(2): 13–28.

 Reilly, A. and McGrath, D. S. 1995. Convolution processing for realistic reverb. Journal of the Audio Engineering
Society , preprint 3977, pp. 1–8.

 Sabine, W. 1973 “Reverberation.” Lindsay, R. B., ed. , Acoustics: Historical and Philosophical Development .
Stroudsburg, PA: Dowden, Hutchinson & Ross.

 Schroeder, M. 1962. Natural-sounding artifi cial reverberation. Journal of the Audio Engineering Society 10(3):

209–213.

 Schroeder, M. 1984. Progress in architectural acoustics and artifi cial reverberation: Concert hall acoustics and

number theory. Journal of the Audio Engineering Society 32(4): 194–202.

 Smith, J. O. 1985. A new approach to digital reverberation using closed waveguide networks. Proceedings of the
1985 International Computer Music Conference , pp. 47–53.

 Smith, J. O. and Rocchesso, D. 1994. Connections between feedback delay networks and waveguide networks for

digital reverberation. Proceedings of the 1994 International Computer Music Conference, pp. 376–377.
 Stautner, J. and Puckette, M. 1982. Designing multi-channel reverberators. Computer Music Journal 6(1): 52–65.

411

 Modulated fi lter effects alter one or more fi lter parameters with other signals called control

signals. The fi lter parameters might include cutoff frequency, Q , bandwidth, fi lter type, or

overall gain. The control signals are usually periodic low-frequency oscillators (LFOs), a

signal envelope, an envelope generator (EG) or even another audio signal. In the modulated

delay effects, the LFO control signal changed the delay amount of the signal. In modulated

fi lter effects, the fi lter parameters are the ones that are changing. In this chapter you will

design and implement the following effects:

• Mod fi lter using an LFO

• Envelope follower using an audio detector

• Phaser

 The phaser is a specialized effect that uses a bank of all-pass fi lters (APFs) to try to brute

force delay the signal to make a fl anging effect. An LFO modulates the depth of the APFs. In

 Figure 12.1 you can see a simple modulated fi lter. The fi lter type is a low-pass fi lter (LPF).

The control signal is an LFO. The control parameter is the cutoff frequency of the fi lter.

 In Figure 12.2 , an EG moves the fi lter parameter. An EG is triggered by some external event,

such as a note-on or -off event, or possibly triggered when the input level crosses a threshold.

A modulated fi lter might have multiple parameters controlled by multiple control signals. For

example, Figure 12.3 shows another LPF that has two modulation sources for two different

parameters.

 In Figure 12.3 you can see a new module labeled envelope detector; it detects and follows the

peak, mean-squared (MS), or root-mean-squared (RMS) value of the control signal which is

the input signal here. The control signal could be taken from other sources such as another

audio signal or a complex LFO signal. The effect in Figure 12.2 has a special name too: it is

called an envelope follower.

 CHAPTER 12

Modulated Filter Effects

 Figure 12.1: A simple LFO-modulated LPF.

x(n) y(n) LPF

fc

LFO

412 Chapter 12

 12.1 Design a Mod Filter Plug-In: Part I Modulated f c

 For our fi rst effect design, we’ll start with a modulated second-order LPF and modulate the

cutoff frequency with an LFO. Then, we can increase the complexity by adding another LFO to

control the Q and even give the option to run the two LFOs in quadrature phase. We can use the

second-order digital resonant LPF you’ve already designed from Chapter 6 for the fi lter. Notice

that for this initial project, we will hold the LPF Q constant at 2.0. And, we will introduce a

built-in RackAFX object to handle the LFO for us. The block diagram is shown in Figure 12.4 .

 The parameters are as follows:

• f c mod rate (0.2 to 10 Hz)

• f c mod depth (0 to 100%)

• LFO type (sine, tri, saw, square)

• LPF Q : fi xed at 2.0

• f c mod range: 100 Hz to 5 kHz

• LPF is fi xed as second-order bi-quad variety

 By now, you should be getting really good at building RackAFX plug-ins. If you haven’t just

been cutting and pasting the code then you will have no problems with the next chapters. We

can use the digital resonant LPF from Chapter 6 along with the built-in wave table oscillator

object to quickly implement the mod fi lter effect. This project will use two built-in objects:

1. CBiquad for the fi lter

2. CWaveTable for the LFO

 Figure 12.2: An envelope generator can also modulate a fi lter parameter.

 Figure 12.3: A doubly modulated LPF with both fc and Q controls.

x(n) y(n) LPF

fc

Trigger Input

Envelope
Generator

x(n) y(n) LPF

Envelope
Detector

Q fc

LFO

Modulated Filter Effects 413

 Figure 12.4: The mod fi lter block diagram.

 You used CBiquad in Chapter 6 to begin your fi ltering work. The CWaveTable object was

taken directly from your WTOscillator object. You can fi nd the defi nition and implementation

in the pluginconstants.h and pluginonbjects.cpp fi les. Table 12.1 shows the object’s members

and attributes. The fl ow chart for processAudioFrame() is shown in Figure 12.5 .

 12.1.1 Project: ModFilter

 Create the project; because we are using built-in objects for the fi lter and LFO there are no

member objects to add.

 12.1.2 ModFilter GUI

 For the initial design, you will need the following slider controls in Table 12.2 . Note that

these LFO waveform enumerations follow exactly that of the built-in CWaveTable object to

make mapping the button control easy.

 12.1.3 ModFilter.h File

 Declare instances of the BiQuad and WaveTable objects. You don’t need to #include anything

since these are built-in:

 // Add your code here: --- //
 // BiQuad Objects
 CBiquad m_LeftLPF;
 CBiquad m_RightLPF;

 // one LFO for the fc
 CWaveTable m_fc_LFO;
 // END OF USER CODE -- //

 We are also going to need some variables and functions to control the effect. Specifi cally, we need:

• Minimum f c variable

• Maximum f c variable

• Function to calculate the current f c given a LFO value

• Functions to calculate the bi-quad coeffi cients for left and right channels independently

(we want to calculate them separately for the third part of the project where we allow for

quad-phase LFOs)

x(n) LPF y(n)

fc

LFO

414 Chapter 12

 Table 12.1: The CWaveTable object interface.

CWaveTable

Member Variables Purpose

fl oat m_SinArray[1024];
fl oat m_SawtoothArray[1024];
fl oat m_TriangleArray[1024];
fl oat m_SquareArray[1024];

Arrays to store the non-band limited wave tables

fl oat m_SawtoothArray_BL5[1024];
fl oat m_TriangleArray_BL5[1024];
fl oat m_SquareArray_BL5[1024];

Arrays to hold the band-limited wave tables

fl oat m_fReadIndex;
fl oat m_fQuadPhaseReadIndex;

Indices for reading the wave table

fl oat m_f_inc; Table increment value for current
output frequency

int m_nSampleRate; Sample rate
IMPORTANT: Needed for calculation of table inc; do not
forget it!

fl oat m_fFrequency_Hz; Oscillator frequency

bool m_bInvert; Flag to invert output

UINT m_uOscType;
enum{sine,saw,tri,square};

Enumerated unsigned integer type (UINT) for osc
waveform type

UINT m_uTableMode;
enum{normal,bandlimit};

Enumerated UINT for table mode (we will use
normal mode in this plug-in since the oscillator is
a LFO)

UINT m_uPolarity;
enum{bipolar,unipolar};

Enumerated UINT for osc polarity (we will use
unipolar for this plug-in)

Member Functions

void doOscillate(fl oat* pYn, fl oat* pYqn)

Parameters:

• float* pYn
• fl oat* pYqn

The oscillate function

Output: pYn is the normal output
Output: pYqn is the quadrature phase output

bool prepareForPlay() The prepareForPlay() function for the oscillator;
same use as a normal plug-in

void reset () Reset the pointers to top

void setSampleRate(int nSampleRate)

Parameters:

• int nSampleRate

Called by parent to set the sample rate in Hz

Input: the current sample rate

void cookFrequency() Calculates the new inc value for a changed oscillation
frequency

Modulated Filter Effects 415

 Figure 12.5: The fl owchart for the mod fi lter process function.

 Add the following to the .h fi le:

 // Add your code here: --- //
 // BiQuad Objects
 CBiquad m_LeftLPF;
 CBiquad m_RightLPF;

 // one LFO for the fc
 CWaveTable m_fc_LFO;

 // min and max values (to make it easy to change later)
 fl oat m_fMinCutoffFreq;
 fl oat m_fMaxCutoffFreq;

 // function to calculate the fc given the LFO sample
 fl oat calculateCutoffFreq(fl oat fLFOSample);

 // calculate the coeffs for a given fi lter
 void calculateLPFCoeffs(fl oat fCutoffFreq, fl oat fQ, CBiquad* pFilter);

 // END OF USER CODE -- //

Slider Property Value

Control Name
Units

Variable Type
Variable Name
Enum String

LFO

enum
m_uLFO_waveform
sine,saw,tri,square

 Table 12.2: GUI controls for the ModFilter.

Slider Property Value
Control Name

Units
Variable Type

Variable Name
Low Limit
High Limit

Initial Value

Mod Depth fc
%

fl oat
m_fMod_Depth_fc

0
100
50

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Mod Rate fc
Hz

fl oat
m_fModRate_fc

0.2
10
1.0

Generate LFO
Value

Calculate New
Mod Frequency
Based on LFO

Calculate Filter
Coefficients Do Bi-Quad Filter

416 Chapter 12

 12.1.4 ModFilter.cpp File
 Constructor

• Initialize the rate min and max values. The objects are self initializing upon creation.

 CModFilter::CModFilter()
 {
 <SNIP SNIP SNIP>

 // Finish initializations here

 // set our Min and Max Modulation points
 m_fMinCutoffFreq = 100.0;
 m_fMaxCutoffFreq = 5000.0;
 }

 Write the calculateCutoffFrequency() function. This function behaves exactly like the

function in the fl anger to calculate a new delay offset given the LFO sample and mod depth

values. Here, we simply calculate the cutoff frequency between the min and max values

according to the LFO sample and depth.

 fl oat CModFilter::calculateCutoffFreq(fl oat fLFOSample)
 {
 return (m_fMod_Depth_fc/100.0)*(fLFOSample*(
 m_fMaxCutoffFreq − m_fMinCutoffFreq)) + m_fMinCutoffFreq;
 }

 Next, we need to implement the cooking function for the LPFs to set the new

coeffi cients for a given f c and Q value. This is identical to the resonant LPF you designed

in Chapter 6 :

 void CModFilter::calculateLPFCoeffs(fl oat fCutoffFreq, fl oat fQ, CBiquad* pFilter)
 {
 // use same terms as book
 fl oat theta_c = 2.0*pi*fCutoffFreq/(fl oat)m_nSampleRate;
 fl oat d = 1.0/fQ;

 fl oat fBetaNumerator = 1.0 − ((d/2.0)*(sin(theta_c)));
 fl oat fBetaDenominator = 1.0 + ((d/2.0)*(sin(theta_c)));

 fl oat fBeta = 0.5*(fBetaNumerator/fBetaDenominator);

 fl oat fGamma = (0.5 + fBeta)*(cos(theta_c));

 fl oat fAlpha = (0.5 + fBeta − fGamma)/2.0;

 // apply to fi lter
 pFilter->m_f_a0 = fAlpha;
 pFilter->m_f_a1 = 2.0*fAlpha;

Modulated Filter Effects 417

 pFilter->m_f_a2 = fAlpha;
 pFilter->m_f_b1 = -2.0*fGamma;
 pFilter->m_f_b2 = 2.0*fBeta;
 }

 prepareForPlay()

• Flush delays in LPFs.

• Set up the LFOs by setting the initial rate and LFO type (the LFO type will match our

LFO_waveform variable).

 bool __stdcall CModFilter::prepareForPlay()
 {
 // Add your code here:
 //
 // Flush the LPFs
 m_LeftLPF.fl ushDelays();
 m_RightLPF.fl ushDelays();
 // Note we do NOT need to init the cutoff and Q;
 // these are done in processAudioFrame()

 // setup LFO
 m_fc_LFO.m_fFrequency_Hz = m_fModRate_fc;
 m_fc_LFO.m_uPolarity = 1; // 0 = bipolar, 1 = unipolar
 m_fc_LFO.m_uTableMode = 0; // normal, no band limiting
 m_fc_LFO.m_uOscType = m_uLFO_Waveform; // our own variable
 m_fc_LFO.setSampleRate(m_nSampleRate); // really important!

 // the LFO prepareForPlay() calls reset() and cookFrequency()
 m_fc_LFO.prepareForPlay();

 return true;
 }

 userInterfaceChange()

• If the user moves the rate slider, we need to change the LFO rate.

• If the user clicks on a radio button, we need to change the LFO waveform type.

• For now, simply recalculate everything when any control is moved; you can streamline

this later.

 bool __stdcall CModFilter::userInterfaceChange(int nControlIndex)
 {
 // brute force update all
 m_fc_LFO.m_fFrequency_Hz = m_fModRate_fc;
 m_fc_LFO.m_uOscType = m_uLFO_Waveform;

418 Chapter 12

 // cook to calculate
 m_fc_LFO.cookFrequency();

 return true;
 }

 processAudioFrame()

• Calculate a new LFO value.

• Use the LFO value to calculate a new f c value.

• Use the f c value to calculate new fi lter coeffi cients.

• Do the bi-quad routines on the input samples.

 bool __stdcall CModFilter::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,
 UINT uNumInputChannels, UINT
 uNumOutputChannels)
 {
 //
 // output = input -- change this for meaningful processing
 //
 fl oat fYn = 0; // normal output
 fl oat fYqn = 0; // quad phase output

 // call the LFO function; we only need fi rst output
 m_fc_LFO.doOscillate(&fYn, &fYqn);

 // use the LFO value to calculate the updated fc value
 fl oat fc = calculateCutoffFreq(fYn);

 // use the fc value and a preset Q = 2.0
 // to calculate the LPF coeffi cients for each channel
 calculateLPFCoeffs(fc, 2.0, &m_LeftLPF);
 calculateLPFCoeffs(fc, 2.0, &m_RightLPF);

 // do the BiQuad operation on the Left LPF
 pOutputBuffer[0] = m_LeftLPF.doBiQuad(pInputBuffer[0]);

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)
 pOutputBuffer[1] = pOutputBuffer[0]; // just copy

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 pOutputBuffer[1] = m_RightLPF.doBiQuad(pInputBuffer[1]);

 return true;
 }

 Build and test the plug-in. You will hear the f c modulated by the LFO; adjust the LFO rate and

depth controls and try changing the LFO waveform type as well; triangle and sine seem to be

the most common choices, and the saw produces an interesting pulsing effect.

Modulated Filter Effects 419

 12.2 Design a Mod Filter Plug-In: Part II, Modulated f c , Q

 In the second design, we will modify the current plug-in to include the modulation of the

LPF Q value. We will use a second, independent LFO for the Q but will share the same LFO

waveform type with the f c LFO. The block diagram is shown in Figure 12.6 .

 The parameters are as follows:

• f c mod rate (0.2 to 10 Hz)

• f c mod depth (0 to 100%)

• Q mod rate (0.2 to 10 Hz)

• Q mod depth (0 to 100%)

• LFO type (sine, tri, saw, square)

• f c mod range: 100 Hz to 5 kHz

• Q mod range: 0.5 to 10

• LPF is fi xed as second-order bi-quad

 12.2.1 ModFilter GUI

 Add more sliders to the user interface (UI) for the new LFO as per Table 12.3 .

 Table 12.3: Additional controls for the second LFO.

 12.2.2 ModFilter.h File

 We need to add the following new functions and variables, basically just duplicating the ones

for the f c modulation:

• LFO object for Q modulation

• calculateQ() to calculate the new Q value from the LFO sample value

• Min and max Q values

 // Add your code here: -- //
 CBiquad m_LeftLPF;
 CBiquad m_RightLPF;

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Mod Rate Q
Hz

fl oat
m_fModRate_Q

0.2
10
0.5

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Mod Depth Q
%

fl oat
m_fMod_Depth_Q

0
100
50

420 Chapter 12

 CWaveTable m_fc_LFO;
 CWaveTable m_Q_LFO;

 fl oat m_fMinCutoffFreq;
 fl oat m_fMaxCutoffFreq;

 fl oat m_fMinQ;
 fl oat m_fMaxQ;

 // functions to calculate the fc or Q for a given LFO sample
 fl oat calculateCutoffFreq(fl oat fLFOSample);
 fl oat calculateQ(fl oat fLFOSample);

 // calculate the coeffs for a given fi lter
 void calculateLPFCoeffs(fl oat fCutoffFreq, fl oat fQ, CBiquad* pFilter);

 // END OF USER CODE --

 12.2.3 ModFilter.cpp File
 Constructor

• Initialize the min and max Q values.

 CModFilter::CModFilter()
 {
 m_PlugInName = "ModFilter";

 // Default to Stereo Operation:
 // Change this if you want to support more/less channels
 m_uMaxInputChannels = 2;
 m_uMaxOutputChannels = 2;

 // Finish initializations here
 // set our Min and Max Modulation points
 m_fMinCutoffFreq = 100.0;
 m_fMaxCutoffFreq = 5000.0;
 m_fMinQ = 0.577;
 m_fMaxQ = 10;
 }

 Figure 12.6: The mod fi lter with second LFO for Q.

x(n) y(n) LPF

LFO LFO

Q fc

Modulated Filter Effects 421

 Write the calculateQ() function, which behaves the same way as calculateCutoffFreq(); you

only need to change the mod depth source and min and max values:

 fl oat CModFilter::calculateQ(fl oat fLFOSample)
 {
 return (m_fMod_Depth_Q/100.0)*(fLFOSample*(m_fMaxQ − m_fMinQ)) + m_fMinQ;
 }

 prepareForPlay()

• Set up the Q LFO by setting the initial rate and LFO type (the LFO type will match our

m_uLFOwaveform variable).

 bool __stdcall CModFilter::prepareForPlay()
 {
 // Add your code here:
 <SNIP SNIP SNIP>

 // the LFO prepareForPlay() calls reset() and cookFrequency()
 m_fc_LFO.prepareForPlay();

 // now do the Q LFO
 m_Q_LFO.m_fFrequency_Hz = m_fModRate_Q;
 m_Q_LFO.m_uPolarity = 1; // 0 = bipolar, 1 = unipolar
 m_Q_LFO.m_uTableMode = 0; // normal, no band limiting
 m_Q_LFO.m_uOscType = m_uLFO_Waveform;
 m_Q_LFO.setSampleRate(m_nSampleRate); // really important!

 // this calls reset() and cookFrequency()
 m_Q_LFO.prepareForPlay();

 return true;
 }

 userInterfaceChange()

• Update the Q LFO when the user changes this value.

 bool __stdcall CModFilter::userInterfaceChange(int nControlIndex)
 {
 // add your code here
 // brute force update all
 m_fc_LFO.m_fFrequency_Hz = m_fModRate_fc;
 m_fc_LFO.m_uOscType = m_uLFO_Waveform;

 m_Q_LFO.m_fFrequency_Hz = m_fModRate_Q;
 m_Q_LFO.m_uOscType = m_uLFO_Waveform;

 // cook to calculate
 m_fc_LFO.cookFrequency();
 m_Q_LFO.cookFrequency();

 etc…
 }

422 Chapter 12

 processAudioFrame()

• Calculate a new f c LFO value.

• Use the LFO value to calculate a new f c value.

• Calculate a new Q LFO value.

• Use the LFO value to calculate a new Q value.

• Use the f c and Q values to calculate new fi lter coeffi cients.

• Do the bi-quad routines on the input samples.

 bool __stdcall CModFilter::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,
 UINT uNumInputChannels, UINT
 uNumOutputChannels)
 {
 //
 // output = input -- change this for meaningful processing
 //

 fl oat fYn = 0; // normal output
 fl oat fYqn = 0; // quad phase output

 // call the fc LFO function; we only need fi rst output
 m_fc_LFO.doOscillate(&fYn, &fYqn);

 // calculate fc
 fl oat fc = calculateCutoffFreq(fYn);

 // call the Q LFO funciton
 m_Q_LFO.doOscillate(&fYn, &fYqn);

 // calculate the new Q
 fl oat fQ = calculateQ(fYn);

 // use to calculate the LPF
 calculateLPFCoeffs(fc, fQ, &m_LeftLPF);
 calculateLPFCoeffs(fc, fQ, &m_RightLPF);

 // do the BiQuads
 pOutputBuffer[0] = m_LeftLPF.doBiQuad(pInputBuffer[0]);

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)
 pOutputBuffer[1] = pOutputBuffer[0]; // just copy

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 pOutputBuffer[1] = m_RightLPF.doBiQuad(pInputBuffer[1]);

 return true;
 }

Modulated Filter Effects 423

 You can see that we only had to add a few lines of code to get the second modulation source

working. Build and test the plug-in. You will hear the f c and Q modulated by the two LFOs;

adjust the LFO rate and depth controls and try changing the LFO waveform type too. The Q

modulation can be more subtle to hear, but if you use RackAFX’s oscillator and pump white

noise through it, the modulation becomes clearly audible. We’ll fi nish the plug-in by making

one more modifi cation: the ability to place the right and left LPF modulation sources in

quadrature phase.

 12.3 Design a Mod Filter Plug-In: Part III, Quad-Phase LFOs

 In the third design iteration, we will modify the current plug-in to allow for quadrature phase

LFOs. The block diagram is given in Figure 12.7 .

 The parameters are as follows:

• f c mod rate (0.2 to 10 Hz)

• f c mod depth (0 to 100%)

• Q mod rate (0.2 to 10 Hz)

• Q mod depth (0 to 100%)

• LFO type (sine, tri, saw, square)

• LFO phase (normal,quadrature)

• f c mod range: 100Hz to 5kHz

• Q mod range: 0.577 to 10

• LPF is fi xed as second-order bi-quad

 In order to switch the LFOs into quadrature phase, we only need to add one more radio button

control and make a slight modifi cation to the processAudioFrame() function.

 12.3.1 ModFilter GUI

 Add the Radio Button Control in Table 12.4 . Note: This is a direct control variable—there is

nothing extra to add in userInterfaceChange() or prepareForPlay() since we only use it in the

single processAudioFrame() function.

 Figure 12.7: The mod fi lter with quad-phase LFOs.

x(n) LPF y(n)

90° Q 0° fc

LFO LFO

424 Chapter 12

 12.3.2 ModFilter.cpp File
 processAudioFrame()

• Check the enumerated variable and use the appropriate LFO output sample.

 bool __stdcall CModFilter::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,
 UINT uNumInputChannels, UINT
 uNumOutputChannels)
 {
 //
 // output = input -- change this for meaningful processing
 //
 fl oat fYn = 0; // normal output
 fl oat fYqn = 0; // quad phase output

 // call the LFO function; we only need fi rst output
 m_fc_LFO.doOscillate(&fYn, &fYqn);

 // calculate both fc values (can be streamlined!)
 fl oat fc = calculateCutoffFreq(fYn);
 fl oat fcq = calculateCutoffFreq(fYqn);

 // get the Q LFO output
 m_Q_LFO.doOscillate(&fYn, &fYqn);

 // calculate both Q values
 fl oat fQ = calculateQ(fYn);
 fl oat fQq = calculateQ(fYqn);

 // use the fc and Q to calculate the Left LPF coeffs
 calculateLPFCoeffs(fc, fQ, &m_LeftLPF);
 calculateLPFCoeffs(fc, fQ, &m_RightLPF);

 // test the Phase variable; if not NORM, use the
 // quad phase LFO values on the Right channel
 if(m_uLFO_Phase == NORM)
 calculateLPFCoeffs(fc, fQ, &m_RightLPF);
 else
 calculateLPFCoeffs(fcq, fQ, &m_RightLPF);

 Table 12.4: The quad phase control.

Button Property Value

Control Name
Units

Variable Type
Variable Name
Enum String

LFO

enum
m_uLFO_Phase
NORM,QUAD

Modulated Filter Effects 425

 // do the BiQuads
 pOutputBuffer[0] = m_LeftLPF.doBiQuad(pInputBuffer[0]);

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0]; // just copy

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = m_RightLPF.doBiQuad(pInputBuffer[1]);

 return true;
 }

 Build and test the new plug-in. When you change the phase to quadrature, it will be easy to hear

the two modulations chasing each other across the two speakers. Ideas for future plug-ins include:

• Change the fi lter type (high-pass fi lter, band-stop fi lter, band-pass fi lter).

• Use a double-modulator: modulate one LFO with another LFO, then use that to control a

parameter.

 12.4 Design an Envelope Follower Plug-In

 While the straight-up mod fi lter is pretty interesting, it has a mechanical quality about it

due to the LFO modulations. This might not be an issue for a synthesizer, but it does not

sound musically dynamic. We can correlate the modulation to the musical input signal by

implementing an envelope follower, which uses the amplitude envelope of the input signal

to control the fi lter parameters. For example, we can code it so that when the input signal

has a high amplitude, the f c is modulated up to a higher value, and of course as the plug-in

creators, we can also do the opposite kind of modulation. The envelope follower requires

an audio envelope detector, and you can use one built into RackAFX. We will use the same

second-order LPF as the fi lter to modulate; then you can try different fi lter types on your own.

First, take a look at the block diagram in Figure 12.8 .

 The parameters are as follows:

• Pre-gain: 0 to 120 dB of pre-gain to drive the detection circuit

• Threshold (the value the signal has to cross to engage the detector)

• Envelope attack time (mSec)

• Envelope release time (mSec)

• Up/down mod control (determines whether positive amplitude excursions result in

 positive or negative f c excursions)

• Digital/analog detection mode: changes detector time constant

• User-adjustable Q

• LPF is fi xed as second-order bi-quad

426 Chapter 12

 Figure 12.8: The envelope detector block diagram.

 We can use the same CBiquad objects for the LFO, but we need another object to handle

the envelope detection. This object is built in; the interface is in pluginconstants.h and the

implementation is found in the pluginobjects.cpp fi le. The CEnvelopeDetector has the

member variables and functions shown in Table 12.5 .

 This is a pretty extensive plug-in with multiple controls and interactions. Let’s start with the

detector itself. The CEnvelopeDetector is based on a simple detector listed in the references

(musicdsp.org). The detector mimics an analog peak, mean-square, and RMS detector all in

one. To use the detector, follow these steps:

1. Create an instance of the detector, for example, CEnvelopeDetector m_Detector.

2. Initialize all parameters at once with the init() function, for example, m_Detector.

init((fl oat)m_nSampleRate, 10.0, 250.0, true, DETECT_MODE_RMS, false).

3. This code initializes the detector with the following parameters:

a. Sample rate 5 object’s m_nSampleRate

b. Attack time 5 10 mSec

c. Release time 5 250 mSec

d. Analog time constant 5 true

e. Detect RMS signal level

f. Linear, not log detection

4. To change any of the parameters on the fl y, use the individual functions:

a. m_Detector.setAttackTime()

b. m_Detector.setReleaseTime()

c. m_Detector.setDetectMode()

d. m_Detector.setTCModeAnalog()

 The attack and release times simply adjust these common parameters. The detection mode can

be set for peak, MS, or RMS. Because audio signals must be on the range of 21.0 to 11.0 in

RackAFX, this means that the squaring function of the MS and RMS modes will produce a

value that is less than the instantaneous value. In RMS mode, the MS value is square-rooted,

which makes the resulting envelope even smaller. Thus, you need to use care with the MS and

RMS modes. In this envelope follower, we will use the RMS value to trigger our dynamic fi lter.

 The time constant determines how fast the detector rises or falls to its maximum (1.0) and

minimum (0.0) values. In an analog circuit, the resistor–capacitor (RC) rise and fall times are

x (n) LPF y(n)

Envelope
Detector

fc

Modulated Filter Effects 427

 Table 12.5: CEnvelopeDetector object defi nition.

CEnvelopeDetector
Function: Implements an Envelope Detection Unit

Member Variables Purpose
int m_nSample; A z21delay element for the detector
fl oat m_fAttackTime;
fl oat m_fReleaseTime;

The attack and release times for the detector in mSec

fl oat m_fSampleRate; The sample rate, needed for detection timing
UINT m_uDetectMode; The detection mode according to these pre-coded enumerated

values:
DETECT_MODE_PEAK = 0
DETECT_MODE_MS = 1
DETECT_MODE_RMS = 2

fl oat m_fEnvelope; The current envelope value (this is the output of the device, which
it saves for the next sample to compare with)

Member Functions

void init(arguments)

Parameters:

• fl oat samplerate
• fl oat attack_in_ms
• fl oat release_in_ms
• bool bAnalogTC

• UINT uDetect Mode

• bool bLogDetector

The initialization function, called once before prepareForPlay()

Input: the sample rate in Hz
Input: the attack time in mSec
Input: the release time in mSec
Input: If true: set the attack and release time constants using the
analog defi nition (time to rise/fall to 36.7% of min/max) — If false: set
the attack and release time constants using the 1% defi nition (time to
rise/fall to 1% of min/max); the digital version is about 4X faster
Input: uDetect mode can be one of three constants:
DETECT_MODE_PEAK
DETECT_MODE_MS
DETECT_MODE_RMS
Input: true if you want the detector to be logarithmic (usually only
used with LED metering)

void setTCModeAnalog(bool bAnalogTC)

Parameters:
• bool bAnalogTC Input: sets the time constant variable; see above for more info
void setAttackTime(fl oat attack_in_ms)

Parameters:
• fl oat attack_in_ms

Change the attack time on the fl y

Input: the attack time in mSec.
void setReleaseTime(fl oat release_in_ms)

Parameters:
• fl oat release_in_ms

Change the release time on the fl y

Input: the release time in mSec

void setDetectMode(UINT uDetect)

Parameters:
• UINT uDetect

Change the detection mode on the fl y

Input: the detect mode; see m_uDetectMode above

void prepareForPlay() The prepareForPlay() function for this object
fl oat detect(fl oat fInput)

Parameters:
• fl oat fInput

The detection function; it produces the current envelope output
for a given input, x(n)
Input: the current input sample x(n)

428 Chapter 12

only 63.3% of the edge. In digital systems, the value is usually 80% to 99%. The envelope

detector has a control to allow you to change the time constant from the very fast (digital)

version or the slower (analog) version. We’ll try both types in the envelope follower plug-in.

 12.5 Envelope Detection

 Software envelope detectors are based on the analog circuits that preceded them. The two

basic types of detectors are half-wave and full-wave, depending on whether they track either

the positive or negative portion of the input waveform (half-wave) or both portions (full-

wave). Many of the classic hardware devices used the half-wave version. Either the positive

or negative portion may be tracked. The circuit consists of a diode to half-wave-rectify the

signal, followed by a “tank” capacitor. The capacitor charges and discharges along with the

audio signal. The attack knob is a potentiometer in series with the diode; it controls the rate

at which the cap charges. The release knob is a potentiometer connected to ground through

which the cap discharges. The RC combinations (one for the charging side and the other for

the discharging side) create the attack and release times of the detector (Figure 12.9). The

positive portion of the waveform is detected and tracks the input according to the attack and

release times (Figures 12.10 and 12.11).

 Figure 12.9: A simple positive half-wave detector.

 Figure 12.10: Detector output (solid dark line) with short attack and release times.

V in

D
1

R

C
1

+ R DECAY

ATTACK

V out

Amplitude

t

Modulated Filter Effects 429

 In analog RC circuits, the cap charges and discharges exponentially, as shown in

 Figure 12.12 . The analog attack time is calculated as the time it takes to reach 63.2% of the

full charge, while the release time is the time to release from the fully charged state down to

36.8% of the full charge. Different combinations of R and C change these times. A digital

envelope detector differs in the percent levels; it uses 99% and 1% as the attack and release

destination values. The curves remain exponential.

 It is well worth noting that there are several approaches for designing a software algorithm for

the analog envelope detector. Orfanidis (1996) suggests using a full-wave rectifi er followed by

an LPF with separate attack and release time constants. Zöler (2011) suggests a mean-squarer

followed by an LPF with only a single time constant. In either case, a running average is

constantly measured and updated on each sample interval. The CEnvelopeDetector (Figure 12.13)

implements a similar method using a half-wave rectifi er followed by an LPF whose input is scaled

by the attack or release time, depending on whether the signal is rising above the current envelope

output or falling below it. You can fi nd the original code source in the references (musicdsp.org).

 The attack and release times are conveniently calculated from your controls in milliseconds.

The calculations are shown in Equation 12.1 :

ta 5 eTC/(attack_in_mSec*SampleRate*0.001)

and

tr 5 eTC/(release_in_mSec*SampleRate*0.001)

where

TCanalog 5 log(0.368)

TCdigital 5 log(0.01)

 (12.1)

 The code for the difference equation is:

 if(fInput> m_fEnvelope)
 m_fEnvelope = m_fAttackTime * (m_fEnvelope - fInput) + fInput;
 else
 m_fEnvelope = m_fReleaseTime * (m_fEnvelope - fInput) + fInput;

 Figure 12.11: Detector output (solid dark line) with medium attack and release times.

Amplitude

t

430 Chapter 12

 Compare this to the block diagram in Figure 12.13 and you can see how it implements the

detector.

 12.5.1 Project EnvelopeFollower

 Create the project; there are no member plug-ins to add.

 12.5.2 EnvelopeFollower GUI

 The GUI (Table 12.6) needs to have controls for the envelope detector:

• Pre-gain

• Threshold

• Attack time

• Release time

• Time constant (analog or digital)

 Figure 12.12: Analog attack and release times.

 Figure 12.13: The CEnvelopeDetector block diagram.

Charge

100 %

0 %

63.2%

τa

Charging

τ r

36.8%

Time

Discharging

x(n)

Detector Type

PEAK: x
MS: x

2

RMS: sqrt(MS)

CEnvelopeDetector

×
τa or τr

z
-1

× y(n) = envelope

Modulated Filter Effects 431

 Table 12.6: The GUI controls for the envelope follower plug-in.

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Pre-Gain
dB

fl oat
m_fPreGain_dB

0
20
12

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Threshold

fl oat
m_fThreshold

0
1

0.2

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Attack Time
mSec
fl oat

m_fAttack_mSec
10

100
25

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Release Time
mSec
fl oat

m_fRelease_mSec
20

250
50

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Q

fl oat
m_fQ

0.5
20
5

Button Property Value

Control Name
Units

Variable Type
Variable Name
Enum String

Time Constant

enum
m_uTimeConstant

analog, digital

Button Property Value

Control Name
Units

Variable Type
Variable Name
Enum String

Direction

enum
m_uDirection
UP, DOWN

 And, it needs controls for the modulated fi lter:

• Q

• Direction of modulation (up or down)

 12.5.3 EnvelopeFollower.h File

 We need to add the following new functions and variables; most can be taken directly from

your ModFilter project. We will need:

• An LPF bi-quad for each channel (left, right)

432 Chapter 12

• An envelope detector for each channel (left, right)

• A function to calculate a new LPF cutoff value from an envelope value

• Functions to calculate the bi-quad coeffi cients from the LPF cutoff and Q values

• Min/max LPF cutoff variables

 Add the following to your .h fi le:

 // Add your code here: --- //
 // two LPF BiQuads for the fi lters
 CBiquad m_LeftLPF;
 CBiquad m_RightLPF;

 // function to calculate the new fc from the Envelope Value
 fl oat calculateCutoffFreq(fl oat fEnvelopeSample);

 // calculate the coeffs for a given fi lter
 void calculateLPFCoeffs(fl oat fCutoffFreq, fl oat fQ, CBiquad* pFilter);

 // min/max variables
 fl oat m_fMinCutoffFreq;
 fl oat m_fMaxCutoffFreq;

 // envelope detectors
 CEnvelopeDetector m_LeftDetector;
 CEnvelopeDetector m_RightDetector;

 // END OF USER CODE -- //

 Notice that everything except the envelope detectors is straight from your last project.

 12.5.4 EnvelopeFollower.cpp File

 Constructor

• Initialize the rate min and max values. The member-objects are self initializing upon

creation.

 CEnvelopeFollower::CEnvelopeFollower()
 {
 <SNIP SNIP SNIP>

 // Finish initializations here
 // set our Min and Max Modulation points
 m_fMinCutoffFreq = 100.0;
 m_fMaxCutoffFreq = 5000.0;
 }

 Write the calculateCutoffFrequency() function. It is similar to the previous modulation

functions except that we will allow both up and down directions of modulation. Can you

fi gure out how the code works?

Modulated Filter Effects 433

 fl oat CEnvelopeFollower::calculateCutoffFreq(fl oat fEnvelopeSample)
 {
 // modulate from min upwards
 if(m_uDirection == UP)
 return fEnvelopeSample*(m_fMaxCutoffFreq ─ m_fMinCutoffFreq) +
 m_fMinCutoffFreq;
 else // modulate from max downwards
 return m_fMaxCutoffFreq ─ fEnvelopeSample*(m_fMaxCutoffFreq –
 m_fMinCutoffFreq);

 return m_fMinCutoffFreq;
 }

 Write the cooking functions for the LPFs to set the new coeffi cients for a given f c and Q

value. This is identical to the ModFilter project.

 void CEnvelopeFollower::calculateLPFCoeffs(fl oat fCutoffFreq, fl oat fQ, CBiquad*
 pFilter)
 {
 /* use same code as the Mod Filter */
 }

 prepareForPlay()
• Flush delays in LPFs.

• Initialize the detector objects.

 bool __stdcall CEnvelopeFollower::prepareForPlay()
 {
 // Add your code here:
 m_LeftLPF.fl ushDelays();
 m_RightLPF.fl ushDelays();

 // init the envelope detectors
 // set all params at once with this function;
 // false = Digital Time Constant NOT Analog one
 if(m_uTimeConstant == digital)
 {
 m_LeftDetector.init((fl oat)m_nSampleRate, m_fAttack_mSec, m_fRelease_mSec,
 false, DETECT_MODE_RMS, false);
 m_RightDetector.init((fl oat)m_nSampleRate, m_fAttack_mSec,
 m_fRelease_mSec, false, DETECT_MODE_RMS, false);
 }
 else
 {
 m_LeftDetector.init((fl oat)m_nSampleRate, m_fAttack_mSec, m_fRelease_mSec,
 true, DETECT_MODE_RMS, false);
 m_RightDetector.init((fl oat)m_nSampleRate, m_fAttack_mSec,
 m_fRelease_mSec, true, DETECT_MODE_RMS, false);
 }

 return true;
 }

434 Chapter 12

 You can see that the detectors are initialized all at once, using the m_uTimeConstant to

control the boolean value passed to the init function. The detection is set as MS (DETECT_

MODE_MS).

 userInterfaceChange()

• Decode the control ID and then call the appropriate function; we simply pass our slider

values or radio button command to the functions.

• Note: Make sure your nControlIndex values match with your UI; these mappings are for

my project.

 bool __stdcall CEnvelopeFollower::userInterfaceChange(int nControlIndex)
 {
 switch(nControlIndex)
 {
 case 2: // Attack
 {
 m_LeftDetector.setAttackTime(m_fAttack_mSec);
 m_RightDetector.setAttackTime(m_fAttack_mSec);
 break;
 }
 case 3: // Release
 {
 m_LeftDetector.setReleaseTime(m_fRelease_mSec);
 m_RightDetector.setReleaseTime(m_fRelease_mSec);
 break;
 }
 case 41: // Time Constant
 {
 if(m_uTimeConstant == digital)
 {
 m_LeftDetector.setTCModeAnalog(false);
 m_RightDetector.setTCModeAnalog(false);
 }
 else
 {
 m_LeftDetector.setTCModeAnalog(true);
 m_RightDetector.setTCModeAnalog(true);
 }
 }

 default:
 break;
 }

 return true;
 }

Modulated Filter Effects 435

 processAudioFrame()
• The envelope follower’s processAudioFrame() function will operate in the sequence

shown in Figure 12.14 .

 bool __stdcall CEnvelopeFollower::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT
 uNumInputChannels, UINT
 uNumOutputChannels)
 {
 //
 // Do LEFT (MONO) Channel; there is always at least one input, one output
 fl oat fGain = pow(10, m_fPreGain_dB/20.0);
 fl oat fDetectLeft = m_LeftDetector.detect(fGain*pInputBuffer[0]);

 // set mod freq to minimum (un-triggered)
 fl oat fModFreqLeft =m_fMinCutoffFreq;

 // if threshold triggered, calculate new LPF cutoff
 if(fDetectLeft >= m_fThreshold)
 fModFreqLeft = calculateCutoffFreq(fDetectLeft);

 // use the mod freq and user supplied-Q to calc the fc
 calculateLPFCoeffs(fModFreqLeft, m_fQ, &m_LeftLPF);

 Figure 12.14: The fl owchart for the left channel of the envelope follower (right channel is same).

Detect Left
Channel

Signal Above
Thresh?

No

Yes

Calculate New
Mod Frequency

Based on
Envelope

Mod Freq = Minimum

Calculate Filter
Coefficients Do Bi-Quad Filter

436 Chapter 12

 // do the BiQuads
 pOutputBuffer[0] = m_LeftLPF.doBiQuad(pInputBuffer[0]);

 // detect the other channel
 fl oat fDetectRight = m_RightDetector.detect(fGain*pInputBuffer[1]);

 // set mod freq to minimum (un-triggered)
 fl oat fModFreqRight = m_fMinCutoffFreq;

 // if threshold triggered, calculate new LPF cutoff
 if(fDetectLeft >= m_fThreshold)
 fModFreqRight = calculateCutoffFreq(fDetectRight);

 // use the mod freq and user supplied-Q to calc the fc
 calculateLPFCoeffs(fModFreqRight, m_fQ, &m_RightLPF);

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)
 pOutputBuffer[1] = pOutputBuffer [0];

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 pOutputBuffer[1] = m_RightLPF.doBiQuad(pInputBuffer[1]);

 return true;
 }

 Build and test the plug-in. Try all the controls. Note: Beware—because of the high pre-gain

values possible combined with high- Q values, you can easily overload the audio. If you hear

distortion, adjust the pre-gain value. Test this out with guitar, keyboard, or drum loops. Ideas

for more plug-ins include:

• Change the fi lter type (high-pass fi lter, band-stop fi lter, band-pass fi lter).

• Modulate the Q in the same direction, or opposite direction, as the f c .
• Modulate the fc or Q with an LFO and the other parameter with the envelope.

• Allow the user to select the detection mode: peak, MS, or RMS.

• Allow the user to change between linear and log detection (see CEnvelopeDetector’s

init() method).

 12.6 Design a Phaser Plug-In

 The phaser effect will be on par with the reverb algorithms as among the more complex

in the book—the theory is not that diffi cult, but a nice analog sounding phaser requires

many nearly duplicated components, in this case APFs. The phaser effect was an attempt at

creating a fl anging effect before the necessary analog integrated circuits were available. A

fl anger uses a modulated delay line to alter the delay time. A phaser uses APFs in an attempt

Modulated Filter Effects 437

to do the same. APFs have a delay response that is fl at across the fi rst one-third or so of

the DC-to-Nyquist band. In fact, APFs can be designed to perform fractional delay as an

alternative to interpolation. The phaser didn’t sound like a fl anger at all. The reason is that

in a fl anger, the notches in the inverse-comb fi ltering are mathematically related as simple

multiples of each other. This is not the case for the phaser. The phaser is still used today in

electronic music. Like the fl anger, we will get the best results by fi rst looking at the original

analog design. Our phaser topology will be based off the analog counterpart in Figures

12.15 and 12.16 . Even if you can’t read schematics, it’s worth a moment to take a look at the

overall architecture since we’ll be emulating it in digital form. The complete block diagram

is shown in Figure 12.17 .

 The phase of the signal is shifted by 90 degrees at the frequency given by Equation 12.2 :

 fp 5
1

2pC1(R1//rDS)
 (12.2)

 The positive control voltage is a triangle wave, which alters the resistance of the fi eld effect

transistor (FET) that is in parallel with R 1 . This in turn changes the 90 degree phase shift

frequency. The values of C 1 vary from 1 uF to 0.06 uF, and r DS varies from 100 V (FET on)

to 10 K (FET off). The input signal is run through a cascade of such modules. The output of

the last module, or stage, is then mixed with the dry input signal to create the effect. You only

need to decide on the number of stages and the oscillator to complete the design.

 The things to note about the analog design are:

• There are six fi rst-order APF modules.

• The APF modules are in series, one feeding the next.

• The depth control is a blend of the dry and fi ltered signals; a depth of 100% is actually a

50/50 mix of wet and dry.

 Figure 12.15: A voltage-controlled fi rst-order all-pass fi lter module.

Positive
Control
Voltage

out V

20K

20K

V
In

C1 1uF

10K R1
rDS

+

–

438 Chapter 12

Figure 12.16: The phaser circuit (from National Semiconductor).

Input Buffer

+

–
Vin

1M

20 K

1uF

10K

20 K

–
+

20 K

0.47uF

Vc 10K

+
–

20 K

0.33uF

Vc 10K

20 K

20 K

Vc

6 Phase-Shift
Stages 20K

20 K

0.16uF

10K

–
+

Vc 10K

0.1uF

20 K

+
–

20K

20K

0.06uF

Vc 10K

20 K

–
+

10K

Vc
"Depth"

Low
Frequency
Oscillator

(0.05 -5Hz)

V+ +12

75 K

75 K

360 K

1M

+

–

2.4 K
"Rate"
250 K

Vc

100uF
+

Input

LFO

APF1

APF4

APF2

APF5 APF6

APF3

FB

Depth

1 - Depth

Output

Vout

Output Mixer/Buffer

20 K

20 K +
–

100 K

+
–

Figure 12.17: The block diagram of the analog phaser design. The feedback path has been added
to the original National Semiconductor design; the feedback will be named “Intensity”.

Modulated Filter Effects 439

• Other phaser models also included a feedback path from the fi ltered output back to the

fi lter chain input to increase intensity of the effect.

• The six APF modules have the frequency ranges in Table 12.7 .

 Because this is a complex design, we will break it down into two parts: fi rst, we’ll design an

abbreviated version in Figure 12.18 with only three APF modules and no feedback control.

Then, we’ll add the other three APF stages and the feedback control.

 The design equations for fi rst-order APFs from Chapter 6 are given next.

 Table 12.7: Minimum and maximum phase rotation frequencies for the phaser APFs.

APF Minimum fc Maximum fc

1
2
3
4
5
6

16 Hz
33 Hz
48 Hz
98 Hz

160 Hz
260 Hz

1.6 kHz
3.3 kHz
4.8 kHz
9.8 kHz
16 kHz

26 kHz*

 * We will have to cut off at ½ Nyquist instead.

 Specify:

• f c , corner frequency

uc 5 2pfc/fs

 a 5
 tan 1pQ/fs 2 2 1

 tan 1pQ/fs 2 1 1

 b 5 2 cos uc

a0 5 2a

a1 5 b 112a 2
a2 5 1.0

b1 5 b 112a 2
b2 5 21.0

 (12.3)

 We’ll need to implement the APF using the built-in BiQuad object. The built-in oscillator will

be used for the LFO; many aspects of the design and code chunks can be borrowed from your

ModFilter projects. Specifi c to this design is that it:

440 Chapter 12

 Figure 12.18: The block diagram of the simplifi ed, fi rst part of the design.

• Needs multiple APFs, each with its own range of frequencies

• Needs only one LFO to control all APFs

• Needs to calculate all APF cutoff frequencies and coeffi cients at the same time

 Let’s get started with the usual steps.

 12.6.1 Project Phaser

 Create a new project. There are no member plug-ins to add.

 12.6.2 Phaser GUI

 Add the controls from Table 12.8 to your GUI.

 Table 12.8: The phaser GUI elements.

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Rate
Hz

fl oat
m_fModRate

0.02
10
0.5

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Depth
%

fl oat
m_fMod_Depth

0
100
50

Button Property Value

Control Name
Units

Variable Type
Variable Name
Enum String

LFO Type

enum
m_uLFO_Waveform
sine, saw, tri, square

 12.6.3 Phaser.h File

 Declare instances of the BiQuad and WaveTable objects. Also, declare the functions

to calculate cutoff frequencies and fi lter coeffi cients. We will calculate all the APF

Input

APF1 APF2 APF3

LFO

Depth

1 – Depth

Output Σ

Modulated Filter Effects 441

coeffi cients in one pair of functions (one for left and one for right). Because there is so

much repeated code, we will also add a helper function to calculate the APF coeffi cients

for each bi-quad. You don’t need to #include anything since these are built in. Add these

to your .h fi les

 // Add your code here: --- //
 CBiquad m_LeftAPF_1;
 CBiquad m_RightAPF_1;

 CBiquad m_LeftAPF_2;
 CBiquad m_RightAPF_2;

 CBiquad m_LeftAPF_3;
 CBiquad m_RightAPF_3;

 // function to calculate the new fc from the Envelope Value
 fl oat calculateAPFCutoffFreq(fl oat fLFOSample, fl oat fMinFreq, fl oat fMaxFreq);

 // Two functions to calculate the BiQuad Coeffs: APF
 void calculateFirstOrderLeftAPFCoeffs(fl oat fLFOSample);
 void calculateFirstOrderRightAPFCoeffs(fl oat fLFOSample);

 // helper function for APF Calculation
 void calculateFirstOrderAPFCoeffs(fl oat fCutoffFreq,
 CBiquad* pBiQuadFilter);

 // min/max variables
 fl oat m_fMinAPF_1_Freq;
 fl oat m_fMaxAPF_1_Freq;

 fl oat m_fMinAPF_2_Freq;
 fl oat m_fMaxAPF_2_Freq;

 fl oat m_fMinAPF_3_Freq;
 fl oat m_fMaxAPF_3_Freq;

 // LFO Stuff
 CWaveTable m_LFO;

 // END OF USER CODE -- //

 12.6.4 Phaser.cpp File
 Constructor

• Initialize the rate min and max values. The objects are self-initializing upon creation.

• Initialize the fi rst three APF min/max pairs according to the table. We’ll add the others

once we have tested it and fi nd it works properly.

442 Chapter 12

 CPhaser::CPhaser()
 {
 <SNIP SNIP SNIP>

 // Finish initializations here
 // set our Min and Max Modulation points
 m_fMinAPF_1_Freq = 16.0;
 m_fMaxAPF_1_Freq = 1600.0;

 m_fMinAPF_2_Freq = 33.0;
 m_fMaxAPF_2_Freq = 3300.0;

 m_fMinAPF_3_Freq = 48.0;
 m_fMaxAPF_3_Freq = 4800.0;
 }

 Write the calculateAPFCutoffFreq() function. This function behaves exactly like the function

in the mod fi lter except there is no mod depth. Also note that we will call this function

repeatedly for each APF unit, so we need to send it the min/max values to compute with; the

function itself is trivial and just like all the previous mod fi lters:

 fl oat CPhaser::calculateAPFCutoffFreq(fl oat fLFOSample, fl oat fMinFreq, fl oat fMaxFreq)
 {
 return fLFOSample*(fMaxFreq � fMinFreq) + fMinFreq;
 }

 Implement the helper function for calculating the APF coeffi cients for a given f c .

 void CPhaser::calculateFirstOrderAPFCoeffs(fl oat fCutoffFreq,
 CBiquad* pBiQuadFilter)
 {
 // coeff calculation
 fl oat alpha_num = tan(pi*fCutoffFreq/(fl oat)m_nSampleRate) � 1.0;
 fl oat alpha_den = tan(pi*fCutoffFreq/(fl oat)m_nSampleRate) + 1.0;
 fl oat alpha = alpha_num/alpha_den;

 // set on target fi lter
 pBiQuadFilter->m_f_a0 = alpha;
 pBiQuadFilter->m_f_a1 = 1.0;
 pBiQuadFilter->m_f_a2 = 0.0;
 pBiQuadFilter->m_f_b1 = alpha;
 pBiQuadFilter->m_f_b2 = 0.0;
 }

 Implement the cooking functions below for the right and left banks of APFs using the helper

function above:

 void CPhaser::calculateFirstOrderLeftAPFCoeffs(fl oat fLFOSample)
 {
 // APF1 � fc �> Bi Quad
 fl oat fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_1_Freq,

Modulated Filter Effects 443

 m_fMaxAPF_1_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_LeftAPF_1);

 // APF2 � fc �> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_2_Freq,
 m_fMaxAPF_2_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_LeftAPF_2);

 // APF3 � fc �> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_3_Freq,
 m_fMaxAPF_3_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_LeftAPF_3);
 }

 void CPhaser::calculateFirstOrderRightAPFCoeffs(fl oat fLFOSample)
 {
 // APF1 � fc �> Bi Quad
 fl oat fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_1_Freq,
 m_fMaxAPF_1_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_RightAPF_1);

 // APF2 � fc �> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_2_Freq,
 m_fMaxAPF_2_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_RightAPF_2);

 // APF3 - fc -> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_3_Freq,
 m_fMaxAPF_3_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_RightAPF_3);
 }

 prepareForPlay()

• Flush the delays in the APFs.

• Set up the LFO by setting the initial rate, LFO type (the LFO type will match our

m_uLFOWaveform variable).

 bool __stdcall CPhaser::prepareForPlay()
 {
 // Add your code here:
 m_LeftAPF_1.fl ushDelays();
 m_RightAPF_1.fl ushDelays();

 m_LeftAPF_2.fl ushDelays();
 m_RightAPF_2.fl ushDelays();

 m_LeftAPF_3.fl ushDelays();
 m_RightAPF_3.fl ushDelays();

444 Chapter 12

 // setup LFO
 m_LFO.m_fFrequency_Hz = m_fModRate;
 m_LFO.m_uPolarity = 1; // 0 = bipolar, 1 = unipolar
 m_LFO.m_uTableMode = 0; // normal, no band limiting
 m_LFO.m_uOscType = m_uLFO_Waveform;
 m_LFO.setSampleRate(m_nSampleRate); // really important!

 // the LFO prepareForPlay() calls reset() and cookFrequency()
 m_LFO.prepareForPlay();

 return true;
 }

 userInterfaceChange()

• If the user moves the rate slider, we need to change the LFO rate and toggle the oscillator

type if they use the buttons.

• Note: Make sure your nControlIndex values match your UI.

 bool __stdcall CPhaser::userInterfaceChange(int nControlIndex)
 {
 // decode the control index, or delete the switch and use brute force calls
 switch(nControlIndex)
 {
 case 0:
 {
 m_LFO.m_fFrequency_Hz = m_fModRate;
 m_LFO.cookFrequency();
 break;
 }
 case 41:
 {
 m_LFO.m_uOscType = m_uLFO_Waveform;
 break;
 }

 default:
 break;
 }

 return true;
 }

 processAudioFrame()

• Calculate a new LFO value.

• Cascade our three APFs one after another, feeding the output of each into the input of the

next until done.

Modulated Filter Effects 445

• Use the depth control to mix the output.

• Calculate the depth so that 100% depth gives a 50/50 mix ratio (done by dividing depth

percent by 200.0 instead of 100).

 bool __stdcall CPhaser::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer, UINT
 uNumInputChannels, UINT uNumOutputChannels)
 {
 // Do LEFT (MONO) Channel; there is always at least one input, one output
 fl oat fYn = 0; // normal output
 fl oat fYqn = 0; // quad phase output

 // mod depth is at 100% when the control is at 50% !!
 fl oat fDepth = m_fMod_Depth/200.0;

 // call the LFO function; we only need fi rst output
 m_LFO.doOscillate(&fYn, &fYqn);

 // use the LFO to calculate all APF banks
 calculateFirstOrderLeftAPFCoeffs(fYn);

 // do the cascaded APFs
 fl oat fAPF_1_Out = m_LeftAPF_1.doBiQuad(pInputBuffer[0]);
 fl oat fAPF_2_Out = m_LeftAPF_2.doBiQuad(fAPF_1_Out);
 fl oat fAPF_3_Out = m_LeftAPF_3.doBiQuad(fAPF_2_Out);

 // form the output
 pOutputBuffer[0] = fDepth*fAPF_3_Out + (1.0 � fDepth)*pInputBuffer[0];

 // calculate
 calculateFirstOrderRightAPFCoeffs(fYn);

 // do the cascade
 fAPF_1_Out = m_RightAPF_1.doBiQuad(pInputBuffer[1]);
 fAPF_2_Out = m_RightAPF_2.doBiQuad(fAPF_1_Out);
 fAPF_3_Out = m_RightAPF_3.doBiQuad(fAPF_2_Out);

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)
 pOutputBuffer[1] = pOutputBuffer[0];

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 pOutputBuffer[1] = fDepth*fAPF_3_Out + (1.0 � fDepth)*pInputBuffer[1];

 return true;
 }

 Build and test the plug-in. You should be able to easily hear the phaser effect, though it might

not be as strong as you are used to with other devices. We’re going to fi x this next by added

more APF stages, feedback, and the option for quadrature phase LFO operation.

446 Chapter 12

 12.7 Design a Stereo Phaser with Quad-Phase LFOs

 Adding the extra APFs is just more of the same cut-and-paste operation; you only need

to change the range of frequencies and adjust the cooking and processing functions for

that. The addition of the feedback is simple—we need another slider on the UI and a

feedback z −1 storage device. The quadrature phase is easy to implement because our LFO

already produces this output for us; we only need a UI change and a branch statement in

the code.

 12.7.1 Phaser GUI

 Update the GUI with the new controls in Table 12.9 .

 Table 12.9: Additional controls for the quad-phase phaser plug-in.

 12.7.2 Phaser.h File

 We need to add three more APF object sets (three for left, three for right) plus the feedback

storage elements, one each for left and right. Add the following to your .h fi le:

 // Add your code here: ---

 <SNIP SNIP SNIP>

 CBiquad m_LeftAPF_3;
 CBiquad m_RightAPF_3;

 CBiquad m_LeftAPF_4;
 CBiquad m_RightAPF_4;

 CBiquad m_LeftAPF_5;
 CBiquad m_RightAPF_5;

 CBiquad m_LeftAPF_6;
 CBiquad m_RightAPF_6;

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Intensity
%

fl oat
m_fFeedback

0
99
50

Button Property Value

Control Name
Units

Variable Type
Variable Name
Enum String

LFO Type

enum
m_uLFO_Phase
NORM, QUAD

Modulated Filter Effects 447

 // function to calculate the new fc from the Envelope Value
 fl oat calculateAPFCutoffFreq(fl oat fLFOSample, fl oat fMinFreq, fl oat fMaxFreq);

 <SNIP SNIP SNIP>

 fl oat m_fMinAPF_3_Freq;
 fl oat m_fMaxAPF_3_Freq;

 fl oat m_fMinAPF_4_Freq;
 fl oat m_fMaxAPF_4_Freq;

 fl oat m_fMinAPF_5_Freq;
 fl oat m_fMaxAPF_5_Freq;

 fl oat m_fMinAPF_6_Freq;
 fl oat m_fMaxAPF_6_Freq;

 // LFO Stuff
 CWaveTable m_LFO;

 // Feedback Storage
 fl oat m_fFeedbackLeft;
 fl oat m_fFeedbackRight;

 // END OF USER CODE --

 12.7.3 Phaser.cpp File
 Constructor

• Initialize the min and max APF values as per the table.

 CPhaser::CPhaser()
 {
 <SNIP SNIP SNIP>
 m_fMinAPF_3_Freq = 48.0;
 m_fMaxAPF_3_Freq = 4800.0;

 m_fMinAPF_4_Freq = 98.0;
 m_fMaxAPF_4_Freq = 9800.0;

 m_fMinAPF_5_Freq = 160.0;
 m_fMaxAPF_5_Freq = 16000.0;

 m_fMinAPF_6_Freq = 220.0;
 m_fMaxAPF_6_Freq = 22000.0;

 m_fFeedbackLeft = 0.0;
 m_fFeedbackRight = 0.0;
 }

448 Chapter 12

 Modify the cooking functions to calculate the new APF coeffi cients:

 void CPhaser::calculateFirstOrderLeftAPFCoeffs(fl oat fLFOSample)
 {
 <SNIP SNIP SNIP>

 // APF3 � fc -> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_3_Freq,
 m_fMaxAPF_3_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_LeftAPF_3);

 // APF4 � fc -> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_4_Freq,
 m_fMaxAPF_4_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_LeftAPF_4);

 // APF5 � fc -> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_5_Freq,
 m_fMaxAPF_5_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_LeftAPF_5);

 // APF6 - fc -> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_6_Freq,
 m_fMaxAPF_6_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_LeftAPF_6);

 }

 void CPhaser::calculateFirstOrderRightAPFCoeffs(fl oat fLFOSample)
 {
 <SNIP SNIP SNIP>

 // APF3 - fc -> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_3_Freq,

 m_fMaxAPF_3_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_RightAPF_3);

 // APF4 - fc -> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_4_Freq,

 m_fMaxAPF_4_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_RightAPF_4);

 // APF5 - fc -> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_5_Freq,

 m_fMaxAPF_5_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_RightAPF_5);

 // APF6 - fc -> Bi Quad
 fCutoffFreq = calculateAPFCutoffFreq(fLFOSample, m_fMinAPF_6_Freq,

 m_fMaxAPF_6_Freq);
 calculateFirstOrderAPFCoeffs(fCutoffFreq, &m_RightAPF_6);
 }

Modulated Filter Effects 449

 prepareForPlay()

• Flush the new APF buffers.

• Reset the feedback variables.

 bool __stdcall CPhaser::prepareForPlay()
 {
 // Add your code here:
 <SNIP SNIP SNIP>

 m_LeftAPF_3.fl ushDelays();
 m_RightAPF_3.fl ushDelays();

 m_LeftAPF_4.fl ushDelays();
 m_RightAPF_4.fl ushDelays();

 m_LeftAPF_5.fl ushDelays();
 m_RightAPF_5.fl ushDelays();

 m_LeftAPF_6.fl ushDelays();
 m_RightAPF_6.fl ushDelays();

 m_LFO.m_fFrequency_Hz = m_fModRate;
 m_LFO.m_uPolarity = 1; // 0 = bipolar, 1 = unipolar
 m_LFO.m_uTableMode = 0; // normal, no band limiting
 m_LFO.m_uOscType = m_uLFO_Waveform;
 m_LFO.setSampleRate(m_nSampleRate); // really important!

 // the LFO prepareForPlay() calls reset() and cookFrequency()
 m_LFO.prepareForPlay();

 m_fFeedbackLeft = 0.0;
 m_fFeedbackRight = 0.0;

 return true;
 }

 processAudioFrame()

• Add more cascaded APFs to each channel.

• Store and use the feedback values.

• Check for quad-phase LFO and use the quad LFO output on right channel if needed.

 bool __stdcall CPhaser::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer, UINT
 uNumInputChannels, UINT uNumOutputChannels)
 {
 //
 // output = input -- change this for meaningful processing
 //
 // Do LEFT (MONO) Channel; there is always at least one input, one output

450 Chapter 12

 fl oat fYn = 0; // normal output
 fl oat fYqn = 0; // quad phase output

 // mod depth is at 100% when the control is at 50% !!
 fl oat fDepth = m_fMod_Depth/200.0;
 fl oat fFeedback = m_fFeedback/100.0;

 // call the LFO function; we only need fi rst output
 m_LFO.doOscillate(&fYn, &fYqn);

 // use the LFO to calculate all APF banks
 calculateFirstOrderLeftAPFCoeffs(fYn);

 // do the cascaded APFs
 fl oat fAPF_1_Out = m_LeftAPF_1.doBiQuad(pInputBuffer[0] +
 m_fFeedbackLeft*fFeedback);

 fl oat fAPF_2_Out = m_LeftAPF_2.doBiQuad(fAPF_1_Out);
 fl oat fAPF_3_Out = m_LeftAPF_3.doBiQuad(fAPF_2_Out);
 fl oat fAPF_4_Out = m_LeftAPF_4.doBiQuad(fAPF_3_Out);
 fl oat fAPF_5_Out = m_LeftAPF_5.doBiQuad(fAPF_4_Out);
 fl oat fAPF_6_Out = m_LeftAPF_6.doBiQuad(fAPF_5_Out);

 // for next sample period
 m_fFeedbackLeft = fAPF_6_Out;

 pOutputBuffer[0] = fDepth*fAPF_6_Out + (1.0 - fDepth)*pInputBuffer[0];

 // use the fc and Q to calculate the Left LPF coeffs
 if(m_uLFO_Phase == QUAD)
 calculateFirstOrderRightAPFCoeffs(fYqn);
 else
 calculateFirstOrderRightAPFCoeffs(fYn);

 // do the cascaded APFs
 fAPF_1_Out = m_RightAPF_1.doBiQuad(pInputBuffer[1] +
 m_fFeedbackRight*fFeedback);
 fAPF_2_Out = m_RightAPF_2.doBiQuad(fAPF_1_Out);
 fAPF_3_Out = m_RightAPF_3.doBiQuad(fAPF_2_Out);
 fAPF_4_Out = m_RightAPF_4.doBiQuad(fAPF_3_Out);
 fAPF_5_Out = m_RightAPF_5.doBiQuad(fAPF_4_Out);
 fAPF_6_Out = m_RightAPF_6.doBiQuad(fAPF_5_Out);

 // for next sample period
 m_fFeedbackRight = fAPF_6_Out;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)
 pOutputBuffer[1] = pOutputBuffer[0];

Modulated Filter Effects 451

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 pOutputBuffer[1] = fDepth*fAPF_6_Out + (1.0 – fDepth)

*pInputBuffer[1];
 return true;
 }

 Build and test the plug-in. Try out the different modes; turn up the intensity and depth

controls for very intense effects. This phaser should be one of the fi nest you have heard as it

is not like some digital phasers that only use one giant APF. The cascaded APFs are the way

to go with this effect. The saw LFO with copious feedback sounds very much like a classic

pulsating “vibe” effect.

 Bibliography

 Anderton, C. 1981. Electronic Projects for Musicians . London: Wise Publications.

 Dodge, C. and Jerse, T. 1997. Computer Music Synthesis, Composition and Performance . Chapter 2 . New York:

Schirmer.

 Giles, M., ed. 1980. The Audio/Radio Handbook . Santa Clara, CA: National Semiconductor Corp.

 Roads, C. 1996. The Computer Music Tutorial . Chapter 2 . Cambridge, MA: The MIT Press.

References

 musicdsp.org . “Envelope follower with different attack and release.” Accessed 2008, http://www.musicdsp.org/

archive.php?classid=0#205.

Orfanidis, S. 1996. Introduction to Signal Processing, Chapter 8. Englewood Cliffs, NJ: Prentice-Hall.

Zöler, U. 2011. DAFX—Digital Audio Effects, Chapter 4. West Sussex, U.K.: John Wiley & Sons.

http://www.musicdsp.org/archive.php?classid=0#205
http://www.musicdsp.org/archive.php?classid=0#205

453

 Dynamics processors are designed to automatically control the amplitude, or gain, of an

audio signal and consist of two families: compressors and expanders. Technically speaking,

compressors and expanders both change the gain of a signal after its level rises above a

predetermined threshold value. A compressor reduces the gain of the signal once it goes over

the threshold. An expander raises the gain of a signal after it crosses above the threshold.

With the exception of noise reduction systems, true expanders are rare since they can easily

cause instabilities, runaway gain, and distortion. What is normally called an “expander” today

is technically a downward expander . A downward expander reduces the gain of a signal after

it drops below the threshold. We will be designing a downward expander but will use the

common lingo and refer to it simply as an expander. Both compressors and expanders require

the user to decide on the threshold of operation as well as a ratio value that tells the device

how much gain reduction to implement.

 Figure 13.1 shows the input/output transfer functions for the compressor family. The line

marked 1:1 is unity gain. A given input x (dB) results in the same output y (dB). Above the

threshold, the output level is compressed according to the ratio. For example, above the

threshold on the 2:1 line, every increase in 1 dB at the input results in an increase of only

0.5 dB at the output. On the 4:1 line, each 1 dB input increase results in a 0.25 dB output

increase. On the `:1 line, increasing the input amplitude beyond the threshold results in no

output increase at all, thus y (dB) is limited to the threshold value. This version of the device is

called a limiter and represents the most extreme form of compression.

 Figure 13.2 shows the input/output transfer functions for the expander family. The ratios

are reversed. You can see that as the signal falls below the threshold, it is attenuated by the

ratio amount. For example, below the threshold on the 1:2 line, every decrease in 1dB at the

input results in a decrease of 2 dB at the output. On the 1:` line, when the input falls below

the threshold it receives infi nite attenuation, that is, it is muted. This version of the device is

called a gate (or noise gate) and represents the most extreme form of downward expansion.

Perhaps the most important aspect of both families is that their gain reduction curves are

linear for logarithmic axes. These devices operate in the log domain . The two families of

dynamics processors yield four combinations: compression and limiting, and expansion and

gating. We will implement all four of them.

 CHAPTER 13

Dynamics Processing

454 Chapter 13

 Figure 13.3 shows the feed-forward and feedback topologies for dynamics processors. There

is some debate as to which is best; we’ll stay out of that argument and design the feed-forward

version fi rst. Then, you can design a feedback version for yourself. Both designs include

a detector/computer and a digitally controlled amplifi er/attenuator (DCA). The detector

analyzes the input signal and computes a new gain value to be applied to the signal. The

detector/computer block lies in the side-chain of the circuit.

 Because the compressor and downward expander are both gain reduction devices, an

additional stage of make-up gain is required. In some designs, the make-up gain is calculated

in the side-chain while in others it sits outside of the DCA . Both accomplish the same task.

We are going to add another gain stage at the input (similar to the mod fi lter in Chapter 12)

 Figure 13.2: The generalized input/output transfer curves for a downward expander at
various reduction ratios. The ratio is in the form D x :D y .

 Figure 13.1: The generalized input/output transfer curves for a compressor at various
reduction ratios. The ratio is in the form D x :D y .

yo OUT (dB)

y(dB) A

1:1
2:1

4:1

∞ : 1

∆ x(dB)

X IN (dB)
Threshold

y OUT (dB)

∆ y (dB)

Threshold
∆ x (dB) x IN (dB)

1:2 1:4 1: ∞

1:1

Dynamics Processing 455

to drive the detector; this pre-gain block is useful when the source material is very low in

amplitude, making it diffi cult to trigger the detector. Figure 13.4 shows the block diagram of

the fi rst dynamic processor plug-in.

 Figure 13.4 labels the input and control signals as follows:

• x (n), y (n) 5 input/output

• d (n) 5 detector output

• G (n) 5 gain value for current sample

• d o 5 threshold in dB

• r 5 ratio

 The CEnvelopeDetector object you used in the last chapter has a log output mode so we

can combine the detector and log conversion blocks together, as shown in the dotted box in

 Figure 13.4 . These feed the gain calculation block, which uses the threshold (in dB) and the

ratio to set the gain for a given detector output. Orfanidis (1996), Zöler (2011), and Reiss

(2011) have given equations that describe the gain reduction calculation. The Zöler equations

(Equations 13.1 and 13.2) seem to be the most concise. These equations require additional

slope variables (CS and ES) that are calculated from the ratio. In the compressor, CS varies

 Figure 13.3: The feed-forward and feedback topologies for a dynamics processor.
A detector calculates the peak or RMS value of the signal to create a control signal.

The DCA attenuates the input signal according to its control value.

 Figure 13.4: A generalized feed-forward topology for the compressor/downward
expander families.

x(n)

Detector/
Computer

DCA

Control
Signal

y(n) x(n)

Control
Signal

DCA

Detector/
Computer

y (n)

Output
y(n)

DC A Out

G(n)

lin

Conversion

gain calc

(dB)

log
Conversion

RMS
Detector

Attack Release

CEnvelopeDetector

In

x(n)
Input

d(n)

Threshold

dO
ρ

Ratio

456 Chapter 13

between 0 and 1 as the ratio r varies from 1 to `. In the downward expander, ES varies

between 0 and −` as the ratio r varies from ` to 1.

 Compressor gain (dB):

 G(n) = f(d(n))

 where

 CS 5 e 1 2 11/r 2 for compression

1.0 for limiting

(13.1)

 f 5 eCS # 1d0 2 d(n) 2 if d(n) $ d0

0.0 if d(n) , d0

 Downward expander gain (dB):

 G(n) = f(d(n))

 where

 ES 5 e 11/r 2 2 1 for downward expansion

0.0 for gating

(13.2)

 f 5 eES # 1d0 2 d(n) 2 if d(n) , d0

0.0 if d(n) $ d0

 The point in the input/output plot where the signal hits the threshold, thereby engaging the

device, is called the knee of the compression curve. With a hard knee the signal is either

above the threshold or below it and the device kicks in and out accordingly. The soft-knee

compressor allows the gain control to change more slowly over a width of dB around

the threshold called the knee width (W). In this way, the device moves more smoothly

into and out of compression or downward expansion. Figure 13.5 compares hard- and

soft-knee curves.

 Figure 13.5: Hard and soft-knee compression curves.

y OUT (dB)

Soft knee
Hard knee

Knee width

Threshold IN X (dB)

Dynamics Processing 457

 There are several approaches to generating the soft-knee portion of the curve when

calculating the gain reduction value. Curve fi tting by interpolating across the knee width

is popular. There are a variety of different ways to implement the curve fi tting. We already

have a Lagrange interpolator in the software, so we can use this to fi t a second-order

polynomial curve to the knee. This is done by altering the CS or ES values. The two

values above and below the threshold are the x values, while the two values of the slope

variable at the end points are the y components. When the detector signal is in the knee

zone around the threshold, we use its value to calculate a new slope. Figure 13.6 shows

an example. The knee width (W) is 10 dB with a −40 dB threshold. For a compression

ratio of 1:4, CS is 0.75. Therefore, the soft-knee CS will vary between 0 at −45 dB to 0.75

at −35 dB. The Lagrange interpolation will fi nd the CS value for a given input detection

value across this range.

 13.1 Design a Compressor/Limiter Plug-In

 We are going to build a complete dynamics processor with the following features and

functions:

• Compressor

• Limiter

• Expander

• Gate

• Analog or digital time constant

• Attack, release controls for detector

• Threshold, ratio controls for gain computer

• Knee-width control: 0 5 hard knee processing

• Gain reduction meter to view the reduction

 Figure 13.6: Setting up the endpoints for interpolating the CS value for a
soft-knee compressor.

y (dB) OUT

(-45, 0)

(-35, 0.75)

W = 10dB

-40 dB

Hard knee
Soft knee

Ratio

=

1:4

CS = 0.75

CS
= 0

458 Chapter 13

 You’ll notice a new feature in this plug-in: the ability to monitor a signal and display it on a

meter. We will start with the compressor/limiter function and build up from there.

 13.1.1 Project: DynamicsProcessor

 Create a new project called “Dynamics Processor.” You don’t need any stock objects or other

advanced features.

 13.1.2 DynamicsProcessor: GUI

 You need to add sliders and radio button controls to implement the eight control blocks

required for the plug-in. Table 13.1 shows the graphical user interface (GUI) slider properties

for the design.

 Table 13.1: The GUI controls for the dynamics processor plug-in.

Slider Property Value Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Det Gain
dB

fl oat
m_fInputGain_dB

−12
20
0

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Threshold
dB

fl oat
m_fThreshold

−60
0
0

Slider Property Value Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Attack Time
mSec
fl oat

m_fAttack_mSec
1

300
20

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Release Time
mSec
fl oat

m_fRelease_mSec
20

5000
1000

Slider Property Value Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Ratio

fl oat
m_fRatio

1
20
1

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Output Gain
dB

fl oat
m_fOutputGain_dB

0
20
0

Dynamics Processing 459

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Knee Width
dB

fl oat
m_fKneeWidth

0
20
0

Button Property Value

Control Name
Units

Variable Type
Variable Name
Enum String

Processor

enum
m_uProcessorType

COMP, LIMIT, EXPAND, GATE

Button Property Value

Control Name
Units

Variable Type
Variable Name
Enum String

Time Constant

enum
m_uTimeConstant

Digital, Analog

 13.1.3 DynamicsProcessor.h File

 We need to add the following new functions and variables; most can be taken directly

from your ModFilter project. There’s not much to the basic device. You will need the

following:

• An envelope detector for each channel (left, right).

• A function to calculate a compression gain value, given the detector input; this func-

tion will also implement the limiting function.

 // Add your code here: -- //

 // envelope detectors

 CEnvelopeDetector m_LeftDetector;
 CEnvelopeDetector m_RightDetector;

 // calculate the compressor G(n) value from the Detector output

 fl oat calcCompressorGain(fl oat fDetectorValue, fl oat fThreshold, fl oat fRatio,
 fl oat fKneeWidth, bool bLimit);

 // END OF USER CODE --- //

460 Chapter 13

 13.1.4 DynamicsProcessor.cpp File

 We need to implement Equation 13.1 and also need to add the code to provide the Lagrange

interpolation when the soft-knee function is enabled in the calcCompressorGain() function.

The gain calculations simply follow Equation 13.1 . See the Lagrange interpolation function

in the pluginconstants.h fi le for documentation. You provide it with x and y arrays for the end

points along with the order (two, since we have two endpoints) and the x value to calculate

the interpolated y value.

 // calculate the compressor G(n) value from the Detector output
 fl oat CDynamicsProcessor::calcCompressorGain(fl oat fDetectorValue, fl oat fThreshold,

 fl oat fRatio, fl oat fKneeWidth, bool bLimit)
 {

 // slope variable
 fl oat CS = 1.0 − 1.0/fRatio; // [Eq. 13.1]

 // limiting is infi nite ratio thus CS->1.0
 if(bLimit)
 CS = 1;

 // soft-knee with detection value in range?
 if(fKneeWidth > 0 && fDetectorValue > (fThreshold - fKneeWidth/2.0) &&
 fDetectorValue < fThreshold + fKneeWidth/2.0)
 {
 // setup for Lagrange
 double x[2];
 double y[2];
 x[0] = fThreshold − fKneeWidth/2.0;
 x[1] = fThreshold + fKneeWidth/2.0;
 x[1] = min(0, x[1]); // top limit is 0dBFS
 y[0] = 0; // CS = 0 for 1:1 ratio
 y[1] = CS; // current CS

 // interpolate & overwrite CS
 CS = lagrpol(&x[0], &y[0], 2, fDetectorValue);
 }

 // compute gain; threshold and detection values are in dB
 fl oat yG = CS*(fThreshold − fDetectorValue); // [Eq. 13.1]

 // clamp; this allows ratios of 1:1 to still operate
 yG = min(0, yG);

 // convert back to linear
 return pow(10.0, yG/20.0);

 }

Dynamics Processing 461

 prepareForPlay()

• Initialize the detector objects; note the boolean fl ags that set the analog/digital and log or

linear calculation; we use log.

 bool __stdcall CDynamicsProcessor::prepareForPlay()
 {
 // Add your code here:
 // init the envelope detectors
 // set all params at once with this function; see function defi nition
 if(m_uTimeConstant == Digital)
 {
 m_LeftDetector.init((fl oat)m_nSampleRate, m_fAttack_mSec, m_fRelease_mSec,

 false, DETECT_MODE_RMS, true);
 m_RightDetector.init((fl oat)m_nSampleRate, m_fAttack_mSec,
 m_fRelease_mSec, false, DETECT_MODE_RMS, true);
 }
 else
 {
 m_LeftDetector.init((fl oat)m_nSampleRate, m_fAttack_mSec, m_fRelease_mSec,

 true, DETECT_MODE_RMS, true);
 m_RightDetector.init((fl oat)m_nSampleRate, m_fAttack_mSec,
 m_fRelease_mSec, true, DETECT_MODE_RMS, true);
 }

 return true;
 }

 userInterfaceChange()

• Set the new attack time on the detectors.

• Set the new release time on the detectors.

• Set the time constant mode on the detectors.

• Note: Make sure you check your variable control ID values to match your UI.

 bool __stdcall CDynamicsProcessor::userInterfaceChange(int nControlIndex)
 {
 // decode the control index, or delete the switch and use brute force calls
 switch(nControlIndex)
 {
 case 2:
 {
 m_LeftDetector.setAttackTime(m_fAttack_mSec);
 m_RightDetector.setAttackTime(m_fAttack_mSec);
 break;
 }

462 Chapter 13

 case 3:
 {
 m_LeftDetector.setReleaseTime(m_fRelease_mSec);
 m_RightDetector.setReleaseTime(m_fRelease_mSec);
 break;
 }

 case 42:
 {
 if(m_uTimeConstant == Digital)
 {
 m_LeftDetector.setTCModeAnalog(false);
 m_RightDetector.setTCModeAnalog(false);
 }
 else
 {
 m_LeftDetector.setTCModeAnalog(true);
 m_RightDetector.setTCModeAnalog(true);
 }
 }
 default:
 break;
 }

 return true;
 }

 processAudioFrame()

• Follow the block diagram to complete the operations.

• Apply input gain to detector.

• Detect input sample.

• Calculate gain.

• Apply dynamic gain reduction and static make-up gain.

 bool __stdcall CDynamicsProcessor::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT
 uNumInputChannels, UINT
 uNumOutputChannels)

 {
 //
 // output = input -- change this for meaningful processing
 //
 // Do LEFT (MONO) Channel; there is always at least one input, one output
 // calculate gains
 fl oat fInputGain = pow(10.0, m_fInputGain_dB/20.0);
 fl oat fOutputGain = pow(10.0, m_fOutputGain_dB/20.0);

 // detect left channel
 fl oat fLeftDetector = m_LeftDetector.detect(pInputBuffer[0]);

Dynamics Processing 463

 // gain calc
 fl oat fGn = 1.0;

 // branch
 if(m_uProcessorType == COMP)
 fGn = calcCompressorGain(fLeftDetector, m_fThreshold, m_fRatio,
 m_fKneeWidth, false);
 else if(m_uProcessorType == LIMIT)
 fGn = calcCompressorGain(fLeftDetector, m_fThreshold, m_fRatio,

 m_fKneeWidth, true);

 // form left output and apply make up gain
 pOutputBuffer[0] = fGn*pInputBuffer[0]*fOutputGain;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)
 pOutputBuffer[1] = pOutputBuffer[0];

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 {
 // detect right channel
 fl oat fRightDetector = m_RightDetector.detect(pInputBuffer[1]);

 // gain calc
 fl oat fGn = 1.0;

 // branch
 if(m_uProcessorType == COMP)
 fGn = calcCompressorGain(fRightDetector, m_fThreshold, m_fRatio,

 m_fKneeWidth, false);
 else if(m_uProcessorType == LIMIT)
 fGn = calcCompressorGain(fRightDetector, m_fThreshold, m_fRatio,

 m_fKneeWidth, true);

 // form right output and apply make up gain
 pOutputBuffer[1] = fGn*pInputBuffer[1]*fOutputGain;
 }

 return true;
 }

 Build and test the plug-in. Try all the controls. Test the analog and digital time constants.

Try extreme settings and listen for artifacts called “pumping and breathing.” The soft-knee

function can sometimes be subtle, so you may have to try a variety of different audio fi les to

hear it. It would be nice to have a visual way of seeing the gain reduction, so we will use an

464 Chapter 13

advanced RackAFX feature that will enable a metering device. To make it even better, we

can invert the meter so that gain reduction results in a downward meter view—common in

dynamics processor devices, both analog and digital.

 In RackAFX, right click on one of the LED meters in the meter section of the main UI, shown

in Figure 13.7 . The meters accept a value between 0.0 and 1.0 and display accordingly. This

is perfect for us since our gain values are also fl uctuating on that same range. You only need

to declare a fl oating point variable to set the meter; RackAFX does everything else. A dialog

box will pop up that allows you to name the metering variable you are going to attach to the

meter as well as customize its look and behavior. You will be adding two meters, one for the

left and one for the right channel gain reduction.

 GRL stands for gain reduction for the left and GRR stands for gain reduction for the right

channel. Set up the two meters according to Table 13.2 .

 Figure 13.7: The 10 assignable meters in RackAFX.

 Table 13.2: Meter settings for the dynamics processor.

Meter Property Value Meter Property Value

Meter Blurb
Invert Meter
Enable Meter

Meter Cal
Detect Mode

Meter Variable
Attack Time
Release Time

GRL
true
true

linear
PEAK

m_fGRMeterValue_L
0
0

Meter Blurb
Invert Meter
Enable Meter

Meter Cal
Detect Mode

Meter Variable
Attack Time
Release Time

GRR
true
true

linear
PEAK

m_fGRMeterValue_R
0
0

Input/Send (dB) FX Routing Output/Return (dB)
+ 12

0
–12
–24
–36
–48
–60

+ 12
0

–12
–24
–36
–48
–60 Unity

2–2 Aux
1–2 Aux

Insert

L R L R

Dynamics Processing 465

 The gain reduction value we will be metering is linear, from 0 to 1.0. The gain reduction

value will have its own attack and release times according to our settings, so we want to

monitor the PEAK variable type with no attack or release time.

 All you need to do is make sure the variables m_fGRMeterValue_L and m_fGRMeterValue_R

are reset to the current gain reduction value on each sample interval, and the meter will track

it. The meter value needs to go up as the gain reduction goes down to visualize it properly. To

set the meter, add one line of code to your processAudioFrame() function for each of the left

and right channels.

 13.1.5 DynamicsProcessor.cpp File

 processAudioFrame()

• Add the metering variables to track the gain reduction values.

 bool __stdcall CDynamicsProcessor::pr ocessAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumInputChannels,
 UINT uNumOutputChannels)

 {
 // Do LEFT (MONO) Channel; there is always at least one input/one output

 <SNIP SNIP SNIP>

 // form left output and apply make up gain
 pOutputBuffer[0] = fGn*pInputBuffer[0]*fOutputGain;

 // set the meter to track 1-gain value
 m_fGRMeterValue_L = 1.0 � fGn;

 <SNIP SNIP SNIP>

 // form right output and apply make up gain
 pOutputBuffer[1] = fGn*pInputBuffer[1]*fOutputGain;

 // set the meter to track 1-gain value
 m_fGRMeterValue_R = 1.0 � fGn;
 }

 etc…

 Build and test the plug-in now and you’ll get a visual cue about how much gain reduction

is taking place. Try the analog limiter setting and adjust the attack, release, and threshold

values to give smooth limiting (note the ratio slider doesn’t work in limiter mode). Once you

have that running properly, we’ll fi nish off the dynamics processor by adding the downward

expansion/gating capability.

466 Chapter 13

 13.2 Design a downward expander/gate plug-in

 We’ll add on to the current project. Here is what is needed:

• A function to calculate downward expander gain

• Branching in the processAudioFrame() function to implement all four dynamics

 processor operations

 13.2.1 DynamicsProcessor.h File

 Add the following function declaration for the downward expander calculation:

 // Add your code here: -- //
 // envelope detectors
 CEnvelopeDetector m_LeftDetector;
 CEnvelopeDetector m_RightDetector;

 // calcualte the compressor G(n) value from the Detector output
 fl oat calcCompressorGain(fl oat fDetec torValue, fl oat fThreshold, fl oat fRatio,

 fl oat fKneeWidth, bool bLimit);

// calculate the downward expander G(n) value from the Detector output
 fl oat calcDownwardExpanderGain(fl oat fDetectorValue, fl oat fThreshold, fl oat

 fRatio, fl oat fKneeWidth, bool bGate);

// END OF USER CODE --- //

 13.2.2 DynamicsProcessor.cpp File

 Implement the downward expander function including the soft-knee operation.

 // calculate the downward expander G(n) value from the Detector output
 fl oat CDynamicsProcessor::calcDownwardExpanderGain(fl oat fDetectorValue, fl oat

 fThreshold, fl oat fRatio, fl oat
 fKneeWidth, bool bGate)

 {
 // slope variable
 fl oat ES = 1.0/fRatio − 1; // [Eq. 13.2]

 // gating is infi nite ratio; ES -> −1.0
 if(bGate)

 ES = ─1;

 // soft-knee with detection value in range?
 if(fKneeWidth > 0 && fDetectorValue > (fThreshold ─ fKneeWidth/2.0) &&

 fDetectorValue < fThreshold + fKneeWidth/2.0)

Dynamics Processing 467

 {
 // setup for Lagrange
 double x[2];
 double y[2];
 x[0] = fThreshold − fKneeWidth/2.0;
 x[1] = fThreshold + fKneeWidth/2.0;
 x[1] = min(0, x[1]); // top limit is 0dBFS
 y[0] = ES; // current ES
 y[1] = 0; // 1:1 ratio

 // interpolate the value
 ES = lagrpol(&x[0], &y[0], 2, fDetectorValue);

 }

 // compute gain; threshold and detection values are in dB
 fl oat yG = ES*(fThreshold ─ fDetectorValue); // [Eq. 13.2]

 // clamp; this allows ratios of 1:1 to still operate
 yG = min(0, yG);

 // convert back to linear
 return pow(10.0, yG/20.0);

 }

 processAudioFrame()

• Similar to the compressor, add the branching code to calculate the downward expansion

gain.

 bool __stdcall CDynamicsProcessor::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer,
 UINT uNumInputChannels,
 UINT uNumOutputChannels)

 {
 // Do LEFT (MONO) Channel; there is always at least one input/one output

 <SNIP SNIP SNIP>

 // gain calc
 fl oat fGn = 1.0;

 // branch
 if(m_uPr ocessorType == COMP)

 fGn = calcCompressorGain(fLeftDetector, m_fThreshold, m_fRatio,
 m_fKneeWidth, false);

 else if(m_uProcessorType == LIMIT)
 fGn = calcCompressorGain(fLeftDetector, m_fThreshold, m_fRatio,

 m_fKneeWidth, true);
 else if(m_uProcessorType == EXPAND)

 fGn = calcDownwardExpanderGain(fLeftDetector, m_fThreshold, m_fRatio,
 m_fKneeWidth, false);

468 Chapter 13

 else if(m_uProcessorType == GATE)
 fGn = calcDownwardExpanderGain(fLeftDetector, m_fThreshold, m_fRatio,
 m_fKneeWidth, true);

 // form left output and apply make up gain
 pOutputBuffer[0] = fGn*pInputBuffer[0]*fOutputGain;

 <SNIP SNIP SNIP>

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 {
 // detect right channel
 fl oat fRightDetector = m_RightDetector.detect(pInputBuffer[1]);

 // gain calc
 fl oat fGn = 1.0;

 // branch
 if(m_uPr ocessorType == COMP)

 fGn = calcCompressorGain(fRightDetector, m_fThreshold, m_fRatio,
 m_fKneeWidth, false);

 else if(m_uProcessorType == LIMIT)
 fGn = calcCompressorGain(fRightDetector, m_fThreshold, m_fRatio,
 m_fKneeWidth, true);

 else if(m_uProcessorType == EXPAND)
 fGn = calcDownwardExpanderGain(fLeftDetector, m_fThreshold,

 m_fRatio, m_fKneeWidth, false);
 else if(m_uProcessorType == GATE)

 fGn = calcDownwardExpanderGain(fLeftDetector, m_fThreshold,
 m_fRatio, m_fKneeWidth, true);

 // form right output and apply make up gain
 pOutputBuffer[1] = fGn*pInputBuffer[1]*fOutputGain;
 etc…

 Build and test the plug-in now and try all four modes with several different input fi les; drums

and guitars make good test fi les. The analog time constant along with the soft-knee settings

generally provide a smoother, less obtrusive gain reduction function.

 13.3 Design a Look-Ahead Compressor Plug-In

 A problem with the detector circuit is that for any non-zero attack and release time settings,

the detector output lags behind the input in time. Remember from Chapter 12 how the output

of the detector tracks the input signal, as shown in Figure 13.8 . The dark line is the detector

output, which is clearly lagging behind the input.

 Since the detector output lags, the gain reduction actually misses the event that needs to

be attenuated. In the digital world, we can accommodate for this detector lag by using a

Dynamics Processing 469

look-ahead technique. We can’t look ahead into the future of a signal, but we can delay the

present. If we insert a delay line in the forward signal path (not the side-chain) we can make

up for the detector delay so that the detector begins charging before the signal actually gets to

the DCA, as shown in Figure 13.9 .

 You can use the CDelay object that comes as a “stock reverb object” and add it to your project

now for our look-ahead pre-delay. Do this by using the Edit button and edit the project. Check

the box marked “Stock Reverb Objects” and then hit OK. Your compiler will ask you if you

want to reload the project, so answer yes. You will then have the reverb objects included in

your project. We’ll add a single new slider to control the look-ahead time. Remember when

using the CDelay-based objects that you need to make sure you initialize the object to have

the same maximum delay time as your slider. The amount of look-ahead delay will depend on

the compressor settings. We’ll make the maximum value match our maximum attack time of

300 mSec.

 13.3.1 DynamicsProcessor: GUI

 Add a new slider for the look-ahead delay time in mSec using Table 13.3 .

 Figure 13.8: The detector output with the medium attack and medium decay times.

 Figure 13.9: The look-ahead compressor block diagram.

Amplitude

t

Input
x(n)

In
RMS

Detector
log

Conversion
gain calc

(dB)
lin

Conversion

G(n)

DC A
y(n)

Output z
D –

Release

d(n)

Threshold
d o ρ W

Ratio Knee

Out

Attack

470 Chapter 13

 Table 13.3: The look-ahead slider properties.

Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Look-Ahead
mSec
fl oat

m_fLookAheadDelay_mSec
0

300
0

 13.3.2 DynamicsProcessor.h File

 Declare the delays for the look-ahead:

 // Add your code here: -- //
 // envelope detectors
 CEnvelopeDetector m_LeftDetector;
 CEnvelopeDetector m_RightDetector;

 <SNIP SNIP SNIP>

 // Delay lines for a look-ahead compressor
 CDelay m_LeftDelay;
 CDelay m_RightDelay;
 // END OF USER CODE --- //

 13.3.3 DynamicsProcessor.cpp File

 prepareForPlay()

• Initialize the delays now that we know the sample rate.

• Set the current delay time in mSec.

• Flush the delays.

 bool __stdcall CDynamicsProcessor::prepareForPlay()
 {
 // init lookahead delays
 m_LeftDelay.init(0.3*(fl oat)m_nSampleRate);
 m_RightDelay.init(0.3*(fl oat)m_nSampleRate);

 // set the current value
 m_LeftDelay.setDelay_mSec(m_fLookAheadDelay_mSec);
 m_RightDelay.setDelay_mSec(m_fLookAheadDelay_mSec);

 // fl ush delays
 m_LeftDelay.resetDelay();
 m_RightDelay.resetDelay();

 etc…

Dynamics Processing 471

 userInterfaceChange()

• Set the look-ahead delay time on the delay elements.

• Note: Make sure your control IDs match your GUI.

 bool __stdcall CDynamicsProcessor::userInterfaceChange(int nControlIndex)
 {
 <SNIP SNIP SNIP>

 case 7:
 {
 m_LeftDelay.setDelay_mSec(m_fLookAheadDelay_mSec);

 m_RightDelay.setDelay_mSec(m_fLookAheadDelay_mSec);
 break;

 }
 etc…

 processAudioFrame()

• Delay the signal going to the DCA, not the detector side-chain.

 bool __stdcall CDynamicsProcessor::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer,
 UINT uNumInputChannels,
 UINT uNumOutputChannels)

 {
 <SNIP SNIP SNIP>

 // delay the left DCA after gain calculation
 fl oat fLookAheadOut = 0;
 m_LeftDelay.processAudio(&pInputBuffer[0], &fLookAheadOut);

 // form left output and apply make up gain
 pOutputBuffer[0] = fGn*fLookAheadOut*fOutputGain;

 <SNIP SNIP SNIP>

 // delay the right DCA after gain calculation
 fl oat fLookAheadOut = 0;
 m_RightDelay.processAudio(&pInputBuffer[1], &fLookAheadOut);

 // form right output and apply make up gain
 pOutputBuffer[1] = fGn*fLookAheadOut*fOutputGain;

 // set the meter to track 1-gain value
 m_fGRMeterValue_R = 1.0 - fGn;
 }
 return true;
 }

 Build and test the plug-in now and try the look-ahead feature. It will take some critical listening

to adjust the look-ahead value; start by matching the attack time, and then tweak it from there.

472 Chapter 13

 13.4 Stereo-Linking the Dynamics Processor

 You can see from the block diagram and your own code that our stereo dynamics processor

shares all of the controls: gains, attack, release, threshold, and ratio. However, the ultimate

value of the dynamic gain factor G (n) really depends on the audio content of each channel,

which is fed into the independent left and right detectors. If the left and right channels

have very different signals, then the resulting very different G (n) values for left and right

can create a confusing output. Stereo-linking a dynamics processor means that you tie

together the two detector outputs, sum and average them, and then apply that one signal

to the log converter. The resulting G (n) value is applied to both left and right channels.

 Figure 13.10 shows how the right channel’s gain computation has been removed since it

now shares the left channel’s side-chain path. In order to modify the existing processor, we

need to do two things: modify the UI to add a stereo link switch and add more branching in

processAudioFrame() to do the linking.

 13.4.1 DynamicsProcessor: GUI

 For a change, I’ll use a slider control in enum mode to make a switch for the stereo link.

Remember that you can use sliders to make enumerated-list variables in addition to the

buttons. Use Table 13.4 to set up the slider.

 NOTE: The detectors are running in log output mode. This means that we need to convert their
values back to linear before summing them. After they are summed, they must be converted
back to the log domain prior to being used in the gain calculation function.

 Figure 13.10: The stereo-linked dynamics processor.

Left Input
x(n) left

d(n) left

Detector

G(n)

G(n)

x(n) right
Right Input

In

Attack Release

Detector

d(n) right

Release Attack

In

log
Conversion

gain calc
(dB)

lin
Conversion

Left Output
y(n) left

Right Output
y(n) right

Σ

Threshold Ratio
ρ do

Out DCA

DCA Out

0.5

0.5

Dynamics Processing 473

 Table 13.4: The stereo link slider properties.

Slider Property Value

Control Name
Variable Type

Variable Name
Enum String

Stereo Link
enum

m_uStereoLink
ON, OFF

 13.4.2 DynamicsProcessor.cpp File

 There are many different ways to do this branching and you should defi nitely try to

fi gure out your own way. My code is for education purposes and not very streamlined

either. For the branching code, I chose to set up the stereo link and right channel detection

early on.

 bool __stdcall CDynamicsProcessor::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer,
 UINT uNumInputChannels,
 UINT uNumOutputChannels)

 {
 // calculate gains
 fl oat fInputGain = pow(10.0, m_fInputGain_dB/20.0);
 fl oat fOutputGain = pow(10.0, m_fOutputGain_dB/20.0);

 // setup stereo link
 fl oat xn_L = fInputGain*pInputBuffer[0];
 fl oat xn_R = 0.0; // for later

 // do left
 fl oat fLeftDetector = m_LeftDetector.detect(xn_L);
 fl oat fRightDetector = fLeftDetector; // use in case of mono fi le

 // check for right side; can use again in right side code
 if(uNumOutputChannels == 2)
 {

 // get the right side
 xn_R = fInputGain*pInputBuffer[1];

 // detect it
 fRightDetector = m_RightDetector.detect(xn_R);

 }

 // start with Left
 fl oat fLinkDetector = fLeftDetector;
 fl oat fGn = 1.0;

 if(m_uStereoLink == ON) // this works even with mono fi les
 {

474 Chapter 13

 // detectors output log values; convert to linear to sum them
 fLinkDetector = 0.5*(po w(10.0, fLeftDetector/20.0) + pow(10.0,

 fRightDetector/20.0));

 // convert back to log
 fLinkDetector = 20.0*log10(fLinkDetector);

 }
 // branch
 if(m_uProcessorType == COMP)

 fGn = calcCompressorGain(fLinkDetector , m_fThreshold, m_fRatio,
 m_fKneeWidth, false);

 else if(m_uProcessorType == LIMIT)
 fGn = calcCompressorGain(fLinkDetector , m_fThreshold, m_fRatio,

 m_fKneeWidth, true);

 etc… same for other branches

 // delay the left DCA
 fl oat fLookAheadOut = 0;
 m_LeftDelay.processAudio(&pInputBuffer[0], &fLookAheadOut);

 <SNIP SNIP SNIP>

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 {

 fl oat fGn = 1.0;

 // if not linked, overwrite the variable
 if(m_uSt ereoLink == OFF)

 fLinkDetector = fRightDetector;

 // branch
 if(m_uPr ocessorType == COMP)

 fGn = calcCompressorGain(fLinkDetector , m_fThreshold, m_fRatio,
 m_fKneeWidth, false);

 else if(m_uProcessorType == LIMIT)
 fGn = calcCompressorGain(fLinkDetector , m_fThreshold, m_fRatio,
 m_fKneeWidth, true);

 else if(m_uProcessorType == EXPAND)
 fGn = calcDownwardExpanderGain(fLinkDetector, m_fThreshold,

 etc… same for other branches

 // delay the righr DCA
 fl oat fLookAheadOut = 0;
 m_RightDelay.processAudio(&pInputBuffer[1], &fLookAheadOut);

 etc…

Dynamics Processing 475

 13.5 Design a Spectral Compressor/Expander Plug-In

 In this project, you will design a spectral dynamics processor. A spectral processor splits

up the input signal into two or more frequency bands, then applies signal processing

independently to each band. Finally, the processed fi ltered outputs are summed to produce the

fi nal output. In this way, you can apply signal processing to only one band of frequencies, or

apply different types of processing to different bands. In this design, we will create a two-

band spectral compressor/expander. We will use complementary low-pass fi lter (LPF) and

high-pass fi lter (HPF) units to split the incoming audio into two bands: low-frequency (LF)

and high-frequency (HF). Then, we will process each band independently and recombine

the outputs as shown in Figure 13.11 . You can compress, say, only the HF content to squash

cymbals and other sibilance. Or you can smooth out the bass by compressing it slightly, or

any combination of both that you like.

 Take a look at Figure 13.8 and check out the features. The input LPF and HPF are adjusted

with a single f c control. This means their cut-off points are always overlapping. The outputs

are processed through two independent dynamics processors with independent make-up

gains, then the results are summed back together. This means the UI is going to contain a lot

of sliders. But, RackAFX will be taking care of most of the GUI details. We need to focus on

the input fi lter-bank fi rst.

 For the input LPF and HPF we will be using a special variant on the Butterworth fi lter

called the Linkwitz–Riley fi lter (Equation 13.3). It has the same second-order roll-off as the

Butterworth, but the cutoff point is −6 dB rather than −3 dB so that recombining the fi ltered

signals results in a fl at response. Remember that fi lters alter the phase response as well, so

recombining them in parallel offers a special problem with how the phases recombine. For the
two signals to recombine properly, you must invert one of the fi lter outputs . It doesn’t matter

whether you invert the LPF or HPF output as long as you invert one of them. This is specifi c

to the Linkwitz-Riley fi lters. The fi lter design equations are shown from Chapter 6 .

 Figure 13.11: A two-band spectral compressor.

x(n) fc

HPF HG I

LPFLG I Dynamics Processor

Dynamics Processor

Attack Release Threshold Ratio Knee

L G O

H G O

Attack Release Threshold Ratio Knee

y(n) Σ

476 Chapter 13

 LPF HPF

 uc 5 p fc
/ fs uc 5 pfc/fs

Vc 5 pfc Vc 5 pfc

 k 5
Vc

 tan (uc)
 k 5

Vc

 tan (uc)

 d 5 k2 1 Vc
2 1 2kVc d 5 k2 1 Vc

2 1 2kVc

a0 5
Vc

2

d
 a0 5

k2

d

a1 5 2
Vc

2

d
 a1 5

22k2

d

a2 5
Vc

2

d
a2 5

k2

d

b1 5
22k2 1 2Vc

2

d
b1 5

22k2 1 2Vc
2

d

b2 5
22kVc 1 k2 1 Vc

2

d
b2 5

22kVc 1 k2 1 Vc
2

d

(13.3)

 Because these are second-order fi lters, we can use RackAFX’s built-in bi-quad to do the

fi ltering; all we need to do is supply the calculation of the coeffi cients. Thus, we’re going to need

to design a stereo dynamics processor with independent attack, release, threshold, ratio, and

gain make-up controls. We will need a shared f c control for the two fi lters. Although this plug-in

shares most of the features of the previous project, for simplicity there are a few modifi cations:

• This design will not include the look-ahead function.

• The knee width will be a common shared control that both bands will use.

 13.5.1 Project: SpectralDynamics

 Create a new project named “SpectralDynamics.” Since we are not implementing the look-

ahead feature you don’t have to add the stock objects.

 13.5.2 SpectralDynamics: GUI

 The GUI is basically a double version of the previous design without the look-ahead function.

However, we also need to add a cutoff frequency slider to control the point where the bands

 NOTE: Unlike the last plug-in, the processor will be hard-coded in stereo link mode. We can
then run the detectors in linear operation mode, perform the summation, and then convert the
linked detector output to dB prior to calling the gain calculation functions. This only serves to
simplify the processAudioFrame() method a bit.

Dynamics Processing 477

split and a knee-width control. Tables 13.5 and 13.6 show all the controls you will need.

In Table 13.5 , all of the settings are identical to the previous project so only the variable

names are shown.

 Table 13.5: Duplicated sets of controls.

Control Variable Name Control Variable Name

LF Detector gain
LF Threshold

LF Attack Time
LF Release Time

LF Ratio
LF Make Up Gain

m_LF_DetectorGain_dB
m_LF_Threshold

m_LF_Attack_mSec
m_LF_Release_mSec

m_LF_Ratio
m_LF_MakeUpGain_dB

HF Detector gain
HF Threshold

HF Attack Time
HF Release Time

HF Ratio
HF Make Up Gain

m_HF_DetectorGain_dB
m_HF_Threshold

m_HF_Attack_mSec
m_HF_Release_mSec

m_HF_Ratio
m_HF_MakeUpGain_dB

 Table 13.6 : The two additional sliders for cutoff frequency and knee-width.

Slider Property Value Slider Property Value

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

fc
Hz

fl oat
m_fFilterBankCutoff

100
8000
1000

Control Name
Units

Variable Type
Variable Name

Low Limit
High Limit

Initial Value

Knee Width
dB

fl oat
m_fKneeWidth

0
20
0

 13.5.3 Additional Slider Controls

 Note : These are duplicated sets of controls that are set up exactly like the previous project,

with the exception of the variable names.

 13.5.4 Spectral Dynamics Buttons

 You need the same two button banks as the previous project, one for the processing type and

the other for the time-constant mode.

 13.5.5 Spectral Dynamics Metering

 This plug-in will feature extensive monitoring using the LED meter bank to indicate the LF

and HF input, gain reduction, and output levels. The gain reduction meters are inverted. You

can also choose different color schemes for the meters. Other than color and inversion, the

meters are set up identically to the previous project. You will need to set up six meters to

connect to the following variables:

• m_fMeterLFIn

• m_fMeterHFIn

478 Chapter 13

• m_fMeterLFGr

• m_fMeterHFGr

• m_fMeterLFOut

• m_fMeterHFOut

 The metering is especially important for the spectral processing because of the differences in

energy in the bands; you will get a clearer picture of the equalization nature of this effect. The

middle two meters show the gain reduction and are colored green and red and inverted. The

input and output use the Volume Unit or “VU meter” color scheme. Figure 13.12 shows the

GUI after all the controls have been added.

 13.5.6 SpectralDynamics.h File

 Because the bulk of the work is in the UI code, you only need a few more components to

add to the original dynamics processor. You need the left and right detectors and the gain

calculation functions as before. You also need four bi-quads: an LPF/HPF pair for each of the

left and right channels. Finally, you need one function to calculate all the bi-quad coeffi cients

at once for a given f c value.

 // Add your code here: -- //
 // envelope detectors X2
 CEnvelopeDetector m_Left_LF_Detector;

 Figure 13.12: The fi nal SpectralDynamics GUI sliders, buttons, and meters.

FC

1000.0 Hz
HF Sens
0.00 dB

HF Thresh

0.00 20.00 mS

HF Attack HF Rel

1000 mS

HF Ratio
1.00

HF Gain

0.00 dB

Processor
COMP
LIMIT

EXPAND
GATE

T.C.
Digital
Analog

LF Gain
0.00 dB

LF Ratio
1.00

LF Rel

1000 mS

LF Attack

20.00 mS

LF Thresh

0.00

LF Sens

0.00 dB

Knee Width

0.00

LFI HFI LR HR LFO HFO

Dynamics Processing 479

 CEnvelopeDetector m_Right_LF_Detector;
 CEnvelopeDetector m_Left_HF_Detector;
 CEnvelopeDetector m_Right_HF_Detector;

 // calculate the compressor G(n) value from the Detector output
 fl oat calcCompressorGain(fl oat fDetectorValue, fl oat fThreshold, fl oat fRatio);

// calculate the downward expander G(n) value from the Detector output
 fl oat calcDownwardExpanderGain(fl oat fDetectorValue, fl oat fThreshold, fl oat

 fRatio);
 // our input fi lter banks X2
 CBiquad m_LeftLPF;
 CBiquad m_LeftHPF;
 CBiquad m_RightLPF;
 CBiquad m_RightHPF;

 // function to set all the fi lter cutoffs
 void calculateFilterBankCoeffs(fl oat fCutoffFreq);

 // END OF USER CODE --- //

 The detector variables are the same as your previous dynamics processor but are split into LF

and HF sections or bands.

 13.5.7 SpectralDynamics.cpp File

 The calcCompressorGain() and calcDownwardExpanderGain() functions are identical to the

last project you did, so you can cut and paste them. The calculateFilterBankCoeffs() function

is pretty straightforward and follows the design equations for the Linkwitz–Riley fi lters. Since

all the fi lters share the same cutoff, they are pretty easy to deal with.

 // all fi lters have same cutoff frequency; only need LPF and HPF calcs
 void CSpectralDynamics::calculateFilterBankCoeffs(fl oat fCutoffFreq)
 {

 // Shared Factors:
 fl oat omega_c = pi*fCutoffFreq;
 fl oat theta_c = pi*fCutoffFreq/(fl oat)m_nSampleRate;

 fl oat k = omega_c/tan(theta_c);
 fl oat k_squared = k*k;

 fl oat omega_c_squared = omega_c*omega_c;

 fl oat fDenominator = k_squared + omega_c_squared + 2.0*k*omega_c;

480 Chapter 13

 fl oat fb1_Num = -2.0*k_squared + 2.0*omega_c_squared;
 fl oat fb2_Num = -2.0*k*omega_c + k_squared + omega_c_squared;

 // the LPF coeffs
 fl oat a0 = omega_c_squared/fDenominator;
 fl oat a1 = 2.0*omega_c_squared/fDenominator;
 fl oat a2 = a0;
 fl oat b1 = fb1_Num/fDenominator;
 fl oat b2 = fb2_Num/fDenominator;

 // set the LPFs
 m_LeftLPF.m_f_a0 = a0;
 m_LeftLPF.m_f_a1 = a1;
 m_LeftLPF.m_f_a2 = a2;
 m_LeftLPF.m_f_b1 = b1;
 m_LeftLPF.m_f_b2 = b2;

 // right
 m_RightLPF.m_f_a0 = a0;
 m_RightLPF.m_f_a1 = a1;
 m_RightLPF.m_f_a2 = a2;
 m_RightLPF.m_f_b1 = b1;
 m_RightLPF.m_f_b2 = b2;

 // the HPF coeffs
 a0 = k_squared/fDenominator;
 a1 = -2.0*k_squared/fDenominator;
 a2 = a0;
 b1 = fb1_Num/fDenominator;
 b2 = fb2_Num/fDenominator;

 // set the HPFs
 m_LeftHPF.m_f_a0 = a0;
 m_LeftHPF.m_f_a1 = a1;
 m_LeftHPF.m_f_a2 = a2;
 m_LeftHPF.m_f_b1 = b1;
 m_LeftHPF.m_f_b2 = b2;

 // right
 m_RightHPF.m_f_a0 = a0;
 m_RightHPF.m_f_a1 = a1;
 m_RightHPF.m_f_a2 = a2;
 m_RightHPF.m_f_b1 = b1;
 m_RightHPF.m_f_b2 = b2;

 }

 prepareForPlay()

• Flush delays in all fi lters.

• Calculate the initial setting of the fi lters.

• Init the detectors—identical to the previous project except that there are more of them.

Dynamics Processing 481

 bool __stdcall CSpectralDynamics::prepareForPlay()
 {
 // Add your code here:
 // Flush the fi lters
 m_LeftLPF.fl ushDelays();
 m_LeftHPF.fl ushDelays();
 m_RightLPF.fl ushDelays();
 m_RightHPF.fl ushDelays();

 // calculate the Coeffs all at once!
 calculateFilterBankCoeffs(m_fFilterBankCutoff);

 // init detectors
 // set all params at once with this function; false = Digital Time Constant NOT
 // NOTE: Setting detector for linear operaton so we can sum the results;
 // we have to convert back to log manually
 if(m_uTimeConstant == Digital)
 {
 m_Left_LF_Detector.init((fl oat)m_nSampleRate, m_LF_Attack_mSec,

 m_LF_Release_mSec, false, DETECT_MODE_RMS ,
 false);

 m_Right_LF_Detector.init((fl oa t)m_nSampleRate, m_LF_Attack_mSec,

 m_LF_Release_mSec, false, DETECT_MODE_RMS,
 false);

 m_Left_HF_Detector.init((fl oat)m_nSampleRate, m_HF_Attack_mSec,

 m_HF_Release_mSec, false, DETECT_MODE_RMS,
 false);

 m_Right_HF_Detector.init((fl oa t)m_nSampleRate, m_HF_Attack_mSec,
 m_HF_Release_mSec, false, DETECT_MODE_RMS,
 false);

 }
 else
 {
 m_Left_LF_Detector.init((fl oa t)m_nSampleRate, m_LF_Attack_mSec,

 m_LF_Release_mSec, true, DETECT_MODE_RMS,
 false);

 m_Right_LF_Detector.init((fl o at)m_nSampleRate, m_LF_Attack_mSec,
 m_LF_Release_mSec, true, DETECT_MODE_RMS,
 false);

 m_Left_HF_Detector.init((fl oa t)m_nSampleRate, m_HF_Attack_mSec,

 m_HF_Release_mSec, true, DETECT_MODE_RMS,
 false);

 m_Right_HF_Detector.init((fl o at)m_nSampleRate, m_HF_Attack_mSec,
 m_HF_Release_mSec, true, DETECT_MODE_RMS,
 false);

 }
 return true;
 }

482 Chapter 13

 userInterfaceChange()

• Decode the nControlIndex and apply changes to fi lter and detectors.

• Basically the same as the last project except the addition of the fi lter and the fact that

there are four times as many detectors.

 bool __stdcall CSpectralDynamics::userInterfaceChange(int nControlIndex)
 {

 // decode the control index, or delete the switch and use brute force calls
 switch(nControlIndex)
 {

 // fi lter cutoff
 case 0:
 {

 calculateFilterBankCoeffs(m_fFilterBankCutoff);
 break;

 }

 // HF Attack
 case 3:
 {

 m_Left_HF_Detector.setAttackTime(m_HF_Attack_mSec);
 m_Right_HF_Detector.setAttackTime(m_HF_Attack_mSec);
 break;

 }

 // LF Attack
 case 13:
 {

 m_Left_LF_Detector.setAttackTime(m_LF_Attack_mSec);
 m_Right_LF_Detector.setAttackTime(m_LF_Attack_mSec);
 break;

 }

 // HF Release
 case 4:
 {

 m_Left_HF_Detector.setReleaseTime(m_HF_Release_mSec);
 m_Right_HF_Detector.setReleaseTime(m_HF_Release_mSec);
 break;

 }

 // LF Release
 case 14:
 {

 m_Left_LF_Detector.setReleaseTime(m_LF_Release_mSec);
 m_Right_LF_Detector.setReleaseTime(m_LF_Release_mSec);
 break;

 }

Dynamics Processing 483

 // Time Constant
 case 42:
 {

 if(m_uTimeConstant == Digital)
 {
 m_Left_HF_Detector.setTCModeAnalog(false);
 m_Right_LF_Detector.setTCModeAnalog(false);
 m_Right_HF_Detector.setTCModeAnalog(false);
 m_Right_LF_Detector.setTCModeAnalog(false);

 }
 else
 {
 m_Left_HF_Detector.setTCModeAnalog(true);
 m_Right_LF_Detector.setTCModeAnalog(true);
 m_Right_HF_Detector.setTCModeAnalog(true);
 m_Right_LF_Detector.setTCModeAnalog(true);

 }
 }
 default:

 break;
 }

 return true;
 }

 processAudioFrame()

• Calculate input/output gain values from their dB UI versions.

• Filter the input into LF and HF components; invert one fi lter’s output .
• Detect the LF and HF components separately.

• Calculate the dynamic gain factors G (n) for LF and HF components.

• Implement the gain reduction for each band.

• Recombine the outputs of each band.

 bool __stdcall CSpectralDynamics::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT
 uNumInputChannels, UINT
 uNumOutputChannels)

 {
 // Do LEFT (MONO) Channel; there is always at least one input/one output
 fl oat fLeftInput = pInputBuffer[0];
 fl oat fRightInput = uNumInputChannels == 1 ? fLeftInput : pInputBuffer[1];

 // setup the input and output gains
 fl oat fLFGain = pow(10.0, m_LF_DetectorGain_dB/20.0);
 fl oat fHFGain = pow(10.0, m_HF_DetectorGain_dB/20.0);

 fl oat fLFOutputGain = pow(10.0, m_LF_MakeUpGain_dB/20.0);
 fl oat fHFOutputGain = pow(10.0, m_HF_MakeUpGain_dB/20.0);

484 Chapter 13

 // split the signal into m_Left LF and HF parts
 fl oat fLeft_LF_Out = m_LeftLPF.doBiQuad(fLeftInput*fLFGain);
 fl oat fLeft_HF_Out = m_LeftHPF.doBiQuad(fLeftInput*fHFGain);

 // invert ONE of the outputs for proper recombination
 fLeft_HF_Out *= -1.0;

 // send these to the detectors: NOTE OUTPUTS ARE LINEAR
 fl oat fLeft_LF_Detector = m_Left_LF_Detector.detect(fLeft_LF_Out);
 fl oat fLeft_HF_Detector = m_Left_HF_Detector.detect(fLeft_HF_Out);

 // split the signal into m_Left LF and HF parts
 fl oat fRight_LF_Out = m_RightLPF.doBiQuad(fRightInput*fLFGain);
 fl oat fRight_HF_Out = m_RightHPF.doBiQuad(fRightInput*fHFGain);

 // invert ONE of the outputs for proper recombination
 fRight_HF_Out *= -1.0;

 // send these to the detectors: NOTE OUTPUTS ARE LINEAR
 fl oat fRight_LF_Detector = m_Right_LF_Detector.detect(fRight_LF_Out);
 fl oat fRight_HF_Detector = m_Right_HF_Detector.detect(fRight_HF_Out);

 // This is the stereo linking of the detector paths;
 // The detectors were set for linear operation so we could sum them
 // they must be converted back to dB before use in the gain calculation
 fl oat LFDetectorSum = 0.5*(fRight_LF_Detector, fLeft_LF_Detector);
 fl oat HFDetectorSum = 0.5*(fRight_HF_Detector, fLeft_HF_Detector);

 // convert back to dB
 LFDetectorSum = 20.0*log10(LFDetectorSum);
 HFDetectorSum = 20.0*log10(HFDetectorSum);

 // sum for input metering
 m_fMeterLFIn = 0.5*(fLeft_LF_Out + fRight_LF_Out);
 m_fMeterHFIn = 0.5*(fLeft_HF_Out + fRight_HF_Out);

 // calculate the gain factors
 fl oat fGn = 1.0;

 // --- LF BAND ---------------
 // branch: all are LF: detect, thresh, ratio
 if(m_uProcessorType == COMP)
 fGn = calcCompressorGain(LFDetectorSum, m_LF_Threshold, m_LF_Ratio,

 m_fKneeWidth, false);
 else if(m_uProcessorType == LIMIT)
 fGn = calcCompressorGain(LFDetectorSum, m_LF_Threshold, m_LF_Ratio,

 m_fKneeWidth, true);
 else if(m_uProcessorType == EXPAND)
 fGn = calcDownwardExpande rGain(LFDetectorSum, m_LF_Threshold,

m_LF_Ratio, m_fKneeWidth, false);

Dynamics Processing 485

 else if(m_uProcessorType == GATE)
 fGn = calcDownwardExpanderGain(LFDetectorSum, m_LF_Threshold,

 m_LF_Ratio, m_fKneeWidth, true);

 // create left and right LF outputs
 fl oat fLFOutputL = fGn*fLeft_LF_Out*fLFOutputGain;
 fl oat fLFOutputR = fGn*fRight_LF_Out*fLFOutputGain;

 // gain reduction meter
 m_fMeterLFGr = 1.0 - fGn;

 // --- HF BAND ---------------
 // branch: all are HF: detect, thresh, ratio
 if(m_uProcessorType == COMP)
 fGn = calcCompressorGain(HFDetectorSum, m_HF_Threshold, m_HF_Ratio,

 m_fKneeWidth, false);
 else if(m_uProcessorType == LIMIT)
 fGn = calcCompressorGain(HFDetectorSum, m_HF_Threshold, m_HF_Ratio,

 m_fKneeWidth, true);
 else if(m_uProcessorType == EXPAND)
 fGn = calcDownwardExpanderGain(HFDetectorSum, m_HF_Threshold,

 m_HF_Ratio, m_fKneeWidth, false);
 else if(m_uProcessorType == GATE)
 fGn = calcDownwardExpanderGain(HFDetectorSum, m_HF_Threshold,
 m_HF_Ratio, m_fKneeWidth, true);

 // create left and right HF outputs
 fl oat fHFOutputL = fGn*fLeft_HF_Out*fHFOutputGain;
 fl oat fHFOutputR = fGn*fRight_HF_Out*fHFOutputGain;

 // meter output
 m_fMeterLFOut = 0.5*(fLFOutputL + fLFOutputR);
 m_fMeterHFOut = 0.5*(fHFOutputL + fHFOutputR);

 // meter GR
 m_fMeterHFGr = 1.0 - fGn;

 // sum outputs
 fl oat fLeftOutput = fLFOutputL + fHFOutputL;
 fl oat fRightOutput = fLFOutputR + fHFOutputR;

 // write the outputs
 pOutputBuffer[0] = fLeftOutput;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNum InputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = fRightOutput;

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNum InputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = fRightOutput;
 }

486 Chapter 13

 Build and test the plug-in. This is a complex device with many interactions. It can sound a lot

like an equalizer because it is a very special case of one. Be careful with gain and threshold

settings.

 Ideas for future projects might include:

• Add separate left, right, HF, and LF meters instead of summing them.

• Add the look-ahead function.

• Split the input into three or more bands (tricky—make a band-pass fi lter by cascading two

Linkwitz–Riley fi lters, and be careful how you sum the band edges) and run dynamics

processing on each band.

• Make a feed-back topology compressor.

• Add parallel compression—a dry path that mixes with the effected signal in a user- chosen

ratio.

• Try alternate side-chain confi gurations (next).

 13.6 Alternate Side-Chain Confi gurations

 As Reiss points out, there are several different confi gurations for the contents of the side-

chain. The version we’ve used so far is a standard linear timing placement confi guration.

One alternate confi guration is called the biased confi guration, in which the attack and release

levels start at the threshold, not zero. Figure 13.13 shows this confi guration. Reiss notes that

this has the effect of allowing the release part of the envelope to fade out when the input

drops below the threshold. If you want to try to implement this one, you will need to make

a modifi cation to the built-in CEnvelopeDetector object to set the low limit levels of the

attack and release times—which depend on the linear magnitude of the signal—to match the

threshold (which is in dB).

 The other two confi gurations involve the location of the attack and release controls. In

the post-gain confi guration shown in Figure 13.14 the attack and release controls follow

the output of the gain computer and are not intermixed with the RMS detector. The post-

gain confi guration can also be implemented in RackAFX. You will need to use two

CEnvelopeDetectors. The fi rst one runs in RMS mode with zero attack and zero release times.

It feeds the gain calculator. The second detector follows the gain computer, runs in PEAK

mode and has the user-controlled attack and release controls connected to it. Example code is

available at the www.willpirkle.com .

 A second variation called log-domain, shown in Figure 13.15, places the timing controls

after the gain computer but before the conversion to the linear domain. It could also be

implemented using an extra detector placed in the proper location in the side-chain.

www.willpirkle.com .

Dynamics Processing 487

 Bibliography

 Ballou, G. 1987. Handbook for Sound Engineers , pp. 850–860. Carmel, IN: Howard W. Sams & Co.

 Floru, F. 1998. “Attack and Release Time Constants in RMS-Based Feedback Compressors.” Journal of the Audio
Engineering Society preprint 4703: 1–4 .

 Pirkle, W. C. 1995. “Applications of a New High-Performance Digitally-Controlled Audio Attenuator in Dynamics

Processing.” Journal of the Audio Engineering Society preprint 3970: 1–8.

 References

 Orfanidis, S. 1996. Introduction to Signal Processing , Chapters 10–11. Englewood Cliffs, NJ: Prentice-Hall.

 Reiss, J. 2011 (October). Under the hood of a dynamic range compressor. Paper presented at the 131st Audio

Engineering Society Convention, New York (Tutorials).

 Zöler, U. 2011. DAFX—Digital Audio Effects , Chapter 4. West Sussex, U.K.: John Wiley & Sons.

 Figure 13.13: In the biased confi guration, the threshold is used to
set the attack and release starting levels.

 Figure 13.14: The post-gain confi guration with timing controls
placed after the gain computer.

 Figure 13.15: The log-domain timing confi guration places the timing
controls after the gain computer but before linear conversion.

RMS
Detector

log
Conversion

gain calc
(dB)

lin
Conversion

Threshold Ratio Knee

W ρ
Release Attack

dO

RMS
Detector

log
Conversion

gain calc
(dB)

lin
Conversion

Attack

Release

Release Attack Threshold Ratio Knee

W ρ do

RMS
Detector

log
Conversion

gain calc
(dB)

Attack

Release

lin
Conversion

Release Attack Knee

W
Threshold Ratio

ρ dO

489

 CHAPTER 14

Miscellaneous Plug-Ins

 There are a few effects left over that didn’t have an exact chapter to reside in, so they are

presented here. Interestingly, they are some of the simplest to implement but can have a

massive sonic impact on the audio they process. These effects include

• Tremolo

• Auto-panning

• Ring modulation

• Wave shaping

 14.1 Design a Tremolo/Panning Plug-In

 The tremolo is a modulated amplitude effect that uses a low-frequency oscillator (LFO) to

directly modulate the output. The LFO waveform is usually triangular or sinusoidal. If the

LFO is a square wave, it produces a gapping effect, where intermittent chunks of audio are

alternatively muted then restored to unity gain. An auto-panning algorithm pans the signal

from left to right following an LFO. Since they are both amplitude-based effects we can

combine them into one plug-in. The block diagrams are shown in Figure 14.1 .

 We will allow the user to switch between tremolo and auto-panning modes. For the tremolo,

the LFO will be in unipolar mode, swinging between 0 and 1.0, and the LFO depth will

 Figure 14.1 : (a) A tremolo effect uses an LFO to modulate the amplitude of
 the input. (b) The auto-panning plug-in uses the LFO to calculate

scaling values for the two digitally controlled amplifi ers DCA L and DCA R
to pan the signal from the left to the right.

Input

(a) LFO

DCA Output Input

(b)
DCA L R Output

LFO

L Output DCA L

Pan
Calculation

490 Chapter 14

modulate the amplitude of the input signal. The only tricky part is to decide how far below

1.0 the effect will reduce gain. For the tremolo, we defi ne the depth as follows:

• Depth 5 100%, the gain will swing from 0.0 to 1.0

• Depth 5 75%, the gain will swing from 0.25 to 1.0

• Depth 5 50%, the gain will swing from 0.5 to 1.0

 For auto-panning, a depth of 0 yields no effect while 100% pans the signal through the

full left–right stereo fi eld. The panning is calculated using the constant power pan rule

(Equation 14.1). In fact, any plug-in you design that has a pan control on it needs to use the

same calculation. Instead of linearly adjusting the left and right gains, they follow the curves

of the fi rst quarter cycle of a sin/cos pair. This way, they overlap at the 0.707 points. It should

be noted there are other panning schemes, but this one seems to be the most common. The

LFO must be in bipolar mode for this to work easily.

p 5
p

4
 1LFO 1 1 2

GainL 5 cos 1p 2
GainR 5 sin 1p 2
LFO is bipolar

 (14.1)

 14.1.1 Project: TremoloPanner

 Create the project and name it “TremoloPanner.” There are no other objects or options to add.

 14.1.2 TremoloPanner: GUI

 We need rate and depth controls for the LFO and buttons to change the LFO type and the

operational mode of the plug-in shown in Table 14.1 .

 TremoloPanner.h File

 We need to add a wave table object and two gain calculation functions, one for the tremolo

and one for the panner; notice the pass-by-pointer method used to return the left and right

gain values for the panner.

 // Add your code here: -- //
 // a single LFO
 CWaveTable m_LFO;

 // a function to calculate the amplitude based on LFO
 fl oat calculateGainFactor(fl oat fLFOSample);

 void calculatePannerGainFactor(fl oat fLFOSample, fl oat* pLeftVolume,
 fl oat* pRightVolume);

 // END OF USER CODE --- //

Miscellaneous Plug-Ins 491

 Table 14.1: TremoloPanner graphical user interface (GUI) controls.

Slider Property Value Slider Property Value

Control Name Mod Rate Control Name Mod Depth
Units Hz Units %

Variable Type fl oat Variable Type fl oat
Variable Name m_ModRate Variable Name m_fModDepth

Low Limit 0.02 Low Limit 0
High Limit 25 High Limit 100

Initial Value 5 Initial Value 50

Button Property Value

Control Name Mode
Units

Variable Type enum
Variable Name m_uMode
Enum String Tremolo, Panner

Button Property Value

Control Name LFO
Units

Variable Type enum
Variable Name m_uLFO_Waveform
Enum String sine, saw, tri, square

 TremoloPanner.cpp File

 The tremolo gain calculation will:

• Multiply the LFO sample by depth/100.0.

• Add the value 1.0-depth /100.0 to the result.

 That provides the mapping we need for the effect.

 fl oat CTremoloPanner::calculateGainFactor(fl oat fLFOSample)
 {

 // fi rst multiply the value by depth/100
 fl oat fOutput = fLFOSample*(m_fModDepth/100.0);

 // then add the value (1 — m_fModDepth/100.0)
 fOutput += 1 — m_fModDepth/100.0;

 return fOutput;
 }

 void CTremoloPanner::calculatePannerGainFactor(fl oat fLFOSample,
 fl oat* pLeftVolume, fl oat* pRightVolume)

 {
 // calc sin/cos quadrant location
 fl oat fPan = ((m_fModDepth/100.0)*fLFOSample + 1)*pi/4.0;

 // equal power calculation
 *pLeftVolume = cos(fPan);
 *pRightVolume = sin(fPan);

 }

492 Chapter 14

 prepareForPlay()

• Initialize the LFO.

• Forward the prepareForPlay() method to the LFO.

 bool __stdcall CTremoloPanner::prepareForPlay()
 {

 // Add your code here:
 m_LFO.m_fFrequency_Hz = m_fModRate;
 m_LFO.m_uPolarity = m_uMode == Panner ? 0 : 1; // 0 = bipolar, 1 = unipolar
 m_LFO.m_uTableMode = 0; // normal, no band limiting
 m_LFO.m_uOscType = m_uLFO_Waveform;
 m_LFO.setSampleRate(m_nSampleRate); // really important!

 // the LFO prepareForPlay() calls reset() and cookFrequency()
 m_LFO.prepareForPlay();

 return true;
 }

 userInterfaceChange()

• Decode the control index and update variables as needed.

• Note: Make sure you check your nControlIndex values to match your GUI.

 bool __stdcall CTremoloPanner::userInterfaceChange(int nControlIndex)
 {

 // decode the control index, or delete the switch and use brute force calls
 switch(nControlIndex)
 {

 case 0:
 {

 m_LFO.m_fFrequency_Hz = m_fModRate;
 m_LFO.cookFrequency();
 break;

 }

 // 41: LFO Waveform change
 case 41:
 {

 m_LFO.m_uOscType = m_uLFO_Waveform;
 break;

 }

 case 42:
 {

 if(m_uMode == Panner)
 m_LFO.m_uPolarity = 0; // 0 = bipolar, 1 = unipolar

 else // is tremolo
 m_LFO.m_uPolarity = 1; // 0 = bipolar, 1 = unipolar

 break;
 }

 }
 }

Miscellaneous Plug-Ins 493

 processAudioFrame()

• Generate the LFO value.

• Calculate the channel gain values according to the mode.

 In processAudioFrame() we need to generate a new LFO value, calculate the new gain factor,

then implement the gain function.

 bool __stdcall CTremoloPanner::processAudioFrame(fl oat* pInputBuffer,
 fl oat* pOutputBuffer,
 UINT uNumInputChannels,
 UINT uNumOutputChannels)

 {
 // Do LEFT (MONO) Channel; there is always at least one input/one output
 fl oat fYn = 0; // normal output
 fl oat fYqn = 0; // quad phase output

 // call the LFO function; we only need fi rst output
 m_LFO.doOscillate(&fYn, &fYqn);

 // setup necessary variables
 fl oat fGnL = 1.0;
 fl oat fGnR = 1.0;
 fl oat fMonoIn = 0.0;

 // branch
 if(m_uMode == Tremolo)

 fGnL = calculateTremoloGainFactor(fYn);
 else // panner sums inputs
 {

 if(uNumInputChannels == 1)
 fMonoIn = pInputBuffer[0];

 else
 fMonoIn = 0.5*(pInputBuffer[0] + pInputBuffer[1]);

 calculatePannerGainFactor(fYn, &fGnL, &fGnR);
 }

 // do MONO (Left) channel
 pOutputBuffer[0] = pInputBuffer[0]*fGnL;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0]; // just copy

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 {

 // branch
 if(m_uMode == Tremolo)
 {

 // do right channel, use same gain as left
 pOutputBuffer[1] = pInputBuffer[1]*fGnL;

 }

494 Chapter 14

 else
 {

 // do right channel, its value
 pOutputBuffer[1] = pInputBuffer[1]*fGnR;

 }
 }

 return true;
 }

 Build and test the plug-in. Try raising the LFO rate maximum from 20 Hz to something like

200 or 2 kHz; the results are quite interesting.

 14.2 Design a Ring Modulator Plug-In

 Ring modulation is accomplished by multiplying the input signal against a sinusoid called

the carrier , as shown in Figure 14.2 . This is technically amplitude modulation or frequency

mixing. The resulting signal contains sum and difference pairs of each frequency present in

the signal. For example, if the carrier is 250 Hz and the input signal is 1 kHz, the output will

consist of two frequencies, 1 kHz] 250 Hz 5 750 Hz and 1 kHz 1 250 Hz 5 1.25 kHz. The

original input signal at 1 kHz is gone. For complex audio signals, this process happens for

every frequency component that the signal contains. The resulting output can sound nothing

like the input. Drums change their pitches and full spectrum signals become obliterated.

Because of the sum and difference pair, aliasing will occur when the sum signal goes outside

Nyquist. One way to handle the aliasing is to band-split the signal just like the spectral

compressor and only process the lower frequencies. Though not a perfect solution, it will

at least alleviate some of the aliasing. The ring modulator project here only implements the

frequency modulation without addressing aliasing problems.

 14.2.1 Project: RingModulator

 Create a project and name it “RingModulator.” There are no other objects or options to add.

 14.2.2 RingModulator: GUI

 We need frequency and depth controls for the carrier oscillator in Table 14.2 . The depth

control will increase or decrease the amount of modulation.

 Figure 14.2: The ring modulator block diagram.

Input Output

Carrier

Miscellaneous Plug-Ins 495

 Table 14.2: RingModulator plug-in GUI controls.

Slider Property Value Slider Property Value

Control Name Mod Freq Control Name Mod Depth
Units Hz Units %

Variable Type fl oat Variable Type fl oat
Variable Name m_fModFrequency Variable Name m_fModDepth

Low Limit 100 Low Limit 0
High Limit 5000 High Limit 100

Initial Value 1000 Initial Value 50

 14.2.3 RingModulator.h File

 We only need to add a single wave table object to implement the carrier oscillator.

 // Add your code here: -- //

 // the Carrier Oscillator
 CWaveTable m_Oscillator;

 // END OF USER CODE --- //

 14.2.4 RingModulator.cpp File

 prepareForPlay()

• Initialize the oscillator.

• Forward the preareForPlay() method to the oscillator.

 bool __stdcall CRingModulator::prepareForPlay()
 {

 // Add your code here:
 m_Oscillator.m_fFrequency_Hz = m_fModFrequency;
 m_Oscillator.m_uPolarity = 0; // 0 = bipolar, 1 = unipolar
 m_Oscillator.m_uTableMode = 0; // normal, no band limiting
 m_Oscillator.m_uOscType = 0; // 0 = sin()
 m_Oscillator.setSampleRate(m_nSampleRate); // really important!

 // the prepareForPlay() calls reset() and cookFrequency()
 m_Oscillator.prepareForPlay();

 return true;
 }

 userInterfaceChange()

• If the frequency slider moves, change the oscillator frequency and call the cooking

 function.

• The depth control is a direct-control variable, so it does not need any attention here.

496 Chapter 14

 bool __stdcall CRingModulator::userInterfaceChange(int nControlIndex)
 {

 // decode the control index, or delete the switch and use brute force calls
 switch(nControlIndex)
 {

 case 0:
 {

 m_Oscillator.m_fFrequency_Hz = m_fModFrequency;
 m_Oscillator.cookFrequency();
 break;

 }

 default:
 break;

 }

 return true;
 }

 processAudioFrame()

• Generate a new carrier oscillator value.

• Multiply the input signal against it.

 bool __stdcall CRingModulator::processAudioFrame(fl oat* pInputBuffer, fl oat*
 pOutputBuffer, UINT uNumInputChannels,
 UINT uNumOutputChannels)

 {
 // Do LEFT (MONO) Channel; there is always at least one input/one output

 // generate carrier
 fl oat yn, yqn;
 m_Oscillator.doOscillate(&yn, &yqn);

 // multiply
 pOutputBuffer[0] = pInputBuffer[0]*yn*(m_fModDepth/100.0);

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0];

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pInputBuffer[1]*yn*(m_fModDepth/100.0);

 return true;
 }

 Build and test the plug-in. You may fi nd it to be a remarkable effect or you may think it

sounds awful. Some things you could do to modify this project include:

• Use multiple carrier frequencies.

• Use series or parallel multiple modulation.

• Use an LFO to modulate the carrier frequency.

Miscellaneous Plug-Ins 497

 14.3 Design a Wave Shaper Plug-In

 Wave shaping is a method of nonlinear processing that adds harmonics to the input signal

as a result. It is used in synthesizers and distortion algorithms. Because harmonics are

added to the signal, wave shapers suffer from aliasing problems, like the ring modulator.

The process of wave shaping is simple because no memory elements are required. You

treat the input signal x as the argument to a function. The function is often a trigonometric

or polynomial function. An interesting function to use is the arctangent. It is part of a

family of functions called sigmoid functions . Sigmoid functions produce S-shaped curves.

The amplitude transfer function of a vacuum tube generally resembles a sigmoid, so this

function can be used to try to mimic a tube sound. Figure 14.3 shows the arctangent

function atan(kx), where k controls the amplitude of the input value and thus the amount

of nonlinear processing applied. The exact equation is shown in Equation 14.2 , where

a normalization factor has been added to restrict the output to the range of 21 to 11.

You can see in Figure 14.3 that with k 5 1, the input/output relationship is nearly linear.

As k increases, the S-shaped curve emerges and adds gain. For example, with k 5 5 and

 x (n) 5 0.25, y (n) is about 0.6.

 y(n) 5
1

arctan(k)
 arctan(kx(n)) (14.2)

 Asymmetrical distortion can be implemented easily by using two different k -values, one for

positive input samples and the other for negative ones. This asymmetrical distortion is found

in Class-A tube circuits. Cascading multiple stages will result in more harmonic distortion.

In some amplifi ers, many stages are cascaded in series. Class A tube circuits also invert the

signal. This means that the asymmetrical distortion curves are also inverted in between each

stage. The resulting sound is quite different than simply cascading the modules without

 Figure 14.3 : The input/output relationship for Equation 14.1 with k 5 1 and k 5 5.

y(n)
+1

– 1
x(n) +1

– 1

k = 1 k = 5
– 1

– 1 +1
x(n)

y(n)
+1

498 Chapter 14

inversion. We will design a plug-in that will implement the arctangent wave shaping and

allow the user to adjust the following:

• The k -value for both the positive and negative halves of the input signal

• The number of stages in series, up to 10

• Inverting or not inverting every other stage when cascaded

 14.3.1 Project: WaveShaper

 Create a project and name it “WaveShaper.” There are no other objects or options to add.

 14.3.2 WaveShaper: GUI

 Add the controls in Table 14.3 to implement the GUI we will need for the WaveShaper

project.

 Table 14.3: WaveShaper plug-in GUI controls.

Slider Property Value Slider Property Value

Control Name +Atan Exp Control Name –Atan Exp
Units Units

Variable Type fl oat Variable Type fl oat
Variable Name m_fArcTanKPos Variable Name m_fArcTanKNeg

Low Limit 0.10 Low Limit 0.10
High Limit 20 High Limit 20

Initial Value 1 Initial Value 1

Slider Property Value Slider Property Value

Control Name Stages Control Name Invert Stages
Units Units

Variable Type fl oat Variable Type enum
Variable Name m_nStages Variable Name m_uInvertStages

Low Limit 1
High Limit 10

Initial Value 1 Enum String OFF,ON

 WaveShaper.h File

 There’s nothing to do in the .h fi le as we require no additional variables, memory storage

spaces, methods, or objects!

 WaveShaper.cpp File

 The only method that needs to be altered is processAudioFrame().

Miscellaneous Plug-Ins 499

 bool __stdcall CWaveShaper::processAudioFrame(fl oat* pInputBuffer, fl oat* pOutputBuffer,
 UINT uNumInputChannels,
 UINT uNumOutputChannels)

 {
 // Do LEFT (MONO) Channel; there is always at least one input/one output
 // (I NSERT Effect)
 fl oat f_xn = pInputBuffer[0];

 // cascaded stages
 for(int i=0; i<m_nStages; i++)
 {

 if(f_xn >= 0)
 f_xn = (1.0/atan(m_fArcTanKPos))*atan(m_fArcTanKPos*f_xn);

 else
 f_xn = (1.0/atan(m_fArcTanKNeg))*atan(m_fArcTanKNeg*f_xn);

 // invet every other stage
 if(m_uInvertStages == ON && i%2 == 0)

 f_xn *= -1.0;
 }

 pOutputBuffer[0] = f_xn;

 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)

 pOutputBuffer[1] = pOutputBuffer[0];

 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 {

 fl oat f_xn = pInputBuffer[0];

 // cascaded stages
 for(int i=0; i<m_nStages; i++)
 {

 if(f_xn >= 0)
 f_xn = (1.0/atan(m_fArcTanKPos))*atan(m_
fArcTanKPos*f_xn);

 else
 f_xn = (1.0/atan(m_fArcTanKNeg))*atan(m_
fArcTanKNeg*f_xn);

 // invet every other stage
 if(m_uInvertStages == ON && i%2 == 0)

 f_xn *= −1.0;
 }

 pOutputBuffer[1] = f_xn;
 }

 return true;
 }

500 Chapter 14

 Build and test the plug-in. Note that in order to fully replicate a tube circuit you will need

much more than just the distortion component, as tube circuits are amplitude sensitive and

band limited. However, this plug-in is a good place to start for experimenting with nonlinear

processing.

 Bibliography

 Black, H. S. 1953. Modulation Theory . New York: Van Nostrand-Reinhold.

 Dodge, C. and T. Jerse. 1997. Computer Music Synthesis, Composition and Performance , Chapter 4. New York:

Schirmer.

 Roads, C. 1996. The Computer Music Tutorial , Chapter 2. Cambridge, MA: The MIT Press.

 U.S. Navy. 1973. Basic Electronics , Rate Training Manual NAVPES, 10087-C . New York: Dover Publications.

501

 Once you learn how to design plug-ins with RackAFX you will fi nd that learning other

plug-in application programming interfaces (APIs) is fairly straightforward. The main

reason is that most of the plug-in APIs share very similar structuring and function calls as

RackAFX. An analogy might be learning to fl y: once you have the fundamentals of solo

fl ight internalized, learning to fl y different kinds of airplanes is a matter of understanding

the peculiarities of each one. You don’t need to worry about the principles of lift, drag,

pitch, and yaw after you’ve mastered them. The current popular plug-in APIs include

Steinberg’s Virtual Studio Technology (VST), Apple Computer’s Audio Units (AU) , and

Avid’s Avid Audio eXtension (AAX) ® formats. If you want to write for these APIs, the

fi rst step is to set up a developer account with the manufacturers via their websites. Once

you have an account you can download their API documentation and SDKs (software

development kits), which include sample code templates. The VST and AU APIs are

publicly documented, while AAX is not. Like RackAFX, VST plug-ins are written in

straight C++ without the need for external frameworks or foundation classes. AU plug-ins

are not and require a good working knowledge of Mac programming to develop. Once you

have a RackAFX plug-in, how can you make it work in other plug-in APIs?

 A.1 Compiling as a VST Plug-In in Windows

 The simplest way to use your RackAFX plug-in in a third-party client is to take advantage

of the fact that you can set your project to compile as a dynamic link library (DLL) that

is compatible with both RackAFX and VST on the Windows operating system (OS). You

can enable this functionality when you create your project or later in development. If you

already have a project in development, use File S Edit Project or the Edit button on the

user interface (UI). On the edit project dialog, check the “Make VST Compatible” box, as

shown in Figure A.1 . The resulting DLL will work with both RackAFX and any Windows

VST client. Just copy the DLL from your /PlugIns folder to the designated VST folder

for the client.

 The GUI options are as follows:

• Use VST client’s GUI: VST clients will provide you with a default interface whose

look and feel are determined by the client’s manufacturer. These range from a simple

 APPENDIX A

 The VST® and AU® Plug-In APIs

502 Appendix A

bank of sliders to more elaborate GUIs. The client will query your plug-in for control

information and build the GUI at run time. You do not have to provide any extra code

for this option.

• Use RackAFX custom GUI: If you have the proper version of RackAFX, this button

will be enabled. Choosing this option will allow the GUI you create with GUI

 designer (Appendix B) to be used by the VST client. It will look and work identically

to the one you create in RackAFX. You do not have to provide any extra code for

this option.

• I will write my own GUI: If you have the skills to do this, then you can check this box

and write your own GUI. The client will call a method on your plug-in to launch your

GUI. All details of the GUI are your responsibility and you must provide the code and

have the necessary resource editor.

 For the last option, fi rst look in the PlugIn.h fi le and fi nd the fl ag and three methods you need

to override.

 // set this to TRUE if you have your own GUI to use; not for RackAFX GUIs
 bool m_bUserCustomGUI;

 First, set the m_bUserCustomGUI fl ag to “true” in your constructor. This will tell the client

that you have your own GUI. Next, override the following three methods:

 // for user (NOT RackAFX) generated resources/GUIs

 virtual void __stdcall showGUI(HWND hParentWnd);

 virtual void __stdcall hideGUI(HWND hParentWnd);

 virtual void __stdcall refreshGUI(HWND hParentWnd);

• The client calls showGUI() to show it.

• The client calls hideGUI() to hide it.

• The client calls refreshGUI() to update it. See Appendix B for more information about

updating.

Figure A.1: The VST Compatible switch reveals three options for the GUI.

The VST® and AU® Plug-In APIs 503

 In the three methods, the argument is the client’s window handle. You will need to create your

child window using the client’s handle as your parent. If you don’t know what that means,

you probably shouldn’t be using this option.

 A.2 Wrapping Your RackAFX Plug-In

 Your RackAFX plug-in will compile on Windows (Visual Studio) or Mac (Xcode) because it

is pure C++ with some # defi ne statements added to split out the Windows- and Mac-specifi c

components. The audio signal processing and GUI component objects are all done in C++

so your plug-in object can be wrapped with an outer C++ object that translates function calls

from the VST or AU client into RackAFX function calls. This is exactly what happens when

you choose the “Make VST Compatible” option; when the client requests a VST object, it

receives one with your plug-in embedded inside as a member object. The wrapper object

then forwards calls to your plug-in and returns information or audio data to the client, as

shown in Figure A.2 . Your plug-in exposes an interface of public methods (gray boxes). The

wrapper exposes its API specifi c methods (white boxes) which the client calls. The translation

usually involves a simple forwarding method call. Sometimes more than one wrapper method

connects to a single plug-in method. Other times, the wrapper method only needs to return a

success code or special string so there is nothing to call on the plug-in object.

 If you want to write a wrapper object, it is fairly straightforward, as you will see in Section A.3

when we compare the different API function calls. However, you need to know a bit more about

how your GUI objects are designed so you can use the GUI controls you set up in RackAFX.

Alternatively, you can implement your own scheme. When you set up a control in RackAFX,

Figure A.2: A wrapper object exposes a client specifi c interface and routes calls to
and from the plug-in.

Client Wrapper Plug-In

RackAFX Plug-In

Constructor

Destructor

prepareForPlay()

userlnterfaceChange()

processAudioFrame()

RackAFX function Wrapper function

504 Appendix A

you are really creating a new C++ object that is added to a linked list. The linked list is a

member of your CPlugIn class named “m_UIControlList.” It contains a list of C++ CUICtrl

 objects. A CUICtrl object can represent one of the following:

• Slider

• Radio button bank

• Meter

 The simplest way to explain is by example. Look in your initUI() method for any plug-in and

you will see the instantiation and initialization of the GUI objects. Here’s the fi rst part of the

volume slider code from the very fi rst project. The highlights are in bold. Remember, do not
ever edit this code manually .

 m_fVolume = 0.750000;
 CUICtrl ui0;
 ui0.uControlType = FILTER_CONTROL_CONTINUOUSLY_VARIABLE;
 ui0.uControlId = 0;
 ui0.fUserDisplayDataLoLimit = 0.000000;
 ui0.fUserDisplayDataHiLimit = 1.000000;
 ui0.uUserDataType = fl oatData;
 ui0.fInitUserIntValue = 0;
 ui0.fInitUserFloatValue = 0.750000;
 ui0.fInitUserDoubleValue = 0;
 ui0.fInitUserUINTValue = 0;
 ui0.m_pUserCookedIntData = NULL;
 ui0.m_pUserCookedFloatData = &m_fVolume;
 ui0.m_pUserCookedDoubleData = NULL;
 ui0.m_pUserCookedUINTData = NULL;
 ui0.cControlUnits = “ ”;
 ui0.cVariableName = “m_fVolume”;
 ui0.cEnumeratedList = “SEL1,SEL2,SEL3”;
 ui0.dPresetData[0] = 0.000000;ui0.dPresetData[1] <SNIP SNIP SNIP>
 ui0.cControlName = “Volume”;

 The very fi rst line initializes the underlying variable, m_fVolume, as you set it up when you

created the slider. The control type is FILTER_CONTROL_CONTINUOUSLY_VARIABLE,

which means a continuous controller. The uControlID is 0—this is the value that is passed

to userInterfaceChange() when a control is manipulated. This “unique ID” paradigm for

identifying the control is universal among the other plug-in APIs. The connection to the

variable itself is via a pointer. Since this is a fl oat variable, m_pUserCookedFloatData is set

to the address of the underlying variable. This is how RackAFX manipulates it for you. When

you wrap your plug-in you can use this to control the variable as well. Of course, you can

always use other schemes. The units variable codes several items and will need to be trimmed

of white spaces before you use it (do not alter its length in the object, however). Thus, you

can see the fundamentals about each variable: the ID, minimum, maximum, and initial value,

and the name and units. These are all used in the other plug-in APIs as well.

The VST® and AU® Plug-In APIs 505

 RackAFX automatically sorts the GUI component objects by type. The sliders and radio

button banks are supported by the default GUIs for the VST and AU formats but the meters

are not. The m_UIControlList is defi ned in pluginconstants.h and exposes several methods for

you to use:

 int count(); // returns the total number of GUI objects
 int countLegalVSTIF(); // returns the number of legal VST Default GUI objects
 CUICtrl* getAt(int nIndex); // returns a pointer to a GUI object at a list index

 The CPlugIn object also has some helper functions for you to use. Once you know

the ID values for the controls, you can use the following CPlugIn methods to access

the objects:

 void setParameter (UINT index, fl oat value); // set a parameter 0 -> 1
 fl oat getParameter (UINT index); // get a parameter 0 -> 1

 These two methods are very important because they mimic the way a VST client will

be getting or setting values through the default interface. The index value is the index in
the linked list and not the ID value . Finally, for Windows plug-ins, you will often need

to know the name of the directory where your DLL exists for dealing with presets or

loading/saving custom information. CPlugIn exposes the method for you to use to get

that folder name.

 char* getMyDLLDirectory(); // return the DLL’s owning directory

 A.3 Comparison of Objects/Methods/GUIs

 RackAFX, VST, and AU share many similarities. First, they all require that you derive your

plug-in from a base class (or classes) that the manufacturer specifi es. They also implement

the same basic set of functionality that you’ve been coding all along. The base classes are

shown in Table A.1 . The comparison of methods is shown in Table A.2 .

 Table A.1: Comparison of base classes in the APIs.

API Base Class(es)

RackAFX CPlugIn

VST AudioEffect, AudioEffectX

AU AUBase, AUEffectBase,
AUKernelBase

 RackAFX automatically groups all the legal VST controls at the top of the control list. It
 provides you with these methods so you can iterate through your GUI objects when you write
your wrapper translation code.

506 Appendix A

 Table A.2: Comparison of the functions and the methods that implement them.

Function RackAFX VST AU

Instantiation CPlugIn() AudioEffectX() AUEffectBase()
AUKernelBase()

Destruction ~CPlugIn() ~AudioEffectX() ~AUEffectBase()
~AUKernelBase()

Initialization prepareForPlay() resume() Initialize()

Prepare For Play prepareForPlay() setSampleRate()
updateSampleRate()

resume()

N/A

Process Audio processAudioFrame() processReplacing() Process()
ProcessBufferList()

Get UI Control Value getParameter()
(optional)

getParameter() GetParameter()

Set UI Control Value userInterfaceChange()
(optional)

setParameter() SetParameter()

Update GUI (see
Appendix B)

sendUpdateGUI() updateDisplay() N/A

Get the DLL’s Directory getMyDLLDirectory() getDirectory() N/A

Show a Custom GUI showGUI() dispatcher() AudioUnitGetProperty()

 RackAFX, VST, and AU all provide for a default standard interface—a GUI that the user

does not have to code. For RackAFX, you can optionally design your own custom GUI

with the GUI designer (Appendix B) that requires no coding; alternatively, you can design

your own (see Section A.1). VST and AU also allow you to design your own GUI. VST

provides a GUI class of objects that you can optionally use in your coding that allows for

cross-platform compatibility. AU only runs on Mac and does not provide cross-platform

compatibility. The default interface setup for RackAFX involves you simply fi lling in a

properties dialog for the components you want; the GUI object code is written for you. In

VST and AU, you must set up a way to describe your controls. In all three formats, when

you load your plug-in the client queries it for its default interface controls and then builds

the GUI at run time. In RackAFX, the client simply iterates through your linked list of

objects and sets up the GUI.

 A.4 VST Plug-in without Wrapping

 Let’s start by pretending to write a VST plug-in from scratch without wrapping any RackAFX

code—of course, you can always cut and paste processing or cooking functions directly

from your source, since it is pure C++. The pretend plug-in will be a delay with feedback

called CDelay.

The VST® and AU® Plug-In APIs 507

 A.4.1 Default GUI

 First, you defi ne an enumerated list of unsigned integer-type (UINT) constant values in your

Plugin.h fi le where “Plugin” is the name and you have derived it from the AudioEfffectX

base class. These constants are the control ID values the host will use when querying about,

getting, or setting a control variable. A delay plug-in might have delay time, feedback, and

wet/dry mix controls, so you might defi ne your enum as follows:

 enum
 {
 uDelayTime, /* ID = 0 */
 uFeedBack, /* ID = 1 */
 uWetDry, /* ID = 2 */

 uNumParams /* Always last = 3 = number of controls */
 };

 Next, you declare a parallel set of member variables that will be used in your plug-in. These

are for cooked data values.

 fl oat m_fDelayTime;
 fl oat m_fFeedBack;
 fl oat m_fWetDry;

 Finally, you declare the minimum and maximum values for each control.

 fl oat m_fMinDelayTime, m_fMaxDelayTime;
 fl oat m_fMinFeedBack, m_fMaxFeedback;
 fl oat m_fMinWetDry, m_fMaxWetDry;

 The last item in the enumeration keeps track of the control count by virtue of being last in the

list. During operation, the VST client will use these ID values passed as the variable “index”

in the following methods. First, there are three methods to fi ll out that describe the name,

display, and units for each control.

1. getParameterName: You create the name of the control as a string.

 void CDelay::getParameterName (long index, char *label)
 {
 switch (index)
 {
 case uDelayTime:strcpy (label, “Delay”); break;
 case uFeedBack: strcpy (label, “FeedBack”); break;
 case uWetDry: strcpy (label, “Wet/Dry”); break;
 }
 }

2. getParameterDisplay: You create a string that represents the value to display on

the UI; the fl oat2String() method is a helper function that is provided in the VST

 object fi le.

508 Appendix A

 void CDelay::getParameterDisplay (long index, char *text)
 {
 switch (index)
 {
 case uDelayTime: fl oat2string (m_fDelayTime, text); break;
 case uFeedBack: fl oat2string (m_fFeedBack, text); break;
 case uWetDry: fl oat2string (m_fWetDry, text); break;
 }
 }

3. getParameterLabel: You create a string that represents the units for the control.

 void CDelay::getParameterLabel (long index, char *label)
 {
 switch (index)
 {
 case uDelayTime:strcpy (label, "mSec"); break;
 case uFeedBack: strcpy (label, "%"); break;
 case uWetDry: strcpy (label, "%"); break;
 }
 }

 Next, there are two methods you need to implement to allow the client to get and set your

control variables. However, these methods deal with raw VST client data .

1. getParameter: You return the raw data (0–1) for the control.

 fl oat CDelay::getParameter (long index)
 {

 fl oat fRawData = 0;

 switch (index)
 {

 case uDelayTime:
 {

 fl oat fDiff = m_fMaxDelayTime – m_fMinDelayTime;
 fRawData = (m_fDelayTime – m_fMinDelayTime)/fDiff;
 break;

 }

 // same thing for the other variables
 }

 return fRawData;

 }

 All default VST controls use values from 0.0 to 1.0 regardless of how they map in your actual
plug-in. You must write the cooking and uncooking functions that will convert your internal
variable values to and from values from 0.0 to 1.0.

The VST® and AU® Plug-In APIs 509

2. setParameter: You cook the raw data (0–1) for use in your plug-in.
 void CDelay::setParameter (long index, fl oat value)
 {

 switch (index)
 {

 case uDelayTime:
 {

 m_fDelayTime = (m_fMaxDelayTime – m_fMinDelayTime)* value +
 fMinDelayTime;

 }

 // same thing for the other variables
 }

 }

 Thus, every time you add or remove a variable, you have to update your enumerated list,

change the variables and min/max pairs, and update the fi ve functions above.

 A.4.2 Signal Processing

 You will notice that you’ve already had to write a lot of code just to deal with the UI; you

have not written any code to do any meaningful processing. In RackAFX, you alter three

functions for signal processing:

1. Constructor

2. prepareForPlay()

3. processAudioFrame()

 Constructor

• Init all variables.

• Set our input and output channel count (this is also done in the CPlugIn constructor).

• Set a unique four-character identifi er (required by VST).

• Call the base class’s constructor to pass it the number of presets (0 for now) and number

of controls.

• The audioMasterCallback you see is a mechanism for client 4 plug-in communication;

its details are hidden from developers.

 CDelay::CDelay (audioMasterCallback audioMaster)
 : AudioEffectX (audioMaster, 0, uNumParams) // 0 presets, uNumParams controls

 {
 m_fDelayTime = 1000;
 m_fFeedback = 0;
 m_fWetDry = 50;

 // VST Specifi c setup
 setNumInputs (2);

510 Appendix A

 setNumOutputs (2);
 setUniqueID ('WDly');

 }

 prepareForPlay() u setSampleRate() and resume()

 prepareForPlay() is special for RackAFX because it is called after the sample rate is

set. In VST, this is done in setSampleRate(). We also use prepareForPlay() to fl ush out

our delay line buffers and do any other preparations for the next run of the plug-in.

The resume() function is called when the VST plug-in is turned on so we can fl ush

buffers there.

 void CDelay::setSampleRate(fl oat sampleRate)
 {

 // Left
 if(m_pLeftBuffer)

 delete m_pLeftBuffer;

 // create a 2 second buffer
 m_pLeftBuffer = new fl oat[2*(int) sampleRate];

 // Right
 if(m_pRightBuffer)

 delete m_pRightBuffer;

 // create a 2 second buffer
 m_pRightBuffer = new fl oat[2*(int) sampleRate];

 // fl ush buffers
 memset (m_pLeftBuffer, 0, 2*(int) sampleRate * sizeof (fl oat));
 memset (m_pRightBuffer, 0, 2*(int) sampleRate * sizeof (fl oat));

 }

 void CDelay::resume()
 {

 // fl ush buffer
 memset (m_pLeftBuffer, 0, 2*(int) sampleRate * sizeof (fl oat));
 memset (m_pRightBuffer, 0, 2*(int) sampleRate * sizeof (fl oat));

 // reset read/write indices, etc…
 m_nReadIndex = 0;
 m_nWriteIndex = 0;

 etc…
 }

 processAudioFrame() u processReplacing()

 The fundamental difference in the processing functions is in how the data arrives. In

RackAFX, the default mechanism is that it arrives in frames, where each frame is a sample

The VST® and AU® Plug-In APIs 511

from each channel. The frames arrive as pointers to buffers. In VST, the audio is processed

in buffers of frames, rather than single frames. Figure A.3 shows a two-channel in and

two-channel out VST setup.

 Instead of passing a pointer to a buffer, you pass a pointer to a buffer of pointers, or fl oat**

variables. The processReplacing() method also passes you a count of the number of frames.

You use these variables to iterate through and access your audio data. VST was designed

to allow you to have any number of input and output channels, which you specify in the

constructor. The parameters that are passed to the processReplacing() method are as follows:

• fl oat** inputs: A pointer to a buffer of pointers to input buffers

• fl oat** outputs: A pointer to a buffer of pointers to output buffers

• Long sampleframes: The count of frames in each buffer

 void CDelay::processReplacing(fl oat **inputs, fl oat **outputs, long sampleframes)
 {

 // pick up pointers to buffers
 fl oat *inL = inputs[0];
 fl oat *inR = inputs[1];
 fl oat *outL = outputs[0];
 fl oat *outR = outputs[1];

 UINT uFrameCount = 0;

 while (––sampleFrames >= 0)
 {

 // pick up samples from buffers
 fl oat fxnL = inL[uFrameCount];
 fl oat fxnR = inR[uFrameCount];

 // calculate and write out
 outL[uFrameCount] = doLeftDelayFunction(fxnL);
 outR[uFrameCount] = doRightDelayFunction(fxnR);

Figure A.3: VST audio data is delivered in buffers of frames.

Inputs

inputs[0]

inputs[1]

Left Input

Right Input

Outputs

outputs[0]

outputs[1]

Left Output

Right Output

512 Appendix A

 // inc frame counter
 uFrameCount++;

 }
 }

 You can now see the similarities and differences in RackAFX and VST:

• There’s more overhead for dealing with the GUI—even if you write your own GUI, you

must provide the default implementation functions because not all VST clients have

 custom GUI capability.

• VST uses setSampleRate() and resume() to change the sample rate or restart the

plug-in.

• VST processes in buffers of frames rather than frames.

 A.5 VST Plug-In with RackAFX Wrapping

 To wrap the RackAFX plug-in you fi rst need to create a new AudioEffectX derived class.

Then, you make one of the member variables a RackAFX plug-in object. Suppose you have a

delay plug-in named “CStereoDelay” and you want to embed it into the VST plug-in. In the

.h fi le you simply declare an instance of it: CStereoDelay m_Delay.

 A.5.1 Default GUI

 You still need to fi ll in those fi ve VST functions, but you will be using your plug-in to supply

the information.

 getParameterName

• Copy the name of object; you use the getAt() method to fi nd the UI object in the

linked list.

 void CDelay::getParameterName (long index, char *label)
 {

 // get the GUI object
 CUICtrl* pUICtrl = m_Delay.m_UIControlList.getAt(index);
 if(!pUICtrl) return;

 // copy the ControlName
 strcpy (label, pUICtrl->cControlName);

 }

 getParameterDisplay

• Access the variable via the pointer; this example assumes all parameters are fl oat

 variables, but you can always check the value of the uUserDataType variable to fi nd out

what kind of variable the object stores and branch accordingly.

The VST® and AU® Plug-In APIs 513

 void CDelay::getParameterDisplay (long index, char *text)
 {

 // get the GUI object
 CUICtrl* pUICtrl = m_Delay.m_UIControlList.getAt(index);
 if(!pUICtrl) return;

 // use the helper function to copy the data
 fl oat2string (*pUICtrl->m_pUserCookedFloatData, text);

 }

 getParameterLabel

• You create a string that represents the units for the control.

 void CDelay::getParameterLabel (long index, char *label)
 {

 // get the GUI object
 CUICtrl* pUICtrl = m_Delay.m_UIControlList.getAt(index);
 if(!pUICtrl) return;

 // copy the ControlUnits
 strcpy (label, pUICtrl->cControlUnits);

 }

 setParameter/getParameter

• Here is where the CPlugIn helper functions work for you; all you need to do is forward

the call.

 fl oat CDelay::getParameter(long index)
 {

 return m_Delay.getParameter(index);
 }
 void CDelay::setParameter(long index, fl oat value)
 {

 m_Delay.setParameter(index, value);
 }

 Constructor

 For the constructor you will need to handle one minor detail: you need to know how many

legal VST controls you have. Unfortunately, you need to pass these to the AudioEffect base

class constructor before your member object plug-in is constructed. You will need to count

your slider controls (including any embedded in the LCD control in Appendix B) and radio

button bank controls. You can also look through the initUI() method and count all control

objects with either the FILTER_CONTROL_CONTINUOUSLY_VARIABLE or FILTER_

CONTROL_RADIO_SWITCH_VARIABLE as the uControlType. In this case, we have three

legal VST controls.

514 Appendix A

 CDelay::CDelay (audioMasterCallback audioMaster)
 : AudioEffectX (audioMaster, 0, 3) // 0 presets, 3 controls

 {
 // child object is now instantiated
 //
 // VST Specifi c setup; get info from embedded plug-in
 setNumInputs (m_Delay.m_uMaxInputChannels);
 setNumOutputs (m_Delay.m_uMaxOutputChannels);
 setUniqueID ('WDly');

 }

 processReplacing

• In order to use processReplacing() you need to combine samples from the input/output

(I/O) buffers into frames to send the processAudioFrame() function. This version is for a

stereo insert effect.

 void CDelay::processReplacing(fl oat **inputs, fl oat **outputs, long sampleframes)
 {

 // pick up pointers to buffers
 fl oat *inL = inputs[0];
 fl oat *inR = inputs[1];
 fl oat *outL = outputs[0];
 fl oat *outR = outputs[1];

 UINT uFrameCount = 0;

 // mini frames
 fl oat fInputFrame[2];
 fl oat fOutputFrame[2];

 while (––sampleFrames >= 0)
 {

 // pick up samples from buffers
 fInputFrame[0] = inL[uFrameCount];
 fInputFrame[1] = inR[uFrameCount];

 // calculate and write out (…2, 2) = 2 in/2 out
 m_Delay.processAudioFrame(&fInputFrame[0], &fOutputFrame[0], 2, 2);

 // inc frame counter
 uFrameCount++;

 }
 }

 A.6 AU Overview

 VST was a bit more complex in that you had to do some of the GUI work yourself. Whether

you write one from scratch or wrap the RackAFX plug-in, you are still stuck with the default

The VST® and AU® Plug-In APIs 515

GUI. AU plug-ins are another order of magnitude in complexity. The actual audio processing

function is fairly simple. The large majority of the work goes into setting up the default GUI and

maintaining your presets. Unlike both RackAFX and VST, AU plug-ins are not ANSI C/C++;

they require the Audio Units and Core Foundation components, so you need to be familiar with

Mac programming if you are going to get into AU programming. AU uses two base class objects

together to implement a plug-in. When you create a new Audio Unit plug-in in XCode, it sets up

the derived classes for you, one from each base class. You then override methods on both of them.

• AUEffectBase handles the GUI controls and any other non-audio-processing details.

• AUKernelBase handles the processing and reset controls.

 A.6.1 Default GUI

 Suppose we have a simple volume plug-in with just one volume control. AU calls a control a

“parameter.” Similar to VST, you fi rst defi ne an enumerated list of UINT constant values in

your Plugin.h fi le where “Plugin” is the name and you have derived it from the AUEffectBase

base class. These constants are the control ID values, just as before.

 enum {
 kParam_One =0,
 // Add your parameters here... increment kNumberOfParameters

 kNumberOfParameters=1
 };

 In the same fi le, you create constant defi nitions for the initial value and name.

 // set the initial value
 static const fl oat kDefaultValue_ParamOne = 0.5;

 // set the name; CFStringRef is a Core Foundation String object
 static CFStringRef kParameterOneName = CFSTR(“Volume”);

 You declare your controls by fi lling in the GetParameterInfo() method. It is beyond the

scope of this book to analyze the code line by line, but you can get a feel for how it works by

looking at the way the objects are set up.

 OSStatus AUVolume::GetParameterInfo(AudioUnitScope inScope,
 AudioUnitParameterID inParameterID,
 AudioUnitParameterInfo &outParameterInfo)
 {

 <SNIP SNIP SNIP>

 switch(inParameterID)
 {

 case kParam_One:
 AUBase::FillInParameterName (outParameterInfo, kParameterOneName,
false);

516 Appendix A

 outParameterInfo.unit = kAudioUnitParameterUnit_LinearGain;
 outParameterInfo.minValue = 0.0;
 outParameterInfo.maxValue = 1;
 outParameterInfo.defaultValue = kDefaultValue_ParamOne;
 break;

 default:
 result = kAudioUnitErr_InvalidParameter;
 break;

 }

 etc…

 Here, when the Client queries the plug-in on its fi rst parameter (kParam_One) it fi lls

out a structure about the control. You can see the minimum, maximum, and default

values being set. The “unit” variable of the structure is set to kAudioUnitParameterUnit_

LinearGain. A linear gain control moves between 0 and 1.0. Another example is

kAudioUnitParameterUnit_Boolean, which specifi es a boolean control variable. What is

interesting here is that you don’t declare the actual variable that stores the control data.

The variable is a fl oat variable that the framework stores for you. You tell the framework

what kind of variable it represents. When you need to get or set the variable, you use

GetParameter() and SetParameter(), which get and set a fl oat data type.

 A.6.2 Signal Processing

 The AU processing function is simply named Process(). The audio data moves in buffers. The

buffers can contain any arbitrary number of channels with the simplest systems being N x N

or equal input/outputs. Although the inNumChannels variable is passed to the function, it is

always set to 1.0 for the current version of AU. This is OK for mono or when you don’t need

to process channels independently. A boolean fl ag is passed to the method, indicating the

mute condition and the function simply returns without processing. The parameters that are

passed to the Process() method are as follows:

• const Float32: *inSourceP (a pointer to an input buffer)

• Float32: *inDestP (a pointer to the output buffer)

• UInt32: InSamplesToProcess (number of samples in the input buffer)

• UInt32: inNumChannels (number of channels to process)

• bool: &ioSilence (indicates no processing, if true)

 Here is the AU process function for a volume plug-in.

 void AUVolume::AUVolumeKernel::Process(const Float32 *inSourceP,
 Float32 *inDestP,
 UInt32 inFramesToProcess,
 UInt32 inNumChannels,
 bool &ioSilence)

The VST® and AU® Plug-In APIs 517

 {
 // setup counter
 UInt32 nSampleFrames = inFramesToProcess;

 // setup pointers to I/O
 const Float32 *sourceP = inSourceP;
 Float32 *destP = inDestP;

 // use our own Get method
 Float32 gain = GetParameter(kParam_One);

 while (nSampleFrames–– > 0) {

 Float32 inputSample = *sourceP;

 sourceP += inNumChannels;

 // here's where you do your DSP work
 Float32 outputSample = inputSample * gain;

 *destP = outputSample;
 destP += inNumChannels;

 }
 }

 If you need to process multi-channel audio data independently, then you need to remove the

Process() method override and replace it by overriding ProcessBufferLists().

 ProcessBufferLists(AudioUnitRenderActionFlags &ioActionFlags,
 const AudioBufferList &inBuffer,
 AudioBufferList &outBuffer,
 UInt32 inFramesToProcess)

 This method passes data back and forth by using AudioBufferList objects. These objects

contain pointers so buffers of interleaved data along with a variable that tells you how many

channels the buffer holds. For example, for the input buffer:

 inBuffer.mNumberBuffers = the number of channels in this Buffer List
 inBuffer.mBuffers[0].mData = a fl oat* to the buffer for channel 0
 inBuffer.mBuffers[1].mData = a fl oat* to the buffer for channel 1, etc…

 You would typically write something like this to extract them (in this case, we know the

channel count is 2):

 // create the mini-frame arrays
 fl oat **inputs = new fl oat*[2 * sizeof(fl oat*)];
 inputs[0] = (fl oat*)inBuffer.mBuffers[0].mData;
 inputs[1] = (fl oat*)inBuffer.mBuffers[1].mData;

 fl oat **outputs = new fl oat*[2 * sizeof(fl oat*)];
 outputs[0] = (fl oat*)outBuffer.mBuffers[0].mData;
 outputs[1] = (fl oat*)outBuffer.mBuffers[1].mData;

518 Appendix A

 // call your processing function
 doProcess(inputs, outputs, inFramesToProcess);

 In this case, your processing function is just like the VST processReplacing()—it is taking

pointers to buffer pointers as arguments, then it would split out the data as in the VST version

above. Lastly, the AUKernelBase method Reset() is implemented to reset your plug-in to its

just-instantiated state.

519

 RackAFX has several optional graphical user interface (GUI) controls that were not covered

in the book chapters. It also has a GUI designer that lets you convert your slider-based default

GUI into a fully customized version. The website www.willpirkle.com is always the best

way to get the latest information on the GUI designer and any additional controls that may be

added at a later date. The two additional GUI controls are the alpha wheel and liquid crystal

display (LCD) and the vector joystick control.

 B.1 The Alpha Wheel and LCD Control

 In the upper right of the main RackAFX UI is a control that represents an alpha wheel, LCD

matrix view, and the control knob. During the course of designing your project, you’ve noticed

that the LCD is used to give you feedback about the state of your project and compiler.

However, it can also be used as a GUI control just like the other sliders. The LCD control allows

you to store up to 1024 continuous slider controls inside it. Anything you can set up with a

normal slider control will work as one of the LCD embedded controls. And, the GUI designer

lets you place one of these controls on your own GUI. There are several uses for the control:

• It’s a different way to store the continuous controls.

• If you run out of sliders, you can always put 1024 more of them in the LCD.

• You can use the enumerated list variable to create a set of presets or other global func-

tions or confi guration controls.

 To set up the LCD control, right-click on it when you are in development mode (not with

a plug-in loaded). A box pops up as shown in Figure B.1 . Click on New to open the very

familiar slider properties dialog. Fill it out just as you would any other slider control. After

adding a few more controls, you might have something resembling Figure B.2 , with three

controls embedded. You can edit the controls, remove them, or move them up and down the

list (which changes their sequence in the LCD control).

 You treat these embedded slider controls just as any other slider, so there’s nothing to add to

your normal operational code. When you run your plug-in, use the alpha wheel to select one

 APPENDIX B

 More RackAFX Controls
and GUI Designer

www.willpirkle.com

520 Appendix B

 Figure B.2: The LCD is loaded with three controls.

 Figure B.1: The New button pops up the slider properties to add a control to the LCD.

of the controls and the value knob to adjust its value. Note there is currently no edit control

connected to the LCD for manual entry of control values. Figure B.3 shows the LCD control

with the alpha wheel adjusted for the bass control.

 An alternative way to use the LCD control is for global operations (like effects

confi gurations) or to store presets, either because you need more than RackAFX provides or

More RackAFX Controls and GUI Designer 521

you need to write your own methods for loading and storing data. You can use the enumerated

list variable to create up to 256 individual string names. You can also take advantage of a

feature of the LCD control: You can use the underscore (_) to separate strings in your list (you

can’t have spaces in an enumerated name). When the LCD control uses them, it replaces the

underscores with single white spaces. This allows you much more fl exibility than the radio

buttons or normal sliders provide. For example, you could set up a preset list with names

like “Heavy_Lead,” “Liquid_Pad,” “Lush_Space,” and so on. Then, you can use the up/

down arrows to place your “presets” control at the top of the control list. Now, as shown in

 Figure B.4 , the user can select one of your custom presets (remember, it’s up to you to code

your own preset format) and then scroll to adjust the other controls. The underscores have

been replaced with spaces.

 B.2 The Vector Joystick Control

 RackAFX also has a dedicated vector joystick control that communicates with your plug-in.

Dave Smith designed the fi rst vector synthesizers for Sequential Circuits, Inc. and then later

for Yamaha and Korg. The vector joystick is a combination of a traditional x / y track-pad

and an exponential joystick. The calculation documentation is available on the website.

In the original synthesizers, the vector joystick was used to program or alter in real time the

mixture of two or four different waveforms. The position of the joystick determines the mix

 Figure B.3: The alpha wheel and LCD control is reminiscent of vintage synthesizer and rack
effects.

 Figure B.4: The underscores are automatically removed from enumerated list variables in the
LCD control.

Alpha
Wheel

Indicator:
Control 2 of 3

is selected

Value Knob

522 Appendix B

ratios, which are not linear but rather exponential. In RackAFX, you can use the joystick to

alter up to four different parameters at once, exponentially. In addition, a linear x / y value of

the joystick location is available for your plug-in. Figure B.5 shows the vector joystick and

components.

 The joystick is arranged in a diagonal with four corners labeled A, B, C, D, clockwise;

this is in keeping with Dave Smith’s original lingo. As the joystick moves around, a new

set of mix ratios is generated and appears in the mix blurb. The mix ratios will always

add up to 1.0. In the center, the ratios are all 0.25. A second set of values also exists, the

AC-mix and the BD-mix, which are linear. On the AC axis, 0 is at the A apex and 1.0 is at

the C corner. On the BD axis, 0 is at D and 1.0 is at B. In the center position, the AC-mix

is 0.5 and the BD-mix is also 0.5. Figure B.6 shows the joystick roughly three-quarters

of the way from the origin to the A corner. However, the mix blurb shows the value of

A to be 0.79, but the other three have dropped off substantially. With the joystick all the

way in the A corner, the ratios are {A, B, C, D} = {1, 0, 0, 0} and interestingly, as Figure

B.7 demonstrates, when the joystick is halfway between A and B on the outer edge of the

diamond, the A/B ratio is 50/50 while the rest are 0. In Figure B.7 , the AC-mix is 0.25

and the BD-mix is 0.75.

 By sweeping around the fi eld, you can generate many different combinations. You could

use these combinations as mix ratios for something in your plug-in. Or, you could use them

to control any parameter or other aspect of the plug-in that you like. You are responsible

for mapping the 0.0 to 1.0 values to your plug-in’s parameters. The vector joystick does

not connect to any variable in your plug-in; like the assignable buttons, these passive

controls simply tell you when they’ve moved. When the joystick moves, a function called

joystickControlChange() is called.

 Figure B.5: The RackAFX vector joystick.

Joystick

Vector Joystick

Apex Drop
List Controls

A:0.25 C:0.25 B:0.25 D:0.25 Mix Blurb
Joystick Program JS Program

A
B
C

D

B

C

D

A

SINE
TRI

PITCH
SQUARE

More RackAFX Controls and GUI Designer 523

 /* joystickControlChange

 Indicates the user moved the joystick point; the variables are the relative

mixes of each axis; the values will add up to 1.0

 B

 |

 A x C

 |

 D

 The point in the very center (x) would be:

 fControlA = 0.25

 fControlB = 0.25

 fControlC = 0.25
 fControlD = 0.25

 AC Mix = projection on X Axis (0 -> 1)

 BD Mix = projection on Y Axis (0 -> 1)

 */

 Figure B.6: The exponential mix ratios are evident in the vector joystick.

 Figure B.7: This position results in the 50/50 mix of A/B only. AC-mix = 0.25, BD-mix = 0.75.

A

B

D

C

A
B
C

D

SINE
TRI
PITCH
SQUARE

JS Program

Vector Joystick

A:0.79 C:0.01 B:0.09 D:0.11

B

A

D

C

A
B
C

D

SINE
TRI

PITCH
SQUARE

JS Program

Vector Joystick

A:0.50 C:0.00 B:0.50 D:0.00

524 Appendix B

 bool __stdcall CVolume::joystickControlChange(fl oat fControlA,

 fl oat fControlB,

 fl oat fControlC,

 fl oat fControlD,

 fl oat fACMix,

 fl oat fBDMix)

 {
 // add your code here

 return true;
 }

 You can see that RackAFX leaves you a comment on the coding of the joystick location. The

six variables arrive as function parameters and you use them however you wish. In Figure B.5

you can also see four drop list controls to the right of the joystick. I have already set them up

to have something meaningful in them for the purpose of demonstration. These controls are

generally used for two purposes:

1. They describe the current “meaning” of the apex lettering system; in Figure B.5 the

A-corner is the “SINE” corner.

2. They allow the user to change the meaning of the apex in the plug-in by selecting

different values.

 You set up the drop list boxes when you are in development mode by clicking on them and

choosing the item “Select To Setup,” which allows you to connect these drop list boxes

to different enumerated lists. They follow the same rules as the other enumerated lists,

however, like the LCD control, you can use the underscore (_) to create a blank space in

the string at run time. When the user selects an item from the box, the client calls your

userInterfaceChange() function, passing it the parameters as described in the

comment section for that method. You can then handle those messages as you wish.

 Joystick Drop List Boxes Index

 Drop List A 60

 Drop List B 61

 Drop List C 62

 Drop List D 63

 The joystick program is an advanced user’s control for automating movement of the joystick

in reaction to some event. Please see the website for tutorials and sample code for using the

program.

More RackAFX Controls and GUI Designer 525

 B.3 Using the sendUpdateGUI() Method

 This is a perfect place to explain how to use the sendUpdateGUI() method. You can force

the user interface (UI) (RackAFX or a custom graphical user interface [GUI]) to change its

settings based on your internal variable values. This is opposite the normal fl ow where the GUI

calculates and alters your variables. In this case, you alter your own variable and tell the GUI

to update accordingly. This can be used to move sliders in real time or toggle radio buttons

programmatically. The joystick drop lists present an interesting use of this method. Suppose

you wanted to have four identical lists that represent the joystick corners, such as {A, B, C,

D} = {SINE, SAW, TRIANGLE, NOISE} and the user will move the joystick to produce

a mixture of low-frequency oscillators (LFOs) in your plug-in. You would like the lists to

contain the same values, but you would like to initialize them with other values than the fi rst

one. For example, you might want the initial state of the boxes to show SINE for A, SAW for

B, NOISE for C, and TRIANGLE for D (notice this is different than the order of the list too).

When you set up the enumerated list, you give it a list variable to connect to (e.g., m_uApexA)

and a list that goes along with that. By clicking “Use Existing String List,” then double-

clicking on any of the items in the list, you can legally share your string lists. This is something

we did not cover in the book chapters because it is a more advanced feature. Then, in your

code (prepareForPlay() or wherever you need to) you can alter your own unsigned integer-type

(UINT) variables then call sendUpdateGUI() to show the changes. For example, to initialize

the drop lists as described above, you would add this code to your prepareForPlay() method:

 // set my variables

 m_uApexA = SINE;

 m_uApexB = SAW;

 m_uApexC = NOISE;

 m_uApexD = TRIANGLE;

 // tell the GUI to change accordingly

 sendUpdateGUI();

 Theoretically, you can do this from any point in the code except the constructor (because

the messaging pointer isn’t assigned until after construction), even from the joystick

handler if needed. However, you should never initiate client communication like this in the

processAudioFrame() method as it relies on a slow window-messaging system. This is true

for other plug-in formats as well. Remember that you can use the sendUpdateGUI() method

to alter the GUI for any of the RackAFX 4 Plug-In connected variables.

 B.4 Using GUI Designer

 RackAFX has a powerful GUI designer that lets you arrange visually appealing GUIs in

a matter of just a few moments. The GUI designer is always being updated with more

526 Appendix B

features, so always check the latest additions at the website. Depending on which version you

have, your GUI designer will look more or less like that shown in Figure B.8 . The fl ow of

operations is as follows:

1. In prototype view (the main RackAFX view), you assemble your plug-in. You create

controls, give them min, max, and initial values, connect them to variables, and so on.

Because this is a development mode, you will probably change some controls, add or

remove them, and so on. Also, because we are prototyping, we can set up a bunch of

controls we really would not want the user to be able to adjust in the fi nal plug-in. An

excellent example is the reverb plug-in; once we’ve got those parallel comb fi lters tuned,

we don’t want the user messing with them.

2. After your plug-in is complete, debugged, and ready to go, you click on the GUI Designer

tab to reveal the blank GUI surface, shown in Figure B.8 .

3. You drag and drop controls from the left side and arrange them however you like on the

surface. Because they have transparent backgrounds, they can be overlapped.

4. For the slider, radio buttons, and knob controls, you must connect the control with the

variable in your plug-in that it will control.

5. The LCD and vector joystick controls don’t need any additional setup.

 Suppose after testing we decide that the fi nal GUI for the reverb project needs to have the

following controls, while hiding all the others:

• Pre-delay time

• Pre-delay attenuation

• Bandwidth

 Figure B.8: The GUI Designer.

Background
and Text Color

Selection

Control
Palette GUI Control Surface

More RackAFX Controls and GUI Designer 527

• Damping

• RT60

• Wet/dry

 Any of the prototype’s sliders can be dragged and dropped either as knobs or sliders using the

palette on the left. Figure B.9 shows the GUI designer after one knob control has been placed

and mapped to the pre-delay time. A second knob has just been dropped next to it. Right-

clicking on the knob itself pops up another customization box. Here you can do the following:

• Connect the knob to a variable via the drop list.

• Change the appearance of the knob and dot combination.

• Change the edit box behavior, hide it, or change its colors.

• Set all the other knobs to match this one.

 You can do similar things for the radio buttons, meter, or the slider control, as shown

in the pop-up boxes in Figures B.10 and B.11 . The current GUI designer rules are as

follows:

• For sliders, you link to a control variable, just like the knobs. You can customize many

aspects of the slider control’s appearance.

• When you run out of continuous controls (sliders) you can’t drag any more knobs/slider

controls.

 Figure B.9: Customizing a knob by right-clicking it.

528 Appendix B

• Each time you drag a knob or slider, you must set it up before dragging any other knobs

or sliders.

• The joystick can have its colors altered and you can set the program button to look like

the assignable buttons. There can be only one joystick.

• You can change the IN and OUT button bitmaps for the assignable buttons. There can be

only one assignable button bank.

• You can add any continuous control (slider) to the GUI LCD group; it is a separate entity

from the one on your main RackAFX GUI. Here I added bandwidth and damping. There

can be only one LCD control.

• When you drag meter controls, RackAFX starts with the leftmost meter on the main GUI

and automatically links your control variable for you. It then moves from left to right as

you drag and drop meters. If you need to skip meters, add all the meters fi rst, then remove

the ones you don’t want.

• When you add radio button controls , RackAFX starts with the topmost button bank on the

main GUI and automatically links your control variable for you. It then moves from top

to bottom as you drag the radio buttons. If you need to skip button banks, add all of them

fi rst, then remove the ones you don’t want. The buttons banks are highly customizable.

 Figure B.10: The slider, joystick, LCD, and meter GUI customization dialog boxes.

More RackAFX Controls and GUI Designer 529

 Figure B.12: The fi nished reverb GUI.

 Figure B.11: The Radio and Assignable button GUI customization dialog boxes.

 Figure B.12 shows my fi nished reverb GUI. I chose the white background just to make it

easier to see in print. After you are done, go back to the prototype view and rebuild your

plug-in. You need this rebuild to embed the new GUI information into your code. The GUI

styles are coded into UINT arrays in your control variables as well as the plug-in object.

530 Appendix B

See the website for more details on the encoding. Now, load your plug-in. You will notice that

the blue knob button on the toolbar is now active. You can open your GUI with that button

or the menu item View S Custom Plug-In GUI. Figure B.13 shows the fi nished GUI. The

designer automatically crops it to fi t the controls you’ve placed on it. When you alter the new

GUI controls, the RackAFX controls change as well (but not the other way around).

 If you have enabled your plug-in to be compiled to produce a Virtual Studio Technology (VST)
plug-in (Appendix A) then your RackAFX custom GUI will be available in any Windows VST
 client that supports custom GUIs (which is just about all of them). You launch it in whatever
way the client digital audio workstation (DAW) requires.

 Figure B.13: The reverb GUI in action!

531

 Index

 A
 absorbent all-pass fi lters

(AAPFs) 390

 addition operation 17

 address generation unit

(AGU) 207

 all-pass fi lter (APF)

reverberators 368–71

 alpha wheel GUI controls 519

 analog-to-digital

conversion 1, 170–8

 anti-aliasing fi lters 3

 applications programming

interfaces (APIs) 27–9, 501

 functions typically required

of 29–30

 and RackAFX philosophy

31–3

 asynchronous operation 6

 attack times of envelope

detectors 428–9

 attenuation function and

attenuators 18–19

 AU programming and

processing 515–18

 audio fi lter designs 253–87

 audio specifi c fi lters 188–96

 B
 beats-per-minute (BPM)

synchronization 235

 bilinear transform 172–5, 179–80

 bipolar/unipolar functionality

324–6

 bi-quadratic fi lters (bi-quads)

157–62

 design of 181–8

 modifi ed 189

 Bohn, D. 196

 book-keeping and book-keeping

records 13–15, 114–15

 Browne, S. 357

 Butterworth fi lters 184–7, 475

 C
 C programming language 24

 C++ programming

language 24, 29, 31

 Cartesian coordinate system 100–1

 cascaded graphic fi lters 194–6

 Chaigne, A. 385

 Chemistruck, M. 390

 child plug-in objects 239

 chorus effect 331–4

 circular buffers 209–10, 273

 comb fi lter reverberator 364–8

 comb fi lters 221

 comparison of objects, GUIs and

functions 505–6

 complementary fi lter design

266–70

 complex conjugates 133–4, 144

 complex numbers 100–1, 112

 complex sinusoid function 97–100

 compressor/limiter plug-in

design 457–65

 compressors 453–6

 conjugate poles of resonators

167–70

 constant-Q fi lters 192–4

 convolution plug-ins 273–81

 convolution process 254–8, 274

 cooking functions 57, 227, 230–1

 D
 Dahl, L. 390

 Dattorro, J. 381

 Dattorro plate reverb 382–5

 Decca chorus 354

 delay effects 207–9

 modulated 327–54

 delay operators 16

 delaying all-pass fi lter

reverberators 368–71

 difference equations 18

 z transform of 117–18

 digital audio technology,

history of 1

 digital delay line (DDL) 209–15,

327

 advanced form of

module 248

 module plug-in 224–33

 digital signal processing (DSP):

address generation unit 207

 basic theory of 97–122

 chips 4

 fi lters 71–95

 practical application of

theory 123–62

 test signals 10–12

 digital-to-analog converters

(DACs) 3

 digitally-controlled amplifi ers/

attenuators (DCAs) 454

 dimension-style choruses

351–3

 direct z -plane design

techniques 163–4

 Doppler effect 328

 downward expander/gate plug-in

design 466–8

 dynamic link library (DLL): access

to 22

 building of 35

 dynamic linking 21–2

 dynamic processing 453–87

532

 E
 early refl ections 358

 echoes 360

 eigenfrequencies 361

 energy decay relief (EDR)

plots 362–4

 enumerated slider variables 245–8

 envelope detection 426–36

 envelope follower plug-in

design 425–8

 Euler’s equation 98–9, 104–7,

112, 138–9, 148, 152, 155,

215, 221

 expanders 453–6

 F
 feed-back fi lters: fi rst-order 88–95,

123–4

 second-order 142–9

 feed-forward fi lters 119

 fi rst-order 74–88, 94–5,

103–6

 second-order 132–41

 feedback 221–2

 effect on impulse

 response 218–19, 222–3

 feedback delay network (FDN)

reverbs 385–91

 generalized 385–9

 fi nite impulse response (FIR)

fi lters 161–2, 253, 262,

266–7, 281–7

 fl anger/vibrato effect 328–31

 fl anger/vibrato/chorus plug-in

334–42

 fl oating-point data 9–10

 fractional delay 235–9

 Frenette, J. 381–2

 frequency response: direct

evaluation 127–30

 estimation 121, 133–8, 143–7,

151–2, 158–60

 frequency response plots 71–2,

83–5, 104, 111

 frequency sampling method 263–6

 full-wave envelope detectors 428

 G
 gain control 122–3

 gain function 18

 Gardner, W. G. 357, 366–8, 377–81

 Gardner’s nested APF

reverberators 377–81

 gates 453

 genetic algorithm (GA) 390–1

 Gerzon, M.A. 377

 Gordon–Smith oscillator 299–301

 graphical user interfaces

(GUIs) 25–8, 35

 for DDL Module 225–6

 Griesinger, D. 358, 360

 H
 half-wave envelope detectors 428

 hard-knee compression curves 456

 I
 impulse response: effect of

feedback on 218–19,

222–3; see also room impulse

response

 infi nite impulse response (IIR)

fi lters 161–204, 207, 253

 interpolation functions 236–7

 interrupt-based designs 6–7

 inverse comb fi ltering 217–18

 J
 Jot, J.-M. 385–90

 K
 knee of the compression curve 456

 Korg Triton 250–1, 345, 350

 Kuttruff, H. 361–2

 L
 Lagrange interpolator 284

 late reverberations 358

 limiters 453

 linear interpolation 236–8

 linear phase fi lters 83, 266–7

 Linkwitz–Riley fi lters 186–7,

475, 479

 liquid crystal display (LCD) GUI

controls 519

 look-ahead compressor plug-in

design 468–71

 low-frequency oscillation

(LFO) 328, 331

 low-pass fi lter–comb

reverberator 373–5

 M
 Mac programming 501, 503,

506, 515

 McGrath, D. S. 357

 Marcolini, K. 390

 Massberg, Michael 201

 Massberg analog-matched low-pass

fi lter 201–4

 median fi lter algorithm 284–7

 member objects 224

 mixing algorithms 19

 mod fi lter plug-in design 412–25

 modal density 361–2

 modes (room resonances) 360–1

 modulated APF reverberator 381–2

 modulated delay effects 327–54

 modulated delay line (MDL) 327

 modulated fi lter effects 411–51

 Moorer, J. A. 375, 377

 Moorer’s reverberator 365–71

 moving average (MA)

interpolator 282–3

 multi-tap delay 249–50

 multi-unit LCR chorus plug-

in 345–50

 multiplication operation 16–17

 N
 National Semiconductor 438

 negative frequencies 104–5, 113

 nested fi lter structures 379–81

 normalized frequency 104

 numerical coding of audio data

7–9

 numerical method FIR fi lters

281–7

 Nyquist frequency 1–2, 11–12,

76–7, 95

 O
 one-sample delay 15–16

 optimal method for designing

fi lters 270–3

 order of a fi lter 114

 Orfanidis, S. 429, 455

 oscillators 289–326

 bipolar/unipolar

 functionality 324–6

 direct-form 289–99

 wave-table type 301–8

Index

Index

533

 P
 panning see tremolo/panning

plug-in design

 parametric fi lters 191–4

 parent plug-ins 233, 239

 Parks–McClellan

algorithm 262, 270

 peaking fi lters see parametric fi lters

 phase inversion function 18

 phase response plots 71–2, 83–5,

101, 104, 111

 phaser plug-in design 436–45

 ping-pong delay 250

 plate reverb algorithm 382–5

 plug-in, defi nition of 21

 polar notation 100–1

 pole-zero fi lters 149–57

 poles of the transfer function

124–32, 145

 poles or zeros at infi nity, effect

of 178–80

 polynomials, factoring of

119–20

 pre-delay 358

 Puckette, M. 385, 388

 ‘pumping and breathing’

artifacts 463

 R
 RackAFX software 29–70

 design of tone control

plug-ins 58–69

 design of volume control

 plug-ins 40–1, 54–8

 destruction of plug-in

 objects 38

 dynamic link library 35–6

 FIR fi lter designer 262

 frequency sampling method

tool 267–9

 graphical user interfaces

36–7, 525–30

 impulse convolver 258–62

 optimal method tool 271–3

 processing audio 37–8

 setting up plug-ins for use and

setup preferences 41–54

 stock objects 394–8

 testing 38–40

 user menu 69–70

 reconstruction fi lters 3

 Reilly, A. 357

 Reiss, J. 455, 486

 release times of envelope

detectors 428–9

 Remez exchange algorithm

271–3

 resonant LPF plug-in

196–201

 resonators 165–70

 reverb algorithms 357–409

 reverb modules 363

 reverb time 359–60

 ring modulator plug-in design

494–6

 Roland Dimension D chorus

351–3

 room impulse response

358–60

 room resonances see modes

 room reverb: design of 398–408

 example of 391–3

 RT 60 reverb time 359–60

 S
 Sabine, W. 359–60

 samples of audio signal, acquisition

of 1–3

 sampling theorem 2, 7, 106

 saw-tooth waveform 317–18

 scalar multiplication operation

16–17

 scattering matrices 389–90

 Schroeder, M. 357, 360–4, 368,

370, 376–7, 385

 Schroeder’s reverberator

372–3

 ‘sendUpdate GUI()’ method

525

 shelving fi lters 156–7,

189–90, 201

 sigmoid functions 497

 signal-processing algorithms 13

 signal-processing fl ow 6–7

 signal-processing systems 4–5

 single pole fi lters 164–5

 slider controls 245

 Smith, Dave 522

 Smith, J. O. 389

 Smith-Angell improved

resonator 168–70

 soft-knee compression curves

456–7

 software development kits

(SDKs) 501

 Sony DPS–M7

354

 spectral compressor/expander

plug-in design 475–86

 square wave form

317, 319

 static linking 21–2

 Stautner, J. 385, 388

 stereo crossed feedback delay

plug-in 244

 stereo digital delay plug-in

239–44

 stereo-linking a dynamics

processor 472–4

 stereo phaser with quad-phase

LFOs 446–51

 stereo quadrature fl anger

plug-in 342–5

 stereo reverberation

376–7

 subsequent reverberations

358

 subtraction operation 17

 synchronous operation 5–6

 T
 through-zero fl anging (TZF)

330

 time delay as a mathematical

operator 102

 transfer functions 101, 104

 evaluation of 106–12

 transverse delay line 257

 tremolo/panning plug-in

design 489–94

 trivial zeros 125

 U
 unitary feedback delay networks

(UFDNs) 386, 390

 V
 vector joystick control

519–24

 vibrato see fl anger/vibrato/chorus

plug-in; fl anger/vibrato effect

 virtual address space 22–3

534

 W
 wave shaper plug-in design

497–500

 wave table oscillators 301–8

 wave tables: addition of

308–12

 band-limited 312–19

 waveguide reverberators

389

 wet/dry mix 214–15

 white noise 360

 ‘ willpirkle.com ’ website 519

 Windows operating system 501–3

 wrapping of plug-in objects 503–5,

512–14

 Z
 z substitution 114

 z transform 114–21, 133, 141–2

 of difference equations

117–18

 of impulse responses

118–19

 of signals 116–17

 zero frequencies 119–20,

145

 Zöler, U. 429, 455

Index

	Designing Audio Effect Plug-Ins in C++ With Digital Audio Signal Processing Theory

	Copyright
	Contents
	Introduction
	Chapter 1: Digital Audio Signal Processing Principles
	1.1 Acquisition of Samples
	1.2 Reconstruction of the Signal
	1.3 Signal Processing Systems
	1.4 Synchronization and Interrupts
	1.5 Signal Processing Flow
	1.6 Numerical Representation of Audio Data
	1.7 Using Floating-Point Data
	1.8 Basic DSP Test Signals
	1.8.1 DC and Step
	1.8.2 Nyquist
	1.8.3 ½ Nyquist
	1.8.4 ¼ Nyquist
	1.8.5 Impulse

	1.9 Signal Processing Algorithms
	1.10 Bookkeeping
	1.11 The One-Sample Delay
	1.12 Multiplication
	1.13 Addition and Subtraction
	1.14 Algorithm Examples and the Difference Equation
	1.15 Gain, Attenuation, and Phase Inversion
	1.16 Practical Mixing Algorithm
	Bibliography

	Chapter 2: Anatomy of a Plug-In
	2.1 Static and Dynamic Linking
	2.2 Virtual Address Space and DLL Access
	2.3 C and C++ Style DLLs
	2.4 Maintaining the User Interface
	2.5 The Applications Programming Interface
	2.6 Typical Required API Functions
	2.7 The RackAFX Philosophy and API
	2.7.1 __stdcall

	Bibliography

	Chapter 3: Writing Plug-Ins with RackAFX
	3.1 Building the DLL
	3.2 Creation
	3.3 The GUI
	3.4 Processing Audio
	3.5 Destruction
	3.6 Your First Plug-Ins
	3.6.1 Project: Yourplugin
	3.6.2 Yourplugin GUI
	3.6.3 Yourplugin.h File
	3.6.4 Yourplugin.cpp File
	3.6.5 Building and Testing
	3.6.6 Creating and Saving Presets
	3.6.7 GUI Designer

	3.7 Design a Volume Control Plug-In
	3.8 Set Up RackAFX for Use
	3.9 Setup Preferences
	3.9.1 Project: Volume
	3.9.2 Volume GUI
	3.9.3 Confi gure a Slider Control
	3.9.4 Volume.h File
	3.9.5 Volume.cpp File

	3.10 Design a Volume-in-dB Plug-In
	3.10.1 Project: VolumedB
	3.10.2 VolumedB GUI
	3.10.3 VolumedB.h File
	3.10.4 VolumedB.cpp File

	3.11 Design a High-Frequency Tone Control Plug-In
	3.11.1 Project: SimpleHPF
	3.11.2 SimpleHPF GUI
	3.11.3 SimpleHPF.h File
	3.11.4 SimpleHPF.cpp File

	3.12 Design a High-Frequency Tone Control with Volume Plug-In
	3.12.1 Project: SimpleHPF
	3.12.2 SimpleHPF GUI
	3.12.3 SimpleHPF.h File
	3.12.4 SimpleHPF.cpp File

	3.13 The User Plug-In Menu in RackAFX

	Chapter 4: How DSP Filters Work
	4.1 First-Order Feed-Forward Filter
	4.2 Design a General First-Order Feed-Forward Filter
	4.3 First-Order Feed-Back Filter
	4.4 Design a General First-Order Feed-Back Filter
	4.4.1 Project FeedBackFilter
	4.4.2 FeedBackFilter GUI
	4.4.3 FeedBackFilter.h File
	4.4.4 FeedBackFilter.cpp File

	4.5 Observations
	4.5.1 General
	4.5.2 Feed-Forward Filters
	4.5.3 Feed-Back Filters

	Bibliography

	Chapter 5: Basic DSP Theory
	5.1 The Complex Sinusoid
	5.2 Complex Math Review
	5.3 Time Delay as a Math Operator
	5.4 First-Order Feed-Forward Filter Revisited
	5.4.1 Negative Frequencies
	5.4.2 Frequencies Above and Below ±Nyquist

	5.5 Evaluating the Transfer Function H(ω)

	5.5.1 DC (0 Hz)
	5.5.2 Nyquist (π)

	5.5.3 ½ Nyquist (π/2)
	5.5.4 ¼ Nyquist (π/4)

	5.6 Evaluating ejω

	5.7 The z Substitution
	5.8 The z Transform
	5.9 The z Transform of Signals
	5.10 The z Transform of Difference Equations
	5.11 The z Transform of an Impulse Response
	5.12 The Zeros of the Transfer Function
	5.13 Estimating the Frequency Response: Zeros
	5.14 Filter Gain Control
	5.15 First-Order Feed-Back Filter Revisited
	5.16 The Poles of the Transfer Function
	5.16.1 DC (0 Hz)
	5.16.2 Nyquist (π)
	5.16.3 ½ Nyquist (π/2)
	5.16.4 ¼ Nyquist (π/4)

	5.17 Second-Order Feed-Forward Filter
	5.17.1 DC (0 Hz)
	5.17.2 Nyquist (π)
	5.17.3 ½ Nyquist (π/2)
	5.17.4 ¼ Nyquist (π/4)

	5.18 Second-Order Feed-Back Filter
	5.18.1 DC (0 Hz)
	5.18.2 Challenge

	5.19 First-Order Pole-Zero Filter: The Shelving Filter
	5.19.1 DC (0 Hz)
	5.19.2 Challenge

	5.20 The Bi-Quadratic Filter
	Bibliography

	Chapter 6: Audio Filter Designs: IIR Filters
	6.1 Direct z-Plane Design
	6.2 Single Pole Filters
	6.2.1 First-Order LPF and HPF

	6.3 Resonators
	6.3.1 Simple Resonator
	6.3.2 Smith-Angell Improved Resonator

	6.4 Analog Filter to Digital Filter Conversion
	6.4.1 Challenge

	6.5 Effect of Poles or Zeros at Infinity
	6.6 Generic Bi-Quad Designs
	6.6.1 First-Order LPF and HPF
	6.6.2 Second-Order LPF and HPF
	6.6.3 Second-Order BPF and BSF
	6.6.4 Second-Order Butterworth LPF and HPF
	6.6.5 Second-Order Butterworth BPF and BSF
	6.6.6 Second-Order Linkwitz-Riley LPF and HPF
	6.6.7 First- and Second-Order APF

	6.7 Audio Specific Filters
	6.7.1 Modified Bi-Quad
	6.7.2 First-Order Shelving Filters
	6.7.3 Second-Order Parametric/Peaking Filter: Non-Constant-Q
	6.7.4 Second-Order Parametric/Peaking Filter: Constant-Q
	6.7.5 Cascaded Graphic EQ: Non-Constant-Q
	6.7.6 Cascaded Graphic EQ: Constant-Q

	6.8 Design a Resonant LPF Plug-In
	6.8.1 Project: ResonantLPF
	6.8.2 ResonantLPF GUI
	6.8.3 ResonantLPF.h File
	6.8.4 ResonantLPF.cpp File

	6.9 The Massberg Analog-Matched Low-Pass Filter
	6.9.1 First-Order Massberg LPF.
	6.9.2 Second-Order Massberg LPF

	Bibliography
	References

	Chapter 7: Delay Effects and Circular Buffers
	7.1 The Basic Digital Delay
	7.2 Digital Delay with Wet/Dry Mix
	7.2.1 Frequency and Impulse Responses
	7.2.2 The Effect of Feedback

	7.3 Design a DDL Module Plug-In
	7.3.1 Project: DDLModule
	7.3.2 DDLModule GUI
	7.3.3 DDLModule.h File
	7.3.4 DDLModule.cpp File
	7.3.5 Declare and Initialize the Delay Line Components
	7.3.6 DDLModule.h File
	7.3.7 DDLModule.cpp File

	7.4 Modifying the Module to Be Used by a Parent Plug-In
	7.4.1 DDLModule.h File
	7.4.2 DDLModule.cpp File

	7.5 Modifying the Module to Implement Fractional Delay
	7.5.1 DDLModule.cpp File

	7.6 Design a Stereo Digital Delay Plug-In
	7.6.1 Project: StereoDelay
	7.6.2 StereoDelay GUI
	7.6.3 StereoDelay.h File
	7.6.4 StereoDelay.cpp File

	7.7 Design a Stereo Crossed-Feedback Delay Plug-In
	7.8 Enumerated Slider Variables
	7.8.1 Constructor
	7.8.2 PrepareForPlay()
	7.8.3 UserInterfaceChange()
	7.8.4 ProcessAudioFrame()

	7.9 More Delay Algorithms
	7.9.1 Advanced DDL Module
	7.9.2 Delay with LPF in Feedback Loop
	7.9.3 Multi-Tap Delay
	7.9.4 Ping-Pong Delay
	7.9.5 LCR Delay

	Bibliography

	Chapter 8: Audio Filter Designs: FIR Filters
	8.1 The IR Revisited: Convolution
	8.2 Using RackAFX’s Impulse Convolver
	8.2.1 Loading IR Files
	8.2.2 Creating IR Files
	8.2.3 The IR File Format

	8.3 Using RackAFX’s FIR Designer
	8.4 The Frequency Sampling Method
	8.4.1 Linear-Phase FIR Using the Frequency Sampling Method

	8.5 Complementary Filter Design for Linear Phase FIR Filters
	8.6 Using RackAFX’s Frequency Sampling Method Tool
	8.7 Designing a Complementary Filter
	8.8 The Optimal (Parks-McClellan) Method
	8.9 Using RackAFX’s Optimal Method Tool
	8.10 Design a Convolution Plug-In
	8.10.1 Project: Convolver
	8.10.2 Convolver.h File
	8.10.3 Convolver.cpp File

	8.11 Numerical Method FIR Filters
	8.11.1 Moving Average Interpolator
	8.11.2 Lagrange Interpolator
	8.11.3 Median Filter

	Bibliography

	Chapter 9: Oscillators
	9.1 Direct Form Oscillator
	9.1.1 Initial Conditions

	9.2 Design a Direct Form Oscillator Plug-In
	9.2.1 Project: DirectOscillator
	9.2.2 DirectOscillator GUI
	9.2.3 DirectOscillator.h File
	9.2.4 DirectOscillator.cpp File
	9.2.5 Improving the Oscillator Design

	9.3 The Gordon-Smith Oscillator
	9.4 Wave Table Oscillators
	9.5 Design a Wave Table Oscillator Plug-In
	9.5.1 Project: WTOscillator
	9.5.2 WTOscillator GUI
	9.5.3 WTOscillator.h File
	9.5.4 WTOscillator.cpp File

	9.6 Adding More Wave Tables
	9.6.1 WTOscillator.h File
	9.6.2 WTOscillator.cpp File
	9.6.3 WTOscillator GUI
	9.6.4 WTOscillator.h File
	9.6.5 WTOscillator.cpp File

	9.7 Band-Limited Additive Wave Tables
	9.7.1 WTOscillator GUI
	9.7.2 WTOscillator.h File
	9.7.3 WTOscillator.cpp File
	9.7.4 Saw-Tooth.
	9.7.5 Square Wave

	9.8 Additional Oscillator Features (LFO)
	9.8.1 WTOscillator.h File
	9.8.2 WTOscillator.cpp File
	9.8.3 WTOscillator.h File
	9.8.4 WTOscillator.cpp File

	9.9 Bipolar/Unipolar Functionality
	9.9.1 WTOscillator GUI
	9.9.2 WTOscillator.cpp File

	Bibliography

	Chapter 10: Modulated Delay Effects
	10.1 The Flanger/Vibrato Effect
	10.2 The Chorus Effect
	10.3 Design a Flanger/Vibrato/Chorus Plug-In
	10.3.1 Project: ModDelayModule
	10.3.2 ModDelayModule GUI
	10.3.3 ModDelayModule.h File
	10.3.4 ModDelayModule.cpp File
	10.3.5 PrepareForPlay()
	10.3.6 Challenge

	10.4 Design a Stereo Quadrature Flanger Plug-In
	10.4.1 Project: StereoQuadFlanger
	10.4.2 StereoQuadFlanger GUI
	10.4.3 StereoQuadFlanger.h File
	10.4.4 StereoQuadFlanger.cpp File
	10.4.5 Challenges

	10.5 Design a Multi-Unit LCR Chorus Plug-In
	10.5.1 Project: StereoLCRChorus
	10.5.2 StereoLCRChorus GUI
	10.5.3 StereoLCRChorus.h File
	10.5.4 StereoLCRChorus.cpp File

	10.6 More Modulated Delay Algorithms
	10.6.1 Stereo Cross-Flanger/Chorus (Korg Triton®)
	10.6.2 Multi-Flanger (Sony DPS-M7®)
	10.6.3 Bass Chorus
	10.6.4 Dimension-Style (Roland Dimension D®)
	10.6.5 Deca-Chorus (Sony DPS-M7®)

	Bibliography

	Chapter 11: Reverb Algorithms
	11.1 Anatomy of a Room Impulse Response
	11.1.1 RT60: The Reverb Time

	11.2 Echoes and Modes
	11.3 The Comb Filter Reverberator
	11.4 The Delaying All-Pass Filter Reverberator
	11.5 More Delaying All-Pass Filter Reverberators
	11.6 Schroeder’s Reverberator
	11.7 The Low-Pass Filter–Comb Reverberator
	11.8 Moorer’s Reverberator
	11.9 Stereo Reverberation
	11.10 Gardner’s Nested APF Reverberators
	11.11 Modulated APF and Comb/APF Reverb
	11.12 Dattorro’s Plate Reverb
	11.13 Generalized Feedback Delay Network Reverbs
	11.14 Other FDN Reverbs
	11.15 An Example Room Reverb
	11.16 RackAFX Stock Objects
	11.16.1 COnePoleLPF
	11.16.2 CDelay
	11.16.3 CCombFilter
	11.16.4 CLPFCombFilter
	11.16.5 CDelayAPF

	11.17 Design the Room Reverb
	11.17.1 Project: Reverb
	11.17.2 Reverb GUI
	11.17.3 Reverb.h
	11.17.4 Reverb.cpp

	11.18 Challenge
	Bibliography
	References

	Chapter 12: Modulated Filter Effects
	12.1 Design a Mod Filter Plug-In: Part I Modulated fc
	12.1.1 Project: ModFilter
	12.1.2 ModFilter GUI
	12.1.3 ModFilter.h File
	12.1.4 ModFilter.cpp File

	12.2 Design a Mod Filter Plug-In: Part II, Modulated fc, Q
	12.2.1 ModFilter GUI
	12.2.2 ModFilter.h File
	12.2.3 ModFilter.cpp File

	12.3 Design a Mod Filter Plug-In: Part III, Quad-Phase LFOs
	12.3.1 ModFilter GUI
	12.3.2 ModFilter.cpp File

	12.4 Design an Envelope Follower Plug-In
	12.5 Envelope Detection
	12.5.1 Project EnvelopeFollower
	12.5.2 EnvelopeFollower GUI
	12.5.3 EnvelopeFollower.h File
	12.5.4 EnvelopeFollower.cpp File

	12.6 Design a Phaser Plug-In
	12.6.1 Project Phaser
	12.6.2 Phaser GUI
	12.6.3 Phaser.h File
	12.6.4 Phaser.cpp File

	12.7 Design a Stereo Phaser with Quad-Phase LFOs
	12.7.1 Phaser GUI
	12.7.2 Phaser.h File
	12.7.3 Phaser.cpp File

	Bibliography
	References

	Chapter 13: Dynamics Processing
	13.1 Design a Compressor/Limiter Plug-In
	13.1.1 Project: DynamicsProcessor
	13.1.2 DynamicsProcessor: GUI
	13.1.3 DynamicsProcessor.h File
	13.1.4 DynamicsProcessor.cpp File
	13.1.5 DynamicsProcessor.cpp File

	13.2 Design a Downward Expander/Gate Plug-In
	13.2.1 DynamicsProcessor.h File
	13.2.2 DynamicsProcessor.cpp File

	13.3 Design a Look-Ahead Compressor Plug-In
	13.3.1 DynamicsProcessor: GUI
	13.3.2 DynamicsProcessor.h File
	13.3.3 DynamicsProcessor.cpp File

	13.4 Stereo-Linking the Dynamics Processor
	13.4.1 DynamicsProcessor: GUI
	13.4.2 DynamicsProcessor.cpp File

	13.5 Design a Spectral Compressor/Expander Plug-In
	13.5.1 Project: SpectralDynamics
	13.5.2 SpectralDynamics: GUI
	13.5.3 Additional Slider Controls
	13.5.4 Spectral Dynamics Buttons
	13.5.5 Spectral Dynamics Metering
	13.5.6 SpectralDynamics.h File
	13.5.7 SpectralDynamics.cpp File

	13.6 Alternate Side-Chain Configurations

	Bibliography
	References

	Chapter 14: Miscellaneous Plug-Ins
	14.1 Design a Tremolo/Panning Plug-In
	14.1.1 Project: TremoloPanner
	14.1.2 TremoloPanner: GUI

	14.2 Design a Ring Modulator Plug-In
	14.2.1 Project: RingModulator
	14.2.2 RingModulator: GUI
	14.2.3 RingModulator.h File
	14.2.4 RingModulator.cpp File

	14.3 Design a Wave Shaper Plug-In
	14.3.1 Project: WaveShaper
	14.3.2 WaveShaper: GUI

	Bibliography

	Appendix A: The VST® and AU® Plug-In APIs
	A.1 Compiling as a VST Plug-In in Windows
	A.2 Wrapping Your RackAFX Plug-In
	A.3 Comparison of Objects/Methods/GUIs
	A.4 VST Plug-In without Wrapping
	A.4.1 Default GUI
	A.4.2 Signal Processing

	A.5 VST Plug-In with RackAFX Wrapping
	A.5.1 Default GUI

	A.6 AU Overview
	A.6.1 Default GUI
	A.6.2 Signal Processing

	Appendix B: More RackAFX Controls and GUI Designer
	B.1 The Alpha Wheel and LCD Control
	B.2 The Vector Joystick Control
	B.3 Using the sendUpdateGUI() Method
	B.4 Using GUI Designer.

	Index

