WILL PIRKLE

DESIGNING
AUDIO EFFECT
PLUG-INS IN C++

WITH DIGITAL AUDIO SIGNAL PROCESSING THEORY

bool _Stdcall CReverb: .processAudioFrame(float™ plnputBuffer
boshutpstdeall CReverb::processAudioFrame(float* plnpt

WTmeRi)utChannels, UIN'IéNumOutputChannels)
U umlncput hannels, UINT uNumOL
{ // output = input -- change this for meaningful processing

///output = input -- change this for mean
// // Do LEFT (MONO) Channel; there is always at least one input/one

@Ayl E{ﬁj}}%) INQ) Ghannsl: there is always at least

// (INSERT Effec

B AA'?‘




Designing Audio Effect
Plug-Ins in C++






Designing Audio Effect
Plug-Ins in C++

With Digital Audio Signal Processing Theory

Will Pirkle

Focal Press

Taylor & Francis Group

NEW YORK AND LONDON



First published 2013
by Focal Press
70 Blanchard Road, Suite 402, Burlington, MA 01803

Simultaneously published in the UK
by Focal Press
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

Focal Press is an imprint of the Taylor and Francis Group, an Informa business
© 2013 Taylor and Francis

The right of Will Pirkle to be identified as author of this work has been asserted by him/her in accordance with
sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any elec-
tronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in
any information storage or retrieval system, without permission in writing from the publishers.

Notices

Knowledge and best practice in this field are constantly changing. As new research and

experience broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using
any information, methods, compounds, or experiments described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they have a profes-
sional responsibility.

Product or corporate names may be trademarks or registered trademarks, and are used only for identification and
explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data
Pirkle, William C., author.

Designing audio effect plug-ins in C++ with digital audio signal processing theory/Will Pirkle.

pages cm

Includes bibliographical references and index.

ISBN 978-0-240-82515-1 (paperback)
1. Computer sound processing. 2. Plug-ins (Computer programs)
3. C++ (Computer program language) |. Title.

MT723.P57 2013

006.4’5—dc23

2012024241

ISBN: 978-0-240-82515-1 (pbk)
ISBN: 978-0-123-97882-0 (ebk)

Typeset in Times
Project Managed and Typeset by: diacriTech



Dedicated to

my father and mother
C.H. Pirkle
and
J.V. Pirkle






Contents

INEPOAUCHION ....eeeanenaaneeaeeeeeeeencereeiereeceraneesnecteeesascessssessssssnsessssssssssssnsssnnsasnnes xvii
Chapter 1: Digital Audio Signal Processing Principles ...................uuuueeeeeeeeeeeeeeiennnnnn. 1
1.1 AcqQUISITION OF SAMPIES.....iiiiiieiece e 1
1.2 Reconstruction of the SIgnal...........coeiiiii e 3
1.3 Signal Processing SYSIEMS ........cuiieieieieieisesese sttt 4
1.4 Synchronization and INTEITUPLES . .......cveeeirieeeieese e 5
1.5 Signal Processing FIOW...........couiiiiiiiieieieeseses e 6
1.6 Numerical Representation of AUdIO Data...........cccoveeriiiinienieneniee e 7
1.7 Using FIoating-Point Data..........ccooiiiiiiiieiinieesee e 9
1.8 BasiC DSP TeSt SIgNalS.......ccoiiiiiiiiiiiieie s 10
TN B T O 14 To ] (=] o TSR 10

IS T N )Y o [V £ OSSP 11

1.8.3 Lo NYQUIST ..veetieie ettt ettt re e reane s 11

1.8.4 Ya NYQUISE ... 12

185 IMPUISE .o e re e 12

1.9 Signal Processing AlGOrithms..........ccooiiiiiiiiiiee e 13
1.10 BOOKKEEPING ...c.eitiitiitiiteiteiteite ettt bbbttt sae e e 13
1.11 The ONe-Sample DEIAY........cccooeriieieieeeeeees e 15
1.12 MUIRPIICALION ...ttt 16
1.13 Addition and SUDLrACTION ........cveiiiieiiiieieeee e 17
1.14 Algorithm Examples and the Difference EQUation............ccoccevveieiiniencnieniene 18
1.15 Gain, Attenuation, and Phase INVErSIiON...........ccocoviiiiiiiinineseeeseseseeee 18
1.16 Practical Mixing AIGOrthM ........cooiiiiiiie s 19
BIDHIOGIapNY ..o s 20
Chapter 2: Anatomy of @ PIug-In......................uueuuunnnnnnnnnnnnnnrerireeeieeieeeeiceccessscnnn 21
2.1 Static and DyNamic LINKING ......ccoveiiiieieieciese e 21
2.2 Virtual Address Space and DLL ACCESS ......cceieiierieiieeriesiesiesieesieseeeessesee e sns 22
2.3 C and Ct StYIE DLLS ..o 24
2.4 Maintaining the User INTerface ... 25
2.5 The Applications Programming INterface ...........cccooviiiiiiiininiicnece e, 27
2.6 Typical Required APl FUNCLIONS. ........coiiiiiiieeieieeees e 29
2.7 The RackAFX Philosophy and APl ... 31
2.7. 1  SHCAIL ..o e 31
BIDHOGIAPNY ... s 34



viii Contents

Chapter 3: Writing Plug-Ins with RACKAFX ............uuuuuunnnuuuumnrrrreeeriieiieeeeeeeeieeeeeen. 35
3.1 BUIIAING The DLL..c.ooiiiiiieiecieie s 35
3.2 CFBALION ...ttt b bbbt bbb e 36
3.3 THE GUI .ttt bbb 36
3.4 ProCesSING AUGIO ......couviieieiieie ettt ra e sre e sneenes 37
3.5 DBSLIUCTION. ...ttt sttt a e e e 38
3.6 YOUN FIFSt PIUG-INS ...t 38

3.6.1 ProjJect: YOUIPIUGIN......coviiiiiiiiitiiteeeee e 39

3.6.2 YOUrpIUGIN GUI ..o e 39

3.6.3 YOUrplugin.n File ..o 39

3.6.4 Yourplugin.Cpp File ..o 40

3.6.5 BUIlding and TESTING .....oveieiiriiiierieiei e 40

3.6.6 Creating and SaViNg PreSetS........ccoouiiiiiriniiieiscsie e 40

3.6.7 GUI DESIGNET ...vviiiiie ettt sttt et e e saesreenes 40

3.7 Design aVolume Control PIUG-IN........cooviiiiiiiiiiisee s 40
3.8 Set Up RACKAFX O USE ...ccuveiiiiieiesiieie ettt 41
3.9 SEUP PrefereNCES. . ..ecviiieie et 43
3.9.1 Project: MOIUME ....cuv ettt et e 44

3.9.2 VOIUME GU L.ttt 45

3.9.3 Configure a Slider CONtrol ... 46

3.9.4 VOIUME.N FHlB. .ot 48

3.9.5 VOIUME.CPP FlB...oiiiiee e 50

3.10 Design aVolume-in-adB PIUg-IN........ccooiiiiiiiiiiii e 54
3.10.1 Project: MOIUMEUB..........c.coviiiiiiieeiee e 56
3.10.2 VOIUMEAB GUI ... e 56
3.10.3 VOIUMEAB.N File ..o e 56
3.10.4 VOIUMEAB.CPP FIle ..o 57

3.11 Design a High-Frequency Tone Control Plug-IN..........cccccvvieiiiiinniiieneieenens 58
3.11.1 Project: SIMPIEHPF ... e 60
3.11.2 SIMPIEHPE GUI ...t 60
3.11.3 SIMPIEHPF.N FIE ..o e 60
3.11.4 SIMPIEHPF.CPP File. .o 62

3.12 Design a High-Frequency Tone Control with Volume Plug-In..........ccccoovennee. 66
3.12.1 Project: SIMPIEHPF ..o e 66
3.12.2 SIMPIEHPE GUI ..ottt 66
3.12.3 SIMPIEHPE.N FIle ..o e 66
3.12.4 SIMPIEHPF.CPP File....ooeiiiiiiee ettt 67

3.13 The User Plug-1n Menu in RACKAFX ........ooiiiiiiiiieiisie e 69

Chapter 4: How DSP Filters Work ...............eeueeeeeecnnnneneeeeiiinneneeeeeccsnneneeeeneennns 71
4.1 First-Order Feed-Forward FIIter ....... ..o 74
4.2 Design a General First-Order Feed-Forward Filter ............cccooviviviviieneiicieeen, 84
4.3 First-Order Feed-Back FIlter ..o 88

4.4 Design a General First-Order Feed-Back Filter.............ccooeoiiniiiiiniiicnce 89



Contents ix

4.4.1 Project FEedBaCKFIITr .........ccviiiiiiicecee e 89

4.4.2 FeedBaCKFIlter GUI ..ottt e 89

4.4.3 FeedBacCkFIlterh File .....cccooviiiieccee e 89

4.4.4 FeedBackFilter.Cpp File .......oooiiiiiice e 90

4.5 ODSEIVALIONS ......eiviiiiieiiiieie ettt e e e e e nae e 94
A.5. 1 GENEIAL .ttt 94

4.5.2 Feed-FOrward FIlTErS ..o e 95

4.5.3 Feed-Back FIlters ..o e 95
BIDHOGIAPNY .. eeeeeceee s 95
Chapter 5: Basic DSP TREOKY .........ccceeeeeeeeeeeeeeeeeinnnnnnnnnnnneniiseeeeeeeeeeeeesssssssssssnns 97
5.1 The ComPpIeX SINUSOI........ciiiiiiiiiieierie e 97
5.2 Complex Math REVIEBW ........c.coiiiiiiiiiiieeee e 100
5.3 Time Delay as @ Math OPerator..........cccoeveeieiieieiieie s 102
5.4 First-Order Feed-Forward Filter ReVISited............ccccovviiiiinininniiee e 103
5.4.1 NegativVe FrEQUENCIES .......ccvireiiiiece ettt ste ettt 104

5.4.2 Frequencies Above and Below ENYQUISt.........cceevveviiicicie v, 106

5.5 Evaluating the Transfer FUNCLION H(®) ....ccoovvviviiiiieie e 106
5.5.1 DIC (0 HZ) .ot eee e s s e e es e 107

5.5.2 INYOUISE (T7) v veorereeeeeeeeeeeeeseeeeeseesesseeseesseeseeseesseeseeseeseeeseseeseesseeseeneesneeeeeee 108

5.5.3 15 NYQUISE (T1/2) .veoveveeeeeeeeeeeeseese s se s 109

5.5.4 Yo NYQUISE (T/4) ccvvvvvoererreivoressioesesisssssessssssssssss s 109

5.6 EVAlUALING €.ttt 112
5.7 The Z SUBSEITULION .....c.veiviiie e 114
5.8 The ZTranSfOrmM .. ...c.oo it 114
5.9 The zTransform of SIgnalS..........ccooiiiiiiiiii 116
5.10 The z Transform of Difference EQUALtIONS............cccccveveeiieiie e 117
5.11 The zTransform of an IMpulse RESPONSE........cccceveiiereiiiiiesieie s 118
5.12 The Zeros of the Transfer FUNCLION .........cccoviiiiiiiiiereseee s 119
5.13 Estimating the Frequency ReSpONSE: ZEXOS.......c.cccviiverveiieerieiieeniesesiesieeeesaenns 121
5.14 Filter Gain CONtrol........coviiieieiieecece e 122
5.15 First-Order Feed-Back Filter ReVISIted ..........ccccevvviiereiieeniiiece e 123
5.16 The Polesof the Transfer FUNCLION............ccoviiieie i 124
5.16.1 DC (0 HZ) ovvvoorvereeseeeeieeeeeseesessseesss s sesses s assennsesnnens 128
5.16.2 NYQUISE (T7) c1eveueeiieiisieit ettt 128
5.16.3 %2 NYQUISE (TT/2) ...ttt 129
5.16.4 Ya NYQUISE (TI/4) .ooiuiieiieieeee et 130

5.17 Second-Order Feed-Forward FIlter..........ccccoveiiiiii i 132
5.17.1 DC (0 HZ) coeovoeeeeeeeeeeeeeeee e 139
5.17.2 NYQUIST (T1) eevreiesiiiiesie sttt sttt st be st sresne s sne e 139
5.17.3 Yo NYQUISE (T1/2) .e.veieeeee ettt ettt st st 140
5.17.4 Y NYQUISE (TI/A) vt 140

5.18 Second-Order Feed-Back Filter.........cccoiiiiiiiiiiiiiee s 142
5.18.1 DC (0 HZ) coerveeeeeeeeeeeeeeee et s s s 148

5.18.2 ChallenNge.......eoeeeiiiee et 149



x Contents

5.19 First-Order Pole-Zero Filter: The Shelving Filter ..o, 149
5.19.1 DC (0 HZ) coeeiiieiiieiesietee et 155
5.19.2 ChallBNQE... .o 155

5.20 The Bi-QuadratiC FIlter..........ccccvveiiiiiiece e 157

BIDHOGIapNY ... s 162

Chapter 6: Audio Filter Designs: IIR Filters.....................uuuuuuuuuuueeeeeeeeeeeeeeeeeennnnn. 163
6.1 DIreCt Z-Plane DESIN ......ciiiieiiiiieiie ettt sttt nneas 163
6.2 SINGIE POIE FIITEIS.....ciiiiieii e 164

6.2.1 First-Order LPF and HPF ... 164
6.3 RESONALONS ...ttt b et b e e e 165
6.3.1 SIMPIE RESONALON ......eoveiieieeeeiieeie ettt 165
6.3.2 Smith-Angell Improved RESONALON ...........cooveveiiiiirieieiees e 168
6.4 Analog Filter to Digital Filter CONVErSioN ..........cccoeviiiiiiniienesesese e 170
6.4.1 ChallENQe......eoiiiiiiiee s 178
6.5 Effect of Poles or Zeros at INfinity ........ccoceiiiiiiiiiii e 178
6.6 Generic Bi-QUad DESIGNS.......ccciiiriiiiiiiiieie et 181
6.6.1 First-Order LPF and HPF ... 182
6.6.2 Second-Order LPF and HPF ........ccooiiiiiiiiee e 183
6.6.3 Second-Order BPF and BSF ..........ccooiiiiiniene e 184
6.6.4 Second-Order Butterworth LPF and HPF ............ccccooiiiininiieneesc e 184
6.6.5 Second-Order Butterworth BPF and BSF ............ccccoooviiininiiienencscce e 185
6.6.6 Second-Order Linkwitz-Riley LPF and HPF ............cccccoo i, 186
6.6.7 First- and Second-Order APF.........co o 188
6.7 AUIO SPECITIC FITEIS ....oviiviieiieie e 188
6.7.1 Modified Bi-QUAG .........cccoeieieieieeiee e 189
6.7.2 First-Order Shelving FIlters ..o 189
6.7.3 Second-Order Parametric/Peaking Filter: Non-Constant-Q.............cc.ccoue.... 191
6.7.4 Second-Order Parametric/Peaking Filter: Constant-Q...........c.ccocevviviinenes 192
6.7.5 Cascaded Graphic EQ: Non-Constant-Q..........cccceveverveieresesneieseseenean, 194
6.7.6 Cascaded Graphic EQ: Constant-Q..........cccevvevviiiiievese e, 195
6.8 Design a Resonant LPF PIUG-IN ..o 196
6.8.1 Project: ReSONANTLPF...........coviiiiecece e 197
6.8.2 ReSONANILPE GUI ... 197
6.8.3 ReSONaNtLPF.N File ..o 198
6.8.4 ReSONaNtLPF.CPP FIlE ..o 199
6.9 The Massberg Analog-Matched Low-Pass Filter ...........cccooiiiiiiniicieienne 201
6.9.1 First-Order Massherg LPF.........coo e 201
6.9.2 Second-Order Massherg LPF ..o 203
BIDHOGIaPNY ... e 204
RETEIBINCES. ...ttt nae e 205

Chapter 7: Delay Effects and Circular Buffers...............uueeeeeennneeeeeeeeeennnnneeenenne. 207

7.1 The Basic Digital Delay..........cccooeiiiiieiiiieie e 209

7.2 Digital Delay With WE/DIY MiX ......cccveiiiieieiieie s 214



Contents xi

7.2.1 Frequency and ImpulSe RESPONSES..........coveiriiirierieieesesie e 214
7.2.2 The Effect of Feedback .........ccocvvveieiiiiii e, 218

7.3 Design a DDL Module PIUg-IN.......c.ooiiiiiii e 224
7.3.1 Project: DDLMOGUIE.........ccooieieie et 225
7.3.2 DDLMOAUIE GUI ..ot 225
7.3.3 DDLMOAUIE.N File ..o 226
7.3.4 DDLMOAUIE.CPP FIlE ..o 226
7.3.5 Declare and Initialize the Delay Line COMPONENtS .........ccccevveeveveireninnenn, 228
7.3.6 DDLMOAUIE.N File ..o 230
7.3.7 DDLMOAUIE.CPP FIE oo 230

7.4 Modifying the Module to Be Used by a Parent Plug-In...........ccocooviniiiiinnnn, 233
7.4.1 DDLMOAUIE.N FIlE .o 233
7.4.2 DDLMOAUIE.CPP Fil .o 234

7.5 Modifying the Module to Implement Fractional Delay............cccccoovvininnennns 235
7.5.1 DDLMOAUIE.CPP Fil .ceeiniiiiieee s 238

7.6 Design a Stereo Digital Delay Plug-In .........cccoooieiiiiii e 239
7.6.1 Project: Stere0Delay........ccovcveiiiiciic s 239
7.6.2 StereoDelay GUI ........cooiiiiiciiic e e 241
7.6.3 StereoDelay.n File ..o 241
7.6.4 StereoDelay.cpp File ... 242

7.7 Design a Stereo Crossed-Feedback Delay Plug-In.........cccccooviveviviieniiieniennnn 244
7.8 Enumerated SHider Variables. ... ..o 245
T.8.1 CONSIIUCTON ...ttt sttt sttt et e e seb e bbb e 246
7.8.2 Prepar€FOrPlay () .. ..coeoereieisesienee st 246
7.8.3 UserInterfaCeChange() .....ooveererereieise et 246
7.8.4 ProCeSSAUMIOFTAME() .....cveiriiriirieieieiee e 247

7.9 More Delay AlGOrithms ........ooiiiiiieiieee e 248
7.9.1 Advanced DDL MOQUIE ........ccccoiiiiiiiiiieees e 248
7.9.2 Delay with LPF in Feedback LOOP ......cccvvvveiiviiiiiie e, 248
7.9.3 MUItI=TaP DEIAY ....veivveieieceecc st 249
7.9.4 PiNg-PONG DEIAY ....ocveiiiiiciiciece sttt 250
7.9.5 LCR DEIAY....eeiieiiiee ettt 250
BIDHOGIAPNY ..o e 251
Chapter 8: Audio Filter Designs: FIR Filters ...................uuuuuuuueeeeeeeeneeeeeeeeeeeennnnnn. 253
8.1 The IR Revisited: CONVOIULION ......c.ooueiiiiiiiieee e 253
8.2 Using RackAFX’s Impulse CONVOIVEN ..o 258
8.2.1 L0ading IR FIlES.....cuiiiiiiiiiiisie e 258
8.2.2 Creating IR FIlES ....ocuveie e 259
8.2.3 The IR File FOMAL......cciiiiiiiieieeie s 261

8.3 UsiNg RACKAFX’S FIR DESIGNET ......ccveiiiiieieiieeiesieeie st ssee st sie e seesneas 262
8.4 The Frequency Sampling Method...........cooviiiiiiineiicccc e 263
8.4.1 Linear-Phase FIR Using the Frequency Sampling Method............c............. 263

8.5 Complementary Filter Design for Linear Phase FIR Filters...........cccccvevveviennnn 266

8.6 Using RackAFX’s Frequency Sampling Method Tool ..........c.ccoeveieieiiccienenn 267



xii Contents

8.7 Designing a Complementary Filter...........cccooviiveiiiiiiic i 269
8.8 The Optimal (Parks-McClellan) Method............ccccooveiiiiiiiiirccce e 270
8.9 Using RackAFX’s Optimal Method TOOl ... 271
8.10 Design a Convolution PIUG-IN .......cccooiiiiiee e 273
8.10.1 Project: CONVOIVET .......coviiiiiriiiieieie et 275
8.10.2 CONVOIVELN Fil ..o 275
8.10.3 CONVOIVEL.CPP Fill..c.iiiiiiiciiieee s 276

8.11 Numerical Method FIR FIlterS .......cccoiiiiiiiiiiiesesee s 281
8.11.1 Moving Average INterpolator .........ccccoviiiveiiiie i 282
8.11.2 Lagrange INterpOlator..........cccccevveieiiii it 284
8.11.3 Median FIler ....cuviiiieeeiee s 284
BIDHIOGIaPNY ... s 287
Chapter 9: OSCIllALOrs ...........uuuuueeeeeeeeeeieiiiiiiiiiiiiiiiiiisssnseerereeeeeeeeeeeeeeeessessees 289
9.1 Direct FOrm OSCIHIAON.........cciiiieiieieiee e e 289
9.1.1 INitial CONUITIONS.......eiieieeiieeie e 290

9.2 Design a Direct Form Oscillator PIug-IN...........cccoooiiiiiiiiiiiineeee 292
9.2.1 Project: DIireCtOSCIHIALON..........ccoiiiiiiicic e 292
9.2.2 DireCtOSCIllator GUI ........cccvoieiiii et 292
9.2.3 DirectOSCIllator.n File .......cvoiiiiiiiecee s 294
9.2.4 DirectOsCillator.Cpp File ......cveveieeiee et 295
9.2.5 Improving the Oscillator DeSIgN ..........cccvvvevieviiice e, 297

9.3 The Gordon-Smith OSCHIALON ........cccoiviiiiieece e 299
9.4 Wave Table OSCIHIALOrS ........ccooiiiieiciee e 301
9.5 Design a Wave Table Oscillator PIUG-IN...........cccoeiieiiiiie e 303
9.5.1 Project: WTOSCIHIALON .........cciiiiereieisereeee s 303
9.5.2 WTOSCIHIALOr GUI ...ttt 303
9.5.3 WTOSCIHIALOrN FIle ... 304
9.5.4 WTOSCIIAtOr.CPP FIlE ....oviiiiieeee s 305

9.6 Adding More Wave TabIesS.........coceiiiiiiiiie e 308
9.6.1 WTOSCIHIAtOrN File ....c.oeiiicieeiece st 308
9.6.2 WTOSCIHIAtOr.CPP File ...c.veeveee e 309
9.6.3 WTOSCIHIAIOr GUI ....cviiiiiiiiiiiciieeese e 310
9.6.4 WTOSCIHIAtOrN FIlE ..ot 310
9.6.5 WTOSCIHIAtOr.CPP File ..o 311

9.7 Band-Limited Additive Wave TabIes ...........cccoovveiiiiiii i 312
9.7.1 WTOSCIHIALOr GUI ... 313
9.7.2 WTOSCIHIALOrN FIle ... 313
9.7.3 WTOSCIHIAtOr.CPP FIlE ... 314
0.7.4 SAW-TOOTN. ..ot s re e 317
0.7.5 SQUANE WAVE .......eiiiiiieee et re e 317

9.8 Additional Oscillator Features (LFO)........coviiiiiiiiie e 320
9.8.1 WTOSCIHIAtOrN File ....c.eeiieieeiece e 320
9.8.2 WTOSCIHIAtOr.CPP File ...cveveeee e 321
9.8.3 WTOSCIHIAtONN FlE ..o 321

9.8.4 WTOSCIHIAtOr.CPP File ..o 322



Contents xiii

9.9 Bipolar/Unipolar FUNCHIONAIILY.........cccveriiiieieiieie e 324
9.9.1 WTOSCIHIALOr GUI ..o 324
9.9.2 WTOSCIHIAOr.CPP FIIE ....cviiiceee s 325

BIDHOGraPNY ..o s 326

Chapter 10: Modulated Delay Effects ............cuueeeieunnnnnnnnnnunnnnnreneeeeeeeeeeeeeeeeeennn. 327

10.1 The Flanger/Vibrato EffeCt.........cccoviiiiiiiiiie e 328

10.2 The Chorus EFfECE........ccoiiieceeeee e 331

10.3 Design a Flanger/Vibrato/Chorus PIug-In ..........ccccoocviiiiiniiiinnicec e, 334
10.3.1 Project: ModDelayModule...........ccooeiiiiiieiiieece e 335
10.3.2 ModDelayModule GUI .........cceoiiiiiiiececc e 336
10.3.3 ModDelayModule.n File .......cooveiiiiiiiiccee e 336
10.3.4 ModDelayModule.cpp File ....cocoveieiie e 337
10.3.5 Prepar€FOrPIaY () ...oooeoeeeeeieieeie et 340
10.3.6 ChallENge.......ooviiiiiiiceee e 342

10.4 Design a Stereo Quadrature Flanger PIug-1n..........ccccooiiiiiinoneneieeee 342
10.4.1 Project: Stere0QUAdFIANGEN .....ccoiviiiiiiieieees e 342
10.4.2 StereoQuadFIanger GUI..........ccooiiiiiiiiiinieiese e 342
10.4.3 StereoQuadFlanger.n File.........ccoooviiiiiiiiii e 342
10.4.4 StereoQuadFlanger.Cpp File ......cooveiiiiiiee e 343
10.4.5 ChallENQES .....cveiieceiiiece sttt be e re s 345

10.5 Design a Multi-Unit LCR Chorus PIug-In ... 345
10.5.1 Project: StereOLCRCNOIUS.......ccocieviiieciee e 346
10.5.2 StereOLCRCNOIUS GUI ..ot e 346
10.5.3 Stere0LCRChOruS.n File ......oviiie e 346
10.5.4 Stere0LCRCHhOrUS.CPP FIle ...vvieeeee e 347

10.6 More Modulated Delay AlgOrithms..........ccoiiiiiiiiiiiiieeee e 350
10.6.1 Stereo Cross-Flanger/Chorus (Korg Triton®) ........ccccvevvevciveercircrennne, 350
10.6.2 Multi-Flanger (SONY DPS-M7®) .......cooieieieereieieeieieeeeee e, 350
10.6.3 BaSS CROTUS......ciuveiiieiiiiieie et see et sre ettt sta e e sreereenes 350
10.6.4 Dimension-Style (Roland Dimension D®) ...........ccccceveveereinerersiiceenennn, 351
10.6.5 Deca-Chorus (SONY DPS-MT7®).......c.ccviiiireereesieeesseeesessiessissenessenes 354

BIDHOGIaPNY ... e 355

Chapter 11: Reverb AlIGorithms.................uueeeeeeeeennnnneneeeeninnnnnneeeeencnnnnneeeeesennns 357

11.1 Anatomy of a Room ImMpulse RESPONSE .......ccecvvevveieiiiieiieiere e 358
11.1.1 RTgo: The ReVErD TIMe. ..o 359

11.2 ECh0ES aNd IMOGES .......ouviieieieeee e 360

11.3 The Comb Filter REVEIDErator ..........coveiiiiiiiiieisee s 364

11.4 The Delaying All-Pass Filter Reverberator.............ccccoovvniiienenieneneiecene 368

11.5 More Delaying All-Pass Filter Reverberators............cccoocvviniinniiienncnicienen, 370

11.6 Schroeder’s REVEIDEIALOr . ........ccuoiuiiieiiiieie et 372

11.7 The Low-Pass Filter—Comb Reverberator ............c.ccoovvviiniiinininescee 373

11.8 MOOIEr’S REVEIDEIALON .......cveieiieiieieeieeieee e 375

11.9 Stereo ReVEIDEIAtION. .........coveiiieieeeee s 376

11.10 Gardner’s Nested APF REVEIEIAIOIS .......uveeeieee ettt e e e eeeene e 377



xiv  Contents
11.11 Modulated APF and Comb/APF REVEID .......cccoviiiiiiiiiiieeeeeeee e 381
11.12 Dattorro’s Plate REVEID.........ooviiiiiieee e 382
11.13 Generalized Feedback Delay Network ReVErbS ...........ccoovvrerenenencicieene 385
11.14 Other FDN REVEIDS .....c.oiuiiiiiieeeeee e 389
11.15 An Example ROOM REVEID ......ccvoiiiiiieeee e 391
11.16 RACKAFX StOCK ODJECES. .....cciuiiiieiiiiieie et 394
11.16.1 CONEPOIELPF.......ocieiit ettt 394
11.16.2 CDEIAY .....eiiveeeieiieieete e 395
11.16.3 CCOMBFIIET ...t 396
11.16.4 CLPFCOMBFIITEN .....c.oiiiiiiiiiiiiiieicis s 396
11.16.5 CDEIAYAPFE ...ttt 398
11.17 Design the ROOM REVEID ......ciuviiiiiiieieceee st 398
I A0 T 0] 1= ol (=Y o R 398
11.17.2 REVEID GUI ..o 398
11.17.3 REVEIDN ... s 402
11.17.4 REVEID.CPP ettt 403
11.18 CRAIBNGE ..ottt 408
BIDHOGIAPNY ..o 409
RETEIEICES ...ttt e e et e et e e re e et e eteessaenneennne s 409
Chapter 12: Modulated Filter Effects................ccccceevunnnmumummnnnnnnnnnneeeeeeeieeeeenennn 411
12.1 Design a Mod Filter Plug-In: Part | Modulated f .........cccovevviiniiiiiiiiceen, 412
12.1.1 Project: MOAFIIEr ......cveiee et 413
12.1.2 MOAFIIEEr GUIL.....oiiiiiiiiice s 413
12.1.3 MOAFIRErN Flle. ... e 413
12.1.4 MOAFIREr.CPP Fil ..ot 416
12.2 Design a Mod Filter Plug-In: Part 11, Modulated f;, Q ....ccoovvvriiiiiiiiiiene 419
12.2.1 MOAFIEr GUIL....ccoiiiiiiiee et 419
12.2.2 MOAFIRERN File....coiiiiiiiieee e 419
12.2.3 MOFIIEr.CPP Fle ..o 420
12.3 Design a Mod Filter Plug-In: Part 111, Quad-Phase LFOS............ccccovevirennenne. 423
12.3.1 MOFIIEr GUIL....oiiiiiiiieiee e 423
12.3.2 MOAFIEr.CPP File...cviiiiecee e 424
12.4 Design an Envelope Follower PIUg-IN.........cccooviiiiiiiiiiniceccee e 425
12.5 ENVEIOPE DELECTION. ...c.viiiiiiieiieiiesie ettt 428
12.5.1 Project ENVElOpeFOIIOWET ........cccviiieiie e 430
12.5.2 EnvelopeFollower GUI..........ccooiiiiiiiiieee e 430
12.5.3 EnvelopeFollower.n File........ccoooiiiiiiiieee e 431
12.5.4 EnvelopeFollower.cpp File. ... 432
12.6 Design a Phaser PIUG-IN........coio e 436
12.6.1 PrOJECE PRaSEI ...t 440
12.6.2 PhaSer GUI .......ccviiiie ittt 440
12.6.3 Phaser.n File ......ccoovoiiiiiiec et 440

12.6.4 Phaser.CPP File ...ocveeeiiiee e e 441



Contents xv

12.7 Design a Stereo Phaser with Quad-Phase LFOS..........ccccccvvviviviiiieieiieieenen, 446
12.7.1 PRASEI GUI ....oeiiiiiiiiiee e 446
12.7.2 Phasern File ..o 446
12.7.3 Phaser.CPpP File ..o 447

BIDHOGraPNY ..o 451

RETEIEINCES. ...ttt b e nae e 451

Chapter 13: DYyNnamics ProCESSiNg...........ceeeeeeeeeeeeeierirnnnnnnnnnnmnmenneeseeeeeeeeeeeeesessens 453

13.1 Design a Compressor/Limiter PIUg-IN..........cccooiiiiiiiiiiinniiecceec e 457
13.1.1 Project: DYNamiCSPIrOCESSON........ccveiveiieeieeiesiesieeeeste e et re e 458
13.1.2 DynamicsProcessor: GUI........ccccviviiiiiiic e 458
13.1.3 DynamicsProcessor.n File ... 459
13.1.4 DynamicsSProcessor.CPP File ....ccvvvviiiiiiiiic e 460
13.1.5 DynamicsProcessor.CpP File ........ccooviviiieiiieeee e 465

13.2 Design a Downward Expander/Gate Plug-In..........ccccooiiiiieninincieee 466
13.2.1 DynamicsProcessor.n File ... 466
13.2.2 DynamicsProcessor.CPP File ..o 466

13.3 Design a Look-Ahead Compressor PIug-IN..........ccocviiiiiiiniieicee e 468
13.3.1 DynamicSProcessor: GUI .........cocuriiiiiiinieieesese e 469
13.3.2 DynamicsProcessor.n File.........cccccoviiiiicie i 470
13.3.3 DynamicsProcessor.cpp File .......cccooviveieieiiiecce e 470

13.4 Stereo-Linking the DYNamiCS PrOCESSON .........couevveieiienienieaienieeeeniesreeee s 472
13.4.1 DynamicsProcessor: GUL.........cooiiiiiiieic st 472
13.4.2 DynamicsProcessor.CPP File .....ccveiviieiiie e 473

13.5 Design a Spectral Compressor/Expander Plug-1n..........ccccoveveviviieiniieeniennnn, 475
13.5.1 Project: SPectralDYNAMICS .........cccoeveiiiriiireieeise e 476
13.5.2 SpectralDynamicCs: GUI ........cocviiiiiiiiiiiieeee e 476
13.5.3 Additional Slider CONtrolS.........cccooeiiiiiiieeeee e 477
13.5.4 Spectral Dynamics BUTIONS ..........ccccooviiiiriinieieiscse e 477
13.5.5 Spectral Dynamics MEtering.........cccovviririnerieisisie e 477
13.5.6 SpectralDynamics.h File .......coooiiiiiiiiie 478
13.5.7 SpectralDynamics.CpP File.......cooiiiiiiiiiicee e 479

13.6 Alternate Side-Chain Configurations..........ccccevviiiieiisienesee e 486

BIDHOGIAPNY ..o s 487

RETEIENCES. ...ttt b 487

Chapter 14: Miscellaneous Plug-Ins .......................uuuuuuuuuuuuueenveneeeeeeeeeeeeieieienenens 489

14.1 Design a Tremolo/Panning PIUg-IN ... 489
14.1.1 Project: TremoIOPanNer.........ccccooiiiiiiiie e 490
14.1.2 TremoloPanner: GUI .......c.ccoiviiiieic e 490

14.2 Design a Ring Modulator PIUg-IN ... 494
14.2.1 Project: RINGMOAUIALOT ..........coviiiiiiiiicsciee e 494
14.2.2 RIiNgMOodUulator: GUI .......c.coviiiiiiic e 494
14.2.3 RIingModulator.h File ......c.covviiiiie e 495

14.2.4 RingModulator.Cpp File ........coiviieiiceceee e 495



xvi Contents

14.3 Design a Wave Shaper PIUG-IN ..o 497
14.3.1 Project: WaveSNaPer.......ccooiie ettt 498
14.3.2 WaveShaper: GUI..........ooiiiiiiiiee e 498

BIDHOGraPNY ..o 500

Appendix A: The VST® and AU® Plug-In APls...........cceccueeeeeeeseeseereeuesuesueseeseesennns 501

A.1 Compiling as a VST Plug-In in WINAOWS...........cccooviiiiinieninenceese e 501

A.2 Wrapping Your RaCKAFX PlUg-IN......ccccciiiiiiiiin i 503

A.3 Comparison of Objects/Methods/GUIS .........ccceveiiiriiiie e 505

A.4 VST Plug-In Without Wrapping .......ccooeieeieieiiese e 506
AL L DefaUlt GUI ... 507
A.4.2 SIgNAl PrOCESSING ..vvevveeieeieeiie e ese e ee et nae e s e s snaesnaeenne e 509

A.5 VST Plug-In with RaCKAFX Wrapping........cceeevviieeieieeneseese e 512
AB.L Default GUI ..ot 512

ALB AU OVEIVIBW ...ttt b bbbt et et nbe st nne e 514
AB.L Default GUI ..ot 515
A.6.2 SIGNAL PIOCESSING ....vcvviitiiiiieiieiesie et 516

Appendix B: More RackAFX Controls and GUI Designer........................cccceeeeeun.. 519

B.1 The Alpha Wheel and LCD CoNtrol..........ccccovviiiiiiiinneiiene e 519

B.2 The Vector JoystiCk CONLrol.........ccoiiiieiiiiiie e 521

B.3 Using the sendUpdateGUI() Method ..........cccccevieiiiiiiiiiiieieciec e 525

B.4 USING GUI DESIGNEN......cciiiiiiieiieeieiieeiesiesee e seestesree e sae e sseese e eeesseeneesseens 525



Introduction

When | started teaching in the Music Engineering Technology Program at the University of
Miami in 1996, we were writing signal processing algorithms in digital signal processing
(DSP) assembly language and loading them on to DSP evaluation boards for testing. We had
also just begun teaching a software plug-in programming class, since computers were finally
at the point where native processing was feasible. | began teaching Microsoft’s DirectX® in
1997 and immediately began a book/manual on converting DSP algorithms into C++ code for
the DirectX platform. A year later | had my first manuscript of what would be a thick DirectX
programming book. However, | had two problems on my hands: first, DirectX is bloated

with Common Object Model (COM) programming, and it seemed like the lion’s share of the
book was really devoted to teaching basic COM skills rather than converting audio signal
processing algorithms into C++, creating a graphical user interface (GUI), and handling

user input. More importantly, developers had dropped DirectX in favor of a new, lean, cross-
platform compatible plug-in format called Steinberg VST®, written in “straight” C++ without
the need for operating system (OS) specific components. After taking one look at the Virtual
Studio Technology (VST) applications programming interface (API), | immediately dropped
all DirectX development, wrote VST plug-ins all summer, and then switched to teaching it the
following year. And, | put my now-obsolete manuscript on the shelf.

After half a dozen semesters teaching VST programming, a few things had become clear.

For any given project, the students were spending more time dealing with setting up and
maintaining a GUI than they were with the audio signal processing code. Instead of being on
the Internet to look for cool processing algorithms, they were searching for knob and switch
bitmaps. While | can certainly appreciate a nice-looking GUI, | was trying to teach audio
signal processing and not graphic design. | next spent some time trying to come up with some
kind of way to speed up the GUI programming, and | wrote a helper program that let students
define lists of variable names, data types, minimum, maximum, and initial values. Then it
would synthesize the code for handling part of the GUI interaction. The actual GUI itself was
another problem, and | spent years trying to come up with a way to free the students (and
myself) from dealing with the hassles of designing and maintaining a GUI. Around 2004,

as a result of a consulting job, I needed to come up with a simple C++ based audio signal
processing APl—my own plug-in format. |1 would also need to write my own plug-in client,

xvii



xviii  Introduction

the software that would load and process data through my plug-ins. | was determined to write
an API that was far simpler and leaner than even VST. And, | wanted my client software

to handle 100% of the GUI details so | could focus on the signal processing work for my
consulting client. This would also make great software to teach audio signal processing and
plug-in programming simultaneously.

Since 2009 I’ve been using my RackAFX™ software in the classroom at both the graduate
and undergraduate levels. My students never cease to amaze me with what they design.
Currently, RackAFX runs on the Windows® OS and generates plug-ins that are compatible
with it and optionally VST as well. You can develop your plug-in in RackAFX, then use it in
any Windows VST client. RackAFX runs in tandem with Microsoft Visual Studio compilers,
even the free ones. It sets up your project files, writes GUI code for you, and allows you to
remotely launch some compiler functions from its control surface. Once you understand
how the RackAFX API works, learning other commercial plug-in APIs will be much easier
because most plug-in APIs share similar methods and set-up sequences. And, since RackAFX
plug-ins are written in C++, the plug-in objects can be compiled on different platforms and
embedded (or wrapped) to operate in just about any signal processing environment. We are
currently running RackAFX plug-ins in Apple’s iOS® in one of my other classes.

In the fall of 2010 I began writing and handing out chapters, one at a time, to students in a
graduate-level class. The chapters combined DSP theory, audio algorithms, and programming
in the proportions | had always wanted, including difference equations and derivations that
were fully worked out. The RackAFX API requires zero GUI programming. It isn’t tied to a
licensed product that I have to worry will become obsolete or will change in complexity or
underlying design. Most importantly, if you can learn to write RackAFX plug-ins, you can
learn to write for just about any other API on the platform you choose. See Appendix A for
more information.

Those initial grad students helped shape the direction and flow of the book (perhaps without
knowing it). | wanted the book to be aimed at people with programming skills who wanted
to get into audio signal processing or the other way around. Academic types that are tired of
using mathematical software to try to do real-time signal processing should also benefit. The
API does not require a steep learning curve.

Chapter 1 presents the number systems, sample indexing, and basic block diagram algorithm
components. Chapter 2 explains how plug-ins are packaged in software and Chapter 3
immediately starts you writing plug-ins. Chapters 4 and 5 are the basic DSP theory chapters.
Feel free to skip these chapters if you already have a strong DSP background or if you don’t
care about it. Chapter 6 is a cookbook of infinite impulse response (I1IR) and audio specific
filter designs. Chapter 7 introduces delay lines and delay effects. The circular buffering they
require is necessary for Chapter 8’s finite impulse response (FIR) tools and convolution

plug-in.



Introduction  xix

Chapter 9 introduces oscillator design, which is needed in Chapter 10’s modulated delay
effects: flanger, chorus and vibrato effects. Chapter 11 includes the analysis of a collection

of reverberator modules and an example reverb design. Chapter 12 returns to the modulation
theme with modulated filter effects, including my own phaser, while Chapter 13 introduces
dynamics processor design. Chapter 14 is a clean-up chapter of miscellaneous effects
algorithms. The two appendices can be read any time after Chapter 3, where you design

your first plug-ins. Appendix A deals with the VST and Audio Units (AU)® formats, their
similarities and differences, and how to use RackAFX objects inside them. Appendix B shows
how to use the GUI designer to drag and drop GUI elements on your control surface—0%
GUI coding, guaranteed. And, if you have the tools and skills to make and maintain your own
GUI, there are options for that as well.

My colleagues Ken Pohlmann, Joe Abbati, Colby Leider, Chris Bennett, and Rey Sanchez
had nothing but encouragement and enthusiasm for the book/software effort. Like many of
the students, they watched RackAFX evolve—even change names—from a fairly bland, gray
academic interface into a highly customizable personal plug-in development lab with a drag-
and-drop GUI designer. Of course those features and enhancements came from suggestions,
comments, and critiques from the numerous students who used the software in class. The API
would not be as robust today without their invaluable input and feedback. Stefan Sullivan
tirelessly beta-tested the software, even in the middle of his thesis work; his comments led

to many of the features in the current product. The RackAFX power users (students who
went above and beyond the parameters of their projects and pushed the envelope of the API)
include Mike Chemistruck, Greg Dion, Felipe Espic, Chen Zhang, Tim Schweichler, Phil
Minnick, Sherif Ahmed, Scott Dickey, Matan Ben-Asher, Jay Coggin, Michael Everman, and
Jordan Whitney.

I hope you enjoy learning the audio effects theory and plug-in design from the book and
that each chapter opens up a new treasure box of cool audio gems you can use to make your
own truly unique audio effects in your own audio effect laboratory. The software FAQs,
sample code, and tutorials are all available at the website www.willpirkle.com and you are
encouraged to upload your own plug-ins and videos as well. | can’t wait to hear what you
cook up in your lab!

Will Pirkle
June 1, 2012


www.willpirkle.com




Digital Audio
Signal Processing Principles

The first affordable digital audio devices began appearing in the mid-1980s. Digital signal
processing (DSP) mathematics had been around since the 1960s and commercial digital
recordings first appeared in the early 1970s, but the technology did not become available
for widespread distribution until about 15 years later when the advent of the compact

disc (CD) ushered in the age of digital audio. Digital sampling refers to the acquisition

of data points from a continuous analog signal. The data points are sampled on a regular
interval known as the sample period or sample interval. The inverse of the sample period

is the sampling frequency. A compact disc uses a sampling frequency of 44,100 Hz,
producing 44,100 discrete samples per channel each second, with a sample interval of about
22.7 microseconds (US). While digital sampling applies to many different systems, this book
is focused on only one of those applications: audio.

During the course of this book, you will learn both DSP theory and applications. This is
accomplished by experimenting with your own DSP algorithms at the same time as you
learn the theory using the included software, RackAFX™. The goal is to understand how
the DSP algorithms translate into C+ + code. The resulting plug-ins you write can be
used to process audio in real time. Because plug-ins are software variations on hardware
designs, it’s worth examining how the hardware systems operate, the typical audio coding
formats, and the algorithm building blocks you will be using to implement your own
software versions.

1.1 Acquisition of Samples

The incoming analog audio signal is sampled with an analog-to-digital converter (ADC

or A/D). A/Ds must accurately sample and convert an incoming signal, producing a valid
digitally coded number that represents the analog voltage within the sampling interval. This
means that for CD audio, a converter must produce an output every 22.7 u.S. Figure 1.1 shows
the block diagram of the input conversion system with LFP, A/D, and encoder.

Violating the Nyquist criteria will create audible errors in the signal in the form of an
erroneously encoded signal. Frequencies higher than Nyquist will fold back into the



2  Chapter 1

The sampling theorem states that a continuous analog signal can be sampled into discrete data
points and then reconstructed into the original analog signal without any loss of information—
including inter-sample fluctuations—if and only if the input signal has been band-limited so
that it contains no frequencies higher than one-half the sample rate, also known as the Nyquist
frequency or Nyquist rate. Band-limited means low-pass filtered (LPF). Band-limiting the input
signal prior to sampling is also known as adhering to the Nyquist criteria.

spectrum. This effect is called aliasing because the higher-than-Nyquist frequencies are
encoded “in disguise” or as an “alias” of the actual frequency. This is easiest explained
with a picture of an aliased signal, shown in Figure 1.2.

Input LPFVfS ‘ﬂv@ ATTn-lll' Encoder %Output

Figure 1.1: The input conversion system ultimately results in
numerical coding of the band-limited input signal.

VUV
i\ AN
!

(b) =Nyquist

Figure 1.2: (a) The Nyquist frequency is the highest frequency that can be encoded
with two samples per period. (b) Increasing the frequency above Nyquist but keeping the
sampling interval the same results in an obvious coding error—the aliased signal is the result.



Digital Audio Signal Processing Principles 3

Once the aliased signal is created, it can never be removed and will remain as a permanent
error in the signal. The LPF that band-limits the signal at the input is called the anti-aliasing
filter. Another form of aliasing occurs in the movies. An analog movie camera takes 30 pictures
(frames) per second. However, it must often film objects that are rotating at much higher rates
than 30 per second, like helicopter blades or car wheels. The result is visually confusing—the
helicopter blades or car wheels appear to slow down and stop, then reverse directions and
speed up, then slow down and stop, reverse, and so on. This is the visual result of the high-
frequency rotation aliasing back into the movie as an erroneous encoding of the actual event.

1.2 Reconstruction of the Signal

The digital-to-analog converter (DAC or D/A) first decodes the bit-stream, then takes the
sampled data points or impulses and converts them into analog versions of those impulses.
The D/A output is then low-pass filtered to produce the final analog output signal, complete
with all the inter-sample fluctuations. As with the A/D diagram, the decoder and D/A are
both inside the same device (a chip). Figure 1.3 shows the conceptual block diagram of the
decoding end of the system.

The output filter is called the reconstruction filter and is responsible for re-creating the
seemingly missing information that the original sampling operation did not acquire—all the
inter-sample fluctuations. The reason it works is that low-pass filtering converts impulses into
smeared out, wiggly versions. The smeared out versions have the shape f(x) = sin(x)/x which
is also called the sinc() function and somewhat resembles the profile of a sombrero, as shown
in Figure 1.4.

Bitstream
Vo'fs

mputow Decoder — DAC/ TT”-lll' LPF Output

Figure 1.3: The digital bit-stream is decoded and converted into
an analog output using a low-pass filter to reconstruct the analog signal.

Impulse sin(x)
; /\ '\\ (x)

_...

1/zE fs

Figure 1.4: The ideal reconstruction filter creates a smeared output with a damped
oscillatory shape. The amplitude of the sin(x)/x shape is proportional to the
amplitude of the input pulse.



4 Chapter 1

» | LPF > Ao = Il
% fs _a » | . .

Figure 1.5: The sin(x)/x outputs of the LPF are summed together to reconstruct
the original band-limited input waveform; the inter-sample
information has been reconstructed.

When a series of impulses is filtered, the resulting set of sin(x)/x pulses overlap with
each other and their responses all add up linearly. The addition of all the smaller
curves and damped oscillations reconstructs the inter-sample curves and fluctuations
(Figure 1.5).

1.3 Signal Processing Systems

Sgnal processing systems combine data acquisition devices with microprocessors to

run mathematical algorithms on the audio data. Those algorithms are the focus of this
book. Today’s plug-ins are descendents of stand-alone hardware effects processors which
are based on DSP chips. A DSP chip is a highly specialized processor designed mainly
to run DSP algorithms. A DSP would function poorly as a central processing unit (CPU)
for a personal computer because it only has a small but highly specialized instruction
set. DSP devices (or just “DSPs™) feature a core processor designed to multiply and
accumulate data because this operation is fundamental to DSP algorithms. Because this
process is repeated over and over, modern DSPs use pipelining to fetch the next data
while simultaneously processing the current data. This technique greatly improves the
efficiency of the system. A typical signal processing system consists of the following
components (Figure 1.6):

« Data acquisition devices (A/D and D/A)

» ADSP chip

e Memory to store the algorithm program (program memory)

e Memory to store the algorithm data (data memory)

» A user interface (UI) with buttons, knobs, switches, and graphic displays

Music synthesis devices are an embedded version of a CPU+DSP arrangement. The
microcontroller or microprocessor manages the Ul and keyboard, while the DSP performs
the audio synthesis and effects algorithms. Practical implementations now involve multiple
DSPs, some of which are custom designed specifically for sound synthesis. An example
block diagram is shown in Figure 1.7.



Digital Audio Signal Processing Principles

5

Input

Qutput

ADC

DAC

DSP

A

Data
Memory

A

Program
Memory

i

User Interface
and
Control Surface

O
O

Figure 1.6: A simple signal processing system. The algorithm in this case is
inverting the phase of the signal; the output is upside-down.

Output

DSP

Data
Memory

Program
Memaory

Microcontroller
or
Microprocessor

uiki

User Interface
and
Control Surface

O
O

Figure 1.7: Block diagram of a synthesizer.

1.4 Synchronization and Interrupts

There are two fundamental modes of operation when dealing with incoming and outgoing
audio data: synchronous and asynchronous. In synchronous operation, all audio input and
output data words are synchronized to the same clock as the DSP. These are typically simple



6 Chapter 1

systems with a minimum of input/output (1/0) and peripherals. More-complex systems
usually involve asynchronous operation, where the audio data is not synchronized to the DSP.
Moreover, the audio itself might not be synchronous, that is, the input and output bit-streams
might not operate on the same clock. A purely synchronous system will be more foolproof,
but less flexible.

An asynchronous system will almost always be interrupt-based. In an interrupt-based
design, the processor enters a wait-loop until a processor interrupt is toggled. The processor
interrupt is just like a doorbell. When another device such as the A/D has data ready to
deliver, it places the data in a predesignated buffer, and then it rings the doorbell by toggling
an interrupt pin. The processor services the interrupt with a function that picks up the data,
and then goes on with its processing code. The function is known as an interrupt-service
routine or an interrupt handler. The interrupt-based system is the most efficient use of
processor time because the processor can’t predict the exact clock cycle when the data will
be ready at the input.

Another source of interrupts is the Ul. Each time the user changes a control, clicks a button,
or turns a knob, the updated Ul control information needs to be sent to the DSP so it can alter
its processing to accommodate the new settings. This is also accomplished via interrupts and
interrupt handlers. The interrupt is sometimes labeled INT, INTR, or IRQ (interrupt request
line) in block diagrams or schematics.

1.5 Signal Processing Flow

Whether the processing is taking place on a DSP chip or in a plug-in, the overall processing
flow, also known as the signal processing loop, remains basically the same. For a DSP chip,
the processes in the loop will be encoded in the program memory’s set of instructions, often
in a nearly pure-inline fashion for optimization of the processor’s cycles. For a plug-in, each
processing block more or less takes on the form of a function in code, allowing for maximum
flexibility.

The processing loop in Figure 1.8 consists of

* A one-time initialization function to set up the initial state of the processor and prepare
for the arrival of data interrupts

* Aninfinite wait-loop, which does nothing but wait for an interrupt to occur

* Aninterrupt handler which decodes the interrupt and decides how to process—or
ignore—the doorbell

» Data reading and writing functions for both control and data information

» A processing function to manipulate and create the audio output

» A function to set up the variables for the next time around through the loop, altering
variables if the Ul control changes warrant it



Digital Audio Signal Processing Principles 7

Do One-Time
Initialization

'

Wait for Data

\d
i

Interrupt

Process ;
Is Audio Read Input & o S&e 15‘;?;':2?%???
INTR? Data Create Audio = P54
Output Data )

A

Read
Control
Data

Is Control
INTR?

Figure 1.8: The flowchart for an audio signal processing system.

For the sampling theorem to hold true, the audio data must be arriving and leaving on a strictly
timed interval, although it may be asynchronous with the DSP’s internal clock. This means
that when the DSP does receive an audio INTR it must do all of the audio processing and
handle any Ul interrupts before the next audio INTR arrives in one sample interval. The
interrupt handling scheme is prioritized such that the audio data interrupt is the most
important. Thus, while servicing the audio data interrupt, the DSP might be set up to ignore

all other interrupts (except the reset interrupt) until the audio data is finished processing.

1.6 Numerical Representation of Audio Data

The audio data can be numerically coded in several different ways. Basic digital audio
theory reveals that the number of quantization levels available for coding is found by
Equation 1.1.

q=2" (1.1)
where N is the bit depth of the system.

Thus, an 8-bit system can encode 28 values or 256 quantization levels. A 16-bit system can
encode 65,536 different values. Figure 1.9 shows the hierarchy of encoded audio data. As a
system designer, you must first decide if you are going to deal with unipolar (unsigned) or

bipolar (signed) data. After that, you need to decide on the data types.



8 Chapter 1

Unipolar or Bipolar

&

Integer Fractional
Fixed-Point Flasting
Point

Figure 1.9: The hierarchy of numerical coding.

e Unipolar or unsigned data is in the range of 0 to +Max, or —Min to 0, and only has one
polarity (+ or —) of data, plus the number zero (0).

» Bipolar or signed data varies from —Min to +Max and is the most common form today.
It also includes the number zero (0).

* Integer data is represented with integers and no decimal place. Unsigned integer
audio varies from 0 to +65,535 for 16-bit systems. Signed integer audio varies
from —32,768 to +32,767 for the same 16-bit audio. In both cases, there are 65,536
guantization levels.

» Fractional data is encoded with an integer and fractional portion, combined as int.frac
with the decimal place separating the parts (e.g. 12.09).

Within the fractional data subset are fixed- and floating-point types. Fixed-point data fixes

the number of significant digits on each side of the decimal point and is combined as int-
sig-digits.frac-sig-digits. “8.16” data would have 8 significant digits before the decimal place
and 16 afterwards. Floating-point data has a moving mantissa and exponent which code the
values across a range predetermined by the Institute of Electrical and Electronics Engineers
(IEEE). The positive and negative portions are encoded in 2’s complement so that the addition
of exactly opposite values (e.g., —0.5 and +0.5) always results in zero. Figure 1.10 reveals
how the quantization levels are encoded. The dashed lines represent the minimum and
maximum values.

A fundamental problem is that the number of quantization levels will always be an even number
since 2N is always even. In bipolar systems, you would very much like to have the number zero
(0) encoded as the number 0. If you do that, then you use up one of your quantization levels for
it. This leaves an odd number of levels which cannot be split exactly in half. That creates the
anomaly you see in Figure 1.10—there are always more negative (—) quantization levels than
positive ones for bipolar coding. For the unipolar case, there is no value which exactly codes
the zero or midpoint level; in Figure 1.10 it is midway between 127 and 128.



Digital Audio Signal Processing Principles 9

Fractional  16-Bit 8-Bit 8-Bit
Bipolar Bipolar Bipolar Unipolar

$0.9999 32767 127 255 d-——mmmmmmmm e
+0.9998 32766 126 254 o

0.0002 2 2 .
0.0001 1 1 128 ?
0 0 0

0.0001 1 1 o A)
3 % 3 1
-0.0002 -2 -2 .
-0.9999 -32,767 -127 1 o
-1.0000 -32,768 -128 0

Figure 1.10: A comparison of several different types of data representations. The floating-
point version is fixed for a range of —1.0 to +0.9999, though any range can be used.

This slight skewing of the data range is unavoidable if you intend on using the number zero
in your algorithms, and that is almost guaranteed. In some systems the algorithm limits the
negative audio data to the second most negative value. This is because phase inversion is
common in processing algorithms, either on purpose or in the form of a negative-valued
coefficient or multiplier. If a sample came in with a value of —32,768 and it was inverted,
there would be no positive version of that value to encode. To protect against that, the
—32,768 is treated as —32,767. The audio data that travels from the audio hardware adapter
(DSP and sound card) as well as that stored in WAV files is signed-integer based. However,
for audio signal processing, we prefer to use floating-point representation.

1.7 Using Floating-Point Data

In many audio systems, the DSP and plug-in data is formatted to lie on the range of —1.0 to
+1.0 (which is simplifying the real range of —1.0 to +0.9999). In fact the plug-ins you code
in this book will all use data that is on that same range. The reason has to do with overflow.
In audio algorithms, addition and multiplication are both commonplace. With integer-based
numbers, you can get into trouble quickly if you mathematically combine two numbers that
result in a value that is outside the range of known numbers.

Consider the 16-bit integer bipolar format on the range of —32,768 to +32,767. Most of the
values on this range, when multiplied together, will result in a product that is outside these



10 Chapter 1

limits. Addition and subtraction can cause this as well, but only for half the possible values.
However, numbers between —1.0 and +1.0 have the interesting property that their product
is always a number in that range. Converting an integer value to a fractional value along the
normalized range of —1.0 to +1.0 in an N-bit digital audio system is easy, as is the reverse

conversion shown in Equation 1.2:

Fraction — Integer
raction = N (1.2)

Integer = Fraction * 2V

where N is the bit depth of the system.

1.8 Basic DSP Test Signals

You need to know the data sequences for several fundamental digital signals in order to begin
understanding how the DSP theory works. The basic signal set consists of

» Direct Current (DC) and step: DC is a 0Hz signal
* Nyquist

e Y Nyquist

e Y Nyquist

e Impulse

The first four of these signals are all you need to get a ballpark idea of the frequency response
of some basic DSP filters. The good news is that all the sequences are simple to remember.

1.8.1 DC and Step

The DC or 0 Hz and step responses can both be found with the DC/step input sequence:
{.001,1,11,1111.}

This signal in Figure 1.11 contains two parts: the step portion where the input changes from
0 to 1 and the DC portion where the signal remains at the constant level of 1.0 forever. When

+10 DC
Step

—0—-—0

-1.0

Figure 1.11 Representation of the DC/Step sequence.



Digital Audio Signal Processing Principles 11

you apply this signal to your DSP filter and examine the output, you will get two pieces of
information. The step portion will tell you the transient attack time and the DC portion will
give you the response at DC or 0 Hz.

1.8.2 Nyquist

The Nyquist input sequence represents the Nyquist frequency of the system and is
independent of the actual sample rate. The Nyquist sequence is {...—1, +1, —1, +1, —1,
+1, -1, +1..}.

The Nyquist frequency signal in Figure 1.12 is the highest frequency that can be encoded. It
contains the minimum of two samples per cycle with each sample representing the maximum
and minimum values. The two-sample minimum is another way of stating the Nyquist
frequency as it relates to the sampling theorem.

1.8.3 % Nyquist

The % Nyquist input sequence in Figure 1.13 represents the % Nyquist frequency of the
system and is independent of the actual sample rate. The signal is encoded with four samples

+1.0

-1.0

Figure 1.12 The Nyquist sequence.

AN

-1.0

Figure 1.13 The %2 Nyquist sequence has four samples per cycle.



12 Chapter 1

per cycle, twice as many as Nyquist. The ¥2 Nyquist sequence is {...—1,0, +1,0, —1, 0, +1,
0,-1,0,+1,0,-1,0, +1,0...}.

1.8.4 Y Nyquist

The ¥ Nyquist input sequence in Figure 1.14 represents the ¥ Nyquist frequency of the
system and is independent of the actual sample rate. It is encoded with eight samples
per cycle. The ¥ Nyquist sequence is {...0.0, 0.707, +1.0, 0.707, 0.0, —0.707, —1.0,
—-0.707,0.0...}.

1.8.5 Impulse

The impulse shown in Figure 1.15 is a single sample with the value 1.0 in an infinitely long
stream of zeros. The impulse response of a DSP algorithm is the output of the algorithm after
applying the impulse input. The impulse sequence is {...0,0,0,0, 1,0,0,0,0,...}.

+1.0

-1.0

Figure 1.14 % Nyquist sequence has eight samples per cycle.

+1.0

-1.0

Figure 1.15 The impulse is a single nonzero sample value in a sea of zeros.



Digital Audio Signal Processing Principles 13

1.9 Signal Processing Algorithms

In the broadest sense, an algorithm is a set of instructions that completes a predefined task.
The signal processing loop in Figure 1.8 is a picture of an algorithm for processing audio and
control (Ul) data in real time. In the specialized case of audio signal processing, an algorithm
is a set of instructions that operates on data to produce an audio output bit-stream. Most of
the exercises in this book involve processing incoming audio data and transforming it into

a processed output. However, synthesizing a waveform to output also qualifies and in this
special case, there is no real-time audio input to process. Most of the plug-ins in this book
use the effects model, where an input sequence of samples is processed to create an output
sequence, as shown in Figure 1.16.

Conventions and rules:

» x(n) is always the input sequence; the variable n represents the location of the nth sample
of the x-sequence.

* y(n) is always the output sequence; the variable n represents the location of the nth
sample of the y-sequence.

» h(n) is the impulse response of the algorithm; a special sequence that represents the
algorithm output for a single sample input or impulse.

»  For real-time processing, the algorithm must accept a new input sample (or set of
samples), do the processing, then have the output sample(s) available before the next
input arrives; if the processing takes too long, clicks, pops, glitches, and noise will be
the real-time result.

1.10 Bookkeeping

You can see that there are already three sequences to deal with: the input, output, and
impulse response, all of which are coded with the same variable n to keep track of the
location of samples within the sequence. The first step is to decide how to use n to do
this bookkeeping task. Using it to represent the absolute position in the sequence would
quickly become tiresome—how do you deal with indexing numbers like x(12,354,233)?

Audio Signal
?TN . Processing Algorithm

(MO ' > y(n)
x(n lll oo

Figure 1.16: An audio signal processing algorithm that converts
an input sequence x(n) into an output sequence y(n).



14 Chapter 1

The 12th input

x(3) sample

x(2)
The first input
sample x(1)

x(O)\CT T ? y 12
|3

x(11) ¥

Figure 1.17: Using the absolute position within the sequence is one way to keep track,
but the index values are going to get very large very quickly.

Figure 1.17 shows an input signal, x(n), starting from t = 0 or x(0). The x(0) sample is the
first sample that enters the signal processing algorithm. In the grand scheme of things, x(0)
will be the oldest input sample ever. Indexing the numbers with absolute position is going to
be a chore as the index values are going to become large, especially at very high sample rates.

Another problem with dealing with the absolute position of samples is that algorithms
do not use the sample’s absolute position in their coding. Instead, algorithms use the
position of the current sample and make everything relevant to that sample. On the next
sample period, everything gets reorganized in relation to the current sample again. It
might sound confusing at first, but it is a much better method of keeping track of the
samples and more importantly, defining the 1/0O characteristics of the algorithm, called
the transfer function. Figure 1.18 shows the input signal frozen at the current time,

X(n), and the other samples are indexed based on its location. One sample period later
(Figure 1.19) you can see the frame of reference has shifted to the right and that x(n) has
now become x(n — 1).

Bookkeeping rules:

e The current sample is labeled “n.”

»  Previous samples are negative, so x(n — 1) would be the previous input sample.

»  Future samples are positive, so x(n + 1) would be the next input sample relative to the
current one.

* On the next sample interval, everything is shuffled and referenced to the new current
sample, x(n).



Digital Audio Signal Processing Principles 15

x(n-3) Current Input
Sample

x(n—4) x(n-2)

x(n—-1)

‘ ) [
x(n+4)

x(n+3)

—O
—0O

x(n+1)

x(n+2)

- The Past X(n) The Future

Figure 1.18: DSP algorithms use the current sample location as the reference location
and all other samples are indexed based on that sample. Here you can see the current
state of the algorithm frozen in time at the current input sample x(n).

x(n—4) Current Input
Sample
x(n-5) x(n-3)
x(n-2)
x(n-1)
Lo
i} x(n+3)
x(n+2)
O
T x(n+1)
N The Past X(u) The Future >

Figure 1.19: One sample period later, everything has shifted. The previous x(n) is now indexed
as x(n — 1) and what was the next sample, x(n + 1) now becomes the current sample.

1.11 The One-Sample Delay

Whereas analog processing circuits like tone-controls use capacitors and inductors to alter the phase
and delay of the analog signal, digital algorithms use time-delay instead. You will uncover the
math and science behind this fact later on in Chapters 4 and 5 when you start to use it. In algorithm



16 Chapter 1

diagrams, a delay is represented by a box with the letter zinside. The z-term will have an
exponent such as z ° or z"2 or 2—the exponent codes the delay in samples following the same
bookkeeping rules, with negative (—) exponents representing a delay in time backward (past
samples) and positive (+) representing delay in forward time (future samples). You call zthe
delay operator and as it turns out, time-delay will be treated as a mathematical operation.

You are probably asking yourself how you can have a positive delay toward the future, and
the answer is that you can’t for real-time signal processing. In real-time processing you
never know what sample is going to come in next. However, in non-real-time processing
(for example, an audio file that you are processing offline) you do know the future samples
because they are in the file. Figure 1.20 shows two common ways to denote a one-sample
delay in an algorithm block diagram.

Delay rules:

« Each time a sample goes into the delay register (memory location), the previously stored
sample is ejected.

» The ejected sample can be used for processing or deleted.

* The delay elements can be cascaded together with the output of one feeding the input of
the next to create more delay time.

If a sample x(n) goes into the one-sample delay element, then what do you call the sample
that is ejected? It’s the previous sample that came in, one sample interval in the past. So, the
output sample is x(n—1). In Figure 1.21 you can see how delay elements can be cascaded
with outputs taken at multiple locations generating multiple samples to use in the algorithm.

1.12 Multiplication

The next algorithm building block is the scalar multiplication operation. It is a sample-by-
sample operator that simply multiplies the input samples by a coefficient. The multiplication
operator is used in just about every DSP algorithm around. Figure 1.22 shows the multiplication
operator in action. The inputs are simply scaled by the coefficients.

In

In z" Out 7"

Out

Figure 1.20: Two common ways to draw a delay; the one-sample delay is
represented with the z . Both versions are equivalent.



Digital Audio Signal Processing Principles 17

x(n)x(nwt) (a)
X(ﬂ)—{ # ’_ﬁ #? }—X(n—z) (b)

x(n-1)

(c)

x(n-2)

Figure 1.21: Three delay algorithms: (a) one-sample delay, (b) two one-sample
delays cascaded, producing two different outputs, x(n — 1) and x(n — 2),
notice that (c) is functionally identical to (b).

x(n) ap a,x(n)

y(n) By b,y(n)

Figure 1.22: The multiplication operator is displayed as a triangle and
a coefficient letter or number inside or just above it.

1.13 Addition and Subtraction

Addition and subtraction are really the same kind of operation—subtracting is the addition of a
negative number. There are several different algorithm symbols to denote addition and subtraction.
The operation of mixing signals is really the mathematical operation of addition. Figure 1.23
shows several ways of displaying the addition and subtraction operation in block diagrams.

a(n)a?i a(m +b(n) a{n)a?i a(m)-b(n)

b(n) b(n)
+
a(n) %—'?7 a(n)+b(n) a(n) a(n)-b(n)
b(m) b(n)

Figure 1.23: Addition and subtraction diagrams for two input sequences a(n) and b(n);
these are all commonly used forms of the same functions.



18 Chapter 1

1.14 Algorithm Examples and the Difference Equation

By convention, the output sequence of the DSP algorithm is named y(n) and the mathematical
equation that relates it to the input is called the difference equation. Combining the operations
will give you a better idea of what the difference equation looks like. Figure 1.24 shows the
difference equations for several combinations of algorithm building blocks. The output y(n) is
a mathematical combination of inputs.

1.15 Gain, Attenuation, and Phase Inversion

As shown in Figure 1.25, a simple coefficient multiplier will handle the three basic audio
processing functions of gain, attenuation, and inversion. If the coefficient is a negative
number, phase inversion will be the result. If the coefficient has a magnitude less than 1.0,
attenuation will occur, while amplification occurs if the magnitude is greater than 1.0.

Difference Eguations

y(n)=a, x(n)

y(n) = p(n) + q(n)

Figure 1.24: The difference equations relate the input(s)
to the output via mathematical operations

a

x(n) } y(m=ax(n) (a)
25

x(n) >y =25x) ®)
0.5

x(n) >— y(n)=0.5x(n) (c)
-=1.0

x(n) % y(m)=-x(n)  (d)

Figure 1.25: Examples of simple multiplier algorithms. Notice the different notation with the
coefficient placed outside the triangle; this is another common way to designate it. (a) Simple
scalar multiplication by an arbitrary value “4”. (b) Gain is accomplished with a coefficient
magnitude greater than one. (c) Attenuation reduces the size of the input value with a coefficient
that is less than one. (d) Phase inversion turns the signal upside down by using a negative
coefficient; a value of —1.0 perfectly inverts the signal.



Digital Audio Signal Processing Principles 19

1.16 Practical Mixing Algorithm

A problem with mixing multiple channels of digital audio is the possibility of overflow or
creating a sample value that is outside the range of the system. You saw that by limiting

the bipolar fractional system to the bounds of —1.0 to +1.0, multiplication of any of these
numbers always results in a number that is smaller than either, and always within the same
range of —1.0 to +1.0. However, addition of signals can easily generate values outside the +1
limits. In order to get around this problem, N-channel mixing circuits incorporate attenuators
to reduce the size of the inputs, where the attenuation value is 1/N. When mixing two channels,
the attenuators each have a value of % while a three-channel mixer would have attenuators with
a value of 1/3 on each mixing branch. If all channels happen to have a maximum or minimum
value at the same sample time, their sum or difference will still be limited to =1. Figures 1.26
and 1.27 show the generalized mixing and weighted-sum algorithms.

p(n) > e y(n) = ap(n) + bq(n)

(@
am— o>
p(n) b 9 ¥(n) = 0.5p(n) + 0.5q(n)

(b)
a(m—03>

Figure 1.26: (a) Generalized mixer/summer with a separate coefficient on each
line and (b) a normalized mixer which will not overflow or clip.

y(n) =ap(n) +bq(n) +cr(n) +ds(n)

s(n) —

Figure 1.27: An example of a weighted-sum algorithm; each sample
from each channel has its own weighting coefficient, a-d.



20 Chapter 1

In the next chapter, you will be introduced to the anatomy of a plug-in from a software point
of view. In Chapters 6 through 14, you will learn how DSP theory allows you to combine
these building blocks into filters, effects, and oscillators for use in your own plug-ins.

Bibliography

Ballou, G. 1987. Handbook for Sound Engineers, pp. 898-906. Indiana: Howard W. Sams & Co.

Jurgens, R. K., ed. 1997. Digital Consumer Electronics Handbook, Chapter 2. New York: McGraw-Hill.

Kirk, R. and Hunt, A. 1999. Digital Sound Processing for Music and Multimedia, Chapter 1. Massachusetts:
Focal Press.

KORG, Inc. 1991. KORG Wavestation SR Service Manual. Tokyo, Japan: KORG Inc.

Limberis, A. and Bryan, J. 1993. An architecture for a multiple digital-signal processor based music synthesizer
with dynamic voice allocation. Journal of the Audio Engineering Society, Preprint No. 3699.

Pohlmann, K. C. 2011. Principles of Digital Audio, pp. 16-30. New York: McGraw-Hill.

Stearns, S. D. and Hush, D. R. 1990. Digital Sgnal Analysis, pp. 44-52. Englewood Cliffs, NJ: Prentice-Hall.



Anatomy of a Plug-In

A plug-in is a software component that interfaces with another piece of software called the
client in order to extend the client’s capabilities in some way. For example, Internet browsers
use plug-ins that implement added functions like searching and text messaging. In computer
audio systems, a plug-in is usually an audio effect of some kind. However, a plug-in could
also implement an oscilloscope or frequency analyzer function. Synthesizer plug-ins extend
the client’s functionality by working as musical instruments.

In order to start writing plug-ins, you need to know how the plug-in connects to and
communicates with the client. Windows® plug-ins are typically packaged as dynamic link
library, or DLL, files. Apple® plug-ins are packaged in a bundle which is configured as a
component. The main difference between the two is in the lingo their designers use to describe
them. Rather then try to accommodate both DLL and component labels during this discussion,
we will just use DLL to describe both in conceptual form. Specific programmatic differences
in the formats will be addressed and can be found on the website www.willpirkle.com.

2.1 Static and Dynamic Linking

C++ compilers include sets of precompiled libraries of functions for you to use in your
projects. Perhaps the most common of these is the math library. If you try to use the sin()
method you will typically get an error when you compile stating that “sin() is not defined.”

In order to use this function you need to link to the library that contains it. The way you do this
is by placing #include <math.h> at the top of your file. Depending on your compiler, you might
also need to tell it to link to math.lib. When you do this, you are statically linking to the math.h
library, a precompiled set of math functions in a .lib file. Static linking is also called implicit
linking. When the compiler comes across a math function, it replaces the function call with the
precompiled code from the library. In this way, the extra code is compiled into your executable.
You cannot un-compile the math functions. Why would you do this? Suppose a bug is found

in the sin() function and the math.h library has to be re-compiled and redistributed. You would
then have to re-compile your software with the new math.h library to get the bug fix.

The solution is to link to the functions at run time. This means that these precompiled
functions will exist in a separate file, which your executable will know about and communicate
with, but only after it starts running. This kind of linking is called dynamic linking or explicit

21


www.willpirkle.com

22  Chapter 2

CLIENT (.exe) CLIENT (.exe)

Calls

A

<math.h> functions

-
-

math.dll functions

Returns

(a) Static Linking (b) Dynamic Linking

Figure 2.1: (a) In static linking the functions are compiled inside the client.
(b) In dynamic linking the functions are located in a different file.
This requires a communications mechanism between the
client and DLL to call functions and return information.

linking and is shown in Figure 2.1. The file that contains the precompiled functions is the
DLL. It is more complicated because extra steps must be taken during run-time operation
rather than relying on code compiled directly into the executable. The advantage is that if a
bug is found in the library, you only need to redistribute the newly compiled file rather than
re-compiling your executable. The other advantage is that the way this system is set up—a
client that connects to a component at run time—works perfectly as a way to extend the
functionality of a client without the client knowing anything about the component when it is
compiled. This is simplified when the DLL is loaded into the same virtual address space as the
client. If you already understand this, you can skip the next section; otherwise, read on.

2.2 Virtual Address Space and DLL Access

When you start a program (client) in a Windows 32-bit operating system (OS), the first
thing that happens is the OS creates a new virtual machine and virtual address space. The
maximum amount of memory that can be accessed by a 32-bit microprocessor is 2°? or
about 4 gigabytes of memory. The client executable believes it has a full 4 gigabytes of
memory and that its executable is loaded into part of this memory block. This block of
memory is also called the process address space. The OS is responsible for maintaining this
illusion for the client as well as all the other executables that are running on the system. This
is done through virtualization of the microprocessor, memory, and peripherals.



Anatomy of a Plug-In 23

While that topic could be the subject of another book, the main thing you need to know is
that typically when the client loads the DLL and begins the communication process, the

DLL is loaded into the same virtual address space as the client. This means that the client
code might as well have the DLL code compiled into it since the addressing requires no
translation. It should be noted that a DLL can be loaded into another process space or even on
another machine across a network. In this case it is called an “out of process DLL”; however,
inter-process communication is complicated and requires OS and/or network function calls.
We will not be considering out of process DLLs here. With the DLL in the same process
address space as the client, there is no extra overhead and the communication uses in-process
addressing. Both types are shown in Figure 2.2.

In order to use the code in a DLL the client must perform two activities:

1. Load the DLL into the process address space.
2. Establish the communication mechanism for functions to be called.

Process Address Space A Process Address Space B
OxFFFFFFFF
A
The Process A The Process B
CLIENT (A.exe) CLIENT (B.exe)
- — — — — — a
_____ - plugin_2.dll functions
4 gigabytes A
Y
plugin_1.dll functions
/ J 4 /
# 7 v d
\J
0x00000000

(a) An in-process DLL (b) An out-of-process DLL

Figure 2.2: The process address space is a 4-gigabyte memory map starting at address
0x00000000 and going to OXFFFFFFFF. When the client is launched it is placed inside the
memory space. (a) An in-process DLL communicates directly with the client while
(b) an out-of-process DLL communication requires OS intervention.



24  Chapter 2

In the Windows OS, the three functions that are used to complete these tasks are

1. LoadLibrary(): Loads the DLL into the process address space.
2. GetProcAddress(): Retrieves pointers to functions in the DLL.
3. FreeLibrary(): Unloads the DLL from the process address space.

2.3 Cand C++ Style DLLs

A DLL written in the C programming language consists of a set of stand-alone functions.
There is no main() function. The functions can be defined and implemented in one .c file or
can be broken into an interface file (.h) and implementation file (.c)—either way, the DLL
performs a set of isolated functions. A problem with using the C programming language to
write a DLL is the persistence of data. In C (and C++) the curly brackets {} define the scope
of a function.

A fundamental problem is that the data declared inside a function cannot persist from one
call to the next. One solution involves using global variables, which is generally frowned
upon. A better solution to this problem is for the DLL to dynamically declare a data structure
(e.g., using malloc()) that will hold all the persistent variables and then pass a pointer to this
data structure back to the client to maintain. During subsequent calls to the DLL, the client
passes the pointer back to the DLL as a function argument so that it may operate on the
persistent data. This is shown in Figure 2.3. When the DLL is no longer needed, it clears the
memory by deleting the structure.

In the C++ programming language, the class data type defines an object that is a collection
of member variables and member functions which can operate on those variables. By
packaging a plug-in as a C++ class, you get several advantages; first, all of the benefits of
C++ (encapsulation, polymorphism, etc.) are available during the coding process. Second,
rather than allocating a data structure and returning a pointer to it, the DLL can create a hew
instance of the plug-in object and pass a pointer to the object to the client. Now, the client can
simply call functions on the object—it does not have to communicate with the DLL again
until it is time to either unload the DLL or, better yet, create another instance of the plug-in
object. This leads to a third advantage over the C-based DLL.: the client can create multiple
plug-ins easily. The DLL can serve up multiple instances of the object. Sometimes, the
plug-in is referred to as a server and this becomes another kind of client-server system. This
is illustrated in Figure 2.4.

Any variable declared inside a function, after the first open curly bracket { is only defined
for the duration of the function. After the closing curly bracket } is encountered, the variable
ceases to exist.




Anatomy of a Plug-In 25

CLIENT (.exe)

customDataStruct *pData;
A

Call DLL init()

Y

SERVER (.dll)

init()
pData = new customDataStruct

CLIENT (.exe)

customDataStruct *pData;

do_something(pData);

Y

—
-

SERVER (.dll)

do_something(pData)
x = pData->oldSample;
etc...

bSuccess

Figure 2.3: In a C-style DLL, the client first calls an initialization function
and the DLL returns a pointer to a dynamically allocated data structure
(pData), which the client stores. Later, the client calls a function
do_something() and passes the pointer back to the DLL as a
function argument. The DLL accesses the stored data, uses it,
and then typically responds with a success flag.

2.4 Maintaining the User Interface

Most plug-ins have an associated graphical user interface (GUI or Ul) with controls for
manipulating the device. There are several schemes, but in general, when a new instance of
the plug-in is created, a new child window is created with the GUI embedded in it. Whenever
a GUI control changes state, a function on the plug-in is called. The client or GUI passes the
plug-in information about which control changed and the new value or state of the control.
The plug-in then handles the message by updating its internal variables to affect the change in
signal processing. Generally, the GUI appearance (the position of the sliders or knobs or the
states of switches) is controlled automatically by the client or the GUI code itself. There are

three different ways the GUI can be handled:

1. The client creates, maintains, and destroys the GUI and forwards control-change

messages to the plug-in.

2. The client creates, maintains, and destroys the GUI but the GUI communicates directly

with the plug-in.

3. The plug-in creates, maintains, destroys, and communicates directly with the GUI,

independent of the client.



26 Chapter 2

CLIENT (.exe) SERVER (.dll)

CPlugln *pPlugin;
A

Call create() - create()
Return new customPlugln;

CLIENT (.exe) SERVER (.dll)

CPlugin *pPlugin; |

pPlugin->do_Something();

CLIENT (.exe) SERVER (.dll)

CPlugln *pPlugin1;
CPlugln *pPlugin2;

pPlugin1->do_Something();
pPlugin2->do_Something();

Figure 2.4: In a C++ plug-in, the client calls a creation function and the DLL (server)
creates the object and passes a pointer to it back to the client. The client uses this
pointer for future calls to the plug-in without having to bother communicating
with the DLL. The client might also create multiple instances of the plug-in
and then use the resulting pointers to implement processing functions.

Figures 2.5 through 2.7 show the three basic GUI scenarios. The first difference is in who
creates, maintains, and destroys the GUI. When the client creates and maintains the GUI, it
creates it as a child window which has the benefit that if the client is minimized or closed,
the child windows will be hidden or destroyed accordingly. Therefore, the first two scenarios
are more common. Some plug-ins can accommodate stand-alone GUI operation in addition
to the client-child configuration. The second difference is in how the communication flows:
indirectly routed through the client or directly from the GUI to the plug-in. The RackAFX
software uses the second paradigm; the client creates the GUI but the GUI communicates
directly with the plug-in when controls are modified.



Anatomy of a Plug-In 27

Client

Message Handler CtriChange(0xFCEE, 254)

A

Window Control
Create, Destroy

| User Interface

oJe;

T and
' l Control Surface

Ul_Change(Slider 1, 0.75)

Plug-In

Ul_Changed()

\J

Figure 2.5: In this scenario, the client maintains the GUI and receives control
change messages from it; the client then optionally translates that
information before forwarding it to the plug-in.

2.5 The Applications Programming Interface

In order for the client-server scheme to work, both the client and DLL/plug-in must agree on
the naming of the functions. This includes the creation function and all of the functions that
the client will be able to call on the plug-in object. The plug-in might have other functions
that the client doesn’t know about, but they must agree on a basic set of them. Additionally,
rules must be set up to define the sequence of function calls; the plug-in’s author (that’s you)
will need to understand how the client intends to use the object.

The client must make sure that once it establishes these rules it adheres to them in future
versions to avoid breaking the plug-in. On the other hand, the plug-in must also promise to
implement the basic required functions to make the plug-in work. So, you can see that there
is an implied contract between the client and DLL server. This contract is the applications



28 Chapter 2

Client

Window Control
Create, Destroy

| User Interface

| and
[
_____ > ¢ Control Surface

OO0

Plug-In

Ul_Changed()

A

CtriChange(0xFCEE, 254)

Figure 2.6: In this scenario, the client maintains the GUI,
which communicates directly with the plug-in.

Plug-In

Ul_Changed) | _ | CiiChange(OxFCEE, 254)

Window Control
Create, Destroy

; User Interface O
| O

and
ntrol Surf;
_____ > Control Surface

Figure 2.7: In another scenario, the plug-in maintains and communicates
directly with the GUI without interference from the client.




Anatomy of a Plug-In 29

programming interface or API. It is a definition of the functions an object must implement

to be considered a proper plug-in as well as any additional functions that may be called

or overridden. It defines the function prototypes and describes how the functions will be
called and used. The API is written by the client manufacturer and is made available to
programmers who want to create plug-ins for that target client. Some examples are Direct-X®,
VST®, AU®, and AAX®. Each of these manufacturers publishes an API that describes the
contract with the plug-in developers. However, the basic operation and core functionality are
generally the same.

C++ is especially useful here. Since the plug-in is an instance of a C++ object, the client
manufacturer can specify that the plug-in is a derived class of a special base class that it
defines. The base class is made to be abstract, containing virtual functions that the derived
class overrides. These virtual functions provide the common functionality of the plug-in.
There are two options here:

1. The manufacturer defines the base class as abstract and then provides default
implementations of the virtual functions. Typically, the default implementations
do nothing but return a success code. The plug-in authors then override whichever
methods they need to. For example, the plug-in might not care about responding
to Musical Instrument Digital Interface (MIDI) messages, so the default implementation
of the MIDI function will suffice.

2. The manufacturer defines the base class as a pure abstract base class by making one or
more of the virtual functions pure virtual functions. A pure abstract base class cannot
be instantiated; only derived classes that implement all the pure virtual functions can.
This forms a binding contract between the plug-in developer and the client manufac-
turer since the derived class won’t work properly unless it implements the pure abstract
functions that the client specifies.

The RackAFX software uses the first method, supplying default implementations for all
virtual functions. As the plug-in author, you only override the functions you need to. But
what are the typical required functions and were do they come from?

2.6 Typical Required API Functions

Plug-ins are designed after the hardware devices that they replace. The audio processing
loop is the same as the hardware version you saw in Chapter 1. Figure 2.8 shows a software
variation on that flowchart.

Although the various plug-in APIs are different in their implementations, they share
a common set of basic operations. Table 2.1 details the responsibility of each
function.



30 Chapter 2

Object Creation

:

Do One-Time | GetReady for
Initialization ™| Audio Streaming

'

Wait for a
Function Call

Caontrol
Change?

Function Called

Process

Setup Variables Write

Read Input !
Dsta Create Audio = & Data for Next Output
Loop Data

Qutput Data

Read
Control
Data

Figure 2.8: The software version of the DSP audio-processing loop. Most APIs also include
functions to get or set information about the controls.

Table 2.1: The typical core operations that plug-in APIs share.

Function

Responsibility

One-time initialization

Called once when the plug-in is instantiated, this function implements any
one-time-only initialization, usually consisting of initializing the plug-in variables,
GUI, and allocating memory buffers dynamically.

Destruction

Called when the plug-in is to be destroyed, this function de-allocates any memory
declared in the one-time initialization and/or in other functions that allocate
memory. If there are any owned child-windows, the plug-in destroys them here.

Prepare for streaming

Called after the user has hit the play button or started audio streaming but before
the data actually flows. This function is usually used to flush buffers containing
old data or initialize any variables such as counters that operate on a per-play
basis (not found in some APIs).

Process audio

The main function that does the actual signal processing. This function receives
audio data, processes it, and writes out the result. This is the heart of the plug-in.

Get Ul control info

Called to get information about a Ul control—its name or label.

Set Ul control info

Called when the plug-in needs to change the control information like its name or
label.

Get Ul control value

Called to get the value for the Ul control that will set its appearance on the
control surface.

Set Ul control value

Called when the user makes a change to the plug-in’s controls, this function is the
message handler to deal with the user input. It usually causes a change or update
in the plug-in’s internal variables.




Anatomy of a Plug-In 31

2.7 The RackAFX Philosophy and API

The fundamental idea behind the RackAFX software is to provide a platform for rapidly
developing real-time audio signal processing plug-ins with a minimum of coding, especially
with regard to the Ul. In fact, most of the details of the connection between the RackAFX
plug-in and the RackAFX Ul screen are hidden from the developer so that he or she may
concentrate more on the audio signal processing part and less on the Ul details.

The RackAFX API specifies that the plug-in must be written in the C++ language and
therefore takes advantage of the base class/derived class paradigm. The RackAFX API
specifies a base class called CPlugln from which all plug-ins are derived.

* RackAFX will automatically write C++ code for you to create a blank plug-in by creating
a derived class of CPlugln.

* Asyou add and remove controls from the control surface, the RackAFX client will auto-
matically update your C++ code accordingly.

» This lets you focus on the signal processing and not the Ul, making it a great tool for both
rapid plug-in development and for teaching how to write plug-ins.

e After learning RackAFX, you will be able to understand other companies’ APls and learn
to write plug-ins in their formats quickly and easily.

»  Because the plug-in objects you create are written in C++, you can easily move them
around between other APIs or computer platforms. You can wrap them to work easily in
other systems too.

You only need to implement five functions in RackAFX to create a plug-in:

Constructor
Destructor
prepareForPlay()
processAudioFrame()
userlInterfaceChange()

akrwpnpE

Figure 2.9 shows where these functions fit into the real-time audio processing loop.

2.7.1 __stdcall

In the RackAFX code you will see the qualifier __stdcall preceding each function prototype as
well as implementation. The __stdcall calling convention is there for future compatibility with
other compilers as well as other third-party software. The __stdcall is a directive that lets the
compiler know how the stack will be cleaned up after function calls; it has no effect on the
math, logic, or audio processing, so you can essentially ignore it.




32  Chapter 2

" Plug-In

Plug-In Creation Destruction

A\ \J
Constructor | prepareForPlay Destructor

4
Wait for a Function Call |-
Y
. = Do Signal
processAudioFrame - Processing

A

Y

userinterfaceChange

Figure 2.9: The RackAFX C++ plug-in version of the
real-time audio processing loop in Figure 2.8.

Here is part of the interface file for the CPlugln object plugin.h, which defines the contract
or base class object interface for the primal six methods:

/*
RackAFX(TM) Rapid Plug-In Development (RaPID) Client
Applications Programming Interface
Base Class Object Definition
Copyright(C) Will Pirkle 2002-2012
In order to write a RackAFX Plug-In, you need to create a C++ object that is
derived from the CPlugIn base class. Your Plug-In must implement the
constructor, destructor and virtual Plug-In API Functions below.
*/

// RackAFX abstract base class for DSP filters
class CPluglIn
{
public:
// Plug-In API Member Methods:
// The followung 5 methods must be impelemented for a meaningful Plug-In
//
// 1. One Time Initialization
CPTugIn();



Anatomy of a Plug-In 33

/] 2.

One Time Destruction

virtual ~CPlugIn(void);

// 3. The Prepare For Play Function is called just before audio streams

virtual bool __stdcall prepareForPlay();

// 4. processAudioFrame() processes an audio input to create an audio

output

virtual bool __stdcall processAudioFrame(float* pInputBuffer,

/] 5.

float* pOutputBuffer,
UINT uNumInputChannels,
UINT uNumOutputChannels);

userInterfaceChange() occurs when the user moves a control.

virtual bool __ stdcall userInterfaceChange(int nControllIndex);

The five functions in Table 2.2 are the core RackAFX API—implement them and you

have a legitimate RackAFX plug-in. Best of all, the RackAFX plug-in designer will write
and provide default implementations of all these functions for you. You need only to go in
and alter them to change your plug-in’s behavior. See Appendix A for a comparison of the
RackAFX API and other commercially available formats as well as notes on using RackAFX
plug-in objects inside API wrappers for other formats.

Table 2.2: The RackAFX API core functions.

RackAFX Function

Remarks

Parameters: ¢ none

CPlugln () The constructor for the plug-in object, this function is the one-time initialization
Parameters:  none function.
~CPlugln () The destructor for the plug-in.

prepareForPlay()
Parameters: e none

Function is called just before audio begins streaming. The audio file’s sample
rate, bit depth, and channel counts are extracted and then set by the client just
before calling this method.

processAudioFrame()
Parameters:

e plnputBuffer
¢ pOutputBuffer
¢ uNumlInputChannels

¢ uNumOutputChannels

The most important function in the API; this is where the audio processing is handled.
You might do all the processing in this function or use it to call sub-functions. You are
responsible for writing the data to the output buffer via pOutputBuffer.

A pointer to one frame of audio input data. A frame is a set of channels as
defined by uNumInputChannels.

A pointer to one frame of audio output data. A frame is a set of channels as
defined by uNumOutputChannels.

The number of input channels in this frame of data. Currently, this value will be
either 1 (mono) or 2 (stereo).

The number of output channels in this frame of data. Currently, this value will be
either 1 (mono) or 2 (stereo).

userlnterfaceChange()
Parameters:
e nControllndex

Function is called after the user changes a control in the RackAFX Ul. RackAFX will
automatically update the variable linked to this control prior to calling this method.
The index of the control that was moved and whose value RackAFX has changed.




34 Chapter 2

Bibliography

Apple Computers, Inc. 2011. The Audio Unit Programming Guide. https://developer.apple.com/library/
mac/#documentation/MusicAudio/Conceptual/AudioUnitProgrammingGuide/Introduction/Introduction.html.
Accessed August 7, 2012.

Bargen, B. and Donnelly, P. 1998. Inside DirectX, Chapter 1. Redmond, WA: Microsoft Press.

Coulter, D. 2000. Digital Audio Processing, Chapters 7-8. Lawrence, KS: R&D Books.

Petzold, C. 1999. Programming Windows, Chapter 21. Redmond, WA: Microsoft Press.

Richter, J. 1995. Advanced Windows, Chapters 2 and 11. Redmond, WA: Microsoft Press.

Rogerson, D. 1997. Inside COM, Chapters 1-2. Redmond, WA: Microsoft Press.

Steinberg.net. The Seinberg VST API. http://www.steinberg.net/nc/en/company/developer/sdk_download_portal.
html. (Note: you must create a free developer's account to download the API.) Accessed August 7, 2012.


http://www.steinberg.net/nc/en/company/developer/sdk_download_portal.html.
http://www.steinberg.net/nc/en/company/developer/sdk_download_portal.html.
https://developer.apple.com/library/mac/#documentation/MusicAudio/Conceptual/AudioUnitProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/#documentation/MusicAudio/Conceptual/AudioUnitProgrammingGuide/Introduction/Introduction.html

Writing Plug-Ins with
RackAFX

The RackAFX plug-in designer will help you write your plug-in. When you create a hew
RackAFX project, it will set up a new Visual C+ + project folder for you and populate your
project with all the files you will need. It will automatically create a new derived class based
on the name of your project. When you set up graphical user interface (GUI) controls like
sliders and buttons, it will write and maintain the code for you. You will be switching back
and forth between RackAFX and your C+ + compiler. There are buttons on the RackAFX
GUI that will let you jump to the compiler as well as launch compiler functions like
rebuilding and debugging. You will use RackAFX to maintain your GUI and your compiler to
write the signal processing code.

3.1 Building the DLL

RackAFX sets up your compiler to deliver your freshly built dynamic link libraries (DLL)

to the /Pluglns folder in the RackAFX application directory. If you ever want to see, move,

or delete your DLL you can find this folder by using the menu item Plugln > Open Pluglns
Folder. Each time you create a new project, RackAFX creates a pass-through plug-in by
default; you are urged to build and test the DLL right after creating the new project to check
your audio input/output (1/0) and any other connections. You then write over the pass-through
code with your own processing algorithm.

After a successful build, you use RackAFX to test and debug the plug-in. You tell RackAFX
to load the DLL and create your plug-in. The client needs to handle four basic operations
during the lifecycle of your component:

1. Creation of the plug-in

2. Maintaining the Ul

3. Playing and processing audio through the plug-in
4. Destruction of the plug-in

35



36 Chapter 3

RackAFX Client .DLL
Call creation method ————— | createObject()
CPlugin* pPlugin < Return new yourPlugln;

Can now use pPlugin to
call methods on your
object

pYourPlugin g

Caonstructor

'

inituI()

Figure 3.1: The new operator in createObject() dynamically creates your
plug-in, which calls your constructor; the constructor in turn calls initUI()
to create and initialize the user controls.

3.2 Creation

When you load a plug-in in RackAFX, you are actually passing the system a path to the DLL
you’ve created. RackAFX uses an operating system (OS) function call to load the DLL into its
process space. Once the DLL is loaded, RackAFX first runs a compatibility test, then requests
a pointer to the creation method called createObject(). It uses this pointer to call the method
and the DLL returns a newly created instance of your plug-in cast as the p1ugin* base class
type. From that point on, the RackAFX client can call any of the base class methods on your
object. Figure 3.1 shows the flow of operation during the creation phase.

Your constructor is where all your variables will be initialized. The very first line of code

in the constructor has been written for you; it calls initUl(), which is a method that handles
the creation and set up of your GUI controls. You never need to modify the initUl() method;
RackAFX maintains this code for you.

3.3 The GUI

When you set up GUI elements such as sliders and buttons, RackAFX adds member variables
to the .h file of your derived plug-in class. Each slider or button group controls one variable

in your code. You set up each control with minimum, maximum, and initial values as well as
supplying the variable name and data type. As the user moves the control, RackAFX calculates
the variable’s new value and delivers it to your plug-in automatically, updating it in real time.
In some cases, this is all you will need and there is nothing left to write. In other cases, you will



Writing Plug-Ins with RackAFX 37

D=2 RackAFX Client yourPlugin

Control
12345 | ——1—» Calculate new variable value

¢ (Hidden)

Update in plug-in = controlVariable

'

Motify plug-in that
control with 1D = 2 has changed

» userinterfaceChange(2)

Figure 3.2: The sequence of events when the user moves the control with ID = 2 starts with a
hidden change to the underlying linked variable, followed by a call to userinterfaceChange()
passing the control’s ID value as the parameter.

need to perform more calculations or logic processing in addition to just changing the control
variable. So, in addition to changing and updating your internal GUI variable, RackAFX will
also call the userinterfaceChange() method on your plug-in, shown in Figure 3.2.

3.4 Processing Audio

When the user loads an audio file and hits the Play button, a two-step sequence of events
occurs. First, the client calls prepareForPlay() on the plug-in. The plug-in will do any last
initializations it needs before audio begins streaming. prepareForPlay() is one of the most
important functions to deal with. Your plug-in has variables declared in it (see Pluglin.h) that
contain information about the currently selected audio file:

// information about the current playing-wave file

int m_nNumWAVEChannels;

int m_nSampleRate;
int m_nBitDepth;

Just prior to calling prepareForPlay(), the client sets these values on your plug-in object.
The reason this is done at this point is that the user can load multiple audio file types of
varying channels (mono or stereo), sample rates, and bit depths at any time; thus, this

is a per-play method. Many algorithms require these values to be known before certain
things can be created or initialized. Almost all filtering plug-ins require the sample rate in
order to calculate their parameters correctly. After prepareForPlay() returns, audio begins
streaming. When audio streams, the client repeatedly calls processAudioFrame(), passing
it input and output buffer pointers as shown in Figure 3.3. This continues until the user hits
Pause or Stop.



38 Chapter 3

Play RackAFX Client yourPlugln

I> — 1 Load audio file-specific data

(Hidden) m_nSampleRate
Update in plug-in » m_nBitDepth
m_nNumWAVEChannels

Call prepareForPlay() » prepareForPlay()

'

Audio g > Inpat p» processAudioFrame()
fil Enter audio processing loop
e Output

data

! )
Audio interface
)

Figure 3.3: The sequence of events during the play/process operation; audio data from the file is
processed in the plug-in and sent to the audio adapter for monitoring.

3.5 Destruction

When the user unloads the DLL either manually or by loading another plug-in, the client first
deletes the plug-in object from memory, which calls the destructor. Any dynamically declared
variables or buffers need to be deleted here. After destruction, the client unloads the DLL
from the process space.

3.6 Your First Plug-Ins

You can break the audio processing down into two very fundamental types:

1. Processing that only works on the current audio sample; requires no memory elements
2. Processing that requires the current and past audio samples; requires memory elements



Writing Plug-Ins with RackAFX 39

We’ll start with the first type and make a simple volume control. After that, we’ll design a
simple Audio Equalizer (EQ) control that will require memory elements. You will need the
following installed on your computer:

* RackAFX
e Microsoft Visual C++ Express® 2008 or 2010 (both are free from Microsoft)
*  Microsoft Visual C+ + Professional® 2008 or 2010

There is no advantage to having the full version of Visual C++ (aka VC+ +) in RackAFX
programming unless you plan on using your own GUI resources. Make sure that Visual
C++ is installed on the same machine as RackAFX. See the website www.willpirkle.com
for updates on supported compiler platforms. Once you understand the flow of writing and
testing your plug-ins, you will find that you can move easily and swiftly through the rest of
the book’s projects because they all follow the same design pattern and the design chapters
will use the same conventions for each project.

3.6.1 Project: Yourplugin

The first step will always be the creation of a new project. In this phase, RackAFX creates the
C+ + project directory and files along with a derived class based on the project name.

3.6.2 Yourplugin GUI

Next, you lay out your GUI controls based on the algorithm you are following and decide

on the variable data types and names that will connect the GUI elements to your plug-in.
This generally starts with writing the difference equation(s) for the algorithm. Variables in
the difference equation will map to member variables and GUI controls in your plug-in.
Abstracting the GUI from the algorithm requires that you decide which parameters you want
the user to be able to adjust, as well as the variable names, min, max, and initial values,

and data types. You can change your mind later and remove GUI elements or alter their
parameters. A full-featured GUI designer allows you to finalize your plug-in’s controls and
package them in a neat and clean GUI. Often during the prototyping phase, you set up many
sliders and controls and work on the voicing of the plug-in. Then, you hide some of them for
the final product, only allowing the user access to a specific set of controls over a specific set
range of values. This last step is part of the voicing of the final product.

3.6.3 Yourplugin.h File

The next phase involves adding your own member variables and member methods to the
derived plug-in class. The variables and methods will depend on the algorithm you are
implementing. In the first plug-in there are no extra variables or methods to supply.


www.willpirkle.com

40 Chapter 3

3.6.4 Yourplugin.cpp File

In this step, you will add the new member method implementations (if you have any). Then, you
will step through the .cpp file, altering and filling in the base class methods, typically in this order:

1. Constructor

2. prepareForPlay()

3. userinterfaceChange()
4. processAudioFrame()

Once these methods have been implemented, you will technically have a working plug-in.

3.6.5 Building and Testing

Finally, you will build the DLL, finding and fixing any issues. After the build succeeds, you
can load it into the RackAFX client. You can use audio files, the oscillator, or your sound
adapter input as the audio stimulus for your plug-in. You can run your plug-in in three modes:
Insert, Mono > Stereo AUX, or Stereo > Stereo AUX to mimic the various ways a plug-in is
used in a digital audio workstation (DAW).

3.6.6 Creating and Saving Presets

The presets are created and maintained on the main RackAFX Ul. After you load your plug-in
you can move the controls as you like and then save them as a preset. You use the Save Preset
button on the toolbar. The presets will be saved inside a file until the next time you compile
your plug-in; after that, the presets will be built into the DLL. You can add, modify, or delete
the presets any time the plug-in is loaded.

3.6.7 GUI Designer

Once you have debugged and finished your plug-in, you can optionally use the GUI designer
to create a compact, visually appealing GUI. See Appendix B and the website www.
willpirkle.com for the latest details on using the GUI designer tools. In general, the book
skips the GUI designer phase because it is so open ended; you are free to layout your final
GUI however you wish. Check the website often for the latest news and example GUIs as
well as video tutorials.

3.7 Design a Volume Control Plug-In

The easiest meaningful plug-in to write is a volume control, which uses a single scaling
variable, a,, depicted in Figure 3.4.


www.willpirkle.com
www.willpirkle.com

Writing Plug-Ins with RackAFX 41

x(n)y(n) =a,x(n)

Figure 3.4: The volume control
block diagram.

Coefficients in a block diagram (or transfer function or algorithm) become float member variables
in your plug-in code.

e a = 0: Mute
* a, = 1.0: Max volume

The output samples y(n) are a scaled version of the input x(n) and the scaling factor is named
a,. &, is called a coefficient in the algorithm. The algorithm states that a, will vary between
0 (mute) and 1.0 (full volume).

3.8 Set up RackAFX for Use

Start the RackAFX software. You will start in prototype view, where you will see a blank
control surface as shown in Figure 3.5. Your GUI may look slightly different or have different
background images.

The control surface is what you use to create your UL. It is full of assignable controls you can
connect to your plug-in’s variables. The surface consists of:

e 40 assignable sliders (continuous controls).

e Universal LCD control with 1024 more continuous controls.

»  Project controls (open, load, edit, rebuild, debug, jump to C++).

* Vector joystick (advanced, see website for more details).

» Assignable buttons.

e 10 assignable LED meters.

e Plug-in routing controls to test insert and aux effect modes.

*  Prototype tab, the main GUI.

e GUI designer tab, which opens the designer for editing; you must have GUI controls
declared first. See the website for more details.

The menu and toolbar consist of two parts: the left and right side. The left side (Figure 3.6)
implements the majority of the software functionality, while the right side (Figure 3.7)
maintains lists.



42 Chapter 3

e d
'¥TRackAFX(tm) =jo
[[File Modses User Plagine Audo Phugin View Felp - |
0@ &0 aombmiil » RFE MLOG 2 06 | FackARX Piar Contil | |16 TuackiE wav |
®_.. [~ Cowd | Cobl | Cowol | Cobd | Cowd | Cobdd | Cowd | Cowdd | Cob | |
! {2}
®
Cutd | Comd | Cowd | Gkl | Cowd | Codd | Cokd | Cuvd | Comd | I:":l ._®
=3 o= ] == B Vecton Jopssick
A
o [BConbois ]|
A € € [CConimts | C‘J
0
Contic Cortict Contrl Cortrct Cortit Corticl Cortd Contid Cortrcd o A ouzs
-I- = T T = | - T -I- T T —E
Fadoit

Conimi

[+ Rwr-a

.z

[

, |2m ate

[ -1
-35 L.

- B

[hekorr] - =

TTTTTTTTTT

\_mm- W v

b ©

H |

Figure 3.5: When you start RackAFX, it opens in prototype view. It features the control surface

and plug-in routing controls.

File Modules User Plug-ns  Audio Plugin View Help
Dlzvﬂi» o J'_IIOHI DEEIDE‘.EE BdO& &m I.'J!

D66 & & b oo

Figure 3.6: The menu and toolbar on the left handle most of your

plug-in development.

: Factory Preset E RackaFX Piano Control g . 16 - Track16.wav _Zi

Preset List MIDI Input List Audio File List

Figure 3.7: The dropdown boxes on the right let you store and recall presets,
choose a MIDI input controller (advanced), and keep track of the audio files
you have been using.



Writing Plug-Ins with RackAFX 43

Open Load Edit

Rebuild Debug >C++

Figure 3.8: The Project/Compiler buttons make it easy to
work with projects and control your compiler.

The menu items include:

» File: Manage projects by creating, editing or clearing the project.

*  Modules: Built-in plug-ins that you can use for analysis and testing.

e User plug-ins: Each new plug-in you design gets loaded into this menu; you can audition
or show off your plug-in in a standalone fashion.

* Audio: Manage all audio commands.

e Plug-in: Tools for loading/unloading and presets.

*  View: Access the different windows.

» Help: Help information.

The toolbar items include:

New project, open project folder, open audio file

Set up low-level audio

Audio input mode: File, analog audio input, oscillator, user oscillator/synth
Transport controls: Play, loop, pause, stop, bypass

Additional windows: Analyzer, block diagram, status window

Plug-in tools: Synchronize code, load, reset, unload

GUI windows: Custom GUI, RackAFX MIDI Piano

Presets: Save, delete

NGO r~wDdPE

Finally, there is a bank of buttons that allow you to manipulate your projects as well as
control the C++ compiler shown in Figure 3.8. The buttons are set up as follows:

*  Open: Open an existing project.

» Load: Load/unload the DLL from process space.

» Edit: Change an existing project’s settings.

* Rebuild: Rebuild the project.

* Debug: Launch the debugger.

e ->C++:Jump to the C++ compiler and restore if minimized.

3.9 Setup Preferences

Before you start working on projects, take some time to configure your preferences. This is
where you will choose your C+ + compiler and set your default directories. Choose View >
Preferences to get the interface shown in Figure 3.9.



44 Chapter 3

( |
Preferences :
Default Project Folder:
C:\Socket Projects
Default WAVE File Folder:
@—D | [ G T,
Default WAVE File
Cilprophetv1 way
Default C++ Compiler: Editing Options:
(%) Visual C++ 2008 Express Slider & Button Setup
@—p | (O Visual C++ 2010 Express (5) Edit-Replace
(O visual C++ 2008 Professional Dev Studio () Edit-Append [ (4 >

O visual C++ 2010 Professional Dev Studio

[[]save and Close Compiler when Socket Closes
| [“]Enable C++ ControlfSwitching (do NOT disable unless you are an advanced user)
[] start C++ Compiler Minimized

[ Save H Cancel ]

Figure 3.9: The preferences interface.

In the preferences you need to:

1. Choose your default folders for projects, WAVE files, and default WAVE files. You can
use whatever directory you want for your project folder and you can also open projects
from any other folder at any time; the default is simply for conveniently grouping all your
projects together.

2. Choose a Visual C++ compiler.

3. Setthe C++ options. Enable C++ Control/Switching should be left on for all but the
most advanced users. C+ + control/switching allows RackAFX to control Visual Studio,
save files, launch the debugger, and so on.

4. Set up the edit options when entering information in the GUI slider/button dialogs.

3.9.1 Project: Volume

Create a new project with the menu, toolbar, or Ctrl+N and name it “Volume.” The New/Edit
Project window will appear and you can enter your project name. As you enter the name, the
.hand .cpp files will be automatically named.

Notice the two C+ + files listed in Figure 3.10—these are the interface (.h) and implementation
(.cpp) files that RackAFX will create for you. They will contain a derived object named
CVolume which will contain the bulk of your plug-in code. When you hit OK, several things
happen. If you have C++ Control enabled in your preferences (it’s the default) then you will



Writing Plug-Ins with RackAFX 45

New project name

Project Name: | Yolume

Edit Project Folder  C:\Socket Projects

hFile:  Volume.h

.cpp File:  Yolume.cpp

f

C++ files for your derived class

Figure 3.10: The top section of the New/Edit Project window. Notice that your
project name becomes the name of a C++ object, so you will receive errors if you
name the project in a way that produces illegal C++ syntax. Below this are more

advanced settings that we will cover later.

see your C++ compiler start up. In Visual C++ you will see a new project and solution
named “Volume.” If you expand the Volume project then you can see the files that RackAFX
wrote for you. Your derived class is contained in Volume.h and Volume.cpp. Before continuing,
it’s worth taking a peek into the RackAFXDLL.cpp file and locating the creation mechanism
createObject():

//RackAFX Creation Function

D11Export CPlugIn* createObject()

{

CPlugIn* pOb = new CVolume; // ***

return pOb;
}

This is the method that the client calls on your DLL—you create the plug-in object with the
new operator and return the pointer to the client. The DIIExport specifier is OS-specific for
calling a method ina DLL.

3.9.2 Volume GUI

You need to make sure you know the difference equation for each algorithm you want
to implement. The difference equation relates the input and output samples and is what
you are going to convert to C+ + in order to make your plug-in. For this example, the
equation is

y(n) = ax(n) 3.1)



46 Chapter 3

Each slider or button control on the Ul will map to and control a member variable in your plug-in.

In RackAFX, you can see that all the sliders and buttons are disabled; the sliders don’t move
and the edit boxes won’t accept text. You first need to set up some controls to create your Ul

or control surface.

Now, decide how to handle the difference equation. Notice the use of Hungarian notation for
handling the variable names. See the website for more information if you are not familiar
with this kind of naming convention—you are certainly free to name your variables whatever

you like.

» Let’s have only one volume coefficient and share it between the channels so that each

channel has the same volume control.

» Let’s have one slider control the volume coefficient.
e The coefficient a, will become a float member variable in the code; let’s decide to name it

“m_f\Volume.”

« We’ll name the slider “Volume” on the GUI and link it to the variable m_f\olume.

e Slider minimum = 0.
* Slider maximum = 1.0.
* Initial setting = 0.75.

3.9.3 Configure a Slider Control

Choose the first slider in the upper left and right-click just inside the outer bounding box; a
slider properties box appears (Figure 3.11). Note: Your dialog may look slightly different.

You need to fill out the slider properties with the proper values. You will notice that the
uControlID value is 0 for this slider. This is the ID number that will link the slider to a

Slider Properties

Conkrol Name

U Ttees

Control 0 o | | e
WContrallD
‘Control Name
Units.
DataType
Right-click Yacibl Vacs
Control Low Lk
Gontrol High Limt
il Vabse
I MIDI Contral
MIDI Control Channel
MIDI Conkrol Type
Channel -nfa- 'pIDT Controber Numbes/Name
Control Type —nfe- Srreld —
= nfa e

W

| concet |

Property

Coriral Hame co Eig

float
m_fMy'arisble
0.00

100.00

0.00

Fakse

Continous Controler
3 Continuous controler #3
auromatic (recommendsd)

Reamove Cirl

Figure 3.11: Right-click inside the bounding box of a slider and the slider properties

window appears. This is how you configure the slider and link it to a variable.




Writing Plug-Ins with RackAFX 47

variable in the object. You cannot edit this cell. Start with the control name and enter
“Volume.” Hit Enter to advance to the next cell. For this version of the plug-in there are no
units, so use backspace to delete it. The next cell is one of the most important—it is the data
type for the variable that the slider will be linked with; the choices are available from a drop-
down list. As shown in Figure 3.12, you can select the data type with the mouse, or you can
just type the first letter (e.g., “d” for double) while the box is highlighted.

You can create variables of the following types:

o float
e double
e integer

» enum: An enumerated Unsigned Integer (UINT) using a list of strings for the enum, for
example {LPF, HPF, BPF, Notch}. We will work with enumerated UINTS later in the book.

We decided to use the float data type and to name the variable m_f\Volume—it is really
important to decide on a name and stick with it. Changing the variable name later can be
tricky, so do yourself a favor and plan ahead. The completed slider properties are shown in
Figure 3.13. The low and high limits are set and the initial value is set to 0.75. Do not worry
about the MIDI control or other properties for this slider; see the website for details on these
enhancements. After you are finished, choose the OK button to save the code.

Our control surface is pretty simple—it just consists of a single volume slider. If you realize
you’ve made a mistake or left something out, just right-click in the slider box and fix the problem.
You can also remove the slider by clicking the Remove Ctrl button on the properties window.

UI Item Property
uControlType Slider
uControlID 0
Control Name Wolume
Units
DataType float v
Variable Name lﬁod:
T iftl:gljr - The dropdown list exposess
the choices for data type
Control High Limit L1
Initial Yalue 0.00
MIDI Control false
MIDI Control Channel 1
MIDI Control Type Continous Controller
MIDI Controller Number/Mame | 3 Continuous controller #3
Control Method automatic (recommended)
Menu Group none

Figure 3.12: The data type is selected from a dropdown list control.



48 Chapter 3

UI Item Property
uControlType Slider
uControllD 0
Control Name Volume
Units
DataType float
Yariable Name m_fvolume
Control Low Limit 0.00
Control High Limit 1.00
Initial Yalue 0.75
MIDI Control false
MIDI Control Channel 1
MIDI Control Type Continous Controller
MIDI Controller Number/Name | 3 Continuous controller #3
Control Method automatic (recommended)
Menu Group none

Figure 3.13: The completed slider properties.

As you add, edit, or remove controls from the main Ul you will notice that RackAFX will flash to
the compiler and back as it writes the code for you. You might use this flashing as a signal that
the code update is synchronized. If you don’t like it, minimize the compiler and the flashing will
not occur. There is a special check-box in View > Preferences to start the compiler minimized for
this very reason.

Your plug-in code will use the index value 0 (uControlID in the properties dialog) to map to
the m_f\Volume variable, which is controlled by the slider named “Volume” on the UI.

3.9.4 Volume.h File

Before we add the code, look around the plug-in object files (volume.h and volume.cpp) to
get a better understanding of what’s going on and what you’ll need to modify. First, open the
volume.h file and look inside:

// RackAFX abstract base class for DSP filters
class CVolume : public CPlugln
{
public: // plug-in API Functions
//



Writing Plug-Ins with RackAFX 49

b

// 1. One Time Initialization
CVolume();

<SNIP SNIP SNIP>

// 7. userInterfaceChange() occurs when the user moves a control.
virtual bool userInterfaceChange(int nControllIndex);

// Add your code here: ---------------------------ooooooooooooooooooo /1l
// END OF USER CODE --------------mmmmmommmmmmooommmmo oo oom oo /7
// ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!!l --------------mmmmm - /!

/] **--0x07FD--**
float m_fVolume;

/] **--0X1ATF--**
J /1

Aside from the main plug-in functions we discussed in Chapter 2, you will see some more
commented areas of code. In the first part marked // Add your code here: you can add more
variables or function definitions just like you would in any .h file. Try to keep your code in
the denoted area to make it easier to find and read. The area below that says:

/l ADDED BY RACKAFX—DO NOT EDIT THISCODE!!!

is very important—you will see your member variable m_f\Volume declared in this area. This
is the portion of the .h file that RackAFX modifies when you add, edit, or delete controls from
your control surface. It is imperative that you let RackAFX maintain this part of the C++
code. There are several other portions of code in the .cpp file that have similar warnings and
interesting hex symbols (OX1A7F, etc.); do not edit the code contained between the hex codes
or commented areas.

You will see the notation <SNIP SNIP SNIP> frequently in the printed code as a reminder that
code has been cut out for easier reading.

RackAFX writes C++ code for you! But, you have to be careful not to alter the RackAFX C++
code in any way. You can always tell if the code is RackAFX code because there will be warning
comments and strange hex codes surrounding the RackAFX code. The RackAFX code is left for
you to see only as a backup to your debugging and should never be altered by anyone except
RackAFX.




50 Chapter 3

In this case, check to verify that RackAFX added the float member variable m_f\Volume as you
anticipated. Next, move on to the volume.cpp file and have a look at it, starting from the top.

3.9.5 Volume.cpp File

Constructor and destructor
The constructor is the One-Time-Init function and is set up to:

o call initUI(): This is where your GUI controls are initialized; m_fVolume is initialized
to 0.75 inside this function. It is important to make sure this remains the first line of the
constructor so that your GUI variables are always initialized first.

»  Set the plug-in name variable: This is what you will see in the user plug-in menu and on
the GUI windows.

e Set the plug-in defaults (snipped out here); you will rarely need to change these variables.

« Give you a place to finish any of your own initializations at the end.

The destructor is empty because nothing has been allocated dynamically in this plug-in.

CVolume::CVolume()
{
// Added by RackAFX - DO NOT REMOVE
/7
// Setup the RackAFX UI Control List and Initialize Variables
initUI();
// END InitUI

// built in initialization
m_PlugInName = "Volume";

// Default to Stereo Operation:
// Change this if you want to support more/less channels

<SNIP SNIP SNIP>

// Finish initializations here
}

/* destructor()
Destroy variables allocated in the contructor()

*/

CVolume::~CVolume(void)
{

}
prepareForPlay()

There is nothing to write yet since there are no custom controls or other allocations.



Writing Plug-Ins with RackAFX 51

processAudioFrame()

This function is where the signal processing action happens. Above the definition is a
comment block as a reminder of how to get the audio data samples into and out of the I/O
buffers. Currently, RackAFX only supports mono and stereo plug-ins. The left and right
channels are accessed using the normal array-indexed C+ + pointer mechanism. Of special
note is the reminder that all values in and out are (and should be) between -1.0 and +1.0.

/* processAudioFrame
// ALL VALUES IN AND OUT ON THE RANGE OF -1.0 TO + 1.0

LEFT INPUT = plInputBuffer[0];
RIGHT INPUT = pInputBuffer[1]

LEFT QUTPUT = pInputBuffer[0]
LEFT OUTPUT pOutputBuffer([l]

*/
bool __stdcall CVolume::processAudioFrame(float* pInputBuffer, float* pOutputBuffer,
UINT uNumInputChannels, UINT uNumQutputChannels)
{
// output = input -- change this for meaningful processing
//
// Do LEFT (MONO) Channel; there is always at least one input/one output
(INSERT Effect)
pOutputBuffer[0] = pInputBuffer[0];

// Mono-In, Stereo-Out (AUX Effect)
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1] = pInputBuffer[0];

// Stereo-In, Stereo-Out (INSERT Effect)
if(uNumInputChannels == 2 && uNumOutputChannels == 2)
pOutputBuffer[1l] = pInputBufferll];

return true;

Take a look at the function as RackAFX wrote it for you—it is designed to pass audio through
unmodified. In this case, you simply write the output buffer with the data from the input
buffer. In your processAudioFrame() function, get used to always processing the first channel
then optionally processing the second one. This makes it easy to write mono/stereo capable
plug-ins and will also make it easier to extend when RackAFX has more channel options.
Because the code is already done, you could compile it right now and try it in RackAFX as a
sanity check to make sure your audio hardware is set up properly. In fact, we’ll do that right
after examining the last few functions in the file (I promise you will write code shortly).



52  Chapter 3

userlnterfaceChange()

Perhaps the second most important function is userlnterfaceChange(), which is called when
the user changes a control on the control surface:

/* ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! =---v--ecmmmmmmmmaoaeoaooe //
% --0x2983- - ¥

Variable Name Index

e */
// Add your UI Handler code here ------------------------------- - //
//

As with processAudioFrame(), there is a “hint” comment above the function definition which
reminds you how RackAFX has mapped your variable to a control index. In this case, the
m_f\olume variable is mapped to index O.

bool __stdcall CVolume::userlnterfaceChange(int nControlIndex)
{
// decode the control index, or delete the switch and use brute force calls
switch(nControlIndex)
{
case 0:
{
break;
}

default:
break;
}

return true;
}

userinterfaceChange() implements the first part of a switch/case statement in case you need
to decode the control index and do something to the data before finally altering your code to
reflect the change. Often, you will have nothing to write here either.

Build the plug-in. Since the default plug-in behavior is to simply pass audio unaffected,
you can build the project now and test it in RackAFX to make sure everything is working
properly. Rebuild your project from the compiler or from RackAFX’s Rebuild button. You
should get a clean build with no errors.



Writing Plug-Ins with RackAFX 53

You should always build and test your brand-new project first before modifying any code! You
want to do this to make sure there are no C++ errors (you might have inadvertently hit a key or
changed some code), as well as to make sure your audio system is working and you can hear the
audio data.

At this point, you have built a DLL which is designed to serve up CVolume objects when the
client requests them. The problem is that RackAFX doesn’t yet know your CVolume plug-in
is available. During the debugging phase, you need to get used to manually loading and
unloading the DLL. You do this with the Load button or the toolbar/menu item. After you

hit Load, RackAFX calls the appropriate functions to load your DLL into its address space.
You will see the control surface change to reflect that your plug-in is loaded. You will also
see the Load button change to read Unload. When it is time to go back to C+ +, modify, and
recompile, you’ll need to unload the project first so you can reload it in its later state.

Use Audio > Load Audio File to load a test file. Then use the transport control buttons to
play, loop, and pause or stop the file. The volume control should have no effect since we
haven’t written any code yet. Make sure you get audio at this point before continuing; if you
don’t, check your audio adapter settings.

In order to make the volume control slider work, we need to wire it into the processing code.
The volume slider is directly mapped to the volume coefficient m_f\olume; as the slider
moves from 0.0 to 1.0, so does the volume coefficient. So, the algorithm is simple to write:
just multiply the input audio sample by the volume coefficient and set the output to that value.
Switch to your C++ compiler and find the processAudioFrame() function. Modify it by doing
the multiplication described above, which implements the difference equation for the filter.

bool __stdcall CVolume::processAudioFrame(float* pInputBuffer, float* pOutputBuffer,
UINT uNumInputChannels, UINT uNumOutputChannels)

{

// output = input -- change this for meaningful processing

//

// Do LEFT (MONO) Channel; there is always at least one input/one output

// (INSERT Effect)

pOutputBuffer[0] = pInputBuffer[0]*m_fVolume;

// Mono-In, Stereo-Out (AUX Effect)
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1] = pInputBuffer[0]*m_fVolume;

// Stereo-In, Stereo-Out (INSERT Effect)
if(uNumInputChannels == 2 && uNumOutputChannels == 2)
pOutputBuffer[1] = pInputBuffer[1]*m_fVolume;

return true;



54 Chapter 3

Plug-In [ Volume
- 0.75
processAudioFrame()

= pBuﬁer[O]@

A

Raw Data: 0.0to 1.0

Figure 3.14: Here is the connection between the slider and the variable in the
calculation. The processAudioFrame() function is using the raw slider data directly.

There are only three lines to modify, one for the first channel and another two for the other
routing combinations. The modification is shown in bold where you are scaling the input by
the volume coefficient. Can you see how this relates to the difference equation? If not, stop
now and go back to figure it out. Now, rebuild the project and reload it into RackAFX. Try the
slider and you will see that the volume does indeed change. Congrats on your first plug-in!

What makes this plug-in so easy and quick to develop is that the slider volume control

maps directly to a variable that is used in the processAudioFrame() function, as depicted in
Figure 3.14. This means the data coming from the slider can be used directly in the algorithm.
The data coming from the slider and controlling m_fVolume is said to be raw data. You use
the raw value to affect the signal processing algorithm.

3.10 Design a Volume-in-dB Plug-In

This next example will show you how to cook your raw data to be used in the signal
processing algorithm. The VolumedB plug-in will also be a volume control, but will operate
in dB instead of using a raw multiplier. You may have noticed that your previous volume
control didn’t seem to do much in the upper half of the throw of the slider. This is because
your ears hear logarithmically and so linear deflections of the slider do not correspond to
linear changes in perceived loudness. To fix this, we’ll design another plug-in that will operate
in decibels (dB). The block diagram is identical to the first project, only the control range of
values has changed.

* a,=-96dB: Mute
e a, = 0dB: Max volume

Now, the volume control is specified in dB, so you need a formula to convert the dB value
to a scalar multiplier for the algorithm. You should memorize the dB equations now if you



Writing Plug-Ins with RackAFX 55

haven’t already, since they will reappear over and over in audio plug-ins. This is the cooking
formula that will take the raw data from the slider —96 to 0 dB and cook it into a variable we
can use in our scalar multiplication:

dB = 20log(x)

® 3.2
X = 102 32

You set up the cooking formula by implementing the userinterfaceChange() function which
is always called when the user changes anything on the control surface. When the user moves
the slider, you cook the data. This is shown conceptually in Figure 3.15.

The cooking function simply converts the dB into a scalar multiplier. In this case, the
cooking function is short enough to simply leave inside the userInterfaceChange() function;
as the cooking functions become more complex, you will probably want to break them out
into separate functions, which are called from userinterfaceChange(). Remember the two
RackAFX rules you’ve learned so far:

Coefficients in a block diagram (or transfer function or algorithm) become float member variables
in your plug-in code. Each slider or button control on the Ul will map to and control a member
variable in your plug-in.

Plug-In

processAudioFrame()

o = pBuﬁer[O]*m_fVollime

Volume
—{| -6.00dB

userinterfaceChange()

; m_fVolume_dB)/20
Cooking m_fVolume = ‘I@

Function A

Cooked
Data: Raw Data: -96.0 to 0.0

~0.0t0 1.0

Figure 3.15: The volume-in-dB plug-in will have a single slider that generates values
between -96 and 0.0 dB; you need to cook the raw dB values to use in your plug-in.



56 Chapter 3

In the first plug-in, the variable was shared between the slider and the algorithm. Now
we need two variables, one for the raw slider data and the other for the cooked algorithm
processing. We will name them as follows:

* m_f\Volume_dB: The raw slider data
e m_fVolume: The cooked value used in the algorithm

3.10.1 Project: VolumedB

Using the same method as before, create a new project named “VolumedB.” As before, you
don’t have to worry about the advanced options at the bottom of the new project window.
Your compiler will automatically start.

3.10.2 VolumedB GUI

We only need a single slider control. It will be adjustable from —96 to 0 dB. Set up the GUI
in RackAFX by choosing a slider and right-clicking inside the bounding box. Set the slider
according to Table 3.1.

3.10.3 VolumedB.h File

RackAFX has written the code and declared the variable float m_f\olume_dB but we still
need to declare our second variable named m_f\Volume, which stores the cooked data. Open
the VolumedB.h file and declare the variable in the user declarations area:

// abstract base class for DSP filters
class CVolumedB : public CPlugln

{

public: // plug-in API Functions

<SNIP SNIP SNIP>
// Add your code here: ------------------ oo //

// our Cooked Volume Multiplier
float m_fVolume;

// END OF USER CODE == --=-=-msmmmmmommmmmom e //

Table 3.1: The slider properties for the VolumedB project.

Slider Property Value
Control name Volume
Units dB
Variable type float
Variable name m_fVolume_dB
Low limit -96
High limit 0
Initial value -6




Writing Plug-Ins with RackAFX 57

3.10.4 VolumedB.cpp File

Constructor

* Cook and initialize the member variable.
*  Use the pow() function.

CVolumedB::CVolumedB()
{
// Added by RackAFX - DO NOT REMOVE
//
// Setup the RackAFX UI Control List and Initialize Variables
initul();
// END InitUI

<SNIP SNIP SNIP>
// Finish initializations here

// Cook the raw data:
m_fVolume = pow(10.0, m_fVolume_dB/20.0);
}

prepareForPlay()

There is nothing to do here because the volume variable does not need to be reset on each
play event.

userlInterfaceChange()

» Decode the control ID value.

«  Cook the raw data using the formula.

*  When the plug-ins get more complex, you can create separate cooking functions and then
share the functions as needed.

»  Make sure you check your control ID values from the comments so that they match properly.

bool __stdcall CVolumedB::userInterfaceChange(int nControlIndex)
{
// decode the control index, or delete the switch and use brute force calls
switch(nControlIndex)
{
case 0:
{
// Cook the raw data:
m_fVolume = pow(10.0, m_fVolume_dB/20.0);
}

default:
break;

return true;



58 Chapter 3

processAudioFrame()

» Implement the difference equation.

bool __stdcall CVolumedB::processAudioFrame(float* pInputBuffer, float* pOutputBuffer,
UINT uNumInputChannels, UINT uNumOutputChannels)

{

// output = input -- change this for meaningful processing

!/

// Do LEFT (MONO) Channel; there is always at least one input/one output

// (INSERT Effect)

pOutputBuffer[0] = pInputBuffer[0]*m_fVolume;

// Mono-In, Stereo-Out (AUX Effect)
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1] = pInputBuffer[0]*m_fVolume;

// Stereo-In, Stereo-Out (INSERT Effect)
if(uNumInputChannels == 2 && uNumOutputChannels == 2)
pOutputBuffer[1] = pInputBuffer[1]*m_fVolume;

return true;
}

Build and test your plug-in. You should now hear a smooth volume transition as you move
the slider. Depending on your sound system and volume levels, you might not hear much
below —40 dB.

3.11 Design a High-Frequency Tone Control Plug-In

This example will show you how to implement the last of the digital signal processing (DSP)
algorithm building blocks: the delay element (z V), where N is the number of samples of
delay. In this example, N = 1, so we are dealing with a one-sample delay, a fundamental
building block for many DSP algorithms. Although we won’t get to the theory of how this
delay creates a tone control until the next chapter, it’s worth it to go ahead and build a plug-in
that uses it. After this exercise, you will be able to build almost any kind of DSP filter that
uses one-sample-delay elements—and that’s a lot of DSP filters. The later examples in the
book will not be as detailed regarding the operation of RackAFX and your C+ + compiler, so
make sure you understand how to manipulate the software as needed to complete the project.
Figure 3.16 shows the block diagram for the filter.

The design equation is as follows:

0.0 =< a = 0.49

8 =a,—10 (3:3)



Writing Plug-Ins with RackAFX 59

x(m) —— » 6 y(n)

>

Figure 3.16: The HF tone control block diagram.

You already know that the coefficients a; and a; will become float member variables in our
plug-in. But what about the one-sample-delay element, z~*? In hardware, this would be a
register to store the sample for one clock period. In software, it simply becomes another float
variable, but it must be able to persist over the lifetime of a processing cycle. Therefore, like
the coefficients, it will become a float member variable of our plug-in object.

You will do an example using arrays of floats in Chapter 7 when you implement digital delay
lines that require long strings of z * elements. For now, we need to implement the single

z ! element in the block diagram. Right away, we need to decide if we are going to support
multichannel (stereo) operation.

The last rule is really important and it is easy to get into trouble if you do not follow it. Unless
the algorithm specifically deals with multichannel data, you will need to implement a separate
algorithm for each channel, which means having separate coefficient and data (z 1) elements
for each channel. Even if you might be able to share the coefficients, you can never share the
delay elements. We will need to declare variables for the following:

e Left channel a, and a, variables
+ Left channel z * variable

* Right channel a, and &, variables
+ Right channel z * variable

Delay elements will become float member variables in your plug-in object. For single-delay
elements, you can simply assign separate variables. For multiple-sample-delay elements you
may also use float arrays to store the data.

A DSP filtering algorithm, which is only described in mono or single channel format, that is,
one input, x(n), and one output, y(n), cannot share delay elements between multiple channels.
This means that you must duplicate your algorithms so that you have one set of variables for
the left channel and one for the right channel.




60 Chapter 3

3.11.1 Project: SimpleHPF

This plug-in is going to implement a very primitive HF (high frequency) tone control
that behaves like a high-pass filter. It will attenuate low frequencies, leaving only the
highest frequencies intact. Using the same method as before, create a new project named
“SimpleHPF.” Check your compiler to make sure the project was created properly.

3.11.2 SimpleHPF GUI

This simple plug-in will only have one slider that will control the value of the a; coefficient.
The other coefficient is calculated from it. The specifications show that a; varies between 0
and 0.49. Set up the slider according to the properties in Table 3.2.

3.11.3 SimpleHPF.h File

To figure out what the CSimpleHPF object is going to have to do, first write the difference
equation. Examine it and figure out which components are going to become coefficients

and which are going to be memory locations. Also, figure out any intermediate variables
you might need. You can figure out the difference equation by using the rules you learned in
Chapter 1 to chart the input and output signals. Make sure you understand how this equation
is formed from the block diagram in Figure 3.17.

The difference equation is as follows:

y(n) = ax(n) + ax(n — 1) 3.4)

Next, figure out which block diagram components become variables in your C++ code.
The coefficients a, and a, will become a float member variable in the code. Even though we
might be tempted to share the coefficients, these are separate left and right algorithms that
have separate delay elements, so let’s implement two sets, one each for the left and right
channels.

Table 3.2: The slider properties for the SimpleHPF project.

Slider Property Value
Control name al
Units
Variable type float
Variable name m_fSlider_a1
Low limit 0.0
High limit 0.49
Initial value 0




Writing Plug-Ins with RackAFX 61

x(n) y(n)

x(n-1) %

Figure 3.17: The HF tone control block diagram with annotations showing the signal math.

I named mine;

m_f a0 _left
m_f al left
m_f a0 _right
m_f al right

The z~* element will also need to become a member variable and we will definitely need one
for each channel because these can never be shared. | named mine

m_f z1 left
m_f z1 right

The slider will only modify its own m_fSlider_al value. We will calculate the values for the
other coefficients using it. We will need to modify the userinterfaceChange() function just
like the preceding example to wire the slider into the algorithm. Jump to your C++ compiler
and go to the SimpleHPF.h file to add your member variables. Notice the variable that
RackAFX added in the code below:

// 5. userlnterfaceChange() occurs when the user moves a control.
virtual bool userInterfaceChange(int nControllIndex);

// Add your code here: ------------ - - //
float m_f_a0_left;
float m_f_al_left;

float m_f_a0_right;
float m_f_al_right;

float m_f_z1_left;
float m_f_z1_right;

// END OF USER CODE === === -mmmmmmmmm s m o m oo n oo //

// ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! =---c-oeommmmmmamaoaae //
// *%--0x07FD- - **



62 Chapter 3

float m_fSlider_al;
/] **--0x1A7F--**

/7

3.11.4 SimpleHPF.cpp File

Constructor

Set our coefficient values to match the initialized slider settings.
Calculate the new a, values.
Clear out the z ! variables.

CSimpleHPF::CSimpleHPF()

{

}

<SNIP SNIP SNIP>

// Finish initializations here
m_f_al_left = m_fSlider_al;
m_f_al_right = m_fSlider_al;

m_f_a0_left = m_f_al_left - 1.0;
m_f_a0_right = m_f_al_right - 1.0;

m_f_z1 left = 0.0;
m_f_z1_right = 0.0;

prepareForPlay()

bool __stdcall CSimpleHPF::prepareForPlay()

{

}

// Add your code here:
m_f_z1_left = 0.0;
m_f_z1_right = 0.0;

return true;

processAudioFrame()

The logic for the signal processing of one channel will be as follows:

Read the delayed value x(n—1) out of the z * element.
Implement the difference equation.

Write the current input x(n) into the delay variable; it will be x(n—1) next time around.
Do this for both channels.



Writing Plug-Ins with RackAFX 63

bool __stdcall CSimpleHPF::processAudioFrame(float* pInputBuffer, float*
pOutputBuffer, UINT uNumChannels)
{

// Do LEFT (MONO) Channel

//

// Input sample is x(n)

float xn = pInputBuffer[0];

// READ: Delay sample is x(n-1)
float xn_1 = m_f_z1_ Tleft;

// Difference Equation
float yn = m_f_a0_Tleft*xn + m_f_al_left*xn_1;

// WRITE: Delay with current x(n)
m_f_z1 left = xn;

// Qutput sample is y(n)
pOutputBuffer[0] = yn;

OK, now it’s your turn to implement the other channel. Give it a try by yourself before
proceeding. You should have something like this for the rest of the function:

// Mono-In, Stereo-Out (AUX Effect)
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1] = yn;

// Stereo-In, Stereo-Out (INSERT Effect)
if(uNumInputChannels == 2 && uNumQutputChannels == 2)
{

// Input sample is x(n)

float xn = pInputBuffer[1];

// Delay sample is x(n-1)
float xn_1 = m_f_z1_right;

// Difference Equation
float yn = m_f_a0_right*xn + m_f_al_right*xn_1;

// Populate Delay with current x(n)
m_f_z1l_right = xn;

// Qutput sample is y(n)
pOutputBuffer[1l] = yn;

return true;



64 Chapter 3

Flush out delay elements in preparation for each play event in the plug-in. You generally do not
want old data sitting inside these storage registers. The only exceptions are delay-looping effects
where you exploit the old data. This is done in prepareForPlay().

userlnterfaceChange()

e Store the new a, values.
» Cook the slider data to get the a, values.

bool __stdcall CSimpleHPF::userInterfaceChange(int nControlIndex)
{
switch(nControlIndex)
{
case 0:
{
// save al
m_f_al_left = m_fSlider_al;
m_f_al_right = m_fSlider_al;

// calculate a0
m_f_a0_left = m_f_al_Tleft - 1.0;

m_f_al_right = m_f_al_right - 1.0;

break;
}
default:
break;
}
return true;
}

Build and load the project, open an audio file, and test your plug-in to make sure it’s working
properly. This plug-in is a simple low-cut filter and with the slider all the way down, you should
hear no difference in the music. When you move the slider up, you will lose more and more bass
frequencies, allowing only the high frequencies to pass. The cut-off frequency is approximately
11 kHz and the slider controls the amount of low frequency cut. You should easily be able to hear
the effect, even over small speakers. Now, to get a little more information about the plug-in’s
operation, use RackAFX’s analysis tools. Stop the music from playing with the transport control.
Launch the analyzer window by clicking on the Analyzer button in the toolbar or choose View >
Analyzer. The analyzer pops up as shown in Figure 3.18 (yours may look slightly different).

The analyzer is a powerful tool for checking your plug-in’s performance. The basic controls are

1. Scope/spectrum analyzer.

2. Basic graphing options.

3. Scope controls.

4. Real-time response buttons, which let you measure the frequency, phase, impulse, and
step responses of the plug-in (audio must not be streaming to use these).



Writing Plug-Ins with RackAFX 65

Click on the Frequency button and you will get a frequency response plot of the filter. Move
the slider all the way down and you should get a flat response, as shown in Figure 3.19. If you
move the slider all the way up so that a, = 0.49, you get the response in Figure 3.20.

Analyzer X
Left Out IR1024 Files
+12.0d8 | atancrunch.sir
|Fregsamp. sir
1T AGLEET LT BRSNS B P EOPES PRSI T 1P REPI I B R 1 PP . ;f;_i.st
12088 [t
: impuisal S6fi.sir
24.0d8 | impulse16fir.cir
36,048 |impulse_HPF sir
(impuise_LPF. ¢
48048 |LPFLsir
optimal, 64.5ir
i Tz 10z Tz 10z Frarkery A0
T | ReslPF_1.gir
|ResPF_2.sir
+12.0dB | test.zir
| wavtest.sr
0.048 | wavtest2.sir
12048
24008
36.0d8
-48.0d8
il 10Hz 100Hz 1kHz 10kHz ! ;
®_’8mm Comte ) [_rse ) romss J (e ] _imoie ][5 |<—(:)
Olinear AR sops oo™ ) oraehsowcss.
G Anpitude Range | ¢[» || 1.0 gmenw [ Left outjRight out [+
[ shiow 08 Line Timebase | 4 [» | 200 msec/div OF*:M
[ hick Pen TimeBase
[[] Baow Graph Multiphar <Jp | 1oo | [linterpalate
( : [ Grey Graticude Trigger Threshold 001 % j
st Tigger ¢|2] 0 FFT Limits
Force afst Delay Offset <[> | 0.0 MIN:  -60.0 | dB
[]Filled Frequency Response . MAX:  12.0 dB
& i Y-tixds Offset ¢ [» | 0

Figure 3.18: The audio analyzer.

+12.0dB
0.0dB
-12.0dB
-24.0dB
-36.0dB
-48.0dB
-60.0dB

10Hz 100Hz 1kHz 10kHz

Figure 3.19: A flat frequency response with a;, = 0.0.



66 Chapter 3

+12.0dB |
UOdB ....................................................................................................... ; g
-12.0dB | i
| -24.0dB
| -36.0dB |
|-48.0dB

[RAa 10Hz 100Hz TkHz 10kHz

Figure 3.20: A filter that appears to boost high frequencies. You can see that
it is really cutting the low frequencies instead; this is something you might only
have realized by using the audio analyzer.

3.12 Design a High-Frequency Tone Control with Volume Plug-In

This final example will show you how to deal with more than one slider control by simply
adding a volume-in-dB control to the block diagram. The plan is to add another slider to
the existing plug-in; the new slider will control the overall volume of the plug-in in dB. You
already know how to implement both parts of it, so this exercise is really more about adding
new controls to an existing project.

3.12.1 Project: SimpleHPF

Open your SimpleHPF project in RackAFX using the Open button or the menu/toolbar items.

3.12.2 SimpleHPF GUI

Add the new volume slider: Right-click on the second slider group and add a new slider
for the volume control, in dB, and use the exact same variable name and settings as in the
VolumedB project. You should end up with a GUI like that in Figure 3.21.

3.12.3 SimpleHPF.h File

Add your own m_f\olume variable to handle the cooked volume data, just as before.

// Add your code here: ----- - - oo //
float m_f_a0_left;
float m_f_al_left;

float m_f_a0O_right;
float m_f_al_right;

float m_f_z1_left;
float m_f_z1_right;

float m_fVolume;



Writing Plug-Ins with RackAFX 67

al Volume
[ 0.00 [ -6.00 |

Figure 3.21: The new SimpleHPF GUI with added volume-in-dB control.

/4 END OF USER CODE - - - - oo m oo oo oo oo //

// ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! =-----ommmmmmmmmoeaa e //

/] **--0X07FD--**

float m_fSlider_al;
float m_fVolume_dB;

/] - -OX1ATF--**
e R TR /1

3.12.4 SimpleHPF.cpp File

Constructor

* Cook the volume data after the filter initializations.

CSimpleHPF::CSimpleHPF()

{
{SNIP SNIP SNIP>
m_f_a0_left = -1.0;
m_f_al_left = 0.0;

m_f_aO_right = -1.0;
m_f_al_right 0.0;

m_f_z1_left = 0.0;
m_f_z1_right = 0.0;

m_fVolume = pow(10.0, m_fVolume_dB/20.0);
}

prepareForPlay()

There is nothing to add here because the volume variable does not need to be reset on each
play event.



68 Chapter 3

processAudioFrame ()

» Add the volume control scaling after the filtering operation.

// Do LEFT (MONO) Channel; there is always at Teast one input/one output
// (INSERT Effect)

// Input sample is x(n)

float xn = pInputBuffer[0];

// READ: Delay sample is x(n-1)
float xn_1 = m_f_zl_left;

// Difference Equation
float yn = m_f_a0_left*xn + m_f_al_left*xn_1;

// WRITE: Delay with current x(n)
m_f_zI1_left = xn;

// Output sample is y(n)
pOutputBuffer[0] = yn*m_fVolume;

// Mono-In, Stereo-Out (AUX Effect)
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1] = yn*m_fVolume;

// Stereo-In, Stereo-Out (INSERT Effect)
if(uNumInputChannels == 2 && uNumOutputChannels == 2)
{

// Input sample is x(n)

float xn = pInputBuffer[1];

// Delay sample is x(n-1)
float xn_1 = m_f_z1_right;

// Difference Equation
float yn = m_f_a0_right*xn + m_f_al_right*xn_1;

// Populate Delay with current x(n)
m_f_zl_right = xn;

// Qutput sample is y(n)
pOutputBuffer[1] = yn*m_fVolume;
}
userlnterfaceChange()

» Cook the volume data.
» Make sure you check your control ID values in case you chose different sliders than | did.



Writing Plug-Ins with RackAFX 69

bool __stdcall CSimpleHPF::userInterfaceChange(int nControlIndex)
{
// decode the control index
switch(nControlIndex)
{
case 0:
{
m_f_al_left = m_fSlider_al;
m_f_al_right = m_fSlider_al;

m_f_a0_left = m_f_al_left - 1.0;
m_f_a0_right = m_f_al_right - 1.0;

break;
}
case 1:
{
m_fVolume = pow(10.0, m_fVolume_dB/20.0);
break;
}
default:
break;
}
return true;
}

Build and test your code to make sure the plug-in works as expected. You now understand the
basics of writing a plug-in from a block diagram and design equations.

Add some presets

Now that you have a GUI with more than one control, try adding some presets. If you look
at the preset list in the toolbar, you will see the first one is named Factory Preset. This preset
contains your initial settings for the GUI controls. You cannot delete this preset and it is
automatically updated whenever you add, edit, or delete controls. This preset takes you back
to your initial state. With your plug-in loaded and (optionally) audio streaming through it,
adjust the controls to affect the signal. Hit the Save Preset button on the toolbar or choose

it from the plug-in menu. A box will pop up allowing you to name the preset. You can also
overwrite an existing preset. You can store up to 32 presets in your plug-in.

3.13 The User Plug-In Menu in RackAFX

As you write more plug-ins, you will notice that they begin to automatically populate the user
plug-in menu item in RackAFX. By now, you should have three plug-ins in this menu. There
are a few things you need to understand about this menu.



70 Chapter 3

» Itallows you to play with the plug-ins without having to open your compiler and manu-
ally load and unload the DLLSs.

* You can select different plug-ins from this menu while audio is streaming and they will
automatically slot in and out, so you can audition or show off your plug-ins quickly.

» Itallows RackAFX to behave just like other plug-in clients by loading all the DLLs it
finds in its Pluglns folder at once when you start the software. This can be dangerous!

That last item poses a problem during the course of development—if you write a DLL that
does bad things in the constructor, such as hold pointers with garbage values or try to access
memory that hasn’t been allocated, it may crash RackAFX when it first starts up. If your
DLL behaves really badly, you might even wound the OS too. This is a difficult issue to avoid
without complicated rules for commissioning and decommissioning the plug-in. Additionally,
you will have the same problem if you are developing a commercial plug-in and you are
using a third-party client; most of these are designed to first open all the DLLs in their plug-in
folder and check to make sure the plug-ins can be instantiated. If you write a bad DLL, you
might also crash these clients and/or the OS. In at least one commercially available client,

if your plug-in crashes during startup, it will not be loaded again in future launches. When
RackAFX loads your DLL, it does some error checking to try to make sure your plug-in is
legal, but it can’t check the validity of your construction code.

If RackAFX crashes each time you open it, remove the last DLL you were working on from the
Pluglns folder. Alternatively, you can remove all the DLLs—you will want to copy them and
restore them later when you find the bad DLL that caused the crashing. Writing a DLL is chal-
lenging and fun, but since you are writing a component, you can wind up with crashes like this.




How DSP Filters Work

During the course of this book you will learn how to implement the following effects:

« EQs/tone controls

e Delay

* Flanger/chorus

e Compressor/limiter/tremolo
* Reverb

* Modulated filters/phaser

The EQ/tone control theory is the most difficult of all the effects to explain in a simple

way. These effects are based on DSP filter theory which involves complex algebra, that

is, the algebra of complex numbers. Complex numbers contain real and imaginary parts.
There are two basic ways to explain basic DSP theory. The first is intuitive and involves

no complex math but requires some bookkeeping and can be tedious. The second method
uses complex algebra to solve the problem. We’ll start with the intuitive method, and then
(optionally, if you desire) make the leap into complex math. Don’t worry—we don’t want

to get mired down in theory and forget the fun part, which is making audio effects. If you
skip the second part, you will still be able to code EQ and tone control plug-ins, but you will
better understand where the equations come from if you know a little theory too. The transfer
functions you will learn along the way will reappear in many effects algorithms.

In Figure 4.1 you can see the —6 dB/octave roll-off indicative of a first-order filter. A digital
version of the analog filter should have the same shape and roll-off. A key difference is that
the digital filter will not operate beyond the Nyquist frequency.

The phase response plot shows the relative phases of different frequencies upon exiting the
filter. During the filtering process, the phases of different frequencies get shifted forward or
backward. In Figure 4.2, the 1 kHz frequency is shifted by —45 degrees compared to the
input. At very high frequencies, the phase shift approaches —90 degrees. This phase shift is
not a side effect of the filtering but an integral part of how it works.

To understand the ramifications of the phase shifting, consider a complex waveform entering
the filter. Fourier showed that a complex, continuous waveform could be decomposed into a

71



72  Chapter 4

+12.0dB |
0.0dB R EEAn

-12.0dB |
-24.0dB | /

-36.0dB | —6dB/octave

-48.0dB
-60.0dB*

10Hz 100Hz 1kHz 10kHz

Figure 4.1: The fundamental analysis tool for a DSP filter is its frequency response plot.
This graph shows how the filter amplifies or attenuates certain bands of frequencies.

+90.0° |
+60.0° |

+30.0° —45 degrees

oo | == —_
-30.0° |

-60.0° |

-90.0" 7 10Hz 100Hz 1kHz 10kHz

Figure 4.2: The phase response plot of the analog filter in Figure 4.1 shows how the
phase of the output is shifted across frequencies.

set of sinusoids with different frequencies and amplitudes. Figure 4.3 shows a filter in action.
The input is decomposed into four sinusoids, a fundamental, and three harmonics. The peak-
amplitudes of the components are shown as dark bars to the left of the y axes.

We observe several features of the output:

The composite waveform is smoothed out.

The amplitude and phase shift of the fundamental are unchanged.

The three harmonics have decreasing amplitudes and more phase shift as you go higher
in frequency.

Figure 4.4 shows the same filter with the information plotted differently; here, the amplitudes

and phases are plotted against frequency rather than dealing with a set of time-domain
sinusoids. You can see by the output frequency response plot that this filter is a kind of
low-pass filter. Its curve is similar to Figure 4.1, the analog equivalent.



How DSP Filters Work 73

Amplitude

Amplitude

f,l

NANNTA N
V‘\/
/\

Amplitude

f,

\VRVA

N A AN

Amplitude

f

VAAVAAVARV
AAAAAANN

Amplitude

&

UUUUUUUU“

|| I|
|| || | || f |I| ||n|| I|I|
|||||||| |T|me

TATRURTRRRTRRAN
|||| '||.|' I "' | "u' 'J 'l..'l |'|| l'l.'l 'l lJl

Amplitude

FILTER

Amplitude

f,|

A
Ul V.

/\

Amplitude

f:,l

VRV
AWAWAWA

Amplitude

1

\VARVARVARV s

Amplitude

{4

IAYEVA'R'EE

NNANNN 'I/\'. /\\ \ .
\/ \V,f \/Tlme

“ Time

Figure 4.3: A complex waveform is filtered into a smoothed output. The input and output are
decomposed into their Fourier-series components.

Amplitude|
Frequency
£, & o
Phase
Shift
o . . . .
-45°
-a0°
Frequency
f‘ fz f: f‘

Amplitude
-
FILTER
[‘ f2 fa f“ Frequency
Phase
Shift
@
45
—ap®
| f‘ fz f3 fd Frequency

Figure 4.4: The same information is plotted as frequency and phase responses.



74 Chapter 4

4.1 First-Order Feed-Forward Filter

In order to get a grip on the nature of digital filtering, start with the first-order feed-forward
filter shown in a block diagram in Figure 4.5. You’ve already seen a version of it in the HPF
tone control you coded in the last chapter.

The difference equation is as follows:

y(n) = aXx(n) + ax(n — 1) (4.1)

You can tell why it’s called feed forward—the input branches feed forward into the summer.
The signal flows from input to output. There is no feedback from the output back to the input.
Now, suppose we let the coefficients a; and a; both equal 0.5 in Figure 4.6.

In order to analyze this filter we can go the easy but tedious route or the difficult but elegant
route. Let’s start with the easy way. In order to figure out what this does, you apply the five
basic digital test signals you learned in Chapter 1 to the filter and then manually push the
values through and see what comes out. You only need a pencil and paper or a simple
calculator. The five waveforms we want to test are:

1. DC (0 Hz)
2. Nyquist

y(m)

x(n-1"%

Figure 4.5: The first-order feed-forward filter.

x(n) — b @ y(n)

Ea

Figure 4.6: What kind of filter is this? What are its frequency and phase responses?



How DSP Filters Work 75

3. % Nyquist
4. Y Nyquist
5. Impulse

For each audio sample that enters there are two phases to the operation:

1. Read phase: The sample is read in and the output is formed using the difference equation
and the previous sample in the delay register.

2. Write phase: The delay element is overwritten with the input value—the sample stored in
the single z* register is effectively lost.

Start with the DC/step input and begin sequentially applying the samples into the filter shown
in Figures 4.7 through 4.10.

Now, observe the amplitude and phase shift of the input versus output—the output amplitude
eventually settles out to a constant 1.0 or unity gain condition, so at DC or 0 Hz, the output

Step/DC (0Hz)
{.0,1,1,1,1,1,1..}

y(n)=(0.5)*(0.0) +(0.5)* (0.0)= 0.0

Figure 4.7: On the first iteration the input sample is used in the difference
equation to create the output, x(n) = 0, y(n) = 0 and then the
input is shifted into the delay register.

In a feed-forward filter, the amount of time smearing is equal to the maximum delayed path
through the feed-forward branches.




76 Chapter 4

1— —4 b @ y(n) = (0.5)* (1.0) + (0.5)* (0.0) = 0.5

Figure 4.8: The process continues with each sample. Here the input 1.0 is
combined with the previous input; the second output y(n) = 0.5.

equals the input. However, there is a one sample delay in the response, causing the leading
edge of the step-input to be smeared out by one sample interval. This time smearing is a
normal consequence of the filtering.

Next, repeat the process for the Nyquist frequency (DC and Nyquist are the easiest, so we’ll
do them first). The filter behaves in an entirely different way when presented with Nyquist
(Figures 4.11 through 4.14).

Now, make your observations about amplitude and phase. The amplitude at Nyquist
eventually becomes zero after the one-sample-delay time. The phase is hard to tell because the
signal has vanished. Why did the amplitude drop all the way to zero at Nyquist? The answer

is one of the keys to understanding digital filter theory: the one-sample delay introduced

Delay elements create phase shifts in the signal. The amount of phase shift depends on the
amount of delay as well as the frequency in question.




How DSP Filters Work

77

11— — 4 b @ y(n) = (0.5)*(1.0) + (0.5)* (1.0) = 1.0

1— — b @ y(n) = (0.5)* (1.0) + (0.5)* (1.0) = 1.0

x(n-=1) —p b

Figure 4.9: The sequence continues until we observe a repeating pattern;
1.0 is repeating here.

exactly 180 degrees of phase shift at the Nyquist frequency and caused it to cancel out
when recombined with the input branch through a,.

In the case of Nyquist, the one-sample delay is exactly enough to cancel out the original
signal when they are added together in equal ratios. What about other frequencies like



78 Chapter 4

Input T Output

-1.0 — -1.0

Figure 4.10: The input and output sequences for the filter in Figure 4.6 at DC or 0 Hz.

Nyquist Response
{..41,=1,+1,-1..}

y(n)=(0.5)*(+1.0) + (0.5)*(0.0)= 0.5

y(n)

Figure 4.11: The Nyquist sequence is applied to the filter. Notice how the delay
element has been zeroed out. The output for the first iteration is y(n) = 0.5.

Y and ¥4 Nyquist? They are a bit more laborious to work through but worth the effort. By
now you can see how the data moves through the filter, so let’s use a table (Table 4.1) and

move the data through it instead. The %2 Nyquist sequence is x(n) = {...0, +1.0, 0.0, —1.0,
0.0, +1.0,0.0, ...}.



How DSP Filters Work 79

—1— —0

x(n=1) —

Y

&/

+1

+1

4

i

o3>
>—(3)

5>—(x)

y(n)=(0.5)*(-1.0) + (0.5)*(+1.0) = 0.0

Figure 4.12: The second iteration at Nyquist produces an output y(n) = 0.

Table 4.1: The manual labor continues as we work

through the 2 Nyquist frequency.

x(n) x(n— 1) y(n) = 0.5x(n) +
0.5x(n — 1)
0 0 0
1 0 0.5
0 1 0.5
=1 0 —-0.5
0 —1 —0.5
1 0 0.5
0 1 0.5
-1 0 —0.5
0 —1 —-0.5

Can you see how x(n) becomes x(n — 1) for the next row? The x(n — 1) column holds a one-
sample-delayed version of the input x(n). The output is y(n) = {0, +0.5, +0.5, —0.5, —0.5,

+0.5, +0.5}.



80 Chapter 4

P — b @ (1) = (0.5)* (+1.0) + (0.5) * (~1.0) = 0.0

A b @ y(n) = (0.5)* (-1.0) + (0.5)* (+1.0) = 0.0

=1

+1| Z

x(n=1) —p b

Figure 4.13: Continuing the operation at Nyquist, we see that eventually the
output settles to a repeating 0, 0, 0, 0 sequence.

Next we observe the amplitude and phase relationship from input to output in Figure 4.15.
At first it might seem difficult to figure out the sequence {...—0.5, —0.5, +0.5, +0.5, ...}.
% Nyquist is also encoded with a repeating sequence of four values (0, 1, 0, —1).

Work through ¥4 Nyquist the same way (Table 4.2). The ¥ Nyquist frequency sequence is
x(n) = {0, 0.707, 1, 0.707, 0, —0.707, —1, —0.707, 0, ...}.



How DSP Filters Work 81

+1.0

] Qutput

+1.0—

Figure 4.14: The input and output sequences for the filter in Figure 4.6 at Nyquist.

Table 4.2: ¥4 Nyquist input/output.

x(n) x(n — 1) y(n) = 0.5x(n) +
0.5x(n — 1)
0 0 0
0.707 0 +0.354
1 0.707 +0.854
0.707 1 +0.854
0 0.707 +0.354
—0.707 0 —0.354
—1 —0.707 —0.854
—0.707 —1 —0.854
0 —0.707 —0.354

The output is y(n) = {...+0.354, +0.854, +0.854, +0.354, —0.354, —0.854, —0.854,
—0.354, +0.354, ...}. Analysis of the output sequence reveals the phase-shifted and slightly
attenuated output signal at ¥a Nyquist. Both the phase shift and the attenuation are smaller
than ¥ Nyquist. As you can see in Figure 4.16 there is also one sample of time smearing at
the start of the signal.

Finally, apply the impulse sequence and find the impulse response. The impulse response

is the third analysis tool. The impulse response defines the filter in the time domain like the
frequency response defines it in the frequency domain. The basic idea is that if you know how
the filter reacts to a single impulse you can predict how it will react to a series of impulses of
varying amplitudes. Take a Fast Fourier Transform (FFT) of the impulse response and you
get the frequency response. An inverse FFT converts the frequency response back into the
impulse response. For this filter the impulse response is simple (Table 4.3).



82 Chapter 4

+1.0

e

Input

-1.0

+1.0

e
Vv

«— Phase Shift

Time

Smearing\

_("'I

-1.0

Wi

Output

Figure 4.15: The input/output relationship in time at 2 Nyquist. The 2 Nyquist
frequency is attenuated almost by one-half. The output is also phase
shifted by 45 degrees. The leading edge of the first cycle is smeared

out by one sample's worth of time.

+1.0

O

Fat

Input

+1.0

Time
Smearing\

—

—>» «—Phase Shift

Output

-1.0

Figure 4.16: The input/output relationship at % Nyquist.



How DSP Filters Work 83

Table 4.3: The impulse response input/output relationship.

x(n) x(n — 1) y(n) = 0.5x(n) +
0.5x(n — 1)
0 0 0
1 0 0.5
0 1 0.5
0 0
0 0
0 0

Here you can see that the impulse is flattened and smeared out. It is actually two points on
a sin(x)/(x)-like curve, as shown in Figure 4.17. Now, you can combine all the frequency
amplitude and phase values into one big graph, as shown in Figure 4.18.

We observe that this digital filter is a low-pass variety with a typical low pass filter (LPF)
magnitude response. However the phase response is quite interesting—it is linear instead of
nonlinear like the analog example at the beginning of the chapter. In fact, this simple filter is
a linear phase filter.

Figures 4.19 and 4.20 show the measured frequency and phase responses for this filter.
Compare it with our estimation. Notice the linear phase produces a straight line only
when plotted on the linear frequency axis. What makes this filter a low-pass filter? It is a
combination of the coefficients and the filter topology (first-order feed-forward). There are
three basic topologies: feed forward (FF), feed back (FB), and a combination of

FF/FB. Once the topology has been chosen, it’s really the coefficients that determine what
the filter will do.

+1.0 +1.0
N\
[

Input

-1.0 -1.0

Figure 4.17: The time domain plots of the impulse response input/output.

A feed-forward filter will be a linear phase filter if its coefficients are symmetrical about their
center. In this case (0.5, 0.5) is symmetrical. Another example would be (—0.25, 0, —0.25).




84 Chapter 4

Magnitude

10__|
17 P I ——

0.7

[ Frequency
I

¥4 Nyquist Y2 Nyquist Nyquist

Phase fs/8 fs/4 fs/2

o | |
0 1 1

0.0

Angle

-90°

Figure 4.18: Final frequency and phase response plots for the digital filter in
Figure 4.6. Notice that this is a linear frequency plot since 72 Nyquist is
halfway across the x-axis. The phase at Nyquist pops back up to 0 degrees
since there is no Nyquist component present (output = 0).

4.2 Design a General First-Order Feed-Forward Filter

To illustrate this and crystallize it as a concept, modify your SimpleHPF filter so that two
sliders control the a, and a, coefficients directly. Also, alter the range of values they can
control to (—1.0 to +1.0). Then, experiment with the two values and watch what happens in
the analyzer. How to do this is described next.

Open your SimpleHPF project and modify the user interface (Ul). First, change the values for
the a, slider to match the new low and high limits. As usual, you right-click inside the slider’s
bounding box and alter the limits and initial value (shown in bold) as in Table 4.4.



How DSP Filters Work 85

+12.0dB

0.0dB
-12.0dB
-24.0dB
-36.0dB
-48.0dB
-60.0dB

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

+90.0°
+60.0°
+30.0°

-30.0°
-60.0°
-90.0°

0.0°

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHZ

Figure 4.19: Measured frequency and phase response plots for the filter you just analyzed by

hand. These are plotted with a linear frequency base.

+12.0dB

0.0dB
-12.0dB
-24.0dB
-36.0dB
-48.0dB
-60.0dB

10Hz 100Hz 1kHz 10kHz

+90.0°
+60.0°
+30.0°

0.0°
-30.0°
-60.0°
-90.0°

10Hz 100Hz 1kHz 10kHz

Figure 4.20: Measured frequency and phase response plots with log frequency base.



86 Chapter 4

Table 4.4: The altered a, slider properties.

Slider Property Value
Control Name al
Units
Variable Type float
Variable Name m_fSlider_a1
Low Limit —-1.0
High Limit +1.0
Initial Value 0.0

Now add a new slider for the a, coefficient just below the a; slider (Table 4.5).

Table 4.5: The new a, slider properties.

Slider Property Value
Control Name a0
Units
Variable Type float
Variable Name m_fSlider_a0
Low Limit —1.0
High Limit +1.0
Initial Value 1.0

Change the userInterfaceChange() function to directly map the slider values to the coefficient
values. The new slider has a control ID of 10; always check your nControlindex value since it
might be different depending on your Ul.

Variable Name Index
m_fSlider_al 0
m_fVolume_dB 1
m_fSlider_a0 10

bool CSimpleHPF::userInterfaceChange(int nControlIndex)

switch(nControllIndex)
{



How DSP Filters Work 87

case 0:
// direct map to the al Slider
m_f_al_Teft = m_fSlider_al;
m_f_al_right = m_fSlider_al;
break;

case 1:
// cook the Volume Slider
m_fVolume = pow(10.0, m_fVolume_dB/20.0);
break;

case 10:
// direct map to the a0 Slider
m_f_a0_left = m_fSlider_a0;
m_f_a0_right = m_fSlider_a0;
break;

default:
; // do nothing
}
return true;
}

Rebuild the DLL and load it. Place the volume control at 0 decibels (dB) (maximum) and set
a, and a, to 1.0 (maxima); then open the analyzer and hit the Frequency button—play with the
different values for a; and a;. Figure 4.21 shows the response with various coefficient values.

After you play around with the controls, there are several things to note from this experiment:

* You can get a low-pass or high-pass response, or anything between, including a flat
response (a; = 1.0, &y = 0.0).

+12.0dB| 5 =10 a,=1.0
0.0dB +----==smmmmmnann
_120dB| @=10 a;=-05

_24.0dB| =10 a=-09
-36.0dB |
-48.0dB |
-60.0dB

10Hz 100Hz 1kHz 10kHz

Figure 4.21: Three different combinations of coefficient settings
yield three different filters.



88 Chapter 4

The topology of the filter determines its difference equation. The coefficients (ay) of a filter
determine its filter frequency and phase response and therefore its type (HPF, LPF, etc.) and

its sonic qualities. Your plug-in implements the difference equation in processAudioFrame().
Your plug-in calculates the coefficients in userlnterfaceChange() in response to the user making
changes to the control surface.

e Inverted settings give the identical frequency response but the phase responses will be
inverted (use the Phase button and have a look for yourself).
* You can get gain out of the filter.

* You can also get attenuation out of the filter.

4.3 First-Order Feed-Back Filter

A first-order feed-back filter is shown in Figure 4.22.

The difference equation is as follows:

y(n) = ax(n) — by(n — 1) (4.2)

You can see the feed-back nature of the filter; the output y(n) is fed back into the summer
through a one-sample-delay z * element. Notice that the feedback coefficient has a negative
sign in front of it and the difference equation reflects this with the —b, term. The negative
sign is for mathematical convenience and will make more sense in the next chapter when we
analyze the difference equations in more detail. Also notice that there is no b, coefficient—
there will not be a b, coefficient in any of the feed-back filters. To analyze this without math
requires going through the same procedure as before, analyzing the amplitude and phase of
the basic test signals. Another option would be to code it as a plug-in in RackAFX and map
the coefficients directly to the sliders as you did in the previous example. Then, you can
experiment with the coefficients and see how they affect the filter’s frequency, phase,
DC/step, and impulse responses.

Figure 4.22: First-order feed-back filter block diagram.



How DSP Filters Work 89

4.4 Design a General First-Order Feed-Back Filter
4.4.1 Project FeedBackFilter

Create a new RackAFX project called “FeedBackFilter.” The plan is for this filter to let you
directly control the coefficients with Ul sliders and use the analyzer to check the resulting filters.

4.4.2 FeedBackFilter GUI

The GUI will consist of two sliders, one for the a, coefficient and the other for the b,
coefficient. You can use any two sliders you like, but make sure you keep track of the control
index values later on. Figure 4.23 shows my version of the GUI. Right-click near the sliders
you want to use and set them up according to Table 4.6.

4.4.3 FeedBackFilter.h File

Add the z * elements and ay, b, coefficient variables for the right and left channels in your .h file:

// Add your code here: ------- - //
float m_f_a0_left;
float m_f_bl_left;

dag b1
1.00 [||[ 000 |

Figure 4.23 The GUI for the FeedBackFilter project.

Table 4.6: The a, slider properties.

Slider Property Value Slider Property Value
Control Name b1 Control Name a0
Units Units
Variable Type float Variable Type float
Variable Name m_fSlider_b1 Variable Name m_fSlider_a0
Low Limit —1.0 Low Limit —-1.0
High Limit +1.0 High Limit +1.0
Initial Value 0.0 Initial Value 1.0




90 Chapter 4

float m_f_a0_right;
float m_f_bl_right;

float m_f_z1_ left;
float m_f_z1_right;
// END OF USER CODE --------mmmmmmmm oo oo oo oo oo oo

4.4.4 FeedBackFilter.cpp File

Constructor

e Initialize the internal a, and b, variables to match our GUI variables.
e Zero out the delay line elements.

CFeedBackFilter::CFeedBackFilter()
{
// Added by RackAFX - DO NOT REMOVE
//
// Setup the RackAFX UL Control List and Initialize Variables
initUl();
// END InitUI

<SNIP SNIP SNIP>

// Finish initializations here
//

// setup our coefficients
m_f_a0_left = m_fSlider_a0;
m_f_bl _Teft = m_fSlider_bl;

m_f_a0_right = m_fSlider_a0;
m_f_bl_right = m_fSlider_bl;

// flush the memory registers
m_f_z1_left = 0.0;
m_f_z1_right = 0.0;

prepareForPlay()
+  Flush the z* storage registers.

bool __stdcall CFeedBackFilter::prepareForPlay()
{

// Add your code here:

m_f_z1 Teft = 0.0;



How DSP Filters Work 91

}

m_f_z1_right = 0.0;

return true;

processAudioFrame()

Implement the difference equation in processAudioFrame(); notice the (=) sign in the
difference equation too.

pbool __stdcall CFeedBackFilter::processAudiofFrame(float* pInputBuffer, float*
pOutputBuffer, UINT uNumInputChannels, UINT uNumQutputChannels)

{

// Do LEFT (MONO) Channel; there is always at least one input/one output
// (INSERT effect)

// Input sample is x(n)

float xn = pInputBuffer[0];

// Delay sample is y(n-1)
float yn_1 = m_f_z1_left;

// Difference Equation
float yn = m_f_a0_Teft*xn - m_f_bl_left*yn_1;

// Populate Delay with current y(n)
m_f_z1_left = yn;

// Qutput sample is y(n)
pOutputBuffer[0] = yn;

// Mono-In, Stereo-Out (AUX effect) -- COPY for now
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1l] = yn;

// Stereo-In, Stereo-Out (INSERT effect)
if(uNumInputChannels == 2 && uNumOutputChannels == 2)
{

// Input sample is x(n)

float xn = pInputBuffer[1];

// Delay sample is x(n-1)
float yn_1 = m_f_z1_right;



92 Chapter 4

// Difference Equation
float yn = m_f_aO_right*xn - m_f_bl_right*yn_1;

// Populate Delay with current y(n)
m_f_z1_right = yn;

// Qutput sample is y(n)
pOutputBuffer[1l] = yn;
}
return true;
}

userlnterfaceChange()

» Update the coefficients when the user changes a slider.
»  Check your nControlindex values to make sure you are processing the correct control.

bool CFeedBackFilter::userlinterfaceChange(int nControllIndex)
{
// add your code here
switch(nControlIndex)
{
case 0:
// map the a0 Slider
m_f_a0_left = m_fSlider_a0;
m_f_a0_right = m_fSlider_a0;
break;
case 1:
// map the bl Slider
m_f_bl Teft = m_fSlider_bl;
m_f_bl_right = m_fSlider_bl;
break;

default:
; // do nothing

return true;

}

Build and load the plug-in into RackAFX. Open the analyzer and use the Frequency, Phase,
Impulse, and Step buttons to analyze the output. Play with the controls. Notice first that the a,
slider only controls the gain and phase of the signal; in the frequency response this just moves
the curve up or down and it disappears when a, = 0.0, which makes sense. The real action is
with the b; control; try the examples in Figures 4.24 through 4.26.



How DSP Filters Work 93

+12.0dB
+8.0dB
+4.0dB

0.0dB

-4.0dB
-8.0dB

-12.0dB

10Hz 100Hz 1kHz 10kHz

1.000
0.707
0.500

-0.500
-0.707
-1.000

0.000 fir—

0 17 34 51 68 85 102 119 136 153

Figure 4.24: a, = 1.0 and b; = 0.5; the frequency response is high-pass/low-shelf in nature
and has gain above 11 kHz, while the impulse response shows slight ringing.

+24.0dB
+18.0dB
+12.0dB
+6.0dB

0.0dB
-6.0dB
-12.0dB

10Hz 100Hz 1kHz 10kHz

1.000
0.707
0.500

0.000
-0.500

-0.707
-1.000

‘ ]| |I ||INII ER R S PSS SHSSPYS! SERSTETS! FPVRIpeS Sunamees

0 17 34 51 68 85 102 119 136 153

Figure 4.25: a, = 1.0 and b, = 0.9; the frequency response has a steeper

high-pass response than before and has gain of +20 dB at Nyquist,
while the impulse response shows considerable ringing.



94 Chapter 4

i

+12.0dB ff (T \i H
l
Il

+8, I H
som | \lf
) AU S U 0 00 30 | 180,11 ”'H
I _
il !m |
|

~4.0dB |'
| || ||
i

i il

I

0 17 34 51 68 85 102 119 136 153

i

10Hz 100Hz 1kHz

——
————
e r——

0.000

—-0.500
-0.707
-1.000

1.000

0.707

0.500 | | ” M
Jh

Figure 4.26: a, = 1.0 and b, = 1.0; the frequency response has
blown up while the impulse response rings forever.

What happened in that last filter? Why was there no frequency response? The filter became
unstable and blew up. It blew up because the b, coefficient was 1.0, which introduced 100%
positive feedback into the loop. The output recirculated through the feedback loop forever
causing the infinite ringing seen in the step and impulse responses. Also notice that as the b;
variable was increased, the gain at Nyquist also increased. With b, = 1.0, the gain at Nyquist
is actually infinite.

4.5 Observations

In doing these exercises, you have made a lot of progress—you know how to implement both
feed-forward and feed-back filters in a plug-in. You also have a good intuitive knowledge
about how the coefficients control the filter type. Plus you got to blow up a filter, so that is
pretty cool. Here are some observations.

4.5.1 General

» Feed-forward and feed-back topologies can both make high-pass or low-pass-shaped
filter responses.
» The coefficients of the filter ultimately determine the kind of filter and what it sounds like.

» The phase shift introduced by the delay element(s) is responsible for the filtering operation.



How DSP Filters Work 95

4.5.2 Feed-Forward Filters

e Operate by making some frequencies go to zero; in the case of a, = 1.0 and a, = 1.0, the
Nyquist frequency went to zero; this is called a zero of transmission or a zero frequency
or just a zero.

e The step and impulse responses show smearing. The amount of smearing is exactly equal
to the total amount of delay in the feed-forward branches.

» Don’t blow up.

» Are called finite impul se response (FIR) filters because their impulse responses, though

they may be smeared, are always finite in length.

4.5.3 Feed-Back Filters

»  Operate by making some frequencies go to infinity; in the case of a; = 1.0 and b; = 1.0,
the Nyquist frequency went to infinity and witha, = 1.0and b; = —1.0, DC or 0 Hz
went to infinity; this is called a pole of transmission or a pole frequency or just a pole.

e The step and impulse responses show overshoot and ringing or smearing depending on
the coefficients. The amount of ringing or smearing is proportional to the amount of
feedback.

e Can blow up (or go unstable) under some conditions.

» Are called infinite impulse response (I11R) filters because their impulse responses can

become infinite.

The problem now is that we want to be able to specify the filter in a way that makes sense

in audio—a low-pass filter with a cut-off of 100 Hz or a band-pass filter with a Q of 10 and
center frequency of 1.2 kHz. What we need is a better way to analyze the filtering than just
randomly trying coefficients, and we need methods to come up with filter coefficients based
on how we specify the filter. In the next chapter, we’ll work on the basic DSP theory that will
make this happen.

Bibliography

Dodge, C. and Jerse, T. 1997. Computer Music Synthesis, Composition and Performance, Chapters 3 and 6.
New York: Schirmer.

Steiglitz, K. 1996. A DSP Primer with Applications to Digital Audio and Computer Music, Chapter 4. Menlo Park,
CA: Addison-Wesley.






Basic DSP Theory

You want to get a grip on the underlying digital signal processing (DSP) theory of
filters for several reasons. It helps to understand the anatomy of the filter because you
have to implement it in code; a deeper understanding of the theory can only help your
coding strategy. Also, the same DSP filter analysis and mathematical models can be
applied to other effects including delay, chorusing, reverb, and compression. In order to
intuitively understand the foundation of DSP theory, you need to review some math and
engineering concepts.

5.1 The Complex Sinusoid

The analysis and design of digital filters uses the sinusoid as its basic stimulus function.
Since Fourier showed that a signal can be decomposed into sinusoids, if you know how the
system reacts to a sinusoidal stimulus at a bunch of different frequencies, you can plot the
frequency and phase responses like you did by hand in the last chapter. This is akin to the
impulse response—since the input signal is a train of impulses of varying amplitudes, if you
know how the filter responds to a single impulse, you can figure out how it will respond to
multiple impulses. You also did this by hand when you took the impulse response of the
low-pass filter.

Everyone is familiar with the sine and cosine functions—sine and cosine are related by

an offset of 90 degrees and the sine function starts at zero, whereas cosine starts at 1.0. In
Figure 5.1 you can identify the sine and cosine waveforms by their starting position. But what
about the sine-like waveform that starts at an arbitrary time in the lower plot? Is it a sine that
has been phase shifted backwards or a cosine that has been phase shifted forward? You have
to be careful how you answer because sine and cosine have different mathematical properties;
their derivatives are not the same and it usually becomes difficult when you try to multiply
them or combine them in complex ways. Add a phase offset to the argument of the sin() or
cos() function and then it really turns into a mess when you do algebra and calculus with
them. What you need is a function that behaves in a sinusoidal manner, encapsulates both sine
and cosine functions, and is easy to deal with mathematically. Such a function exists, and it’s
called the complex sinusoid:

Complex sinusoid = &' (5.1)

97



98 Chapter 5

Figure 5.1: Sine, cosine, and sinusoid signals.

Euler’s equation is shown below:
€® = cos(8) + jsin(8)
5.2
j=V-1 62

You can see that it includes both sine and cosine functions. The j term is the imaginary
number, the square root of —1 (mathematicians call it i but since that represents current
in engineering, we rename it j instead). The j is known as the phase rotation operator;
multiplying a function by j rotates the phase by 90 degrees.

Suppose you want to shift the phase of a waveform by 180°, thereby inverting it. Mathematically,
you can do this by multiplying the waveform by —1, inverting the values of all its points. Suppose
you wanted to invert the waveform again (which would bring it back to its original shape)—you
could do that by multiplying by —1 again. But suppose that you only wanted to shift the phase by
90°? Is there a number () you could use as a multiplier to shift by 90°? In other words,

90-degree shifted waveform = (originalwaveform) (v)

You don’t know what v is yet, but you can figure it out. Suppose you then wanted to shift the
waveform by another 90 degrees, which would be the same as shifting the original waveform
by 180 degrees. You would multiply it by v again. You’d then have the following:

180-degree shifted waveform = (originalwaveform) (m)(m)
= (originalwaveform) (m)?
= (originalwaveform) (—1)



Basic DSP Theory 99

This leads to Equation 5.3:

7 =-1
i (5.3)

So, you can perform a conceptual 90-degree phase shift by multiplying a waveform by j.
A —90-degree phase shift is accomplished by multiplying by —j. Some other useful
relationships with j are

1 (5.4)
j

Euler’s equation is complex and contains a real part (cos) and imaginary part (sin), and the
plus sign (+) in the equation is not a literal addition—you can’t add real and imaginary
numbers together. In a complex number of the format A + jB, the two parts coexist as part of
one complex number.

For our purposes, we replace the 6 with wt instead, where  is the frequency in radians/
second and t is the time variable. Plug in various values for t and you get the plot in

Figure 5.1 when you plot the sine and cosine in the same plane. So, we will reject using the
sin() and cos() functions independently and adopt the complex sinusoid as a prepackaged
mixture of the two. The reason is partly mathematical—as it turns out, e is simple to

deal with mathematically. You only need to learn four rules (Equation 5.5) in addition

to Euler’s equation.

Euler’s equation: €' = cos(wt) + jsin(wt)

The four rules:
eaeb — e(aer)or eatebt — e(a+b)t

§ — la—b) f — pla—hit
&= e@ P or = el
de) (5.5)
& ae™
Jea‘dt = le""
a

So, what Euler’s equation is really describing is a sine and cosine pair of functions,
coexisting in two planes that are 90 degrees apart. The word orthogonal is the engineering term
for 90 degrees apart.




100 Chapter 5

The two equations in Equation 5.5 demonstrate that e behaves like a polynomial (}** x* = x')
even when the argument is a function of time, t. Equation 5.5 also shows how simply it behaves
in calculus—multiple derivatives or integrations are done by simply multiplying the argument’s
constant (a or 1/a) over and over. Before we leave this topic, make sure you remember how

to deal with complex numbers—you’ll need it to understand where the frequency and phase
responses come from.

5.2 Complex Math Review

Because a complex number has both real and imaginary parts, it cannot be plotted on a single
axis. In order to plot a complex number, you need two axes: a real and imaginary axis. The
two axes are aligned at right angles, just like the x- and y-axes in two-dimensional geometry.
They are orthogonal. The x-dimension is the real axis (Re), and the y-dimension is the
imaginary axis (Im). So, a complex number is plotted as a point on this x-y plane, also called
the complex plane. Complex numbers are usually written in the form A + jB where A is the
real part and B is the imaginary part. Notice that the notation always stays in the form A + jB
even when common sense might contradict it. For the point in the second quadrant, you still
write —2 + j2 even though j2 — 2 might look nicer. Also notice that you write 2 — j1 instead
of just 2 — j. The points are plotted the way you would plot (X, y) pairs in a plane (Figure 5.2).

This example plots points as (x + jy) pairs; this is called the Cartesian coordinate system.
You can also use polar notation to identify the same complex numbers. In polar notation, you
specify the radius (R) and angle (0) for the vector that results from drawing a line from the
origin of the axes out to the point in question. For example, consider the point 2 + j3 above.
You could plot this point in polar form as shown in Figure 5.3.

We are leaving the Cartesian form (2 + j3) for reference. Normally, all you would see is R
and 6. Most engineers prefer polar notation for dealing with complex numbers. The polar
number is often written as R < 6. Fortunately for us, the conversion from Cartesian to polar

Im
e 2+)3

—2+1'2.

Re

Figure 5.2: Several points plotted in the complex plane using
the Cartesian (x, y) coordinate system.



Basic DSP Theory 101

.2+)3

Re

Figure 5.3: Plotting 2 + j3 in polar form.

notation is simple. Starting with a complex number in the form A + jB, you can find the
resulting radius and angle from Equations 5.6 and 5.7.

R="VA? + B? (5.6)

o = tan{i] (5.7)

The radius (R) is sometimes called the magnitude and the angle 8 is called the argument. You
sometimes only care about the square of the magnitude (called the “magnitude-squared” or
|R[?) (Equation 5.8).

IR|2 = A2 + B2 (5.8)

Equation 5.9 shows how to extract the magnitude and phase from a transfer function.

_ [ulrl
denom
then
IH| = _Inum| (5.9)
|denom|
and

Arg(H) = Arg(num) — Arg(denom)

The frequency response plots of filters are actually magnitude responses of a complex function
called the transfer function of the filter. The phase response plots are actually argument responses
of this function. The transfer function is complex because it contains complex numbers; many
transfer functions are actually quite simple. We use the letter H to denote a transfer function.




102 Chapter 5

5.3 Time Delay as a Math Operator

The next piece of DSP theory you need to understand is the concept of time delay as a
mathematical operator. This will be pretty easy since we are going to exploit the simple
mathematical behavior of the ! function. First, consider a complex sinusoid and a delayed
complex sinusoid (Figure 5.4).

How does the delay of n seconds change the complex sinusoid equation? Since positive
time goes in the positive x direction, a delay of n seconds is a shifting of —n seconds. In the
complex sinusoid equation, you would then replace t with t—n. In other words, any point
on the delayed curve is the same as the nondelayed curve minus n seconds. Therefore, the
delayed sinusoid is

Delayed sinusoid = et=" (5.10)

But, by using the polynomial behavior of e and running Equation 5.5 in reverse, you can
rewrite it as shown in Equation 5.11:

éw(t—n) — eimte—jwn (511)

It’s a subtle mathematical equation but it says a lot: if you want to delay a complex sinusoid
by n seconds, multiply it by e /*"—this allows us to express time delay as a mathematical
operator.

In the last two sections you’ve learned that phase rotation and time delay can both be
expressed as mathematical operators.

Time delay can be expressed as a mathematical operator by multiplying the signal to be delayed
n seconds by e /". This is useful because e /*" is not dependent on the time variable. In
discrete-time systems, the n refers to samples rather than seconds.

OOV
WA

Figure 5.4: A complex sinusoid &°t and another one delayed by n seconds.




Basic DSP Theory 103

5.4 First-Order Feed-Forward Filter Revisited

Being able to express delay as the mathematical operation of multiplication by € “" means
you can take the block diagram and difference equation for a DSP filter and apply a sinusoid
to the input in the form of €“! rather than having to plug in sequences of samples as you did
in Chapter 4. Then, you can see what comes out of the filter as a mathematical expression
and evaluate it for different values of o (where w = 2=f with f in Hz) to find the frequency
and phase responses directly rather than having to wait and see what comes out then try

to guesstimate the amplitude and phase offsets. Consider the first-order feed-forward filter
from the last chapter but with € applied as the input signal, shown in a block diagram

in Figure 5.5.

The difference equation is as follows:
y(t) = a @t + a[e@leiot] (5.12)

Figure 5.5 shows the familiar block diagram but this time with the input x(t) and output y(t)
instead of x(n) and y(n). Notice the delay element has been replaced by e /! since there is
a one-sample delay. When you apply the complex sinusoid €*! to the input, the difference
equation uses the delay-as-multiplication operation to produce the output. With a little math
you can arrive at Equation 5.13.

y(t) = aet + aye”e 1]
= é“Y(a, + a,e 1)
and the input x(t) = €“'so

(O = x(t) (8 + ae”) (5.13)
The transfer function is defined as the ratio of output to input, therefore

y(t) i

== =g, + ae !

x(t) Q 1

x(t) aye y(t)

yjmt e b il
e’ g {!'[I(.’”}r +€."| |:L"“’ ¢ ot
e \
/ ”1 |:t“r.mf e ] :|
i —juw 1
(."l”r e -t

Figure 5.5: Block diagram of a first-order feed-forward
filter with signal analysis.



104 Chapter 5

The transfer function of the filter is the ratio of output to input. The frequency response of the filter
is the magnitude of the transfer function evaluated at different frequencies across its spectrum.
The phase response of the filter is the argument (or angle) of the transfer function evaluated at
different frequencies across its spectrum.

To produce the frequency and phase response graphs, you evaluate the function for various val-
ues of w then find the magnitude and argument at each frequency. The evaluation uses Euler’s
equation to replace the e term and produce the real and imaginary components.

What is so significant about this is that the transfer function is not dependent on time
even though the input and output signals are functions of time. The transfer function
(Equation 5.14) is only dependent on frequency w, so we call it H(w).

H(w) = a, + a,e ¢! (5.14)
Notice that the transfer function is complex.

But what values of w are to be used in the evaluation? We know that w = 2=f, but do we
really care about the frequency in Hz? In Chapter 4 when you analyzed the same filter, you
applied DC, Nyquist, ¥ Nyquist, and ¥ Nyquist without thinking about the actual sampling
frequency. This is called normalized frequency and is usually the way you want to proceed in
analyzing DSP filters. The actual sampling rate determines Nyquist but the overall frequency
range (0 Hz to Nyquist) is what we care about. To normalize the frequency, you let f = 1 Hz
in o = 27f, then w varies from 0 to 2 or across a 21 range. There is also one detail we have
to be aware of: negative frequencies.

5.4.1 Negative Frequencies

You may have never thought a frequency could be negative, but it can. When you first learned
about the concept of a waveform’s frequency, you were taught that the frequency is 1/T,
where T is the period, as shown in Figure 5.6.

The reason the frequencies came out as positive numbers is because the period is defined as
t, — t;, which makes it a positive number. But, there’s no reason you couldn’t define the
period to be the other way around: T = t; — t,, except that it implies that time is running
backwards. Mathematically, time can run backwards. This means that for every positive
frequency that exists, there is also a negative “twin” frequency. When you look at a frequency
response plot you generally only look at the positive side. Figure 5.7 shows a low-pass
response up to the highest frequency in the system, Nyquist.

However, in reality, the filter also operates on the negative frequencies just the same in
a mirror image. In this case, as the negative frequencies get higher and higher, they are
attenuated just like their positive counterparts (Figure 5.8). And it makes sense too. If



Basic DSP Theory 105

A , [H]

el = -ty Nyquist f
rl fz

i £

Figure 5.7: The classic way of showing a
Figure 5.6: The classic way of defining the frequency response plot only shows the positive

period, T. portion.
|H|
= | +f
-Nyquist +Nyquist

Figure 5.8: The more complete frequency response plot contains
both positive and negative sides.

~Nyquist |H] +Nyquist

e =m2 0 T2 +T

Figure 5.9: One way to divide the 27 range of frequencies includes
both positive and negative frequencies.

you take an audio file and reverse it in time, then run it through a low-pass filter, the same
frequency filtering still occurs.

For filter evaluation, w varies on a 0 to 2+ radians/second range and one way to think about
this 24 range is to split it up into the range from —r to +r corresponding to —Nyquist to
+Nyquist (Figure 5.9).



106 Chapter 5

IHl

3m/2 21

0 T2 T
Y fs fs

Figure 5.10: Mapping the 0 to 27 range of frequencies
across the 0 to fs range.

To evaluate the transfer function, let w vary from 0 to  and get the first half of the response.
The other half is a mirror image of the data.

5.4.2 Frequencies Above and Below +Nyquist

The sampling theorem sets up the Nyquist criteria with regards to completely recovering the
original, band-limited signal without aliasing. However, frequencies above Nyquist and all
the way up to the sampling frequency are also allowed mathematically. And in theory, any
frequency could enter the system and you could sample it without limiting Nyquist. For a
frequency or phase response plot, the frequencies from Nyquist up to the sampling frequency
are a mirror image about Nyquist. This is another way to divide up the 2 range by going
from 0 Hz to the sampling frequency (Figure 5.10).

Notice that in either method the same information is conveyed as we get both halves of the
curves, and in both cases, Nyquist maps to 7 and 0 Hz to 0 and positive frequencies map to
the range 0 to .

5.5 Evaluating the Transfer Function H(w)

DSP filter transfer functions will contain e /" terms that need to be evaluated over the

range of 0 to r; the way to do this is by using Euler’s equation to decompose the sinusoid
into its real (cos) and imaginary (sin) components. Then, evaluate the cos and sin terms

at the frequency in question. In the last chapter you manually calculated the input/output
relationship of a filter by cranking through the filter operation, one step at a time. In this
improved method, you only need to solve the transfer function equation. Start with the block
diagram in Figure 5.11.

The transfer function is as follows:

H(w) = a, + a,e 1¢? (5.15)



Basic DSP Theory 107
x(t) — b @ y(t)
c—_;m]
Figure 5.11: First-order feed-forward
block diagram.
Table 5.1: Sine and cosine function evaluations at DC, % Nyquist,
%2 Nyquist, % Nyquist, and Nyquist.
Frequency ® cos(w) sin(w)
0 1.0 0.0
w4 0.707 0.707
/2 0.0 1.0
3m/4 0.707 -0.707
™ -1.0 0.0
Use the filter coefficients a, = 0.5, a; = 0.5. You can use Table 5.1 to help with the
evaluation. Evaluate at the following frequencies:
« DC:0
* Nyquist: 7
* Y% Nyquist: w/2
e Y Nyquist: w/4
Evaluation is a two-step process for each frequency:
1. Use Euler’s equation to convert the e terms into real and imaginary components.
2. Find the magnitude and argument of the complex equation.
5.5.1 DC (0 Hz)
H(w) = 0.5 + 0.5e ¢!
= 0.5 + 0.5(cos(w) — jsin(w))
= 0.5 + 0.5(cos(0) — jsin(0)) (5.16)

=05 + 0.5(1 — j0)
=10+ j0



108 Chapter 5

Find the magnitude and phase at this frequency:

IHw)| = V(a + jb)@ — jb)
= V(1 +jo)1 — jo)
=1.0

(5.17)
Arg(H) = tan*(b/a)

= tan~%(0/1)
= 0.0°

Compare these mathematical results (Equations 5.16 and 5.17) with the graphical ones from
the last chapter (Figure 5.12).

5.5.2 Nyquist ()

H(w) = 0.5 + 0.5e 711
= 0.5 + 0.5(cos(w) — jsin(w))
= 0.5 + 0.5(cos() — jsin(m)) (5.18)
=05+ 05(-1-j0)
=0+j0

IH(w)| = V(a + jb)@ — jb)

=V/(0 + jO)(0 — j0)

= 0.0 (5.19)
Arg(H) = tan"'(b/a)
= tan—%(0/0)
=0°
+1.0 — +1.0
Input T Output
-1.0 -1.0

Figure 5.12: The graphical results show the same information. The magnitude
is 1.0 and the phase shift is 0.



Basic DSP Theory 109

+1.0
] Qutput

-1.0

+1.0 —

-1.0

Figure 5.13: The graphical results show the same information at Nyquist—the magnitude is 0
and there is no phase shift since there is nothing there to shift.

The inverse tangent argument is 0/0 and the phase or Arg(H) is defined to be 0 under this
condition. The C+ + function you use is arctan2(im,re), which performs the inverse tangent
function; it will also evaluate to 0 in this case. Now, compare our results to the last chapter’s
graphical results (Figure 5.13).

5.5.3 % Nyquist (11/2)

H(w) = 0.5 + 0.5e ¢!
= 0.5 + 0.5(cos(w) — jsin(w))

= 0.5 + 0.5(cos(/2) — jsin(m/2)) (5.20)
= 0.5 + 0500 — j1)
= 05— j05

IH(w)| = V(a + jb)a — jb)

= V(05 + j0.5)(0.5 — j0.5)

=V0.25+ 0.25 = V0.5

= 0.707 (6-21)

Arg(H) = tan~}(b/a)
= tan~%(—0.5/0.5)
= —45°

Compare this to the last chapter’s graphical results (Figure 5.14); the magnitude is 0.707 with
a phase shift of —45 degrees, and the results agree.

5.5.4 1/4 Nyquist (i/4)

H(w) = 0.5 + 0.5 /%! (5.22)
= 0.5 + 0.5(cos(w) — jsin(w))



110 Chapter 5

+1.0

— \ &
-1.0 ; W W
—» <+—Phase Shift

Time 4
Smearing
Output
1 w W

Figure 5.14: Graphical results from the last
chapter at %2 Nyquist.

Input

= 0.5 + 0.5(cos(m/4) — jsin(w/4))
= 0.5 + 0.5(0.707 — j0.707)
= 0.853 —j0.353

[H(w)| = V(a + jb)(a — jb)

— 1/(0.853 + j0.353)(0.853 — j0.353)

=1/0.728 + 0.125 = V/0.853

= 0.923 (5.23)
Arg(H) = tan~*(b/a)

— tan~%(—0.353/0.853)

= —225°

Compare to the last chapter’s graphical results (Figure 5.15); you can see how much more
accuracy we get with the mathematical calculation. The magnitude and phase shift look about
right when compared to the graphs.

Now, you can combine all the evaluations together and sketch out the frequency response of
the filter (Figure 5.16).



Basic DSP Theory

111

+1.0 n/\
Input
-1.0
—» «—Phase Shift
+1.0 -
g
Time
Smearing
\A,
_{;,' W Qutput
-1.0

Figure 5.15: Graphical results from the last chapter at % Nyquist.

Magnitude

1.0
09

07

0.0

Frequency

Phase
0°

]
1/4 Nyquist ¥z Nyquist
fsl8 fsi4
| |

]
Nyquist
fsi2

-45°

-90°

Angle

Figure 5.16: The final composite frequency and phase response plots show the same results as

the last chapter, but with a lot less work.



112 Chapter 5

Hopefully, this quick example has convinced you that it is better to do a little complex math
than have to analyze and design these filters by brute force analysis of time domain input
sequences.

5.6 Evaluating e’*

In the evaluation of the transfer function, you had to substitute values of w from 0 to  into
the e/ terms of the equation. But what would the plot look like if you evaluate a single e'®
term? You saw that the use of Euler’s equation produced the real and imaginary components
of the term and now it’s time to plot them over the range of 0 to .

If you evaluate e over more frequencies and plot the resulting values in the complex plane,
you get an interesting result. The frequencies in Table 5.2 from 0 to +1 map to an arc that is
the top half of a circle with radius = 1.0, shown in Figure 5.17. Remember, the magnitude
is the radius and the argument is the angle when using polar notation, which simplifies the

Table 5.2: The magnitude and angle of e/ from DC to Nyquist.

Frequency e/ = cos(w) + jsin(w) | e | Arg(e’®)
DC (OHz) 1+0 1.0 0
% Nyquist 0.707 + j0.707 1.0 /4
¥ Nyquist 0+ j1 1.0 /2

Nyquist —-1+j0 1.0 T
3n/4 /4
j0.707
\
V)
% OH
z
g n/4
0707 Re

Figure 5.17: The positive frequencies map to
the upper half of the unit circle.



Basic DSP Theory 113

analysis. You don’t have to keep track of the real and imaginary parts. The evaluation at

o = /4 is plotted on the curve. The circle this arc is laying over would have a radius of 1.0
and is called the unit circle. If you evaluate € over the negative frequencies that correspond
to 0 to —, you get a similar but inverted table (Table 5.3).

This table translates to a mapping across the lower half of the same unit circle (Figure 5.18).
The negative frequencies increase as you move clockwise from 0 Hz, the radius stays 1.0
during the entire arc.

Why bother to evaluate €? It will be useful very soon when we start picking apart the
transfer functions in an effort to figure out how to design filters. It also shows the limited
“frequency space” of the digital domain. All the frequencies that could exist from —Nyquist
to +Nyquist map to outline of a simple unit circle. In contrast the analog domain has an
infinitely long frequency axis and an infinite frequency space.

Table 5.3: The magnitude and angle of ¢/ from DC to —Nyquist.

Frequency ® e’ = cos(w) + jsin(w) | e | Arg(e/)
DC (OHz) 140 1.0 0
—% Nyquist 0.707 — j0.707 1.0 —m/4
—% Nyquist 0—j1 1.0 —m/2
—Nyquist —1+,0 1.0 -
Im
Re

—1C OHz

7

~3n/4 A

.

—7/2

Figure 5.18: The negative frequencies map to the
lower half of the unit circle.



114 Chapter 5

The order of a filter is the order of the polynomial in the transfer function that describes it. The
order of the polynomial is the maximum absolute exponent value found in the equation.

5.7 The z Substitution

It’s going to get messy having to write € so often and we know € behaves like a polynomial
mathematically. So, we can simplify the equations by making a simple substitution of
Equation 5.24.

z=¢" (5.24)

This is just a substitution right now and nothing else. Making the substitution in Equation 5.24
and noting the resulting transfer function is now a function of z, not w, we can write it like
Equation 5.25:

H(2 = a, + a;z* (5.25)

The reason this is useful is that it turns the transfer function into an easily manipulated
polynomial in z. In this case, the polynomial is a first-order polynomial (the highest exponent
absolute value is 1) and this is the real reason the filter is named a first-order filter—it’s the
polynomial order of the transfer function.

5.8 The z Transform

The z substitution does a good job at simplifying the underlying polynomial behavior of
€ and it lets us use polynomial math to solve DSP problems. But, there is an interesting
application of z = € that simplifies the design and analysis of digital filters. In the graph
from Chapter 1 (Figure 5.19) you can see how the indexing of the samples determines their
place in time. The future samples have positive indices and the past (delayed) samples have
negative indices.

We’ve seen that € is the delay operator, so 1“1 means one sample of delay, or one
sample behind the current one. Likewise, e 1“2 would be two samples behind and e/
indicates 4 samples ahead or in the future. That means that € could also be used as a
book-keeping device since it can relate the position in time of something (a sample,
for us).

The rules for implementing the z transform on a discrete signal or difference equation are
easy and can often be done by inspection. The current sample x(n) or y(n) transforms into the
signal X(2) or Y(2). Instead of thinking of the sample x(n) you think of the signal X(z), where
X(2) is the whole signal—past, present, and future.




Basic DSP Theory

115

Current input

sample
Amplitude x(n-3)
o
x(n-4
( o ) x(1-2) Future input
samples
x(n=1)
v T
h—
4 (I) x=The input
sequence
Past input x(n+4)
samples
x(n+3)
(@]
x(n+1)
O x(n+2)
The Past X(n) The Future

- -
- -

Figure 5.19: Our book-keeping rules shown graphically.

The z transform changes a sequence of samples in n to a sequence of samples in z by replacing
the indices ...n—1, n, n+1... with ...z ', z, z""... This works because multiplication by z = ¢/
represents the operation of delay or time shift. The resulting transformed sequence now is a
function of the complex frequency e/, therefore it transforms things from the time domain into
the complex frequency domain.

x(n) — X(2)
y(n) — Y(2)

Instead of thinking of the sample x(n — 1) as being delayed by one sample, you think of the
signal X(2) delayed by one sample, z *. The delayed signals are the result of the whole signal
multiplied by the z N terms:

x(n—1) > X@@z!
yin—1)->Y2z!?
x(n — 2) = X(2) 22
y(n+6) > Y2z



116 Chapter 5

You can see that this concept relies on the ability to express delay as a mathematical operator.
It not only allows us to express an algorithm based on z, it also lets us express a signal based
on z Mathematically, the z transform is

n=+w

X@ = > x(nz" (5.26)

n=—o

5.9 The z Transform of Signals

Remember, x(n) is the sequence of samples just like the ones you used for analysis.
Figure 5.20 shows an example. This simple, finite length signal consists of five samples.
The remaining zero samples don’t need to be counted.

x(n) = {0, 0.25, 0.5, 0.75, 1.0}

The sequence x(n) could also be written x(n) = {x(0), x(1), x(2), X(3), X(4)}, so using
Equation 5.26 we transform x(n) into X(z) and write Equation 5.27:

X(2) = 02 + 0.252°* + 0522 + 0.752 % + 1.0z * (5.27)

You could read Equation 5.27 as follows: “The whole signal X(z) consists of a sample with
an amplitude of 0 at time O followed by a sample with an amplitude of 0.25 one sample later
and a sample with an amplitude of 0.5 two samples later and a sample with an amplitude of
0.75 three samples later and . . .” This should shed light on the fact that the transform really
involves the book-keeping of sample locations in time and that the result is a polynomial. You
can multiply and divide this signal with other signals by using polynomial math. You can mix
two signals by linearly combining the polynomials.

+1.0

0.75

0.5
0.25 T
> O O O O—

Figure 5.20: A simple signal for analysis.



Basic DSP Theory 117

+1.0

-1.0

Figure 5.21: The DC signal is infinite in length.

Let’s do one more example regarding the transformation of an input signal. This
time, let’s choose the DC signal—it goes on forever. Figure 5.21 shows the DC signal
with the first sample at 1.0 and all preceding samples at 0.0 with a sequence of
x(n)=4{1,1,1,1,1...}.

Using Equation 5.26 you can directly write the z transform as (remember, 122 = 1) in
Equation 5.28:

X@=1+z'+z2+z°%+ ... +z2~ (5.28)

While that looks like an ugly, infinitely long equation, it can also be represented in a closed
form. In fact, a closed form representation exists for this polynomial using a polynomial
series expansion, as shown in Equation 5.29:

X@=1+z'+z%+z3%+ ... +z~

= - (5.29)

5.10 The z Transform of Difference Equations

The ztransform of signals is interesting, but something fascinating happens when you take
the z transform of a difference equation, converting it into a transfer function in zall at once.
And, the same easy rules apply. Let’s do that with the basic first-order feed-forward filter. The
difference equation is

y(n) = agx(n) + ayx(n — 1) (5.30)



118 Chapter 5

Taking the z transform:

Y(2) = agX(2) + ayX(2)z?
Y(2) = X@)[a + a7 ']

H(z) = Y@

- — -1
X@) Q + qyz

This is a really useful result—you got the final transfer function in just a handful of steps,
using the simple z transform rules. Let’s recap what you had to do before you learned how to
take the z transform of a difference equation:

« Redraw the block diagram with e 1" operators in the n-sample delay elements.
«  Apply the complex sinusoid e ! to the input.

* Find out what comes out, y(t), and formulate the transfer function H(w).

»  Apply the zsubstitution to the transfer function.

Taking the z transform does all these steps at once and we’re left with the same simple
polynomial in z If we evaluate the transfer function for different values of z = €, we can
find the frequency and phase plots. You’ll get more practice taking the z transforms of more
difference equations soon.

5.11 The z Transform of an Impulse Response

The ztransform of a difference equation results in the transfer function. But what if you
don’t have the difference equation? Suppose you only have a black box that performs some
kind of DSP algorithm and you’d like to figure out the transfer function, evaluate it, and plot
the frequency and phase responses. It can be done without knowing the algorithm or any
details about it by taking the impulse response of the system. You apply the input sequence
x(n) = {1,0, 0,0, 0...} and capture what comes out, which we’ll call h(n). If you take

the ztransform of the impulse response, you get the transfer function expanded out into a
series form.

In fact, this is exactly what the RackAFX software’s audio analyzer does—it takes the
impulse response of the filter and then runs a z transform on it to make the magnitude and
phase plots you see on the screen. Mathematically, Equation 5.31 is identical to Equation 5.26
except we’ve changed the signal from X to H:

The z transform of the impulse response h(n) is the transfer function H(z) as a series expansion.
Evaluate the transfer function to plot the frequency and phase responses.




Basic DSP Theory 119

+1.0 +1.0
| Input | | | Output

-1.0 -1.0

Figure 5.22: The impulse response from the first-order feed-forward filter.

n=+wx

H@ = > h(nz™" (5.31)
n: — 00
Try this on the first-order feed-forward filter we’ve been working on; you already have the
impulse response “captured” from the last chapter (Figure 5.22).

The impulse response is h(n) = {0.5, 0.5}. Applying the z transform yields Equation 5.32:

H(z) = 057 + 052!

— 05 + 052 (5.32)

Notice that this is the identical result as taking the z transform of the difference equation and
the filter coefficients (0.5, 0.5) are the impulse response {0.5, 0.5}.

5.12 The Zeros of the Transfer Function

When we used the coefficients a, = a; = 0.5 we wound up with a filter that completely
destroys the Nyquist frequency and you saw how its output became 0 in both the manual
and complex sinusoid evaluations. We noted that feed-forward filters have zeros of
transmission or zero frequencies or just zeros when their output becomes zero. In both the
manual and complex sinusoid evaluations, we just got lucky when we stumbled upon this
value as Nyquist happened to be one of the signals we were testing or evaluating. There’s
a way to precisely find these critical frequencies by using the polynomial result of the z
transform. You probably remember factoring polynomials in high school or college. When
you did that, you set the polynomial equal to 0 and then you factored to find the roots of
the polynomial. What you were really doing was finding the zeros of the polynomial, that



120 Chapter 5

is, the values of the dependent variable that make the polynomial become zero. You can do
the same thing with the transfer function by setting it equal to zero and then factoring the
polynomial. Suppose a, = a; = 0.5 and we factor the transfer function in Equation 5.32 to
get Equation 5.33:

H(z) = 0.5 + 0.5z *
“05+ 08 (533)
z
You can find the zero by inspection—it’s the value of z that forces H(z) to be 0 and in
this case there is a zero at z = —1.0. But what does it mean to have a zero at —1.0?
This is where the concept of evaluating € comes into play. When you did that and
plotted the various points, noting they were making a unit circle in the complex plane,
you were actually working in the z-plane, that is, the plane of €. The location of the
zero at z= —1.0is really at the location z= —1.0 + jO purely on the real axis and
at Nyquist. In Figure 5.23 the zero is shown as a small circle sitting at the location
z= —1.0.

There are several reasons to plot the zero frequencies. First, you can design a filter directly
in the z-plane by deciding where you want to place the zero frequencies first, then figuring
out the transfer function that will give you those zeros. Secondly, plotting the zeros gives
you a quick way to sketch the frequency response without having to evaluate the transfer
function directly. You can estimate a phase plot too, but it is a bit more involved. So,

you have two really good reasons for wanting to plot the zeros; one for design, the other
for analysis.

Zero at +n

Re

Figure 5.23: Zero is plotted in the z-plane at its
location on the real axis z = —1 + 0.



Basic DSP Theory 121

5.13 Estimating the Frequency Response: Zeros

An interesting property of the z-plane and z transform is that you can measure the frequency
response graphically on the z-plane. In the simplest case of only one zero, the method is as
follows:

» Locate each evaluation frequency on the outer rim of the unit circle.

« Draw a line from the point on the circle to the zero and measure the length of this vector.
Do it for each evaluation frequency.

» The lengths of the lines will be the magnitudes at each frequency in the frequency
response.

In Figure 5.24 you can see the complete operation, first drawing and measuring the lines—
you can use graph paper and a ruler, if you want—then building the frequency response
plot from them. Notice also that the magnitude of a line drawn from Nyquist to the zero

at —1 has a length of zero. The lengths of the vectors are the mathematical definition of
magnitude and you are evaluating the whole filter at once. These z-plane plots are going

to be useful for filter design. You can also derive the phase response, which involves
measuring the angles of incidence of each vector on the zero. With multiple zeros, it
becomes cumbersome. But, estimating the frequency response is pretty simple, even for
more complex filters.

You might notice that even though this frequency response looks like the one we produced
earlier, the gain values are not the same. In this filter, the gain is 2.0 at DC, and in ours,
it’s half of that. In fact, this filter’s magnitudes at the evaluation frequencies are all twice
what ours are.

20 1.846 1.414

| Frequency
| |
14 Nyquist ¥ Nyguist Nyquist
fs/8 fs/4 fai2

0.0

Figure 5.24: The geometric interpretation shows how the length of each vector from the
evaluation frequency to the zero is really a magnitude in the response.



122  Chapter 5

5.14 Filter Gain Control

The last thing you need to do is remove the overall gain factor from the transfer function so that
overall filter gain (or attenuation) can be controlled by just one variable. This is actually pretty
simple to do, but requires re-working the transfer function a bit. The idea is to pull out the &,
variable as a multiplier for the whole function. This way, it behaves like a volume knob, gaining
the whole filter up or down. The way you do it is to normalize the filter by a, (Equation 5.34):

H(Z) = a, + a,z*
— @ + ﬁz—l
& &

= ao{l + :;z‘l] (5.34)

&
Let OLl = %

H(2) = ay[1 + o,z ]

By normalizing by a, and using the «, variable you can produce a transfer function that looks
basically the same in the polynomial but pulls a, out as a scalar multiplier—a gain control.
Where is the zero of the new transfer function in Equation 5.35?

H(2) = ay[1 + oz 1]
= ao[l + ﬂ (5.35)

Once again, by inspection we can tell that if z= —a; then the function will become 0
regardless of the value of a,. This transfer function has a zero at —«;. If you plug our values
of a, = ay = 0.5, you still get the same zero at —1.0. The difference is in the gain of the filter.

After extracting the magnitude response from the z-plane plot, scale it by your g, value. This makes
the response in Figure 5.24 match our others because everything gets multiplied by a; = 0.5. The
idea of controlling the gain independently of the magnitude response is useful in audio filters, so
we will keep it and use it in all future analyses.

At this point, you have all the DSP theory tools you need to understand the rest of the
classical DSP filters (first-order feed back, second-order feed forward and feed back) as well
as many filter design techniques. The rest of the chapter will be devoted to applying these
same fundamentals to the other classical DSP filters but we will move much more quickly,

The graphical interpretation method of evaluating a filter in the z-plane assumes the filter is nor-
malized so that g, = 1.0.




Basic DSP Theory 123

applying each analysis technique to the other algorithms. For example, we will dispense with
the evaluation of € terms and start off directly in the z transform of the difference equations.

5.15 First-Order Feed-Back Filter Revisited

Now let’s go through the same analysis technique on the first-order feed-back filter from the
last chapter. We can move much more quickly now that we have the basic DSP theory down.
There will be many similarities but also several key differences when dealing with feed-back
designs. You already saw that the feed-back topology can blow up or ring forever and that
the feed-forward design cannot. We will find a way to figure out if this is going to happen
and how to prevent it. Start with the original first-order feed-back filter (block diagram in
Figure 5.25) and its difference equation.

The difference equation is as follows:
y(n) = agx(n) — biy(n — 1) (5.36)
Step 1: Takethe ztransform of the difference equation

This can be done by inspection, using the rules from Section 5.8 (Figure 5.26). Therefore, the
ztransform is shown in Equation 5.37.

Y(2) = agX(2) — b,Y(2z? (5.37)

x(n) y(n)

Figure 5.25: The first-order feed-back filter.

a,X(2)

X(2)

Y(z)

Figure 5.26: Pushing the input X(z) through the algorithm produces the z transform.



124 Chapter 5

Step 2: Fashion the difference equation into a transfer function

Now apply some algebra to convert the transformed difference equation to H(2). The
process is always the same: separate the X(2) and Y(2) variables, then form their quotient
(Equation 5.38).

Y(2) = aX(2 — bY@z
Separate variables:

Y(2) + b Y(2z ! = ayX(2)

Y21 + bz '] = agX(2) (5.38)
X
From H(z):
H() = Yo &

X2 1+ bzt

Step 3: Factor out a, asthe scalar gain coefficient

In this case, this step is simple since pulling a, out is trivial, as in Equation 5.39. However, in
more complex filters this requires making substitutions as you did in the last section.

_ %
1+ bzt
1
1+ bz!

H(@@
(5.39)
= &

5.16 The Poles of the Transfer Function

The next step in the sequence is to do a quick estimation of the frequency response using

the graphical interpretation method in the z-plane. The pure feed-forward filter you analyzed
produced zeros of transmission or zeros at frequencies where its output becomes zero. A pure
feed-back filter produces poles at frequencies where its output becomes infinite. We were able
to make this happen by applying 100% feed-back in the last chapter. For the simple first-order
case, finding the poles is done by inspection.

When the denominator of the transfer function is zero, the output is infinite. The complex
frequency where this occurs is the pole frequency or pole.




Basic DSP Theory 125

Examining the transfer function, we can find the single pole in Equation 5.40:

1

& = 2ot

(5.40)

By rearranging the transfer function, you can see that the denominator will be zero when

z= —b, and so there is a pole at z= —b;,. You might also notice something interesting

about this transfer function—it has a z in the numerator. If z = 0, then this transfer function
has a zero at z = 0. This zero is called a trivial zero because it has no impact on the filter’s
frequency response. Thus, you can ignore the zero at z = 0. In fact, you can also ignore poles
at z = 0 for the same reason.

And, if you look back at the transfer function in the feed-forward filter in Equation 5.35 you
can see that it also had a pole in Equation 5.41:

H@2) = a1 + o,z 1]
= ao{l + Zl} (5.41)

Poleatz =0

The poles are plotted in the z-plane in the same manner as the zeros but you use an x to
indicate the pole frequency. In Equation 5.40, the pole is at —b; + jO and so it is a real pole
located on the real axis in the z-plane. For this filter let’s analyze it with a, = 1.0 and

b, = 0.9. You wrote a plug-in and implemented this filter in the last chapter. The results

are shown in Figure 5.27.

Let’s see how this is estimated first, and then we can do a direct evaluation as before.
Step 4: Estimate the frequency response

The single pole is plotted on the real axis at z= —0.9 + jO and a trivial zeroatz= 0 + jO
(Figure 5.28). In the future, we will ignore the trivial zeros or poles.

A pole or zero at z = 0 is trivial and can be ignored for the sake of analysis since it has no
effect on the frequency response.




126 Chapter 5

+24.0dB
+18.0dB
+12.0dB ,"I
+6.0dB
A7, | = [ RSRUTURR IR SR, SR, T 1 O VA 1N GO FOP DL S 8 81 6 SR, R s e I R 1 1 B
-6.0dB | . L L I I —
-12.0dB*

10 Hz 100 Hz 1kHz 10 kHz

Figure 5.27: The frequency response of the first-order feed-back filter with these coefficients.

0 Re

Sy

Trivial zero

o—X

w

Figure 5.28: The pole is plotted in the z-plane along with the trivial zero.

In the simplest case of only one pole, the method for estimating the frequency response is as
follows:

e Locate each evaluation frequency on the outer rim of the unit circle.

» Draw a line from the point on the circle to the pole and measure the length of this vector.
Do it for each evaluation frequency.

e The inverse of the lengths of the lines will be the magnitudes at each frequency in the
frequency response in Equation 5.42.

. 1

Magnitude = —
LD

L, = length from evaluation frequency to pole

(5.42)

Thus, the mechanism is the same as for the one-zero case, except you take the inverse of the
length of the vector. This means that as you near the pole, the vector becomes shorter, but the



Basic DSP Theory 127

amplitude becomes larger—exactly opposite of the zero case. You can see from Figure 5.29
that our estimate is pretty close to what we saw in the real world when we coded the filter
and tested it. Note the gain at Nyquist is 10.0; convert that to dB and you get +20 dB of gain,
which is what we expect.

Step 5: Direct evaluation of frequency response

Now you can evaluate the filter the same way as before using Euler’s equation to separate
the real and imaginary components from the transfer function. Evaluate at the following
frequencies:

DC:0

Nyquist:

Y Nyquist: /2
Y4 Nyquist: /4

First, get the transfer function in a form from Equation 5.43 to use for all the evaluation
frequencies:

1
H@ = a5
2 aol + bzt
=10 b, =09
% ' (5.43)
1+ 09z°
z =€

Next, let’s make a simplification in the magnitude response equation and use the reduced
form in Equation 5.44. Next, evaluate.

la + jbl = V(a+ jb)(a — jb)

— 2 2
=Va + 1
Im ]

10.0

Re 1/0.1=10
0.74
0.55
11.3=0.74
032 =T o ee 111.8=055 Frequency
0.0 ! !
1/4 Nyquist % Nyquist Nyquist
fs/8 fs/4 fsi2

Figure 5.29: Estimating the frequency response of the first-order feed-back design.



128 Chapter 5

5.16.1 DC (0 Hz)

1
() = g ge
_ 1
1 + 0.9[cos(w) — jsin(w)]
1
1+ 0.9[cos(0) — jsin(0)] (5:45)
B 1
1+ 0.9[1 — O]
_1
1.9
= 0.526 + |0
IH()| = Va + b?
= 1/0.5262 + 02
= 0.526
(5.46)
Arg(H) = tan~*(b/a)
= tan~%(0/0.526)
= 0.0°
5.16.2 Nyaquist ()
1
) = T oge
_ 1
1 + 0.9[cos(w) — jsin(w)]
1
= A7
1 + 0.9[cos(m) — jsin(m)] (5.47)
_ 1
C1+09-1—j0]
_1
0.1

— 10 +j0



Basic DSP Theory 129

5.16.3 ¥ Nyquist (71/2)

H(w) =

H(w) =

[H(w)]

IHw)| = Va + b?
= V1002 + 2
= 10.0
Arg(H) = tan~* (b/a) (5.48)
= tan~1(0/10.0)
= 0.0°

I S
1+ 0.9e 71!

1
1 + 0.9[cos(w) — jsin(w)]

1
1 + 0.9[cos(m/2) — jsin(m/2)]

1
1+ 09[0 — j1]

1
1-j09

1
1-j0.9
_ 1]

11— 0.9
1
Va:+b?

1

SH S (5.50)

V1+ 081

= 0.743

(5.49)

Arg(H) = Arg(Num) — Arg(Denom)

= tan (0/1) — tan~!(—0.9/1)
= 42



130 Chapter 5

5.16.4 Y Nyquist (7/4)
1
1+ 0.9 7!
1
1 + 0.9[cos(w) — jsin(w)]
1
1+ 0.9[cos(m/4) — jsin(m/4)] (5:51)
1
1+ 0.636 — j0.636
1

1.636 — j0.636

H(w) =

1
1.636 — j0.636
1]
|1.636 — j0.636
1

" \/1.6362 + 0.6362
— 057

H(w) =

[Hw)| =

(5.52)

Arg(H) = Arg(Num) — Arg(Denom)
= tan"1(0/1) — tan"1(—0.636/1.636)
= +21°

Make a special note about how we have to handle the magnitude of a fraction with numerator
and denominator. You need to use the two equations in Equation 5.9 to deal with this. The
main issue is that the phase is the difference of the Arg(numerator) — Arg(denominator). If
the numerator was a complex number instead of 1.0, you would need to take the magnitude
of it separately then divide. The final composite frequency/phase response plot is shown in
Figure 5.30. You can see that the phase behaves linearly until it gets near the pole, and then it
behaves nonlinearly. This is not a linear phase filter.

Step 6: ztransform of impulse response

From Chapter 4 you will recall that the impulse response rings for this particular set of
coefficients (Figure 5.31). Finding the impulse response by hand is going to be tedious. There
are a lot of points to capture and it could take many lines of math before the impulse settles
out. Fortunately, you can use RackAFX to do the work for you. The frequency and phase
response plots are made using a z transform of the impulse response.



Basic DSP Theory 131

IH
10.0 |

1/0.1=10

0.74 —_—
0.55

0.52 _ 11.3=074
b4 1T1.9=052 1/1.8=0.55 Frequency

Nyquist

1/4 Nyquist ¥ Nyquist
fsi2

fs/8 fs/4

90

45

Figure 5.30: The final frequency and phase response plots.

1.000
0707 ||
0500 |
0.000 B
-0500 ||
0707 |
~1.000

0 17 34 51 68 85 102 119 136 153

Figure 5.31: The impulse response of the filter in question.

In Figure 5.32 we observe excellent agreement with our evaluation; the response is down —6
dB at DC (0.52) and +20 dB at Nyquist (10) and the phase is 45 degrees at /2. You followed
six steps in evaluation of this filter:

1. Take the ztransform of the difference equation.
2. Fashion the difference equation into a transfer function.
3. Factor out g, as the scalar gain coefficient.



132 Chapter 5

+24.0dB
#12.0dB >
-12.0dB
-24.0dB
1-36.0dB
-48.0dB

2kHz 4kHz G6KHz 8KHz 10kHz 12kHz 14KHz 16KHz 18kHz 20kHz
| +90.0°
+60.0° e —

Y
-30.0°
-60.0°
-90.0°

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20 kHz

Figure 5.32: RackAFX’s frequency and phase responses are taken from the z transform of the
impulse response. Compare these measured results to the response we predicted using direct
evaluation in Figure 5.30—notice these are plotted in dB rather than raw magnitudes.

y(n)

Figure 5.33: Second-order feed-forward filter.

4. Estimate the frequency response.
5. Direct evaluation of frequency response.
6. ztransform of impulse response as a final check.

5.17 Second-Order Feed-Forward Filter

Analysis of the second-order feed-forward filter proceeds much like the first-order filters
you’ve seen so far, but there’s a bit more math we have to deal with. The topology of a
second-order feed-forward filter is shown in the block diagram in Figure 5.33.



Basic DSP Theory 133

The difference equation is as follows:

y(n) = ax(n) + ayx(n — 1) + ax(n — 2) (5.53)
Steps1 & 2: Taketheztransform of the difference equation and fashion it into a
transfer function

We can combine steps to save time. The z transform can be taken by inspection, using the
rules from Section 5.8, and then you need to get it into the form Y(2)/X(2) for the transfer
function in Equation 5.54.

y(n) = agX(n) + ayx(n — 1) + a,x(n — 2)
Y(2) = agX(2) + ayX(2)z* + aX(2)z 2 (5.54)
= X@[ay + 8,z * + a,z %]
Form the transfer function H(2):
_output  Y(2)
~input X2

a+ azt+ az?

H(2)

Step 3: Factor out ay asthe scalar gain coefficient

We’ll need to make some substitutions to get this in the form we are used to, shown in
Equation 5.55:

H@z =a, + a,z ' + a,z 2
a a
Let o, = = Oy = =2

= =
H@2) = ay(1 + o,z ' + a2 ?)

(5.55)

Step 4. Estimate the frequency response

First, this is a pure feed-forward filter, so you know there will only be nontrivial

zeros; there are no poles to deal with. This transfer function is a second-order function
because of the z 2 term. In fact, this is a quadratic equation. In order to find the poles

or zeros, you need to first factor this equation and find the roots. The problem is that

this is a complex equation, and the roots could be real, imaginary, or a combination

of both. The mathematical break that we get is that our coefficients o; and «, are real
numbers. The only way that could work out is if the locations of the zeros are complex
conjugates of one another. When you multiply complex conjugates together the imaginary
component disappears. So, with some algebra, you can arrive at the deduction shown in
Equation 5.56:

HZ =1+ ozt + o,z ? (5.56)



134 Chapter 5

can be factored as
H@ =1 -2z29%1 - 227
where

Z, =Re’=a+jb
Z,=Re®=a-jb

This analysis results in two zeros, Z, and Z,, located at complex conjugate positions in the
z-plane. Figure 5.34 shows an arbitrary conjugate pair of zeros plotted in the z-plane. You can
see how they are at complementary angles to one another with the same radii. Remember, any
arbitrary point in the z-plane is located at Re!® and the outer rim of the circle is evaluated for
R = 1 and 6 between — and +r (or 0 to 2).

But, how do the complex conjugate pair of zeros at Re’® and Re™'° relate to the coefficients
o, and «,? The answer is to just multiply everything out, use Euler’s equation, and compare
functions as shown in Equation 5.57:

H@2) = ay(1 + o,z ' + a2 ?) (5.57)
=ay(l — Zz Y1 - 2z
where
Z, = Relf
Zz == Reije

(1-2zzY1-2z"% = (1-RezZ1(1 - Re 1%27Y)
=1-Rel%z! — Re 7! + R(eP%e 19)z2

Im

\'8 Re

Figure 5.34: A complementary pair of zeros in the z-plane.



Basic DSP Theory

135

noting that (e'e %) = e® 1 = " =1
=1—(Re! + Re19z! + Rz 2
=1 — R(cos() + jsin(f) + cos(0) — jsin(0))z * + Rez 2
=1 — 2Rcos(0)z ! + Rz 2
compare functions:
H@2) = ay(1 + ozt + a,27?)
= ay(1 — 2Rcos(0)z  + Rz ?)
then
o, = —2Rcos(0)
Ay = Rz

Equation 5.57 shows how the coefficients «; and o, create the zeros at the locations Re!® and
Re . Once again you see that the coefficients are the filter—they determine the locations of

the zeros, and these determine the frequency and phase responses of the filter. To estimate,

we’ll need some coefficients to test with. Use the following: 8, = 1.0, a, = —1.27, a, = 0.81.
Now, calculate the location of the zeros from Equation 5.35; since a, = 1.0, then oy = —1.27

and «, = 0.81. Start with «, then solve for «; as shown in Equation 5.58. The zeros are
plotted in Figure 5.35.

R =a,=081 (5.58)
R=%V0.81=09
Im

Re

Figure 5.35: The complementary pair of zeros in the z-plane at radii 0.9 and
angles =45 degrees.



136 Chapter 5

then
—2Rcos(8) = —1.27
2(0.9)cos(0) = 1.27

127
cos(8) = m
6 = arccos(0.705)
f = 45°

Evaluating the frequency response of the complex pair is similar to before, but with an extra
step. When estimating the frequency response with more than one zero:

» Locate each evaluation frequency on the outer rim of the unit circle.

« Draw a line from the point on the circle to each zero and measure the length of these
vectors. Do it for each evaluation frequency.

» For each evaluation frequency, the magnitude of the transfer function is the product of
the two vectorsto each zero pair.

Mathematically, this last rule looks like Equation 5.59:

HE = al[u (559
where N
N = filter order
U; = geometric distance from the point w on the unit circle to the ith pole

Follow the progression in Figures 5.36 through 5.39 through the four evaluation frequencies,
starting at DC (0 Hz). Finally, put it all together in one plot and sketch the magnitude
response in Figure 5.40.

HI

Im 40

20

Re

0.49
0.7*0.7=0.49
0.0 - } !
14 Nyquist 1/2 Nyquist Nyquist
fsi8 fsi4 fsi2

Frequency

Figure 5.36: The magnitude response at 0 Hz (DC) is the product of the two vectors
drawn to each zero, or 0.49.



Basic DSP Theory 137

IH
40

#
&=

sk
2.0
Re
1.4
o 0.1*1.4=0.14
s R Frequency
0.0 ! I I
174 Myquist % Myquist Myquist
fsi2

fs/8 fsid

Figure 5.37: At % Nyquist, the two vectors multiply out to 0.14.

2 Im IHl
T 4.0
0.7
20
Re 1.26 0.7'1.821.26
1.8 :
0.49
0.14 F
| | Frequency
0.0 ! ! |
174 Myquist % Myquist Myquist
fsi8 fold s/2

Figure 5.38: At 2 Nyquist, the response reaches 1.26 as the vectors begin
to stretch out again.

[H]
4.0

1.75%1.75=3.1

Re

0.49

0.14 Frequency
0o ! 1

1/4 Nyquist ¥ Nyquist Nyquist
fs/8 fsld4 fai2

Y

Figure 5.39: At Nyquist, the response reaches a maximum of 3.7 as the vectors stretch out
to their longest possible lengths.



138 Chapter 5

IH
4.0

31 4 - - - - - ittt

2.0

0.49
L Frequency
0.0 !
1/4 Nyquist % Nyquist Nyquist

fs/8 fs/4 fs/2

Figure 5.40: The combined response reveals a band-stop (notch) type of filter. The minimum
amplitude occurs at the zero frequency, where the vector product is the lowest; this is where the
smallest vector is obtained when evaluating on the positive frequency arc.

Step 5: Direct evaluation

Now you can evaluate the filter the same way as before using Euler’s equation to separate
the real and imaginary components from the transfer function. Evaluate at the following
frequencies:

« DC:0

e Nyquist: 7

e Y Nyquist: /2
*  YaNyquist: w/4

First, get the transfer function in the form of Equation 5.60 to use for all the evaluation
frequencies:
H@2) = ay(1 + a2 ! + a,27?)
_ &

3
Where: oy = — o, = —
El) 2

H@ =1 - 127z * + 0.81z 2

Let: z= ¢ (5.60)
Hw) =1 — 1.27e 1* + 0.81e /%



Basic DSP Theory 139

Apply Euler’s Equation:
H(w) =1 — 1.27[cos(w) — jsin(w)] + 0.81[cos(2w) — jsin(2w)]

Now evaluate for each of our four frequencies in Equations 5.61 through 5.68.

5.17.1 DC (0 Hz)

H(w) = 1 — 1.27[cos(w) — jsin(w)] + 0.81[cos(2w) — jsin(2w)]
=1 — 1.27[cos(0) — jsin(0)] + 0.81[cos(2*0) — jsin(2*0)]

=1 —127[1 —jo] + 0.81[1 — jO] (5.61)
=1-127+ 0381
= 0.54 + jO
H(w)| = Va2 + b?
= V054 + 0?

Arg(H) = tan~*(b/a)
= tan~%(0/0.54)
= 0.0°

The exact magnitude is 0.54, which is pretty close to our estimated value of 0.49 using the
z-plane graphical method.

5.17.2 Nyaquist ()

H(w) = 1 — 1.27[cos(w) — jsin(w)] + 0.81[cos(2w) — jsin(2w)]
=1 — 1.27[cos(m) — jsin(m)] + 0.81[cos(2m) — jsin(2m)]

=1-127[-1 —jo] + 0.81[1 — j0] (5.63)
=1+ 127 + 081
= 3.08
Hw)| = Va? + 1?
=V/3.08” + 07
= 3.08

(5.64)
Arg(H) = tan"(b/a)
= tan~*(0/3.08)
= 0.0°



140 Chapter 5

The exact magnitude is 3.08, which is pretty close to our estimated value of 3.1 using the
z-plane graphical method.

5.17.3 % Nyquist (11/2)

H(w) = 1 — 1.27[cos(w) — jsin(w)] + 0.81[cos(2w) — jsin(2w)]
=1 — 1.27[cos(m/2) — jsin(w/2)] + 0.81[cos(2w/2) — jsin(2m/2)]
=1 — 1.27[cos(w/2) — jsin(w/2)] + 0.81[cos(w) — jsin(mw)]

—1-127[0 — j1] + 0.81[~1 — jO] (5.65)
—1+1.27 - 081
= 019 + j1.27
H(w)| = Va® + p?
~ V019 + 1.272
— 128
(5.66)

Arg(H) = tan"*(b/a)
= tan~%(1.27/0.19)
= 82°
The exact magnitude is 1.28, which is pretty close to our estimated value of 1.26 using the
z-plane graphical method.

5.17.4 Y Nyquist (11/4)

H(w) = 1 — 1.27[cos(w) — jsin(w)] + 0.81[cos(2w) — jsin(2w)]
=1 — 1.27[cos(m/4) — jsin(w/4)] + 0.81[cos(2w/4) — jsin(2m/4)]
— 1 — 1.27[cos(w/4) — jsin(w/4)] + 0.81[cos(w/2) — jsin(w/2)]  (5.67)
— 1 — 1.27[0.707 — j0.707] + 0.81[—j1]
= 0.11 + j0.08
Hw)| = Va? + 1?
=V0.11%2 + 0.082
= 0.136
Arg(H) = tan*(b/a)
= tan~'(0.08/0.11)
= 36°

(5.68)

The exact magnitude is 0.136, which is pretty close to our estimated value of 0.14 using the
z-plane graphical method.



Basic DSP Theory 141

Step 6: ztransform of impulse response

This second-order feed-forward filter is actually pretty easy to examine for its impulse
response. For an impulse stimulus, the impulse response h(n) is h(n) = {1.0, —1.27, 0.81}.
Taking the z transform of the impulse response is easy, as shown in Equation 5.69:

n=-+ow

H@ = D h(n)z™"

n=—o

= 1.02 — 1272 + 0.81z2 (5.69)
—1-127z1 + 081z 2

This is exactly what we expect. This should help you understand two more very important
details about pure feed-forward filters.

In a pure feed-forward filter:

e The coefficients {a,, a,, a,,...} are the impulse response, h(n).
e The transfer function is the z transform of the coefficients.

Finally, I’ll use RackAFX to verify the frequency and phase response from our analysis by
using a plug-in I wrote for second-order feed-forward filters. Figure 5.41 shows the frequency
and phase response plots.

+12.0 dB |
+6.0 dB |

_ 2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20 kHz
 +90.0° ' ' I — 1 - : =

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16 kHz 18 kHz 20kHz

Figure 5.41: Plots using RackAFX’s z-transform of the impulse response.



142 Chapter 5

5.18 Second-Order Feed-Back Filter

Analysis of the second-order feed-back filter starts with the block diagram and difference
equation. Figure 5.42 shows the topology of a second-order feed-back filter.

The difference equation is as follows:

y(n) = agx(n) — byy(n — 1) — by(n — 2) (5.70)

Steps 1to 3: Takethe ztransform of the difference equation to get the transfer function,
then factor out a, asthe scalar gain coefficient

We’ll continue to combine steps. Once again, the z transform can be taken by inspection using
the rules from Section 5.8, and then you need to get it into the form Y(2)/X(2) for the transfer
function in Equation 5.71.

y(n) = ax(n) — by(n — 1) — by(n — 2)
Y(2) = apX(2) — bY@z ! — b,Y(2)z?
Separate variables:

Y2 + bY@z + bY@z ? = aX(2
Y1 + bzt + bz 2] = aX(2)

(5.71)
Form transfer function:
Y(2 )
H = =

@ X@ 1+bz!+bz?

Factor outay:
1
H@ = &

1+ bz?t+ bz?

x(n) y(n)

Figure 5.42: Second-order feed-back filter.



Basic DSP Theory 143

Step 4: Estimate the frequency response

Now you can see why the feed-back filter block diagrams have all the b coefficients negated.
It puts the quadratic denominator in the final transfer function in Equation 5.71 in the same
polynomial form as the numerator of the feed-forward transfer function. Thus, you can use
the same logic to find the poles of the filter; since the coefficients b, and b, are real values, the
poles must be complex conjugates of each other, as shown in Equation 5.72:

H(2) = a

1+ bz?t+ bz?
can be factored as

1
H(@ =
@ =231 e 0 -pzY
where
P, = Re/*
P2 = Reije
(1-PzH(1-Pz?') =1-2Rcos(0)z! + Rz 2
5.72
therefore ( )
1
H(2) =
@ ao1 + bzt + bz ?
_ 1
a0(1 — 2Rcos(0)z * + Rz ?)
and

b, = —2Rcos(6)
b2 = R2

This results in two poles, P; and P,, located at complex conjugate positions in the z-plane.

Figure 5.43 shows an arbitrary conjugate pair of poles plotted in the z-plane. You can see how
they are at complementary angles to one another with the same radii.

To estimate we’ll need some coefficients to test with. Use the following: a, = 1.0, b, = —1.34,
b, = 0.902. Now, calculate the location of the poles from Equation 5.72:

R = b, = 0.902 (5.73)
R = 1/0.902 = 0.95

then

—2Rcos(0) = —1.34
2(0.95)cos(0) = 1.34



144 Chapter 5

Figure 5.44: The poles of the filter.

cos(6) = 1.34
2(0.95)
6 = arccos(0.707)
0 = 45°

Figure 5.44 shows the complex conjugate pair of poles plotted in the z-plane at angles +45°
and radii of 0.95. Evaluating the frequency response of the complex pair is similar to before,
but with an extra step. When estimating the frequency response with more than one pole:

* Locate each evaluation frequency on the outer rim of the unit circle.

» Draw a line from the point on the circle to each pole and measure the length of these
vectors. Do it for each evaluation frequency.

» For each evaluation frequency, the magnitude of the transfer function is the product of the
inverse lengths of the two vectors to each pole pair.



Basic DSP Theory 145

Mathematically, this last rule looks like Equation 5.74:

. 1
[HE)], = a0 (5.74)

I1v

where

N = the filter order
V; = the geometric length from the point(w)on the unit circle to the ith pole

Thus, the process is the same as with the zeros, except that you take the inverse of the length
to the pole.

For feed-forward filters:

e The closer the frequency is to the zero, the more attenuation it receives.
« If the zero is on the unit circle, the magnitude would go to zero at that point.

For feed-back filters:

» The closer the evaluation frequency is to the pole, the more gain it receives.
» Ifapole is onthe unit circle, the magnitude would theoretically go to infinity, and it
would produce an oscillator, ringing forever at the pole frequency.

You blew up the first-order feed-back filter as an exercise in Chapter 4. All feed-
back filters are prone to blowing up when their poles go outside the unit circle.

We can now continue with the estimation process for our standard four evaluation
frequencies. This time, we’ll convert the raw magnitude values into dB. The reason
for doing this is that there will be a very wide range of values that will be difficult to
sketch if we don’t use dB. Follow the evaluation sequence in Figures 5.45 through
5.48. Finally, you can put it all together to form the frequency response plot in
Figure 5.49.

In a digital filter:

e Zeros may be located anywhere in the z-plane, inside, on, or outside the unit circle since the
filter is always stable; it’s output can’t go lower than 0.0.

e Poles must be located inside the unit circle.

e Ifa pole is on the unit circle, it produces an oscillator.

e Ifa pole is outside the unit circle, the filter blows up as the output goes to infinity.




146 Chapter 5

IH1 (dB)
Im 24
12
1.1 _i9s=5908
o 0.71 0.71

0.71

=] =12

0.71 _34

| | | Frequency
=28 1 ] T
114 Nyquist % Nyquist Nyquist
fs/8 fald fsi2

Figure 5.45: The magnitude response at 0 Hz (DC) is the product of the inverse of the
two vectors drawn to each zero, or (1/0.71)(1/0.71) = 5.9 dB.

IH1 (dB)
4 1 1
—_— ———=142=23.0dB
0.05 141

12
4]
Re =12
-24

i | | Frequency

E I I
1/4 Nyquist % Nyquist Myguist
fsis fald fsi2

Figure 5.46: The magnitude response at 1/4 Nyquist is a whopping +23 dB since the
inverse of 0.05 is a large number.

IH] (dB)
24

w2 Im
ok
12
0.71
o 1 1
—_— ——=0.76=-2.32dB
0.71 1.84
K RG _12

1.84 24
=36 ! I Frequency
1/4 Myquist % Nyquist Nyquist
fsi2

fs/8 fsid

Figure 5.47: The magnitude response at 7/2 is —2.98 dB.



Basic DSP Theory 147

|H] (dB)
/2 Im
T < 24
12
1.8 0 3 1
—— . ——=031=-10.1dB
18 18
= Re -12
18 -24
_ag ! ! Frequency
114 Nyquist ¥ Nyquist Nyquist
fs/8 fs/d fsi2
Figure 5.48: The magnitude response at Nyquist is —10.1 dB.
|H] (dB)
24
0
-12
-24
Frequenc
-36 q y
1/4 Nyquist ¥4 Nyquist Nyquist
fs/8 fsi4 fs/2

Figure 5.49: The composite magnitude response of the filter shows that it is a resonant low-pass
filter; the resonant peak occurs at the pole frequency.

Step 5: Direct evaluation

Now you can evaluate the filter the same way as before using Euler’s equation to separate the
real and imaginary components from the transfer function. Evaluate at the following frequencies:

« DC:0

* Nyquist: 7

e % Nyquist: /2

* Y Nyquist: w/4

First, get the transfer function in a form to use for all the evaluation frequencies:
1

1+ bz?t+ bz?
1

1 - 13421 + 0902z *

H(2) = a, (5.75)




148 Chapter 5

Letz = €.

H(w) = L

1 — 1.34e71 4 0.902e71%

Apply Euler’s equation:
1

1 — 1.34e71% 4 0.902e71%
1
1 — 1.34[cos(w) — jsin(w)] + 0.902[cos(2w) — jsin(2w)]

H(w) =

H(w) =

Now evaluate for each of our four frequencies starting with DC.

5.18.1 DC (0 Hz)

1
H =
(©) 1 — 1.34[cos(w) — 1 — jOjsin(w)] + 0.902[cos(2w) — jsin(2w)]
1
1 — 1.34[cos(0) — jsin(0)] + 0.902[cos(2*0) — jsin(2*0)]
1
= 5.76
1 — 1.34[1 — jO] + 0.902 (5.76)
_ 1
1 - 134+ 0.902
B 1
0.562 + jO
1
H - =
©) = 0562 + jo
1]
H - =
H (@) 10.562 + |0
1
- (5.77)
Va?+ b?
1
= ————=178 =5.00dB
\/0.5622

Arg(H) = Arg(Num) — Arg(Denom)
= tan"1(0/1) — tan~%(0/0.562)
= 0O

Remember that for magnitudes of fractions, you need to take the magnitude of the numerator
and denominator separately; also for phase, the total is the difference of the Arg(num) and
Arg(denom). The direct evaluation yields 5.0 dB and shows our sketch evaluation was a little
off at 5.9 dB.



Basic DSP Theory 149

Table 5.4: Challenge answers.

Frequency () [H()| Arg(H)
Nyquist (1) —10.2dB 0.0°

¥ Nyquist (/2) —2.56dB —85.8°

% Nyquist (1/4) +23.15dB —40.3°
1.000
0.707 |}
0.500 ||
0.000 '/ I!: I-, . , ;\ NN e e e e e e,
0500 |
-0.707
-1.000

0 17 34 51 68 85 102 119 136 153

Figure 5.50: Impulse response of the filter from RackAFX.

5.18.2 Challenge

Finish the rest of the direct evaluation calculations on your own. The answers are in Table 5.4.
The exact evaluation once again produces results pretty close to our estimated version. You
can get the complete answers at the RackAFX websites.

Step 6: ztransform of impulse response

The impulse response for this filter is shown in Figure 5.50. Once again, finding the impulse
response by hand is going to be tedious. Instead, | will use RackAFX to do the analysis so we
can compare our estimated and direct evaluation results. The measured responses are shown
in Figure 5.51.

5.19 First-Order Pole-Zero Filter: The Shelving Filter

The first-order pole-zero filter consists of a first-order pole and first-order zero in the same
algorithm. The topology in the block diagram in Figure 5.52 is a combination feed forward
and feed back since it contains both paths.

The difference equation is as follows:
y(n) = ax(n) + ayx(n — 1) — byy(n — 1) (5.78)

Steps 1to 3: Takethe ztransform of the difference equation to get the transfer function,
then factor out a; asthe scalar gain coefficient

Y(2) = agX(2) + aX(2z ! — b Y(D)z? (5.79)



150 Chapter 5

Separate variables:

Y(2) + bY(2z ! = aX(2) + aX(@)z?
Y21 + bzl = X@[a, + ayz ']
Form the transfer function:
Y2 &+ az’

HA =39 = 1+b2°

Factor out ay:

1+ ozt
HE@) = 20y e

where

3
al:—

+24.0 dB
+16.0 dB _
+8.0 dB ‘ B
0.0 dB |-<sererebemmememnedreesnesenbareneeree o
-80 dB i . S |
-16.0 dB

240989 kHz 4kHz 6kHz 8KHz 10kHz 12KHz 14KkHz 16 kHz 18 kHz 20 kHz

+180.0°|
+120.0°
+60.0°
00° =y
-60.0° \ B
-120.0°
-180.0°

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14 kHz 16 kHz 18 kHz 20 kHz

Figure 5.51: RackAFX’s frequency and phase responses are taken from the z-transform
of the impulse response.

y(m

Figure 5.52: First-order pole-zero filter.



Basic DSP Theory 151

Step 4: Estimate the frequency response

This transfer function has one pole and one zero and both are first order. Like the other first-
order cases, we can find the pole and zero by inspection of the transfer function:

1 + 0(12_1

N0 = 2 Tyt

(5.80)
(S31
1+ —
A

= aO bl
1+ —

z
In the numerator, you can see that if z= —a; the numerator will go to zero and the transfer
function will go to zero. In the denominator, you can see that if z= —b, the denominator
will go to zero and the transfer function will go to infinity. Therefore we have a zero
atz= —a, and a pole at z= —b,. For this example, use the following values for the
coefficients: a; = 1.0, 8, = —0.92, b, = —0.71. Then, o; = —0.92, and so we now have
azeroatz= —ay = 0.92 + j0and apoleat z= —b; = 0.71 + jO. The pole/zero pair
are plotted in Figure 5.53.

Evaluating the frequency response when you have mixed poles and zeros is the same as
before, but you have to implement both magnitude steps.

e Locate each evaluation frequency on the outer rim of the unit circle.

» Draw a line from the point on the circle to each zero and measure the length of these
vectors. Do it for each evaluation frequency.

« Draw a line from the point on the circle to each pole and measure the length of these
vectors. Do it for each evaluation frequency.

Im

Re

Figure 5.53: The pole and zero are both purely real and plotted on the real axis in the z-plane.



152 Chapter 5

» Multiply all the zero magnitudes together.
e Multiply all the inverse pole magnitudes together.
« Divide the zero magnitude by the pole magnitude for the final result at that frequency.

Mathematically, this last rule looks like Equation 5.81:
N
[Tu
HE)], = a0 (5.81)

[V

i=1

where
N = the filter order
U, = the geometric length from the point(w)on the unit circle to the ith zero
V; = the geometric length from the point(w)on the unit circle to the ith pole

Equation 5.81 is the final, generalized magnitude response equation for the geometric
interpretation of the pole/zero plots in the z-plane. For completeness, here’s the equation for
calculating the phase response of a digital filter using the geometric method:

Arg(H(E®)), = _;‘% - _;d)i (5.82)

where
N = the filter order
6; = the angle between the ith zero and the vector U,
&; = the angle between the ith pole and the vectorV,

Equations 5.81 and 5.82 together complete the DSP theory for pole/zero interpretation for
estimating the frequency and phase responses of any filter. So, let’s do the analysis for this
filter—by going through the math, you can see the tug of war going on between the pole and
zero. Follow the analysis sequence in Figures 5.54 through 5.58.

Step 5: Direct evaluation

You can evaluate the filter the same way as before using Euler’s equation to separate
the real and imaginary components from the transfer function. Evaluate at the following
frequencies:

« DC:0

* Nyquist:

e ¥ Nyquist: /2
* Y Nyquist: /4



Basic DSP Theory 153
|H] (dB)
Im 24
0.08
12
0
1
. ——=027=-11.1dB
LV Re -12 G 029
-24
| | | Frequency
g I I T
1/4 Myquist % Nyquist Nyquist
0.29 fsi8 fsld Is/2
«—

Figure 5.54: The magnitude response at DC is —11.1 dB. Look at the equation and
you can see the zero value bringing down the total while the pole value is trying to push it
back up. In this case, the zero wins and the response is down almost 12 dB. Geometrically,

you can see this is because the zero is closer to the evaluation point and so it has more
effect on the outcome.

|H] (dB)

j 24
n'4

1.70 1.75 0

Re =12

N,

1
5. =1.02=017 dB
L8 7o
| | Frequency
1 I I
1/4 Myquist % Nyquist Nyquist
fs/8 fald fsi2

Figure 5.55: The magnitude response at 1 is almost unity gain because the pole and zero
distances are almost the same. The tug of war ends in stalemate here at 0.17 dB of gain.

, |H1{dB)
w2 Im 24

1.30

Re =12

4R
b

1.40 - =1.07 = 0.64 dB

.
1.30

| Frequency
1 I |
14 Nyquist ¥ Nyquist
fs/8 fsid

Myquist
fs/2

Figure 5.56: With the pole slightly closer to the evaluation frequency, the magnitude response at
/2 picks up a bit to +0.64 dB.



154 Chapter 5

|H] (dB)
i 2
12 1
192 . ——=1,12 = 1.00 dB
295
0
T
\ e Re -12
1.71
™ -24
Frequency
8 ! ! T
1.92 174 Nyquist % Myquist Nyguist
fs/8 fa4 fsf2

Figure 5.57: At /4 the pole/zero ratio favors the pole and the response perks up to
1.0 dB; notice that this is the frequency where the pole is clearly dominating,
but just barely.

] (dB)

12

The Shelf

Frequency

Nyquist

1/4 Nyquist ¥2 Nyquist
fsi2

fs/8 fs/4

Figure 5.58: The composite frequency response plot shows a —12 dB low shelving filter
response, a useful filter in audio.

First, get the transfer function in a form to use for all the evaluation frequencies
(Equation 5.83). Then evaluate at our four frequencies.

a, + az

H@) =T blz_l (5.83)
1
_1-092z"

1- 071z}
Letz=¢€®

1 - 0.92¢7%
H(o) — L—092¢

1—0.71ee



Basic DSP Theory 155

Apply Euler’s equation:

1 - 0.92e 7
)= T T ore™
Hw) = 1 — 0.92[cos(w) — jsin(w)]
®) 7 1= 0.71[cos(w) — jsin(w)]
5.19.1 DC (OHz)
Hw) = 1 — 0.92[cos(w) — jsin(w)]
@) 7 12 0.71[cos(w) — jsin(w)]
1 — 0.92[cos(0) — jsin(0)]
1 - 0.71[cos(0) — jsin(0)]
1-0.92[1 — 0]
= 84
1-0.71[1 — j0] (584)
~0.08 + j0
©0.29 +j0
Hw)| = 10.08 + jO|
@) =020 + 0|
~Val+ b
Va2 + b?
A/ 2
_ YOO8 _ 76— —112d8B (5.85)
1/0.292

Arg(H) = Arg(Num) — Arg(Denom)
= tan~*(0/0.08) — tan~%(0/0.29)
= Q°
By now this should be getting very familiar; the only difference in this situation is that we
have to evaluate the numerator and denominator, but the method is the same.

15.19.2 Challenge

Finish the rest of the direct evaluation calculations on your own. The answers are in Table 5.5.

Table 5.5: Challenge answers.

Frequency () [H(o)| Arg(H)
Nyquist () 1.00 dB 0.0°

% Nyquist (1/2) 0.82dB 7.23°

Ya Nyquist (1/4) 0.375dB 16.60°




156 Chapter 5

Thus, once again the direct evaluation backs up the estimation from the z-plane. Because
we have a feedback path, extracting the impulse response will be tedious but we can use
RackAFX’s pole/zero filter module to analyze the impulse response. Figure 5.59 shows the
measured impulse response, while Figure 5.60 shows the frequency and phase responses.

1.000
0.707
0.500

0000 | -~

-0.500
-0.707
-1.000

0 17 34 51 68 85 102 119 136 153

Figure 5.59: Impulse response of the first-order shelving filter.

+12.0 dB
+6.0 dB
0.0 dB - e e e e e T T e S T

-60dB|

-12.0 dB|

-18.0 dB

-24.0 dB

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14 kHz 16 kHz 18 kHz 20 kHz

+12.0 dB
+6.0 dB

V7517 - | WOSRUSUURURIN NORSNR) 00 W 8 1 SO S W 1 1411 L e e
-6.0 dB =
120 dB
-18.0 dB
-24.0 dB

10 Hz 100 Hz 1 kHz 10 kHz
+90.0°
+60.0°
+30.0° et .

0,00 1 : T —
-30.0°
-60.0°
-90.0°

10Hz 100 Hz 1kHz 10 kHz

Figure 5.60: Frequency and phase responses of the first-order shelving filter.



Basic DSP Theory 157

y(m

Figure 5.61: The bi-quad.

A first-order shelving filter is a pole-zero design. The shelf will be located in the region
between where the zero dominates and where the pole dominates. When neither really
dominates, the response is approximately unity gain. The RackAFX frequency and phase
plots are shown in Figure 5.60; the log frequency plot has been included to reveal the
textbook shelving filter curve.

5.20 The Bi-Quadratic Filter

The last filter topology to study is the bi-quadratic (or bi-quad) filter. The bi-quad consists of
two second-order components: a second-order feed-forward and a second-order feed-back
filter combined together as shown in the block diagram in Figure 5.61. The resulting transfer
function will have two quadratic equations, thus the name.

The difference equation is as follows:
y(n) = agx(n) + a;x(n — 1) + ax(n — 2) — byy(n — 1) — byy(n — 2) (5.86)

Steps 1to 3: Takethe ztransform of the difference equation to get the transfer function,
then factor out a; asthe scalar gain coefficient

y(n) = agx(n) + ax(n — 1) + ax(n — 2) — byy(n — 1) — byy(n — 2)
Y2 = aX(2) + aX(2z ' + aX(dz 2 — bY(2z ' — b,Y(?)z?
Separate variables:
Y@ + bY@z ! + bY@z % = aX(2) + aX(@z ! + aX(@)z?
Y1+ bzt + bz?=X@[a + a4zt + a7 ?]
Form transfer function
Y@ at+az’+az?’
X@ 1+bz!+bz?

H(2) =



158 Chapter 5

Factor out
" 1+ o0zt + a,z?

H@) = %7 b,z! + bz ?
where (5.87)
3
o = %
=5
Qy = %

Step 4: Plot the poles and zer os of the transfer function

The bi-quad will produce a conjugate pair of zeros and conjugate pair of poles from the
numerator and denominator respectively. Calculating these locations is the same as in the
pure second-order feed forward and feed back topologies. All you need to do is plot them in
the same unit circle. The transfer function becomes (by simple substitution from previous
sections):

1 — 2R,cos(0)z * + Rez 2
1 — 2R,cos(dp)z * + Rz 2
Figure 5.62 shows a pair of poles and a pair of zeros plotted together. Each has its own

radius, R, and R,, and angle, 6 and ¢. The same kind of pole/zero tug of war goes on with the
bi-quad, only now there are more competing entities.

H@ = a (5.88)

Estimating the frequency response is complicated by the additional poles and zeros, but the
rules are still the same:

» Locate each evaluation frequency on the outer rim of the unit circle.
» Draw a line from the point on the circle to each zero and measure the length of these
vectors. Do it for each evaluation frequency.

Im

Re

R, »

Figure 5.62: Second-order poles and zeros.



Basic DSP Theory 159

» Draw a line from the point on the circle to each pole and measure the length of these
vectors. Do it for each evaluation frequency.

*  Multiply all the zero magnitudes together.

»  Multiply all the inverse pole magnitudes together.

» Divide the zero magnitude by the pole magnitude for the final result at that frequency.

Using the following coefficients, a, = 1.0, a; = 0.73, a, = 1.00, b, = —0.78, b, = 0.88,

we can directly find the pole and zero locations from Equation 5.88 (note that because a,

is 1.0, you don’t have to calculate the o terms). The pairs of poles and zeros are plotted in
Figure 5.63.

Zeros are calculated as follows:

a, = R =100
R, = V1.00 = 1.00

and
a, = —2Rcos(0) = 0.73
2(1.00) cos(6) = 0.73
cos(0) = 0.365
6 = arccos(0.365)

(5.89)

0 = 68.6°
Poles are calculated as follows:
b, = R,% = 0.88
R, =V 0.88 = 0.94
Im
[0}
0
Re
X

Figure 5.63: Pole/zero plot for the example bi-quad filter.



160 Chapter 5

and

b, = —2Rcos(¢) = —0.78
2(0.94) cos(¢p) = 0.78

078
cos(d) = 2(0.94) (5.90)
¢ = arccos(0.414)
b = 65.5°

The poles and zeros are in close proximity to each other. The zero is directly on the unit
circle (R, = 1.0), so we expect a notch to occur there. The pole is near the unit circle but not
touching it, so we expect a resonance there.

We are not going to go through the full response estimation or direct evaluation since it’s just
repetitive algebra at this point. But, we can use RackAFX’s bi-quad module to set up the filter
and evaluate it (Figure 5.64). The frequency response clearly shows the resonant peaking due
to the pole, then the sudden notch due to the nearby zero.

In Figure 5.64, it’s easy to locate the places where the pole or zero dominates. In the low
frequencies, the pole dominates and at high frequencies the zero dominates. This is an
example of a direct z-plane design where we place a pole and zero pair directly in the z-plane,
then calculate the coefficients. In the next chapter, we will examine some basic Infinite
Impulse Response (1IR) design techniques and the direct z-plane method will be the first.

Final Review Notes
In this chapter you learned the basics of DSP theory; specifically, you learned the sequence:

1. Take the ztransform of the difference equation.
2. Fashion the difference equation into a transfer function.
3. Factor out g, as the scalar gain coefficient.

+24.0dB | " -4+—— Effect of the pole
+12.0dB | &
0.0 dB b -------------------------------------------
-12.0dB
-24.0dB

-36.0dB | | <«—— Effect of the zero
-48.0dB"

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20 kHz

Figure 5.64: The plot from RackAFX shows the resonant peak and notch formed
by the pole and zero.



Basic DSP Theory 161

4. Estimate the frequency response.
5. Direct evaluation of frequency response.
6. ztransform of impulse response as a final check.

For geometric estimation, the frequency response and phase responses of a filter can be found
with Equations 5.91 and 5.92.

1y
[H(E)], = ary (5.91)

[TV

i=1

where

N = the filter order
U, = the geometric length from the point(w)on the unit circle to the ith zero
V, = the geometric length from the point(w)on the unit circle to the ith pole

N N
Arg(H (€))], = ;ei - ;d)i
where (5.92)

N = the filter order
0; = the angle between the ith zero and the vector U;
&; = the angle between the ith pole and the vector V;

For direct evaluation, you simply plug in various values for frequency and crank through the
algebra. We applied this same routine to feed-forward, feed-back, and combination types of
algorithms, and then used RackAFX to check our results. We also classified the filters into
IIR and Finite Impulse Response (FIR) types.

IIR Filters

» Any filter with a feed-back path is IIR in nature, even if it has feed-forward branches
as well.

« The feed-back paths in IIR filters produce poles in the z-plane and the poles cause gain to
occur in the magnitude response.

e An IR filter can blow up when its output steadily increases toward infinity, which occurs
when the poles are located outside the unit circle.

o If the IR filter also has feed-forward branches it will produce zeros as well as poles.

« 1IR filters can have fast transient responses but may ring.

FIR Filters

e The FIR filter only has feed-forward paths.
e It only produces zeros in the z-plane.



162 Chapter 5

» The FIR filter is unconditionally stable since its output can only go to zero in the
worst case.

* FIR filters will have slower transient responses because of the time smearing they do on
the impulse response.

e The more delay elements in the FIR, the poorer the transient response becomes.

Bibliography

Ifeachor, E. C. and Jervis, B. W. 1993. Digital Sgnal Processing: A Practical Approach, Chapter 3. Menlo Park,
CA: Addison-Wesley.

Kwakernaak, H. and Sivan, R. 1991. Modern Sgnals and Systems, Chapter 3. Englewood Cliffs, NJ: Prentice-Hall.

Moore, R. 1990. Elements of Computer Music, Chapter 2. Englewood Cliffs, NJ: Prentice-Hall.

Oppenheim, A. V. and Schafer, R. W. 1999. Discrete-Time Signal Processing (2nd ed.), Chapter 3. Englewood
Cliffs, NJ: Prentice-Hall.

Orfanidis, S. 1996. Introduction to Sgnal Processing, Chapters 10-11. Englewood Cliffs, NJ: Prentice-Hall.

Steiglitz, K. 1996. A DSP Primer with Applications to Digital Audio and Computer Music, Chapters 4-5. Menlo
Park, CA: Addison-Wesley.



Audio Filter Designs: IIR Filters

It’s time to put the theory into practice and make some audio filters and equalizers (EQS).
You know that the coefficients of a filter determine its frequency response and other
characteristics. But how do you find the coefficients? There are two fundamental ways to find
the coefficients of the infinite impulse response (IIR) filter:

» Direct z-plane design
» Analog filter to digital filter conversion

This chapter uses the following filter naming conventions:

LPF: Low-pass filter
HPF: High-pass filter
BPF: Band-pass filter
BSF: Band-stop filter

6.1 Direct z-Plane Design

In this first category of design technigues, you manipulate the poles and zeros directly in

the z-plane to create the response you want. You take advantage of the simple equations that
relate the coefficients to the pole/zero locations. Consider the bi-quad. Equation 6.1 shows the
numerator. Equation 6.2 shows the denominator.

Hz) = ag(1 + ozt + a,27?)

a9(1 — 2Rcos (0)z™! + R%Z7?) (6.1)

then
a; = —2Rcos (0)

OLZZRZ

163



164 Chapter 6

H(z) = ao[ L }

1+ bzt + bz?
(6.2)

1
- a"{a — 2Rcos(0)z L + RZz—Z)]

then
b, = —2Rcos(0)

b2=R2

For the numerator or denominator, the a, or b, coefficients are in direct control over the
angles of the zeros or poles. The distance R to the zeros or poles is determined by both a,, a,
or by, b,. For first-order filters, the coefficients only control the location of the pole and zero
on the real axis. There are no conjugate pairs. However, careful placement of the pole and
zero can still result in useful audio filters.

6.2 Single Pole Filters

A block diagram of a single pole filter is shown in Figure 6.1.

The difference equation is as follows:

y(n) = agx(n) — byy(n — 1) (6.3)

6.2.1 First-Order LPF and HPF

Specify:

» f,, the corner frequency

x(n) b @ —y(n)

<

Figure 6.1: The first-order feed-back filter and difference equation.



Audio Filter Designs: IIR Filters 165

High frequencies are far Low frequencies are
enough that they get ~ Close to the pole and get

attenuation % gain
o
v

Figure 6.2: The first-order LPF has a single pole and zero on the real axis.

The design equations are as follows:

LPF HPF
0, = 2mf./f, 0, = 2mf /f,
v =2 — cos(8,) v =2+ cos(6,) (6.4)
by=Vy2-1-y b=y-Vy-1
auy=1+Db ap=1-Db

These simple first-order filters work by moving the pole back and forth across the real axis
while holding a fixed zero at Nyquist. When the pole is on the right side of the unit circle,
low frequencies are gained up due to their close proximity to the pole. High frequencies
are close to the zero and get attenuated (Figure 6.2). This produces the low-pass response
in Figure 6.3.

When the pole/zero pair are reversed, the opposite effect happens and the high frequencies are
now boosted with low frequencies attenuated. There is also a zero at 0 Hz. This produces the
high-pass response. These are simple but very useful designs and are found in many effects
including delay and reverb algorithms.

6.3 Resonators

A resonator is a band-pass filter that can be made to have a very narrow peak. The simple
version uses a second-order feed-back topology.

6.3.1 Simple Resonator

A block diagram of a simple resonator is shown in Figure 6.4.



166 Chapter 6

+12.0dB

-12.0dB S —
-24.0dB S
-36.0 dB
-48.0 dB
-60.0 dB

0.0dB R e e e s R S S e e

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

+12.0 dB

-24.0dB
-36.0dB
-48.0 dB
-60.0 dB

0Hz  100Hz  1kHz

0.0dB mdededed L L LU L
-12.0dB e

Figure 6.3: Linear and log frequency responses of the one-pole low-pass filter with f. = 1 kHz.

x(n) y(m)

Figure 6.4: Second-order feed-back filter block diagram.

The difference equation is as follows:
y(n) = apx(n) — byy(n — 1) — byy(n — 2)
Specify:

» f,, center frequency
» BW, 3 dB bandwidth; or Q, quality factor

(6.5)



Audio Filter Designs: IIR Filters 167

The design equations are as follows:

0, = 2=f./f,
W = f/Q
b, = e<_2ﬂ%>
iy (6.6)

_ 2

b, = 1+ b, cos(0.)
b

=0 —-b)/1———

a = ( 2) 4,

The resonator works by simple manipulation of the conjugate poles formed with the second-
order feed-back network. The b, term controls the distance out to the pole which makes the
resonant peak sharper (when the pole is close to the unit circle) or wider (when the pole is
farther away from the unit circle). The b, and b, terms control the angle of the pole, which
controls the center frequency, shown in Figure 6.5. The a, term is used to scale the filter so its
peak output is always normalized to unity gain or 0 dB.

The drawback to this design is that it is only symmetrical in frequency response at one
frequency, w/2, when the low-frequency and high-frequency magnitude vectors are
symmetrical. At all other frequencies, the response is shifted asymmetrically. When the pole
is in the first quadrant, it is nearer to the low frequencies than high frequencies and so the

b, controls the radius
of the pole

b, and b, control the
< angle of
the pole

Re

Figure 6.5: The location of the resonator’s conjugate poles are
determined by the coefficients.



168 Chapter 6

[+12.0 a8

0.0 dB
|-12.0 dB
|-24.0 dB

-36.0 dB
|~-48.0 dB

PR 10Hz 100 Hz TkHz 10kHz

1IN
>

Figure 6.6: The asymmetrical response shape when the pole is in the first quadrant; notice
the difference in gain at DC versus Nyquist. This filter has f, = 44.1 kHz,
f.=m/4 =5.5125 kHz, and Q = 10.

[+12.0d8]
UOdB... S VSN, (SN, 'S N U Gh I NI N (SISO (TN S W Sy 1 U 0 I [SUSII— T N N W —
-12.0dB

Re  |-24.0dB|
-36.0 dB
-48.0 dB

-E0.0'dB 10Hz 100Hz 1kHz 10kHz

aa
NI

Figure 6.7: The asymmetrical response shape when the pole is in the second quadrant; notice the
difference in gain at DC versus Nyquist. This filter has f, = 44.1 kHz,
f.=3m/4 =16.5375 kHz, and Q = 10.

low end is boosted (Figure 6.6). The opposite happens (Figure 6.7) when the pole moves to
the second quadrant and the high frequencies get the boost. The solution to the asymmetry
problem is a really useful filter, especially for making filter banks of extremely narrow band-
pass filters.

6.3.2 Smith-Angell Improved Resonator

A block diagram of a Smith-Angell improved resonator is shown in Figure 6.8.
The difference equation is as follows:

y(n) = ax(n) + ax(n — 2) — by(n — 1) — byy(n — 2) (6.7)



Audio Filter Designs: IIR Filters 169

y(n)

Figure 6.8: Block diagram for the Smith-Angell
improved resonator.

Specify:

» f,, center frequency
e BW, 3 dB bandwidth; or Q, quality factor

The design equations are as follows:

0, = 2mf./f,
BW = f,/Q
b, = e<72ﬂBf\:v>
b, = 1+b, cos(6.)
ao =1- \/biz
a2 = _ao

This design is also gain normalized with a, and as before, the radius is set with b,
first, then b, is calculated using the b, coefficient and the desired pole frequency. The
filter is not truly normalized to 0.0 dB; there is actually a slight fluctuation of less
than 1 dB.

The improved resonator is also named the Smith-Angell resonator, after its inventors. They
improved the design by dropping two zeros into the filter, oneatz = 1andoneatz = —1in
order to pin down DC and Nyquist with a response of zero. This forces the filter to become
somewhat more symmetric (but not entirely) and has the advantage of making the band pass
even more selective in nature (Figure 6.9).



170 Chapter 6

Im

+12.0 dB

0.0 dB |

-12.0 dB

Re |-240dB
-36.0 dB
-48.0 dB
-60.0 dB

10Hz ~ 100Hz 1kHz 10kHz

Figure 6.9: The effect on the resonator shape with the added zeros to hold down DC and
Nyquist. This filter has f; = 44.1 kHz, . = w/4 = 5.5125 kHz, and Q = 20
(notice how close the poles are to the unit circle).

6.4 Analog Filter to Digital Filter Conversion

A more widely used approach to filter design is to first start with the classic analog designs
and then convert them into digital versions. There’s good reason to do this because there
are many excellent analog designs already done for us. We just need a way to make them
work in our digital world. While analog filter design is outside the scope of the book,

there are many similarities between the two design worlds. For example, both analog

and digital filter design involve a transfer function that you manipulate to produce poles
and zeros. They also both use a transform to get from the time domain to the frequency
domain. A fundamental difference is that in analog, there is no Nyquist restriction and all
frequencies from —oo to +o0 are included. Also, in analog, reactive components or circuits
like inductors, capacitors, and gyrators (a circuit that simulates an inductor) are used to
create the phase shift that is at the heart of the filtering operation. Table 6.1 summarizes the
similarities and differences.

Table 6.1: The differences between analog and digital filter design technique.

Digital Analog

»  Uses a transfer function to relate 1/0 » Uses a transfer function to relate 1/0

e Delay elements create phase shift » Reactive components create phase shift

*  Uses the z transform (sampled time to » Uses the Laplace transform (continuous
frequency) time to frequency)

» Poles and zeros in the z-plane e Poles and zeros in the s-plane

* Nyquist limitation » All frequencies from — to +o allowed

» Poles must be inside the unit circle for ~ »  Poles must be in the left-hand part of the
stable operation s-plane for stable operation




Audio Filter Designs: IIR Filters 171

i ; +®
2 Nyquist \lm A jo
<«— Nyquist
Nyquist 0Hz <«— %2 Nyquist
‘/Re < 0Hz = >
«—-%2 Nyquist
<«— -Nyquist
—1% Nyquist 7 v
-®

Figure 6.10: Comparison of the unit circle in the z-plane with the s-plane.

In Figure 6.10 you can see the s-plane on the right—it is also a complex plane. The

real axis is named the o axis and the imaginary axis is the jo axis. The jo axis is the
frequency axis and it spans —o to +oc rad/sec. The unit circle maps to the portion on the
jo axis between —Nyquist and +Nyquist. In order to transform an analog filter design
into a digital filter design, we need a mapping system to get the poles and zeros from
the s-plane to become poles and zeros in the z-plane. Once we have that, the coefficients
that produce those poles and zeros in the digital locations can be calculated. In the
analog world, poles that are close to the jw axis will result in poles that are close to the
unit circle in the digital world. The problem is that poles and zeros can exist anywhere
along the jo axis, even at frequencies outside the digital Nyquist zone. It is common

for analog designs to have a pole or a zero at —< and/or + on either the o and/or

jo axes.

In Figure 6.11 you can see the problem: the pair of zeros close to the jw axis at ¥2 Nyquist
will map to locations close to the unit circle at the %2 Nyquist angles. But what about the

pair of poles that are outside the Nyquist frequency in the s-plane? The other way to think
about the issue is that in the analog s-plane, the entire left-hand side, including all the infinite
frequencies, must map to the interior of the unit circle in the z-plane. Also, the entire right-
hand plane must map to the exterior of the unit circle, as shown in Figure 6.12.

So, what we need is a mathematical device to make the transformation from the s-plane to
the z-plane. It must map an infinitely large area into the unit circle. Fortunately, many of
these mathematical transforms already exist. The one best suited for us is called the bilinear
transform, and we can use it to transform an analog transfer function, H(s) into a digital
one, H(2).



172  Chapter 6

¥2 Nyquist

Im H
\ ??? /o

<+— Nyquist

Nyquist «— 2 Nyquist

i
o

G
<«—-" Nyquist

Nyquist

7?77
—V Nyquist / v

Figure 6.11: Mapping the poles and zeros from the analog s-plane to the digital z-plane.

+D

Y2 Nyquist

\lm

Nyquist
Nyquist ¥ Nyquist

0Hz

o
-Nyquist

=Nyquist

Y2 Nyquist /'

-

=@

Figure 6.12: Mapping the infinitely large left-hand plane into the finite space inside the unit
circle and the right-hand plane into the exterior of the unit circle.



Audio Filter Designs: IIR Filters 173

We wish to convert an analog transfer function H(s) into a sampled equivalent H(z).
Effectively, this means we need a way to sample the continuous s-plane to produce the
sampled z-plane version. In other words, we need to create a sampled analog transfer function
H,(S) where the subscript s stands for “sampled.” We seek to find a function g(z) such that
Equation 6.9 holds true.

$=9(2)
H(s) — H(2) (6.9)

Since the sample interval is T, then the term T would correspond to one sample in time.
So, if we evaluate H(z) by letting z = &/T then we will arrive at the sampled analog transfer
function H(s) in Equation 6.10:

7= eij

HE) =23 @) H(s) (6.10)

To solve, we note that s = jw (the analog definition of s) and z = &' to get Equation 6.11:

7 = eST
In(z) = In(e*T)
In(z) = sT (6.11)
or
sT = In(z)

We now have the relationship between s and z, but we need to deal with taking the natural log
of z, which doesn’t have a closed form solution. If we use the Taylor series expansion for In(),
we get Equation 6.12 for Re(z) > 0:

z—1 1/z—-1\* 1/z-1\° 1/z-1Y
ST:Z + - — +7 T e
z+1 3\z+1 B\z+1 7\z+1

Taking the first term only (6.12)
2z—-1
s==
Tz+1

This first term approximation of the general solution is the bilinear transform. The bilinear
transform we use is Equation 6.13:
z—-1
z+1

S = (6.13)
The 2/T term washes out mathematically, so we can neglect it. This equation does the
mapping by taking values at the infinite frequencies and mapping them to Nyquist. So, a pole
or zero at —oo or + is mapped to Nyquist. The other frequencies between Nyquist and —o
or +oo Hz are squeezed into the little region right around Nyquist, just inside the unit circle,
as shown in Figure 6.13.



174 Chapter 6

Y2 Nyquist

\‘Im

<«— Nyquist

Nyquist O «— V2 Nyquist

—
O [«—-Y2 Nyquist

<«— -Nyquist

-2 Nyquist &

Figure 6.13: The bilinear transform maps the area outsize the Nyquist zone on the left-hand
plane to an area just inside the circle near Nyquist.

The bilinear transform maps analog frequencies to their corresponding digital frequencies
nonlinearly via the tan() function (Equation 6.14):

If
w, = tan |:(’)(;s:|

where (6.14)
= the analog frequency
wy = the mapped digital frequency

the sample rate

€
Q
I

m—h
|

The tan() function is linear at low values of w but becomes more nonlinear as the frequency
increases. At low frequencies, the analog and digital frequencies map closely. At high
frequencies, the digital frequencies become warped and do not map properly to the analog
counterparts. This means that a given analog design with a cutoff frequency f, might have the
wrong digital cutoff frequency after the conversion.

The solution is to pre-warp the analog filter so that its cutoff frequency is in the wrong
location in the analog domain, but will wind up in the correct location in the digital
domain. To pre-warp the analog filter, you just use the same equation (Equation 6.14)
applied to the cutoff frequency of the analog filter. When you combine all the operations
you get the bilinear Z transform, or BZT. The step-by-step method of conversion is as
follows (Ifeachor 1993):



Audio Filter Designs: IIR Filters 175

1. Start with an analog filter with a normalized transfer function H(s)—"normalized” means
the cutoff frequency is set to = 1 rad/sec; this is the typical way analog transfer func-
tions are described and specified.

2. Choose the cutoff frequency of the digital filter wy; get the pre-warped analog corner
frequency using Equation 6.15:

(6.15)

If.
w, = tan {wds]

2

3. Scale the normalized filter’s cutoff frequency out to the new analog cutoff w, by replacing
s with s/w, in the analog transfer function.
4.  Apply the bilinear transform by replacing s with Equation 6.13:
z—-1
ST z+1
5. Manipulate the transfer function H(z) algebraically to get it into the familiar form so you
can identify the coefficients (format the numerator and denominator to match the transfer
functions you studied in the last chapter); this is often the most difficult part.

(6.13)

NOTE: This only works for LPF designs but, fortunately, there are easy conversions. The
difference is in the step where you scale the analog filter’s cutoff frequency just before
applying the bilinear transform. How it works is described next.

For LPF and HPF:

* Specify wy, the desired digital cutoff frequency.
» Calculate the pre-warped analog cutoff with Equation 6.14:

If
W, = tan{wd 5}

2
h
Where (6.14)
w, = the analog frequency
wy = the mapped digital frequency
fy = the sample rate
For BPF and BSF:
» Specify wy_and wyy, the lower and upper corner frequencies of the digital filter.
«  Calculate the two analog corner frequencies with Equation 6.16:
wg /f
W, = tan{dst}
If
O = tan{wdgs} (6.16)

2 _
W = W5 Way

W= o4 — 0wy



176 Chapter 6

Next, scale the filter with Equation 6.17:

Filter Type Scaling Factor
LPF s=—>
Wa
HPF =2
S
BPF S+ wg
S =
Ws
Ws
BSF S=- 5
S° + wj

Example:

(6.17)

Convert the basic resistor-capacitor (RC) analog LPF in Figure 6.14 into a digital LPF. The

sample rate is 44.1 kHz and the desired cutoff frequency is 1 kHz.
Step 1. Get the normalized H(s):

H(jo) = ————
(o) =50rc + 1
Let s = jow
Normalize by setting RC = 1
1
H =
©) s+1

Step 2: Calculate the pre-warped analog cutoff:
f. = 1kHz
wy = 27f, = 6283.2 rad/sec

T 6283.2)(1/44100
©, = tan<wd> = tan[( )(2 )

} = 0.07136

"Me; AYAYAY, j‘_ OVour

Figure 6.14: A simple analog RC low-pass filter.

(6.18)

(6.19)

(6.20)



Audio Filter Designs: IIR Filters 177

Step 3: De-normalize the analog transfer function H(s) with the appropriate factor:

1
s+1

H(s) =

S L
S = w—because this is an LPF

: 6.21
H(s) = ! = L o2
slo, + 1 /0.07136 + 1
~0.07136
s+ 0.07136

Step 4: Apply the BZT:

H(Z) = HO)ls=¢-vie+y)
0.07136
z+1
B 0.07136(z + 1)
~z— 1+ 0.07136(z + 1)
0.07136z + 0.07136
z — 1 + 0.07136z + 0.07136
~0.07136z + 0.07136
z + 0.07136z — 0.9286

+ 0.07136

(6.22)

Get into standard H(z) format:

~0.07136 + 0.07136z !
1+ 0.07136 — 0.9286z 1

_0.0667 + 0.06672° 1  a, + a;z
1 - 0.8667z - 1+ bzt

H(2)

Equation 6.22 is in the format that we need with the numerator and denominator properly
formed to observe the coefficients. From the transfer function, you can see that:

« a,=0.0667
« a, = 0.0667
e b, = -0.8667

The difference equation is Equation 6.23:
y(n) = 0.0667x(n) + 0.0667x(n — 1) + 0.8667y(n — 1) (6.23)



178 Chapter 6

x(n) y(n)

Figure 6.15: The digital equivalent of the analog RC low-pass filter.

The block diagram of the completed design reveals a pole-zero filter. This makes
sense—the original analog filter had a pole at s = —1 and a zero at infinity. The digital
equivalent has a pole at z = 0.8667 and a zero at z = —1 (Nyquist) both on the real axis
(Figure 6.15).

6.4.1 Challenge
The analog transfer function of a second-order LPF is Equation 6.24:

1

HE) = o W + 1

(6.24)

The analog LPF has the following specifications: Q = 1, f, = 1 kHz, f, = 44.1 kHz. Apply
the bilinear transform and some algebra to find the coefficients. (Answer: a, = 0.0047,
a, = 0.0095, a, = 0.0047, b, = —1.8485, b, = 0.8673.)

6.5 Effect of Poles or Zeros at Infinity

In the analog transfer function (Equation 6.19) of the previous example, you can see that
there is an analog pole at s = —1 since that would make the transfer function go to infinity,
and there is a zero at s = o because that will cause H(s) to become 0.0. There is also a zero
at s = —oo, Interestingly, these two infinity values are in the same location because the reality
is that the o and jw axes actually wrap around an infinitely large sphere and touch each other
at oo, So, in this first-order case engineers only show the single zero at infinity and they
choose to use the one at — so this transfer function’s pole and zero would be plotted like
Figure 6.16 in the s-plane. For low-pass zeros at infinity, the bilinear transform maps the zero
at infinity to z = —1 (Nyquist) (Figure 6.17).



Audio Filter Designs: IIR Filters 179

¥

Figure 6.16: The pole at s = —1 and the zero at s = +x
plotted in the s-plane.

Im A )‘;(0
* Re OHF ¥ >
\ -1 (8]
A J
Figure 6.17: The bilinear transform maps real zeros at infinity to the Nyquist
frequency in the z-plane.
Next consider the second-order analog low-pass filter transfer function:
1
H(s) =
©) s+ (1/Q)s + 1
which factors as (6.25)
1
H(s) = -
©) (s—P)s—P)

This transfer function has a pair of conjugate poles at locations P and P” or (a + bjw) and
(a — bjw) as well as a pair of zeros at *cc. The bilinear transform maps the poles on the



180 Chapter 6

left side of the s-plane to locations inside the unit circle. Once again, it maps the zeros at +o

to z = —1 or the Nyquist frequency (Figures 6.18 and 6.19).

There are several methods of overcoming this problem (Orfanidis 1997; Massberg 2011).

The Massberg approach is discussed further in Section 6.9. Even with the error in the BZT,
it is still an excellent tool for converting existing designs. You will notice that in the design
methods, we start with the desired cutoff frequency (and Q, where applicable) and calculate

the coefficients.

+bjm

Figure 6.18: The bilinear transform maps imaginary zeros at infinity
to Nyquist in the z-plane.

Amplitude
1.0

o Heading to
==~ _ zeroatinfinity —m

0.0 |

| H
1/4 Nyquist ¥ Nyquist Nyquist
/8 f./4 f)2

Figure 6.19: The zero at infinity causes an error in the upper part of the frequency.

The error is worst at the Nyquist frequency; the analog error is exaggerated for
the purposes of illustration.

Frequency



Audio Filter Designs: IIR Filters 181

6.6 Generic Bi-Quad Designs

The following classical analog filters are converted to digital and implemented as bi-quad
topologies:

* LPF (low-pass filter)

e HPF (high-pass filter)

* BPF (band-pass filter)

» BSF (band-stop filter)

» Second-order Butterworth LPF and HPF

» Second-order Linkwitz—Riley LPF and HPF (good for crossovers)
» First- and second-order all-pass filters (APF)

Low-pass and high-pass filters are characterized by their corner frequency f. and (for second-order
and higher) their Q or resonant peaking value. A Q of 0.707 is the highest value Q can assume
before peaking occurs. It is called the Butterworth or maximally flat response. With a Q of 0.707
the —3 dB point of the filter will be exactly at f.. For these designs, once the Q rises above 0.707,
it will correspond to the peak frequency and not the —3 dB frequency. Equations 6.26 through
6.29 relate the Q, peak frequency, —3 dB frequency, and the peak magnitude values.

ran =t (o~ 1) (- 1)
—-3dB — ‘¢ 2Q2 2Q2 ( )

f — 1:—3dB
¢ 1 1 2 (6.27)
()oY
2Q 2Q
QZ
Peak gain = —————(Q > 0.707only) (6.28)
Q2 — 0.25
Peakys = 20log(peak gain) (6.29)

Band-pass, band-stop, graphic, and parametric EQs are specified by their center frequency f

and Q or bandwidth (Equation 6.30). Depending on the filter, the arithmetic (Equation 6.31)

or geometric (Equation 6.32) mean is used to relate f, and the band edges f,, and f,.
fe

BW

Q= (6.30)

fU_fL
2

Arithmetic mean = f, = (6.31)

Geometric mean = f, = Vfyf, (6.32)



182 Chapter 6

The block diagram is shown in Figure 6.20.

y(n)

Figure 6.20: Generic bi-quad structure.

The difference equation is as follows:

y(n) = agx(n) + a;x(n — 1) + ax(n — 2) — byy(n — 1) — byy(n — 2)

6.6.1 First-Order LPF and HPF

Specify:

« f,, corner frequency; see Figure 6.21 for examples

The design equations are as follows:

LPF
0, = 2=t/
_ COos 0,
v 1 + sin 6,
1-v
a [
0 2
1-—v
a =
! 2
a2:00
by = —v

b2 = 00

0

HPF
= 2wt /f,
Cos 6,
1 + sin 6,
1+
2

_ _(1 + 'y)
B 2
=0.0

=7
=0.0

(6.33)

(6.34)



Audio Filter Designs: IIR Filters 183

+12.0 dB
0.0 dB

-12.0 dB
-24.0 dB
-36.0 dB
-48.0 dB
-60.0 dB

10 Hz

1kHz 10 kHz

Figure 6.21: First-order LPF with f, = 100 Hz, 250 Hz, 500 Hz, and 1 kHz.

6.6.2 Second-Order LPF and HPF

Specify:

» f,, corner frequency

» Q, quality factor controlling resonant peaking; Figure 6.22 shows the effect of Q and

peaking

The design equations are as follows:

LPF
0, = 2mf./f,
1
d [ ——
Q
d
1 —Esin 0.
B=05—
1 +Esin 0
v = (0.5 + B)cos 0,
05+ B —v
P00
_05+pB—v
=50
b]_: _2'Y

b, = 28

HPF
0, = 2mf, /1,
1
d Q
1- gsin 0.
B = 05—
1+ Esin 0
v = (0.5 + B)cos 0, (6.35)
4 — 05+B+ vy
0 2.0
a,=—(05+pB+1)
a — 05+B+ vy
a 2.0
b, = —2vy
b, = 28



184 Chapter 6

+30.0 dB
+15.0 dB

0.0dB
-15.0dB
-30.0dB

-45.0 dB

= AN
68048 10Hz 100 Hz 1kHz 10 kHz

Figure 6.22: Second-order LPF responses: f, = 1 kHz, O = 0.707, 2, 5, 10.
Notice that as the O rises above 0.707, f. becomes the peak frequency.

6.6.3 Second-Order BPF and BSF

Specify:

» f,, corner frequency
*  Q, quality factor controlling width of peak or notch = 1/BW; Figure 6.23 shows the BSF
version

Note: These filter coefficients contain the tan() function, which is undefined at /2 and then
flips negative between 7/2 and . The argument is 6./2Q, so care must be taken with these
filters to ensure that 6/2Q does not fall on the range of 7/2 to r. One solution is to clamp the
value of 6,/2Q so that it never equals or exceeds /2.

The design equations are as follows:

BPF
0, = 2mf, /1,

8 = 0.51 — tan(0./2Q)

1 + tan(6,/2Q)
v = (0.5 + B)cos 6,

BSF
0, = 2mf./f,
1 — tan(0./2Q)
1 + tan(6./2Q)
v = (0.5 + B)cos 6,

B=05

a=05-p =05+ (6.36)
a; = 0.0 a; = —2v

a, = —(05—-B) a,=05+8

b, = —2v b, = —2v

b, = 28 b, = 28

6.6.4 Second-Order Butterworth LPF and HPF

Specify:
« f,, corner frequency



Audio Filter Designs: IIR Filters 185

+12.0dB BW =500 Hz

0.0dB e ——
-12.0dB :
-24.0dB
-36.0dB
-48.0dB
-60.0dB

10 Hz 100Hz 1kHz 10 kHz

Figure 6.23: Second-order BSF responses: f;, = 1 kHz, bandwidth = 500 Hz (narrowest),
2 kHz, 5 kHz, and 10 kHz (widest).

Butterworth low-pass and high-pass filters are specialized versions of the ordinary second-
order low-pass filter. Their Q values are fixed at 0.707, which is the largest value it can
assume before peaking in the frequency response is observed.

The design equations are as follows:

LPF HPF
1

C= m C = tan(wf,/f)
ay = : ay = 1

" 1+Vc+C? " 1+V2c + ¢ (6:37)
a; = 23, a, = —2a,
A = q a = a

b, = 2a,(1 — C?) b, = 2a,(C? — 1)

b, = a(1 — V2C + C?) b, = ay(1 — V2C + C?)

6.6.5 Second-Order Butterworth BPF and BSF

Specify:

» f,, corner frequency
e BW, bandwidth of peak/notch = f./Q

Butterworth BPF and BSF are made by cascading (BPF) or paralleling (BSF) a Butterworth
LPF and Butterworth HPF.

Note: These filter coefficients contain the tan() function, which is undefined at 7/2 and then
flips negative between 7/2 and . The argument is wf . BW/f,, so care must be taken with these
filters to ensure that wf BW/f, does not fall on the range of w/2 to «. One solution is to clamp
the value of wf.BW/f; so that it never equals or exceeds /2.



186 Chapter 6

The design equations are as follows:

BPF
3 1
tan(wf.BW/f,)
D = 2 cos(2wf./f,)
ay = 1
1+C
a, = 0.0
a = —a
b, = —a,(CD)
b, = ay(C — 1)

6.6.6 Second-Order Linkwitz—Riley LPF and HPF

Specify:

» f,, corner frequency (—6 dB)

BSF
= tan(wf.BW/f,)

= 2 cos(2nt/f,)

1

“1+cC (6.38)
= —a,D

= a,

= —ayD

=ay(1 — C)

Second-order Linkwitz—Riley LPFs and HPFs are designed to have an attenuation of —6 dB
at the corner frequency rather than the standard —3 dB, shown in Figure 6.24. When these
filters are placed in parallel with the same cutoff frequency, their outputs sum exactly and
the resulting response is flat. They are often used in crossovers. We use them for the spectral
dynamics processor later on.

The design equations are as follows:

LPF
0, = =f /f,
Q.= =f,
"~ tan(6,)
d = k% + 02 + 2k,
05
a —_
8
QZ
a =2—
S
45
a = —
2700
b, — —2k? + 207
t 3
-2k, + k* + O?
b2 =

3

(6.39)

—2k? + 20?2
d
-2k, + k2 + O?
d




Audio Filter Designs: IIR Filters 187

All pass filters have interesting designs that yield equally interesting results. Their frequency
responses are perfectly flat from DC to Nyquist. However, the phase responses are the

same as those in first- and second-order LPFs. You get all of the phase shift but none of the
frequency response change. These filters can be found in crossovers and reverb algorithms.
They are also used for the phaser effect. APFs are designed with pole-zero pairs whose pole/
zero radii are reciprocals of one another. For a first-order APF, the pole lies somewhere on the
real axis inside the unit circle at radius R. The zero lies outside the unit circle at radius 1/R
(Figure 6.25).

If you think about the geometric interpretation and analysis of the transfer function, as you
move around the unit circle, your vector distances from the pole and zero will always be
reciprocals, or 1/each other. The amplitude response is then flat but the phase response does
change because it is not based on the distance to the point in question but rather on the angle
of incidence of the ray line drawn from the analysis point to the pole or zero. The second-
order APF has complementary poles and zeros also at reciprocal radii (Figure 6.26).

0.0 dB pmmmmmmmme e T e e o o e
-2.0dB B R Butterworth

-40dB / /

6.0dB Linkwitz-Riley \ .

-8.0dB
-10.0dB
-12.0dB

10 Hz 100 Hz 1kHz 10 kHz

Figure 6.24: A comparison between Butterworth and Linkwitz-Riley filters
each with f, = 1 kHz; the Linkwitz-Riley filter is down -6 dB at f,.

im Phase

DD

Angle

~90° _ |

-180°

Figure 6.25: The first-order APF has a flat frequency response but shifts
the phase of the signal by -90 degrees at f; (77/2 in this example).



188 Chapter 6

-360°
8]

rRe =180 -

Angle

Figure 6.26: The second-order APF adds another -90 degrees of phase shift at f; (7/2 here).

6.6.7 First- and Second-Order APF

Specify:

» f,, corner frequency
e Q, steepness of phase shift at f, (second-order only)

The design equations are as follows:

First-Order APF
_ tan(wf /f) — 1

~ tan(wf,/f) + 1

a =«
a; = 1.0
a, = 0.0
b, =«

b, = 0.0

6.7 Audio Specific Filters

The basic classical filters provide many functions in audio and can be very musical

Second-Order APF
_ tan(wQ/fy) — 1

~ tan(wQ/f) + 1

B = —cos 8,
8 = —a
a=p1-a)
Oy = 10

b, = B(l - Ol)
b2 = —x

(6.40)

(e.g., resonant low-pass filters in synthesizers) but you also need filters that are very audio

specific. These filters are found all throughout plug-ins and have been used in mixing
consoles and other audio gear for decades. These designs are often not found in DSP
textbooks because of their specific audio-only functions. These filters include:

Shelving filters

e Parametric EQ
»  Graphic EQ



Audio Filter Designs: IIR Filters 189

These all require a slightly modified bi-quad structure. The reason is that these filters require
mixing the original, unfiltered input directly with the output in a mix ratio. The ratio is
controlled by two more coefficients, ¢, and d,.

6.7.1 Modified Bi-Quad

You can see that the filter in Figure 6.27 is a bi-quad with two extra coefficients, ¢, and d,
which make the wet-dry mix ratio needed for these filter types.

6.7.2 First-Order Shelving Filters

Low shelving

Specify:

o f,, low shelf frequency
e Low-frequency gain/attenuation in dB

High shelving
Specify:

» f;, high shelf frequency
» High-frequency gain/attenuation in dB

Co y(n)

Figure 6.27: The modified bi-quad required for audio filters.



190 Chapter 6

The design equations are as follows:

Low Shelving
0, = 2wt /1
= 1OGain(dB)/20

4
B = 1+ p
5 = ptan(6.,/2)
_1-3
YT 14
a = 1- > -
a, = 0.0
b, = —v
b, = 0.0
Co=p—10
dy = 1.0

High Shelving
0, = 2mf. /f,
= 1OGain(dB)/20
1+
b=
d = B tan(6,/2)
1-3
YT 1+
o = 1+ (6.41)
0 2
“= - (337)
a, = 0.0
by = —y
b, = 0.0
Co=p—10
do =10

Shelving filters are used in many tone controls, especially when there are only two, bass
and treble, which are almost always implemented as shelf types. The filters have a corner
frequency and gain or attenuation value. Figure 6.28 shows a family of shelving filter

response curves.

+12.0 dB —

+8.0 dB

+4.0 dB

0.0dB

-4.0 dB

-8.0 dB

-12.0 dB 10Hz2

TkHz 10kHz

Figure 6.28: Low and high shelving filter responses. The low shelf frequency = 400 Hz,
high shelf frequency = 5 kHz, with a variety of boost/cut settings.



Audio Filter Designs: IIR Filters 191

6.7.3 Second-Order Parametric/Peaking Filter: Non-Constant-Q

Specify:

» f,, center frequency
* Q quality factor
e Gain/attenuation in dB

Parametric EQs allow you to adjust the center frequency, Q and boost or cut creating any
arbitrary bumps or notches in the frequency response (Figure 6.30). The parametric EQ is a
variation on the ordinary band-pass and band-stop filters that generates symmetrical boost/
cut curves and mixes in the dry signal to create the final response. A true digital parametric
EQ not only has independent controls, but each control only varies one coefficient in the
filter. The parametric EQs in this section afford the same frequency response but adjustments
in any parameter require a recalculation of all the coefficients. These filters are also called
peaking filters.

This parametric EQ is not constant-Q, which means the bandwidth varies depending on the
boost/cut value. Some analog filters have the same issue, although there is occasional debate
over whether or not this is desirable in an EQ design. Figure 6.29 shows this EQ with three
different boost curves with a center frequency of 1 kHz and Q = 1.0; therefore, the bandwidth
should also be 1000 Hz.

Note: These filter coefficients contain the tan() function, which is undefined at w/2 and then
flips negative between 7/2 and . The argument is 6,/2Q, so care must be taken with these
filters to ensure that 6./2Q does not fall on the range of 7/2 to «r. One solution is to clamp the
value of 6./2Q so that it never equals or exceeds /2.

+12.0 dB A=
+9.0 dB |
+6.0 dB
+3.0 dB
0.0 dB

-3.0dB

B0 10 Hz 100 Hz 1kHz 10 kHz

Figure 6.29: The non-constant-Q peaking filter has different bandwidths for
different gain values; the bandwidth widens as the gain is reduced.
f.=1kHz, O =0.707.



192 Chapter 6

+12.0 dB ~
+8.0 dB O
+4.0 dB 2 N
0.0 dB
-4.0 dB

-8.0 dB

Fende 10Hz 100 Hz 1KHz 10 kHz

Figure 6.30: A set of responses for the non-constant-Q parametric/peaking
filter with a variety of boost/cut settings. f, = 1 kHz, O = 2.

The design equations are as follows:

8, = 2nf./f,
= 10Gain(dB)/20
[ = 4

1+ p

o .1 — {tan(6,/2Q)
B =057 ¢ tan(6,/2Q)
v = (0.5 + B)cos 6,

2 = 05 — B (6.42)
a, = 0.0

a, = —(05-p)

b, = —2v

b, = 2B

Co=wn—1.0

d, = 1.0

6.7.4 Second-Order Parametric/Peaking Filter: Constant-Q

Specify:

» f,, center frequency
e Q, quality factor
e Gain/attenuation in dB

This design creates an almost perfect constant-Q filter with only a small amount of error
for low-boost (or cut) values (Figure 6.31). The effect of the constant-Q design is clearly
evidenced in the frequency response plot (Figure 6.32).



Audio Filter Designs: IIR Filters

193

+12.0dB
+9.0dB
+6.0dB
+3.0dB

0.0dB
-3.0dB
-6.0dB

10Hz

100 Hz

1kHz

10 kHz

Figure 6.31: The constant-Q peaking filter preserves the bandwidth over most
of the range of boost/cut values. f, = 1kHz, Q = 0.707.

The design equations are as follows:

K = tan(wf./f,)
V0 = 10boost/cut(dB)/20

1
dy=1+K+K

Q
e =1+ K+ K
’ VoQ

VO
a=1+_"K+K

Q
B=2(K-1)

VO
v=1—-—K+K?

Q

1
8=1-_K+K

Q

1
n=1-—"K+K
VoQ

Boost

(6.43)
Cut

d

ao = ei((j
_B
a; &
_3
ay &
_B
b, = &
-1
b, e
CO = 10
do = OO



194 Chapter 6

+12.0 dB ~
+8.0 dB
+4.0 dB
0.0 dB -
40 dB N\
8.0 dB /L
~12.0 dB

10Hz 100 Hz 1kHz 10 kHz

Figure 6.32: A set of responses for the constant-Q parametric/peaking filter with a
variety of boost/cut settings. f, = 1 kHz, Q = 2.

6.7.5 Cascaded Graphic EQ: Non-Constant-Q

Specify:

« f,, center frequency
e Gain/attenuation in dB

The graphic EQ is a fixed Q variation on the parametric EQ. In a graphic EQ, the user only
has control over the boost and cut of a set of filters tuned to fixed center frequencies. The Q
that is used will depend on the boost or cut settings as well as the number of bands of EQ.

For non-constant-Q graphic EQs, the method of finding the proper Q can be difficult because
the bandwidth will change for various settings of the boost/cut. The value for Q is sometimes
chosen so that when all the controls are set to the maximum boost or cut values, the frequency
response is as flat as possible.

The Q for constant-Q filters is easy to calculate knowing the number of bands split across the
10 octaves of audio. It is a good starting point for developing a non-constant-Q EQ plug-in;
experimentation may be needed to find the ideal Q for your particular design. You might also
allow the user to adjust the value within reason. The equation relating Q to the number of EQ
bands is Equation 6.44.

N = Number of modules
10
Vo (6.44)

TN

Q

For a 10-band graphic EQ, Q = 1.414, while for a 31-band (aka 1/3 octave) EQ, Q = 4.32.
The center frequencies of the bands are usually found with the following International
Organization for Standardization (ISO) standard equation:



Specify:

f., center frequency

Gain/attenuation in dB

x(mMO—p

Audio Filter Designs: IIR Filters 195
q= Number of bands
10
y (6.45)
f, = 1000*2 "
n=0,*1, *2, =3, etc...

6.7.6 Cascaded Graphic EQ: Constant-Q

For a 10-band EQ, this works out (with rounding) to 32 Hz, 64 Hz, 125 Hz, 250 Hz, 500 Hz,
1 kHz, 2 kHz, 4 kHz, 8 kHz, and 16 kHz.

The cascaded graphic EQ topology is shown in Figure 6.33. It consists of a simple series
cascade of each of the filter modules. The non-constant-Q graphic uses the same non-
constant-Q peaking filter algorithm, but with the Q fixed according to Equation 6.42. You can
get a good feel for how the Q affects the overall response by looking at a plot with all controls
set to the maximum boost (or cut). For a 10-band non-constant-Q graphic, we observe the
combined response shown in Figure 6.34.

Non-
constant-Q
peaking
filter 1
fe=64Hz

—

Non-
constant-Q
peaking
filter 2
fe=125Hz

—

Non-
constant-Q
peaking
filter 3
fe = 250 Hz

Non-
constant-Q
peaking
filter 10
fe =16 kHz

—COy(n)

Figure 6.33: The cascaded graphic EQ topology; this is for a 10-band design
using the ISO center frequencies. The design equations for each module use

the non-constant-Q algorithm above.

+36.0 dB
+30.0 dB
+24.0 dB
+18.0 dB
+12.0 dB

+6.0 dB

00 8-~ 10 Hz

100 Hz

10 kHz

Figure 6.34: At the prescribed constant-Q value of O = 1.414 we observe rippling and
an increased high-frequency response with all controls at maximum boost.



196 Chapter 6

constant-Q constant-Q constant-Q constant-Q
peaking peaking peaking peaking
XMO— fier 1 | itter 2 | filter 3 »  Fiter 10 Oyn)
fo=64Hz f,=125Hz fe= 250 Hz f.= 16 kHz

Figure 6.35: The cascaded graphic EQ topology; this is for a 10-band design using the
exact unrounded ISO center frequencies. The design equations for each module use the
constant-Q algorithm above.

+30.0dB |
+25.0dB |
+20.0dB |
+15.0dB |
+10.0dB |
+5.0dB|
0.0dB "

10 Hz ' 100 Hz 1 kHz " 10kHz

Figure 6.36: The 10-band constant-Q graphic EQ with the prescribed O = 1.414
produces less low-frequency rippling and a decreased high-frequency response
with all controls at maximum boost.

The constant-Q graphic EQ follows the same design pattern (Figure 6.35) except that you
use the constant-Q peaking filter in each of the modules. The equations for finding the center
frequencies and Q are the same as above. Bohn (1986) recommends not rounding the ISO
center frequencies but rather use the exact values. Figure 6.36 shows the composite response
with all controls set to full boost.

6.8 Design a Resonant LPF Plug-In

We’ll continue with a resonant LPF design. The filter will use the second-order bilinear
transform design and the bi-quad structure for implementation. After that you will redesign
the filter using the Massberg technique for analog emulation and examine the differences.
Note: This filter is found in RackAFX’s module menu item under “HP/LP Filter” for you to
experiment with and use to check your own implementations.

For this project, we’ll be using our first built-in object. I’ve already prepared a bi-quad object
for you to use in this (or any other) project. It is not a RackAFX plug-in but rather a simple
C+ + object that accomplishes only one task: the bi-quad structure realization. The bi-quad
can be used to make any first- or second-order feed-forward or feed-back type filter. Let’s take
a moment to check out the CBiquad object. You can find the interface in the pluginconstants.h



Audio Filter Designs: IIR Filters 197

Table 6.2: The CBiquad object interface.

CBiquad
Member Variables Purpose
protected: Implements the four delay elements needed for the bi-quad:
float m_f_Xz_1 x(n=1),x(n-2),y(n-1)and y(n - 2) in these protected
float m_f Xz_2 variables
float m_f_Yz_1
float m_f Yz 2
public: The filter coefficients
float m_f_a0
float m_f a1l
float m_f_a2
float m_f_b1
float m_f b2
Member Functions
void flushDelays() Initialize all delay elements with 0.0s
float doBiQuad(float f_xn) Do one cycle of filter operation; return value is y(n)
Parameters
* float f_xn Input: the current input sample, x(n)

file and the implementation in the pluginobjects.cpp files, respectively. The CBiquad object
has the members and variables in Table 6.2.

You can see that this object is simple; it only has two functions, one to reset and the other to
do the bi-quad calculation. The coefficients must be calculated externally—this object has
no knowledge of the filter type that it is implementing, the sample rate, and so on. You will
see that this simple object will also save you a lot of coding for filters in later chapters. We
will need to set up the user interface (UI) and then link the variables to the bi-quad objects in
userinterfaceChange().

6.8.1 Project: ResonantLPF

Create the project and name it “ResonantLPF,” then add the sliders for the graphical user
interface (GUI).

6.8.2 ResonantlLPF GUI

Figure 6.37 shows what your final GUI will look like. You will need the controls shown in
Table 6.3.



198 Chapter 6

Fc Q
1000.0 Hz 0.71

Figure 6.37: The resonant LPF GUI.

Table 6.3: The GUI controls for the resonant LPF.

Slider Property Value Slider Property Value
Control Name Fc Control Name 0
Units Hz Units

Variable Type float Variable Type float

Variable Name m_f _fc_Hz Variable Name m_f Q
Low Limit 100 Low Limit 0.5
High Limit 5000 High Limit 20
Initial Value 1000 Initial Value 0.707

6.8.3 ResonantLPF.h File

RackAFX provides you with the built-in bi-quad object named CBiquad and you don’t
need to do anything at all to add it to your project. You can just declare your bi-quad objects
directly in the .h file like you would any other object:

CBiguad m_LeftLPF; // or whatever you like to name it
Here’s my .h file with the left and right LPF objects declared:

// Add your code here: --------------- oo //
CBiquad m_LeftLPF;
CBiquad m_RightLPF;

/7 END OF USER CODE - ---- === mmmmmmm oo s oo oo /1

We’ll also need a function to calculate the bi-quad’s coefficients (a,, a;, a,, by, and b,) and we
can share this between the left and right objects (i.e., both LPFs will have the same cutoff and
Q, so they will also have the same coefficients). Declare this now:

// Add your code here: -------------------o oo //

CBiquad m_LeftLPF;
CBiquad m_RightLPF;



Audio Filter Designs: IIR Filters

199

void calculatelLPFCoeffs(float fCutoffFreq, float fQ);

/

/ END OF USER CODE === - - - mm o mm oo oo oo o

6.8.4 ResonantLPF.cpp File

Write the calculateLPFCoeffs() function in the .cpp file by using Equation 6.35. | have used
the same intermediate coefficient names here too.

void CResonantLPF::calculatelLPFCoeffs(float fCutofffFreq, float fQ)

{

}

// use same terms as in book:
float theta_c = 2.0*pi*fCutoffFreq/(float)m_nSampleRate;

float d = 1.0/fQ;

// intermediate values
float fBetaNumerator

// beta

= 1.0 — ((d/2.0)*(sin(theta_c)));
float fBetaDenominator = 1.0 + ((d/2.0)*(sin(theta_c)));

float fBeta = 0.5*(fBetaNumerator/fBetaDenominator);

// gamma

float fGamma = (0.5 + fBeta)*(cos(theta_c));

// alpha
float fAlpha

(0.

// left channel

m_LeftLPF.m_f_a0
m_LeftLPF.m_f_al
m_LeftLPF.m_f_a2
m_LeftLPF.m_f_bl

m_LeftLPF.m_f_b2 =

// right channel

m_RightLPF.m_f_a0 =

m_RightLPF.m_f_al
m_RightLPF.m_f_a2
m_RightLPF.m_f_bl
m_RightLPF.m_f_b2

prepareForPlay()

Flush the bi-quad buffers.

Cook the raw variables.

+ fBeta — fGamma)/2.0;

fAlpha;
2.0*fAlpha;
fAlpha;
—2.0*fGamma;
2.0*fBeta;

fAlpha;
2.0*fAlpha;
fAlpha;
—2.0*fGamma;
2.0*fBeta;

bool __stdcall CResonantLPF::prepareforPlay()

{



200 Chapter 6

// Add your code here:
m_LeftLPF.flushDelays();
m_RightLPF.flushDelays();

// calculate the initial values
calculatelLPFCoeffs(m_f_fc_Hz, m_f_Q);

return true;
}

userlnterfaceChange()

» If the user moves either slider then we have to recalculate all the coefficients because they
are interdependent on both f, and Q.
* There is no need to check the slider nControlindex value here.

bool __stdcall CResonantLPF::userInterfaceChange(int nControlIndex)
{

// update coeffs for next time

calculatelLPFCoeffs(m_f_fc_Hz, m_f_Q);

return true;
}

processAudioFrame()

» Call the methods on the filter objects to do the processing.
e They will automatically update their own delay lines and maintain themselves so the code
is simple.

bool __stdcall CResonantLPF::processAudioFrame(float* pInputBuffer, float* pOutputBuffer,
UINT uNumInputChannels, UINT uNumOutputChannels)
{
// Do LEFT (MONQO) Channel; there is always at least one input/one output
// (INSERT Effect)
pOutputBuffer[0] = m_LeftLPF.doBiQuad(pInputBuffer[0]);

// Mono-In, Stereo-Out (AUX Effect)
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1] = pOutputBuffer[0]; // Just copying

// Stereo-In, Stereo-Out (INSERT Effect)
if(uNumInputChannels == 2 && uNumOutputChannels == 2)
pOutputBuffer[1] = m_RightLPF.doBiQuad(pInputBuffer[1]);

return true;
}

Build and test your resonant LPF. Use the analyzer’s frequency and phase response features
to verify that all is working as you would expect. You now have a working resonant LPF, but



Audio Filter Designs: IIR Filters 201

the Nyquist response is always clamped to 0.0, so let’s investigate a technique to make the
response more closely match the original analog filter.

6.9 The Massberg Analog-Matched Low-Pass Filter

At the 131st Audio Engineering Society Convention in 2011, Michael Massberg presented a
solution to the clamping problem, producing first- and second-order low-pass filters that very
closely match their analog counterparts near and at the Nyquist frequency. It takes advantage
of the fact that a shelving filter with a very high upper shelf frequency has a roll-off portion
that very closely resembles the roll-off of a low-pass filter. In a nutshell, the idea is to design
a shelving filter whose upper shelf frequency is above Nyquist. In the range from DC to
Nyquist, it will resemble a low-pass filter (Figure 6.38). A unique matching scheme is applied
to force the two responses to match their gains exactly at a point halfway between the gain

at DC and the gain at Nyquist in decibels, with a slight error at points above that frequency.
The result is a filter that has an excellent approximation to the analog response it is trying

to mimic.

Massberg used first- and second-order shelving filters to produce analog-matched low-
pass filters applying the bilinear transform to produce the final result. Figure 6.39 shows a
comparison of the standard digital LPF and the Massberg LPF.

6.9.1 First-Order Massberg LPF

Specify:

» f,, corner frequency

Amplitude
dB
et o] R

—
Des;::i meassf—v Shelving filter
P with high shelf

¥ Gain at frequency above

Nyquist ~—Gain Matching Point Nyquist

Gain at R
Myquist i

| |
| |
1/4 Nyquist % Nyquist Nyquist fHigh shelf

1./8 A f.12

Frequency

Figure 6.38: The Massberg filter uses a shelving filter as a prototype. In the range from
DC to Nyquist, it very closely resembles the desired low-pass filter. The two curves are
displaced slightly.



202 Chapter 6

+30.0 dB
+15.0dB
0.0dB

Massberg

-15.0dB
-30.0dB
-45.0dB
-60.0 dB

10Hz

Unmodified LPF
100Hz 1kHz 10kHz

Figure 6.39: The Massberg and unmodified LPF responses with f, = 5 kHz and Q = 10.
The difference in the high-frequency response is evident.

The design equations are as follows:

0=

Om

Yo
Qo

(&3]

2
(3
maX(V(Tg, V)

2nf V1 — g3
Om

tan<wm>

21,

Vi(gd - )1 - d3)
1-da

ac

)
3

(6.46)

=
o+ 4+
2 e e



Audio Filter Designs: IIR Filters 203

6.9.2 Second-Order Massberg LPF

Specify:

» f,, corner frequency
*  Q, quality factor controlling resonant peaking

The design equations are as follows:
0, = 2mwf. /1
2

V() (G

Calculate €}, depending on the value of Q:

Q> \V5? Q=15
1 1-4Q*> 4
2 2-o5t 4Q T
2Q 2Q Q 9
Or = —(F/7—— Oy = ec
4Q7 - 1 2
/ 1 0
o, =0,/1— TQZ Q, = tan<2m)
0.(1 — g2)v4
Q= tan("") o, - =™ (6.47)
2 2
2 _ N2\ 14
0, - Q(ﬁ}_ _gll) Q, = min(Q, Q)
r

Calculate the pole and zero frequencies (), gains (g) and Qs

2 arctan(Q),) 2 arctan( L )
W, = s W, =
Vo,
1 1
O =

Je-GN- G T VE-GD-G)

o - J 002 — ¢) o - J %@ - &)
P (9; + 909 — 1)° P 02(91 + 99)(g; — 1)?




204 Chapter 6

1
Yo=Q¢+ Q.+ 1
p

Vo,

ag = Q2 + Q. +
0 s Q, 01
o = 2(Q% - gy) B1=2(05 - 1)
1
P 7 R (6.48)
Qz p
Qo
a e
0 Yo
851 B1
a; = — b, = —
! Yo ! Yo
Q) B,
a, = — b, = —
2 Yo 2 Yo

Challenge: Modify your digital resonant LPF plug-in to add the Massberg filter option, then
experiment with high-fidelity music and listen for the differences in sound.

Bibliography

Allred, R. 2003. Second-order IIR filters will support cascade implementations: 5 part digital audio application
tutorial. EE Times Design Guide. http://www.eetimes.com/design/audio-design/4009473/Second-order-11R-
Filters-will-support-cascade-implementations—5-Part-digital-audio-application-tutorial. Accessed August 15,
2012.

Berners, D. P. and Abel, J. S. 2003. Discrete-time shelf filter design for analog modeling. Journal of the Audio
Engineering Society, preprint 5939.

Bohn, D. 1986. Constant-Q graphic equalizers. Journal of the Audio Engineering Society 34(9): 611-25.

Bohn, D. 2008. Bandwidth in octaves versus Q in band-pass filters. Application Note 170. Mukilteo,

WA: Rane Corp.

Dodge, C. and Jerse, T. 1997. Computer Music Synthesis, Composition and Performance, Chapter 6. New York:
Schirmer.

Giles, M., ed. 1980. The Audio/Radio Handbook. Santa Clara, CA: National Semiconductor Corp.

Kwakernaak, H. and Sivan, R. 1991. Modern Signals and Systems, Chapter 9. Englewood Cliffs, NJ:
Prentice-Hall.

Lane, J. et al. 2001. DSP Filters, Chapters 4-10 and 20. Carmel, IN: Howard W. Sams & Co.

Lane, J. and Hillman, G. 1991. Implementing IIR/FIR Filters with Motorola’s DSP56000/DSP56001. APR7/D
Revl. Schomberg, ON: Motorola, Inc.

Leach, M. 1999. Introduction to Electroacoustics and Audio Amplifier Design, Chapter 6. Dubuque, 1A:
Kendall-Hunt.

Lindquist, C. 1977. Active Network Design, Chapter 2. Miami: Steward & Sons.

Lindquist, C. 1999. Adaptive and Digital Signal Processing, Chapter 5. Miami: Steward & Sons.

Massberg, M. 2011. Digital low-pass filter design with analog-matched magnitude response. Journal of the Audio
Engineering Society, preprint 8551 (Massberg 2011).

Moore, R. 1990. Elements of Computer Music, Chapter 2. Englewood Cliffs, NJ: Prentice-Hall.


http://www.eetimes.com/design/audio-design/4009473/Second-order-IIRFilters-will-support-cascade-implementations%E2%80%945-Part-digital-audio-application-tutorial
http://www.eetimes.com/design/audio-design/4009473/Second-order-IIRFilters-will-support-cascade-implementations%E2%80%945-Part-digital-audio-application-tutorial

Audio Filter Designs: IIR Filters 205

Motorola, Inc. 1991. Digital Stereo 10-Band Graphic Equalizer Using the DSP56001. APR2/D. Schomberg, ON:
Motorola, Inc.

Oppenheim, A. V. and Schafer, R. W. 1999. Discrete-Time Signal Processing, 2nd ed., Chapter 7. Englewood
Cliffs, NJ: Prentice-Hall.

Smith, J. O. and Angell, J. B. 1982. A constant gain digital resonator tuned by a single coefficient. Computer
Music Journal 4(4): 36-40.

Zoler, U. 2011. Digital Audio Effects, 2nd ed., Chapter 2. West Sussex, U.K.: John Wiley & Sons.

References

Ifeachor, Emmanuel C. and Jervis, Barrie W. 1993. Digital Signal Processing: A Practical Approach. Menlo Park:
Addison-Wesley. pp. 398-400.

Orfanidis, Sophacles. 1997. Digital Parametric Equalizer Design with Prescribed Nyquist-Frequency Gain.
Journal of the Audio Engineering Society 45(6): 444-55.






Delay Effects and
Circular Buffers

Before we can start looking at some finite impulse response (FIR) algorithms, we need to
deal with the concept of long delay lines or circular buffers. Not only are they used for the
delay effects, but also they are needed to make long FIR filters. In this chapter we’ll take a
break from the DSP filter algorithms and develop some digital delays. If you think back to the
infinite impulse response (IIR) filters you’ve worked on so far you will remember that after
implementing the difference equation, you need to shuffle the z* delay element values. You
do this by overwriting the delays backwards, like this:

m f z2=m_f z1,
m_f z1 = xn; I/l xn is the input sample

Suppose you had a filter that was higher than a second-order one and you had to implement
Z* using discrete variables for each delay element. You might wind up writing something like
this to do the shuffling:

m f z4 =m_f z3;
m_f z3 =m_f z2;
m_f z2 =m_f z1;
m_f z1 = xn; I/l xn is the input sample

But what happens when the delay line gets really long, like Z'*°? or, for a 1-second digital
delay, z**1%%? 1t’s going to be difficult to implement the delay shuffling this way. Not only
would it be tedious to code, it would also be very inefficient to have to implement all those
read/write operations each sample period. The answer to the problem of long delay lines is
called circular buffering.

Digital signal processors (DSPs) have an interesting feature in the address generation unit
(AGU), which allows you to declare a buffer of data to be addressed circularly. This kind of
addressing is not built into the C++ programming language’s array access operation. We will
have to code the mechanism ourselves. When you declare a buffer, the addressing is linear.

207



208 Chapter 7

This means that the pointer will add or subtract the offset you provide and move linearly to
the next location. Suppose you declare a buffer of floats like this:

float Buffer[10247;

and a pointer to the buffer:

float* pBuffer = &Buffer[0];

and then you enter a loop which accesses the data, incrementing by five addresses each time
through the loop:

for(int n=0; n<someNumber; n+=5)

{

float data = pBuffer[nl;
}

What happens if the pointer is accessed outside the buffer, as shown in Figure 7.1? Usually

a crash or debug halt. You always have to be careful when setting up a loop like that one

to make sure the pointer never accesses outside the buffer. But what if you are stuck with

a certain sized buffer and a different sized loop so that you are never sure if the pointer is
going to go outside the buffer on the next iteration? In a DSP chip, when you declare a buffer
to be circular, you are setting up a pointer access mechanism. Reads and writes are made
with a pointer, which is incremented or decremented by some amount to generate the next
access location. If the amount of offset causes the pointer to go outside the bounds of the
buffer, it automatically wraps to the other side, including the amount of offset, as depicted

in Figure 7.2.

START LOOP Increment pointer by +5 samples -

Buffer Buffer Buffer Buffer

pBuffer[n] —m

pBuffer[n+5] —m=

pBuffer[n+10] —m=

1

]
pBuffer[n+15] —m= 77? 1
| |
1

1

1

'

Figure 7.1: After several accesses, the pointer goes outside the buffer into an unknown location,
usually resulting in a crash.



Delay Effects and Circular Buffers 209

START LOOP Increment pointer by +5 samples (s

Buffer Buffer Buffer Buffer

pBuffer(n] —m=

pBuffer{n+15] —m=

pBuffer(n+5] —m=|

pBuffer[n+10] —

Figure 7.2: In a circular buffer, the pointer is automatically wrapped back to the top and
offset by the proper amount to continue the access-by-five-samples loop.

Circular buffers are useful in audio signal processing. You can create circular buffers of audio
samples or buffers of coefficients and loop through and access them automatically. Let’s
start with the most obvious use and make a digital delay effect.

7.1 The Basic Digital Delay

The digital delay effect or DDL (digital delay line) consists of a long buffer for storing
audio samples. The samples enter one end of the buffer and come out the other end after D
samples of delay, which corresponds to D sample periods. A feedback path allows for delay
regeneration, or repeated echoes, as shown in Figure 7.3. With the feedback control fb set
to 0, there is only a single delayed sample. With any other value, repeated echoes will form
at the rate corresponding to the length of the delay line. The block diagram is shown in
Figure 7.3.

The difference equation is as follows:

y(n) = x(n—D) + fo*y(n—D) (7.1)

x(n)+(fb)*y(n)

x(n-D)+(fb)*y(n-D)
y(n)

|
G
|

Figure 7.3: Basic DDL.



210 Chapter 7

From the difference equation in Equation 7.1, you can see that the output consists of an input
sample delayed by D samples plus a scaled version of the output at that time, fo*y(n—D). The
sequence of accessing the delay line during the processAudioFrame() function is as follows:

1. Read the output value, y(n), from the DDL and write it to the output buffer.
2. Form the product fb*y(n).
3. Write the input value, x(n) + fb*y(n), into the delay line.

You might notice that something is missing here: the shuffling of the samples through the
delay. If we use a circular buffer as the delay line, then we don’t have to shuffle data around,
but we do have to keep track of the read and write access locations in the buffer and wrap the
pointers as needed. In order to understand how the buffer operates to make a delay, consider
a circular buffer that we’ve been writing samples into each sample period and automatically
wrapping the pointer (or index) back to the top of the buffer as needed. The code would look
something like this:

// buffer size, 1 second of audio data
int nBufferlLength = 44100;

float Buffer[nBufferlLength];

. // somewhere else in code:
int nindex = 0;

// inside a loop of some kind:
pBuffer[nIndex] = audioSample;

nindex++;

// if we go outside the buffer
if(nIndex >= nBufferlength) // if we hit nBufferlLength, we are one sample outside
nlndex = 0; // wrap the pointer back to the top for the next iteration

Suppose this has been going on for some time, and we are left with the buffer looking
like Figure 7.4 after the last write access and just before we increment the pointer index.
If pBuffer is pointing to the current sample value x(n)

*  Where is the x(n—1) sample (the youngest delayed value)?
e Where is the oldest sample in the delay?

In Figure 7.5 the youngest sample, x(n—1), is in the location just before pBuffer[i], that is
pBuffer[i—1]. The oldest sample is found by working backwards to the top of the buffer,



Delay Effects and Circular Buffers 211

Buffer

pBuffer[i] —m x(n)

Figure 7.4: After many loops through the buffer, pBuffer[i] points to x(n).

Buffer

etc...
x(n-2)
x(n-1) -«— Youngest delayed sample

pBuffer[i] —m x(n)
x(n-D+1) | -«——Oldest delayed sample

Figure 7.5: The youngest and oldest samples in the delay line.

wrapping back to the bottom, and locating the oldest sample written; it is at pBuffer[i+1].
If the pointer is accessing the samples sequentially from top to bottom, then the youngest
sample is just above x(n) and the oldest is just below it. It is easy to understand that the
youngest sample is x(n—1) but why is the oldest sample labeled x(n—D +1) rather than
x(n—D)?

The answer to the question is that we overwrote the actual oldest sample, x(n—D), when we
wrote in x(n). This is one of the reasons for our rule about always performing reads before
writes in our algorithms. This means that to get the oldest sample in the delay, you must first
read out pBuffer[i] before writing into it. In other words, before the write access, the buffer
looks like Figure 7.6; you can see the oldest value x(n—D) is actually the location of the
current write operation.

The steps for creating the delay line in your plug-in are as follows:

1. Decide on the maximum amount of delay you need to provide.
2. Declare read and write index values.



212  Chapter 7

Buffer

etc...
x(h=2)
x(n-1) -«—— Youngest delayed sample

pBuffer[i] — x(n-D) -4—— Oldest delayed sample
x(n-D+1)

Figure 7.6: The location of the oldest audio sample x(n - D).

3. Declare a float buffer for each channel, right and left: for very long delay lines this is
traditionally done with the new operator in the constructor of the plug-in.
4. Initialize the buffers with 0.0 using the memset() function.

During the processAudioFrame() function, you will need to

* Use the read and write index values to operate the delay.
» Increment or decrement the indices according to the algorithm you are using.
« Check to see if you need to wrap the index values for the next sample period.

In order to use the delay line, the user needs to provide a value for the delay amount in samples
(in Section 7.3 we will allow them to enter the delay in milliseconds instead, but we will convert
this to a sample count inside the delay). In your code, there are two basic ways to do this:

1. Subtract the delay amount (in samples) from your write index, wrapping the pointer
backwards if needed, to locate the delayed sample.
2. Store a read index and offset the two indices when the user changes the delay amount.

The second option is better because you only have to offset the index values and perform
the subtraction/wrap when the user changes the delay value, instead of each time through
the processAudioFrame() loop. Suppose the user selects 100 samples of delay time.

You have declared two indices, m_nRead and m_nWrite, to use for buffer. During the
processAudioFrame() function you will need to do the following five steps.

Step 1: Read out the delayed audio data, d(n—D—100), which is 100 samples behind the
current x(n) sample time; this value is y(n), the current output value (Figure 7.7).

float yn = pBuffer[m_nRead];

Step 2: Form the input combination input + feedback * output:

float xn = pInputBuffer[0] + m_fFeedBack*yn;



Delay Effects and Circular Buffers 213

m_fFeedBack is declared in your .h file; this example code is for processing the left channel,
pInputBuffer[0].

Step 3: Write the input data into the delay line at the m_nWrite location (Figure 7.8).

Step 4: Increment the read and write pointers by one to set up for the next time through the
function; check for wrapping and do that if necessary. Can you think of other ways to do this?

// inc/wrap

m_nWritet++;

if(m_nWrite >= m_ nBufferlLength)
m_nWrite = 0;

m_nRead++;
if(m_nRead >= m_ nBufferlLength)
m_nRead = 0;

Buffer

pBufferim_nRead] —| d(n—-D-100)

100 sample offset

-«— pBuffer[m_nWrite]

m_nRead = m_nWrite —100

Figure 7.7: The delayed sample is read at location d(n-D-100), 100 samples before
the current write location.

Buffer

pBufferfm_nRead] —| d(n-D-100)

100 sample offset

x(n) + fb*y(n) | <a— pBuffer[m_nWrite]

Figure 7.8: The delayed sample plus feedback is written into the current write location.



214  Chapter 7

Notice that we wrap if the incremented index hits nBufferLength because this references the
location just one sample outside the delay line.

Step 5: In the event that the user changes the delay time, you need to recalculate the m_nRead
index to accommodate it. Note that once set up, the m_nWrite index is never changed except
to increment it through the line. In this example, the user has selected nSamples of delay in
the plug-in.

// user selects nSample delay

// first subtract the index
m_nRead = m_nWrite - nSamples;

// the check and wrap BACKWARDS if the index is negative
if (m_nRead < 0)
m_nRead += nBufferlength; // amount of wrap is Read + Length

7.2 Digital Delay with Wet/Dry Mix

Although there may be some instances where you don’t need a wet/dry mix, in general when
you make a delay plug-in, you still want to hear your unaffected signal. This can be done

by using the plug-in as an Auxiliary (AUX) Send effect rather than an insert effect. But, to
provide both capabilities, you need to provide the user with a wet/dry ratio control. The block
diagram is slightly modified as shown in Figure 7.9.

The difference equation is as follows:

y(n) = dry*x(n) + wet*[x(n—D) + fb*y(n—D)] (7.2)

7.2.1 Frequency and Impulse Responses

Consider the basic delay with no feedback applied and with the wet/dry ratio at 1:1. The
block diagram and difference equation would then reduce down to Figure 7.10.

The difference equation is as follows:
y(n) = x(n) + x(n—D) (7.3)

To find the frequency response, first take the z transform of the difference equation and form
the transfer function:

y(n) = x(n) + x(n—D)
Y(2) = X(2) + X(2z P
= X(2)(1+zP) (7.4)
Y(2)

H(Z) = @ = 1+Z_D



Delay Effects and Circular Buffers 215

Dry

x(n) —e - 7D Wet y(n)

Figure 7.9: A more useful digital delay incorporates wet and dry controls.

x(n) z0 1 y(n)

Figure 7.10: The simplified DDL of D samples delay.

Next, calculate the poles and zeros of the transfer function. We can see that this is a pure
feed-forward filter in its current state so there are only zeros. We need to find the roots of the
equation for H(2):

0=1+2zP
=2 +1
r=-1
Letz = € (7.5)
b = -1
Apply Euler

cos(Dw) + jsin(Dw) = —1
The roots (zeros) of the function lie wherever Dw causes the equation to evaluate to —1 + j0,
and we know this will happen when Equation 7.6 holds true.
cos(®) + jsin(®@) = —1+j0
if (7.6)
® = 4, 4+ 3m, £ 5, etc...



216 Chapter 7

Notice that both =1 produce the desired result of —1 + jO as well as all the odd
multiples of m: =3, =51, and so on. So the actual solution to find the roots becomes
Equation 7.7:

cos(Dw) + jsin(Dw) = —1 + j0

if

Dw = £, £3m, +£5m, .., £ N=m

until

N>D-1 (7.7)
or

zeros at w = ilg k=1,3,5..D

After N > D —1, the whole mathematical sequence repeats again, cycling through odd
multiples of . This means that there are D zeros spread equally around the unit circle. This
makes sense—the fundamental theorem of algebra predicts D roots for a polynomial of
order D. Now consider the simple case of D = 2 samples; we get Equation 7.8:

cos(2w) + jsin(2w) = —1

if
kmr 78
o= 4+—k=1,3,5,..D (7.8)
D
.
@ 2

There are two zeros, one at +m/2 and the other at —m/2. Plot those on the unit circle in the
z-plane and you can see what the frequency response will be, shown in Figure 7.11. You
can see from Figure 7.11 that the zeros produce a notch (zero of transmission) at /2. In
fact, when the delay time is very small, your ears hear the effect as a frequency response
change; your ears cannot discriminate two samples that are only 23 uS apart as separate
echoes. Now consider what would happen if we increase the delay amount to four samples,
as in Figure 7.12. Finally, what would happen if the delay is an odd value, like D = 5
(Figure 7.13)?

cos(Dw) + j sin(Dw) = —1 + jO
cos(4w) + j sin(dw) = —1 + jO

o= :I:TI;k k=1,35,..,D (7.9)

)
@ 4Ty



Delay Effects and Circular Buffers 217

-36.0dB
-48.0dB |
-60.0dB |

2kHz dkHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Im
+12.0dB |
-12.0dB
-24.0dB |
v Re

Figure 7.11: The z-plane pole/zero plot and resulting frequency response.

Im
+12.0dB
~12.0dB :
-24.0dB \ \
Re
-36.0dB | |
—48.0dB i
i 2kHz 4kHz 6kHz BkHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Figure 7.12: The z-plane pole/zero plot and resulting frequency response for D = 4 samples.

|
+12.0dB

Y] m— TN N —— A
-12.0dB

-24.0dB

-36.0dB

-48.0dB : !

-60.0dB

™
/

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Figure 7.13: The z-plane pole/zero plot and resulting frequency response for D = 5 samples.

cos(Dw) + jsin(Dw) = =1 + j0
cos(bw) + jsin(bw) = —1 +j0

w = ik; k=1,35..,D-1

(7.10)
w=+T £3T 37
5' 5’ 5
_ ™ 3
w = :I:g, :i:?, +

This kind of frequency response in Figure 7.13 is called inverse comb filtering. As we add
more and more samples of delay, we add more and more notches to the response. You can use



218 Chapter 7

the built in module in RackAFX to experiment. Figures 7.14 and 7.15 show the frequency
response for 32 samples of delay—it’s an inverse comb filter with 16 zeros in the positive
frequency domain.

7.2.2 The Effect of Feedback

When you add feedback to the delay, two things happen: first, for long delays your ear will
hear discrete repeating echoes that decay away after the signal is removed. As the delay time
gets shorter and shorter, the echoes merge, begin to ping, and then the actual filtering (which
has been going on all the time) now dominates what you hear.

In Figure 7.16, you can see the effect of feedback on the impulse response. The initial
impulse is the one through the dry path, and the next identical-sized one is the first output

of the delay line. The echoes decay, being reduced 90% on each trip through the filter.

To understand the effect on frequency response, write the transfer function and take the z
transform. To make it easier to find the pole frequencies, let the feedback value become 100%

+12.0dB

\VAVAVAVAVAVAVAYAVAVAVAVAVAVAVAVS
12008 [\ VA
| | |/ \ | | |

-24.0dB| | ' i ‘
-36.0dB
-48.0dB ‘ ‘
-60.0dB '

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Figure 7.14: Frequency response (linear) with D = 32 samples.

+12.0dB

0.0dB R NARAvA

-12.0dB i VA |' ! |

-24.0dB H ]

-36.0dB ‘ | _

s 08 | | ’ |
|

-60.0dB

_"\

10Hz 100Hz 1kHz 10kHz

Figure 7.15: Frequency response (log) with D = 32 samples.



Delay Effects and Circular Buffers 219

1.000

0.707 |

0.500 . | { x | ‘ |

0.000 | x ‘ x ‘ l All h N Y T L T T 1 T S S VO
-0.500
-0.707
-1.000

0 102 204 306 408 510 612 714 816 918
Figure 7.16: Impulse response with 90% feedback, 32 samples of delay.
1
x(n) + fb*s(n) s(n
x(n)— z-0 ¢ 1 y(n)
fb I

|

Figure 7.17: Block diagram of the DDL with feedback.

or 1.0, as shown in the block diagram in Figure 7.17; even though we know this would result
in oscillation, it will make calculating the frequencies easier.

The difference equation is as follows:
y(n) = x(n) + x(n—D) — fb*x(n—d) + fb*y(n—D) (7.11)
To derive the difference equation, label the output of the delay line s(n) (Equation 7.12):
The input to the delay line = x(n) + fb* s(n)

therefore
i? = X(n—D) + fb*s(n—D) (7.12)

y(n) = x(n) + s(n)
= x(n) + x(n—D) + fb*s(n—D)



220 Chapter 7

rearranging:
s(n) = y(n) — x(n) (7.13)
s(n — D) = y(n—D) — x(n—D)

Substituting Equation 7.13 into Equation 7.12 gives you the following difference equation:

y(n) = x(n) + x(n—D) + fb*[y(n—D) — x(n—D)]

= Xx(n) + x(n—D) + fb*y(n—D) — fb*x(n—D) (7.14)
To find the transfer function, separate variables and take the z transform:
y(n) — fb*y(n—D) = x(n) + x(h—D) — fb*x(n—D)
Y(2) — tbY(2z ° = X(2) + X(2)z °[1 — fb]
Y(2)[1 — fbz P] = X(@[1 + z P — fbz P]
Y@ 1+2zP°—fozP (7.15)
HD =35 = 1=foz®
1+ (1-fo)z’P
H@ = oz 0

The new transfer function has both zeros (which we already calculated) and poles. The poles
are caused by the feedback and will occur whenever the denominator becomes zero. If we let
fb = 1.0, then equation Equation 7.15 reduces to Equation 7.16.

1
H? = ——
@ 1-2zP
0=1-2z7P
0=2-1
=1
Letz= €
iDo _
e =1 (7.16)
Apply Euler

cos(Dw) + jsin(Dw) = 1

cos(0) + jsin(B) =1 +jo
if
O =0, £ 2w, 44w, + 6, etc...



Delay Effects and Circular Buffers 221

cos(Dw) + jsin(Dw) =1 + jO

if
2T A1r 6T N7t
Dw = 0, :EE, :EE, :EE,..., :EF
until
(7.17)
N>D-1
or

k
polesat w = i% k=0,24,6,...D

Equation 7.17 shows that the poles will occur at even multiples of 7w and DC (0 Hz) when
Euler’s equation becomes 1+ jO; the analysis is nearly identical to the zero case. Consider the
case of four samples:

cos(Dw) + jsin(Dw) =1 + jO

cos(dw) + jsin(dw) =1 + j0

® = iq;k k=0246,..D
(7.18)

T )
@S Ey Tty

w =0, + g, +m
Figure 7.18 shows the effect of 100% feedback — the response is technically infinite at the
pole frequencies. It produces a comb filter (with the teeth of the comb pointing up) rather
than the inverse comb filter you saw when examining the zeros. The amount of feedback will
affect the radius of the poles and the zeros, but not the pole or zero frequencies, which are

+36.0dB
+20.DdBI
+4.0dB |
-12.0dB 1=
-28.0dB
-44.0dB
-60.0dB

Re

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Figure 7.18: The z-plane pole/zero plot and resulting frequency response for D = 4 samples with
fb = 1.0. The peaks theoretically go to infinity.



222  Chapter 7

only dependent on the amount of delay. Consider the transfer function with a feedback value
of 0.75:

1+ (1—-fb)z P
O T e
1+0.25z°P (7.19)
H@)lp-075 = 1-075,0

The poles will have a radius of 0.75, while the zeros will have a radius of 0.25. This will
result in the z-plane plot and frequency response in Figure 7.19. You can see that the lowered
radius results in less gain at the pole frequencies. The peaks are now softer and the overall
gain is reduced down to about +8 dB from infinity. If you continue to drop the feedback to
50% (0.5) then the poles and zeros will be distributed at equal radii, as shown in Figure 7.20.

As the feedback gets smaller and smaller, the response will turn into the pure inverse comb
filtering when the poles disappear (by converging on z = 0) and the response goes to 0.0 at
the zero frequencies. What would happen if we inverted the feedback? This would mean that
the feedback value is a negative percentage. Consider —50% feedback and look at the transfer
function in Equation 7.20:

+12.0d8] _
OIOdB..................................................................................................................

O 0 -12.0dB
-24.0d8
% *——Re
-36.0d8
o o -48.0dB
X -60.0dB
2kHz 4kHz 6kHz B8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Figure 7.19: The z-plane pole/zero plot and resulting frequency response for D = 4 samples,
75% feedback.

+12.0d8]
-12.0dB
-24.0dB
-36.0dB
-48.0dB
-60.0dB

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Figure 7.20: The z-plane pole/zero plot and resulting frequency response for D = 4 samples,
50% feedback.



Delay Effects and Circular Buffers 223

1+ (1—-fb)z P
H@ =~ 0
. (7.20)
1+1.5z
H@lp=-1 = 110520

If you look at Equation 7.20, you can figure out that the pole frequencies are going to lie at
the zero frequencies (notice the signs of the coefficients). The zeros will be at a radius of 1.5,
while the poles will be at 0.5. A frequency lying on the unit circle will be under the influence
of all four poles and zeros.

For the four-sample delay, a feedback value of -62% will make the frequency response
perfectly flat, but with —3 dB of attenuation seen in Figure 7.21. The poles will have radii of
0.62 with the zeros at radii of 1.38. This means you can create a delay that has no comb/inverse
comb filtering, but only at this particular value. Other negative feedback values will give
varying degrees of cancellation. In practice, the poles will dominate and small peaks can appear
at high inverted feedback values. In the time domain, the echoes will alternate between positive
and negative values each time they are flipped in the feedback path, shown in Figure 7.22.

o
Im
+12.0d8
b3 0.0dB
-12.0d8
-24.0d8
o X% %
-36.0dB
48.0dB
X B00dB™kHz dkHz 6kHz B8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz
o

Figure 7.21: At -62% feedback with 4 samples of delay, the frequency response
becomes flat but slightly attenuated.

1.000
0.707 |
0.500 H ‘ ‘ ‘

0.000

|
-0.500 ‘ ‘ ‘
-0.707 ;

-1.000

0 102 204 306 408 510 612 714 816 918

Figure 7.22: The effect of inverted feedback on the impulse response; feedback
is —90% here.



224  Chapter 7

7.3 Design a DDL Module Plug-In

In the previous projects, it was easy enough to simply declare left and right delay elements

and coefficients for our simple filters. However, as the filters become more complex, this
becomes more tedious and is also bad coding practice since we have replicated some code.

For educational purposes, it is better to split the code out at first, but now it’s time to think
modularly. More complicated delay effects like the stereo cross feedback or LCR (left center
right) delay will be easier to implement if we have a flexible delay module to work with. In this
project, you will create a DDL module that you can use in many other projects. It is going to be
a slight modification on the above DDL + wet/dry control. Here are the specifications:

« Implements an n-sample delay line, user controllable, up to 2 seconds of delay.

e Delay is given in milliseconds.

» Has feedback capable of —~100% to +100% operation.

» Has wet/dry mix ratio control; 50/50 is an equal mix while 100/0 is full wet (delay only).

« Allows the feedback sample to be taken from the delay line, or supplied “outside” the
module; the reason for this will become evident later.

» Allows access to the current feedback output sample. This allows you to insert other
effects into the feedback path by using the switch to choose feedback_in; it also allows
for cross coupling the feedback paths of stereo modules.

The block diagram is given in Figure 7.23.

For this design, let’s implement a mono-only version. We can then make stereo versions

by making two of our member variables the module object. That’s right—you can use one
plug-in inside another by making it a member object. First, let’s get started on the DDL
module. Note: For the initial DDL modules, don’t worry about the feedback path switching.
We need to get the delay debugged and running first.

Dry

fb_in(n) ——oO

fb_out(n) & - \Q}

Figure 7.23: Our more flexible DDL module; a switch allows the user to choose where the
feedback sample is taken. Here it is using the normal output feedback path. The feedback output
is available for use at the fb_out pin.




Delay Effects and Circular Buffers 225

7.3.1 Project: DDLModule

By now, you should be getting good at RackAFX programming, SO we can move more
quickly through the process. Create the project and add the sliders.

7.3.2 DDLModule GUI

Here is the final graphical user interface (GUI) for the DDL module in Figure 7.24. You can
use my variable names or make up your own. You will need the controls shown in Table 7.1.
We do not need a switch for the feedback option on the Ul; it will only be needed by the
super plug-in that includes this module as a member object.

Delay Feedback Wet/Dry
0.00 mSec | 0.00 % | 0.00 %

Figure 7.24: The DDL Module GUL.

Table 7.1: GUI controls for the DDL module

Slider Property Value
Control Name Delay
Units mSec
Variable Type float
Variable Name m_fDelay_ms
Low Limit 0
High Limit 2000
Initial Value 0
Slider Property Value
Control Name Feedback
Units %
Variable Type float
Variable Name m_f_Feedback_pct
Low Limit -100
High Limit 100
Initial Value 0

(continued)



226 Chapter 7

Table 7.1: GUI controls for the DDL module (Continued)

Slider Property Value
Control Name Wet/dry
Units %

Variable Type float
Variable Name m_f_WetLevel_pct

Low Limit 0

High Limit 100

Initial Value 50

7.3.3 DDLModule.h File

In the .h file, add the cooked variables, m_fDelaylnSamples, m_fFeedback, and
m_fWetLevel:

// Add your code here: ------- - - -
float m_fDelayInSamples;

float m_fFeedback;

float m_fWetlLevel;

// END OF USER CODE ~------mmmmmmm s oo m oo oo

// ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! =-----ommmmommmoemaoaaoe
/] **--0x07FD--**

float m_fDelay_ms;

float m_fFeedback_pct;

float m_fWetlLevel_pct;

[/ F*--0x1A7F--**

[ oo

Note: | named the RackAFX controls with _ms and _pct appended to remind me that
these values need to be cooked to be used.

Note: The delay time cooked variable is a float, m_fDelayInSamples rather than an integer
number of samples. This is because we will allow fractional delay in a future version of the
module. For now, though, we will treat it as an integer.

7.3.4 DDLModule .cpp File
Constructor

e Initialize variables.



Delay Effects and Circular Buffers 227

CDDLModule: :CDDLModule()

{
<SNIP SNIP SNIP>
// Finish initializations here
m_fDelayInSamples = 0;
m_fFeedback = 0;
m_fDelay_ms 0;
m_fFeedback_pct = 0;
m_fWetlLevel = 0;

}

The formula for figuring out the delay time in samples from the delay time in milliseconds is
Equation 7.21.

sample rate
p} (7.21)

1000

Cooking the feedback value is easy—just divide by 100 to convert the percent to a raw
multiplier. The same thing is true for the wet level value. In this project, we’ll introduce the
concept of a cooking function to handle the work. Because we are planning on using this
plug-in as a module for future development, it will be a good idea. From this point on, you
should get in the habit of making a cooking function. In this case, we will keep it simple and
have the cooking function recalculate all the plug-in’s variables regardless of which ones
actually change. This is an effort to educate first. You can always go back and streamline
your functions and code after the plug-in has been tested and is functioning. First, declare the
cooking function in the .h file:

// Add your code here: -----------------oo oo //

float m_fDelayInSamples;

float m_fFeedback;
float m_fWetlevel;

Samples delay = (D mSec)[

void cookVariables();
// END OF USER CODE -------mm oo mm oo m e oo oo oo oo //

Write the function:

// function to cook the variables
void CDDLModule::cookVariables()
{
m_fFeedback = m_fFeedback_pct/100.0;
m_fWetLevel = m_fWetLevel_pct/100.0;
m_fDelayInSamples = m_fDelay_ms*((float)m_nSampleRate/1000.0);
}

Then, we can add the cooking function to

» The end of the constructor()
e prepareForPlay()
» userinterfaceChange()



228 Chapter 7

Constructor

CDDLModule: :CDDLModule()
{
<SNIP SNIP SNIP>

// Finish initializations here
<SNIP SNIP SNIP>
m_fFeedback_pct = 0;
m_fWetlLevel = 0;
cookVariables();

}

prepareForPlay()

bool __stdcall CDDLModule::prepareForPlay()

{
// cook
cookVariables();

return true;
}

Notice the big change made here—rather than a switch/case statement, we just go ahead and
cook all the data.

userlnterfaceChange()

bool __stdcall CDDLModule::userInterfaceChange(int nControlIndex)
{

// cook

cookVariables();

return true;
}

Now that the Ul details are taken care of, we can get to the business of declaring the delay
line, initializing it, and finally implementing the effect.

7.3.5 Declare and Initialize the Delay Line Components

For a delay line, you will need the following variables:

» A float* which points to a buffer of samples

* Aninteger read index

e Aninteger write index

« Aninteger that is the size of the buffer in samples



Delay Effects and Circular Buffers 229

Add them to your .h file:

// Add your code here: ----------- - oo //
float m_fDelayInSamples;

float m_fFeedback;

float m_fWetlLevel;

float* m_pBuffer;

int m_nReadIndex;

int m_nWritelndex;

int m_nBufferSize;

// END OF USER CODE ---------mmmmmm s s oo oo m oo oo oo oo oo //

The delay line will be created dynamically. It will be destroyed in the destructor. The problem
is that we don’t yet know what the sample rate will be; we won’t know that until the user
loads a new file and begins playing it. Just before RackAFX calls your prepareForPlay()
function, it sets the sample rate on your plug-in’s m_nSampleRate variable. Therefore, we
will have to dynamically create and flush out the buffer each time prepareForPlay() is called.
In the constructor, we set the m_pBuffer to NULL as a flag to know that it is uninitialized, as
well as zero the buffer size and read and write index values.

Constructor

CDDLModule: :CDDLModule()

{

<SNIP SNIP SNIP>
m_fFeedback_pct = 0;
m_fWetlevel = 0;

// reset
m_nReadIndex = 0;
m_nWriteIndex = 0;

// no buffer yet because we don’t have a sample rate yet
m_pBuffer = NULL;
m_nBufferSize = 0;

// cook
cookVariables();

}
prepareForPlay()

e Create the buffer now that we know the sample rate.

bool __stdcall CDDLModule::preparefForPlay()
{
// setup our delay line
m_nBufferSize = 2*m_nSampleRate; // 2 seconds delay @ fs



230 Chapter 7

// delete it if it exists
if(m_pBuffer)
delete [] m_pBuffer;

// create the new buffer
m_pBuffer = new float[m_nBufferSizel;

return true;
}

Destructor

e Delete the buffer.

CDDLModule: :~CDDLModule(void)
{
// delete buffer if it exists
if(m_pBuffer)
delete [] m_pBuffer;
}

To initialize the buffer with 0.0, use the the memset function. That memset() flushes the
buffer of data, and we need to do this each time prepareForPlay() is called so we don’t play
out old data at the onset. We are going to be flushing and resetting the buffer in several places
in code, so it is also a good thing to make into a function.

7.3.6 DDLModule.h File

// Add your code here: ----------ooooooioooooooooooooooooooooooooo oo /1
float m_fDelayInSamples;

float m_fFeedback;

float m_fWetlLevel;

void cookVariables();
void resetDelay();
// END OF USER CODE ------ocsmmmmmom oo oo /1

7.3.7 DDLModule.cpp File

// function to flush buffer and set Write pointer back to top
// read pointer will be calculated based on write pointer Tlocation
void CDDLModule::resetDelay()
{
// flush buffer
if(m_pBuffer)
memset (m_pBuffer, 0, m_nBufferSize*sizeof(float));

// init read/write indices
m_nWriteIndex = 0; // reset the Write index to top
m_nReadIndex = 0; // reset the Read index to top



Delay Effects and Circular Buffers 231

You can also modify the cooking function to add the code for updating the read index; set
the read and write indices depending on the amount of delay time, so you can use a modified
version of the code from Section 7.1. Note: The delay in samples is cast to an integer using
the casting method (int).

// function to cook the variables
void CDDLModule::cookVariables()
{
m_fFeedback = m_fFeedback_pct/100.0;
m_fWetlevel = m_fWetlevel_pct/100.0;
m_fDelayInSamples = m_fDelay_ms*((float)m_nSampleRate /1000.0);

// subtract to make read index
m_nReadIndex = m_nWriteIndex - (int)m_fDelayInSamples; // cast as int!

// check and wrap BACKWARDS if the index is negative
if (m_nReadIndex < 0)

m_nReadIndex += m_nBufferSize; // amount of wrap is Read + Length
}

prepareForPlay()

* Reset the delay in prepareForPlay() after creating the buffer and before cookVariables().

bool __stdcall CDDLModule::prepareForPlay()
{
// setup our delay line
m_nBufferSize = 2*m_nSampleRate; // 2 seconds delay @ fs

// delete it if it exists
if(m_pBuffer)
delete [] m_pBuffer;

// create the new buffer
m_pBuffer = new float[m_nBufferSizel;

// reset
resetDelay();

// then cook
cookVariables();

return true;
}

processAudioFrame()
e The flowchart for the processAudioFrame() function is shown in Figure 7.25.

Note: We have one minor detail to deal with, and this is going to happen when we use the
delay line in a read-then-write fashion. If the user has chosen 0.00 mSec of delay, then



232  Chapter 7

y(n) = DDL[read] >

Increment:
DDL[write] = | Output = _ > read++
x(n) + fo*y(n) wet*y(n) + (1-wet)*x(n) | write++

Check for wrap

Figure 7.25: Flowchart for processAudioFrame().

the write pointer and read pointer will be the same. This also occurs if the user selects the
maximum delay value since we want to read the oldest sample before writing it. So, we need
to make a check to see if there is no delay at all and deal with it accordingly.

bool __stdcall CDDLModule::processAudioFrame(float* pInputBuffer, float* pOutputBuffer,
UINT uNumInputChannels, UINT uNumQutputChannels)

{

// SYNC CODE: DO NOT REMOVE - DO NOT PLACE CODE BEFORE IT
WaitForUIChangeDone();

setProcessAudioDone(false);

// END SYNC CODE

// Do LEFT (MONO) Channel
// Read the Input
float xn = pInputBuffer[0];

// Read the output of the delay at m_nReadIndex
float yn = m_pBuffer[m_nReadIndex];

// if zero delay, just pass the input to output
if(m_fDelayInSamples == 0)
yn = xn;

// write the input to the delay
m_pBuffer[m_nWriteIndex] = xn + m_fFeedback*yn;

// create the wet/dry mix and write to the output buffer
// dry =1 - wet
pOutputBuffer[0] = m_fWetLevel*yn + (1.0 - m_fWetlLevel)*xn;

// incremnent the pointers and wrap if necessary
m_nWriteIndex++;
if(m_nWriteIndex >= m_nBufferSize)

m_nWriteIndex = 0;

m_nReadIndex++;
if(m_nReadIndex >= m_nBufferSize)
m_nReadIndex = 0;

// Mono-In, Stereo-Out (AUX Effect)
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1] = pOutputBuffer[0]; // copy MONO!



Delay Effects and Circular Buffers 233

// DDL Module is MONO - just do a copy here too

// Stereo-In, Stereo-Out (INSERT Effect)

if(uNumInputChannels == 2 && uNumOutputChannels == 2)
pOutputBuffer[1] = pOutputBuffer[0]; // copy MONO!

// SYNC CODE: DO NOT REMOVE
setProcessAudioDone();

return true;
}

Build and test the module in RackAFX to make sure it works. You should get a generic delay
effect with up to two seconds of delay. We only have two items to take care of to complete
this first version of the module. The first is easy: we need to provide the user of the module
with a way to choose external feedback and have access to the feedback variable. The second
is more difficult: we need to be able to handle fractional delay.

In order for someone to use this module inside another plug-in and get access to the feedback
path, we need to provide some functions that will only be called by a plug-in parent. We also
need to modify the processAudioFrame() function to use an externally supplied feedback sample.

7.4 Modifying the Module to Be Used by a Parent Plug-In

It’s actually pretty easy to modify this module to work as an internal module for a plug-in. We
need to provide a variable for the feedback sample and allow the user to set this value. We also
need to provide a way to allow the user to get the current feedback value. Finally, we need a
switch to allow the user to select the external feedback mode. That switch will be in the form
of a boolean flag. After we get the variables set up, we can modify the processAudioFrame()
function to use the external feedback sample.

7.4.1 DDLModule.h File

Declare the following new variables:

bool m_bUseExternalFeedback; // flag for enabling/disabling
float m_fFeedbacklIn; // the user supplied feedback sample value

Also, declare and implement the get/set functions. They are so short you can just put them in
the .h file rather than implementing them in the .cpp file.

// Add your code here: ------------------oooooooooooo oo /1
float m_fDelayInSamples;

float m_fFeedback;

float m_fWetlLevel;

void cookVariables();
void resetDelaylLine();



234 Chapter 7

float* m_pBuffer;

int m_nReadIndex;
int m_nWritelndex;
int m_nBufferSize;

bool m_bUseExternalFeedback; // flag for enabling/disabling
float m_fFeedbacklIn; // the user supplied feedback sample value

// current FB is fb*output
float getCurrentFeedbackOutput(){return m_fFeedback*m_pBuffer[m_nReadIndex];}

// set the feedback sample
void setCurrentFeedbackInput(float f){m_fFeedbackIn = f;}

// enable/disable external FB source
void setUsesExternalFeedback(bool b){m_bUseExternalFeedback = false;}
// END OF USER CODE -------mmmmmmm oo oo oo oo oo oo oo oo //

The current feedback sample output is found at m_pBuffer[m_nReadIndex] and multiplied

by the feedback coefficient as per the block diagram. By allowing the user to get and set the
feedback, we allow them to break into the loop and insert other effects, or use the feedback

output for some other purpose altogether.

7.4.2 DDLModule.cpp File

processAudioFrame()

* Maodify the function to allow the use of externally supplied feedback samples:

bool __stdcall CDDLModule::processAudioFrame(float* pInputBuffer, float* pOutputBuffer,
UINT uNumInputChannels, UINT uNumQOutputChannels)
{

// Do LEFT (MONO) Channel

// Read the Input

float xn = pInputBuffer[0];

// Read the output of the delay at m_nReadIndex
float yn = m_pBuffer[m_nReadIndex];

// if zero delay, just pass the input to output
if(m_fDelayInSamples == 0)
yn = xn;

// write the input to the delay
if(!m_bUseExternalFeedback)
m_pBuffer[m_nWritelndex]

xn + m_fFeedback*yn; // normal
else

m_pBuffer[m_nWritelIndex] xn + m_fFeedbackIn; // external feedback



Delay Effects and Circular Buffers 235

// create the wet/dry mix and write to the output buffer
// dry =1 - wet
pOutputBuffer[0] = m_fWetlLevel*yn + (1.0 - m_fWetlLevel)*xn;

etc..

You can see that the change required is very minor—just a switch to change the feedback
sample value. Of course if the user enables this option, then they are responsible for placing
meaningful data in the fFeedbackin variable.

Rebuild and test the code to make sure it still works properly. In the next section, we will use
the module to make two different plug-ins:

1. Stereo digital delay
2. Stereo crossed-feedback delay

7.5 Modifying the Module to Implement Fractional Delay

Before we work on the bigger projects, we need to take care of the problem of
fractional delay. We would like the user to be able to get any amount of delay they want.
By implementing only sample-based delay, we are limiting the user to choosing delays
that are multiples of the sample period, about 23 uSec. You might think that is enough
accuracy; however, there are several instances where this won’t be enough. The first

is the case of a delay that is beats-per-minute (BPM) synchronized (e.g., delay is set

to a multiple of the song’s BPM to create synchronized echoes or percussion effects).
The second case is that of modulated delays like chorus and flanging, which require
smooth modulations from one delay time to another. Linear interpolation will provide
acceptable results.

Suppose our delay is in a state where we have calculated our delay position to be at sample
location 23.7183 samples. We need to find the value of the data at the location 0.7183
between sample 23 and sample 24. In Figure 7.26 you can see a graphic representation of
the interpolation method. Since it’s linear interpolation, a line is drawn between the adjacent
samples and the interpolated value is found on the line at 0.7183 the distance between the
two samples.

In polynomial interpolation such as LaGrange interpolation, a curve is drawn between the
points (or a series of points), and then the interpolated value is found on that curve. There are
several ways to implement the linear interpolation but the easiest method is to treat it like a
DSP filter. Another way of thinking about interpolation is as a weighted sum. For example,

if the interpolation point is 0.5 between samples 1 and 2, then the interpolated value is made
up of 50% of sample 1 plus 50% of sample 2. In the above case, our interpolated distance is
0.7183, so we can view the output as



236 Chapter 7

y=mx+b

O b)

%,

5
I
I
I
I
I
I
I
I
I
I
I
1
23 T 24
23.7183

Figure 7.26: Linear interpolation of sample values.

frac
Sample 24
x(n) y(n)
frac =0.7183
Sample 23 1-rac
x(n-1)

Figure 7.27: Linear interpolation as a kind of feed-forward filter. The z™' element
is removed since we do not know if the interpolated samples will always be
exactly one sample apart. For example, what if the next fractional delay
sample is at location 56.2394?

interp_output = (0.7183)(Sample 2) + (0.2817)(Sample 1)

Here is a linear interpolation function you can use; it is already declared in your
pluginconstants.h file:

float dLinTerp (float x1, float x2, float yl, float y2, float x);

You give it a pair of data points (x1,y1) and (x2,y2), plus a distance between them on the
x-axis (X), and it returns the interpolated value using the weighted sum method. The first part
of the code checks for a potential divide by zero fault that technically should not happen. You
should also be aware that linear interpolation is a form of feed-forward filtering. The block
diagram of the above function would look like Figure 7.27.

Thus, in the processAudioFrame(), we need to find the two sample values that our actual
delay time needs, then do the interpolation. It is pretty straightforward except the situation



Delay Effects and Circular Buffers 237

where we are interpolating across the wrap boundary (from the last sample in the buffer
to the first one). Suppose the user enters a delay time that corresponds to 2.4 samples of
delay. In the cookVariables() function, we locate the read index to be two samples before
the write pointer because we cast the value to an integer, stripping out the fractional part.
The actual delay we really want is 0.4 samples between the current sample and the one
before it. In other words, x(n—2.4) rather than x(n—2). You can see that we need a sample
that is between x(n—2) and x(n—3); in Figure 7.28 it happens to be a distance of 0.4
between them.

We need to modify our code as follows:

» We are already calculating and updating the first sample that we need to interpolate; it is
located with the index value at m_nReadIndex, so there is nothing to change in the cook-
ing function.

* In the processAudioFrame() function, we need to interpolate between our current read
location m_nReadIndex and the location just before it in the buffer, m_nReadIndex-1.

» Since we are only focused on a single pair of samples at any time and we know they are
one sample apart, we can use the values 0 and 1 for the interpolation function as x1 = 0,
X2 = 1; then we interpolate the fractional distance between them. You can use m_nRead-
Index but you will get in trouble when you are interpolating across the wrap boundary of
the buffer.

*  We will need to check for a wrap condition backward if m_nReadlndex-1 takes us out-
side the top of the buffer.

We can get the fractional value from our m_fDelayInSamples in several ways; here is one of
them:

float fFracDelay = m_fDelayInSamples — (int)ym_fDelaylnSamples

Buffer
x(n-3)
x(n-2) <+— x(n-24)
X(n-1) Current
x(n) -4+—— input
sample

Figure 7.28: Fractional interpolation.



238 Chapter 7

It really only comes down to locating the sample 1 behind our current read index, then using
the linear interpolation code to get the fractional value. There are two extreme conditions to

consider:

At the maximum delay time, the read and write indices will be equal and the fractional
part of the delay in samples will be 0 so no interpolation will occur—this is OK.

If the delay in samples is less than 1, the read and write indices will also be equal, but this
will be a problem. In this case, we need to interpolate between the current x(n) and the
sample at x(n—1), one sample behind the read location. Branching will be necessary to
catch this event and handle it.

7.5.1 DDLModule.cpp File

processAudioFrame()

Modify the code to do the interpolation.

bool __stdcall CDDLModule::processAudioFrame(float* pInputBuffer, float* pOutputBuffer,
UINT uNumInputChannels, UINT uNumOutputChannels)

{

// Do LEFT (MONO) Channel
// Read the Input
float xn = pInputBuffer[0];

// Read the output of the delay at m_nReadIndex
float yn = m_pBuffer[m_nReadIndex];

// if delay < 1 sample, interpolate between input x(n) and x(n-1)
if(m_nReadIndex == m_nWriteIndex && m_fDelayInSamples < 1.00)
{
// interpolate x(n) with x(n-1), set yn = xn
yn = xn;
}
// Read the location ONE BEHIND yn at y(n-1)
int nReadIndex_1 = m_nReadIndex - 1;
if(nReadIndex_1 < 0)
nReadIndex_1 = m_nBufferSize-1; // m_nBufferSize-1 is Tast Tocation

// get y(n-1)
float yn_1 = m_pBuffer[nReadIndex_117;

// interpolate: (0, yn) and (1, yn_l) by the amount fracDelay
float fFracDelay = m_fDelayInSamples - (int)m_fDelayInSamples;

// linerp: x1, x2, yl, y2, x
float fInterp = dLinTerp(0, 1, yn, yn_1, fFracDelay); // interp frac between them

// if zero delay, just pass the input to output
if(m_fDelayInSamples == 0)
yn = xn;



Delay Effects and Circular Buffers 239

else
yn = flnterp;

// write the intput to the delay
if(!m_bUseExternalFeedback)
m_pBuffer[m_nWriteIndex] = xn + m_fFeedback*yn; // normflnterpal

else
m_pBuffer[m_nWriteIndex] = xn + m_fFeedbackIn; // external feedback
sample
}

Now, build and test the module. Try a variety of delay settings. If you hear a repetitive

click in your output that is exactly the same rate as the delay time, then there is something
wrong during the interpolation across the wrap boundary of buffer[0] to buffer[size-1]. Only
advance to the next section when you have this project fully debugged and functional. We will
be including it in the next project, a stereo digital delay.

7.6 Design a Stereo Digital Delay Plug-In

In this project, we use two DDL modules in one parent plug-in. RackAFX makes it easy
to do this by allowing you to add other plug-in components (.h and .cpp files) into a new
project. It will automatically #include the components too. However, if you use external
modules or other files you might need to manually #include these. In Figure 7.29 you can
see that we now have two DDL modules declared as member objects of the new plug-in.
The plug-in implements its own interface of three sliders, which we use to control our
modules.

7.6.1 Project: StereoDelay

Create a project named “StereoDelay.” When you create the project, you have the option of
including other modules in your code, seen in Figure 7.30. RackAFX finds all of the existing
RackAFX projects in the default directory you supply and lists them here. You use the Add
button to move them into your project. If you have a project located in another directory that
is not the default, you will need to move the files on your own (copy them to the new project
directory and #include them in the new <project>.h file and add them into the compiler).
RackAFX will automatically copy them and #include whichever modules you choose. In
this case, choose the DDL module.

When you use a plug-in as a module for another parent plug-in you must create and implement
a new Ul. The child plug-in objects will not expose their sliders to RackAFX, but you can
manipulate the Ul variables. All other aspects of the child objects work as expected. In this
plug-in, we will implement another Ul to control the modules. See Appendix A.2 for advanced
control of the Ul variables.




240 Chapter 7

m_DDL_Left I@
x(n) Left 6> 2-D }_4“7 9 y(n) Left
fo_in{n) ——0
fb_out{n) O~ 4}
m_DDL_Right @
x{n)Right =03 -0 }_ y(n) Right

fo_in(n) ——o
fb_out(n) O @J
[ Dely | Feedoack “WetDy |
210.94 mSec 1641 % 5000%

Figure 7.29: Block diagram of our stereo delay.

Existing Plug-Ins: : Your Project:
' SimpleHPF.h ' DDLModule.h
|Volume.h

| YolumedsB.h

You can use Stock Objects andfor existing Plug-Ins in your new Plug-In.

Figure 7.30: Adding existing modules can be done programmatically through RackAFX.

You can see in Figure 7.30 that | added “DDLModule.h” to the project. After completing the
new project dialog, check your new <plugin>.h file:

#pragma once

#include "pluginconstants.h"



Delay Effects and Circular Buffers 241

#include "DDLModule.h"
#include "plugin.h"

// abstract base class for DSP filters
class CStereoDelay : public CPlugln
{
public: // Plug-In API Functions
//
// 1. One Time Initialization
CStereoDelay();

etc ..

7.6.2 StereoDelay GUI

Your GUI will look like that in Figure 7.29 and you use the same setup from the DDLModule
in Table 7.1.

7.6.3 StereoDelay.h File

In the .h file, declare two member objects of type CDDLModule. Also, add a function
called setDelayVariables() to transfer our global delay variables to the member objects and
optionally have the member objects cook the data:

// Add your code here: -------------- oo //
CDDLModule m_DDL_Left;
CDDLModule m_DDL_Right;

// function to pass our variables to member delays
void setDelayVariables(bool bCook);
// END OF USER CODE ------------mmmmmmmmm oo oo oo oo oo oo oo m oo oo oo oo oo //

Our DDLModules are just C++ objects, so you can treat them as such and call their member
functions and set their member variables. Before implementing the function above, go ahead
and add your Ul sliders, exactly the same as before with the same variable names. You will
have something like this:

// ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! =-----ocmmmmmmmmoe e //
/] **--0x0TFD--**

float m_fDelay_ms;
float m_fFeedback_pct;
float m_fWetLevel_pct;

/] **--Ox1ATF--**
R T D /1



242  Chapter 7

7.6.4 StereoDelay.cpp File

Write the setDelayVariables() function. The Boolean flag allows you to optionally call the
cooking functions on the members:
void CStereoDelay::setDelayVariables(bool bCook)
{
// forward our variables over to the member objects

m_DDL_Left.m_fDelay_ms = m_fDelay_ms;
m_DDL_Right.m_fDelay_ms = m_fDelay_ms;

m_DDL_Left.m_fFeedback_pct = m_fFeedback_pct;
m_DDL_Right.m_fFeedback_pct = m_fFeedback_pct;

m_DDL_Left.m_fWetlLevel_pct = m_fWetlLevel_pct;
m_DDL_Right.m_fWetlevel_pct = m_fWetlevel_pct;

// cook, if desired

if(bCook)

{
m_DDL_Left.cookVariables();
m_DDL_Right.cookVariables();

Constructor
» Initialize the delay variables and cook them; this version does not use the external feed-
back option, so set the bool accordingly.

CStereoDelay::CStereoDelay()
{
<SNIP SNIP SNIP>

// Finish initializations here
m_DDL_Left.m_bUseExternalFeedback = false;
m_DDL_Right.m_bUseExternalFeedback = false;

// set and (true) cook the delays
setDelayVariables(true);

prepareForPlay()

e Set the delay variables.
e Forward the calls to prepareForPlay() on the member objects, which will cook them.

The DDL module will handle flushing the buffers and so on.



Delay Effects and Circular Buffers 243

bool __stdcall CStereoDelay::preparefForPlay()
{
setDelayVariables(false);

m_DDL_Left.prepareForPlay();
m_DDL_Right.prepareForPlay();

return true;

userlnterfaceChange()

» Set the delay variables and cook them whenever one of our controls changes. This could
be streamlined for better efficiency.

bool __stdcall CStereoDelay::userlInterfaceChange(int nControlIndex)
{

// set and cook the variables

setDelayVariables(true);

return true;
}

processAudioFrame()

* Forward the processAudioFrame() call to the member objects.

» Remember that we need to send it only one channel at a time and make sure it is the cor-
rect one. Note the “address of”” operator (&) to point to the single memory location we
pass it.

bool __stdcall CStereoDelay::processAudioFrame(float* pInputBuffer, float*

pOutputBuffer, UINT uNumInputChannels, UINT uNumQutputChannels)

{
// Do LEFT (MONO) Channel; there is always at least one input/one output
// forward call to sub-object: pInput, pOutput, 1 input ch, 1 output ch
m_DDL_Left.processAudioFrame(&pInputBuffer[0], &pOutputBuffer[0], 1, 1);

// Mono-In, Stereo-Out (AUX Effect)
if(uNumInputChannels == 1 && uNumQOutputChannels == 2)
pOutputBuffer[1l] = pOutputBuffer[0]; // just copy

// Stereo-In, Stereo-Out (INSERT Effect)
if(uNumInputChannels == 2 && uNumQutputChannels == 2)
// forward call to sub-object pInput, pOutput, 1 input ch, 1 output ch
m_DDL_Right.processAudioFrame(&pInputBuffer[1], &pOutputBuffer[1],1,1);
return true;



244  Chapter 7

Rebuild and test the project and you now have a stereo version of the previous project.
Hopefully, you have a better idea of how powerful it can be to create modules that are
combined, though it does take a bit of extra work on the module since you have to think
ahead and implement functions or variables that are not required for standalone (simple)
plug-in operation. Next, we’ll exercise the module by converting this plug-in to a crossed
feedback delay. We’re going to do this in a specific way so we can later use an enumerated
variable to switch between normal and crossed-feedback operation.

7.7 Design a Stereo Crossed-Feedback Delay Plug-In

A crossed-feedback delay is implemented by crossing the feedback paths of the two delay
lines. We will add this functionality to the existing StereoDelay project. This is where we will
use the external feedback option that we built into the module. In Figure 7.31 you can trace
the feedback paths to see that they are crossed into the opposite delay line. You will be
surprised at how easy it is to convert the delay into a crossed-feedback delay:

» Enable the external feedback function with the boolean flag.
e Use the getCurrentFeedbackOutput() and setCurrentFeedbacklInput() functions to “cross
the beams” of the feedback paths.

m_DDL_Left
x(n) Left '/i\ > 70 '— !Wua yin) Left
fb_in{n)
l fb_out{n) ~ -——
m_DDL_Right ]D\
[
x(n) Right =03 2D }——:‘Wel % ¥(n) Right
L
T fb_in(n) ;
& T <]
fb_out{n) \bJ
Feedback | Wet/Diy
1093Gm€»ct, B016 % 5000 % CHDSQ

LHT

Figure 7.31: Block diagram of the crossed-feedback delay.



Delay Effects and Circular Buffers 245

7.8 Enumerated Slider Variables

You can see from Figure 7.31 that there is a new slider control for the GUI to select
between normal and crossed-feedback operation. You can take advantage of RackAFX’s
enumerated UINT variable to make a slider that selects between multiple enumerated
values, like a multi-position switch. In our case, we only have two positions right now:
normal and cross.

Right-click on a slider to bring up the properties dialog and add a new slider/variable
combination, as shown in Figure 7.32. Choose “enum” for the data type and create a variable
called m_uDelayType—the variable will be an unsigned integer type (UINT). The low, high,
and initial value cells will no longer be editable; RackAFX will figure them out depending on
what you type in the enumerated variable box. You type in the values separated by commas.
The first value will be the default value.

In the box at the bottom, type in the strings which will be shown in the slider control
(keep them short); you can have as many enumerated variables as you want, but in this

Slider Properties .%
Type

UI Item Property
uControlType Slider Cancel
uControllD 3

Copy Existing:
Control Name Type i "

none v |
Units d

DataType 7
Variable Name \

Control Low Limit

enum

m_uDelayType

Control High Limit 1.00
Initial Yalue 0.00
- MIDI Control false
MIDI Control Channel 1
MIDI Control Type Continous Controller
Channel --nfa-  MIDI Controller Number/Name | 3 Continuous controller #3
Control Type  -—-nja-  "corirol Method automatic (recommended)

Control Name --nja--

Menu Group none
Remave Ctrl

Enter enumerated list of STRINGS separated by commg#s

or use the default, All spaces will be removed from HEARLERODS
strings. The Initial, Minimum and Maximum values will be

automatically calculated. NOTE: maximum is 256 strings!

The the first STRING will be the Initial (default) value.
The strings will switch as the user moves the slider.

Figure 7.32: The enumerated UINT data type.



246 Chapter 7

case, we only need NORM and CROSS. Go to your plug-in’s .h file to see the new
variables:

// ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! =-----onmmmommmmoea e //
/] *%--0x07FD- - **

float m_fDelay_ms;

float m_fFeedback_pct;

float m_fWetlevel_pct;

UINT m_uDelayType;

enum{NORM, CROSS};

[/ **--0x1A7F--**

A e //

For enumerated variables, the first one in the list will be the default, with the slider at the
bottom. The other strings will appear in sequence when you move the slider up. The UINT
will automatically be updated. We can use this as a directly controlled variable so there’s
nothing to add in userInterfaceChange(). Make the edits discussed next.

7.8.1 Constructor

* Initialize the delay type to NORM.

CStereoDelay::CStereoDelay()

{
<SNIP SNIP SNIP>
// Finish initializations here
m_DDL_Left.m_bUseExternalFeedback = false;
m_DDL_Right.m_bUseExternalFeedback = false;

// set and (true) cook the delays
setDelayVariables(true);

// init the delay type
m_uDelayType = NORM;

7.8.2 PrepareForPlay()

Nothing to do; we don’t care what mode we’re in and don’t want to reset the mode each time
the user plays audio.

7.8.3 UserlInterfaceChange()

Nothing to do; we are using this as a direct control variable.



// Do LEFT (MONO) Channel; there is always at least one input/one output
// forward call to sub-object: pInput, pOutput, 1 input ch, 1 output ch
m_DDL_Left.processAudioFrame(&pInputBuffer[0], &pOutputBuffer[0], 1, 1);

// Mono-In, Stereo-Out (AUX Effect)
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1] = pOutputBuffer[0]; // just copy

Delay Effects and Circular Buffers 247
7.8.4 ProcessAudioFrame()
e Use the enumerated variable in a switch/case statement to modify the feedback as
required. For CROSS operation:
»  Set the external feedback flag to true.
e Get the left feedback output and write it to the right feedback input.
*  Get the right feedback output and write it to the left feedback input.
e Call the processAudioFrame() functions on the DDL modules.
bool __stdcall CStereoDelay::processAudioFrame(float* pInputBuffer, float*
pOutputBuffer, UINT uNumInputChannels, UINT uNumOutputChannels)
{
switch(m_uDelayType)
{
case CROSS:
// CROSS FB DELAY --- NOTE: MUST HAVE STEREO FILE! ---------------- //
m_DDL_Left.m_bUseExternalFeedback = true;
m_DDL_Right.m_bUseExternalFeedback = true;
// cross the Feedbacks
m_DDL_Left.setCurrentFeedbackInput(m_DDL_Right.getCurrent
FeedbackOutput());
m_DDL_Right.setCurrentFeedbackInput(m_DDL_Left.getCurrent
FeedbackOutput());
break;
case NORM: // clear the flags
m_DDL_Left.m_bUseExternalFeedback = false;
m_DDL_Right.m_bUseExternalFeedback = false;
break;
default: // deault is NORM operation; clear the flags
m_DDL_Left.m_bUseExternalFeedback = false;
m_DDL_Right.m_bUseExternalFeedback = false;
break;
}
/1 SHARED CODE =~ -=r-rom-coomc oo oo oo oo oo //



248 Chapter 7

// Stereo-In, Stereo-Out (INSERT Effect)

if(uNumInputChannels == 2 && uNumOutputChannels == 2)
// forward call to sub-object pInput, pOutput, 1 input ch, 1 output ch
m_DDL_Right.processAudioFrame(&pInputBuffer[1], &pOutputBuffer[1], 1, 1);

return true;
}

Rebuild and test the plug-in; exercise the new delay type control as well.
Recapping some of the things you learned:

» Declaring, flushing, and manipulating delay lines as circular buffers.

» Implementing fractional delay times using interpolation.

e Using a plug-in as a child module for a parent plug-in.

» How to add an enumerated UINT variable for type selection or using a slider as a
multi-pole switch.

7.9 More Delay Algorithms

Here are some ideas for a more complex DDL module and other delay plug-ins.

7.9.1 Advanced DDL Module

The more flexible module in Figure 7.33 allows the parent to have access to the input and pre-
wet output of the delay line and the input and output of the feedback path. Another module
(low-pass filter, for example) could be inserted here or it could be used for more crossed-
delay modes.

7.9.2 Delay with LPF in Feedback Loop

Analog delays suffer a high frequency loss on each path through the delay line/feedback
path. This can be modeled with a LPF in the feedback path, as shown in Figure 7.34. You can

Dry

x(n) |

-D Wet (n)
ext_x(n)——0O £ | > 4

fo_inn)—— o

O delay_out
fb_out(n)O * fb o -

Figure 7.33: A DDL module with more input and feedback path options.




Delay Effects and Circular Buffers 249

try first- or second-order filters with or without resonance for a variety of interesting delay
effects. For other ideas, try changing the type (LPF, high-pass filter, band-pass filter, band-
stop filter) or location (before or after the fb coefficient). Be careful with adding resonant or
high-gain filters in the feedback loop. You could also inject some filtered white noise into the
feedback path to simulate the noisy characteristics of typical analog delays.

7.9.3 Multi-Tap Delay

The multi-tap delay line shown in Figure 7.35 produces four separate delays from one
unit. Only the longest delay is fed back in this version. You create the multiple taps by
simply declaring more read index values (m_nReadIndexTap_1, m_nReadIndexTap_2,
etc..); the multiple taps are used and incremented exactly the same as the single tap case.

bls

x(n)—e z-D Wet y(n)

LPF
ﬁ)l \

Figure 7.34: An analog delay modeled with an LPF in the feedback loop.

IDr
¥
l
fb I
Tap1
x(n) —e z-D Wet y(n)
Tap2
Tap3
Tap4

Figure 7.35: A four-tap multi-tap delay line.



250 Chapter 7

You can also experiment with multiple feedback paths, filters, or setting your tap times using
BPM and musical rhythms (e.g., delays on eighth and quarter notes).

7.9.4 Ping-Pong Delay

Figure 7.36 shows how the ping-pong delay cycles the delay back and forth between the left
and right channels.

7.9.5 LCR Delay

The LCR delay in Figure 7.37 based on the Korg Triton® has both LPF and HPF in the
feedback path (both are switchable or bypass-able) for multiple feedback tone shaping

options.

Dry

Leftx(n) — 4 7-D l wel Lefty(n)

fb

fb

RIGHT

Right x(n) — 4 ,-0 I

Right y(n)

Figure 7.36: The ping-pong delay builds on the cross-feedback delay by crossing the
inputs as well as the feedback paths to produce the back and forth ping-pong
effect. You will probably want to design the advanced DDL module
first and use its input, output, and feedback ports.



Delay Effects and Circular Buffers

251

Dry

Left x(n) -.-.-I s Ii wel Y Left y(n)

CENTER

}wm
I

Right x(n) -;I 2-D }7%31 Right y(n)

Dry

Figure 7.37: The LCR delay, based on the LCR delay in the Korg Triton®.

Bibliography

Coulter, D. 2000. Digital Audio Processing, Chapter 11. Lawrence, KS: R&D Books.
DSP56KFAM/AD. Schomberg, ON: Motorola, Inc.

Korg, Inc. 2000. Triton-Rack Parameter Guide, Tokyo: Korg, Inc.

Motorola, Inc. 1992. DSP56000 Digital Signal Processor Family Manual.

Roads, C. 1996. The Computer Music Tutorial, Chapter 3. Cambridge, MA: The MIT Press.






Audio Filter Designs: FIR Filters

Infinite impulse response (1IR) filters have several attractive properties:

» They only require a few delay elements and math operations.

* You can design them directly in the z-plane.

* You can use existing analog designs and convert them to digital with the Bilinear
z-Transform (BZT); the fact that IIR topologies somewhat resemble the signal flow in
analog filters emphasizes their relationship.

* You can get extreme resonance/gain by placing poles very near the unit circle.

* You can make filters, EQs, and so on with controls that link to the coefficients directly or
indirectly for real-time manipulation of the plug-in.

Their main drawback is that they can become unstable and blow up, or oscillate. Their
impulse responses (IRs) can be infinite. Finite impulse response (FIR) filters have all zeros
and a finite IR. They are unconditionally stable so their designs can never blow up. However,
they can put out all zeros, a constant value, a series of clicks or pulses, or other erroneous
output, but they don’t actually go unstable.

You can also make a linear phase filter with an FIR, just like the simple feed-forward (FF)
topology you analyzed in Chapters 5 and 6; a linear phase filter is impossible to make with
an IIR topology, although you can approximate it by adding phase compensation filters.
However, the one thing that separates FIR filters from all other kinds, including analog
counterpart filters, is that their coefficients a,, a,, ..., ay are the IR of the filter. You proved
that when you manually pushed an impulse through the simple FF filter in Chapter 4, and
then again when taking the z transform of the IR of the same filter in Chapter 5.

8.1 The IR Revisited: Convolution

In Chapter 1 you saw how the digitized signal was reconstructed into its analog version by
filtering through an ideal low-pass filter (LPF). When the series of impulses is filtered, the
resulting set of sin(x)/x pulses overlap with each other and their responses all add up linearly.
The addition of all the smaller curves and damped oscillations reconstructs the inter-sample
curves and damped fluctuations (Figure 8.1).

253



254 Chapter 8

Figure 8.1: The sin(x)/x outputs of the LPF are summed together to reconstruct the original
band-limited input waveform.

In the time domain, you can see how the IR of each sample is overlaid on the others and that
the summing together of the peaks and valleys of the sin(x)/x shape ultimately creates the
portions in between the samples which appeared to have been lost during the sampling process.

The process of overlaying the IR on top of the input stream of impulses x(n) and adding up the
results to get the final time domain output y(n) is called convolution. Convolution is a mathematical
operation used in many fields of science; digital audio processing is just one of them. The
mathematical symbol for convolution is * which can be confusing because this is used to represent
the multiplication operation in C/C++. In the above example, you convolved the input signal x(n)
with the IR h(n) by overlaying the h(n) signal on top of each input impulse, then summing up
signals to create the final output y(n). Mathematically, you would write this as Equation 8.1:

y(n) = x(n)*h(n) (8.1)

Visually, it’s easy to understand the concept of overlaying the signals and adding them to
get the final result, but how do you describe that mathematically? The answer is that this
kind of operation is a special circumstance of a more generalized operation of convolution.
Mathematically, convolution for discrete signals is described in Equation 8.2:

—+ o0
c(n) = f(m*g(n) = > f(ng(n — m) (8.2)
m=—w
In this case, f and g are two generalized signals and neither of them has to be an IR.
Convolution is commutative, so that f *g = g*f, or Equation 8.3:

c(n) = f(m*g(n) = > f(Mgn — m)
m (8.3)

“+ o0

c(n) = g *f(n) = > gftn — m)

m= —o0

If you know how a system affects one single impulse, you can exactly predict how it will affect
a stream of impulses (i.e., a signal) by doing the time domain overlay. If you have the IR of a
system, you have the algorithm for the system coded in a single function.




Audio Filter Designs: FIR Filters 255

The operation this equation is describing is not simple. On the right-hand side of
Equation 8.3 the function f(n) is one signal while the function g(n — m) represents the
second signal reversed in time. The multiplication/summation of the two across —« to
+o describes the process of sliding the two signals over each other to create overlapping
areas. On each iteration, the area under the curve of overlap between g(n — m) and f(n)
is computed. This results in a third (output) signal c(n). This signal ¢(n) is made up of
the overlapping area of the two input signals. This operation is shown graphically in
Figures 8.2 and 8.3.

Thus, the convolution of two arbitrary signals is quite involved mathematically. If the two
signals have any complexity at all, the resulting convolution signal is generally not
distinguishable as a linear combination of the two. If you know the IR of a system h(n),
you can convolve it with the input signal x(n) to produce the output signal y(n). This is the
equivalent of multiplying the transfer function H(2) with the input signal X(2) to produce

Two signals fandg Convolution ¢(2)
r/ ‘ g — i i
5
! n
c(2)
Convolution ¢(0) Convolution ¢(3)

-
\

c(3)
0)=0

Convolution ¢(1) Convolution ¢(4)
\ n % n

o)

\

c4)=0

Figure 8.2: Two signals fand g are convolved. These are discrete signals but the
sample symbols have been removed to make it easier to see; instead they are shown as
continuous. In the first step, ¢(0), one of the signals is reversed and the two are pushed

up next to each other. As the convolution progresses through each step ¢(1) to ¢(4),
the overlapping areas are calculated and stored.



256 Chapter 8

the output Y(2). Thus convolution in the time domain is multiplication in the frequency (2)
domain (Equation 8.4).

y(n) = x(n)*h(n) <> Y(2) = X(2H(2) (8.4)

To understand how a FF filter implements convolution first rearrange the block diagram. Let’s
consider a long FIR filter with N + 1 coefficients in Figure 8.4.

f(n) g(n) c(n)

AR

n n

>
]

|
T

c(1) o2) c(3)

Figure 8.3: The convolution of fand g results in ¢(n), consisting of five samples ¢(0) through
¢(4), which represent the overlap areas.

Figure 8.4: The familiar FIR feed-forward structure expanded out to N delay taps with
N + 1 coefficients. It is important to see that there is one less delay element than coefficients
since a, is multiplied against the original undelayed signal.



Audio Filter Designs: FIR Filters 257

Next, mentally rotate the structure so it looks like Figure 8.5. In Figure 8.5 you can see that at
any given time, a portion of the input signal x(n) is trapped in the delay line. On each sample
period, the input signal slides to the right and a summation is formed with the product of the
coefficients and the samples x(n — d). The words “sliding, summation and product” are key
here—they’re the same words used to describe convolution.

In Figure 8.6, the input signal x(n) moves through the delay line being convolved with

the IR on each sample period. Since each sample in the delay line is an impulse, and each
impulse is symmetrical when reversed, this is the same as conceptually overlapping the IR
on top of each sample and scaling by the sample value. The result is the final summation of
all the peaks and valleys of the IR with the delayed signal x(n). Thus, an FIR filter exactly
implements discrete convolution in the time domain. This ultimately gives us a whole new
way to filter a signal—by convolving against an impulse.

The input signal marches
through the delay line this way

x(n) z" z" z S

y _____

One output sample is generated
y(n) each sample period; the

summation of the portion of the
signal “caught” in the delay line

Figure 8.5: This rotated version is sometimes called a transverse delay line or a
transverse structure.

X(ﬂ} Z“ Z*‘ z-l T Z—T |

h(0) h(1) h2y | === h(N)

\

y(n)

Figure 8.6: You can also think of the coefficients as being frozen in the h(n) buffer while the input
signal marches one sample to the right on each iteration.



258 Chapter 8

So, if an ideal LPF has an IR in the shape sin(x)/x and we sample the IR, we get a discrete

IR h(n). The more samples we take, the more accurate our version of the IR becomes. This
introduces the first way to design a FIR filter: find an IR you like, sample it, and convolve

with it to produce the filtered output.

8.2 Using RackAFX’s Impulse Convolver

RackAFX has a built-in module to do impulse convolution and a directory of IR files that you
can experiment with. The impulses are stored in a directory called IR1024 and they are all
1024-point IRs. Some of them came from RackAFX itself—you can save IRs of any plug-in
you make, then load them into the convolver module. You will also learn to write your own
convolution plug-in and tell RackAFX that your software would like to receive IRs any time a
user loads or creates one using the built-in tools.

First, let’s look at the Impulse Convolver tool. Open the modules menu item in RackAFX.
There are two built-in FIR modules: the Impulse Convolver 1024 and the FIR Designer
located at the bottom of the list. Choose the Impulse Convolver 1024 module. The analyzer
will then appear with the IR directory populated and additional IR buttons enabled. These
will allow you to load an IR file into the convolver.

8.2.1 Loading IR Files

On the right side of the analyzer (Figure 8.7), you will see a box full of the IRs in your
IR1024 directory. You might not have the exact same list as this one but you will have the
file “optimal.64.sir” in the list. All the IR files are named with the “.sir” suffix and must

be created in RackAFX or loaded using the RackAFX IR file format (see the website for
details). RackAFX automatically saves your IRs as .wav files so you can use them in other
applications. You can find these .wav files in your IR1024 directory. If you want to convolve
with your own .wav files, see the website for code examples.

IR1024 Files

freqsamp.sir
impulse.sir
impulse156fir.sir
impulse16fir.sir
impulse_HPF .sir
impulse_LPF.sir
optimal.64.sir
optimal.sir

Figure 8.7: The IR files are visible in the analyzer window.



Audio Filter Designs: FIR Filters 259

At the bottom right, you will see the buttons for loading and saving IR files. The first two,
Save h(n) and Load h(n), will save and load the .sir files from the IR1024 directory. The lower
two buttons save and load the IR to the clipboard. The IR is actually C++ code, and you can
use the clipboard to paste this code directly into your own source code. You might do this to
hard-code a particular IR or for testing purposes, or to set a default IR.

To get started, click on the file named “optimal.64.sir” and then click the Load h(n) File
button (you can also double-click on the file name to load it). The IR for the file will load
into the analyzer as well as the Impulse Convolver module itself. You will automatically be
switched into the impulse view to see the imported file data (Figure 8.8). Next, click on the
Frequency Response button to see the filter’s frequency response (Figure 8.9). This LPF was
designed to have a cutoff frequency of 500 Hz and a very steep roll-off of about 50 dB/oct.
Load a wave file and play the file through the convolver. It will implement this 500-Hz LPF
exactly. Try loading some other IR files and playing audio through them.

8.2.2 Creating IR Files

You can capture the IR of any RackAFX plug-in, including your own. As an example let’s
capture the IR of a built-in module first. Open the module named “HP/LP Filter” from the
module menu. Then, open the analyzer, click on the Frequency button and adjust the slider

1.000
0.707
0.500

0.000 -

-0.500
-0.707
-1.000

0 102 204 306 408 510 612 714 816 918

Figure 8.8: The IR for the optimal.64.sir file.

+12.0dB
0.0dB ) S E AR e
-12.0dB |
-24.0dB
-36.0dB
-48.0dB

80008 10 Hz 100 Hz 1kHz 10 kHz

Figure 8.9: The frequency response for the optimal.64.sir file.



260 Chapter 8

controls to give you a unique shape. For example, | will make a highly resonant LPF by
setting the Q to 12 (Figure 8.10).

Click on the Impulse button in the analyzer. The IR of the filter is shown in Figure 8.11.
This IR completely captures the filter at these particular settings (f, = 1 kHz, Q = 12).
If we store the IR of the IIR filter, we can load it into the convolver and turn it into a FIR
filter instead.

Click on the Save h(n) File button and name it. It will then appear in the list of available IRs. Play
a wave file through the module and remember what it sounds like. Now, go back and open the
Impulse Convolver 1024 module from the module menu. You will see your freshly created IR

in the list. Double-click on it to load it and you will see the original IR. Click on the Frequency
button and you will see the original frequency response. Next, play a wave file through the
convolver and you should hear something that is remarkably similar to the original IIR filter.

But, how similar is it? The IR convolver module can convolve up to 1024-point IRs. If the IR
of the original filter is longer than 1024 points, then the resulting FIR filter will not be exactly
perfect. However, if it is shorter than 1024 points (meaning that the IR becomes 0.0 and
remains that way at some point in the IR duration) then the resulting FIR will be a dead-on
accurate version of the original. If you look at the IR for the original filter, you can see that it

+24.0dB |
+10.0dB |
-4.0dB|
-18.0dB|
-32.0dB|
-46.0dB |

0048 10 Hz 100 Hz 1kHz 10 kKHz

Figure 8.10: The frequency response for the resonant LPF test filter.

1.000
0.707
0.500 || |}

0.000 ' | .; | .;' 'I. !-' .'I S N S ———— e

-0.500
-0.707
-1.000

0 102 204 306 408 510 612 714 816 918

Figure 8.11: The ringing IR of the resonant LPF.



Audio Filter Designs: FIR Filters 261

is still just barely ringing right there at the end, so we are not getting an exact duplicate, but
upon listening you should hear that they are nearly identical.

8.2.3 The IR File Format

The IR file actually contains C++ code and you can quickly understand how it works by using
the clipboard functions. In the analyzer window that you still have pulled up, click on the
button h(n) — Clipboard and after the success message, open a text editor or a C++ compiler.
Then, use the operating system (OS) paste function to paste the clipboard data into your
editor. You will see something like this at the top:

/1 'h(n) Impulse Response
/I Length = 1024

m_nlIRLength = 1024;

m_h_Left[0] = 0.00000000;
m_h_Left[1] = 0.00503618;
m_h_Left[2] = 0.01998402;
m_h_Left[3] = 0.03938961;
m_h_Left[4] = 0.05777339;
m_h_Left[5] = 0.07477701;
m_h_Left[6] = 0.09007415;
m_h_Left[7] = 0.10337673;

etc...

This is the IR data starting with the length (1024) and then the left and right channels
respectively. If you scroll to the bottom, you will see the last few samples of the IR:

m_h_Right[1016] = -0.00000850;
m_h_Right[1017] = 0.00004104;
m_h_Right[1018] = 0.00008918;
m_h_Right[1019] = 0.00013495;
m_h_Right[1020] = 0.00017745;
m_h_Right[1021] = 0.00021589;
m_h_Right[1022] = 0.00024953;
m_h_Right[1023] = 0.00027775;

This was my resonant LPF and you can see that it is still ringing, even after 1024 samples.

If you listen to a wave file through a filter like this, you can hear pinging sounds at the peak
resonant frequency. These pinging noises are the ringing of the filter. If you look at the C++
code you can tell that the IR data appears to be some kind of member variable information for
a C++ object because of the “m_" Hungarian notation used to describe the data.



262 Chapter 8

All RackAFX plug-ins already have two default IR arrays declared as m_h_Left[1024] and
m_h_Right[1024] and another variable m_nIRLength that defines how much of the 1024 point
IR buffer is being used. The FIR designer will let you create IRs with variable sizes—in many
cases, you don’t need all 1024 points to describe the IR of the system. You tell RackAFX that
you want it to populate your IR arrays by setting a flag m_bWantIRs in your plug-in constructor.
When a user loads or creates an IR in the analyzer, it is automatically delivered to your plug-in.

8.3 Using RackAFX’s FIR Designer

RackAFX has a powerful built-in module called FIR Designer that lets you use two popular
methods to design FIR filters: the optimal method and the frequency sampling method. The
optimal method is sometimes called the “Parks—McClellan algorithm.” When the module first
opens, you will see the new controls at the right side, as shown in Figure 8.12.

This module creates IRs. You can save the IRs to a file or the clipboard using the same
buttons as before. If your plug-in has the m_bWantIRs flag set, any time the user hits the
Calculate button to make a new IR, it will automatically be delivered and copied into the
plug-in’s default IR arrays. Even though the FIR Designer defaults to the optimal method for
design, let’s begin with the frequency sampling method since the optimal method relies on it.

(® Optimal Method
CllowPass (&)
OHighPass (O Band Stop
F_stop low 500.0 Hz Optimal
F_passlow = 2000.0 Hz method
F_pass high S000.0 |Hz
F_stophigh =~ 7000.0 Hz
OF + Sampling Method Frequel-pcy
[#] Link Left/Right samping
—1 method
]Clear Graphs
Order (even) 64 | i Shared
] x controls
[Complement] [ Calculate ]

Figure 8.12: The FIR designer controls consist of three parts. The order slider and edit box
and the Calculate and Complement buttons are shared between both methods. You enable the
method of choice using the radio button controls.



Audio Filter Designs: FIR Filters 263

8.4 The Frequency Sampling Method

The frequency sampling method is really interesting because it lets you design any kind
of frequency response you want—it can be any arbitrary shape and it does not have to be
a classical filter type (LPF, high-pass filter [HPF], band-pass filter [BPF], band-stop filter
[BSF]), but you can make these types if you want to. The frequency sampling method
involves these steps:

1. Decide on a desired frequency response and plot it in the frequency domain.

2. Sample the frequency response at evenly spaced intervals determined by the filter order
you choose.

3. Take the inverse discrete cosine-transform (DCT) of the sampled frequency response to
get the sampled IR (the DCT is simply the real part of the fast Fourier transform [FFT]).

4. Load the sampled IR into a convolver and go.

8.4.1 Linear-Phase FIR Using the Frequency Sampling Method

Choose:
N = number of coefficients
Calculate:

For N = odd:
* (N + 1)/2 = number of samples in frequency domain, starting at 0 Hz

For N = even
*  N/2 = number of samples in frequency domain, starting at 0 Hz
Af = f/N = frequency spacing, starting at 0 Hz

Calculate the filter coefficients a, to ay,, with Equation 8.5:

e cos |2 n = ™ F| /|
H(|)|cos|{2m{n - V Nm

Note: This produces half the coefficients; the other half are a mirror image, as shown in the
example below. Because the IR is guaranteed to be symmetrical about its center, it produces a
linear phase FIR filter every time.

For N = odd

1 (N-1)/2
a, = Pmy+22

(8.5)
For N = even

1 N/2—1
a, = %@+22




264 Chapter 8

Example: Design an LPF with a cutoff of 5.5 kHz, f, = 44.1 kHz, N = 16.
Solution:

1. N = 16, which produces eight sampled points in the frequency domain with a spacing
of 2.756 kHz.
2. Sample the plot, producing the magnitude response, H(i) (Figure 8.13).

For this plot notice that:

e The plot is linear in frequency. To design a frequency sampling method filter by hand, it
is often easier to start with a linear frequency axis.

e The point at Nyquist is not used; it is there to pin down the response that would occur
after Nyquist.

The sampled frequency response is read directly off the plot: (0 dB = 1.0, —60 dB = 0.001).
|H(@i)| = {1.0, 1.0, 1.0, 0.001, 0.001, 0.001, 0.001, 0.001}
1. Use Equation 8.5 to extract IR h(n), which are the coefficients, a,,

a, = 0.04858366
a, = 0.00364087
a, = —0.05199205
a, = —0.07047625
a, = —0.02194221
as = 0.08695625
as = 0.21101949
a, = 0.29421023
ag = 0.29421023
a, = 0.21101949
a,, = 0.08695625
ay; = —0.02194221
— —0.07047625
—0.05199205
a,, = 0.00364087
ays = 0.04858366

5 R
I

Notice the symmetry about a; to ag boundary.

2. Measure the response (Figure 8.14).

The resulting filter is guaranteed to exactly match the desired frequency response at the
sampled points only. In between the sampled points, the frequency response can do anything;



Audio Filter Designs: FIR Filters 265

+12.0dB

0.0dBH
-12.0dB
-24.0dB

-36.0dB

-48.0dB
-60.0dB

2kHz _4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20 kHz

0 :Hz 2_?:kHz 5.5:kHz 8.2:kHz " =I<Hz 13_}': kHz ‘!6.5= kHz 19 ;<Hz Nyq:uist
Figure 8.13: Here is our prototype LPF with cut-off at 5.5 kHz; its response becomes -60 dB
(0.001) at 8.2 kHz, which is a steep roll-off.

rippling in the pass band and stop band can occur as shown here. You can see that this is a
pretty bad rendition of our desired response.

The first lobe in the stop band only produces about —14 dB of attenuation, which is poor
considering that we wanted a filter that would have a stop-band attenuation of —60 dB.
To improve the response, you have several choices:

* Relax the specifications.
» Add more points to the desired response.
* Increase the filter order.

Relax the specifications and roll off the response less steeply by changing the point at 8.2 kHz
to —12 dB (0.25) instead of —60 dB (Figure 8.15). Now, the sampled frequency response is

IH@i)| = {1.0, 1.0, 1.0, 0.25, 0.0, 0.0, 0.0, 0.0}

The resulting magnitude response [H(f)| is shown in Figure 8.16.

+12.0dB|
0.0 dBF————— ez
-12.0dB| :
-36.0dB| / ' \ /
B I | i | \

| | l 5 !
60008 "2 \Hz 4kHz 6kHz 8KHz 10kHz 12kHz 14kHz 16 kHz 18kHz 20 kHz

Figure 8.14: The resulting low-pass filter magnitude response.



266 Chapter 8

+12.0dB
0.0dB!
-12.0dB
-24.0dB
-36.0dB
-48.0dB
-60.0dB "

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20 kHz

Figure 8.15: The same design with specifications relaxed; the slope is less steep.

+12.0dB |
0.0 dB} - Seeczanee

-12.0dB |
-24.0dB

-36.0dB |
-48.0dB |
-60.0dB"

2kHz 4kHz 6KkHz 8kHz 10KHz 12kHz 14kHz 16kHz 18 KkHz 20 kHz

Figure 8.16: The relaxed magnitude response shows improved stop-band attenuation.
Now, the first lobe in the stop band has moved to a magnitude of about —30 dB, an
improvement of about 15 dB.

8.5 Complementary Filter Design for Linear Phase FIR Filters

This technique results in a complementary filter, rotated about the center of the Nyquist
bandwidth, that is, rotated about Nyquist/2. To convert an LPF to HPF or vice versa on a linear
phase FIR:

For N = even
e Multiply the even-numbered coefficients by —1.
For N = odd

e Multiply the odd-numbered coefficients by —1.

This will rotate the frequency response around Nyquist/2 such that an LPF will become an
HPF. However, they will not share the same cutoff frequency, but will rather be mirror images
of each other. Thus, the first filter design above with a cutoff point of 5.5 kHz would produce
an HPF with a cutoff frequency 5.5 kHz below Nyquist. Table 8.1 shows the coefficients,
while Figure 8.17 shows the frequency response.



Audio Filter Designs: FIR Filters 267

Table 8.1: The LPF and complementary HPF coefficients for the current design.

Low-Pass Filter Complementary High-Pass Filter
o = 0.02598719 ay = —0.02598719
a,; = 0.01331121 a,; = 0.01331121
a, = —0.02018474 a, = 0.02018474
a; = —0.05761180 a; = —0.05761180
a, = —0.04827195 a, = 0.04827195
as = 0.04957144 as = 0.04957144
as = 0.20692666 as = —0.20692666
a; = 0.33027202 a; = 0.33027202
ag = 0.33027202 ag = —0.33027202
dg = 0.20692666 aq = 0.20692666
d,o = 0.04957144 a,o = —0.04957144
ayy = —0.04827195 ay, = —0.04827195
a1, = —0.05761180 a1, = 0.05761180
d,; = —0.02018474 a,; = —0.02018474
ds = 0.01331121 a,s = —0.01331121
a,s = 0.02598719 a,s = 0.02598719

+12.0dB|

0.0dE . el T R [Ty wet) s
-12.0dB|
24.0dB
-36.0dB| / — . | -
-48.04B | \f \ WV
-60.0dB ! | I' '

2kHz 4KkHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20 kHz

Figure 8.17: The complementary HPF has its cut-off point at 16.5 kHz and you can see the
rotation about the 2 Nyquist frequency.

8.6 Using RackAFX’s Frequency Sampling Method Tool

RackAFX allows you to implement frequency sampling method filters by drawing responses
directly on the analyzer’s frequency response plots. You can place as many points as you
like as well as choose the order (even only) of the filter. The previous examples were done
using the frequency sampling method tool. Let’s do an example similar to the last one but

in the log frequency domain instead. First, click on the radio button marked frequency
sampling method and you will see a red horizontal line appear on the graphs. Make sure the
frequency axis is log. In this design, let’s try to make a resonant LPF with a peak frequency
around 1 kHz.



268 Chapter 8

You will see two boxes on the red line, one at DC, the other at Nyquist. These points cannot
be removed. To enter points and move them, use the following rules:

* Right-click on the red line to add a new point.

»  Click on the new point and drag it up or down.

« To remove a point, right-click on it and choose “delete point” from the pop-up menu.
» Hit the Calculate button when you are done to view the resulting filter.

Hit the Frequency Sampling button and note the filter order of 64 (if it is not 64, change it
with the slider or the edit control). Create a resonant LPF with a peak frequency of 1 kHz. In
Figure 8.18 you can see the bandwidth of the peak is 1.5 kHz and the response goes to —60
dB at 5 kHz. Next, hit the Calculate button to get Figure 8.19.

You can use the order slider to slowly increase the filter order until the response matches your
sampled points as closely as possible. You can move the slider, or type an order into the edit
box and hit the Tab button to inject it. You can also use the small up/down arrow buttons to
advance the order up or down in even increments. Typically, the way you would use this is to
first get close with the slider, then use the up/down arrows to fine tune the design. Figure 8.20
shows the same filter with the order set to 164.

+12.0dB |

0.0dBH )
-12.0dB
-24.0dB
-36.0dB |
-48.0dB |
-60.0dB '

10 Hz 100 Hz 1kHz = 10 kHz

Figure 8.18: The prototype resonant LPF sampled points.

+12.0dB| _

0.0dB N - < 1 0 O O 5 B 1
-12.0dB|
-24.0dB
-36.0dB|

-48.0dB | 1y / .l WAL
3 _ R AR
60,040 10 Hz 100 Hz 1kHz 10 kHz

Figure 8.19: The 64-tap FIR filter produces marginal results with poor stop-band attenuation.



Audio Filter Designs: FIR Filters 269

Play an audio file through the new filter and listen to the resonant LPF characteristics. Here
are some interesting things you can do in RackAFX while the audio file is playing or looping:

* You can move the order control; the filter will be updated in real time and you can hear
the results.

e You can add or remove points on the desired response or move them around, then hit
Calculate to update the filter in real time, and you can also hear the results.

* You can save the IR as a file, then load it into the Impulse Convolver module just as
before.

8.7 Designing a Complementary Filter

You can convert any design into a complementary design by hitting the Complementary
button. With the current 164th-order resonant LPF, first switch to the linear scale
(Figure 8.21).

Hit the Complement button to create the complementary HPF filter. The original design
points are left to show you the complementary nature of the filter. You can clearly see the
rotation about %2 Nyquist here (Figure 8.22). You can perform this operation while audio

+12.0dB |

0.0dB} P 0 S N I I
-12.0dB |
-240dB |
-36.0dB |
-48.0dB | A

: WAL A
E : O T LU PR
60.0dB YT i — i

Figure 8.20: The 164th-order FIR filter produces an excellent match to the specifications.

+12.0dB |
0.0 dB - \\ o e e

-12.0dB|

-24.0dB LS

-36.0dB|

-48.0dB| i

-60.0dB !

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Figure 8.21: The linear domain frequency response of the 1-kHz LPF.



270 Chapter 8

+12.0dB |
0.0 dB p--
-12.0dB
-24.0dB
-36.0dB
-48.0dB |
-60.0dB A4

A oA

"2KkHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz

Figure 8.22: The complementary HPF shows the mirror image nature of complementary filter
designs; the new resonant peak is 1 kHz below Nyquist.

files are playing in RackAFX as well. If you look at the IRs in the .sir file you can see the
operation of negating the odd-numbered coefficients.

8.8 The Optimal (Parks—McClellan) Method

FIR filters produce all zeros in the z-plane. You can see the effect of these zeros in the
frequency sampling method filters we designed—they create the notches and humps in the
frequency response. In general, we seek to minimize the humps in the pass band and set some
kind of limit for the largest lobe we see in the stop band. In the frequency sampling filters,
we changed the design specifications or the order of the filter to get a response that satisfied
our initial desired response to some extent. The optimal method is an algorithm for designing
classical filters (LPF, HPF, BPF, BSF). You can create filters with extremely steep roll-off
edges that would be difficult to synthesize in the analog domain. The word “optimal” comes
from the engineering phrase “optimal in the Chebychev way,” which describes a filter design
with a certain kind of rippling in the pass band and stop band.

The LPF in Figure 8.23 might be specified like this:

e Pass-band ripple: less than 0.1 dB
» Stop-band attenuation: greater than —24 dB

The pass-band ripple (0.1 dB) and stop-band attenuation (-24 dB) are converted into
weighting values using Equation 8.6:

Pass-bandweight = (1Opn_np,,.e(dB)/,zo) .
StOp-band Welght — (105b,anen(d5)/,20)

The optimal method uses these weighting values in its design calculation. The weightings
give acceptable error tolerances in each band. It the weights are equal, then there will be

(8.6)



Audio Filter Designs: FIR Filters 271

+12.0dB | *
0.0 dB e e aznaes r = i S gt EF5 by b B8 2 !
12048 + R I Stop-band
' Y ; attenuation
sunie Pass-band ripple e

-36.0dB
-48.0dB | —t
-60.0dB '

10Hz 100 Hz 1kHz

Figure 8.23: An FIR LPF can be specified by the acceptable ripple in the pass band (barely
observable here) and the minimum stop-band attenuation.

an equal deviation from the ideal in both bands. This is called an equiripple design. The
specifications for the optimal method are:

e The pass-band and stop-band frequencies
e The maximum pass-band ripple and minimum stop-band attenuation
* The order of the filter (the number of zeros in the frequency response)

The algorithm works by first distributing the zeros out equally across the frequency axis. This
is going to produce a series of humps in the pass band (the ripple) and lobes in the stop band.
The ripples and lobes will produce a set of maxima and minima frequencies. The problem is
that for a given specification, the locations of the extremal frequencies are not known before
hand. The optimal method must use a search algorithm to iteratively move the locations
around until a solution is found that is within the tolerance of the specifications. The optimal
method uses an algorithm called the Remez exchange method to iteratively move the zeros
around until a solution converges. It must be noted that the Remez exchange algorithm is not
guaranteed to converge for a given set of specifications.

Once the Remez exchange method finds the locations of the extremal frequencies, the
resulting H(f) graph is sampled using the frequency sampling method to produce the IR,
which is the set of FIR filter coefficients. To summarize the method:

»  Specify the filter parameter and order.

» Equally distribute zeros across the spectrum.

e Set the pass-band and stop-band weights.

» Use the Remez exchange algorithm to iteratively find the location of the zeros.
» Sample the resulting frequency response to produce the final IR.

8.9 Using RackAFX’s Optimal Method Tool

RackAFX lets you design any of the four classical filter types using the equiripple weighting
for the pass band and stop band. BPF and BSF filters have an additional band edge to specify,



272  Chapter 8

but the meaning of pass-band ripple and stop-band attenuation is the same for all filter types.
You can start with an LPF design by clicking on the Optimal button. Try the following filter
specifications:

* Type: LPF

e F _pass low: 1 kHz (the low edge cut-off frequency)

» F_stop low: 2 kHz (the lowest frequency that must receive the required stop band
attenuation)

* Filter order: 16

Now, use the Calculate button to generate the filter. You can see from Figure 8.24 that the
filter is not performing exactly to specifications. Although the pass band looks good, the stop
band does not. Next, begin increasing the order of the filter using the slider or nudge buttons
until you get the stop-band attenuation you desire; for —48 dB of attenuation, you will need a
104th-order filter as shown in Figure 8.25. Finally, check the IR and you will see a truncated
version of the sinx(x)/x function (Figure 8.26).

+12.0dB|

T o) — S— . N I 117 1 S S 151 19 1 e o 5 [ 1 11 )
-12.04dB |
-240dB
-36.04dB |
-48.04dB |
-60.0dB

10 Hz 100 Hz 1kHz 10kHz

Figure 8.24: The pass-band ripple is well within spec; however, the stop-band attenuation is only
getting to about -12 dB.

+12.0dB |

0048 . R Rl I A R T .
-12.0dB |
-24.0dB |
-36.0dB |
-48.0dB |

_ i
0048 10Hz 100 Hz 1KkHz

Ml
'LRN|

Figure 8.25: The 104th-order optimal method LPF produces the desired stop-band attenuation.



Audio Filter Designs: FIR Filters 273

The Remez exchange algorithm is not guaranteed to converge. You will receive an error message
if it does not converge. Even if the algorithm does converge, the resulting IR is not guaranteed
to be finite. Increasing the filter order will not necessarily produce a better design.

1.000
0707
0500 |

0.000 A/ \r

-0.500
-0.707
-1.000

0 102 204 306 408 510 612 714 816 918

Figure 8.26: The IR for the 104th-order optimal method LPF.

Experiment:

* Load a wave file and audition the filter.

e Try the other filter types (HPF, BPF, BSF).

*  Adjust the order control noting when the Remez exchange algorithm fails to converge or
the filter blows up.

e Try to find the lowest possible filter order to just match the desired specifications.

» Save IR files with various filters you design.

» Copy and paste the IR code into your own convolution plug-in.

8.10 Design a Convolution Plug-In

In order to implement the convolution (FIR) algorithm you need to use the delay line theory
from the last chapter. The filters often need hundreds or thousands of delay elements and you
know that a circular buffer works perfectly for storing and updating a sequence of x(n), x(n — 1),
X(n — 2)... Inaddition, the IR will need to be stored in a buffer and accessed sequentially with a
pointer like the input buffer. The convolution equation in Equation 8.2 accumulates from —o to
+o0 which uses both past and future data. We can only use past data and so we only need half of
the equation. The generalized FIR convolution equation is Equation 8.7:

y(n) = hyx(n) + hyx(n — 1) + hx(n — 2) + ... + hy(h — M) (8.7)

The number of delay elements required is M—1 since the first term hyx(n) operates on the
current, undelayed input signal. So, a 64-tap FIR requires 63 delay elements. Remember
from Chapter 7 that when we access a circular buffer and write the current input sample,
we are overwriting the oldest sample, x(n — M) but we can use this to our advantage in this



274 Chapter 8

case by using a 64-element circular buffer to implement a 64-tap FIR and by writing in the
first sample before doing the convolution operation. This will give us a buffer with x(n)
through x(n — M — 1) lined up and ready for access. We will have an identically sized buffer
to store the IR, h(n). During the convolution operation we will zip through both buffers at
the same time, accumulating the product of each operation. The only tricky thing is that the
IR buffer will be reading sequentially from top to bottom exactly once each sample period to
create the sequence h(0), h(1), h(2), and so on. The input buffer will be circular and reading
backwards to create the sequence x(n), n(n — 1), x(n — 2), and so on, shown graphically in
Figure 8.27.

If you look at your base class file, Plugin.h, you will find the declarations of your built-in IR
buffers and variables:

// impulse response buffers!
float m_h_Left[1024];
float m_h_Right[1024];

// the length of the IR from 0 to 1024
int m_nIRLength;

// flag to set to request impulse responses from the UI
bool m_bWantIRs;

Input Buffer x Impulse Buffer b Input Buffer x Impulse Buffer h
x(n—4) »> h(D) ——=h(0)x(n) x(n-4) h(0)
x(n-3) h(1) x(n-3) - h(1) —»h(1)x(n-1))
x(h=2) h(2) x(n=2) h(2)
x(n—-1) h(3) x{n-1) h(3)
x(n) 1 h(4) x(n) hi4)
x(n-0-1) x(5) x(n=0-1) x(5)
elc... etc... etc... elc...
x(n-5) hD) x(n-5) h(D)
Input Buffer x Impulse Buffer h Input Buffer x Impulse Buffer h
x(n-4) h(0) x(n-4) h{0)
x(n-3) h(1) x{n-3) h(1)
x(n-2) » h(2) ——= h(2)x(n-2) x(n—-2) h(2)
x(n-1) h(3) x(n-1) > h(3) —=h(3)x (n=3})
x(n) h(4) x(n) h(4)
x(n=0-1) x(5) x(n=0-=1) x(5)
efc... etc... etc... efc...
x(n-5) h(D) x(n-15) h(D)

Figure 8.27: The first four multiplication operations for a convolution operation shows how one
buffer reads backward while the other reads forward.



Audio Filter Designs: FIR Filters

275

Table 8.2: IR variables

Variable Description
m_h_Left[1024] The IR buffer for the left channel
m_h_Right[1024] The IR buffer for the right channel
m_nlIRLength The length of the current convolution
m_bWantIRs A flag to tell RackAFX to populate your IR

buffers automatically whenever the user
loads an IR file or creates a filter with the
FIR Designer tool

These variables are shown in Table 8.2.

8.10.1 Project: Convolver

Create a new RackAFX project; | named mine “Convolver.” It has no GUI elements
to set up.

8.10.2 Convolver.h File

Declare the variables you need to implement a stereo convolution and remember that the IR
buffers and length variables are already declared for you. We need the following:

Buffer to hold the x input for the left channel

Buffer to hold the x input for the right channel

Read index for the IR delay line (buffers)

Read index for the input (x) buffers

Write index for sequentially writing input samples into the delay lines

// Add your code here: ------------------ooooooooooooooooo oo /1
//

// pointers to the left and right input buffers

float* m_pBufferLeft;

float* m_pBufferRight;

// read index for delay lines (input x buffers)

int m_nReadIndexDL;

// read index for impulse response buffers

int m_nReadIndexH;

// write index for input x buffer

int m_nWritelndex;



276 Chapter 8

8.10.3 Convolver.cpp File

Constructor

Create the buffers.
Flush the buffers; reset to 0.0.
Reset all indices.

CConvolver::CConvolver()

{

}

<SNIP SNIP SNIP>

// Finish initializations here

// set our max buffer length for init
m_nIRLength = 1024; // 1024max

// dynamically allocate the input x buffers and save the pointers
m_pBufferLeft = new float[m_nIRLength];
m_pBufferRight = new float[m_nIRLength];

// flush x buffers
memset (m_pBufferLeft, 0, m_nIRLength*sizeof(float));
memset (m_pBufferRight, 0, m_nIRLength*sizeof(float));

// flush IR buffers
memset (&m_h_Left, 0, m_nIRLength*sizeof(float));
memset (&m_h_Right, 0, m_nIRLength*sizeof(float));

// reset all indices
m_nReadIndexDL = 0;
0;

m_nWriteIndex = 0;

m_nReadIndexH

You can see that we’ve allocated the memory for input buffers of maximum size 1024. We’ve
also flushed out all buffers by setting all data to 0.0 with memset() and finally reset the
indices to all point to the tops of the buffers.

Destructor

Since we allocated memory in the constructor, we need to remove it in the destructor:

CConvolver::~CConvolver(void)



Audio Filter Designs: FIR Filters 277

}

// free up our input buffers
delete [] m_pBufferlLeft;
delete [] m_pBufferRight;

prepareForPlay()

We also need to flush the buffers and reset the indices:

bool __stdcall CConvolver::preparefForPlay()

{

}

// Add your code here:

// flush buffers

memset (m_pBufferLeft, 0, m_nIRLength*sizeof(float));
memset (m_pBufferRight, 0, m_nIRLength*sizeof(float));

// reset indices
m_nReadIndexDL = 0;

m_nReadIndexH = 0;

m_nWritelndex = 0;

return true;

processAudioFrame()

Implement the convolution loop.

The loop will need to do the following operations (these are not streamlined in the code for
ease of reading; you can always improve on the code by combining steps together). You are
implementing the operation in Figure 8.27:

Read the current sample x(n) and write it into the buffer.

Reset the delay line read pointer to the current input sample, x(n); the pointer needs to be
reset because its value will change and be destroyed later in the loop.

Reset the IR read index to point to the top of the buffer at location 0.

Set up the accumulator and create the convolution loop.

After forming each product h(i)x(n — i), increment the IR buffer read pointer and
decrement the delay line read pointer.

Check for a wrap after the delay line pointer is decremented.

Write the output sample.



278 Chapter 8

»  Process the second (right) channel the same way.
* Increment the delay line write index and wrap if necessary.

bool __stdcall CCConvolver::processAudioFrame(float* pInputBuffer, float* pOutputBuffer,
UINT uNumInputChannels, UINT uNumQOutputChannels)
{

// Do LEFT (MONQO) Channel; there is always at least one input/one output

// Read the Input

float xn = pInputBuffer[0];

// write x(n) -- now have x(n) -> x(n-1023)
m_pBufferLeft[m_nWritelIndex] = xn;

// reset: read index for Delay Line -> write index
m_nReadIndexDL = m_nWritelndex;

// reset: read index for IR - > top (0)
m_nReadIndexH = 0;

// accumulator
float yn_accum = 0;

// convolve:
for(int i=0; i<m_nIRLength; i++)
{
// do the sum of products
yn_accum += m_pBufferLeft[m_nReadIndexDL]*m_h_Left[m_nReadIndexH];

// advance the IR index
m_nReadIndexH++;

// decrement the Delay Line index
m_nReadIndexDL--;

// check for wrap of delay line (no need to check IR buffer)
if(m_nReadIndexDL < 0)
m_nReadIndexDL = m_ nIRLength -1;
}

// write out
pOutputBuffer[0] = yn_accum;

Now you should try to write the code for the second (right) channel. After you’re done, check
it against the following code:

// Mono-In, Stereo-Out (AUX Effect)
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1] = pOutputBuffer[0]; // just copy



Audio Filter Designs: FIR Filters

279

// Stereo-In, Stereo-Out (INSERT Effect)
if(uNumInputChannels == 2 && uNumQutputChannels == 2)

{

}

// Read the Input
xn = pInputBuffer[1l];

// write x(n) -- now have x(n) -> x(n-1023)
m_pBufferRight[m_nWritelndex] = xn;

// reset: read index for Delay Line -> write index
m_nReadIndexDL = m_nWritelndex;

// reset: read index for IR - > top (0)
m_nReadIndexH = 0;

// accumulator
yn_accum = 0;

// convolve:
for(int i=0; i<m_nIRLength; i++)
{
// do the sum of products
yn_accum +=
m_pBufferRight[m_nReadIndexDL]*m_h_Right
[m_nReadIndexH];

// advance the IR index
m_nReadIndexH++;

// decrement the Delay Line index
m_nReadIndexDL--;

// check for wrap of delay line (no need to check IR buffer)

if(m_nReadIndexDL < 0)
m_nReadIndexDL = m_nIRLength-1;
}
// write out
pOutputBuffer[1] = yn_accum;

// incremnent the pointers and wrap if necessary
m_nWriteIndex++;
if(m_nWriteIndex >= m_nIRLength)

m_nWriteIndex = 0;

return true;



280 Chapter 8

Increment the buffer write pointer after the end of the right channel processing. The reason

is that it is shared between both left and right (just like the IR buffer read index is shared
between the left and right IR buffers). Build and test the code; in order to quickly test the
code, you can use a feature of the FIR Designer and copy an IR to the clipboard, then paste
the FIR Designer and use the default optimal method LPF
design—it will automatically be calculated when you first see the FIR Designer interface. Hit
the button h(n) — Clipboard to copy the IR code to your Windows clipboard. Now, go to the
constructor and use the paste function Ctrl+V to load in the IR code. Do this at the end of all
the initialization stuff you wrote in Step 2. It should look like this:

it into the constructor. Open

Constructor

CConvolver::CConvolver(
{
<SNIP SNIP SNIP>

// reset all ind

m_nReadIndexDL =

m_nReadIndexH =

m_nWritelndex =

// h(n) Impulse
// Length = 1024

)

ices
0;

0;

0;

Response

m_nIRLength = 65;

m_h_Left[0] = -0
m_h_Left[1] = -0
m_h_Left[2] = -0
m_h_Left[3] = -0
m_h_Left[4] =
m_h_Left[5] =
m_h_Left[6] =
m_h_Left[7] =

etc...

m_h_Right[1018]
m_h_Right[1019]
m_h_Right[1020]
m_h_Right[1021]
m_h_Right[1022]
m_h_Right[1023]

.00057406;
.00016395;
.00015001;
.00007587;

.00007552;
.00029672;
.00063462;
.00108109;

.00000000;
.00000000;
.00000000;
.00000000;
.00000000;
.00000000;

o O O O o o



Audio Filter Designs: FIR Filters 281

This IR has 65 samples and will create a 65-tap FIR filter. Compile the dynamic link
library (DLL) and load it into RackAFX. Play a wave file through it; it’s an LPF at

1 kHz, so this will be easy to verify by ear. Open the analyzer window and look at the
frequency and IRs—these will also be identical to the original design. Now that you have
verified that your convolution works properly, you can set the IR flag in your constructor
to let RackAFX know to deliver your IRs when the user makes, loads, or calculates
them. You can also remove or comment-out the default IR code you pasted in to do the
initial testing:

CConvolver::CConvolver()
{
<SNIP SNIP SNIP>

// reset all indices
m_nReadIndexDL = 0;
m_nReadIndexH = 0;

m_nWritelndex = 0;

// set the flag for RackAFX to Toad IRs into our convolver
m_bWantIRs = true;
}

Now, build and load your DLL. Next, open the analyzer window and you will see two
new buttons on the right below the IR/FIR design area. Because your plug-in wants
IRs, RackAFX reveals these two hidden buttons on the analyzer panel allowing you
to use either the FIR Designer or the IR directory to create or load IR files. As soon
as this window opens, it delivers the current IR loaded, which is the optimal LPF
design by default. If you change the design it will remember it if you close the
analyzer.

Load a wave file and hit Play—this will play the optimal LPF design. Now, hit one of the
other buttons (HPF, BPF, or BSF) and the IR will automatically be calculated and loaded
into your plug-in, even if an audio file is playing. Test the other IR tools, like the frequency
sampling method and the IR Directory, and listen to the resulting filters.

8.11 Numerical Method FIR Filters

The last type of FIR filters consists of numerical methods and is not based on IRs or
convolution, even though many of them implement a convolution loop. There are books full of
numerical methods for performing all kinds of operations, from integration and differentiation
to moving averages and interpolation. In this section we will examine a few algorithms and if



282 Chapter 8

it interests you, get a book on numerical methods and you will have a plethora of algorithms
to try out. Some of these filters can be implemented as FIR topologies while others are better
suited for a straight mathematical function call.

8.11.1 Moving Average Interpolator

Choose:
N = number of points to interpolate, minimum = 2

Calculate:

1
ak=N,where0SksN—1 (8.8)

The moving average interpolator (or MA filter) in Figure 8.28 implements a sliding window
of N samples wide, over which the input samples are averaged. Each sample gets an equal
weight of 1/N.

Example: Design a five-point MA filter.
Solution:
N=05s0a =1/5=0.20

To code this in RackAFX, you would flush the IR buffers, then set the first five values of each
impulse array to 0.2 and set the m_nlIRLength variable to 5:

// disable RackAFX IRs for the MA filter test
m_bWantIRs = false;

// h(n) Impulse Response
// MA Filter N =5

X(n} -1 -1 -1 -1

y(n)
Figure 8.28: The implementation of a five-point MA filter.



Audio Filter Designs: FIR Filters 283

m_nIRLength

I
o

m_h_Left[0] = 0.2
m_h_Left[1] = 0.2
m_h_Left[2] = 0.2
m_h_Left[3] = 0.2
m_h_Left[4] = 0.2

m_h_Right[0]
m_h_Right[1]
m_h_Right[2]
m_h_Right[3]
m_h_Right[4]

}

Of course you could also write a function to calculate and populate the IR buffers, but this
one is short enough to code by hand if you want.

The frequency response (Figure 8.29) of an MA filter is always an LPF. The more samples
that are averaged, the more stop-band attenuation and the more zeros get inserted into the
z-plane. For this filter there is a pair of complex conjugate zeros which produce two null
points in the response.

You can see this is a pretty poor LPF compared to some of the optimal filter designs, but these
filters can be very useful, for example to smooth the response of an audio detector output or
to insert in the feedback path of a delay line module to gently roll off high frequencies on
each pass through the delay. You can get better stop-band attenuation by increasing the order
of the filter. This will also effectively pull in the corner frequency, which looks like about

2.5 kHz here. Experiment with higher-order MA filters, or add a slider to let the user adjust
the window size. This exact filter already exists as a RackAFX module called a “Smoothing
Filter” for you to experiment with.

+12.0dB |
0.0dB et

-12.0dB|

-24.0dB|

-36.0dB|

-48.0dB| ]

-60.0dB |

10Hz 100 Hz 1KHz 10 kHz

Figure 8.29: The MA filter with a window of 5 samples.



284 Chapter 8

8.11.2 Lagrange Interpolator

Choose:
N = number of points to interpolate, minimum = 2

Calculate:
n X J—
a=II ;= (89)

The Lagrange interpolator uses a polynomial of order j — 1 to interpolate across the
window of points that you give it. The window is of length j in the above equation. This is
a complex filter because the coefficients change every sample period and they are based on
the window of input values, X, to X;. This filter can be implemented as a pure math function
call. To facilitate your coding, a Lagrange interpolation function is implemented in your
pluginconstants.h file:

/*
Function: Tagrpol() implements n-order Lagrange Interpolation
Inputs: double* x Pointer to an array containing the x-coordinates of the
input values
double* y Pointer to an array containing the y-coordinates of the
input values
int n The order of the interpolator, this is also the length of
the x,y input arrays
double xbar The x-coorinates whose y-value we want to interpolate
Returns The interpolated value y at xbar. xbar ideally is between the middle two
values in the input array, but can be anywhere within the limits, which
is needed for interpolating the first few or last few samples in a table
with a fixed size.
*/

8.11.3 Median Filter

Choose:
N = number of points in window = odd
Calculate:

Acquire samples in windows of N values, then sort and choose the median value as the
output.



Audio Filter Designs: FIR Filters 285

The median filter (Figure 8.30) is a very interesting and somewhat strange algorithm. It has
no IR or frequency response. It smoothes an input signal, which is an LPF type of operation,
but it preserves transient edges, which is very un-LPF in nature. It has applications in noise
reduction without losing high-frequency transients. Its central algorithm uses a sorting
mechanism to sort the window of data by amplitude. The median value is chosen from the
sort operation as the output. When the next sample arrives, the window is re-sorted and the
next median value is obtained. To understand how it smoothes a signal without affecting

high-frequency transients, consider the following example.
Example: Design a five-point median filter and test with example.
Consider this input sequence: x = {1,2,1,0,1,2,3,3,2,1,9,8,9,9,7,5,5,4} in

x(n) Z1 Z e z
Y y Y Y l
Sort low to high and find median value

|—> y(n)

Figure 8.30: The block diagram of a five-point median filter implementation.

Figure 8.31.

? AN oY
N/ \
8 | ) A\
I \
7 I N
I A
\
6 ; \
\
5 I Ty
: 9
\
5 I \
. / hS
3 KT, | .
. o New
2 J b 3
7N o |
1w O Q)
N s
0 X
| ; . Sample (n)
| -4———— Window0: 1
L of1]12 _

[ ; ;
| £
0 1|T|22 -o— Window 1:1
0 1|T|2 3 -4——— Window 2 :1
0 13 3 -—— Window 3 : 2

Figure 8.31: The first four windows of the median filter produce an output sequence {1,1,1,2}



286 Chapter 8

You can see a transient edge where the signal jumps from 1 to 9 and then another transient
where it drops from 9 to 7 to 5. The first window operates on the first five samples and

sorts them from low to high. Then, the median value is chosen as the output. The median
value is shown in a box in the center of each window. You can see the smoothing effect
immediately—the first three samples out of the filter are all 1, even though the first three
samples vary from 1 to 2. Figures 8.32 and 8.33 show the result of median filtering the signal

in Figure 8.31.

FIR filters can be complicated to design and long convolutions in direct form are slow. You
can use the FIR design tools when you need to create linear-phase filters with very steep

roll offs (optimal method) or filters with arbitrary frequency responses (frequency sampling
method). You might also want to investigate other FIR designs such as the windowing method

and the recursive frequency sampling method.

9 ;S"\ /'__'-\.:
~_/ \
8 1 &) \
| \
| A
, \
6 \
|
i \L- =X
5 i -
| \
4 ] \
~ | M-
3 el ]
- // \\_ |
2 AN b |
v \\” _// N
10 QO C
| ~ r
0! N, - .
= 2 Sample (n)
L o[ 2 | 18[glos |
0 1[1]2 2 | | 78[9]99
01[1]2 3 . s57[slo g
55[7]9 9

0 1[2]3 3 _ _
| 12[2]3 3 ; i
12[2]3 3 _
| 2[3]3 9 _
| 12[3]s
I 2[8]o 9 |

Figure 8.32: The complete set of median filter outputs for the sliding-window-of-five operation




Audio Filter Designs: FIR Filters 287

1O
|
0 —
I Sample (n)
Figure 8.33: Input and output sequences plotted together and shifted to show the smoothing of
the steady-state portions and preservation of the transient edges.

Bibliography

Ifeachor, E. C. and Jervis, B. W. 1993. Digital Signal Processing, A Practical Approach, Chapters 4 and 6. Menlo
Park, CA: Addison-Wesley.

Kwakernaak, H. and Sivan, R. 1991. Modern Signals and Systems, Chapters 3 and 9. Englewood Cliffs, NJ:
Prentice-Hall.

Lindquist, C. 1999. Adaptive and Digital Sgnal Processing, Chapter 10. Miami: Steward & Sons.

Oppenheim, A. V. and Schafer, R. W. 1999. Discrete-Time Signal Processing, 2nd ed., Chapter 7. Englewood
Cliffs, NJ: Prentice-Hall.






Oscillators

Oscillators find several uses in audio effects and plug-ins. The obvious useis as an audio test
signal like the one RackAFX provides on the main interface. Additive synthesis of musical
sounds uses multiple sinusoidal oscillators at harmonic frequencies to create complex
waveforms. Wavetable synthesis stores a periodic waveform in atable for interpolation

and playback when the musician strikes akey or aMIDI message is sent. Low-frequency
oscillators (LFOs) are used in the design of modulated delay lines and modul ated filters.
Oscillators broadly fall into two categories: direct calculation and table lookup. We desire
oscillators that have several important features:

» Stability over awide range of frequencies

* Noaliasing

e Purity of sinusoid (low THD+N) for sinusoidal oscillators
*  Quadrature phase outputs

e Simplicity of calculation

9.1 Direct Form Oscillator

We can make a sinusoidal oscillator by placing apair of poles directly on the unit circlein the
z-plane. This produces a sinusoid at the pole angle (or frequency). The radius of the poleis
always 1.0. Using the fundamental digital signal processing (DSP) z-plane equations, we can
directly write the transfer function and difference equations:

H(2) = ao{l + bzt + bzzz]
1
- ao{l ~ 2Reos(0)z * + Rzz‘z} ©1)

y(n) = 2cos(@)y(n — 1) — y(n — 2)

Since the poleradiusis 1.0, then the b, coefficient is 1.0 as well. The b, coefficient is then
—2cos(0), where 6 isthe pole frequency from 0 to 7.

289



290 Chapter 9

y(n)

10

2cos(B)

Re

o

oV

Figure 9.1: The direct form sinusoidal oscillator z-plane and block diagram.

You can see that the block diagram in Figure 9.1 has no input. Oscillators do not have inputs;
instead they have initial conditions which, once started, will cause eternal oscillation. DSP
theory suggests that kick-starting the system with an impulse will cause it to self-oscillate,
which it does. However, the amplitude and phase are dependent on the frequency, 6. For an
oscillator, we would like to precisely control the amplitude and starting phase so that they are
exact. If we aretrying to create a sinusoid with an initial phase offset of O degrees, then the
first sample out of our oscillator at n = 0 would be 0.0, and the second sample out would be
sin(wnT) wheren = 1and T = 1f,

9.1.1 Initial Conditions

Suppose we want to generate the above sinusoid, oscillating at 500 Hz. If we want the first
sample out to be 0.0, then continue rising after that, we need to initialize the delays asif a
sinusoid had been oscillating, up to the point when we turn on the oscillator. So we can set
our initial state by preloading those last two samples into the delays in our oscillator/filter, as
shown in Figure 9.2.

The sinusoid is oscillating at sSin(wnT) wheren = 0, 1, 2, 3... after the oscillator startsand T
isthe sample period. The previous two samples with f, = 500 Hz and f, = 44,100 Hz would
be sin(w(—1T)) and sin(w(—2T)), which are -0.0712 and —0.1532, respectively. The direct
form oscillator block diagram is shown in Figure 9.3.

The difference equation is as follows:

y(n) = —by(n — 1) — by(n — 2) (9.2)



Oscillators 291

IF the oscillator starts here

THEN these must have been
the previous two samples out of
the oscillator: y(n—1) and y(n-2)

Figure 9.2: Initial conditions that would have produced a sinusoid whose first output sample is 0.0.

y(n)

Figure 9.3: The direct form oscillator is really the feedback side of the bi-quad structure.

Specify:
» f,, desired oscillation frequency

The design equations are as follows:

o — 27f,

fs
b, = —2cog(0)
b2 - 10

(9.3)
Initial conditions:
y(n — 1) = sin(—16)
y(n — 2) = sin(—260)



292 Chapter 9

9.2 Design a Direct Form Oscillator Plug-In

In our first version of the direct form oscillator we are going to make it as simple as possible
by restarting the oscillator when the user changes the oscillator frequency. This meanswe
are going to recalculate the initial conditions asif the oscillator was starting from a phase

of 0 degrees and the first sample out would have avalue of 0.0. After we have that up and
running, we will modify it to change frequency on the fly, automatically back-cal culating the
initial conditions for any given output sample. Here are the oscillator’s specifications:

*  Monophonic sinusoidal oscillator.

*  Wewill need to implement a second-order feed-back block.

*  Wewill need adider for the user to control the oscillation frequency in Hz.

*  Wewill need a cookFrequency() function to calculate our coefficients and reset our initial
conditions when the user moves the frequency dlider.

» Theoscillator’s range will be 200 Hz to 6 kHz.

» We need to assign Start and Stop buttons.

9.2.1 Project: DirectOscillator

Create anew project in RackAFX. On the new project dialog, make sure you check the box
“Output Only Synthesizer Plug-1n"—you must select this for any synthesis plug-in; you will
not be able to play awave file through it (Figure 9.4).

9.2.2 DirectOscillator GUI

Add afreguency dider (Figure 9.5) to the user interface (Ul) with the parametersin Table 9.1.
Next, set up the assignable buttons to create start and stop functions. Right-click inside the
box labeled “Assignable Buttons™ but do not click on a button, only in the areain between.

A diaog pops up (Figure 9.6) that lets you set the button names. Choose “ Start,” “ Stop,” and
make the last one blank with “ ” by entering the strings in the edit boxes. The buttons will
automatically use the text you enter. Do not check the “Latching” buttons. See the website for
notes on how to use latching buttons.

Table 9.1: The GUI control for the DirectOscillator plug-in

Slider Property Value
Control Name Frequency
Units Hz
Variable Type float
Variable Name m_fFrequency_Hz
Low Limit 200
High Limit 6000
Initial Value 1000




Oscillators

293

These assignable buttons will trigger your userlnterfaceChange() function with their

'Edit Project Properties

Project Name:  DirectOscillator

Edit Project Folder = C:\Documents and SettingsiOwnerY,

.hFile: | DirectOscillator.h

.cpp File:  DirectOscillator.cpp

Output Only Synthesizer Plug-In
|| Make VST Compatible

[JInclude CFFT Object (advanced)
[Jinclude Socket Reverb Objects (advanced)

Figure 9.4: Make sure you check the “Output Only Synthesizer Plug-In”

box for your oscillators.

Frequency
[ 1000.0 Hz |

Figure 9.5: The DirectOscillator GUI.

nControllndex values of 50, 51, and 52. See the userlnterfaceChange() function for more

details.



294 Chapter 9

Assignable Button Setup x|

Assignable Buttons

[ moteon | | weteorf | | ]

Enter custom Button Strings here, or use the defaults if you wish.
Mote On Note Off

[JLatching [JLatching [JLatching

These three assignable buttons will trigger function calls to your
userInterfaceChange() function with their control IDs set. There
is no underlying variable to declare or maintiain.

You can use these buttons For tap-tempo timing, or to send a user
messaqge ko initiate an event in your Plug-In or for debugging

purposes,

Lok J[ concel |

Figure 9.6: The assignable button setup; notice that the last button is blank.
RackAFX will hide it when you load the plug-in.

9.2.3 DirectOscillator.h File

Inthe .hfile, declare the variables you need to implement the oscillator:

// Add your code here: ------- - - oo //
//

// coefficients, 2nd Order FB

float m_f_bl;

float m_f_b2;

// delay elements, 2nd Order FB
float m_f_y_z1;
float m_f_y_z2;

// flag to start/stop oscillator
bool m_bRunOscillator;

// function to cook the Frequency and set initial conditions

void cookFrequency();

//

// END OF USER CODE --------mmmmmmm s oo oo m oo oo oo //



Oscillators

295

9.2.4 DirectOscillator.cpp File

Constructor

CDirectOscillator::CDirectOscillator()

{

}

<SNIP SNIP SNIP>

// Finish initializations here
// turn off
m_bRunOscillator = false;

// set 0
m_f_bl = 0;
m_f_b2 = 0;

// flush memory
m_f_y z1 = 0;
m_f_y z2 = 0;

// call the cooking function to calc coeffs
// and set initial states
cookFrequency();

Implement the cooking function according to the design equations:

void CDirectOscillator::cookFrequency()

{

}

// QOscillation Rate = theta = wl = w/fs
float f_wT = (2.0*pi*m_fFrequency_Hz)/(float)m_nSampleRate;

// coefficients according to design equations
m_f_bl = -2.0*cos(f_wT);
m_f_b2 1.0;

// set initial conditions so that first sample out is 0.0
m_f_y z1 = sin(-1.0*f_wT); // sin(wnT) = sin(w(-1)T)
m_f_y z2 = sin(-2.0*f_wT); // sin(wnT) = sin(w(-2)T)

prepareForPlay()

Call the cooking functions to initialize the oscillator:

bool __stdcall CDirectOscillator::prepareforPlay()

{

// Add your code here:

Turn off the oscillator by setting the flag you declared in the .h file. You will need to do
these two steps any time you make an oscillator or other output-only plug-in.



296 Chapter 9

}

// calc coeffs and initial conditions
cookFrequency();

retur true;

processAudioFrame()

Implement the second-order feed-back filter.

Check the oscillator flag. If the oscillator is not running you must send 0.0 samplesto
the output stream and then return without further processing. Thisis done at the very
beginning of the function.

bool __stdcall CDirectOscillator::processAudioFrame(float* pInputBuffer, float*

{

pOutputBuffer, UINT uNumChannels)

//

// output = input -- change this for meaningful processing
//

// Do LEFT (MONO) Channel

//

// if not running, write Os and bail
if(!m_bRunOscillator)

{
// zero it all out
pOutputBuffer[0] = 0.0;
// Mono-In, Stereo-Out (AUX Effect)
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1l] = 0.0;
// Stereo-In, Stereo-Out (INSERT Effect)
if(uNumInputChannels == 2 && uNumOutputChannels == 2)
pOutputBuffer[1] = 0.0;
return true;
}

// otherwise, do the oscillator
// do difference equation y(n) = -bly(n-2) - b2y(n-2)
pOutputBuffer[0] = -m_f_bl*m_f_y z1 - m_f_b2*m_f_y_ z2;

// Mono-In, Stereo-0Out (AUX Effect)
if(uNumInputChannels == 1 && uNumOutputChannels == 2)
pOutputBuffer[1] = pOutputBuffer[0];

// Stereo-In, Stereo-Out (INSERT Effect)
if(uNumInputChannels == 2 && uNumOutputChannels == 2)
pOutputBuffer[1] = pOutputBuffer[0];



Oscillators 297

// shuffle memory
m_f_y z2 = m_f_y_z1;
m_f_y zl pOutputBuffer[0];

return true;
}

userlnterfaceChange()

e Cadll the frequency cooking function and implement the start and stop functions.
e Make sure your nControlIndex values match your switch/case statement.

bool __stdcall CDirectOscillator::userInterfaceChange(int nControlIndex)

{
// cook variables
switch(nControlIndex)
{
case 0: // freq
cookFrequency();
break;

case 50: // start
m_bRunOscillator = true;
break;

case 51: // stop
m_bRunOscillator = false;
break;

default:
break;

}

return true;
}

Build and load the dynamic link library (DLL). Then, hit the Start and Stop buttons to control
your oscillator. Play with the frequency dlider to change the value. You will notice alot of
clicking due to the discontinuities that occur each time the oscillator is reset to re-trigger from
the 0.0 value. Other than that problem, the output should be a pure sinusoid with very low
distortion and noise.

9.2.5 Improving the Oscillator Design

One of the drawbacks of oscillatorsistheir initial conditions usually must be met (there are
noise generators and other devices that can start up in arandom state). In this case, we must
preload the delay elements with samples that would have occurred before the initial output
sample. If the user changes the frequency of oscillation, the initial states must change too. The
problem is that the oscillator can be in any state when the user changes the controls. Suppose
the user decreased the frequency of oscillation a bit and that the oscillator had some valuesin



298 Chapter 9

(n—1)shared
/ Y
/ a—Next y(n)
/
yin-2)

newly
calculated

Figure 9.7: The new initial state samples, y(n — 1) and y(n — 2); we share the y(n — 1)
sample as if it was from the new frequency and alter the y(n — 2) value to
relocate it on the new sinusoid.

y(n — 1) and y(h — 2). Then to set up the new initial state, you can share the y(n — 1) value
between the two sinusoids and calculate anew y(n — 2) value. The next sample out of the
oscillator is at the new rate, using the new initial state you created (Figure 9.7).

Theinitial conditions from the design equations are in Equation 9.4:

Initial conditions:
y(n — 1) = sin(wnT) (9.4)
y(n —2) = sin(w(n — 1)T)

Our problem is that we do know the new frequency, w, and since the sasmplerateisaso
known, then we also know T, but we don’t know what sample interval n we are on.
However, we can figure it out as follows:

» Taketheinverse sin of they(n — 1) delay element.

* Findthevalue of n by dividing it by wT.

e arcsing() returns avalue between —w/2 to +m/2 which is the rising edge of the sinusoid
like the original initial conditions.

» If weareon therising edge, calculate the new y(n — 2) value assin((n — D)wT).

» If weareonthefaling edge, calculate the new y(n — 2) value assin((n + L)wT).

It is simple to change in the cookFrequency() function as follows, so make the change in your
code. Note the use of commenting out the original initial condition code in case you want to
refer to it later. Also note the logic to see if we arerising or falling. We need this because the
arcsing() function only returns the angle for half a sinusoid. If you think about it, this makes
sense. If you give it avalue of 0.707, it can’t tell if the angle is 45 degrees or 135 degrees,
both of which produce a sine of 0.707.

void CDirectOscillator::cookFrequency()
{
// Oscillation Rate = theta = wT = w/fs
float f_wT = (2.0*pi*m_fFrequency_Hz)/(float)m_nSampleRate;



Oscillators 299

// coefficients according to design equations
m_f_bl = -2.0*cos(f_wT);
m_f_b2 =1.0;

// set initial conditions so that first sample out is 0.0
// m_f_y_z1l = sin(-1.0*f_wT); // sin(wnT) = sin(w(-1)T)
// m_f_y z2 = sin(-2.0*f_wT); // sin(wnT) = sin(w(-2)T)

// re calculate the new initial conditions
// arcsine of y(n-1) gives us wnT

double wnTl = asin(m_f_y_z1);

// find n by dividing wnT by wT

float n = wnT1l/f_wT;

// re calculate the new initial conditions
// asin returns values from -pi/2 to +pi/2 where the sinusoid
// moves from -1 to +1 -- the leading (rising) edge of the
// sinewave. If we are on that leading edge (increasing)
// then we use the value 1T behind.
//
// 1If we are on the falling edge, we use the value 1T ahead
// because it mimics the value that would be 1T behind
if(m_f_y_z1 > m_f_y_z2)

n-=1;
else

// calculate the new (old) sample
m_f y z2 = sin((n)*f_wT);
}

Build and load the DLL. Then, hit the Start and Stop buttons to control your oscillator. Play
with the frequency dlider to change the value. If you change the slider too much you will till
hear a click on some of the discontinuities due to the fact that the frequencies are so far apart
that it produces a noticeable shift in the waveform.

Now that you understand how to code a direct calculation oscillator in RackAFX, next are a
few more example oscillator designs for you to try out. Remember that you must set the flag
m_bOutputOnlyPlugln to make the oscillators work properly in RackAFX. You must provide
a start/stop mechanism as well. Sample code isincluded to help you along.

9.3 The Gordon—Smith Oscillator

The Gordon—Smith oscillator uses a pair of delay elements arranged in a circular configuration
to produce both sin and cos oscillations. The two outputs are amost perfectly in quadrature
phase (90 degrees apart) only differing by half a sample period. Its sinusoidal oscillation

is pure enough to be used in audio test equipment. And, because each output only uses one



300 Chapter 9

delay element, there are no initial states to update when the frequency is changed; the single
y(n—1) sampleis shared with the new frequency the same way asin the direct form oscillator.
Only the coefficient £ needs to be updated. A small amplitude variation is observed when the
oscillation frequency changes, but it is small enough to not cause clicks or pops in the output.
It sounds just as smooth as the direct form oscillator when the frequency is adjusted slowly.

The two outputs are labeled y(n) and y,(n) where the “q” stands for quadrature. Therefore, there
are two difference equations. The difference equation for y,(n) must be solved first because y(n)
is dependent on it. A Gordon—Smith oscillator block diagram is shown in Figure 9.8.

The difference equations are as follows:

YoM = Yg(n — 1) —ey(n — 1)

(9.5
y(n) = eyg + y(n — 1)
Specify:
« f,, desired oscillation frequency
The design equations are as follows:
27f,
e =
fg (9.6)
€ = 2sn(6/2)

Initial conditions;
y(n — 1) = sin(—16)
Yo(n — 1) = cos(—16)

2. y,(n)

N

y(n)

yq(n—‘l)

yin=1)

Figure 9.8: The Gordon-Smith Oscillator.



Oscillators 301

The C++ code for the Gordon—Smith oscillator looks as follows (two memory elements have
been declared, m f yn zand m f_yq z, aswell as acoefficient m_fGorSmithEpsilon). In
cookFrequency():

// calculate HS Epsilon

float f_wT = (2.0*pi*m_fFrequency_Hz)/(float)m_nSampleRate;
m_fGorSmithEpsilon = 2.0*sin(f_wT/2.0);

In processAudioFrame():

// form yq(n) first
float f_ygqn = m_f_yq_z - m_fGorSmithEpsilon*m_f_yn_z;

/] y(n)
float f_yn = m_fGorSmithEpsilon*f_ygn + m_f_yn_z;

// shuffle delays
m_f_yq_z f_yqgn;
m_f_yn_z f_yn;

// write out
pOutputBuffer[0] = f_yn;

etc..

9.4 Wave Table Oscillators

A wavetable oscillator is, asits nameimplies, atable-based system for creating periodic
signals. A circular buffer is preloaded with one cycle, minus one sample, of awaveform.
The waveform may be mathematical (sin, cos, pulse, square, saw, triangle, etc.) or it might
be arbitrary or arecorded signal. The basic ideais that you read through the table and output
samples from it. Consider atable of 1024 samples consisting of one cycle of a sinusoid,
minus one sample (Figure 9.9).

Suppose you start at i = 0 and during each sample period, you read out one value and
advance to the next. At the end of the buffer, you wrap around and start all over. If you
did read out one value per sample period, what would be the resulting frequency of the
waveform?

The answer isf . = f/L when the index increment is exactly 1.0 through the table. For a
1024-point wave table at a 44,100 Hz sample rate, the table frequency is 43.06 Hz. If you
happen to really need a super precise sinusoid at exactly 43.06 Hz, then this method will
produce nearly perfect results. The only factor isthe precision of the sinusoid loaded into the
table. If you had a saw-tooth waveform stored in the table, it too would have a fundamental
frequency of 43.06 Hz.

Most likely, you are going to want to make any arbitrary frequency you like, perhaps with an
emphasis on musical pitch frequencies. With the exception of the note A, these are going to be



302 Chapter 9

Last sample is the
one just before 0.0

First sample at 0.0

i=0 i=1023

Figure 9.9: One cycle minus one sample of a sinusoid. The table is indexed with the
value i which starts at 0; the last entry in the table is at i = 1023 and it is the
sample just before the waveform starts all over again.

floating-point numbers with fractional parts. To make any frequency, you calculate theinc
value with Equation 9.7:

fd&d red
fs

inc=1L (9.7
L isthe table length and fu«q iS the target frequency. The increment value you get back will
be used to skip through the table, moving forward by inc during each sampleinterval. If incis
less than 1.0, then the desired frequency is below the table frequency, and if it is above 1.0 it
must be greater than the table frequency. If theinc is 2.0, then the resulting frequency is twice
the table frequency. Most likely, the inc value is going to be noninteger and will therefore
consist of an integer part and a fractional part. For example, if inc = 24.9836 then the integer
part would be 24 and the fractional part 0.9836. Here, the integer part is called int and the
fractional part is called frac.

As with the delay module you built in Chapter 8, there are several options for dealing with the
fractional part of the increment value. You could:

e Truncate the value, and forget frac.

» Linearly interpolate the table frac distance between int and int + 1.

e Use polynomial interpolation or ancther interpolation method instead of linear
interpolation.

If you truncate the inc value, then you have multiple problems—the note you synthesize
won't be exactly in tune. Additionally, it will be distorted because of the inaccuracy in the



Oscillators 303

transcription out of the table. Linear and polynomial interpolation both overcome these
problems, though there is still distortion in the output. The industry standard is a fourth-order
Lagrange interpolation on the wave table, where the neighboring four points (two to the left
and two to the right) of the target interpolated value are used.

Before we code a wave table oscillator, there is one thing you need to be aware of: the danger
of awave tableisthat the cycle of data stored inside might be full of aliasing components.

In other words, you can create atable of datathat could have never made it past the input
low-passfilter (LPF) if it were an analog signal being sampled. We will be doing just that
and creating some signals that do alias, on purpose. Then, we'll examine away to synthesize
common signals without aliasing. The only meaningful signal that won't aliasis a sinusoid,
So we can start there.

9.5 Design a Wave Table Oscillator Plug-In

To code awave table oscillator you need to create atable of data and initiaizeit in the
constructor. A floating-point index valueis used for inc and it will keep track of the current
read location. Linear interpolation will be used to extract samples from the table. The circular
buffer will run as long as the oscillator is engaged. Thus, we need to start with aplug-in
design similar to the direct form oscillator. We can use the assignable buttons to trigger the
oscillator to simulate MIDI note-on and note-off messages, and we can provide a slider for
frequency control.

9.5.1 Project: WTOscillator

Create anew RackAFX project and make sure to check the synthesizer plug-in box (if you
forget, you can always change it later).

9.5.2 WTOscillator GUI

The final GUI will feature afrequency control and multiple radio button controls for
waveform, mode, and polarity. Ultimately, it will have the controls shown in Figure 9.10.

Frequency Waveform Mode Polarity
| 440.0Hz || [ Sine Normal [ Bipolar |
| Saw Band-limit| | Unipolar |
Tri |
Square

Figure 9.10: The final WTOscillator GUI.



304 Chapter 9

Table 9.2: GUI controls for the wave table oscillator plug-in.

Slider Property Value
Control Name Frequency
Units Hz

Variable Type float
Variable Name m_fFrequency_Hz

Low Limit 25

High Limit 4200

Initial Value 440

First, add a frequency slider to the Ul and connect it to a variable named m_fFrequency _
Hz with the limits 25 Hz to 4.2 kHz and an initial setting of 440 Hz (Table 9.2). The
limits are chosen as such because they are close to the lower and upper fundamental
frequencies of the notes on a standard (88 key) piano or synthesizer. Next, set up

the assignable buttons to create start and stop functions just like you did for the
DirectOscillator plug-in.

9.5.3 WTOscillator.h File

Declare the variables you need to implement the oscillator:

// Add your code here: ------------- oo //
//

// Array for the Table

float m_SinArray[1024]; // 1024 Point Sinusoid

// current read location
float m_fReadIndex; // NOTE its a FLOAT!

// reset the read index
void reset()
{

m_fReadIndex = 0.0;
}

// our inc value
float m_f_inc;

// our cooking function
void cookFrequency();

// our note on/off message
bool m_bNoteOn;

// END OF USER CODE == === === === s = o m o mss oo s oo oo //



Oscillators 305

You can see that we've added the necessary ingredients (array, read index, inc, note-on/off),
as well astwo functions:

» cookFreguency() to update the inc value when the frequency changes.
« reset(), which just relocates the read index to the top of the buffer.

9.5.4 WTOscillator.cpp File

Constructor

e Turn off the oscillator by setting the flag you declared in the .h file.

CWTOscillator::CWTOscillator()
{
<SNIP SNIP SNIP>
// Finish initializations here
// setup array
for(int i = 0; 1 < 1024; i++)
{
// sample the sinusoid, 1024 points
// sin(wnT) = sin(2pi*i/1024)
m_SinArray[i] = sin( ((float)i/1024.0)*(2*pi) );
}

// clear variables
m_fReadIndex = 0.0;
m_f_inc = 0.0;

// silent
m_bNoteOn = false;

// initialize inc
cookFrequency();
}

In the constructor, you set the flags and set up the wave table by sampling it for 1024 points.
Thisversion is set up to produce the one-cycle-minus-one-sample waveform we desire. Write
the cooking function:
void CWTOscillator::cookFrequency()
{
// inc = L*fd/fs

m_f_inc = 1024.0*m_fFrequency_Hz/(float)m_nSampleRate;
}

prepareForPlay()

* Reset the oscillator.
e Cook the variables.



306 Chapter 9

bool __stdcall CWTOscillator::preparefForPlay()
{

// Add your code here:

// reset the index

reset();

// cook curent frequency
cookFrequency();

return true;
}

userlInterfaceChange()

* Handlethe dlider control to cook the variables.
» Handlethe start/stop buttons to turn the flag on/off and cook variablesif turning on.
» Make sure your nControl Index variables match with your GUI controls.

bool __stdcall CWTOscillator::userInterfaceChange(int nControlIndex)
{
// add your code here
switch(nControlIndex)
{
case 0:
cookFrequency();
break;

// note on

case 50:
reset();
cookFrequency();
m_bNoteOn = true;
break;

// note off

case b51:
m_bNoteOn = false;
break;

default:
break;

}

return true;

}

processAudioFrame()

* Implement the table look up.

* Noticethat aswith the delay line, we shift the frame of reference of the interpolated
points to be between n = 0 and n = 1, then just use the frac component to find the value
between the samples.



Oscillators 307

bool __stdcall CWTOscillator::processAudioFrame(float* pInputBuffer, float*

{

pOutputBuffer, UINT uNumChannels, UINT uNumOutputChannels)

// Do LEFT (MONO) Channel
// if not runni