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A Theory of Economic Growth

This book provides an in-depth treatment of the overlapping genera-
tions model in economics incorporating production. In chapter 1, the
authors investigate competitive equilibria and corresponding dynamics:
existence and uniqueness of equilibrium, global dynamics of capital (in-
cluding poverty traps), and various extensions of the model. Chapter 2
analyzes the optimality of allocations in this framework, using both the
value function and marginal approaches. Optimality with unbounded
growth is also analyzed. Policy issues, including the Second Welfare
Theorem, pensions, government spending, and optimal taxation, are
discussed in chapter 3. The notion of public debt is introduced in chap-
ter 4, and the sustainability of policies with budget deficits/surpluses is
examined. The last chapter presents extensions of the model including
altruism, education/human capital, and habit formation. Methodolog-
ical emphasis is put on using general preferences and technologies, on
the global study of dynamic aspects of the model, and on furnishing ad-
equate tools to analyze policies involving inter-generational transfers.
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Introduction

Inter-generational transfers are today at the center of the economic policy
debate.The reductionofpublic debt, thefinancingof social security (pensions),
the taxation of capital and bequests, and the design of the education system
all imply substantial inter-generational transfers.

The tool economists provide to analyze these issues is the overlapping gen-
erations model. As it models explicitly the different periods of life – schooling,
working, or retirement periods – it is the natural framework to study the allo-
cation of resources across the different generations.

When it includes capital accumulation, this model also allows one to for-
malize the development of an economy, relating its growth path to the savings
behavior of young agents.

The aim of this book is to provide the reader with an in-depth introduction
to this model, including its major policy aspects.

overlapping generations and macro-economics

Modernmacro-economics is generally characterized by four elements: (a) The
issues of concern are aggregate in nature. (b) The models in use are derived
from optimizing behavior, and, as a consequence, their properties depend
essentially on preferences and technologies. (c) Interactions over time are ex-
plicitly taken into account, giving therefore an important place to dynamic
analysis. (d) The general equilibrium framework is preferred to partial equi-
librium setups.

The building blocks of modern macro-economics are taken from two dif-
ferent approaches: The first one considers that agents have an infinite horizon.
The second one analyzes the case of an economy in which agents have finite
lives. This second approach consists in the so-called overlapping generations
models. The central mechanics of this class ofmodel are the decisions of young
agents about howmuch to consume and save for retirement, i.e., the life-cycle
hypothesis of savings (see Ando and Modigliani (1963)).

xiii
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A series of issues are common to both approaches, like the analysis of the
factors influencing economic growth. Several issues are, however, specific to
the overlapping generations approach. In general they are related to inter-
generational redistribution, and hence, e.g., to social security, education poli-
cies, and public debt questions. Indeed, even in its simplest version, the over-
lapping generations model embeds at least two types of agents living at the
same time, young and old, which makes possible an analysis of distributional
issues.

Moreover, the model with a representative infinite-lived agent can be seen
as a special case of the overlapping generations model where households are
altruistic and care about their descendants: When altruism is strong enough
so that every generation leaves positive bequests, the properties of the two
models are the same.

Another domain of research heavily involving the overlapping generations
model is the quest for reasonable mechanisms of endogenous fluctuations.
Although, as we shall see, the basic model is characterized by monotonic dy-
namics, various extensions lead to oscillatory dynamics, or even, in extreme
cases, permanent endogenous cycles.

When one uses overlapping generations models with two-period-lived
agents, the unit of time that one considers is of the order of 20 or 30 years.
One could be tempted to think that the results obtained in a simple bench-
mark model with this periodicity can be generalized to n-period-lived agents,
and the conclusions of the reference model applied to questions relevant at
the business cycle frequency.1 In this case, the model with two-period-lived
agents is a metaphor. One should be cautious, however, as all the proper-
ties of a model with two-period-lived agents cannot always be extended to
n-period-lived agents.

Three important properties of overlapping generationsmodels are the non-
neutrality of debt, the possibility of asset bubbles, and the possibility for com-
petitive equilibria to be inefficient. Weil (1989) shows that they do not depend
on the horizon (finite or infinite) of the agents. However, the effect of interest
rate on saving behavior and the type of dynamics (monotonous, oscillatory,
etc.) do depend crucially on the number of periods of life considered. It should
then be clear that the overlapping generations model in its standard form2 has
little to say on short-run issues. For this reason, we shall concentrate our at-
tention on long-term problems involving inter-generational transfers.

1 Assuming that workers do not have access to financial markets, Woodford (1986) develops
an infinite horizon model with the same structure as an overlapping generations model with
two-period-lived agents.

2 The model of perpetual youth due to Blanchard (1985), which is at the intersection of infinite
horizon models and overlapping generations models, can be used to describe phenomena at
the business-cycle frequency. This model was further extended by Saint-Paul (1992) to allow
for endogenous growth, and by Frenkel and Razin (1986) to an open economy setup.
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Beyond the fact that it is a framework with heterogeneous agents, the over-
lapping generations model presents two attractive features: First, it focuses on
the life-cycle behavior of the agents and hence on their savings behavior as a
function of age. Second, it is a model in which the competitive equilibrium is
not necessarily Pareto optimal.

overlapping generations in other fields

There has been an extensive literature in public economics that uses the over-
lapping generations model. The issues at stake concern the design of optimal
tax schemes when the government cannot use non-distortionary lump-sum
instruments. The study of bequest taxation and capital taxation has a central
role.Education funding throughpublic or private institutions is another typical
topic.

Every time policy changes affect different generations in different ways, the
overlapping generations model is useful. For example, it is used in environ-
mental economics, as pollution control might harm current generations but
promote the welfare of the not yet born generations. Population economics is
another example, where authors study the effect of rising longevity, lowered
fertility, and population dynamics on human and physical capital accumula-
tion.

Development economics and growth theory also rely on overlapping gener-
ations. There are several reasons. First, if one believes that human capital is a
relevant factor of development and growth, modeling the education process is
important. As education usually takes place at the beginning of the life cycle
and involves transfers from one generation to the other, a structure with
overlapping generations is appealing. Second, one property of the simplest
overlapping generations model is to make long-term growth dependent on
initial conditions. In other words, the starting point of the economy is crucial
to determining its future. For instance, starting with too low capital might lead
the economy into a poverty trap. This dependence on history through initial
conditions is important for understanding the different development patterns
observed all over the world.

In monetary theory, money has been considered as a medium of exchange
between generations and as a store of value. In particular, in the absence of
physical capital, money is useful per se, as it allows households to transfer
resources across periods.

Finally, mathematical economics have used the overlapping generations
model to study under which conditions the equilibrium is indeterminate. Fol-
lowing the logic of Arrow andDebreu, when all markets of all periods clear at
once, there is a continuum of equilibria in a context where neither the passage
of time nor the formation of expectations is central to the analysis.
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outline of the book

Many advanced graduate texts that treat one-sector growth models tackle the
basic overlapping generations model. But it is difficult to find, in one single
monograph, a survey of the main results, analyzed in detail, as well as exten-
sions of some of the key results in the literature. The extensive analysis of the
keymodelsmakes this text useful for applied theorists, including researchers in
macro-economics, public finance, and development–growth theory, who wish
to apply the overlapping generations framework.

The book is also intended for students at the graduate level. True, it is not
an easy book for a graduate student to tackle, at least not at the start. In any
case, this slot of the textbookmarket is alreadywell served by general-purpose
macro textbooks. But our text adds another dimension: It brings together the
standard overlapping generations model with its policy implications (pension
funding, debt policy) in one place. It also provides results that have never been
demonstrated in the framework considered. We hope that it will be popular
with advanced graduate studentswhohave chosen towork in the area ofmacro
dynamics.

This book contains five chapters. The first four chapters cover an analy-
sis of the basic overlapping generations model. One goal that we pursue is
to provide the reader with a set of propositions deriving the properties of the
overlapping generationsmodel whenwemake few assumptions on preference
and technology. This should help students and researchers in their modeling
choices. In chapter 1 we propose an in-depth study of competitive equilibria
in the basic overlapping generations model. Chapter 2 is devoted to the anal-
ysis of optimality in this setup. Policy issues, including pensions and optimal
taxation, are discussed in chapter 3. Public debt is introduced in chapter 4,
and its sustainability is analyzed. The last chapter includes various extensions,
including altruism, education, and habit formation. The technical points are
detailed in the appendix.
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Garcia-Peñalosa, Oded Galor, Omar Licandro, Géraldine Mahieu, Pierre
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one

Competitive Equilibria

The basic overlapping generations model with capital accumulation is due to
Allais (1947)1 and Diamond (1965).2 Diamond (1965) considers an economy
with physical capital and with or without a public sector. It is a framework in
which all goods are real, in the sense that they are consumption goods and/or
production factors. In this chapter we describe the frameworkwithout a public
sector, which is the benchmark model to a wide strand of the literature, and
we analyze the properties of the competitive equilibrium.

This chapter is organized as follows. Section 1.1 describes the structure of
themodel, and section 1.2 discusses themain assumptions. The behavior of the
agents is analyzed in section 1.3. The notion of temporary equilibrium is intro-
duced and analyzed in section 1.4. Section 1.5 studies the inter-temporal equi-
librium with perfect foresight, its existence and uniqueness. Global dynamics
are characterized in section 1.6. In section 1.7 we compare the dynamics under
perfect foresight with the dynamics resulting from myopic foresight. Finally,
some applications and extensions of the model are presented in section 1.8.
Examples are provided throughout the chapter.

1.1 the model

Time t is discrete and goes from 0 to∞. t belongs to the set of integer numbers
N, t = 0, 1, 2, . . . . All decisions are taken at points in time. The current date
is called period t , and we study how the economy operates from date t = 0
onwards. At the initial date, t = 0, there will be initial conditions reflecting the
history of the economy.

1 Malinvaud (1987) has stressed the use of the overlapping generations model in the appendix
of the book of Allais (1947).

2 The basic overlapping generations model for an exchange economy is due to Samuelson
(1958).

1



2 A Theory of Economic Growth

At each period t , there exist three goods: capital, labor, and a physical good
produced from capital and labor. This physical good is either consumed or
invested to build future capital. We take the good produced at each period t
as the numeraire. There is thus a different numeraire in each period.

As there are an infinite number of periods, there are an infinite number of
goods.

1.1.1 Two-period-lived Individuals

The demographic structure is presented in figure 1.1. In each period t , Nt
persons areborn, and they live for twoperiods.3 Fromfigure 1.1,weunderstand
why this demographic structure is called “overlapping generations”: at each
point in time, two generations are alive and overlap.

In their first period of life (when young), the individuals are endowed with
one unit of labor that they supply inelastically to firms. Their income is equal
to the real wagewt . They allocate this income between current consumption ct
and savings st , which are invested in the firms. The budget constraint of period
t is

wt = ct + st . (1.1)

In their second period of life t + 1 (when old), they are retired. Their income
comes from the return on the savings made at time t . As they do not care

Time

Generations

0 1 2 3 4 5

0

1

2

3

4

−1

Figure 1.1. Overlapping generations.

3 Alternatively, we may consider that each person lives three periods, is working in the second
period, and retires in the third one. During the first period, he does not take any decisions,
and his consumption can be thought of as included in that of his parents.
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about events occurring after their death (this assumption will be removed in
section 5.1), they consume their income entirely.Denoting byRt+1 (= 1 + rt+1)
the return factor on savings from time t to time t + 1, the income of an old
individual is Rt+1st , and his consumption is

dt+1 = Rt+1st . (1.2)

The preferences of the households are defined over their consumption bundle
(ct ,dt+1).Weassume that they canbe representedbya life-cycleutility function

U(ct ,dt+1).

Ateachperiod t ≥ 1,Nt + Nt−1 individuals arealive, includingNt younghouse-
holds born in t and Nt−1 old households born in t − 1. At the first period t = 0,
there are, in addition to the N0 young households, N−1 old households.4 Each
of these N−1 old persons is the owner of the same fraction s−1 of the installed
capital stock K0. Productive capital is the only asset in the economy, so that
s−1 = K0/N−1. The income of old persons is equal to R0s−1. These people
entirely consume their income:

d0 = R0 s−1 = R0K0

N−1
.

The number of households of each generation grows at a constant rate
n ∈ ]−1,+∞[:

Nt = (1+ n)Nt−1.

Consequently, the total population Nt + Nt−1 grows also at the rate n.5 Note
that, since n ∈ ]−1,+∞[, the model may represents economies where popu-
lation shrinks at a constant rate (negative n).

1.1.2 Neo-classical Technology

The production technology is the same for all periods.6 It is represented by the
neo-classical production function F̄(K, L). The function F̄ is homogeneous of
degree one (see appendix A.1.1) with respect to its arguments: capital K and
labor L.

4 Nothing is said about the past of these households. It is as if they were born old.
5 Overlapping generations models can be extended to deal with endogenous fertility as in
Becker and Barro (1988), with dynastic altruism, or Galor and Weil (1996), with ad hoc
altruism.

6 The generalization of this to include deterministic labor-savings technical progress is per-
formed in section 1.8.6. Notice however that, in standard growth models, technological im-
provement can coexist with a balance path only with a special type of utility function (see
e.g., King, Plosser, and Rebelo (1990)).



4 A Theory of Economic Growth

During the production process, the capital stock depreciates physically at a
rate δ ∈ [0, 1].7

For simplicity we also assume that, after the production process, the part
of capital that is not depreciated is identical to the good produced, so that we
may define a total production function:

F(K, L) = F̄(K, L) + (1− δ)K, (1.3)

which is also homogeneous of the first degree, implying that the technology
exhibits constant returns to scale:

F(λK, λL) = λF(K, L) ∀λ > 0.

1.1.3 Firms

We assume a representative firm producing at period t . This assumption is
not restrictive, as, with constant return to scale, the number of firms does not
matter and production is independent of the number of firms which use the
same technology. At time t = 0 the capital stock K0 is already installed in the
firm producing at t = 0. For all t ≥ 1, capital Kt is productive at time t and is
built from the savings of time t − 1 (there is a one-period time-to-build). The
representative firm that produces at time t exists during two periods, t − 1 and
t .8 At time t − 1 it “receives” the deposits It−1 from the young households.
This deposit of goods produced at time t − 1 becomes the productive capital
used in the production process at time t :

Kt = It−1 = Nt−1st−1.

The households remain the owners of the stock of capital and will receive the
profits of the firm when old.

1.2 main assumptions

1.2.1 The Assumptions on the Utility Function

The life-cycle utility function is assumed to be additively separable:

U(c,d) = u(c) + βu(d), (1.4)

where β is the psychological discount factor: β = 1/(1+ ), where  is the rate
of time preference, which varies inversely with β. The non-separable case is
treated in section 1.8.3.

7 As one period represents 20 or 30 years, it is often assumed that the depreciation rate is 1.
8 Alternatively, we may assume that firms live forever. This would not change the results, as
the firms’ program is in any case a static one.
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We assume that the instantaneous utility function u is twice continuously
differentiable on the set of strictly positive real numbers R++, strictly increas-
ing (no satiation), and concave (decreasing marginal utility):

Assumption H1.
For all c > 0, one has u′(c) > 0, u′′(c) < 0, and limc→0 u′(c) = +∞.

The hypothesis of an infinite marginal utility of zero consumption implies that
thehouseholdalways choosesapositive consumption level cwhen itmaximizes
its life-cycle utility (as long as its disposable income is positive).

The two assumptions of additive separability and concavity imply that c
and d are normal commodities, i.e., that their demands are non-decreasing in
wealth.

Example: The CIES9 (constant inter-temporal elasticity of substitution) utility
function,

u(c) =
[
1− 1

σ

]−1

c1−
1
σ , σ > 0, σ �= 1,

satisfies the hypothesis H1. Indeed,

u′(c) = c− 1
σ > 0, u′′(c) = − 1

σ
c−

1
σ
−1 < 0,

and

lim
c→0
c−1/σ = +∞.

The parameter − 1
σ
is the elasticity of marginal utility:

u′′(c)c
u′(c)

= − 1
σ
.

We show below that the elasticity of marginal utility is also the reciprocal of the
inter-temporal elasticity of substitution.10

The case of a logarithmic utility function,

u(c) = ln(c), u′(c) = 1
c
, u′′(c) = −1

c2
,

gives an elasticity of marginal utility equal to −1. The CIES utility function is
plotted in figure 1.2 for the three possible cases: σ > 1, σ = 1 (logarithmic utility),
and σ < 1.

9 The standard name CRRA (for constant relative risk aversion) does not seem suited to a
framework in which there is no uncertainty.

10 In a framework with uncertainty, the coefficient of relative risk aversion is equal to the
elasticity of marginal utility.
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u(c)

c

σ < 1

σ > 1

ln(c)

Figure 1.2. The CIES utility function. When σ > 1, the utility function is positive
valued. When σ = 1, the utility function is simply the ln function. When σ < 1, the
utility function is negative valued.

1.2.2 The Assumptions on the Production Function

As the production function is homogeneous of degree one, it can be expressed
by the mean of a function of one variable k= K/L:

F(K, L) = LF
(
K
L
, 1
)

= L f (k),

where f (k) = F(k, 1) is the production function in its intensive form. We
make the following hypothesis on the function f (·): it is defined on the set of
(strictly) positive real numbers R++ and is twice continuously differentiable.
It satisfies:

Assumption H2.
For all k> 0, one has f (k) > 0, f ′(k) > 0, and f ′′(k) < 0.

This hypothesis amounts to assuming that the function F is positive valued,
increasing, and strictly concave with respect to capital K: indeed, f ′(k)=
F ′
K(k, 1)= F ′

K(K, L) because the derivative F ′
K is homogeneous of degree

0, and f ′′(k)= F ′′
KK(k, 1)= LF ′′

KK(K, L) because F ′′
KK is homogeneous of

degree −1 (appendix A.1.1).
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A consequence of H2 is the following (appendix A.1.2):

For all k> 0, ω(k) = f (k)− kf ′(k) = F ′
L(K, L) > 0.

The hypothesis H2 implies thus that the marginal productivity of labor is
strictly positive.

In order to include the popular CES production function, we make no
assumption on the limits of the function and its derivatives when k→ 0 and
k→ +∞. Nevertheless, H2 implies that the function f (k) and ω(k) admits
non-negative limits when k goes to zero. Thus we may assume that these
functions are continuous on the set of non-negative real numbers R+ with
values in R+.

Notice that additional hypotheses are oftenmade to describe the properties
of f (·) on the boundary:

Assumption A1.

f (0) = 0.

Assumption A2.

lim
k→0

f ′(k) = +∞,

lim
k→+∞

f ′(k) = 0.

Assumption A3.

lim
k→0

f ′(k) = +∞,

lim
k→+∞

f ′(k) < 1.

The assumption A1 states that capital is essential for production. The assump-
tion A2 is called the Inada conditions. One of these conditions is violated by
the CES production function11 except in the limit case of the Cobb–Douglas
function (see appendix A.1.2). The assumption A3 is less restrictive than A2

11 This production functionwasfirst introducedbyArrow, Chenery, Minhas, and Solow (1961).
The justification given at that time canbeusedhere to avoid imposing Inada conditions: “Two
competing alternative [production functions] hold the field at present: theWalras–Leontief–
Harrod–Domarof constant input coefficients; and theCobb–Douglas function,which implies
a unitary elasticity of substitution between labor and capital. From a mathematical point of
view, zero and one are perhaps the most convenient alternatives for this elasticity. Economic
analysis based on these assumptions, however, often leads to conclusions that are unduly
restrictive.”
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and allows us to include the case of a depreciation rate δ < 1. In the sequel of
this chapter, we work without making these assumptions.

Example: The CES (constant elasticity of substitution) production function,

F̄(K, L) = A[αK−ρ + (1 − α)L−ρ]−1/ρ,

A> 0, 0 < α < 1, ρ > −1, ρ �= 0,

is homogeneous of the first degree. The elasticity of substitution between K and
L is equal to

1
1 + ρ .

In at the limit when ρ tends to −1, the function is linear and the two factors of
production are perfect substitutes (the corresponding isoquants are plotted in
figure 1.3). This case is excluded by assumptionH2. They become less and less
substitutable as ρ increases. In the limit when ρ → +∞ the factors of production
are perfect complements. The Cobb–Douglas case12 is obtained as a special

L

K

ρ

ρ −1

ρ = 0
+ ∞

Figure 1.3. The CES production function. The isoquant when ρ → +∞ shows that
capital and labor are complements (no substitution possibilities) in the produc-
tion process (Leontief technology). For ρ = 0 we obtain the isoquant of the Cobb–
Douglas function.When ρ → −1, the isoquant becomes linear, and capital and labor
can be substituted perfectly.

12 This function was introduced in Douglas (1934) to study American production over the
period 1899–1922. The striking agreement between the actual production series and the one
generated by the Cobb–Douglas function is at the basis of the success of this production
function.
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f(k)

k

ρ< 0

ρ = 0

ρ > 0

Figure 1.4. The CES production function in intensive form. When ρ < 0, each pro-
duction factor is not essential to production and f (0) > 0. When ρ ≥ 0, f (0) = 0.
The limit of f ′(k) when k→ 0 is infinite when ρ ≤ 0 and finite when ρ > 0. The
limit of f ′(k) when k→ +∞ is positive when ρ < 0 and is 0 when ρ ≥ 0. Only the
Cobb–Douglas case ρ = 0 satisfies the Inada conditions.

case when ρ → 0 (see appendix A.1.5):

F̄(K, L) = AKαL1−α.

The three cases are plotted in figure 1.4. With complete depreciation of capital,
the function F = F̄ , and can be written in intensive form:

f (k) = A[αk−ρ + (1− α)]−1/ρ .

It is easy to check that f (k) satisfies H2:

f ′(k) = αA[α + (1 − α)kρ]− 1+ρ
ρ = α

Aρ

(
f (k)
k

)1+ρ
> 0,

and

f ′′(k) = −α(1− α)A(1+ ρ)[α + (1− α)kρ]− 1+2ρ
ρ kρ−1 < 0.

Finally, the marginal productivity of labor is

ω(k) = 1 − α
Aρ

f (k)1+ρ > 0.
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1.3 the behavior of the agents at period t

All agents in this economy are price-takers, and all markets are competitive.13

At a given date, young individuals decide how much to consume and to save,
old individuals consume, producing firms hire labor andproduce, and investing
firms collect the savings from the young and build up the capital stock for the
next period. We devote special attention to the savings behavior of the young
persons, as it is the engine of capital accumulation.

1.3.1 The Young Individuals

At time t each young individual receives wt units of the produced good as a
wage. He allocates this income between consumption and savings in invested
goods (1.1). He anticipates a returnRet+1 for his savings and thus, according to
(1.2), a future consumption det+1 = Ret+1st .

Each young individual maximizes

u(ct) + βu
(
det+1

)
s.t. wt = ct + st , (1.5)

det+1 = Ret+1st ,

ct ≥ 0, det+1 ≥ 0.

There are two ways to solve the problem. We may first substitute ct and det+1
in the objective function, which leads to

u(wt − st)+ βu(Ret+1st
)
,

which is, according to H1, strictly concave with respect to st . The solution,

st = s(wt ,Ret+1

)
,

is interior as a consequence of H1 and is characterized by the first-order
condition

u′(wt − st) = βRet+1u
′(Ret+1st

)
. (1.6)

13 Departures from this assumption can be found in the overlapping generations litera-
ture. Devereux and Lockwood (1991) and de la Croix and Licandro (1995) analyze capital
accumulation under trade-unionism; in such an overlapping generations framework, the
wage bargaining process takes place between the young workers and the old capitalists.
Weddepohl and Yildirim (1993) study the fixed price temporary equilibria and rationing in
anoverlapping generationsmodelwith capital accumulation. de laCroix andLicandro (2000)
also study underemployment of resources, but rationing comes from technological rigidities
and idiosynchratic uncertainty insteadof fixedprices.Cournot competitionon the goodsmar-
ket is introduced inamodelwith capital byd’Aspremont, Gérard-Varet, and Ferreira (2000),
and monopolistic competition is studied in Jacobsen (2000).



Competitive Equilibria 11

The function s(·) is called the savings function, and its properties will be ana-
lyzed later on.

The second method to solve the problem is to eliminate st to obtain the
inter-temporal budget constraint of the household:

ct + 1
Ret+1

det+1 = wt .

We next build the following Lagrangian:

u(ct)+ βu(det+1

)+ λt
(
wt − ct −

det+1

Ret+1

)
,

where λt is a Lagrange multiplier. The first-order conditions for a maximum
are

u′(ct) = λt and βu′(det+1

) = λt

Ret+1
.

Eliminating λt , we obtain

u′(ct) = βRet+1u
′(det+1

)
, (1.7)

which is the same as equation (1.6).
Note that the above inter-temporal problem is similar to a static problem

where the individual chooses the consumption of two different contempora-
neous goods. Here the two goods are distinguished by the date at which they
are produced. The price of the good of the second period is the reciprocal of
the rate of return, 1/Ret+1.

1.3.2 The Inter-temporal Elasticity of Substitution

Equation (1.7) can be used to compute the change in the consumption plan in
the face of a shift in the expected rate of return. Indeed, (1.7) can be rewritten

u′(ct)
u′(xt+1ct)

= βRet+1, (1.8)

where xt+1 = det+1/ct . The inter-temporal elasticity of substitution measures
the effect of a change in Ret+1 on xt+1. We differentiate with respect to Ret+1
and xt+1:

u′(ct)
−1

[u′(xt+1ct)]2
u′′(xt+1ct)ct dxt+1 = β dRet+1.

Combining this expression with equation (1.8) yields

−1
u′(xt+1ct)

u′′(xt+1ct)ct dxt+1 = dRet+1

Ret+1
.
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Using the definition of xt+1 and rearranging, we have

dxt+1

xt+1
= −u′(det+1

)
u′′(det+1

)
det+1

dRet+1

Ret+1
= σ

(
det+1

)dRet+1

Ret+1
.

Hence, the size of the effect of dRet+1/R
e
t+1 on dxt+1/xt+1 is given by u′(det+1)/

[−u′′(det+1)d
e
t+1].

The quantity

− u′(d)
du′′(d)

≡ σ (d) > 0

is the reciprocal of the elasticity of marginal utility evaluated at d in absolute
value. The effect of a change in the expected rate of return on consumption
is captured by σ (d). In the literature, σ (d) is referred as the inter-temporal
elasticity of substitution.14 σ (d) measures the percentage change in the ratio
dt+1/ct associated with a one percent change in the rate of return. It measures
the willingness of the consumer to shift consumption across time in response
to changes in the expected rate of return.

Example: With the CIES utility function

u(c) =
(
1− 1

σ

)−1

c1−
1
σ ,

the optimality condition (1.7) is

det+1

ct
= (βRet+1

)σ
,

and the parameter σ is the inter-temporal elasticity of substitution, which is
independent of d.
In the logarithmic case, σ = 1, and

det+1

ct
= βRet+1.

1.3.3 The Properties of the Savings Function

The savings function

s(w,R) = argmax[u(w − s)+ βu(R s)]
will be central in the subsequent analysis. It is thus useful to analyze its prop-
erties. It is characterized by the marginal condition

φ(s,w,R) ≡ −u′(w − s)+ βRu′(R s) = 0. (1.9)

14 Inmodelswith uncertainty this coefficientσ (d) has another interpretation. It is the reciprocal
of the coefficient of relative risk aversion.
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Following theassumptionsH1, the function s(w,R) is definedandcontinuously
differentiable on the set of pairs (w,R) ∈ R++ × R++, i.e. forw > 0 andR > 0.

To compute its partial derivatives, we use the implicit function theorem (see
appendix A.2.2) and differentiate φ(s,w,R) = 0:

φ′
s ds + φ′

w dw + φ′
R dR = 0,

in which

φ′
s = u′′(w − s)+ βR2u′′(R s) < 0,

φ′
w = −u′′(w − s) > 0,

φ′
R = βu′(R s)+ βR s u′′(R s) = βu′(R s)

(
1 − 1

σ (R s)

)
,

where

σ (R s) = u′(R s)
−R s u′′(R s)

is the inter-temporal elasticity of substitution evaluated at d = R s. The partial
derivatives of s(w,R) with respect to w and R are

s ′w(w,R) = −φ
′
w

φ′
s

= 1

1 + βR2u′′(R s)
u′′(w−s)

,

s ′R(w,R) = −φ
′
R

φ′
s

=
−βu′(R s)

(
1 − 1

σ (R s)

)
u′′(w − s)+ βR2u′′(R s)

.

We thus have that the marginal propensity to save out of income is between 0
and 1:

0 < s ′w < 1,

which reflects the fact that consumption goods are normal goods. The effect
of the rate of return on savings is ambiguous. We have that

s ′R � 0 if σ (R s) � 1.

A rise in the return on savings has two effects for the consumer: (1) an income
effect, as the revenue from savings will be higher, all other things being equal;
(2) a substitution effect, making it profitable to substitute consumption today
for consumption tomorrow. When the inter-temporal elasticity of substitution
is lower than 1, the substitution effect is dominated by the income effect. In
that case, a rise in the rate of return has a negative effect on savings. When
the inter-temporal elasticity of substitution is higher than 1, the households
are ready to exploit the rise in the remuneration of savings by consuming
relatively less today. The effect of a rise in the rate of return is in this case
to boost savings. When the inter-temporal elasticity of substitution is equal
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de
t+1

ctwtst

B

A

ct

wtRt+1

Figure 1.5. A rise in the interest factor. A rise in the interest factor induces a shift
in the budget line (whose equation is det+1 = (wt − ct)Ret+1). The consumer is able to
reach a higher indifference curve, from point A to point B. If the inter-temporal elas-
ticity of substitution is equal to one, the income and substitution effects compensate,
and ct and st remains unchanged.

to 1, the income effect exactly compensates the substitution effect and there
is no effect of the rate of return on savings. This last case is represented in the
commodity space in figure 1.5.

Example: In the CIES example, the savings function is

s(w,R) = 1
1 + β−σR1−σ w,

and the sign of s ′R is the same for all w and R: that is, s
′
R > 0 ⇐⇒ σ > 1, and

s ′R < 0 ⇐⇒ σ < 1. The fact that the savings function can be written in the form
“savings = propensity to save × wages,”with the propensity to consume being
independent of wages, is a general property of homothetic preferences (see
appendix 1.8.4).
In the logarithmic case,

s(w,R) = β

1 + βwt

is independent of R (s ′R = 0, as σ = 1).
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1.3.4 The Old Individuals

At time t , each old individual receives an income from his savings of the
previous period and consumes

dt = Rtst−1,

where Rt is the return in period t on savings made in period t − 1. This also
applies to the initial date t = 0, when s−1 = K0/N−1 is given.

1.3.5 The Firms

The Producing Firm. The representative producing firm has an installed stock
of capitalKt . Itmust only choose the labor input paid at awagewt andproduces
a quantity of output according to its net production function (1.3). This firm
maximizes its profits:

πt = max
Lt
F(Kt , Lt)− wtLt .

Due to the homogeneity properties of F and to the assumption H2, this objec-
tive function is strictly concave with respect to Lt (see appendix A.1.2). The
labor demand Lt which maximizes this expression is obtained by equalizing
the marginal productivity of labor with the wage rate

F ′
L(Kt , Lt) = wt .

As we have seen in section 1.2.2, F ′
L(K, L) = ω(k) = f (k) − k f ′(k), and the

above equality can be rewritten

ω

(
Kt
Lt

)
= wt . (1.10)

The profit is distributed to the owners of the capital stock:

πt = F(Kt , Lt) − F ′
L(Kt , Lt)Lt = F ′

K(Kt , Lt)Kt ,

or

πt = f ′
(
Kt
Lt

)
Kt .

The fact that profits are distributed to the owners of the capital stock is con-
sistent with the idea that the old households are the owners of the firms.

When the production function is Cobb–Douglas, equation (1.10) implies
that

wt = A(1− α)kαt ,
and the labor share in added value,

wtLt
Yt

= wt
yt

= 1 − α,
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is constant, which is one of the empirical regularities of growth processes doc-
umented by Kaldor (1963). Moreover, Solow (1957) argues that the particular
functional form adopted for the production function is a matter of no great
consequence. Almost any function with positive partial derivative and the
right curvature will do fairly well in tracking the observed changes in produc-
tion. As the Cobb–Douglas function is tractable, it can be frankly taken as
an approximation, “as long as no deep distributive meaning is read into the
results” (Solow (1960)). These two arguments explain why the Cobb–Douglas
production function is the preferred functional form in growth models.

The Investing Firm. The firm that invests at time t to produce at time t + 1
receives the savings of the young generation born in t :

It = Ntst .

1.4 the temporary equilibrium

To study the equilibrium, we explicitly distinguish the temporary equilibrium
and the inter-temporal equilibrium (or equilibrium over time). The concept of
temporary equilibriumgoes back toHicks (1939).15 The articulation of the two
is best described by using the words of Hicks: “Temporary equilibrium is such
that all are reaching their ‘best’ positions, subject to the constraints by which
they are bound, andwith the expectations that they have at themoment. Equi-
libriumover time, if it is to be defined in a correspondingmanner,must be such
that it is maintainable over a sequence, the expectations on which it is based,
in each single period, being consistent with one another” (Hicks (1965)).

The temporary equilibrium of period t is thus a competitive equilibrium
given price expectations. It will give the equilibrium value of the current vari-
ables, including current prices, as a function of the past and of the expectations
about the future. More precisely, it is defined given the past variables16

st−1 and It−1 = Nt−1st−1,

and given the expectations on the future rate of return,

Ret+1.

At time t , two markets are open, the labor market and the goods market.
There is no capital market, because the physical capital is already installed
and investment It results from the decision of the young individuals in t .
Nevertheless, the gross rate of return Rt depends on the decisions of the firm

15 See also Grandmont (1983) for a more recent use of the concept.
16 All variables from time 0 to time t − 1 are past data. We only mention those which intervene

in the definition of the temporary equilibrium. We do the same for expectations.
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that produces at time t , and this decision depends on the equilibrium wagewt .
The equilibrium conditions are thus threefold:

1. Labor market equilibrium: At time t the inelastic labor supply is Nt ;
the labor demand Lt is given by the solution to (1.10). Hence, the equi-
librium wage equalizing supply and demand is

wt = ω

(
Kt
Nt

)
= ω(kt). (1.11)

kt = Kt/Nt is the stock of capital per young person, or the equilibrium
capital–labor ratio.

2. Equality between realized and distributed profits: By assumption, the
effective profits are distributed to the owners of capital. Given the equi-
librium on the labor market, we have

πt = f ′(kt)Kt .

The old households receive

πt = Nt−1Rtst−1 = RtKt ,
as Kt = Nt−1st−1. The equality between effective profits and distributed
profits implies that the rate of return on the savings made at time t − 1
is equal to the marginal productivity of capital:

Rt = f ′(kt). (1.12)

This equality is obtained from an accounting identity. Suppose now that
the young households no longer deposit their savings in an investing
firm, but use them to build capital that they sell to the producing firms
in thenext period (an interpretationoften found in the literature). In this
case, the interest factor would be a market price equalizing the supply
of capital from the old and the demand of capital from the firms.17

3. Good market equilibrium: The supply of the physical good by the pro-
ducing firm is

Yt = F(Kt , Nt) = Nt f (kt).

Thedemand for the good is the sumof the demandof the old households
born in t − 1 and of the young households that consume and save in the
physical good:

Nt−1dt + Nt(ct + st).

17 The supply from the old is inelastic. At a given wage w, there exists a uniqueR(w) such that
the firms’ demand is infinite forR < R(w), nil forR > R(w), and any non-negative value for
R = R(w). This demand scheme results from the assumption of constant returns to scale.
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The equilibrium on the goods market is

Yt = Nt−1dt + Nt(ct + st). (1.13)

It results from the equilibrium in the labor market, from the equality
betweeneffective anddistributedprofits, and fromthebudget constraint
of the households. Indeed, we have

Nt(ct + st) = Ntwt = Nt [ f (kt)− kt f ′(kt)] = Yt − Kt f ′(kt),
Nt−1dt = Nt−1Rtst−1 = RtKt = Kt f ′(kt).

The temporary equilibrium can now be defined as follows.

Definition 1.1 (Temporary equilibrium)
Given the variables from the previous period {st−1, It−1 = Nt−1st−1} and the
expected rate of return on savings Ret+1, the temporary equilibrium of time t is
defined by

1. the wage rate wt and the gross rate of return Rt ,
2. the aggregate variables Kt , Lt , Yt , kt , and It ,
3. the individual variables ct , st , and dt

that satisfy the optimality conditions of the agents and the three equilibrium
conditions (1.11), (1.12), and (1.13).

A temporary equilibrium {wt ,Rt ,Kt , Lt ,Yt , kt , It , ct , st ,dt } can be expressed
as a function of kt = Kt/Nt = It−1/Nt and Ret+1. Indeed, we have

wt = ω(kt),

Rt = f ′(kt),

Lt = Nt ,

Yt = Nt f (kt),

It = Ntst ,

ct = wt − st ,
st = s(ω(kt),Ret+1

)
,

dt = Rtst−1.

(1.14)

We next have the following proposition:

Proposition 1.1 (Existence and uniqueness of the temporary equilibrium)
Given {st−1, It−1,Ret+1}, the temporary equilibrium of period t exists and is
unique. This equilibrium can be expressed as a function of

kt = Kt
Nt

= It−1

Nt
and Ret+1.
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Proof: The system (1.14) defines a unique temporary equilibrium because
ω(·), f (·), and s(·,R) are (single-valued) functions.

Example: When the utility function is logarithmic and the production function is
Cobb–Douglas, the temporary equilibrium is given by

wt = A(1− α)kαt ,
Rt = Aαkα−1

t ,

Yt = Nt Akαt ,

st = β

1 + β A(1 − α)kαt ,

ct = 1
1 + β A(1 − α)kαt ,

dt = Aαkα−1
t st−1.

It does not depend on the expectation Ret+1.

1.5 the inter-temporal equilibrium with perfect foresight

Atequilibrium, the linkbetween twoperiods t and t + 1 is givenby theaccumu-
lation rule for capital and by the formation of expectations. The accumulation
rule for capital states that savings of the young households are transformed
into productive capital for the next period:

Kt+1 = It = Nts
(
ω(kt),Ret+1

)
,

or, in intensive terms,

kt+1 = 1
1+ ns

(
ω(kt),Ret+1

)
.

We also call this equality the equilibrium on capital market, reflecting the idea
that the supply of funds by households equals investment by firms.

If expectations on Ret+1 are a function of the past only, the sequence of
temporary equilibria is determined uniquely by the initial capital stock. For
instance, if expectations are myopic or adaptive and Ret+1 = Rt = f ′(kt), the
sequence of temporary equilibria is determined by the following difference
equation of the first order:

kt+1 = 1
1 + ns(ω(kt), f

′(kt)), k0 = K0/N−1 given.

We shall study more systematically the equilibrium with perfect foresight:

Ret+1 = Rt+1 = f ′(kt+1), (1.15)

kt+1 = 1
1 + ns(ω(kt),Rt+1). (1.16)
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Definition 1.2 (Inter-temporal equilibrium)
Given an initial capital stock k0 = K0/N−1, an inter-temporal equilibrium with
perfect foresight is a sequence of temporary equilibria that satisfies for all t ≥ 0
the conditions (1.15) and (1.16).

The words “perfect foresight” reflect the assumption that there is no uncer-
tainty about the future. Future population, technology, etc. are perfectly fore-
casted by the agents, and so are the future rates of return.18

Hence, at the inter-temporal equilibrium with perfect foresight, the stock
of capital of period t + 1 should verify the following implicit equation:

(1+ n)kt+1 − s(ω(kt), f ′(kt+1)) = 0. (1.17)

The equilibrium sequence (kt)t≥0 is called an equilibrium trajectory.
There is a particular difficulty for studying the existence and uniqueness of

an equilibrium with perfect foresight, given the initial capital stock. Indeed,
kt+1 is defined implicitly by (1.17) when kt is known. At each step, there is
an implicit function problem: given kt , does kt+1 exist and is it unique? It is
possible to analyze these questions in a simple way, which is the following.
Considering a given wage w > 0, we look for a capital stock k such that the
expectations of the rate of return R(k) = f ′(k) will lead to a savings decision
s(w, f ′(k)) corresponding to the level of capital accumulation. In other words,
given w > 0, we wonder whether it is possible to solve for k the equation19

�(k,w) ≡ (1+ n)k− s(w, f ′(k)) = 0.

For the existence, it is enough to prove that the limits of�(k,w) when k goes
to 0 and when k goes to +∞ are of opposite sign. Indeed, when this is the
case, the continuous function�(k,w) will necessarily take the value 0 at some
positive k.

1.5.1 Existence of Equilibria

Proposition 1.2 (Existence of inter-temporal equilibria)
Under the hypothesesH1 andH2, for any initial capital stock k0 > 0, there exists
at least one inter-temporal equilibrium with perfect foresight.

Proof: We first study the sign of �(k,w) when k tends to +∞. We have the
following inequality bearing on the savings function:

0 < s(w, f ′(k)) < w,

18 An extension of the two-period overlapping generations model to uncertain environments
is proposed by Demange and Laroque (1999) and (2000).

19 The method developed here turns out to be simpler than the one consisting in inverting the
function (1.17) to find a function kt = �(kt+1).
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i.e., savings are positive and smaller than first-period income. This implies

0 <
s(w, f ′(k))

k
<
w
k
.

For a fixed w > 0 the limit of w/kwhen k→ ∞ is 0. This implies20

lim
k→+∞

s(w, f ′(k))
k

= 0.

As a consequence, for

�(k,w) = k
(
1+ n− s(w, f ′(k))

k

)
,

we have

lim
k→+∞

�(k,w)
k

= 1+ n > 0.

This implies that �(k,w) is positive for large values of k.
We now study the sign of�(k,w) when kgoes to 0. The decreasing function

f ′(k) admits a limit when k goes to 0. We distinguish two cases according to
whether this limit is finite (case 1) or infinite (case 2):

� Case 1: limk→0 f ′(k) = f ′(0) is finite. In this case, the savings function
s(w, f ′(0)) is well defined and is positive. Then we have

lim
k→0

�(k,w) = lim
k→0

[(1 + n)k− s(w, f ′(k))] = −s(w, f ′(0)) < 0.

� Case 2: limk→0 f ′(k) = +∞. The return on savings becomes infinite as k
approaches 0. In this case, savings can remain positive (sub-case 1) or tend
to zero (sub-case 2):
� Sub-case 1: limk→0 s(w, f ′(k)) > 0.21 This implies that

lim
k→0

�(k,w) = lim
k→0

[k(1 + n)− s(w, f ′(k))] < 0.

� Sub-case 2: limk→0 s(w, f ′(k)) = 0. This is the case when savings go to
zero as the interest rate goes to infinity. This property of the savings func-
tion implies that the second-period consumption d = f ′(k)s(w, f ′(k))
tends to +∞. Indeed, using equation (1.6) we have

lim
k→0
u′(d) = lim

k→0

u′(w − s)
β f ′(k)

= 0,

20 Any function squeezed between functions that have a common limit necessarily converges
toward this limit.

21 The proof applies to the limit superior (lim sup) when the limit does not exist. The lim sup
is an upper bound which always exists, finite or infinite (see appendix A.2.3).
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as limk→0 f ′(k) = +∞ and limk→0 u′(w − s) = u′(w) > 0. The marginal
utility of d thus tends to 0, which implies22

lim
k→0

f ′(k)s(w, f ′(k)) = +∞.

We also have 0 < kf ′(k) < f (k) (as ω(k) > 0), which implies that for k
bounded, say 0 < k< 1, kf ′(k) < f (1). Then, for k< 1,

s(w, f ′(k))
k

= f ′(k)s(w, f ′(k))
f ′(k)k

>
f ′(k)s(w, f ′(k))

f (1)
.

Hence,

lim
k→0

s(w, f ′(k))
k

= +∞,

which implies that

�(k,w)
k

= 1+ n− s(w, f ′(k))
k

is necessarily negative for small k.

We have shown that, in all cases,�(k,w) takes positive values for large k and
negative values for small k. As �(k,w) is continuous with respect to k, there
always exists at least one k> 0 such that�(k,w) = 0. This implies that, given
kt > 0, there exists kt+1 > 0 such that�(kt+1, ω(kt)) = 0.By induction,23 given
k0, there exists a sequence (kt) satisfying (1.17) for all t , i.e., an equilibrium
with perfect foresight.

Figure 1.6 illustrates the two cases of proposition 1.2. We have represented a
case with three solutions k to �(k,w) = 0.

1.5.2 Uniqueness of the Inter-temporal Equilibrium

In order to obtain uniqueness, we need some more assumptions. Typically,
when the function �(k,w) is not strictly increasing in k, there may be more
than one k which solves �(k,w) = 0. In fact, we only need �(k,w) to be
strictly increasing at the possible intersection points with the horizontal axis.
We shall thus assume that for any (possible) intersection point, i.e., k such that
�(k,w) = 0, the derivative �′

k(k,w) is positive.
24

22 This is the case when limd→∞ u′(d) = 0. We have not made this assumption, but if this limit
is strictly positive, the sub-case is excluded.

23 Induction relies on a domino effect. If we can prove that a result is true from time t to time
t + 1, and that it is true for the first case (here, k0 is given), we can put together a chain
of conclusions: Truth for t = 1 implies truth for t = 2, and so on. Pushing the first domino
causes all of the other dominoes to fall in succession.

24 In fact, we only need the assumptionH3 for the values ofw which are equilibrium real wages,
i.e., such that there exists k> 0 verifying ω(k) = w. Moreover, replacing the assumption
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∆(k,w) ∆(k,w)

(1 + n)k (1 + n)k

k

limk 0 s(w, f ′(k)) > 0

k

limk 0 s(w, f ′(k)) = 0

Figure 1.6. Existence of inter-temporal competitive equilibria. When limk→0 s(w,
f ′(k)) > 0, savings remain positive even when the interest rate goes to infinity.When
limk→0 s(w, f ′(k)) = 0, savings go to zero when the interest rate goes to infinity. In
all cases,�(k,w) takes positive values for large kand takes negative values for small
k. As �(k,w) is continuous with respect to k, there always exists at least one k> 0
such that �(k,w) = 0.

Assumption H3.
For all w > 0 and all k> 0,

�(k,w) = 0 =⇒ �′
k(k,w) > 0,

where

�(k,w) = (1+ n)k− s(w, f ′(k)),
�′
k(k,w) = 1+ n− s ′R(w, f ′(k)) f ′′(k).

The assumption H3 implies that for any fixed w the curve �(k,w) does not
intersect the horizontal axis at more than one point. This is because, if there is

�′
k > 0 by�(k,w) locally strictly increasing, the condition H3 is necessary and sufficient for

a unique intersection point k solving �(k,w) = 0.
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a second intersection, the function is necessarily non-increasing, and its deriva-
tive is non-positive.

A consequence of this assumption is that the effect of the rate of return on
the savings decision should not be too negative at the solution:

s ′R(w, f
′(k)) >

1 + n
f ′′(k)

.

Hence, the degree of inter-temporal substitution between consumption when
young and consumption when old should not be too small, so that the substi-
tution effect will not be dominated too much by the income effect in the face
of changes in the rate of return.

Under H3, there exists a function h defined on R++ with values in R++
which satisfies, for w > 0,

k= h(w) ⇐⇒ �(k,w) = 0. (1.18)

In addition, at any point w > 0, we have �′
k(h(w),w) �= 0 and we can apply

the implicit function theorem: the function h(w) is continuously differentiable
at w > 0, with derivative

h′(w) = −�
′
w(h(w),w)
�′
k(h(w),w)

= s ′w(w, f
′(h(w)))

1+ n− s ′R(w, f ′(h(w))) f ′′(h(w))
.

As �′
k(h(w),w) > 0, h′(w) is positive.

Proposition 1.3 (Uniqueness of the inter-temporal equilibrium)
Under the hypotheses H1, H2, and H3, for any k0 > 0, there exists a unique
inter-temporal equilibrium with perfect foresight and initial capital stock k0.
This equilibrium is characterized by the sequence of capital stocks kt defined by
the difference equation

kt+1 = g(kt) = h(ω(kt)).
The function g is continuously differentiable on R++ and verifies, for all k> 0,

g′(k) > 0 and �(g(k), ω(k)) = 0.

Proof: Proposition 1.3 simply results from proposition 1.2, from the def-
inition of the function h(w) (see equation 1.18), and from the properties
of the functions ω(k) and h(w), both being continuously differentiable and
increasing.

Equation (1.17) is thenequivalent to�(kt+1, ω(kt)) = 0,which is equivalent
to kt+1 = g(kt). The derivative of g is

g′(k) = h′(ω(k))ω′(k) = s ′w(ω(k), f
′(g(k)))ω′(k)

1+ n− s ′R(ω(k), f ′(g(k))) f ′′(g(k))
.
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One important difficulty for applications is that the hypothesis H3 is not di-
rectly formulated in terms of preferences and technologies and depends on the
equilibrium values of kandw. Thus, it is useful to have the following sufficient
condition for uniqueness.

Assumption A4.
The utility function verifies ∀c > 0, u′(c) + cu′′(c) ≥ 0.

This condition is equivalent to assuming that the inter-temporal elasticity of
substitution σ (c) is greater or equal to 1. As we have seen, this implies that
s ′R ≥ 0 and hence �′

k ≥ 1 + n for all w, k> 0: H3 holds.
Moreover, a more general sufficient condition for H3 to hold can be drawn

in the case of a CIES utility function with inter-temporal elasticity σ and a
CES production function with substitution elasticity 1/(1+ ρ). In this case,

�(k,w) = (1+ n)k− w
1+ β−σ [ f ′(k)]1−σ

,

with

f ′(k) = αA−ρ
(
f (k)
k

)1+ρ
.

The solution k of �(k,w) = 0 is obtained by solving for k:
w

1 + n = ψ(k) ≡ k+ kβ−σ f ′(k)1−σ .

The function ψ(k) is bounded above by k+ kβ−σ f ′(k) f ′(1)−σ for k< 1. The
assumption H2 implies that limk→0 k f ′(k) = 0 (see appendix A.1.2). Thus, we
have ψ(0+) = 0. As ψ(+∞) = +∞, the condition ψ ′(k) > 0 for all k guaran-
tees the uniqueness of kt+1. Recognizing that ψ(k) can be rewritten as

ψ(k) = k+ β−σ (αA−ρ)1−σ f (k)λk1−λ with λ = (1+ ρ)(1 − σ ),
the condition ψ ′(k) > 0 holds if λ ≤ 1, i.e., if

σ ≥ 1 − 1
1 + ρ . (1.19)

This condition states that if the inter-temporal elasticity of substitution is larger
than 1 minus the elasticity of substitution between production factors, then
the inter-temporal equilibrium is unique. Hence, the condition on σ is more
restrictive when technological substitution possibilities are small.When ρ ≤ 0,
there is no restriction on σ .

To further illustrate to what extent H3 is nonrestrictive, we have compu-
ted numerically the parameter set where it holds for the CIES–CES case.
In figure 1.7 we have plotted this region in the space of the two elasticities
{ρ, σ }. The other parameters are A= 20, α = 1/3, β = 0.3, n = 1.097, which
gives reasonable values for the endogenous variables in the case σ = 1, ρ = 0
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Figure 1.7. The regionwhere equilibrium is unique. In the space of the two elasticities
{ρ, σ }, the shaded area represents the regionwhere the equilibriumwith perfect fore-
sight is not unique in a CIES–CES example. The solid line represents the sufficient
condition (1.19).

(see section A.5.1). The shaded region is the one where the equilibrium is
not unique. Non-uniqueness thus arises for low values of both elasticities. To
shaded area can also be compared with the sufficient condition (1.19), which
is plotted with a solid line. The interest of this latter condition is that it does
not depend on the other parameters A, α, β, and n.

We should note that the uniqueness of the equilibrium is a fundamental
property for interpreting the perfect foresight assumption in a non-ad-hoc
way. Only when the equilibrium is unique can it be analyzed as an equilibrium
with rational perfect foresight. In the case of uniqueness, there is no exoge-
nous problem of coordinating expectations, as each agent can solve the model
as we did and calculate the next period equilibrium kt+1, which is necessary
to obtain the rate of return Ret+1 = f ′(kt+1). Under the rational perfect fore-
sight hypothesis, the agents use all available information, including the model
describing the economy. In the case of multiplicity of equilibria kt+1, as in
the left panel of figure 1.8, agents do not know what will be the expectations
of the others and thus face non-unique Ret+1, unless some exogenous coordi-
nation device is assumed (e.g., sunspots). In the sequel, we use the following
terminology:

Definition 1.3 (Rational inter-temporal equilibrium)
A rational inter-temporal equilibrium is an inter-temporal equilibriumwith per-
fect foresight such that there exists no other inter-temporal equilibrium with
perfect foresight having the same initial capital stock.

Note that in the absence of assumption H3 ensuring the uniqueness of the
inter-temporal equilibrium, we end in a logic à la Arrow–Debreu where the
way expectations are formed is not treated. This approach will be contrasted
with that of this chapter in section 5.4. The literature that models explicitly
the formation of expectations is centered around the conditions of uniqueness



Competitive Equilibria 27

kt

kt+1

∆(kt+1, ω(kt)) = 0

kt

kt+1

kt+1 = g(kt)

Figure 1.8. Rational inter-temporal equilibrium. In the left panel, there is a multipli-
city of solutions kt+1; agents do not know what will be the expectations of the others
and thus face non-uniqueRt+1 with perfect foresight. In the right panel, for any level
of kt , there is always a unique solution kt+1, and there is thus a rational inter-temporal
equilibrium.

of the equilibrium (see e.g., Blanchard and Kahn (1980)), and would discard
models displaying more than one solution.25

1.6 capital dynamics at a rational inter-temporal equilibrium

With the assumptions H1, H2, and H3 there exists a unique inter-temporal
equilibriumwith perfect foresight given the initial capital stock k0: the rational
inter-temporal equilibrium. This equilibrium is characterized by the dynamics
of the capital stock kt :

kt+1 = g(kt), (1.20)

where g(k) is defined by the implicit function�(g(k), ω(k)) = 0. The function
g is continuously differentiable and increasing onR++ with values inR++. This
function g is often called the transition function, as it gives kt+1 as a function
of kt or the savings locus, as kt+1 = g(kt) gives all the combinations of kt , kt+1

such that savings equal investment.

1.6.1 Steady States and Stability

In this section, we study the properties of the function g(·); this will allow
us to characterize the capital accumulation process and discuss growth and
convergence issues. We first need to introduce some definitions.

25 In contrast, a recent literature has developed in macroeconomics that exploits the presence
of multiple equilibria to understand cycles and growth phenomena. Benhabib and Farmer
(1999) survey this approach.



28 A Theory of Economic Growth

Let us re-define the function g for the dynamics to be defined on R+. The
function g(k) is increasing and non-negative. As a bounded and monotonic
function on R++ admits a limit, there exists a limit of g(k) when k> 0 goes to
0 and this limit is non-negative:

g(0+) = lim
k→0, k>0

g(k) ≥ 0.

Defining g(0) = g(0+), the function g is defined and continuous on R+, and
the dynamics (1.20) are defined on R+.

Definition 1.4 (Steady state)
k̄> 0 is a steady state of the dynamics described by (1.20) if g(k̄) = k̄. For the
particular value k̄= 0, when g(0) = 0, we say that 0 is a corner steady state.

A steady state is thus a point k̄ such that the constant sequence kt = k̄ is a
solution to equation (1.20). For the corner steady state, we have the following
property:

Proposition 1.4 (Corner steady states)
0 is a corner steady state of the dynamics described by (1.20) if and only if
ω(0) = 0, or equivalently, if and only if f (0) = 0.

Proof: Assumeω(0) = 0. Then, for k> 0, the inequality 0 < g(k) < ω(k)
1+n (sav-

ings lower than wage) implies g(0) = 0.
Assumeω(0) > 0. Then the limit of the continuous function g(k) = h(ω(k))

is h(ω(0)) > 0.
The equivalence between ω(0) = 0 and f (0) = 0 is shown in appendix

A.1.3.

This proposition says that if f (0) > 0 it is possible to produce, and hence
accumulate, without capital and 0 is not a steady state. Before analyzing the
stability properties of the steady states, we precise two definitions of stability.
The standard definition of local stability of a steady state is:26

Definition 1.5 (Local stability)
k̄ is locally stable if there exists ε > 0 such that for any k0 in R+ which verifies
|k0 − k̄| < ε, the dynamics (1.20) with initial capital stock k0 converge to k̄.

This corresponds to two situations:

� If k̄ is an interior steady state (k̄> 0), there exists ε > 0 such that ∀k0 ∈
[k̄− ε, k̄+ ε] the dynamics converge to k̄.

26 Amore precise notion of stability (for both local stability and stability in an interval) requires
in addition the following condition (Lyapounov stability): ∀ε > 0, ∃y > 0 such that ∀k0 ∈
[k̄− y, k̄+ y], the whole dynamics belong to [k̄− ε, k̄+ ε].
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� If k̄ is the corner steady state (k̄= 0), there exists ε > 0 such that∀k0 ∈ [0, ε]
the dynamics converge to k̄.

A steady state which is not locally stable is unstable.
The definition of stability in a set is:

Definition 1.6 (Stability in an interval)
Let J be an interval of R+ and consider k̄ a steady state belonging to J . Then
k̄ is stable in J if for all k0 ∈ J the dynamics (1.20) with initial capital stock k0
converges to k̄. k̄ is globally stable in R+ (R++) if it is stable in R+ (R++).

1.6.2 Dynamics

As the function g(k) is non-decreasing, the following result for global dynamics
can be obtained (proof in appendix A.3.1):

Proposition 1.5 (Monotonicity of the dynamics)
Any time path of the capital stock satisfying (1.20) is a monotonic sequence.
This sequence converges either to a steady state or to a boundary of the interval
on which g(k) is defined.

The consequence of this proposition is that the dynamics of kt converges either
to 0, or to +∞, or to a steady state k̄. The equilibrium trajectory never goes
from one side of a steady state to the other. We shall thus consider the three
possible cases (∞, k̄, 0) successively. Let us first show that unlimited growth of
capital is excluded, which excludes the convergence of kt to +∞. Proposition
1.6 is illustrated in figure 1.9.

Proposition 1.6 (Boundedness of the dynamics)
Any time path satisfying (1.20) is bounded. For any k0 ≥ 0, the dynamics verify

∀t, kt ≤ max{k0, k̄max}.
where k̄max is the upper bound of the set of k≥ 0 such that g(k) ≥ k. It is the
largest steady state.
Only in the case where ∀k> 0, g(k) < k does one have k̄max = 0, and the

dynamics monotonic and convergent to 0, for any k0 ≥ 0.

Proof: By definition of g, we have

g(k) = 1
1 + ns(ω(k), f

′(g(k))) <
ω(k)
1 + n .

Under the assumption H2, the ratio ω(k)/k goes to 0 when k goes to +∞
(see appendix A.1.2). This implies

lim
k→+∞

g(k)
k

= 0,
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kt+1

kt

k

g(k)

k̄max
ka

0 kb
0
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1
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1

Figure 1.9. Dynamics and boundedness of time paths. We represent in the plane
{kt , kt+1} the curve kt+1 = g(kt). The steady states are given by the intersections
with the 45◦ line. As the function g(k) ends below the 45◦ line when k→ +∞, the
dynamics are always bounded. We have represented two different time paths. The
first path starts from ka0. The value of the capital stock at t = 1 is given by ka1 = g(ka0).
This value can be reported on the horizontal axis using the 45◦ line. We see that
this trajectory converges to the corner steady state 0. The trajectory starting from kb0
converges to the steady state k̄max.

and for k large enough, say k> k̂, we have g(k) < k. This implies that, for
any k0 ≥ k̂, g(k0) < k0 and the time path is decreasing and converges to some
point k̄≥ 0. In the case k̄> 0, k̄ is the largest steady state (the time path never
goes to the other side of a steady state). For such a decreasing trajectory we
have:

kt ≤ k0 = max{k0, k̄}.

For all other dynamics, with k0 ≤ k̄, we have ∀t, kt ≤ k̄, and thus

kt ≤ max{k0, k̄} = k̄.

In the case where k̄= 0, we have ∀t > 0, g(k) < k, there is no positive steady
state, and lim kt = 0 for any k0 > 0. By continuity, g(0) = 0 and 0 is a corner
steady state. In both cases the largest steady state is

k̄max = k̄= max{k≥ 0; g(k) ≥ k}.
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This proposition gives one of the important characteristic of the dynamics in
the overlapping generations model. The boundedness of the dynamics results
from two properties:

(1+ n)kt+1 = st < ω(kt) and lim
kt→+∞

ω(kt)
kt

= 0,

i.e., savings are smaller thanwage income and the ratio of wage to capital tends
to zero as capital goes to infinity. In other words, as Jones and Manuelli (1992)
stress, the young individuals do not have sufficient income to acquire a stock of
capital large enough to sustain long-run growth. In section 2.5, we shall see that
the allocation chosen by a benevolent planner can display sustained growth. In
this case, Jones and Manuelli (1992) argue that income redistribution from the
old to the young canfight against thedecliningwage to capital ratio andachieve
sustained growth. Alternatively, if households are altruistic à la Barro (1974)
and leave bequests (see section 5.1), growth can also be sustained.27

The boundedness of the capital dynamics in the overlapping generations
model sharply contrasts with the properties of the standard growth model
of Solow (1956). In his model, savings are simply proportional to output:
st = a f (kt). Moreover, contrary to the wage–capital ratio, the output–capital
ratio does not necessarily go to zero as capital increases unboundedly. These
two properties make unbounded growth possible (see the original article of
Solow (1956) or chapter 1 ofBarro and Sala-I-Martin (1995) for amodernpre-
sentation). Indeed, we have that the limit of the decreasing function f (k)/k
of k, when k goes to infinity, verifies

lim
k→+∞

f (k)
k

= lim
k→+∞

f ′(k) = � ≥ 0.

We thus have for all kt > 0, with kt+1 = a f (kt)/(1 + n),
kt+1

kt
= a f (kt)

(1+ n)kt >
a�

1 + n .

Thus if � ≥ (1+ n)/a, the sequence (kt) increases and tends to +∞. We can
obtain this case, e.g., with a CES production function with −1 < ρ < 0 (high
substitution), where � = Aα−1/ρ (see appendix A.1.2).

Example: When the utility function is logarithmic and the production function is
Cobb–Douglas, equation (1.20) is

kt+1 = g(kt) = 1
1+ n

β

1+ β ω(kt) = 1
1 + n

β

1 + β A(1− α)kαt .
(1.21)

27 This is also true in the case of the “joy-of-giving” altruism; see Araujo and Martins (1999).
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There exists a unique positive steady state,

k̄=
(

1
1 + n

β

1 + β A(1− α)
) 1

1−α
,

which is globally stable in R++, i.e., for all k0 > 0 the trajectory converges to k̄.
The corner steady state 0 is unstable. This case is illustrated in the left panel of
figure 1.10.
When the utility function is logarithmic and the production function is CES,

equation (1.20) is

kt+1 = g(kt ) = βA(1− α) (αk−ρt + 1 − α)−(1+ρ)/ρ

(1+ n)(1+ β) .

To study the number of steady states we need to discuss the concavity of g:

g′′(k) = βA(1− α)α(1+ ρ)
(1+ n)(1+ β)

ραk−ρ − (1 + ρ)(1− α)(
αk−ρt + 1 − α)(1+3ρ)/ρ

k2+ρ
.

� When ρ < 0, we have g′′(k) < 0 and g(k) is strictly concave. Moreover,

g(0) = β(1− α)−1/ρA
(1+ n)(1+ β) > 0,

and 0 is not a corner steady state. There exists a unique steady state which is
globally stable in R+. This case is illustrated in the right panel of figure 1.10.

kt

kt+1

kt

kt+1

k̄ k̄

Cobb–Douglas production function CES production function with ρ < 0

Figure 1.10. Examples with a logarithmic utility and ρ ≤ 0. When factors of produc-
tion are highly substitutable (CES production function with ρ ≤ 0), there is always
one non-trivial steady state which is globally stable. When ρ = 0, 0 is a corner steady
state; when ρ < 0 there is no corner steady state.
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� When ρ > 0, we have g′′(k) > 0 for k< k̂ and g′′(k) < 0 for k> k̂, where

k̂=
(
(1 + ρ)(1− α)

ρα

)−1/ρ

.

The function g(k) is thus convex for k< k̂ and concave for k> k̂. Moreover,
g(0)= 0, as ω(0)= 0 (appendix A.1.2). Two cases should be distinguished:
� if

max
k

ω(k)
k

< (1 + n)1 + β
β

,

which implies that g(k) is always below k, then there is no positive steady
state. In this case, the trajectory converges to zero for any k0. This case
is illustrated in the left panel of figure 1.11.

� if

max
k

ω(k)
k

> (1 + n)1 + β
β

,

there exist two positive steady states k̄a < k̄b. All trajectories starting from
k0 < k̄a converge to 0. 0 is locally stable (it is stable in [0, k̄a[). The trajec-
tory starting at k0 = k̄a remains at k̄a . k̄a is unstable. The trajectories start-
ing with k0 > k̄a converge to k̄b. k̄b is locally stable (it is stable in ]k̄a,+∞[).
This case is illustrated in the right panel of figure 1.11.

kt

kt+1

kt

kt+1

k̄a k̄bk̂

Figure 1.11. Examples with a logarithmic utility and ρ > 0. When the factors of
production are poorly substitutable (CES production function with ρ > 0), there are
either no or two non-trivial steady states (plus the case of one steady state when the
function is tangent to the 45◦ line, which is not illustrated). When the corner steady
state is the only steady state, it is globally stable. If there are two non-trivial steady
states, the higher one is locally stable and so is the corner one.
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1.6.3 The Behavior Near 0

We have defined g(0) = g(0+), allowing us to obtain a function g(k) increas-
ing and continuous on R+ and differentiable on R++. The dynamics are then
defined for all k0 ≥ 0. We now consider the case where the initial capital stock
is k0 = 0:

� At k0 = 0, if g(0) > 0, then ω(0) > 0, and the optimal choice of the con-
sumers with perfect foresight is an interior solution with positive consump-
tions and positive savings k1 = s0/(1+ n) = g(0) > 0. Moreover, for small
k, g(k) > k and the dynamics necessarily increase and converge to some
steady state k̄1 > 0, which is the lowest positive steady state.

� At k0 = 0 if g(0) = 0, thenω(0) = 0.Young households have zero income in
period 0, and whatever their expectationsRet+1 may be, their consumptions
and savings are zero: k1 = g(0) = 0. Then 0 is a corner steady state for the
dynamics defined on R+. There are two possibilities is general near 0 when
g(0) = 0 (we consider only the case where g(k) �= k for small k �= 0):
� for small k> 0, g(k) > k, and the dynamics are increasing;
� for small k> 0, g(k) < k, and the dynamics are decreasing and converge
to 0.

Definition 1.7 (Catching point)
0 is a catching point when for small k> 0, g(k) < k.

This means that there exists an interval (0, k), with k> 0 finite or infinite,
such that for all k0 ∈ (0, k) the dynamics with perfect foresight converges to
0. Thus, the capital disappears in the long run. When k is finite, k is the low-
est positive steady state. When k= +∞, we say that 0 is a global catching
point.

A catching point is often called in the literature apoverty trap. In figure 1.11,
we have in the left panel a case with a global catching point (the poverty trap is
said to be inescapable). In the right panel, k is finite, and the poverty trap can
be escaped provided that the initial capital stock is high enough (k0 > k).28 In
the latter case, the growth path followed by an economy crucially depends on
the initial condition. For low k0 one can be caught by the trap; for high k0 one
converges to the high steady state. This property of themodel is consistentwith
the stagnation of an important number of countries at low levels of economic
development and with the existence of a growing income gap between certain
economies that were similar at some points (Lucas (1993)).

We now derive some conditions for such a catching point to arise. A suffi-
cient condition, illustrated in figure 1.12, is the following.

28 Extensive discussions are provided in Galor (1996) and Azariadis (1996).
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k

(1 + n)k

s(ω(k), f ′(g(k)))

ω(k)

Figure 1.12. A catching point. As ω(0) = 0, 0 is a corner steady state. As
limk→0 ω(k)/k< (1 + n), 0 is a catching point.
Lemma 1.1 (Sufficient condition for a catching point)
If we have

lim
k→0

ω(k)
k

< 1 + n,

then 0 is a catching point.

Proof: We have for all k> 0

g(k) = 1
1 + ns(ω(k), f

′(g(k))) <
ω(k)
1 + n .

The assumption implies that for all small enough k, say 0 < k< ε, we have
ω(k)
k < 1 + n, and thus g(k) < k.

A necessary condition is the following: If 0 is a catching point, then ω(0) = 0.
Indeed, if ω(0) > 0, then when k→ 0, g(k) = h(ω(k)) converges to h(ω(0)) >
0, and ω(0) > 0 implies that 0 is not an equilibrium.

Another necessary condition is obtained under the assumptions A4 and
f ′(0) > 1/β.

Lemma 1.2 (Necessary condition for a catching point)
Assume A4 and f ′(0) > 1/β. Then, if 0 is a catching point,29 we have

lim
k→0

ω(k)
k

≤ (1 + n)1+ β
β

.

29 As ω(k)k is not monotonic, we are not sure that the limit exists. However, the proof applies
to the limit superior (lim sup) when the limit does not exist. The lim sup is an upper bound
which always exists, finite or infinite (see appendix A.2.3).
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Proof: s(w, 1/β) is solution of u′(w − s) = u′(s/β), which implies w − s =
s/β and

s(w, 1/β) = βw
1 + β .

For small k> 0, f ′(g(k)) > 1/β and

g(k) = 1
1 + ns(ω(k), f

′(g(k))) ≥ 1
1+ ns(ω(k), 1/β),

as s ′R ≥ 0 (A4). Hence,

g(k) ≥ βω(k)
(1+ β)(1+ n) ,

from which we deduce that

g(k)
k

< 1 =⇒ ω(k)
k

< (1 + n)1+ β
β

.

The necessary condition for 0 to be a catching point can be converted into a
sufficient condition for 0 not to be a catching point.

Proposition 1.7 (Absence of catching point)
Assume that s ′R ≥ 0 and f ′(0) > 1/β. Then 0 is not a catching point if

lim
k→0

ω(k)
k

> (1+ n)1 + β
β

.

Intuitively, if the first unit of capital is sufficiently productive in terms of labor
productivity, the poverty trap will be avoided.

The above propositions show that the overlapping generations model
is an interesting tool to study the conditions under which a poverty trap
arises. The example developed above illustrates that CES technologies with
low substitution are consistent with catching points and poverty traps. If
the initial capital/labor ratio is low enough, the economy will converge to
the trivial steady state with zero capital rather than to the one with high
capital/labor ratio. The one-sector overlapping generations model is the sim-
plest framework to understand that the path of growth may depend on initial
conditions.

A further enrichment of the analysis is to consider a two-sector overlapping
generations model, either to make an explicit distinction between investment
goods and consumption goods as in Galor (1992), and/or to model explicitly
the interactions between two countries (or two part of the world). Such a
framework should be able to determine the conditions under which poverty
traps persist, although capital can flow from one part of the world to the other,
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and relieve countries with unfavorable initial conditions. More generally, the
two-sector overlapping generations model is an important framework of anal-
ysis for issues that require the existence ofmore than one sector of production.
Recently, there havebeena largenumberof applications of thismodel directed
at a more comprehensive study of international trade and growth. Some re-
cent applications of this framework include Mountford (1998) and (1999) and
Cremers (2001).

1.6.4 A Quick Look at the Empirics of Growth

A Long-Run Perspective on Savings. One fundamental characteristic of the
model developed above is that savings (of the young) drive capital accu-
mulation, and hence medium-run growth. In the standard two-period over-
lapping generations model, savings are based on wage income. In extended
models, capital income (with three-period-lived households; see section 1.8.8)
or inherited wealth (with altruistic households; see section 5.1) can be
saved.

Maddison (1992) provides historical estimates of long-run gross savings
rates for 11 countries. Table 1.1 presents the gross savings as a fraction of
GDP, each period corresponding more or less to one generation. Table 1.2
presents the corresponding annual growth rates.

Table 1.1. Gross Savings as a Fraction of GDP

Country 1870–1889 1890–1913 1914–1938 1939–1959 1960–1987

Australia 11.2 13.0 12.4 18.5 23.6
Canada 9.1 12.2 14.4 20.3 22.4
India 5.8 7.4 8.7 15.3
Taiwan 9.6 25.5 14.7 27.0
Japan 12.4 12.3 16.7 25.7 35.0
U.K. 13.9 13.6 8.3 8.6 18.8
U.S. 19.1 18.3 17.0 17.4 18.7

Table 1.2. Growth Rates

Country 1870–1890 1890–1914 1914–1939 1939–1960 1960–1988

Australia 1.1 0.2 0.5 2.0 2.3
Canada 1.7 2.2 0.7 3.0 3.1
India 0.5 −0.2 0.6 1.9
Taiwan 0.2 2.3 0.0 7.0
Japan 1.4 1.1 3.1 1.7 5.4
U.K. 1.1 0.9 0.7 1.7 2.3
U.S. 1.6 1.5 1.3 2.6 2.4
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A first conclusion that we can drawn from these figures is that savings
rate of the post-war (World War II) period in most of the countries are well
above their pre-war level. Notice that the post-war period is also the period
that experienced the highest growth rate in output per head. As stressed by
Maddison (1992), “there is a general positive relationship between the faster
post-war growth period in output per head and the acceleration in savings
rate, and a similar positive relation in the post 1973 slowdown. The U.S.A.,
which has the smallest post-war acceleration in per capita growth, was also the
country with least change in its long run savings habits.”

On the one hand, when we consider the countries for which we observe a
catching up with the richest, i.e., Taiwan and Japan, they had experienced very
high levels of domestic savings. On the other hand, the countries remaining
in a sort of poverty trap, like India, remain at very low levels. When there are
realistic opportunities for economic catch-up, i.e., when the productivity of
capital is high, then the improvement in expected returns induce a rise in sav-
ings and investment in the follower countries. This high domestic investment
level is the main engine of growth.

Growth in the Very Long Run. When we study growth within an overlapping
generations model, we are obviously interested in the dynamics of wealth
from one generation to the next, and hence, in growth in the very long run.
There is some evidence that economic growth was very slow before 1700. Real
wages and per capita GDP were roughly the same in 1700 as they were 2000
years before (see Jones (2001) and the references therein). For the recent past,
Maddison (1995) has provided a set of long time series, and this set is helpful
in discussing growth in a generational perspective and illustrating some of the
theoretical results.

Figure 1.13presents theGDPper capitaof selectedyears for thewhole set of
countries forwhich thedata are available (starting in 1820).Eachpoint broadly
reflects the standard of living of one generation in one country. The first fact
that emerges very clearly fromthis picture is that growth is amonotonicprocess
at this frequency (the only exception isMexico, for which the generation living
in 1850 had a lower income than the one living in 1820).

An important issue in growth theory is that of convergence (see Galor
(1996), Quah (1996), Barro and Sala-I-Martin (1995)). Over this very long pe-
riod of time, there is no single pattern of growth: some (relatively) rich coun-
tries remain rich, some poor ones remain poor (Africa, India), some poor
ones become rich (Japan), etc. Moreover, there is no clear tendency for the
cross-country distribution of income to become more concentrated.

When we consider the most developed countries alone (according to the
OECD classification), the pattern of convergence is different. Figure 1.14
presents the same data as figure 1.13, but for the most developed countries
only. The absolute convergence of these countries to a single growth path
appears clearly.
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Figure 1.13. GDP per capita in the world. GDP per capita is increasing from one
generation to the next in all countries for all periods.

1.7 comparison of myopic and perfect foresight

Although the assumption of myopic foresight is no longer used in the litera-
ture, it has long been viewed as a useful framework in macro-economics. For
example, Lucas and Rapping (1969) see myopic foresight as a good approxi-
mation when the growth rates of prices are stable.

In this section, we compare the dynamics occurring under the assump-
tion of perfect foresight with those occurring under myopic foresight (see
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Figure 1.14. GDP per capita in the most developed countries. The GDP per capita
in the most developed countries converges to a similar growth path.

Michel and de la Croix (2000)).We shall see that this comparison can be help-
ful because, under certain conditions, the knowledge of the dynamics under
myopic foresight (which are much simpler) allows us to know the dynamics
under perfect foresight.

One important difference is that the dynamics of myopic foresight are not
monotonic under the assumptionH3, which will allow us to discuss other types
of time paths. With the assumption of myopic foresight,

Ret+1 = Rt = f ′(kt).
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The inter-temporal equilibrium with initial capital stock k0 is unique, and it is
characterized by the dynamics of kt :

kt+1 = 1
1 + ns(ω(kt), f

′(kt)) ≡ m(kt). (1.22)

Under the assumptions H1 and H2,m(k) is defined and continuously differen-
tiable on R++ with values in R++. To analyze the myopic dynamics driven by
equation (1.22), we can apply the method of the preceding section only when
m(k) is increasing. The derivative of m(k) is

m′(k) = 1
1 + n [s

′
w(ω(k), f

′(k))ω′(k)+ s ′R(ω(k), f ′(k)] f ′′(k)). (1.23)

As s ′w , ω
′ > 0 and f ′′ < 0, a sufficient condition form′(k) > 0 is s ′R ≤ 0. When

this is the case, the dynamics with myopic foresight is monotonic, and the
study is similar to the one made in the previous section. The inequality s ′R ≤ 0
is compatible with the assumptionA4 only if s ′R = 0. Nevertheless, the positive
steady states for the two dynamics are identical.

1.7.1 The Steady States

Proposition 1.8 (Steady states of the dynamics with myopic foresight)
Under the assumptions H1, H2, and H3, the two dynamics with perfect and
myopic foresight have the same positive steady states.

Proof: k̄> 0 is a steady state for the dynamics with myopic foresight if and
only if

k̄= m(k̄) = 1
1+ ns(ω(k̄), f

′(k̄)).

For the dynamics with perfect foresight, k̄> 0 is a steady state if and only if

k̄= g(k̄) = 1
1+ ns(ω(k̄), f

′(g(k̄))),

and the two conditions are equivalent.

When 0 is a corner steady state of the dynamics with perfect foresight, we
have ω(0) = 0 and g(0) = 0 (proposition 1.4). Then it is also a steady state
for the dynamics with myopic foresight, as 0 < m(k) < ω(k)/(1+ n) and
limk→0m(k) = 0. The converse is not necessarily verified (see figure 1.15).

Example: For a CES production function with ρ < 0 we have ω(0) > 0 and
f ′(0) = +∞. For a CIES utility function with σ < 1 we have s(ω(0), f ′(0)) = 0.



42 A Theory of Economic Growth

k

g(k)

m(k)

0 k̄
Figure 1.15. Steady states of the dynamics with myopic foresight: The two dynamics
with perfect and myopic foresight have the same positive steady state(s). When 0 is a
corner steady stateof thedynamicswithmyopic foresight, it is not necessarily a corner
steady state of the dynamics with perfect foresight. A case with a CES production
function with ρ < 0, and a CIES utility function with σ < 1 is represented.

Hence, m(0) = 0, but g(0) > 0 and 0 is a corner steady state for the dynam-
ics with myopic foresight only. In this situation, although wages are positive at
k= 0, savings are zero in the myopic foresight case, because the interest fac-
tor forecasted on the basis of the current capital stock is infinite (agents do not
forecast that the capital stock can be higher tomorrow). In the perfect foresight
case, savings are positive, as the agents expect the interest rate to be finite.

1.7.2 Local Stability

For the myopic dynamics (1.22), the derivative m′(k) is given by (1.23). This
derivative is crucial to determine the local stability of the steady state:

Proposition 1.9 (First-order stability condition)
Let k̄ be a steady state ∈ R++. Then for the myopic dynamics:

� if |m′(k̄)| < 1, then k̄ is locally stable;
� if |m′(k̄)| > 1, then k̄ is unstable, i.e., it is not locally stable;
� if |m′(k̄)| = 1, then the stability type of k̄ cannot be determined on the basis
of the first derivative.

Proof: We apply the criterion of local stability provided in appendix A.3.2 to
the functionm.

We say that k̄ is hyperbolic when |m′(k̄)| �= 1.
For the rational dynamics, kt+1 = g(kt), we have at a steady state k̄> 0,



Competitive Equilibria 43

g(k̄) = k̄, and

g′(k̄) = s ′w(ω(k̄), f
′(k̄))ω′(k̄)

1 + n− s ′R(ω(k̄), f ′(k̄)) f ′′(k̄)
.

If g′(k̄) < 1, k̄ is locally stable. Under the assumption H3 this is equivalent to
s ′wω

′ < 1+ n− s ′R f ′′, or tom′(k̄) < 1. If g′(k̄) > 1, k̄ is unstable. The condition
g′(k̄) > 1 is equivalent to m′(k̄) > 1.

Proposition 1.10 (Stability of monotonic dynamics)
Assume H1, H2, and H3, and consider a steady state k̄> 0.
In the case where m′(k̄) ≥ 0 (monotonic dynamics with myopic foresight), k̄
is respectively stable, unstable, or non-hyperbolic for the two dynamics when
m′(k) is respectively <1, >1, or = 1.
In the case where m′(k̄) < 0, k̄ is stable for the rational dynamics, but it may be
stable (m′(k) > −1) or unstable (m′(k) < −1) for the myopic dynamics.

Proof: When m′(k̄) ≥ 0, we have |m′(k̄)| = m′(k̄) and the first-order stability
conditions for the twodynamics are identical.Whenm′(k̄) < 0,wehave s ′wω

′ <
1 + n− s ′R f ′′, g′(k̄) < 1, and k̄ is stable for the rational dynamics.

Corollary: When the rational dynamics are defined and the myopic dynamics
are monotonic, then the two dynamics have the same structure in the sense that
the positive steady states are the same and the first-order stability conditions are
equivalent.

This is a very useful result in the case of monotonic myopic dynamics: in this
case, the study of these dynamics, which are much simpler, allows one to know
the dynamics for the perfect foresight situation.

When m′(k̄) < 0, the myopic dynamics are non-monotonic and character-
ized by oscillations. Indeed, if m is decreasing near k̄, we have near k̄

kt < k̄ ⇐⇒ m(kt) > m(k̄) ⇐⇒ kt+1 > k̄.

In section 1.8.1, we further analyze myopic dynamics that are not monotonic.

1.7.3 Uniqueness of the Steady State

We have seen that when the utility function is logarithmic and the production
function is CES with ρ ≤ 0, the positive steady state k is unique and globally
stable under perfect foresight. Another example displaying these properties is
when theutility function isCIESand theproduction function isCobb–Douglas
(see section 1.8.1).Wehave also seen a simple casewith eithermultiple positive
steady states or no positive steady states; this case arises when the utility
function is logarithmic and the production function is CES with ρ > 0. To
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study the number of steady states we can of course use the results on the
myopic dynamics, which are simpler.

The savings function s(ω(k), f ′(k)) is defined by

u′(ω(k)− s) = β f ′(k)u′( f ′(k)s).

It depends on the first derivatives of u and f . A general condition which is
sufficient for uniqueness, like the concavity of g, involves the third derivatives
of u and f (see Galor and Ryder (1989)).

To study the number of steady states, however, we can use the results on
the myopic dynamics and derive a simpler sufficient condition for uniqueness.

Proposition 1.11 (Uniqueness of the steady state)
There exists nomore than one positive steady state k̄of the dynamicswith perfect
foresight when

s ′w(ω(k), f
′(k))ω′(k)+ s ′R(ω(k), f ′(k)) f ′′(k) <

s(ω(k), f ′(k))
k

∀k> 0.

Such a steady state exists if and only if

lim
k→0

s(ω(k), f ′(k))
k

> 1 + n.

Proof: There exists no more than one positive steady state k̄ if the function
s(ω(k), f ′(k))/k is strictly decreasing:

d
dk
s(ω(k), f ′(k)))

k
= 1
k

(
s ′wω

′ + s ′R f ′′ −
s
k

)
< 0 ∀k> 0.

This condition can be rewritten

m′(k) <
1

1 + n
s(ω(k), f ′(k))

k
∀k> 0,

which leads to the expression in the proposition.
If and only if limk→0 s(ω(k), f ′(k))/k> 1 + n holds, the function s(ω(k),

f ′(k))/k starts above 1 + n, and, as it is decreasing and goes to 0, it takes the
value 1+ n only once, and the steady state is unique.

As s(ω(k), f ′(k)) < ω(k), a necessary condition for existence is

lim
k→0

ω(k)
k

> 1 + n

(see Galor and Ryder (1989)).
The interest of this proposition is to propose a condition for uniqueness

that bears only on the second derivatives of the functions u and f .
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For the rational dynamics, the uniqueness of the positive steady state toge-
ther with themonotonicity implies the global stability of the steady state when
it is locally stable.

1.8 applications and extensions

The aim of this section is to provide some applications and extensions of the
competitive overlapping generations model. In the first two subsections we
illustrate the basic model with the case of myopic foresight (section 1.8.1) and
the study of a demographic shock (section 1.8.2).

The four following subsections should be read one after each other. They
present extensions to themodel. Section 1.8.3 extends the equilibrium analysis
to non-separable utility functions. This allows us to introduce homothetic pref-
erences in section 1.8.4. In section 1.8.5, we show that under the assumption of
homothetic preferences, themodels with heterogeneous agents can be studied
with the same tools as models with representative individuals. Deterministic
technical progress is introduced in section 1.8.6.

Section 1.8.7 introduces imperfect credit markets and studies an example
with two periods of work. In section 1.8.8, we consider a model with three-
period-lived households. Finally, an example with imperfect credit markets in
the three-period model is studied in the last section.

1.8.1 Myopic and Perfect Foresight in an Example

We have seen in section 1.7 that the dynamics can be non-monotonic when
forecasts are myopic. This exercise illustrates this property and compares the
two dynamics (myopic and perfect foresight) in a simple example. We take a
Cobb–Douglas production function and a CIES utility function.

Study of the Rational Dynamics. We have

�(k,w) = (1+ n)k− w
1+ β−σ (αA)1−σ kγ

,

with γ = (σ − 1)(1 − α). The function
�(k,w)
k

= (1+ n)− w
k+ β−σ (αA)1−σ k1+γ

is strictly increasing in k, since γ + 1 = σ (1− α) + α > 0. It increases from
−∞ to 1+ n as k increases from 0 to +∞. Hence, there exists a unique k> 0,
k= h(w), such that �(k,w) = 0. The derivative of h(w), h′(w) = dk/dw, is
equal to the reciprocal of

dw
dk

= (1+ n)[1+ β−σ (αA)1−σ (1 + γ )kγ ] > 0.
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For any values of the parameters β > 0, 0 < α < 1, A> 0, σ > 0, the rational
dynamics are defined on R++ and are monotonic:

g′(k) = h′(ω(k))ω′(k)

= α(1 − α)Akα−1

(1+ n)[1+ β−σ (αA)1−σ (1+ γ )kγ ]

= α(1− α)A
(1+ n) [k1−α + β−σ (αA)1−σ (1 + γ )kσ (1−α)] .

The denominator increases with k from 0 to +∞. Consequently g′(k) de-
creases from +∞ to 0. Moreover, g is concave, so that there exists a unique
steady state k� > 0 which is globally stable in R++.

Study of the Myopic Dynamics. We have

m(k) = kα

a + bkγ ,

with

a = 1+ n
A(1 − α) > 0 and b = (1 + n)β−σ (αA)1−σ

A(1− α) > 0.

The elasticity of mwith respect to k is

k
m′(k)
m(k)

= α − bγ kγ

a + bkγ = αa + b(α − γ )kγ
a + bkγ .

Hence, for γ ≤ α, we have m′(k) > 0 for all k> 0, and, according to proposi-
tion 1.10, the two dynamics have the same structure: they are monotonic and
the steady state k� is globally stable in R++. Notice that the condition γ ≤ α
is equivalent to

σ ≤ 1
1 − α ,

requiring a not too large value of the inter-temporal elasticity of substitution.
When γ > α, i.e., σ > 1

1−α ,m
′(k) is positive for k< k̂and negative for k> k̂

with

k̂=
(

αa
(γ − α)b

) 1
γ

.

At the steady state k�, we have m(k�) = k�, and k� should solve

a + bk�γ = k�α−1
.
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kt+1 kt+1

kt ktk� k�k̂

Figure 1.16. Rational andmyopic dynamics for γ > α. The twodynamicswith perfect
and myopic foresight have the same positive steady state k� (which is unique with a
Cobb–Douglas production function and a CIES utility function). k� is stable for the
rational dynamics, and the trajectory is monotonic. k� > k̂ can be stable or unstable
for the myopic dynamics, and the trajectory is oscillating near k�.

The evaluation of m′ at this steady state gives

k�m′(k�)
m(k�)

= α − bγ k�γ

a + bk�γ = α − γ (1− ak�1−α).

When k� > k̂, we obtain the chart presented in the second panel of figure 1.16.
When m′(k�) < 0 and the dynamics are oscillating near k�, then k� is sta-

ble as long as m′(k�) > −1. When m′(k�) < −1, k� is unstable for the myopic
dynamics. In this case, the two steady states k� and 0 are unstable, but the
dynamics are bounded, as the function m has a finite maximum. It can be
shown that, in this case, there exist cycles.

To analyze the effect of the inter-temporal elasticity of substitution on the
nature of the dynamics, we present the bifurcation diagram (figure 1.17) for
the parameter σ given the other parameters (A= 20, n = 1.02530 − 1, β = 0.3,
and α = 1/3).30 σ lies on the horizontal axis, and we plot vertically the limit
values of the equilibrium sequences (kt) (computed numerically). When there
is only one point k for a given σ , it means that the sequence (kt) converges to
a steady state. For sufficiently low σ , we observe a unique limit point which
is a stable steady state. After some bifurcation value (called a flip bifurcation
in the literature) for σ , two points appear. It means that the sequence (kt)

30 These figures are realized with the tools provided by Holmgren (1996).
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Figure 1.17. Bifurcation diagram for σ . We represents the set of limit points as a
function of σ .

has two limit points (appendix A.2.4), i.e., there exist sub-sequences of (kt)
tending to these points. This corresponds to a 2-cycle which is stable, for the
following two sub-sequences converge to two different limits: lim k2t+1 = �1
and lim k2t = �2. The number of limit points is thus multiplied by 2 when σ
increases and crosses the critical value. Figure 1.18 represent the dynamics of
kt in this circumstance. We have computed a series of 100 points starting from
an arbitrary k0, and we clearly distinguished the two limit points. The capital
stock follows then a cycle of period 2, switching from one limit point to the
other every period. There is then an interval of values of σ for which we have
two limit points.

1 2 3 4 5 6
kt

1

2

3

4

5

6
kt+1

Figure 1.18. Dynamics of capital with a 2-cycle (σ = 5).
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Figure 1.19. Dynamics of capital with a 4-cycle (σ = 7).

If σ rises further, the number of limit points increases. Figure 1.19 illustrates
the dynamics of capitalwhenσ = 7, andweobserve a cycle of period 4.Beyond
a certain value of σ , one enters the chaotic region, in which case there are an
infinite number of limit points.31 This is illustrated in figure 1.20.
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kt
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kt+1

Figure 1.20. Dynamics of capital with chaos (σ = 9).

31 See Michel and Wigniolle (1993) for a simple presentation of complex dynamics.
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1.8.2 A Demographic Shock

Many large overlapping generations models (with more than two generations
living at the same date) are now developed to analyze policy issues.32 In par-
ticular, an impressive amount of work has been devoted to studying the effect
of the lower rates of fertility on the economy in the twenty-first century. These
models extend the basic Diamond framework to allow for elastic labor sup-
ply and include many features of real economies such as taxes, transfers, etc.
However, it is already possible to capture some insights of these studies with
the very simple two-period Diamond model.

To illustrate this, let us assume a logarithmic utility function and a Cobb–
Douglas production function. We take the parameters values from appendix
A.5.1: α = 1/3 (one minus the share of labor in added value with a Cobb–
Douglas function), A= 20 (simply a scale parameter when the production
function is Cobb–Douglas and the utility is log-linear), δ = 1 (full depreciation
of capital), β = 0.3 (implying a quarterly discount factor of 0.99, assuming that
one period equals 30 years). At time 0, the economy is assumed to be at an
initial steady state with 1 + n = 2.097, reflecting a long-run growth of total
GDP of 2.5% per year. At time 1, n falls permanently by 0.5% per year. The
fall is of the order of magnitude of the fall in population growth in OECD
countries.

Table 1.3 presents the main results of the simulation. Before the shock, we
assume that the capital stock is at its steady state level:

k=
(

1
1+ n

β

1+ β A(1− α)
) 1

1−α
.

Table 1.3. A Demographic Shock in a Simple
Overlapping Generations Model

Capital per Interest Life-cycle
Time young person rate (%) utility

0 1.78 5.2 0.13
1 1.78 5.2 0.10
2 2.06 4.8 0.16
3 2.16 4.7 0.18
4 2.20 4.7 0.18
5 2.21 4.7 0.19
∞ 2.21 4.7 0.19

32 Auerbach and Kotlikoff (1987) use simulations to investigate such issues in a much more
realistic frameworkwith households living 75 periods and endogenous labor supply decision.
The deterministic framework of Auerbach and Kotlikoff (1987) is extended to a stochastic
world by Rios-Rull (1996) in order to compare the implications for business cycle issues of
a model with infinite-lived agents with an overlapping generations model.
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At t = 2 the drop in the fertility rate implies a drop in the supply of labor.
The wage increases and the labor demand decreases, implying that the capital
stock per young person, kt , increases. As a consequence, the rate of return on
savings decreases as

Rt = Aαkα−1
t .

In the table, the rate of return and the rate of growth of the population are
converted to an annual basis. The last columns gives the life-cycle utility of the
generation born in t . This life-cycle utility is given by

ln




1
1 + β A(1− α)kαt︸ ︷︷ ︸

1
1+β ω(kt )


+ β ln


Aαkα−1

t+1︸ ︷︷ ︸
Rt+1

β

1+ β A(1− α)kαt︸ ︷︷ ︸
st




= (1+ β)α ln(kt) − (1− α)β ln(kt+1) + constant.

The life-cycle utility of generation t depends positively on kt through the first-
period income, and negatively on kt+1 through the rate of return on savings.
This explains why the utility of generation t = 1 is lower than that of gener-
ations t = 0 and t = 2, 3, . . . : the income of generation t = 1 still depends on
the stock of capital installed before the demographic shock, but its interest
payments are decreased by the reduction of the interest rate at t = 2.

The conclusion of this exercise is twofold: (a) a permanent drop in the
fertility rate lowers the rate of return on savings permanently; (b) the losers
are the persons which are old at the time of the shock, i.e., the first parents
who have a lower fertility rate.

1.8.3 Non-separable Utility Function

The properties of the overlapping generation models rest on the properties of
the savings function, which is directly related to the preferences of the house-
holds. For simplicitywehave assumed that these preference are representedby
an additively separable utility function (1.4). With a general utility function33

U(c,d),

we define the savings function

s(w,R) = argmaxU(w − s,R s).
The function s(·, ·) is continuously differentiable on R++ × R++ and takes
values onR++ if the functionU(·, ·) is twice continuously differentiable, strictly

33 The savings function only depends on households preferences. If φ is a strictly increasing
function, we obtain the same savings function with the utility function φ(U(c,d)).
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quasi-concave, strictly increasing, and such that ∀c̄ > 0, ∀d̄ > 0,

lim
c→0
U ′
c(c, d̄) = +∞ and lim

d→0
U ′
d(c̄,d) = +∞.

The consumption levels are given by c(w,R) = w − s(w,R) and d(w,R) =
R s(w,R). Under the assumption of normal goods (c′w > 0 and d′

w > 0), we
have 1 − s ′w > 0 and Rs ′w > 0, which implies 0 < s ′w < 1.

Under the assumption that the consumption goods are gross substitutes,
c(w,R) is a non-decreasing function of the price 1/R of the good d in the inter-
temporal budget constraint: c + d/R = w. Under this assumption we have
c′R ≤ 0 and s ′R = −c′R ≥ 0, which implies that the assumptionH3 holds. Indeed,
the function

�(k,w) = (1 + n)k− s(w, f ′(k))

verifies, ∀k> 0, ∀w > 0,

�′
k(k,w) = 1 + n− s ′R f ′′ > 0.

To prove the existence of an inter-temporal equilibrium with perfect fore-
sight, we study the sign of �(k,w) near k= 0 and k= +∞, as in the proof of
proposition 1.2. Here we also have

lim
k→+∞

�(k,w) = +∞,

and �(k,w) is positive for k large enough. We also have

s(w, f ′(k))
k

= f ′(k)s(w, f ′(k))
f ′(k)k

= d(w, f ′(k))
f ′(k)k

.

If d is a non-Giffen good, the demand for it does not increase with its price.
Then d(w,R) is non-decreasing in R, and d(w, f ′(k)) is non-increasing in k.
We deduce that its limit when k goes to 0, d(w, f ′(0+)), is strictly positive
(finite or infinite). As limk→0 kf ′(k) = 0 (see appendix A.1.2), we have

lim
k→0

d(w, f ′(k))
f ′(k)k

= +∞,

which implies

lim
k→0

�(k,w)
k

= −∞.

Then�(k,w) is negative for k small enough.We conclude that the existence of
the inter-temporal equilibrium with perfect foresight (proposition 1.2) holds
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for a non-separable utility function where the good d is not a Giffen good. The
study of the dynamics (section 1.6) can then be applied to a non-separable
utility function.

1.8.4 Homothetic Preferences

When the indifference curves are homothetic with respect to the origin, we say
that the preferences are homothetic. Such preferences can be represented by
a utility functionU(c,d), which is homogeneous of degree 1,34 or equivalently
by the composition of such a function with an increasing function g, i.e.,

g(U(c,d)).

Any homogeneous function of positive degree λ (i.e., when g(x) = xλ) repre-
sents homothetic preferences.

Example: Preferences represented by a CIES utility function are homothetic.
Indeed,

1

1− 1
σ

(
c1−

1
σ + βd1− 1

σ

) = 1

1 − 1
σ

U(c,d)1−
1
σ

= g(U(c,d)),
where U(c,d) is homogeneous of degree one:

U(c,d) = (c1− 1
σ + βd1− 1

σ

) 1
1− 1

σ ,

and

g(x) = 1

1 − 1
σ

x1−
1
σ

is increasing (σ �= 1).
For the logarithmic utility, we have

ln c + β ln d = (1+ β) lnU(c,d),
with

U(c,d) = (c dβ)
1

1+β ,

and

g(x) = (1+ β) ln x.

34 This is a necessary and sufficient conditionwhen preferences are homothetic and continuous;
see Mas-Colell, Whinston, and Green (1995), p. 50.
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Proposition 1.12 (Homothetic preferences)
When preferences are homothetic, the savings function s(w,R) is linear with
respect to w and verifies

s(w,R) = ζ (R)w and ζ (R) = arg max
0<ζ<1

U(1− ζ,Rζ ).

The propensity to consume, 1 − ζ (R), does not depend on income.

Proof: With U homogeneous of degree 1, we have

U(c,d) = wU
(
c
w
,
d
w

)
.

Denoting ζ = s/w, we have

max
s
U
(
w − s
w

,
R s
w

)
= max

ζ
U(1− ζ,Rζ ).

Thus, the solution ζ (R) coincides with s(w,R)/w.

The dynamic equation for an inter-temporal equilibriumwith perfect foresight
is in this case (from (1.17))

kt+1 = 1
1 + nζ ( f

′(kt+1))ω(kt).

Uniqueness of the inter-temporal equilibrium andmonotonicity of the dynam-
ics are equivalent to the condition that k/ζ ( f ′(k)) is an increasing function of
k> 0.

1.8.5 Heterogeneous Agents

In this book, we study an economy in which all persons born at the same time
are exactly alike. In the introduction,wehave already stressed that the simplest
overlapping generationsmodel allows already for heterogeneous agents in the
sense that young and old individuals coexist at each point in time. A further
step in introducing heterogeneity is to allow for idiosyncratic characteristics.
These characteristics can be related either to preferences that vary across
individuals or to different innate abilities to work. We show that, as long as
preferences are homothetic,35 the model of chapter 1 can be extended easily
to allow for heterogenous agents. Of course, the issues of optimality and the
design of policies become much more complicated to analyze. The study of
the latter is beyond the scope of this work.

35 The assumption of homothetic preferences of section 1.8.4 is particularly useful in the case
of heterogeneous agents, since it will allow us to aggregate easily the savings functions.
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We assume that households are split into sub-groups, each group containing
homogeneous agents in terms of characteristics. i is the index associated to a
group. This is modeled by assuming that there is a given constant distribution
of different types of agents i ∈ I, which is defined by a probability µ on the set
I. Across groups, the individuals differ by their utility functionUi (c,d), which
is assumed homothetic, and by their ability to work. We denote hi for the
efficient labor supplied by each of the individual of type i . The aggregate labor
supply is given by ∫

I
Nthi dµ(i) ≡ Nt h̄,

where we define h̄as the average efficient labor endowment, which is constant
through time. Total young populationNt grows at raten. The young population
in each group i is Nt dµ(i).

Consumers. The problem of an individual of type i born in t is to maximize

Ui (ci,t ,di,t+1)

with respect to

ci,t = hiwt − si,t ,
di,t+1 = Ret+1si,t

ci,t ≥ 0, di,t+1 ≥ 0.

wt is the wage per unit of efficient labor. Notice that by writingRet+1 we assume
that expectations onmacro-economic variables are the same for all agents.We
have seen that, in the case of homothetic preferences, savings are given by (see
proposition 1.12)

si,t = ζi
(
Ret+1

)
hiwt .

An important property of this savings function is that the propensity to save is
independent of wage incomes. This property is very useful in aggregating over
individuals. Aggregate savings are given by Nt s̄t with

s̄t = ξ
(
Ret+1

)
wt ,

where

ξ(R) =
∫
I
ζi (R)hi dµ(i).

The wage per unit of efficient labor is thus outside the integral.
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Firms. The production function F(K,H) depends on the capital K and the
total efficient labor H. F is homogeneous of degree one. We define

κ = K
H

as the ratio of capital to efficient labor. The function f (κ) = F(κ, 1) verifies
the assumption H2. The gross rate of return on capital is f ′(κ). The wage per
unit of efficient labor is ω(κ) = f (κ)− κ f ′(κ).

Equilibrium. At equilibrium, the labor market clears:

Ht = Nt h̄,

and thus wt = ω(κt) with κt = Kt/Ht . Equilibrium on the goods market is
equivalent to the equality between savings and investment:

Kt+1 = Nt s̄t .

With thenew savings function, the existenceof inter-temporal equilibria canbe
proved exactly the same way we did before. Under the assumption of perfect
foresight, Ret+1 = f ′(κt+1), and we have

(1+ n)κt+1 = s̄t
h̄

= ξ( f ′(κt+1))
h̄

ω(κt).

An interesting difference arises when we consider the assumption H3. In the
framework with representative agents, the requirement ofH3 is that the effect
of the rate of return on savings should not be too negative (at the solution). The
condition is now that the effect of the rateof returnon savings shouldnot be too
negative on average, which implies that it can be negative for some individuals,
as long as that is compensated by positive effect from other individuals.

It appears that, conditionally on this, the rest of the analysis can be con-
ducted as before, and the representative agent is a good approximation of
the “average” agent of a framework with heterogeneity, provided that pref-
erences are homothetic and that we are not interested in intra-generational
distributional issues.

1.8.6 Technical Progress

Assume that the distribution µ on I remains constant but that the efficient
labor hi,t increases with exogenous technical progress:

hi,t = (1 + λ)hi,t−1 = (1+ λ)t hi,0.
λ is the rate of technical progress, and hi,0 is given by the initial conditions.
This technical progress is called labor-augmenting, because it increases the



Competitive Equilibria 57

efficient labor input in the production function.36 All workers benefit from the
technical progress. It can reflect for example the economy-wide improvement
in the quality of labor.

We can then apply the same analysis as in the previous section. We obtain
the following individual saving function:

si,t = ζi
(
Ret+1

)
hi,tω(κt).

At the aggregate level we have

s̄t = ξt
(
Ret+1

)
ω(κt),

where

ξt(R) =
∫
I
ζi (R)hi,t dµ(i) = (1 + λ)tξ0(R).

The efficient labor at equilibrium is

Ht = Nt h̄t = Nt(1+ λ)t h̄0,
and the perfect foresight dynamics can be written

(1 + n)(1+ λ)κt+1 = 1
h̄0
ξ0( f ′(κt+1))ω(κt).

The dynamics in κ are those studied without technical progress, where 1 + n
has to be replaced by

1 + ñ = (1+ n)(1 + λ).
Although κ and k have the same dynamics, the interpretation is different in
that κ does not represents capital per household. The introduction of technical
progressbreaks theequivalencebetween thecapital–labor ratioandcapital per
person. Moreover, individual consumption are affected by technical progress.
We have

ct = ht [ω(κt) − s(ω(κt), f ′(κt+1))].

With a constant κ , consumption grows at a rate λ.

1.8.7 Imperfect Credit Market

In the basic overlapping generations model, one representative household
lives for two periods and supplies labor only when young. It is optimal in
this context to save when young in order to be able to consume when old. The
households never borrow.On the contrary,whenhouseholds live formore than
two periods, or when heterogeneous households work in their second period
of life, some agents might wish to borrow. In a three-period life context, the

36 Following Harrod (1942), it is also called Harrod neutral.
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borrowers are typically the young households. In the two-period life context
with labor supply when old, the borrowers are the young households that are
going to earn a high wage when old.

When some households borrow, one should assume that the loan contract
is enforceable. This requires that agents can seize the labor income of borrow-
ers. In order to capture the idea that credit markets are imperfect and that
that labor income – though common knowledge – is partly inalienable, some
authors assume a exogenous borrowing limit of the form that one can only
borrow at most a fraction of one’s life-cycle income. This modeling strategy
is pursued by Jappelli and Pagano (1994) and (1999) in a three-period over-
lapping generations model.37

Clearly, this approach to borrowing limits is unsatisfactory. In particular,
it is hard to believe that borrowing limits do not depend on prices. Using the
concepts developed in Kehoe and Levine (1993), Azariadis and Lambertini
(2000) study an overlapping generations model in which endowments (say
labor income) are inalienable; enforcement of loan contracts is left to the self-
interest of borrowers and will depend on the penalty associated with default.
If a household defaults on a contract, it can be excluded from future credit
markets, and its potential assets can be seized. In this setup, endogenous bor-
rowing limits arises as the outcome of individual rationality constraints which
prevent individuals from defaulting at equilibrium.

A Simple Example with Logarithmic Utility and Cobb–Douglas Production.
To illustrate in themost simple way the effect of borrowing constraints on cap-
ital accumulation and inequality, we build an overlapping generations model
with heterogeneous two-period-lived households. The size of the successive
generations is constant through time and is normalized to 1. We assume that
households work in both periods. There is one dimension of heterogeneity,
which lies in the ability to work when old. All households supply one unit of
labor when young. The endowment of efficient labor when old, denoted h, is
distributed according to a probability distribution function on [hL, hH], with
density function g(h). Thus, we have∫ hH

hL
g(h) dh = 1,

∫ hH

hL
hg(h) dh = h̄.

When young, the highly productive workers would like to borrow from the
less productive ones, since they need to transfer resources from the future to
the present.

37 Such an assumption has also been made by De Gregorio (1996), Buiter and Kletzer (1995),
and De Gregorio and Kim (2000) to study the effect of borrowing limits in models where
households have to finance their education (as in section 5.2.3).
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The budget constraints of an individual are

ct = wt − st ,
dt+1 = Rt+1st + hwt+1.

With a logarithmic utility function ln ct + β lndt+1, optimal savings are given
by

s�t (h) = 1
1 + β

(
βwt − hwt+1

Rt+1

)
.

With imperfect markets, future labor income cannot be a collateral38 and the
young are not able to borrow, because it is never in their interest to reimburse
their debt when old. Effective savings are thus

st(h) = max(0, s�t (h)).

We can define a threshold ĥt such that individuals with h> ĥt are constrained.
This threshold is

ĥt = βwtRt+1

wt+1
.

Assuming a Cobb–Douglas production function and total depreciation of
capital, we have yt = Aκαt , with

κt = Kt
1+ h̄.

Equilibrium prices are given by

wt = A(1− α)καt and Rt = Aακα−1
t .

In the perfect market case, the equilibrium on the capital market implies

Kt+1 =
∫ hH

hL
s�t (h)g(h) dh.

In the imperfect market case, with rationed households (ĥt < hL), we have

Kt+1 =
∫ hH

hL
st(h)g(h) dh =

∫ ĥt

hL
s�t (h)g(h) dh.

The Effect of Constraints on Capital. To study the effect of borrowing con-
straints on capital and inequality, it is convenient to define the discounted

38 This assumption is defended, a.o., by Ljungqvist (1993).
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growth rate of wages:

xt+1 = wt+1

Rt+1wt
. (1.24)

Savings of an individual with efficient labor h can be rewritten

s�t (h) = wt
1 + β (β − hxt+1) ,

and the threshold is ĥt = β/xt+1. Total capital Kt+1 can be expressed as a
function of xt+1 and wt :

Kt+1 = κt+1(1+ h̄) = αwt+1(1+ h̄)
(1− α)Rt+1

= α(1+ h̄)
1 − α wtxt+1.

We can now compare the equilibrium in the economy with perfect market to
the one in the economy with borrowing constraint.

� In the perfect market economy, we have

α(1 + h̄)
1 − α wtxt+1 = wt

1+ β
∫ hH

hL
(β − hxt+1) g(h) dh.

Dividing by xt+1wt , we obtain

α(1 + h̄)
1 − α = 1

1 + β
∫ hH

hL

(
β

xt+1
− h
)
g(h) dh ≡ ϕNC(xt+1).

When x increases from 0 to +∞, the function ϕNC(x) decreases from +∞
to a negative value and thus takes the value α(1+ h̄)/(1 − α) for a unique
x�NC > 0. The dynamics of capital are obtained replacing the equilibrium
prices in the definition of x (1.24):

κt+1 = αAκαt x
�
NC.

� Similarly, the equilibrium in the economy with imperfect markets is (as-
suming that some households are constrained, i.e., ĥt = β/xt+1 < hH)

α(1 + h̄)
1 − α wtxt+1 = wt

1+ β
∫ β/xt+1

hL
(β − hxt+1) g(h) dh,

which yields to an expression where the left-hand side is the same constant
as in the perfect market case:

α(1+ h̄)
1 − α = 1

1 + β
∫ β/xt+1

hL

(
β

xt+1
− h
)
g(h) dh ≡ ϕC(xt+1).

When x increases from β/hH to β/hL, ϕC(x) decreases from ϕC(β/hH) =
ϕNC(β/hH) to zero. Thus, there exists an equilibrium at which some
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households are constrained if and only if

1
1+ β (hH − h̄) = φC

(
β

hH

)
>
α(1+ h̄)
1 − α . (1.25)

The interpretation of this condition is as follows. For an equilibrium with
constrained households to exist, it is sufficient that the distance between
the highest endowment in efficient labor and the mean endowment hH − h̄
be large enough. This guarantees that the threshold ĥ above which people
are constrained takes a value inside the interval [hH, hL].When theopposite
inequality holds, even the household with hH does not want to borrow, and
the equilibrium is then the same as in the economy with perfect market.
Assuming that the inequality (1.25) holds, we have a unique constant value
solution x�C to ϕC(x�C) = α(1+ h̄)/(1− α). Capital accumulation follows:

κt+1 = αAκαt x
�
C.

� To compare the two economies and study the effect of imperfect credit
markets, we compare the two functions ϕ(·). The functions are drawn in
figure 1.21. We find that

ϕNC(x) = ϕC(x)+
∫ hH

β/x

(
β

x
− h
)
g(h) dh.

xt+1

α(1+h)
1−α

ϕC(x)

ϕNC(x)

β/hL

.......................

.......................
x�NC x�C

−

Figure 1.21. Equilibrium in the economies with perfect (NC) and imperfect (C)
credit markets.
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As the last term, which represents the loans of the skilled persons, is
negative, we have

ϕNC(x) > ϕC(x).

Since both functions are decreasing functions of x and should equal the
same constant term, we have at equilibrium

x�C > x
�
NC. (1.26)

Hence, starting from the same initial condition kNC0 = kC0 , the inequality
(1.26) and the law of motion of capital κt+1 = αAκαt x imply by induction

kCt+1 > k
NC
t+1. (1.27)

As a consequence, credit market imperfections foster capital accumulation,
because they prevent some individuals from borrowing. This is the main ar-
gument of Jappelli and Pagano (1994): the financial market liberalization of
the seventies has lowered savings in the OECD countries, which has led
to worse growth performance in the 1980s. This view is supported by re-
cent empirical studies by Norman, Schmidt-Hebbel, and Serven (2000) and
Bandiera, Caprio, Honohan, and Schiantarelli (2000) showing that liberaliza-
tion, and in particular the elements that relax liquidity constraints, are associ-
ated with a fall in savings.

The Effect of Constraints on Inequality. Borrowing constraints affect skilled
and unskilled people differently. The direct effect only bears on skilled people
who are prevented from borrowing from financial markets. The indirect ef-
fect through prices (higher capital, higher wages, lower interest factor) affects
everybody.

To study the effect of market imperfection on inequality, we consider how
credit market imperfections change the gap between the consumptions of the
most skilled and the least skilled persons. We first compute the individual
consumptions at time t :

� In the perfect market case, individual consumptions are

cNCt (h) = wNC
t − s�t = wNC

t

1 + β (1+ hx�NC).

Using wNC
t x

�
NC = wNC

t+1/R
NC
t+1 = ω(kNCt+1)/R(k

NC
t+1), we have

cNCt (h) = 1
1+ β

ω
(
kNCt+1

)
R
(
kNCt+1

) ( 1
x�NC

+ h
)
.

For the old households at time t , we simply use the life-cycle arbitrage
condition:

dNCt (h) = βR
(
kNCt

)
cNCt−1(h) = β

1 + β ω
(
kNCt

) ( 1
x�NC

+ h
)
.
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� In the imperfect market case, the consumption of an unconstrained house-
hold, say hL, is obtained by replacing x�NC and k

NC by x�C and k
C in the above

equations. For a constrained household, say hH, the first-period consump-
tion is the current wage:

cCt (h) = wC
t .

The second-period consumption for a constrained old household is

dCt (h) = wC
t h.

The consumption gap for young households in the perfect market economy is

cNCt (hH)− cNCt (hL) = ω
(
kNCt+1

)/
R
(
kNCt+1

)
1 + β (hH − hL).

In the imperfect market case,

cCt (hH) − cCt (hL) = ω
(
kCt
)− ω

(
kCt+1

)/
R
(
kCt+1

)
1+ β

(
1
x�C

+ hL
)

= ω
(
kCt+1

)/
R
(
kCt+1

)
1 + β

(
1+ β
x�C

− 1
x�C

− hL
)

= ω
(
kCt+1

)/
R
(
kCt+1

)
1 + β

(
β

x�C
− hL

)
.

Taking the ratio of the two gaps leads to

cNCt (hH)− cNCt (hL)
cCt (hH)− cCt (hL)

= ω
(
kNCt+1

)/
R
(
kNCt+1

)
ω
(
kCt+1

)/
R
(
kCt+1

) ( hH − hL
β/x�C − hL

)
� 1.

The two different effects of borrowing constraint appear distinctly. First, the
most skilled persons are prevented from borrowing and consuming when
young, which reduces inequality: hH − hL > β/x�C − hL. Second, discounted
wages per unit of efficient labor are higher in the economy with imperfect
markets, which enlarges the consumption gap between high and low skilled
persons; this increases inequality.

Turning our attention to the old persons, we have

dNCt (hH)− dNCt (hL) = βω
(
kNCt

)
1 + β (hH − hL)

dCt (hH)− dCt (hL) = ω
(
kCt
)
hH − βω

(
kCt
)

1 + β
(
1
x�C

+ hL
)

= βω
(
kCt
)

1 + β
(
hH

1+ β
β

− 1
x�C

− hL
)
.
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The consumption gap is

dNCt (hH)− dNCt (hH)
dCt (hH)− dCt (hH)

= ω
(
kNCt

)
ω
(
kCt
)
(

hH − hL
hH − hL+ 1

β

(
hH − β

x�C

)
)
< 1.

Here, the effect of borrowing constraints is unambiguous. Borrowing con-
straints increase the consumption of old skilled households and raise the wage
per unit of efficient labor. The dispersion of consumption of old people is wider
with imperfect markets.

The total effect on inequality depends on the relative importance of these
factors.Azariadis and de la Croix (2001) study theeffect of liberalization, seen
as a move from the imperfect market economy to the perfect market, on
inequality. In a calibrated overlapping generations model similar to the one
above, butwith education choice in the first period, they show that inequality is
increased by liberalization. This result explains why amajority of peoplemight
object to reform of financial markets.

1.8.8 Three-period-lived Households

The overlapping generations model with two-period-lived households is the
most widespread, because it is relatively simple to study.We have seen that it is
possible to characterize the accumulation dynamics with perfect foresight. As
the agents’ expectations bear only on the interest factor of the next period, the
dynamics areoforderone:Theexpected returndetermines the savingdecision,
the savings decision determines the future stock of capital, and this stock of
capital determines the expected return.

A model where households live for three periods and work during the first
two periods is however closer to the actual timing of life. It allows one to study
savings behavior in a richer way, since it opens the possibility of borrowing
in the first period against future wage income; moreover, savings do not bear
exclusively on labor income, since part of capital income in the middle period
(if any) can be saved for retirement. Unfortunately, the cost in terms of addi-
tional difficulties is high. Dynamics will in general be described by a difference
equation of order 3, with one forward dimension. To compute the perfect fore-
sight equilibrium, agents thus need to forecast the whole future. Only in the
particular case with a logarithmic utility, does the forward dimension disap-
pear, and then the dynamics can be studied globally when the production
function is Cobb–Douglas.

Letusfirst consider thegeneralmodel, before specializing to the logarithmic
example in the next subsection. Households live for three periods and supply
one unit of labor in the first period and h units in the second period. h > 1
can be interpreted as learning by doing. h < 1 can be interpreted as part time
work or early retirement. The present value life-cycle income of households
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born in t is given by

�t = wt + wt+1

Rt+1
h.

Their preferences are homothetic and can be represented by a utility function

U(ct ,dt+1, et+2),

defined over the consumptions levels in the three periods of life ct ,dt+1, and
et+2. The function U(·) is homogeneous of degree 1. Following the argument
developed in section 1.8.4, the solution for the maximum of utility subject to
the inter-temporal budget constraint

ct + dt+1

Rt+1
+ et+2

Rt+1Rt+2
= �t

verifies

ct = ζ1(Rt+1,Rt+2)�t , dt+1 = ζ2(Rt+1,Rt+2)�t ,

et+2 = ζ3(Rt+1,Rt+2)�t .

The functions ζ1, ζ2, and ζ3 of Rt+1 and Rt+2 are the solution to

maxU(ζ1, ζ2, ζ3) subject to ζ1 + ζ2

Rt+1
+ ζ3

Rt+1Rt+2
= 1.

Let us denote by st the first-period savings and by zt+1 the second-period
savings. Then, st and zt+1 verify

ct = wt − st ,
dt+1 = Rt+1st + wt+1h− zt+1,

et+2 = Rt+2zt+1.

From these intra-period budget constraints, we deduce that

st = wt − ζ1(Rt+1,Rt+2)�t ,

zt+1 = ζ3(Rt+1,Rt+2)
Rt+2

�t .

Example: With a CIES utility function u(ct ) + βu(dt+1) + β2u(et+2) and u(x) =
x1−1/σ /(1− 1/σ ), we have

ζ1(Rt+1,Rt+2) = (βRt+1)−σ ζ2(Rt+1,Rt+2) = (β2Rt+1Rt+2)−σ ζ3(Rt+1,Rt+2),
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and

ζ1(Rt+1,Rt+2) = 1

1+ βσRσ−1
t+1 + β2σRσ−1

t+1 R
σ−1
t+2

.

The production function F(K, L) has the same properties as before. The inter-
temporal equilibrium with perfect foresight is characterized by

� the equilibrium on the labor market:

Lt = Nt + hNt−1 = (1+ h+ n)Nt−1,

� the equalities between factor prices and marginal productivities:

wt = ω(κt), Rt = f ′(κt), where κt = Kt
Nt + hNt−1

,

� theequalitybetween the stockof capital and the total savingsof theprevious
period:

Kt+1 = Ntst + Nt−1zt .

The dynamics of capital are thus given by

(1+ h+ n)κt+1 = [wt − ζ1(Rt+1,Rt+2)�t ]+ ζ3(Rt ,Rt+1)
(1 + n)Rt+1

�t−1.

The dynamics of κ are described by a difference equation of order 3. The
highest-order term κt+2 comes fromRt+2, and the lowest-order term κt−1 comes
from �t−1. There are two initial conditions, corresponding to the initial stock
of capital and its re-partition between the first old generation and the first
middle-aged generation. There is thus one forward dimension. Indeed, the
savings of the young in t depend not only on the forecasted variableswt+1 and
Rt+1 but also on their anticipation of Rt+2.

Beyond the specific logarithmic utility case studied in the next subsection,
the dynamics of capital include two predetermined variables and one forward-
looking variable.

1.8.9 Borrowing Constraints in the Three-period Model

We shall introduce a simple non-negativity constraint on savings in the model
with three-period-lived households. We consider the simple case of a logarith-
mic utility and a Cobb–Douglas production function. This exercise illustrates
the three-period model of section 1.8.8. It will also allow us to compare the
role of imperfect credit market in the two-period (section 1.8.7) and the three-
period model.
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The Perfect Market Case. With the logarithmic utility

ln ct + β lndt+1 + β2 ln et+2,

the first-period propensity to consume out of life-cycle income is constant:

ζ1 = 1
1 + β + β2 .

In this model with homogeneous agents, we define the growth factor of the
discounted wage over the life cycle as

xt+1 = hwt+1/Rt+1

wt
.

We have

�t = wt + hwt+1

Rt+1
= wt(1+ xt+1),

st = wt − ζ1�t = wt − ζ1wt(1+ xt+1),

zt = ζ1β
2Rt�t−1 = ζ1β

2Rtwt−1(1+ xt).
Since Rtwt−1/wt = h/xt , we have

zt = ζ1β
2wth

(
1+ xt
xt

)
.

The rule for accumulation of capital is

(1 + h+ n)kt+1 = st + 1
1 + nzt ,

which implies, after replacing st and zt by their optimal values and dividing by
wt ,

(1+ h+ n)κt+1

wt
= 1 − ζ1(1+ xt+1) + 1

1 + nζ1β
2h
(
1 + xt
xt

)
. (1.28)

We shall study these dynamics in the case of a Cobb–Douglas production
function. With f (κ) = Aκα , the equilibrium wage is

wt = (1− α)Aκαt ,
and the return on savings is

Rt = αAκα−1
t .

We also have

xt+1 = hwt+1

Rt+1wt
= h

(
1− α
α

)
κt+1

wt
= hκt+1

Aακαt
.
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By substitution in equation (1.28), the dynamics of the wage growth factor are(
(1+ h+ n)α
h(1− α) + ζ1

)
xt+1 = 1 − ζ1 + ζ1β

2h
1 + n

(
1+ 1

xt

)
. (1.29)

Hence, the assumption of a Cobb–Douglas production function makes the
dynamic system recursive:

xt+1 = a + b
xt
,

κt+1 = xt+1
αA
h
καt ,

with a,b > 0. The dynamics of xt are oscillatory and converge to the steady
state x�, which is globally stable inR++, as shown by the following proposition.

Proposition 1.13 (Dynamics xt+1 = a + b/xt )
The dynamics in R++,

xt+1 = a + b
xt
, a,b > 0,

admit a unique steady state x� which is globally stable in R++. The steady state
x� is the positive root of the equation x2 − ax − b = 0.

Proof: Let x� be the positive solution to x� = a + b/x�. We have

xt+2 − x� = b
xt+1

− b
x�

= bxt
axt + b − bx�

ax� + b,

|xt+2 − x�| = b2|xt − x�|
(axt + b)(ax� + b) <

(
b

ax� + b
)

|xt − x�|,

since b/(axt + b) < 1. Also since b/(ax� + b) < 1, the sequence (xt) converges
to x�.

This proposition is illustration in figure 1.22. Since (xt) converges to x�, the
dynamics of the capital–labor ratio, which verify

κt+1 = xt+1
αA
h
καt ,

converges to

κ� =
(
αA
h
x�
) 1

1−α
.

The oscillations of the wage growth factor xt induce oscillations in the
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xt

xt+1

a

x�

Figure 1.22. The dynamics of the wage growth factor when households live for three
periods in the Cobb–Douglas case. The slope of the transition function xt+1 = a +
b/xt is always negative. Moreover, limxt→0 xt+1 = +∞ and limxt→+∞ xt+1 = a. The
dynamics are oscillatory and converge towards the unique steady state equilibrium
x�, which is globally stable.

investment rate:

Kt+1

Yt
= (1+ h+ n)κt+1

Aκαt
= α(1 + n+ h)

h
xt+1.

Moreover, for some parameter values and initial conditions, these oscillations
might induce non-monotonicity in capital dynamics. The oscillations result
from the aggregation of savings of two different generations; they contrast
with the monotonic dynamics of the two-period model.39

Borrowing Constraints. Let us now introduce a constraint of non-negative
savings, i.e., the saving st is the maximum of 0 and the desired savings wt −
ζ1wt(1+ xt+1):

st = max[0,wt − ζ1wt(1 + xt+1)] = −ζ1wt min[0, xt+1 − x̄],
where

x̄ = 1 − ζ1
ζ1

is the threshold of the wage growth factor above which the young households
are willing to borrow. Indeed, as in the model of section 1.8.7, a high wage

39 In fact, monotonic dynamics rarely apply to overlapping generations models in which per-
sons live for more than two periods, i.e., where the unit of time considered is smaller. See
Azariadis, Bullard, and Ohanian (2001).
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growth factor is an incentive to transfer resources from the future. The dy-
namics of xt are now given by(

(1+ h+ n)α
h(1− α) + ζ1

)
xt+1 + ζ1 min [0, xt+1 − x̄] = ζ1β

2h
1 + n

(
1+ 1

xt

)
, (1.30)

to be compared with equation (1.29). Since the right-hand side is a function of
xt+1 increasing from 0 to +∞ as xt+1 increases from 0 to +∞, these dynamics
are well defined inR++ and admit a unique positive steady state x̂. This steady
state is in the constrained regime, x̂ > x̄, if and only if x� > x̄ (i.e., first-period
savings are negative in the perfect market case). Since x� is the positive root
of x2 − ax − b = 0, the condition x� > x̄ is equivalent to x̄2 − ax̄ − b < 0, i.e.,
using (1.29),(

(1+ h+ n)α
h(1− α) + ζ1

)
x̄ < (1− ζ1)x̄ + ζ1β

2h
1 + n (1 + x̄t) .

With x̄ = (1 − ζ1)/ζ1, this condition becomes
h2

1 + h+ n >
α(1 + n)
(1− α)β2

(
1 − ζ1
ζ1

)2
= α(1+ n)

(1 − α) (1 + β)2.

Since h2/(1+ h+ n) is increasing in h, this condition defines a lower bound
h̄ on h. As a consequence, the steady state displays credit rationing if the
endowment in efficient labor of middle-age households is sufficiently high.
Note that the lower bound h̄ is an increasing function of β.

In the constrained regime, xt+1 < x̄, the dynamics (1.30) are also of the type
xt+1 = ā + b̄/xt with ā > 0 and b̄ > 0. This implies that x̂ is locally stable, but
a change of regime may occur, for example when starting from x0 > x̄.

1.9 conclusion

In this chapter, we have proposed an in-depth study of competitive equilibria
in the basic overlapping generations model. We performed the analysis for
general classes of utility andproduction functions,without assuming that Inada
conditions are satisfied; indeed, these conditions seem to us too restrictive, as
they allow us to chose only one case among the whole class of CES production
functions, namely, the Cobb–Douglas production function.

The existence of both the temporary equilibrium and the inter-temporal
equilibrium is guaranteed under fairly weak assumptions on preference and
technology. Although we did not study the formation of expectations, we have
defined the notion of rational inter-temporal equilibrium, which pertains to
inter-temporal equilibria with perfect foresight which are unique, and hence
for which there is no problem of coordinating expectations.

Priority has been given to a global analysis of the dynamics rather than to
local arguments.Wehaveproved that thedynamics of a rational inter-temporal
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equilibrium aremonotonic and bounded. The notion of catching point as been
defined. A catching point arises when zero is a steady state that is locally or
globally stable. Conditions for such a point to exist have been analyzed.

We have also shown the usefulness of studying myopic foresight in order to
characterize more easily the stability of steady states under perfect foresight.
Some extensions are provided in section 1.8. In particular, we show that under
the assumption of homothetic preferences, models with heterogeneous agents
can be studied with the same tools as models with representative individuals.



two

Optimality

In an economy without externality and public goods, the competitive equilib-
rium is Pareto-optimal, provided that the numbers of goods and agents are
finite. It is therefore impossible to improve the welfare of one agent with-
out diminishing the welfare of another agent. This result is the First Welfare
Theorem (Arrow (1951), Debreu (1954)).

This property is not necessarily verified when there is an infinite number
of agents and goods. We shall see that in the standard model of chapter 1, the
inter-temporal competitive equilibriummay or may not be Pareto-optimal. In
a dynamic economywith an infinity of periods, wemay distinguish two aspects
of optimality. The dynamic efficiency deals with the issue of the productive
efficiency when the production frontier is extended to an infinite horizon set-
up. The welfare of the agents depends on their life-cycle utility, and hence on
the allocation of total consumption between two generations living at the same
time, but also among all generations.

A natural way to study allocations is thus to proceed in three steps: feasi-
bility, (productive) efficiency, optimality.

Another important question will be addressed. How will a central benevo-
lent planner – that can take all the consumption and savings decisions – allocate
the resources of the economy between capital accumulation, consumption of
the young, and consumption of the old for each generation? After the resolu-
tion of this problem, we shall be able, in chapter 3, to characterize feasible al-
locations which can be decentralized bymeans of lump-sum transfers between
generations. In particular, any Pareto-optimal allocation can be decentralized
with such transfers (Second Welfare Theorem).

The chapter is organized as follows. The optimality of stationary paths is
studied in section 2.1. The optimality of dynamics is analyzed in section 2.2, in
which we introduce the concept of dynamic inefficiency and Pareto optimality.
Section 2.3 proposes a global analysis of the problemof the planner, and shows
the existence, uniqueness, and monotonicity of optimal paths. Section 2.4 fur-
ther characterizes the optimal solutions with the standard marginal analysis.

72
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Finally, section 2.5 uses the results derived so far to characterize the optimal
paths when the optimal growth is unbounded. Some applications and exten-
sions are provided in section 2.6.

2.1 optimality of stationary paths

We start the study of the optimality problem by specifying the resource con-
straint of the economy.Wehave seen in the previous chapter that the dynamics
of the capital stock corresponding to an inter-temporal equilibriumwith ratio-
nal foresight are monotonic and converge to a steady state k̄. These dynamics
satisfy the following conditions for all t ≥ 0:

(1+ n)kt+1 = st = s(ω(kt), f ′(kt+1)),

ct = ω(kt) − st ,
dt+1 = f ′(kt+1)st .

They also satisfy the resource constraint:

F(Kt , Nt) = It + Ntct + Nt−1dt .

The total available production is allocated between investment, consumption
of theNt youngagents, and consumptionof theNt−1 old agents alive inperiod t .
Investment determines the capital stock of the next period:

Kt+1 = It .

Dividing by Nt , we obtain the resource constraint in intensive form, with kt =
Kt/Nt , f (kt) = F(kt , 1), and Kt+1/Nt = (1+ n)kt+1:

f (kt) = (1+ n)kt+1 + ct + 1
1 + ndt . (2.1)

If the steady state k̄ is strictly positive, savings and consumption converge
respectively to

s̄ = s(ω(k̄), f ′(k̄)),
c̄ = ω(k̄)− s̄,
d̄ = f ′(k̄)s̄,

and these limits satisfy the resource constraint at steady state:

f (k̄) = (1+ n)k̄+ c̄ + 1
1 + nd̄. (2.2)

If k̄= 0 is a corner steady state, then we have ω(0)= f (0)= 0 (see proposi-
tion 1.4) and the variables kt , st , ct , and dt converge to zero. Indeed, we have

0 < st < ω(kt), 0 < ct < ω(kt), 0 < dt < (1+ n) f (kt).
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Thus, the limits also satisfy the resource constraint (2.2). Before analyzing the
optimality of stationary paths, we first study the set of feasible long-run capital
stock.

All our definitions concerning feasibility are stated in per capita terms,
assuming therefore that there is no under-employment (Lt = Nt). Indeed, as
the production function and the utility function are monotonic, any efficient
trajectory should obviously satisfy the full-employment condition.

2.1.1 Feasible Long-run Capital Stock

Definition 2.1 (Long-run feasibility)
A capital stock k≥ 0 is feasible in the long run if the corresponding production
f (k) is at least large enough to allow for replacement investment, i.e., f (k) ≥
(1+ n)k.

Stated otherwise, for a capital stock to be feasible in the long run, the produc-
tion net of investment, henceforth the net production, should be non-negative:

φ(k) = f (k)− (1+ n)k≥ 0.

By the assumption H2, the function φ is strictly concave:

φ′(k) = f ′(k) − (1 + n), φ′′(k) = f ′′(k) < 0,

and satisfies the following limit conditions:

φ(0) = f (0) ≥ 0,

φ′(0+) = f ′(0+)− (1+ n),
φ′(+∞) = f ′(+∞)− (1+ n).

Three different cases should be considered. These three cases are represented
in figure 2.1.

Case (a). Increasing Net Production. In this case φ′(k) is always positive and
the net production is increasing for all k. The largest net production is ob-
tainedwith k infinite.Wehave the following necessary and sufficient condition:
f ′(+∞) ≥ 1 + n, or equivalently, φ′(+∞) > 0.

Proposition 2.1 (Feasibility of all capital stocks)
All capital stocks are feasible in the long run if and only if the net production
φ(k) is increasing for all k, i.e., if and only if f ′(+∞) ≥ (1+ n).

Proof: The sufficient condition is straightforward: as φ(0) ≥ 0, the property
that φ′(k) > 0 for all k implies that φ(k) > 0 for all k.
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Case f(0)> 0

φ(k) f(k)

k

k

Case f(0) = 0

Case (a)

Case (c)

Case (b)

kGR k̃

(1 + n)k

kGR k̃

Case (b)

Case (c)

Case (a)

φ(k) f(k)

Case (a)

Case (c)

Case (b)

kGR k̃

kGR k̃

Case (b)

Case (c)Case (a)

k̃0

k̃0

Figure 2.1. The golden rule. In case (a) all k≥ 0 are feasible in the long run and the
largest net production is obtainedwith k infinite. In case (b) the largest net production
is obtained for k= 0. In case (c) the net production is increasing in (0, kGR), attains
a maximum at kGR, and is decreasing in (kGR,+∞).

To prove the necessary condition, we start from the assumption φ(k) > 0
for all k. We next have

∀k> 0,
f (k)
k

> 1+ n.

From the previous chapter, we know that the limits of the average and the
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marginal productivity are equal when k→ +∞. We deduce

f ′(+∞) = lim
k→+∞

f (k)
k

≥ 1 + n,

and φ is increasing in all k.

Example: For a CES production function with high substitution possibilities
(ρ < 0), we have

φ(k) = A(αk−ρ + 1 − α)−1/ρ − (1+ n)k,
and ρ < 0. We also have

φ′(+∞) = Aα−1/ρ − (1+ n),
which is non-negative for A≥ (1+ n)α1/ρ .

Case (b). Decreasing Net Production. In this case, φ′(k) is decreasing for all
k(φ′(k) < 0 ∀k), and thus f ′(0) ≤ 1 + n. The largest netproduction is obtained
for k= 0. There are two possibilities:

1. f (0) = 0, and 0 is the only capital stock feasible in the long run, as
φ(k)<φ(0) = 0 for all k> 0. The technology does not allow one to sus-
tain a positive level of net production, whatever the level of investment.

2. f (0) > 0, and there exists a largest capital stock k̃0 which is feasible in
the long run. This capital stock is finite and satisfies φ(k̃0) = 0. Indeed,
it results from proposition 2.1 that the largest capital stock feasible in
the long run is infinite only when f ′(+∞) ≥ 1 + n.

Example: For a CES production function with low substitution ability (ρ > 0),
we have

f (0) = 0,

f ′(0) = Aα−1/ρ,

and

1 + n ≥ Aα−1/ρ =⇒ φ′(k) < 0 ∀k.
Then, 0 is the only feasible capital stock.

Case (c). Non-monotonic Net Production. Only in the case where

f ′(+∞) < 1+ n < f ′(0)

is the net production non-monotonic. In this case, there exists a unique positive
k= kGR, called the golden rule capital stock, such that f ′(kGR) = 1 + n. At
this level kGR, the net production is maximized. The concave function φ(k)
is thus increasing in (0, kGR), attains a maximum at kGR, and is decreasing in



Optimality 77

(kGR,+∞). Moreover (from proposition 2.1) it becomes negative after some
finite level k̃ of the capital stock. The set of capital stocks which are feasible
in the long run is the interval (0, k̃).

2.1.2 The Optimal Stationary Path: The Golden Age

The life-cycle welfare of the young generation in t is given by

U(ct ,dt+1) = u(ct)+ βu(dt+1).

The consumption levels of a given agent, ct and dt+1, appear in two resource
constraints, in period t and period t + 1. Along a stationary path with constant
values k̄, c̄, and d̄ the two resource constraints coincide; the life-cycle welfare
isU(c̄, d̄), and equation (2.2) holds for all periods. The highest stationary utility
is thus defined by1

maxu(c) + βu(d) subject to f (k) = (1+ n)k+ c + d
1 + n . (2.3)

There is no other restriction than the non-negativity of the quantities k, c,
and d. The set of possible consumptions is defined by

c ≥ 0, d ≥ 0, c + d
1 + n = φ(k),

and the maximum of utility implies the maximum of net production φ(k). The
maximum of net production is a recurrent theme in economic growth theory.
As we have seen in the preceding subsection, it is obtained with k= +∞ is
case (a), k= 0 in case (b), and finite positive k= kGR in case (c).

The golden rule capital stock kGR was studied bymany authors in the 1960s.2

To define it formally we need to make the following assumption:

Assumption A5.

f ′(0) > 1+ n > f ′(+∞).

Definition 2.2 (Golden rule)
Under the assumption A5, there exists a unique positive stock of capital such
that

f ′(kGR) = 1 + n, (2.4)

which is the golden rule capital stock.

1 This question should not be seen as a problem of allocating resources between young and old
who are alive at the same time, but it is a dynamic problem of allocating consumption across
periods of life.

2 The term “golden rule” was introduced by Phelps (1961).



78 A Theory of Economic Growth

k

f k

1 n k

A

B

C

kGR

Figure 2.2. The golden rule. The golden rule capital kGR is defined by the equality of
the growth of the population 1+ nwith themarginal productivity of capital, f ′(kGR).
It is the level of the capital stock that maximizes available consumption, represented
by the distance A–B.

The golden rule is represented in figure 2.2. The classical interpretation of the
golden rule is the following: The golden rule capital kGR, if it exists, is defined
by the equality of the growth rate of the population n with the marginal pro-
ductivity of capital net of depreciation, f ′(kGR)− 1. Indeed, considering the
production function F(K, L) = F̄(K, L) + (1− δ)K, the marginal productiv-
ity net of depreciation is

F̄ ′
K(K, L) − δ = F ′(K, L)− 1 = f ′(k) − 1.

Alternatively, we can say that the golden rule is characterized by the equality
between the gross marginal productivity of capital and the sum δ + n:

F̄ ′
K(K, L) = δ + n.

The condition for the existence of the golden rule is given by A5. Notice that
the Inada conditions A2 imply that A5 holds, as n > −1.

Example: With the CES production function, we should distinguish the different
cases depending on ρ:

� Only in the Cobb–Douglas case (ρ = 0) does the assumptionA5 fail to impose
any condition, as f ′(0) = +∞ and f ′(+∞) = 0.

� When factors of production are weak substitutes (ρ > 0), one has f ′(0) =
Aα−1/ρ and f ′(+∞) = 0. A5 thus imposes a condition on the parameters
stating that the productivity parameter A should be large enough: A>
(1+ n)α1/ρ .
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� When factors of production are highly substitutable (ρ < 0), one has f ′(0) =
+∞ and f ′(+∞) = Aα−1/ρ . A5 thus imposes a condition on the parame-
ters stating that the productivity parameter A should be small enough: A<
(1+ n)α1/ρ .

We now characterize the golden age (Diamond (1965), pp. 1128–1129), which
is the solution to problem (2.3):

Proposition 2.2 (Existence and uniqueness of the golden age)
Under the assumptionsH1,H2, and A5 there exists a unique optimal stationary
path, the golden age,which is characterizedby the following conditions: k= kGR,
and cGR and dGR satisfy

cGR + 1
1 + ndGR = φ(kGR),

u′(cGR) = (1+ n)βu′(dGR).

Proof: The maximum of φ is attained at kGR, and the maximum of u(c)+
βu(d) under the constraint c + d

1+n = φ(k) is characterized by the first-order
necessary condition u′(cGR) = (1+ n)βu′(dGR).

Proposition 2.3 (Optimal allocation and life-cycle arbitrage)
The optimal stationary path satisfies the decentralized arbitrage condition of a
consumer over his life cycle when the return on savings is f ′(kGR) = 1 + n, and
his life-cycle income isω(kGR) = f (kGR) − kGR f ′(kGR). But his choice of savings
is generally different from the optimal investment (1+ n)kGR.

Proof: The optimal choice of a consumer satisfies (see equation (1.6))

u′(ct) = βRt+1u′(dt+1).

When the return on savings in 1+ n (the biological interest rate of
Samuelson (1958)), we have Rt+1 = 1+ n; this is the optimal arbitrage condi-
tion between ct and dt+1. Moreover, the actual value of the lifetime spending
on consumption is

cGR + 1
1 + ndGR = φ(kGR) = f (kGR)− (1+ n)kGR

= f (kGR) − f ′(kGR)kGR = ω(kGR),

which is thewage corresponding to the stock of capital of the golden rule.How-
ever, our optimal path is not the decentralized equilibrium of the competitive
economy because, in general,

s(ω(kGR), 1 + n) �= (1+ n)kGR,

i.e., savings differ from the replacement investment.
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This appears clearly in the following simple example considered by
Diamond.

Example: Let us take a logarithmic utility and a Cobb–Douglas production func-
tion. We find that the capital stock satisfying the golden rule is

kGR =
(
αA
1 + n

) 1
1−α
,

and

φ(kGR) = (1− α)AkαGR, cGR = 1
1 + β φ(kGR), dGR = (1+ n)β

1 + β φ(kGR).

Savings are given by

s(ω(kGR), 1 + n) = φ(kGR)− cGR = β

1+ β φ(kGR),

as ω(kGR) = φ(kGR). The comparison between savings and optimal capital is
given by the following condition:

s(ω(kGR), 1 + n) � (1+ n)kGR

⇐⇒ β

1 + β (1− α)AkαGR � (1+ n)kGR = αAkαGR

⇐⇒ β

1 + β �
α

1 − α .

Only in the special case β

1+β = α
1−α is there equality between savings and re-

placement investment. If, for a given α, time preference is such that β

1+β >
α

1−α ,
i.e., β is “large,” then savings exceed the golden rule capital stock.

We should thus study the consequence of the absence of coincidence between
the golden age and the competitive equilibrium.

2.1.3 Under- and Over-accumulation of Capital

Let us consider a stationary capital stock which is feasible in the long run:
φ(k) ≥ 0.

Definition 2.3 (Under- and over-accumulation of capital)
If an increase in k implies an increase in net production, i.e. f ′(k) > 1 + n,
we say that there is under-accumulation of capital at k. If an increase in k
implies a decrease in net production, i.e., f ′(k) < 1 + n, we say that there is
over-accumulation of capital at k.
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Notice that if there exists a golden rule level of the capital stock kGR (i.e., if A5
holds), these conditions are respectively equivalent to k< kGR and k> kGR.

At a steady state k̄ of an inter-temporal equilibrium, there is under-
accumulation of capital when f ′(k̄) > 1 + n, and there is over-accumulation
of capital when f ′(k̄) < 1 + n. Equivalently, there is under-accumulation (or
over-accumulation) when the long-run rate of return f ′(k̄)− 1 is higher (or
lower) than the growth rate of the population. In both cases, for a given k̄, the
maximum of utility is different from the utility at the competitive steady state.
Indeed, the latter satisfies u′(c̄) = β f ′(k̄)u′(d̄) and the maximum utility with
fixed net production φ(k̄) satisfies u′(c) = β(1+ n)u′(d).

A standard implication of the optimality condition is that a stationary path
with over-accumulation of capital is not Pareto-optimal in terms of consump-
tion levels, implying that we can increase the total consumption at (at least)
one date without reducing it at any other date. In particular, we can show that
it is possible to increase total consumption by reducing k in a discretionary
manner. The total net production is φ(k) for all periods. If we reduce the cap-
ital stock to the golden rule level kGR at some period, the total consumption
will be φ(k)+ (k− kGR)(1+ n), the first part being the standard surplus ob-
tained with the old level of k, and the second being the surplus obtained by the
reduction in the stock of capital. We have thus increased total consumption
for that period. For the following periods, the surplus is φ(kGR), which is also
superior to φ(k) by definition of the golden rule. Hence, total consumption
can be increased at all dates by moving the capital stock towards the golden
rule kGR.

It was initially thought that the breakdown of the first welfare theorem in
overlapping generations economies was due to the fact that all generations do
not meet in a single market (see, e.g., Stein (1969)). This is not true, however,
and Shell (1971) pointed out that the infinity of agents and goods in these
models breaks the proof of the First Welfare Theorem under certain circum-
stances. There is a sense in which the economy has infinite resources, and one
may no longer conclude that a proposed Pareto-dominating allocation cannot
be reached. In the above reasoning, if we assume that the horizon is not infinite
but finite, say T, the surplus to be consumed during the last period will have
been kGR instead of k, and in this case the increase in consumption for all t < T
will be at the expense of the last period. The infinite number of periods is thus
a crucial assumption.

Notice also that the time horizon of the agents is not a crucial element
as long as the number of agents is infinite. Indeed, Weil (1989) proposes an
overlapping generations model with infinite-lived agents in which competitive
equilibria can be inefficient. The crucial point in this case is the birth of agents
who have no parents to take care of them, i.e., of “unloved children.”

The problem of the golden age illustrates the two aspects of optimality in
overlapping generations models: the maximum of productive efficiency when
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we choose the stock of capital, and the maximum of life-cycle utility when we
choose the allocation of net production between consumptions. We shall con-
sider these two issues separately for the optimality problem of non-stationary
paths that we study in the next section.

2.2 optimality of the dynamics

In this section we first address the issue of productive efficiency, called, in
a dynamic setup, dynamic efficiency. We next consider the problem of the
Pareto-optimal allocation of resources between the different generations and
individuals.

2.2.1 Dynamic Efficiency

The first studies of inefficient capital accumulation are due to Phelps (1965)
and Koopmans (1965) in a setup where the distributional issue was not ad-
dressed. We consider a production function f (k) satisfying H2, and we give
the following definitions from Cass (1972):

Definition 2.4 (Feasible path of capital)
A sequence of capital stock (kt)t≥0 is a feasible path if, for all t ≥ 0, the net
production is non-negative:

φ(kt , kt+1) = f (kt)− (1+ n)kt+1 ≥ 0.

Definition 2.5 (Efficiency and inefficiency)
A feasible sequence of capital stock (kt)t≥0 is inefficient if there exists another
feasible path (k1t )t≥0 such that:

1. k10 = k0 and ∀t ≥ 0, φ(k1t , k
1
t+1) ≥ φ(kt , kt+1);

2. there exists at least one t ≥ 0 such that φ(k1t , k
1
t+1) > φ(kt , kt+1).

A feasible path is efficient if it is not inefficient.

The rationale for these definitions is simple. The net production φ(kt , kt+1)
is the total level of consumption (in intensive form) which is available when
the capital stock is kt at t and kt+1 at t + 1. Feasibility means that total con-
sumption is non-negative; efficiency means that it is not possible to increase
total consumption at one date without decreasing total consumption at an-
other date. This is a property of Pareto optimality for the sequence φ(kt , kt+1)
of feasible consumption.

Dynamic efficiency is the same as Pareto optimality in terms of aggregate
consumptions. It is also a necessary condition for Pareto optimality in terms
of the amount of consumption by young and old agents.
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Let us consider a feasible growth path characterized by kt , which converges
to the steady state k� > 0. We have the following proposition:

Proposition 2.4 (Efficiency)
Under the assumption H2, a feasible path which converges to a limit k� > 0
is inefficient when there is over-accumulation at k�; it is efficient when there is
under-accumulation at k�.

Proof:
� Over-accumulation: f ′(k�) < 1 + n. To demonstrate inefficiency in this
case, we show that we can lower the stock of capital and increase consump-
tion at one date without reducing consumption at another date. The argu-
ment developed for steady state allocation is now applied to a feasible tra-
jectory converging to a steady state. In a neighborhood (k� − 2ε, k� + 2ε) of
k�, we have f ′(k) < 1+ n. After some date t0, we have kt ∈ (k� − ε, k� + ε),
f ′(kt) < 1 + n, and f ′(kt − ε) < 1 + n. The concavity of f (·) implies

f (k− ε)− f (k) ≥ − f ′(k− ε)ε.
Let us diminish the capital stock by ε after date t0 and forever. Investment
kt0+1 is reduced by ε and consumption φ(kt0 , kt0+1) is increased by ε(1 + n).
At t > t0, the new consumption level is

φ(kt − ε, kt+1 − ε) = f (kt − ε) − (1 + n)(kt+1 − ε)
≥ f (kt)− f ′(kt − ε)ε − (1 + n)(kt+1 − ε)
≥ f (kt)− (1+ n)kt+1 + (ε(1+ n)− f ′(kt − ε)ε)
> f (kt)− (1+ n)kt+1 = φ(kt , kt+1).

Consumption can thus be increased for all periods, and the path is dynam-
ically inefficient.

� Under-accumulation: Case f ′(k�) > 1 + n. To assess efficiency in this case,
we show that an increase in consumption for one period t1 without reducing
it in any other period would lead to an impossibility. f ′(k�) > 1+ n implies
that we have f ′(k�) > b(1+ n), with some b > 1. For t large enough, say
t ≥ t0, we have f ′(kt) > b(1 + n).At any date t , the difference fromanother
feasible path k̃t satisfies

(1+ n)(k̃t+1 − kt+1) = f (k̃t)− f (kt) −�ct
≤ f ′(kt)(k̃t − kt) −�ct , (2.5)

where �ct is the difference of total consumptions:

�ct = c̃t − ct = f (k̃t) − (1+ n)k̃t+1 − [ f (kt)− (1+ n)kt+1].

Assume that consumption never decreases. In this case, capital never in-
creases. Indeed, by induction, if k̃t − kt ≤ 0, which is true at t = 0, and if
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�ct ≥ 0, then (2.5) implies k̃t+1 − kt+1 ≤ 0. Assume, moreover, that con-
sumption increases at some date t1:�ct1 > 0. Then the preceding argument
implies k̃t − kt < 0 ∀t > t1. Moreover, it implies, for t > t2 = max{t0, t1},

(1 + n)(k̃t+1 − kt+1) ≤ f ′(kt)(k̃t − kt) by (2.5) with �ct ≥ 0

< b(1 + n)(k̃t − kt),
since k̃t − kt < 0 and f ′(kt) > b(1 + n). Hence,

k̃t+1 − kt+1 < b(k̃t − kt),
and

k̃t+1 − kt+1 < bt−t2 (k̃t2 − kt2 ).
As b > 1 and kt+1 converges, we have that k̃t − kt converges to −∞ and
k̃t+1 becomes negative, which is excluded.

Proposition 2.4 allows us to determine whether any given feasible path is
efficient or not. We can now apply this result to inter-temporal competitive
equilibria.

Corollary: Under the assumptions H1, H2, and H3, a rational inter-temporal
competitive equilibrium converging towards a positive steady state k̄ is dynam-
ically efficient if f ′(k̄) > 1 + n and dynamically inefficient if f ′(k̄) < 1 + n.

Considering again figure 2.2, the intuition is the following: When we have
over-accumulation, the capital stock converges to some point at the right of
the golden rule. We can thus increase all future consumptions by diminishing
the capital after the date at which kt becomes larger than kGR (the slope
of the f (k) line is smaller than that of the (1+ n)k line). When we have
under-accumulation, the capital stock converges to some point at the left of
the golden rule.We should thus increase capital to increase the production and
hence all future consumptions, but this requires an initial drop in consumption.

A natural question arising from these theoretical results is whether act-
ual economies are dynamically inefficient. Historically, risk-free interest rates
have been far below the rate of economic growth of developed economies.
However, the rate of return on capital has generally been above the growth
rate, which might suggest dynamic efficiency. This illustrates that interest rate
comparisons do not provide a unequivocal answer to the question of dy-
namic efficiency, essentially because the real world is stochastic and includes
more sources of growth than the model. An alterative test is proposed by
Abel, Mankiw, Summers, and Zeckhauser (1989); they compare gross profits
with gross investment in different countries and conclude in favor of dynamic
efficiency. Other authors have addressed the issue by calibrating realistic over-
lapping generations economies and studying the efficiency properties of the
steady state(s) (see Bullard and Russell (1999)).
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Example: Let us consider an economy with a CES production function with
ρ = 1 and α = 1/2, and a logarithmic utility U(c,d) = ln c + β lnd.3 In this case,

f (k) = 2Ak
1+ k, ω(k) = 2Ak2

(1+ k)2 .

The steady state levels of k are given by

(1+ n)k= β

1 + β
2Ak2

(1+ k)2 .

If f ′(0) = 2A> 1 + n, then 0 is a corner steady state and the inter-temporal
competitive equilibria converging towards 0 are dynamically efficient.
The positive steady states are the roots of P(k) with

P(k) = k2 + 2
(
1− Aβ

(1+ n)(1+ β)
)
k+ 1.

We have two positive steady states ka < kb if and only if the discriminant of P(k)
is greater than 0. This condition can be written(

1 − Aβ
(1+ n)(1+ β)

)2
> 1,

requiring either(
1 − Aβ

(1+ n)(1+ β)
)
> 1 or

(
1 − Aβ

(1 + n)(1+ β)
)
< −1.

As Aβ
(1+n)(1+β) is always positive, this requires

Aβ
(1+ n)(1+ β) > 2,

which is the same as A> 2(1+ n)(1+ β)/β. It can be checked that ka is unsta-
ble, and kb is stable.
The golden rule capital stock exists if and only if 2A> 1 + n, and then

kGR =
√

2A
1 + n − 1.

In the case 2A≤ 1+ n, we have f ′(k) < 1 + n for all k, and all equilibria are
inefficient. When 2A> 1+ n we distinguish the following cases:
If P(kGR) < 0, then ka < kGR < kb, ka is dynamically efficient, kb is dynamically

inefficient, and the inter-temporal competitive equilibria converging toward kb
are dynamically inefficient.
If P(kGR) > 0, then either ka < kb < kGR, and both steady states are dy-

namically efficient, or kGR< ka < kb, and both steady states are dynamically
inefficient.

3 A numerical example of such an economy is provided in section A.5.2.
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The Inefficiency Criterion Due to Cass. With some additional assumptions,
Cass (1972), building on previous work by Malinvaud (1953), establishes a
necessary and sufficient condition for inefficiency. An allocation is inefficient
if the infinite sum of the numbers 1/Nt Pt converges, where Pt is the discount
factor defined by induction in the following way:

Pt+1 = 1
f ′(kt+1)

Pt and P0 = 1. (2.6)

2.2.2 Pareto Optimality of Dynamics

We now consider the optimality of an allocation across the different genera-
tions. For simplicity, we only consider the case where all agents of the same
generation consume the same quantities4 and all quantities are positive.5

Definition 2.6 (Feasible allocation)
Given k0, a feasible allocation is a sequenceofpositivequantities (ct ,dt , kt+1)t≥0,
which satisfies the resource constraint

f (kt) = ct + dt
1+ n + (1+ n)kt+1

for all t ≥ 0.

Definition 2.7 (Pareto optimality)
An allocation (c̆t , d̆t , k̆t+1) is Pareto-optimal if it is feasible and if there is no
other feasible allocation, which increases the utility of at least one household of
one generation without diminishing the utility of any other household.

Proposition 2.5 (Efficiency and Pareto optimality)
A Pareto-optimal allocation is efficient and satisfies, for all t ≥ 0,

u′(c̆t) = β f ′(k̆t+1)u′(d̆t+1). (2.7)

Proof: The efficiency property results from the assumption H1 (the utility
function is increasing). Indeed, if a feasible trajectory is inefficient, it is possible
to increase total consumption at least in one periodwithout decreasing it in any
other period. It is therefore possible to increase the utility of one generation (in
fact two) without decreasing the utility of any other, showing that this feasible
trajectory is not Pareto-optimal.

4 The extension to heterogeneous agents inside the same generation is a standard static
problem.

5 Positive consumptions allow us to define the life-cycle utilities without making an additional
assumption on the utility of zero consumption.
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To prove that equation (2.7) is a necessary condition for Pareto optimality,
let us take the consumptions of all generations except generation t as constant,
and fix k̆t and k̆t+2. Then, we have the two following resource constraints
involving ct and dt+1:

f (k̆t) = (1+ n)kt+1 + ct + 1
1 + nd̆t ,

f (kt+1) = (1+ n)k̆t+2 + c̆t+1 + 1
1+ ndt+1.

Anychange in kt+1 implies a change in theutility of generation t . Thederivative
with respect to kt+1 is

∂Ut
∂kt+1

= u′(ct)
∂ct
∂kt+1

+ βu′(dt+1)
∂dt+1

∂kt+1

= −u′(ct)(1 + n)+ βu′(dt+1)(1 + n) f ′(kt+1).

The maximum of utility keeping the utility of all other generations unchanged
is obtained by equating the above derivative to zero. Hence, applying the
same reasoning to all generations, we deduce that a Pareto-optimal trajectory
verifies equation (2.7) ∀t .

Notice that any competitive equilibrium with perfect foresight satisfies

u′(c) = βRet+1u
′(dt+1),

and

Ret+1 = Rt+1 = f ′(kt+1).

It also satisfies equation (2.7). However, an inter-temporal competitive equi-
librium such that the corresponding path of the capital stock is inefficient is not
Pareto-optimal. As it is possible to increase total consumption at one period
without decreasing it at any other period, it is possible to increase the utility
of one generation (in fact two) without decreasing the utility of any other
generation.

Moreover, efficiency of the path of the capital stock does not guarantee by
itself the Pareto optimality. In order to study this problem, we use the standard
method of the First Welfare Theorem (which says that a competitive equilib-
rium is Pareto-optimal); we show that there is, in addition to the standard proof
in a static environment, a limit condition coming from the infinite horizon of
the equilibrium in the overlapping generations model. We first prove a lemma
corresponding to theorem 1 of Homburg (1992), which says basically that, if
an equilibrium is not Pareto-optimal, there remains something valuable at the
end of time that has not been distributed.
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Lemma 2.1 (non-Pareto-optimality)
If an inter-temporal equilibrium with perfect foresight (c̄t , d̄t , k̄t+1)t≥0 is not
Pareto-optimal, then the limit inferior6 of the discounted value of the wage
bill, Ptω(k̄t)Nt , is strictly positive when t tends to infinity, where Pt is defined
following (2.6):

Pt+1 = 1

f ′(k̄t+1)
Pt and P0 = 1.

Proof: Let (c̄t , d̄t , k̄t+1)t≥0 be an inter-temporal equilibrium starting at
k0 which is not Pareto-optimal. Thus, there exists a feasible trajectory
(ct ,dt , kt+1)t≥0 starting at k0, such that d0 ≥ d̄0 and for all t ≥ 0, U(ct ,dt+1) ≥
U(c̄t , d̄t+1), and the strict inequality holds for some t0.

� First step: We show that all the quantities A0 = N−1P0(d0 − d̄0), and
At = Nt Pt(ct − c̄t) + Nt Pt+1(dt+1 − d̄t+1)

are non-negative and there is at least one date t0 for which At0 is positive.
The condition d0 ≥ d̄0 implies A0 ≥ 0. To show that At ≥ 0 for all t > 0 we
use a reductio ad absurdum. Assume At < 0. This implies, after division by
Nt Pt ,

ct + 1
R̄t+1

dt+1 < c̄t + 1
R̄t+1

d̄t+1 = w̄t ,

where R̄t+1 = f ′(k̄t+1) = Pt/Pt+1 and w̄t = ω(k̄t). Thus, there exists νt > 0
such that (ct + νt ,dt+1) belongs to the budget set

Bt =
{
(ct ,dt+1) ∈ R

2
+; ct +

1
R̄t+1

dt+1 ≤ w̄t
}
.

This implies

U(c̄t , d̄t+1) = max
Bt
U(c,d) ≥ U(ct + νt ,dt+1) > U(ct ,dt+1).

This is excluded by assumption, and thus At ≥ 0. Moreover, At ≤ 0 implies
(with a similar proof and νt = 0) U(c̄t , d̄t+1) ≥ U(ct ,dt+1). From the strict
inequality that holds for t0, we have At0 > 0.

� Second step: We show that all the quantities

Bt = Nt+1Pt+1[ f (k̄t+1)− f (kt+1)]− Nt+1Pt(k̄t+1 − kt+1)

are non-negative. The maximum of the concave function f (k) − R̄t+1k is
attained at k̄t+1, verifying f ′(k̄t+1) = R̄t+1. Hence we have that f (k̄t+1) −
R̄t+1 k̄t+1 ≥ f (kt+1)− R̄t+1kt+1. As Pt+1R̄t+1 = Pt , we have that Bt ≥ 0.

6 See appendix A.2.3 for a definition.
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� Third step: We compute the sum
∑T−1
t=0 (At + Bt) and show that this sum is

less or equal to PTNTw̄T . The sum can be rearranged as

T−1∑
t=0

(At + Bt) = [N−1(d0 − d̄0) + N0(c0 − c̄0)− N1(k̄1 − k1)]P0

+
T−1∑
t=1

{Nt−1(dt − d̄t)+ Nt [ct − c̄t + f (k̄t)− f (kt)]

− Nt+1(k̄t+1 − kt+1)}Pt
+ {NT−1(dT − d̄T) + NT[ f (k̄T)− f (kT)]}PT.

The factor multiplying P0 is nil, as

d0
1 + n + c0 + (1 + n)k1 = f (k0) = d̄0

1 + n + c̄0 + (1+ n)k̄1.

Using the resource constraint,

f (kt) = (1+ n)kt+1 + ct + dt
1+ n ,

the factor multiplying Pt is nil too. Following again the resource constraint,
the factor multiplying PT is

NT−1(dT − d̄T)+ NT[ f (k̄T)− f (kT)]= NT(c̄T − cT)+ NT+1(k̄T+1 − kT+1).

As cT and kT+1 are non-negative, this expression is bounded above by

NTc̄T + NT+1 k̄T+1 = NTw̄T,

since at the competitive equilibrium, w̄T = c̄T + s̄T = c̄T + (1 + n)k̄T+1.
� Last step: We conclude that for T > t0 the sum of the At + Bt is larger or
equal to At0 > 0, and this sum is bounded above by PTNTw̄T . Hence we
deduce that

lim inf
T→+∞

PTNTw̄T ≥ At0 > 0.

Proposition 2.6 (Pareto optimality)
Under the assumptionsH1 andH2, let us consider an inter-temporal competitive
equilibrium such that the sequence (k̄t) converges towards a limit k̄> 0. Then
this equilibrium is Pareto-optimal if there is under-accumulation at k̄. It is not
Pareto-optimal if there is over-accumulation at k̄.

Proof: When there is over-accumulation at k̄, then the path of the capital stock
(k̄t) is inefficient; it is possible to increase the consumption of one generation,
and hence its utility, without decreasing the consumption and utility of the
other generations.
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When there is under-accumulation at k̄, we have f ′(k̄) > 1 + n and the
sequence xt = Nt Pt satisfies

xt+1 = 1 + n
f ′(k̄t+1)

xt .

As the limit of (1 + n)/ f ′(k̄t+1) is less than one, the limit of xt = Nt Pt is zero.
As the equilibrium wage w̄t converges, it is bounded, and the limit of the dis-
counted wage bill Pt Nt w̄t is zero. Then the lemma implies that the equilibrium
is necessarily Pareto-optimal.

Notice that under the assumptions H1, H2, and H3, for any rational inter-
temporal competitive equilibrium, the sequence (kt) converges towards a
steady state k̄. The rational inter-temporal competitive equilibrium is Pareto-
optimal if there is under-accumulation at k̄. It is not Pareto-optimal if there is
over-accumulation at k̄. Two special cases (k̄= 0 and k̄= kGR) are not covered
by the above results.

2.3 the planning problem

Having analyzed the conditions under which a given allocation is or is not
Pareto-optimal, we now consider the problem of the benevolent planner who
can allocate the resources of the economy between capital accumulation, con-
sumption of the young, and consumption of the old for each generation.

We first define the objective function of the planner in section 2.3.1, and
next characterize the optimal solution. Two methods are possible. The most
widespread is the marginal approach developed in section 2.4. It introduces a
shadow price for capital (as a co-state variable like in the Pontryagin (1966)
principle in continuous time). The advantage of this method for economists is
that the shadow price gives an evaluation of the stock of capital in terms of
future welfare, along the optimal path. However, the marginal conditions do
not allowone, except in very special cases (see the example at the endof section
2.4.1), to establish the existence of the solution from a global point of view.
The other approach involves the value function proposed by Bellman (1957).7

The value function gives the maximum welfare for any initial stock of capital.
As it solves the optimization problems parametrized by k0 (i.e. for all possible
k0) and studies the effect of k0 on the solution, it requires additional specific
assumptions.8 In section 2.3.2 we introduce the specific assumptions which
ensure the existence of the value function and study its properties. Section 2.3.3

7 See also Stokey and Lucas (1989). We are almost forced to use this approach in a stochastic
environment.

8 Note that,when thevalue function is differentiable, the shadowpriceof themarginal approach
is equal to its derivative taken along the optimal path.
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applies these results to derive the policy functions which describe the global
dynamics of capital.

The interest of the approach with the value function is to establish the exis-
tence and the monotonicity of the solution, and to study its limit. In particular
we show that when the modified golden rule defined below exists, the optimal
path converges to it. When the marginal productivity of capital at 0 is so weak
that the modified golden rule does not exists, the optimal path converges to
0. When the marginal productivity of capital at infinity remains so high that
the modified golden rule does not exist, the optimal path goes to infinity and
optimal growth is unbounded (this case will be studied further in section 2.5).

2.3.1 The Objective Function

The objective of the social planner is to maximize a discounted sum of the
life-cycle utility of all current and future generations,

∞∑
t=−1

γ tU(ct ,dt+1),

under the resource constraint (2.1):

f (kt) = (1+ n)kt+1 + ct + 1
1 + n dt ,

with k0 and c−1 given. c−1 is the hypothetical young-age consumption of the
first old generation. γ is the planner’s discount factor, or social discount factor.
The planner’s objective function is often called a social welfare function.

When the utilities are bounded, the assumption that γ is smaller than 1
ensures that the objective function is finite. More generally, it is sufficient that
the actual values of utilities γ t0Ut are bounded for some discount factor γ0 > γ
(see the assumption A6 below).

As the life-cycle utility function is separable,9Ut = u(ct) + βu(dt+1), we can
rearrange the objective function in the following way (grouping the contem-
poraneous terms together and ignoring the constant term u(c−1)):

W =
∞∑
t=0

γ t
(
u(ct)+ β

γ
u(dt)

)
. (2.8)

The Ramsey Optimal Growth Problem. For Ramsey (1928), the optimal
growth problem should not be discounted. With γ = 1 the social welfare

9 Michel and Venditti (1997) solve the planning problem when the utility function is non-
separable. They show that the properties of optimal paths may be altered substantially.
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objective is not necessarily defined, but, as Ramsey did, it is possible to con-
sider

∞∑
t=−1

[U(ct ,dt+1) − Û],

where Û = sup{U(c,d) under the resource constraint} is the maximum sta-
tionary utility level.10 For a global analysis, we should use a general definition
of the value function along the lines of Michel (1990a). For a marginal analy-
sis of this problem, we can apply the same methods as below (substitution,
Lagrangian, local dynamics), replacing γ by 1 andmodifying the transversality
condition.11 In general, this solution is obtained as the limit when γ → 1 of
the optimal growth path with the discounted objective function. It will also be
studied in the case Û = 0 (see section 2.5).

The choice of the planner’s discount factor is an old debate. We shall see
in the sequel (under some assumptions; see A9 below) that the ex ante choice
of a constant discount factor γ is equivalent to an ex post choice of the long-
run stationary state. Michel (1990b) argues that, within a utilitarian setup, one
should choose the discount rate which allows the economy to converge to
the golden rule. This discount rate is equal to the growth rate of population,
and the corresponding social objective function is the un-discounted sum of
Ramsey.

2.3.2 Properties of the Value Function

The value function is the upper bound of the objective of the benevolent
planner, taken on all possible allocations starting from k̄0:

V(k̄0) = sup{W ; all feasible allocations starting from k̄0}.
To be allowed to define this function, two conditions should be met. The first
condition is that the objective function of the planner should be defined for all
feasible allocations, that is, the infinite sums should have a limit for all feasible
allocations, finite or infinite. The second condition is that the upper bound of
the infinite sums should be finite.

Assumption H4.
All the infinite sumsW corresponding to all feasible allocations (ct ,dt , kt+1)t≥0
starting from k0 converge in R ∪ {−∞} and admit a finite upper bound. This
holds for all k0 > 0.

10 Ramsey assumes that this maximum utility is finite, as “economic causes alone could never
give us more than a certain finite rate of enjoyment.”

11 If kGR exists, the transversality condition becomes (see Michel (1990a)): the limit of the
capital stock is the golden rule capital stock.
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This assumption guarantees that the value function is defined. It is neces-
sarily verified if the usual optimal solution exists for all k0.12 We shall study
whether it is also sufficient.

We now introduce two sufficient assumptions bearing more directly on
preferences and technology, and we show below that they imply H4.

Assumption A6.
For all k̄0 > 0, the sequence of highest feasible capital (k̄t)t>0 defined by

k̄t+1 = 1
1 + n f (k̄t),

is such that ∃b0 ∈ R and ∃γ0 > γ such that ∀t ≥ 0,

γ t0u( f (k̄t)) ≤ b0,
(2.9)

γ t0u((1 + n) f (k̄t)) ≤ b0.

Note that the two conditions (2.9) are both useful, as n ∈ ]−1,+∞[. Depend-
ing on the case (n ≥ 0 or 0 ≥ n > −1), (2.9) bears on u((1+ n) f (k̄t)) or on
u( f (k̄t)).

Assumption A7.
For all k̄0 > 0, there exists a feasible path (ct ,dt , kt+1)t≥0 starting at k̄0 such that
the sequence

T∑
t=0

γ t
(
u(ct)+ β

γ
u(dt)

)
,

is bounded from below in R when T → +∞.

The assumption A6 applies the assumption B1 of appendix A.4.1 to the opti-
mal growth problem. It holds if the sequence (k̄t) is bounded and γ < 1. This
is the case, for instance, when f (k) = Akα + (1− µ)k, with 0 < α < 1 and
1 − µ < 1+ n. Indeed, in this case, the sequence k̄t converges to the steady
state k̄= [A/(µ+ n)] 1

1−α , which implies that it is bounded. More generally,
this assumption requires that the highest possible growth factor of the objec-
tive u(ct)+ (β/γ )u(dt) be lower than 1/γ . Indeed, we have, for any feasible

12 More general notions of optimality are considered in the literature, mainly those of
Brock (1970) and Gale (1967). These definitions are respectively based on the lower and
upper limits of the difference between feasible and optimal allocation. See Michel (1990a)
for an in-depth study.
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allocation (under assumption A6),

u(ct)+ β

γ
u(dt) ≤ u( f (k̄t))+ β

γ
u((1 + n) f (k̄t))

≤ 1
γ t0
b0

(
1 + β

γ

)
<

1
γ t
b0

(
1+ β

γ

)
.

If A6 does not hold, this means that the resources of the economy are so
abundant that the planner has to distribute an “infinite amount of utility”
between generations and a more general notion of optimality should be used.

The assumption A7 applies the assumption B2 of appendix A.4.1. It means
that there exists at least one feasible trajectory such that the discounted sum
of the utilities is different from −∞. This is obviously verified if u(0+) is
non-negative. With γ < 1, it is sufficient that u(0+) be bounded from below.
An evident sufficient condition often found in the literature is u(0) = 0.When
u(0+) = −∞ (e.g.with a logarithmic utility function), it suffices tohave f (k) >
(1+ n)k for k> 0 small enough (this is a sort of weak Inada condition). It is
then possible to follow, a.o., the feasible trajectory c = d/(1+ n) = [ f (k) −
(1+ n)k]/2 for which the objective is finite. If A7 does not hold, this means
that the production possibilities are soweak that the discounted sumof payoffs
is inevitably −∞.

Proposition 2.7 (Existence of the value function)
Under H1, H2, A6, and A7, the assumption H4 holds and the value function of
the planner is defined for all k̄0 > 0.

Proof: For the convergence of the infinite sum in R ∪ {−∞}, we can apply
proposition A.11 of appendix A.4.1. Indeed, the assumption B0 holds under
H2, and B1 results from A6. For the objective function to have a finite upper
bound, we use proposition A.12 of appendix A.4.1, which requires A7 in
addition.

Proposition 2.8 (Properties of the value function)
Under the assumptions H1, H2, and H4, the function V is continuous, concave,
and non-decreasing on R++ and verifies, for all k> 0,

V(k) = sup
{
u(c) + β

γ
u(d) + γV

(
f (k) − c − d/(1 + n)

1+ n
)
;

c > 0,d > 0, c + d
1 + n < f (k)

}
. (2.10)

Equation (2.10) is the Bellman equation. The intuition behind it is the
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following: Starting from k0 > 0 with c0 > 0, d0 > 0, and

k1 = 1
1 + n

(
f (k0)− c0 − d0

1 + n
)
> 0,

themaximumof feasible inter-temporal utility starting from k1 is, by definition,
V(k1), and its discounted value at time 0 is γV(k1). The corresponding value
of the objective function starting at time 0 with the initial capital stock k0 and
the choice of consumptions levels is then

u(c0)+ β

γ
u(d0)+ γV(k1). (2.11)

As V(k1) is the maximum of the objective starting at time t = 1 with k1, the
maximum starting at time 0 with k0 is simply obtained bymaximizing equation
(2.11) with respect to c0, d0, and k1.

The proof of this proposition in a more general setup is given in appendix
A.4.1.

2.3.3 Existence and Monotonicity of Optimal Paths

One important result is that, if the optimal path exists, it is unique. This results
from the strict concavity of the utility function u and of the convexity of the
set of feasible production {(k, y) ∈ R+ × R+; y ≤ f (k)}. This uniqueness can
be shown directly. We shall obtain it through the uniqueness of the solution to
the Bellman equation.

We show in appendix A.4.1 that, with the assumptions A6 and A7, if the
bound of the Bellman equation (2.10) is reached for all k> 0, then the optimal
path exists and can be characterized by c�(k),d�(k), i.e., the trajectory for
which the bound is reached. c�(k) and d�(k) are called policy functions.

There is however a difficulty: we have to demonstrate that the maximum of
the Bellman equation is reached (i.e., we can replace the sup in (2.10) bymax).
This should be proven in the case where the solution is interior, but also when
there is a corner solution, i.e., the optimal investment is zero after some point
in time. We first show that the maximum of the Bellman equation is interior if
f (0) = 0.

Lemma 2.2
Assume that H1, H2, H4, and f (0) = 0 hold. The maximum of the Bellman
equation (2.10) with k0 > 0,

V(k0) = sup
{
u(c0)+ β

γ
u(d0) + γV(k1)

}
,
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subject to the constraints

c0 > 0, d0 > 0, k1 = 1
1+ n

(
f (k0) − c0 − d0

1 + n
)
> 0,

is obtained with an interior solution: c�(k0) > 0,d�(k0) > 0, and k�1 =
x�(k0) > 0.

Proof: Takeany k0 > 0.Applying theBellmanequation twiceat k0 and k1 > 0,
we get

V(k0) = sup
{
u(c0)+ β

γ
u(d0)+ γ

(
u(c1)+ β

γ
u(d1)

)
+ γ 2V(k2)

}
. (2.12)

The upper bound is taken on the set of positive quantities c0,d0, c1,d1, k1, and
k2, which satisfy

(1+ n)k1 = f (k0)− c0 − d0
1+ n and (1+ n)k2 = f (k1)− c1 − d1

1+ n .

Now consider k2 such that

0 < k2 <
1

1+ n f
(
f (k0)
1 + n

)
.

When k2 is fixed, the upper bound is reached with positive quantities for the
other variables. For the consumptions, this results from H1: u′(0) = +∞, and
for k1 it results from the assumption f (0) = 0, which implies that c1 and d1
are nil if k1 = 0. Now take the upper bound of (2.12) also with respect to k2.
The property k1 > 0 holds with the limit of k2 even if the upper bound is ob-
tainedwith k2 = 0.Hence, themaximumwith respect to (c0,d0, c1,d1, k1, k2) is
reached with positive values for the four consumptions, which implies k1 > 0.
This maximum thus satisfies

V(k0) = u(c�(k0))+ β

γ
u(d�(k0))+ γV(x�(k0)),

with

x�(k0) = 1
1+ n

(
f (k0)− c�(k0)− d�(k0)

1 + n
)
> 0.

In the case f (0) > 0 (positive production with zero capital) it is possible that
the maximum of the Bellman equation is reached with k�1 = 0. This extreme
case will happen only if the marginal productivity f ′(0) is low. As we refrain
from imposing conditions on the production function at 0 (in order to include
the interesting CES case), we shall also study this case. However, in order to
make this section more readable, that study is proposed as an extension in
section 2.6.1. We use here the following assumption.



Optimality 97

Assumption A8.
For all k> 0, the maximum of the Bellman equation is interior: c�(k) > 0,
d�(k) > 0, and

x�(k) = 1
1+ n

(
f (k)− c�(k)− d�(k)

1 + n
)
> 0.

Lemma 2.2 shows that if f (0) = 0, the assumption A8 holds.
We now study the properties of the value function and the policy functions,

solution to the Bellman equation. This analysis is done without having proven
the existence of the optimal path, which requires the additional assumption
A6 and is shown in proposition 2.10.

Proposition 2.9 (Properties of the policy functions)
Under the assumptions H1, H2, H4, and A8, the value function V is strictly
increasing and differentiable in R++. The consumption and investment func-
tions c�(k), d�(k) and x�(k) solving the Bellman equation (2.10) are continuous
and increasing, defined in R++ and have values in R++. These policy functions
are characterized by, ∀k> 0,

V(k) = u(c�(k)) + β

γ
u(d�(k)) + γV�(x�(k)),

(1+ n)x�(k) = f (k)− c�(k) − d�(k)
1+ n .

Proof: We consider k0 > 0. The proof follows two steps.

1. We apply proposition A.16 of appendix A.4.1. The function C̃ con-
sidered in assumption B3 can be c̃(k) = f (k)− f (k0)+ c�(k0) and
d̃(k) = d�(k0). It satisfies c̃(k0) = c�(k0), and leaves k̃1 = x�(k0) un-
changed:

V(k0) = u(c�(k0))+ β

γ
u(d�(k0))+ γV�(x�(k0)),

V(k) ≥ u(c̃(k))+ β

γ
u(d̃(k))+ γV�(x�(k0)),

V(k) − V(k0) ≥ u(c̃(k))− u(c̃(k0)).
This implies that the function V is differentiable13 at k0 > 0 and its
derivative is

V ′(k0) = u′(c�(k0)) f ′(k0).

We deduce that V ′(k0) > 0, and the function V is strictly increasing.

13 Since the function V is concave and is bounded below by the differentiable function u(·); see
proposition A.16 in appendix A.4.1.
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2. We now show that the policy functions are increasing. The function

(c,d) → u(c)+ β

γ
u(d)+ γV

(
1

1+ n
(
f (k) − c − d

1 + n
))

(2.13)

is strictly concave, because u is strictly concave (assumption H1). Its
maximum V(k) is thus obtained at a single point (c�(k),d�(k)), which
depends continuously on k. The first-order conditions

u′(c�(k)) = γ

1 + nV
′(x�(k)),

β

γ
u′(d�(k)) = γ

(1+ n)2V
′(x�(k))

imply that the three functions c�(·), d�(·), and x�(·) vary in the same
directionwhen k increases (V ′ is decreasing, asV is concave).Moreover,
their sum,

c�(k)+ d�(k)
1+ n + (1+ n)x�(k) = f (k),

is an increasing function of k. Hence, the three functions c�(·), d�(·), and
x�(·) are increasing.

The policy functions are useful to define the following monotonic dynamics.
Starting from k0, we can define by induction k�0 = k0 and

c�t = c�(k�t ), d�t = d�(k�t ), and k�t+1 = x�(k�t ).

This path is feasible and satisfies, ∀t ,

V(k�t ) = u(c�t ) + β

γ
u(d�t )+ γV(k�t+1).

These monotonic dynamics obtained from the Bellman equation are those of
the optimal path when an optimal path exists. More precisely, the existence is
guaranteed under the assumption A6, as is shown in the next proposition.

Proposition 2.10 (Existence of the optimal path)
Under the assumptions H1, H2, A6, A7, and A8, there exists an optimal solu-
tion to the planning problem for all k0 > 0. This optimal path is unique and
monotonic and is defined by the policy functions

c�t = c�(k�t ), d�t = d�(k�t ), k�t+1 = x�(k�t ), k�0 = k0.
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Proof: From A8 we may define by induction the paths c�t = c�(k�t ), d�t =
d�(k�t ), and k

�
t+1 = x�(k�t ) which are the solution to the Bellman equation. Fol-

lowing proposition A.13 of appendix A.4.1, under A6 and A7, this path is
optimal.

2.3.4 Limit of the Optimal Path and Optimal Steady State

We have seen that, under the assumptionsH1,H2,A6,A7, andA8, the optimal
trajectory (c�t ,d

�
t , k

�
t+1)t≥0 exists, is unique, and is monotonic. There are thus

three possibilities:

1. convergence of k�t towards a steady state k̄> 0 such that x�(k̄) = k̄;
2. convergence towards 0;
3. convergence toward +∞.

The following proposition gives the conditions under which each case arises.

Proposition 2.11 (Limit of the optimal trajectory)
Assume that the assumptions H1, H2, A6, A7, and A8 hold. Then the optimal
trajectory starting from k̄0 > 0 satisfies:

� if f ′(0) ≤ 1+n
γ
, lim k�t = 0;

� if f ′(+∞) ≥ 1+n
γ
, lim k�t = +∞;

� if f ′(0+) > 1+n
γ
> f ′(+∞), lim k�t = f ′−1( 1+n

γ

) ≡ kγ .

Proof: Following proposition 2.9, the value function is differentiable and we
have

V ′(k) = u′(c�(k)) f ′(k).

We also have, with the first-order conditions (see the proof of proposition 2.9),

u′(c�(k)) = γ

1+ nV
′(x�(k)).

We deduce that, along the optimal path, we have

γ

1 + nV
′(k�t+1) = u′(c�(k�t )),

V ′(k�t+1) = u′(c�(k�t+1)) f
′(k�t+1),

and therefore

u′(c�(k�t ))
u′(c�(k�t+1))

= γ f ′(k�t+1)

1+ n . (2.14)
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� In the case f ′(0+) ≤ 1+n
γ
, the ratio (2.14) is smaller than 1 for all t which

implies k�t > k
�
t+1 as the function k→ u′(c�(k)) is decreasing (c� is increasing

and u′ decreasing). Then the sequence (k�t ) is decreasing. We show by a
reductio ad absurdum that its only possible limit is 0. Assume it admits a
limit k̄> 0. Then k̄ is a stationary optimum, and γ f ′(k̄) = 1+ n holds. This
is excluded because f ′(0) ≤ (1+ n)/γ and f ′(·) is a decreasing function.
Hence lim k�t = 0.

� In a similar fashion, in the case f ′(+∞) ≥ 1+n
γ
, the ratio (2.14) is larger

than 1 and the sequence (k�t ) is increasing. As it cannot have a finite limit,
lim k�t = +∞.

� Finally, in the case f ′(0+) > 1+n
γ
> f ′(+∞), let kγ = f ′−1( 1+n

γ

)
. There are

three possibilities:
� if k�t+1 < kγ , the ratio (2.14) is larger than 1, and we have k

�
t < k

�
t+1 < kγ .

� if k�t+1 = kγ , the ratio (2.14) is equal to 1, and we have k�t = k�t+1 = kγ .
� if k�t+1 > kγ , the ratio (2.14) is smaller than 1, andwe have kγ < k

�
t+1< k

�
t .

This implies that the optimal path k�t converges to kγ .

We have seen that kγ is the limit of the optimal path if and only if the following
assumption holds:

Assumption A9.

f ′(0+) >
1 + n
γ

> f ′(+∞).

We also conclude that, starting with k0 = kγ , the optimal path is kt = kγ for
all t . Indeed, it is the only monotonic path starting from kγ and ending at kγ .
kγ is thus an optimal steady state of the planner’s problem, which is called the
modified golden rule.

Definition 2.8 (Modified golden rule)
Under the assumption A9 there exists a unique positive capital stock kγ such
that

f ′(kγ ) = 1+ n
γ

,

which is the modified golden rule capital stock.

Let us now comment on some of the assumptions used so far.
First, note thatwehave not explicitly assumed that the social discount factor

γ is smaller than one. However, γ < 1 results from H4whenA9 holds. Indeed,
with A9, there exists a constant optimal path starting at k0 = kγ ; together with
H4, it implies that the sum W with constant utilities converges, which in turn
implies γ < 1.
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When thegolden rule exists, theassumptionA5 is satisfied, andbycontinuity
A9 is also satisfied for γ sufficiently close to 1. In that case, A9 can be thought
as an assumption on the parameter γ .

With γ < 1, when kGR exists (assumption A5) and kγ exists (assumption
A9), the modified golden rule kγ verifies

0 < kγ < kGR,

as we have f ′(kγ ) = f ′(kGR)/γ > f ′(kGR). The unique steady state capital
stock of the planning problem is thus between 0 and the golden rule level, and
there is under-accumulation at kγ . Notice also that limγ→1 kγ = kGR and that
kγ is increasing in γ : the more the planner cares about future generations, the
higher the steady state capital stock should be.

Example: With the CES production function, we should distinguish the different
cases depending on ρ:

� Only in the Cobb–Douglas case (ρ = 0) does the assumptionA9 fail to impose
any condition, as f ′(0) = +∞ and f ′(+∞) = 0.

� When factors of production are weak substitutes (ρ > 0), we have f ′(0) =
Aα−1/ρ and f ′(+∞) = 0. The assumption A9 imposes a lower bound on the
planner’s discount factor. A9 is indeed equivalent to γ > (1+ n)α1/ρ/A.

� When factors of production are highly substitutable, (ρ < 0), we have
f ′(0) = +∞ and f ′(+∞) = Aα−1/ρ . The assumption A9 imposes γ <

(1+ n)/Aα1/ρ .

When A8 does not hold, the maximum of the Bellman equation (2.10) is ob-
tained with k1 = x�(k0) = 0, c0 = c�(k0) > 0, and d0 = d�(k0) > 0 for some
k0 > 0. This case can only occur when production is possible without capital
( f (0) > 0), and it is optimal not to invest for some k0 > 0. The case f (0) > 0
is studied in section 2.6.1. We show that all preceding results hold without the
assumption A8, except that the policy function x� is non-decreasing (instead
of increasing), as we may have x�(k) = 0 on some interval [0, k].

In the very particular case when A8 does not hold, 0 is an optimum steady
state. This last situation can arise when the production function displays high
substitutability for low levels of capital. An example with such a production
function is provided in section 2.6.4.

2.4 marginal analysis of optimal solutions

In this section,wecharacterize theoptimal solutions further, using the standard
marginal analysis (Euler equations), and propose a local analysis around the
steady state. This local analysis requires a different set of assumptions from
the global approach of the preceding section. In particular, three assumptions
play a central role. First, A9 has to hold for the existence of the modified
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golden rule. Second, we assume γ < 1, which guarantees the convergence of
the infinite sum with constant utilities. Third, we only need H4 for one value
of the initial capital stock instead of for the whole range of possible values. We
make these three assumptions in this section.

2.4.1 The Optimality Conditions

The planner thus maximizesW given an initial capital stock k0 and given the
resource constraint.One simplemethod forobtaining thefirst-orderoptimality
conditions is tomake the substitutionof the resource constraint in theobjective
function; substituting dt , the planner’s problem can then be rewritten

max
∞∑
t=0

γ t
(
u(ct)+ β

γ
u ((1+ n)[ f (kt) − (1 + n)kt+1 − ct ])

)
.

For an interior optimal solution the first-order necessary conditions are ob-
tained by differentiating with respect to ct and kt+1:

u′(ct) = (1 + n)β
γ

u′(dt), (2.15)

u′(dt) = f ′(kt+1)γ
1 + n u′(dt+1). (2.16)

Equation (2.15) describes the optimal allocation between old and young who
arealive at the same time.Equation (2.16)describes theoptimal inter-temporal
allocation. Combining the two conditions leads to

u′(ct) = β f ′(kt+1)u′(dt+1),

which is the sameas equation (1.7)of theprevious chapter, showing that,within
an individual lifetime, the planner allocates resources in the same way as the
individual would allocate them when the expected gross return on savings is
equal to f ′(kt+1).

Another interesting (and equivalent) method consists in using the shadow
price qt of the capital stock.McKenzie (1986) uses the LagrangianLt of period
t in his study of optimal growth in discrete time. The Lagrangian Lt of period
t (times γ t) is composed of the terms of the infinite Lagrangian

∞∑
t=0

γ t
{
u(ct)+ βu(dt+1)+ γqt+1

[
1

1+ n
(
f (kt)− ct − dt

1 + n
)

− kt+1

]}
,

whichdependon ct ,dt , and kt . ThusLt is equal to the sumof the current utilities
and the increase in the shadow value of the capital stock: γqt+1kt+1 − qt kt ,14

14 The current shadow price qt+1 of the capital stock kt+1 in period t + 1 is discounted by the
factor γ in order to define the increase of shadow value in t .
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i.e.,

Lt = u(ct)+ β

γ
u(dt) + γqt+1

1 + n
(
f (kt) − ct − dt

1 + n
)

− qt kt .

The use of the Lagrangian of period t does not need any condition on differ-
entiability of the infinite sum.

Optimality leads to the maximum of Lt with respect to ct , dt , and kt (see
appendix A.4.2). For an interior optimal solution, the derivatives of Lt with
respect to ct , dt , and kt are zero:

u′(ct) = γqt+1

1 + n , (2.17)

u′(dt) = γ 2qt+1

β(1+ n)2 , (2.18)

γqt+1

1 + n = qt
f ′(kt)

. (2.19)

Defining qt = u′(ct) f ′(kt), these conditions are equivalent to (2.15) and (2.16)
and the interpretation is straightforward: qt is the marginal value of an addi-
tional unit of capital kt in period t for the social welfare from t onward; with
the assumptions A6 and A7 it is equal to V ′(kt).

From appendixA.4.2, a sufficient condition for optimality of a feasible path
(ct ,dt , kt+1)t≥0 with positive quantities and starting at k̄0 is the following: there
exists a sequence (qt)t≥0 verifying (2.17), (2.18), (2.19), and the following limit
condition:

lim
t→+∞ γ

tqt kt = 0. (2.20)

The transversality condition states that the limit of the actual shadow value of
the capital stock is equal to zero, i.e., the actual value of the capital in terms of
welfare is exhausted.15 This sufficient condition is also necessary when for all
feasible paths the objective of the planner is finite. If not, more sophisticated
transversality conditions should be used (appendix A.4.2, proposition A.17).

Proposition 2.12 (Necessary condition for the planner’s optimum)
Given an initial capital stock k0 > 0, an interior planner’s optimum, if it exists,
is a sequence of strictly positive quantities (ct ,dt ,qt , kt+1)t≥0, which verifies the

15 The transversality condition could also be rewritten as

lim
t→∞ γ

t u′(ct−1)kt = 0.

It imposes that the limit of the marginal utility of capital in terms of consumption be nil.
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two dynamic equations

kt+1 = 1
1+ n

[
f (kt)− C

(
qt
f ′(kt)

)]
≡ �(kt ,qt), (2.21)

qt+1 = (1+ n)qt
γ f ′(kt)

≡  (kt ,qt), (2.22)

where

C
(

qt
f ′(kt)

)
= u′−1

(
qt
f ′(kt)

)
+ 1

1 + nu
′−1
(

γqt
β(1+ n) f ′(kt)

)
,

The consumptions are then given by (2.17) and (2.18).

Proof: Together with the dynamics (2.22), the conditions (2.17)–(2.18) are
equivalent to

ct = u′−1
(

qt
f ′(kt)

)
and dt = u′−1

(
γqt

β(1+ n) f ′(kt)
)
. (2.23)

These conditions imply ct + dt/(1+ n) = C(qt/ f ′(kt)), and (2.21) is the re-
source constraint.

Notice that the function C(·) is the total consumption per young person. It is
decreasing in its arguments and when u′(+∞) = 0, it is a bijection from R++
to R++.16 This property will be used in the graphical exposition.

Proposition 2.13 (Sufficient condition for the planner’s optimum)
A positive sequence (ct ,dt ,qt , kt+1)t≥0 satisfying (2.22), (2.21), (2.23), and the
transversality condition (2.20) is an optimal solution to the planner’s problem.

Proof: This is a standard result. See section A.4.2.

The dynamic system (2.21)–(2.22) cannot in general be solved explicitly, as
the planner’s chosen allocation is described by a set of non-linear difference
equations. An exception is when the production function is Cobb–Douglas,
the utility function is logarithmic and the depreciation of capital is total17 (see
McCallum (1989)). This case is developed in the example below. In the gen-
eral case, further insights into the properties of the solutions can be drawn

16 u′ is a decreasing function fromR++ to (u′(+∞),+∞). As a consequence, C(·) is decreasing
from (x,+∞) to R++, where x = max{1, γ /β(1+ n)}u′(+∞).

17 Instead of assuming a total depreciation, it is possible to use an accumulation rule for
capital of the form Kt+1 = K1−δ

t Iδt and find an explicit solution; see, e.g., Hercowitz and
Sampson (1991) in a setup with infinite-lived agents.
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by first considering the steady state and then the local dynamics. This analy-
sis is done in the next two subsections. To draw quantitative implications we
have to rely on numerical methods. One of the best methods is the one pro-
posed by Laffargue (1990) and Boucekkine (1995), which is suited to simulate
deterministic non-linear forward-looking models. The method is described in
appendix A.5.4.

Example: With a Cobb–Douglas production function, total depreciation of cap-
ital, and a logarithmic utility function, an explicit analytical solution to the plan-
ning problem can be found. In this case, u′(c) = 1/c, f (k) = Akα,u′−1(x) = 1/x,
and

C
(

qt
f ′(kt )

)
=
(
1 + β

γ

)
f ′(kt )
qt

.

By multiplying the two equations (2.22) and (2.21) term by term, we obtain

qt+1kt+1 = qt f (kt )
γ f ′(kt )

− qt
γ f ′(kt )

C
(

qt
f ′(kt )

)
= qt kt
αγ

− 1
γ

(
1 + β

γ

)
,

since f ′(kt ) = α f (kt )/kt . Thus, qt kt is solution to a linear dynamic equation, and
the general solution of this equation is

qt kt = α(1 + β/γ )
1 − αγ + 

(
1
αγ

)t
,

with  a real constant. There is a unique solution that verifies the transversality
condition (2.20): the constant solution

qt kt = α(1+ β/γ )
1− αγ ,

with  = 0 (if  �= 0, qt kt would grow faster than γ ). By substitution we obtain

ct = f ′(kt)
qt

= kt f ′(kt)
ktqt

= 1 − αγ
1 + β/γ Ak

α
t ,

dt = β(1 + n)kt f ′(kt)
γqt kt

= β(1+ n)
γ

1 − αγ
1 + β/γ Ak

α
t ,

kt+1 = αγ

1 + n Ak
α
t .

The dynamics of the optimal capital stock converge to

(
αγ

1 + n A
) 1

1−α
.
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2.4.2 The Planner’s Stationary Solution

Looking for a stationary path (ct ,dt ,qt , kt+1) = (c,d,q, k) with positive quan-
tities that verifies the optimality conditions, we obtain

γ f ′(k) = 1 + n,

C
(
γq
1+ n

)
= f (k)− (1+ n)k,

c = u′−1
(
γq
1+ n

)
,

d = u′−1
(

γ 2q
β(1+ n)2

)
.

These conditions are necessary and sufficient for optimality of the constant
path starting at k, as this path satisfies the transversality condition. This condi-
tion is indeed verified with constant quantities, since we have assumed γ < 1.

The stationary level of k given by f ′−1 ((1+ n)/γ ) is the modified golden
rule kγ defined previously. The pair (kγ ,qγ ) with

qγ = 1 + n
γ

C−1 ( f (kγ )− (1+ n)kγ )

is a steady state of the dynamics (2.21)–(2.22) characterizing the optimal
solution.

The optimal allocation of consumption between young and old satisfies

u′(c) = (1+ n)β
γ

u′(d).

At the planner’s stationary solution, the inter-temporal rate of substitution
βu′(d)/u′(c) should be equal to the planner’s discount factor divided by the
factor of population growth. It coincides with the optimal arbitrage of a con-
sumer when the rate of return is equal to (1 + n)/γ , i.e., when the capital stock
is at the modified golden rule level.

2.4.3 Local Dynamics

It is important to notice that the two endogenous variables of the system
(2.22)–(2.21) are not of the same nature. The variable kt is predetermined at
time t (it has been chosen at time t − 1) and there is an initial condition for
capital, k0. The variable qt is a non-predetermined variable (forward-looking
variable). There is no initial condition q0: the planner chooses the entire opti-
mal trajectory (qt)t≥0. The proper choice of q0 will determine this path.

To study the characteristics of the dynamics, we take a first-order Taylor
expansion of the system around its unique steady state (kγ ,qγ ) to study the
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local dynamics. This leads to the linear dynamics:[
kt+1 − kγ
qt+1 − qγ

]
=
[
a1 a2
b1 b2

] [
kt − kγ
qt − qγ

]
, (2.24)

with the partial derivatives taken at the steady state (kγ ,qγ ):

a1 = ∂�

∂kt
= f ′(kγ )

1 + n + qγ f ′′(kγ )
(1+ n) f ′(kγ )2 C

′
(

qγ
f ′(kγ )

)

= 1
γ

+ qγ f ′′(kγ )
(1 + n) f ′(kγ )2 C

′
(

qγ
f ′(kγ )

)
,

a2 = ∂�

∂qt
= − 1

(1+ n) f ′(kγ )C
′
(

qγ
f ′(kγ )

)
,

b1 = ∂ 

∂kt
= − (1+ n)qγ f ′′(kγ )

γ f ′(kγ )2

= −qγ f
′′(kγ )

f ′(kγ )
,

b2 = ∂ 

∂qt
= 1 + n
γ f ′(kγ )

= 1.

Proposition 2.14 (Saddle-point property of the optimal path)
The characteristic polynomial of the linear approximation (2.24) admits two
positive roots of which only one is stable. Given k̄0, there exists a unique solution
to (2.24) that converges to (kγ ,qγ ), and the convergence is monotonic. The
steady state (kγ ,qγ ) is thus a saddle point.

Proof: The characteristic polynomial (see appendixA.3.4) of thematrix defin-
ing the linear dynamics (2.24) is

P(λ) =
∣∣∣∣ a1 − λ a2
b1 b2 − λ

∣∣∣∣
= λ2 − (a1 + b2)λ+ a1b2 − a2b1
= λ2 − (a1 + 1)λ+ 1

γ
,

and we have a1 > 1/γ as f ′′C ′ > 0. The properties of P(λ) are illustrated in
figure 2.3: P(0) = 1/γ > 0 and P(1) = 1/γ − a1 < 0. This implies that there
exists only one root λ1 such that 0 < λ1 < 1. Moreover, the product of the two
real roots is equal to 1/γ (the determinant of the matrix); thus the second root
verifies λ2 = 1/(γ λ1) > 1/γ . Given k̄0, there exists a unique solution of the
linear dynamics (2.24) for kt which converges to kγ :

kt − kγ = λt1(k̄0 − kγ ),
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λ

P λ

λ1 λ21 1 γ

Figure 2.3. The characteristic polynomial. The characteristic polynomial of the linear
approximation (2.24) admits two positive roots, of which only one is stable.

and there is a unique corresponding solution for qt , which is obtained with the
dynamics of kt . Using

kt+1 − kγ = a1(kt − kγ )+ a2(qt − qγ ),

one obtains

qt − qγ = 1
a2
(λ1 − a1)λt1(k̄0 − kγ ).

As the steady state is a saddle point, for a given k̄0 there is only one value of
q0 such that the trajectory converges to the steady state:

q0 = qγ + 1
a2
(λ1 − a1)(k̄0 − kγ ).

Any other value of q0 would lead the trajectory of the linear system to explode.
Note that the diverging trajectories with a non-zero coefficient of λt2 do not

verify the transversality condition, as λ2 > 1/γ .
These properties apply locally to the non-linear dynamics near the steady

state: given k̄0, there exists a unique solution for these dynamics which con-
verges to the steady state, and this solution is the optimal path. We have
established this result globally in the study of the value function.

2.4.4 A Graphical Exposition

Todescribe thedynamicsof a systemoforder two, it is convenient touseaphase
diagram. We should keep in mind, however, that in discrete time the phase
diagram is not sufficient to characterize the dynamics. Indeed, the trajectories
are collections of points rather than continuous lines, and the variables can
therefore jump during the adjustment process.
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To build this diagram we use the two equations of the dynamical system
(2.21)–(2.22):

kt+1 = �(kt ,qt),

qt+1 =  (kt ,qt),

so that we can describe the direction of motion of the variables as a function
of their current values. For the graphical exposition we assume u′(+∞) = 0,
which implies that C is decreasing from R++ with values in R++ (like u′−1).

We should first characterize the set of points (kt ,qt) for which there is no
change in kt , i.e., forwhich�(kt ,qt)=kt . Solving�(kt ,qt)=kt forqt , we obtain

qt = f ′(kt)C−1( f (kt) − (1 + n)kt).
This function qt = q�(kt) is defined on the set of feasible capital stocks (0, k̃).18
Differentiating q�(kt) leads to

q′
�(kt) = f ′′(kt)C−1(·)+ f ′(kt)(C−1)′(·)[ f ′(kt)− (1+ n)].

Hence, the function qt = q�(kt) is decreasing when f ′(kt) > 1 + n, i.e., when
kt < kGR. As C ′(·) < 0, the function can attain a minimum only for capital
above the golden rule level. An example of this function is plotted in the left
panel of figure 2.4. To describe the direction of change in kt , we remark that
�(kt ,qt) increases unambiguously with qt as C ′ < 0. Hence, kt+1 > kt above
the curve and kt+1 < kt below. The corresponding direction of motion are
also plotted in the figure.

kt

qt

kt

qt

kGR

kt 1 kt

qt 1 qt

kγ

kt 1 kt

kt 1 kt

qt 1 qtqt 1 qt

k̃

Figure 2.4. The two phase lines. The function kt+1 = �(kt ,qt) = kt plotted in the left
panel is negatively sloped at the left of the golden rule level. The function qt+1 =
 (kt ,qt) = qt plotted in the right panel is a vertical line crossing the horizontal axis
at the modified golden rule level. The arrows indicates the direction of motion.

18 Remember that the concave function φ(k) = f (k) − (1+ n)k becomes negative when
k> k̃; see section 2.1.1.
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The set of points (kt ,qt) for which there is no change in qt , i.e., for which
 (kt ,qt) = qt , is easy to characterize. Indeed,

 (kt ,qt) = qt ⇐⇒ 1+ n
f ′(kt)γ

= 1 ⇐⇒ kt = kγ .

Hence, the phase line  (kt ,qt)= 0 is a vertical line in the space (qt , kt) that
crosses the horizontal axis at kt = kγ . The function is plotted in the right
panel of figure 2.4. To describe the direction of change in qt , we remark that
 (kt ,qt) increases strictly with kt . Hence, qt + 1<qt on the left of the line and
qt+1 > qt on the right of the line. The corresponding direction of motion are
also plotted in the figure.

We now gather the information on a single diagram, tracing various
possible time paths for the dynamics (2.21)–(2.22). The intersection of the
two phase lines represents the steady state. Notice that the two phase lines
intersect at the modified golden rule level, which lies to the left of the golden
rule level. Figure 2.5 illustrates that there is only one trajectory converging to
(kγ ,qγ ), which is the optimal solution.All other trajectories lead to a zero level

kt

qt

qγ

kγ kGR

Figure 2.5. The phase diagram. The steady state lies at the intersection of the two
phase lines. There is only one trajectory that converges to the steady state, which is
the optimal one. All other trajectories lead to a zero level of capital or an infinite
level of its shadow price.
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of consumption or of capital. It also shows that for a given initial condition k0
there is only one value for q0 on the saddle path converging to the steady state.
The use of the phase diagram is illustrated in an application in section 2.6.3.

Let us finally show what the phase diagram looks like in discrete time and
consider an economy with a CES production function with ρ = 1, α = 1/2,
and a logarithmic utility. Let us take the numerical values presented in section
A.5.2: A= 20, β = 0.3, n = 1.02530 − 1. Assuming further that γ = 0.99, the
dynamical system is (2.21)–(2.22):

kt+1 = −24.8 + 19.1(1+ kt)ktqt
(1+ kt)2qt ,

qt+1 = 0.053(1+ kt)2qt .

The steady state is at q = 0.116, k= 3.345. The phase diagram is represented
in figure 2.6 in the space (kt , lnqt). The phase lines are represented by bold
lines. A series of diverging trajectories have been computed by fixing different
initial conditions q0, k0. The optimal trajectories (squares+ dashed lines) have
been computed by finding the appropriate level of (qt)t≥0 using the method
presented in appendix A.5.4.

2 4 6 8 10 12
k

�4

�3

�2

�1

0

ln q

Figure 2.6. Numerical example of a phase diagram. The bold lines represent the
phase lines. The dotted lines represent the exploding trajectories. The dashed lines
represent the converging trajectories (saddle path).
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2.5 unbounded optimal growth

AssumingA9,wehaveproposed in theprevious sectiona local stability analysis
of stationary optimal allocations. In the case where A9 is not verified, there
exists no interior optimal steady state. In this case, as shown in section 2.3.3,
under the assumptions A6 and A7, the optimal solution exists and the capital
stock dynamics aremonotonic and converge to a limit which is either 0 or+∞.
We study in this section particular cases in which the assumptionA9 is violated
and capital grows unboundedly. We still use A6 and A7 as sufficient conditions
for the existence of the optimal path.More precisely, we shall useA6 andA7 to
derive conditions on the parameters under which there is an optimal solution
displaying unbounded growth.

We shall show that unbounded growth is possible if and only if A∞ =
f ′(+∞) ≥ 1 + n. To this end, we study the sequence of the maximum fea-
sible capital k̄t .

As shown in appendix A.1.2, the marginal productivity of capital and the
average productivity f (k)/k are decreasing functions which have the same
limit when k tends to +∞:

A∞ = f ′(+∞) = lim
k→+∞

f (k)
k
.

The highest possible growth of the maximum feasible capital is obtained with
no consumption and satisfies, given k̄0:

k̄t+1 = 1
1 + n f (k̄t),

k̄t+1

k̄t
= 1

1 + n
f (k̄t)

k̄t
>
A∞
1 + n .

Then, when A∞ ≥ 1 + n, k̄t is increasing and tends to +∞. When the maxi-
mum feasible capital grows without limit, optimal unbounded growth is made
possible. Conversely, when A∞ < 1 + n, then for k̄t large enough, we have
f (k̄t)/k̄t < 1 + n and k̄t+1 < k̄t .
Assuming that unbounded growth is possible, i.e., A∞ ≥ 1 + n, we look for

the conditions under which A6 and A7 hold, guaranteeing the existence of an
optimal planner’s solution. We assume a CIES utility function:

u(c) = c1−
1
σ

1 − 1
σ

, σ > 0,

and for σ = 1,u(c) = ln c.

2.5.1 Existence of Optimal Paths When σ > 1

When the inter-temporal elasticity of substitution is larger than one, the CIES
utility is positive for all consumption levels and A7 holds. To study A6, we
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look for γ0 > 0 verifying A6 and analyze the sequence of discounted utilities
evaluated at the maximum possible consumption:

h̄t = γ t0u( f (k̄t)) = γ t0
[(1+ n)k̄t+1]1−

1
σ

1 − 1
σ

.

We have then

h̄t+1

h̄t
= γ0

(
f (k̄t+1)

(1+ n)k̄t+1

)1− 1
σ

,

which implies

lim
t→+∞

h̄t+1

h̄t
= γ0

(
A∞
1+ n

)1− 1
σ

,

i.e., h̄t+1/ h̄t converges. Thus, for h̄t to be bounded, it is sufficient that

γ0

(
A∞
1 + n

)1− 1
σ

< 1.

To have this with γ0 > γ , it is sufficient to have

γ

(
A∞
1+ n

)1− 1
σ

< 1 ⇔ γ <

(
1 + n
A∞

)1− 1
σ

. (2.25)

This condition is in fact also necessary for the existence of γ0 > γ such that
A6 holds. The same condition holds for γ t0u((1 + n) f (k̄t)), as the ratio h̄t+1/ h̄t
will remain the same.

From the studymade in section 2.3.3, the optimal growth path exists if (2.25)
holds together with σ > 1.

This optimal path displays unbounded growth if and only if

1 + n
A∞

≤ γ <
(
1+ n
A∞

)1− 1
σ

.

This condition determines an interval of γ when A∞ > 1+ n. In the other
cases, i.e., when growth is bounded, k�t converges to kγ when

1 + n
f ′(0)

< γ <
1 + n
A∞

,

and k�t converges to 0 when

γ ≤ 1 + n
f ′(0)

.

The different types of solutions are represented as a function of γ in figure 2.7
(assuming f ′(0) finite). The interpretation of this picture is straightforward:
if the planner puts little weight on future generations (and f ′(0) is finite),
it is optimal to consume the production almost entirely, and let the capital
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0 1

γ
No solutionlim kt kγlim kt 0

1 n
f 0

1 n
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1 1
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lim kt ∞

Figure 2.7. Case σ > 1, A∞ > 1 + n.

tend to zero in the future. On the contrary, when future generations have a
large weight in the objective and when technology in favorable (A∞ > 1+ n),
optimal growth is unbounded. Convergence to the modified golden rule arises
in the intermediate cases.

2.5.2 Existence of Optimal Paths When σ < 1 (and γ ≥ 1)

When σ < 1, the CIES utility is negative for all consumption levels and condi-
tionA6 holds. As f (k̄0) > (1 + n)k̄0 (since A∞ ≥ 1 + n and f (k)/k is decreas-
ing), a constant path is feasible with c0 = d0/(1+ n) = 1

2 [ f (k̄0)− (1+ n)k̄0].
Thus, for γ < 1, A7 holds.

We want to investigate the scope of the assumption A7 when γ ≥ 1. For
example, γ = 1 in the Ramsey problem, or γ = 1 + n if the planner puts equal
weight on each individual (utilitarian objective function). This eventuality
makes sense in that infinite levels of capital and consumption are possible.
We thus consider the feasibility of some paths with a finite value of the plan-
ner’s objective (i.e., in this case, different from −∞).

Assume A∞ > 1+ n, and let us build the following feasible path. There
exists ε such that 1/2 > ε > 0 and (1− 2ε)A∞ > 1+ n, and thus

kt+1 = 1 − 2ε
1 + n f (kt), k0 = k̄0,

is increasing and tends to +∞. The consumptions:

ct = ε f (kt) and dt = (1+ n)ε f (kt),

together with kt , are a feasible path (ct ,dt , kt+1)t≥0 starting at k̄0. The sequence
of discounted utilities lt = γ t u(ct) and γ t u(dt) satisfy

lt+1

lt
= γ

(
f (kt+1)
f (kt)

)1− 1
σ

= γ

(
f (kt+1)(1− 2ε)
(1 + n)kt+1

)1− 1
σ

,

and

lim
lt+1

lt
= γ

(
A∞(1 − 2ε)

1 + n
)1− 1

σ

.
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Figure 2.8. Case σ < 1, A∞ > 1+ n.

The convergence of the infinite sum of utilities is equivalent to

γ

(
A∞(1− 2ε)
(1+ n)

)1− 1
σ

< 1 ⇔ γ <

(
A∞(1 − 2ε)

1 + n
) 1

σ
−1

,

and the condition of existence of such a path with ε > 0 is equivalent to

γ <

(
A∞
1 + n

) 1
σ
−1

.

This condition, which is the same as in the case σ > 1, is sufficient for the
existence of an optimal solution. It allows in the case σ < 1 for discount factors
that are larger than one when A∞ > 1+ n, i.e., when the long-run marginal
productivity of capital net of depreciation is larger than the growth rate of
the population. A sufficient condition of existence for γ = 1 + n (utilitarian
planner) is

A∞ > (1+ n) 1
σ−1 .

The optimal growth path is unbounded under the same conditions:

1 + n
A∞

≤ γ <
(
A∞
1+ n

) 1
σ
−1

.

These results are summarized in figure 2.8.

2.5.3 Existence of Optimal Paths When σ = 1

In this case, u(c) = ln c. The two conditions A6 and A7 should be analyzed.
Consider A6. As we have seen before, when A∞ > 1+ n, the sequence (k̄t)

defined by k̄t+1 = f (k̄t)/(1+ n) is increasing and tends to +∞. The highest
possible discounted utility of first-period consumption is then

h̄t = γ t0 ln f (k̄t) = γ t0 ln[(1 + n)k̄t+1],

and we have

h̄t+1

h̄t
− γ0 = γ0

(
ln[ f (k̄t+1)]

ln[(1 + n)k̄t+1]
− 1
)

= γ0

ln
( f (k̄t+1)
(1+n)k̄t+1

)
ln[(1 + n)k̄t+1]

.
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The numerator tends to the finite limit ln[A∞/(1+ n)] > 0, and the denomi-
nator tends to +∞. Hence,

lim
t→+∞

h̄t+1

h̄t
= γ0,

and the condition “∃γ0 > γ such that h̄t is bounded” is equivalent to γ < 1.
A similar reasoning applies to the upper bound of the discounted utility of

second-period consumption,

γ t0 ln[(1 + n) f (k̄t)],
which gives the same conclusion.

Consider A7. As f (k̄0) > (1+ n)k̄0 when A∞ > 1 + n, there exists a con-
stant path starting from k̄0 > 0:

c0 = d0
1+ n = 1

2
[ f (k̄0)− (1+ n)k̄0].

With this path, utilities are constant and A7 holds when γ < 1.
Hence, with a logarithmic utility function, the usual restriction γ < 1 is suf-

ficient to guarantee the boundedness of the objective function. This property
is widely used in the literature.

2.5.4 General Result

We have thus a general conclusion for the CIES utility function, with A∞ =
f ′(+∞) > 1+ n, which is summarized in the following proposition.

Proposition 2.15 (Unbounded optimal growth)
Assume A∞ = f ′(+∞) > 1 + n. There exists an optimal planner’s solution for
the CIES utility function with elasticity σ if

γ <

(
1+ n
A∞

)1− 1
σ

. (2.26)

This solution exhibits unbounded growth when

1 + n
A

≤ γ <
(
1 + n
A

)1− 1
σ

.

There are thus some cases for which optimal growth is unbounded although
the competitive equilibrium leads to bounded dynamics.

2.5.5 The Long-run Growth Rate

When the conditions are met for unbounded optimal growth, the optimal
allocation tends to a balanced growth path, i.e., a situation where quantities
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grow at a constant rate. We now compute the value of the long-run optimal
growth rate.

Following (2.15) and (2.16), the optimal path satisfies, for a CIES utility
function, (

c�t+1

c�t

) 1
σ

=
(
d�t+1

d�t

) 1
σ

= u′(d�t )
u′(d�t+1)

= γ f ′(k�t+1)

1+ n .

In the case, A∞ = f ′(+∞) ≥ 1+n
γ
, k�t+1 tends to +∞, and

lim
t→+∞

c�t+1

c�t
= lim
t→+∞

d�t+1

d�t
=
(
γ A∞
1 + n

)σ
.

Then the long-run growth rate of consumption levels and output is given by(
γ A∞
1+ n

)σ
− 1.

Example: Let f ′(+∞)> 1 + n be the following: f (k) = Ak+ Bkα, with 0<α< 1
and A> 1 + n (from Jones and Manuelli (1990)).
We first notice that

f ′(0) = +∞ and f ′(+∞) = A.

If the condition

γ <

(
1 + n
A

)1− 1
σ

holds, we know from propositions 2.11 and 2.15 that the optimal solution exists,
is monotone, and satisfies

lim k�t =




(
αγ B

1 + n− γ A
) 1

1−α
if
1 + n
γ

> A,

+∞ if A≥ 1 + n
γ

.

We cannot solve the planner’s problem explicitly in the case of the example,
but we can do it with the linear production function f (k) = Ak and a CIES
utility function. The production function f (k) = Ak is a standard assump-
tion in endogenous growth theory, in which the social return to capital (or
more generally to the reproducible factors) is constant. This line is pursued in
section 2.6.5.

2.6 applications and extensions

In this section, we first extend the analysis of section 2.3.3 in order to include all
cases whereA8 is not verified. Two applications follow:We illustrate the effect
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of the inter-temporal elasticity of substitution on the speed of convergence
in section 2.6.2. We next illustrate the use of the phase diagram in section
2.6.3. Competitive equilibria and the optimal path are then characterized with
a specific production function in section 2.6.4. Finally, optimal growth in the
model with a linear technology is studied in section 2.6.5.

2.6.1 Properties of the Policy Functions When f (0) > 0

Following Lemma 2.2, f (0) = 0 implies the assumption A8. When f (0) > 0,
A8 may or may not be verified.We list here the main differences from the case
f (0) = 0:

� The planning problem is defined when the initial condition is k0 = 0.
� The assumption A7 holds when γ < 1: with c = d/(1 + n) = f (0)/2 and
k= 0, we obtain a feasible trajectory such that the objective function is
finite.

� With the assumption A6, the value function is defined on R+, concave, and
non-decreasing. It is continuous on R++ (but not necessarily at 0), and it
satisfies the Bellman equation (2.10). The upper bound is taken on the set
of pairs (c,d) which satisfies c > 0, d > 0, and c + d/(1+ n) ≤ f (k). We
need the continuity of V at zero to be sure that the upper bound (2.10) is
reached.

In the following proposition, it appears that main difference from the case
f (0) = 0 is the eventuality of zero optimal investment. When investment is 0,
the economy reaches 0 in a finite time, remains there, and produces. This is
why we have only weak monotonicity of the investment policy function.

Proposition 2.16 (Properties of the policy function when f (0)> 0)
Under the assumptionsH1,H2,H4, and f (0) > 0, the value functionV is contin-
uous, concave, and increasing in R+. The consumption functions c� and d� are
continuous and increasing in R+, and the investment function x� is continuous
and non-decreasing in R+.

Proof: The proof follows three steps.
1. We should first show that V is continuous at 0. As V is non-decreasing,

there exists a limit V(0+) with V(0+) ≥ V(0). The function V̄(·) defined
on R+ by V̄(k) = V(k) if k> 0 and V̄(0) = V(0+) is continuous. Then
the continuous function

u(c) + β

γ
u(d)+ γ V̄

(
f (k)− c − d/(1+ n)

1 + n
)
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attains its upper bound. Taking a limit point19 (c̄, d̄) of the sequences
thatmaximize our objective for a sequence k> 0 tending to 0, we obtain

V(0+) = u(c̄)+ β

γ
u(d̄)+ γ V̄(x̄), x̄ = f (0) − c̄ − d̄/(1+ n)

1 + n .

� If x̄ > 0, then V̄(x̄) = V(x̄) and V(0+) = u(c̄) + β

γ
u(d̄) + γV(x̄) ≤

V(0).
� If x̄ = 0, then V̄(x̄) = V(0+) and thus V(0+)(1− γ ) = u(c̄) + β

γ
u(d̄).

As the constant trajectory (c̄, d̄) and k= 0 is feasible from k= 0, we
have

V(0) ≥
∞∑
t=0

γ t
(
u(c̄) + β

γ
u(d̄)

)
= 1

1 − γ
(
u(c̄) + β

γ
u(d̄)

)
= V(0+).

We thus obtain, in the two cases, V(0+) ≤ V(0), which implies the con-
tinuity of V at 0: V(0+) = V(0).

2. The maximum of the continuous and strictly concave function (2.13) is
attained at a unique point (c�(k),d�(k)) ∈ R

2
++. Let us show that

x�(k) = 1
1+ n

(
f (k)− c�(k) − d�(k)

1+ n
)

is monotonic:
� If x�(k) > 0, the maximum is attained at an interior point and the
function V is differentiable at x�(k). As in proposition 2.9, we deduce
that x�(k) is increasing, as well as c�(k) and d�(k). It results that x�(k′)
is positive for all k′ > k.

� If x�(k) = 0, we have, for all k′ > k, x�(k′) ≥ 0, and thus x�(k′) ≥
x�(k). The function x� is thus non-decreasing: It could be nil on an
interval that contains 0. As c�(k)+ 1

1+nd
�(k) = f (k) on the interval

where x�(k) = 0, and as the maximization of the objective at given
x� gives

u′(c�(k)) = β(1+ n)
γ

u′(d�(k)),

c� and d� are increasing functions of k.
3. The last step is to show that V(k) is strictly increasing. We have

V(k) = u(c�(k))+ β

γ
u(d�(k))+ γV(x�(k)).

For k′ > k, c′ = c�(k) + f (k′)− f (k) is feasible with d′ = d�(k) and

x′ = 1
1 + n

(
f (k′)− c′ − d′

1+ n
)

= x�(k).

19 For a definition of limit points, see appendix A.2.4.
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We thus have

V(k′) ≥ u(c′)+ β

γ
u(d′)+ γV(x′) > V(k),

as u(c′) > u(c�(k)).

As in section 2.3.3, the monotonic dynamics obtained from the Bellman equa-
tion are the ones of the optimal pathwhen anoptimal path exists. The existence
is guaranteed under the assumption A6.

Proposition 2.17 (Existence of the optimal path when f (0)> 0)
Under the assumptions H1, H2, A6, and A7, the path starting from k0 defined
by the policy functions defined in proposition 2.16 is the optimal solution to the
planning problem.

Proof: The proof also results from proposition A.13 of appendix A.4.1.

2.6.2 Application: The Optimal Speed of Convergence

When the capital stock is far below its long-run level, should the economy
invest massively by refraining consumption in order to grow quickly or, on
the contrary, should the pace of convergence be slow? The answer depends
crucially on household preferences. Let us consider an economy with a CIES
utility function and a CES production function with the numerical values of
section A.5.2: ρ = 1, α = 1/2, A= 20 (i.e., f (k) = 40k/(1 + k)), β = 0.3, n =
1.02530 − 1. Assuming further that γ = 0.99.

We now investigate the effect of different inter-temporal elasticities of sub-
stitution on the dynamics. Notice that σ does not affect kγ , which depends
only on demographics and technology.

From the simulation results presented in table 2.1, it appears thatσ is related
to the speed of convergence. For a very high σ (σ = 10), the stock of capital
quickly comes very close to its stationary state. On the contrary, for low σ
(σ = 0.2), convergence is quite slower. The rationale for this is the following:
To converge optimally, the planner lowers the first-period consumption for the

Table 2.1. Convergence of kt

kt

σ = 0.2 σ = 1 σ = 10
Time
t

0 3.000 3.000 3.000
1 3.205 3.291 3.338
2 3.291 3.337 3.345
3 3.324 3.344 3.345
∞ 3.345 3.345 3.345
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benefit of investment, compensating each generation with a higher consump-
tion when old (made possible by more capital and hence production). When σ
is low, households lose utility from this postponement of consumption, and it
is expensive in terms of welfare for the planner to foster capital accumulation
at a high rate.

2.6.3 Application: Rise in β

To illustrate the use of the phase diagramwe consider the effect of a rise in the
individual discount factor, reflecting the fact that agents put more weight on
the utility when old.20 We compare, using the phase diagrams, the response of
the competitive economy with that of the central planner in the face of such a
shock.

Assuming a unique positive steady state in the competitive economy (left
panel of figure 2.9), it is straightforward to show, using equation (1.9), that the
increase in β raises the savings rate; this shifts the transition function g(kt),
reflecting the fact that the propensity to save out of income has increased.
The rise in savings lead to a rise in investment, and the capital stock increases
during the following periods, converging to a new, higher steady state. The
increase in the stock of capital hurts the first generation after the shock, who

kt 1

kt

qt

kt

g kt

∆qt 1 0

∆kt 1 0

Increase in β

Figure 2.9. Rise in the individual discount factor. Following a rise in the individual
discount factor, the steady state capital stock increases in the competitive economy,
but not in the planned economy.

20 This could, under several assumptions, reflect an increase in life expectancy; see Ehrlich
and Lui (1991). For a treatment of life expectancy in a discrete time overlapping genera-
tions model, see Chakraborty (1999), Blackburn and Cipriani (2002), and Zhang, Zhang,
and Lee (2001).
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suffer a lower return on savings; if the economy is characterized by under-
accumulation of capital, the rise in capital benefits to all future generations
throughan increase innetproduction.Contrarily, if there isover-accumulation,
the rise in the capital stock decreases net production in the future.

In the optimal economy (right panel of figure 2.9) we have seen that the
planner allocates consumption between the two periods of life as a given in-
dividual would. All things being equal, the shift in β should lead to a rise in
consumption when old at the expense of consumption when young. This effect
is graphically reflected by an upward shift in the kt+1 = kt locus.21 Moreover,
the qt+1 = qt locus remains unchanged. As a consequence, starting from the
modified golden rule, the dynamic effect of the rise in β is a sudden, once for
all increase in q and no change in k. As qt = u′(ct) f ′(kt), there is a once for
all decrease in ct and a corresponding increase in dt . The new steady state
displays a higher level of consumption when old and the same level of the
capital stock. The adjustment to this new steady state is instantaneous. This
shows that the planner does not modify the tradeoff between the welfare of
the different generations. He will thus leave the stock of capital unchanged
and simply reallocate production between the young and the old households.

2.6.4 A Mixed CES–Linear Production Function

We take the standard two-period model with a logarithmic utility function
ln ct + β lndt+1 and a production function which consists of a sum of a linear
production function that does not use capital, F(K, L) = bL, and a CES pro-
duction function. This production function is rich enough to illustrate many
results derived in this chapter.

We chose the following particular values for the parameters: A= a/2, α =
1/2, ρ = 1, which leads to the production function

f (k) = b+ ak
1 + k.

The returns on capital and labor are given by

f ′(k) = a
(1+ k)2 , ω(k) = b+ ak2

(1+ k)2 .

This production function has the following properties:

lim
k→0

f (k) = b, lim
k→0

f ′(k) = a, lim
k→+∞

f ′(k) = 0.

As in the case of a simple CES production function with high substitutabil-
ity, production is possible without capital; in contrast, however, the marginal
productivity of capital tends to 0 when capital tends to infinity.

21 This is an unambiguous effect, given the definition of the kt+1 = kt locus.
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kt 1

kt

kt 1

kt

Figure 2.10. Competitive dynamics with f (k) = b+ ak
1+k . Examples with one and

three steady states.

In a competitive equilibrium, the dynamics are characterized by

kt+1 = β

(1+ n)(1 + β)
(
b+ ak2t

(1+ kt)2
)
.

Steady state equilibria can be obtained by finding the roots of a cubic equation.
Depending on the values of the different parameters, we can have one, two, or
three positive steady states (see figure 2.10). There exists at least one steady
state because ω(0) > 0, and the curve starts above the 45◦ line.

Let us now consider optimal paths with this production function. The as-
sumption A6 hold for γ < 1, as kt is bounded by k̄t s.t. (1 + n)k̄t+1 = f (k̄t):

k̄t+1 = 1
1+ n

(
b+ ak̄t

1 + k̄t

)
<
b+ a
1 + n .

The assumption A7 also holds, as c = d/(1+ n) = b/2 is feasible. Then, from
proposition 2.17, for any k0 > 0, there exists an optimal solution (c�t ,d

�
t , k

�
t )

which is monotonic. Moreover, since f ′(+∞) = 0, there are two possibilities
for the limit of the optimal trajectory:22

� if 1+n
γ
< f ′(0) = a, then k�t converges to the modified golden rule:

kγ = f ′−1
(
1+ n
γ

)
=
√
γ a
1 + n − 1;

� if γ < 1+n
a , then k�t converges to 0, and then necessarily the investment

policy function is such that x�(0) = 0.

Let us show by a reductio ad absurdum that k�t reaches 0 after a finite number
of steps when γ ≤ 1+n

a . Assume that k�t > 0 for all t , i.e., the optimal solution

22 In the knife edge case 1+n
γ

= a, the modified golden rule coincides with the corner steady
state. The optimal capital is positive at all dates and converges to 0.
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is interior. Note that

u′−1
(

qt
f ′(kt)

)
=
(
1 + β

γ

)
f ′(kt)
qt

.

According to (2.21) and (2.22), the optimal solution, if it is interior, is charac-
terized by

k�t+1 = 1
1 + n

[
b+ ak�t

1 + k�t
−
(
1 + β

γ

)
a

qt(1+ k�t )2
]
,

qt+1 = 1 + n
γ

qt
a
(1+ k�t )2.

The following inequality holds:

qt+1 = 1+ n
γ

qt
a
(1+ k�t )2 >

1+ n
γ a

qt .

As 1+ n > aγ , we have that limqt = +∞. Using the first dynamical equation,
k�t has a limit k̄

� such that

ak̄� = [(1+ n)k̄� − b](1+ k̄�),
which contradicts lim k�t = 0. This implies that the optimal capital stock should
be nil after a finite number of periods.

2.6.5 Optimal Growth in the Ak Model

The Ak model is amodelwith the linear aggregate production function f (k) =
Ak.23 As stressed before, f (k) = Ak is a good approximation of a function
f (k) such that f ′(+∞) = A for large value of k, and it gives the optimal long-
rungrowth rateof the economy.Moreover, theproduction function f (k) = Ak
is a standard assumption in endogenous growth theory, in which the social
marginal return of capital (or more generally of the reproducible factors) is
constant.

There are two different interpretations of this model in the endogenous
growth literature. The simplest one is due to Rebelo (1991): the variable k
represents all production factors, which are assumed to be reproducible (like
physical capital and human capital). Another interpretation, proposed by
Romer (1989), relies on the idea of Frankel (1962). He assumes a standard
Cobb–Douglas production function for firm j :

Yj = ÃKαj L
1−α
j ,

23 The Ak production function does not satisfy the assumption H2. Notice, moreover, that we
do not need strict concavity to study the sufficient and necessary conditions for optimality
(see appendix A.4.2, assumption B3).
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inwhich the productivity parameter depends on the overall capital–labor ratio:

Ã= A(K/L)a,

i.e., the stock of knowledge depends on the amount of capital per capita in
the economy (through, e.g., learning-by-doing). When α + a = 1 and when
the labor supply is constant and normalized to 1, we obtain the so-called AK
production function, in which the social return that takes into account the
external effects of the total capital stock is constant, but the private return
is decreasing.24 The AK model stricto sensu with externalities is presented in
Romer (1989).

The following proposition characterizes the optimal solution when the util-
ity function is CIES.

Proposition 2.18 (Optimal solution with linear production)
In the caseof a linearproduction function f (k) = AkandaCIESutility function
with elasticity σ , assuming that the planner’s discount factor verifies

γ <

(
A

1 + n
) 1

σ
−1

,

the optimal solution given an initial level of capital k0 is the path (c�t ,d
�
t , k

�
t+1)t≥0

growing at the constant rate

g =
(
Aγ
1 + n

)σ
− 1,

with

c�0 = A− (1+ n)(1+ g)
1 + 1

1+n
( (1+n)β

γ

)σ k0 and d�0 =
(
(1+ n)β
γ

)σ
c�0.

Proof: We first consider the necessary first-order conditions for optimality.
Next we check the transversality condition and compute the initial value of
optimal consumption.

� Necessary conditions: With the linear production function, the Lagrangian
in period t is

Lt = u(ct) + β

γ
u(dt)+ γqt+1

1+ n
(
Akt − ct − dt

1+ n
)

− qt kt ,

24 Frankel’s ideaof the externalitywasfirst exploited in adynamic general equilibriummodel by
Romer (1986) (with increasing returns) and further popularized by Lucas (1988) (increasing
returns for the human capital).
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and the optimality conditions are

u′(c�t ) = γqt+1

1+ n ,

β

γ
u′(d�t ) = γqt+1

(1+ n)2 , (2.27)

γqt+1A
1+ n = qt .

From (2.27), the shadow price qt admits a constant growth rate

1 + n
Aγ

− 1,

which is negative if A< (1+ n)/γ , positive if A> (1+ n)/γ , or nil if
A= (1 + n)/γ . In the case of a CIES utility function,25 u′(c) = c−1/σ , it
is possible to obtain an explicit solution. With this utility function, the two
consumptions ct and dt grow at a rate g defined by

1 + g =
(
Aγ
1 + n

)σ
, (2.28)

and we have

c�t = c�0(1+ g)t and d�t =
(
(1+ n)β
γ

)σ
c�t .

Thus, total consumption per young person is

c�t + 1
1 + n d

�
t = νc�0(1+ g)t , with ν = 1 + 1

1+ n
(
(1+ n)β
γ

)σ
,

and the dynamics of the capital stock are

k�t+1 = 1
1 + n [Ak

�
t − νc�0(1+ g)t ]. (2.29)

� Sufficient condition: There exists a unique value of c�0 such that the capital
stock k�t in the solution to (2.29) grows at the same rate g as the consump-
tions:

k�t = k0(1+ g)t ⇐⇒ νc�0 = [A− (1+ n)(1+ g)]k0,

25 As is known, long-run growth with a balanced growth path can coexist with a special type
of utility function, namely the CIES type, for which marginal utility grows at a constant rate
(see, e.g., King, Plosser, and Rebelo (1990)).
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and thus this value of c�0 is positive if and only if

A> (1+ n)(1+ g). (2.30)

In addition, the condition (2.30) implies that the transversality condition
holds. Indeed,

γ tqt k�t = γ tq0

(
1+ n
Aγ

)t
k0(1+ g)t ,

and the limit of γ tqt kt is equal to 0 when (1+ n)(1 + g) < A. Thus the path
under consideration is the planner solution if (2.30) holds.

Unbounded growths prevail if and only if γ > 1+n
A . In the case γ < 1+n

A , which
corresponds to the case f ′(0) = A< 1+n

γ
, capital and consumptions decrease

along the optimal path at a constant rate g < 0 and converge to 0. Only in
the case γ = 1+n

A does there exist a stationary solution: this is the case where
g = 0 in the preceding study, and for all k0, the constant solution defined in
the proposition is the optimal path.

Notice finally that the condition (2.30) is also equivalent to the convergence
of the objective function. Indeed, the growth factor of the discounted utility is

γ (1+ g)1−1/σ = γ (1+ g)1+ n
Aγ

by (2.28)

= (1+ g)(1+ n)
A

,

which is smaller than 1 if and only if (1+ n)(1 + g) < A.
Intuitively it is clear that the growth rate of capital, if it is constant, is

necessarily equal to the growth rate of consumptions. If it is larger, there is
a loss of feasible consumptions. If it is smaller, then the capital stock would
become negative.

2.7 conclusion

In this chapter, we have first analyzed one of the main issues of overlapping
generations models, namely, the possibility for competitive equilibria to be
suboptimal. The specificity of our approach was first to carefully distinguish
efficiency issues (extending theproduction frontier toan infinitehorizon setup)
from welfare issues (discussing the allocation of total consumption among all
generations). Second, all the propositions, including the first welfare theo-
rem, are provided for inter-temporal equilibria, not only for stationary state
equilibria.

The problem of the planner is a problem of optimal control in which the
existence, uniqueness, and characterization (monotonicity and convergence)
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of the solution do not rely on the study of the local dynamics, but on the very
nature of the optimal growth problem itself (concavity and boundedness of
the objective). Moreover, the dynamical properties arising from the saddle-
point local property are consequences of the existence and uniqueness of the
optimal path.26

Wehave studied the value function associated to the problemof the planner
and its properties. We have also provided a local analysis when there exists a
stationary state, and a characterization of the optimal solution when growth
is unbounded.

26 More generally, the uniqueness of the solution, which results from the strict concavity of the
problem, implies that the stationary state is either a saddle or a source.
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Policy

The overlapping generations model provides an interesting toolkit to analyze
various types of policies. In particular, it is the requisite tool for studying
intergenerational distribution issues, such as the design of pension schemes.
In this chapter, we devote our attention to different balanced budget policies
for which an overlapping generations setup is of significant interest. Policies
associated with public debt will be considered in chapter 4.

In a first section, we introduce lump-sum transfers in the competitivemodel
of chapter 1 and study the policies designed to decentralize the allocation
chosen by the benevolent planner.We show that anyPareto-optimal allocation
can be decentralized with lump-sum transfers (Second Welfare Theorem).
In the second section, the equilibrium with lump-sum transfers is used to
study pension systems. The fact that transfers to the old are positive in a
pension system allows us to further characterize the equilibrium and discuss
the effect of pensions on capital accumulation. The third section is devoted
to the study the role of government spending. We analyze, in section 4, the
problem of financing such spending when the government cannot use lump-
sum taxes (second-best policies). In section 5, we provide some applications
and extensions.

3.1 lump-sum transfers and the second welfare theorem

3.1.1 Equilibrium with Lump-sum Transfers

We extend the model of chapter 1 and assume that there is a transfer system.
There are lump-sum taxes at bearing on the young generation, and−zt bearing
on the old generation. The tax at can be either positive or negative, but should
remain smaller that the income of the young. For the generation born at time
t , the first-period budget constraint is

wt − at = ct + st , (3.1)

129



130 A Theory of Economic Growth

and the second-period budget constraint is

det+1 = Ret+1st + zet+1,

in which zet+1 is the expected lump-sum transfer when old, and Ret+1 is the
expected interest factor.

The budget of the system that organizes the transfers should remain
balanced:

Ntat = Nt−1zt ⇐⇒ zt = (1+ n)at .
The optimal savings of the representative individual are

st = argmax
s
u(wt − at − s)+ βu(Ret+1s + zet+1

)
,

and thus, for an interior solution,

u′(wt − at − st) = βRet+1u
′(Ret+1st + zet+1

)
.

The Savings Function. We define

s̃(ω1, ω2,R) = argmaxu(ω1 − s)+ βu(ω2 +R s), (3.2)

which are the optimal savings of a household receiving a first-period incomeω1
and a second-period income ω2. The function s̃ is defined for positive interest
factor and life-cycle income (i.e., R > 0 and ω1 + ω2/R > 0) and satisfies

−ω2
R

< s̃ < ω1.

This inequality ensures that both consumption levels are positive:

ct > 0 and det+1 > 0.

There is a simple relation linking savings with first- and second-period income
(s̃) and savings with first-period income only (s). Indeed, the expression

u(ω1 − s) + βu(ω2 +R s)
is equivalent to

u
(
ω1 + ω2

R
−
(
s + ω2

R

))
+ βu

(
R
(
s + ω2

R

))
,

from which we deduce that

s
(
ω1 + ω2

R
,R
)

= s̃(ω1, ω2,R)+ ω2

R
. (3.3)

Hence, to compute the savings with a second-period income, s̃(ω1, ω2,R), we
can take the standard savings function of chapter 1 defined over the life-
cycle income s(ω1 + ω2/R,R) from which we subtract the discounted second-
period income ω2/R. This allows us to characterize easily the properties of
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s̃(·). Indeed,
s̃ ′ω1 = s ′w > 0,

s̃ ′ω2 = 1
R
(s ′w − 1) < 0,

s̃ ′R = s ′R + ω2

R2
(1 − s ′w).

The effect of the first-period incomeon savings is positive, as in the basicmodel
of chapter 1. As expected, the effect of the second-period income on savings is
unambiguously negative. Indeed, the need of savings is reduced by an increase
in the second-period income. The effect of the interest factor is more complex
to study. In particular, if the second-period income is positive (negative), then
s̃ ′R > s

′
R (s̃

′
R < s

′
R), and savings react more positively (more negatively) than in

the standard model.

The Temporary Equilibrium. The temporary equilibrium can now be de-
fined as:

Definition 3.1 (Temporary equilibrium with lump-sum transfers)
Given the variables {st−1, It−1 = Nt−1st−1} from the previous period, the current
transfer at , the expected rate of return on savings Ret+1, and the expected future
transfer zet+1, the temporary equilibrium at period t with lump-sum transfers is
defined by

1. the wage rate wt and the gross rate of return Rt , satisfying

wt = ω(kt),

Rt = f ′(kt),

2. the aggregate variables Kt , Lt , Yt , kt , and It , satisfying

kt = Kt/Nt = It−1/Nt ,

Lt = Nt ,

Yt = Nt f (kt),

It = Ntst ,

3. the individual variables ct , st , and dt , satisfying

ct = wt − at − st ,
st = s̃(ω(kt)− at , zet+1,R

e
t+1

)
,

dt = Rtst−1 + zt ,
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4. and the lump-sum transfers zt , satisfying

zt = (1 + n)at .

The temporary equilibrium with lump-sum transfers exists and is unique if the
following two conditions are met:

� The consumption of the old is positive:

f ′(kt)st−1 + (1+ n)at > 0,

which imposes a condition on at (lower bound).
� Savings are defined if the life-cycle income is positive:

ω(kt)− at +
zet+1

Ret+1
> 0,

which imposes a condition on expectations.

At this temporary equilibrium, investment is positive if and only if st > 0,
which imposes another necessary condition on the tax level at (upper bound):

at < ω(kt).

Moreover, there is one additional condition on expectations to guarantee the
positivity of savings:

s̃
(
ω(kt)− at , zet+1,R

e
t+1

)
> 0.

The Inter-temporal Equilibrium. The inter-temporal equilibrium with perfect
foresight is obtained as a sequenceof temporary equilibriawith positive invest-
ment by imposing the equality between savings and investment and between
expectations and realization.

Definition 3.2 (Inter-temporal equilibrium with lump-sum transfers)
Given an initial capital stock k0 = K0/N0 and a sequence of lump-sum trans-
fers (at)t≥0, an inter-temporal equilibrium with perfect foresight and lump-sum
transfers is a sequence of temporary equilibria that satisfies, for all t ≥ 0,

(1+ n)kt+1 = s̃ (ω(kt)− at , zet+1,R
e
t+1

)
> 0,

Ret+1 = Rt+1 = f ′(kt+1),

zet+1 = (1+ n)at+1.

Hence, at the inter-temporal equilibrium with perfect foresight, the stock of
capital of period t + 1 should verify the following implicit equation:

(1+ n)kt+1 − s̃(ω(kt)− at , (1+ n)at+1, f ′(kt+1)) = 0.

To analyze the existence of such an equilibrium, we follow the same strategy
as in chapter 1. However, compared to chapter 1, there are restrictions on
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taxes for the net wage to be positive and for savings with perfect foresight to
be defined and positive.1

Considering a given net wage w > 0 and a transfer z, we look for a capi-
tal stock k such that the expectations of the rate of return R(k) = f ′(k) will
lead to a savings decision s̃(w, z, f ′(k)) corresponding to the level of capital
accumulation. In other words, given w > 0 and z ∈ R, we wonder whether it
is possible to solve for k, the equation

�(k,w, z) ≡ (1+ n)k− s̃(w, z, f ′(k)) = 0.

It is enough to prove that�(k,w, z) takes values of opposite sign on one inter-
val of k’s for which it is defined. Indeed, when this is the case, the continuous
function �(k,w, z) will necessarily take the value 0 at some positive k.

We look for a k> 0 such that �(k,w, z) = 0. For such a k, we clearly have
s̃ > 0. The function � is defined only if k satisfies

w + z
f ′(k)

> 0,

i.e., if the life-cycle income is positive. Let us now consider the two possible
cases depending upon the sign of z

� Case z≤ 0: Since s̃ < w,�(k,w, z) > 0 for (1+ n)k≥ w. Values of k larger
than w/(1+ n) cannot be solution to �(k,w, z) = 0. On the one hand,
�(k,w, z) is defined for 0 < k≤ w/(1+ n) if and only if

z> −wf ′
(
w

1 + n
)
.

On this set savings are positive (case of negative transfer to the old). We
next study the value of � at the bounds of the interval (0,w/(1+ n)]. We
have for k= w/(1 + n)

�

(
w

1 + n ,w, z
)

= w − s̃
(
w, z, f ′

(
w

1 + n
))

> 0.

On the other hand, s̃(w, z, f ′(k)) ≥ s(w, f ′(k)) as z≤ 0. Hence, we have
for k ∈ (0, w

1+n)

�(k,w, z) ≤ (1+ n)k− s(w, f ′(k)).
As we have seen in chapter 1, the right-hand side becomes negative when
k approaches zero. Consequently, as 0 ≥ z> −wf ′(w/(1+ n)), �(k,w, z)
is equal to zero for some k> 0 such that 0 < k< w/(1+ n).

� Case z≥ 0: The functions s̃ and �(k,w, z) are defined for all k> 0. On
the one hand, considering k= w/(1+ n), we deduce from s̃(w, z, f ′(k)) <
w that �(k,w, z) > (1+ n)k− w = 0. On the other hand, there exists
k > 0 sufficiently close to 0 such that s(w, f ′(k)) > (1 + n)k. Fixing such

1 With perfect foresight, there is no longer a condition for the positivity of the consumption of
old people, except for the first period.
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a value of k, denoted k0, the same inequality holds with the func-
tion s̃: s̃(w, z, f ′(k0)) > (1+ n)k0 for small z, i.e., z< z̄0. Hence, �(k0,w,
z) < 0, and there exists, for 0 ≤ z< z̄0, a k> 0 such that �(k,w, z) = 0.

This proof simply reflects the fact that we cannot make any transfer. When z
is too large, the transfer to the old is so large that it could lead to s̃ < 0. When
z is too negative, the life-cycle income becomes negative, and savings are no
longer defined.

The difficulty of the preceding approach with lump-sum transfers is that, in
the analysis of existence, a conclusion can be reached only for small values of
z. A more general study will be provided with z constant and positive in the
next section. A more complete study is possible in the following example.

Example: With a logarithmic utility function, ln ct + β lndt+1, the savings are
given by

st = β

1+ β (wt − at)− 1
1+ β

zt+1

Rt+1
.

We assume a Cobb–Douglas production function f (kt)= Akαt . At the inter-
temporal equilibrium with perfect foresight, the sequence (kt) should satisfy

(1+ n)kt+1 = β

1 + β
(
A(1 − α)kαt − zt

1+ n
)

− zt+1

A(1+ β)αkα−1
t+1

> 0. (3.4)

Equation (3.4) always admits a solution kt+1 > 0 for all zt+1 if the net wage
is positive. Indeed, for all z ∈ R, the function

(1 + n)k+ zk1−α

A(1+ β)α
tends to 0 (+∞) when k tends to 0 (+∞). More precisely, when z≥ 0, this
function is increasing; when z< 0, it is first negative and decreasing for

kα < − (1− α)z
(1+ n)A(1 + β)α ,

attains a minimum, and is then increasing. In all cases, it takes the positive
value βw/(1 + β) for a unique value k> 0. But given a sequence of transfers
(zt), it is necessary to solve equation (3.4) in order to check at each step
that the conditions on transfers are verified. These conditions require a net
positive wage and a positive life-cycle income:

ω(kt) >
zt

1 + n ⇐⇒ zt < (1+ n)A(1− α)kαt ,

ω(kt)− zt
1 + n + zt+1

f ′(kt+1)
> 0.

The solution kt+1 > 0 automatically implies positive savings.
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It is much simpler to analyze proportional taxes or transfers, with at =
λtwt or zt = (1+ n)λtwt . Equation (3.4) then becomes

(1+ n)kt+1 = β

1 + β (1− λt)wt − (1+ n)λt+1wt+1

(1+ β)Rt+1
,

(1+ n)kt+1

(
1+ (1− α)λt+1

(1+ β)α
)

= βA(1− α)(1− λt)
1+ β kαt .

The condition for a positive net wage is

λt < 1 ∀t.

For the sequence kt+1 to be defined and positive (positive savings), one
needs

λt+1 > −α(1+ β)
1 − α . (3.5)

But, for savings to be defined, the life-cycle income should be positive,
which implies

A(1− α)kαt (1− λt)+ (1+ n)λt+1(1− α)
α

kt+1 > 0.

Substituting kt+1 and simplifying, one obtains

1 + (1 − α)λt+1
β

α(1 + β)+ (1− α)λt+1
> 0.

The condition (3.5) implies that the denominator is positive, and the last
condition becomes2

λt+1 > − α

1 − α .

We note that this condition is more restrictive than (3.5), showing well the
importance of taking into account the theoretical restrictions on individual
behavior in addition to the existence of the solution of the dynamic equation
of k.
The final conditions on transfers proportions do not depend on kt :

− α

1− α < λt < 1 ∀t.

2 This condition is equivalent in this model to imposing the positivity of dt+1 = Aαkαt+1(1 +
n)+ zt+1 > 0. This equivalence results from the relation dt+1 = β

1+βRt+1�t linking dt+1 and
the life-cycle income �t .
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3.1.2 The Second Welfare Theorem

After having studied the inter-temporal equilibria when the households are
subject to lump-sum transfers in the previous section, we analyze the de-
centralization of an optimal path by means of such transfers. Assuming
both that an optimum policy exists and that it converges to a steady state,
Atkinson and Sandmo (1980) show that a first-best allocation can be achieved
if the government can use lump-sum taxes. We now express a proposition stat-
ing that any feasible trajectory that satisfies (2.7) can be decentralized as a
competitive equilibrium. Applying this proposition to a Pareto-optimal tra-
jectory leads to the Second Welfare Theorem.

Proposition 3.1 (Decentralization of feasible trajectories)
For any feasible allocation with positive quantities (c̆t , d̆t , k̆t+1)t≥0 starting at
k̆0 = k0, which satisfies for all t ≥ 0

u′(c̆t) = β f ′(k̆t+1)u′(d̆t+1), (3.6)

there exists a sequence of lump-sum transfers (at)t≥0 such that this trajectory is
an inter-temporal equilibrium with perfect foresight.

Proof: Let us define our transfers in the following way, for all t ≥ 0:

ăt = z̆t
1+ n = d̆t − f ′(k̆t)(1+ n)k̆t

1 + n ,

which are the levels that allow the old people to consume d̆t at equilibrium.
Using the resource constraint, this implies

ăt = f (k̆t)− c̆t − (1+ n)k̆t+1 − f ′(k̆t)k̆t ,

and, with ω(k) = f (k) − k f ′(k),
ăt = ω(k̆t)− c̆t − (1+ n)k̆t+1.

Consider any date t ≥ 0.At the given capital stock k̆t , assume that the forecasts
are Ret+1 = f ′(k̆t+1) and zet+1 = z̆t+1. The optimal choices ct ,det+1, and st of
the households for period t are characterized by argmaxu(ω(k̆t)− ăt − st) +
βu(z̆et+1 +Ret+1st), i.e.,

u′(ct) = f ′(k̆t+1)βu′(dt+1),

ct = ω(k̆t)− ăt − st = c̆t + (1+ n)k̆t+1 − st ,
det+1 = z̆t+1 + f ′(k̆t+1)st = d̆t+1 + f ′(k̆t+1)[st − (1+ n)k̆t+1].

The unique solution of the above system is st = (1+ n)k̆t+1, ct = c̆t , and dt+1 =
d̆ t+1. The assumed forecasts are thus perfect. Since this holds for all dates, the
given path is an inter-temporal equilibrium with perfect foresight. For the first
old generation, d0 = (1+ n)R0k0 + z̆0 = d̆0 by definition of z̆0.
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Although section 3.1.1 showed that not every transfer is necessarily compatible
with the existence of an inter-temporal equilibrium, the above proposition
states that there always exist transfers to decentralize a feasible allocation
that satisfy the arbitrage condition (3.6).

All Pareto-optimal trajectories are feasible and satisfy equation (3.6). As
a consequence of the above proposition, any Pareto-optimal trajectory can
be decentralized by the means of lump-sum taxes. As a particular case, the
planner’s problem can be decentralized.

Example: Let us compute the optimal transfer in the case of a log-linear util-
ity function and a Cobb–Douglas production function. From chapter 2 (section
2.4.1), we know that the optimal path is characterized by

d̆t = β(1+ n)
γ

1− αγ
1 + β/γ Ak̆

α
t ,

k̆t+1 = αγ

1 + n Ak̆
α
t .

The transfer that ensures that the competitive dt is equal to d̆ t satisfies

dt = (1+ n)R̆t k̆t + z̆t = d̆t
with

R̆t = αAk̆α−1
t .

Hence, we have

z̆t = d̆t − (1+ n)R̆t k̆t = A(1+ n)
(
β(1− αγ )
γ + β − α

)
k̆αt ,

which gives the optimal transfer as a function of the installed capital stock.
This transfer to the old is positive if and only if

β(1− αγ )
γ + β > α,

which is equivalent to

γ <

(
β

1+ β
)(

1 − α
α

)
.

On the contrary, if γ is above this threshold, the optimal modified golden
rule level is relatively high and requires positive transfers to the young to be
implemented. To interpret this condition further, we consider the gross rate
of return at the competitive steady-state without transfer (see section 1.6.2):

R = αAkα−1 = (1+ n)α(1+ β)
(1− α)β .
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Thus transfers to the old are positive when the interest rate in the com-
petitive economy without transfer is smaller than the modified golden rule
interest factor:

R < Rγ = 1 + n
γ

,

or when k> kγ , i.e., when the steady state capital of the competitive econ-
omy without transfer is larger than the modified golden rule level. Notice
that, when there is over-accumulation of capital in the competitive econ-
omy (i.e., R < 1 + n), the transfers to the old are positive for all γ ≤ 1.
In this example, the long-term condition gives the direction of transfers

at every point along the trajectory. Indeed, the transfers are a constant pro-
portion of income given by

λt = z̆t
(1+ n)wt =

(
β(1− αγ )
γ + β − α

)
1

1 − α .

3.1.3 The Direction of Optimal Transfers in the Long Run

In general we can havemore than one steady state in the competitive economy,
and the direction of transfers can change along the trajectory. We study this
issue in the case where the optimal steady state kγ exists (assumption A9).

At steady state, we first notice that optimal transfers are nil if the private
savings evaluated at the optimal wage ω(kγ ), and at the optimal interest rate
(1+ n)/γ are equal to optimal investment kγ (1+ n):

ă = 0 ⇔ s̃
(
ω(kγ ), 0,

1 + n
γ

)
= (1+ n)kγ .

The difference

s̃
(
ω(kγ ) − a, (1+ n)a, 1 + n

γ

)
− (1 + n)kγ

is decreasing in a. It is thus positive for a < ă. Hence, ă is positive if and only
if the function s̃ − (1+ n)k evaluated at a = 0 is positive:

ă > 0 ⇔ s̃
(
ω(kγ ), 0,

1 + n
γ

)
= s

(
ω(kγ ),

1+ n
γ

)
> (1 + n)kγ .

Hence, in the case of positive optimal transfer to the old at steady state (ă > 0),
we have s(·) > (1+ n)kγ , which implies there exists a steady state in the com-
petitive economy without transfer that is larger than the modified golden rule.
Indeed, s(ω(k), f ′(k))− (1 + n)k is positive for k= kγ and becomes nega-
tive for large k. As a consequence of the preceding property, if there is no
steady state in the competitive economy larger than the modified golden
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Figure 3.1. The direction of transfers.When savings evaluated at themodified golden
rule are greater than (1+ n)k, the optimal transfers to theold are positive (left panel).
When savings evaluated at the modified golden rule are smaller than (1+ n)k, the
optimal transfers to the old are negative (right panel).

rule, the optimal transfer to the old should be negative. This is illustrated in
figure 3.1.

3.1.4 Reversal of Optimal Transfers Over Time: An Example

We have seen in the previous section that in the example with Cobb–Douglas
production, logarithmic utility, and full depreciation of capital, the optimal
transfer is a constant proportion λ of wages. This implies that the direction
of transfer is always the same along a trajectory. If we depart from these
assumptions, however, thedirectionof transfer can changealong the trajectory.

To illustrate this point in a numerical example, we assume that the depreci-
ation rate of capital is no longer equal to one, but we keep the Cobb–Douglas
production and the logarithmic utility.We rely on the numerical method of ap-
pendix A.5.4 to compute the optimal path. We take the following parameters:
α = 1/3, γ = 0.43, β = 0.3, n = 1.02530 − 1, A= 20. The value for γ has been
chosen to have small transfers at steady state. Setting the initial capital stock
equal to k0 = 1/3, the optimal path is presented in table 3.1 for two different
values of δ. Both the optimal stock of capital and the optimal transfer as a
percentage of income of the young are presented. For δ = 1, transfers are a
constant proportion of income, in conformity with the result derived above.
For δ = 0.5, the optimal transfers are in favor of the old in the beginning of
the growth process and are in favor of the young at the end.

The rationality behind the reversion of optimal transfers is as follows.At the
competitive equilibrium, a lower depreciation rate increases the return from
capital and leaves the wage income unchanged. Since the utility function is
logarithmic, savings do not depend on the interest factor. Thus, a lower depre-
ciation rate, which increases the return from capital, only affects positively the
consumptions of the old households. The competitive path of capital without
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Table 3.1. Reversion in the Direction of Transfers

δ = 0.5 δ = 1Time
t Capital Transfer rate λt Capital Transfer rate λt

0 0.33 0.33
1 1.01 1.1% 0.95 2.8%
2 1.50 0.0% 1.34 2.8%
3 1.73 −1.0% 1.51 2.8%
4 1.82 −1.3% 1.57 2.8%
5 1.86 −1.5% 1.59 2.8%
∞ 1.88 −1.6% 1.60 2.8%

transfer is not affected. For the optimal solution, this implies a direct effect on
redistribution which decreases the optimal transfer to the old. In addition to
this redistribution effect, there is a production effectmodifying thewhole opti-
mal growthpath; the higher level of gross production F̄(kt , 1)+ (1− δ)kt leads
to an increase of all consumptions and savings. In our example, the redistri-
bution effect dominates with a significant drop in the transfer rate. Moreover,
with a depreciation rate lower than one, the weight of profits relative to labor
income increases with the capital stock. Indeed, we have

d(Rk)
dk

= α2Akα−1 + 1− δ, dw
dk

= α(1 − α)Akα−1,

and

d(Rk)
dw

= α2A+ (1− δ)k1−α
α(1− α)A

increases with k for δ < 1. Hence, in the long run, the low δ essentially benefits
the old households in the future, which can consume the part of capital that
is not depreciated. For the planner it is optimal to decrease the transfer rate
as time passes. In our example, this implies that the direction of the transfer is
reversed after some date.

3.2 pensions

Overlapping generationsmodels are an obviously appropriate setup to discuss
the effect of the pension system on the accumulation of capital. Two differ-
ent pension systems should be distinguished: in the fully funded system, the
contributions paid by the young individual at time t are invested and returned
with interest at time t + 1 to the same agent. In the pay-as-you-go system, the
contributions paid by the young individual at time t are used to pay pensions
to the contemporaneous old agents.

In his influential article, Samuelson (1975a) views pay-as-you-go pensions
as lump-sum transfers that can lead a stationary economy to the golden rule.
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Indeed, we have seen in the preceding section that if there is a steady state in
the competitive economy larger than the golden rule (over-accumulation), the
optimal transfer is a positive transfer to the old household. Interpreting this
transfer as a pension, Samuelson’s paper can be viewed as a positive theory
of pensions. However, the empirical evidence in favor of the existence of
over-accumulation is rather weak and controversial, which gives Samuelson’s
argument little weight.3 This explains whymany economists now argue against
the existingpay-as-you-gopensions schemeand in favor of a transition towards
fully funded systems.

In this section, we review the two main pension systems and provide analy-
tical tools to study economic dynamics under pay-as-you-go pensions.

3.2.1 Fully Funded System

In the model of chapter 1, assume that there are lump-sum taxes at bearing
on the young generation, and that these taxes are invested and returned with
interest the next period. As a consequence, the capital stock of the economy
consists in private savings plus the reserves of the pension system:

Kt+1 = Ntst + Ntat .
For the generation born at time t , the first-period budget constraint is given
by (3.1), and the second period budget constraint is

dt+1 = Ret+1st +Ret+1at .

The optimal savings of the representative individual are

st = argmaxu(wt − at − st) + βu(Ret+1(st + at)
)
,

and thus verify for an interior solution

u′(wt − at − st) = βRet+1u
′(Ret+1(st + at)

)
.

Theexpression st + at plays the same role as st in chapter 1, andoptimal savings
are given by

st = s(wt ,Ret+1

)− at .
This equation shows that, at given capital stock, any increase in the contribu-
tions to thepension system is exactly offset by adecrease of the sameamount in
private savings, as long as expectations remain unaffected. The consumptions
ct and det+1 are unchanged.

3 In the presence of externalities, someauthors have providedothermechanisms throughwhich
pensions can still be Pareto-improving. These mechanisms rely on the existence of negative
externalities exerted by the old workers as in Sala-I-Martin (1996) or on financial market
imcompleteness as in Diamond (1977).
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Thus, as in the model of chapter 1, the temporary equilibrium with fully
funded pensions exists and is unique. Notice that the first-period income
ω(kt) − at need not be positive as long as capital markets are perfect, allowing
individuals to borrow against their pension rights, which would then entail
negative private savings.

Investment at + st is unchanged from chapter 1; likewise the next-period
capital stock and the perfect foresight of the interest factor. The inter-temporal
equilibrium with perfect foresight is obtained as a sequence of temporary
equilibria by imposing the equality between savings and investment:

(1+ n)kt+1 = st + at ,
= s(ω(kt), f ′(kt+1)) > 0.

Hence, at the inter-temporal equilibrium with perfect foresight, the stock of
capital of period t + 1 should verify the same implicit equation as in chapter 1,
and the two equilibria are equivalent (Samuelson (1975a)).

Proposition 3.2 (Fully funded pensions)
Provided that capitalmarkets are perfect, the fully funded pension system affects
neither capital accumulation nor consumptions and welfare.

As the rate of returnprovidedby thepension funds is equal to theoneprovided
by private savings, the two forms of savings are perfect substitutes. Any change
in contributions is perfectly offset by a change in private savings, and the
aggregate capital stock is left unaffected.

In the above model, private savings st = s(wt ,Rt+1) − at are negative if the
pension rights are very high. In this case, the young individual borrows against
his pension rights. If credit markets are imperfect (see section 1.8.7), future
pension rights cannot be used as collateral. In this case, young individuals will
not be able to borrow, and we should impose the additional constraint

st ≥ 0.

In this case, the neutrality result can obviously break down. In a model with
heterogeneous households, neutrality is obviously broken if at least one agent
is constrained on capital markets (see Belan (1997)).

Let us finally remark that a fully funded systemwith perfect capital markets
does not imply any transfer between individuals. In the case of heterogeneous
households, we can introduce intra-generational transfers by breaking the link
between individual contributions and pensions, in which case the fully funded
system will no longer be neutral.
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3.2.2 Pay-as-you-go System: Existence of Equilibrium

The equilibrium with a pay-as-you-go pension system is equivalent to the
economywithpositive lump-sumtransfers.Weconsider a sequenceof transfers
to the old households (at)t≥0 such that

zt = (1+ n)at ≥ 0 ∀t.
An inter-temporal equilibrium with perfect foresight starting at k0 is charac-
terized by a sequence (kt)t≥0, which verifies, for all t , kt > 0 and

�̃t(kt , kt+1) = (1+ n)kt+1 − s̃(ω(kt) − at , (1+ n)at+1, f ′(kt+1)) = 0. (3.7)

At such an equilibrium, savings are necessarily positive and hence the first-
period income is positive:

∀t, ω(kt) > at . (3.8)

Equation (3.8) is thus a necessary condition for the existence of the inter-
temporal equilibrium kt .

Contrary to the general case of lump-sum transfers studied in the previous
section, the function �̃t(kt , kt+1) is necessarily defined for a sequence kt > 0
that verifies (3.8), as the life-cycle income

ω(kt)− at + (1+ n)at+1

f ′(kt+1)

is positive. This results from equation (3.8) and from the hypothesis of positive
transfers to the old, at+1 ≥ 0.

The central issue is now to study the sustainability of a given pension pol-
icy. A policy (at) is said to be sustainable if the corresponding inter-temporal
equilibrium exists. A policy which leads to a point in time where the income
of the workers is negative is not sustainable. We shall associate to a given
policy a threshold k(a) on the initial capital stock above which the policy is
sustainable. We will call it the smallest sustainable initial capital. If the econ-
omy has kt < k(a), it is led to a situation where taxes will become larger than
the income of the young households.

To analyze the issue of sustainability, we first introduce a lemma stating
that if, for an arbitrary path of capital, savings are always higher than or
equal to the investment needed to sustain this path, then there necessarily
exists an intertemporal equilibrium with a trajectory of capital higher than
the arbitrary path.

Lemma 3.1
We (kt)t≥0 be a sequence with �̃t(kt , kt+1) ≤ 0 and ω(kt) > at , ∀t ≥ 0. Taking
k′0 ≥ k0, there exists an inter-temporal equilibrium (k′t)t≥0, such that k

′
t ≥ kt

holds ∀t .
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Proof: The proof is by induction. Assume k′t ≥ kt (which holds at t = 0). As
�̃t(kt , kt+1) ≤ 0 and �̃t is decreasing with respect to its first argument (the
derivative is−s̃ ′ω1ω′< 0), we have �̃t(k′t , kt+1)≤ 0. Moreover, �̃t(k′t , k), which
is defined for k> 0, verifies

lim
k→+∞

�̃t(k′t , k) = +∞,

as s̃ is bounded above by ω(k′t) − at . We deduce by continuity that there ex-
ists k′t+1 ≥ kt+1 such that �̃t(k′t , k

′
t+1) = 0. This argument can be applied by

induction for all t ≥ 0.

Wenowdefine the lowest sustainable initial capital and show in thenext propo-
sition that it determines a threshold abovewhich an inter-temporal equilibrium
exists.

Definition 3.3 (Lowest sustainable initial capital)
Given (at)t≥0, the lowest sustainable initial capital stock k is the lower bound of
the set of initial capital stock such that there exists an inter-temporal equilibrium:

k= inf{k0 > 0; there exists (kt)t≥0 solution to (3.7)}.
When for all k0 > 0 there exists no solution (kt)t≥0 to (3.7), we define k= +∞.

Proposition 3.3 (Existence of inter-temporal equilibrium with pensions)
For all k0 > k, there exists an inter-temporal equilibriumwith initial capital stock
k0. For all k0 > 0 such that k0 < k, there exists no inter-temporal equilibrium
with initial capital stock k0.

Proof: The non-existence for k0 < k results from the definition of k.
Let us take k′0 > k. We show that there always exists an inter-temporal

equilibrium starting at k′0. Indeed, by definition
4 of k there exists another k0

such that k≤ k0 < k′0, and there exists (kt)t≥0 starting from k0 solution to (3.7):
�̃t(kt , kt+1) = 0 ∀t . Then, following Lemma 3.1, there exists an inter-temporal
equilibrium (k′t)t≥0 starting at k

′
0 for which k

′
t ≥ kt ∀t .

3.2.3 Pay-as-you-go Systems with Constant Pensions

To obtain further results on competitive equilibria with pensions, we consider
the case of a constant transfer z= (1+ n)a > 0 and study its effect on the
lowest sustainable capital. We look at the inter-temporal equilibrium with
perfect foresight starting at k0, i.e., the solution to

�a(kt , kt+1) = (1+ n)kt+1 − s̃(ω(kt)− a, (1+ n)a, f ′(kt+1)) = 0. (3.9)

4 Given that k is the lower bound of a set, there exists k0 < k′0 belonging to this set.
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We denote by k(a) the lower bound of the set of sustainable initial capital
stocks. With constant transfers, we have the additional property that the equi-
librium trajectory will remain above k(a): ∀t, kt ≥ k(a). Indeed, if kt < k(a)
for some t , then the sequence starting from t is a solution to (3.9), which is
excluded by the definition of k(a). Let us now characterize the function k(a).

Proposition 3.4 (Lowest sustainable initial capital and pensions)
The lowest sustainable initial capital k(a) is non-decreasing with respect to a.

Proof: Let a1 < a2. If k(a2) = +∞, we obviously have k(a1) ≤ k(a2).
If k(a2) is finite, let us consider k> k(a2). Then there exists an inter-

temporal equilibrium(kt)t≥0 with�a2 (kt , kt+1) = 0and k0 = k.As�a(kt , kt+1)
is an increasing function of a (its derivative is s̃ ′ω1 − (1+ n)s̃ ′ω2 > 0), we have
∀t ≥ 0

�a1 (kt , kt+1) < 0.

We can apply Lemma 3.1 at k′0 = k0 = k: there exists an inter-temporal equi-
librium with �a1 (k

′
t , k

′
t+1) = 0 ∀t . Hence, we deduce that k(a1) ≤ k. We have

shown k> k(a2) ⇒ k≥ k(a1), which implies k(a2) ≥ k(a1).

Notice that, as we shall see in the next example, the function k(a) is not nec-
essarily continuous. The function k(a) can now be used to prove that there is
a highest sustainable transfer above which no equilibrium exists.

Proposition 3.5 (Highest sustainable transfer)
There exists a finite threshold ā ≥ 0,

ā = sup{a ≥ 0; k(a) is finite},
such that for a < ā, k(a) is finite, and for a > ā, k(a) is equal to +∞, i.e., no
inter-temporal equilibrium exists.

Proof: We first prove that k(a) is +∞ for large a. There exists k̄ such that
∀k≥ k̄, ω(k) ≤ (1+ n)k, since limk→+∞ ω(k)/k= 0. We shall show that for
a = ω(k̄) we have k(a) = +∞. We use a reductio ad absurdum: assume that
there exists an inter-temporal equilibrium (kt) with transfer a = ω(k̄) (ω(k̄)
is the maximum long-run feasible wage, i.e., when wage income is entirely
invested):

(1+ n)kt+1 = s̃(ω(kt) − a, (1 + n)a, f ′(kt+1)).

We have then ω(kt) > a = ω(k̄), kt > k̄, and ω(kt) < (1+ n)kt by definition
of k̄. Thus, we have

(1+ n)kt+1 < ω(kt)− a < ω(kt) < (1+ n)kt ,
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which implies kt+1 < kt . The sequence kt is decreasing and admits a limit
k∞ ≥ k̄, since ∀t, kt > k̄. This limit verifies ω(k∞) ≤ (1+ n)k∞, and

(1+ n)k∞ = s̃(ω(k∞)− a, (1+ n)a, f ′(k∞)) < ω(k∞)− a
≤ (1+ n)k∞ − a,

which is impossible. Thus, k(a) = +∞ for a = ω(k̄) and for a ≥ ω(k̄). As a
consequence, ā < ω(k̄).

By definition of the bound ā, we have for a > ā, k(a) = +∞. For a < ā,
∃a′, a < a′ ≤ ā, such that k(a′) is finite. Then, as k(a) is non-decreasing,
k(a) ≤ k(a′) < +∞, and k(a) is finite.

We now introduce assumptionH3a, which corresponds toH3without transfers
and ensures that the inter-temporal equilibrium is unique. This assumption is
made for a given a > 0, such that k(a) is finite.

Assumption H3a.
For all k, k′ > 0 such that k≥ k(a) and k′ ≥ k(a),

�a(k, k′) = 0 =⇒ ∂�a(k, k′)
∂k′

> 0,

with

�a(k, k′) = (1+ n)k′ − s̃(ω(k)− a, (1+ n)a, f ′(k′)).

Notice that H3a holds under the assumption A4:

∂�a(k, k′)
∂k′

= 1 + n− s̃ ′R f ′′ > 1 + n− s ′R f ′′ = �′
k > 0 for s ′R ≥ 0.

By definition, we know that there is no trajectory starting to the left of k(a).
Under H3a it is moreover possible to show that k(a) is the smallest positive
steady state (see figure 3.2).

Proposition 3.6 (Smallest steady state)
Under assumptionH3a , when k(a) is positive and finite, it is the smallest positive
steady state of the dynamics (3.9).

Proof: Every positive steady state k� verifies�a(k�, k�) = 0. Then there exists
an inter-temporal equilibrium kt = k� for all t ≥ 0, and thus k� ≥ k(a).

Let us consider a sequence of initial conditions k0i > k(a) which converges
to the lowest sustainable initial capital: limi→∞ k0i = k(a). For each of these
initial conditions, there exists an equilibrium (kti )t≥0, and thus�a(k0i , k1i ) = 0
with k1i ≥ k(a). To show that k(a) is a steady state it is sufficient to show that
the sequence (k1i )t≥0 converges to k(a) when i goes to infinity. This sequence
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Figure 3.2. The lowest sustainable initial capital: In the left panel, the lowest sustain-
able initial capital is represented in a case where H3a does not hold. In the right
panel, H3a holds and the lowest sustainable initial capital is the smallest steady state.

is bounded because (1 + n)k1i < ω(k0i ) − a and admits a limit point k1 which
verifies �a(k(a), k1) = 0.

We next show by a reductio ad absurdum that k1 > k(a) is not possible.
If k1 > k(a), then the assumption H3a implies that there exists k′1, k(a) <
k′1 < k1, such that �a(k(a), k′1) < 0, because �a is increasing near k1 in its
second argument. By continuity we have�a(k′0, k

′
1) < 0 for k′0 < k(a), k

′
0 near

enough k(a). Moreover, there exists k′′1 > k
′
1 > k(a) such that �(k′0, k

′′
1) = 0.

As k′′1 > k(a), there exists an inter-temporal equilibrium starting from k′′1, and,
as�(k′0, k

′′
1) = 0, there exists also an inter-temporal equilibrium starting from

k′0, which contradicts k
′
0 < k(a). Hence,

�a(k(a), k(a)) = 0,

and k(a) is the smallest positive steady state.

Concerning the local stability of the smallest steady statewehave the following
result: as there exists no inter-temporal path starting from k0 < k(a), the steady
state k(a) is necessarily unstable from the left. But it may happen, when k(a)
is non-hyperbolic, that the steady state is stable from the right. k(a) is thus
either unstable (right panel of figure 3.2) or non-hyperbolic with stability on
the right-hand side (figure 3.3).

We illustrate the above results in the following example.

Example: Let us take a logarithmic utility function and a Cobb–Douglas pro-
duction function. The dynamics are given by equation (3.4):

�a(kt , kt+1) = (1+ n)kt+1 − β

1 + β
[
(1 − α)Akαt − a]+ (1+ n)a

(1+ β)αAk
1−α
t+1 .
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Figure 3.3. Non-hyperbolic smallest steady state.

For a > 0 we have a > ω(0) = 0, and the lowest sustainable initial capital
k(a) > 0 is finite or equal to +∞. Either there exists at least one steady
state and k(a) is the smallest one, or there does not exist a steady state
and there is no inter-temporal equilibrium with pension a. The steady states
are solutions to �a(k, k) = 0:

a = β(1 − α)Akα − (1 + β)(1+ n)k
β + 1+n

αA k
1−α ≡ ã(k).

The function ã(k) is defined and continuous on R+, and ã(k) > 0 for

0 < k<
(

β(1− α)A
(1+ β)(1 + n)

) 1
1−α
.

Its derivative ã′(k) has the sign of

αβ2(1 − α)Akα−1 − β(1+ n)
(
α + β + (1− α)2

α

)
− (1+ β)(1+ n)2

A
k1−α,

which is decreasing in k from +∞ to −∞. Hence the derivative of ã(k) is
equal to zero for some k̄> 0, and ã(k) attains there a maximum ā. Given
these elements, we deduce that for 0 < a < ā there are two steady states
k(a) and k̄(a), which are solutions to ã(k) = a and, which verify 0 < k(a) <
k̄(a). For a = ā there exists a unique steady state k̄, and we have k(ā) = k̄.
For a > ā there is no steady state and hence no inter-temporal equilibrium.
The point ā is called a tangent bifurcation (see appendix A.3.5). Figure 3.4
presents the bifurcation diagram for the parameter a.
The interpretation of the tangent bifurcation point in terms of sustainabil-

ity is clear: pensions greater than ā are never sustainable, whatever the initial
stock of capital. Pensions a smaller than ā are sustainable provided that the
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Figure 3.4. Bifurcation diagram for a: For 0 < a < ā there are two steady states k(a)
and k̄(a). For a = ā there exists a unique steady state k̄. For a > ā there is no steady
state. The point ā is called a tangent bifurcation.

economy is endowed with an initial capital larger than k(a). A numerical
example is provided in appendix A.5.3.

Tobeable to further analyze the effect of pensionsonequilibriumwe introduce
the following definition.

Definition 3.4 (Pension–capital compatibility set)
The compatibility set Dp is the set of pairs (k, a) such that there exists an inter-
temporal equilibrium with transfer a and initial capital k.

In formal terms, the setDp is such that a ≥ 0, k(a) is finite, k> 0, and k≥ k(a):
Dp = {(k, a) ∈ R

2
+; k> 0 and k≥ k(a)}.

For k > k(a), this results from proposition 3.3. Assuming H3a, for k= k(a) >
0, k(a) is the smallest positive steady state (proposition 3.6), and this implies
that there exists an inter-temporal equilibrium with initial stock k(a).

A property of Dp is the following one: for a pair (k, a) belonging to Dp,
we have that any pair (k′, a′) with higher capital and/or lower transfer, i.e.
k′ ≥ k and a′ ≤ a, also belongs to Dp. Indeed, according to proposition 3.4,
k(a′) ≤ k(a) and thus k′ ≥ k≥ k(a) ≥ k(a′).

Proposition 3.7 (Uniqueness of trajectories)
AssumeH1,H2, andH3a for all a such that k(a) is finite. Then, for any (k0, a)be-
longing to the compatibility setDp, there exists a unique inter-temporal equilib-
riumwith pension a and initial capital stock k0. This equilibrium is characterized
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by the sequence of capital stocks kt defined by the difference equation

�a(kt , kt+1) = 0 ⇔ kt+1 = g(kt , a).

The function g is defined inDp and is increasingwith respect to kt anddecreasing
with respect to a. It is continuously differentiable at any interior point of Dp,
and its partial derivatives verify g′

k > 0 and g′
a < 0.

Proof: g is defined: By definition, for (k0, a) ∈ Dp, there exists one inter-
temporal equilibriumwith transfers, (kt)t≥0, with initial stock k0.We thus have
�a(k0, k1) = 0, and the solution k1 = g(k0, a) of �a(k0, k1) = 0 is unique fol-
lowing assumption H3a.
g is increasing in k: For k′0 > k0, we have �a(k

′
0, k1) < 0, as �a is decreas-

ing with respect to its first argument. Moreover, as limk→+∞�a(k′0, k) = +∞,
there exists k′1 > k1 such that �a(k

′
0, k

′
1) = 0. The uniqueness of this solution

(assumption H3a) implies g(k′0, a) = k′1 > k1 = g(k0, a).
g is decreasing in a: Similarly, for a′ < a we have �a′(k0, k1) < 0, as �a is

increasing with respect to a, and we deduce that g(k0, a′) > k1 = g(k0, a).
g is differentiable: Finally, at the interior of Dp we may apply the implicit

function theorem to equation �a(kt , kt+1) = 0 and deduce by differentiation
the sign of the partial derivatives of g(kt , a).

The function g allows to characterize the inter-temporal equilibrium with
transfer a. The dynamics of kt are monotone and bounded. They converge
either to 0, which is possible only if k(a) = 0, or to a steady state.

3.2.4 Capital Accumulation and Pay-as-you-go Pensions

As already stressed in Feldstein (1974), the most obvious effect of the pay-as-
you-go pension system is to reduce the amount of savings during the working
years by providing income during retirement. This standard partial equilib-
rium result at given prices is derived at the temporary equilibrium by com-
puting a simultaneous shift in current taxes and in the expected future pen-
sion, dzet+1 = (1+ n) dat , but with fixed expectations on the interest factor
dRet+1 = 0.

Proposition 3.8 (Individual savings and pay-as-you-go pensions)
Consider a temporary equilibrium with a pay-as-you-go pension system and
fixed expectations of Ret+1. A simultaneous drop in the expected future pension
zet+1 and in contributions at ,withdz

e
t+1 = (1+ n) dat , increases private savings. It

increases private savings more (less) than proportionally if the expected interest
factor is smaller (larger) than the growth factor of the population.
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Proof: Savings are given by

st = s̃ (wt − at , zet+1,R
e
t+1

)
,

and we have

dst = −s̃ ′ω1 dat + s̃ ′ω2 dzet+1,

dst = −s̃ ′ω1 dat + s̃ ′ω2 (1+ n) dat ,
dst
dat

= −s ′w + (s ′w − 1)
1 + n
Ret+1

< 0.

Moreover,

dst
da

< −1 ⇐⇒ (1 − s ′w)
1+ n
Ret+1

> 1 − s ′w ⇐⇒ Ret+1 < 1 + n.

The above result concerns the partial equilibrium effect of pensions on sav-
ings. It is consistent with the empirical finding that countries that operate
unfunded pay-as-you-go systems tend to have lower savings rates, the mag-
nitude of the effect increasing with the degree of coverage for the system
(see Samwick (2000)). To analyze the general equilibrium effect on capital
accumulation, we have the following proposition, illustrated in figure 3.5:

kt

kt 1

kt 1

g kt, a

g kt, a

k a kt

kt 1

Figure 3.5. Capital accumulation and pay-as-you-go pensions: In the face of a per-
manent increase in pensions at time t , the new equilibrium path, if it exists, displays
lower capital than the previous one.
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Proposition 3.9 (Capital accumulation and pay-as-you-go pensions)
Assume that H1, H2, and H3a hold for all a. For (k0, a) belonging to the com-
patibility setDp, there exists a unique inter-temporal equilibrium (kt)t≥0 starting
at k0 with constant pensions a and with long-run capital stock lim kt = k.

� Following a drop in a, with a′ < a, the inter-temporal equilibrium (k′t)t≥0
starting at k0 verifies k′t > kt ∀t ≥ 1. Moreover, provided that k> 0, long-
run capital stocks are such that k′ > k.

� Following a rise in a, a′′ > a, either there is an inter-temporal equilibrium
(k′′t )t≥0 starting at k0 which verifies k

′′
t < kt ∀t ≥ 1 (case (k0, a′′) ∈ Dp), or

there no longer exists an inter-temporal equilibrium with initial capital stock
k0 (case (k0, a′′) /∈ Dp).

Proof: For a′ < a, one has (k0, a′) ∈ Dg and the sequence (k′t) with initial
capital k′0 = k0 verifies k′t+1 = g(k′t , a′

t) ≥ g(kt , a′
t) > g(kt , at) = kt+1.

Moreover, if the limit of (kt) is positive (lim kt = k> 0), then k is a
steady state of the dynamics with a:�a(k, k) = 0. As lim k′t = k′ ≥ k, we have
�a′(k′, k′) = 0. The equality k= k′ is excluded, as �a′(k, k) < 0.

The same argument applies to a′′ if (k0, a′′) ∈ Dg . But if k(a′′) > k0, there
exists no inter-temporal equilibrium with a′′.

The effect of pensions on welfare is an interesting issue for economic policy.
The negative effect of pensions on capital plays a different role depending on
whether there is over- or under-accumulation. On the one hand, consider a
steady state equilibrium that is characterized by over-accumulation of capital.
Following a small rise in a, the new steady state equilibrium, provided that
it exists and that it is still characterized by over-accumulation, will display a
higher welfare. The increase in the pensions reduces the stock of capital, which
is beneficial when the equilibrium is inefficient. On the other hand, when the
equilibrium is efficient, the introduction of pensions always benefits the first
old generations at the expense of subsequent generations.

3.2.5 Further Comments

Wemention in this subsection some relevant debates on pensions and possible
extensions.

A Quick Look at the Empirical Literature. From the empirical side, two find-
ings are in line with theoretical results.

First, in his positive theory of social security, Sala-I-Martin (1996) stresses
that retirement programs are introduced only after a certain level of develop-
ment has been reached. This appears clearly in figure 3.6, where we show the
GDPper capita at the timeof the introductionof thefirst pension system for se-
lected countries (viz. those for which theGDP is available inMaddison (1992)
and for which retirement is necessary according to Sala-I-Martin (1996)).
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Figure 3.6. GDP per capita in the world and pensions. Dots represents the introduc-
tion of pension systems. Retirement programs are introduced only after a certain
level of development has been reached.

Second, the literature suggests that the effect of social security transfers
on capital accumulation is negative. Indeed, by providing income during re-
tirement, they reduce private savings. In addition to the saving replacement
effect of pension systems inducing a reduction in personal savings, some au-
thors (e.g., Feldstein (1974)) emphasize a second effect that tends to increase
savings: the induced retirement effect. Social security may lead individuals
to retire earlier and to increase savings during working life to finance the
longer retirement period. This could offset the negative effect of social secu-
rity on private savings. The evidence shows however that capital accumulation
is still reduced by social security. Feldstein (1996) estimates that the social
security programs in the U.S. reduce overall savings by nearly 60% of their
potential.

Pensions with EndogenousGrowth. Inmodels where externalities and growth
come fromphysical capital accumulation, pensions reduce savings,whereas the
contrary would be needed to correct the externality.

In endogenous growth models with constant social returns to capital (as
in section 2.6.5) and externalities, Saint-Paul (1992) shows that it is no longer
possible to make a case for public pensions as a Pareto-improving policy. This
is because an increase in pensions has no effect on the gap between private and
social interest rates. Instead, it reduces the growth rate and, hence, hurts future
generations. As long as a pension affects savings negatively, an increase in it
has a negative effect on growth and on the welfare of some future generations.
This result will remain true even if the pension affects the interest rate. In
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a very particular case, external effects are so strong that the social marginal
productivity is increasing (see Weil (1994)).

The Transition to a Fully Funded System. The transition from a pay-as-you-go
pension system to a fully funded system is a widely debated issue. The central
point of the debate is how to compensate the last generation that paid the
contributions to finance the pension of the previous generation for the fact
that they will not receive a pension in exchange.

Clearly, if under-accumulation of capital prevails, the competitive equilib-
rium with lump-sum transfer (pensions) is Pareto-optimal. Indeed, starting
from a Pareto-optimal situation, any lump-sum redistribution of incomes en-
tails an allocation which is different but also Pareto-efficient as long as we
remain in the under-accumulation regime. It is thus not possible to set up a
Pareto-improving transition to a fully funded system (see Breyer (1989)).

Some authors have analyzed this issue introducing a source of inefficiency.
In this case, if the transition to a fully funded system is accompanied by other
measures that correct the inefficiency, it is possible to build Pareto-improving
transitions. This can be done in a framework with endogenous labor supply
and proportional income taxation, in which case pension systems introduce
a distortion (see Homburg (1990)). This can also be done in a setup with
endogenous growth, as inBelan, Michel, and Pestieau (1998).Notice however
that in this case the pension problem is artificially connected to the existence
of some inefficiencies (externalities in the case of endogenous growth). These
imperfections should be corrected in any case, whether there is a transition or
not.

Application: Rise in β. In the application of section 2.6.3 we have seen that,
in face of a rise in the individual discount factor, the planner has no reason to
modify the tradeoff between the welfare of the different generations. He will
thus leave the stock of capital unchanged, but simply reallocate production
between the young and the old households. As the capital stock of the com-
petitive economy is increased by the rise in β, the optimal policy will consist
in increasing the tax on young households immediately after the shock and
redistributing the product to the old generation. This permits increasing the
consumption of the old generation instantaneously. Furthermore, this optimal
tax level is kept constant in the future, and there is no additional dynamic
effect. This example shows that the optimal policy in the face of a rise in the
discount factor is to increase the pensions paid to the old individuals. This illus-
trates again how the debate on pensions can be related to the decentralization
of the optimal allocation.

Proportional Payroll Taxes. In the previous section, we have followed the
usual approach of macroeconomic textbooks, which treats pensions as lump-
sum transfers (Blanchard and Fischer (1989),McCandless andWallace (1991),
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Azariadis (1993), Auerbach and Kotlikoff (1995)). In the literature on pen-
sions in public finance it is often (realistically) assumed that payroll taxes are
proportional to the wage income (see, e.g., Feldstein (1985)). This amounts to
imposing

at = λtwt ,

where λt is the social security contribution rate. It is often thought than the
two formulations are equivalent as long as there is no endogenous labor sup-
ply, in which case proportional taxation does not introduce any distortion.
However, from the standpoint of inter-temporal equilibrium, the two formu-
lations are not equivalent when the path of taxes λt or at has been fixed, as the
transfer payments under proportional taxation become endogenous. Never-
theless, once the equilibrium with λt has been computed, it is always possible
to compute the at , which would give the same equilibrium.

The Optimal Retirement Age. A further extension of the model is to allow
for endogenous retirement decision. In this case, the households optimally
select the share of their time in the second period of life that is devoted to
retirement. Hu (1979) shows that if the transfers are tied to the individual
retirement decision, the pension system introduces some distortions into the
labor supply choice. Michel and Pestieau (1999) compare the decentralized
equilibrium with the golden rule and show that in order to achieve the steady
state first-best optimum, one needs to control both an unrestricted pay-as-you-
go transfer and the retirement age. This analysis is generalized to a wider class
of utility functions and to transitional dynamics by de la Croix, Mahieu, and
Rillaers (2001).

3.3 public spending

Governments, through the importance of their spending, play a significant
role in the economic activity. The twentieth century has experienced a mas-
sive increase in the government’s role in the economy (see the data in
Maddison (1992)). The effect of public spending on growth is thus a natu-
ral question to address. In this chapter, we limit our investigation to balanced
budget policies. Debt financing will be analyzed in the next chapter.

3.3.1 Public Spending in the Competitive Economy

We extend the model of chapter 1 and assume that there are lump-sum taxes
at bearing on the young generation, and that these taxes are used to finance
an amount gt of public spending per young individual. Such public spending
is unproductive, so that it does not affect the production function. Moreover,
it does not affect the marginal utility of consumptions. As in the lump-sum
transfer case, at should remain smaller that the income of the young. For the
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generation born at time t , the first-period budget constraint is given by (3.1).
The second-period budget constraint is not affected.

The budget of the government should remain balanced:

Ntat = Ntgt ⇐⇒ gt = at .
Thus, the optimal savings of the representative individual are given by

st = argmaxu(wt − gt − st)+ βu(Ret+1st
)
.

This leads to

st = s(wt − gt ,Ret+1

)
.

The effect of the tax on savings is negative, and is given by

∂st
∂gt

= −s ′w, with 0 < s ′w < 1.

The temporary equilibrium with government spending exists and is unique if
the first-period income is positive:

ω(kt) − gt > 0,

which can be read as a condition on gt . The inter-temporal equilibrium with
perfect foresight is obtained as a sequence of temporary equilibria by imposing
the equality between Ret+1 and f

′(kt+1) and between savings and next-period
capital.

Definition 3.5 (Inter-temporal equilibrium with public spending)
Given an initial capital stock K0 and a sequence of public spending (gt)t≥0,
an intertemporal equilibrium with perfect foresight and public spending is a
sequence of temporary equilibria that satisfies, for all t ≥ 0,

(1+ n)kt+1 = s (ω(kt)− gt ,Ret+1

)
> 0,

k0 = K0/N−1,

Ret+1 = Rt+1 = f ′(kt+1).

We limit our analysis to constant public spending policies gt = g ∀t . At the
inter-temporal equilibriumwith perfect foresight, the stock of capital of period
t + 1 should verify the implicit equation �g(kt , kt+1) = 0 with

�g(kt , kt+1) = (1+ n)kt+1 − s(ω(kt)− g, f ′(kt+1)),

which is defined for ω(kt) > g.
To analyze the existence of such inter-temporal equilibrium we can use the

same method as the one presented in the analysis of pay-as-you-go pensions.
We define a lowest sustainable initial capital stock k(g) that is non-decreasing
in g. Then we assume H3, which guarantees that, if it exists, the inter-temporal
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equilibrium is unique and the dynamics are monotonic.5 This assumption also
implies that when k(g) is positive it is the smallest positive steady state capital
stock.

It is useful to define a set of compatible capital–government-spending pairs
as we did for pensions.

Definition 3.6 (Public-spending–capital compatibility set)
The compatibility set Dg is the set of pairs (k, g) such that there exists an inter-
temporal equilibrium with public spending g and initial capital k.

In formal terms, it is the set Dg of pairs (k, g) such that g ≥ 0, k(g) is finite,
k> 0, and k≥ k(g):

Dg = {(k, g) ∈ R
2
+; k > 0 and k≥ k(g)}.

Under the assumptions H1, H2, and H3, for any (k0, g) ∈ Dg , we can apply the
same reasoning as with pensions: there exists a unique inter-temporal equilib-
riumwith government spending g and initial capital stock k0. This equilibrium
is characterized by the sequence of capital stocks kt defined by the difference
equation

�g(kt , kt+1) = 0 ⇔ kt+1 = h(kt , g).
The function h is defined in Dg , and is increasing with respect to kt and de-
creasing with respect to g. It is continuously differentiable at any interior point
of Dg , and its partial derivatives verify h′

k > 0 and h′
g < 0. We now have the

following proposition:

Proposition 3.10 (Capital accumulation and government spending)
Assume that H1, H2, and H3 hold. For (k0, g) ∈ Dg, there exists a unique inter-
temporal equilibrium (kt)t≥0 starting at k0 with constant g.

� Following a drop in g, g′ < g, there is an inter-temporal equilibrium (k′t)t≥0
starting at k0, whichverifies k′t > kt ∀t ≥ 1.Moreover, if positive, the long-run
capital stocks are such that k′ > k.

� Following a rise in g, g′′ > g, either there is an inter-temporal equilibrium
(k′′), which verifies k′′t < kt ∀t ≥ 1 or there no longer exists an inter-temporal
equilibrium with initial capital stock k0.

Proof: The proof follows the same steps as in proposition 3.9.

Hence, as the two-period lived individuals do not compensate an increase in
taxes by an equivalent decrease in consumption, savings drop in the face of

5 Notice that H3 (and not H3a) is the relevant hypothesis, as public spending modifies the
first-period but not the second-period income.
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a rise in government spending (at given interest rate). This pushes the inter-
est rate up, and, as long as there is a rational inter-temporal equilibrium, the
stock of capital of the period after is diminished. This drop in capital persists
in the long run: if k> 0, we have that dk/dg < 0. Contrary to what happens
in an infinite horizon model (see, e.g., Blanchard and Fischer (1989), p. 54),
an increase in taxes is not fully offset by a proportional decrease in consump-
tion in the long run, and savings are decreased.

Notice that this holds for stable steady state equilibria. The effect is reversed
for unstable steady state equilibria. Indeed, differentiating �g(k, k) = 0, we
have

dk
dg

= −s ′w
1 + n− s ′wω′(k) − s ′R f ′′(k)

,

which is negative (positive) if 1 + n− s ′wω′(k)− s ′R f ′′(k) is positive (negative).
In particular, an increase in g raises the lowest sustainable initial capital stock,
which is unstable when it is hyperbolic.

3.3.2 Public Spending: Optimal Financing

The study of first-best – optimal – financing of constant public expenditure is
straightforward given the tools developed in chapter 2.We define a production
function net of government spending:

fg(kt) = f (kt)− g,
and the sequence of maximum possible production is given by

k̄t+1 = fg(k̄t),

with k̄0 = k0. Provided that this sequence is defined with positive k̄t ∀t , the
rest of the analysis of chapter 2 applies with the modified production function.
In particular, one obtains the two following results.

First, under the assumption that it exists, the modified golden rule level of
capital is unaffected by the presence of public spending. This holds because
public spending does not modify the marginal productivity of capital. Hence,
the optimal level of capital remains unchanged, and optimal aggregate private
consumption should then be lower.

Second, the first-best solution can still be decentralized by means of lump-
sum transfers. In general, the financing of public spending will be supported
by the young and the old households. The budget constraint of the transfer
system is

Ntgt = Ntat − Nt−1zt . (3.10)

The capital market equilibrium at the steady state requires

(1+ n)kγ = s̃(ω(kγ ) − a, (a − g)(1 + n), f ′(kγ )). (3.11)
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Todeterminewhichgeneration (youngvsold)bears themajorityof thegovern-
ment spending burden, we compute

da/dg
|dz/dg| .

We first study da/dg. Differentiating equation (3.11), we obtain

da
dg

= −s̃ ′ω2 (1+ n)
s̃ ′ω1 − s̃ ′ω2 (1+ n) = 1 − s ′w

1− s ′w + s ′w/γ
,

using that s̃ ′ω1 = s ′w and s̃ ′ω2 = −(1− s ′w)/R. From equation (3.10), we have that

dz
dg

= (1+ n)
(
da
dg

− 1
)

= −(1+ n)s ′w/γ
1− s ′w + s ′w/γ

.

We find that

da/dg
|dz/dg| = 1− s ′w

(1+ n)s ′w/γ
.

Hence, if the propensity to save out of income is high, the young generation
is less solicited to finance public spending than the old generation.

Example: With a logarithmic utility ln c + β lnd, the condition becomes
da/dg
|dz/dg| = 1 − s ′w

(1+ n)s ′w/γ
= γ

(1+ n)β ,

which can be read as a condition on β: if β > γ

1+n , the old generation pays
marginally more for public spending than the young one.

3.3.3 Second-best Policies

A classical problem in public finance deals with the optimal way to finance a
given path of government expenditures in the absence of lump-sum taxation,
using only distorting fiscal instruments. This so-called Ramsey problem (from
Ramsey (1927)) leads, in a representative agent model with infinite horizon,
to the conclusion that income from capital should not be taxed in the long run6

and that, under certain conditions, the different consumption goods should be
taxed at the same rate (see the survey of Chari and Kehoe (1999)). There is
also a significant literature on the overlapping generations setup (see the con-
tributions of Atkinson (1971), Pestieau (1974), Atkinson and Sandmo (1980),
and Erosa and Gervais (1998)) that challenges the result of optimal zero tax-
ation for capital.

6 And, under some conditions, even after a finite number of periods; see Chamley (1986).
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We now address the issue of optimal fiscal policy, i.e., the determination
of optimal proportional taxes on labor and capital income, using the frame-
work developed in the previous chapters. As there is no utility drawn from
leisure and there is no public debt in our setup, this amounts to simplifying
the traditional problem, as for instance presented in Chari and Kehoe (1999),
pp. 71–74, in order to obtain more precise results.

The resource constraint of the economy is given by

ct + dt
1 + n + (1+ n)kt+1 + gt = f (kt), (3.12)

where gt denotes government consumption per young household. Each young
household in t solves

maxu(ct)+ βu(dt+1)

subject to

ct + st = (1 − τt)wt ,
dt+1 = Rt+1(1− θt+1)st ,

where τt is the tax rate on labor income, and θt+1 is the tax rate on capital
income.7 The first-order condition of this problem is

u′(ct) = βRt+1(1− θt+1)u′(dt+1). (3.13)

The government budget constraint is

τtwt + 1
1 + nθtRt st−1 = gt .

The equilibrium on the labor market and the equality between effective and
distributed profits imply wt = ω(kt) and Rt = f ′(kt). The equality between
savings and investment, (1 + n)kt+1 = st , is obtained by combining the re-
source constraint with the individuals and government budget constraints.

In the sequel, it is convenient to use what is called in the literature the
implementability constraint. This constraint is derived from the first-order-
condition (3.13) in which we have substituted out prices and taxes using the
budget constraints of the household. This constraint is thus

u′(ct) = βRt+1(1− θt+1)u′(dt+1) = β
dt+1

st
u′(dt+1),

which, together with st = (1+ n)kt+1, gives

(1 + n)kt+1u′(ct) = βdt+1u′(dt+1). (3.14)

7 The usual formulation in public economics is to tax the interest income from capital at a rate
τk. This is equivalent to our formulation with τkr = θ(1 + r).



Policy 161

For a given path (gt)t≥0 and an initial condition k0, the solution to the second-
best problem is a path (ct ,dt , kt+1)t≥0 that maximizes

∞∑
t=0

γ t
(
u(ct) + β

γ
u(dt)

)

subject to the resource constraint (3.12) and the implementability constraint
(3.14).

Once the path (ct ,dt , kt+1)t≥0 is obtained, we can compute the optimal taxes
using the budget constraints of the household:

τt = 1 − ct + (1+ n)kt+1

ω(kt)
,

θt = 1 − dt
f ′(kt)(1+ n)kt .

3.4 study of the second-best problem

We propose in this section an in-depth study of the simplified second-best
problem in the standard model of chapter 1, i.e., with inelastic labor supply.
We start by rewriting the problem in a more convenient way.

3.4.1 Restating the Problem

As dt+1 intervenes in (3.14), we use the following change of variables (as in
Michel and Venditti (1997)):

xt = f (kt) − dt
1 + n − gt .

xt is the production net of the consumption of the old individuals and of
government spending. Then the resource constraint (3.12) implies

(1 + n)kt+1 = f (kt)− ct − dt
1 + n − gt = xt − ct ,

and the law of motion of xt is

xt+1 = f
(
xt − ct
1 + n

)
− dt+1

1 + n − gt+1. (3.15)

This equation is equivalent to the resource constraint, except that x0 is not
given; it depends on the choice

d0 = (1− θ0) f ′(k0)(1 + n)k0,
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and hence on θ0:

x0 = f (k0) − d0
1 + n − g0. (3.16)

We restate the implementability constraint (3.14) by defining:

Definition 3.7 (Implementability set)
The implementability set Q(x) is the set of consumption pairs (c,d) such that
the implementability constraint (3.14) holds for a given level of x.

Formally, Q(x) is defined as

Q(x) = {(c,d) ∈ R
2
++; βdu

′(d) = u′(c)(x − c)},
and the implementability constraint is equivalent to

(ct ,dt+1) ∈ Q(xt). (3.17)

We can then rewrite the objective in its original form:8

max
β

γ
u(d0)+

∞∑
t=0

γ t [u(ct)+ βu(dt+1)]

under the constraints (3.15), (3.16), and (3.17).

3.4.2 Three Issues

At this stage, we face three main problems.

The Non-Convexity of the Optimization Problem. First, nothing guarantees
that the optimization problem is convex. Indeed, compared to the optimal
growth problem, there is an additional constraint, the implementability con-
straint, that is in general non-convex. For example,with aCIESutility function,
the set Q(x) is

Q(x) = {(c,d) ∈ R
2
++; βd

1− 1
σ = c− 1

σ (x − c)},
and the set is convex only for the specific value σ = 1 (see figure 3.7).

Because the implementability constraint imposes conditions on the first-
order derivatives of the utility function, the second-best problem can be non-
convex. This difficulty is neglected in the literature, and one generally as-
sumes that the optimal solution exists and that it is interior. However, the
first-order conditions are only necessary conditions for optimality, and they
can correspond to a local minimum. The second-order conditions are often

8 One additional interest of the change of variables is that the new maximization problem can
also be applied to non-separable utility functions u(ct ,dt+1) with c−1 given.
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Figure 3.7. The non-convexity of the implementability set: The implementability set
consists of the points (c,d) such that the implementability constraint holds for a given
level of x. It takes the form of a smooth curve. With a CIES utility function, this set
is convex only for σ = 1.

not tractable (they bear on the third-order derivatives of utility and pro-
duction functions) and can only be used to establish the existence of a local
maximum.

In a first step, we shall present the standard approach, which gives the
necessary first-order conditions, ignoring all these difficulties. To tackle the
problem in amore rigorous way, we shall analyze, in a second step, an auxiliary
problem is which the implementability constraint is replaced by an inequality
which renders the problem convex. We then study the conditions under which
the inequality constraint is binding with equality.

The Time Inconsistency Problem and the Commitment Technology. In the in-
finite horizon optimization problem, we assume that the decisions are made
once for all at the initial date. The problem is time consistent if the optimiza-
tion at some later date t > 0 leads to the same solution as the initial problem.
From Kydland and Prescott (1977) we know that this will in general not be
the case in the choice of optimal policy: capital taxes θt have an effect on
savings st−1 and hence on kt ;9 if we re-optimize one period later, kt becomes
fixed, and another choice of θt has no effect on kt . The optimal choice of θt
will thus differ depending on when the optimization takes place. This is the
time inconsistency property of the second-best policies: It would be optimal to
modify the tax rate once it is too late for the agents to revise their investment
choice.

As a consequence, agents will believe that the government will apply the
time inconsistent policy only if the government effectively has access to a
commitment “technology.” In the literature, this problem is tackled in three
different ways. The first is simply to assume that the government can commit
to its future actions by, say, restriction in its constitution. More simply, this

9 An exception is when θt has no effect on the savings decision (logarithmic utility).
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solution should be considered as a benchmark: It gives what would be optimal
for the government if it were able to pre-commit itself. This is the way we
shall pursue in this book. A second way is to develop a model in which the
commitment outcomes are sustained by reputational mechanisms.10 A third
way is to study the optimal taxation problem without commitment.11

The Initial Policy Rule. The fact that the initial capital stock held by the first
generation of old persons is supplied inelastically introduces an additional
difficulty. The first-period tax rate θ0 is equivalent to a lump-sum tax on the
income of the old people in period 0. Its optimal choice is equivalent to the
choice of d0 and has to be analyzed separately. Of course, if one is interested
only in the steady state, the problem can be ignored.

In our two-period OLG setup, the government has an incentive, under
certain conditions, to set the initial tax rate on capital relatively high. This
is moderated by the fact that the only resource of the first old generation
lies in the existing capital stock. As the government cares about this genera-
tion, it will not tax the initial capital as highly as in the model with infinite-
lived agents who can borrow to finance consumption. Fixing the initial tax
rate at some constant12 θ0 is equivalent in our setup to fixing an initial value
of d0 as

d0 = R0(1− θ0)s−1 = f ′(k0)(1 − θ0)(1 + n)k0,

where k0 is given.
In our simple model, we have one good reason to fix a specific value of θ0.

Indeed, starting from a steady state situation, if the government re-optimizes,
theoptimal policywill bedifferent from the steady state. It is however sufficient
to fix θ0 = θ∞ for the optimal policy to be constant. Hence, to study the effects
of temporary shocks from a steady state, we shall fix θ0 at its steady state
value.

10 A seminal example of such trigger mechanisms is given in Barro and Gordon (1983) for
monetary policy (see Chari and Kehoe (1990) for an example on fiscal policy in a growth
model).

11 Such a study of time consistent fiscal policies is developed in Klein and Rios-Rull (1999).
12 In models with infinite-lived agents, the government has always an incentive to tax the ini-

tial level at a very high rate, as the agents can compensate their initial loss by borrowing
on credit markets. In Chamley (1986), where preferences are separable between consump-
tion and leisure and iso-elastic with respect to consumption, the optimal tax rate on capital
income (interests) is 100% for a finite length of time and zero thereafter. For other util-
ity specifications it is optimal to adjust the tax gradually towards zero (Renstrom (1999)).
Chari, Christiano, and Kehoe (1994) adopt the convention that the initial capital tax rate is
fixed. Their motivation is to avoid the rather trivial possibility of lump-sum taxation. This
amounts to assuming that the capital income tax rate in inherited from the past at t = 0, i.e.,
θ0 has been announced at t = −1, and for credibility reasons it is applied at t = 0.
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3.4.3 A Standard Approach to the Problem

The standard approach consists in studying the marginal conditions of opti-
mality that one obtains by maximizing an infinite Lagrangian:

L =
∞∑
t=0

γ t [u(ct)+ βu(dt+1)]+
∞∑
t=0

γ t pt [ψ(ct ,dt+1) + ct − xt ]

+
∞∑
t=0

γ t+1qt+1

[
f
(
xt − ct
1 + n

)
− dt+1

1+ n − gt+1 − xt+1

]
,

where

ψ(ct ,dt+1) = βdt+1u′(dt+1)
u′(ct)

,

pt is the Lagrange multiplier of the constraint, and qt is the shadow price
of xt . The constraint ψ(ct ,dt+1) = xt − ct is obtained from the resource con-
straint (3.12), where (1 + n)kt+1 has been replaced by its value from the im-
plementability constraint (3.14). The function ψ is increasing in ct and, under
the assumption A4, increasing in dt+1.

When the initial condition x0 is given (d0 fixed), after differentiating with
respect to ct and dt+1, we obtain

u′(ct) = γqt+1

1+ n f
′
(
xt − ct
1 + n

)
− pt [1+ ψ ′

c(ct ,dt+1)], (3.18)

βu′(dt+1) = γqt+1

1+ n − ptψ ′
d(ct ,dt+1). (3.19)

Differentiating with respect to xt , t ≥ 1, we get

qt = γqt+1

1+ n f
′
(
xt − ct
1 + n

)
− pt . (3.20)

Alternatively, if d0 is not fixed but chosen optimally, one should add to the
Lagrangian the following terms, including a constraint specific to the first pe-
riod:

β

γ
u(d0) + q0

(
f (k0)− d0

1+ n − g0 − x0
)
.

We then obtain an additional first-order condition:

β

γ
u′(d0) = q0

1 + n , (3.21)

which gives d0 as a function of q0. Differentiating L with respect to x0 gives
the relation (3.20) for t = 0. Comparing equations (3.19) and (3.21), it appears
clearly that the choice of d0 for the first old generation (and hence θ0) is not
affected by an implementability constraint at t = 0. Such a constraint bears on
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the following generations (see equation (3.14)). This clearly shows the time
inconsistency property of the optimal solution.

The steady state c,d, x, p,q, and k= (x − c)/(1+ n) is obtained after some
algebraic manipulations:

q = γq
1 + n f

′(k)− p,

u′(c) = q − pψ ′
c(c,d),

u′(c)− βu′(d) f ′(k) = −p(1+ ψ ′
c(c,d)+ f ′(k)ψ ′

d(c,d)),

and the resource and implementability constraints are

(1+ n)k = f (k) − c − d
1 + n − g,

(1+ n)k = ψ(c,d) = βdu′(d)
u′(c)

.

(3.22)

We can distinguish three types of steady state, depending on the value of p at
equilibrium:

� With p = 0, the implementability constraint is not binding and the second-
best problem leads to the same outcome as the benevolent planner problem
(section 2.4). We have

q = u′(c) > 0, f ′(k) = 1+ n
γ

, u′(c) = βu′(d) f ′(k).

Then k= kγ , and the modified golden rule holds. The taxation of capital
income is zero, for equation (3.13) can be written at steady state as

u′(c) = β(1 − θ) f ′(k)u′(d).

We deduce from the second-period budget constraint that d = dγ = f ′(kγ )
(1+ n)kγ = (1+ n)2kγ /γ and c = cγ is solution to u′(c) = β(1 + n)×
u′(dγ )/γ . The first-best solution is obtained. This case arises when g takes
a particular value

g = g̃ ⇒ p = 0

with

g̃ = f (kγ )− cγ − dγ
1 + n − (1+ n)kγ . (3.23)

Obviously, g̃ should be positive to make this case possible. We study this
issue below. g̃ is the level of tax on wages which leads the competitive
economy to the modified golden rule steady state.

� With p > 0 we have u′(c) < q(as ψ ′
c > 0) and

f ′(k) >
1+ n
γ

,
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and thus k< kγ . Moreover, if 1 + ψ ′
c + f ′(k)ψ ′

d > 0, which holds as long
as ψ ′(d) is non-negative (which is the case under A4) or not too negative,
we have βu′(d) f ′(k) > u′(c) = β(1− θ) f ′(k)u′(d), which in turn implies
θ > 0.

� With p < 0 we have u′(c) > q (as ψ ′
c > 0) and

f ′(k) <
1 + n
γ

,

and thus k > kγ . Moreover if 1 + ψ ′
c + f ′(k)ψ ′

d > 0, then θ is negative.

When the shadow price of the implementability constraint is nil, the capital
stock is at the modified golden rule level and the first-best solution is reached.
In all other situations it is in general optimal to either tax or subsidize capital.

3.4.4 An Auxiliary Problem

To perform a rigorous study of the second-best outcome and take care of the
convexity issue, we propose to study a different problem where the imple-
mentability constraint is written as an inequality. We consider the constraint

βdu′(d) ≥ u′(c)(x − c),
leading to the set

Q1(x) = {(c,d) ∈ R
2
++; c < x ≤ c + ψ(c,d)}.

This set is convex if the function ψ is concave. With a CIES utility function,
this is the case when σ ≥ 1 as ψ(c,d) = βc

1
σ d1−

1
σ is concave for σ ≥ 1. This

case is illustrated in figure 3.8.
For the auxiliary problem with constant gt = g, one can prove the exis-

tence of an optimal solution under the assumptions B0, B1, B2, and B3 of

d

c

1

x

σ

Figure 3.8. The convexity of the modified implementability set: The modified imple-
mentability set also includes points at the right of the standard implementability set,
which are such that c < x. With a CIES utility function, this set is convex for σ ≥ 1.
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appendix A.4.1 and apply the necessary and sufficient conditions for optimal-
ity of appendix A.4.2. We can then study the Lagrangian of period t :

Lt = u(ct)+ βu(dt+1)+ γqt+1

[
f
(
xt − ct
1 + n

)
− dt+1

1+ n − g
]

− qt xt ,

which attains its maximum with respect to (ct ,dt+1, xt) on the set of triples
for which (ct ,dt+1) ∈ Q1(xt) holds. To solve this static problem we intro-
duce the Kuhn–Tucker multiplier pt for the implementability constraint
ct + ψ(ct ,dt+1) − xt ≥ 0. The derivatives of

Lt + pt [ct + ψ(ct ,dt+1)− xt ],
should be set equal to zero, which leads to

qt = γqt+1

1 + n f
′
(
xt − ct
1+ n

)
− pt , (3.24)

u′(ct) = qt − pt [1+ ψ ′
c(ct ,dt+1)], (3.25)

βu′(dt+1) = γqt+1

1 + n − ptψ ′
d(ct ,dt+1). (3.26)

But instead of the implementability constraint, we have the Kuhn–Tucker
conditions:

pt ≥ 0, ct + ψ(ct ,dt+1)− xt ≥ 0, pt [ct + ψ(ct ,dt+1)− xt ] = 0.

These conditions, together with the transversality condition

lim
t→∞ γ

tqt xt = 0,

are sufficient for optimality in the auxiliary problem.
Moreover, an optimal solution of the auxiliary problem with Q1(x) for

which pt > 0 holds for all t verifies the implementability constraint for all t
and is thus an optimal solution to the second-best problem.

We now study the steady state solution to the auxiliary problem, when this
solution is obtained with a Kuhn–Tucker multiplier p = 0. In this case, the
first-order conditions are the same as in the first-best problem, and we obtain
the modified golden rule. Only in the very particular case where the imple-
mentability constraint is binding at this point does the second-best problem
coincide with the first-best outcome. In all other cases, the constraint is not
binding and the auxiliary problem is not helpful for studying the second-best
problem.

We shall show that there exists a threshold g̃ such that if g > g̃ then p > 0
and the second-best steady state can be obtained by solving the auxiliary prob-
lem. To do that, it is sufficient to show that p = 0 implies g ≤ g̃. In the case
p = 0, we obtain k= kγ and u′(c) = β f ′(kγ )u′(d). However, the relationship
(3.22) of the standard approachbecomes an inequality in the auxiliary problem

(1+ n)kγ ≤ ψ(c,d). (3.27)



Policy 169

The resource constraint

c + d
1 + n = f (kγ ) − (1 + n)kγ − g,

and the individual arbitrage condition (which holds with p = 0)

u′(c) = β f ′(kγ )u′(d),

form a system of two equations that we can solve to obtain two decreasing and
continuous functions c(g) and d(g) for government spending g ∈ [0, f (kγ )−
(1 + n)kγ ). Moreover the implementability constraint can be rewritten

ψ(c,d) = βdu′(d)
u′(c)

= d
f ′(kγ )

.

Hence, the condition (3.27) is equivalent to

d(g) ≥ (1 + n)kγ f ′(kγ ).
Formally, the function d(g) is defined for g < 0 and decreases from +∞ to 0
when g rises from −∞ to 0. We thus have a value g̃, positive or negative, for
which d(g̃) = (1+ n)kγ f ′(kγ ), and the condition (3.27) is equivalent to g ≤ g̃.
Now d(g̃) = (1+ n)2kγ /γ = dγ , so, provided that g̃ is positive, the threshold
g̃ is the same as the value of government spending leading to the first best in
the standard approach (equation (3.23)):

g̃ = f (kγ )− cγ − dγ
1+ n − (1+ n)kγ .

To analyze the sign of g̃ is it sufficient to study d(0), as we have

g̃ > 0 ⇔ d(0) > (1+ n)2kγ /γ.
d(0) is the optimum of the planner in the absence of government spending,
and we have d(0) > (1+ n)2kγ /γ if and only if the decentralization of the
optimum is obtained with a positive transfer to the old at the steady state.

A central result is obtained when g > g̃. Then p = 0 is impossible, and the
steady state solution of the auxiliary problem verifies p > 0: the weak inequal-
ity constraintholdswithequality.Thus,when g > g̃, theauxiliaryproblemgives
the second-best optimum.

Proposition 3.11 (Solution to the second-best problem)
Assume ψ(c,d) concave. Consider the excess of net production over private
consumption at the modified golden rule g̃:

g̃ = f (kγ ) − cγ − dγ
1+ n − (1+ n)kγ ,

where

dγ = kγ
γ
(1 + n)2 and u′(cγ ) = β

1 + n
γ
u′(dγ ).
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The steady state solution to the second-best problem coincides with the first-best
optimum when g̃ ≥ 0 and g = g̃.
When g > g̃ (positive or negative), the steady state solution of the auxiliary

problem with Q1(x) is also the steady state solution of the second-best problem.
At this optimum, k< kγ holds, and if ψ ′

d(c,d) ≥ 0 (assumption A4), capital
taxes θ are positive.

Proof: As g > g̃, p = 0 is excluded at the steady state solution of the auxiliary
problem, which verifies p > 0. This implies that the implementability con-
straint holds with equality, and the solution is thus a fortiori the steady state
second-best optimum.Given that p > 0,wehaveu′(c) < q, f ′(k) > (1+ n)/γ ,
and thus k< kγ . Moreover, we have from equations (3.25)–(3.26)

u′(c) − β f ′(k)u′(d) = −p[1+ ψ ′
c + f ′(k)ψ ′

d],

which is negative if 1 + ψ ′
c + f ′(k)ψ ′

d > 0. Then, using the individual’s first-
order condition (3.13), we have

β(1− θ) f ′(k)u′(d) = u′(c) < β f ′(k)u′(d),

which implies θ > 0. A sufficient condition for 1 + ψ ′
c + f ′(k)ψ ′

d > 0 is
ψ ′
d ≥ 0.

For g > g̃ we have pt > 0 for t large enough when the optimal dynamics of the
auxiliary problem converge to the steady state. Our conclusions thus remain
valid locally near the steady state.

This method does not allow reaching a conclusion in the case g < g̃, when
g̃ > 0.

Notice that when the function ψ(c,d) is convex, for example with a CIES
utility function and σ ≤ 1, one may consider another auxiliary problem with

Q2(x) = {(c,d) ∈ R
2
++; x ≥ c + ψ(c,d)},

which is a convex set. We can then make a similar study with a multiplier
p ≤ 0 and analyze the auxiliary problem. As the first-order conditions when
p = 0 are the same as above, the threshold g̃ is unchanged, and a solution to
the second-best problem is obtained by studying the auxiliary problem when
g < g̃ (which makes sense when g̃ > 0).

Example: We compute g̃ in the case of a CIES utility function with σ ≥ 1. The
optimal allocations of consumptions should satisfy

c−1/σ = β(1+ n)
γ

d−1/σ ,

and hence

c =
(

γ

β(1+ n)
)σ
d.
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Using this result in the resource constraint, we obtain the function d(g):

d(g) =
[

1
1 + n +

(
γ

β(1 + n)
)σ]−1

[ f (kγ ) − (1 + n)kγ − g],

and g̃ is obtained with

d(g̃) = (1 + n)2
γ

kγ ,

leading to

g̃ = f (kγ )− (1+ n)
(
1+ 1

γ
+ γ σ−1

βσ (1+ n)σ−1

)
kγ .

In the special case σ = 1, ψ(c,d) = βc is linear and the set

Q(x) = {(c,d) ∈ R
2
++; c(1 + β) = x},

is convex. We can then apply the standard second-best problem, and

g̃ = f (kγ )− (1+ n)
(
1+ 1

γ
+ 1
β

)
kγ .

For g > g̃ we have k< kγ and θ > 0. For g < g̃ (when g̃ > 0), we have
k > kγ and θ < 0. This illustrates that, although θ does not affect the choice
of savings with a logarithmic utility, it introduces a gap in the condition
u′(c)/u′(d) = β(1− θ) f ′(k) which makes the allocation not a first best.
With a Cobb–Douglas production function, the modified golden rule is

αAkα−1
γ = 1 + n

γ
,

f (kγ ) = Akαγ = 1+n
αγ
kγ , and the sign of g̃ is the same as the sign of

1
αγ

−
(
1+ 1

γ
+ 1
β

)
,

which is positive for

γ <
1 − α
α
(
1 + 1

β

) .
The study of the dynamics in the Cobb–Douglas case is made in section 3.5.4,
assuming government spending proportional to production: gt = ε f (kt).

3.5 applications and extensions

One relevant issue for the policy debate in developing countries is the im-
plementation of a demographic policy designed to monitor the evolution of
the population. Behind this political debate we find the idea that there is an
optimal level of population growth. This issue is studied in section 3.5.1. It is
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followed by two applications that illustrate the properties of the second-best
problem (sections 3.5.2 and 3.5.3). Finally, we determine the second-best op-
timal fiscal policy in an example where government spending is proportional
to output (section 3.5.4).

3.5.1 Optimal Growth Rate of Population

Samuelson (1975b) (see also Arthur and McNicoll (1978)) studies the opti-
mum rate of population growth that maximizes utility among all the golden
ages. Going back to the problem of the optimal stationary path (section 2.1.2),
the problem of Samuelson is to maximize

u(c)+ βu(d)
subject to

f (k) = (1+ n)k+ c + d
1 + n (3.28)

with respect to the variables k, c, d, and 1+ n. The first-order necessary con-
ditions for this problem are

f ′(k) = 1 + n, (3.29)

u′(c) = (1+ n)βu′(d), (3.30)

d = (1 + n)2k. (3.31)

Equation (3.29) is the golden rule (2.4). Equations (3.28) and (3.30) are those
describing the golden age (see proposition 2.2). Equation (3.31) is the addi-
tional equation related to the optimal choice of 1 + n.

Comparing now these equations with the equations that describe the com-
petitive equilibrium, we observe that just picking the optimal rate of popula-
tion growth, when it exists, is sufficient for the market conditions to coincide
with the optimal conditions, and leads a competitive economy to the gold-
enest golden age. Indeed, if equation (3.31) holds, we have, from the budget
constraint of the old, d = R(1 + n)k when R = 1 + n holds; the golden rule
is verified, and the optimal choice of the consumer, u′(c) = Rβu′(d), leads to
equation (3.30). There is thus no need of transfer. This result is the serendipity
theorem of Samuelson.

The validity of such a strong result depends of course on the existence
of such an interior optimum growth rate of population. This is not granted,
however, because theproblem isnon-convex; in theexamplewitha logarithmic
utility function and a Cobb–Douglas production function, Deardorff (1976)
shows that the first-order conditions lead to a minimum and not to a max-
imum (see also the answer by Samuelson (1976)). The discussion is gen-
eralized to the CIES utility function and the CES production function by
Michel and Pestieau (1993). They show that, for the serendipity theorem to
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hold, it is sufficient that the factors of production have low substitutabil-
ity (ρ > 0) and the inter-temporal elasticity of substitution be small enough:
σ < 2− 1/(1+ ρ).

3.5.2 Application: The Tax on the First Old Generation

In the following applications, we consider an economy with a CES production
function with ρ = 1 and α = 1/2 and a CIES utility. Taking the numerical
values proposed in appendixA.5.3, we haven = 1.02530 − 1, β = 0.3, A= 20.
We also choose g = 6, implying a share of government spending in GDP of
25% (in the example below with σ = 2) at the competitive equilibrium.

To illustrate the importance of the time inconsistency problem, we first
propose a simulation with optimal θ0 (assuming furthermore γ = 0.99). In this
case, there is one optimality condition, which is specific to period 0.Aswe have
stressed above, the comparison of equations (3.19) and (3.21) shows clearly
that the choice of d0 for the first old generation (and hence θ0) is not directly
subject to an implementability constraint. Equations (3.19) and (3.21) give
the same rule only when p0 = 0, or when ψ ′

d = 0. This last possibility occurs
with a logarithmic utility function. In that case, there is no time consistency
problem and the choice of dt , t > 0, will obey the same rule as the choice
of d0.

Starting fromasteady state situation,wecompute theequilibriumtrajectory
recognizing the specific nature of period 0.

� With σ = 1 (logarithmic utility), the economywill remain at the steady state
for the reason explained above. The optimal path of taxes is

{0.69895, 0.69895, 0.69895, 0.69895, . . . , 0.69895} for σ = 1.

The before-tax interest rate affecting old people is 4.58, i.e., 5.20%per year;
the after-tax rate is 1.08%.

� For σ �= 1, because the first-period optimality rule is different, the planner
will not choose to remain at steady state:

� For σ > 1, The planner implements a solution with a high tax on the first
old generation. A negative effect of this tax is to lower the utility of the first
old. Moreover, taxes on young people are reduced, and this increases the
capital stock in the future. This temporarily higher capital stock gives some
additional resources to subsequent generations, which leads to a higher
social welfare. The optimal path of taxes for different values of σ is

{0.828650, 0.653712, 0.668855, 0.675271, . . . , 0.680617} for σ = 1.25,

{0.878292, 0.516106, 0.567345, 0.585429, . . . , 0.598781} for σ = 1.50,

{0.901269, 0.235558, 0.400403, 0.434292, . . . , 0.450569} for σ = 2.00,

{0.918837,−0.13809, 0.253517, 0.276748, . . . , 0.282633} for σ = 3.00.
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� For σ < 1, the inverse result holds: the first old generation will be less taxed
than the next ones. The optimal path of taxes is

{0.379923, 0.453591, 0.450169, 0.448001, . . . , 0.444539} for σ = 0.50,

{0.524408, 0.600673, 0.597757, 0.596238, . . . , 0.594637} for σ = 0.75.

Note also in these examples that the steady state level of capital taxation
depends on σ . For σ higher than 1 (lower than one), capital taxation has a
negative (positive) influence on savings and capital. For this reason, steady
state capital taxation should be lowered when σ increases above 1; otherwise
capital accumulation will be discouraged too strongly.

3.5.3 Application: Financing Future Spending

We now propose another simulation, considering the initial tax rate θ0 fixed
at its steady state value as an initial condition. Assume that government
spending are expected to increase by 10% during one given period in the
future, say at t = 3. This extra spending can be due, for instance, to fighting
the consequences of global warming in one century. How should this cost be
supported by the different generations? In particular, should the economy
accumulate more capital temporarily to face the future shock? In the absence
of debt, there are limited possibilities to redistribute the shock among
generations. We illustrate this issue by simulating a numerical example of the
second-best problem. The given path of government spending is

{6, 6, 6, 6.6, 6, 6, . . .}.
We assume that the economy is at a stationary equilibrium in period t = 0
and that the government should choose labor and capital taxes to finance the
given path of spending. We solve the problem for two different values of the
inter-temporal elasticity of substitution, σ = 2 and σ = 3/4. The results are
reported in tables 3.2 and 3.3. Data are reported in terms of deviation from
steady state. The last column reports the loss or gain in the life-cycle utility of
the generation born in t with respect to steady state life-cycle utility.13

When inter-temporal substitution possibilities are high, the strategy of the
planner is toplayon inter-temporal substitution to compensate the generations
alive at t = 3. This can be achieved by compensating the old persons at t = 2
and t = 3 by giving them more consumption when young at t = 1 and t = 2.
In table 3.2, we also observe that the consumption of the old at t = 4 is not
affected much, illustrating the relative compensation they receive in exchange
for higher wage taxation at t = 3.

13 The absolute values of these latter deviations would be affected by any monotonic linear
transformation of the utility function. However, their ranking would be preserved.
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Table 3.2. Optimal Policy for σ = 2

Time ct dt kt Labor Capital Utility
t (%) (%) (%) tax tax (%)

1 +0.1 0 0 0 0 −0.0
2 +0.2 −0.4 −0.2 −0.2 +0.3 −0.0
3 −5.3 −1.0 −0.4 +3.9 +0.6 −2.0
4 −2.4 −0.3 −2.8 −0.2 +0.5 −0.6
5 −1.1 −0.1 −1.3 −0.1 +0.2 −0.2
6 −0.5 −0.1 −0.6 −0.0 +0.1 −0.1
∞ 0 0 0 0 0 0

θ0 fixed at its steady state value.
Percentage changes for ct , dt , and kt . Absolute changes for tax rates.

When inter-temporal substitution possibilities are small, it is not optimal
for the household to reallocate much consumption across time in response
to change in the environment. In this case, we observe in table 3.3 that the
cost of the shock is partly supported by the old generation at t = 2 through
an increase in taxes. This allows redistributing resources to the young in order
for the economy to build up its stock of capital in advance, so as to reduce the
impact of the shock on production capacities.

3.5.4 Proportional Government Spending

It is possible to explicitly compute the dynamics of the second-best problem
when the production function is Cobb–Douglas, f (kt) = Akαt , the utility is log-
arithmic, the depreciation rate is 1, and government spending is proportional
to production:

gt = ε f (kt).

Table 3.3. Optimal Policy for σ = 3/4

Time ct dt kt Labor Capital Utility
t (%) (%) (%) tax tax (%)

1 −0.1 0 0 0 0 −0.1
2 −0.0 −1.1 +0.2 −0.1 +0.4 −0.3
3 −2.0 −3.3 +1.1 +2.5 +1.1 −0.8
4 −0.7 −1.5 −2.2 −0.5 +1.0 −0.2
5 −0.2 −0.5 −0.7 −0.2 +0.3 −0.1
6 −0.1 −0.2 −0.2 −0.1 +0.1 −0.0
∞ 0 0 0 0 0 0

θ0 fixed at its steady state value.
Percentage changes for ct , dt , and kt . Absolute changes for tax
rates.
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This proportionality factor can be interpreted by assuming that government
spending is a factorofproductionwhich is complementary to theprivate inputs:

Yt = min
{
F(Kt , Nt),

1
ε
Gt

}
.

With a logarithmic utility function, the implementability constraint is given by

ct = xt
1+ β ,

and the dynamics of xt are

xt+1 = (1− ε) f
(
xt − ct
1 + n

)
− dt+1

1+ n .

Replacing ct in the objective and the dynamics, the second-best problem is to
maximize

∞∑
t=0

γ t
[
ln
(
xt

1 + β
)

+ β lndt+1

]

subject to

xt+1 = Bxαt − dt+1

1 + n ,

where

B= (1− ε)βαA
(1+ n)α(1 + β)α .

To study the problem, we define the ratio

mt = dt+1

(1+ n)Bxαt
.

The problem then becomes to maximize
∞∑
t=0

γ t ((1 + βα) ln xt + β lnmt)

subject to

ln xt+1 = ln(1−mt)+ α ln xt + ln B.

Denoting zt = ln xt , the Lagrangian of period t is

Lt = (1+ βα)zt + β lnmt + γqt+1[ln(1−mt)+ αzt − ln B] − qt zt ,
and the first-order conditions are

β(1−mt) = γqt+1mt ,

qt = αγqt+1 + (1 + βα).
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The general solution to the dynamic equation in qt is

qt = 1 + αβ
1 − αγ + 

(
1
αγ

)t
,

with  a real constant. There is a unique solution that verifies the transversality
condition, which is the constant solution

qt = 1 + αβ
1 − αγ .

The optimal path of mt is thus constant too:

mt = β

β + γqt = β(1− αγ )
β + γ .

The dynamics of xt is given by

xt+1 = B
(1 + αβ)γ
β + γ xαt .

Consumptions and capital are functions of xt :

ct = xt
1 + β , dt+1 = (1+ n)β(1− αγ )

β + γ Bxαt ,

kt+1 = β

(1+ β)(1+ n)xt .

The tax on labor income is

τt = 1 − ct + (1+ n)kt+1

ω(kt)
= 1− xt

(1− α)Akαt
= 1 − (1− ε)(1 + αβ)γ

(β + γ )(1 − α) .

It is constant and increases with ε. The tax on capital income is

θt = 1 − dt
f ′(kt)(1+ n)kt

= 1 − (1− ε)(1 − αγ )β
(β + γ )α .

It is also constant, different from 0 except for a specific ε, and increasingwith ε.
Without government spending (ε = 0), distortionary taxes implement in-

tergenerational transfers which verify

τwt + θRtst−1 = 0.

This amounts to

(1 − α)τ + θα = 0.
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A further study would be to compare these taxes with the optimal lump-sum
taxes.

3.6 conclusion

The aim of this chapter was to show that the overlapping generations model
provides a useful toolkit to analyze economic policies. In particular, we have
provided three key results.

We first studied the SecondWelfare Theorem in the context of overlapping
generations. We showed that any feasible trajectory that satisfies the optimal
individual life-cycle arbitrage can be decentralized as a competitive equilib-
rium by using lump-sum taxes and transfers. As any Pareto-optimal trajectory
respects the optimal individual life-cycle arbitrage, it can be decentralized.

After the study of general lump-sum transfers, we considered lump-sum
pensions, i.e., transfers in favor of the old generation. Applying the results of
the welfare theorems, we state that, if under-accumulation of capital prevails,
the competitive equilibrium with pensions is Pareto-optimal. Indeed, starting
from a Pareto-optimal situation, any lump-sum redistribution of incomes en-
tails an allocation, which is different but also Pareto-efficient as long as one
remains in the under-accumulation regime. Consequently, it is not possible to
set up a Pareto-improving transition to another pension system. In the study
on pensions we also devoted particular attention to the sustainability of the
system. A policy is called sustainable if the corresponding intertemporal equi-
librium exists. Because a sustainable pay-as-you-go pension system reduces
the amount of saving during the working years by providing income during
retirement, the effect of pensions on capital accumulation is negative. In the
long run, a decrease in capital reduces (increases) the net production available
for consumption when there is under-accumulation (over-accumulation).

We have also analyzed the optimal way to finance a given path of govern-
ment expenditures in the absence of lump-sum taxation, using only distorting
fiscal instruments. A key point is that this second-best problem is in general
non-convex. This difficulty is ignored in the literature, and one generally as-
sumes that the optimal solution exists and is interior. For the simple case with
inelastic labor supply, we have tackled this problem in a rigorous way, by an-
alyzing a convex auxiliary problem that characterizes the original problem
under certain conditions. We concluded that, when government spending are
above a certain threshold, the steady state solution of the auxiliary problem
is also the steady state solution of the second-best problem. At this optimum,
under-accumulation prevails, andoptimal capital taxes are likely to bepositive.
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Debt

Government debt allows the financing of public spending or transfer policies.
Issuing debt (for one period in our setup) implies that the government has
to pay interest and eventually to reimburse the principal. This can be done
in two different ways: if one taxes the future generations to reimburse the
debt, the policy amounts to performing an inter-generational transfer. If the
government issues new debt in order to reimburse the preceding debt, then
the question of the sustainability of such a policy becomes central.

The effect of government debt on growth and welfare is an old debate.
According to the view of Ricardo (1817), “it is not by the payment of the inter-
est on the national debt that a country is distressed, nor is it by the exoneration
from payment that it can be relieved. It is only by saving from income, and re-
trenching in expenditure, that thenational capital canbe increased; andneither
the income would be increased, nor the expenditure diminished by the annihi-
lationof thenational debt.”This famousneutrality result holds in thebasic neo-
classical growth model but breaks down in the overlapping generations model
of Diamond (1965), Phelps and Shell (1969), and Blanchard (1985), in which
finite-lived agents consider government debt as net wealth (Barro (1974)). As
pointed out by Weil (1989), it is not the assumption of a finite horizon which
is responsible for the breakdown of the Ricardian equivalence, but the pres-
ence of unborn future generations whose interests are not taken into account
by present generations. The overlapping generations model thus provides a
relevant framework to study the role of public debt.

In his seminal contribution, Diamond (1965) examines the effect of gov-
ernment debt on the long-run competitive equilibrium of an economy with
overlapping generations; he shows that positive debt lowers utility when the
equilibrium is efficient (under-accumulation case) but may raise utility in the
inefficient case (over-accumulation).1

1 The contribution of Diamond (1965) often serves as a building block for further stud-
ies on debt and related issues. See, for instance, King (1992), Grossman and Yanagawa
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Two kind of policy rules are considered in the literature. In one case, the
deficit is kept constant, and debt changes over time. In another case, which is
the one considered by Diamond (1965), the debt per capita is kept constant,
and taxes are adjusted to meet this objective.

In the case where deficit per capita is constant, two different sub-cases
should be distinguished. When the budget is balanced, current taxes finance
current spending, and the government reimburses the debt plus interest by
issuing new debt. There are in this case some similarities with the dynamics
of bubbles studied by Tirole (1985), which can eliminate over-accumulation if
the initial bubble is at an adequate level. Studying the different steady states
and establishing clearly the distinction between bubbles and debt are on the
agenda of this chapter. When the deficit is non-zero, the dynamics can take
various forms (Azariadis (1993), Farmer (1986)), depending, a.o., on the value
of the deficit. To perform a more complete study than the mentioned authors
one should relate each possible steady statewith a value of the deficit and study
the corresponding local dynamics. This should inform us on the desirability of
different deficit policies.

Even in the case where debt per capita is constant, as it is considered by
Diamond, the dynamic effects of debt on capital accumulation are complex.
Indeed, although debt can be beneficial in a long-run equilibrium, nothing
guarantees that, given its initial endowment in capital, the economy will con-
verge to this equilibrium rather than another equilibrium or to an unsustain-
able outcome.2 Hence, the issue of the sustainability of constant debt per capita
is central to the dynamic analysis.3 Moreover, there is in general more than
one steady state equilibrium. Hence there is a second worthy question, be-
yond the issue of sustainability: towards which equilibrium does the economy
converge?

Section 4.1 introduces public debt into the model of chapter 1. The limits
of the approach in terms of inter-temporal budget constraint are clearly es-
tablished in section 4.2. In section 4.3, we analyze the effect of constant deficit
policies on capital accumulation and debt dynamics. The difference between

(1993), King and Ferguson (1993), Bertocchi (1994), Uhlig (1998), and Azariadis and Smith
(1998).

2 Renewed interest in sustainability issues has been fostered by theMaastricht Treaty, imposing
on European governments the duty to reach a maximum level of debt equivalent to 60% of
GDP.

3 A recent paper by Rankin and Roffia (1999) has a comparable motivation: “There is a need
to investigate another aspect of unsustainability: namely, the possibility that, even with a
constant stock of debt, fiscal policy may be unsustainable because a steady state equilibrium
[. . .] may not exist. [. . .] It is necessary to have a good understanding of the technical limits
to debt before we can make serious progress in modelling its political limits.” As we shall
show, the existence of a steady state is not sufficient to guarantee sustainability; stability is
also required. Notice also that the analysis of Rankin and Roffia (1999) is carried out in a
Cobb–Douglas world, while we would like to analyze this issue with general preferences and
production functions, without, e.g., imposing Inada conditions.
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debt and bubble dynamics is also clarified. In section 4.4, we analyze the ef-
fect of a constant debt policy on capital accumulation and provide a global
treatment of the dynamics. Section 4.5 provides applications and extensions.

4.1 diamond’s model with debt

In this section,we list the changes that shouldbemade in themodel of chapter 1
in order to take public debt into account.

4.1.1 The Model

The government has to finance public spendingGt . It can use lump-sum taxes
Ntτ 1t on the income of the young households, and Nt−1τ

2
t on the income of old

people. It can also issue a debt Bt , and it has to repay the debt of the preceding
period Bt−1 plus the accrued interests rt Bt−1. The government in this model
always honors its debt. We thus have

Bt + Ntτ 1t + Nt−1τ
2
t = (1+ rt)Bt−1 +Gt . (4.1)

This budget constraints links the three instruments at period t . The govern-
ment’s budget is balanced when

Ntτ 1t + Nt−1τ
2
t = Gt ,

i.e., total taxes equal spending. The government runs a deficit when Ntτ 1t +
Nt−1τ

2
t < Gt ; it runs a surplus if the opposite holds.

At the first period t = 0, each of the N−1 old households is the owner of
the same fraction of the installed capital stock K0 and of the existing debt
B−1. We assume that K0 > 0 and B−1 > −K0. Their wealth is thus s−1 = (K0 +
B−1)/N−1, and their net income is equal to R0s−1 − τ 20 .

The net income of the young individuals is equal to the real wage wt minus
the lump-sum tax τ 1t levied by the government. They allocate this income
betweencurrent consumption ct and savings st . Thebudget constraint of period
t is

wt − τ 1t = ct + st . (4.2)

In their second period of life, t + 1, they are retired. Their income comes
from the return on the savings made at time t minus the taxes imposed on the
old generation.4 Their expected consumption is

det+1 = Ret+1st − τ 2et+1. (4.3)

4 InDiamond (1965) the government does not impose taxes on the older generation.An exten-
sion of Diamond (1965) to a framework with two different taxes is proposed in Ihori (1978).
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At time t each young individual anticipates a returnRet+1 for his savings and
a future tax τ 2et+1. Each young individual maximizes

u(ct) + βu(det+1

)
,

subject to equations (4.2) and (4.3). Optimal savings are described by using
the function of section 3.1.1 defined when the agent receives income in both
periods of life:

st = s̃(wt − τ 1t ,−τ 2et+1,R
e
t+1

)
. (4.4)

This savings function is defined provided that the expected life-cycle income
is positive:

wt > τ 1t + τ 2et+1

Ret+1
. (4.5)

When his savings st−1 are fixed, each old consumer consumes

dt = Rtst−1 − τ 2t .
For dt to be positive, one needs

τ 2t < Rtst−1. (4.6)

The behavior of firms remains unchanged. The capital stock Kt = It−1 is in-
stalled, their labor demand is defined by F ′

L(Kt , Lt) = wt , i.e., ω(Kt/Lt) = wt ,
and they distribute their profits to the capital owners: πt = Yt − wtLt =
Kt f ′(Kt/Lt).

The savings of the young households at time t are used to finance both
the public debt and the capital of firms. Since the one-period bonds of the
government have the same characteristics (in terms of risk) as the private
deposits, debt and capital are substitutes in the portfolios of wealth owners.5

Investment in physical capital is given by

It = Ntst − Bt .

4.1.2 The Temporary Equilibrium

We first define the temporary equilibrium. The temporary equilibrium of
period t gives the equilibrium value of the current variables as a function
of the past and of the expectations about the future. At period t the existing
debt Bt−1 and capital Kt = It−1 > 0 are given. They are linked to the savings
of the old through

Nt−1st−1 = It−1 + Bt−1. (4.7)

5 Diamond (1965) calls this case “internal debt.” He also studies another case where debt is
“external” and domestic wealth owners only detain the stock of capital.
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The foresight of the young (τ 2et+1 and R
e
t+1) is also given. For a given Gt , the

government chooses its instruments Bt , τ 1t , and τ
2
t in order to satisfy its budget

constraint (4.1).
At equilibrium the returns on public debt and private capital are equal:

1 + rt = Rt . The labor demand Lt is equal to the labor supply Nt . We deduce
that

wt = ω(kt) and Rt = f ′(kt) with kt = Kt
Nt
, (4.8)

and the government decisions are linked by

Bt + Ntτ 1t + Nt−1τ
2
t = Gt + f ′(kt)Bt−1. (4.9)

Following (4.6), the taxationof theold shouldbe smaller than their income.The
anticipations of the young should verify (4.5) with wt = ω(kt). Furthermore,
for private investment to be positive, one needs

It = Ntst − Bt = Nt s̃
(
wt − τ 1t ,−τ 2et+1,R

e
t+1

)− Bt > 0, (4.10)

using the savings function (4.4). Equation (4.10) gives a restriction on the
government debt, depending on the net wage wt − τ 1t and expectations.

Proposition 4.1 (Existence of a temporary equilibrium with debt)
Given the variables {Bt−1, st−1, It−1} from the previous period for which (4.7)
holds, and given government spending Gt and the expected variables Ret+1 and
τ 2et+1, there exists a temporary equilibrium with instruments (Bt , τ

1
t , τ

2
t ) and pos-

itive investment if and only if, with kt = Kt/Nt = It−1/Nt , and prices wt and Rt
given by (4.8), the following conditions hold:

� the expected life-cycle incomeof theyounghousehold ispositive, i.e., equation
(4.5) holds;

� the consumption of the old household is positive, i.e., equation (4.6) holds;
� the three instruments (Bt , τ 1t , τ

2
t ) are linked by the budget constraint (4.9);

� the debt and tax τ 1t allow for positive investment, i.e., equation (4.10) holds.

4.1.3 The Inter-temporal Equilibrium with Perfect Foresight

An inter-temporal equilibrium with perfect foresight is a sequence of tempo-
rary equilibria which verify the assumption of perfect foresight:

∀t ≥ 0, τ 2et+1 = τ 2t+1 and Ret+1 = Rt+1.

It is thus characterized by sequences (Bt , τ 1t , τ
2
t ), (Kt , Lt ,Yt , kt , It), (ct , st ,dt),

(wt ,Rt), which verify ∀t ≥ 0:

� Kt = It−1, Lt = Nt , Yt = F(Kt , Nt), kt = Kt
Nt
, wt = ω(kt), Rt = f ′(kt);

� It = Ntst − Bt > 0, st = s̃(wt − τ 1t ,−τ 2t+1,Rt+1), wt > τ 1t + τ 2t+1
Rt+1

;
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� Bt + Ntτ 1t + Nt−1τ
2
t+1 = Gt +Rt Bt−1;

� ct = wt − τ 1t − st , dt = Rtst−1 − τ 2t > 0.

Note that, except at t = 0 where s−1 is given, the condition that τ 2t < Rtst−1

results from the positivity of the life-cycle income (4.5), which implies that the
two optimal consumptions are positive.

We now define the variables in intensive form: public spending per capita
is gt = Gt/Nt , and debt per capita is bt = Bt−1/Nt . Note that the time index
associated to bt is chosen by symmetry with respect to kt . Both bt and kt are
pre-determined variables.

The following proposition characterizes the inter-temporal equilibrium in
terms of the intensive variables kt and bt .

Proposition 4.2 (Characteristics of an inter-temporal equilibrium with debt)
Given the initial conditions k0 = K0/N0 and b0 = B−1/N0, and the path (gt)t≥0,
an inter-temporal equilibrium with perfect foresight is characterized by the
sequences (kt ,bt)t≥0 and (τ 1t , τ

2
t )t≥0, which verify two dynamic equations

(1 + n)(kt+1 + bt+1)= s̃(ω(kt)− τ 1t ,−τ 2t+1, f
′(kt+1)

)
,

(1+ n)bt+1 + τ 1t + τ 2t+1

1 + n = gt + f ′(kt)bt ,
(4.11)

and also verify the constraints τ 20 < f ′(k0)(1 + n)(k0 + b0) and

∀t ≥ 0, kt+1 > 0, ω(kt) > τ 1t + τ 2t+1

f ′(kt+1)
.

Proof: It is easy to verify that the equilibriumvariables (Bt), (Kt , Lt ,Yt , kt , It),
(ct , st ,dt), (wt ,Rt) for all periods t are determined as functions of (kt ,bt)t≥0
and (τ 1t , τ

2
t )t≥0.

To study this class of equilibria we shall assume more specific policies. In
particular, we shall consider constant deficit policies and constant debt poli-
cies. However, before the analysis of the dynamics in these two special cases,
it is necessary to study the role of debt as a tool for economic policy that
depends on the available fiscal instruments. Accordingly, we analyze the re-
strictions bearing on taxes and debt, with a special focus on the government
inter-temporal budget constraint and its link to the availability of the different
instruments.

4.2 the inter-temporal budget constraint of the government

The inter-temporal budget constraint of the government has become a focus
of an important literature dealingwith the sustainability of government deficit.
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In this literature, sustainability should be understood in the sense of solvency:
for instance, Ahmed and Rogers (1995) write that “Solvency requires that
asymptotically the government cannot leave a debt that has a positive ex-
pected present value.” To explore the theoretical relevance of the debate we
start from the constraint of period t (4.1),

Bt + Ntτ 1t + Nt−1τ
2
t = (1+ rt)Bt−1 +Gt ,

which can be written, after multiplying by ρt ,

ρt Bt = ρt−1Bt−1 + ρtGt − ρt Tt ,
where Tt = Ntτ 1t + Nt−1τ

2
t is the total of taxes and where the discount factors

are defined recursively by

∀t ≥ 0, ρt = ρt−1

1 + rt with ρ−1 = 1.

By induction we have

ρt0Bt0 = B−1 +
t0∑
t=0

ρtGt −
t0∑
t=0

ρt Tt . (4.12)

As noted by Hamilton and Flavin (1986), equation (4.12) causes little contro-
versy, since it is derived from an accounting identity. The interesting question
concerns what happen to the left-hand side when t0 gets large: Where is the
actual value of the debt going to?

Assume that the discounted sum of the differences Gt − Tt converges. If
the left-hand side of (4.12) goes to zero in the limit,

lim
t→∞ ρt Bt = 0, (4.13)

then the present value of taxes net of spending should cover the initial debt:
∞∑
t=0

ρt(Tt −Gt) = B−1. (4.14)

Definition 4.1 (Inter-temporal budget constraint of the government)
For a given sequence of discount factors (ρt)t≥0, an initial debt B−1, a sequence
of government spending (Gt)t≥0, and a sequence of lump-sum taxes (Tt)t≥0, we
say that the inter-temporal budget constraint of the government holds if:

� the discounted value of the difference between spending and taxes is finite;
� initial debt is financed by total taxes net of spending, i.e., equation (4.14)
holds.

Equation (4.13) is a necessary and sufficient condition for (4.14) to hold.
In the face of such a constraint, two attitudes are possible. The first one, as

in Hamilton and Flavin (1986), consists in testing the statistical implications
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of equation (4.14) shedding light on whether the government satisfies the
inter-temporal budget constraint. If these equations were not supported by
the data, one would conclude that the inter-temporal budget constraint need
not be satisfied. On the contrary, the second approach to the inter-temporal
budget constraint, as in Wilcox (1989), “regards the necessity of the present-
value borrowing constraint in a dynamically efficient economy as established
on theoretical grounds.” The aim of this section is accordingly to investigate
whether this second view is correct or not.

In models with representative infinite-lived agents, the condition (4.13)
holds when debt is positive. This results from the inter-temporal budget con-
straint of the representative agent.6 Indeed,

lim
t→∞ ρt(Kt + Bt−1) = 0

implies the following restriction on the borrowing possibilities of the govern-
ment:

lim sup
t→+∞

ρt Bt ≤ 0,

and in the case of a positive debt this leads to (4.13).
In overlapping generations models, the inter-temporal budget constraint

of the government is not the mirror of the inter-temporal budget constraint
of a private agent, since there are no infinite-lived individuals. We shall see
that the conclusion on whether the inter-temporal budget constraint of the
government should hold depends crucially on the number of available fiscal
instruments.When there are two types of taxes (three instruments), there is no
restriction on government borrowing. On the contrary, when there is only one
type of tax (two instruments), the debt that can decentralize a given trajectory
is determined. However, this unique debt trajectory may or may not satisfy
the inter-temporal budget constraint of the government, depending on the
accumulation regime.

4.2.1 Debt with the Two Types of Lump-sum Taxes

When there are both types of lump-sum taxes, Proposition 3.1 on the decen-
tralization of feasible allocations can be generalized to the case with debt and
public spending.

Proposition 4.3 (Decentralization with debt and public spending)
Let (c̆t , d̆t , k̆t+1)t≥0 be a feasible trajectory starting at k̆0 = k0 with government
spending (gt)t≥0, i.e. such that for all t ≥ 0

f (k̆t) = gt + c̆t + d̆t
1 + n + (1+ n)k̆t+1,

6 Crettez, Michel, and Wigniolle (1999) provide a careful study of the borrowing restrictions
with infinite-lived agents.
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which also satisfies for all t ≥ 0

u′(c̆t) = β f ′(k̆t+1)u′(d̆t+1).

Then, for any sequence of real numbers (Bt)t≥−1, there exists a sequence of
lump-sum taxes (τ 1t , τ

2
t )t≥0 such that this trajectory (c̆t , d̆t , k̆t+1)t≥0, together

with (Bt , τ 1t , τ
2
t )t≥0, is an inter-temporal equilibrium with perfect foresight.

Proof: We define the tax levels which give, for savings equal to s̆ t = (1+ n)
(bt+1 + k̆t+1) and bt+1 = Bt/Nt+1, the consumptions c̆t and d̆t :

τ 1t = f (k̆t)− k̆t f ′(k̆t)− s̆ t − c̆t , (4.15)

τ 2t = f ′(k̆t)s̆ t−1 − d̆t . (4.16)

The life-cycle income is

ω(k̆t)− τ 1t − τ 2t+1

f ′(k̆t+1)
,

which, after using (4.15)–(4.16), equals

c̆t + d̆t+1

f ′(k̆t+1)
> 0.

This implies that τ 1t and τ
2
t+1 satisfy the positivity constraint of the life-cycle

income. Following the individual arbitrage condition, we have

s̆ t = s̃(ω(k̆t) − τ 1t ,−τ 2t+1, f
′(k̆t+1)

)
,

where the function s̃(·) is defined in equation (3.2). Finally, by substituting c̆t
and d̆t in the resource constraint

f (k̆t)− gt − (1+ n)k̆t+1 = c̆t + d̆t
1 + n

= f (k̆t) − k̆t f ′(k̆t) − τ 1t − s̆ t + f ′(k̆t)s̆ t−1 − τ 2t
1 + n

with s̆ t = (1 + n)(bt+1 + k̆t+1), this conditions becomes

f (k̆t)− gt − (1+ n)k̆t+1 = f (k̆t)− k̆t f ′(k̆t)− τ 1t − (1+ n)(bt+1 + k̆t+1)

+ 1
1+ n

[
f ′(k̆t)(1+ n)(bt + k̆t)− τ 2t

]
,

and one obtains the condition (4.11) on the instruments of the government.

With the appropriate choice of taxes (4.15)–(4.16), the condition (4.11) is a
consequence of the resource constraint.
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This proposition generalizes the decentralization theorem (proposition 3.1)
to allow for arbitrary levels of debt. It shows that there is no restriction on
public debt as long as the government can tax the two generations freely.
This holds because the government has three instruments available in each
period,7 among which any two are sufficient to decentralize a feasible alloca-
tion for which the individual life-cycle arbitrage holds.More precisely, one can
decentralize any optimal trajectory by fixing arbitrarily the path of any of the
three instruments:

1. For a given arbitrary path of debt (bt)t≥0, Proposition 4.3 gives the two
taxes that should be implemented. With bt = 0 and gt = 0 for all t , we
retrieve proposition 3.1.

2. With (τ 1t )t≥0 given arbitrarily and b0 given by the initial condition, equa-
tion (4.15) determines the path of debt (bt)t≥1 and equation (4.16) deter-
mines the path of taxes (τ 2t )t≥0 that decentralize the optimal allocation.

3. With (τ 2t )t≥1 given arbitrarily and b0 given by the initial condition, τ 20
should be chosen according to equation (4.16) at t = 0. (bt)t≥1 is now
determined by (4.16), and (τ 1t )t≥0 by (4.15).

Note that, in the third scenario, τ 20 cannot be given exogenously. Indeed, the
only way to obtain the right level of consumption for the first old generation
is to use τ 20 : τ

2
0 = f ′(k0)s−1 − d̆0 with k0 and s−1 given.

Public debt appears here as a device to transfer resources between genera-
tions. Its effect can be neutralized by an adequate mix of lump-sum taxes. We
can obtain the same equilibrium as the one with no debt when the government
can tax both generations.

Example: To illustrate an optimal allocation where the constraint (4.13) does
not hold, let us take again the case of a log-linear utility function and a Cobb–
Douglas production function. For simplicity, we consider an optimal stationary
path with an social discount factor γ . From chapter 2 (section 2.4.1), we know
that this path is characterized by

k̆ =
(
αγ

1 + n A
) 1

1−α
,

c̆ = 1− αγ
1 + β/γ Ak̆

α,

d̆ = β(1 + n)
γ

1− αγ
1+ β/γ Ak̆

α.

7 With an infinite number of periods, this means in fact an infinite number of instruments. Here
we analyze the three types of instruments available in each period.
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We consider a debt which increases over time according to

bt = λ

(
1
γ

)t
, i.e. Bt = λ

(
1
γ

)t
Nt+1,

where λ is a real positive constant. The initial debt B0 is distributed to the
first old households. Given that

ρt = R−t =
(

γ

1 + n
)t
,

the condition (4.13) does not hold; for

lim
t→∞ ρt Bt = λ.

Let us now compute the taxes that will decentralize the optimal allocation,
given the above path for debt. The path of taxes is given by (4.15)–(4.16):

τ 1t = (1− α)Ak̆α − c̆ − (1+ n)(k̆+ bt+1) = τ̆ 1t − (1+ n)bt+1,

τ 2t = αAk̆α−1(1+ n)(k̆+ bt)− d̆ = (1+ n)2bt+1 + αAk̆α − d̆
= τ̆ 2t + (1+ n)2bt+1,

using αAk̆α−1 = (1+ n)/γ and bt/γ = bt+1. Taxes have two components:
the transfers without debt, τ̆ 1t and τ̆

2
t , i.e., the transfers that would decen-

tralize the given path in the absence of debt (λ = 0), and a component neu-
tralizing the effect of debt; The transfers without debt,

τ̆ 1t = (1− α)Ak̆α − c̆ − (1+ n)k̆= τ̆ 1 ∀t,
τ̆ 2t = αAk̆α − d̆ = τ̆ 2 ∀t,

are constant through time.
Let us finally compute the aggregate taxes:

Tt = τ 1t Nt + τ 2t Nt−1 = Nt

(
τ̆ 1 + τ̆ 2

1 + n
)

= Nt

(
Ak̆α − c̆ − (1+ n)k̆− d̆

1 + n

)

= 0.

Aggregate taxes are zero, implying that the reimbursement of the initial debt
λ is postponed forever. The tax on the young decreases continuously over
time and tends to −∞. This negative tax amounts to subsidize the young
households so that they are able to absorb the increasing debt. Moreover,
the tax on the old tends to+∞. For each agent, the government taxes away
the wealth it has given to him when young. This debt is a Ponzi debt (see
below, section 4.2.3).
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4.2.2 Debt with a Restriction of Only One Type of Lump-sum Tax

When there is only one type of taxation available, we can no longer apply
proposition 3.1. To decentralize a feasible path, debt is now necessary.We first
consider the case with no taxation of the young. Next we consider the case
with no taxation of the old and show that, in both cases, there is a restriction
on debt at each period. We finally study the consequence of this restriction for
the inter-temporal budget constraint.

Taxation of Old Households. When we exclude the taxation of the young
households (τ 1t = 0∀t), the debt that can decentralize a feasible trajectory
should satisfy the first-period budget constraint with s̆ t = (1+ n)(bt+1 + k̆t+1):

(1+ n)bt+1 = ω(k̆t)− (1+ n)k̆t+1 − c̆t < ω(k̆t) < f (k̆t),

and with the resource constraint of the economy we have

(1+ n)bt+1 = ω(k̆t)− f (k̆t) + gt + d̆t
1 + n > − f (k̆t).

Thus, no taxation of the young implies that the debt in absolute value remains
smaller than the national product:

∀t, |Bt | < Y̆t ,
since Y̆t = Nt f (k̆t) and Bt = (1+ n)Ntbt+1.

Taxation of Young Households. When we exclude the taxation on the old
households (τ 2t = 0∀t ≥ 1; τ 20 should always be chosen to realize d̆0), we obtain
the following restriction, derived from the second-period budget constraint:

(1 + n) f ′(k̆t)bt = d̆t − (1+ n) f ′(k̆t) · kt .
To guarantee a positive d̆ t , one needs bt > −k̆t . As f (k̆t−1) > (1+ n)k̆t , we
obtain

bt > −k̆t > − f (k̆t−1)
1+ n .

Moreover, to guaranteeapositive capital stockoneneeds (1 + n) f ′(k̆t)bt < d̆t .
As d̆ t < (1+ n) f (k̆t), we obtain

(1+ n) f ′(k̆t)bt < d̆t < (1 + n) f (k̆t).
We deduce the following two restrictions:

Bt−1 > −Y̆t−1 and R̆t Bt−1 < Y̆t for all t ≥ 1.
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Summary. As a consequence, in the two cases with only one lump-sum tax
available, the public debt necessarily verifies the following condition, intro-
duced by Crettez, Michel, and Wigniolle (2000):

∀t ≥ 0, |Bt | < max

{
Y̆t ,
Y̆t+1

R̆t+1

}
. (4.17)

At each date, the public debt in absolute value or the reimbursement of debt
cannot exceed the national product. Alternatively, one can see this restriction
as a ceiling on the debt–GDP ratio.Wehave indeed shown the following result:

Proposition 4.4 (Ceiling on the debt–GDP ratio)
There is a ceiling on the debt–GDP ratio,

vt = max

[
1,
f (k̆t+1)/ f (k̆t)

f ′(k̆t+1)

]
,

such that

|Bt |
Y̆t

= |Bt |
f (k̆t)Nt

< vt

has to hold for a feasible allocation with (k̆t)t≥0 to be decentralized with debt
and one type of lump-sum tax.

If theGDP growth factor f (k̆t+1)/ f (k̆t) is smaller than the gross rate of return
on capital, f ′(k̆t+1), the ceiling is equal to one. Otherwise, it is given by the
ratio of growth to the rate of return. Let us study the trajectories with a ceiling
when k̆t converges to a limit k.

Proposition 4.5 (Efficiency and the inter-temporal budget constraint)
If the feasible sequence k̆t converges towards k with under-accumulation, then
any debt with ceiling (4.17) necessarily satisfies the condition (4.13):

lim
t→+∞ ρ̆ t Bt = 0, where ρ̆ t = 1

f ′(k̆t)
ρ̆ t−1 and ρ̆−1 = 1.

If the sequence k̆t converges towards k in over-accumulation, then there exists
a debt for which (4.17) holds, but the inter-temporal budget constraint does not
hold, since (4.13) is not verified.

Proof: We have

ρ̆ t+1Y̆t+1

ρ̆ t Y̆t
= Nt+1 f (k̆t+1)

R̆t+1Nt f (k̆t)
= 1 + n
f ′(k̆t+1)

f (k̆t+1)

f (k̆t)
.
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We distinguish two cases.

� If f ′(k) = lim f ′(k̆t) > 1+ n, the above expression converges towards
1 + n
f ′(k)

< 1.

Hence, the positive sequence ρ̆ t Y̆t converges towards 0. As (4.17) can be
written

∀t ≥ 0, |ρ̆ t Bt | < max{ρ̆ t Y̆t , ρ̆ t+1Y̆t+1},
we deduce that limt→∞ ρ̆ t Bt = 0.

� If f ′(k) < 1 + n, we observe that the sequence ρ̆ t Y̆t goes to infinity and that
the debt Bt = 1

2 Y̆t verifies (4.17), but ρ̆ t Bt goes to infinity.

Note that when k̆t goes to the golden rule capital stock, a case not consid-
ered in proposition 4.5, lim ρ̆ t B̆t can be either nil or strictly positive (see
Crettez, Michel, and Wigniolle (2000)).

4.2.3 Ponzi Games

According to the skeptic’s dictionary of Carroll (2000), “Following a Ponzi
scheme, named after Charles Ponzi who defrauded people in the 1920s using
the method, involves getting people to invest in something for a guaranteed
rate of return and using the money of later investors to pay off the earlier
ones.”

We use the following formal definition of Buiter and Kletzer (1994):

Definition 4.2 (Ponzi debt)

A Ponzi debt (Bt)t≥0 is a sequence of debt that satisfies, for all t ,

Bt ≥ Rt Bt−1 and B−1 > 0.

At each date, the new debt covers at least the reimbursement of the debt
of the previous period. With such a debt we have for all t

ρt Bt ≥ ρt−1Bt−1 and ρ−1B−1 > 0.

The positive sequence ρt Bt is non-decreasing and has a limit which is either
a positive real number or +∞. Consequently, the inter-temporal budget con-
straint of the government does not hold.

It is often explained in the literature that Ponzi debt is excluded in an
economy with under-accumulation: “If r is greater than [the growth rate],
then government debt will increase faster than the economy, and the Ponzi
schemewill eventually be rendered infeasible: The debt will grow so large that
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the government will be unable to find buyers for all of it, facing either default
or a tax increase.” (From The Handbook of Macroeconomics, Elmendorf and
Mankiw (1999).)

We have seen that, if taxes on both generations are available, any path of
debt can be implemented with any given feasible allocation. This implies in
particular that Ponzi debt is feasible, whether over-accumulation prevails or
not. The example of section 4.2.1 is an example of Ponzi debt with an optimal
path (hence with under-accumulation); in this case, generation-specific taxes
grow unboundedly, but total taxes are zero (with no public spending).

If there is only one tax available, the usual result of the literature (im-
possibility of Ponzi debt in an economy displaying under-accumulation) is in
line with proposition 4.5. However, we have an additional result: in the case of
over-accumulation, the Ponzi debts are subject to the ceiling of proposition 4.4.

4.3 constant deficit policies

In this section, we consider exogenous constant deficit policies and study the
steady states and their stability. The stability property is essential for a mean-
ingful study of the effect of policy changes in the long run.

We assume in this section that the policy of the government is to keep
the deficit constant. We also assume that lump-sum taxes and government
spending per young are constant. Hence, we consider constant lump-sum taxes
τ 1t = τ 1, τ 2t = τ 2 ∀t and constant spending gt = g ∀t . We define the budget
deficit per young individual as

δ = g − τ 1 − τ 2

1+ n .

This constant deficit policy implies the following dynamic equation for debt:

bt+1 = Rt
1+ nbt + δ,

which describes the appropriate level of debt to maintain constant the level δ
of the deficit.

We shall study the inter-temporal equilibria with perfect foresight, which
are characterized by the following dynamic equations (see proposition 4.2):

(1+ n)(kt+1 + bt+1) = s̃(ω(kt)− τ 1,−τ 2, f ′(kt+1)), (4.18)

(1+ n)bt+1 = f ′(kt)bt + δ. (4.19)

By substitution of bt+1, equation (4.18) becomes

(1+ n)kt+1 = s̃(ω(kt)− τ 1,−τ 2, f ′(kt+1)) − f ′(kt)bt − δ. (4.20)

Aglobal analysis of this two-dimensional systemcannotbe carriedout in the
general case. To give a flavor of the logic of these dynamics,wefirst consider the
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associated dynamics obtained by keeping debt constant, bt+1 = b, in equation
(4.18):8

(1+ n)(kt+1 + b) = s̃(ω(kt)− τ 1,−τ 2, f ′(kt+1)).

Following the same argument as in section 1.5.2 for the model without debt,
the dynamics are well defined and monotonic if

1+ n− s̃ ′R
(
ω(kt)− τ 1t ,−τ 2t , f ′(kt+1)

)
> 0.

A steady state k is locally stable if at it we have:

s̃ ′ω1ω
′ < 1 + n− s̃ ′R f ′′.

The dynamics obtained by keeping capital constant in equation (4.20) are
much simpler:

(1+ n)bt+1 = f ′(k)bt + δ.
They are stable if there is over-accumulation of capital at k, and unstable if
there is under-accumulation. As we shall see, these conditions are not suffi-
cient to determine the dynamics in the two-dimensional system, even for local
analysis.

We shall proceed by analyzing the different possible steady states and study
their local stability. A steady state (k,b) is defined by the following two con-
ditions:

(1+ n)(k+ b) = s̃(ω(k) − τ 1,−τ 2, f ′(k)), (4.21)

(1+ n− f ′(k))b = δ. (4.22)

In the sequel we shall use the following assumption of local stability in the
associated dynamics:

Assumption A10.
At a steady state (k,b) verifying (4.21)–(4.22), we have

s̃ ′ω1ω
′ < 1 + n− s̃ ′R f ′′,

where the arguments of s̃ are ω(k)− τ 1, −τ 2, and f ′(k).

We start by considering balanced budget policies (zero deficit), before ana-
lyzing the more complex case with non-zero deficit. The relationship between
bubbles and debt is studied in a last section. In all the subsequent analysis
we suppose that the golden rule exists (assumption A5): kGR > 0 is solution to
f ′(kGR) = 1 + n.

8 The global dynamics in the case of constant debt and varying deficit are studied in section
4.4.
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4.3.1 Balanced Budget Policies: Local Analysis

When the deficit is nil (δ = 0), equation (4.22) shows that only two possibilities
may occur: the capital stock is at the golden rule level, f ′(k) = 1+ n, and/or
the long-term debt is nil, b = 0.

The Golden Rule Steady State with Debt.

Proposition 4.6 (The golden rule steady state with debt)
Assume the existence of the golden rule kGR (assumptionA5).Given government
spending g < ω(kGR) and the tax τ 2 on the old, there exists a unique level of debt
bGR such that (kGR,bGR) is a steady state with zero deficit. This level is given by

bGR = s(ω(kGR) − g, 1+ n)+ τ 2/(1 + n)
1+ n − kGR. (4.23)

Proof: Assuming that δ = g − τ 1 − τ 2/(1+ n) = 0, (kGR,bGR) is a steady state
of the dynamics (4.19)–(4.20) if and only if

(1 + n)(kGR + bGR) = s̃(ω(kGR) − τ 1,−τ 2, 1 + n).
Such an equilibrium exists if and only if the life-cycle income is positive:

ω(kGR)− τ 1 − τ 2

1 + n = ω(kGR)− g > 0. (4.24)

This inequality g < ω(kGR) imposes an upper bound on government spending.
This bound is equal to wage income at the golden rule. When the condition
(4.24) holds, there is a unique stationary level of debt bGR, which depends on
the distribution (τ 1, τ 2), that allows one to finance g:

(1+ n)bGR = s̃(ω(kGR) − τ 1,−τ 2, 1 + n)− (1+ n)kGR.

Using equation (3.3), which links the function s̃(·) to the standard saving func-
tion, we obtain equation (4.23).

Note that given government spending g and the tax on the old τ 2, the tax
on the young τ 1 is determined by the condition of zero deficit: τ 1 = g − τ 2/
(1 + n).

Proposition 4.6 states that, for a given g < ω(kGR) and for any real value of
τ 2, there exists a unique value bGR, defined by (4.23), such that (kGR,bGR) is a
steady state of the dynamics (4.19)–(4.20). Interestingly, bGR is an increasing
function of τ 2. Indeed, a higher τ 2 implies a lower τ 1, allowing in turn more
savings in the economy and more debt.

For all these equilibria, the life-cycle income is the same: ω(kGR) − g. Con-
sequently, consumptions and utilities are also the same. They correspond to
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the golden age (see section 2.1.2) with a fixed government spending. The local
stability of this steady state is given by the following proposition.

Proposition 4.7 (Stability of the golden rule steady state with debt)
Given g and τ 2, assume A5, g < ω(kGR), and A10 at (kGR,bGR) with τ 1 = g −
τ 2/(1 + n). There exists a threshold b < 0 depending on τ 2 and g such that the
steady state (kGR,bGR) with zero deficit is locally stable if bGR ∈ (b, 0). It is a
saddle point if bGR lies outside the interval.

Proof: To study the local dynamics (4.19)–(4.20) we take a first-order Taylor
expansion of the system around the steady state (kGR,bGR). This leads to the
linear dynamics

[
kt+1 − kGR

bt+1 − bGR
]

=

 s̃ ′ω1ω′−bGR f ′′

DGR

1+n
DGR

bGR f ′′
1+n 1


[ kt − kGR

bt − bGR
]
,

where

DGR = 1 + n− s̃ ′R(ω(kGR)− τ 1,−τ 2, 1 + n) f ′′(kGR).

The assumption A10 implies DGR > 0. The characteristic polynomial is

P(λ) = λ2 − λ
(
1+ s̃ ′ω1ω

′ − bGR f ′′
DGR

)
+ s̃ ′ω1ω

′

DGR

.

The product of the eigenvalues, P(0), is equal to s̃ ′ω1ω
′/DGR and belongs to

(0, 1) from A10. Moreover, we have

P(1) = bGR f ′′

DGR

,

P(−1) = 2 + 2s̃ ′ω1ω
′ − bGR f ′′
DGR

.

We have P(−1) > 0 if and only if b > b, the threshold b being given by

b = 2
f ′′(kGR)

[DGR + s ′w(ω(kGR)− g, 1 + n)ω′(kGR)].

In the case bGR > 0, we have P(1) < 0. The eigenvalues verify 0 < λ1 < 1 < λ2,
and the steady state is a saddle point. In the case P(−1) < 0, the eigenvalues
verify 0 > λ1 > −1 > λ2, and the steady state is a saddle point (with oscillatory
dynamics near the steady state). In the case P(1) > 0 and P(−1) > 0, the
modulus of each eigenvalue is smaller than 1, since P(0) < 1.
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To interpret the assumption A10 in this case, let us use the results of section
3.1.1. Given that g = τ 1 + τ 2/(1+ n), we have the following relationship:

s̃(ω(kGR) − τ 1,−τ 2, 1 + n) = s(ω(kGR) − g, 1 + n) + τ 2

1 + n ,

s̃ ′ω1 (ω(kGR) − τ 1,−τ 2, 1 + n) = s ′w(ω(kGR) − g, 1+ n),
s̃ ′R(ω(kGR) − τ 1,−τ 2, 1 + n) = s ′R(ω(kGR)− g, 1 + n)

−τ
2[1− s ′w(ω(kGR)− g, 1+ n)]

(1+ n)2 .

These imply that A10 amounts to

(1 + n− s ′R f ′′ − s ′wω′)+ τ 2(1− s ′w) f ′′
(1+ n)2 > 0.

Thus A10 is equivalent to imposing an upper bound on τ 2.
Proposition 4.7 sets out an important restriction to obtain the stability of

the dynamics with debt: 0 > bGR > b. It means in particular that under A10,
the dynamics around the golden rule steady state cannot be stable if the debt
is positive. When the debt is positive, the steady state is a saddle point. This
has a particular meaning in the dynamics with bubbles, which is a case without
taxes and government spending (this corresponds to a Ponzi game and will be
studied in section 4.3.5). In this particular case, the level of debt corresponding
to the golden rule is

b0GR = s(ω(kGR), 1 + n)
1 + n − kGR,

and proposition 4.7 can be restated with

b0 = 2
f ′′(kGR)

[
D0

GR + s ′w(ω(kGR), 1+ n)ω′(kGR)
]
.

The steady state (kGR,b0GR) is a saddle point in two cases: b
0
GR> 0 and b0GR<b

0.
In the case 0>b0GR>b

0, it is stable.

The Steady State with Zero Debt. The other case in which the constant deficit
δ = τ 1 + τ 2/(1 + n) − g is nil corresponds to a steady state where the debt
asymptotically vanishes. At this steady state, the capital intensity verifies

(1 + n)k= s̃(ω(k)− τ 1,−τ 2, f ′(k)). (4.25)

Any steady state of the economy with lump-sum transfers financing public
expenditure is also a steady state with zero debt of the economy with debt.
The results of chapter 3 can be used to study the existence of steady states:

� If τ 2 = 0, the study of section 3.3.1 applies. A steady state k exists if g is
sustainable, i.e., the smallest sustainable initial capital k(g) is finite. This
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condition is equivalent to an upper bound on g, defining the highest sus-
tainable public spending ḡ.

� If g = 0, the study of section 3.1.1 applies, and one obtains conditions on
τ 2.

� In the general case there are restrictions on both g and τ 2. By continuity,
for g < ḡ, there is a steady state if τ 2 is small enough.

The local stability of such a steady state is given by the following proposition.

Proposition 4.8 (Stability of the steady state with zero debt)
Given g and τ 2, and a steady state with zero debt k solution to (4.25) with
τ 1 = g − τ 2/(1 + n), assume A10 at (k, 0).
The steady state (k, 0) is locally stable if there is over-accumulation at k

( f ′(k) < 1+ n). It is a saddle point if there is under-accumulation.

Proof: We take a first-order Taylor expansion of the system (4.19)–(4.20)
around the steady state (k, 0). This leads to

[
kt+1 − k
bt+1

]
=

 s ′wω

′

D(k)
1
D(k)

0 f ′(k)
1+n


[ kt − k

bt

]

with

D(k) = 1 + n− s̃ ′R f ′′.
The two eigenvalues are thus

λ1 = f ′(k)
1+ n , λ2 = s ′wω

′

D(k)
.

The condition λ2 < 1 is given by A10, and the proposition follows.

When debt asymptotically vanishes, under assumption A10, the stability anal-
ysis is exactly the one of the single equation (4.19) with constant capital.

4.3.2 Balanced Budget Policies: Graphical Illustration

To illustrate and extend the analytical and local results derived so far, we first
build and study the phase diagram of the two-dimensional dynamics (4.19)–
(4.20). We then propose a complete study of the case of logarithmic utility and
Cobb–Douglas production. Note that we do not make the assumption A10 in
this global analysis.

At the inter-temporal equilibriumwith perfect foresight, the stock of capital
of period t + 1 and the stock of debt of period t + 1 should verify the following
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system of implicit equations:

�(kt+1,bt , kt)≡ kt+1 + f ′(kt)
1 + n bt −

s̃(ω(kt) − τ 1,−τ 2, f ′(kt+1))
1 + n = 0,

 (bt+1,bt , kt)≡bt+1 − f ′(kt)
1 + n bt = 0.

(4.26)

The dynamics of the economy are described by a system of two non-linear
first-order difference equations, and interesting insights can be drawn from a
phase diagram.

We first characterize the set of points (kt ,bt) for which there is no change
in bt , i.e., for which  (bt ,bt , kt) = 0. This set is given by the pairs (kt ,bt) for
which

bt [1+ n− f ′(kt)] = 0

holds. This equality defines a cross in the space {b, k} that is represented in
figure 4.1. The vertical branch is the line k= kGR. The horizontal one is the line
b = 0. To describe the direction of change in bt , we remark, using the implicit
function  (bt+1,bt , kt) = 0, that bt+1 increases (decreases) with increasing kt
in the case bt < 0 (bt > 0). Hence, for negative b, we have bt+1 < bt at the left
of the vertical branch and bt+1 > bt at the right. For positive b, the reverse
holds. The corresponding directions of motion are plotted in the figure 4.1.

The set of points (kt ,bt) for which there is no change in kt is not easy to
characterize. For the function�(kt ,bt , kt) to be defined, the life-cycle income
at kt+1 = kt ,

ω(kt)− τ 1 − τ 2

f ′(kt)
,

should be positive. When τ 2 ≤ 0 (see section 3.2.2 on pensions), the life-cycle
income is increasing in k and positive on the set (k,+∞), where k is defined

0
bt+1 bt

kGR

b bt+1 bt

k=

=

Figure 4.1. The debt motion. The locus where debt is constant is composed of the
lines k= kGR and b = 0. The arrows indicate the direction of motion.
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by ω(k)− τ 1 − τ 2

f ′(k) = 0.9 If τ2 > 0, the set on which the life-cycle income is
positive can be discontinuous, which means that the definition set of the phase
line under consideration is not an interval. In order to simplify the graphical
illustration, we assume that τ 2 = 0. This implies g = τ 1 and allows us to rewrite
the above equation (4.26) as

(1+ n)kt+1 + f ′(kt)bt − s(ω(kt) − g, f ′(kt+1)) = 0. (4.27)

Hence, kt+1 = kt if and only if

bt = v(kt) = s(ω(kt)− g, f ′(kt))− (1+ n)kt
f ′(kt)

holds. The limit of the function v(·) when k→ k is some negative real
number. Using limk→+∞ s(w, f ′(k))/k= 0∀w> 0 (as 0< s(w,R)<w and
limk→+∞ w/k= 0), we find that

lim
k→+∞

v(k) = −(1 + n)k
f ′(k)

= −∞.

Hence, the phase line goes below the horizontal axis when k is near k and
when k is large. An example of a possible phase line is drawn in figure 4.2 (a
Cobb–Douglas example; see below). To describe the direction of change in kt ,
we remark, using the implicit function (4.27), that kt+1 is decreasing in bt under
the assumption 1 + n− s ′R> 0. Hence, kt+1< kt above the curve, and kt+1> kt
below. The corresponding directions of motion are plotted in the figure.

At this stage, we can already deduce the following. Assume that the golden
rule is feasible, that is, ω(kGR) > g (equation (4.24)). On the one hand, if the
phase line kt+1 = kt crosses the vertical line k= kGR in the positive orthant,

..

..

..

..

..

.
k

b

k

kt+1 = kt

Figure 4.2. A Cobb–Douglas example of the capital motion. The arrows indicate the
direction of motion.

9 Or k= 0 if the life-cycle income is always positive.
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then the steady state golden rule level of debt is positive, and there is at least
one other steady state with positive capital and zero debt displaying over-
accumulation. This holds because the continuous phase line kt+1 = kt ends
below the horizontal axis. On the other hand, if the phase line kt+1 = kt crosses
the vertical branch k= kGR below the horizontal branch b = 0, then the steady
state golden rule level of debt is negative, and we do not know if there are
steady state(s) (k, 0) with zero debt.

We shall provide a exhaustive list of possible cases when the utility function
is logarithmic and the production function is Cobb–Douglas. The phase line
kt+1 = kt is then defined in the set ({g/[A(1 − α)]}1/α,+∞), and it is given by

bt = v(kt) =
β

1+β
[
A(1− α)kαt − g]− (1+ n)kt

Aα
k1−αt

The functionv(·) is concave for g = 0.For g > 0, eitherv(·) is alwaysdecreasing
or it is increasing on an interval (k1, k2) anddecreasing outside. k1 can be either
above or below k. Indeed, we have

Aαkαv′(k) = β

1+ β [A(1 − α)kα − g(1 − α)]− (1 + n)(2− α)k,

which is a concave function, negative at 0 and for k large enough.
We illustrate the five possible cases. They are presented in figures 4.3

and 4.4.
When g = 0, there is a corner steady state at 0, and we have the two cases

depicted in figure 4.3. In the left panel, the economy without debt has one
positive stable steady state, which is characterized by over-accumulation. As a
consequence this steady state is stable for the dynamics with debt. There is also
a steady state with the golden rule and a positive debt. This steady state is a
saddle point (proposition 4.7). In this case, zero deficit policies can lead to the
golden rule, if the initial debt is set at the appropriate level. If the initial debt is

k

b

k

kGR

b

kGR

Figure 4.3. The phase diagram (Cobb–Douglas) with g = 0, τ 1 = 0, and τ 2 = 0.
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k k

bb

k

kGR

b

..

..

..

..

..

..

.

kGR kGR

Figure 4.4. The phase diagram (Cobb–Douglas) with δ = 0, τ 1 = g, and τ 2 = 0.

too high, the policy leads the economy to the top left corner, in a region where
debt increases unboundedly. If it is too low, debt disappears asymptotically.
As in Tirole (1985), if there is only one positive steady state in the economy
without debt, the required level exists for any initial capital stock. This case is
illustrated in the left panel of Figure 4.3, where the saddle path is represented
by the bold line. In the right panel, the economy without debt has a positive
stable steady statewith under-accumulation.According to proposition 4.8, this
steady state is a saddle point, as it is stable in the one-dimensional case and
displays under-accumulation. The golden rule steady state has a negative debt.
This steady state can be either stable, saddle-point stable, or unstable for the
dynamics with debt, depending on the condition established in proposition 4.7
and on whether assumption A10 holds. Its stability is further studied in the
example in section 4.3.5.

When g > 0, there are potentially more than one positive steady state in
the economy without debt (one-dimensional dynamics). As we have seen in
section 3.3.1, for g low enough, we have two steady states, represented in the
top panels of figure 4.4. The first one is unstable (and A10 does not hold in
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it), and the second stable. The lower steady state is comparable to the lowest
sustainable initial capital of section 3.2.2. In the left panel, the higher steady
state without debt displays over-accumulation, implying that the golden rule
steady state has a positive debt. As in the previous case, zero deficit policies
can lead to the golden rule, if the initial debt is set at the appropriate level. This
results simply from the saddle-point property of the steady state. Contrary to
the previous case, the needed level no longer exists for any initial capital. It
exists only for an initial capital larger than the lowest sustainable initial capital.
In the right panel, the largest positive steady state of the economy without
debt displays under-accumulation, implying that the golden rule steady state
displays a negative debt.

In the bottom panel of figure 4.4, public spending is so large that there is no
positive steady state equilibrium in the economy without debt. There exists a
steady state equilibrium with a golden rule capital stock and a negative debt,
which is stable under assumption A10. This case reflects the fact that large
public spending is sustainable only with a negative debt.

4.3.3 Non-zero Deficit: Local Analysis

In the case where δ = g − τ 1 − τ 2/(1+ n) is non-zero, the first steady state
condition for the dynamics described by (4.19) and (4.20) is

[1+ n− f ′(k)]b = δ �= 0, (4.28)

which implies both f ′(k) �= 1 + n and b �= 0. Hence, the golden rule cannot
be a steady state when the deficit is non-zero. However, any other value of k
can be the capital stock of a steady state. More precisely, we shall show that
there always exist a unique level of deficit δ̂(k, τ 2) and debt b̂(k, τ 2) such that
(k, b̂(k, τ 2)) is a steady state. We will start with fixed levels of k and τ 2 and
study the corresponding levels of deficit and debt.We next investigate the role
played by τ 2 and its effect on the level of debt for a given level of capital.
Finally, the local stability properties of this steady state are established. This
approach from three different angles does not provide a global analysis of the
dynamics, but gives a global view of the set of steady states and their local
stability properties.

We first determine the range of deficits compatible with a positive life-cycle
income for given capital. The life-cycle income at steady state,

ω(k)− τ 1 − τ 2

f ′(k)
= δ + ω(k)− g + τ 2

(
1

1+ n − 1
f ′(k)

)
,

is positive if and only if the deficit is not too small (i.e., the tax on the young is
not too large):

δ > δ(k, τ 2) ≡ g − ω(k)− τ 2
(

1
1 + n − 1

f ′(k)

)
.
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The threshold δ(k, τ 2) also depends on g, which is fixed. The life-cycle income
is equal to δ − δ(k, τ 2), and savings are given by

s̃(ω(k) − τ 1,−τ 2, f ′(k)) = s(δ − δ(k, τ 2), f ′(k)) + τ 2

f ′(k)
. (4.29)

The second steady state condition: (1 + n)(k+ b) = s̃ is equivalent to finding
the roots of the function

Y = [1 + n− f ′(k)][(1+ n)k− s̃ + (1+ n)b].
Using equations (4.28) and (4.29), we have

Y = [1 + n− f ′(k)]
(
(1+ n)k− s(δ − δ(k, τ 2), f ′(k))− τ 2

f ′(k)

)
+ (1+ n)δ.

The following proposition derives a steady state curve δ̂(k, τ 2) which gives the
level of the deficit corresponding to a steady state k.

Proposition 4.9 (The steady state curve δ̂(k, τ 2))
Let k> 0 with f ′(k) �= 1 + n, and g ≥ 0 be feasible, i.e. lower than the net
production: f (k) − (1 + n)k> g. For any tax τ 2 ∈ R, there exists a unique value
of the deficit δ̂(k, τ 2) and of the debt

b̂(k, τ 2) = δ̂(k, τ 2)
1 + n− f ′(k)

for which the pair (k, b̂(k, τ 2)) is a steady state of the dynamics (4.19)–(4.20)
with constant deficit.

Proof: For k, g and τ 2 given, Y is an increasing function of δ, defined for
δ > δ(k, τ 2). Indeed, we have

∂Y
∂δ

= (1+ n)(1 − s ′w) + f ′(k)s ′w > 0

with s ′w = s ′w(δ − δ(k, τ 2), f ′(k)) between 0 and 1. Let us study the limits of Y
when δ goes to the bounds of the interval (δ(k, τ 2),+∞).

� When δ tends to δ(k, τ 2), s(δ − δ(k, τ 2), f ′(k)) tends to 0, and we have

lim
δ→δ(k,τ 2)

Y = [1 + n− f ′(k)]
(
(1+ n)k− τ 2

f ′(k)

)
+ (1+ n)δ(k, τ 2).

With

δ(k, τ 2) = g − [ f (k)− kf ′(k)]− τ 2
(

1
1+ n − 1

f ′(k)

)
,

we obtain

lim
δ→δ(k,τ 2)

Y = (1+ n)[g + (1 + n)k− f (k)],
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and this limit is negative if and only if k is feasible in the long run with
public spending g, i.e., f (k) − (1 + n)k> g.

� When δ tends to ∞, Y is bounded below by

(1+ n)[δ − s(δ − δ(k, τ 2), f ′(k))] + C(k, τ 2),
where C(k, τ 2) does not depend on δ. Using the arbitrage condition u′(δ −
δ(k, τ 2)− s) = βRu′(Rs) which defines s(δ − δ(k, τ 2),R), we obtain that
the limit of δ − s(δ − δ(k, τ 2), f ′(k)) when δ goes to +∞ is equal to +∞.
As a consequence we have

lim
δ→+∞

Y = +∞.

We thus conclude that the function Y has a root δ̂(k, τ 2) belonging to the
interval (δ(k, τ 2),+∞) if and only if k and g are such that f (k)− (1+ n)k>
g holds. As a consequence, since f ′(k) �= 1 + n, the pair (k, b̂(k, τ 2)) with
b̂(k, τ 2) = δ̂(k, τ 2)/[1+ n− f ′(k)] is a steady state for the dynamics described
by (4.19) and (4.20).

We now analyze the effect of changing the tax on the old τ 2 on the steady state
debt at given capital.

Proposition 4.10 (Effect of τ 2 on the steady state debt)
For a given feasible k, the long-run debt b̂(k, τ 2) is an increasing function of
τ 2 and increases from −∞ to +∞ when τ 2 rises from −∞ to +∞. The deficit
δ̂(k, τ 2) increases (decreases) with τ 2 if k> kGR (k< kGR).

Proof: The derivative of Y with respect to τ 2 can be written, when we take
into account the effect of τ 2 on δ(k, τ 2):

∂Y
∂τ 2

= [1+ n− f ′(k)]
(

− s ′w
1 + n − 1 − s ′w

f ′(k)

)
,

and we have from the implicit function theorem that

∂δ̂(k, τ 2)
∂τ 2

= −∂Y/∂τ
2

∂Y/∂δ
.

Remember that ∂Y/∂δ is positive from proposition 4.9.
To study the change in δ̂(k, τ 2) and b̂(k, τ 2) as a functionof τ 2,wedistinguish

two cases.

� When there is under-accumulation of capital, f ′(k) > 1 + n, ∂Y/∂τ 2 is pos-
itive, and δ̂(k, τ 2) is a decreasing function of τ 2. When τ 2 tends to −∞,
δ(k, τ 2) tends to +∞ and δ̂(k, τ 2), which is larger than δ(k, τ 2), also tends
to +∞. When τ 2 tends to +∞, we use the fact that Y = 0 at δ = δ̂(k, τ 2) to
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deduce

(1 + n)δ̂(k, τ 2)
1 + n− f ′(k)

= s(δ̂(k, τ 2) − δ(k, τ 2), f ′(k))+ τ 2

f ′(k)
− (1+ n)k

>
τ 2

f ′(k)
− (1 + n)k,

which implies that δ̂(k, τ 2) tends to −∞. In this case, b̂(k, τ 2) = δ̂(k, τ 2)/
[1+ n− f ′(k)] is increasing with respect to τ 2, and it increases from −∞
to +∞ when τ 2 rises from −∞ to +∞.

� When there is over-accumulation of capital ( f ′(k) < 1+ n), δ̂(k, τ 2) is an
increasing function of τ 2. When τ 2 tends to +∞, δ(k, τ 2) tends to +∞,
implying that both δ̂(k, τ 2) and b̂(k, τ 2) tend to +∞. From the fact that
Y = 0 at δ = δ̂(k, τ 2), we deduce

(1 + n)δ̂(k, τ 2)
1 + n− f ′(k)

< δ̂(k, τ 2)− δ(k, τ 2)+ τ 2

f ′(k)
− (1+ n)k

< δ̂(k, τ 2)− g + ω(k) + τ 2

1 + n − (1 + n)k,

and

f ′(k)δ̂(k, τ 2)
1 + n− f ′(k)

< −g + ω(k) + τ 2

1 + n − (1+ n)k.

Hence, when τ 2 tends to −∞, δ̂(k, τ 2) and b̂(k, τ 2) tend to −∞.

Although τ 2 affects government deficit and debt at given k, it does not
affect consumptions or welfare. Indeed, the consumptions are determined by
the individual arbitrage condition u′(c) = β f ′(k)u′(d) and the resource con-
straint f (k) = c + d/(1+ n)+ g + (1+ n)k, which do not depend on τ 2, δ, or
b. We find here the same property of the multiplicity of instruments as in the
decentralization theorem 4.3.

For a given steady state and for a given deficit and public spending, different
financing schemes (τ 1, τ 2,b) are possible. Although the taxmix does not affect
the level of the steady state, it is important for its stability type. The local
stabilityproperties of the steady state(s) are givenby the followingproposition.

Proposition 4.11 (Stability of steady states with debt and deficit)
Given g, τ 2, and k, assume g feasible with k and A10 at (k, b̂(k, τ 2)) with
τ 1 = g − δ̂(k, τ 2) − τ 2/(1+ n). There are two thresholds b̄ and b, b < b̄:

b̄ = 1
f ′′

(
1 − f ′

1+ n
)
(1 + n− s̃ ′R f ′′ − s̃ ′ω1ω′),

b = 1
f ′′

(
1 + f ′

1+ n
)
(1 + n− s̃ ′R f ′′ + s̃ ′ω1ω′) < 0,
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such that the steady state (k, b̂(k, τ 2)) is locally stable if b̂(k, τ 2) ∈ (b, b̄) and
there is over-accumulation at k. In the case of under-accumulation, there is an
additional stability condition:

f ′

1+ n <
1 + n− s̃ ′R f ′′

s̃ ′ω1ω
′ .

The steady state is a saddle point if b̂(k, τ 2) lies outside the interval (b, b̄). The
argument of s̃ are ω(k) − τ 1, −τ 2, and f ′(k).

Proof: The dynamic system (4.19)–(4.20) takes the form

(1+ n)kt+1 = s̃(ω(kt) − τ 1,−τ 2, f ′(kt+1))− f ′(kt)bt − δ,
(1+ n)bt+1 = f ′(kt)bt + δ.

We take a first-order Taylor expansion of the system around the steady state
(k, b̂(k, τ 2)). This leads to the linear dynamics

[
kt+1 − k

bt+1 − b̂(k, τ 2)
]

=

 s̃ ′ω1ω′− f ′′(k)b̂(k,τ 2)

D̂
− f ′(k)
D̂

b̂(k,τ 2) f ′′(k)
1+n

f ′(k)
1+n


[ kt − k

bt − b̂(k, τ 2)

]
,

where

D̂= 1 + n− s̃ ′R(ω(k)− τ 1,−τ 2, f ′(k)) f ′′(k).
Assumption A10 ensures D̂> s̃ ′ω1ω

′ > 0. Replacing s̃ ′R = s ′R − τ 2

f ′(k)2 (1 − s ′w),
we obtain

D̂= 1 + n− s ′R f ′′(k)+ τ 2

(1+ n)2 (1− s ′w) f ′′(k),

where s ′R = s ′R(δ̂(k, τ 2) − δ(k, τ 2), f ′(k)) and s ′w = s ′w(δ̂(k, τ 2) − δ(k, τ 2),
f ′(k)). The characteristic polynomial is

P(λ) = λ2 − λ
(

f ′

1 + n + s ′wω
′ − f ′′ b̂(k, τ 2)

D̂

)
+ f ′s ′wω

′

(1+ n)D̂.

The following holds:

P(0) = f ′s ′wω
′

(1+ n)D̂ > 0,

P(1) =
(
1− f ′

1 + n
)(

1 − s ′wω
′

D̂

)
+ f ′′ b̂
D̂
,

P(−1) =
(
1+ f ′

1 + n
)(

1 + s ′wω
′

D̂

)
− f ′′ b̂
D̂
.
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The condition P(1) > 0 is equivalent to b̂ < b̄with

b̄ = 1
f ′′

(
1 − f ′

1+ n
)
(D̂− s ′wω′).

The condition P(−1) > 0 is equivalent to b̂ > bwith

b = 1
f ′′

(
1 + f ′

1 + n
)
(D̂+ s ′wω′) < 0.

In any case we have b < b̄. Indeed,

| f ′′ b̄| =
∣∣∣∣1 − f ′

1 + n
∣∣∣∣ |D̂− s ′wω′| <

(
1 + f ′

1 + n
)
(D̂+ s ′wω′) = f ′′b.

Hence, if b̄≥ 0 then b̄>b. If b̄< 0 then f ′′ b̄< f ′′b, which again implies b̄>b.
We can characterize the stability type using P(0), P(1), and P(−1). In

the case of over-accumulation, A10 implies P(0)< 1. In the case of under-
accumulation, P(0)< 1 requires another condition, given in the proposition.

From this proposition we learn that stability is possible even when there is
under-accumulation, i.e., the dynamics (4.20) with fixed capital are unstable.
Stability is ensured by an additional restriction. This restriction holds if k is
close to the golden rule level. Note moreover that, with A10, b̄ is positive
when there is under-accumulation and negative otherwise. Hence, in the case
of under-accumulation, the upper bound on debt is strictly negative.

With a policy of constant deficit, Proposition 4.11 shows that the local sta-
bility conditions are quite restrictive, imposing conditions on the level of debt
and on the level of capital (under- vs over-accumulation). When the steady
state is stable, there is no special restrictions on the initial debt to ensure con-
vergence (at least locally).When the steady state is a saddle point, there is only
one convergence path, which imposes a very strong restriction on the initial
debt. Finally, when the steady state is unstable, constant deficit policies should
not be implemented. In these last two cases, the economy either converges to
another steady state, or follows an unsustainable path.

4.3.4 Non-zero Deficit: Graphical Illustration

We first draw the phase diagram. The set of points (kt ,bt) for which there is
no change in bt , i.e., bt+1 = bt , is given by the pairs (kt ,bt) for which

bt [1+ n− f ′(kt)] = δ

holds. This function is defined on the set of capital stocks kbelonging (0,+∞),
k �= kGR. It is represented in figure 4.5. The function displays a vertical asymp-
tote at k= kGR. If δ < 0, which represents a budget surplus, the function is in-
creasing in kt . In the case of a deficit, it is decreasing. To describe the direction
of change in bt , we remark, using the implicit function  (bt+1,bt , kt) = 0



Debt 209

..

kGR
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b

δ 0 (surplus)< >

Figure 4.5. The debt motion. The locus where debt is constant is represented. The
arrows indicate the direction of motion.

defined in the system (4.26), that bt+1 increases (decreases) with increasing
kt in the case bt < 0 (bt > 0). Hence, for negative b, we have bt+1 > bt to the
right of the curve and bt+1 < bt to its left. For positive b, we have bt+1 < bt to
the right of the curve and bt+1 > bt to its left. The corresponding directions of
motion are plotted in the figure.

One conclusion can already be drawn from this partial analysis: it is not
possible to run permanently a positive debt with a budget deficit when there
is under-accumulation of capital. This conclusion is consistent with the three
propositions on local stability.

The second phase line is similar to the one in the analysis with zero deficit.
Limiting the analysis to an example, we keep the simplifying assumption τ 2 =
0. The number of steady states and their stability type depend crucially on the
policy variable δ. To obtain more satisfactory characterization of the dynamics
in the economy with varying debt, proposition 4.9 is very useful. It indeed
derives a steady state curve δ̂(k, τ 2). We illustrate this in an example. We take
the case of a CES production function with low substitution (ρ = 4) and a
logarithmic utility.10 The parameters are α = 1/2, β = 0.3, n = 1.097, A= 20.
We assume g = 0 and τ 2 = 0, which implies that τ 1 = −δ. The function δ̂(k, 0)
is plotted in figure 4.6. The values of δ for which there are zero, one, two, three,
or four steady states can be clearly identified. We also report on the same
figure the function δ̂(k, 1), i.e., for a non-zero value of τ 2. The figure illustrates
proposition 4.10, that the deficit δ̂(k, τ 2) increases (decreases) with increasing
τ 2 if k> kGR = 1.57 (k< kGR).

Figure 4.6 shows the ranges of interesting values of δ, for which we can
draw phase diagrams. Five phase diagrams are presented in figure 4.7. Looking
now at both figures 4.6 and 4.7, we observe the following. When government
runs a high deficit per capita, δ = 3, there is no steady state for the economy.

10 Low substitution between productive inputs is useful in that it yields four steady states in
the example, which illustrates the great variety of situations and stability types.
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k
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1
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δ̂

Figure 4.6. The functions δ̂(k, 0) (bold line) and δ̂(k, 1).

Lowering the value of δ, we observe first the appearance of two steady states
with negative debt (deficit= 1), then the appearance of two steady states with
positive debt and over-accumulation of capital (deficit= 0.2).When δ becomes
negative (surplus), the phase line associated with constant debt is completely
different and we have three steady states for δ = −0.2. When δ decreases
further, the two low steady states disappear and the high steady state with
negative debt and over-accumulation remains.

We finally focus on the case δ = 0.2, which displays four steady states. The
corresponding phase diagram with the directions of motions is represented in
figure 4.8 in a schematic way. Considering only those with a positive debt, the
directions of motion suggest that the steady state C is a saddle point. In this
case, for a given level of k0 near the value of k at C, there is only one initial
b0 leading the economy to that steady state. If the initial debt per capita is
too high, the economy will move in the northwest direction and the debt will
explode. If it is too low, the economy is attracted to the fourth steady state
D, which is the only stable steady state. The local stability of the steady states
inferred from the arrows is confirmed by the following table, which gives the
numerical values of the eigenvalues:

Steady state k b λ1 λ2

A 0.041 −0.019 0.01 11.34 Saddle
B 0.908 −0.041 3.60 4.55 Source
C 1.719 0.588 0.21 2.15 Saddle
D 2.280 0.243 0.09 0.37 Sink
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Figure 4.7. Phase lines for different deficits.

4.3.5 Ponzi Debt, Money, and Bubbles

In themodel with debt but without taxes and government spending (τ 1 = τ 2 =
g = 0), there is no choice for government other than running a Ponzi debt (see
section 4.2.3). The dynamics are given by

(1 + n)bt+1 = f ′(kt)bt , (4.30)

(1+ n)(bt+1 + kt+1) = s(ω(kt), f ′(kt+1)). (4.31)
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Figure 4.8. The phase diagram. Example with δ = 0.2.

We have the same equations when b is a private asset that does not bring
any dividend, i.e., a pure bubble (see Tirole (1985)).11 A pure bubble is an
asset with zero market fundamental (i.e., with no intrinsic value) that does
not distribute any dividend. Under perfect foresight, the bubble must bear
the same yield as capital. Similarly, b can also describe the case of fiat money,
which plays only one role: to absorb a part of savings without providing any
other service. The dynamic equations (4.30)–(4.31) are the same in the three
cases: debt without government intervention (called Ponzi debt), bubble, and
money. There are nevertheless three important differences: First, debt is a
pre-determined variable, while a bubble is a forward-looking variable, since
there is no related initial condition. Second, a bubble cannot be negative if
the corresponding asset can be freely disposed of. On the contrary, a neg-
ative debt simply means that the government holds a part of the physical
capital of the economy. Third, the model with debt can be analyzed within
a truly dynamic approach to equilibrium, i.e., using the notion of temporary
equilibrium and inter-temporal equilibrium. Themodel with bubble should be
analyzed within a general equilibrium framework where the Walrasian auc-
tioneer determines the prices of all periods at the same time. Otherwise, the
current value of the bubble, which is not predetermined, could well be incon-
sistent with the forecasted value of the preceding period (expectations are not

11 Note thatTirole (1985)definesb(T)t = Bt/Nt , which changes the lag structure in the equations
and the corresponding phase diagram. This implies that his phase line bt+1 = bt is positively
sloped, while ours is vertical. This notation is related to the first difference between debt and
bubbles mentioned below.
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inherited). The difference between the two approaches is further explored in
section 5.4.

As in Diamond (1965) and Farmer (1986), we have assumed that public
debt is a real variable. This is a natural assumption in an economy without
money. Concerning the equilibrium with money, we can also point out some
differences frombubbles anddebt. If the nominal stockofmoney is exogenous,
the price of money is a non-predetermined variable, and this leads to the same
logic as in the model with bubbles.12 Nevertheless, money is in general issued
by some authority which could warrant a positive value of money.

We thus conclude that in analyzing the dynamics described by (4.30)–(4.31),
the economic interpretation of the variable b plays a central role in under-
standing the properties of the model. For example, with debt, we study the
sustainability of a given policy.With bubbles we are interested in the existence
and the nature of the equilibrium (with asymptotic bubble, for example).

Let us recall the main local stability properties of the steady state equilibria
of these dynamics, limiting ourselves to the cases b ≥ 0, which apply to the
three interpretations. There may exist two types of steady states: The golden
rule f ′(kGR) = 1+ n when the asset bGR is positive, and the steady states with
zero value asset (b = 0), which correspond to the steady states of the dynamics
analyzed in chapter 1.

As we have seen in proposition 4.7, the steady state (kGR,bGR) with

bGR = s(ω(kGR), 1 + n)
1 + n − kGR > 0

is a saddle point, which corresponds to the notion of asymptotic bubble in
Tirole (1985). Locally, this steady state is the limit of a unique path where, for
eachvalueof k0, there is auniqueb0 which leads to the steady state.Under some
assumptions, including that the Diamond steady state equilibrium is unique
and characterized by over-accumulation, global uniqueness of this trajectory
can be obtained (see Tirole (1985)).

Global Dynamics in an Example of Ponzi Debt. It is possible to study globally
the solution to the system (4.30)–(4.31) in an example.

Example: We assume a logarithmic utility function and a Cobb–Douglas pro-
duction function with total depreciation of capital. The dynamics obey

(1+ n)(bt+1 + kt+1) = β(1 − α)A
1 + β kαt ,

(1+ n)bt+1 = αAkα−1
t bt .

12 Alternatively, money can be the support to inter-generational exchange, as in the model of
Samuelson (1958) without capital.



214 A Theory of Economic Growth

Let us define the debt–savings ratio xt as

xt = Bt
Ntst

= (1+ n)bt+1

st
.

We have

xt+1 = αAkα−1
t bt(1+ β)

β(1− α)Akαt
= α(1+ β) st−1xt
β(1− α)kt(1+ n)

and

(1+ n)kt = st−1 − (1+ n)bt = st−1(1− xt),
from which we obtain

xt+1 = α(1 + β)xt
β(1 − α)(1− xt) .

It is then sufficient to study the dynamics of the ratio xt , which should always
remain lower than one. Indeed, for k to be positive the asset b should always
be lower than savings. The dynamics of xt can then be used to determine
the dynamics of kt and bt ,

(1+ n)kt+1 = (1− xt+1)
β(1− α)A
1 + β kαt ,

(1+ n)bt+1 = xt+1
β(1− α)A
1+ β kαt ,

and the corresponding steady states. When the one-dimensional dynamics
of xt are stable, the two-dimensional dynamics of kt and bt are stable too.
When the one-dimensional dynamics of xt are unstable, the steady state of
the two-dimensional dynamics of kt and bt is a saddle point.
The dynamics of xt has two steady states:

x�0 = 0 and x�1 = 1 − α(1+ β)
β(1− α) .

x�1 is positive (negative) if the steady state of the model without asset b of
chapter 1, given by

kD =
(

β(1− α)A
(1+ β)(1+ n)

) 1
1−α
,

displays over-accumulation (under-accumulation). The possible cases are
illustrated in figures 4.9 and 4.10.

� When there is over-accumulation (kD > kGR), the steady state x�1 is posi-
tive, corresponds to the golden rule (kGR,bGR), and is unstable (figure 4.9).
With the particular initial condition x0 = (1+ n)b0/s−1 = x�1 the sequence
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Figure 4.9. Global dynamics in an example: over-accumulation.

(xt) remains constant and the sequence (kt ,bt) converges to (kGR,bGR).
There is no equilibrium if x0 is above x�1 , for then xt reaches in a finite
number of periods a value larger than 1, implying that the asset b can no
longer be absorbed by private savings. For any x0 < x�1 , the dynamics of
xt converges to 0 and the asset value tends to vanish. (kt ,bt) tends to
(kD, 0). In the two-dimensional dynamics, (kGR,bGR) is a saddle point and
(kD, 0) is stable.

� When there is under-accumulation (kD < kGR), the steady state x�1 is neg-
ative (figure 4.10). In this case, there is no inter-temporal equilibrium with
x0 > 0. There is thus no equilibrium with (positive) bubble. However, all
the trajectories with a negative initial debt x0 < 0 converge to the golden
rule: (kt ,bt) converges to (kGR,bGR).

� In the limit case kD = kGR, one obtains the same conclusion with bGR = 0.
In the two-dimensional dynamics with bubbles, there is no inter-temporal
equilibrium with perfect foresight. With debt, (kGR,bGR) is stable and
(kD, 0) is a saddle point.

xt

xt 1

0

...................................................
1

...

...

...
x1

+

Figure 4.10. Global dynamics in an example: under-accumulation.
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4.4 constant debt policies

This section provides a global analysis of the dynamics with constant debt.
We show that the essential information can be gathered in a single planar
diagram, thereby allowing us to answer the questions of global stability and
sustainability in a comprehensive way by means of a graphical exposition.

In this version of themodel, the policy of the government is to keep constant
the level of debt per young individual. Hence, Bt−1/Nt = b ∀t , where b is the
target level of debt per capita. We also assume, as in Diamond (1965), that
both the lump-sum tax on the old and the level of government spending are
zero. The level of taxes required to maintain this level of debt is thus

τ 1t = [Rt − (1+ n)]b = [ f ′(kt)− (1+ n)]b ≡ τ (kt).

4.4.1 Sustainability in the Short Run

We keep the view that sustainability of a given policy is associated with the
existence of the corresponding equilibrium.

To study sustainability in the short run we consider the temporary equi-
librium. The following variables are given: b, st−1, It−1 = Nt−1st−1 − Ntb > 0,
Ret+1. The conditions under which the temporary equilibrium exists are made
explicit in the following proposition.

Proposition 4.12 (Existence and uniqueness of the temporary equilibrium)
Given {st−1, It−1,Ret+1}, a temporary equilibrium with positive consumptions
and investment exists if and only if

st−1 > 0, (4.32)

ω(kt) > τ (kt) ≡ b[ f ′(kt)− (1+ n)], (4.33)

s(ω(kt) − τ (kt),Ret+1) > (1+ n)b, (4.34)

where kt = st−1/(1+ n)− b. If it exists, it is unique and can be expressed as a
function of kt and Ret+1.

Proof: If the equilibrium exists, then dt > 0, ct > 0, and It > 0. The positivity
of consumptions implies the positivity of the incomes of both young and old
households. This in turn implies st−1 > 0 and ω(kt) > τ (kt), which are (4.32)
and (4.33). The positivity of investment implies that the whole debt should be
absorbed, i.e., (4.34).

If (4.32) does not hold, positive consumption of the old is excluded. If (4.33)
does not hold, it implies that ω(kt) ≤ τ (kt) and positive consumption of the
young is excluded. If (4.34) does not hold, investment is not positive.

The temporary equilibrium is unique, as ω(·), f (·), τ (·), and s(·,R) are
(single-valued) functions.
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The three conditions (4.32), (4.33), and (4.34) are closely related to the short-
run sustainability of debt policy. The last one can be read as bearing on expec-
tations. The first one is simply kt > −b. The second one relates kt and b and
should be studied carefully.

Let us define the net incomeof the young households as a function of capital
and debt:

w̃(kt ,b) = ω(kt)− τ (kt) = ω(kt)− b[ f ′(kt) − (1 + n)].
We should study the set Ew̃ of pairs (k,b) ∈ R++ × Rwhich satisfy w̃(k,b) > 0,
with

w̃(k,b) = ω(k)− (k)b, where (k) ≡ f ′(k) − (1 + n).
We next assume that A5 holds in order to define a finite positive golden rule
capital stock kGR.

� When k< kGR (under-accumulation of capital), we have (k) > 0 and the
condition w̃(k,b) > 0 is equivalent to

b <
ω(k)
(k)

≡ b̄(k).

The upper bound on debt, b̄(k), is an increasing function of k(ω′ > 0,
′ < 0), is positive valued, and has limits

lim
k→0

b̄(k) = ω(0)
(0+)

and lim
k→kGR

b̄(k) = +∞.

The limit b̄(0+) is zero ifω(0) = 0 or f ′(0+) = +∞. Ifω(0) > 0 and f ′(0+)
is finite, b̄(0+) is positive.

� When k> kGR (over-accumulation of capital), we have (k) < 0, and the
condition w̃(k,b) > 0 is equivalent to

b >
−ω(k)
−(k) = −ω(k)

1+ n− f ′(k)
≡ b(k).

The lower bound on debt, b(k), is negative, and its limits are

lim
k→kGR

b(k) = −∞ and lim
k→+∞

b(k) = −ω(+∞)
1 + n− f ′(+∞)

.

The derivative of b(k) is

f ′′(k)[(1+ n)k− f (k)]
[1 + n− f ′(k)]2

Let us define k̃ as the positive root of f (k)− (1+ n)k. The existence of
the golden rule implies that k̃ is finite (see section 2.1.1). We then have
that f (k) > (1+ n)k if and only if k< k̃. The function b(k) is increasing in
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(kGR, k̃) and decreasing in (k̃,+∞). Notice also that

b(k̃) = f (k̃)− k̃ f ′(k̃)
f ′(k̃) − (1+ n)k̃ = −k̃.

The functions b̄(k) and b(k) are represented in figure 4.11. The interpre-
tation is the following. When k is below the golden rule level, running a
positive debt requires levying positive taxes, as the interest rate is above
the rate of growth (of population). Sustainability thus requires an upper
bound b̄ on the debt. When k is above the golden rule level, running a
negative debt requires levying positive taxes, as the interest rate on govern-
ment assets is below the rate of growth (of population). Sustainability thus
requires a lower bound b on the debt.

Finally, the chart should be completed with the condition k> −b, which en-
sures that the old-age consumption is positive. We do not represent the condi-
tion of positive investment, which depends on exogenous expectations. Figure
4.11 represents the set where the two conditions (4.32) and (4.33) hold. This
set will be denoted by E , and we have

E = {(k,b) ∈ R++ × R; k> −b and w̃(k,b) > 0}.

b

k

b k

b k

kGR k̃

k̃

0

Figure 4.11. Domain of existence. The scope for positive young-age consumption is
given by the set of pairs (k,b) ∈ R++ × R, which satisfy w̃(k,b) > 0. It is the region
between the two curves b̄(k) and b(k). The scope for positive old-age consumption is
given by the set of pairs (k,b) such that b > −k. The set E is given by the intersection
of the two. (To improve the clarity of the picture, the scale of the axes is different.)
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4.4.2 Sustainability in the Long Run

We shall study the inter-temporal equilibria with perfect foresight, i.e., when
Ret+1 = f ′(kt+1) and thus

kt+1 = 1
1 + n s(ω̃(kt ,b), f

′(kt+1))− b. (4.35)

This dynamical equation links the two periods by equalizing investment in
physical capital and bonds with savings.

Given a constant value of b and an initial capital stock k0 = K0/N−1, an
inter-temporal equilibrium with perfect foresight is characterized by a se-
quence (kt)t≥0with kt > 0 that satisfies for all t ≥ 0 the condition (4.35).Hence,
at the inter-temporal equilibrium with perfect foresight, the stock of capital of
period t + 1 should verify the following implicit equation:

�(kt+1, w̃(kt ,b),b) ≡ (1+ n)(kt+1 + b) − s(w̃(kt ,b), f ′(kt+1)) = 0. (4.36)

This equation defines the dynamics of kt under perfect foresight. Following
the samemethod as in section 1.5.1, we keep bandw > 0 fixed, and investigate
whether there exists a solution k> 0 to

�(k,w,b) ≡ (1+ n)(b+ k)− s(w, f ′(k)) = 0. (4.37)

If the net income is w̃t = w, the savings with perfect foresight s(w, f ′(kt+1))
should be equal to (1 + n)(b+ kt+1) when the debt per capita b is constant.
As the savings s(w, f ′(kt+1)) are bounded from above by income w, we have

lim
k→+∞

�(k,w,b) = +∞. (4.38)

Before completing the study of the existence of the equilibrium, we introduce
an assumptionH3b. The condition of rational foresight, i.e. the fact that agents
coordinates their expectations on a single value of k, supposes that equation
(4.37) has a unique solution in k. We thus adapt the assumption H3 of chapter
1 to the model with constant debt: Given b, for all w > 0, equation (4.37) has
at most one solution k> 0 such that (k,b) ∈ E .

Assumption H3b.
Given b, for all w > 0, for all k such that (k,b) ∈ E ,

�(k,w,b) = 0 ⇒ �′
k(k,w,b) > 0.

A sufficient condition is obviously that �(k,w,b) is always increasing. As we
have

�′
k(k,w,b) = 1 + n− s ′R(w, f ′(k)) f ′′(k),

we obtain the same sufficient condition as in chapter 1 for H3. It holds in
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particular when s ′R ≥ 0, i.e., the inter-temporal elasticity of substitution is not
smaller than one, implying that the substitution effect is not dominated by the
income effect.

Assuming H3b implies that, for all kt > 0, kt > −b such that w̃(kt ,b) > 0,
there exists at most one solution kt+1 > 0, kt+1 > −b to equation (4.36).

Existence and Monotonicity of Equilibrium Trajectories. The derivative of
w̃(k,b) with respect to k is

∂w̃(k,b)
∂k

= ω′(k)− f ′′(k)b = − f ′′(k)(k+ b),
which is positive for k> −b. We now have the following proposition:

Proposition 4.13 (Existence and monotonicity of equilibrium trajectories)
Assume H3b, and let (k0,b) ∈ E . Then, we have:
1. If �(k0, w̃(k0,b),b) ≤ 0, there exists an inter-temporal equilibrium
with perfect foresight with initial capital k0; the sequence (kt) is non-
decreasing.

2. If �(k0, w̃(k0,b),b) > 0, then equation (4.36) defines a decreasing se-
quence (kt). Either there is a date atwhich equation (4.36) has no solution,
or there is a solution for all t and the inter-temporal equilibrium exists.

Proof:
1. Consider t ≥ 0 such that�(kt , w̃(kt ,b),b) ≤ 0. Then there exists kt+1 ≥
kt such that�(kt+1, w̃(kt ,b),b) = 0, for the continuous function�(k, ·)
of k, is negative or nil at kt and positive for k large enough (equation
(4.38)). As we have kt+1 ≥ kt > −b, we have w̃(kt+1,b) ≥ w̃(kt ,b). As
�(·) is decreasing with respect to w̃, we deduce that

�(kt+1, w̃(kt+1,b),b) ≤ 0.

The first result is proven by induction for all t ≥ 0; the sequence (kt)
exists and is non-decreasing. Moreover, it is strictly increasing if it is not
constant (case �(k0, w̃(k0,b),b) < 0).

2. Assume now that �(kt , w̃(kt ,b),b) > 0 at t ≥ 0 with (b, kt) ∈ E , and
assume that there exists kt+1 such that (4.36) holds. Let us use the sim-
plified notation �̃t(k) = �(k, w̃(kt ,b),b). If kt+1 were greater than kt ,
we would have, following H3b,

∂�̃t

∂k
(kt+1) > 0 and �̃t(kt+1) = 0.

As � is increasing in k at kt+1, there exists ε such that kt+1 − ε > kt
and �̃t(kt+1 − ε) < 0. Then �̃(k) crosses the horizontal axis between
kt and kt+1 − ε. We would then have two solutions, which is excluded.
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We deduce that kt+1 should necessarily be smaller than kt : as long at
it is defined, the sequence kt+1 is decreasing and satisfies w̃(kt+1,b) <
w(kt ,b) and, if w̃(kt+1,b) > 0, �(kt+1, w̃(kt+1,b),b) > 0.

We have thus established the existence of the inter-temporal equilibrium in
the case �(k0, w̃(k0,b),b) ≤ 0 and the monotonicity of the dynamics in that
case. However, the inter-temporal equilibriummay not exist for certain initial
conditions such that�(k0, w̃(k0,b),b) > 0. In that case, at a given date, either
the net income becomes negative, or savings are not sufficient to finance the
debt. The debt b is therefore not sustainable.

From the monotonicity result we deduce that an inter-temporal equili-
brium – if it exists – necessarily converges. Such a limit is a steady state. We
now study the set of steady states in detail.

The Steady State Curve b̂(k). Capital k̄> 0 is a steady state of the dynamics
described by (4.36) if �(k̄, w̃(k̄,b),b) = 0. We analyze the set of the steady
states

ψ(k,b) = �(k, w̃(k,b),b) = (1+ n)(b+ k) − s(w̃(k,b), f ′(k)) = 0

in the set E , and we shall show thatψ = 0 defines a function b̂(k) for k feasible
in the long run: 0 < k< k̃, with k̃ such that f (k̃) = (1+ n)k̃. We have the
following proposition:

Proposition 4.14 (The steady state curve)
The equation

�(k, w̃(k,b),b) = 0

has a unique solution b̂(k) for all positive capital feasible in the long run (0 <
k< k̃) such that (k, b̂(k)) ∈ E . The function b̂(k) is continuously differentiable,
and its limits are b̂(k̃−) = −k̃ and b̂(0+) ≥ 0. We have b̂(0+) > 0 if and only
if b̄(0+) > 0.

We call b = b̂(k) the steady state curve, linking together the steady state value
of capital to the level of debt.

Proof: Wefirst study the existence and uniqueness of b̂ and compute its limits.
The partial derivatives of ψ(k,b) with respect to b is

ψ ′
b = �′

w̃w̃
′
b +�′

b = s ′w[ f ′(k)− (1+ n)] + 1 + n
= s ′w f ′(k)+ (1+ n)(1 − s ′w) > 0,

as 0 < s ′w < 1.
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1. When k< kGR (under-accumulation of capital), w̃(k,b) > 0 ⇔ b <
b̄(k). As ψ(b, k) < (1+ n)(b+ k), we have

lim
b→−∞

ψ(b, k) = −∞.

Moreover, by definition of b̄(k) we have limb→ b̄(k) w̃(k,b) = 0, which
implies

lim
b→ b̄(k)

ψ(b, k) = (1+ n)[ b̄(k)+ k] > 0,

as b̄(k) = ω(k)/(k) is positive.As a consequence, for all k> 0 the func-
tion ψ(k,b) is increasing in b, from −∞ to a positive value. There thus
exists b̂(k) < b̄(k) unique such that ψ(k, b̂(k)) = 0, where b̂(k) is the
value of the debt such that k is a steady state. The limits of the function
b̂(k) are as follows:
� When b̄(0) = 0 (ω(0) = 0 or f ′(0+) = +∞), we deduce from b̂(k) <
b̄(k) that

lim sup
k→0

b̂(k) ≤ 0.

We also have

lim inf
k→0

b̂(k) = lim inf
k→0

s(w̃(k, b̂(k)), f ′(k)) ≥ 0.

As lim inf ≤ lim sup, the two limits are equal at 0 and

lim
k→0

b̂(k) = 0.

� Whenb̄(0) > 0 (ω(0) > 0and f ′(0+) < +∞), the limit b̆of b̂(k)when
k tends to zero, if it exists, satisfies ψ(0, b̆) = 0, where

ψ(0, b̆) = (1+ n)b̆− s(ω(0)− (0)b̆, f ′(0)).
The limit when k→ 0 of ψ(k, b̆) is defined for b̆< b̄(0). We deduce
from ψ ′

b(0, b̆) > 0 and ψ(0, 0) = −s(ω(0), f ′(0)) < 0 that b̆> 0 is
the unique solution to ψ(0, b̆) = 0 and that it verifies 0 < b̆< b̄(0).
Moreover, for any sequence (kt) converging to 0, all the limit points
b of b̂(kt) verify ψ(0,b) = 0 and thus coincides with b̆. This implies
that the limit of b̂(k) when k goes to 0 exists and is equal to b̆.

Concerning the limit when k tends to kGR, w̃(k,b) tends to ω(kGR), and
the limit of b̂(k) is bGR (the same argument as above can be applied).

2. When k> kGR (over-accumulation of capital), w̃(k,b) > 0 ⇔ b > b(k).
As

ψ(b, k) > (1 + n)(b+ k)− w̃(b, k)
> (1 + n)(b+ k)− ω(k)+ ( f ′(k) − (1+ n))b
> (1 + n)k− ω(k)+ f ′(k)b,
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we have

lim
b→+∞

ψ(b, k) = +∞.

Moreover, we have limb→b(k) w̃(k,b) = 0, which implies

lim
b→b(k)

ψ(b, k) = (1+ n)[b(k)+ k] = 1 + n
(k)

[ω(k)− (k)k]

= 1 + n
−(k) [(1 + n)k− f (k)].

This limit is negative if and only if k< k̃. As a consequence, since the
function ψ(k,b), is increasing in b, there exists, for k< k̃, a unique
b̂(k) > b(k) such that ψ(k, b̂(k)) = 0. The limits of the function b̂(k)
are

lim
k→kGR

b̂(k) = bGR = s(ω(kGR), 1 + n)
1+ n − kGR,

and

lim
k→k̃

b̂(k) = b(k̃) = −k̃.

For k> k̃, we have ∀b > b(k), ψ(k,b) > 0.

Finally, the continuity and differentiability of b̂ result from the implicit fun-
ction theorem.

Two examples of possible b̂(k) are represented in figures 4.12 and 4.13.

Example: With a logarithmic utility function, we have

ψ(b, k) = (1+ n)(b+ k)− β

1+ β [ω(kt)− bf ′(kt) + b(1 + n)],

and

b̂(k) = βω(k)− (1+ β)(1+ n)k
1 + n+ β f ′(k) .

4.4.3 Characteristics of Inter-temporal Equilibria

It is now possible to characterize the inter-temporal equilibria, their existence,
and the nature of their dynamics by using the function b̂(k).

Proposition 4.15 (Characteristics of inter-temporal equilibria)
We assume H3b and let (b, k0) ∈ E . Then, when k0 < k̃, there are three possi-
bilities for b:
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A. If b < b̂(k0), the inter-temporal equilibriumwith initial state k0 exists and
is unique, and the sequence (kt)t≥0 is increasing and converges to a steady
state k̄; k̄ is the smallest steady state greater than k0.

B. If b = b̂(k0), k0 is a steady state equilibrium: the inter-temporal equilib-
rium exists, and the sequence (kt)t≥0 is constant and equal to (k0).

C. if b > b̂(k0), we have three possible situations:
� If there exists a steady state equilibrium 0 < k̄< k0, then the inter-
temporal equilibrium exists, and the sequence (kt)t≥0 is decreasing
and converges to the largest steady state which is smaller than k0.

� If there is no inter-temporal equilibrium starting from k0, then there is
no steady state smaller than k0.

� If there is an inter-temporal equilibrium starting from k0, but there is
no steady state smaller than k0, then the sequence (kt)t≥0 converges to
0 (poverty trap).

When k0 ≥ k̃,

D. The condition w̃(k0,b) > 0 implies that ψ(k0,b) is positive and we have
the same properties as in case C (b > b̂(k0)).

Proof: A: If b < b̂(k0), then ψ(k0,b) < ψ(k0, b̂(k0)) = 0. We are in case 1 of
proposition 4.13 (with strict inequality). Then the inter-temporal equilibrium

b

k

b k

b k

kGR k̃

k̃

0

b kˆ

Figure 4.12. The steady state curve. The curve b̂(k) is plotted for the case where
b̂(0+) = 0 and k̃ is finite. This case arises, e.g., with a logarithmic utility function and
a CES production function with low substitutability.
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Figure 4.13. The steady state curve. The curve b̂(k) is plotted for the case where
b̂(0+) > 0. This case arises, e.g., with a logarithmic utility function and a CES pro-
duction function with high substitutability.

exists, it is unique according to H3b, and the sequence (kt) is increasing. Let
us show that it is bounded. We have

(1+ n)(kt+1 + b) < w̃(kt ,b) = ω(kt)− (kt)b,
and

kt+1

kt
<

1
1+ n

(
ω(kt)
kt

− (kt)b
kt

)
− b
kt
.

The limit of the right-hand side is nil when kt tends to +∞, as (+∞) =
f ′(+∞)− (1+ n) is finite, and the limit ofω(k)/kwhen k tends to+∞ is equal
to 0 (see appendix A.1.3). Thus we have that, for kt large enough, kt+1 < kt ,
which is excluded. The increasing sequence (kt) is bounded.

We deduce that the sequence (kt) converges to the limit k̄, which is a steady
state equilibrium.Asmonotonic dynamics never goes fromone side of a steady
state to the other (see appendix A.3.1), k̄ is the smallest steady state larger
than k0.

B: In the case where b = b̂(k0), the conclusion results directly from the
definition of b̂(·).

C: If b > b̂(k0), then ψ(k0,b) > ψ(k0, b̂(k0)) = 0. We are in case 2 of pro-
position 4.13. As long as it exists, the equilibrium sequence (kt) is decreasing.

� If there exists a steady state equilibrium 0 ≤ k̄0 < k0, we apply the same
method as in the proof of case A.

� The second claim is logically equivalent to the first one.
� If the inter-temporal equilibrium exists, the corresponding (decreasing)
monotonic sequence (kt)t≥0 necessarily has a limit. Since there is no steady
state, this limit is zero.
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Figure 4.14. Characteristics of inter-temporal equilibria.

D: If k0 ≥ k̃ and (k0,b) ∈ E , we have ψ(k0,b) > 0. Then we are in case 2
of proposition 4.13, and the analysis developed for C can be applied.

This proposition is related to two results derived earlier. First, the poverty trap
case mentioned in the proposition is in fact a corner steady state of the econ-
omy with debt (see sections 1.6.1 and 1.6.3). Second, considering a stable sta-
tionary equilibrium, the inter-temporal government budget constraint holds if
and only if under-accumulation prevails at the equilibrium. Obviously, if over-
accumulation prevails, the growth rate of debt, which equals the growth rate
of population, is larger than the interest rate, and the inter-temporal govern-
ment budget constraint does not hold. In that case, though, the inter-temporal
equilibrium exists and debt is sustainable. This illustrates the results in
section 4.2.2.

As shown in figure 4.14, we have now a simple geometrical tool to analyze
the dynamics of capital. Locally stable (unstable) steady states are located on
the downward (upward) sloping branches of the function b̂(·).

4.4.4 Policy Implications

The main policy issues are as follows: On the one hand, not every level of debt
is compatible with the existence of equilibrium. On the other hand, any level
of capital between 0 and the upper limit k̃ given by f (k̃) = (1+ n)k̃ can be
implemented as an equilibrium. In particular, one can reach the golden rule
with either b ≥ 0 and b < 0. Debt can also be used to avoid a poverty trap. We
detail these issues in turn.
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Figure 4.15. Unsustainable debts in the domain of existence.

Sustainability. Sustainability means that an inter-temporal equilibrium with
constant debt exists. As shown in figure 4.15, three different unsustainable
situations can occur.

In the first situation the economy starts above the maximum of the steady
state curve. Debt is too large, implying that the over-taxed young households
do not save enough to maintain a constant private capital stock, as the burden
of debt is excessive. As productive capital falls, wage incomes become at some
point insufficient to cover the tax payments, and the temporary equilibrium
with this level of debt no longer exists.

In the second situation, the economy starts to the left of the steady state
curve. Debt is too large with respect to the initial capital stock, and the con-
clusion is the same as in the previous case.

The third case arises when the debt is negative and the initial stock of
capital is large. In this situation the interest rate is lower than the growth rate
of the population, and households have to pay taxes to finance the government
investment program. The stock of capital (and hence wage income) decreases,
and at some point households are no longer able to sustain this situation. Note
in the figure the range to the right of the b̂(k) curve where over-accumulation
implies that the growth rate of debt is larger than the interest rate. In this
range the inter-temporal government budget constraint does not hold, but the
inter-temporal equilibrium exists and debt is sustainable.

Poverty Traps. We have seen in proposition 4.15 that 0 can be a limit of the
equilibrium trajectory (poverty trap). This cases arises only if debt is positive
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Figure 4.16. Escapes from a poverty trap.

or nil. Indeed, when the government holds private assets (b < 0), we have

(1+ n)kt+1 = st − b > −b > 0,

and capital is bounded below by the constant quantity held by the government.
Moreover, negative public debt can be used to escape from a poverty trap

under certain circumstances. As illustrated in figure 4.16, negative debt allows
one to escape from a poverty trap when (i) the corner steady state is locally
stable in the economywithout debt, (ii) the initial capital stock lies in the range
of stability of the corner steady state, and (iii) the curve b̂(k) is increasing at k0,
which guarantees that some level of debt b� exists such that b� < b̂(k0). In this
case, running a negative debt would put the economy on a path that converges
to a high steady state level of capital. This policy amounts to “nationalizing”
part of the capital stock detained by the first old generation, thereby allowing
the government to distribute the dividends of this capital to the young gen-
eration by means of a negative tax. This inter-generational transfer enables a
high level of investment, which allows the capital stock to grow.

Notice also that the size of the negative debt that is necessary to escape
from the poverty trap depends on the distance between the actual stock of
capital and the lowest (unstable) steady state. Near this steady state very little
negative debt is sufficient. The further one is from the steady state, the higher
the necessary level of negative debt will be. At some point it is impossible to
escape from the trap, as the required level of debt would violate the positivity
constraint on private investment.
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Golden Rule. As the curve b̂(k) is always defined at kGR, there always exists a
level of debt such that the golden rule capital stock is a steady state. However,
nothing says that this steady state equilibrium is locally or globally stable. Our
analysis allows us to obtain conditions where this is the case. When the golden
rule equilibrium is locally stable, i.e.,when b̂′(kGR) < 0, the constantdebtpolicy
with b = b̂(kGR) leads to the golden rule if k0 is not too low.

One main point of the analysis of Diamond (1965) was to show that debt
causes a rise (a fall) in theutility level of an individual living in long-run equilib-
rium if the competitive equilibrium without debt is inefficient (efficient). This
result applies to a stable long-run equilibrium, which requires in our frame-
work b̂′(k) < 0. In this case, a rise in debt reduces the stock of capital, which
increases the steady state utility in the case k> kGR.

Proposition 4.16 (Debt and welfare)
For a given b and a stable steady state k, public debt has a positive (negative)
effect on welfare if there is over-accumulation (under-accumulation) at k.

Proof: This can be shown by differentiating

U(c,d) = u(ω(k)− (1+ n)(k+ b) − τ (k))+ βu( f ′(k)(1+ n)(b+ k))
= u(ω(k)− (1+ n)k− bf ′(k)) + βu( f ′(k)(1+ n)(b+ k))

with respect to k and b. This leads to

dU
db

= u′(c)
(
[ω′ − (1 + n) − bf ′′] dk

db
− f ′

)

+βu′(d)
(
[ f ′′(k+ b)+ f ′]

dk
db

+ f ′
)
(1+ n).

Simplifying with the arbitrage condition u′(c) = β f ′u′(d), we get that dU/db
is of the sign of(
[ω′ − (1+ n)− bf ′′] dk

db
− f ′

)
+
[(
f ′′

f ′
(k+ b) + 1

)
dk
db

+ 1
]
(1+ n)

= (1+ n− f ′)
(
1 + f ′′

f ′
(k+ b)dk

db

)
,

sinceω′ = −kf ′′. This expression is of the same sign as 1 + n > f ′ if dk/db < 0
(stability).

A noteworthy situation arises when the golden rule steady state equilibrium
is unstable, which is characterized by b̂′(kGR)> 0. In this case, although a level
of debt always exists such that the golden rule capital stock is a steady state, a
policy of constant debt is unable to lead to the golden rule (unless the initial
capital stock is already at the golden rule level). From proposition 4.15, if the
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debt is set such thatb = b̂(kGR) and the initial capital stock is larger that kGR, we
have b < b̂(k0), so that the inter-temporal equilibriumexists and is unique, and
the sequence (kt) is increasing. Moreover, it converges to a steady state higher
than the golden rule level, and thus is characterized by over-accumulation of
capital. If the initial capital stock is smaller that kGR, then b > b̂(k0), and, as
long as it exists, the equilibrium sequence (kt) is decreasing.Either it converges
to a steady state characterized by under-accumulation, or it converges to zero,
or the equilibrium ceases to be defined after a finite number of periods.

Example: The framework developed above can be used to obtain the condi-
tions under which the golden rule equilibrium with constant debt is stable or
unstable. Let us take a Cobb–Douglas production function f (k) = Akα and a
logarithmic utility function U(c,d) = ln c + β lnd. Then the steady state curve is
given by

b̂(k) = (1− α)βAkα − k(1+ n)(1 + β)
1 + n+ Akα−1αβ

.

Differentiating with respect to k, we obtain that b′(k) is of the sign of

[(1− α)βR − (1+ n)(1+ β)](1+ n+ βR) + (1 − α)2β2R2/α

− (1 + n)(1+ β)(1− α)βR,
where R(k) = Aαkα−1. Computing this expression at the golden rule, i.e.,
for R = 1 + n, we obtain that b̂′(kGR) is of the sign of

β2

α
[(1 − α)2 − α]− 2β − 1,

which is negative for 1 − α ≤ √
α (i.e., α > 0.38). When the opposite inequal-

ity holds (say α = 1/3), there is a weak restriction on β (β < 6.5 for α = 1/3).
Hence, if the weight attached to future consumption is not too large and the
share of capital in production is reasonable, Diamond’s golden rule equilib-
rium with constant debt is stable. Notice that the condition does not depend
on n.

4.5 applications and extensions

We present here two extensions of the previous analysis. In the first one, we
study an example where the policy amounts to keeping constant the debt–
GDP ratio. In the second one, we look at a numerical example where constant
deficit policies are responsible for everlasting fluctuations.

4.5.1 Constant Debt–Output Ratio

In the above sections, we have analyzed constant deficit and debt policies. It
is fair to recognize that real world policies are often expressed in per output
terms. With a logarithmic utility and Cobb–Douglas production, proportional
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policy rules are easy to analyze. Let us assume a logarithmic utility and zero
taxes on the old households, which implies a savings function

st = β

1 + β (1− τt)wt ,

where τt ∈ (0, 1) is a proportional tax rate on wage income. The budget of the
government is

Bt = Rt Bt−1 − τtwt Nt . (4.39)

Assume a constant debt–output ratio

Bt
Yt

= $.

The taxes that maintain the budget balanced are

τtwt = $
Rt

1 + n yt−1 − $yt , with yt = Yt
Nt
.

With a Cobb–Douglas production function yt = Akαt , these taxes are equal
to

τtwt = $A
(
Rt

1 + n k
α
t−1 − kαt

)
.

The dynamics are then given by

(1+ n)kt+1 = β

1 + β (1− τt)wt − $yt ,
(4.40)

(1+ n)kt+1 = βAkαt
1 + β

(
(1 − α)− $αAk

−1
t

1 + n k
α
t−1 + $

)
− $Akαt .

Dividing by Akαt and rearranging, we find

(1+ n)kt+1

Akαt
= β(1− α)− $

1+ β − β$α

1+ β
Akαt−1

(1 + n)kt . (4.41)

Hence the dynamics follow a difference equation of order 2. With B0 = $Y0 =
$F(K0, N0), initial conditions B−1 and K0 allow us to compute

τ0 = R0B−1 − $Y0
N0w0

from equation (4.39), and

(1+ n)k1 = β

1 + β (1− τ0)w0 − $y0

from equation (4.40). Hence, both k0 and k1 are determined by the initial
conditions.
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It is useful to rewrite the expression (4.41) as giving the dynamics of the
investment rate

zt+1 = (1+ n)kt+1

Akt
α .

We then obtain a first-order difference equation

zt+1 = β(1− α) − $
1+ β − β$α

1 + β
1
zt

(4.42)

that can be studied first. Once the dynamics in z are known, those of k can
be easily deduced. Hence, with a constant debt–output ratio, the dynamics of
dimension 2 can be solved recursively.

The steady state investment rates are the solution to

P(z) = z2 − β(1− α)− $
1 + β z+ β$α

1+ β = 0.

Three cases have to be considered, depending on whether $ < 0, $ = 0, or
$ > 0:

� In the case of negative debt, if $ < 0, the dynamics (4.42) are defined inR++.
They are oscillatory and converge to a unique globally stable steady state
z� which is the positive root of P(z). These dynamics have been studied in
section1.8.9. For the steady state z� to beanequilibrium, it shouldbe smaller
than 1. This requires P(1) > 0, i.e. $ > −1. Moreover, for the dynamics to
stay in (0, 1), there is a restriction on the initial condition z1 such that z2 < 1.

� In the case of zero debt, z is constant and equal to β(1− α)/(1+ β).
Equation (4.41) is the equation (1.21) of chapter 1.

� In the case of positive debt, if b > 0, the dynamics (4.42) are defined in R

as long as z �= 0. They are monotonic. The condition zt+1 > 0 requires a not
too large debt–GDP ratio:

$ < β(1 − α).
For the dynamics to stay in (0, 1), it is necessary to have at least one steady
state in the interval. A first condition is the existence of a steady state, i.e.,
the discriminant of P(z) is non-negative:(

β(1− α) − $
1+ β

)2
≥ 4

βα$

1 + β .

With 0 < $ < β(1− α), this leads to

β(1− α) ≥ 2
√
(1+ β)β$α + $, (4.43)

which imposes an upper bound on the debt $̄, viz., $ ≤ $̄ < β(1− α). The
roots of P(z) = 0 arepositive, since the coefficient of z in P(z) is negative.To
pursue the analysis, we draw the function φ corresponding to the dynamics
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Figure 4.17. Dynamics with constant debt–output ratio.

(4.42): zt+1 = φ(zt). This function is increasing and concave and is plotted
in figure 4.17 (assuming $ < $̄). We see that the dynamics converge to z+.
From the figure, there are two additional conditions for the existence of
equilibrium: z+ < 1 (steady state investment rate smaller than one) and
z1 ≥ z− (to converge to z+). The conditions for z+ < 1 are P(1) > 0 and
P(0) < 1, implying that both roots are below 1. P(1) > 0 ⇔ $ > −1 and is
thus verified for positive debt. P(0) < 1 requires another condition on $:
$ < (1+ β)/(αβ). This condition always holds for $ < $̄, since the opposite
of the inequality (4.43) is verified for $ ≥ (1+ β)/(αβ).

To conclude, the policy of fixing a constant debt–GDP ratio is compatible with
the existence of a steady state equilibrium for a ratio belonging to (−1, $̄).
Given the initial state z1, theexistenceof an inter-temporal equilibriumstarting
from z1 requires an additional restriction.

4.5.2 Deficits and Cycles

In proposition 4.11, we have studied the stability of steady states when the
government follows a policy of fixing the deficit. The local stability of some
steady states may well be characterized by complex roots. In this case, os-
cillations in output and debt will occur. This point was already studied by
Farmer (1986) in the case of zero deficit (he thus consider near-golden-rule
dynamics). We develop here an example of a constant, non-zero deficit. We
numerically compute some trajectories in the presence of complex roots. The
numerical exercise allows us to describe the trajectory when the steady state is
locally unstable; this is interesting because the trajectory does not necessarily
explode but may follow a regular pattern.

We take a logarithmic utility function with β = 0.3 and a CES production
function with ρ= 4, α= 0.5, and A= 10 (a low level of total factor productivity
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Figure 4.18. The function δ̂(k, 0) in the example.

turns out to be necessary to obtain Farmer’s results). The other parameters
are g = 0, τ 2 = 0, and n = 1.097. A first set of useful information can be drawn
from figure 4.18, which represents the steady state curve δ̂(k, 0) of proposition
4.9 for the chosen parameters. We observe that for a deficit δ between 2.2
and 0 two steady states exist. For δ negative there is one steady state, and for
δ above 2.2 there is no steady state. We will now look at the dynamics for
different values of δ (Farmer considers the dynamics for different values of a
technological parameter).

We represent in figure 4.19 the phase diagram for δ = 0.06. The low steady
state does not appear in the picture, as it displays low capital (k< 0.7). The
steady state we consider is thus at the intersection of the two phase lines
with b = −0.39 and k= 1.29. We have also plotted a trajectory starting from
b0 = −0.7, k0 = 1.29. This trajectory converges to the steady state following
oscillations. The computed eigenvalues are stable and complex; they equal
0.391 ± 0.908i with a modulus of 0.989.
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Figure 4.19. The phase diagram for δ = 0.06.



Debt 235

0.8 1 1.2 1.4 1.6 1.8

−1

−0.8

−0.6

−0.4

−0.2

0.2

0.4
b

k

Figure 4.20. The phase diagram for δ = 0.076.

If one increases the deficit slightly, the system loses its stability. The critical
point is δ = 0.07172, where the modulus of both eigenvalues is 1.13 For δ =
0.076 the steady state is locally unstable. The eigenvalues have now amodulus
of 1.004. Any trajectory starting close to the steady state diverges from the
steady statebutdoesnot explode. It converges toa closedcurve, shown infigure
4.20. Also, any trajectory starting slightly outside the closed curve converges
to it.

Thepicture changes completely if the deficit is increased further. Figure 4.21
is shown for δ = 0.095. The closed curve transforms into what the literature
calls a strange attractor.14 Again, if the initial conditions lie inside the attractor,
the trajectory will converge to it and the economy will be characterized by
everlasting fluctuations.
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Figure 4.21. The phase diagram for δ = 0.095.

13 This critical point is called in the literature aHopf bifurcation formaps, or aNaimark–Sacker
bifurcation. See Hale and Koçak (1991) and Wiggins (1990).

14 Pintus, Sands, and de Vilder (2000) study these transformations in detail.
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When δ increases further, the equilibrium will no longer exists, as the tra-
jectory would at some point entail a negative stock of capital.

The endogenous cycles computed above arise only if the government pur-
sues a particular policy, viz., maintaining the deficit constant. Notice that the
range of values of δ for which never-ending fluctuations arise is rather small.
Onemight also wonder whether such cycles can be reproduced in models with
individuals living more than two periods.15

4.6 conclusion

In this chapter we have analyzed economic policies when the government
budget is not balanced period after period, i.e. when there is a public debt. In
particular, we have been interested in studying the restrictions on debt policy
and the effect of policies on capital accumulation.

A first central result is that there is no restriction on government borrowing
when the government can freely tax the two generations. While fiscal instru-
ments are limited by the fact that the life-cycle income of the agents must be
kept positive, there is no specific constraint on debt policy. Furthermore, two
instruments are enough to decentralize any feasible allocation respecting the
household arbitrage condition. If two lump-sum taxes are available, the given
allocation can be decentralized for any arbitrary path of public debt. For in-
stance, the debtmaywell follow an explosive path if the government subsidizes
the young households so that they are able to absorb the debt, and taxes this
wealth away when they are old. This shows that there is no theoretical reason
to require that the government satisfy its inter-temporal budget constraint in
overlapping generationsmodels. But some restrictions apply when only young
(or only old) people are taxed, evenwhen there is over-accumulationof capital.

Wehave then analyzed the dynamics of debt and capital under two different
policies: constant (zero or non-zero) deficit per capita and constant debt per
capita. In the first case, the analysis is essentially local, although a global view
of the steady states can be obtained. In the second case, we propose a global
analysis of the dynamics, which allows us to study the sustainability of constant
debt policies.Consideringnow thewhole set of results of this analysis,we retain
two main elements and a general conclusion.

First, a level of debt such that the golden rule capital stock is a steady state
always exists provided that public spending is reasonable. However, a constant
debt policy may be unable to lead the economy to the golden rule. In the case
where the debt of the golden rule is positive, a constant zero deficit policy leads
to a saddle path. It can thus implement the golden rule only for a specific level
of the initial debt.

15 Aiyagari (1989) argues that cycles tend to disappear when life spans get large in overlapping
generations models, provided that the future is discounted positively by households. He
proves the result for an exchange economy and cycles of fixed periods.
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Second, if the initial capital stock is low and/or government spending is very
high, implying that the economy is threatened by a poverty trap, negative debt
can be useful to escape from the trap.With a constant deficit policy, this escape
from the trap requires a sufficiently negative initial debt. With a constant debt
policy, it means we must not be too far from the lowest positive steady state.

In addition, two policies are clearly not sustainable: to maintain a constant
deficit with a too high initial debt, and to maintain a constant debt with a too
low initial capital.

The general conclusion to the stability analysis is that none of the policies
considered is stable per se. According to the values of the parameters, one can
obtain local or global stability, saddle points, or unstable steady states. This
implies that a debt policy should be carefully thought through as a function of
the characteristics and current state of the economy.

Finally, we propose in this chapter a clear presentation of the differences
between debt and bubbles. The three important differences are: First, debt is
a pre-determined variable, while a bubble is a forward-looking variable with
no initial condition. Second, a bubble cannot be negative if the corresponding
asset can be freely disposed of. On the contrary, a negative debt simply means
that the government holds a part of the physical capital of the economy. Third,
the model with debt can be analyzed within a truly dynamic approach to
equilibrium. The model with bubbles should be analyzed within a general
equilibrium framework where theWalrasian auctioneer determines the prices
of all periods at the same time, a condition for the existence of an equilibrium
with rational bubbles.
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Further Issues

This chapter offers a treatment of four important issues: altruism, education,
inter-generational externalities, and general equilibrium in macroeconomics.1

The first three topics involve inter-generational linkages in onewayor another;
this is why they require the use of the overlapping generations model. Altru-
ism implies bequests; education needs funding by older generations; inter-
generational externalities model the inheritance of standard-of-living aspira-
tions. The last topic studies the link between the overlapping generations
model and the Arrow–Debreu approach to general equilibrium.

Altruism is an important topic in that it gives a motive to parents for leav-
ing bequests to their children. In the real world, inter-generational resource
transfers consist mainly of pensions (chapter 3), public debt (chapter 4), and
private bequests. Section 5.1 explains how dynastic altruism provides a motive
for bequest and studies the problem of the altruistic household. It then draws
the consequences of altruism for pension and debt policy.

Parents’ influence on children is not limited to resource transfers; two
other important influences are human capital spillovers (section 5.2) and taste
spillovers (section 5.3). These two spillovers are in general responsible for two
externalities: A positive one linked to the transmission of human capital from
one generation to the other, and a negative one related to the inheritance of
standard-of-living aspirations from the parents. The first one has given rise to
many articles dealing with education as an engine of growth. They stress the
idea that individual-specific human capital is increasing in the human capital
of the previous generation and this can be responsible for sustained growth.
The second spillover stems for the fact that in a growing economy, successive
generations are raised in increasingly richer households and hence develop
successively higher standard-of-living aspirations.

1 We do not intend to provide an in-depth analysis of these different fields, but only to show
the reader how the previous chapters can be extended and applied to wider issues.

238
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The question of the fourth section – the link between our approach and
Arrow–Debreu general equilibria – is important. Indeed,wehave developed a
framework based on the notions of temporary equilibrium and inter-temporal
equilibrium; another strand of the literature that studies the overlapping gen-
erations model (without capital) uses the atemporal general equilibrium ap-
proach with complete markets (extending the Arrow–Debreu framework to
infinite horizon). The comparison provided in section 5.4 will help to put into
perspective the approach chosen for this book and to highlight its use for policy
issues.

5.1 dynastic altruism: a bequest motive

Bequests and inter vivos gifts are responsible for large inter-generational trans-
fers. They account, together with private savings, for an important part of
individual wealth. Bequests can either be unintentional (accidental) or inten-
tional (voluntary). In the first case, as in Abel (1985), one assumes lifetime
uncertainty; a precautionary demand for savings arises to avoid low levels of
consumption in the event of a long life. When death occurs, the household is
holding some wealth, which is passed on to the children as an accidental be-
quest. This eventuality arises because of lack of complete markets for annuity
securities. In the second case, which is the one we consider in this section,
dynastic altruism (i.e., from parents to children) provides a motive for leav-
ing bequests to the descendants. Altruism within the family can be seen as an
application of social interaction theory (Becker (1974)).

5.1.1 Modeling Voluntary Bequests

We extend the model of the preceding chapters (two-period-lived households
supplying labor when young and being retired when old) to allow for private
transfers from each household to its 1 + n children. Taking the budget con-
straint of chapter 4 (see equations (4.2) and (4.3)), we introduce the variables
xt and xt+1. xt is the quantity of goods received by a young household from
its parents at time t . xt+1 is the amount of good given by an old household to
each of its children. The constraints are

wt + xt − τ 1t = ct + st , (5.1)

dt+1 + (1+ n)xt+1 = Rt+1 st − τ 2t+1. (5.2)

Let us recall thatwt denotes wages, τ 1t and τ
2
t+1 are the lump-sum taxes bearing

on young and old households respectively, ct and dt+1 stand for consumption
when young and old respectively, st stands for savings, and Rt+1 is the interest
factor. Note that xt and xt+1 represent inter vivos gifts, but the literature calls
them bequests. As all households of the same generation are identical, they
all receive the same gift. There is an important additional constraint for the
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household born in t :

xt+1 ≥ 0. (5.3)

This non-negativity constraint on bequests forbids the parents to take away
resources from their children.

The Objective Function. The utility from consuming when young and old is
the same as in the preceding chapters:

Ut = U(ct ,dt+1) = u(ct)+ βu(dt+1).

Moreover, following Barro (1974), an altruistic household enjoys the well-
being of its children. Denoting by Vt+1 the well-being of each of the 1 + n
children, we assume that the well-being (or the total utility) of an household
born in t is given by

Vt = Ut + γVt+1. (5.4)

The parameter γ > 0 is called the degree of altruism. It is alternatively possible
to define

Vt = Ut + γ̃ (1+ n)Vt+1,

where γ̃ applies to the sum of the utilities of the (identical) 1 + n children. We
obtain (5.4) by defining γ = γ̃ (1+ n).2

The relationship (5.4) links the total utility of a household to that of its
children. It introduces a dependency between this utility and the utilities of all
descendants. Indeed, although each generation cares only about its children,
these children care about their own children, i.e., Vt+1 = Ut+1 + γVt+2, etc.
Every household will thus act taking into account this series of links, and the
altruistic household born at t will act taking into account its infinite dynasty.
By induction, the total utility can be written as follows, for all T > t :

Vt =
T−1∑
θ=t
γ θ−tUθ + γ T−t VT,

and, if the total utilities satisfy the limit condition

lim
T→∞

γ T−t VT = 0, (5.5)

we have

Vt =
∞∑
θ=t
γ θ−tUθ ,

2 Arefinementof this approach is to consider that thedegreeof altruismdependson thenumber
of children, i.e., γ = γ (n); see Barro and Becker (1989) and an application inDoepke (1999).
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i.e., the total utility of a young household born in t is equal to the discounted
sum (with a factor γ ) of the life-cycle utilities of its descendants.

Expectations. After having written the objective function of an altruistic
household, one should determine what are its decision variables and its ex-
pectations. A household of any generation θ ≥ t chooses cθ , sθ , dθ+1, and xθ+1,
taking as given the prices wθ and Rθ+1, the taxes τ 1θ and τ

2
θ+1, and the bequest

from its parents xθ . It maximizes his total utility Vθ subject to the constraints
(5.1), (5.2), and (5.3) at t = θ . With this information a young household in t
which foresees all future prices and taxes can compute the optimal decisions
of all its descendants. These future choices depend on its own choice xt+1.

The assumption of perfect foresight bears here on all future taxes and
prices. At time t the information set Pt contains prices (wθ+1,Rθ+1) and taxes
(τ 1
θ+1, τ

2
θ+1) for all future periods θ ≥ t . This assumption is obviously restrictive

but necessary for the coherence of the anticipations made by all cohorts, in
the sense that Pt is the union of Pt+1 with (wt+1,Rt+1, τ

1
t+1, τ

2
t+1).

Under the assumption of perfect foresight, the maximum of total utility is
given by the following recursive relation:

V�t
(
xt + wt − τ 1t ,Pt

)
= max
ct ,st ,dt+1,xt+1

{
u(ct)+ βu(dt+1)+ γV�t+1

(
xt+1 + wt+1 − τ 1t+1,Pt+1

)}
. (5.6)

The maximum is taken subject to the constraints (5.1), (5.2), and (5.3). For
any t ≥ 0, V�t (xt + wt − τ 1t ,Pt) is themaximum of utility of a young household
born in t when its first-period income is xt + wt − τ 1t , and its information set
is Pt . It is the utility it gets when it maximizes the sum of his life-cycle utility
plus the utility (weighted by γ ) that its children can reach with the bequest
xt+1, given that every member of the dynasty anticipate the same prices and
taxes.

Compared to the infinite sum approach, the definition of the altruistic
household problem based on (5.6) links together the total utilities of all gen-
erations. An important feature of this definition is to consider explicitly the
decisions of the household born in t only.

The Dynastic Optimal Problem. Equation (5.6) is the Bellman equation of an
infinite horizon problem. It links the value functions V�t and V�t+1. Note that
these value functions do depend on time through the paths of prices and taxes.
The dynamics of bequests is obtained by eliminating st with (5.1)–(5.2):

xt+1 = 1
1+ n

[
Rt+1

(
xt + wt − τ 1t − ct

)− τ 2t+1 − dt+1
]
. (5.7)

This dynamic equation also depends on time through prices and taxes. The
objective whose maximum is V�0 (x0 + w0 − τ 10 ,P0) can be written in infinite
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horizon as the maximum of
∞∑
t=0

γ t [u(ct)+ βu(dt+1)] , (5.8)

subject to the constraints (5.7) and

ct > 0, dt+1 > 0, and xt+1 ≥ 0. (5.9)

x0 and the parameters w0, τ 10 , andP0 are given.We can now prove the existence
of the optimal solution using the method developed in appendix A.4.1 and
characterize its properties.3

Proposition 5.1 (Optimal solution of the altruistic household)
Given x0 ≥ 0 and the current and anticipated prices and taxes (w0, τ 10 , and P0),
we consider the following assumptions:

(i) the personal lifetime incomes �t = wt − τ 1t − τ 2t+1/Rt+1 are all positive;
(ii) the dynastic objective (5.8) is bounded for all feasible paths of consump-

tions and bequests;
(iii) there exists a path of consumptions and zero bequests such that the ob-

jective (5.8) is finite.

Then, there exists a unique solution to the dynastic optimal problem. All the
value functions V�t for all t ≥ 0 are defined, continuous, increasing, concave,
and differentiable. They verify the Bellman equation (5.6).

Proof: We apply the dynamic optimization method of appendix A.4.1 where
the dynamics of the stock variable is given by (5.7) and where the control
variables (ct ,dt+1) belong to the set of feasible decisions:

Qt(x) = {(c,d) ∈ R
2; c > 0, d > 0, and Rt+1c + d ≤ Rt+1xt +Rt+1�t }.

�t = wt − τ 1t − τ 2t+1/Rt+1 is the personal life-cycle income to which bequests
should be added to obtain the total life-cycle income. It gives us a lower bound
on the effective life-cycle income. The dynastic problem of maximizing (5.8)
subject to (5.7)–(5.9) is a time-varying problem to which all the results of
appendix A.4.1 apply. We first check the assumptions B0, B1, B2, and B3 of
the appendix.

� Assumption (i) implies that the dynamics are defined on I = R+ (assump-
tion B0): for all x ∈ I = R+, Qt(x) is not empty, since the personal life-
cycle income �t is positive for all t ≥ 0. Then, for all (ct ,dt+1) ∈ Qt(xt),
the quantity xt+1 = [Rt+1(xt +�t − ct)− dt+1]/(1+ n) is positive or nil, i.e.,
xt+1 ∈ I.

3 Although this appendix is written without time-dependent dynamics, all the definitions and
results remains valid under time-dependent dynamics (Michel (1990a)).
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� Assumption (i i) means that feasible payoffs are bounded from above (as-
sumption B1) and is verified when the following holds:

∞∑
t=0

γ t Ūt(x̄t) < +∞,

where the life-cycle utility with maximum bequest is

Ūt(x̄t) = sup{u(c)+ βu(d); (c,d) ∈ Qt(x̄t)},
and where the sequence of maximum bequests (x̄t) is defined by x̄t+1 =
Rt+1(x̄t +�t)/(1+ n), x̄0 = x0 given.

� Assumption (i i i) implies that there exists at least one feasible trajectory
such that the payoff is finite (assumption B2) and holds if there exists a
sequence (ct ,dt+1)t≥0 such that

ct > 0, dt+1 > 0, ct + dt+1

Rt+1
≤ �t , and

∞∑
t=0

γ tU(ct ,dt+1) > −∞.

� Finally, the convexity of the optimization problem (assumption B3) holds
because ∀t ≥ 0, the set At with elements (a, x, y) ∈ R × I × I defined by

∃(c,d) ∈ Qt(x) such that U(c,d) ≥ a and y = Rt+1(x +�t − c) − d
1 + n

is convex.

Under these assumptions there exists an optimal solution (c�t ,d
�
t+1, x

�
t+1)t≥0 to

the dynastic problem, given x0 and all the parameters. The value functions V�t
are then defined, continuous, increasing, and concave with respect to xt , for
all xt > 0. Moreover, V�t is differentiable, and we have

V�t
′(x�t + wt − τ 1t ,Pt

) = ∂V�t
(
x�t + wt − τ 1t ,Pt

)
∂xt

= u′(c�t ). (5.10)

Indeed, for x�t positive we apply proposition A.16 with the functions ct(x) =
x − x�t + c�t , dt+1 = d�t+1, which gives the same value of x�t+1 from xt = x (see
assumption B4).

Finally, the same properties hold for V�t at x = 0 when x�t = 0, because
the optimization problem is defined to the left of x = 0. It is indeed possi-
ble to consider negative values of x such that ct(x) = x + c�t remains posi-
tive. One might then define V�t (x + wt − τ 1t ,Pt) for negative x’s such that the
life-cycle income x +�t is positive. This merely amounts to modifying, in the
optimization problem, the value of the parameterw′

t = wt − ε with ε > 0 such
that �t − ε > 0.

To characterize the optimal solution for the altruistic household, we may also
apply the necessary and sufficient conditions of appendix A.4.2:
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Proposition 5.2 (Characteristics of the solution for the altruistic household)
Under assumptions (i), (ii), and (iii) of proposition 5.1, the solution to the dy-
nastic optimal problem is characterized by the following necessary and sufficient
conditions:

∀t ≥ 0, u′(c�t ) = Rt+1βu′(d�t+1), (5.11)

∀t ≥ 0, γu′(c�t+1)− (1+ n)βu′(d�t+1) ≤ 0 (= 0 if x�t+1 > 0), (5.12)

lim
t→∞ γ

t u′(c�t )x
�
t = 0. (5.13)

Proof: Proposition A.17 of appendix A.4.2 applies to time-varying problems
(see Michel (1990a)). The Lagrangian of period t , Lt , is equal to the sum of
the life-cycle utility u(ct)+ βu(dt+1) with the increase in the shadow value of
xt over the period, γ pt+1xt+1 − pt xt :

Lt = u(ct) + βu(dt+1)+ γ

1+ n pt+1[Rt+1(xt +�t − ct) − dt+1]− pt xt .

This Lagrangian attains its maximum at (c�t ,d
�
t+1, x

�
t ) on the set of the (ct ,dt+1,

xt) such that xt ≥ 0, ct > 0, dt+1 > 0, and Rt+1ct + dt+1 ≤ Rt+1(xt +�t). We
assign a multiplier λt to this latter constraint, and we obtain

u′(c�t ) = γ

1+ n pt+1Rt+1 + λtRt+1, (5.14)

βu′(d�t+1) = γ

1+ n pt+1 + λt , (5.15)

−pt + γ

1 + n pt+1Rt+1 + λtRt+1 ≤ 0 (= 0 if x�t > 0). (5.16)

Moreover, λt is equal to zero when the latter constraint is not binding, i.e.,
when x�t+1 > 0.

Equation (5.11) can be deduced directly from (5.14) and (5.15). The condi-
tion pt ≥ u′(c�t ) (from (5.14) and (5.16)) applies also to t + 1: pt+1 ≥ u′(c�t+1),
and we have from (5.15)

γ

1+ n pt+1 = βu′(d�t+1)− λt ≤ βu′(d�t+1),

which implies

γu′(c�t+1) ≤ γ pt+1 ≤ (1+ n)βu′(d�t+1).

Moreover, if x�t+1 > 0, the above conditions hold with equality:

pt+1 = u′(c�t+1) and
γ

1 + n pt+1 = βu′(d�t+1).

Thus, (5.12) holds.
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The transversality condition

lim
t→+∞ γ

t pt x�t = 0

is necessary and sufficient (because the trajectory xt = 0 is feasible and gives
a finite value of the objective function; see the discussion after proposition
A.17). As we have ∀t ≥ 0, pt x�t = u′(c�t )x

�
t , we obtain (5.13).

Conversely, if the conditions (5.11), (5.12), and (5.13) hold, it is sufficient
to chose a sequence of shadow prices such that

u′(c�t+1) ≤ pt+1 ≤ β

γ
(1+ n)u′(d�t+1),

and to define

λt = βu′(d�t+1) − γ

1 + n pt+1

to obtain the conditions (5.14), (5.15), and (5.16).

Equation (5.11) simply reflects the arbitrage condition of the households over
their life-cycle. The transversality condition (5.13) which corresponds to the
marginal form of equation (5.5) ensures that the households are able to eval-
uate the utility of their children, and thus to compute their total utility.

The First OldGeneration. Up to now, the initial level of bequest x0 was treated
as an initial condition. Although this is often assumed in the literature for
convenience, one should recognize that x0 is in fact chosen by the first old
generation, the initial father. This generation lives together with the young
households born in t = 0 for which the above study has been performed. The
N−1 first oldhouseholdsdetain the installed capital stockK0 and thus receivean
incomeR0s−1, where s−1 = K0/N−1. These agents, which are altruistic, choose
their consumption d0 and the bequest x0 to maximize their utility:

βu(d0)+ γV�0
(
x0 + w0 − τ 10 ,P0

)
,

subject to the constraints

R0s−1 − τ 20 = d0 + (1+ n)x0 and x0 ≥ 0.

By assumption, they have computed the total utility of their children as a
function of their bequest x0. Following the concavity and differentiability of
V�0 , their optimal choice is characterized by

−(1 + n)βu′(d�0) + γV�0 ′(x�0 + w0 − τ 10 ,P0
) ≤ 0 (= 0 if x�0 > 0).

Using the relationship (5.10), we obtain

−(1+ n)βu′(d�0)+ γu′(c�0) ≤ 0 (= 0 if x�0 > 0). (5.17)
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Theoptimal level of the bequest x�0 is thus determinedby (5.17) given the initial
condition s−1. Equation (5.17) is the same as equation (5.12) at t = −1 and
describes the arbitrage made by the first old individuals between consuming
themselves or enhancing the consumption of their children through bequests.

The same analysis can be applied to the old living in any period t + 1. These
households maximize their utility

βu(dt+1) + γV�t+1

(
xt+1 + wt+1 − τ 1t+1,Pt+1

)
,

subject to the constraints

Rt+1s�t − τ 2t+1 = dt+1 + (1 + n)xt+1 and xt+1 ≥ 0.

Their optimal choice is characterized by equation (5.12).

5.1.2 Marginal Analysis of Bequests

We now study how optimal consumptions and bequests are modified when
there are marginal exogenous changes in the interest factor and in the income
of the parents and/or the children. To study these issues formally, we consider
the optimal decisions (ct ,dt+1, xt+1) when bequests are positive. These deci-
sions are the solution to the following system of equations (from equations
(5.7), (5.10), (5.11), and (5.12)):

u′(ct) = Rt+1βu′(dt+1), (5.18)

(1 + n)βu′(dt+1) = γu′(ct+1) = γV�t+1
′(xt+1 + wt+1 − τ 1t+1,Pt+1

)
, (5.19)

ct + dt+1

Rt+1
+ 1 + n
Rt+1

xt+1 = �t + xt , (5.20)

given xt , �t , Rt+1.

Rise in Parents’ Income. Let us first consider the effect of a rise in parents’
income�t . When the interest factorRt+1 and all other future prices and taxes
are held fixed, the first two equations (5.18)–(5.19) show that ct , dt+1, and
xt+1 should move in the same direction (remember that the value function
is concave in its argument). In the face of a rise in parental income �t , the
additional resources are sharedbetween the three components of expenditures
ct , dt+1, and xt+1. Hence, we have

0 <
∂xt+1

∂�t
< 1.

The same holds in the face of an exogenous rise in the bequest xt .

Rise in the Interest Factor. A rise in the interest factor makes it optimal for
the parents to substitute consumption across time both in personal terms (the
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ratio u′(ct)/u′(dt+1) increases) and in dynastic terms (the ratio u′(ct)/u′(ct+1)
increases, since the ratio u′(ct+1)/u′(dt+1) is unchanged).

To identify the sign of the effect on the optimal bequest, notice first that
equation (5.19) is not directly affected by the rise in the interest rate Rt+1.
This implies that dt+1 and xt+1 move in the same direction. We next rewrite
the equation (5.18) as

u′(ct)
u′(dt+1)

= Rt+1β.

In the face of a rise in Rt+1, two cases may arise: either ct increases, requiring
an increase in dt+1 and hence in xt+1, or ct decreases, savings st increase, and
Rt+1st increases, implying that both dt+1 and xt+1 increase. Hence, we have in
both cases

∂xt+1

∂Rt+1
> 0.

Parents thus leave a larger bequest and consume more in their old age when
the interest factor increases.

Rise inChildren’s Income. To studyhowagain in children’s incomewt+1 − τ 1t+1
affects the allocations ct ,dt+1, and xt+1, we add the actual valueof the children’s
personal income, (wt+1 − τ 1t+1)(1+ n)/Rt+1, to both sides of equation (5.20),
which gives

ct + dt+1

Rt+1
+ 1 + n
Rt+1

ωt+1 = �t + xt +
(
wt+1 − τ 1t+1

)1 + n
Rt+1

,

where ωt+1 = xt+1 + wt+1 − τt+1. The two arbitrage equations (5.18)–(5.19)
imply that ct , dt+1, and ωt+1 should move in the same direction when the left-
hand side �t + xt + (wt+1 − τ 1t+1)(1 + n)/Rt+1 changes. Thus, we have

0 <
∂ωt+1

∂
(
wt+1 − τ 1t+1

) < 1,

and thus

−1 <
∂xt+1

∂
(
wt+1 − τ 1t+1

) < 0.

It is thus optimal to increase the three quantities ct , dt+1, ωt+1, which requires
a drop in bequests xt+1. This illustrates the fact that, as long as bequests are
operative (i.e., xt > 0 ∀t), the altruistic model predicts that the whole amount
of resources of the dynasty is shared across its members.

The marginal effects we have studied are at the basis of many empirical
studies on the effectiveness of parental altruism. (See, for instance, the con-
tradictory results of Wilhelm (1996) and Laitner and Juster (1996). A more
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recent study is in Laitner and Ohlsson (2001).) In particular, they test the pre-
diction that if one increases the present-value income of the children by one
unit and decreases that of the parents by one unit, the optimal bequest should
compensate this change in the distribution of income and be reduced by one
unit. The intuition behind this prediction of the model is the following (from
Altonji, Hayashi, and Kotlikoff (1992)): “If parents and children are altruisti-
cally linked, their consumption will be based on a collective budget constraint,
and the distribution of consumption betweenparents and childrenwill be inde-
pendent of the distribution of their incomes.” This prediction is closely related
to the neutrality of lump-sum transfers when generations are altruistically
linked. It is the subject of the next subsection.

5.1.3 Altruism and the Neutrality of Economic Policy

In themodelwith infinite-livedagents, the lump-sum taxationpolicy andpublic
debt policy are neutral. This means that the choice of the households depends
only on the discounted value of the flow of taxes, not on their distribution
across time.

We have seen in the previous section that the behavior of an altruistic
household is characterized by the resolution of an infinite horizon problem. It
is thus natural to study under which conditions there is neutrality of economic
policy in an inter-temporal equilibrium with perfect foresight and dynastic
altruism. In this context, neutrality would imply that any change in the inter-
generational transfers made by the government through taxes and debt are
compensated by changes in private inter-generational transfers (bequests).

We start by defining the inter-temporal equilibrium with perfect foresight
and altruism. Next we study the equivalence between this equilibrium and the
planner’s optimal solution. When they are equivalent, the allocation does not
depend on policies, and neutrality holds.

The Inter-temporal EquilibriumwithAltruism. Firms act as in chapter 1: In pe-
riod t , the stock of capital Kt is installed and results from the investment deci-
sion of the preceding period: Kt = It−1. Labor demand equalizes the marginal
product of labor with the wage wt : ω(Kt/Lt) = F ′

L(Kt , Lt) = wt . Profits are
distributed to the owners of the capital stock: πt = f ′(Kt/Lt)Kt = RtKt . Thus,
we have

ω(Kt/Lt) = wt and f ′(Kt/Lt) = Rt . (5.21)

With national debt, savings are used to finance both productive capital and
government debt:

Ntst = It + Bt = Kt+1 + Nt+1bt+1. (5.22)
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With public spending and lump-sum taxes, the dynamics of debt can bewritten,
as in chapter 4,

(1+ n)bt+1 = Rtbt + δt = Rtbt + gt − τ 1t − τ 2t

1 + n . (5.23)

The households’ behavior analyzed in the preceding subsection is defined
for given taxes and prices from t = 0 to t = +∞, i.e., for (wt ,Rt , τ 1t , τ

2
t )t≥0

given. There are restrictions on these taxes and prices for the indirect utility
functions of the households of each generation to be defined. These indirect
utility functions are the value functions V�t of an infinite horizon problem,
and the assumptions made in proposition 5.1 should be fulfilled. Under these
assumptions, given the initial condition s−1 = (1+ n)(k0 + b0), the sequence
(d�t , x

�
t , c

�
t , s

�
t )t≥0 is characterized by the budget constraints ∀t ≥ 0:

x�t + wt − τ 1t = ct + s�t and Rts�t−1 − τ 2t = d�t + (1+ n)x�t and x�t ≥ 0,
(5.24)

by the two marginal conditions ∀t ≥ 0:

u′(c�t ) = Rt+1βu′(d�t+1), (5.25)

and

γu′(c�t )− (1+ n)βu′(d�t ) ≤ 0 (= 0 if x� > 0), (5.26)

and by the transversality condition

lim
t→∞ γ

t u′(c�t )x
�
t = 0. (5.27)

When the conditions (5.21)–(5.27) hold simultaneously with st = s�t , and the
labor market and the product market clear in all periods, i.e.,

Lt = Nt and F(Kt , Lt) = Ntc�t + Nt−1d�t + Ntgt + Kt+1,

there is an inter-temporal equilibrium with perfect foresight in the economy
with altruistic households.

Note that, in the economy with altruistic households, the assumption of
perfect foresight is much more stringent than in the models of the preceding
chapters. Indeed, each agent has to anticipate all future prices and taxes. If
the equilibrium is not unique, which cannot be insured by a simple general
condition, there is the need to coordinate the expectations. One can then
simply suppose that all prices and taxes are announced at t = 0, as is the case
in the general equilibrium model of section 5.4.4

4 This problem appears even more severely in the model with two-sided altruism, with t =
−∞, . . . ,+∞. See Kimball (1987).
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We can recast the conditions of the inter-temporal equilibrium by replacing
the prices by their expression (5.21) as a function of kt = Kt/Nt . We then
obtain the following proposition.

Proposition 5.3 (Inter-temporal equilibrium with altruism)
Consider an economy with altruistic households, lump-sum taxes, public debt,
and public spending. Given the initial conditions k0 > 0; b0, s−1 = (1 + n)(k0 +
b0) > 0, and the sequences of policies (τ 1t , τ

2
t )t≥0 and (gt)t≥0, the inter-temporal

equilibriumwithperfect foresight is characterizedbya sequence (c�t ,d
�
t , x

�
t , kt+1,

bt+1)t≥0, such that:

1. With the prices wt = ω(kt) and Rt = f ′(kt) the total utilities V�t of all
generations are defined.

2. The following conditions hold:

u′(c�t ) = f ′(kt+1)βu′(d�t+1), (5.28)

γu′(c�t ) − (1+ n)βu′(d�t ) ≤ 0 (= 0 if x�t > 0), (5.29)

f (kt) = c�t + d�t
1 + n + gt + (1+ n)kt+1, (5.30)

(1 + n)bt+1 = f ′(kt)bt + gt − τ 1t − τ 2t

1 + n , (5.31)

(1+ n)x�t = f ′(kt)(1+ n)(kt + bt)− τ 2t − d�t ≥ 0, (5.32)

lim
t→∞ γ

t u′(c�t )x
�
t = 0. (5.33)

Proof: All the conditions of the proposition hold at equilibrium. Let us
show that they are sufficient. Defining s�t = (1+ n)(kt+1 + bt+1), we obtain
the second-period budget constraint leading equation (5.32) by one period.
Eliminating gt with the equations (5.30) and (5.31), we obtain

s�t = (1+ n)(kt+1 + bt+1) = f (kt)− c�t − d�t
1+ n + f ′(kt)bt − τ 1t − τ 2t

1 + n .

Using (5.32) to eliminate bt , we obtain

s�t = f (kt)− kt f ′(kt) − c�t − τ 1t + x�t ,
which gives with wt = ω(kt) = f (kt)− kt f ′(kt) the first-period budget con-
straint. Hence all the conditions characterizing the behavior of households,
firms, and government are fulfilled.

Neutrality of Economic Policy. To study the neutrality of economic policy
we establish the conditions under which the inter-temporal equilibrium with
perfect foresight is equivalent to theplanner’s optimal solution.Bydoing so,we
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ensure that the market allocation is the optimal allocation and is not affected
by lump-sum transfers and/or debt.

Proposition 5.4 (Neutrality of policy)
If (c�t ,d

�
t , x

�
t , kt+1,bt+1)t≥0 is an inter-temporal equilibrium with perfect fore-

sight for which bequests are positive at all dates,

∀t ≥ 0, x�t > 0,

and the following transversality condition holds:

lim
t→∞ γ

t u′(c�t )kt f
′(kt) = 0, (5.34)

then the sequence (c�t ,d
�
t , kt+1)t≥0 is the optimal allocation chosen by the planner

with a discount factor γ .

Proof: The necessary and sufficient conditions of proposition 2.12 hold with
the implicit price qt = f ′(kt)u′(c�t ). With positive bequests at all dates we have
that the condition (5.29) holds with equality, which implies

(1+ n)βu′(d�t ) f
′(kt) = γu′(c�t ) f

′(kt) = γqt . (5.35)

Equation (2.23) thus holds, which implies through equation (5.30) that (2.21)
holds. By assumption, the transversality condition (2.20) holds. Finally, the
dynamics of qt given by (2.22) is obtained using (5.28) and (5.35).

Hence, any inter-temporal equilibrium with positive bequests for which the
transversality condition (5.34) holds does not depend on the policy choices
(transfers and/or debt) as long as these choices remain compatible with the
existenceof this equilibrium.Public debt and lump-sumpensionsdonotmatter
in this framework. Any modification to these variables is offset by a change in
private transfers. This neutrality property is similar to theonewefind inmodels
with infinite-lived agents. It as been much debated in the literature and has
led to many empirical studies. Two classical surveys including both theoretical
and applied aspects are those of Bernheim (1987) and Seater (1993).5

The overlapping generations model with altruism can be thought of as a
micro foundation for the infinite horizon representative agent model. There
are however three important differences from the model with infinite-lived
agents.

First, all bequests must be positive.6 The old generation cannot take re-
sources from the future. For the equivalence result to hold, this should be true
at all dates. There is no such restriction in the model with infinite-lived agents.

5 A more recent discussion of the empirical methodology is provided by Cardia (1997).
6 Or, at least in the limit case, bequests can be zero with equation (5.29) holding with equality.
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Second, there is the condition that all dynastic indirect utility functions are
defined, requiring that each generation take its life-cycle decisions knowing
the effect of the bequest it leaves on the welfare of the next generation. An
agent with infinite life computes at the initial period all its future decisions as
a function of future prices and taxes.

The thirddifference comes fromthe transversality condition.For thealtruis-
tic agents, the discounted value of bequests tends to zero. For the infinite-lived
agent, the discounted value of wealth tends to zero. The wealth of a repre-
sentative infinite-lived agents includes all the assets of the economy. On the
contrary, the bequest of one altruistic agent who lives two periods7 only in-
cludes the wealth transmitted to the next generation. In the special case where
the debt is non-negative (bt ≥ 0 ∀t) and the second-period tax is non-negative
(τ 2t ≥ 0 ∀t), we have

(1+ n)x�t ≤ (1+ n) f ′(kt)kt − τ 2t − d�t < (1+ n) f ′(kt)kt ,
and the transversality condition of the planner,

lim
t→∞ γ

tqt kt = lim
t→∞ γ

t u′(c�t ) f
′(kt)kt ,

implies that of the altruistic agent,

lim
t→∞ γ

t u′(c�t )x
�
t .

But the converse is not necessarily true.

5.1.4 When are Bequests Positive?

From the preceding analysis, it results that private intergenerational transfers
are able, under the conditions detailed in proposition 5.4, to neutralize pub-
lic intergenerational transfers (debt, pensions), and Ricardian equivalence
holds (Barro (1974)). In that case, overlapping generations models have sim-
ilar properties to models with infinite-lived agents. On the other hand, if the
optimal bequests are zero at all dates, the model with altruistic agents leads to
the same decisions as in the overlapping generations model without altruism.

Proposition 5.4 requires positive bequests. An interesting question is to
study the conditions under which it will indeed be optimal for the old
households of all generations to leave bequests to their children. Weil (1987)
and Abel (1987) have shown under particular assumptions that bequests are
operative in the long run if the intensity of altruism γ is strong enough;8 we
illustrate this result in the example below.

7 In the model with altruistic agents who live one period only, there is no individual saving and
the whole wealth of the economy is transmitted through bequests.

8 Their result is extended by Thibault (2000).
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Another important issue is related to the role of public debt,which increases
the wealth of old households to the detriment of the young households when
taxes aremainly levied on the young generation. InGevers and Michel (1998),
bequests can be positive in the economy with debt although they are zero in
the same economy without debt. In this section, we investigate the effect of
public debt on the positivity of bequests in an example.

Example: Taking again the example of section 2.4.1, we know that with a log-
arithmic utility and a Cobb–Douglas production function, the optimal allocation
is given by

ct = 1 − αγ
1 + β/γ Ak

α
t ,

dt = β(1+ n)
γ

1− αγ
1 + β/γ Ak

α
t ,

kt+1 = αγ

1 + n Ak
α
t

in the absence of government intervention (gt = 0, bt = 0, τ 1t = τ 2t = 0). The pri-
vate transfer that implements the optimal allocation is

(1 + n)xt = (1 + n)kt f ′(kt)− dt
= (1 + n)αAkαt − dt = (1+ n)

(
α − β(1 − αγ )

γ + β
)
Akαt .

This transfer is positive if and only if the altruism factor is large enough, i.e.,

γ >
β(1− α)
α(1+ β) .

In this case the inter-temporal equilibrium with altruistic households coincides
with the optimal planner’s solution, as all the conditions of proposition 5.4 are
met. On the contrary, when the altruism factor is low,

γ <
β(1− α)
α(1+ β) ,

the positivity constraint on bequests binds, and equilibrium prices and quanti-
ties with altruistic households are the same as in the inter-temporal equilibrium
with selfish households (chapter 1). Indeed, when bequests are nil, each house-
hold consumes its life-cycle income. Nevertheless, the total utilities enjoyed by
households are different.
Consider now a constant public debt b, detained by the first old households

and financed by a lump-sum tax on the young households:

τ 1t = [ f ′(kt ) − (1 + n)]b and τ 2t = 0.
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The private transfer that allows one to implement the optimal allocation is now

(1+ n)xt = (1+ n)(kt + b) f ′(kt) − dt
= (1+ n)αAkα−1

t

[
b+

(
1− β(1 − αγ )

α(γ + β)
)
kt

]
.

This relationship allows us to derive a condition on debt such that bequests are
positive at time t :

xt > 0 ⇔ b >
(
β(1− αγ )
α(γ + β) − 1

)
kt .

Given the optimal kt , there always exists a level of debt leading to positive pri-
vate transfers, xt > 0 for all t .
At the steady state where the modified golden rule holds, we have

γαAkα−1
γ = 1+ n,

and the condition x > 0 in the long run becomes

b >
(
β(1− αγ )
α(γ + β) − 1

)(
γαA
1 + n

) 1
1−α
.

When the degree of altruism is too low to generate positive bequests in the
economy without debt, i.e., γ < β(1− α)/α(1+ β), the right-hand side is posi-
tive; with a sufficiently high level of public debt, bequests become positive,
and the equilibrium with altruistic households coincides with the optimal plan-
ner’s allocation. The explanation is the following. In the absence of policy, the
old households would like to make negative transfers to their children, but
they cannot. When the government makes such transfers through public debt,
and even more, then the private transfers that partly compensate the pub-
lic transfers are positive. This example illustrates the difference between the
model with altruistic households and the one with infinite-lived consumers. The
infinite-lived consumer can make transfers in either direction, and debt is always
neutral.

In theaboveexample,wehavederived simple conditionsunderwhichbequests
are positive and the competitive inter-temporal equilibrium coincides with the
planner’s allocation. In more general models such analytical conditions are
only valid for steady state equilibria. Non-steady-state cases can be tackled
using numerical methods. In particular, the positivity constraint on bequests
may bind temporarily along the dynamic adjustment. If it binds at least once,
the equivalence result does not hold and policies are no longer neutral. We
illustrate this in the following numerical example.
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A Numerical Example. Let the economy start from a steady state situation
with

u(c) = ln c, f (k) = 2Ak
1 + k,

and the numerical values of sectionA.5.3, i.e.β = 0.3,n = 1.02530 − 1, A= 20,
g = 6. The government finances its spending with τ 1 = 3.762, b = 0.03, τ 2 = 5.
Households are altruistic with γ = β = 0.3. The steady state displays positive
bequests and is given by

c = 7.18, d = 15.056, k= 1.392, x = 0.377.

Assume now that agents forecast at time t = 1 that government spending will
temporarily rise to g = 6.6 at t = 3. We consider the optimal allocation and
two different financing scenarios.

In table 5.1, we first present the optimal path of capital. Capital should rise
before the shock in order to share the burden of the shock with the first gener-
ation and to increase production possibilities for t = 3. At t = 3 government
spending rises and investment falls, implying that capital at t = 4 is reduced.
The optimal capital then returns to its steady state value.

In thefirst scenario, thewholeburdenof additional spending is supportedby
the young generation at t = 3 through an increase in τ 1. In this case, bequests
remain positive over all the dynamic adjustment, and the allocation is the
optimal one. Bequests even rise at the time of the shock to compensate the
over-taxed young generation.

In the second scenario, the old households living in t = 3 are taxedmore. τ 2

is adjusted to finance additional spending. These agents are no longerwilling to
leave a positive bequest to their offspring. They would even like to implement
a negative bequest, but it is impossible. As a consequence, xt = 0 at t = 3. The
allocation thus differs from the optimal one, but in the long run altruism is
operative and capital converges to the modified golden rule.

We finally consider whether the government can finance its additional
spending by issuing new debt, without changing taxes. We shall see that

Table 5.1. Neutrality of Policy

Scenario 1 Scenario 2

xt kt xt kt
Time
t

Optimal
kt

1 1.3922 0.3798 1.3922 0.3808 1.3922
2 1.3950 0.3927 1.3950 0.4010 1.3963
3 1.4199 0.5226 1.4199 0.0000 1.4339
4 1.3720 0.4669 1.3720 0.3918 1.3886
5 1.3852 0.4080 1.3852 0.3817 1.3909

+∞ 1.3922 0.3765 1.3922 0.3765 1.3922
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Table 5.2. Dynamics with Ponzi Debt

t xt kt bt γ t u′(ct)xt

1 0.3798 1.3922 0.0300 0.0159
2 0.3927 1.3950 0.0300 0.0049
3 0.5226 1.4199 0.0297 0.0020
4 2.4788 1.3720 0.3130 0.0028
5 7.1673 1.3852 0.9914 0.0024

+∞ +∞ 1.3922 +∞ 0.0023

this strategy is incompatible with the existence of equilibrium because the
transversality condition on the households bequests would be violated. Since
the debt bt = Bt−1/Nt increases at t = 4 and taxes remain constant, the ad-
ditional interest payments are financed by issuing more debt. Since f ′(kt) is
larger than 1 + n, debt follows an exploding path after t = 3. The implicit inter-
generational transfer performed by the increasing public debt is compensated,
period after period, by rising bequests. The parents who detain the public debt
give to their children the resources to make them able to buy this debt. With
constant tax policies, equation (5.31) leads to

bt+1 = f ′(kt)
1 + n bt + δ for t ≥ 4

with δ = g − τ 1 − τ 2/(1 + n). In the long run government debt grows at rate
f ′(kγ )/(1+ n) = 1/γ. Using equation (5.32), xt grows at the same rate and
tends to infinity. The term γ t xt does not converge to zero, and the transversality
condition is violated.

To illustrate the problem we have computed in table 5.2 a path using the
first-order conditions. The table shows the exploding path of debt and bequests
after time 4 and gives the value of the term γ t u′(ct)xt . This termdecreases from
t = 1 to t = 3 and would have gone to zero if there were no shock at t = 3.

We conclude from this example that the neutrality property of debt does
not allow one to run Ponzi debts. The transversality condition of the altruistic
household should hold for the inter-temporal equilibrium to exist.

5.2 human capital and education

In a growing economy, each generation normally has more resources at its
command on reaching adulthood. These additional resources result on the one
hand from the increase in productivity linked to the accumulation of physical
capital by the previous generation. On the other hand, they result from the
accumulation of human capital as children inherit knowledge and skills from
their parents and enhance their bequeathed abilities by training and educa-
tion. The theory of human capital initiated by Becker (1964) studies how the
allocation of education time or resources affects the future productivity of the
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workers through their skill level. In this context, education is an important fac-
tor of economic growth, and the inter-generational knowledge spillovers are
essential to economic development. This view is consistent with the large frac-
tion of growth attributed to improvements in the quality of labor services (see
Denison (1974), Goldin (1994), and Nehru, Swanson, and Dubey (1995)).

The importance of human capital for growth was stressed byUzawa (1965),
Lucas (1988), and Azariadis and Drazen (1990). In particular, they show that
the crucial element for explaining permanent endogenous development is the
presence of a positive externality that makes individual-specific human capi-
tal increasing in aggregate human capital and/or in the human capital of the
previous generation.

5.2.1 Modeling Education

There are twomain sources of human capital accumulation: learning-by-doing
and education. In this section, we are exclusively interested in education, as
education and its financing are crucially related to inter-generational matters.

Education usually takes place at the beginning of the life cycle. The over-
lapping generations model allows us to capture this explicitly. The simplest
way to model it is to assume three-period-lived households. The first period is
devoted to education, the second to active life, and the last to retirement. It is
convenient to assume that there is neither work nor explicit consumption in
the first period (the consumptionof the children is included in the consumption
of the parents).

Education allows people to accumulate human capital through three dif-
ferent channels. These channels are affected by decisions taken during the
first period of life. First there is a decision on individual education spending in
terms of goods. The financing of this spending can be achieved either through
parental funding or through the market. In this latter case, children borrow
to finance education spending. Second, there is a decision on the length of
education; to capture this aspect one should assume a tradeoff between edu-
cation and leisure (and/or earnings) during the first period of life. Third, public
spending on education can be financed by levying taxes on the preceding gen-
erations.

Human capital also depends on external effects.On the onehand, the young
individual inherits partof thehumancapital of theparents.This reflects cultural
transmission within the family. On the other hand, the capital accumulation of
an agent also hinges on other agents’ stock (through for instance the quality
of their teachers), or on the aggregate level of the stock, therefore allowing
for cross-individual spillover.

It is generally assumed that human capital is homogeneous, and ismeasured
by the quantity of labor in efficiency units. In this case, the human capital of
period t is by definition the sum of the workers’ human capital.9

9 For a more elaborate way to aggregate human capital, see Benabou (1996).
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Finally, a model with education is an appropriate place to introduce het-
erogeneous agents, assuming that individuals can have different family back-
grounds andhencedifferent levels of human capital. This typeof heterogeneity
is often used in the literature (e.g., Benabou (1996), Glomm and Ravikumar
(1992), andde la Croix and Monfort (2000)) to study the interplay between in-
equality and growth and the role of education finance. Tomodel heterogeneity
in a simple way, we assume that each generation consists of a continuum of
households. Children within a generation are differentiated by the stock of
human capital of their parents. As in the literature on the subject, we assume
a constant population: n = 0.10

At time 0, each household i of the initial adult generation is endowed with
human capital hi,0 > 0.11 Human capital of adults is distributed according to a
probability distribution function %0(·).

The initial distribution is given, and the subsequent distributions will evolve
over time at equilibrium. The average human capital is

h̄t =
∫
ht d%t(ht).

Normalizing the total population to 1, h̄t is also the supply of efficient labor.
In the sequel, we shall use the following distribution:

Definition 5.1 (Log distribution)
The log distribution of human capital is the distribution of the logarithm of
human capital, associated to %t :

�t = ln ht , �t(�t) = %t(exp �t).

Then, the average human capital is given by

h̄t =
∫

exp �t d�t(�t). (5.36)

The production of goods at time t with physical capital Kt and human capital
input Ht is given by ϒt = F(Kt ,Ht). Defining the capital–efficient-labor ratio

κt = Kt
Ht
,

the production function in intensive form is f (κt) = F(κt , 1). The wage per

10 Tomodel population growth, we can assume a continuumof families of the same size, assume
that each family has Nt members born at t , and that Nt grows at a rate n over time. This
introduces an additional level of aggregation, the family. Such an approach can be interesting
for modeling the dynamics of population when families have different numbers of children,
as illustrated in de la Croix and Doepke (2001).

11 To avoid trivial poverty traps for certain households, we exclude the case of zero initial
human capital.
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efficiency unit is given by

wt = F ′
H(Kt ,Ht) = ω(κt).

Thus, the wage income of an individual with human capital ht is wtht .
An important aspect of human capital accumulation is its inter-generational

transmission. Several authors have measured the inter-generational cor-
relation of income. Dearden, Machin, and Reed (1997) for Britain, and
Solon (1992) for the United States, conclude that the father–son correlation
in income is at least 0.4, which is large given that the intergenerational trans-
mission of human capital is affected by many external factors such as ability
shocks, etc. This portrays a society where social mobility is relativity small. In
the models we shall present, this aspect is reflected in that the human capital
of a household born in t + 1 depends on the human capital of his parent.

In the first sections, we study the frameworks where education is costly
in terms of goods, and analyze how growth and inequality are affected by
the type of education funding. Another opportunity cost of education can
be thought of in terms of loss of working time. This is especially true at the
margin: longer study can entail a shorter working life. This tradeoff is modeled
by Azariadis and Drazen (1990). This leads to a more complicated model in
that labor supply is nowmade endogenous.12 We shall propose a simple version
of Azariadis and Drazen (1990) in the last section.

5.2.2 Parental Funding: Private vs Public Education

In this section, we include capital accumulation in a modified version of the
model of Glomm and Ravikumar (1992) (without child leisure but with phys-
ical capital). We then compare the equilibrium arising when parents directly
finance their children’s education with the equilibrium where parents vote
for taxes that finance education. We are mostly interested in comparing the
growth rates in the two regimes as well as the evolution of inequalities. In-
equalities are measured by the variance of the distribution of human capital
across households, which amounts to measuring the variance of labor income.

The only difference between two households lies in their human capital
stock and hence in their income. The utility function of one household is
logarithmic:

ln ct + β lndt+1 + γ ln et .
It depends on consumption when adult (ct), on consumption when old (dt+1),
and on the total amount spent on children’s education (et). This last element
reflects the ad hoc altruism factor, which is referred in the literature as joy

12 As when one introduces endogenous labor supply in the standard overlapping genera-
tions model (Reichlin (1986), Nourry (2001), and Cazzavillan and Pintus (2001)), such an
approach leads to two-dimensional dynamics with one forward-looking variable.
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of giving (or “warm glove”), because parents have a taste for giving (see e.g.,
Andreoni (1989)). More precisely, the utility obtained from leaving a bequest
or making a gift depends only on the size of the bequest or the gift. The
parameter γ > 0 is the ad hoc altruism factor.13

The production function for human capital is

ht+1 = ψeθt h
1−θ
t , 0 < θ < 1, ψ > 0. (5.37)

ψ is a productivity parameter. The stockof human capital is assumed todepend
oneducation spending et .Moreover, it also dependsonparents’ human capital.
This introduces the intergenerational externalitymentionedabove.TheCobb–
Douglas formulation is chosen for simplicity.14

Two versions of the model are considered. In the private funding case,
the parents decide directly over et , the amount of resource they give to their
own children. In the public funding case, all children receive the same amount,
which is collected by levying a proportional tax τt onwage income.We consider
the two cases in turn.

Private Funding. When young, the representative household benefits from
education spending and builds his human capital stock; his consumption is in-
cluded in his parents’ consumption. The adults supply inelastically ht units of
human capital and earnwtht . This income is allocated to consumption, educa-
tion spending et , and savings st for future consumption.When old, households
spend all their saving and accrued interest on consumption. We implicitly as-
sume that children are not allowed to borrow on capital markets to complete
the amount given by the parents. As a consequence, parental education fund-
ing rests only on family resources. The problem of the household is thus to
maximize utility subject to

wtht = ct + st + et ,
dt+1 = Rt+1st .

The first-order conditions for this problem are

st = β

1+ β + γ wtht , (5.38)

et = γ

1+ β + γ wtht . (5.39)

13 Abel and Warshawsky (1988) havederived an estimationof the joy-of-giving parameter con-
sistentwithagivendegreeof rational altruism.Theyusea calibratedmodelwherehouseholds
live for 60 periods and 30 periods elapse between the births of successive generations.

14 More generally, other functions with constant returns to scale can be considered. With such
functions, there are aggregate constant returns with respect to reproductible factors, which
are conditions for sustained endogenous growth.
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Replacing et by its optimal value from (5.39) in the production function of
human capital (5.37), we obtain the following relation:

ht+1 = Gwθt ht (5.40)

with

G = ψ

(
γ

1+ β + γ
)θ
.

Equation (5.40) shows that the growth factor of the human capital depends on
a constant G and on the wage per efficiency unit, wt . We can already see here
that the human capital of every individual will grow at the same rate. We also
directly obtain the growth rate of average human capital h̄t as

h̄t+1

h̄t
= Gwθt . (5.41)

Equation (5.40) is linear in the logarithm of human capital, �t = ln ht :

�t+1 = �t + ln
(Gwθt )

With the log distribution of human capital,

�t(�) = %t(exp �),

the dynamics of this distribution (see appendix A.6.1) is given by

�t+1(�) = �t
(
�− ln

(Gwθt )). (5.42)

As in the preceding chapters, the equilibrium on the labor market,

Ht = h̄t ,

and the distribution of profits to the owners of capital imply that the prices
should be equal to marginal productivities:

wt = ω(κt) = f (κt)− κt f ′(κt) and Rt = f ′(κt),

where κt = Kt/h̄t .
The capital of the next period is built from the savings of the adults:

Kt+1 =
∫
st d%t(h) ≡ s̄ t ,

which implies, using the savings function (5.38),

Kt+1 = κt+1 h̄t+1 = β

1 + β + γ wt h̄t . (5.43)

An inter-temporal equilibrium can now be defined as follows:
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Definition 5.2 (Inter-temporal equilibrium – private funding of education)
Given the initial distribution of wealth s−1 over old households, the initial cap-
ital stock K0 = s̄−1 and the initial log distribution �0 of human capital, an
inter-temporal equilibrium with private funding is a sequence of prices {wt ,Rt },
aggregate variables {Kt+1, h̄t+1, κt+1}, and distributions of human capital, sav-
ings, and education spending such that:

� prices {wt ,Rt } verify wt = ω(κt), Rt = f ′(κt) with κt = Kt/h̄t ;
� the capital market clears, i.e., equation (5.43) holds;
� the log distribution of human capital �t follows (5.42), and h̄t is given by
(5.36);

� the distributionof savings and education spending result from thedistribution
of human capital through the individual decisions (5.38) and (5.39).

The distribution of the individual consumptions also results from the distribu-
tion of human capital.

Dynamics ofAggregateVariables. To further characterize the equilibrium, one
might substitute for h̄t+1 in (5.43) its value from (5.41). Using the equilibrium
value of wt , we obtain the following dynamic equation in κ :

κt+1 = β

(1 + β + γ )Gω(κt)
1−θ .

Under the assumption H2, the dynamics in κ are monotonic and bounded,
thus converging to a steady state κ∞. The wage per unit of human capital, wt ,
converges to w∞ = ω(κ∞), and the growth rate of human capital converges to

lim
t→∞

h̄t+1

h̄t
= Gwθ∞.

In the particular case of a Cobb–Douglas production function, the steady
state κ∞ is unique and does not depend on κ0. Then, the initial human capital
distribution does not affect the long-run growth rate.15 More generally, the
steady state κ∞ only depends on κ0 = K0/h̄0.

Dynamics of Distributions. As far as inequalities are concerned, the mean
µt and the variance σ 2t of the log distribution of human capital follow (see
appendix A.6.1)

µt+1 = µt + lnG + θ lnwt ,
σ 2t+1 = σ 2t = σ 20 .

We deduce that the distribution of the logarithm of human capital keeps the
same standard error over time. There is however no limiting distribution,

15 On the effect of of the initial distribution of human capital see also Galor and Zeira (1993).
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because households have an ever growing income when Gwθ∞ > 1. In this
context it makes sense to explore the possibility of a limiting distribution for
the transformed variable

ĥt = ht
h̄t
.

The individual transition function is given by ĥt+1 = ĥt ,which implies that the
transformed distribution remains constant over time and the limiting distribu-
tion is the distribution of ĥ0.

More can be said when the initial distribution is a log-normal distribution as
inGlomm and Ravikumar (1992), i.e., the log distribution�0 is normal. In this
case, the distribution�t remains normal for all t . Moreover, the link between
then mean µt of �t and average human capital h̄t is given by (see appendix
A.6.2)

ln h̄t = µt + σ 2t

2
= µt + σ 20

2
.

To conclude, we have seen that when the resources devoted to the education of
a given child only rely on the child’s family income, there are no convergence
forces at work; inequalities as measured by the variance of the logarithm of
income remain constant over time.

Let us now turn our attention to the public way of financing education.

Public Funding. Under the public system, a government levies taxes on a
nationwide basis anduses revenues to finance education spending.All children
receive the same amount, which is collected by levying a proportional tax τt
on wage income:

et = ēt = τtwt h̄t . (5.44)

Households first vote for a tax rate, then choose how much to save. We solve
their problem backward. The savings that maximize utility for a given level of
taxes and net income (1 − τt)wtht are given by

st = β

1 + β (1− τt)wtht . (5.45)

The preferred tax rate of the adult household is obtained by maximizing the
indirect utility function

ln (wtht − st − ēt) + β (lnRt+1st) + γ ln ēt ,
knowing how much he will save (5.45), and how much he will receive for
education (5.44). After substitution this amounts to maximizing

(1+ β) ln(1 − τt)+ γ ln τt ,
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which yields

τt = τ = γ

1+ β + γ . (5.46)

The chosen tax rate is constant over time and the same for all individuals. It
can be checked that with this tax rate, the savings function is the same as in
the model with private funding and thus equation (5.43) holds.

The tax rate is determined by means of majority voting. As the resulting
tax rate does not depend on the type of household, this can alternatively be
seen as unanimity voting. For simplicity we assume that only those who are
affected by the tax, i.e., the households that work, will vote. The tax rate (5.46)
will emerge from this voting process.

Each household thus benefits from the following amount of public educa-
tion:

ēt = γ

1 + β + γ wt h̄t . (5.47)

Substituting this expression in equation (5.37), individual human capital will
accumulate according to

ht+1 = Gwθt h̄θt h1−θt , (5.48)

or, in logarithms,

�t+1 = (1− θ)�t + ln
(Gwθt h̄θt ).

Hence, the evolution of the log distribution functions is defined by

�t+1(�) = �t

(
�− ln

(Gwθt h̄θt )
1− θ

)
, (5.49)

which is less simple than in the previous case, as the average of theht intervenes
in the expression.

An inter-temporal equilibrium can now be defined as follows:

Definition 5.3 (Inter-temporal equilibrium – public funding of education)
Given the initial wealth distribution s−1, the initial capital stock K0 = s̄−1, and
the initial log distribution of human capital �0, an inter-temporal equilibrium
with public funding is a sequence of prices {wt ,Rt }, aggregate variables {Kt+1,

h̄t+1, κt+1, τt , ēt }, and distributions of human capital and savings such that
� prices {wt ,Rt } verify wt = ω(κt), Rt = f ′(κt) with κt = Kt/h̄t ;
� the capital market clears, i.e., equation (5.43) holds;
� taxes are determined by (5.46), and education spending by (5.47);
� the log distribution of human capital follows (5.49), and h̄t is given by (5.36);
� the distribution of savings results from the distribution of human capital
through the individual decision (5.45).
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Some simple results can however be derived from (5.48).16 The mean µt and
variance σ 2t of the log distribution of human capital follow

µt+1 = (1− θ)µt + ln
(Gwθt h̄θt ), (5.50)

σ 2t+1 = (1− θ)2σ 2t . (5.51)

Thus, the variance goes to zero, and inequalities tend to disappear. One might
derive additional results in two special cases: when the support of the initial
distribution is a closed and bounded interval, and when the initial distribution
is log-normal.

Compact Support. When the support of the initial distribution is a compact
interval, we look at the distribution of the transformed variable ĥt = ht/h̄t ,
and obtain the following result.

Proposition 5.5 (Reduction of inequalities with public funding)
Consider an inter-temporal equilibrium with public funding. Assume that the
initial distribution of human capital %0 has a compact support [a0,b0], 0 < a0 <
b0. Then the support of the distribution of the relative human capital ĥt collapses
to the single point {1}.

Proof: By induction, using equation (5.48), the support of %t is a compact
interval [at ,bt ], and we have

bt+1

at+1
=
(
bt
at

)1−θ
.

This is obtained by applying (5.48) to at and bt , then taking their ratio. As a
consequence, the ratio bt/at converges to 1. The support of the distribution of
ĥt , [at/h̄t ,bt/h̄t ], is included in [

at
bt
,
bt
at

]
,

since at ≤ h̄t ≤ bt . This interval collapses to a single point.

From the previous proposition, the limit of the support of the distribution of
the ĥt collapses to a single point. To study the dynamics of aggregate variables,
we consider the ratio

ht+1

h̄t
= Gwθt ĥ

1−θ
t .

16 A complete characterization of the dynamics of the distributions of human capital in
the general case would require the use of techniques developed, a.o., by Futia (1982) and
Hopenhayn and Prescott (1992). Moreover there is a special difficulty linked to the fact that
human capital may grow unboundedly.
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This ratio belongs to the interval

Gwθt
[(
at
bt

)1−θ
,

(
bt
at

)1−θ]
.

Theaggregate growth rate h̄t+1/h̄t belongs to the same interval.Moreprecisely,

h̄t+1

h̄t
= λ̄tGwθt ,

where λ̄t is the mean of ĥ
1−θ
t . The dynamics of κt given in (5.43) verify

κt+1 = β

(1+ β + γ )G
1
λ̄t
ω(κt)1−θ .

Since λ̄t belongs to an interval which collapses to {1}, κt has a limit κ∞ and wt
goes to w∞. Hence,

lim
t→+∞

h̄t+1

h̄t
= Gwθ∞.

In the case where the steady state κ∞ is unique, it is the same as in the model
with private funding, and the long-term growth rates are identical in the two
funding systems.

We conclude that the public funding system has the virtue of reducing the
inequalities (there is no other sources of convergence in the model). This is
because it redistributes resources through taxation, allowing the less educated
families to catch up. Moreover, in this version of the model, public schooling
does not introduce any distortion or external effect, and the long-run growth
rate under the public system converges to that of the private system in the case
of a unique steady state.

Log-Normal Distribution. The above result has been derived in the case of a
compact support of the initial distribution. If the support of the initial distribu-
tion is an infinite interval, we can still characterize the dynamics of inequalities
if the initial distribution %0(h) is log-normal (or the log distribution�0 is nor-
mal). In this case, the distribution will remain log-normal over time. However,
the variance of the underlying normal distribution will decrease (equation
(5.51)). To describe the evolution of h̄t we use equations (5.50)–(5.51) and
ln h̄t = µt + σ 2t /2, which implies after some manipulations that

ln h̄t+1 = lnG + θ lnwt + ln h̄t − (1− θ)θ
2

σ 2t . (5.52)

Comparing with equation (5.41), there are two differences from the private
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system. First, the wt are different (but converge to the same w∞ when the
steady state is unique). Second, there is an additional term in the public system
which involves the variance of the distribution. This last term reduces the
growth rate of the average the human capital in the public system but tends to
disappear in the long run.

The intuition for the variance effect is as follows. Given the way human
capital accumulates (5.37), it would bemore efficient to devotemore resources
to the more skilled households, since the productivity of education spending
depends on the family background. Hence, the public system entails a loss of
efficiency, which is more important if the variance is high.

To compare the two systems with respect to capital and wages, we assume
a Cobb–Douglas production function: f (κt) = Aκαt . Taking logarithms, we
replace ln h̄t+1 in equation (5.43) by its value from (5.52) and find that

ln κt+1 = ln
(

β

(1+ β + γ )G [(1 − α)A]1−θ
)

+ α(1− θ) ln κt + θ(1− θ)
2

σ 2t .

Starting fromthe same initial condition inboth systems, this implies thatκt (and
thuswt) is higher in the public system than in the private one. This higher wage
increases the growth rate underlying (5.41) and may or may not compensate
the negative effect of the variance.

To further investigate the growth differential between the two systems, we
define the variables� ln xt = ln xt(public)− ln xt(private), and we denote the
variance of the log distribution in the public system by ς . To compare both
systems we should solve

� ln κt+1 = α(1− θ)� ln κt + θ(1− θ)
2

ς2t ,

� ln
h̄t+1

h̄t
= θα � ln κt − θ(1− θ)

2
ς2t ,

ς2t+1 = (1− θ)2ς2t
with �κ0 = 0 and ς20 = 4 given. The parameters that affects this system are
θ , α, and the initial condition ς20 . We set α = 0.3. In table 5.3, we present the
evolutionof the difference between the two systems for twovalues of θ . In both
cases, the capital stock is higher in the public system, as predicted. Moreover,
when θ is large, the family background does not matter much in education;
the variance decreases quickly, implying that its negative effect on growth in
the public system does not last long. Hence in the first case, the public system
grows slower in the beginning – the variance effect dominates – and faster
after 4 periods. When θ is small, the variance decreases slowly, and the public
system always grows at a slower pace than the private one.
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Table 5.3. Difference between Public and Private Systems

θ = 0.5 θ = 0.25

t � ln κt ς 2t � ln h̄t+1
h̄t

� ln κt ς 2t � ln h̄t+1
h̄t

0 0.0000 4.0000 0.0000 4.0000
1 0.5000 1.0000 −0.5000 0.3750 2.2500 −0.3750
2 0.2000 0.2500 −0.0500 0.2953 1.2656 −0.1828
3 0.0613 0.0625 −0.0013 0.1851 0.7119 −0.0965
4 0.0170 0.0156 0.0014 0.1084 0.4005 −0.0529
5 0.0045 0.0039 0.0006 0.0619 0.2253 −0.0294
6 0.0012 0.0010 0.0002 0.0351 0.1267 −0.0165

Extensions. Theabove framework canbeextended in several directions.Afirst
possibility, à la Becker and Lewis (1973), consists in introducing an additional
determinant of human capital accumulation: the effort made by the parents
to educate their children. Denote this effort by lt . Equation (5.37) should be
modified to incorporate this factor. For example,

ht+1 = ψ lt eθt h
1−θ
t .

Of course this effort has a cost either in terms of disutility17 or in terms of
opportunity cost. If it is the time spent rearing the children, it then reduces the
time spent at work and modifies the first-period budget constraint:

wtht(1− lt) = ct + st + et .
In this case, the growth differential between the two financing systems is al-
tered. Indeed, the time spent with the children is not taxed. Hence, in the
presence of taxes, the parents will choose to work less and to remain with
their children longer, which will in turn increase the pace of human capital
accumulation. Economic growth will tend to be higher in the public regime
than in the private one (see Wigniolle (1994)).

Another determinant of human capital accumulation is the effort made by
the children, denoted λt . In this case, followed by Glomm and Ravikumar
(1992), equation (5.37) becomes

ht+1 = ψ λt−1 eθt h
1−θ
t ,

and one should add a term in ln(1 − λt−1) to the utility function:

ln ct + β lndt+1 + γ ln et + χ ln(1− λt−1).

This leads to an individual optimization problemwith three decisions, (λt−1, st ,
et). Compared to the previous approach, we now find the inverse result: The

17 If lt is an effort, it should enter the utility function of the parents negatively.
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public system introduces a distortion in the choice of effort made by the chil-
dren that will hamper growth. Indeed, in the private regime, the children take
into account that more effort when young – and hence more resources when
adult – will allow them to increase the quality of education for their children,
et . In the public regime, they view their individual contribution to the qual-
ity of public education through taxes as negligible. This is a typical case of
fiscal externality. Economic growth will thus tend to be higher in the private
regime.

A further extension is to assume that the individual capital accumulation
also hinges on an aggregate human capital index or on some other individ-
uals’ stock or average, therefore allowing for cross-individual spillover. For
example,

ht+1 = ψeθt h
χ(1−θ)
t h̄(1−χ)(1−θ)t ,

or

ht+1 = ψeθt (ht + ζ h̄t)1−θ .
This effect introduces convergence forces into the model. In the second for-
mulation, the importance of the spillover in the human capital accumulation
process is parametrized by ζ < 1, which captures the fact that the transmis-
sion of knowledge from one individual to the other is affected by distance
and other factors. Such a framework can be used to study regional spillovers
as in de la Croix and Monfort (2000), or to build international growth models
where cross-border spillovers are affected by integration.18

Finally, there may be a link between public education, which requires a
transfer from the parents to the children, andpay-as-you-go pensions, inducing
a transfer in the other direction. Indeed, when parents retire, the labor income
of their children, which has been built thanks to taxes they paid, is taxed in turn
to finance their own social security benefits. Kaganovich and Zilcha (1999)
study the interaction of these two potential outlays of public revenues. Their
conclusions depends greatly on the values of the parameters and in particular
on the ad hoc altruism factor.

5.2.3 Market Funding

Under the market funding system,19 households finance their education by
borrowing on the capital market and do not rely on public resources. We
therefore assume that individuals have perfect access to capitalmarket and can
use their human capital as collateral to finance their education spending. One

18 This idea is developed by Rivera-Batiz and Romer (1991a) and (1991b) in a model with
research and development. See also Michel and Vidal (2000).

19 This version of the model is an adaptation of Michel (1993).
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important difference from the preceding system is that education spending no
longer rests on gift motives but on the return to human capital.

Onemay thus adopt the standard utility function of chapter 1. The life cycle
of each household is the same as in the previous section except concerning ed-
ucation spending:Whenyoungat t − 1, the representativehouseholdbuilds his
human capital stock; it borrows et−1 from the capitalmarket. The adults supply
inelastically ht units of human capital and earn wtht , where wt is the wage per
unit of human capital and ht is the level of human capital of the household. This
income is allocated to purchasing consumption goods, reimbursing the debt
Rtet−1, and saving st for future consumption. When old, households spend all
their saving and accrued interest on consumption. The two budget constraints
are thus

wtht = ct + st +Rtet−1,

dt+1 = Rt+1st .

Human capital accumulates as in equation (5.37):

ht = ψeθt−1h
1−θ
t−1 . (5.53)

Agents chose education spending and savings, subject to the budget
constraints.20

The optimal choice of savings obeys the same rule as in section 1.3.3, where
the first period income is now

�t = wtht −Rtet−1.

We accordingly obtain a saving function

st = s(�t ,Rt+1), (5.54)

which is the same for all individuals, since they all have the same preferences.
The first-order condition for et−1 leads to

et−1 =
(
ψθ
wt
Rt

) 1
1−θ
ht−1. (5.55)

Hence, education spending increases the wage rate. The interest factor has a
negative effect on education spending, as it is part of the cost of education.

Equations (5.55) and (5.53) allow to study the dynamics of the distribution
of human capital. Substituting et−1 from (5.55) in (5.53), we obtain

ht = ψ

(
ψθ
wt
Rt

) θ
1−θ
ht−1 and �t = (1− θ)wtht .

20 Since there is no disutility of education in the utility function, the problem can be solved in
two steps: et−1 can be obtained by maximizing the life-cycle income wtψeθt−1h

1−θ
t−1 −Rtet−1.

Given this choice, savings maximize utility.
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The evolution of the log distribution follows for t ≥ 1:

�t(�) = �t−1

{
�− ln

[
ψ

(
ψθ
wt
Rt

) θ
1−θ
]}
. (5.56)

The set of initial data includes the distributions of initial wealth s−1 and of
the debt of the first adults e−1, the log distribution �0, and the initial stock of
capital, which verifies K0 + ē−1 = s̄−1. The first adults choose s0 = s(�0,R1)
with �0 = w0h0 −R0e−1. The first old consume d0 = R0s−1.

Firms use the same production function as in the preceding section. The
stock of capital per unit of human capital is κt = Kt/Ht , and prices are equal
to marginal productivities: wt = ω(κt) and Rt = f ′(κt).

The equilibrium on the financial market should take into account spending
on education. This is the most specific feature of this model: physical and
human capital compete to be funded. Savings are thus allocated to investment
in physical capital and in human capital:

Kt+1 + ēt = s̄ t ,
where ēt and s̄ t are the means of et and st in the population normalized to 1.
This gives, with Ht = h̄t ,

κt+1 h̄t+1 + ēt = s̄ t . (5.57)

An inter-temporal equilibrium can now be defined as follows:

Definition 5.4 (Inter-temporal equilibrium – market funding of education)
Given the set of initial data, an inter-temporal equilibrium with market funding
is a sequence of prices {wt ,Rt }, aggregate variables {Kt+1, h̄t+1, κt+1τt+1, s̄ t , ēt },
and distributions of human capital, savings, and education spending such that:

� prices {wt ,Rt } verify wt = ω(κt) and Rt = f ′(κt) with κt = Kt/ h̄t ;
� the capital market clears, i.e., equation (5.57) holds;
� the log distribution of human capital follows (5.56), and h̄t is given by (5.36);
� the distributionof savings and education spending result from thedistribution
of human capital through the individual decisions (5.54) and (5.55) with
�t = (1− θ)wtht for t ≥ 1, and�0 = w0h0 −R0e−1. The variables s̄t and ēt
are the means of these distributions.

The dynamics of the moments of the log distribution of human capital follow

µt+1 = µt + ln

[
ψ

(
ψθ
wt+1

Rt+1

) θ
1−θ
]
,

σ 2t+1 = σ 2t .

We thus have the same properties as in the model with parental funding: the
distribution of ln ht keeps the same standard error over time, since the constant
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term is common to all households. Hence, the market funding system does not
reduce inequalities, as measured by this standard error. The key to this result
is that, although households have different human capital, they will invest at
the same rate:

et−1

ht−1
=
(
ψθ
wt
Rt

) 1
1−θ
.

To study the aggregate dynamics we use the deflated variable êt−1, which
verifies

êt−1
et−1

ht−1
=
(
ψθ

ω(κt)
f ′(κt)

) 1
1−θ

≡ E(κt),

giving a static relationship between êt−1 and κt . This implies

ht+1 = ψE(κt+1)θht ,

h̄t+1 = ψE(κt+1)θ h̄t .

The total stock of capital can be expressed as

Kt+1 = κt+1 h̄t+1 = κt+1ψE(κt+1)θ h̄t .

Assuming that preferences are homothetic, savings are proportional to income
(see section1.8.4).Thepropensity to save, ζ (Rt+1), onlydependson the interest
factor. Aggregate savings are given by

s̄ t = ζ ( f ′(κt+1))(1− θ)ω(κt)h̄t .
Using ēt = E(κt+1)h̄t , the equilibrium (5.57) is given by

κt+1 E(κt+1)θ + E(κt+1) = ζ ( f ′(κt+1))(1− θ)ω(κt). (5.58)

The dynamics of κt are autonomous: they are defined by equation (5.58) which
is a deterministic non-linear difference equation of the first order. The solution
to this equation determines the dynamics of the distribution (5.56), and of the
growth factor ψE(κt+1)θ of human capital.

Example: With a logarithmic utility function and a Cobb–Douglas production
function, we have

ω(κt) = A(1− α)καt ,

E(κt+1) =
(
ψθ

1− α
α

κt+1

) 1
1−θ

≡ Bκ
1

1−θ
t+1 ,

ζ ( f ′(κt+1)) = β

1 + β .
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The capital market equilibrium (5.58) can be simplified and leads to

(Bθ + B)κ
1

1−θ
t+1 = β

1 + β (1− θ)(1− α)Aκαt ,

or

κt+1 = M κ
α(1−θ)
t ,

where M is a positive constant. These dynamics converge to a steady state,
which is globally stable.

Extensions. Since Auerbach and Kotlikoff’s (1987) seminal book, several ex-
amples of computable overlapping generations model with exogenous growth
can be found in the literature. These models extend the initial model by
incorporating several features such as trade openness, multi-sectoral pro-
duction, generational accounting, and life uncertainty. Few of them en-
dogenize the formation of human capital and the rate of productivity
growth. Docquier and Michel (1999) provide a simulation exercise on the
basis of a simple model with three periods of life and market funding.
Fougère and Mérette (1999) use a similar growth specification, but allow for
education investment in each period of life and do not take into account the
huge government intervention in education financing.One of the biggest prob-
lems arising with numerical endogenous growth models is the choice of a
human capital technology specification and the calibration of its parameters.
Though there is a large consensus on the production function of consumption
and investment goods, there is no real evidence on the choice of the production
function of human capital. In general the simulation results are too sensitive to
the various calibrations of the production function of human capital, and the
growth effect of policy changes are unrealistically strong. This issue in tackled
in Hendricks (1999) and Bouzahzah, de la Croix, and Docquier (2001).

Concerning individual decisions on human capital, it has been argued
that education is a typical long-run investment project whose risky nature
is widely accepted and incorporated in the literature on human capital (see
e.g., Schultz (1961)). Different innate abilities to take advantage of education,
length of life, the effects of family background are some of the identified
sources of uncertainty characterizing the returns to educational investment,
and hence future labor earnings. This can be modeled by adding a random
term εt to the human capital accumulation, for example,

ht+1 = ψeθt h
1−θ
t εt .

In this context, Rillaers (2000) studies how unemployment benefits may affect
investment in education on behalf of risk averse individuals.

Another interesting extension is to introduce government education spend-
ing and study the interplaybetweenpublic andprivate spending.Michel (1993)
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andde la Croix (2001) assume that public spending is financed througha lump-
sum tax bearing on the adult generation and that it affects the production of
human capital in the following way:

ht+1 = ψeθt φ(gt),

or, for an endogenous growth version,

ht+1 = ψeθt g
λ
t h

1−θ−λ
t .

In this last version, the ratio of public spending on education to human capital,
ĝ, is crucial to determining the dynamic properties. When ĝ (and hence taxes)
increases, the households will lower their private spending on education, since
their disposable income has been reduced. The total effect on growth includes
two components:21 the favorable one is the efficiency gain in the accumulation
of human capital, and the negative one is linked to the reduction in savings
caused by taxation. There is a growth-maximizing level of public spending.
After this point, increasing public spending reduces growth, as the tax effect
dominates the efficiency effect on the accumulation of human capital.

5.2.4 The Tradeoff between Studying and Working

If accumulating human capital needs time, each individual has to allocate
his time endowment between working and producing human capital. This
problem was first studied by Ben-Porath (1967) in a partial equilibrium setup.
Beginning his life cycle, an individual has to choose how long he will accumu-
late human capital before entering the labor market. By studying early in his
life, he maximizes the time during which this investment will be productive.
Azariadis and Drazen (1990) have formulated this problem in an overlapping
generationsmodelwhere households live twoperiods. In the first period of life,
they devote their time to both activities, producing human capital and work-
ing. In the second period, they benefit from the human capital accumulated
when young and work.

We present here a simplified version of Azariadis and Drazen (1990) in-
spired by d’Autume and Michel (1994). Again, each generation consists of a
continuum of households, with unit mass. Each individual lives for two peri-
ods, say adulthood and old age. Each adult inherits a fraction δ of the parents’
human capital. A share of time λt is spent to build up human capital, and
1− λt to work. The first-period income is allocated between consumption and
savings:

(1 − λt)wtδht = ct + st , (5.59)

21 Compare Barro (1990), in which public spending affects the production function of goods
directly.
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where wt is the wage per unit of human capital and ht the human capital of
the old generation at time t . When old, the human capital depends on the time
spent on education when adult:

ht+1 = ψ(λt)δht . (5.60)

The function ψ is assumed increasing and concave and satisfies

lim
λ→0

ψ ′(λ) = +∞.

This ensures that it is always optimal to spend a strictly positive time span to
built human capital.

When old, the household consumes both labor earnings and capital income:

dt+1 = Rt+1st + wt+1ht+1. (5.61)

From equations (5.59), (5.60), and (5.61), the life-cycle income is proportional
to the inherited human capital δht :

�t = δht

(
(1 − λt)wt + wt+1

Rt+1
ψ(λt)

)
.

As λt does not enter the utility function, we can solve the problem in two
separate steps, and the optimal length of schooling will not depend on the
shape of the utility function. The optimal length of schooling maximizes the
life-cycle income, which yields

ψ ′(λt) = wt Rt+1

wt+1
. (5.62)

This equation represents the tradeoff between studying and working. The
benefit of a marginal increase in the schooling periods is more income in
the second period: ψ ′(λt)wt+1/Rt+1. The cost is less income today, wt . This
relationship implies that the length of schooling depends positively on the
discounted future wage (the benefit from education) and negatively on the
current wage (the opportunity cost). We also see that the time devoted to
schooling does not depend on the inherited human capital, and will thus be
the same for everyone.22

Equation (5.62) implies thus that all households of a given period t choose
the same fraction λt . λt depends only on prices: λt = ψ−1(wtRt+1/wt+1). There
is therefore no reduction in inequalities:

ht+1 = δψ(λt)ht ,

and

h̄t+1 = δψ(λt)h̄t .

22 Atequilibriumλt is necessarily smaller thanone. Itwouldotherwise implynegative aggregate
savings and capital.
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The initial log distribution of human capital �0 is given. The evolution of the
log distribution follows

�t+1(�) = �t (�− ln [δψ(λt)]) . (5.63)

As in the private and market funding cases, the distribution of ĥt = ht/h̄t
remains constant over time.

We use equation (5.62) to compute life-cycle income:

�t = (1− λt)wtδht + wt+1

Rt+1
ψ(λt)δht =

(
1 − λt + ψ(λt)

ψ ′(λt)

)
wtδht .

As it is proportional to ht , one could write the model with a homothetic utility
function. In this case, using the results of section 3.1.1 (in particular equation
(3.3)), one gets

st = s̃((1 − λt)δhtwt , δwt+1ψ(λt)ht ,Rt+1);

with homothetic utility this would be linear in ht . Assuming for simplicity that
the life-cycle utility is log-linear, we have

Ut = ln ct + β lndt+1.

The consumption choice is obtained by maximizing the life-cycle utility under
the constraint

ct + dt
Rt+1

= �t .

We obtain

ct = 1
1 + β�t , (5.64)

and

st = (1− λt)wtδht − ct . (5.65)

From equations (5.64) and (5.65), savings are given by

st = 1
1 + β

(
β(1− λt)− ψ(λt)

ψ ′(λt)

)
wtδht . (5.66)

We assume a Cobb–Douglas technology for firms, which leads to wt =
(1− α)Aκαt and Rt = αAκα−1

t , with κt = Kt/Ht .
The supply of labor from the old individuals is h̄t . The supply from the

young ones is (1 − λt)δ h̄t . The equilibrium on the labor market requires

Ht = [1+ (1− λt)δ]h̄t .
Equation (5.66) defines a linear relation between savings and human capital
for each household; we aggregate them and obtain the equilibrium on the
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capital market:

Kt+1 = s̄ t = 1
1+ β

(
β(1− λt)− ψ(λt)

ψ ′(λt)

)
wtδ h̄t . (5.67)

Given an initial stock of capital K0 and an initial log distribution of human
capital over the first old generation �0(·), an inter-temporal equilibrium is,
in this example, a sequence of prices {wt ,Rt } verifying wt = (1− α)Aκαt , and
Rt = αAκα−1

t , aggregate variables {Kt+1, h̄t+1, κt+1} and distributions of hu-
man capital�t which determines the distribution of other individual variables
{st , λt }. These sequences are such that each household chooses savings st and
schooling according to (5.62) and (5.66). The human capital accumulates ac-
cording to equation (5.60), and its distribution follows (5.63). The clearing
condition (5.67) on the capital market holds.

We describe the dynamics of the economy in terms of κ and λ. Aggregate
human capital is given by

Ht+1 = [1+ (1− λt+1)δ]h̄t+1 = [1+ (1− λt+1)δ]δψ(λt) h̄t ,

which, after replacing the equilibrium wage by its value, allows us to rewrite
equation (5.67) as

κt+1[1+ (1− λt+1)δ]ψ(λt) = 1
1 + β

(
β(1− λt) − ψ(λt)

ψ ′(λt)

)
A(1− α)καt .

(5.68)

Here the labor supply is endogenous. As λt verifies

ψ ′(λt) = wt Rt+1

wt+1
= αAκαt

κt+1
, (5.69)

the dynamics have two dimensions; substituting λt and λt+1 from (5.69) in
(5.68) leads to a second-order difference equation in κ . Since there is only one
initial condition, κ0, there is one pre-determined variable and one forward-
looking variable. However, thanks to the assumptions we havemade on utility
and production functions, the dynamic system can be solved recursively and
the dynamics can be studied in a simple way. Indeed, replacing κt+1 from (5.69)
in (5.68) leads to

1− λt+1 = 1 − α
δα(1+ β)β(1− λt)ψ

′(λt)
ψ(λt)

− 1
δ

− 1 − α
δα(1+ β) , (5.70)

which can be rewritten as

xt+1 = B1xt
ψ ′(1− xt)
ψ(1 − xt) − B2 ≡ φ(xt),

with xt = 1 − λt and B1, B2 > 0.
When xt increases from 0 to 1, φ(xt) goes from−B2 to+∞ and there exists

a steady state between 0 and 1 (see figure 5.1). This steady state is unique,
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Figure 5.1. The forward-looking dynamics in Azariadis and Drazen (1990).

because φ(x) is monotonical increasing in x:

φ′(x) = B1

[
ψ ′(1 − x)
ψ(1− x) − xψ ′′(1 − x)

ψ(1− x) + x
(
ψ ′(1− x)
ψ(1 − x)

)2]
> 0.

Moreover, the steady state x� is unstable, because φ′(x�) is larger than one:

φ′(x�) > B1
ψ ′(1− x�)
ψ(1− x�) = 1 + B2

x�
> 1.

This implies that the forward-looking variable λt has to jump to its steady
state value λ� = 1 − x� at the initial date. Otherwise, the trajectory implied
by the unstable monotonic dynamics would lead λt outside the interval (0, 1).
The perfect foresight dynamics are thus characterized by λt = λ� for all t . The
dynamics of the capital/labor ratio will then follow, from (5.69),

κt+1 = wt Rt+1

wt+1
= αAκαt
ψ ′(λ�)

.

The dynamics of κ converge to a steady state κ� which is globally stable. The
dynamics of the human capital stocks follow

ht+1 = δψ(λ�)ht ,

and its log distribution follows

�t+1(�) = �t(�− ln[δψ(λ�)]).

Hence, the growth rate is constant and depends on the parameters α, β, δ and
on the function ψ(·).
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Extension: Threshold Externalities and Poverty Traps. In their model with ho-
mogeneous households, Azariadis and Drazen (1990) assume a positive ex-
ternality from the total human capital of the society on the function ψ . With
heterogeneous households, we can assume that the average human capital
affects learning positively:

ht+1 = ξ(λt , h̄t)ht .

In this case, the equality between the individual specific λ’s is preserved. λt ,
the same for all households, verifies

ξ ′
λ(λt , h̄t) = wt Rt+1

wt+1
.

To keep things simple, assume ξ(λt , h̄t) = ψ(λt)η(h̄t) with η(·) increasing and
bounded. Then theψ(·) andψ ′(·) of the previousmodel aremultiplied by η(·),
and their ratio is unchanged. Equation (5.70) remains valid, and we obtain the
same constant value λt = λ� as a perfect foresight equilibrium. However, the
dynamics of human capital are altered. We have

ht+1 = δψ(λ�)η(h̄t)ht ,

and

h̄t+1 = δψ(λ�)η(h̄t)h̄t .

If there exists a threshold h̃ such that δψ(λ�)η(h̃) = 1, the economy will be
caught in a poverty trap if h̄0 < h̃, since the sequence (h̄t)t≥0 is decreasing
and converges to 0 (see figure 5.2). On the contrary, if h̄0 > h̃, the sequence
(h̄t)t≥0 is increasing and tends toward infinity. The growth factor in the long
run equals δψ(λ�)η(+∞), which is finite. Knowing the dynamics of h̄t , we can

...

...

...

...

...

...

...

..

h̄t 1

h̄th̃

�

Figure 5.2. The threshold of Azariadis and Drazen (1990).
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deduce those for κ :

κt+1 = α

ψ ′(λ�)η(h̄t)
Aκαt .

Since η(h̄t) converges towards a limit – η(0), η(h̃), or η(+∞) depending on
whether h̄0 is smaller than, equal to, or larger than h̃ – the sequence (κt)t≥0
converges to the corresponding limit.

5.3 inter-generational externalities

Parents’ influence on children is not limited to resource transfers (section
5.1) or human capital spillovers (section 5.2). Becker (1992) notices that “The
habits acquired as a child or young adult generally continue to influence behav-
ior even when the environment changes radically. For instance, Indian adults
whomigrate to theUnited States often eat the same type of cuisine they had in
India, and continue towear the same type of clothing.[. . .] Childhood-acquired
habits then continue, even though these would not have developed if the envi-
ronment when growing up had been the same as the environment faced as an
adult.[. . .]” A comprehensive survey of evidence of vertical transmission (i.e.,
from parents to children), including the fear of insects but also career aspira-
tions, is provided in Boyd and Richerson (1985). These vertical transmission
mechanisms are modeled in different strands of literature. All of them lead
to the conclusion that intergenerational taste externalities are particularly im-
portant for thinking about long-term evolution processes like growth.

The involuntary transmission of tastes from one generation to the next
has, as far as we know, rarely been formalized in economics.23 Besides its
inter-generational aspect, the idea of bequeathed tastes reflects the effect
of past decisions on the perception of current outcomes. In the context of
consumption, this clearly refers to the models of habit formation initiated by
Duesenberry (1949) and developed afterwards by many others. The empirical
studies in this literature have always been developed in the framework of
infinite-lived agents. They often find strong support in favor of time non-
separable preferences (for a recent study see de la Croix and Urbain (1998)).
Moreover, there is convincing experimental support for supposing a ha-
bituation mechanism by which the most salient events are progressively
absorbed into the new baseline against which further events are judged
(see Brickman, Coates, and Janoff-Belman (1978)). Finally, as studied by
de la Croix (1998), one empirical implication of the habit formation models is
that reported satisfaction levels do not necessarily increase over time in line
with economic development. This is consistent with the empirical evidence

23 Two exceptions are Jones (1984) and Bisin and Verdier (2000). Jones (1984) analyses tradi-
tions of behaviorwithin aworkplace.He analyzes amodel inwhich “it is through conformism
between neighboring generations that we generate traditions passed down from one gener-
ation to the next.”
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provided by Easterlin (1995). The fact that “an Indian will, on average, be
twice aswell off as his grandfather” (Lucas (1988)) does notmean that his satis-
faction level has increased, as standard-of-living norms will have risen too.

As this view is relatively non-standard, we need to expand more on the
foundations of the idea of inherited tastes in neighboring disciplines.

The inter-generational spillover can take the form of what social scientists
call social capital. Following Coleman (1990), physical capital is wholly tangi-
ble, being embodied in equipment; human capital is embodied in the individ-
uals through skills and knowledge; social capital is embodied in the relations
among persons. The family relationships are important vectors of social cap-
ital allowing for inter-generational spillovers. Chapter 22 of Coleman (1990)
analyzes how different family structures generate social capital and how the
decline in the role of the family in recent decades can be important for the
social capital of the next generations. In Coleman (1990), social capital can
be seen as a vector of growth; he does not investigate situations in which some
sort of social capital can hamper the growth process.

The most comprehensive analysis of inter-generational spillovers can
be found in the work of Cavalli-Sforza and Feldman (1981) and Boyd and
Richerson (1985). After having assessed the importance of social learning
within the family, Boyd and Richerson (1985) build different models in which
the distribution of beliefs, attitudes, and values in a population is transmitted
andmodified. In Cavalli-Sforza and Feldman (1981), the vertical transmission
of culture is measured using the Stanford survey of beliefs and values. Verti-
cal transmission appears clearly important concerning dietary habits, religious
habits, sports participation, and political interest. The authors next study the
interaction between the inheritance of culture and the environment. Their
socio-biological approach is not that far from the economic approach, in which
the role of the natural selection is played by market forces.

5.3.1 Inter-generational Taste Externalities in the Competitive Economy

Let us consider how an inter-generational taste externality modifies some of
the results of chapters 1 and 2. For simplicity, we assume here constant popu-
lation (n = 0).

The Utility Function. Inter-generational taste externalities can be modeled in
the following way. The utility v of consumption in the first period of life is
modified and depends on a stock variable at , which is interpreted as family
social capital.24

24 One can also introduce in theutility function the services fromanother stock variable in order
tomodel cultural goods. Family capital and cultural goods differ fromordinary durable goods
because there is no second-hand market for them (see Champarnaud and Michel (2000)).
Another stock variable in the utility function that can be responsible for externalities is
environmental quality, as in Jouvet, Michel, and Vidal (2000).
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We thus have v(ct , at), and we may distinguish two cases depending on the
sign of the inter-generational spillover.

When v′
a > 0, the consumption of the parents has a positive influence on the

utility of their children. This is the case for instance when the children learn
an “art of living” with their parents; this stock of cultural knowledge presents
some durability and still exerts a positive influence when the children become
adults. The effect of a on the consumption behavior of the new adult depends
on v′′

ca . If v
′′
ca < 0, the marginal utility, i.e., the desire to consume, is reduced

by the stock of cultural knowledge; when for instance the households have
learned how to draw amaximum satisfaction fromwhat they consume, and we
say that they are repleted. If v′′

ca > 0, the desire for consumption is increasing
in the parents’ consumption and we say that there is addiction.

When v′
a < 0, which is the case studied in this section, parents’ consumption

has a negative influence on children’s utility. As in the psychological models
of the “goal-achievement gap,” the instantaneous satisfaction depends on the
gap between the actual consumption and the aspirations, i.e., the consump-
tion of the previous generation. If v′′

ca < 0, the aspiration effect generates
distaste. If v′′

ca > 0 the aspirations serve as a benchmark consumption level
determining a goal to reach for the new generation. They induce a desire for
catching up, pushing the new generation to consume more than what their
parents did. The utility function used in de la Croix (1996) and (2001) and
in de la Croix and Michel (2001) and (1999) displays this catching-up effect.
They use the following utility of a representative individual:

v(ct , at)+ u(dt+1).

Aspirations at are linked to the consumption of the parents when adults:

at = ct−1. (5.71)

We assume that the depreciation rate of aspirations (i.e. forgetting) is high,
so that they no longer affect the evaluation of consumption when old. This
simplifying assumption proxies the idea that aspirations are less important for
older persons.25

Moreover, we should assume

v′
c > 0, v′

a < 0, v′′
cc < 0, v′′

aa < 0, and v′′
ca > 0.

The assumption vca > 0 amounts to postulating that a rise in aspirations in-
creases themarginal utilityof (i.e., thedesire for) consumption.Wealsoassume

25 This is supported by the empirical observation that reported satisfaction increases from the
age of 30 onwards. On the basis of their empirical study on job satisfaction, Clark, Oswald,
and Warr (1996) conclude that “the rise in job satisfaction at these ages could come from
reduced aspirations, due to a recognition that there are few alternative jobs available once a
worker’s career is established [. . .]. Alternatively, aspirations themselves could remain the
same, but older workers might put less weight on such comparisons [. . .].”
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that v is strictly concave:

v′′
ccv

′′
aa − (v′′

ca)
2
> 0.

The Competitive Equilibrium. The model is a simple extension of the one in
chapter 1. Each generation lives three periods. The young generation has no
decision to take and only inherits life standard aspirations at from its parents.
The adult generation sells one unit of labor inelastically at some real wage wt ,
consumes the quantity ct , and saves st for next period consumption by holding
capital. The old generation spends all its savings from the previous period
and consumes dt+1. The maximization program of the individual is to choose
{ct ,dt+1} in order to

max v(ct , at) + u(dt+1)

subject to ct = wt − st , dt+1 = Rt+1st , prices, and at given. This problem is the
same as in chapter 1 except that marginal utility is conditional on a parameter
at . The first-order condition

v′
c(ct , at) = Rt+1u′(dt+1) (5.72)

allows us to define a saving function of the form

st = s(wt ,Rt+1, at). (5.73)

Its partial derivative with respect to at is

s ′a = v′′
ca

v′′
cc +R2

t+1u
′′ < 0.

The effect of rising aspirations is to reduce savings, because it increases the
desire for consumption when young.

As in the model of chapter 1, The competitive behavior of firms and the
equalization between realized and distributed profits lead to the equalization
of marginal productivities to marginal costs: Rt = f ′(kt) and wt = f (kt)−
kt f ′(kt) = ω(kt), where kt = Kt/Lt . At equilibrium Lt = N.

The equilibrium condition in the capital market implies

kt+1 = st .
Using (5.73) and at+1 = ct = wt − st , the competitive equilibrium is character-
ized by a sequence (kt , at)t≥0, which satisfies

kt+1 = s(ω(kt), f ′(kt+1), at),

at+1 = ω(kt) − s(ω(kt), f ′(kt+1), at).
(5.74)

Wethus conclude that thedynamics is ofdimension two.Bothvariables arepre-
determined, as there are two initial conditions, the initial capital stock k0 and
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the initial aspiration level a0 = c−1. We now study an example of competitive
dynamics with Cobb–Douglas production and logarithmic utility.

Example: The inter-temporal utility of the typical adult has a specific functional
form:

ln(ct − θat )+ β ln(dt+1).

θ ∈ ]0, 1[ measures the intensity of the effect of the inter-generational spillover.
Assuming an interior solution, the decision problem of the household has a
unique solution characterized by the following saving function:

st = β

1 + β (wt − θat ).

Savings do not depend on the interest rate, and aspirations affect savings neg-
atively. When aspirations are low, the adult generation has a sober lifestyle and
savings are high. When aspirations are high compared to wage income, adults
spend much on consumption to maintain a life standard similar to that of their
parents, and their propensity to save is low.
Production is through a Cobb–Douglas constant-returns-to-scale technol-

ogy: f (kt ) = Akαt . The competitive behavior of firms leads to Rt = α kα−1
t , and

wt = (1− α)kαt . The dynamics (5.74) are

kt+1 = β

1+ β
[
(1− α)Akαt − θat

]
,

at+1 = 1
1+ β (1 − α)Akαt + β

1+ β θat .

There is a unique non-trivial steady state (k, a):

k =
(
β(1− α)(1− θ)A
(1+ β(1− θ))

) 1
1−α
,

a = k
β(1− θ) .

It can be checked that ∂k/∂θ < 0, implying that the stationary capital stock per
head is lower in the economy with bequeathed tastes than in the standard Dia-
mond economy. This is essentially due to the fact that aspirations affect savings
negatively.26

26 This result holds even if aspirations are not completely forgotten after one period, provided
that their effect is stronger on the adults than on the old.
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We linearize the dynamic system around the steady state (k, a). This leads
to

[
at+1 − a
kt+1 − k

]
=




βθ

1 + β
α(1+ β(1− θ))
β(1 + β)(1− θ)

−βθ
1 + β

α(1+ β(1− θ))
(1+ β)(1− θ)



[
at − a
kt − k

]
.

The determinant D of the Jacobian matrix of the linearization of the dynamic
system is

D= αθ [1+ β(1− θ)]
(1+ β)(1− θ) .

Its trace T is

T = α[1+ β(1 − θ)] + βθ(1− θ)
(1+ β)(1− θ) .

Let θ̂ be the root smaller than one of D= 1:

θ̂ = (1+ β)(1+ α)−√(1+ β)2(1 + α)2 − 4αβ(1+ β)
2αβ

.

Non-hyperbolicity may arise only if there is at least one eigenvalue equal to 1
(case a), or if there is at least one eigenvalue equal to −1 (case b), or if the
two eigenvalues are complex conjugates with modulus 1 (case c). A neces-
sary condition for case a is that D= T + 1. This would happen if β = −(1 +
α)/[1+ θ + α(1 − θ)] < 0, which is excluded given the domain of these param-
eters. A necessary condition for case b is that −D= T + 1. This would happen
if β = [1+ α − θ(1 − α)]/[(1+ α)(θ2 − 1)] < 0, which is also excluded given the
domain of the parameters. Case c arises if D= 1 and T ∈ [−2, 2], which is true
only if θ = θ̂ (notice that cases in which θ = θ̂ , D= 1, and T > 2 arise only when
some parameters take their values outside their domains). As the determinant
D (which equals the product of the eigenvalues) is increasing in θ , the steady
state is stable (unstable) when θ < θ̂ (θ > θ̂ ).
This result establishes that for all possible values of the parameters in their

admissible domain, there is only one value θ̂ of θ in which the fixed point is a
non-hyperbolic equilibrium, i.e., in which at least one of the eigenvalues of the
Jacobian matrix of the linearized system has unit modulus. In that case, the
linear approximation cannot be used to determine stability. In all other cases,
the proposition establishes that if θ is smaller (greater) than θ̂ , the fixed point
is stable (unstable). If the effect of aspirations on utility is strong enough, the
steady state is unstable.
In addition to the result on stability, it is possible to define a domain for θ

inside which the dynamics of the system is characterized by oscillations. Indeed,
dynamics around (k, a) are oscillatory if θ ∈ ]θ, θ̂ [∪ ]θ̂ , θ̄ [, where θ and θ̄ are the
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real roots of the discriminant of the characteristic polynomial of the Jacobian
matrix. When θ ∈ (θ, θ̄), the corresponding eigenvalues are complex numbers,
leading to (local) oscillations around (k, a). For instance, with α = 0.3 and β =
0.3, we have θ̂ = 0.7856, θ = 0.1030, and θ̄ = 0.9189.

The spillover from one generation to the next has two components: (a) savings
finance the capital stock required to produce and to pay the wages of the next
generation; this process, which transforms income/savings of the old into in-
come for the young, displays decreasing returns; (b) past consumption levels of
the parents generate life standard aspirations for the young generation, lead-
ing them to spend more on consumption; this process is linear. At one point,
due to the decreasing returns in the production process, the inter-generation
spillover in terms of higher wages is not sufficient to cover the spillover in
terms of higher aspirations. This leads to a drop in savings to maintain the life
standard and induces a recession. When the subsequent impoverishment is
strong enough, aspirations have reverted to lower levels, allowing a rise in sav-
ings and the start of an expansion period. Depending on the relative strength
of the two effects, this process converges or not to the steady state.

5.3.2 The Optimal Allocation

This framework developed above introduces an externality that is not taken
into account by non-altruistic parents. This externality should be taken into
account by a benevolent planner. We thus consider a central planner who
chooses the allocation of output in order to maximize the present discounted
value of current and future generations. Assuming that the central planner’s
discount factor is γ , the social welfare function takes the following form (as in
chapter 2, equation (2.8)):

∞∑
t=0

γ t+1
(
v(ct , at)+ 1

γ
u(dt)

)
.

The resource constraint of the economy has the usual form:

f (kt) = ct + dt + kt+1,

and at+1 = ct holds. The control variables are (ct ,dt)t≥0, and the state variables
are (kt , at)t≥0. The initial conditions are a0 and k0. We substitute at = ct−1

and dt = f (kt) − kt+1 − ct in the objective. The first-order conditions for a
maximum are

v′
c(ct , at) + γ v′

a(ct+1, at+1) = 1
γ
u′(dt),

1
γ
u′(dt) = u′(dt+1) f ′(kt+1).

The first equation is a condition for the optimal allocation of consumption



Further Issues 287

between the adult and the old generation, which are alive at the same time.
Themarginal utility of consumption of adults, corrected to internalize the taste
externality, is equalized to themarginal utility of consumption of the old. Note
that, due to the presence of the taste externality and contrary to the model of
chapter 1, this planner’s first-order condition does not respect the first-order
condition the individual chooses for himself in a market economy (equation
(5.72)). The second equation is the usual condition describing the optimal
intertemporal allocation.

The marginal conditions characterizing the dynamics of the optimal econ-
omy are described by the following system of four first-order non-linear dif-
ference equations:

γ v′
a(ct+1, ct) = 1

γ
u′(dt) − v′

c(ct , at),

u′(dt+1) f ′(kt+1) = 1
γ
u′(dt),

at+1 = ct ,
kt+1 = f (kt)− dt − ct ,

(5.75)

in which at and kt are predetermined, and ct+1 and dt+1 are anticipated
variables

Study of the Steady State. A steady state {a, k, c,d} of this optimal economy is
defined by a = c, c + d = f (k)− k, and

f ′(k) = 1
γ
, (5.76)

v′
c(c, a) = 1

γ
u′(d) − γ v′

a(c, a), (5.77)

Equation (5.76) is the modified golden rule. Hence, the introduction of be-
queathed tastes does not modify the optimal steady state stock of capital,
which remains at the modified golden rule level kγ . Equation (5.77) shows
that the marginal utility of adults should be larger in the economy with in-
herited tastes than in the Diamond (1965) economy; this implies that they
consume less.

There is a particular difficulty coming from equation (5.77), in that the
existence and uniqueness of steady state consumption is not obvious. To find
a sufficient condition for the existence of a steady state, we substitute a = c
and d = f (k)− k− c in (5.77), and we obtain

0 = γ v′
a(c, c) + v′

c(c, c) − 1
γ
u′( f (kγ )− c − kγ ) ≡ φ(c).

Steady state consumption levels should satisfy φ(c) = 0. To derive a condition
under which there is at least one c such that φ(c) = 0, we look at the value of
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φ(·) at extreme values for c. We have

lim
d→0

u′(d) = +∞ ⇒ lim
c→ f (kγ )−kγ

φ(c) = −∞.

Since φ(c) is continuous on the interval (0, f (kγ )− kγ ), there exists at least
one c such that φ(c) = 0 if

lim
c→0

[γ v′
a(c, c)+ v′

c(c, c)] = lim
c→0

φ(c) > 0.

This equation states that the negative effect of habits does not offset the gain in
welfare linked to a rise in consumption,when c = 0. In particular, the existence
of the steady state is guaranteed as long as the world is not Veblenian: Veblen
believed that the welfare of a typical person primarily depends on his relative
income position. In that case, the value of a social capital causing envy exactly
offsets the value of own consumption. A rise in all incomes in a community by
the same percentage would not improve anyone’s welfare in Veblen’s world
(see Becker (1974), Veblen (1934)).

Let us consider the uniqueness of the steady state. A sufficient condition
for uniqueness is

φ′(c) = v′′
cc + (1+ γ )v′′

ca + γ v′′
aa + γ−1u′′ < 0.

This is always guaranteed, for instance, if

v′′
cc + (1+ γ )v′′

ca + γ v′′
aa ≤ 0. (5.78)

Notice that given the concavityofu(c, a), the condition (5.78) is always satisfied
for γ = 1. In the other cases, (5.78) imposes a restriction on v′′

ca conditionally
on γ , v′′

cc, and v
′′
aa :

v′′
ca ≤ |v′′

cc| + γ |v′′
aa|

1+ γ .

This condition is satisfied for every γ as long as v′′
ca ≤ |v′′

cc| and v′′
ca ≤ |v′′

aa|. If
not, there is a restriction on γ .

LocalDynamics. Assuming that the steady state exists and is unique, we inves-
tigate whether the optimal solution defined by (5.75) converges to the steady
state. Since there are two anticipated variables in the system, two (and only
two) eigenvalues of its linearization should have a modulus larger than one.
de la Croix and Michel (1999) show that under the condition (5.78), the sta-
tionary state is a saddle point. Moreover, the sign of the following function �
allows one to characterize the local dynamics:

� ≡
[
v′′
cc + γ v′′

aa + v′′
ca

(
1 + γ + γ 2u′

u′′ f
′′
)]2

+ 4γ v′′
cau

′ f ′′.

If� > 0, the four eigenvalues are real and the local dynamics are monotonic.
If� < 0, the eigenvalues are complex and the local dynamics display damped
oscillations.
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The condition � > 0 is always satisfied if e.g., v′′
ca = 0, which corresponds

to the case in which inherited tastes do not affect the marginal utility of con-
sumption when adult (the standard monotonicity result for optimal growth).
More surprisingly, the condition� > 0 is satisfied if u′′ or f ′′ is close enough to
zero, i.e., if u(·) and f (·) are not too concave. Indeed, a small u′′ implies a large
value of the squared term, and a small f ′′ implies a small value of the second –
negative – term. Notice also that, even when γ = 1 (i.e., the planner does not
discount the future at all), the condition� > 0 is not necessarily satisfied. This
implies that the optimal dynamics around the golden rule can be characterized
by damped oscillations.

5.3.3 Extensions

When households are altruistic, the parents will take into account the effect
of their own consumption on the bequeathed habits. Quoting Becker (1992)
again, “they would try to direct the evolution of children’s preferences toward
raising the utility of children. For example, parents may refrain from smoking
even when that gives them much pleasure because their smoking raises the
likelihood that the children will smoke. Or they may take children to church,
even when not religious, because they believe exposure to religion is good for
children. Indeed, many parents stop going after their children leave home.”
Hence, the optimal behavior of the parents is to promote self-restraint. Ap-
plying equation (5.4), the utility of an altruistic household adult in t is

Vt = v(ct , at) + u(dt+1) + βVt+1.

In de la Croix and Michel (2001), we have first analyzed in details the dy-
namics in two regimes, one with and the other without bequest. The regime
with (positive) bequest is similar to the analysis of the central planner. The
regime without bequest is new. In that case, the parents internalize the inter-
generational spillover and direct the evolution of children’s aspirations to-
wards raising their utility by restraining their own consumption standard, all
other things being equal. We have shown that, in that case, altruism always
enhances the accumulation of capital. In the case of over-accumulation, al-
truism can thus amplify the inefficiency related to the over-accumulation of
capital.

Concerning the stability of the equilibrium, inherited standard-of-living
aspirations can be responsible for damped oscillations in the regime with posi-
tive bequests and for damped or exploding oscillations in the regime with no
bequest. Altruism reduces the scope for instability in this last regime. Further-
more, in an example nesting the Barro (1974)–Weil (1987) model, we have
shown that bequests can be positive even if this is never the case in the Barro–
Weil economy. This is because parentswish to provide their childrenwithmore
resources to fulfill their inherited aspirations.

Another extension consists in analyzing the dynamics of growth when two
externalities are present: inherited human capital and inherited aspirations.
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As stressed in section 5.2, the crucial element for explaining sustained growth
is the presence of a positive externality that makes individual-specific human
capital increasing in the human capital of the previous generation. However,
as emphasized by Easterlin (1971), income growth from one generation to an-
other is a two-edged sword. His argument is that “in a steadily growing econ-
omy, successive generations are raised in increasingly affluent households and
hence develop successively higher living aspirations.” This “intergenerational
taste effect” is the negative externality studied above that makes the future
generations more and more demanding along the growth process. Extending
the model of section 5.2.3, de la Croix (1998) studies the equilibrium where
the maximization program of the individual is

max
ct ,st ,dt+1,et−1

v(ct , at)+ u(dt+1),

subject to

ct + st = wtht −Rtet−1,

dt+1 = Rt+1st ,

ht = φ(ht−1, et−1).

The state variables at and ht−1 responsible for the inter-generational exter-
nalities are given. The principal finding of is that the interaction of these
two externalities leads to more complex dynamics. This arises because higher
human capital of parents has two competing effects: It increases the incentive
to invest in education via the transmission of human capital on the one hand.
On the other hand, a high level of parents’ human capital, implying that their
consumption is high, lowers children’s propensity to save via the aspiration
effect. The dynamics that result depend on the relative strengths of these two
effects. In particular, there can be poverty traps: an economy with slightly
lower initial education or slightly higher aspirations than a critical surface will
stagnate, whilst one on the other side of the critical surface will grow.

The preceding model is used by Croissant and Jean-Pierre (2001) to study
the impact of international aid (transfers) on developing countries. Aid in-
creases current consumption and future aspirations, reduces savings, and thus
lowers the resources available to finance education spending. This negative
habit effect might counteract the direct positive effect on the resources of the
economy.

5.3.4 Conclusion

The standard approach to economics is to assume that agents maximize an
objective function with preferences that depend at any point in time on the
control variables chosen at that time (consumption, leisure). These prefer-
ences are, by definition, independent of past choices and others’ choices. This
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simplification is quite useful in addressing many economic issues, but it is fair
to recognize that a large number of choices depend very much on past actions
and inter-individual relationships. Accordingly, the standard micro-economic
approach to preferences has been extended to incorporate past experiences
and social forces into tastes in order to analyze issues like addiction, peer pres-
sure, and catching up. Our aim is to use these extended preferences to model
the making of standard-of-living aspirations in an inter-generational context
and their effect on macro-economic variables; we then analyze to what extent
thesemechanisms provide plausible explanations ofwhy growth is not a steady
process and how fluctuations in output and employment are propagated. We
show in particular that this assumption introduces a mechanism that can be
responsible for oscillations.

We conclude that themicroeconomic approach to extendedpreferences can
be fruitful in analyzingmacroeconomic issues like cycles and growth. Including
past consumption expenditure in the utility function is helpful in modeling the
desire to maintain or enhance an inherited standard of living. Many further
extensions are possible. In pursuing this line of research, one should however
keep in mind that when one puts things like status into the utility function,
one is in danger of losing the discipline standard economic modeling provides
(Postlewaite (1999)). A careful analysis of both the theoretical and the empiri-
cal foundations of themodeling choices is thus required to build parsimonious
macro-economic models with endogenous tastes.

5.4 macro-economics and general equilibrium

In his book, Farmer (1993) argues for the future of macro-economics as a
branch of general equilibrium theory.Hismain theme is thatmacro-economics
is best viewed as the study of equilibrium environments in which the welfare
theorems break down. This approach allows him to discuss the role of policy
in a context in which it may serve some purpose.

This book is clearly in line with that statement. However, the above claim
maycoverdifferent approaches to general equilibrium.Theassumptions about
the completeness of markets, the existence of goods given in nominal terms,
the time span considered, and the initial conditions are all interrelated in an
intricate way. We intend to provide here some clarifications of these issues.

There are two main streams in the formulation of the overlapping gen-
erations model. The first one is the one followed in this book. In this stream,
initiated byAllais (1947) andDiamond (1965), the inter-temporal equilibrium
is a sequence of temporary equilibria with perfect foresight on the return on
savings. The good produced in this period is the numeraire of the temporary
equilibrium of this period. The only way to transfer resources to the future is
to buy capital goods: Productive capital is the only support to savings.

The second one directly flows from the Walrasian general equilibrium
approach in Arrow and Débreu (1954) and Debreu (1959) and assumes the
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existence of markets for all goods. Extending their approach to a model with
an infinite number of periods, one assumes that there is a full set of futures
markets open before the economy starts to operate and that all exchanges
for future goods can be contracted. In this complete market approach, inter-
generational exchange needs no support; any good can be sold or purchased
betweenall agentswhich supply anddemand this good.27 In this general formu-
lation, onemay assume that time goes from−∞ to+∞. In the usual approach,
time goes from 0 to+∞ and all markets open at date 0. There is also an initial
stock of capital K0, and one then needs to specify the owners of this stock.

Our main conclusion will be that the model developed along the lines of
Diamond (1965) belongs to the general equilibrium family with an infinite
number of agents and goods. More precisely, it is the equilibrium in the the
Arrow–Debreu economy from 0 to +∞ where the initial stock of capital K0

belongs to the first old generation.28 For the economy from −∞ to +∞, there
is no initial condition, and even for a given level of capital at date 0, theArrow–
Debreu equilibrium is not determined. Imposing the meaningful assumption
ofDiamond that physical capital is theonly support for savings, the equilibrium
becomes determined.

We start by studying the structure of the economy with the Arrow–Debreu
full set of markets. We then define the sequence equilibrium from −∞ to +∞
and the Arrow–Debreu market equilibria from 0 to +∞. We then compare
the different approaches and end with an example.

5.4.1 Modeling Arrow–Debreu Market Equilibria

There are two types of agents, consumers and firms, and there is an infinite
sequence of periods going from−∞ to+∞. In this approach there is no initial
condition.An alternative approach consists in introducing a condition at t = 0,
which will be considered later.

In each period t , there are two goods, a physical good with price Pt , which
can be consumed or accumulated as capital, and labor with price Wt . Agents
behave competitively. At each date t , Nt consumers are born and live for two
periods.

As in the Arrow–Debreu approach, all agents are defined by their endow-
ment and preferences. Firms are defined by their production set. There is no
explicit property of firms as the firms do not make pure profit at equilibrium
(constant return to scale). There is an infinity of agents and markets.29

27 In the overlapping generations model where households have a finite lifetime, we should
assume that each agent has a representative which can intervene on his behalf on all markets.

28 The distribution of this initial capital among the members of the first old generation does
not matter; the important assumption bears on the inter-generational distribution of initial
capital.

29 For an extension of the Arrow–Debreu approach to an infinity of goods, see Bewley (1972).
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A consumer born at date t is endowedwith one unit of labor in period t . His
income consists in the nominal wageWt that he receives at t . He purchases ct
units of the good produced in period t at a price Pt , and dt+1 units of the good
produced in period t + 1 at a price Pt+1. Each young individual maximizes
(compare with (1.5))

u(ct) + βu(dt+1)

s.t. Wt ≥ Ptct + Pt+1 dt+1,

ct ≥ 0, dt+1 ≥ 0.

The decision of the household thus depends on the pricesWt , Pt , and Pt+1. In
principle, each household can buy any good produced in the economy (from
−∞ to +∞). However, only goods produced at t and t + 1 enter in the utility
function of the agent born in t .

The representative firm produces one good Yt with two inputs: Lt units of
labor andKt = It−1 units of goods produced in period t − 1, bought at the price
Pt−1: Yt = F(Kt , Lt). The function F is the standard neo-classical production
function. The firm maximizes its profit:

PtYt − Pt−1Kt −WtLt
s.t. Yt ≤ F(Kt , Lt),

Kt ≥ 0, Lt ≥ 0.

Hence, this firm intervenes in three markets: the physical good produced in
t − 1 (capital input), the labor of time t , and the physical good of time t (out-
put). Its production set is30

{(−Lt ,−It−1,Yt); Yt ≤ F(It−1, Lt), It−1 ≥ 0, Lt ≥ 0}.
Let (Pt ,Wt) be an infinite sequence of positive prices, t going from−∞ to+∞.
Under the hypothesis H1 on the utility function, the consumers’ maximization
problem leads to the following standard first-order conditions:

u′(ct) = λt Pt ,

βu′(dt+1) = λt Pt+1,

Wt = Ptct + Pt+1 dt+1,

where λt is the Lagrange multiplier of the budget constraint. The arbitrage
condition is thus

u′(ct) = Pt
Pt+1

βu′(dt+1),

30 Considering that investment and installed capital are different goods, we can equiva-
lently consider two types of firms with the following production sets: the investment
firm, whose production set is {(−It−1,Kt );Kt ≤ It−1,Kt ≥ 0}, and the producing firm with
{(−Lt ,−Kt ,Yt );Yt ≤ F(Kt , Lt ),Kt ≥ 0, Lt ≥ 0}.
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to be compared with equation (1.7) of chapter 1. The system of first-order
condition characterizes demand functions that are well defined in each period.
These functions,

ct = c(Wt , Pt , Pt+1), (5.79)

dt+1 = d(Wt , Pt , Pt+1), (5.80)

are homogeneous of degree 0 with respect to the prices. They are related to
the savings function of chapter 1 through

c(Wt , Pt , Pt+1) = Wt
Pt

− s
(
Wt
Pt
,
Pt
Pt+1

)
,

and

d(Wt , Pt , Pt+1) = Pt
Pt+1

s
(
Wt
Pt
,
Pt
Pt+1

)
.

Under the hypothesis H2 the firm produces a positive quantity of good if and
only if the marginal productivities are equal to the factor prices:

Pt F ′
L(Kt , Lt) = Wt , (5.81)

Pt F ′
K(Kt , Lt) = Pt−1, (5.82)

which imply zero profit by Euler’s theorem.

5.4.2 Arrow–Debreu Market Equilibria from −∞ to +∞
Definition 5.5 (Arrow–Debreu equilibrium)
An Arrow–Debreu equilibrium with positive production is a sequence of posi-
tive prices (Pt ,Wt) and of non-negative quantities (ct ,dt ,Kt , Lt), t going from
−∞ to +∞, such that for all t the following equations are satisfied:

Lt = Nt , (5.83)

F(Kt , Lt) = Ntct + Nt−1 dt + Kt+1, (5.84)

together with the individual equilibrium conditions (5.79), (5.80), (5.81), (5.82).

Equation (5.83) is the equilibrium condition on the labormarket, and equation
(5.84) is the equilibrium condition on the market of the physical good. These
two conditions applied to each period are necessary to define the equilibrium.
Indeed, Walras’s law cannot be used in this economy with an infinite number
of goods.
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Proposition 5.6 (Characterization of an Arrow–Debreu equilibrium)
AnArrow–Debreu equilibrium is characterized by a sequence of positive capital
stocks (Kt) which satisfy the following equation:

F(Kt , Nt) = Nt c̃(Kt ,Kt+1)+ Nt−1d̃(Kt−1,Kt)+ Kt+1, (5.85)

where

c̃(Kt ,Kt+1) = c(F ′
L(Kt , Nt), 1, F

′
K(Kt+1, Nt+1)−1),

d̃(Kt−1,Kt) = c(F ′
L(Kt−1, Nt−1), 1, F ′

K(Kt , Nt)
−1).

Proof: Equation (5.85) is obtained from (5.83) and (5.84) by using the homo-
geneity of the demand functions (5.79) and (5.80) and the values of the relative
prices given by (5.81) and (5.82). Conversely, if a sequence (Kt) satisfies (5.85)
for all t , then Lt = Nt , ct = c̃(·), and dt = d̃(·), and the relative prices satisfying
(5.81) and (5.82) determine a unique equilibrium. Only the normalization of
prices is not fixed.

Equation (5.85) is a second-order difference equation in Kt , and the value of
Kt in one date is generally not sufficient to determine the equilibrium.We illus-
trate this in an example (section 5.4.5). The comparisonwith the intertemporal
equilibrium approach of section 1.4 will help to interpret the result.

Before this comparison let us clarify inwhat sensedefinition5.5 corresponds
to anArrow–Debreu equilibrium.As in theArrow–Debreu system, the agents
are defined by the preferences and their endowment, and firms are defined by
their production set.All prices are such thatmarkets clear at all time.Although
there are infinite numbers of agents andmarkets, there are only a finite number
of agents announcing positive demand or supply on each market. To complete
the picture, one might suppose that all agents are represented with their sup-
ply and demand before the economy starts to operate and production takes
place.

5.4.3 Sequence Equilibrium from −∞ to +∞
In section 1.5, we have defined an inter-temporal equilibrium with perfect
foresight as a sequence of temporary equilibria where physical capital is the
support of savings:

Kt+1 = Ntst , (5.86)

with

st = s(F ′
L(Kt , Nt), F

′
K(Kt+1, Nt+1)). (5.87)
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This equilibrium is a sequence equilibrium, as it specifies restrictions on the
availability of markets at a sequence of dates (Radner (1972)). We define a
sequence equilibrium as follows:

Definition 5.6 (Sequence market equilibrium)
A sequence equilibrium is a path (ct ,dt , st ,Kt) with t going from −∞ to +∞
such that equations (5.86)–(5.87) hold for all t and the consumptions are defined
by

ct = F ′
L(Kt , Nt) − st and dt = F ′

K(Kt , Nt)st−1.

There is a clear difference between this sequence equilibrium and the Arrow–
Debreu general equilibrium. The first type is characterized by a first-order
difference equation:

Kt+1 = Nts(F ′
L(Kt , Nt), F

′
K(Kt+1, Nt+1)), (5.88)

and the second type is characterized by a second-order difference equation
(5.85). However, we can show that

Proposition 5.7 (Sequence equilibrium as a general equilibrium)
The sequence equilibrium (solution to (5.88)) is an Arrow–Debreu equilibrium
(solution to (5.85)) in the economy from −∞ to +∞.

Proof: By definition of the sequence equilibrium, the consumptions levels are
given by

ct = F ′
L(Kt , Nt)− s (F ′

L(Kt , Nt), F
′
K(Kt+1, Nt+1))

= c̃(Kt ,Kt+1),

dt = F ′
K(Kt , Nt)st−1

= d̃(Kt−1,Kt).

We deduce from equation (5.88) that

Ntct = Nt F ′
L(Kt , Nt) − Kt+1,

Nt−1 dt = F ′
K(Kt , Nt)Kt .

Hence, we have

Ntct + Nt−1 dt + Kt+1 = Kt F ′
K(Kt , Nt)+ Nt F ′

L(Kt , Nt) = F(Kt , Nt),

by theEuler theorem.With the expressions of ct = c̃(·) and dt = d̃(·) we obtain
equation (5.85) which characterized an Arrow–Debreu equilibrium.

Any equilibrium where physical capital is the sole support for savings is
an Arrow–Debreu equilibrium: it is indeed a particular case of a general
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equilibrium which satisfies the additional condition

Nt−1 d̃(Kt−1,Kt) = Kt F ′
K(Kt , Nt),

i.e., the equality between the consumption of the old agents and the income
of capital. This is also equivalent to the equality between the savings of the
young agents and the investment in the capital stock:

Kt+1 = Ntst = Nt
Wt
Pt

− Nt c̃(Kt ,Kt+1).

The sequence equilibrium, which is similar to themodel of chapter 1 but with t
going from−∞ to+∞, can thus be seen as a special case of anArrow–Debreu
market general equilibrium in which the unique possible support for savings is
the stock of physical capital. Without any restriction on the support of savings,
there is a wider set of general equilibria, as if there were other supports to
savings. This will be further analyzed in an example (section 5.4.5).

5.4.4 Arrow–Debreu Equilibria from 0 to +∞
We have so far assumed that time goes from −∞ to +∞, so that we do not
need any initial condition. When time goes from 0 to +∞, it is necessary
to specify the endowment of the agents in period 0. In the Diamond model,
the definition of the temporary equilibrium implies that the real capital stock
existing in period 0 belongs to the agents which are old in t = 0. In the Arrow–
Debreu approach, we are not obliged to make this assumption.

The firm in period 0 uses labor as the sole input and produces

Y0 = F0(L) = F(K0, L).

Its production set is

{(−L,Y ); L≥ 0, 0 ≤ Y ≤ F(K0, L)}.
Maximizing its profit P0Y−W0L, one obtains a profit level

π0 = P0F(K0, L0)−W0L0 = P0F ′
K(K0, L0)K0

with the demand for labor L0 defined by

P0F ′
L(K0, L0) = W0.

At equilibrium, L0 = N0. In the Arrow–Debreu logic, the profits are distri-
buted to the agents, who detain given shares of this firm.

If one assumes that the first old agents detain the total amount of shares and
that these shares are equally distributed among them, each old agent receives
π0/N−1. Maximizing their utility, they consume their whole income:

P0d0 = π0

N−1
= P0F ′

K(K0, N0)
K0

N−1
.
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Proposition 5.8 (Arrow–Debreu equilibrium with private ownership)
An Arrow–Debreu equilibrium from 0 to +∞ with initial capital K0 equally
detained by the first old agents coincides with the inter-temporal equilibrium
defined in chapter 1: equation (5.88) holds for all t .

Proof: At time 0 we have N−1 d0 = F ′
K(K0, N0)K0, and the equilibrium con-

dition (5.85) at time 0 is

F(K0, N0) = N0c̃(K0,K1)+ N−1 d0 + K1,

from which we deduce that

N0c̃(K0,K1) = F(K0, N0) − K0F ′
K(K0, N0)− K1

= N0F ′
L(K0, N0)− K1.

Thus,

K1 = N0[F ′
L(K0, N0) − c̃(K0,K1)]

= N0s(F ′
L(K0, N0), F ′

K(K1, N1)).

The condition (5.88) is thus verified at time 0. Using the resource constraint
of young agent in t = 0, we have

P1 d1 = W0 − P0c0

d1 = P0
P1

(
W0

P0
− c0

)

= F ′
K(K1, N1)[F ′

L(K0, N0) − c̃(K0,K1)] = F ′
K(K1, N1)

K1

N0
,

which implies that the following holds:

N0 d1 = F ′
K(K1, N1)K1.

The same reasoning as above, using equation (5.85) at time 1, implies

K2 = N1s(F ′
L(K1, N1), F ′

K(K2, N2)).

By induction, the condition (5.88)holds for all t and theArrow–Debreumarket
equilibrium coincides with the inter-temporal equilibrium of chapter 1.

Instead of giving all the shares to the old agents, one might have different
property allocation schemes and thus different economies. For example, the
young agents at time 0 might well be born with some shares. By doing so, we
modify the demands of the agents, and their consumptionswill depend on their
share of profits. We thus have different Arrow–Debreu economies indexed by
the property allocation scheme. In each of these economies, the equilibrium
is determined. Choosing the assumption of Diamond that all shares belong to
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the first old, we select one of these economies. Stated otherwise, the Diamond
economy is the Arrow–Debreu economy where initial old agents consume the
entire remuneration of capital, i.e. with the particular value of d0 given by

d0 =
(
K0

N−1

)
F ′
K(K0, N0). (5.89)

A Note on the Monetary Approach. Equation (5.89) can be used to discuss
the difference between the Allais (1947)–Diamond (1965) approach and the
general equilibrium approach with nominal goods or explicit money.

In the Allais–Diamond approach, there is an important restriction which
leads to determinacy31 of the equilibrium: There is no good given in “nominal”
value (all goods are real). This is reflected by the determination of d0.

With explicit money as unique medium of exchange, the general equilib-
rium approach is a priori restricted to incomplete markets. One agent can
demand a consumption good in a pure exchange economy only if he/she
holds some money allowing him/her to buy this good (see for example
Balasko and Shell (1981)).32 Money might co-exist with another support for
savings, like capital as in Benhabib and Laroque (1988), provided that it has
the same rate of return. If the nominal stock of money is exogenous, the price
of money is a non-predetermined variable. This leads to the same logic as in
the model with bubbles (see section 4.3.5), and indeterminacy of equilibrium
might prevail. Considering equation (5.89), it is not enough to fix a nominal
value of endowment D0 for the equilibrium to be determined. In the general
equilibrium approach, any price normalization like the choice of P0 is pos-
sible for a given general equilibrium which is characterized only by relative
prices. The choice of P0 modifies the real endowment d0 = D0/P0 and thus the
general equilibrium. This is the reason why the general equilibrium is not de-
termined when old agents hold a fixed amount of a nominal asset like money.
Kehoe and Levine (1985) provide a general treatment of this issue.

31 Determinacy means local uniqueness.
32 Samuelson (1958) studies exchange economies in which there are two types of equilibria,

with or without wealth transmission between different generations. In the simplemodel with
one good per period and two-period-lived agents, the equilibrium without intergenerational
exchange is the autarkic equilibrium atwhich all agents consume their endowment; this equi-
librium isunique.Theequilibriawith inter-generational exchangegenerallyusemoney,which
is the unique non-perishable good, and which has no intrinsic utility, but has a positive value
resulting from the belief of the agents (the social contrivance of Samuelson (1958)). This
belief in money may be implicit (Gale (1973), Geanakoplos (1987)). In Grandmont (1985),
there is money, consumption, and labor. Money has the same role as in the pure exchange
economy: it is the unique durable good, having the role of supporting savings. Moreover, in
the “monetary” general equilibrium approach, the value of money is positive, implying that
there is a restriction that agents cannot transfers wealth to the past. The restriction may or
may not be binding, depending on whether agents are willing to make such transfers.
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5.4.5 Example

We consider the simple case in which the number of consumers born at date
t is constant: Nt = N. Their utility is logarithmic, U(c,d) = ln(c)+ β ln(d),
and the production function is Cobb–Douglas, F(K, L) = KαL1−α . The
consumers’ demand functions are

ct = 1
1+ β

Wt
Pt
,

dt+1 = β

1+ β
Wt
Pt+1

.

The firm’s optimality conditions are

(1 − α)
(
Kt
Lt

)α
= Wt
Pt
,

α

(
Lt
Kt

)1−α
= Pt−1

Pt
.

Setting kt = Kt/N, the equation (5.85) has the following form:

kαt = 1
1 + β (1− α)kαt + β

1 + β (1− α)kαt−1αk
α−1
t + kt+1. (5.90)

Let us define the investment rate as

xt = kt+1

kαt
.

With this definition, equation (5.90) is equivalent to the two-equation system

kt+1 = xt kαt ,
(5.91)

xt = α + (1 − α) β

1 + β − β

1 + β
α(1− α)
xt−1

.

Any sequence (xt) satisfying (5.91) is monotonic, and there are two constant
solutions to

xS = α and xD = (1− α) β

1+ β .

As we shall see, xt = xD corresponds to the dynamics of the Diamond equi-
librium, and xt = xS defines dynamics leading to the golden rule.

To analyze the dynamics in the two cases xS < xD and xS > xD, we denote
by x the lower of the two and by x̄ the larger.33 We represent them in figure 5.3

33 Here, the sequence of xt is similar to the dynamics in the exchange economy studied by
Gale (1973).
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1 β

xt 1

xt

x xx0

Figure 5.3. The general equilibriumdynamics. The transition function crosses the 45◦

line at two points; there are thus two steady states. x is the lower and x̄ the higher.
Any position xt0 below x leads to a negative value for xt for some t > t0. A sequence
with a position x′

t0
> x̄ has taken a negative value for some t < t0. But for values of x

belonging to the interval (x, x̄), there exists a sequence xt , t going from −∞ to +∞,
which belongs to this interval and satisfies xt0 = x.

in the case x �= x̄. Any position xt0 smaller than x leads to a negative value for
xt for some t > t0. The sequence with a position x′

t0 > x̄ has taken a negative
value for some t < t0. But for values of x belonging to the interval (x, x̄), there
exists a sequence xt , t going from −∞ to +∞, which belongs to this interval,
and satisfies xt0 = x. When x is interior to the interval, x < xt0 < x̄ then all
these sequences satisfy

lim
t→−∞ xt = x and lim

t→+∞ xt = x̄.

Only in the particular case x = x̄, i.e., α = (1− α) β

1+β , is the sequence of posi-
tive valued xt which is the solution to (5.91) unique, viz. the constant sequence
xt = x = x̄.

In the general case, α �= (1− α) β

1+β , any arbitrary value of x0 belonging
to (x, x̄) determines a positive sequence xt that is a solution to (5.91), and
any arbitrary positive value of k0 determines, with xt , a unique sequence
satisfying

kt+1 = xt kαt .
All these sequences of positive capital stocks satisfy the equilibrium condition
(5.90).
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Hence, given any k0 > 0 and any x0 ∈ (x, x̄) there exists a unique Arrow–
Debreu general equilibrium (xt , kt) taking these values at t = 0.

When time goes from 0 to +∞, the initial value of the capital stock is
given. There remains one dimension of indeterminacy for the solution. The
Arrow–Debreu equilibrium is then determined by the property scheme of the
firm in period 0.

Let us now study the Diamond equilibrium as a special case of the Arrow–
Debreu general equilibrium approach. Equation (5.88) in intensive terms is

kt+1 = β

1 + β (1− α)kαt . (5.92)

As xt = kt+1k−αt , we see that this Arrow–Debreu equilibrium is obtained with
the constant sequence:

xt = xD = β

1 + β (1− α).

The dynamics of kt converge to

kD =
(

β

1+ β (1 − α)
) 1

1−α
.

For the other constant solution xt = xS = α, the dynamics of kt satisfy34 kt+1 =
αkαt and kt converges to the golden rule capital stock,

kS = kGR = α1/(1−α),

when t goes to +∞.
Considering a general solution (xt , kt)t≥0, we now considerwhether it possi-

ble to find simple assets which allow us tomake explicit the supports of savings.
To do so we shall need the notions, developed in section 2.1, of golden rule and
over-accumulation. We distinguish two cases depending on the relative size of
kS and kD.

The Over-accumulation Case: kD > kS (i.e. xD > xS). In the Diamond model,
there is over-accumulation of capital when the steady state to which the econ-
omy converges, kD, is larger than the golden rule capital stock kS. This occurs
when the following holds:

α <
β

1 + β (1− α).

34 For these dynamics, savings are equal to profit: Kt+1 = F ′(Kt , N)Kt .
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Consider a sequence (kt , xt)t≥0 satisfying kt+1 = xt kαt and equation (5.91); we
assume that the sequence xt satisfies

xS = α ≤ xt < β

1 + β (1− α) = xD.

According to their demand functions, old agents consume

dt = β

1 + β
Wt1
Pt

= β

1 + β (1− α)kαt−1αk
α−1
t = β

1 + β (1− α)α k
α
t

xt−1
.

When xt−1 is smaller than xD = β

1+β (1− α), then dt is larger than αkαt . The con-
sumption of the old agents exceeds the income from capital. This implies that
old agents hold other assets than the capital stock asset. Such assets have no
real counterpart; theypaynodividend: theyarebubbles.As shown in chapter 4,
rational bubbles exist when the Diamond economy is in over-accumulation.
The bubble is an asset sold by the old agents to the young agents; for the agents
to hold both assets (capital and the bubble) at equilibrium, the increase in its
price should be equal to the interest rate. In the example, its level bt per young
agent satisfies

(1+ rt)(bt + kt) = dt ,
and

bt = β

1 + β (1 − α)kαt−1 =
(
xD

xt−1
− 1
)
kt .

In the case of over-accumulation, the set of solutions includes, in addition to
the Diamond equilibrium, all the sequences of temporary equilibria with ra-
tional bubbles.

TheUnder-accumulationCase: kD < kS (i.e. xD < xS). In theDiamondmodel,
there is under-accumulation of capital when the steady state to which the
economy converges, kD, is smaller than the golden rule capital stock kS. This
occurs when

α >
β

1+ β (1 − α).

We assume that the sequence xt satisfies

xS = α ≥ xt > β

1 + β (1− α) = xD.

Using the same method as above, it can be shown that the consumption of the
old is smaller than the corresponding capital income. This case is more difficult
to interpret: Solutions are Diamond equilibria with “negative bubbles.”
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5.4.6 Conclusion

Time plays a different role in the Diamond equilibrium and in the Arrow–
Debreu equilibrium. The Diamond economy is a sequence economy
(Radner (1972)), i.e., a general equilibrium model in discrete time including
specific provision for the availability of markets at a sequence of dates. As
stressed by Starr (1987), “This model is in contrast with the Arrow–Debreu
model with a full set of futures markets. There, all exchanges for current
and future goods [. . .] are transacted on a market at a single point in time.
In the Arrow–Debreu model, there is no need for markets to reopen in the
future; economic activity in the future consists simply of the execution of the
contracted plans. The Arrow–Debreu model with a full set of futures markets
appears unsatisfactory in that it denies commonplace observation: Futures
markets for goods are not generally available [. . .]. The sequence economy
model is an alternative that allows formalization and explanation of these
observations.”

Wehave shown that theDiamondequilibriumstudied in this book coincides
with the Arrow–Debreu equilibrium where the unique possible support for
savings is the stock of capital. It has the great advantage of being determined
under reasonable assumptions. This advantage should not be minimized. In-
deed, the interpretation of indeterminacy in the overlapping generations gen-
eral equilibrium is rather curious: “The equilibrium prices have to be known
or foreseen from the beginning of time, even though a finite number of the
(infinitely many) agents are alive at the beginning of time. This would not
be totally absurd if the equilibrium were unique, so that all agents, once they
began to make economic decisions, could calculate and foresee the same se-
quence of equilibrium prices. With indeterminacy of equilibrium, the agents
who are active at the beginning of timemust (jointly) pick an equilibrium, and
then make sure that all succeeding generations are informed and convinced
about the details of the one that they have chosen.” (Radner (1991).) In the
overlapping generations model, it would be as if expectations were inherited.



Technical Appendices

In these appendices, we have gathered a review of some techniques that are
used in the main text. They cover the properties of production functions
(section A.1), a simple presentation of useful tools in infinitesimal calculus
(section A.2), and some results in dynamical analysis (section A.3). They also
provide an exposition of optimization methods, including the value function
(sectionA.4.1) and theLagrangian approachwith the associated transversality
conditions (sectionA.4.2); the descriptionof our numerical examples and anu-
merical method for deterministic non-linear forward-looking models (section
A.5); and some results on the dynamics of distributions with a summary of the
characteristics of normal and log-normal distributions (section A.6).

A.1 production functions

A.1.1 Homogeneity

Definition A.1 (Homogeneity)
A function F(K, L) : R++ × R++ → R++ is said to be homogeneous of degree
x if

F(λK, λL) = λx F(K, L) ∀λ > 0.

Hence, the function F(K, L) is homogeneous of degree one if

F(λK, λL) = λF(K, L) ∀λ > 0. (A.1)

Weassume that F(·, ·) is twice continuously differentiable. The first derivatives
of a homogeneous function F(·, ·) of degree one are themselves homogeneous
of degree zero. Indeed, taking the derivatives of both sides of equation (A.1)
with respect to K leads to

λF ′
K(λK, λL) = λF ′

K(K, L).

305
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Simplifying by λ leads to

F ′
K(λK, λL) = F ′

K(K, L),

showing that F ′
K is homogeneous of degree zero.

Similarly, the secondorder derivatives of a homogeneous functionof degree
one F are homogeneous of degree −1:

λF ′′
KK(λK, λL) = F ′′

KK(K, L).

Using the fact that, ∀K, L> 0,

F(K, L) = LF
(
K
L
, 1
)
,

the average productivities can be expressed as functions of K/L alone:

F(K, L)
K

= F(K/L, 1)
K/L

and
F(K, L)
L

= F
(
K
L
, 1
)
.

The marginal productivities can also be expressed as functions of K/L alone:

� By the homogeneity of degree zero of F ′
K(K, L),

F ′
K(K, L) = F ′

K

(
K
L
, 1
)
.

� By differentiation of F(K, L) = LF(K/L, 1), we obtain

F ′
L(K, L) = F

(
K
L
, 1
)

− K
L
F ′
K

(
K
L
, 1
)
. (A.2)

A property of homogeneous functions of degree one is Euler’s theorem:

Proposition A.1 (Euler’s theorem)
If the function F(K, L) : R++ × R++ → R++ is homogeneous of degree 1, we
have

F(K, L) = F ′
K(K, L)K + F ′

L(K, L)L ∀K, L> 0 (A.3)

This result is directly obtained by multiplying both sides of equation (A.2)
by L.

We may differentiate (A.3) with respect to K to derive the properties of
the second derivative F ′′

KK:

F ′′
KL(K, L) = −K

L
F ′′
KK(K, L).

Similarly, we differentiate (A.3) with respect to L:

F ′′
KL(K, L) = − L

K
F ′′
LL(K, L).



Technical Appendices 307

Hence, F ′′
LL(K, L) has always the same sign as F

′′
KK(K, L), and F

′′
KL(K, L) has

the opposite sign. Moreover, we have

F ′′
LL(K, L) F

′′
KK(K, L)− F ′′

KL(K, L)
2 = 0.

A.1.2 Limits of f (k) and f ′(k)

In this subsection, we study the implications ofH2 on the production function.
We have

F(K, L) = Lf (k), k= K
L
, f (k) = F(k, 1).

Assume now H2: For all k> 0, one has f (k) > 0, f ′(k) > 0, and f ′′(k) < 0.
Wefirst notice that anymonotonic function defined in ]0,+∞[ admits limits

at the end points of the interval (i.e. when k→ 0 and k→ +∞). These limits
are finite or infinite.

� The limit of f (k) when k→ 0, k> 0 is finite and non-negative, because f (k)
is increasing and bounded from below by 0:

f (0+) = lim
k→0,k>0

f (k)∈ R+.

With f (0) = f (0+), f is continuous on R+.
� The limit of f (k) when k→ +∞ is positive, finite or infinite:

f (+∞) = lim
k→+∞

f (k) ∈ R++ ∪{+∞}.

� The limit of the marginal productivity of capital, f ′(k), when k→ 0, k> 0,
is positive, finite or infinite, since f ′(k) is decreasing and positive:

f ′(0+) = lim
k→0,k>0

f ′(k) ∈ R++ ∪{+∞}.
� The limit of f ′(k) when k→ +∞ is finite and non-negative, because f ′(k)
is decreasing and bounded from below by 0:

f ′(+∞) = lim
k→+∞

f ′(k) ∈ R+.

Example: The CES production function is given by

f (k) = A[αk−ρ + (1− α)]−1/ρ, ρ > −1, ρ �= 0,

f ′(k) = αA[α + (1− α)kρ]− 1+ρ
ρ .

For ρ = 0, we have (see below, the Cobb–Douglas as a limit case)

f (k) = Akα, f ′(k) = αAkα−1



308 A Theory of Economic Growth

The limits of the function are

lim
k→0,k>0

f (k) =
{
A(1− α)−1/ρ for −1 < ρ < 0,
0 for ρ ≥ 0,

lim
k→+∞

f (k) =
{

+∞ for −1 < ρ ≤ 0,
A(1− α)−1/ρ for ρ > 0.

The production f (0) is not equal to 0 with a CES function if ρ < 0, i.e., if
production factors are high substitutes. In that case, it is possible to produce
without capital. The function f (k) is bounded from above when ρ > 0, i.e.,
when factors are complements in the production process.
The limits of the derivatives are

lim
k→0,k>0

f ′(k) =
{

+∞ for −1 < ρ ≤ 0,
Aα−1/ρ for ρ > 0,

lim
k→+∞

f ′(k) =
{
Aα−1/ρ for −1 < ρ < 0,
0 for ρ ≥ 0.

The marginal productivity of capital does not necessarily tend to zero when
k→ +∞. Indeed, when factors are high substitutes, the marginal produc-
tivity tends to a positive constant.

A.1.3 The Marginal Productivity of Labor

The marginal productivity of labor is given by

ω(k) = f (k)− kf ′(k) = F ′
L(K, L) > 0.

Let us analyze the properties of ω(k). We first notice that ω(k) is increasing:

ω′(k) = −kf ′′(k) > 0.

Let us show that it is positive valued. The function f (·) is continuous on [0, k]
and differentiable on ]0, k[. Following the mean value theorem for derivatives
(see section A.2.1), ∃θ, 0 < θ < 1, such that

f (k) − f (0) = kf ′(θ k).

Since f ′(k) is decreasing, f ′(θ k) > f ′(k), and we deduce that

ω(k) = f (k)− kf ′(k) > f (0) ≥ 0.

Hence, ω(k) > 0 ∀k> 0.
Moreover, f (k) > ω(k) > f (0) implies

ω(0) = lim
k→0,k>0

ω(k) = f (0),

and we have also

lim
k→0

kf ′(k) = 0.
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A.1.4 The Limit of ω(k)/k

The assumption H2 implies that

lim
k→+∞

ω(k)
k

= 0.

To demonstrate this property, we first notice that ω(k)/k measures the gap
between the average and the marginal productivity of capital:

ω(k)
k

= f (k)
k

− f ′(k).

The ratio f (k)/k is decreasing (derivative = −ω(k)/k2 < 0) and positive; it
admits thus a limit l1 ≥ 0 when k→ +∞. f ′(k) is decreasing and positive; it
admits thus a limit l2 ≥ 0 when k→ +∞.We apply the mean value theorem
for derivatives (section A.2.1) to k and 2k:

f (2k)− f (k) = (2k− k) f ′(k(1 + θ)) with 0 < θ < 1.

This yields

2 f (2k)
2k

− f (k)
k

= f ′(k(1 + θ)).

Taking the limit when k→ +∞, we obtain 2l1 − l1 = l2, l1 = l2, and

lim
k→+∞

ω(k)
k

= l1 − l2 = 0.

The limit on the other side of its definition interval,

lim
k→0

ω(k)
k
,

may not exist if both f (k)/k and f ′(k) go to +∞ when k goes to zero. In the
Cobb–Douglas case, we have

ω(k)
k

= A(1− α)k−α.

Hence, ω(k)/k goes to +∞ when k goes to zero. With the CES production
function,wehave for thehigh substitution case thatω(0)> 0, andhenceω(k)/k
goes to +∞ when k goes to zero. In the low substitution case, we have

ω(k) = A(1 − α)(αk−ρ + 1 − α)− 1
ρ
−1
,

ω(k)
k

= A(1 − α)(αk−ρ2
1+ρ + (1 − α)k ρ

1+ρ
)− 1+ρ

ρ ,

and ω(k)/k goes to zero when k goes to zero. Two examples are presented in
figure A.1.
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Figure A.1. The function ω(k)/k. The left panel represents the function for a CES
production function with low substitution (ρ > 0). The limit of the function at 0 is
0. The right panel represents the function for a CES production function with high
substitution (ρ < 0). The limit of the function at 0 is infinite.

A.1.5 The Cobb–Douglas Function as a Limit Case

Weshow that theCobb–Douglas production function canbeobtainedas a limit
case of the CES production function when ρ → 0. As the production function
is homogeneous of degree one, the proof can be done on the intensive form.
Taking logarithms, we compute the limit when ρ → 0 of

− 1
ρ
ln[αk−ρ + (1− α)]+ ln A.

This expression can be rearranged into

− 1
ρ
ln[1+ α(k−ρ − 1)] + ln A.

Recognizing that ln(1 + x) ∼ x when x → 0, we obtain

− 1
ρ
ln[1+ α(k−ρ − 1)] ∼ − 1

ρ
α(k−ρ − 1).

Since y− 1 ∼ ln y when y→ 1, we obtain

− 1
ρ
α(k−ρ − 1) ∼ − 1

ρ
α ln(k−ρ).

Hence,

lim
ρ→0

− 1
ρ
ln[αk−ρ + (1 − α)]+ ln A= α ln k+ ln A.
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ba ξ x

f x

Figure A.2. The mean value theorem for derivatives.

A.2 calculus

A.2.1 The Mean Value Theorem for Derivatives

The mean value theorem for derivatives that we use is various proofs is the
following:

Proposition A.2 (Mean value theorem for derivatives)
If f (x) is a real valued function that is continuous in [a,b] and differentiable
in ]a,b[, then there exists a point ξ ∈ ]a,b[ such that [ f (b)− f (a)]/(b− a) =
f ′(ξ).

In geometrical terms, there is always a point {ξ, f (ξ)} with a < ξ < b at which
the tangent to the function is parallel to the line passing through {a, f (a)} and
{b, f (b)} (figure A.2).

A.2.2 The Implicit Function Theorem

Consider the equation f (x, y) = 0. The implicit function theorem gives us the
conditions under which the above equation can be solved for y as a function
of x: y = φ(x).

Proposition A.3 (Implicit function theorem)
Let f (x, y) be continuously differentiable near to (x0, y0) at which f (x0, y0) = 0
and f ′y(x0, y0) �= 0. Then, near (x0, y0) it is possible to solve the implicit equation
f (x, y) = 0 uniquely for y in the form y = φ(x) (i.e., there exists ε1 > 0 and
ε2 > 0 such that for any x satisfying |x − x0| < ε1 there exists a unique y such
that |y− y0| < ε2 and f (x, y) = 0), and we have

φ′(x0) = − f
′
x(x0, y0)
f ′y(x0, y0)

.
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A.2.3 Limits, lim sup, and lim inf

Because we are working in a discrete time environment, sequences are funda-
mental objects manipulated in this book.

Definition A.2 (Sequence)
A sequence in a set S is a function whose domain is the set of positive integers
and whose values are in S.

The definition of a sequence as being a function will allow us to describe
sequences in the same termsasonewoulduse todescribe functions:monotonic,
bounded, increasing, etc.

Definition A.3 (Sub-sequence)
A sub-sequence of (x0, x1, x2, . . .) is an infinite sequence (xt1 , xt2 , xt3 , . . .) with
t1 < t2 < t3 < · · · .

Let (xt)t≥0 be a sequence in R. This sequence can either admit a limit or not.
In the special case where (xt) is a monotonic sequence, we can apply the
fundamental theorem of sequences:

Proposition A.4 (Fundamental theorem of sequences)
Every increasing or decreasing sequence in R tends to a limit which is finite or
infinite.

Consider any sequence (xt) in R. If the limit of (xt) does not exist, we can
define a monotonic sequence (x̄t) which will admit a limit. For any t > 0 we
consider

x̄t = sup
s≥0
xt+s ∈ R ∪ {+∞}.

Here sup is the supremum of the terms of the sub-sequence starting at t .1

Clearly the sequence (x̄t) is monotonic and non-increasing in R ∪ {+∞}:
x̄t+1 ≤ x̄t ,

and

x̄t = sup{xt , x̄t+1}.
We next introduce the following definition:

1 Notice that a sequence can well be bounded above without having a maximum element. The
sup is thus not necessarily reached. Any subset in R admits a sup in R ∪ {+∞}.
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Definition A.4 (Limit superior)
The limit superior of xt , lim supt→+∞ xt , is the limit of the sequence (x̄t):

lim sup
t→+∞

xt = lim
t→+∞ sup

s≥0
xt+s = lim

t→+∞ x̄t .

Since the sequence (x̄t) is monotonic, its limit always exists, finite or infinite.
It is the largest limit of the sub-sequences of (xt), which converges in R ∪
{+∞}. Hence, some subsequences converge to the lim sup and no subsequence
converges to a larger number.

Similarly we define

x t = inf
s≥0
xt+s ∈ R ∪ {−∞}.

Clearly the sequence (x t) is monotonic and non-decreasing in R ∪ {−∞}. We
next define

lim
t→+∞ inf xt = lim

t→+∞ inf
s≥0
xt+s = lim

t→+∞ x t

Thus, lim inft→+∞xt is the smallest limit of the sub-sequences of (xt) which
converge. Some subsequence converges to it, and no subsequence converges
to a number smaller than it. Since the sequence (xt) is monotonic, this limit
always exists.

When the sequence (xt) is bounded inR (i.e., ∃a,b ∈ R such that a < xt < b
∀t), then the lim inf and lim sup are finite.

Notice also that lim xt exists if and only if lim sup xt and lim inf xt are equal.
This is for instance the case in the example sin(t + 1)/(t + 1), represented
in figure A.3: we have lim supt→+∞ = lim inft→+∞ = 0, and the sequence

Figure A.3. lim sup and lim inf are monotonic. The sequence xt = sin(t + 1)/(t + 1)
is defined in an interval of time and represented by the diamonds. x̄t is represented
by the stars. xt is represented by the squares. x̄t and xt are monotonic sequences.
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converges. A simple example of non-convergence is xt = (−1)t , where
lim supt→+∞ = 1 and lim inft→+∞ = −1.

A.2.4 Limit Points of Multi-dimensional Sequences

Let (xt)t≥0 be a sequence in R
n. The point x̄ ∈ R

n is a limit point (sometimes
called cluster point or accumulation point) of x if there exists a sub-sequence
xs of x converging to x̄. Stated otherwise:

Definition A.5 (Limit point)
A point x̄ is a limit point of the sequence (xt)t≥0 if every neighborhood of x̄
contains an infinite number of elements of the sequence (xt)t≥0.

The theorem used in the main text is the following:

Proposition A.5 (Bounded sequences)
Any sequence in R

n which is bounded admits at least one limit point x̄ ∈ R
n.

For a one-dimensional sequence (xt), lim sup x, if it is finite, is the largest limit
point of (xt). Similarly, lim inf x, if finite, is the smallest. The limit of (xt) exists
if and only if all the limit points coincide.

Example: take the sequence (1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, . . .). Then lim sup = 4,
lim inf = 1, and 1, 2, 3, and 4 are limit points.

A.3 dynamical analysis

A.3.1 Monotonic Dynamics

Let l(x) be a function defined on some interval J of R with values in J . The
time path given an initial state x0 ∈ J , and the equation

xt+1 = l(xt)
is uniquely defined. A steady state x ∈ J is a solution to x = l(x).
Proposition A.6 (Monotonic dynamics)
If l(x) is continuous and non-decreasing on J , the time path satisfying xt+1 =
l(xt) given x0 is a monotonic sequence. This sequence either converges to a
steady state x̄ ∈ J or goes to a boundary of the interval J . It never goes from
one side of a steady state to the other.

Proof: Assume for example xt ≥ xt−1. Then we have l(xt) ≥ l(xt−1), since l
is non-decreasing and xt+1 = l(xt) ≥ xt = l(xt−1). Thus, if l(x0) ≥ x0 then x1 ≥
x0 and the inequality xt+1 ≥ xt holds for all t ≥ 0: the sequence xt is non-
decreasing.

Similarly, if l(x0) ≤ x0 the sequence xt is non-increasing.
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A monotonic sequence in J admits a limit which is finite or infinite. When
this limit is a point x̄ ∈ J , then we have, since l is continuous,

l(x̄) = lim
t→+∞ l(xt) = lim

t→+∞ xt+1 = x̄,

and x̄ is a steady state.
If the limit does not belong to J , it is an end point of the interval (which

may be infinite).
Finally, consider any steady state x̄ ∈ J , and assume for example x0 ≤ x̄.

Then x1 = l(x0) ≤ l(x̄) = x̄, and by induction for all t, xt ≤ x̄. Similarly if x0 ≥
x̄ then xt ≥ x̄ for all t .

A.3.2 Local Stability (Dimension One)

Let l(x) be a function defined on some interval J of R with values in J .
The time path, given an initial state x0 ∈ J and the equation xt+1 = l(xt), is
uniquely defined.

A steady state solution x̄ to x̄ = l(x̄) which is interior to J is locally stable
if for any initial value x0 near enough to x̄, the dynamics starting from x0
converge to x̄.2 Formally, there exists ε > 0 such that (x̄ − ε, x̄ + ε) ⊂ J and
for any x0 ∈ (x̄ − ε, x̄ + ε) the corresponding dynamics satisfy

lim
t→+∞ xt = x̄.

Ata corner steady state like 0,when l is definedonR+, the corner local stability
of 0 is defined similarly but for x0 ∈ (0, ε).

Definition A.6 (Hyperbolicity)
Assume l is continuously differentiable in J . Let x̄ be a steady state ∈ J . If
|l ′(x̄)| = 1, then x̄ is non-hyperbolic. If |l ′(x̄)| �= 1, x̄ is hyperbolic.

If x̄ is non-hyperbolic, its stability type cannot be determined on the basis of
its first derivative (the stability type is determined by the terms of the second
order).

Proposition A.7 (First-order stability condition)
Let x̄ be a hyperbolic steady state ∈ J . Then
� if |l ′(x̄)| < 1 then x̄ is locally stable;
� if |l ′(x̄)| > 1 then x̄ is unstable, i.e., it is not locally stable.

2 This notion of stability is the most commonly used in economics. In dynamical theory, one
adds to the condition of convergence the requirement that, when starting near the limit, the
sequence not go too far away from it. Formally, ∀ε > 0, ∃y > 0 such that ∀x0 ∈ (x̄ − y, x̄ + y),
all the terms xt ∈ (x̄ − ε, x̄ + ε), ∀t ≥ 0. This additional condition holds under the assumption
of proposition A.7.
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Proof: Assume |l ′(x̄)|< 1. Consider b such that |l ′(x̄)|<b< 1. By continuity
of l ′(x), we have |l ′(x)|<bon some interval (x̄ − ε, x̄ + ε) with ε > 0. For any x
in this interval, we have, using themean value theorem for derivatives (section
A.2.1),

l(x) − l(x̄) = (x − x̄)l ′(x̄ + θ(x − x̄)) with 0 < θ < 1,

and since x̄ + θ(x − x̄) belongs to (x̄ − ε, x̄ + ε),
|l(x)− l(x̄)| < b|x − x̄|.

Thus, for any x0 ∈ (x̄ − ε, x̄ + ε), the sequence xt+1 = l(xt) starting at x0 verifies
|xt+1 − x̄| = |l(xt)− l(x̄)| < b|xt − x̄|,

and by induction, xt ∈ (x̄ − ε, x̄ + ε) for all t and
|xt − x̄| < bt |x0 − x̄|,

the sequence xt converges to x̄ for all x0 ∈ (x̄ − ε, x̄ + ε), and x̄ is locally stable.
This also implies that the whole sequence remains in the neighborhood of x̄.
The same proof applies to a corner steady state with x0 ∈ (0, ε).

Assume |l ′(x̄)| > 1, and consider b such that |l ′(x̄)| > b > 1. The same
argument as before implies that, for any x in the interval (x̄ − ε, x̄ + ε),

|l(x)− l(x̄)| > b|x − x̄|,
and for a sequence xt+1 = l(xt),

|xt − x̄| > bt |x0 − x̄|, (A.4)

but only for the terms xt which belong to (x̄ − ε, x̄ + ε). Since for the sequence
xt verifying (A.4) and x0 �= x̄ the distance |xt − x̄| increases geometrically, this
distance becomes larger than ε after a finite number of dates. The convergence
to x̄ implies |xt − x̄| < ε after some date t0, for all t ≥ t0, and the preceding
result applied to the starting position xt0 excludes this possibility. Hence, for
any x0 �= x̄ the sequence xt+1 = l(xt) does not converge to x̄.

The different basic stability types are illustrated in figure A.4.

A.3.3 Linear Dynamics in the Plane

Let us consider the linear dynamics in R
2:

xt+1 = axt + byt ,
yt+1 = cxt + dyt ,

(A.5)

or, using matrix notation,(
xt+1

yt+1

)
= A

(
xt
yt

)
, A=

(
a b
c d

)
.
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xt

xt 1

x̄ xt

xt 1
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x̄ xt
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x̄
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x̄

x̄ non-hyperbolic: l x̄ 1

x̄ loc. stable: 0 l x̄ 1

x̄ loc. stable: 1 l x̄ 0 x̄ unstable: l x̄ 1

x̄ unstable: l x̄ 1

Figure A.4. Stability types. Locally monotonic dynamics are obtained for l ′(x̄) < 0,
and oscillatory dynamics for l ′(x̄) > 0. l ′(x̄) = 1 is the non-hyperbolic case.
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Let

V =
(
v
w

)
be an eigenvector associated to an eigenvalue λ:

V �= 0 and AV = λV.

This means that v and w are not both zero and verify (a − λ)v + bw = 0 and
cv + (d − λ)w = 0. There exists such an eigenvector if and only if the deter-
minant of the matrix of the coefficients is equal to 0, i.e.,

P(λ) =
∣∣∣∣ a − λ b
c d − λ

∣∣∣∣ = 0.

P(λ) = (a − λ)(d − λ)− bc = λ2 − (a + d)λ+ ad − bc is the characteristic
polynomial. Its roots are the eigenvalues. We distinguish two cases, accord-
ing as the eigenvalues are real or complex.

Distinct Real Eigenvalues. Assume that P(λ) admits two real roots λ1 �= λ2.
This is the case when the discriminant (a + d)2 − 4(ad − bc) is positive.

Proposition A.8 (Linear dynamics in the plane)
Let Vi be an eigenvector associated to the eigenvalue λi , i = 1, 2. Any solution
to the system (A.5) can be written as(

xt
yt

)
= pλt1V1 + qλt2V2, (A.6)

and p and q are uniquely determined by the initial values x0 and y0:3

pV1 + qV2 =
(
x0
y0

)
. (A.7)

This property results simply from the definitions and from the fact that the set
of solutions is a two-dimensional vector space. For i = 1, 2, λti Vi is a solution
to (A.5), since

A
(
λti Vi

) = λti AVi = (λt+1
i Vi

)
,

and these solutions are linearly independent, since λ1 �= λ2.
Excluding the cases in which |λ1| = 1 or |λ2| = 1,4 we have the following

results:

3 In the absence of initial values, all possible solutions are obtained by varying p and q.
4 In the linear case, it is possible to study the case |λ1| = 1 and/or |λ2| = 1, but these results do
not extend to the non-linear case.
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� If |λ1| ≤ |λ2| < 1, then

for all
(
x0
y0

)
, lim

(
xt
yt

)
=
(
0
0

)
,

and the steady state (0, 0) is stable inR
2. Any value for (x0, y0) will lead the

dynamics to the steady state. The steady state (0, 0) is said to be a sink.
� If 1 < |λ1| ≤ |λ2|, all trajectories starting from(

x0
y0

)
�=
(
0
0

)
explode. The steady state (0, 0) is unstable. It is said to be a source.

� If |λ1| < 1 < |λ2|, there exists a unique direction along which the dynamics
converge to (0, 0): only for q = 0 does the sequence(

xt
yt

)
= pλt1V1

converge to (0, 0). There is a one-dimensional set of initial conditions(
x0
y0

)
∈ {pV1; p ∈ R},

which leads to convergence. This implies that for a given x0, there is only
one value of y0 such that the trajectory converges to the steady state, and
this value is given by y0 = x0w1/v1. Any other initial condition (q �= 0) leads
the dynamics to explode. The steady state (0, 0) is said to be a saddle point.5

The long-termdynamics is definedby the largest root in absolute value. Indeed,
if |λ1| > |λ2|, (

xt
yt

)
= λt1

[
pV1 + q

(
λ2

λ1

)t
V2

]
,

which is equivalent to λt1pV1 for large t , when p �= 0.
Thus, we have the following property: Assume |λ1| > |λ2| and p �= 0. Then

� if λ1 > 0, the long-run dynamics are monotonic;
� if λ1 < 0, the long-run dynamics are oscillating.

MultipleRealEigenvalues. In the casewhere P(λ) has equal rootsλ1 = λ2 = λ,
which arises when (a + d)2 − 4(ad − bc) = 0, the mathematical problem is
more complicated but the results are the same. Two sub-cases can be distin-
guished: (a) The two eigenvectors V1 and V2 are still linearly independent, and

5 Some authors use the term “stable in the saddle-point sense.” See, e.g., Levhari and Liviatan
(1972).
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the results are the same as above. (b) Otherwise, we have(
xt
yt

)
= λt(pV + qtW).

Consequently,

� If |λ| < 1, all trajectories converge to (0, 0), which is globally stable in R
2.

� If |λ| > 1, all trajectories starting from(
x0
y0

)
�=
(
0
0

)
explode, and (0, 0) is unstable. It is a source.

Complex Eigenvalues. P(λ) admits two complex roots: λ1 = α + iβ and λ2 =
α − iβ. Indeed, any complex eigenvalues of a real square matrix must occur
in conjugate pairs. This is the case when (a + d)2 − 4(ad − bc) < 0. The same
mathematical analysis can be made in the set of complex solutions. When the
initial conditions (x0, y0) are real, then the solution given by (A.6)–(A.7) is
real. There are then two possibilities:

� If α2 + β2 = |λ1|2 = |λ2|2 < 1, all trajectories converge to (0, 0), which is
globally stable in R

2.
� If α2 + β2 > 1, all trajectories starting from(

x0
y0

)
�=
(
0
0

)
explode, and (0, 0) is unstable.

A.3.4 Local Stability of Non-linear Dynamics (Dimension 2)

Let f (x, y) and g(x, y) bedifferentiable functionsdefinedon someopen subset
J of R

2. We assume that for all (x, y) ∈ J , ( f (x, y), g(x, y)) ∈ J . The time
path, given an initial state (x0, y0) ∈ J , and the system of equations

xt+1 = f (xt , yt),

yt+1 = g(xt , yt)
are uniquely defined. A steady state (x̄, ȳ) solution to x̄ = f (x̄, ȳ) and ȳ =
g(x̄, ȳ) which is interior to J is locally stable if for any initial value (x0, y0)
near enough to (x̄, ȳ), the dynamics starting from (x0, y0) converge to (x̄, ȳ).
Formally, there exists ε > 0 such that for any (x0, y0) such that

|x0 − x̄| + |y0 − ȳ| < ε,
the corresponding dynamics satisfy

lim
t→+∞ xt = x̄ and lim

t→+∞ yt = ȳ.
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Let us take a first-order Taylor expansion of f (·) around a steady state:
f (x, y) − f (x̄, ȳ) � f ′x(x̄, ȳ)(x − x̄) + f ′y(x̄, ȳ)(y− ȳ),

and similarly for g(·). Consider the linear dynamics(
xt+1 − x̄
yt+1 − ȳ

)
= Ā

(
xt − x̄
yt − ȳ

)
, (A.8)

where Ā is a 2× 2 matrix of the derivatives of f (·) and g(·) taken at the point
(x̄, ȳ)′, called the Jacobian matrix:

Ā=
(
f ′x(x̄, ȳ) f ′y(x̄, ȳ)

g′
x(x̄, ȳ) g′

y(x̄, ȳ)

)
.

The linear system (A.8) can now be analyzed with the tools of section A.3.3.

Definition A.7 (Hyperbolicity in the plane)
Assume f (·) and g(·) continuously differentiable in J . Let (x̄, ȳ) be a steady
state ∈ J . If the moduli of the eigenvalues of the Jacobian are different from 1
(|λ1| �= 1 and |λ2| �= 1), then x̄ is hyperbolic. If either |λ1| = 1 or |λ2| = 1, x̄ is
non-hyperbolic.

If the steady state is non-hyperbolic, its stability type cannot be determined
on the basis of its eigenvalues (the stability type is determined by the terms of
second order.)

Excluding non-hyperbolic steady states, three cases are possible:

� If |λ1| ≤ |λ2| < 1, the steady state is locally stable. Any initial condition will
lead the dynamics to the steady state. The steady state (x̄, ȳ) is said to be a
sink.

� If 1 < |λ1| ≤ |λ2|, the steady state is unstable: for any initial condition differ-
ent from the steady state, the trajectories are locally exploding. The steady
state is said to be a source.

� If |λ1| < 1 < |λ2|, the steady state is a saddle point. For a given initial con-
dition on one variable, there is only one initial value of the other variable
such that the trajectory converges to the steady state. Any other value for
this variable would lead the trajectory to locally explode.

When the eigenvalues are real and their moduli lie on the same side of 1, the
steady state is also called a (stable or unstable) node.

From a practical point of view, it is often easier to use the trace and the
determinant of the Jacobian matrix. Indeed, the eigenvalues λ1 and λ2 are the
roots of the characteristic polynomial

P(λ) = λ2 − Tλ+ D,
where T = f ′x + g′

y is the trace of the Jacobian matrix Ā, and D= f ′xg
′
y − f ′yg

′
x
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Figure A.5. Analysis of local stability. When |1+ D|< |T|, the steady state is a
saddle.When |1 + D| > |T| and |D|< 1, the steady state is a sink.When |1+ D| > |T|
and |D| > 1, the steady state is a source.

is its determinant. We can then distinguish the following cases, illustrated in
Figure A.5:

� P(1)P(−1) = (1+ D)2 − T2 < 0 ⇐⇒ |1 + D| < |T|. There is one and only
one real root belonging to (−1, 1). The steady state is a saddle.

� P(1)P(−1) = (1+ D)2 − T2 > 0 ⇐⇒ |1 + D| > |T|.
� |D| < 1. Either the roots are complex and |λ1|2 = |λ2|2 = D< 1, or the
roots are real and both belong to ]−1, 1[. The steady state is locally stable
(a sink).

� |D| > 1. Either the roots are complex and |λ1|2 = |λ2|2 = D> 1, or the
roots are real and do not belong to [−1, 1]. The steady state is unstable
(a source).

A.3.5 Bifurcations of Monotonic Dynamics

The study of bifurcations comes naturally into play when we are interested
in studying the effect of changes in a parameter a on a dynamic system. In
this section, we study the bifurcations arising in dynamic systems of order one
when the dynamics are locally monotonic near a point (x̄, ā).

Let us parametrize the difference equation of section A.3.1:

xt+1 = l(xt , a)
Consider a parameter value ā, and suppose that there is a steady state x̄ such
that l(x̄, ā) = x̄ and l ′x(x̄, ā) > 0.
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If x̄ is hyperbolic (l ′x(x̄, ā) �= 1), one can apply the implicit function theorem
to the function g(x, a) = l(x, a)− x in a neighborhood of (x̄, ā). This allows
one to define x as a function of a and to study the effect of changing the value
of the parameter a on the dynamics. It is thus possible to obtain a function
x = φ(a). We also conclude that near ā there exists a steady state x = l(x, a)
in a neighborhood of x̄ which has the same stability properties as x̄.

If x̄ is non-hyperbolic (l ′x(x̄, ā) = 1), one cannot apply the implicit func-
tion theorem to infer the existence of a function x = f (a). We should then
distinguish two cases, depending on the value of l ′a(x̄, ā).

When l ′a(x̄, ā) �= 0, one can apply the implicit function theorem to the func-
tion g(x, a) = l(x, a)− x = 0 in a neighborhood of (x̄, ā) to show that there
exists a function a = h(x) for x near x̄ with g(x̄, h(x̄)) = 0 and ā = h(x̄). Dif-
ferentiating g(x, h(x)) = 0 and evaluating at x = x̄ yields

g′
x(x̄, h(x̄))+ g′

a(x̄, h(x̄)) h
′(x̄) = 0.

Since g′
x(x̄, ā) = 0 and g′

a(x̄, ā) = l ′a(x̄, ā) �= 0, we have

h′(x̄) = 0.

We thus have three possible cases: either the function h(x) attains a maxi-
mum at h(x̄), or it attains a minimum, or there is an inflection point at x̄.
We should thus study the second-order derivatives of the function h(·). Twice
differentiating g(x, h(x)) = 0 and evaluating at x = x̄ yields

g′′
xx(x̄, h(x̄))+ g′′

xa(x̄, h(x̄))h
′(x̄)+ g′′

ax(x̄, h(x̄))h
′(x̄)

+ g′′
aa(x̄, h(x̄))(h

′(x̄))2 + g′
a(x̄, h(x̄))h

′′(x̄) = 0.

Since h′(x̄) = 0, we have

g′′
xx(x̄, h(x̄))+ g′

a(x̄, h(x̄))h
′′(x̄) = 0

and thus

h′′(x̄) = −g
′′
xx(x̄, h(x̄))
g′
a(x̄, h(x̄))

= − l
′′
xx(x̄, h(x̄))
l ′a(x̄, h(x̄))

.

The function a = h(x) thus admits a local maximum (minimum) if h′′(x̄) < 0
(> 0). There is an inflection point if h′′(x̄) = 0 and h′′′(x̄) �= 0. The three cases
are represented in figure A.6. We now have the necessary material to define
the following.

Definition A.8 (Tangent bifurcation)
Let ā be a value of the parameter a, and x̄ be a non-hyperbolic steady state of the
dynamics xt+1 = l(xt , ā). If the equation x = l(x, a) has in the neighborhood
of (x̄, ā) a unique differentiable solution a = h(x) which has a local maximum
or a local minimum at x̄, we say that the dynamics xt+1 = l(xt , a) undergo a
tangent bifurcation at (ā, x̄).
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FigureA.6. The function a = h(x). The function admits a localmaximum(minimum)
at x̄ if h′′ < 0 (> 0). There is an inflection point if h′′ = 0 and h′′′ �= 0.

A sufficient condition for such a bifurcation to occur is given by the following
proposition:

Proposition A.9 (Sufficient condition for a tangent bifurcation)
Sufficient conditions for ā to be a tangent bifurcation of the dynamics xt+1 =
l(xt , a) are

l ′x(x̄, ā) = 1,

l ′a(x̄, ā) �= 0,

l ′′xx(x̄, ā) �= 0.

Note that the condition h′′ �= 0 is not necessarily required to have a tangent
bifurcation. In the case h′′ = 0, one should study the higher order derivatives
of h(·).

Finally, we can state the main property of the tangent bifurcation:

Proposition A.10 (Properties of a tangent bifurcation)
Assume that the conditions of proposition A.9 hold. The system xt+1 = l(xt , a)
has two hyperbolic steady states on one side of ā, exactly one steady state at ā,
and none on the other side. Whenever two equilibria exist, one is stable and the
other is unstable.

Proof: Consider the casewhere the function a = h(x) admits a localmaximum
ā at x = x̄. This implies the existence of two steady states for a < ā and the
non-existence of steady states for a > ā. The opposite conclusion is obtained
when a = h(x) has a local minimum.

For one steady state x near x̄ and a = h(x), we consider the eigenvalue
l ′x(x, h(x)). Computing its derivative with respect to x and evaluating it near
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aā

x

Figure A.7. Local dynamics near a tangent bifurcation. There are two steady states
on one side of ā, exactly one steady state at ā, and none on the other side. Whenever
two equilibria exist, one is stable and the other is stable.

the bifurcation point, one gets

dl ′x(x, h(x))
dx

= l ′′xx(x̄, ā) �= 0.

As l ′x is continuous, the eigenvalue is monotonic with respect to x and the
stability conclusions follow.

When l ′a(x̄, ā) = 0, other types of bifurcations arise. One distinguished gener-
ally the transcritical bifurcation with l ′′xx �= 0 and l ′′xa �= 0 and the pitchfork bi-
furcation with l ′′xx = 0, l ′′′xxx �= 0 (seeWiggins (1990)). They are however rather
uncommon in economic models.

A convenient tool to represent the effect of the parameter under consid-
eration on the dynamics is to draw a bifurcation diagram. The bifurcation
diagram for a tangent bifurcation is presented in figure A.7. The lines repre-
sent the steady states as a function of the parameter a. The arrows indicate
the dynamics and the stability type. What actually happens is the merging and
disappearance of two hyperbolic equilibria at the bifurcation point.6

Example: One simple example of a tangent bifurcation is the following. Con-
sider the function l(x, a) = a − x2. The point ā = −1/4 is a tangent bifurcation
point, as we have

x̄ = l(x̄,−1/4) = −1/2,

l ′x(x̄,−1/4) = −2x̄ = 1,

l ′′xx(x̄,−1/4) = −2 < 0,

l ′a(x̄,−1/4) = 1 �= 0.

6 In a two-dimensional system, the tangent bifurcation is often called a “saddle–node” bifur-
cation because the two equilibria are respectively a saddle and a node (i.e., the eigenvalues
are real and their moduli are on the same side of 1).
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A.4 dynamic optimization

A.4.1 The Value Function

We consider a state variable xt which belongs to an interval I of R; its motion
through time is governed by the following equation:

xt+1 = φ(xt ,Ct) = φ
(
xt , c1t , c

2
t , . . . , c

n
t

)
. (A.9)

The vector of control variables Ct = (c1t , c
2
t , . . . , c

n
t ) of time t has an influence

on the evolution of the stock. We assume that the initial stock x̄0 is given by

x0 = x̄0, (A.10)

and that the set of feasible decisions in t , denoted Q(xt), depends on the level
of the stock xt :

Ct ∈ Q(xt). (A.11)

In general, the set of feasible decisions is delimited by constraints depending
on xt .

A sequence (xt ,Ct), t = 0, 1, . . . , which satisfies (A.9), (A.10), and (A.11)
is called a feasible trajectory starting from x̄0.

Example: We illustrate the dynamic optimization under constraint with a simple
example of optimal growth with constant population. xt = kt is the stock of cap-
ital, I = R++ is an interval of R, ct and dt are the consumption levels, yt = f (kt )
is the production function, and the equation of motion for the stock of capital is

kt+1 = f (kt) − ct − dt = φ(kt , ct ,dt).

The set of feasible consumption levels is delimited by the positivity con-
straints and by the resource constraint:

Q(kt) = {(ct ,dt) ∈ R
2; ct > 0, dt > 0, ct + dt < f (kt)}.

Another approach allows for zero consumption. In that case, we define

Q̃(kt) = {(ct ,dt) ∈ R
2; ct ≥ 0, dt ≥ 0, ct + dt ≤ f (kt)}.

We consider a payoff function, depending on the stock variable and on the
decisions at each date:

g(xt ,Ct) = g(xt , c1t , c2t , . . . , cnt ).
Given a positive discount factor δ, the objective is to maximize the discounted
flow of payoffs

max
∞∑
t=0

δt g(xt ,Ct)
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on the set of feasible trajectories starting from x̄0, i.e. those which verify (A.9),
(A.10), and (A.11).

Example: In the optimal growth problem the payoff function is the utility func-
tion; the objective is to maximize the discounted sum of utilities:

max
∞∑
t=0

δtU(ct ,dt).

U is a function defined on the set R
2
++ (or on R

2
+ when zero consumptions

are admissible).

We next define the value function of state x as the upper bound of the dis-
counted sum of the payoffs that are feasible starting from x̄0. We consider the
following assumptions:

Assumption B0.
For all element x of I, Q(x) is non-empty, and for all vectors C in the subset
Q(x) of R

n, φ(x,C) is defined and belongs to I, i.e., the dynamics are defined
on I.

Example: With a production function f (k) : R++ → R++, the dynamics are de-
fined on R++, because for all k ∈ R++ and for all pairs (c,d) ∈ Q(k), φ(k, c,d) is
defined and belongs to R++. Similarly, R++ is replaced by R+ when zero con-
sumptions are admissible.

Assumption B1.
For C given, the functions φ(x,C) and g(x,C) are non-decreasing with respect
to x. The upper bound of φ(x,C) with respect to C in Q(x) belongs to I:

φ̄(x) = sup
C∈Q(x)

φ(x,C) ∈ I.

The upper bound of g(x,C) with respect to C in Q(x) is finite:

ḡ(x) = sup
C∈Q(x)

g(x,C) ∈ R.

For any initial condition x̄0, there exists a constant b0 and a scalar δ0 > δ such
that the sequence x̄t defined by

x̄t+1 = φ̄(x̄t) ∀t ≥ 0

satisfies

δt0ḡ(x̄t) ≤ b0 ∀t ≥ 0.
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Assumption B1 ensures that the highest possible payoff with the highest pos-
sible state remains bounded.

Example: In the optimal growth problem with φ(k, c,d) = f (k) − c − d and
Q(k) = {(c,d) ∈ R

2; c > 0, d > 0, and c + d < f (k)},
we have

φ̄(k) = f (k), ḡ(k) = sup{U(c,d); (c,d) ∈ Q(k)}.
� With f (k) = Akα, the sequence k̄t is bounded and the assumption B1
holds for any δ < 1, since there exists δ0 such that 1 > δ0 > δ.

� In the linear case, f (k) = Ak, the sequence k̄t that is the solution of
k̄t+1 = f (k̄) is given by k̄t = At k̄0; consideringU(c,d) = ca + da , we have
ḡ(k) = 2( f (k)/2)a , and

δt0ḡ(kt) = δt02
(
At k̄0
2

)a
is bounded for all t ≥ 0 if and only if δ0Aa ≤ 1; this holds for some δ0 > δ
if and only if δAa < 1.

As is illustrated in the above example, the assumption B1 imposes a bound on
the growth of feasible payoffs, in order to keep the discounted sum bounded.
We now have the following proposition on the convergence7 of the infinite
sum:

Proposition A.11 (Convergence of the infinite sum)
Under the assumptions B0 and B1, every discounted sum of feasible payoffs is
defined and has values in R ∪ {−∞}:

∞∑
t=0

δt g(xt ,Ct) = lim
T→+∞

T∑
t=0

δt g(xt ,Ct) ∈ R ∪ {−∞}.

Proof: If xt ≤ x̄t at time t , which holds in particular at t = 0 because x0 = x̄0,
we have by induction that this inequality holds for any t :

xt+1 = φ(xt ,Ct) ≤ φ̄(xt) ≤ φ̄(x̄t) = x̄t+1.

We also have

g(xt ,Ct) ≤ ḡ(xt) ≤ ḡ(x̄t).
As a consequence, the sequence

ST =
T∑
t=0

δt [g(xt ,Ct)− ḡ(x̄t)]

7 In R ∪ {−∞}.
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is non-increasing, since each term of the sum is negative or nil (ST − ST−1 =
δT[g(xT,CT)− ḡ(x̄T)] ≤ 0). The sequence ST has thus a limit in R ∪ {−∞}.
We may also, without restriction, assume that ḡ(x̄t) ≥ 0 (it is sufficient that we
replace ḡ(x̄t) by max{0, ḡ(x̄t)}). Following the assumption B1, we have

S̄T =
T∑
t=0

δt ḡ(x̄t) ≤
T∑
t=0

δt

δt0
b0 = 1

1− δ/δ0 b0,

as
∑∞
t=0(δ/δ0)

t = 1/(1 − δ/δ0). The increasing sequence S̄T has thus a finite
limit. We deduce that the sequence of finite sums of discounted payoffs∑T
t=0 g(xt ,Ct) has a limit in R ∪ {−∞}.

It is then enough that there exists at least one feasible trajectory such that this
limit is finite, to be allowed to define the value function.8

Assumption B2.
For all x̄0 ∈ I, there exists a feasible path (xt ,Ct)t≥0, starting at x̄0, such that the
sequence

T∑
t=0

δt g(xt ,Ct)

is bounded below when T → +∞.

Proposition A.12 (The value function)
Under the assumptions B0, B1, and B2, the function

V(x̄0) = sup

{ ∞∑
t=0

δt g(xt ,Ct); (xt ,Ct) feasible from x̄0

}

is defined on I and satisfies ∀x ∈ I
V(x) = sup{g(x,C)+ δV(φ(x,C)); C ∈ Q(x)}. (A.12)

Proof: Following the assumption B1, the infinite sums belongs to R ∪ {−∞}.
They are moreover bounded above by a constant:

∞∑
t=0

δt g(xt ,Ct) ≤
∞∑
t=0

δt ḡ(x̄t) ≤ b0
1 − δ/δ0 .

Following B2, there exists at least one sequence (xt ,Ct) for which the sum is
finite. Then the upper bound V(x̄0) is finite.

8 To make the assumption for all feasible trajectories is more restrictive and would not apply
to a logarithmic or CIES utility function with σ < 1.
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Take x0 ∈ I. For anyC0 chosen inQ(x0), the following state is y = φ(x0,C0).
For any feasible trajectory (xt ,Ct) starting at x0 such that x1 = y, we have

∞∑
t=0

δt g(xt ,Ct) = g(x0,C0)+ δ
∞∑
t=0

δt g(xt+1,Ct+1).

We first take the upper bound at givenC0 on the set of feasible trajectories for
which x1 = φ(x0,C0):

g(x0,C0)+ sup
∞∑
t=1

δt g(xt ,Ct) = g(x0,C0) + δV(φ(x0,C0)).

We next take the upper bound on C0 ∈ Q(x0), and we obtain the Bellman
equation (A.12).

The following proposition shows that the optimal path is the solution to the
Bellman equation (A.12) at each date.

Proposition A.13 (Characteristics of optimal trajectories)
Under the assumptions B0, B1, and B2, a feasible path (x�t ,C

�
t ) starting from

x�0 = x̄0 is optimal if and only if we have for all t
V(x�t ) = g(x�t ,C�t )+ δV(x�t+1). (A.13)

Proof: Necessary condition: If a path is optimal from x�0 = x̄0, then, for all t ,
the path (x�t+i ,C

�
t+1)i≥0 is optimal from x

�
t : if that were not the case, it would

be possible to increase the objective by a change in the path after time t .9 We
have thus, for all t ,

V(x�t ) =
∞∑
i=0

δi g(x�t+i ,C
�
t+i ),

from which we deduce equation (A.13).
Sufficient condition: Applying equation (A.13), we obtain by induction

V(x̄0) =
T∑
t=0

δt g(x�t ,C
�
t )+ δT+1V(x�T+1). (A.14)

Using the bounds x̄t+1 = φ̄(x̄t) and ḡ(x̄t) defined from x̄0 with the assumption
B1, we obtain

V(x�t ) = sup

{ ∞∑
i=1

δg(xt+i ,Ct+i ); feasible trajectories starting from x�t

}

9 This is the principle of Bellman (1957). In a planning problem in which there is no reaction
of private agents, time consistency is not an issue.



Technical Appendices 331

≤
∞∑
i=0

δi ḡ(x̄t+i )

≤
∞∑
i=0

δi
b0
δt+i0

= 1
δt0

b0
1 − δ

δ0

,

and thus

δtV(x�t ) ≤
(
δ

δ0

)t b0
1 − δ

δ0

,

from which we deduce that

lim sup
t→+∞

δtV(x�t ) ≤ 0. (A.15)

Taking the limit of (A.14) when T → +∞, we have

V(x̄0) ≤
+∞∑
t=0

δt g(x�t ,C
�
t ),

as lim supT→+∞ δ
T+1V(x�T+1) ≤ 0. As V(x̄0) is the upper bound of the values of

the objective for all feasible trajectories starting from x̄0, there is strict equality,
and the trajectory (x�t ,C

�
t ), which realizes the upper bound is optimal.

Under the assumptions B0, B1, and B2, in order to prove that there exists an
optimal path and to study its properties, it is sufficient to show that ∀x

max
C
g(x,C)+ δV(φ(x,C))

attains its bound on Q(x) at C�(x) ∈ Q(x). Then, the trajectory defined by
induction from x̄0 by

C�t = C�(x�t ) and x�t+1 = φ(x�t ,C
�
t )

satisfies equation (A.13), as

g(x�t ,C
�
t )+ δV(x�t+1) = sup

C∈Q(x�t )
{g(x�t ,C)+ δV(φ(x�t ,C))} = V(x�t ).

Remark that for the optimal solution to exist, it is not sufficient to have that the
value function is defined.More precisely, the Bellman equation (A.12) and the
necessary condition (A.13) are verified by the value function if this function
is defined (with values in R). But the sufficient property of proposition A.13
that ensures the existence of a solution is obtained with the limit property
(A.15). This property results from the boundedness condition δt0ḡ(x̄t) ≤ b0 ∀t
in B1. However, to study the properties of the value function, we only need
the existence of this function, not this boundedness condition.
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An essential property used to show that the value function attains its bound
on Q(x), is the continuity of this function. This continuity property is a conse-
quence of the concavity of the value function of a convex problem.

Assumption B3.
The set A of the feasible triplets of payoff, current stock, and resulting stock is
convex. Formally,A is the set of elements (a, x, y) of R × I × I for which there
exists C ∈ Q(x) such that a ≤ g(x,C) and y = φ(x,C).

The inequality bearing on a weakens the assumption of convexity; it allows
one to realize all gains which are inferior to a given feasible gain.

Example: If the functions f (k) andU(c,d) are concave and increasing, the op-
timization problem is convex.

Proposition A.14 (Continuity of the value function)
Under the assumptions B0, B1, B2, and B3, the value function is concave on I
and is continuous on the interior of I.

Proof: Let x10 and x20 be two points of I, and let λ ∈ [0, 1]. By definition of
the value function, there exist feasible trajectories (xit ,C

i
t ) starting from x

i
0 for

i = 1, 2 such that

∞∑
t=0

δt g
(
xit ,C

i
t

)
> V(xi0)− ε (A.16)

for ε > 0. We apply the hypothesis of the convexity of the setA of the triplets
of feasible payoff, current stock, and resulting stock. The elements (ait , x

i
t , y

i
t )

defined by ait = g(xit ,Cit ) and yit = φ(xit ,C
i
t ), i = 1, 2, belongs toA, and hence

their convex combination(
aλt , x

λ
t , y

λ
t

) = λ
(
a1t , x

1
t , y

1
t

)+ (1 − λ)(a2t , x2t , y2t )
also belongs to A. As a consequence, there exists Cλt ∈ Q(xλt ) such that yλt =
φ(xλt ,C

λ
t ) and

aλt ≤ g(xλt ,Cλt ).
We also have, ∀t , xλt+1 = λx1t+1 + (1− λ)x2t+1 = λy1t + (1− λ)y2t = yλt = ϕ(xλt ,
Cλt ). Hence, the sequence (x

λ
t ,C

λ
t )t≥0 is feasible from x

λ
0 , which implies

V(xλ0 ) ≥
∞∑
t=0

δt g
(
xλt ,C

λ
t

) ≥
∞∑
t=0

δt aλt .

Moreover, we have aλt = λa1t + (1 − λ)a2t = λg(x1t ,C
1
t ) + (1− λ)g(x2t ,C2

t ),
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implying

V(xλ0 ) ≥ λ
∞∑
t=0

δt g
(
x1t ,C

2
t

)+ (1 − λ)
∞∑
t=0

δt g
(
x2t ,C

2
t

)
,

and, following (A.16),

V(xλ0 ) ≥ λV(x10)+ (1− λ)V(x20)− ε.
The inequality being satisfied for all ε > 0, we deduce that the function V is
concave on I . Moreover, a function which is concave on an interval is neces-
sarily continuous on the interior of this interval.

We further obtain the monotonicity of the value function under an additional
assumption on the set Q(x) (see assumption 4.6 of Stokey and Lucas (1989)).

Proposition A.15 (Monotonicity of the value function)
Assume that B0, B1, and B2 hold, and suppose that

∀x ∈ I, ∀x′ ∈ I, x ≤ x′ ⇒ Q(x) ⊆ Q(x′).

Then the value function V is non-decreasing on the set I.

Proof: Let x0 ≤ x′
0 and take ε > 0. There exists a feasible trajectory (xt ,Ct)t≥0

starting from x0 such that

∞∑
t=0

δt g(xt ,Ct) ≥ V(x0)− ε.

We define a trajectory (x′
t ,Ct)t≥0 starting from x′

0 by induction: if x′
t ≥ xt

(which in particular holds at t = 0), then x′
t+1 =φ(x′

t ,Ct) is defined as Ct ∈
Q(x)⇒Ct ∈Q(x′

t), and we have (as g and φ are monotonic with respect to x)
g(x′

t ,Ct) ≥ g(xt ,Ct) and
x′
t+1 = φ(x′

t ,Ct) ≥ φ(xt ,Ct) = xt+1.

As the trajectory (x′
t ,Ct)t≥0 is feasible from x

′
0, we have

V(x′
0) ≥

∞∑
t=0

δt g(x′
t ,Ct) ≥

∞∑
t=0

δt g(xt ,Ct) ≥ V(x0)− ε.

As we have V(x′
0) ≥ V(x0) − ε for all ε > 0, V(x′

0) ≥ V(x0) is necessary.

Example: In the optimal growth problem, the set Q(k) = {(c,d) ∈ R
2; c > 0,

d > 0, and c + d < f (k)} satisfies the assumptions of Proposition A.15.
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The differentiability of the value function is useful for studying stationary
optimal paths. To study the differentiability of V with respect to x̄, we assume
the following: near given state and controls (x̄, C̄), for a small change in the
state, it is possible to change the controls in order to leave the next period state
unchanged.

Assumption B4.
The function g is differentiable at (x̄, C̄), and there exists an ad hoc differentiable
function C̃(x) defined on a neighborhood V of x̄ such that C̃(x̄) = C̄ and ∀x ∈
V, C̃(x) ∈ Q(x) and φ(x, C̃(x)) = φ(x̄, C̄).

Example: In the optimal growth problem, given k̄, c̄, and d̄ positive, and given
the next period capital stock k̄+ = f (k̄)− c̄ − d̄ > 0, B4 says that, with a current
capital stock, different frombut near to k̄, there exist consumptions c̃(k) and d̃(k)
such that the capital stock of the next period remains unchanged. For example,
keeping d constant, we have d̃(k) = d̄ and c̃(k) = f (k) − d̄ − k̄+.

Proposition A.16 (Differentiability of the value function)
Assume that B0, B1, B2, and B3 hold and that B4 holds at (x̄, C̄) such that

V(x̄) = g(x̄, C̄) + δV(φ(x̄, C̄)). (A.17)

Then, V is differentiable at x̄, and its derivative is

V ′(x̄) = ∂g
∂x

(x̄, C̄)+
n∑
i=1

∂g
∂ci

(x̄, C̄)
∂ c̃i

∂x
(x̄).

Proof: For all x ∈ V we have

V(x) ≥ g(x, C̃(x))+ δV(φ(x, C̃(x)) = g(x, C̃(x))+ δV(φ(x̄, C̄)).

Using equation (A.17) and C̄ = C̃(x̄), we deduce

V(x)− V(x̄) ≥ g(x, C̃(x))− g(x̄, C̃(x̄)).

A concave function which is bounded below in a neighborhood of x̄ by a
differentiable function of x̄ is itself differentiable at x̄, and the two derivatives
are equal (see figure A.8). We thus have

V ′(x̄) = d
dx
g(x, C̃(x))

∣∣∣∣
x=x̄

= ∂g
∂x

(x̄, C̄) +
n∑
i=1

∂g
∂ c̃i

(x̄, C̄)
∂ c̃i

∂x
(x̄).
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Figure A.8. Differentiability of the value function.

Example: In the optimal growth problem, we have

V ′(k) = dU(c̃(k), d̄)
dk

= U ′
c(c̄, d̄) f

′(k̄).

A.4.2 Necessary and Sufficient Conditions for Optimality

We now study the same problem as in appendix A.4.1 in a different way, viz.,
we maximize

∞∑
t=0

δt g(xt ,Ct),

such that

xt+1 = φ(xt ,Ct) and Ct ∈ Q(xt)
with a given initial condition x0 = x̄0.

We define the Lagrangian corresponding to the shadow prices qt , t = 0,
1, 2, . . . :

Definition A.9 (Lagrangian of period t)
The Lagrangian Lt(xt ,Ct) of period t is obtained as the sum of the payoff
g(xt ,Ct) with the increase in the value of the stock:

Lt(xt ,Ct) = g(xt ,Ct)+ δqt+1φ(xt ,Ct) − qt xt .

Notice that xt is evaluated at thepriceqt , and xt+1 is evaluated at thediscounted
price δqt+1.

A feasible trajectory (x�t ,C
�
t ) is supported by a sequence of shadow prices

(qt) if, for every integer t ≥ 0, the Lagrangian Lt(xt ,Ct) attains its maximum
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at (x�t ,C
�
t ) on the set of vectors (xt ,Ct) which verify xt ∈ I andCt ∈ Q(xt). We

then have

Lt(x�t ,C�t ) = max
xt∈I,Ct∈Q(xt )

Lt(xt ,Ct)

for all t ≥ 0.

Proposition A.17 (Necessary and sufficient conditions for optimality)
Let us consider a feasible trajectory (x�t ,C

�
t ) starting from x̄0 and for which x

�
t

is interior to I for all t ≥ 0. Under the assumptions B0, B1, B2, and B3, the
trajectory (x�t ,C

�
t ) is optimal if and only if there exists a sequence of shadow

prices (qt) such that

� the trajectory (x�t ,C
�
t ) is supported by the sequence of shadow prices (qt);

� for any other feasible trajectory (xt ,Ct) starting from x̄0, such that

∞∑
t=0

δt g(xt ,Ct)

is finite, we have

lim
t→+∞ δ

tqt(xt − x�t ) ≥ 0. (A.18)

The necessary condition is derived with multi-dimensional stocks by Michel
(1990a). The sufficient condition is standard (see, e.g., Arrow andKurz (1970))
and does not require B1 and B2.

The condition (A.18) is the transversality condition. It means that the dis-
countedvalueof theoptimal stock (evaluatedat the shadowprice) is exhausted
in the long run and that the value of any other feasible stock should be greater
than or equal to that of the optimal stock. The necessary condition only applies
to the feasible trajectories with finite payoffs.10

Two particular cases are of special importance.

� In the usual economic case where xt ≥ 0 (stock of capital) and qt ≥ 0 (non-
negative shadow value of the capital stock), a sufficient condition for (A.18)
is

lim
t→+∞ δ

tqt x�t = 0,

i.e., the limit of the discounted value of the optimal stock is zero. Indeed,
this implies, when qt xt ≥ 0,

lim
t→+∞ δ

tqt(xt − x�t ) ≥ − lim
t→+∞ δ

tqt x�t = 0.

10 Because of B1, finite payoffs are equivalent to
∑∞
t=0 δ

t g(xt ,Ct ) > −∞ (non-infinite loss).
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This condition is also necessary when there exists a feasible trajectory
(xt ,Ct) with xt = 0 ∀t ≥ T and for which there are finite payoffs, i.e.,

∞∑
t=0

δt g(xt ,Ct) > −∞.

Indeed, for this feasible trajectory we have

− lim
t→+∞ δ

tqt x�t ≥ 0.

Then, a qt ≥ 0 and x�t ≥ 0 implies limt→+∞ δtqt x�t = 0.

Example: In the optimal growth problem, the stock of capital can always be
reduced by increasing consumption, which implies qt ≥ 0. The transversality
condition

lim
t→+∞ δ

tqt kt = 0

is sufficient. It is also necessary when the trajectory with zero capital is
feasible and leads to finite payoffs: f (0) > 0 or, for the problem allowing
for zero consumptions, U(0, 0) finite.

� When the stock of any feasible trajectory is bounded andwhen there exist two
feasible trajectories starting from x0, (x1t ,C

1
t ) and (x

2
t ,C

2
t ) with finite payoffs

such that

lim
t→+∞ x

1
t − x�t > 0 and lim

t→+∞ x
2
t − x�t < 0,

the transversality condition is equivalent to

lim
t→+∞ δ

tqt = 0,

and the limit of the discounted shadow price is zero. The significance of this
special case is the following: if there exists one feasible trajectory above the
optimal one and another one below in the long run, then the optimal stock
is worthless and its discounted shadow price is zero.11

In the assumptions used so far, there is no conditionof differentiability. Indeed,
it is the assumption of convexity of the optimization problem that allows us
to obtain a necessary and sufficient optimality condition. If, moreover, the
functions φ and g are differentiable and if (x�t ,C

�
t ) is interior to the set on

which we maximize L, we obtain the following first-order conditions:
∂Lt(x�t ,C�t )

∂xt
= 0 and

∂Lt(x�t ,C�t )
∂cit

= 0, i = 1, 2, . . . , n.

11 An economic example linked to optimal growth can be found in the satiation case of Ryder
and Heal (1973) and de la Croix (1998).
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Example: In the optimal growth problem, the Lagrangian of period t is

Lt = U(ct ,dt)+ δqt+1( f (kt) − ct − dt)− qt kt ,
and the first-order optimality conditions are

qt = δqt+1 f ′(k�t ),

and

∂U(c�t ,d
�
t )

∂ct
= δqt+1 = ∂U(c�t ,d

�
t )

∂ dt
.

A.5 calibration and simulation

The majority of calibrated overlapping generations models consider agents
living more than two periods in order to be able to address policy issues in a
not too distant future. Some authors, however, carefully calibrate two-period
models (see for example Ambler (2000)).

In this section, we first calibrate two overlapping generations economies
that should be understood as numerical examples. Calibration means that we
choose the parameter values in order to reproduce a list of data characteristics.
Other characteristics can then be used to investigate to what extent the model
generates accurate predictions with respect to them. In a last sub-section, we
explain how to compute numerically the solution to a non-linear dynamic
model with perfect foresight.

A.5.1 The Cobb–Douglas Model

We first take a simple logarithmic utility function U(c,d) = ln c + β lnd and
a Cobb–Douglas production function f (k) = Akα . This amounts to assuming
that the inter-temporal elasticity of substitution in consumption is equal to one
and that factors of production are substitutes with an elasticity of one.We also
assume that capital depreciates fully after one period, which is not unrealistic
in our setup.12 The parameter A is simply a scale parameter when the produc-
tion function isCobb–Douglas and the utility is homogeneous.We set it to 20 to
get steady state capital around 1.We choose the parameter n in order tomatch
a long-run growth rate of total output of 2.5% per year. This corresponds to
the long-run growth of U.S. GDP over the twentieth century. For a period
of 30 years, 1 + n equals 2.097. There remains two parameters to calibrate, α
and β. We chose these parameters following the standard choice in the RBC
literature (see the different contributions in Cooley (1995)), which leads to
a share of labor in added value of α = 1/3 and a quarterly psychological

12 Even if one assumes a rather low annual depreciation rate of 5%, 79% of the stock of capital
is depreciated after 30 years.
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Figure A.9. Calibrated example, Cobb–Douglas model.

discount factor13 of 0.99. The parameter β is thus set equal to 0.99120 = 0.3.
The transition function kt+1 = g(kt) corresponding to our parameter choice is
plotted in figure A.9.

The extent to which these parameters are reasonable can be assessed by
looking at other steady state characteristics.We shall look at the implied saving
rate, interest rate, and speed of convergence.

Thepositive steady state is equal to k= 1.21.At this steady state, the savings
rate (savings over production),

Ntst
Yt

= 1 + n
A
k1−α,

is 15.38%. This is broadly consistent with the evidence reported in Maddison
(1992).14 The interest rate on an annual basis,

30
√
Aαkα−1 − 1,

is equal to 5.18%, and the annual capital/output ratio is 2.2, both of which are
in conformity with actual data. One can also compute the convergence speed
around the steady state. It is given by

kt+1 − kt
k− kt � 1− g′(k).

This speed on an annual basis is given by 1− 30
√
g′(k) and is equal to 3.6%. This

is too quick compared to the majority of empirical studies, which estimate it
around 2% per year. Hence, the transition function is “too horizontal” near
the steady state to reproduce a realistic speed of convergence.

13 This last parameter is usually calibrated to match the long-run interest rate in models with
infinite-lived agents.

14 Maddison (1992) provides historical estimates of long-run savings rates for 11 countries.
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A.5.2 The Model with a CES Production Function

Forty years ago, Arrow, Chenery, Minhas, and Solow (1961) taught us that
economic analysis based on a unit elasticity of substitution between labor and
capital often leads to unduly restrictive conclusions. For example, estimates
for developed countries consistently find that the elasticity of substitution is
not different from unity, but much lower values have been found for LDCs.15

This may reflect more limited technological options in emerging economies,
i.e., entrepreneurs choosing from the set of technologies in current or local use
rather than on the broader set of all potential technologies.

Let us consider an economy with a CES production function f (k) =
A(αk−ρ + 1− α)−1/ρ with ρ = 1, and a logarithmic utility U(c,d) = ln c +
β lnd. The assumption ρ = 1 implies that the elasticity of substitution between
capital and labor is 1/2. In this case,

f (k) = Ak
α + (1 − α)k.

The parameters A= 20, n = 2.097, β = 0.3 are set as in the previous calibra-
tion exercise (Cobb–Douglas). α is set to obtain a labor share in production of
2/3. This yields α = 0.49.We round it to α = 1/2. The corresponding transition
function kt+1 = g(kt) is plotted in figure A.10.

There are two positive steady states, k= 0.54 and k= 1.86. At the stable
steady state, the savings rate is 15%, the interest rate on an annual basis is
5.42%, and the annual capital/output ratio is 2.15. They are all in conformity
with actual data. One can also compute the convergence speed around the
steady state. This speed on an annual basis is equal to 1.19%. As the transition
function is steeper around the stable steady state than in the previous example,

0.5 1 1.5 2 2.5 3
kt

0.5

1

1.5

2

2.5

3

kt+1

Figure A.10. Calibrated example, CES.

15 For example, Sosin and Fairchild (1984) find an average elasticity of 1/2 using a sample of
221 Latin American firms in the 1970s.
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Figure A.11. Numerical example, CES production with pensions.

this example generates a high speed of convergence.Note also that both steady
states are in the under-accumulation regime.

A.5.3 Introduction of Policies in the Model with CES Production

In the previous example, we considered public pensions financed by lump-sum
taxes on the young agents. Keeping the same parameters as in the previous
sub-section, figure A.11 shows how the steady state capital stock(s) depend
on pensions a. It gives the bifurcation diagram (figure 3.4 in chapter 3) for the
chosen parameter values. The highest sustainable transfer is a = 0.54.

We also consider the CES example with unproductive public spending
financedby lump-sumtaxeson theyoungagents.The steady states as a function
of g are plotted in figure A.12. The highest sustainable spending is g = 0.994.

Finally, we draw the diagrams of section 4.4 for our specific numerical
example. This allows us to show the global dynamics of the economy when
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Figure A.12. Numerical example, CES production with government spending.



342 A Theory of Economic Growth

2.5 5 7.5 10 12.5 15 17.5 20
k

−20

−10

10

20

b

0.5 1 1.5 2 2.5 3
k

−0.2

−0.15

−0.1

−0.05

0.05

0.1

0.15

0.2

b

Figure A.13. Numerical example, CES production with constant debt.

the government pursues a constant debt policy as in Diamond (1965). The
broad view presented in the top panel of figure A.13 allows us to view the two
curves b̄(k) and b(k) as well as the constraint b > −k. We also plot the steady
state curve b̂(k). The two non-trivial steady states with zero debt appear more
clearly in the closer view of the bottom panel.



Technical Appendices 343

A.5.4 Numerical Solution to Non-linear Forward-looking Models

Let us consider a dynamic model characterized by two non-linear first-order
necessary conditions of the form

f
(
zt , z1t−1, z

2
t+1, xt

) = 0,

g
(
zt , z1t−1, z

2
t+1, xt

) = 0,

where zt = (z2t , z
1
t ) is the vector of endogenous variables at t , including one

predetermined variable (z1t ) and one non-predetermined variable (z
2
t ). f and

g are functions representing our dynamic model, and xt is the vector of exoge-
nous variables and parameters.

Since f and g are non-linear, it is not possible in general to solve the model
analytically. The general problem is to solve a system of finite difference equa-
tions with initial and terminal conditions. Approximating the infinite horizon
by a finite one (that means that the transversality conditions on anticipated
variables are replaced by the steady state values of these variables at the end
of the horizon of simulation), the complete system has as many equations as
the number of equations at each period multiplied by the simulation horizon
plus the initial and terminal conditions:

z10 = z1init,
f
(
z1, z10, z

2
2, xt

) = 0,

g
(
z1, z10, z

2
2, xt

) = 0,
... (S)

f
(
zT, z1T−1, z

2
T+1, xt

) = 0,

g
(
zT, z1T−1, z

2
T+1, xt

) = 0,

z2T+1 = z2steady state.

When there are few equations and when the equilibrium converges quickly to
the steady state (T can be chosen relatively small), this system can be solved by
usual numerical algorithms of standard mathematical packages (for instance,
the functionFindRoot ofMathematica easily finds the solution to the examples
of chapter 2).

When the system is more complicated, the system (S) is solved for zt using
a Newton–Raphson relaxation method put forward by Laffargue (1990) and
Boucekkine (1995) for solving dynamic non-linear models with perfect fore-
sight. With this technique, the Newton–Raphson improvement at each itera-
tion is computed by triangulation (instead of inversion) of the matrix of the
first derivatives of the system. As Boucekkine (1995) shows, this method al-
lows one to characterize the nature of the dynamics of the model (explosivity,
saddle-point trajectory, or infinite number of stable solutions) without having
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to linearize it or to compute the eigenvalues of the linearized system. In partic-
ular, it is easy to determine whether the convergence of the algorithm is due to
the existence of a saddle-point trajectory or not. Indeed, the algorithm is char-
acterized by explosivity in the case where an infinity of stable solutions exist
(see Boucekkine and Le Van (1996)). This explosivity property is in fact com-
mon to all convergent relaxation methods. The explosive behavior is revealed
by a simple numerical procedure relying on the initialization of the relaxation.
Initializing the relaxation with values slightly different from the steady state
leads to explosive behavior at the first Newton–Raphson improvement.

This routine is implemented under Gauss with the package Dynare of
Juillard (1996).

A.6 statistics

A.6.1 Dynamics of Distributions

Consider a probability distribution function %t on R++:

%t(h) = Pr(ht ≤ h).
The function %t is defined on R++ with values in [0, 1]. It is non-decreasing,
with %t(0+) = 0 and %t(+∞) = 1.

We associate to %t the distribution of the logarithms of ht . This associated
distribution �t is defined on R:

�t(l) = %t(exp l) ⇔ �t(ln h) = %t(h).

We consider a linear law of evolution for lt (which corresponds to log-linear
dynamics for ht):

lt+1 = atlt + bt , at > 0.

It is possible to describe how the distribution �t changes over time:

�t+1(l) = Pr(lt+1 = atlt + bt ≤ l)

= Pr
(
lt ≤ 1

at
(l − bt)

)

= �t

(
1
at
(l − bt)

)
.

The mean and the variance of the distribution are

l̄ t+1 = at l̄ t + bt ,
σ 2t+1 = a2t σ 2t .

Usually, the probability distribution function may also be defined by a density
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function ϕt :

%t(h) =
∫ h

0
ϕt(x) dx.

If ϕt(·) is continuous at h, then ϕt(h) is the derivatives of %t(·) at h:
%′
t(h) = ϕt(h).

The density function of �t is then

�′
t(l) = %′

t(exp l) exp l = φt(exp l) exp l. (A.19)

A.6.2 Normal and Log-normal Distributions

In the special case where �t is a normal distribution, its density function is

�′
t(l) = 1

σt
√
2π

exp
(

− (l − l̄ t)2
2σ 2t

)
.

It is entirely characterizedby the twoparameters l̄ t andσt . FigureA.14presents
the density function with l̄ t = 1, σt = 1.

The original distribution %t is called log-normal, and its density function is
given by

%′
t(h) = ϕt(h) = 1

hσt
√
2π

exp
(

− (ln h− l̄ t)2
2σ 2t

)
.

This results from the relationship (A.19) between %′
t and �

′
t . One interest of

this distribution is that we can express themean and the variance of the associ-
ated log-normal distribution as a function of the parameters of the underlying
normal distribution, l̄ t and σ . The mean of the associated log distribution is
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0.4

Λt
′
(l)

l

Figure A.14. Density function of a normal distribution.
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Figure A.15. Density function of a log-normal distribution.

given by

h̄t = exp
(
l̄ t + σ 2t

2

)
, or ln h̄t = l̄ t + σ 2t

2
,

and its variance by

exp
(
2l̄ t + σ 2t

)(
exp σ 2t − 1

)
.

Figure A.15 plots the density function of the log-normal distribution.
Many data generating processes in life and social sciences can be charac-

terized by log-normal distributions, such as, e.g., the age of marriage in human
populations, and economic data such as the size of enterprises and personal
income (see Limpert, Abbt, and Stahel (2001)).
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Arrow, Kenneth and Gerard Débreu. 1954. “Existence of equilibrium for a compet-
itive economy.” Econometrica 22 (3): 265–290.

Arrow, Kenneth and Mordecai Kurz. 1970. Public Investment, the Rate of Return,
and Optimal Fiscal Policy. Baltimore: Johns Hopkins University Press.

Arthur, Brian and Geoffrey McNicoll. 1978. “Samuelson, population, and intergen-
erational transfers.” International Economic Review 19 (1): 241–246.

Atkinson, Antony. 1971. “Capital taxes, the redistribution of wealth, and individual
savings.” Review of Economic Studies 38 (114): 209–227.

Atkinson, Antony and Agnar Sandmo. 1980. “Welfare implications of the taxation
of savings.” Economic Journal 90 (359): 529–549.

Auerbach, Alan and LaurenceKotlikoff. 1987.Dynamic Fiscal Policy. NewYork and
Melbourne: Cambridge University Press.

. 1995.Macroeconomics: An Integrated Approach. Cincinnati: SouthWestern
College Publishing.

Azariadis, Costas. 1993. Intertemporal Macroeconomics. Cambridge, MA and
Oxford: Blackwell.

. 1996. “Theeconomicsofpoverty traps –part one: completemarkets.” Journal
of Economic Growth 1 (4): 449–486.

Azariadis, Costas, JamesBullard, andLeeOhanian. 2001. “Complex eigenvalues and
trend reverting fluctuations.” Mimeo, UCLA.

Azariadis, Costas and David de la Croix. 2001. “Growth or equality? Losers and
gainers from financial reform.” Mimeo, UCLA.

Azariadis, Costas and Allan Drazen. 1990. “Threshold externalities in economic
development.” Quarterly Journal of Economics 105 (2): 501–526.

Azariadis, Costas and Luisa Lambertini. 2000. “Volatility in an Economy with Tem-
porary Default Penalties.” Mimeo, UCLA.

Azariadis, Costas and Bruce Smith. 1998. “Financial intermediation and regime
switching in business cycles.” American Economic Review 88 (3): 516–536.

Balasko, Yves and Karl Shell. 1981. “The overlapping generations model II: the case
of pure exchange with money.” Journal of Economic Theory 24 (1): 112–142.

Bandiera, Oriana, Gerard Caprio, Patrick Honohan, and Fabio Schiantarelli. 2000.
“Does Financial Reform Raise or Reduce Saving?” Review of Economics and
Statistics 82 (2): 239–263.

Barro, Robert. 1974. “Are government bonds net wealth?” Journal of Political Econ-
omy 82 (6): 1095–1117.

. 1990. “Government spending in a simple model of endogenous growth.”
Journal of Political Economy 98 (5): S103–S125.

Barro, Robert and Gary Becker. 1989. “Fertility choice in a model of economic
growth.” Econometrica 57 (2): 481–501.

Barro, Robert andDavidGordon. 1983. “Rules, discretion and reputation in amodel
of monetary policy.” Journal of Monetary Economics 12 (1): 101–121.

Barro, Robert and Xavier Sala-I-Martin. 1995. Economic Growth. New York,
London, and Montreal: McGraw-Hill.

Becker, Gary. 1964. Human Capital: A Theoretical and Empirical Analysis, with
Special Reference to Education. New York: Columbia University Press.

. 1974. “A theory of social interactions.” Journal of Political Economy 82 (6):
1063–1091.



Bibliography 357

. 1992. “Habits, addictions and traditions.” Kyklos 45 (3): 327–345.
Becker, Gary and Robert Barro. 1988. “A reformulation of the economic theory of
fertility.” Quarterly Journal of Economics 103 (1): 1–25.

Becker, Gary andH. Lewis. 1973. “On the interaction between the quality and quan-
tity of children.” Journal of Political Economy 81: S279–S288.
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Wilcox, David. 1989. “The sustainability of government deficits: implications of the
present value borrowing constraint.” Journal ofMoney, Credit and Banking 21 (3):
291–306.

Wilhelm,Mark. 1996. “Bequest behavior and the effect of heir’s earnings: testing the
altruistic model of bequests.” American Economic Review 86 (4): 874–892.

Woodford, Michael. 1986. “Stationary sunspot equilibria in a finance constrained
economy.” Journal of Economic Theory 40 (1): 128–137.

Zhang, Jie, Jusen Zhang, and Ronald Lee. 2001. “Mortality decline and long-run
economic growth.” Journal of Public Economics 80 (3): 485–507.





Author Index

Abbt, Markus, 346
Abel, Andrew, 84, 239, 252, 260
Ahmed, Shaghil, 185
Aiyagari, Rao, 236
Allais, Maurice, 1, 291, 299
Altonji, Joseph, 248
Ambler, Steve, 338
Ando, Albert, xiii
Andreoni, James, 260
Araujo, Jorge, 31
Arrow, Kenneth, 7, 72, 291, 336, 340
Arthur, Brian, 172
Atkinson, Antony, 136, 159
Auerbach, Alan, 50, 155, 273
Azariadis, Costas, 34, 58, 64, 69, 155, 179,
180, 257, 259, 274, 279

Balasko, Yves, 299
Bandiera, Oriana, 62
Barro, Robert, 3, 31, 38, 164, 179, 240, 252,
274, 289

Becker, Gary, 3, 239, 240, 256, 268, 280, 288,
289

Belan, Pascal, 142, 154
Bellman, Richard, 90, 330
Benabou, Roland, 257, 258
Benhabib, Jess, 27, 299
Ben-Porath, Yoram, 274
Bernheim, Douglas, 251
Bertocchi, Graziella, 179
Bewley, Truman, 292
Bisin, Alberto, 280
Blackburn, Keith, 121
Blanchard, Olivier, xiv, 27, 154, 158, 179
Boucekkine, Raouf, 105, 343, 344

Bouzahzah, Mohamed, 273
Boyd, Richard, 280, 281
Breyer, Friedrich, 154
Brickman, Philip, 280
Brock, William, 93
Buiter, Willem, 58, 192
Bullard, James, 69, 84

Caprio, Gerard, 62
Cardia, Emanuela, 251
Carroll, Robert, 192
Cass, David, 82, 86
Cavalli-Sforza, Luigi, 281
Cazzavillan, Guido, 259
Chakraborty, Shankha, 121
Chamley, Christophe, 159, 164
Champarnaud, Luc, 281
Chari, V. V., 159, 160, 164
Chenery, Hollis, 7, 340
Christiano, Lawrence, 164
Cipriani, Giam Petro, 121
Clark, Andrew, 282
Coates, Dan, 280
Coleman, James, 281
Cooley, Thomas, 338
Cremers, Emily, 37
Crettez, Bertrand, 186, 191, 192
Croissant, Yves, 290

d’Aspremont, Claude, 10
d’Autume, Antoine, 274
De Gregorio, Jose, 58
Dearden, Lorraine, 259
Deardorff, Alan, 172
Debreu, Gérard, 72, 291

369



370 Author Index

de la Croix, David, 10, 40, 64, 155, 258, 269,
273, 274, 280, 282, 288, 289, 290, 337

Demange, Gabrielle, 20
Denison, Edward, 257
Devereux, Michael, 10
Diamond, Peter, 1, 141, 179, 180, 181, 182,
213, 216, 229, 287, 291, 292, 299, 342

Docquier, Frédéric, 273
Doepke, Matthias, 240, 258
Douglas, Paul, 8
Drazen, Allan, 257, 259, 274, 279
Dubey, Ashutosh, 257
Duesenberry, James, 280

Easterlin, Richard, 281, 290
Ehrlich, Isaac, 121
Elmendorf, Douglas, 193
Erosa, Andres, 159

Fairchild, Loretta, 340
Farmer, Roger, 27, 180, 213, 233, 291
Feldman, Marcus, 281
Feldstein, Martin, 150, 153, 155
Ferguson, Don, 179
Ferreira, Rodolphe Dos Santos, 10
Fischer, Stanley, 154, 158
Flavin, Marjorie, 185
Fougère, Maxime, 273
Frankel, Marvin, 124
Frenkel, Jacob, xiv
Futia, Carl, 265

Gale, David, 93, 299, 300
Galor, Oded, 3, 34, 36, 38, 44, 262
Geanakoplos, John, 299
Gérard-Varet, Louis-André, 10
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